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Abstract

Cayley graphs considered as language recognisers are as powerful as the
more general finite state automata. This paper applies Cayley graphs to
define a class of automata and describe minimal automata of this type,
all their congruences and the Nerode equivalence of states.

Throughout, the word graph means a finite directed graph without multiple
edges but possibly with loops, and D = (V, E) is a graph. A language is a set of
words over a finite alphabet X . For standard concepts of automata and languages
theory the reader is referred to [5], [7], [14] and [16].

Let G be a groupoid, i.e., a set with a binary operation, and let S be a nonempty
subset of G. The Cayley graph Cay(G, S) of G relative to S is defined as the graph
with vertex set G and edge set E(S) consisting of all ordered pairs (x, y) such that
xs = y for some s ∈ S. Cayley graphs of groups have received serious attention
in the literature (see, in particular, [1], [2], [4]). They are significant both in group
theory and in constructions of interesting graphs with nice properties.

If we are interested in language recognition, then the concept of a Cayley graph
turns out to be as powerful as the more general notion of a finite state automaton
(FSA). Indeed, if L is recognised by an FSA, then it is well known and easily verified
that L is also recognised by the finite labelled Cayley graph of

Syn(L) = X∗/µL,

where µL is the the Myhill congruence on the free monoid X∗ of all words over X :

µL = {(w1, w2) | ContL(w1) = ContL(w2)},
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ContL(w) = {(a, b) | awb ∈ L}.

Cayley graphs of groupoids have been used in [8] and [9] to define two-sided
automata of labelled graphs and investigate properties of languages recognized by
them. The aim of this paper is to give necessary and sufficient conditions for a two-
sided automaton of this type to be minimal. To this end we describe all congruences
on these FSA and, in particular, Nerode equivalences on the sets of states.

Let � : X → {+,−} and f : X → V be any mappings, and let T be a subset of
V . The two-sided automaton Atm(D) = Atm(D, T ) = Atm(D, T, f, �) of the graph
D is the (possibly incomplete) finite state acceptor with

(DA1) the set of states V ∪ {1};
(DA2) the initial state 1;

(DA3) the set of terminal states T ;

(DA4) the next-state function given, for a state u and a letter x ∈ X , by the rule

u · x =

{
f(x) if �(x) = + and (u, f(x)) ∈ E, or if u = 1,
u if �(x) = − and (f(x), u) ∈ E.

If a vertex v ∈ V does not belong to f(X), then this state is inaccessible in
Atm(D, T ), and so without loss of generality we may assume that all vertices are
images of letters of the alphabet X .

Let Y ⊆ V , and let � be an equivalence relation on Y . The class of � containing
x is denoted by x/�. If there is no need to indicate the set Y explicitly, we may
call the equivalence relation an incomplete equivalence relation on V . Often we omit
the word ‘incomplete’ when there is no ambiguity. The set Y is called the ground
set of �, and is denoted by G�. An incomplete equivalence relation � on the set
of states of Atm(D, T ) is called an incomplete congruence if it defines the quotient
automaton recognizing the same language. Defining the quotient automaton modulo
an incomplete congruence, as usual, one has to drop all states which do not belong
to the ground set of the congruence, and then introduce a new transition function on
the set of all equivalence classes of the relation. Hence � is an incomplete congruence
if and only if the following conditions hold, for all a, b ∈ V ∪ {1}, x ∈ X ,

(C1) if (a, b) ∈ � and a · x is defined, then b · x is defined too, and (a · x, b · x) ∈ �;

(C2) if (a, b) ∈ � and a ∈ T , then b ∈ T ;

(C3) (1, 1) ∈ � and the class containing 1 is a singleton;

(C4) if 1 · x1 · · · xn ∈ T for some x1, . . . , xn ∈ X , then

x1, . . . , xn, 1 · x1, 1 · x1x2, . . . , 1 · x1 · · · xn ∈ G�.
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Let �1 and �2 be incomplete relations with ground sets S1 and S2, respectively.
Then we write �1 ≤ �2 if S1 ⊇ S2 and �1 ∩ (S2 × S2) ⊆ �2. The largest incomplete
congruence on Atm(D, T ) is the Nerode equivalence ηT described by

ηT = {(1, 1)} ∪ {(a, b) | a · u ∈ T iff b · u ∈ T for all u ∈ X∗;

and (a · X∗) ∩ T 	= ∅} (1)

(see, e.g., [5] or [16]). Denote the equality relation on Atm(D, T ) by ι. A congruence
is said to be proper if it is distinct from ι and ηT . The following sets of letters and
vertices are used in our main theorem and proofs:

X (+) = {x ∈ X | �(x) = +},
X (−) = {x ∈ X | �(x) = −},
V (+) = {v ∈ V | ∃x ∈ X+, f(x) = v},
V (−) = {v ∈ V | ∃x ∈ X (−), f(x) = v}.

Note that the intersection V (+) ∩ V (−) may be nonempty in general. If v ∈ V and
S ⊆ V , then put

In−(v) = {w ∈ V (−) | (w, v) ∈ E},
Out+(v) = {w ∈ V (+) | (v, w) ∈ E},
In−(S) = ∪s∈S In−(s),

Out+(S) = ∪s∈S Out+(s).

For a subset S of V , define new equivalence relations

αS = {(1, 1)} ∪ {(a, b) | a, b ∈ V \ S, In−(a) = In−(b)}, (2)

Θ(T ) = {(1, 1)} ∪ (T × T ) ∪ ((V \ T ) × (V \ T )), (3)

and consider auxiliary sets

βT
S = {(a, b) | Out+(a) \ S = Out+(b) \ S and a, b ∈ T},

β
V \T
S = {(a, b) | Out+(a) \ S = Out+(b) \ S and a, b ∈ V \ T}.

We introduce new relation βS as the following disjoint union

βS = {(1, 1)} ∪ βT
S ∪ β

V \T
S . (4)

Clearly, βS is an equivalence relation on the set of states of Atm(D, T ). Our main
theorem describes all incomplete congruences on the automaton Atm(G, T, f, �).

A path in the graph D = (V, E) means a directed path, i.e., a sequence of vertices
v0, v1, . . . , vn such that (vi, vi+1) ∈ E for i = 0, 1, . . . , n − 1. Denote by T+ the set of
all elements v ∈ V such that either v ∈ T or there exist a vertex t ∈ T ∩ V (+) and a
path v = v0, v1, . . . , vn = t, from v to t with n ≥ 1 and all vertices v1, . . . , vn in V (+).
Let C = CD be the set of all vertices c ∈ V such that c /∈ T+ and if c ∈ V (−) then
(v, c) /∈ E for all v ∈ T+.
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THEOREM 1 The automaton Atm(D, T, f, �) is minimal if and only if

α∅ ∩ β∅ ∩ Θ(T ) = ι,

and for each c ∈ V (−) either c ∈ T+ or there exists v ∈ T+ such that (v, c) ∈ E.

THEOREM 2 Let � be an incomplete equivalence relation on Atm(D, T, f, �), and
let S = V \G�. Then � is a congruence of this automaton if and only if S is a subset
of CD and

� ⊆ αS ∩ βS ∩ Θ(T ). (5)

COROLLARY 3 The Nerode equivalence on Atm(D, T, f, �) is equal to

η = (αS ∩ βS ∩ Θ(T )) \ (CD × CD). (6)

Proof of Theorem 2. The ‘only if’ part. Take any incomplete congruence � of the
automaton Atm(D, T, f, �).

Let us begin by showing that condition (C4) implies that S = V \G� is a subset
of C = CD. To this end consider any vertex v which does not belong to C. All we
have to verify is that v lies in G�. In view of the definitions of C the following cases
may occur.

Case 1. v ∈ T . Then 1 · v = v ∈ T , and so 1 · v ∈ G� by condition (C4).

Case 2. v /∈ T and v ∈ T+. Then the definition of T+ means that there exist a
vertex t ∈ T ∩ V (+) and a path v = v0, v1, . . . , vn = t, from v to t with n ≥ 1 and all
vertices v1, . . . , vn in V (+). By the definition of Atm(D, T, f, �) we get

1 · v0v1 . . . vn = t ∈ T.

Hence condition (C4) yields v = 1 · v0 ∈ G�.

Case 3. c ∈ V (−) and (v, c) ∈ E for some v ∈ T . By (DA4), 1 · vc = v ∈ T .
Therefore v = 1 · v ∈ G� in view of (C4).

Case 4. c ∈ V (−) and (v, c) ∈ E for some v ∈ T+, v /∈ T . Then there exist
t ∈ T ∩V (+) and a path v = v0, v1, . . . , vn = t, from v to t with n ≥ 1 and all vertices
v1, . . . , vn in V (+) such that (v, c) ∈ E. It follows from (DA4) that

1 · vcv1v2 · · · vn = t ∈ T.

Hence (C4) implies v ∈ G� again.

Thus in all cases it follows from (C4) and the definition of Atm(D, T, f, �) that
v ∈ G�. This means that S ⊆ C.

In order to verify the inclusion (5), pick an arbitrary pair (a, b) in �. We have to
check that (a, b) belongs to all three equivalence relations in the right hand side of (5).
Since (1, 1) belongs to all of them, by (C3) we may assume a, b 	= 1. Condition (C2)
shows that (a, b) always lies in Θ(T ). Therefore it remains to prove that (a, b) belongs
to αS ∩ βS.
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Suppose to the contrary that (a, b) /∈ αS. Since S = V \G� and � ⊆ G�×G�, we
have a, b /∈ S. Therefore it follows from the definition of αS that In−(a) 	= In−(b).
We may assume that there exists u ∈ In−(a) \ In−(b). Choose x in X (−) such that
f(x) = u. Then ax = a and bx is undefined. This contradicts condition (C1) and
shows that (a, b) ∈ αS .

If there exists an element u in Out+(a)∩S\ Out+(b)∩S, then u = f(x) for some
x ∈ X (+); whence ax = x and bx is undefined, a contradiction to (C1). Therefore
Out+(a) ∩ S ⊆ Out+(b) ∩ S. The reversed inclusion is proven in exactly the same
way; whence

Out+(a) = Out+(b). (7)

In proving that (a, b) ∈ β first note that if a, b ∈ T , then Out+(a) = Out+(b)
implies (a, b) ∈ βT . If, however, a or b is not in T , then a, b ∈ V \ T as indicated
above. Hence (a, b) ∈ βV \T again, and we get (a, b) ∈ β. Therefore (a, b) ∈ β in both
cases. Thus (5) is satisfied.

The ‘if’ part. Let � be an incomplete equivalence relation such that S = V \G�

is a subset of C and the inclusion (5) holds. We claim that � is a congruence.

Indeed, since � ⊆ Θ(T ), conditions (C2) and (C3) are obvious. In order to verify
(C1), choose an arbitrary pair (a, b) ∈ � and x ∈ X such that ax is defined. Note
that a, b /∈ S by the definition of G�. The following cases are possible.

Case 1: �(x) = −. Since (a, b) ∈ αS , we get In−(a) = In−(b). If f(x) /∈
In−(a), then ax and bx are undefined. This contradiction shows that f(x) ∈ In−(a).
Therefore ax = a, bx = b, and so (ax, bx) ∈ �.

Case 2: �(x) = +. Since (a, b) ∈ β, we get Out+(a)\S = Out+(b)\S. If f(x) /∈
Out+(a), then ax and bx are undefined, a contradiction. Therefore f(x) ∈ Out+(a)\
S ⊆ Out+(b), and so bx is defined too. It follows that (ax, bx) = (f(x), f(x)) ∈ �,
because �(x) = +.

Thus, if ax is defined, then (ax, bx) always belongs to �, i.e., (C1) holds.

It remains to prove condition (C4). Choose any elements x1, . . . , xn ∈ X such
that 1 · x1 · · ·xn ∈ T . All we have to verify is that x1, . . . , xn, 1 · x1, 1 · x1x2, . . . ,
1 · x1 · · ·xn are not in S.

Denote by i1, i2, . . . , im all integers such that xi1 , . . . , xim ∈ X (+) and i1 ≤ i2 ≤
· · · ≤ im. Clearly, all xi1 , . . . , xim are in T+. Consider any k such that 1 ≤ k ≤ n.

First, suppose that �(xk) = +. Then k = �q for some q, and xq = 1 · x1 · · · xn.

If q = m, then it follows from (DA4) that xq = 1 · x1 · · ·xn ∈ T . Hence
1 · x1 · · ·xq = xq /∈ C.

If q < m, then (DA4) implies

1 · xq · · ·xn = 1 · x1 · · ·xn ∈ T

Hence xq ∈ T+, and so 1 · x1 · · · xq = xq /∈ C again.

Second, consider the case where �(xk) = −.

If i1 > k, then 1 · x1 · · ·xq = x1 ∈ T+. This equality immediately implies that
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1 · x1 · · · xq /∈ C. Besides, the same equality together with the definition of C via T+

yield that xq /∈ C.

If i1 ≤ k, then denote by r the maximum integer with ir ≤ k. We get 1 ·
x1 · · ·xq = xir ∈ T+. This equality immediately shows that 1 ·x1 · · ·xq /∈ C. Besides,
the same equality together with the definition of C also yield that xq /∈ C.

Thus we see that xq and 1 · x1 · · · xq are not in C. Therefore they do not belong
to S ⊆ C. This means that (C4) is satisfied, which completes the proof. �

Proof of Corollary 3 follows immediately from Theorem 2, because the Nerode
equivalence is the largest congruence and the intersection in the right hand side of
(5) is an equivalence relation. �

Proof of Theorem 1. An automaton is minimal if and only if its Nerode equivalence
is the identity relation. Hence the proof follows from the definition of the set CD

and Theorem 2 or Corollary 3. �
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