
100 Computer

T H E P R O F E S S I O N

L ast September’s IEEE Spectrum
focused on “custom-made
enterprise software and its
many spectacular failures—the
kind that bankrupt companies

and cost governments and whole
industries tens of billions of dollars a
year.” I read it at a time when just such
a failure—of the Australian Customs
Service’s Integrated Cargo System—
made the headlines here. My memo-
ries of the spectacular mid-1970s
failure of the Mandata system,
intended to keep track of all
Australian Federal public servants,
came to mind, along with a strong
feeling of unease.

Reading the Spectrum special report
issue’s three feature articles left me
with the impression we were missing
something basic. It occurred to me
then that the computing profession
was not seeing the woods of what
their client enterprises are actually try-
ing to do for the trees of how the pro-
fession tries to do it for them.

SOFTWARE FAILURE
Consider the common factors listed

in the last of the three articles, “Why

Software Fails” by Robert S. Charette
(www.spectrum.ieee.org/sep05/1685):

• unrealistic or unarticulated project
goals;

• inaccurate estimates of needed
resources;

• badly defined systems require-
ments;

• poor reporting of the project’s
status;

• unmanaged risks;
• poor communication among cus-

tomers, developers, and users;
• use of immature technology;
• inability to handle the project’s

complexity;
• sloppy development practices;
• poor project management;
• stakeholder politics; and
• commercial pressures.

These factors break down into three
categories. Most are about project
management, and their high incidence
has strong implications for profes-
sional education in a time of declining
student enrollment. Many computing
professionals work in projects, so their
education should include a solid

grounding in all phases and aspects of
project work.

Sloppy development practices and
the use of immature technology are
about project implementation, the soft-
ware engineers’ bailiwick. Spectrum’s
“The Exterminators” by Philip E. Ross
(www.spectrum.ieee.org/sep05/1454)
proclaimed that “A small British firm
shows that software bugs aren’t
inevitable.” Although the article was
about the benefits of formal methods,
it is significant that Praxis, the firm in
question, develops “mission-critical
systems” rather than custom-made
enterprise software.

The third category addresses a pro-
ject’s context: communication among
customers, developers, and users;
stakeholder politics; and commercial
pressures. These might be called pro-
ject metamanagement, the aspects that
determine what the project is all about.

The source of my unease was a feel-
ing that these were all symptoms and
that the disease lay in seeing a gigan-
tic project as the solution to an enter-
prise’s problems. This kind of project
seems all too often to become an end
in itself, one with which its propo-
nents identify themselves.

ENTERPRISE SYSTEMS
An enterprise is a system. If a com-

puting system will serve as the basis
for enterprise-wide operations, that
system is best viewed as something the
enterprise uses, not something that
defines what the enterprise can do.
Undoubtedly, an enterprise uses its
computing system for collecting, stor-
ing, and exploiting data.

One aspect that must be considered
is the computing system’s structure.
Projects pose the problem that their
proponents seem always to see them
as monolithic. Yet, given this word’s
somewhat pejorative connotation,
they call them integrated instead.

Projects and their integrated enter-
prise systems are complex, not simply
because enterprises become more
complex the longer they last. This is
most peculiar, considering that pro-
grammers understand that they can

The Data
Doughnut and
the Software Hole
Neville Holmes
University of Tasmania

In computing, the data
is the end, the programs
merely the means.

Continued on page 98

98 Computer

T H E P R O F E S S I O N

simplify development and otherwise
improve it by dividing the tasks to be
done into relatively independent com-
ponents that interact through the sim-
plest possible interfaces.

Generally, an enterprise’s computing
system can be divided into three rela-
tively independent segments—one each
for importing, storing, and exporting
data—that interact with each other and
with users’ programs through inter-
faces based on the definition of the data
to be passed between the segments.
Indeed, an enterprise might benefit
from having different users’ program
suites—specifically, data collection and
exploitation systems—handle different
parts of its operations, such as their
suppliers, customers, and employees,
interfacing with the data import and
export segments. This approach segre-
gates the users’ program suites from the
segmented enterprise system, much as
clients are segregated from their server
in a computer network.

Within the segmented enterprise sys-
tem, data importation would focus on
validating incoming data and its
source; data storing on availability,
consistency, and expedition; and data
exportation on request validation and
fulfillment. The main benefit of enter-
prise systems comes from establishing
and maintaining a single database for
the entire organization. So in this seg-
mented approach, users and clients of
any kind would have to go through
data import and export segments to
get at the data storage segment and its
database.

Provided they establish data defini-
tions first, by adopting a segmented
enterprise system developers can
implement individual segments inde-
pendently except for their mutual
dependence on the data definitions.
Different teams could implement dif-
ferent segments, even a mixture of
software vendor teams and in-house
teams, and they could develop and run
the segments on different computers.

This benefit seems to me of poten-
tially great value, yet I saw nothing in
the Spectrum special report or the
practical Computer article titled “A
Roadmap for Enterprise System

Implementation” (Diane Strong and
Olga Volkoff, June 2004, pp. 22-29)
to imply that the segmented approach
has been considered anywhere. If
developers do use the segmented
approach, we must wonder why gen-
eral reporting doesn’t make this clear
or even emphasized. We must also
wonder why developers call enterprise
systems integrated rather than segre-
gated or segmented.

THE PROJECT APPROACH
Enterprise system development pro-

jects exhibit an even greater peculiar-
ity in that, according to Strong and
Volkoff, “an organization can only
realize an ES’s benefits by going
through a lengthy and costly imple-
mentation process—one that almost
guarantees spending more time and
resources than for any project the
organization has yet undertaken.”

Consider a highway system. Every
bit as complex as an enterprise system,
it moves freight and people from one
place to another. Yet changes to any
highway system have always been
made incrementally. The system’s
design allows making significant
changes such as the addition of
bypasses, bridges, and toll roads with
little disruption to traffic and without
the complete abandonment of its
existing structure.

Why shouldn’t enterprise systems
be like highway systems and be devel-
oped incrementally? Simply dividing
the enterprise computing system into
relatively independent segments and
segregating the users’ program suites
takes a first step in that direction.
With a design of this kind, developers
can add new user interfaces to data
import and export segments, and even

new data import and export segments
themselves, at any time, without
changing the data storage segment.

A different problem arises when the
data storage segment needs changing,
which requires changing the data def-
initions. The solution lies in making
the interfaces between the system
components symbolic by coupling
data fields to names. How this would
work can perhaps be seen best by
explaining yet another precedent from
the mid-1970s.

When display screen terminals
began replacing typewriter terminals,
Cobol programs became overloaded
with code for formatting and filling
out the display screens and for getting
data from the keyboard through fields
defined on the screen. Developers com-
monly solved this problem by having a
screen definition file mediate between
the Cobol program and the terminal
driver. The screen definition file deter-
mined what the terminal driver would
do with named data coming from or
going to the Cobol program: Data
moving between the terminal user and
the program was named so that the
program didn’t need to deal with the
screen handling and so that different
users could have different screen defi-
nition files to suit their needs.

Likewise, if similar data definition
files specified the interfaces between
the components of a segregated and
segmented enterprise system, adding
definitions to the database need not
affect the use of existing interface def-
initions or the operation of existing
programs. Further, if the interface def-
initions included specification of rep-
resentations, the interface process
could adapt to representation changes
in the database. If developers defined
new data names, however, new or
modified import or export segments
would be needed, but the use of sym-
bolic interfaces would greatly simplify
transition.

DATA AND INFORMATION
The segregated approach lets users’

programs communicate with the
enterprise’s database across an inter-
face to the segments mediating their

The main benefit
of enterprise systems

comes from establishing
and maintaining

a single database for
the entire organization.

Continued from page 100

June 2006 99

should be separated from their data
people. The data people belong with
the machinery in a back room, while
the information people belong with
the users in the shop front. Indeed,
much can be said for an enterprise
that recruits information profession-
als from their user employees. Much
too often, an enterprise treats its
employees as unthinking automatons
to be driven by the mighty Integrated
Enterprise System. Surely this is at
least partly responsible for many of
the system failures that Spectrum lists.
Users and information professionals
must work in close partnership for
both to be fully effective.

For the computing profession, this
implies the need for bifurcation
because few people have the talent and
education to succeed professionally in
dealing with data and information and
with machinery and its users.
Ironically, this bifurcation has hap-
pened in some universities where
information systems departments
compete with computer science
departments for students. Coopera-
tion on the basis of a split between
information and data professionals
should replace such competition.

database use. The users’ programs
present data to and elicit data from
human users as effectively as possible.
The emphasis should be on properly
informing and effectively empowering
all users, making sure they understand
what is going on and required of
them. In contrast, the mediating seg-
ments protect the database within its
data storage segment from improper
use and invalid data.

The users’ programs perform infor-
mation management by informing
users and getting data from them. The
three kinds of segments perform data
management by ensuring the enter-
prise database’s health and welfare.

Approaching enterprise systems in
this way involves several important
implications that spring from seeing
that information management, being
concerned primarily with the human
user, contrasts with data management,
which primarily concerns automatic
data manipulation. Given this con-
trast, people in the information man-
agement area need a different
background and different skills than
people in the data management area.

For the enterprise, this implies that
their information people can and even

W hen private or government
enterprises set out to spend
vast sums on computing tech-

nology to improve their functioning in
one way or another, they should look
primarily for a data handling system,
not for a lump of software. Their data
and their users are what they must
look after, not the programs and their
suppliers. Data is the substance of their
doughnut; their programs merely
shape the doughnut and supply it to
the users.

A curious development in the com-
puting industry has been the dropping
of its once universal cognomen, data
processing or DP, in favor of the more
pretentious information technology or
IT. What we really need is both, with
the proper distinctions enforced. ■

Neville Holmes is an honorary research
associate at the University of Tasmania’s
School of Computing. Contact him at
neville.holmes@utas.edu.au. Details of
citations in this essay, and links to fur-
ther material, are at www.comp.utas.
edu.au/users/nholmes/prfsn.

Get access
to individual IEEE Computer Society
documents online.

More than 100,000 articles and conference papers available!

$9US per article for members

$19US for nonmembers

www.computer.org/publications/dlib

