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Introduction 

The use of phylogenetic methods to establish the relationships of plant fossils has often been 

encouraged (e.g. Crane 1985; Nixon 1996) and there has been a recent trend towards using 

combined analyses of fossil and extant taxa of well preserved reproductive organs (e.g. 

Manchester and Donaghue 1995; Keller et al. 1996; Crepet and Nixon 1998a,b). Most of 

these studies have used only morphological characters, and in some cases phylogenies using 

different interpretations of morphology differ significantly from each other (e.g. Crepet and 

Nixon 1998b), and from molecular based phylogenies, for example compare the phylogenies 

published by Crepet and Nixon (1998b) with those of Chase et al. (1993) and Soltis et al. 

(1997). Thus, use of phylogenies based on morphology without reference to molecular data 

may not lead to robust phylogenetic placement of fossils. This applies in particular to leaf 

fossils because relatively few characters can be scored on them, even in comparison with 

many fossil reproductive structures. 

 

Nothofagus is one of the few extant genera in the Southern Hemisphere with both a well 

researched phylogeny and a rich fossil record. Relationships among extant species of 

Nothofagus are relatively well understood, as a result of research by many authors (Melville 

1973; Humphries 1981; Hill and Jordan 1993; Martin and Dowd 1993; Manos 1997; 

Setoguchi et al. 1997). Phylogenies based on morphological data have been reassessed and 

refined several times (Melville 1973; Humphries 1981; Hill and Jordan 1993; Manos 1997). 

Recent phylogenies based on morphology (Manos 1997), chloroplast DNA (rbcL; Martin and 

Dowd 1993; Setoguchi et al. 1997), and nuclear DNA (ITS; Manos 1997) show strong 

congruence with each other. Combined analysis of these data therefore produces a robust 

phylogeny of Nothofagus. An important feature of this phylogeny is the clear monophyly of 

the four subgenera (Brassospora, Nothofagus, Fuscospora and Lophozonia) defined by Hill 

and Read (1991) with names revised by Hill and Jordan (1993). 

 

The fossil record of Nothofagus has been reviewed by Tanai (1986) and Hill (1991). It 

includes leaf, fruit, wood and pollen from various parts of the Southern Hemisphere. Over 30 

species of the genus have been described based on leaf fossils in Tasmania (see Hill 1991; 

Jordan in press), south-eastern Australia (e.g. Pole et al. 1993; Scriven et al. 1995), Argentina 

(e.g. Romero and Dibbern 1985; Tanai 1986), New Zealand (e.g. Kovar et al. 1987; Pole 

1993) and the Transantarctic Mountains (Hill et al. 1996). Leaf fossils of Nothofagus range in 
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age from Early Tertiary (Hill 1991) to Late Pleistocene (e.g. Jordan et al. 1991), although the 

pollen record extends back to the Late Cretaceous (Dettmann 1994). Some leaf and cupule 

fossils (e.g. Hill 1991; Scriven and Hill 1996) have been classified into the subgenera, and 

fossil pollen is categorised into groups which match the subgenera (Dettmann et al. 1990; Hill 

and Read 1991). 

 

The phylogenetic placement of Nothofagus fossils is interesting because many fossils provide 

evidence of former distributions well outside of modern biogeographic boundaries. For 

instance some Early Tertiary Tasmanian leaf and cupule fossils have been assigned to 

subgenera which are now restricted to South America (subgenus Nothofagus) and to New 

Guinea and New Caledonia (subgenus Brassospora) (Hill 1991; Scriven and Hill 1996). 

Distributions of fossil pollen also contrast with the modern distributions of subgenera (e.g. 

Dettmann et al. 1990; Macphail et al. 1994). The co-occurrence of fossils with temperate 

(subgenera Lophozonia, Fuscospora and Nothofagus) and tropical (subgenus Brassospora) 

affinities also has palaeoecological implications (e.g. Hill 1991; Read et al. 1990). 

 

This work uses an integrated molecular and morphological data set for extant species to 

establish a phylogenetic framework in which the relationships of Nothofagus  leaf fossils can 

be assessed. Morphological data for well preserved leaf fossils were combined with vegetative 

and reproductive morphological data, Manos’ (1997) nuclear DNA and Martin and Dowd’s 

(1993) chloroplast DNA for extant species of Nothofagus. Phylogenetic placements of the 

fossils are determined using parsimony analysis of this large combined data set. In effect, this 

imposes phylogenetic topologies which are consistent with a wide range of data on the 

morphological characters measured in fossils. It also allows an assessment of the value of leaf 

morphological and anatomical traits in determining the phylogenetic affinities of Nothofagus 

leaf fossils. 

 

Materials and Methods 

Extant Nothofagus Species 

Only those extant species of Nothofagus for which morphological, ITS and rbcL data were all 

available were included to minimise the amount of missing data. This included all extant 

species of subgenera Nothofagus, Fuscospora and Lophozonia recognised by Hill and Read 
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(1991), but only six out of approximately 15 extant species of subgenus Brassospora because 

of the availability of molecular data. 

 

Fossil Taxa 

All described fossil species of Nothofagus were investigated, but only seven fossil taxa were 

included in formal analyses (Table 1). These were all the species of leaf fossils (excluding 

those assigned to extant species) which could be coded for all the venation and cuticular 

characters used here. Most of the described species not included in this analysis are based on 

fossils in which cuticular preservation is relatively poor or non-existent (e.g. Tanai 1986; Pole 

1993; Pole et al. 1993; Hill et al. 1996). Two of the included taxa, Nothofagus serrata and N. 

mucronata, although apparently clearly distinct species, were treated as a single terminal 

taxon, because the features that distinguish them are autapomorphic, or cannot be reliably 

coded in other taxa. The leaves of these species differ in that the former are elliptical, have 

straight secondary veins and the apices are acute and emarginate, whereas those of the latter 

are obovate, have curved secondary veins, the apices are obtuse and mucronate, and waxes are 

more strongly developed than in the previous species. The obovate leaf shape, and obtuse and 

mucronate apex are autapomorphic, whereas the path of secondary veins and development of 

waxes are poorly defined and difficult to score in other species. All of the fossil taxa except N. 

serrata and N. mucronata were represented by a large number (> 50) of nearly complete 

leaves with good preservation of cuticle. Nothofagus serrata and N. mucronata were 

represented by fewer leaves, but these are very well preserved. 

 

All the fossil species have been assigned to subgenera based on morphological or cuticular 

features (Table 1). One species, N. microphylla, was transferred from subgenus Lophozonia to 

subgenus Nothofagus by Scriven and Hill (1996), mainly because its stomata had T-shaped 

thickenings at their poles. Nothofagus pachyphylla, N. mucronata, N. serrata and N. 

microphylla are each known from only one site. Nothofagus tasmanica is known from four 

Oligocene sites in Tasmania (Hill 1983, 1991; Scriven and Hill 1996). This species is variable 

and may contain the equivalent of several modern species, but the analyses here treated this 

complex as a single species because, like N. serrata and N. mucronata, the differences were 

either autapomorphic or in ambiguous characters. Nothofagus lobata occurs at two Early 

Oligocene Tasmanian sites (Hill 1991; Scriven and Hill 1996). Nothofagus maidenii is known 

from Late Oligocene/Early Miocene sediments at Berwick Quarry, Victoria (Deane 1902; Pole 
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et al. 1993), and at Pioneer, Tasmania, but this study is primarily based on the specimens from 

Pioneer. Specimens of this species from Berwick Quarry are not well enough preserved for 

this analysis, but are consistent in the available characters with the specimens from Pioneer. 

The Pioneer specimens were originally described as N. johnstonii R.S.Hill (Hill 1983). 

 

Molecular Data 

Paul Manos provided copies of all the molecular data. ITS (intergene spacer) nuclear DNA 

data were derived from Manos (1997). rbcL data for 23 species sequenced by Martin and 

Dowd (1993) are available from Genbank (L13340 - L13346, L13348, L13350 - L13363). 

rbcL for Nothofagus aequilateralis was sequenced by Paul Manos. rbcL sequences for Betula 

nigra (L12634) and Corylus cornuta (X56619) came from Genbank. Manos (1997) gives 

details of the alignment of the DNA sequences. The data were restricted to phylogenetically 

informative characters. 

 

Morphological Characters 

The characters used in the analyses are listed in Table 2, and the data matrix is shown in Table 

3. Characters 14 - 24 were coded for fossil species from specimens, with reference to their 

published descriptions (Table 1). Note that Hill and Read (1991) recorded the presence of 

SUTTA in N. tasmanica from Little Rapid River, but this was a typographic error for SUTTC. 

Coding for extant species was as follows. 

 

All characters were unordered. Characters 1, 4, 5, 8, 9, 11 - 16 and 18 - 21 were coded for 

extant species following Hill and Jordan (1993). 

 

Character two combined information from cupule valve number, number of fruit and number 

of locules because they are probably developmentally linked (Rozefelds 1997; A. C. 

Rozefelds personal communication). These were scored as two or three separate characters by 

Hill and Jordan (1993) and Manos (1997) respectively, but the coding here makes fewer 

assumptions. 

 

Character three (cupule appendage type) followed Manos (1997). 

 



  6 

Character six (staminate flowers) was derived from Rozefelds and Drinnan (1998), and 

implies that the number of stamens per flower, as used by Hill and Jordan (1993) and Manos 

(1997), was a misinterpretation. The character used here differentiates the two forms 

identified by Rozefelds and Drinnan (1998). A true perianth is present in the staminate 

flowers of most species, but in species of subgenus Lophozonia three flowers occur together 

and are surrounded by a perianth-like structure (a pseudanthium). 

 

Character seven (pollen shape) differed from Manos' treatment in that species of subgenus 

Lophozonia were coded as peritreme rather than goniotreme (see Dettmann et al. 1990 and 

Hanks and Fairbrothers 1976). 

 

Character 10 (pollen diameter) is based on data from Hanks and Fairbrothers (1976). 

 

Character 16 (solitary unicellular trichome type C: SUTTC) codes the unique trichome type in 

the fossil N. pachyphylla as a form of SUTTC. SUTTC and the unique trichome type in N. 

pachyphylla are the only trichomes in the genus with a hollow base, and differ only in that 

epidermal cells surrounding the hollow based trichomes in N. pachyphylla are thick walled 

and raised (also see the discussion). 

 

Character 17 (conical trichomes) differed from Hill and Jordan (1993) in including two 

additional states. Narrow conical trichomes expanding rapidly near the base to become much 

enlarged (at least 30 µm wide in some trichomes) and with thickened bases (Fig. 1A) were 

treated as a separate state. Conical trichomes of other species can have large bases, but in 

these cases the bodies of these trichomes themselves are always very large. Two of Hill and 

Read's (1991) trichome types, SUTTB and SUTTD, are treated as being conical trichomes 

because there is intergradation between conical trichomes, SUTTB and SUTTD. Contrary to 

Hill and Jordan (1993), conical trichomes are present in N. gunnii and N. fusca. 

 

Character 20 (giant stomata on veins) is defined as the presence or absence on the veins of 

stomata which are at least twice as long as the typical size of stomata in the interveinal areas. 

It differed from the data of Hill and Jordan (1993) in that it is coded as present in N. 

cunninghamii (Fig. 1B). 
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Character 22 (upper epidermis) was coded from the cuticle collection described by Hill and 

Read (1991). The epidermal cells over veins may form a distinct reticulum by being elongate 

(State 0: Fig. 1C), or because the epidermal cells in areoles are thicker than those over the 

veins and appear to bulge in cuticle preparations (State 1: Fig. 1D), or may be uniform across 

the lamina (State 2: Fig. 1E). 

 

Character 23 (complete fimbrial vein) differed from Manos' (1993) character, in having three 

states. In many taxa there is no, or a very discontinuous fimbrial vein (State 0). In others 

fimbrial veins branch off intersecondary veins (State 2: Fig. 1F). In other species the fimbrial 

veins arise in the petiole (State 1: Fig. 1G). Also, contrary to Manos (1997), N. solandri has a 

strong fimbrial vein arising in the petiole (Fig. 1H). 

 

Character 24 (serrations) described the relationship of secondary veins to teeth and was scored 

from cleared leaves used by Hill and Read (1991). Some species have distinctly multiple teeth 

(State 0: Fig. 1I), in others most teeth are single ( State 1: Fig. 1J), others have entire margins 

(State 2). Poole and Adams (1986) and Gandolfo and Romero (1992) used this character in 

distinguishing among Nothofagus species from New Zealand and South America. 

 

Stamen ornamentation, stamen size and fusion of the filaments (Rozefelds 1998) were not 

included because they were not phylogenetically informative in the analyses here. These 

characters primarily vary among species of subgenus Brassospora, but data for these 

characters were not available for the outgroup or for the New Caledonian species of subgenus 

Brassospora used here. 

 

Outgroup 

This work uses Betulaceae as an outgroup as suggested by Nixon (1989), and for the 

following reasons. Phylogenetic analyses of two chloroplast genes (rbcL and matK) suggest 

that Nothofagus is basal to a group of higher hamamelid families, including Betulaceae, 

Casuarinaceae, Fagaceae, Myricaceae, Ticodendraceae and Rhoipteleaceae (Manos and Steele 

1996), so that any of these families is a potential outgroup. Some earlier analyses (e.g. Hill 

and Jordan 1993) used Fagus to polarise morphological data in Nothofagus because of 

apparent similarity in the female reproductive structures, but the structures do not appear to be 

homologous (Rozefelds 1997). Many of the cuticular features critical to the present study 
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occur within Betulaceae, but appear to be replaced in Fagaceae by structures which are 

difficult to interpret in terms of homology. Also both data for both ITS and rbcL were 

available for Betulaceae, but not Fagus. Betulaceae was scored for ITS and rbcL data based 

on two genera of Betulaceae, Betula and Corylus as suggested by Manos and Steele (1997), 

and for morphological characters based on inspection of seven species (Alnus rubra Bong., A. 

incarna (L.) Moench, Betula pendula Roth, B. raddeana Trautv., B. alba L., B. pubescens 

Ehrh. and Carpinus carolineana Walt.). Betulaceae was scored as unknown for reproductive 

traits because the homology of these characters in Nothofagus  with those in Betulaceae is 

very unclear. The use of multiple outgroups (such as including Fagus, as in Manos 1997) had 

little affect on the topology for extant species, but was inappropriate for analyses of fossils 

because of noise apparently introduced by very large amounts of missing data. 

 

Cladistic Analyses 

Parsimony searches were performed with the heuristic search algorithm of PAUP 4.0b1 

(Swofford 1998) on a number of subsets of the matrix containing all characters and all species 

(Table 4). Each analysis used 100 replicates of random addition of taxa and tree bisection-

reconnection (TBR) branch swapping, holding five trees at each step and saving all the most 

parsimonious trees. Multistate taxa were treated as polymorphisms. 

 

The first matrix included all the extant species and the ITS, rbcL and morphological data 

(analysis 1, Table 4). This analysis tested whether the results of Manos (1997) were 

reproduced with the slightly modified data used here. The most parsimonious trees found by 

heuristic methods were confirmed using the branch and bound algorithm of PAUP 4.0b1 

(Swofford 1998). The branch support for the trees derived from this matrix was assessed by 

searching for the additional number of steps for a branch to collapse (Bremer support, also 

known as decay index: Bremer 1988; Källersjö et al. 1992; Farris 1996). Bremer support does 

not directly reflect probability, but large numbers indicate strong branch support (Källersjö et 

al. 1992). 

 

The ability to determine the phylogenetic placement of a taxon based only on leaf characters 

(as is the case with fossils) was tested using analyses of 22 matrices (analyses 2-23; Table 4). 

For each extant species, a matrix was created with that species coded for leaf characters but 

with missing values for all the other characters (and thus simulating a leaf fossil species), plus 
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the other 21 extant species with all characters coded. The phylogenetic placement of each 

extant species based on the complete data was then compared with its placement using 

characters that can be measured on fossils. 

 

The most parsimonious position of the fossils was determined using analysis of a matrix 

(analysis 24; Table 4) including all the data from the first analysis, plus the leaf morphological 

and anatomical data for the six fossil terminal taxa (N. mucronata  and N. serrata as a single 

terminal, plus the five other species). To compare the power of analyses using the combined 

molecular and morphological data, with those just using morphological data measurable on 

fossils, this analysis was repeated on a matrix containing only leaf characters (analysis 25; 

Table 4). 

 

Six matrices (analyses 26-31; Table 4) were used to test the extra tree length required to place 

each fossil species in less parsimonious parts of the tree. Each matrix included all the 

characters for all the extant species and one of the fossil terminal taxa. The length of the most 

parsimonious tree for the matrix was compared with the most parsimonious trees under 

constraints. The constraints were such that certain groups were monophyletic, but were 

otherwise unconstrained. The constraints are of three types which are best described by 

examples. The alternative placement of N. pachyphylla in subgenus Brassospora was tested 

by constraining the trees such that N. pachyphylla and the extant species of subgenus 

Brassospora formed a monophyletic group. In this type of constraint, the group was selected 

so that it contained strongly supported monophyletic groups of extant species, plus one fossil. 

A second example is that the placement of N. pachyphylla as basal to the clade formed from 

subgenera Brassospora and Nothofagus was tested by constraining the trees such that N. 

pachyphylla was a sister to a monophyletic group containing the extant species of those 

subgenera. The final example is that the placement of N. pachyphylla as sister to N. 

cunninghamii was tested by constraining the tree to not contain those two species as a 

monophyletic group. Because of the small number of informative characters available on the 

fossils (11) compared to the large number for extant species (165), the additional number of 

steps required for alternative placements of fossils are not directly comparable to the Bremer 

support for extant species in the combined analysis. 
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The final matrix included all the extant species, but only those characters which could be 

measured on fossils with good preservation of both cuticular and architectural features 

(analysis 32; Table 4). This matrix was used to test whether the phylogenies derived from the 

characters measurable on leaf fossils were congruent with the best available phylogeny 

derived from the combined analysis. 

 

Results 

Analyses of Extant Species 

The combined analysis of extant species (analysis 1) produced two most parsimonious trees 

(Fig. 2). The strict consensus of these trees was almost identical to Manos' (1997) consensus 

tree for combined data. They differed only in the topology among the New Guinea members 

of subgenus Brassospora, and that N. antarctica  and N. pumilio are sister species in Manos’ 

(1997) consensus, but, in the consensus from the present analysis, there is an unresolved 

trichotomy among these two species and a clade containing N. nitida and N. betuloides. The 

support for several clades is very strong, in particular for the subgenera Brassospora, 

Nothofagus and Fuscospora, for these three as a group, and for the evergreen members of 

subgenus Lophozonia (Fig. 2). Both subgenus Lophozonia and the clade comprising the 

deciduous species of subgenus Lophozonia  are relatively weakly supported. Support for most 

branches within these clades is also relatively weak. 

 

In the analyses of extant species treated as if they were fossils (analyses 2-23), 19 of the 22 

extant species were placed into the same subgenera (Fig. 3) as in the full analysis (Fig. 2). The 

exceptions were the three deciduous species of subgenus Lophozonia which were 

ambiguously placed; either within Lophozonia or basal to the large clade of other species (Fig. 

3). In contrast to the high success rate at the subgeneric level, the topologies within subgenera 

varied markedly (Fig. 3). The consensus trees were identical to that in Fig. 2 for only three 

species (N. fusca, N. solandri and N. truncata), For nine species (N. grandis, N. perryi, N. 

antarctica, N. pumilio, N. alessandri, N. gunnii, N. alpina, N. glauca and N. obliqua) the trees 

were completely (or almost completely) unresolved within the relevent subgenus. For the 

remaining 10 species the trees were resolved but incogruent with the consensus from 

combined data in Figure 2. Thus 10 out of 22 species would have been placed in different 

phylogenetic positions to their placement based on the combined data if they had been only 

known as fossils, and most of the rest would have been placed ambiguously. 
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Analyses of Fossil Species 

The fossil species can be incorporated into the combined phylogeny (analysis 24; Fig. 4) with 

little additional homoplasy. When restricted to the characters that are measured on the fossils 

(characters 11-24), the consistency index for the two most parsimonious trees from the 

combined analysis of extant species (analysis 1; Fig. 2) is 0.47, and that for the 90 most 

parsimonious trees from the combined analysis of extant and fossils (Fig. 4) is 0.44. 

 

The fossil species N. pachyphylla, N. maidenii and N. tasmanica require relatively large 

numbers of steps to be placed in subgenera other than Lophozonia, or on basal branches, 

which implies that they are strongly supported as members of this subgenus Lophozonia 

(analyses 26-28; Fig. 5A-C). Nothofagus pachyphylla is the sister species of the extant species 

N. cunninghamii (Fig. 4). Placement anywhere else requires at least two more steps. 

Nothofagus maidenii is the sister to the N. cunninghamii/N. pachyphylla clade, but the support 

for this is not strong since it would only take one more step to place it elsewhere within 

subgenus Lophozonia. The position of Nothofagus tasmanica within the evergreen clade of 

subgenus Lophozonia is unresolved, except that it is placed outside the Nothofagus 

maidenii/N. cunninghamii/N. pachyphylla clade (Fig. 4). 

 

The fossil species N. microphylla is placed as basal to the evergreen members of subgenus 

Lophozonia, but this is only weakly supported (analysis 29; Fig. 5D). Alternative placements 

are in more basal positions or in subgenus Nothofagus (Fig. 5D). 

 

The fossil species N. serrata and N. mucronata are strongly supported as members of 

subgenus Brassospora (analysis 30; Figs 4, 5E). They are placed as either basal to the 

members of the subgenus represented in this analysis, or as sister species nested within the 

extant species. 

 

The fossil species N. lobata is best described as the sister species of the extant species N. 

nitida (Fig. 4), though it would only take one more step to place it elsewhere within subgenus 

Nothofagus. Its placement within subgenus Nothofagus is strongly supported (analysis 31; 

Fig. 5F). 
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Analyses Using Only Leaf Characters 

The analysis using only characters which can be scored from fossil leaves with good cuticular 

preservation produced 12 shortest trees (analysis 32; Fig. 6). These trees are not congruent 

with the combined analysis (Fig. 2), although each subgenus is monophyletic apart from 

subgenus Lophozonia where evergreen species are placed basal to subgenus Brassospora, and 

the deciduous members are part of an unresolved basal polychotomy. The consensus for 

extant and fossil taxa (204 equally parsimonious trees 31 steps long, not shown) using only 

these leaf characters was much more poorly resolved than the analysis including all characters 

(Fig. 2). Among the fossils, only N. lobata and N. mucronata were included within subgeneric 

clades. The consensus of trees only one step longer was totally unresolved, apart from a 

monophyletic subgenus Nothofagus. 

 

In the trees of extant species (analysis 1; Fig. 2), cuticular characters (characters 14-22) mostly 

showed high (≥ 0.5) consistency indices which were not altered with the addition of the fossil 

species (analysis 24; Fig. 4) (Table 5). The consistency indices for the architectural characters 

(character 23 and 24) were low (≤ 0.4). 

 

Discussion 

The Utility of this Methodology in Classifying Nothofagus Fossils 

The congruence between three more or less independent data sets (morphology, ITS and rbcL) 

shown by Manos (1997), and the strong support for the major branches, suggests that the 

combined morphological and molecular data provide a strong framework for the classification 

of fossils. The poor resolution of the phylogeny of extant species constructed using only data 

available in fossils (analysis 32; Fig. 6) and its incongruence with the combined tree (Fig. 2) 

imply that phylogenetic placement of Nothofagus leaf fossils is dependent on incorporating 

molecular and morphological data from extant species. 

 

The “correct” assignment to subgenera of the extant species (except the three deciduous 

species of subgenus Lophozonia) when they were restricted, one by one, to data available for 

fossils (analyses 2- 23; Fig. 3), suggests that most well preserved leaf fossils of Nothofagus 

can be reliably assigned to subgenera. The deciduous species of subgenus Lophozonia are a 

special case because they form a near basal, poorly supported clade in the combined analysis. 

It would be difficult to discriminate fossils of this clade from Betulaceae because of a lack of 
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derived characters. Resolution within subgenera is very poor, suggesting poor support for 

fine-resolution classification. 

 

Relatively high consistency indices suggest that cuticular characters are useful in classifying 

fossil Nothofagus leaves. In contrast, leaf architecture appears much less useful, because 

architectural characters in this analysis (Table 5) and others used by other authors to classify 

fossil Nothofagus leaves show low consistency with the combined phylogeny of extant 

species. For example, rounded teeth (Gandolfo and Romero 1992), arose at least three times 

(in N. pumilio, in N. gunnii and in subgenus Brassospora), and reticulate tertiary veins 

(Gandolfo and Romero 1992) arose at least twice (in subgenera Brassospora and 

Fuscospora). Some architectural features, such as the thickness of terminal veinlets (Tanai 

1986), may be linked to habit (evergreen/deciduous), which has changed at least four times in 

the genus (Hill and Jordan 1993; Manos 1997). All extant species with thick veinlets are 

evergreen and those with thin veinlets are deciduous. 

 

The number and strength of cuticular characters, together with the relative weakness of 

architectural characters, implies that robust determination of the phylogenetic affinities of 

Nothofagus leaf fossils will usually require good cuticular preservation. The assignment of 

most leaf impressions, including many of the fossils excluded from this analysis, to 

subgeneric groups within Nothofagus (e.g. Tanai 1986) is, therefore, unrealistic. The main 

exceptions are impression fossils with distinctive architectural apomorphies, e.g. fossil N. 

gunnii from Tasmania (Hill 1984, 1991) and N. crenulata (Engelhardt) Dusén from South 

America (Tanai 1986), which have the distinctive margin types of extant N. gunnii and N. 

antarctica, respectively. However, even these cases depend upon a lack of convergence in the 

critical characters. It may be possible to classify some of the other excluded fossil species if 

fresh specimens are collected and cuticles are processed immediately. However many are 

deciduous, which often means that cuticles are very thin and fragile. 

 

The Phylogenetic Placement of the Fossils 

This work supports Hill’s (1991) subgeneric placements of N. maidenii, N. tasmanica 

(subgenus Lophozonia), N. lobata (subgenus Nothofagus), N. serrata and N. mucronata 

(subgenus Brassospora) and Jordan’s (in press) placement of N. pachyphylla (subgenus 

Lophozonia). However, the poor capacity to classify fossils within subgenera implied by Fig. 
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3 suggests that leaf fossils do not provide enough phylogenetic information to establish 

evolutionary sequences within subgenera without additional information. Such information 

might include stratigraphic position, or data on characters which are more useful within 

groups than among groups (e.g. Hill’s 1993 treatment of subgenus Lophozonia), though use of 

these sorts of data may depend on extra assumptions.  

 

The main conflict between the results obtained here and established taxonomy is that N. 

microphylla is nested within subgenus Lophozonia, whereas Scriven and Hill (1996) assigned 

this species to subgenus Nothofagus. It is notable that the critical character used by Scriven 

and Hill, "T-pieces at stomatal poles", shows no homoplasy in the combined analysis of extant 

species. The support for the subgeneric placement of N. microphylla is relatively weak, so it is 

probably best treated as ambiguous. 

 

The morphological data used here is only one of many possible interpretations of morphology. 

Alternative data sets either make more complex assumptions about some characters than are 

made here, or give essentially the topologies found here. For example, the hollow based 

trichomes in N. pachyphylla are unique (Jordan in press) but are interpreted here as being 

homologous to the trichome type, SUTTC. Data sets assuming that these two trichome types 

are not homologous place N. pachyphylla in the same place. 

 

A potential problem arises from conical trichomes and SUTTC which are not present on all 

leaves of some plants. Cuticles from several leaves may need to be searched to score these 

characters. This is a problem for rare fossils with fragmentary cuticles, and the absence of 

trichome types may need to be treated as being ambiguous. However, none of the taxa here are 

likely to be seriously affected: most have both SUTTC and conical trichomes, the others are 

either represented by abundant specimens, or their placement is unchanged when the 

problematic characters are scored as ambiguous. 

 

Implications for General Palaeobotany 

This methodology can classify fossils in a robust, repeatable and relatively objective way, and 

provides a means of assessing alternative phylogenetic placements of fossil taxa. However, it 

is dependent on a data rich, robust phylogeny being available for the extant taxa, which, as 

yet, is available for relatively few groups of plants. It also depends on enough phylogenetically 
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meaningful traits being available on the fossils. For Nothofagus this requires the preservation 

of both cuticle and leaf architecture. 

 

The relative phylogenetic value of cuticular and architectural characters in other taxa is less 

well known than in Nothofagus. The homoplasious nature of leaf architectural traits in 

Nothofagus (Table 5) suggests that the identification of taxa based only on leaf impressions 

should be treated with caution unless very distinctive and derived architectural features are 

preserved. Leaf architectural traits may be more informative in other groups, but this needs to 

be confirmed by phylogenetic methods. 
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Table 1. Fossil Nothofagus species used in this analysis, with known age ranges, region and location of original descriptions 

 

Species Age Region Subgenus Descriptions 

N. pachyphylla G. J. Jord. Early 

Pleistocene 

Tasmania Lophozonia Jordan (in press) 

N. tasmanica R.S.Hill Oligocene Tasmania Lophozonia Hill (1983; 1991); Scriven and Hill (1996) 

N. maidenii (Deane)M.S.Pole Late Oligocene 

/Early Miocene  

Tasmania/ 

SE 

Australia 

Lophozonia Deane (1902); Pole et al. (1993); Hill (1983) 

N. lobata R.S.Hill Early Oligocene Tasmania Nothofagus Hill (1991); Scriven and Hill (1996) 

N. microphylla R.S.Hill  Late Oligocene 

/Early Miocene 

Tasmania Nothofagus Hill (1991); Scriven and Hill (1996) 

N. mucronata R.S.Hill Early Oligocene Tasmania Brassospor

a 

Hill (1991) 

N. serrata R.S.Hill  Early Oligocene Tasmania Brassospor

a 

Hill (1991) 
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Table 2. Morphological characters used in the cladistic analyses 

 

Character States 

1. Leaf vernation 0 = plicate 

 1 = planar 

 2 = revolute 

 3 = conduplicate. 

2.Cupules valves and fruit 1 = valves 4, fruit 2 trimerous, 1 dimerous 

 2 = valves 2, fruit 3 dimerous 

 3 = valves 2, fruit 1 dimerous 

 4 = valves 2, fruit 1 trimerous 

 5 = valves 2-4, fruit 1 trimerous, 0 - 1 

dimerous 

 6 = valves 4, fruit 4 - 7 

3. Cupule appendage type 0 = glandular 

 1 = lamellate 

4. Peduncle length 0 = sessile or short 

 1 = long 

5. Cupule valves 0 = woody 

 1 = thin 

 2 = thin and much shorter than the fruit. 

6. Staminate flowers 0 = perianth present 

 1 = perianth absent, pseudanthium present 

7. Pollen shape in polar view 0 = peritreme 

 1 = goniotreme 

8. Pollen polar to equatorial lengths (l/E) 0  = l/E > 0.35 

 1 = l/E < 0.3 

9. Pollen aperture thickening 0 = annulate 

 1 = heavy thickening 

 2 = rimmed 

 3 = unthickened 

10. Pollen equatorial diameter 0 = < 65 µm 

 1 =  > 65 µm 

11. Wood anatomy 0 = tracheids present 

 1 = tracheids absent 

12. Stipule attachment 0 = not peltate 

 1 = peltate 

13. Phyllotaxy 0 = distichous 

 1 = spiral 

14. Glandular trichomes on cuticle 0 = present 

 1= absent 

15. Solitary unicellular trichome type A (SUTTA) 0 = present 

 1 = absent 

16. Solitary unicellular trichome type C (SUTTC) 0 = present 

 1 = absent 

17. Conical trichomes 0 = present 

 1 = absent 

 2 = broad based form 

 3 = SUTTB or SUTTD 

18. T - pieces at stomatal poles 0 = absent 

 1 = present 

19. Stomatal orientation 0 = random 

 1 = mostly parallel with the midrib 

20. Giant stomata on veins 0 = present 

 1 = absent 
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21. Stomatal size excluding giant stomata 0 = more or less even 

 1 = variable 

22. Upper epidermal cells over veins 0 = more elongate than areolar cells 

 1 = not distinguishable from areolar cells 

 2 = thinner than areolar cells 

23. Complete fimbrial vein 0 = absent 

 1 = type 1 

 2 = type 2 

24. Serrations 0 = often associated with more than two 

teeth 

 1 = associated with one or two teeth 

 2 = entire margined leaf 
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Table 3. Matrix of morphological data for cladistic analysis. Note that the fossils are coded for only characters 14 - 24 

Taxon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Outgroup 0 ? ? ? ? ? ? ? ? ? 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

N. aequilateralis (Baum.-Baudenh.) Steenis 3 2 1 0 0 0 1 1 2 0 1 1 1 0 1 1 0 0 0 0 0 2 0 2 

N. alessandri Espin. 0 6 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 

N. alpina Phil. 0 1 0 0 1 1 1 0 3 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 

N. antarctica (G. Forst.) Oerst. 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 

N. balansae (Baill.) Steenis 3 2 1 0 0 0 1 1 2 0 1 1 1 0 1 1 1 0 0 0 0 2 1 1 

N. betuloides (Mirb.) Oerst. 1 1 0,1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 

N. brassii Steenis 3 2 1 1 1 0 1 1 2 0 1 1 0 0 1 1 1 0 0 0 0 2 0 2 

N. cunninghamii Oerst. 1 1 0 0 1 1 1 0 3 1 0 0 0 0 1 0 2 0 0 0 1 1 0 1 

N. dombeyi Bl. 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 

N. fusca Oerst. 2 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 

N. glauca (R. Phil.)Krasser 0 1 0 0 1 1 1 0 3 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 

N. grandis Steenis 3 3 1 0 1 0 1 1 2 0 1 1 0 0 1 1 1 0 0 0 0 2 0 2 

N. gunnii (Hook. f.) Oerst. 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 

N. menziesii Oerst. 1 1 0 0 1 1 1 0 3 1 0 0 0 0 1 0 2 0 0 1 1 1 2 0 

N. moorei Maiden 1 1 0 0 1 1 1 0 3 1 0 0 0 0 1 0 2 0 0 1 1 1 2 0 

N. nitida Reiche 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 

N. obliqua Bl. 0 1 0 0 1 1 1 0 3 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 

N. perryi Steenis 3 2 1 1 1 0 1 1 2 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 

N. pumilio (Poepp. & Endl.) Krasser 0 4 0,1 0 1 0 0 1 0 0 0 1 0 0 1 1 3 1 1 1 1 0 0 0 

N. resinosa Steenis 3 3 1 0 2 0 1 1 2 0 1 1 0 0 1 1 0 0 0 0 0 2 1 1 

N. solandri Oerst. 2 5 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 2 

N. truncata Cockayne 2 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 
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Fossil species                         

N. mucronata/ N. serrata ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 0 0 0 1 2 0 1 

N. lobata ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 0 1 1 1 1 1 0 0 

N. microphylla ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 2 1 0 1 1 0 0 0 

N. pachyphylla ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 2 0 0 0 1 1 0 1 

N. tasmanica ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 2 0 0 1 1 1 0 0 

N. maidenii ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 2 0 0 0 1 1 0 0 
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Table 4. Data sets for cladistic analyses of fossil and extant Nothofagus species. Note that analyses 3 to 24 includes one analysis for each extant 

species, and analyses 26-31 include one analysis for each fossil terminal 

 

Analysis number Taxa Characters 

1 All extant species All 

2 All extant species Morphological characters 14 - 24 

2-23 All extant species Morphological characters 14 - 24 for one extant species 

  plus all characters for the other 21 

24 All extant and fossil species All 

25 All extant and fossil species Morphological characters 14 - 24 

26-31 All extant species plus one fossil taxon All 

32 All extant species Morphological characters 14 - 24 
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Table 5. Consistency indices of leaf morphological and anatomical characters in trees based 

on a combined analyses of morphological and molecular data. Indices are given for the two 

trees without fossils (Fig. 2) and for the 90 trees with fossils (Fig.4) 

 

Character minimum steps without fossils with fossils 

Cuticular traits    

14. Glandular trichomes 1 0.5 0.5 

15. SUTTA 1 1 1 

16. SUTTC 1 1 1 

17. Conical trichomes 3 0.43 0.43 

18. T- pieces 1 1 0.5 

19. Stomatal orientation 1 1 1 

20. Giant stomata 1 0.33 0.33 

21. Stomatal size 1 0.33 0.33 

22. Adaxial epidermis 2 0.5 0.5 

Architectural traits    

23. Complete fimbrial vein 2 0.4 0.4 

24. Multiple teeth 2 0.33 0.29 
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Fig. 1 Leaf architectural and cuticular features. Fig. 1A, Conical trichome of N. cunninghamii 

showing the very broad base with a short trichome. Fig. 1B, Cuticle of N. cunninghamii 

showing a giant stoma. Fig. 1C, Cuticle of adaxial surface of N. dombeyi showing 

reticulations. Fig. 1D, Cuticle of adaxial surface of N. resinosa showing reticulations with 

bulging cells in the areoles. Fig. 1E, Cuticle of adaxial surface of N. menziesii showing 

uniform cell size. Fig. 1F, Leaf margin of N. moorei showing the fimbrial vein arising from 

the basal secondary vein. Fig. 1G, Leaf margin of N. fusca showing the fimbrial vein arising in 

the petiole. Fig. 1H, Margin of a cleared N. solandri leaf showing the well developed fimbrial 

vein. Fig. 1I, Margin of a cleared N. menziesii leaf showing multiple teeth. Fig. 1J, Margin of 

a cleared N. fusca leaf showing single teeth. Scale bars 50 µm in Fig. 1A, 100 µm in Figs 1B-

1E, 1 mm in Figs 1G-1J. 
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Fig. 2 The strict consensus of the two most parsimonious tree derived from the combined 

analysis of extant species (analysis 1). The Bremer support is shown above each branch. All 

morphological characters and 121 molecular characters were informative. The tree length was 

365 steps and the consistency index excluding uninformative characters is 0.66. 
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Fig. 3 The strict consensus of most parsimonious trees from analyses 2-23. This is the strict 

consensus of 22 strict consensus trees where data for one extant species at a time was 

restricted to those characters that can be measured on leaf fossils. The number of trees per 

analysis varied from 1 to 16. This is a test of the power of the methods used here to place 

fossils phylogenetically. 
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Fig. 4 A strict consensus of the 90 most parsimonious trees for both fossil and extant species 

using combined DNA and morphological data (analysis 24). All morphological characters and 

121 molecular characters were informative. Excluding uninformative characters, the tree was 

367 steps long with a consistency index of 0.66. Fossils names are in bold type. 
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Fig. 5 Parsimony of alternative placements of fossils on the most parsimonious tree. The trees 

are collapsed to the subgeneric level. The numbers above the branches are the minimum 

additional number of extra steps for the fossil taxon to be placed on that branch. The positions 

of species within subgenera were unconstrained. Fig. 5A, N. pachyphylla (analysis 26). Fig. 

5B, N. maidenii (analysis 27). Fig. 5C, N. tasmanica (analysis 28). Fig. 5D, N. microphylla 

(analysis 29). Fig. 5E, N. mucronata and N. serrata (analysis 30). Fig. 5F, N. lobata (analysis 

31). 
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Fig. 6 The strict consensus of 12 most parsimonious trees for extant species using only 

morphological characters which can be scored on leaf fossils (characters 14-24). The tree 

length was 28 steps and the consistency index was 0.57. Note the general congruence with the 

combined analysis of morphological and molecular data, apart from the evergreen members of 

subgenus Lophozonia (Fig. 2), and the poorer resolution. 


