Labelled Cayley graphs and minimal automata

A.V. Kelarev*
School of Computing
University of Tasmania
Private Bag 100, Hobart
Tasmania 7001
Australia

Abstract

Cayley graphs considered as language recognisers are as powerful as the more general finite state automata. This paper applies Cayley graphs to define a class of automata and describe minimal automata of this type, all their congruences and the Nerode equivalence of states.

Throughout, the word graph means a finite directed graph without multiple edges but possibly with loops, and $D=(V, E)$ is a graph. A language is a set of words over a finite alphabet X. For standard concepts of automata and languages theory the reader is referred to [5], [7], [14] and [16].

Let G be a groupoid, i.e., a set with a binary operation, and let S be a nonempty subset of G. The Cayley graph Cay (G, S) of G relative to S is defined as the graph with vertex set G and edge set $E(S)$ consisting of all ordered pairs (x, y) such that $x s=y$ for some $s \in S$. Cayley graphs of groups have received serious attention in the literature (see, in particular, [1], [2], [4]). They are significant both in group theory and in constructions of interesting graphs with nice properties.

If we are interested in language recognition, then the concept of a Cayley graph turns out to be as powerful as the more general notion of a finite state automaton (FSA). Indeed, if L is recognised by an FSA, then it is well known and easily verified that L is also recognised by the finite labelled Cayley graph of

$$
\operatorname{Syn}(L)=X^{*} / \mu_{L},
$$

where μ_{L} is the the Myhill congruence on the free monoid X^{*} of all words over X :

$$
\mu_{L}=\left\{\left(w_{1}, w_{2}\right) \mid \operatorname{Cont}_{L}\left(w_{1}\right)=\operatorname{Cont}_{L}\left(w_{2}\right)\right\},
$$

[^0]$$
\operatorname{Cont}_{L}(w)=\{(a, b) \mid a w b \in L\}
$$

Cayley graphs of groupoids have been used in [8] and [9] to define two-sided automata of labelled graphs and investigate properties of languages recognized by them. The aim of this paper is to give necessary and sufficient conditions for a twosided automaton of this type to be minimal. To this end we describe all congruences on these FSA and, in particular, Nerode equivalences on the sets of states.

Let $\ell: X \rightarrow\{+,-\}$ and $f: X \rightarrow V$ be any mappings, and let T be a subset of V. The two-sided automaton $\operatorname{Atm}(D)=\operatorname{Atm}(D, T)=\operatorname{Atm}(D, T, f, \ell)$ of the graph D is the (possibly incomplete) finite state acceptor with
(DA1) the set of states $V \cup\{1\}$;
(DA2) the initial state 1 ;
(DA3) the set of terminal states T;
(DA4) the next-state function given, for a state u and a letter $x \in X$, by the rule

$$
u \cdot x= \begin{cases}f(x) & \text { if } \ell(x)=+ \text { and }(u, f(x)) \in E, \text { or if } u=1, \\ u & \text { if } \ell(x)=- \text { and }(f(x), u) \in E .\end{cases}
$$

If a vertex $v \in V$ does not belong to $f(X)$, then this state is inaccessible in $\operatorname{Atm}(D, T)$, and so without loss of generality we may assume that all vertices are images of letters of the alphabet X.

Let $Y \subseteq V$, and let ϱ be an equivalence relation on Y. The class of ϱ containing x is denoted by x / ϱ. If there is no need to indicate the set Y explicitly, we may call the equivalence relation an incomplete equivalence relation on V. Often we omit the word 'incomplete' when there is no ambiguity. The set Y is called the ground set of ϱ, and is denoted by G_{ϱ}. An incomplete equivalence relation ϱ on the set of states of $\operatorname{Atm}(D, T)$ is called an incomplete congruence if it defines the quotient automaton recognizing the same language. Defining the quotient automaton modulo an incomplete congruence, as usual, one has to drop all states which do not belong to the ground set of the congruence, and then introduce a new transition function on the set of all equivalence classes of the relation. Hence ϱ is an incomplete congruence if and only if the following conditions hold, for all $a, b \in V \cup\{1\}, x \in X$,
(C1) if $(a, b) \in \varrho$ and $a \cdot x$ is defined, then $b \cdot x$ is defined too, and $(a \cdot x, b \cdot x) \in \varrho$;
(C2) if $(a, b) \in \varrho$ and $a \in T$, then $b \in T$;
(C3) $(1,1) \in \varrho$ and the class containing 1 is a singleton;
(C4) if $1 \cdot x_{1} \cdots x_{n} \in T$ for some $x_{1}, \ldots, x_{n} \in X$, then

$$
x_{1}, \ldots, x_{n}, 1 \cdot x_{1}, 1 \cdot x_{1} x_{2}, \ldots, 1 \cdot x_{1} \cdots x_{n} \in G_{\varrho}
$$

Let ϱ_{1} and ϱ_{2} be incomplete relations with ground sets S_{1} and S_{2}, respectively. Then we write $\varrho_{1} \leq \varrho_{2}$ if $S_{1} \supseteq S_{2}$ and $\varrho_{1} \cap\left(S_{2} \times S_{2}\right) \subseteq \varrho_{2}$. The largest incomplete congruence on $\operatorname{Atm}(D, T)$ is the Nerode equivalence η_{T} described by

$$
\begin{gather*}
\eta_{T}=\{(1,1)\} \cup\left\{(a, b) \mid a \cdot u \in T \text { iff } b \cdot u \in T \text { for all } u \in X^{*} ;\right. \\
\text { and } \left.\left(a \cdot X^{*}\right) \cap T \neq \emptyset\right\} \tag{1}
\end{gather*}
$$

(see, e.g., [5] or [16]). Denote the equality relation on $\operatorname{Atm}(D, T)$ by ι. A congruence is said to be proper if it is distinct from ι and η_{T}. The following sets of letters and vertices are used in our main theorem and proofs:

$$
\begin{aligned}
X^{(+)} & =\{x \in X \mid \ell(x)=+\} \\
X^{(-)} & =\{x \in X \mid \ell(x)=-\} \\
V^{(+)} & =\left\{v \in V \mid \exists x \in X^{+}, f(x)=v\right\} \\
V^{(-)} & =\left\{v \in V \mid \exists x \in X^{(-)}, f(x)=v\right\}
\end{aligned}
$$

Note that the intersection $V^{(+)} \cap V^{(-)}$may be nonempty in general. If $v \in V$ and $S \subseteq V$, then put

$$
\begin{aligned}
\operatorname{In}^{-}(v) & =\left\{w \in V^{(-)} \mid(w, v) \in E\right\}, \\
\operatorname{Out}^{+}(v) & =\left\{w \in V^{(+)} \mid(v, w) \in E\right\}, \\
\operatorname{In}^{-}(S) & =\cup_{s \in S} \operatorname{In}^{-}(s), \\
\operatorname{Out}^{+}(S) & =\cup_{s \in S} \operatorname{Out}^{+}(s)
\end{aligned}
$$

For a subset S of V, define new equivalence relations

$$
\begin{align*}
\alpha_{S} & =\{(1,1)\} \cup\left\{(a, b) \mid a, b \in V \backslash S, \operatorname{In}^{-}(a)=\operatorname{In}^{-}(b)\right\}, \tag{2}\\
\Theta(T) & =\{(1,1)\} \cup(T \times T) \cup((V \backslash T) \times(V \backslash T)), \tag{3}
\end{align*}
$$

and consider auxiliary sets

$$
\begin{aligned}
\beta_{S}^{T} & =\left\{(a, b) \mid \mathrm{Out}^{+}(a) \backslash S=\mathrm{Out}^{+}(b) \backslash S \text { and } a, b \in T\right\} \\
\beta_{S}^{V \backslash T} & =\left\{(a, b) \mid \operatorname{Out}^{+}(a) \backslash S=\operatorname{Out}^{+}(b) \backslash S \text { and } a, b \in V \backslash T\right\} .
\end{aligned}
$$

We introduce new relation β_{S} as the following disjoint union

$$
\begin{equation*}
\beta_{S}=\{(1,1)\} \cup \beta_{S}^{T} \cup \beta_{S}^{V \backslash T} \tag{4}
\end{equation*}
$$

Clearly, β_{S} is an equivalence relation on the set of states of $\operatorname{Atm}(D, T)$. Our main theorem describes all incomplete congruences on the automaton $\operatorname{Atm}(G, T, f, \ell)$.

A path in the graph $D=(V, E)$ means a directed path, i.e., a sequence of vertices $v_{0}, v_{1}, \ldots, v_{n}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=0,1, \ldots, n-1$. Denote by T_{+}the set of all elements $v \in V$ such that either $v \in T$ or there exist a vertex $t \in T \cap V^{(+)}$and a path $v=v_{0}, v_{1}, \ldots, v_{n}=t$, from v to t with $n \geq 1$ and all vertices v_{1}, \ldots, v_{n} in $V^{(+)}$. Let $C=C_{D}$ be the set of all vertices $c \in V$ such that $c \notin T_{+}$and if $c \in V^{(-)}$then $(v, c) \notin E$ for all $v \in T_{+}$.

THEOREM 1 The automaton $\operatorname{Atm}(D, T, f, \ell)$ is minimal if and only if

$$
\alpha_{\emptyset} \cap \beta_{\emptyset} \cap \Theta(T)=\iota,
$$

and for each $c \in V^{(-)}$either $c \in T_{+}$or there exists $v \in T_{+}$such that $(v, c) \in E$.
THEOREM 2 Let ϱ be an incomplete equivalence relation on $\operatorname{Atm}(D, T, f, \ell)$, and let $S=V \backslash G_{\varrho}$. Then ϱ is a congruence of this automaton if and only if S is a subset of C_{D} and

$$
\begin{equation*}
\varrho \subseteq \alpha_{S} \cap \beta_{S} \cap \Theta(T) \tag{5}
\end{equation*}
$$

COROLLARY 3 The Nerode equivalence on $\operatorname{Atm}(D, T, f, \ell)$ is equal to

$$
\begin{equation*}
\eta=\left(\alpha_{S} \cap \beta_{S} \cap \Theta(T)\right) \backslash\left(C_{D} \times C_{D}\right) \tag{6}
\end{equation*}
$$

Proof of Theorem 2. The 'only if' part. Take any incomplete congruence ϱ of the automaton $\operatorname{Atm}(D, T, f, \ell)$.

Let us begin by showing that condition (C4) implies that $S=V \backslash G_{\varrho}$ is a subset of $C=C_{D}$. To this end consider any vertex v which does not belong to C. All we have to verify is that v lies in G_{ϱ}. In view of the definitions of C the following cases may occur.

Case 1. $v \in T$. Then $1 \cdot v=v \in T$, and so $1 \cdot v \in G_{\varrho}$ by condition $(C 4)$.
Case 2. $v \notin T$ and $v \in T_{+}$. Then the definition of T_{+}means that there exist a vertex $t \in T \cap V^{(+)}$and a path $v=v_{0}, v_{1}, \ldots, v_{n}=t$, from v to t with $n \geq 1$ and all vertices v_{1}, \ldots, v_{n} in $V^{(+)}$. By the definition of $\operatorname{Atm}(D, T, f, \ell)$ we get

$$
1 \cdot v_{0} v_{1} \ldots v_{n}=t \in T
$$

Hence condition (C4) yields $v=1 \cdot v_{0} \in G_{\varrho}$.
Case 3. $c \in V^{(-)}$and $(v, c) \in E$ for some $v \in T$. By (DA4), $1 \cdot v c=v \in T$. Therefore $v=1 \cdot v \in G_{\varrho}$ in view of (C4).

Case 4. $c \in V^{(-)}$and $(v, c) \in E$ for some $v \in T_{+}, v \notin T$. Then there exist $t \in T \cap V^{(+)}$and a path $v=v_{0}, v_{1}, \ldots, v_{n}=t$, from v to t with $n \geq 1$ and all vertices v_{1}, \ldots, v_{n} in $V^{(+)}$such that $(v, c) \in E$. It follows from (DA4) that

$$
1 \cdot v c v_{1} v_{2} \cdots v_{n}=t \in T
$$

Hence (C4) implies $v \in G_{\varrho}$ again.
Thus in all cases it follows from $(\mathrm{C} 4)$ and the definition of $\operatorname{Atm}(D, T, f, \ell)$ that $v \in G_{\varrho}$. This means that $S \subseteq C$.

In order to verify the inclusion (5), pick an arbitrary pair (a, b) in ϱ. We have to check that (a, b) belongs to all three equivalence relations in the right hand side of (5). Since (1,1) belongs to all of them, by (C3) we may assume $a, b \neq 1$. Condition (C2) shows that (a, b) always lies in $\Theta(T)$. Therefore it remains to prove that (a, b) belongs to $\alpha_{S} \cap \beta_{S}$.

Suppose to the contrary that $(a, b) \notin \alpha_{S}$. Since $S=V \backslash G_{\varrho}$ and $\varrho \subseteq G_{\varrho} \times G_{\varrho}$, we have $a, b \notin S$. Therefore it follows from the definition of α_{S} that $\operatorname{In}^{-}(a) \neq \operatorname{In}^{-}(b)$. We may assume that there exists $u \in \operatorname{In}^{-}(a) \backslash \operatorname{In}^{-}(b)$. Choose x in $X^{(-)}$such that $f(x)=u$. Then $a x=a$ and $b x$ is undefined. This contradicts condition (C1) and shows that $(a, b) \in \alpha_{S}$.

If there exists an element u in $\operatorname{Out}^{+}(a) \cap \bar{S} \backslash \operatorname{Out}^{+}(b) \cap \bar{S}$, then $u=f(x)$ for some $x \in X^{(+)}$; whence $a x=x$ and $b x$ is undefined, a contradiction to (C1). Therefore Out $^{+}(a) \cap \bar{S} \subseteq$ Out $^{+}(b) \cap \bar{S}$. The reversed inclusion is proven in exactly the same way; whence

$$
\begin{equation*}
\mathrm{Out}^{+}(a)=\mathrm{Out}^{+}(b) \tag{7}
\end{equation*}
$$

In proving that $(a, b) \in \beta$ first note that if $a, b \in T$, then $\mathrm{Out}^{+}(a)=\mathrm{Out}^{+}(b)$ implies $(a, b) \in \beta^{T}$. If, however, a or b is not in T, then $a, b \in V \backslash T$ as indicated above. Hence $(a, b) \in \beta^{V \backslash T}$ again, and we get $(a, b) \in \beta$. Therefore $(a, b) \in \beta$ in both cases. Thus (5) is satisfied.

The 'if' part. Let ϱ be an incomplete equivalence relation such that $S=V \backslash G_{\varrho}$ is a subset of C and the inclusion (5) holds. We claim that ϱ is a congruence.

Indeed, since $\varrho \subseteq \Theta(T)$, conditions (C2) and (C3) are obvious. In order to verify (C1), choose an arbitrary pair $(a, b) \in \varrho$ and $x \in X$ such that $a x$ is defined. Note that $a, b \notin S$ by the definition of G_{ϱ}. The following cases are possible.

Case 1: $\ell(x)=-$. Since $(a, b) \in \alpha_{S}$, we get $\operatorname{In}^{-}(a)=\operatorname{In}^{-}(b)$. If $f(x) \notin$ $\operatorname{In}^{-}(a)$, then $a x$ and $b x$ are undefined. This contradiction shows that $f(x) \in \operatorname{In}^{-}(a)$. Therefore $a x=a, b x=b$, and so $(a x, b x) \in \varrho$.

Case 2: $\ell(x)=+$. Since $(a, b) \in \beta$, we get Out $^{+}(a) \backslash S=$ Out $^{+}(b) \backslash S$. If $f(x) \notin$ Out $^{+}(a)$, then $a x$ and $b x$ are undefined, a contradiction. Therefore $f(x) \in \operatorname{Out}^{+}(a) \backslash$ $S \subseteq$ Out $^{+}(b)$, and so $b x$ is defined too. It follows that $(a x, b x)=(f(x), f(x)) \in \varrho$, because $\ell(x)=+$.

Thus, if $a x$ is defined, then ($a x, b x$) always belongs to ϱ, i.e., (C1) holds.
It remains to prove condition (C4). Choose any elements $x_{1}, \ldots, x_{n} \in X$ such that $1 \cdot x_{1} \cdots x_{n} \in T$. All we have to verify is that $x_{1}, \ldots, x_{n}, 1 \cdot x_{1}, 1 \cdot x_{1} x_{2}, \ldots$, $1 \cdot x_{1} \cdots x_{n}$ are not in S.

Denote by $i_{1}, i_{2}, \ldots, i_{m}$ all integers such that $x_{i_{1}}, \ldots, x_{i_{m}} \in X^{(+)}$and $i_{1} \leq i_{2} \leq$ $\cdots \leq i_{m}$. Clearly, all $x_{i_{1}}, \ldots, x_{i_{m}}$ are in T_{+}. Consider any k such that $1 \leq k \leq n$.

First, suppose that $\ell\left(x_{k}\right)=+$. Then $k=\ell_{q}$ for some q, and $x_{q}=1 \cdot x_{1} \cdots x_{n}$.
If $q=m$, then it follows from (DA4) that $x_{q}=1 \cdot x_{1} \cdots x_{n} \in T$. Hence $1 \cdot x_{1} \cdots x_{q}=x_{q} \notin C$.

If $q<m$, then (DA4) implies

$$
1 \cdot x_{q} \cdots x_{n}=1 \cdot x_{1} \cdots x_{n} \in T
$$

Hence $x_{q} \in T^{+}$, and so $1 \cdot x_{1} \cdots x_{q}=x_{q} \notin C$ again.
Second, consider the case where $\ell\left(x_{k}\right)=-$.
If $i_{1}>k$, then $1 \cdot x_{1} \cdots x_{q}=x_{1} \in T_{+}$. This equality immediately implies that
$1 \cdot x_{1} \cdots x_{q} \notin C$. Besides, the same equality together with the definition of C via T_{+} yield that $x_{q} \notin C$.

If $i_{1} \leq k$, then denote by r the maximum integer with $i_{r} \leq k$. We get 1 . $x_{1} \cdots x_{q}=x_{i_{r}} \in T_{+}$. This equality immediately shows that $1 \cdot x_{1} \cdots x_{q} \notin C$. Besides, the same equality together with the definition of C also yield that $x_{q} \notin C$.

Thus we see that x_{q} and $1 \cdot x_{1} \cdots x_{q}$ are not in C. Therefore they do not belong to $S \subseteq C$. This means that (C4) is satisfied, which completes the proof.

Proof of Corollary 3 follows immediately from Theorem 2, because the Nerode equivalence is the largest congruence and the intersection in the right hand side of (5) is an equivalence relation.

Proof of Theorem 1. An automaton is minimal if and only if its Nerode equivalence is the identity relation. Hence the proof follows from the definition of the set C_{D} and Theorem 2 or Corollary 3.

References

[1] L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combinatorics, Elsevier Sci., 1995, 1447-1540.
[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1994.
[3] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.
[4] M.-C. Heydemann, Cayley graphs and interconnection networks, in Graph Symmetry: Algebraic Methods and Applications (Montreal, Canada, July 1-12, 1996), Kluwer, Dordrecht, 1997, 167-224.
[5] M. Ito, Algebraic Theory of Automata and Languages, World Scientific, New York, 2001.
[6] A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin. 25 (2002), 73-78.
[7] A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, 2003.
[8] A. V. Kelarev, M. Miller and O. V. Sokratova, Directed graphs and closure properties for languages, 12th Australasian Workshop on Combinatorial Algorithms (Ed. E.T. Baskoro), 2001, 118-125.
[9] A. V. Kelarev, M. Miller and O. V. Sokratova, Languages recognized by two-sided automata of graphs, Proc. Estonian Academy of Science, to appear.
[10] A. V. Kelarev and C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combinatorics 24 (2003), 59-72.
[11] A. V. Kelarev and O. V. Sokratova, Languages recognized by a class of finite automata, Acta Cybernetica 15 (2001), 45-52.
[12] A. V. Kelarev and O. V. Sokratova, On congruences of automata defined by directed graphs, Theoretical Computer Science, in press.
[13] G. Lallement, Semigroups and Combinatorial Applications, Wiley, New York, 1979.
[14] G. Păun and A. Salomaa (Eds.), New Trends in Formal Languages, SpringerVerlag, Berlin, 1997.
[15] J. E. Pin (Ed.), Formal Properties of Finite Automata and Applications, Lec. Notes Comp. Science 386, Springer, New York, 1989.
[16] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, 2, 3, Springer, New York, 1997.

[^0]: * The author was supported by IRGS grant K12511 and by ARC Discovery grant DP0449469.

