Information Processing Letters 27 (1988) 249-252
North-Holland

28 April 1988

A NEW COMPUTATION RULE FOR PROLOG

Ashok KUMAR and V.M. MALHOTRA

Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur 208 016, India

Communicated by David Gries
Received 13 July 1987
Revised 8 October 1987

Keywords: ProLoG, SLD-resolution, interpreter

Introduction

A common programming paradigm in PROLOG
is generate-and-test: a ‘solution’ is generated and
then ‘tested’. A solution that fails to satisfy the
test is discarded—at least partially—and a new
solution generated. Intelligent backtracking [1] has
been suggested for reducing the number of calls
that a PROLOG interpreter makes during a pro-
gram execution. Two main drawbacks of an intel-
ligent backtrack are: (i) it does not prevent the
first unsuccessful execution of a path, and (i) it
needs to carry too much information to make a
good guess.

In this paper we introduce an alternative
methpd for reducing the number of calls. The
method achieves an early rejection of a bad solu-
tion by scheduling the tests closer to the genera-
tors.

1. PROLOG

We assume the reader to be familiar with the
common PROLOG terminology [2,5]. Briefly, a
PROLOG program consists of a finite set of clauses
of the form A « B;B,...B, (n>0) and a goal
clause G of the form « B,B,... B, (n > 0). Each
B, (i=1,2,...,n) is called a subgoal. As an ex-
ample, we give a simple Sort program below. The

program is a typical example of a generate-and-test
paradigm in PROLOG.

S1: Sort(X, Y) « Perm(X, Y)Ok(Y);

P1: Perm([].[]):
P2: Perm([X|Y],[H|T])
—Apnd(U, [H|V],[X|Y])
Apnd(U, V, W)Perm(W, T);

A1: Apnd([], X, X),
A2: Apnd([X|Y], Z, [X|W])
« Apnd(Y, Z, W);

K1: Ok([X,Y|Z])«<Ok([Y|Z])Less(X, Y)
K2: Ok([X]);
< Sort([3,2,1,4,5],Y);

Let G be «<A,...4,...4, and let C be
A< B,...B,. G and C are said to derive a new
goal Q using mgu 6O if:

- A,0=A6 and

- Q is the goal

—(Ay...Ap,_1By...BApyy...4,)0,

The mechanism for selecting a subgoal S of goal
G for deriving the next goal Q is called a compu-
tation rule. The standard computation rule for
PrROLOG selects the leftmost subgoal of the goal
for the derivation.

0020-0190,/88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 249

Volume 27, Number 5

PrROLOG searches the clauses for the selected
subgoal in order of their occurrence in the pro-
gram. Each time a sequence of derivation fails
(i.e; no further derivation is possible), the last
derivation in the sequence is undone and the next
untried clause for selected subgoal is used to search
an alternative derivation sequence. The search ends
when a sequence of derivations leading to an
empty goal is obtained.

2. Motivation for a new computation rule

The execution trace (sequence of goals) of the
Sort program indicates that the test Ok(Y) is
called several times—Perm continues to.generate
new permutations of input [3, 2, 1, 4, 5] and calls
Ok(Y) till the search succeeds. Thus, Ok(Y) is
called with Y bound to [3, 2, 1, 4, 5], [3, 2, 1, 5,
4],.... Specifically, all permutations beginning
with 3,2 fail to satisfy test Ok(Y). The aim,
therefore, is to devise a computation rule that calls
test Ok(Y') as soon as the first two elements of the
permutation have been chosen.

An interpreter for sequential PROLOG is a par-
tial function. For example, the Sort program will
not terminate if the two subgoals in the body of
clause S1 are reversed, i.e., Sort(X, Y) « Ok(Y)
Perm(X, Y). As a result, the arrangement of the
clauses and the subgoals in the clause body is, in
general, significant and cannot be altered without
jeopardizing the execution of the program. In par-
ticular, the proposed computation rule for Pro-
LOG must ensure that it produces a result whenever
the standard computation rule for PROLOG does.
For this purpose, we shall distinguish the leftmost
occurrences of the variables in a goal from the
other occurrences of the variables in it. For exam-
ple, in the goal « Perm([3, 2, 1, 4, 5], Y)Ok(Y),
Perm([3, 2, 1, 4, 5], Y) must be selected before
Ok(Y) since it contains the leftmost occurrence of
variable Y.

3. A new computation rule

As explained earlier, a computation rule that
prefers a ‘test’ over ‘generation’ is expected to

250

INFORMATION PROCESSING LETTERS

28 April 1988

reduce the demand for computation during inter-
pretation of a PROLOG program. We characterize a
“test’ as a derivation of a new goal that does not
introduce any binding to the variables in the goal,
i.e., the mgu contains only substitutions for varia-
bles in the head of the called clause. On the other
hand, ‘generation’ is a derivation causing bindings
to some of the variables in the goal.

The proposed computation rule selects a ‘test’
subgoal, if one exists. If no “test’ subgoal exists, a
‘generator’ subgoal is selected. If the goal contains
neither a ‘test’ nor a ‘generator’ subgoal, the left-
most subgoal is selected. The first untried clause
for the selected subgoal is used to derive the new
goal.

In the remainder of this section we formally
characterize tests and generators.

Assignment

Let S be a subgoal and let H be the head of
the clause unified with S. Let © be a most general
unifier (mgu) for § and H. We say that a variable
V in § has undergone an assignment if V is
bound to a variable in § or to a (nonvariable)
term by the mgu ©. The binding of ¥V to a
variable in H is, however, not an assignment.

For example, if S=Apnd([],[2,1, 4, 5], W)
and H=Apnd([], X, X), then W is assigned the
value [2, 1, 4, 5] by the mgu. We represent this as
W:=[2,1, 4, 5].

Leftmost variable and subgoal

A subgoal § is the leftmost subgoal for variable
V if § is the leftmost subgoal containing V in the
body of the clause that introduced V. All occur-
rences of V in its leftmost subgoal are leftmost if
V does not occur in the head of the clause. The
occurrences of V' are potentially leftmost if V'
occurs in the head. A potentially leftmost occur-
rence of a variable V' becomes leftmost if all
occurrences of the variable in the head of the
clause are in the terms that unify with the leftmost
variables of the selected subgoal.

For example, in the clause

Perm([X|Y], [H|T])
—Apnd(U, [H|V],[X|Y])
Apnd(U, V, W)Perm(W, T),

Volume 27, Number 5

the occurrences of variables X, Y, and H are
potentially leftmost and those of U and V left-
most in Apnd(U, [H|V], [X|Y]). W is leftmost
in Apnd(U, ¥V, W) and T is potentially leftmost
in Perm(W, T).

Waiting subgoal

Let V' be a nonleftmost variable in subgoal S.
Let the next call for S be to a clause with head H.
If unification of S with H assigns ¢ to V, then S
is said to be waiting on assignment V:i=c¢. A
subgoal may wait on several assignments at a
time.

Let a derivation make an assignment V:=1.
The assignment satisfies the wait of S on V:=¢.
The set of new waits for S introduced by the
assignment is given by wait(c,), where

wait(c, ¢)
{} if (¢ or ¢ is a leftmost variable in §')
or(c=t)
or (¢ isavariablein H),
{e=1} if(cisavariablein §),
=\ {(r=¢} if(sisavariablein §),

|J wait(e’, ¢”) if (¢.functor = ¢.functor) and
it ¢’, t" are corresponding pairs
of arguments,

fail otherwise.

Table 1

A comparison of the number of calls made during execution by
PROLOG. programs using the proposed and conventional com-
putation’ rules; the goals marked by an asterisk (*) do not
cause any backtracking

Se- Initial goal Number of calls
quEke Prop- Conven-
S osed tional
ber

1 Queens(4, X) 108 281

2 Sort([5, 4, 3, 2, 1], X) 329 1749

3 Sort([2, 3,4, 5,1], X) 240 1382

4 Sort([5,4,1, 2, 3], X) 130 935

5 Sort([1, 2, 3, 4, 5], X) 26 26

6 * Quicksort([5,4,3,2,1], X) 45 45

7 = Insort([5, 4, 1, 2, 3], X)) 29 29

8 + Reverse1(30 elements) 496 496

9 + Reverse2(40 elements) 42 42
10 Node_color(4 nodes) 7 9

INFORMATION PROCESSING LETTERS

28 April 1988

Mature subgoal, test, and generator

A subgoal not waiting on any assignment is a
mature subgoal. A mature subgoal S is a test if
the unification of S with H does not cause any
assignment to any variable of S. A generator is a
mature goal that is not a test. The proposed
computation rule ensures that a mature subgoal
does not change its status (test or generator) as a
result of subsequent derivations. However, a ma-
ture goal may become a waiting goal or change
status when the clause for its next call changes.

For example, let L and R be leftmost and
nonleftmost variables of subgoal Apnd([], L, R).
respectively. The subgoal is mature (generator)
with respect to head Apnd([], X, X) since a most
general unifier for the case is

L:=R, X=R.

4. Conclusions

A preliminary implementation of the PROLOG
interpreter using the proposed computation rule is
described in [3,4]. The implementation maintains,
for each variable in the goal, a list of subgoals
waiting on an assignment to the variable. A sub-
goal spends time executing function wait, from its
creation to maturity, equal to the time required by
its call in a conventional interpreter [6]. However,
a backtrack may delete some of the subgoals, thus
losing the time spent on them. The main tradeoff,
therefore, is between the reduction in the number
of calls and the time lost due to backtrack. Since
the proposed computation rule substantially re-
duces the need for backtrack, it must perform
better than its conventional counterpart on nonde-
terministic programs. Experiments with our imple-
mentation suggest that the per-call time is about
three times that of a conventional interpreter. We
expect that a careful reprogramming can reduce
this factor appreciably.

Table 1 compares the performance of an inter-
preter based on the proposed method with that of
a conventional interpreter. The data suggests that
the scheme benefits nondeterministic programs
without adversely affecting deterministic pro-
grams.

251

Volume 27, Number 5
Acknowledgment

We gratefully acknowledge the suggestions
made by David Gries, Christian Codognet,
Philippe Codognet and Vipin Kumar to improve
the clarity of this paper.

References

[1] M. Bruynooghe and L.M. Pereira, Deductive revision by
intelligent backtracking, in: J. Campbell, ed., Implementa-
tion of Prolog (Ellis Horwood, Ltd., Chichester, UK., 1984)
194-215.

252

INFORMATION PROCESSING LETTERS

28 April 1988

[2] W.F. Clocksin and C.S. Mellish, Programming in Prolog
(Springer, Berlin/New York, 2nd ed., 1984).

[3] A. Kumar, A Look-Ahead Interpreter for Prolog, M. Tech.
Thesis, Dept. of Computer Science and Engineering, Indian
Inst. of Technology, Kanpur, 1987.

[4] A. Kumar and V.M. Malhotra, A look-ahead interpreter
for sequential Prolog and its implementation, in: K.V,
Nori, ed., Proc. 7th Conf. on Foundations of Software Tech-
nology and Theoretical Computer Science, Lecture Notes in
Computer Science, Vol. 287 (Springer, Berlin, 1987)
470-484,

[5] J.W. Lloyd, Foundations of Logic Programming (Springer,
Berlin, 1984).

[6] D.H.D. Warren, Implementing Prolog— Compiling Logic
Programs | and 2, DAI Res. Repts. 39 and 40, Univ. of
Edinburgh, 1977.

