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a signifi cant problem, not only for hydraulic performance,but also for 

pipe corrosion. 

Typical headloss increase due to poor coating condition has been 

measured to be of the order of a 55% increase.

MEASUREMENT OF PIPE 
SURFACE TEMPERATURES IN 

SUMMER CONDITIONS

Test pipe section overview 
A four metre section of pipe removed from site and replaced as a 

result of an upgrade, was installed in a sunny location on the University 

of Tasmania campus. This provided an opportunity to measure the 

typical internal pipe temperatures that would be developed when the 

pipe was dewatered on a sunny day. The pipe is shown in Figure 3. The 

internal and external coatings were not modifi ed and as shown in Figure 

1, the internal lining already showed signifi cant signs of deterioration. 

The crown of the pipe was exposed to afternoon sun, and both ends of 

the pipe were open. This would be expected to reduce the pipe internal 

surface temperature compared with a normal installation of hundreds 

of metres because of increased ventilation of the pipe. 

All steel pipelines owned by Hydro Tasmania are treated with an 

external coating for corrosion protection, which was designed to limit 

radiant heating of the pipe. These coatings are typically pale grey or 

silver in colour. A new alternative, externally applied heat refl ective 

coating was also trialed in a one square metre sample on this pipe. 

This coating (designation NMP 1120) was supplied by National Main-

tenance Products. The sample area is white in Figure 3. This sample 

was thought to typify the best heat refl ective coating currently avail-

able although it could not be discounted that other highly refl ective 

conventional coatings might provide comparable performance. As the 

external coating was deemed to be in good condition, the trial area 

was simply cleaned and the trial coating applied by brush over a 90 

degree sector from the apex to the front of the pipe. 

The pipe was instrumented with K-Type Thermocouples in order 

to measure internal surface temperatures. These thermocouples can 

be expected to have an accuracy of ±2 °C. The thermocouple signals 

(µV) were conditioned using a National Instruments NI4351 for PCI 

card. This conditioned and amplifi ed the signals to voltages in the 

range 0-10V. These signals were then acquired to PC using a National 

Instruments PCI 6025E card at 15 minute intervals. The indicated 

INTRODUCTION

Pipelines form a signifi cant part of the asset base for any hydro-

electric power scheme, and as an example, in Hydro Tasmania’s 

infrastructure in Tasmania, there are currently 66 pipelines with a 

combined length of approximately 105 km. They vary in length from 

49m to 8.93 km and in diameter between 1.2 m and 9.1 m. Coal tar 

products have been extensively used to coat the internal surface of 

steel pipelines and penstocks, to provide corrosion protection [1]. One 

product, used in many installations in Tasmania, is coal tar enamel 

[2], which is applied hot to the steel surface and spun to produce 

a good surface fi nish. Hot applied coal tar enamel is produced by 

dissolving coking coal in pitch, made from horizontal, or coke oven 

tar at an elevated temperature, to form a coal digestion pitch. The 

coal digestion pitch is hard and brittle and requires the addition of a 

fi ller (talc) and fl uxing oils to produce a coating having the desired 

toughness and fi lm thickness to withstand impact and fl exing loads 

to which pipe sections are commonly subjected. The hot applied coal 

tar enamel provides an excellent corrosion protection, but it has two 

weaknesses [3,4]: 

• Its mechanical properties vary considerably with service 

temperature. When heated it fl ows under relatively little stress, and 

when cold it has poor resistance to impact

• When subjected to prolonged heating the low boiling point 

tar oils (volatiles added to the coal digestion pitch to soften it after 

the digestion process) are lost, resulting in a loss of elastic properties 

and a tendency to crack.

EFFECT OF LINING DEGRADATION

Figures 1 and 2 show the typical degradation of the coal tar enamel 

coating. Once cracks are initiated in the lining, water is able to penetrate 

the lining and signifi cantly increase the rate of failure of the coating. 

The initial cracking stage is hydraulically undesirable because it causes 

an increase in effective roughness of the pipe surface and therefore 

friction and hence headloss in the pipe are increased signifi cantly. 

Further degradation due to ingress of water causes coating failure due 

to sections of coating losing adhesion to the pipe wall. This becomes 
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Figure 1: Distribution of internal pipe lining cracking 
over the crown of the pipe

Figure 2: Close inage of corrosion behind cracks in 
internal lining 

Figure 3: Pipe section in car park. Thermocouple locations indicated.

Figure 5: Thermocouple attached to interior pipe wall 
using tape.

Figure 4: Pipe interior showing thermocouple 
locations.

is demonstrated by the experimental results in Figures 6-7, where the 

channel 3 thermocouple, located further from the edge of the painted 

section, records a measurably lower temperature (1-2°C) than the 

channel 2 thermocouple, located closer to the edge of the painted 

section. Thermocouple channels 2-4 monitored temperatures behind 

the heat refl ective paint, channels 5-7 monitored temperatures inside 

the unmodifi ed pipe section and channel 8 monitored the ambient 

temperature in the shade 

Temperature results
The temperature measurements are shown in Figures 6 and 7. The 

typical diurnal temperature variation is visible, and results are shown 

for a sunny day (Figure 6) and a cloudy day (Figure 7). All samples 

temperatures were compared with a handheld thermocouple reader 

and found to agree to within 1°C. 

The thermocouples were located in the arrangement shown in 

Figures 3 and 4 behind the heat refl ective coating and behind the 

existing coatings across the crown of the pipe. The local ambient 

temperature was also monitored away from the pipe in a shady, well 

ventilated region. Figure 5 shows the thermocouple attached to the 

wall using tape. The thermocouples behind the refl ective paint were 

located 260 mm (channel 2) and 390 mm (channel 3) from the edge 

of the painted section. It is likely that due to the conduction of heat 

in the pipe wall, there may be some edge effect, causing the measured 

temperature to be higher than would be the case if the entire pipe 

section in direct sunlight were coated with the refl ective paint. This 

PIPELINE PROTECTION
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Figure 7: Recorded Temperatures 8/1/2003 (Some Cloud)

PIPELINE PROTECTION

Figure 6: Recorded Temperatures 7/1/2003 (Hot, Sunny Day)
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Maximum Daily Ambient and Pipe Temperature

A thermal balance equation [6] for the system was developed 

assuming that:

This can be written:

Solar rad – h(T
p
-T

a
) -      (T

p
4-T

a
4) = 0 

Where:

 h= convective heat transfer coeffi cient (45 W/m2K for

cylinder in still air) 

T
p
 , T

a
 = Temperature of pipe, ambient air respectively

   = emissivity of the surface (assumed to be 0.1 for

silver surface) 

   = Stefan-Boltzmann Constant (5.670 x 10-8 W/m2K4) 

Using measured values for solar radiation and ambient tem-

perature (from weather station data), a Newton Raphson iteration 

technique [6] was used to determine the correct pipe temperature 

to balance this equation. Very good results were obtained with 

this simple model. A comparison of predicted maximum daily 

pipe temperature with data measured in the fi eld in a long pipe 

were taken within a week in January and daily temperatures were in 

the typical (for Tasmania) summer range of 20 – 30 °C. 

The key observation is the increase in the pipe internal tempera-

ture of up to 30°C above local, ambient temperature when exposed to 

direct sunlight. This signifi cant temperature increase would expose the 

internal lining to temperatures well above the normal operating range 

(when fi lled) of 5-10°C. The performance of the section covered with 

the new heat refl ective coating exhibits a markedly reduced tempera-

ture increase of 10-12 °C above ambient temperature. This level of 

performance has been recorded by other studies, for example Moujaes 

and Brickman [5], which review the cooling advantages of using these 

coatings to reduce heating load on buildings. This demonstrates that 

by correct selection of material used in the management of pipelines, 

the problem of extreme temperature can be mitigated. 

THERMAL MODEL 
In the investigation of previous internal lining failures, the ambi-

ent temperature and solar radiation data from local weather stations 

was generally available, but of course the internal temperature of the 

pipe was not known. In order to determine the likely internal pipeline 

temperatures a model was developed to predict the temperature of the 

pipe based on direct solar radiation, ambient temperature and local 

convective heat transfer at the pipe surface.

ε

σε

σ

PIPELINE PROTECTION

Figure 8: Comparison of measured results with thermal model prediction
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section is shown in Figure 8. In this situation an increase in pipe 

temperature of 25°C above ambient temperature was typical. 

CONCLUSIONS

Measurements and a thermal model of the temperatures of an out 

of service (empty) steel pipe have demonstrated that on a sunny day, 

the pipe surfaces can reach temperatures of 25 – 30 °C above ambient 

temperature. This is particularly signifi cant for situations where the 

normal pipe working temperature is 5 - 12 °C such as the cool area 

hydroelectric power schemes in central Tasmania. During out of service 

times, pipe temperatures could rise to more than 60°C. 

Traditionally, coal tar enamel products were used to coat the in-

ternal surfaces of these pipelines to provide corrosion protection and 

hydraulically smooth surfaces. Whilst these coatings have performed 

well where the pipe has been maintained at or near the working 

temperature, in situations where there has been a signifi cant out of 

service interval during summer months, the lining has signifi cantly 

deteriorated. The coating has typically become embrittled due to loss 

of volatile components caused by overheating of the lining. Subse-

quent thermal cycling of the pipe during out of service operation has 

resulted in cracking and deterioration of the lining. 

Whilst damaged lining requires upgrade or replacement, the 

fi ndings of this work can be used to determine an operating plan for 

such infrastructure. Dewatering of the pipelines should be avoided 

during warm, sunny weather. Where internal linings are replaced, the 

replacement coating should be able to withstand temperatures of at 

least 60°C (or the relevant maximum temperature for solar radiation 

in the area). In addition to this, modern heat refl ective coatings have 

been shown to provide a reduction of solar heating by 15°C compared 

with the weathered silver grey surface. 
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