
100 Computer

C omputing has, according to
some recent popular articles,
found something wonderfully
new—virtualization.

Reading some of these arti-
cles, two thoughts struck me. First, that
the word must be one of the ugliest and
most awkward to be introduced
recently and, second, that virtuality in
digital technology is far from new.

Indeed, if we take written language
as the second great digital technology,
as we should, the scribes in the scrip-
toria of old Europe were virtual
authors. More recently, in the early
1970s I worked interactively through
the Cambridge Monitor System inter-
face on a virtual System/360 computer
provided by a hypervisor called CP67.

Three sources spurred me to draft this
column: an April Computer article titled
“Overcoming the Internet Impasse
through Virtualization” (T. Anderson et
al., pp. 34-41), a column in the same
issue on the oxymoronic topic virtual
reality, and Computer’s entire May issue
dedicated to virtuality but with only
high-level consideration of its history.

TIME SHARING
In the 1960s, computing manufac-

turers offered two kinds of machines:

• commercial, usually with decimal
arithmetic; and

• scientific, usually with binary
arithmetic.

Early digital computers had opera-
tors who ran individual programs when

the programmers didn’t. Given the
machines’ great expense, developers
sought ways to automate their opera-
tion and increase their throughput.

These early methods combined job
stacking—the automatic transfer of
control from one program to the next
with peripheral transcription—and the
use of a cheap machine to transfer data
between the fast magnetic tape used by
the mainframe and the slow punched
card and paper-tape machines and
printers.

These batching methods reached
their culmination in the mid-1960s with
the somewhat chaotic but eventually
successful introduction of IBM’s
System/360 operating systems, which
used multiprogramming and SPOOL-
ing (Simultaneous Peripheral Opera-
tions OnLine).

Because the 360 architecture com-
bined binary and decimal arithmetic,
IBM planners had imagined that their
product would be as suitable for the sci-
entific world as for the commercial. This
prediction proved wildly inaccurate.

In the business world, management
could dictate that users be kept at arm’s
length and programmers be banned
from machine rooms, but in the scien-

tific world, users ruled the roost. Users
are more interested in getting good
results than in keeping costs down.
Scientific users, who often programmed
for themselves, found the extra control
in using the machines attractive. This
led to the idea of time-sharing.

In its basic form, time-sharing relied
on most users being at their Teletype
terminals mulling over what happened
last and what to do next, so that a
ready-to-run user’s program could take
over the machine temporarily. In prac-

tice, time-sharing required virtual
memory to be successful.

By the time IBM finally got its 360
batch operating systems up and run-
ning, time-sharing had established
itself, particularly in universities, and
it looked as if the company would lose
a huge market. In response, IBM
mounted two massive projects, one
in Poughkeepsie and another in
Mohansic.

The Poughkeepsie project, Time-
Sharing Option, aimed to provide
time-sharing as a subsystem of the top-
of-the-line MVT operating system.
TSO distracted developers greatly
from the basic improvements that sys-
tem needed, got off the ground slowly,
and was not very successful.

The other project, a time-sharing
system called TSS/360, built on IBM’s
experience in collaborating with uni-
versities on their time-sharing projects.
IBM intended this system to run on a
special 360, the Model 67.

TSS proved a complete flop. Many
360/67 users outside IBM switched to
the Michigan Terminal System. When
I joined IBM Australia’s Systems
Development Institute in late 1970, the

The Turning
of the Wheel
Neville Holmes, University of Tasmania

T H E P R O F E S S I O N

Continued on page 98

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t yP u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

The new in digital
technology is not
what we do, only
what we do it with.

98 Computer

T h e P r o f e s s i o n

For example, the Java virtual machine
is properly a simulator, or, if done in
hardware, an emulator. The use of
emulation ensured the success of the
System/360 machines.

More generally, the epidemic use of
the adjective virtual is akin to the epi-
demic use of user friendly in the 1970s.
Further, it’s a pity that the pathetic ini-
tialism VMM has been adopted for
what had once been more expressively
and comfortably called a hypervisor.

Second, in a large company, people
make technical decisions for political
reasons. Cloistered development man-
agers in IBM rejected the virtual
machine and sought to get rid of it long
after it had saved the day for them. The
computer industry today would have
been quite different if IBM managers
had enthusiastically adopted the prin-
ciple once circumstance forced it on
them.

MULTICORE CHIPS
It’s probably simple fashion that

couples multicore chips with support
for virtual machines (“Chip Makers
Turn to Multicore Processors,” D.
Geer, Computer, May 2005, pp. 11-
13). Certainly, strict virtual machines
need hardware support, but multipro-
cessing has nothing directly to do with
that.

Multicore chip development seems
to have happened because the manu-
facturers of these chips have run out of
ideas for using all the circuitry their
improved manufacturing methods
have made available. I would rather
they had provided improved interval
and complex arithmetic, or support for
console windowing independently of
the operating system. This would help
foster the reportedly growing move-
ment back to thin clients, known as
dumb terminals in the 1980s.

Institute was abandoning TSS for
CP67/CMS. This is where the virtual
machines come in.

VIRTUAL MACHINES
Tom Van Vleck briefly describes the

CP67/CMS’s development (www.
multicians.org/thvv/360-67.html),
while Melinda Varian does so in
delightful detail (pucc.princeton.edu/
~melinda/25paper.pdf).

Early time-sharing adopted the idea
of providing concurrent constrained
use of the computer by users’ pro-
grams.

A relatively small team at IBM’s
Cambridge Scientific Center in Massa-
chusetts covertly implemented the
forerunner of CP67/CMS, CP-40/CMS
on a modified 360/40. They used the
term virtual machine, having heard of
it being used for an earlier, more con-
ventional, IBM time-sharing system.

Their elegant work, starting in the
last week of 1964, was inspired by the
idea that they would provide for each
user a strictly virtual machine indistin-
guishable from a real one by a user pro-
gram. After the 360/67 intended for
TSS/360 was announced, they con-
verted their work to run on that
machine.

The strict virtual machine had many
advantages. The hypervisor or CP
turned out to be relatively simple to
do. Because all time-sharing users had
their own “machines,” with their own
disk partitions, the CMS only had to
support a single user and had simple
support requirements compared to the
requirements for conventional time-
sharing.

Because the virtual machine was
strict, we ran the ordinary OS/360 in a
virtual machine for our batch work in
Canberra. We even tested new versions
of CP in a virtual machine.

Several observations spring from
this earlier development. First, the term
virtual machine had a specific mean-
ing, and its use today is degenerate. Of
course, all computing is virtual, but we
should use technological terminology
to enhance meaning, not remove it.

Multicore chip development has two
interesting aspects. First, consider the
licensing issue mentioned in the
Computer news item. If a chip has two
processors using proprietary software,
how many license fees must be paid?
Second, continuing development raises
a question: If multiprocessor chips suc-
ceed in the market, what then? More
cores per chip seem likely.

How then will software adapt to
these changing architectures? Another
wheel could come full circle, one called
strict virtual architecture.

VIRTUAL ARCHITECTURE
A little-known wild-duck IBM pro-

ject illustrates what I mean by strict vir-
tual architecture: the System/38.

Universality was the official market-
ing story for the IBM/360: one archi-
tecture to rule the world, with the 360
being the number of degrees to a full
circle. But IBM soon branched out into
a spectrum of incompatible architec-
tures—Series/1, System/3, System/7,
System/32, and System/34, for exam-
ple. Developers typically used these
architectures for problems and cus-
tomers too small to warrant a System/
360 with its accompanying data pro-
cessing department.

Eventually, IBM started a project in
Rochester, Minnesota, to bring the
small commercial machine architec-
tures together. Their System/38 virtual
architecture can best be described as
glorious. Instruction addresses referred
to objects so that, for example, the pro-
gram had only two add instructions,
one with two addresses and one with
three. The three-address add could, for
example, add a packed decimal value
to a binary value and produce a char-
acter result. All objects were stored in
a 64-bit address space, even though
early machines used only 48 bits.

Disk storage supported the address
space but could not be directly used
from programs. For a long time, IBM
supported only Cobol and RPG, but
no assembler. Their code was compiled
to instructions in the virtual architec-
ture. The objects the compilers pro-

Continued from page 100

The epidemic use of the
adjective virtual is akin to
the epidemic use of user

friendly in the 1970s.

wouldn’t be constrained by a set of
buttons and templates designed for
marketing reasons rather than user rea-
sons by people living in a different
world who didn’t properly understand
the problem area. These programmers
could put basic operations together in
their own sequences, subject to their
own conditioning.

This virtual programming could be
done through a command and script-
ing/macro interface. Thus another
wheel would turn. ■

Neville Holmes is an honorary research
associate at the University of Tasma-
nia’s School of Computing. Contact
him at neville.holmes@utas.edu.au.
Details of citations in this essay, and
links to further material, are at www.
comp.utas.edu.au/users/nholmes/prfsn.

July 2005 99

multicore chips would be to have a
strict virtual architecure support them.
This would hide chip complexity and
changes from the compilers and inter-
preters.

C omputing often recycles the old
as new, and this holds true for
strict virtual machines. Even the

360 name once used by IBM has
recently been recycled in Yahoo!360
and Microsoft’s Xbox 360. Perhaps
strict virtual architectures will some-
day soon be pressed into use for mul-
ticore chips. These virtualities are of
machinery. Is the principle extensible?

Programmers inhabit the next level
up. Virtual programmers would be end
users who could routinely put together
sequences of high-level statements spe-
cific to their problems as users. They

duced could not be run directly, how-
ever. The operating system used a
machine instruction to convert a com-
piled object to a runnable object, at
which point the virtuality appeared.

Creating the runnable program
involved a translation from the virtual
instruction set into the actual instruc-
tion set. This translation made the
highly sophisticated object-oriented
virtual instruction set possible, and this
set hid the complexities of the actual
machine from the programmer.

If an improved actual machine was
required, a new create program instruc-
tion could be written. Making old pro-
grams run on the new machine would
require only the creation of a new
runnable program from the old com-
piled program objects.

All of which makes it seem that the
best way to cope with the developing

Investing in Students
www.computer.org/students/

Lance Stafford Larson Student Scholarship best paper contest
✶

Upsilon Pi Epsilon/IEEE Computer Society Award for Academic Excellence

Each carries a $500 cash award.

Application deadline: 31 October

SCHOLARSH IP
MONEY FOR
STUDENT LEADERS

