THE PROFESSION

The Usefuiness
~ Oof Hindsight

Neville Holmes, University of Tasmania

ecently, reading an excellent

article on system engineering

(Diane M. Strong and Olga

Volkoff, “A Roadmap for

Enterprise System Implemen-
tation,” Computer, June 2004, pp. 22-
29) gave me an intense feeling of déja
vu. Perhaps these feelings were so
strong because they took me back to
the early 1960s, when I first worked
for IBM Australia.

Times were quite different then than
today, but early commercial data pro-
cessing problems were much like those
facing today’s enterprise systems, to go
by Strong and Volkoff’s observations.
Two particular points they make relate
to perhaps the most important system
engineering issues of all, and both
relate to the development of a large
corporate project.

USER ISSUES

At one time, a well-known interna-
tional car manufacturer located its
Australian data processing operations
and much of its manufacturing on the
outskirts of a large provincial city in
the state of Victoria. The manufac-
turer’s previous operations had been
based entirely on punched cards, with
their computation programmed by
plugboard for a machine with a pecu-
liar magnetic-drum main store. The
data on the drum was actually stored
on a single wire that had three close-
packed windings for each data track,
with the wire screwed to the drum at
each end. When the wire broke, as it
occasionally did, an impressive mess

Computer

0101

Egommooomlol
6191010

e

N1 I'\f\f\f\'l lam Wath ot}

resulted. Seating the replacement wire
correctly took a long time.

Implementation

A new supplier replaced this system
with an IBM 1401. This transistorized
machine, surprisingly, didn’t have any
plugged panels at all. With this amaz-
ing new technology, so different from
the prior art, a new role came into
being. In the plugged-panel era, pro-
gramming had been the responsibility
of the more experienced operators, but
the new transistorized machines
required specialist programmers.

Further, the new equipment was
expensive, which the customer planned
to justify by implementing new systems
for all sections of the company. Yet
where were these programmers to
come from? Such talent was scarce at
the time, particularly in Australia, so
the customer’s management people
decided to advertise internationally and
offer big salaries. This dismayed both
me and my salesman partner on the
project. Going by similar attempts
made by other companies and apply-
ing a modicum of common sense, we
felt confident this approach would not
only be far too protracted, but would

very likely fail in the long run.

A better approach, we felt, would be
to recruit team members from within
various parts of the company and
teach them how to program. That way,
the essential internal company knowl-
edge would be there from the begin-
ning, and we felt—and later proved—
that in a week we could teach enough
about programming to the recruits to
get the project off to a good and speedy
start. Luckily, we persuaded manage-
ment to adopt our recommendation.

History shows that user
and data issues remain
core development
concerns.

We knew that the key to this
approach, the Programming Aptitude
Test, could be used to get recruits who
would quickly learn to program, pro-
vided the company accepted only those
who scored well. So the personnel
department undertook a company-
wide testing of workers with a mini-
mum of five years’ experience in the
firm. Academic qualifications were rare
and not considered relevant. We put
together a team that represented all sig-
nificant parts of the company, includ-
ing the warehouses, assembly line,
foundry, and the chap from personnel
who ran most of the aptitude testing.

The project proved very successful,
although many team members left for
jobs elsewhere when their acquired
experience gave them the confidence to
venture into the rapidly growing data
processing industry.

Implications
At this time, the unfortunate split
between system analysts and program-
mers had yet to take place, so the team
both designed their programs and
coded and debugged them. The team
succeeded not because they were good
Continued on page 118



The Profession
Continued from page 120

programmers, but because they excelled
at system analysis and design. Usually,
the people working on a program knew
the users and their context, what was
needed, and what would be useful. If
they didn’t have this information, they
knew who to go to for the best answers.
In Strong and Volkoff’s words, “the
best and most experienced users from
the business units ... will make an ideal
team.”

This approach has some further
implications for the computing pro-
fession as a whole. Anyone with the
aptitude for it can program success-
fully and with relatively little training,
as long as the coding system is simple.

The contrast seems to be that old-
style programmers designed the system
to best suit the user, while enterprise-
system programmers require the user
to fit the system. As Strong and Volkoff
observe, “Consequently, some users
must not only learn a new system but
must take on additional, sometimes
unfamiliar, tasks and responsibilities.”

Consider how different the software
process would be if developers designed
the system to be completely adaptable
by the user. In the 1960s and 1970s,
mainframe computers shipped with a
great variety of features and parame-
ters, and manufacturers tailored their
operating systems with macrodefini-
tions that let a data processing depart-
ment build its operating system not only
to fit the computer but also to suit its
users. Are enterprise systems all that dif-
ferent? Who are they designed to suit?

DATA ISSUES

Another international company,
famed for its tracked vehicles, went
into data processing with an IBM 1440.
Because this represented a significant
investment for the company, the gen-
eral manager took a strong interest in
the project and had the vendor install
the computer in an open area next to
his office. He liked to see the expensive
machine at work when he came in from
his car park in the morning.

The data processing people wrote a
special program that read and punched

Computer

empty cards, moved the seek arms on
the disk drives, and printed noisily
without moving the paper. They also
scheduled an operator to come in early
and start it running when no other
work was ready.

Implementation

The company wasn’t particularly big
at that time, so it justified the computer
purchase by implementing many small
applications for different areas of the
company. That the company had two
of the relatively new 1311 disk drives—
the first such relatively inexpensive drive
with removable disk packs—made this
strategy feasible.

The two most important
parts of a computing
system are the users and
their data, in that order.

The programmers bent their backs
to the work and quickly and success-
fully implemented a variety of pro-
grams for a variety of users. Then a
problem arose. With many data files
sharing a disk pack, it became feasible,
and certainly desirable, to share data
between departments. The program-
mers attempted this, but had great
trouble putting code together and,
when they got a program going, gener-
ated results that sometimes went
strangely wrong.

After much panic and bewilderment,
the cause eventually became obvious.
The data that one department kept
often proved incompatible with data
kept by another. Sometimes the data
had different names, formats, or units,
and so on.

When management realized this, the
data processing department reluctantly
stopped developing new programs and
turned their programmers to docu-
menting the different data the com-
pany used in its manual systems as well
as its already automated systems.

As this work proceeded and conflicts
were removed, the programmers built

an authoritive data dictionary that
gave different data standard names for
both programming and everyday use,
definitions, machine and display for-
mats, constraints, and explanations. In
the final stages of this effort, the pro-
grammers revised programs already
written and converted data already
stored on disk.

Overall, this effort revealed a com-
pany culture that inhibited standard-
ization: At the time, people across the
company showed reluctance to waste
their time explaining obvious things to
upstart technicians. They also balked
at making trivial and aggravating
changes to unimportant details of their
work.

However, after a while, it dawned on
many of these scoffers that this data dic-
tionary could be useful to them. By then,
it was as much used by people outside
the data processing department as by the
programmers. Certainly, it became plain
that the dictionary not only made fur-
ther application development feasible,
but also sped up the process.

Implications

The two most important parts of a
computing system are the users and
their data, in that order. Although the
users’ needs must be met, their most
important need is that the system pro-
duce, without qualification, trustwor-
thy data.

The actual logic in the programs and
the arithmetic in the computer can give
rise to errors, but thorough checking
during development will rectify them.
In batch programs, common practice
took measures—a hash total in the
case of nonnumeric data—of all data
just after it was read in and just before
it was written out, so that users could
compare the totals at the end.

Programmers must, however, make
sure the data is trustworthy in the first
place. Frequent failures of this kind led
to the old acronym, GIGO—garbage
in, garbage out. As Strong and Volkoff
note, ... data cleansing is one of the
most critical technical issues for suc-
cessful implementation.”



This issue has two aspects: stan-
dardizing the data usage, as in the sec-
ond of my two anecdotes, and
blocking invalid data on its way in to
programs. Good management can
greatly lessen invalid data generation,
but many human errors can be made
while getting data into the computer.

In batch programming, common
practice demanded that operators
check the daylights out of all incoming
data, and often supplemented this
activity with independent file-checking
programs. I remember reading in an old
issue of Datamation that the US Air
Force’s data processing people spent 80
percent of their coding effort and space
on input data checking—and consid-
ered the effort well worthwhile.

advice in Strong and Volkoff’s
article caused me to think of the

T he excellent project management

two examples I’ve shared. However,
their description of enterprise systems,
and the separation their complexity
brings between the technical people
and the end users, reminded me of the
strengthening of data processing
departments in the 1970s and the rift
between the typical data processing
department and its users.

Data processing departments often
seemed to exert a kind of arrogant
tyranny, running their systems on their
own terms. The introduction of Wang
minicomputers as word processors in
the late 1970s started breaking down
this imbalance, a process carried further
when business PCs became popular.

Hindsight suggests that this cycle
might soon repeat itself. What will cut
the enterprise systems people down to
size now? Personal database machines
with hardware to ensure integrity,
authority, and sharing? Could these

machines enable a hierarchy of entities
down to the individual, which would
let users look after their own data but
use a network to get a coherent view
of what they need from other entities?
Maybe.

Obviously, more hindsight by com-
puter professionals and their educators
could greatly lessen the extent of the
problems that Strong and Volkoff so
clearly document.

Neville Holmes is an honorary research
associate at the University of Tasma-
nia’s School of Computing. Contact
him at neville.holmes@utas.edu.au.
Details of citations in this essay and
links to further material are at www.
comp.utas.edu.aufusers/nholmes/prfsn.

Together
with the IEEE

Computer Society,

you do.

Join a standards working group at

www.computer.org/standards/

November 2004




