
Single Chip Chess Computer

SC3
‘Chess is the intellectual

game par excellence.’ - wrote
Newell, Shaw and Simon in
their paper published in the
IBM Journal of Research and
Development in 1958 which
traced the development of
digital computer programs that
play chess. They believed that
the efforts to program chess
provided an indication of the
then current progress in
understanding and
constructing complex and
intelligent mechanisms.

I think this probably holds
true today, as just recently a
computer called DEEP
THOUGHT has won a chess
game against a Grand Master
chess player. However, it took
one of the fastest parallel
computers in the world and
many man years of
programming effort to do it.

Chess programs have
probably been written for all
types of digital computers ever
constructed in the last 40
years, from 4-bit
microcomputers to Crays and
all types in between. Presented
here is a chess computer based
on the 68HC705C8FN
microcontroller from
Motorola. The ‘FN’ refers to
the type of package the micro
controller comes in which in
this case is a plastic-leaded
chip carrier or PLCC. It’s a
surface mounted component
and allows the project to fit
into a match box! It is not
necessary to construct the
project this way but it will
certainly be a novelty if you
do.

Of course if you decide to
construct the project to fit into
a match box (or something
similar) then a normal chess
board must be used in

conjunction with it in order to
play against it. Alternatively
you could build it into your
own chess board and thus have
a fully self contained chess
computer like most of those
available commercially. I plan
to build one with a glass top
and legs so that it can double
as a small coffee table. I have
called it the Single Chip Chess
Computer or SC3.

Circuit
The SC3 consists of three

switches for entering moves
and four banks of LED's for
displaying moves and status
information. There is no on/off
switch since the
microcontroller is placed into
its low power, or STOP mode
whenever a switch has not
been pressed longer than about
8 minutes ago. During STOP
mode the on chip clock is
stopped and power is only

SC3 Circuit Diagram

1

Single Chip Chess Computer

required to keep the static
RAM from loosing its contents
which is about 10μw. Only
one of the LED’s from each
bank will be used at any one
time, so only one current
limiting resistor is needed per
bank of LED’s. The separate
banks are multiplex to give the
illusion of more than one LED
being on. Debouncing of the
switches is handled by
software, and is incorporated
in the same routine as the LED
multiplexing. The
multiplexing routine is called
with parameters to indicate
which LED’s to multiplex.
During multiplexing, the port
to which the switches are
connected is examined, and if
a switch was already closed
the routine waits until the
switch becomes open. At
which point a delay of
several loop times is used
to debounce the switch
opening and the routine
then loops waiting for a
switch closure. When a
switch being closed is sensed
another delay for debouncing
is initiated after which the
routine returns with the
identity of the switch which
was pressed. A delay in the
multiplexing loop determines
the rate of display
multiplexing which is about
7ms.

Switch SW3 is also
connected to the interrupt
request (IRQ) pin which
enables the microcontroller to
wake up from its low power

mode. Also, if you get tired of
waiting for the computer to
make its next move you can
press this switch which

interrupts the routine which is
calculating the next move and
forces the computer to use the
best move it has found so far.

A 4.1943 MHz crystal is
used in the clock circuit
because they are readily
available and the maximum
clock frequency for this
particular device is 4.2 MHz.
This is divided internally by
two giving a bus clock of
2.097 MHz. Capacitors C3 and
C4 and resistor R4 are used to
ensure reliable starting of the
oscillator.

All unused inputs are tied
low so as to prevent increased
power consumption should
these inputs otherwise stray up
and down. Diode D1 is used to
reduce the peak voltage of

fresh batteries by about 0.7
volts and also protects the
circuit from inadvertent
reverse connecting of the
batteries.

Firmware
The main building blocks of

a chess computer are CPU,
RAM, ROM, a timer and an
appropriate input/output
mechanism. Apart from the
lack of processing power in
the CPU a typical
microcontroller makes an ideal
chess computer. Depending on
the algorithm used to decide
the next move for the
computer it has been shown
clearly that a computers chess
rating increases in proportion
to its processing power for a
predetermined period of time
per move. While we can’t
expect a chess computer based
on a microcontroller to play at
the level of Grand Master a
reasonable level of play can be
expected while a bad move is
not necessarily a bug in the

program. It is also clear that as
more time is devoted to the
calculation of a move the
better that move is likely to be.

The firmware for the SC3
consists of approximately
6000 lines of assembly code so
a detailed explanation of its
function cannot be undertaken
here unfortunately. The
program was originally written
in C in order to test and debug
the algorithms and then
translated into 6805 assembly
language. Even so using this
method still required about
two years of part time
programming to complete.
Why is the program so long?
The answer, in a word, is
speed. Due to the nature of the
algorithm (described below)

for generating and searching
moves in order to find a good
one, it is very important to
make it execute as quickly as
possible. The most time
consuming part of the
algorithm is the move
generation. Because
determining the next move is
certainly the most visited part
of the program it must execute
reasonably quickly and
efficiently. The board is
represented by 64 memory
locations with the pieces for
the computer represented by
positive integers and the
pieces for the opponent
represented by negative
integers. A vacant square is
represented by a zero.

NCRDIR0 ldx PTO index TO position
 ldx DIRN,x get next board position
 bmi NCRNDIR1 if off the board, next direction
 lda B,x see what's on the board here
 beq RET_MOVE if blank, move ok
NCRNDIR1 ...

Listing 1

Front Panel

With this in mind, the
generation of the moves for
the black and white pieces has
been separated, as has the
generation of capture moves as
opposed to non-capture moves
(also explained below), and
where possible loops have
been unrolled and code placed

2

Single Chip Chess Computer

in-line. A sample piece of code
for generating a rooks move is
shown in listing 1.
NCRDIR0 is where program

flow comes when checking for
non capture moves involving
rooks. PTO is the last
destination square tried for this
rook. DIRN is a table of board
locations for moving one
square north from the current
position, with negative values
indicating that a move in that
direction would be off the
board. If this is the case, a
branch is performed to a
similar piece of code which
tests for moves in a different
direction for this piece. If the
destination square is vacant
then this is a valid move in as
much as ensuring that the king
has not been place in check
because of this move.

Both the C and the assembly
versions are available on
floppy disk if you are
interested in understanding the
code in more detail.

The SC3 has eight levels of
play which correspond directly
to the amount of time it spends
calculating the next move.
However if the score
associated with the latest
search is as good as the score
from the previous search (one
half move less deep), and of
course the move chosen was
the same, then the search is
immediately stopped. The
assumption being that it is
highly likely that the best
move has already been
discovered to the best of the
programs ability and that it is
pointless wasting time
searching still further until the
time allotted at the level
chosen has elapsed. The SC3
searches for about 11 seconds
times two to the power of one
less than the level of difficulty
entered, unless the above
condition becomes true. For
example, the maximum search
time on level 3 is 44 seconds.

The SC3 uses what is known
as a brute force method of
calculating the next move.
This method appears to be the
method of greatest success
historically in terms of playing
human opponents. Its
advantage is that every single
move on the board will be
tried and evaluated and thus
the very obviously bad moves
will always be eliminated.
Other methods where some
intelligent scheme of selecting

which moves to consider were
not as successful because it is
extremely difficult to program
such intelligence into a
machine.

The method by which the
SC3 uses to determine its
moves is a derivative of a
searching technique called the
minimax algorithm. The
minimax algorithm works by
considering, for example, all
the moves from the current
board position, and for each of
those moves, all the reply’s to
those moves, and so on, to a
predetermined depth or level.
At which point (a terminal
position) a score is calculated
based on how good the
position is. In the SC3 the
score is calculated by
considering the material
balance only. In theory it is
possible, from the beginning
of the game, to search all the
moves until either a win, draw,
or loss has been found. In

practice this is impossible due
to the shear magnitude of the
moves that would need to be
searched. For example, if on
average there are about 40
moves available in any given
position then searching to a
depth of only 10 levels (or ply)
would require the generation
of 4010 or 1016 moves!

The minimax algorithm gets
its name from the way it
works. That is, the computer
will choose the move leading

to the position at the next level
with the maximum score,
knowing that where it is the
opponents turn, a score equal
to the minimum score of any of
its successors is chosen.

Diagram of All Layers

The minimax algorithm is a
depth-first search and by its
nature the memory
requirements grow linearly
with the depth of the search as
opposed to breadth-first
searching, for example, where
the memory requirements
grow exponentially with the
depth of the search. This is an
important consideration
because of the limited amount
of RAM available on the
68HC705 for this application.

The actual algorithm used,
however, is a derivative of the
minimax algorithm call the
alpha-beta search algorithm.
This algorithm is based on the
fact that many paths within the
search tree constructed by the
minimax algorithm need not

3

Single Chip Chess Computer

have been examined because
they will have no effect on the
outcome of the search. The
decision whether or not to
search a particular branch of
the tree is based solely on the
numeric value of the score
calculated at the terminal
nodes. It has been
demonstrated that the alpha-

beta algorithm requires only
six times as long to search the
next level in chess, compared
to the minimax algorithm
where it is dependent solely on
the number of moves at a
given position.

Because of the nature of the
alpha-beta search algorithm,
the order of moves visited will
impact heavily on the number
of positions searched and thus
the duration of the search.
Most chess programs will
generate all the moves at each
level and then sort them in
order of value defined by a
comparatively quick
evaluation routine. For
example, a queen captured by
a pawn will rate higher than a
pawn captured by a bishop and
so forth. Since the 68HC705
has very limited resources in
terms of RAM it is impossible
to generate, store and sort all
the moves at each level, so a
compromise is made. It turns
out that it is only necessary to
store enough information to
determine what the next move
will be each time the move
generation routine is called.
Only nine bytes of information
is required at each level to
uniquely identify the move
made in a particular position
and the same information is of
course used to restore the
board after the move has been
searched. Using this method
it’s not possible to directly sort

the moves to improved the
search time. However it is
possible to improve the search
time by dividing the move
generation into two separate
sections, the first of which
generates all the capture
moves and the second part
generates all the non-capture
moves. This sometimes
involves scanning the board
twice but the savings in search
time easily make up for this. If
there is a capture move in any
given board position it is
highly likely that based on the
properties of the alpha beta
search algorithm that the
second scan of the board will
not be required.

As described before the
score evaluated at the terminal
positions of the tree is based
on the material balance. Whilst
this is certainly an important

piece of chess knowledge it is
by no means the only piece.
The SC3 uses a different
scoring method at the root of
the tree when the alpha-beta
search returns more than one
move with the same score. In
fact, three different position
evaluation functions are used
to determine the move chosen
at the root for search scores of
equal value. One for the
opening, another for the
middle and another for the end
game. These positional
evaluation functions use a
combination of centre control

and mobility - the number of
moves available in the given
position.

Play
The SC3 users the common

algebraic form of chess
notation to identify the square
from which the piece moves
and the square to which the
piece moves. Board co-
ordinates are always
referenced with respect to the
human player. That is, square
A1 is always the square closest
to and to the left of the human
player regardless of which
colour they are playing.

A B C D E F G H

8
7
6
5
4
3
2
1

When the SC3 is first

powered up the green LED
DRAW/LEVEL (LED 3) will
be on and the 1 LED (LED 5)
will be flashing. This is the
prompt for you to enter the
level at which you would

prefer the computer to play.
Pressing SHIFT (SW 1) will
cause the 2 LED (LED 6) to
flash, indicating level 2.
Continuing to press Shift will
cause the next corresponding
LED to flash until the 1 LED
again will be flashing. After
deciding on the level you wish
to play, press the OK (SW 3)
button. The LED indicating
which level you have chosen
will stop flashing but remain
alight while the
FROM/WHITE LED (LED 1)
will start flashing. This is the
prompt for you to indicate

Top Layer Artwork

4

Single Chip Chess Computer

which colour pieces you wish
to play. Pressing the SHIFT
button at this point will cause
the TO/BLACK LED (LED 2)
to flash, indicating that you
wish to play the black pieces.
Pressing SHIFT again will
cause the FROM/WHITE LED
to flash again and so on.
Having decided which colour
you would like to play, press
OK.

If you have decided to play
the white pieces you can enter
your first move now. The A
LED (LED 13) will be
flashing and the 1 and
FROM/WHITE LED’s will be
lit. To enter, for example, E2
to E4, press the SHIFT button
until the E LED is flashing
then press NEXT and the E
LED will remain lit while the
1 LED will start to flash. Press
the SHIFT button until the 4
LED is flashing. You have
now entered the from part of
the move.

To enter the to part of the
move, E4, press the NEXT

button again, and the
TO/BLACK LED will light,
and then follow the above
procedure. If you make a
mistake use the SHIFT and
NEXT buttons to correct it.
When you are satisfied that
you have correctly entered
your move, press OK. If you
have not entered a legal chess
move the FROM/WHITE and
1 LED’s will light and the A

LED will be flashing,

indicating that the move just
entered is not legal and so you
must enter a legal move.

If you have entered a legal
move the computer will now
calculate its move. During this
time the MATE LED will blink
once ever 2 seconds to indicate
that a move is being
calculated. When the computer
has finished calculating its
move the from part of the

move is displayed on the A-H
and 1-8 LED’s and the
FROM/WHITE will be lit.
Press the NEXT button to
display the to part of the move
and the TO/BLACK LED will
light. Pressing NEXT will
alternate between displaying
the from and to parts of the
move. Make the move on the
chess board and then press
OK. You are now prompted to

enter your next move as

before. In general, an LED
flashing indicates the group of
LED’s to which the SHIFT
button can effect.

Bottom Layer Artwork

If you chose to play the
black pieces the computer will
be playing white and therefore
will calculate and display its
move first as described above.

The computer may enter its
low power mode while you are
determining your next move.
If this happens all LED’s will
be switched off but the state of
the game is intact. To resume
where you left off press the
OK button and this will wake
up the computer.

If the last move you entered
is a winning move (the
computer is in check mate)
then the MATE LED will light.
If the last move calculated by
the computer is a winning
move (you are in check mate)
then the move will be
displayed as usual and the
MATE LED will light as well.
If at any point during the game
there are no legal moves but
neither king is in check, then
this is a draw and the DRAW
LED will light. Again,
pressing OK will begin a new
game.

Top Overlay

5

Single Chip Chess Computer

Construction
It’s important to remember

that the first component to be
mounted on the top side of the
board must be the 68HC705. I
found it easier to solder the
surface mount components on
the bottom of the board first:
C1-C2, R1-R5 and the diode,
remembering to observe the
correct orientation of the
diode. Use a fine tipped
soldering iron with a tip size
no greater than one millimetre.
Do not attempt any soldering
with a larger tip as solder
bridges will be inevitable.

Bottom Overlay

Now the 68HC705 should
be mounted on the top side of
the board. Because of the ‘J’
shape of the leads it may be
easiest to pre tin all the pads
then place the 68HC705 on the
board, observing correct
orientation, and while holding
firmly, reheat the solder so that

it flows onto the pins but I
have not

Having soldered all the
surface mount components,

breath a sigh of relief and do a
close inspection to ensure that
there are no solder bridges.
Next, since the crystal is
mounted flat on the top side of
the board, bend the leads at 90
degrees to its body and then
bend them again at 90 degrees
and cut so that there is enough
length to be soldered. Ensure
that the top of the crystal is
clean and pre tin it with a
small amount of solder. When
mounting the crystal, solder
the top of it to the board so as
to ensure mechanical stability.

The LED’s can be mounted
next, ensuring correct
orientation. Push them all the
way down so that they are
flush with the surface of the
PCB. It is possible that the
edges of some of the LED’s
may need to be filed down a
little to ensure correct
alignment.

Next mount the three push
button switches so that the
tops are level with the tops of
the LED’s. Some of the pins
may be difficult to reach with
the soldering iron from the
top, assuming the pins do not
go all the way through, but it
is possible to reach them from
underneath. That is, with the
soldering iron between the top
of the PCB and the bottom of
the switch. Check everything
again for solder bridges or
misplaced components. If
everything looks OK the
batteries can be connected. It’s
a good idea to place a small

piece of sticky tape over the
pad closest to the large battery
pad negative To make
handling the batteries a little
easier, it is a good idea to put
some sticky tape around the
edge so that they are
functionally a single 6V
battery. A bracket can be
formed from a paper clip or
reasonably stiff wire and the
batteries bolted to the bottom
of the board with the battery
negative making contact with
the board and the positive
making connection with the
bracket. If all is well LED 5
(the 1 LED) should be flashing
and LED 3 (DRAW/LEVEL)
should be lit. If not disconnect
the battery and check
everything again.

PARTS LIST
Resistors
All SMT:
R1-3 10k
R4 1M
R5-8 220Ω

Capacitors
All SMT:
C1,2 100n
C3,4 22p

Semiconductors
U1 MC68HC705C8FN,
preprogrammed with SC3
D1 BAS16 SMT diode
LED1-4 3mm green LED
LED5-20 3mm red LED

Miscellaneous
PC board, coded SC3V12;
three pushbutton switches; two
4mm nuts and bolts; one
4.1943MHz crystal; fine
tipped soldering iron; fine
gauge solder; two 3 volt
batteries; match box

Check that all the push
buttons are functioning
correctly and that the
appropriate LED’s light up. At
this point pressing the SHIFT
button SW1 should light LED
6 and so on until LED 5 is
again flashing. Press the OK
button SW3 and green LED 1
(FROM/WHITE) should be lit.

If you are going to mount
the SC3 in a matchbox,
photocopy the page with the
front panel layout, cut it out
and stick it to one side of the
match box. Next, drill holes
for the LED’s and cover the
whole box with a piece of
clear contact for protection.

Since there is not enough
RAM to record all the moves
of the game being played, and

6

Single Chip Chess Computer

because there is no way to take
back a move once it has been
entered, it is a good idea to
record who was playing white,
the level chosen for the game
and each move as it is made,
on a piece of paper. If you find

yourself playing a crucial
game and a mistake is made,
you can always start again
entering the exact same moves
as before up to the point where
the game was aborted.

Congratulations, set up a
chess board, and good luck!

References
How to Beat Your Chess

Computer, Raymond Keene
and David Levy, Batsford Ltd.

Notes:
1. The holes for the LED’s on the prototype PCB should be slightly enlarged to better accommodate

the LED’s lead size.
2. The spacing of the holes for the pushbuttons is a little too wide and should be narrowed.
3. The hole closest to the battery negative terminal associated with SW3 could be replaced with a

surface mount pad to eliminate the possibility of a short circuit with the battery.

7

