THE PROFESSION

The Gase for

~ Perspicuous

Programmin

Neville Holmes, University of Tasmania

he development of techniques

for improving the quality of

program code is an important

responsibility of computing

professionals. There are two
aspects of quality: the quality of the
code as it affects the computer, and the
quality of the code as it affects the var-
ious people who interact in some way
with the code.

ENIGMATIC PROGRAMMING

Throughout programming’s devel-
opment, there has been a persistent
struggle between the needs of the com-
puter, which are the main concern of
those employed to do original coding,
and the contrasting needs of the user
and the programmers responsible for
repairing and adapting existing pro-
grams. Programmers tend to code for
the computer, and this can be quite
enigmatic, even for other coders.

One early technique used to counter
this tendency—important when assem-
blers and compilers did not support
data structures and long data names—
added comments to symbolic code.
However, because these comments had
no effect on the machine code pro-
duced, they were often ineffectual, typ-
ically only re-expressing each symbolic
code statement. Once long names were
allowed, in some circles the presence
of comments was said to show the
absence of skill in naming.

From time to time, programmers

Computer

Prose coding

In the late 1950s, several coding
schemes took the opposite approach to
implicit documentation. Explicit docu-
mentation aimed to use conventions
close enough to English that program-
mers could understand the code with
very little training, as could their man-
agers and collaborators. These various
schemes promptly coalesced into Cobol,
a splendid example of professional
cooperation and compromise in the inter-
ests of standardization (www.computer.
org/annals/an1985/a4288abs.htm).

Cobol’s conventions encouraged
expressiveness in the code. The provi-

Not all program code
should be primarily for
programmers and
their minders.

used many other techniques to docu-
ment their code.

Template programming

In template programming, the tools
provided a standard structure for the
program and came with coding sheets
that documented this structure. This
approach to making code more under-
standable was used by systems such
as IBM’s 1401 Automatic Report
Generating Operation and Report
Program Generator, which were popu-
lar in the early 1960s. Most of the
code’s significance appeared only as
headings for the fields laid out on the
coding sheets and preprinted on the
punch cards for the code.

Highly condensed, template coding
was productive because the coder was
simply filling out forms. Of course, pro-
grams that didn’t fall into the standard
pattern were difficult if not impossible
to write. Yet the pattern remained
widely applicable, and the program
code was easily understood because its
template was always the same.

sion for defining data structures using
lengthy names was particularly impor-
tant. An experienced Cobol program-
mer could easily produce code that
needed few if any comments.
Unfortunately, Cobol’s widespread
adoption coincided with the rise of
large organizations’ mighty data pro-
cessing departments, for only they
could afford the expensive computers
of the time. These departments showed
more interest in their own progress and
status than in looking after users, who
were typically involved only in the
investigative stages of a project. That
users could read the code ultimately
produced thus became irrelevant.
Further, these organizations attempted
only huge projects, which ill-suited
Cobol’s strengths and for which pro-
ject documentation loomed much
larger than program documentation.

Literate programming
With industrial programming, pro-
gram documentation divided into
Continued on page 102

The Profession
Continued from page 104

external and internal parts. Developers
generated external documentation dur-
ing the system analysis and design
phases and, theoretically, also during
the coding and testing phases. The nor-
mal Pareto distribution of effort meant,
however, that developers usually aban-
doned documentation during these
later phases, along with the internal
documentation, which typically con-
sisted of comments within the code.

One way around this problem com-
bined external and internal documen-
tation. Donald Knuth introduced this
literate programming approach in 1984
(www.literateprogramming.com). Liter-
ate code can be processed either by a
compiler to produce machine code or
by a formatter to produce a formal doc-
ument that incorporates and documents
the program.

CODE DIMORPHISM

There are two kinds of programs:
the traditional batch program with lit-
tle or no direct user interaction, and the
more recent kind that spends most of
its time in wait state pending the next
click of a button or tap of a key. This
interactive kind of program has become
practical thanks to faster processors,
and it is popular thanks to operating
system support for full-screen control
and graphical triggering.

The problem is that programmers
use the same methods to develop these
two quite different program types.
Documentation done during develop-
ment supports only the design and cod-
ing of the program: Directly executable
or algorithmic code is the focus, and
traditional documentation supports
that focus. Developers view the code
as driving the computer and any
attached device it uses.

This is fine for a batch program that
only works on data extracted from or
fed to relatively simple and predictable
attached devices. An interactive program
developed this way similarly drives the
keyboard, mouse, and display screen.

But the user feels driven as well by
the typical modern interactive pro-
gram, trundled along predestinate

Computer

grooves that fight back when the user
tries to get out of them. My acronym
for this experience is WYSINWYW:
What You See Is Not What You Want.

Software producers usually mitigate
this unfriendly experience by provid-
ing a so-called Help Facility, which in
theory helps users get what they want.
Searching for some idea of how to get
these answers often brings frustration,
however, both because the key words
used in the facilitator differ from what
most naive users expect and because
they must search extensively to find
what they need to know—if they can
find it at all.

Perspicuous programming
seeks to produce programs
for the user that are as
unenigmatic as possible.

PERSPICUOUS PROGRAMMING

Traditional approaches to coding
interactive programs, even literate pro-
gramming, suffer from the problem of
focusing on what the computer will do,
not what the user wants it to do. The
algorithmic code is primary and any
documentation secondary, especially
user documentation. Help facilities
appear to be added as an almost inde-
pendent exercise.

We can solve this problem by focus-
ing on the user documentation and
regarding the algorithmic code as a
mere adjunct. The production of an
interactive program should start with
the user documentation, with the
majority of effort spent on developing
and refining that documentation and
its structure. Developers should add
algorithmic code for any program
module only after its documentation is
complete and all parties have tested
and agreed to it.

This perspicuous programming
approach seeks to produce programs
for the user that are as unenigmatic as
possible. With a touch of blithely false
etymology, we could call this igmatic
programming instead. Take your pick.

The document as program

The popular use of highly interactive
programs has been accompanied by
much larger main and secondary data
stores. Larger main stores, supported
by virtual addressing and data caching,
mean that program size now has little
effect on performance as experienced
by the user. Thus, it is quite practical
now to package user documentation as
an integral part of the program, admin-
istered through the operating system.

Developers create a perspicuous pro-
gram’s documentation before adding
the algorithmic code to it. It remains
with the program when distributed to
users and run by them. In perspicuous
programming, the documentation pro-
vides a model for the designer, a log-
book for the manager, a notebook for
the programmer, a specification for the
coding technician, and an instruction
manual and reference book for the user.

As perspicuous techniques develop
further, an interactive program can
also become a notebook for the user,
who can tailor the documentation, and
even the algorithmic code itself, to spe-
cific needs or applications. We can
anticipate that groups sharing use of a
perspicuous program could adapt it to
their common purpose and even share
a common adaptation with remote
users across the Internet.

The program as document

The user’s needs, not the computer’s,
determine a perspicuous program’s
structure. Developers must decide what
structure will suit the user, rather than
what structure will suit the computer.
Thus, the algorithmic code in some
modules might be extremely simple but
extremely complex in others, depending
on what the user needs to know.

The perspicuous programmer also
needs to design the module documenta-
tion hierarchy so that an unskilled user
can select the most detailed level while a
skilled user can avoid superfluous expla-
nation. At the same time, the documen-
tation should hide very technical details
from the unskilled user but leave them
easily accessible to the skilled user.

For the unskilled user, modules
should be designed so that parametric
values display in the context of their
explanation and, if appropriate, are set
up so that the user can change their
values. The documentation should also
let the user see the current values of
working variables in their context as
the perspicuous program runs.

The perspicuous operating system
Developing a perspicuous operating
system presents a nontrivial challenge.
Perspicuous programs consist largely of
text controlled by some kind of
markup, an endeavor better handled
interpretively. Not only must the oper-
ating system’s interactive modules be
perspicuous, the system must provide
thorough support for running perspic-
uous application programs as well.

The operating system manages the
hierarchy of documentation for each
user. Expert users might see menus and
toolbars much as they do now, but gain
the ability to drill down into the hier-
archy as needed. The novice user
would start at an opening page that
explains the overall program structure,
be able to explore the hierarchy, exper-
iment, then back off when an experi-
ment goes wrong. In a well-designed
perspicuous program, users should not
encounter any difficulty in working out
what to do because the learning takes
place in the context of the full relevant
documentation.

When the operating system supports
shared use of perspicuous programs,
users can store and manage their own
notes and modifications. More gener-
ally, especially for countries with more
than one official language, the operat-
ing system will support simultaneous
use of the documentation in various
languages. This might be done eventu-
ally by translation, although the dif-
ferent cultures implicit in the various
languages might demand different pro-
gram structures entirely.

The perspicuous programmer
The training of perspicuous pro-
grammers will differ markedly from

that of batch programmers. Develop-
ing major perspicuous programs
involves applied psychology more than
algorithmics. Perspicuous program-
mers need to be skilled in document
design and writing, and they must
make their design decisions based on
persistent and incremental user testing.

Although perspicuous programmers
still need education in computer and
operating system architectures, their
need for studies in grammar, literature,
and cognitive and behavioral psychol-
ogy will predominate. These program-
mers would also benefit from practical
experience in cross-disciplinary projects.

he recognition that interactive

programs are different from tra-

ditional batch programs has been
slow in coming. This sluggishness may
be the major reason behind the fre-
quently expressed dissatisfaction with
widely used generic programs.

We cannot simply expect the soft-
ware industry to change its ways when
there is no assured profit in doing so.
To start with, developing a perspicu-
ous operating system would be very
expensive. Rather, the computing pro-
fession must take the lead. A good
place to start would be to re-examine
the moves toward the certification of
software engineers so that we could
formally define the different role and
skills of perspicuous software engi-
neers as an encouragement for the aca-
demic world to train and educate such
engineers sooner rather than later.

Neville Holmes is an honorary research
associate at the University of Tasma-
nia’s School of Computing. Contact
him at neville.holmes@utas.edu.au.
Note that he is aware only of the
Gedanken implementation of perspic-
uous programming. However, details
of citations in this essay, and links to
further material, are at www.comp.
utas.edu.aulusers/nholmes/prfsn.

.

SEGUR

Ensure that your networks
operate safely and provide
critical services even in the
face of attacks. Develop
lasting security solutions with
this new peer-reviewed pub-
lication. Top security pro-
fessionals in the field share
information you can rely on:

At PRIVACY

Building Confidence in a Networked World

WIRELESS SECURITY
(]
SECURING
THE ENTERPRISE
L]
DESIGNING
FOR SECURITY
|
INFRASTRUCTURE
SECURITY
|
PRIVACY ISSUES
L]

LEGAL ISSUES
|
CYBERCRIME
L]

DIGITAL RIGHTS
MANAGEMENT
|
INTELLECTUAL
PROPERTY PROTECTION
AND PIRACY
|
THE SECURITY
PROFESSION
| |

EDUCATION

Don’t run the risk!
Be secure.

Order your

charter
subscription
today.

COMPUTER
SOCIETY

e
oes <IEEE

http://computer.org/security

