ON GENERATING FUNCTIONAL PROGRAMS FROM
PROLOG SPECIFICATIONS
Vishv Mohan Malhotra Anurag Jain

Division of Computer Science Citicorp Overseas Software Ltd.
Asian Institute of Technology 133/SOF V SEEPZ,
GPO Box 2754, Bangkok 10501 Andheri (E), Bombay 400 096
Thailand. India.

ABSTRACT

We identify a «class of Prolog programs that can be used as the
specification of the functional programs. Using the mode
informatién, the functions needed to construct the functional
program are identi%ied. The function definitions may then be
derived from the clauses in Prolog specification. Rules have been
given for constructing a FP-like definition for the function
representing the user query. The methodology makes an extensive
use of the algebra of functional programs to simplify and
consolidate these representations. The methodology has heen

illustrated using an example.

KEY WORDS: Logic Programming, Functional Programming, Program

Transformation

ABBREVIATED TITLE: GENERATING FUNCTIONAL PROGRAMS FROM
SPECIFICATIONS

1. INTRODUCTION

A logic program, for instance a Prolog program, states the
problem succinctly and in an easy-to~understénd form because it
states 'what to compute' without also stating 'how to compute’.
The -absence of the control information, howeyer, requires that
the . programs be executed nonwdetefministically. The
non-deterministic execution of the Prolog programs on a
sequential machines is wusually achieved through a search
involving backtracking. This leads to runtime ineffiéiency and
overheads. In general, one may identify portions in the execution
trace that were discarded and did not contribute to the end
results due to backtracking.

Functional programming languages such as FP [1], on the other
hand, incorporate adequate control information and are amenable
to efficient wexecution. Backus has shown that these languages
have well defined algebra that can be used to transform
functional programs from one form into another. The algebra can
also be wused to prove many interesting properties of the
programs. Indeed, the functional programming paradigm is central

to even a well-structured program in an imperative language.

In this paper we exploit an algebra of a suitable extension of
FP to transform a «class of Prolog programs into <functional
programs. This will provide us a method for constructing
functional pfograms from specifications expressed in a restricted

class of Prolog. Some other works on translation of Prolog

programs inte functional programs have been reported in [4, 11].

Consider, for an example, the following Proloyg program taken
from [4]. Given a string s and an integer i, the program returns

a prefix, p of s of length i.

? <-- Front(i,s,p).

Front{i,s,p) <-- Append{p,r,s), Length(p,i).
Length([],0).

Length{[h|t]l,i) <-- j:=i-1, Length(t,j).
Append([],r,r).

Append([hlt],r,ﬁplu]) (-~ Append(t,r,u).

The program non-deterministically chooses the prefix, p of s and
verifies that p is of - length i. Thus, the execution of the
above program will make several (in fact, (i+2)(i+1)/2) calls to
the procedures Append and Length. We will eliminate the
non-determinism by first converting the program into a functional
form and then using thé equalities of the program algebra to

generate an efficient program for Front.

In section 2, we characterize fhe Prolog programs which may serve
as the initial specification of the problem to which the
methodology developed here can be applied. We also state briefly
the main steps in converting a Prolog program into a functional

program. In section 3, an extension of Fp called

Non-deterministic FP (NFP) is introduced and laws of its algebra
are given. In section 4, wusing the program for Front as an
example, we describe a procedure for converting Prolog programs
into non-deterministic functional programs. In section 5 some
simple rules for consolidating multiple definitions for a
function into a single definition are given. Section 6 sums-up
the present status of the work and points the directions of the

continuing work.

2. CHARACTERIZATION OF PROLOG PROGRAMS

The relationships between the 1logic programs and functional
programs have beeégstudied extensively [4, 11]. It may be
suggested, based on these studies, that a Prolog program can be
used as a specification for a functional program if it is
directional and satisfies the functionality requirements. Both
these issues have been investigated in literature. Several
algorithms based on the mode analysis are known for determining

the directionality of a Prolog program [G6, 10, 11]. The

functionality problem, however, is undecidable [5].

A program, P, is directional if all predicates in the program can
be assigned, one or more, modes such that every call to the
predicate (procedure) satisfies one of the assigned mode

constraint. A mode on a predicate partitions the arguments of the

predicate into input and output arguments. It is required that
the input arguments of a predicate be ground terms and no
variable in any of the output argument positions be instantiated

when a call to the {predicate) procedure is made.

We associate a.relation {in relational database [3] sense) with
each predicate in the program. The attributes in' the relation
correspond with the argument positions in the predicate. Every
tuple in the relation is ground and satisfies the predicate. Let
P be a predicate and R be the corresponding relation. We say P
satisfies the funtionality criterion under a mode M if the input
columns under M functionally determine the output columns in R.

As mentioned eagiier the functionality criterion is undecidable
-- there does not exist an effective algorithm to test this
property. It is, however, of interest to mention that following

are some examples of the sufficient conditions for a query

{predicate with mode) to be functional in a Prolog program:

(1) all predicates under each of the assigned modes are
determinate; that is, for a given input can satisfy at most once.

Or,

(ii) every predicate under the assigned modes in Lhe program

satisfy the functionality criterion.

It hHowever should be clear that a query can satisfy functionality
criterion without all predicates in the program being either
determinate or functions. For example, Front (input, input,
output) is functional, though Append (output, output, input) is
not. Note ‘that the procedure Append is called in the above mode

while generating the prefix of a string.

As a result of undecidability of the functionality criterion our
method is necessarily incomplete. As a consequence, it can be
augmented to encompass bigger and more ambitious problems.
However, we believe that even a small set of 7rules allow the
method to develop many interesting functional programs. The main
steps in transforming specifications into functional programs

o4
<&

are:

(i) Identify for" each predicate in the Prolog program, the
modes in which it will be called during the execution of the
program.

{ii} Assign a unique function name to each predicate-mode pair.
{iii) Using the procedure to be explained in section 4, convert
Prolog clauses into non-deterministic definitions of the

functions.

(iv) Remove non-determinism and consolidate the NFP definitions

into a function defining the user query.

Table 1 gives the modes and the function-names assigned to
the various predicate-mode pairs of interest in the execution of

program Front.

Tahle 1: Modes of various calls in the
execution of program Front.

PREDICATE MODE FUNCTION-NAME
Front ~input,input,output Front
Append output,output, input Unappend
Length input, input Length
1= output,input built in

3. A NON-DETERMINISTIC FUNCTIONAL PROGRAMMING LANGUAGE, NFFP

NFP is a simple extension of FP [1]. We introduce the language by
pointing out its main differences from FP. A NFP function may
have several definitions. Sometimes, we refer to these multiple
definitions of a function as fragments of the function
definition. Each use of a function that admits multiple
definitions, is prefixed with a special operator, #. A function
is said to admit multiple definitions, if it is defined more than
once, or, if its definition <contains a function that admits

multiple definitions (i.e., has a # prefixed to it). The operator

¥ 1s non-deterministic choose operator {oracle) and is
responsible for choosing the correct fragment defining the
function. For an easy identification, we shall introduce
fragments using =~ symbol; a function that has only one definition
will be defined using = symbol. The distinction 1is wuseful when
folding [2] a function on its definition. Only the definitions

introduced through = symbol may be used for this purpose.

Another change in the definition of FP has been made to adapt it
to the Prolog like environment. The object F (False) also denotés.
the undefined object, |. Any function when applied to an object F
returns F.

With some obviousdchanges laws of FP algebra continue to apply to
NFP too. In particular, any law that has one occurrence of a
function on one-side " of the equality and more than one
occurrences on the other side is not valid if the function admits
multiple definitions. The difficulty arises because each of these
occurrences can be replaced by a fragment of the function
independent of one another. We restrict the use of the algebraic
laws only to the cases satisfying the following condition: there
should not be more than one occurrences of a function that admits
multiple definition on either‘side of the equality. If f admits
multiple definitions, the following law is not valid: [1,2]0 #f =

[1O08F,204F). However, 10[1,210 #f = 104#f is valid.

We 1list below some of the equalities of NFP. This list, in fact,
suffices for all our examples in this paper. In the following
list of the equalities n and s denote selector functions, and u
denotes a function that does not admit multiple definitions.

Other symbols represent functions other than F.

T1 sol1,2,...,n,f] = F if s>n+1

T2 = f if s=n+1

T3 = TOof --> s; F Otherwise

T4 FOF = F

5 Fof =F

T6 xof = Tof --> x; F

T7 Tof =T if f is total and f returns objects other
than F for all inputs other than F

T8 uo(c~~>%;h)= C --> uog;uoh

T9 (c --> g:hlou = tou -->» gou;hou

T10 (ft,...,fnlou = [flou,...,fno ul

T11 [fo1,902]lo0 [h,t] = [foh,go t]

T12 Ao [f,9] = £ --> g; F

T13 T --> fi9 = f

T14 F--> fi9 = g
T15 (..., F,...1 =F
T16 (c --> id; F) olf,gl = [f,{c --> 2; F)olf,gll

T17 = [{e --> 1; F)olf,gl.,g]
T18 (colf.gl) --> [f,g1; F

n

The function apply defines an interpreter for NFP.

function apply (f:function,

begin
case f of

f is a primitive function

f is a defined function and does
not admit multiple definitions:

f has the form i#h

f has the form goh

f has the form [f1,f2,...,fnl]

f has the form (c -> g ; h)

end.

end /* Case statement */

10

x:object):object;

return f{x);

begin
g :=
return apply (g,x)

definition (f);

end,;

: begin

thl;
(g,x)

g := choose_def
return apply

end;

: return apply (g,

apply (h,x});

Xi := apply (fi,x);
if xi = F
then Ans := false
end;
if An
t

s
hen return

<X1,X2,...,%xn>

return F

end;

if apply (c,x) # F
n

the (g,x)

(h,x)

return apply

els

C

return apply

11

h. GENERATING NFP FUNCTION DEFINITIONS

Let M be a mode for a call to predicate P. Let P <-- P1, P2, ...,

Pn be a clause. Let M1, M2, ..., Mn be the modes of the calls to
predicates P1, P2, ..., Pn respectively in ﬁhe clause. Let Y,
Y1, Y2, ..., ¥Yn be the function names assigned to the
predicate-mode pairs <P,M>, <P1,M1>, <P2,M2>, ..., <Pn,Mm>
respectively. The «clause P <-- P11, P2, ...,Pn defines the

function ¥ as follows:

Y~ 0o
[1,2, ...,n,(fn --> id; Flo¥Yno Tnlo
(1,2, ...,i,(Fi --> id; FloYioTilo

'
o

[1,(M1 --> id; Flo¥1oT1lo
) (Q --> [idl; F)

Where, @ 1s a FP function to construct a list of values of the
output arguments for the predicate P. 8 constructs the 1ist by
selecting values from the list of input arguments of P and the
value lists returned by the called (functions for) predicates P1,
P2, ..., Pn. The FP function Wi (0<ign), constructs a list of
input argument values for function Yi (Yi represents predicate Pi
in mode Mi). Like, 0, thé function Ti uses the values of the
input arguments of P and the outputs returned by (the functions
for) predicates P1, P2, ...,Pi-1. The FP function {guard) Ti

verifies that the values of outputs returned by ¥i satisfy the

unification requirements of the corresponding arguments in Pi.
For example, if an output argument 1is specified as [alsl, T
ensures that the value returned 1s a non-empty list. The FP
function @ checks that the input argument values can unify
successfully with the corresponding input arguments of P in the

head of the clause.

The construction of the functions 0, Wi, T'i and, @ (1<i<n) can be
based on the conventional methods of syntax-directed translation.
We do not elaborate these rules here and leave it to the reader
to device suitable schemes. As examples, of the NFP definitions

we list below the definitions for the functions in program Front.

Front = 10[102]0[1,2,#lengthol102,1011]10
[1,#Unappendo [20 1]1] o [id] (1)

Length ~ [Tlo (Aol[=0T[1, [11,=0l2, 011 --> [id); F) (2)

Length = [?]o [1,2,#tLengtho [tlo101,102]) 0
[1,0- of201, 11110 (#0 [1, [11 --> [idl; F) (3)

Unappend = [f],to 1Jo [id] (4)

Unappend ~ [Cons of{10 10 1,10 2],20 2]o0

e

[1,#Unappend o(tlo 10 11lo
(# o1, [11 --> [id]; F) (5)

The equivalence between a Prolog clause and the associated NFP

fragment can be justified based on the following observations:

<

13

(i} The non-deterministic choose operator, #, selects the

appropriate defining fragments for the functions Y1, ..., ¥n.

{ii) The guards I't, ..., n ensure that the values returned by
functions Y1, ..., ¥Yn satisfy the unification requirements on the

corresponding output arguments of literals Pt1, ..., Pn.

{iii) The input arguments of the called functions are fashioned
by functions M1, ...,Tn on the basis of terms appearing in the
input argument positions of the corresponding literals in the
Prolog clause. The called function wensures that its dinput
arguments satisfy the necessary wunification condition on the

&

input arguments through guard Q.

Using the rules of algebra given 1in section 3, the NFP
definitions of Front can be transformed into the following

simplified forms:

Front = (To #lLengtho [2,1] --> 2; F) o
{1,10#Unappendo(2]]o {6)

2

Length = Ao [=0 [1, 11,2012, 03] --> [T1; F (7)

Length = #0 [1, [1] --»>
(To#lengtholtlol,-of2, T11 --> [T1; F); F (8)

Unappend ~ [[1,11 (9)

14

Unappend = #ol[1, [11 -->
[Conso[101,102),202]0[1,#Unappendo[tlo1l];

F {10)

5. CONSOLIDATING THE NFP DEFINITIONS

In this section we introduce two simple rules, CR1 and CR2, for
consolidating the fragments defining a function into a single
definition. A consolidated definition is acceptable if it is an
extension of each of the fragments defining the function. That
is, . Lf for input I one of the fragments returns an output the
consolidated function must return the same output on input I.
However, as is not uncommon in Prolog, if fwo or more fragments
of a function return different wvalues for some input, the
consolidated definition 1s free to return any one of these
values. This condition is sometimes refered to as ‘'donot care'

non-determinism (see for example, [8]). Consolidation rule CR2

makes ‘donot care' choice of the fragments.

Rule CR1, on thé other hand, is designed to make "donot know’
choice. Of the available choices only one is correct and will
lead to some definite answer to the user query; the other choices
lead to failures. However, a Prolog interpreter may not know the
correct choice when it is required to make the choice. The
difficulty is overcome, in Prolog, by searching over some or all

of these choices. In our method, we use the algebra of NFP Lo

15

transform the fragments into a form needed by rule CR1. The rule
then consolidates the fragments into a singie definition

incorporation the correct choice.

CR1: Let function Y be defined by the the following NFP
definitions:

Y=~ ¢ --> f; F and,

Y ~ Ao[NotoC,h]l --> g; F.

These definitions can be replaced by a single definition:
Y 2 C--> f;(h -=> g; F)
CR2: If the value returned by the function Y is not an input to

any other function then CR1 can be relaxed somewhat. Thus,

\il

@

r --> f; F and,

-
&®
i

s --> g3
can be replaced by

Y &1 --> fils ==> g; F)

To illustrate the application of these rules to our example, we

define two new NFP functions Ok_length and Prefix, as follows:

Ok_length = T O#lLength (11)

Prefix = 1o #Unappend {12)

Substituting the two NFP fragments (7) and (8) of Length into

16

first of these definitions, simplifying and folding allows us to

have following fragments for Ok_length:

Ok_length =~ =o [1, [J] --> =o[2, 0]; F (13)

Ok_length ~ #0 [1, [1] --> #0k_lengtho [tlo1,-o0[2, 111; F

(14)
Using CR1 and some simplification, we get from (13 and (14):
Ok_length = =ofl1, [11 --> =ol2, 01;:
* Ok_lengtho [tlg 1,-0 [2, 11] (15)

Similarly, we can construct two NFP fragments for function

Prefix by unfolding (12) by (9) and (10):

[l (16)

&

Prefix

tol1, fj} --> Conso [1,#Prefixo [t111o 1: F (17)

&

Prefix

Az a simple corollary to the above pair of definitions for

Prefix, we conclude that Prefix is a total function.

FCJuPrefix = T

On folding the definition of Front ({6) wusing the functions

Ok_length (11) and Prefix (12), we obtain

11

Front = (0k_lengthol[2,11 --> 2; F)ol1,#Prefixo [2]] (18)

Substituting the NFP fragments (16) and (17) of Prefix into (18],
we obtain after some simplification

=ol1, 01 -—> [1; F (19)

&2

Front

144

$0f[2, [11 --> (0Ok_lengthol202,1] --> Cons 02; Flo
[-ol1, 11,[102,#Prefixo [t1]o21); F

Front

tofl2, []]1 --> Consoltloz2,
(Ok_lengtho [2,11 --> 2; Flo
[1,4%Prefixo [21]ol-0 [1, 11,tlo 21];
F ’ (20)

R

Fragment (20) can be folded using (18) into the following form:

Front » 20 [2, [1] --> Conso [10 2,#Fronto [-o[1, 11,tlo 211; F

{21)

Using CRZ to consolidate the fragments (19) and {(21) of Front, we

get a recursive function for Front:

Front = = 0[1, 6j > [1;

tol2, fi) ~-> Conso[102,Frontol~ol1, Tj,tl 0211; F
(22)

18

6. DISCUSSIONS

Prolog is not totally devoid of the control information. The
order in which clauses are written does affect its execution
pehavior. We may preserve some aspects of this behavior in the
functional program by maintaining the NFP fragment definitions
for the functions in the order of their defining clauses. Indeed,
the consolidation rules, as defined, favor the fragment defined

earlier over the one defined later.

The methodology described in this paper has bheen used to
translate several Prolog programs into functional programs. The
programs translated include: quick sort, bubble sort, insertion
sort, prime numbe;;, and generation of spanning tree [9). The
methodology, however, requires that certain extra-logical
features of Prolog be“handled externally. For example, cuts and

negative literals.

Efforts currently planned include investigation of methods for
translating a wider class of Prolog programs. Also, it is desired
to have a computer-based system to perform the transformations.
This will reduce the tedium of details that otherwise have to he

handled manually.

19

ACKNOWLEDGEMENTS: Part of the work reported here was done
while the authors were at Indian Institute
of Technology, Kanpur (India). We also

gratefully acknowledge the suggestions made by the anonymous

reviewers.

REFERENCES

1. BACKUS, J., Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs, Comm.

ACM, 21, 1978, No. 8, pp. 613-641.

2. BRUSTALL, R.M. and DARLINGTON, J., A transformation system
for developing recursive programs, J. ACM 24, 1977, No.1, pp.
LL-BT.

3. CODD, E.F., A relatioal model of data for large shared data
banks, Comm. ACHM, 13, 1970, No. 6, pp. 377-387.

4. DARLINGTON, J., FIELD, A.J. and PULL, H., The unification of
functional and logic languages, in: (7], 1986, pp. 37-70.

5. DEBRAY, S.K. and WARREN, D.S., Detection and optimization of
functional computation of Prolog, in: Proc. of 3rd. Int'l.
Conf. on Logic Programming, London, LNCS 225, E. Shapiro
{ed.), Springer-Verlag, Berlin, 1986, pp 490-504.

6. DEBRAY, S.K. and WARREN, D.S., Automatic mode inference for
Prolog programs, Proc. 1986 Symp. Logic Programming, IEEE,
Sept. 1986, pp. 78-88.

10.

1.

20

DeGROOT, D. and LINDSROM, G., Logic Programming: Functions,
Relations, and Equations, Prentice-Hall, NJ, 1986, 533 pp.

GREGORY, S.. Parallel Logic Programming in PARLOG,
Addison-Wesley, Reading, Mass., 1987, 217 pp.

JAIN, A.,, On Transformation of Logic Programs to Functional
Programs, M.Tech. thesis, Dept. of Computer Science and

Engineering, Indian Institute of Technology, Kanpur, 1987.

MELLISH, C.S., The Automatic Generation of Mode Declarations
for Prolog Programs, DAI Res. Paper 163, Dept. of AI, Univ.
of Edinburgh, Aug. 1981. ‘

REDDY, U.S., On the relationship between logic and

functional languages, in: [7], 1986, pp. 3-36.

