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ABSTRACT The robustness and power of four commonly used MANOV A statistics
(the Pillai-Bartlett trace (V), Wilks’ Lambda (W), Hotelling’s trace (7), Roy’s greatest
root (R)) are reviewed and their behaviours demonstrated by Monte Carlo simulations
using a one-way fixed effects design in which assumptions of the model are violated
in a systematic way under different conditions of sample size (#), number of depen-
dent variables (p), number of groups (k), and balance in the data. The behaviour of
Box’s M statistic, which tests for covariance heterogeneity, is also examined. The
behaviours suggest several recommendations for multivariate design and for application
of MANOVA in marine biology and ecology, viz. (1) Sample sizes should be equal.
(2) p, and to a lesser extent &, should be kept to a minimum insofar as the hypothesis
permits. (3) Box’s M statistic is rejected as a test of homogeneity of covariance matrices.
A suitable alternative is Hawkins’ (1981) statistic that tests for heteroscedasticity and
non-normality simultaneously. (4) To improve agreement with assumptions, and thus
reliability of tests, reduction of p (e.g. by PCA or MDS methods) and/or transforming
data to stabilise variances should be attempted. (5) The V statistic is recommended for
general use but the others are more appropriate in particular circumstances. For Type I
errors, the violation of the assumption of homoscedasticity is more serious than is non-
normality and the V statistic is clearly the most robust to variance heterogeneity in
terms of controlling level. Kurtosis reduces the power of all statistics considerably.
Loss of power is dramatic if assumptions of normality and homoscedasticity are violated
simultaneously. (6) The preferred approach to multiple comparison procedures after
MANOVA is to use Bonferroni-type methods in which the total number of comparisons
is limited to the fewest possible. If all possible comparisons are required an alternative
is to use the V statistic in the overall test and the R statistic in a follow-up simultaneous
test procedure. We recommend following a significant MANOVA result with a canonical
discriminant analysis. (7) Classical parametric MANOV A should not be used with data
in which high levels of variance heterogeneity cannot be rectified or in which sample
sizes are unequal and assumptions are not satisfied. We discuss briefly alternatives to
parametric MANOVA.
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INTRODUCTION

GENERAL

Marine biologists and ecologists frequently need to compare among groups
in which there are several response variables. Examples could range from
examining the response of a multispecies community to particular treatments,
which includes examining multispecies responses to environmental impacts by
testing for a significant interaction effect in a Before-After/Control-Impact
(BACI) design (see Stewart-Oaten et al., 1986); to investigating multiple
physiological responses to treatments; to comparing several physical parameters
of vocalisation among designated behaviour contexts; to analysing univariate
repeated-measures data in which the repeated measures (or successive differ-
ences between them) are treated as separate response variables (see Barker &
Barker, 1984). Inferential statistics are now fundamental to ecological method-
ology and the analysis of variance (ANOVA) is arguably the most widely
applied parametric technique. When hypotheses focus on multivariate responses
the appropriate parametric test is often the multivariate analysis of variance
(MANOVA). Independent univariate ANOVAs could be conducted on each of
p response variables after adjusting the nominated significance level (a) to
control for compounding of Type I error (p independent univariate ANOVAs
will inflate o to oy, Where oy, = 1-(1-a)?). However, although « can be
controlled by applying the Bonferroni adjustment (a,g; = o/p; see Harris,
19835), this reduces power considerably when p is large. Further problems
associated with conducting several independent ANOVAs are that information
is lost if there are interactions among variates, which is usually the case in
ecology, and that groups which separate clearly in multidimensional space may
overlap and not be distinct when single dimensions are considered in isolation.

This paper is intended as a practical guide to using fixed effects model (Model
I) MANOVA. For those without a statistical background, a glossary is given in
Appendix 1. Our recommendations are based on the robustness and power of
the commonly used MANOVA statistics. This approach reflects the viewpoint
that although it is inappropriate to ignore assumptions about the distributions
of statistics, since many test statistics are robust to some violations of their
theoretical requirements, it is equally improper to invariably reject a test as
invalid if its underlying assumptions are not met exactly. Because biological data
rarely conform to the theoretical requirements of the tests used on them, it
becomes essential to know whether tests are robust, and how to describe raw
data to make them suitable to use in statistical tests.

In contrast to univariate ANOVA, in which the robustness and power of the
F-statistic are well understood (see comprehensive review by Glass ez al., 1972;
also Scheffe, 1959; Srivastava, 1959; Tiku, 1971; Ito, 1980; Underwood,
1981), these properties of the several MANOVA statistics that are multivariate
generalisations of the F-statistic are less well known. Some standard multi-
variate texts do not, or barely, broach the subject at all (e.g. Morrison, 1976;
Srivastava & Carter, 1983; Hair et al., 1987; Krzanowski, 1988), some extra-
polate inductively from the univariate case (e.g. Cooley & Lohnes, 1971; Press,
1972), while others discuss broadly the kinds of violations likely to be most
serious but do not compare the different statistics (Marriot, 1974). More recent
texts (e.g. Green, 1979; Barker & Barker 1984; Harris, 1985; Stevens, 1986;
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Tatsuoka, 1988; Tabachnick & Fidell, 1989) offer recommendations, which
vary in depth and opinion, based on results of studies that have addressed the
question specifically. This is due in part to the paucity and relative recentness
of such studies; the problem has been addressed comprehensively only by Olson
(1974), although there have been limited investigations by Ito & Schull (1964),
Schatzoff (1966), Mardia (1971), Korin (1972), Bird & Hadzi-Pavlovic (1983),
and others. Much of this work was reviewed by Olson (1976) and, in a more
technical account, by Ito (1980), but both focused on the question of appropriate
choice of test statistic and did not attempt to provide overall guidelines for all
steps from initial design through to completed MANOVA, nor did they present
an ecological or biological perspective. Barker & Barker’s (1984) text is broader
in scope (but not biological) and is a useful companion to this article.

THE APPROACH

Here we review the robustness and power of the four most widely used MANOVA
statistics, viz. the Pillai-Bartlett trace (V), Hotelling’s trace (T), Wilks’ Lambda
(W), and Roy’s largest root (R) (see Appendix 2). Because of the technical and
often piecemeal nature of published accounts, we present results of a Monte
Carlo study of a one-way fixed-effects (Model I) multivariate model to demon-
strate the behaviour of the statistics in terms of their power and rates of Type
I error when underlying assumptions are violated in a systematic way under
certain conditions of sample size (n), number of groups (k), number of variables
(p), and balance in the data. We also investigate the behaviour of Box’s M
statistic (Box, 1949; see also Cooley & Lohnes, 1971; Morrison, 1976), which
is designed to test the assumption of homoscedasticity among dispersion
matrices, i.e. M is a multivariate analogue of Bartlett’s test for equality of
variances in the univariate case. Qur own and published results lead us to con-
struct guidelines for applying MANOVA to ecological and biological data in
which we present (1) conclusions about the most reliable test statistics, (2)
recommendations for multivariate experimental design, (3) a statistic that tests
for non-normality and heteroscedasticity simultaneously and which is better
suited to this purpose than is the M statistic, (4) suggestions for reducing
dimensionality and transforming data so that tests may be conducted reliably,
and (5) methods for multiple range tests (comparing among multivariate means)
after MANOVA. Although discussion is focused on the one-way model, most
of our comments and conclusions will hold for multiway problems and for
general regresssion models of which analysis of variance is a special case.

ASSUMPTIONS OF THE MANOVA MODEL

Assuming correct experimental design with replication and independent sampling
(e.g. see Sokal & Rohlf, 1981; Steel & Torrie, 1981; Hurlbert, 1984; Stewart-
Qaten et al., 1986; Underwood, 1990), the critical assumptions of univariate
ANOVA are a normal distribution of the error terms about a mean of zero, and
identical group variances. The corresponding assumptions in the multivariate
case are multinormality of error terms and homogeneity among group co-
variance (or dispersion) matrices (if there are p variates then the dispersion
matrix is a symmetrical p X p matrix in which the variances are the diagonal
elements, and the covariances the off-diagonal elements). To state this more
formally, consider a one-way fixed effects model in which there are k groups
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with n; observations on the i group. The j™ observation in group i, y;;, is a
vector of length p, where p is the number of response variates. The model can
be written as:

Yij = B+ a; + ¢

wherei =1, ...kand j =1, ...n;, p is the grand mean vector which defines the
centroid, «; is the group effect vector or fixed deviation of group i from
the grand mean, and e; is the vector of error terms or random deviations
from the expected value of p + a;.

In the fixed effects model the test is H,: @; = @y = ... = @ versus H;:a;s
not all equal. In carrying out the test the assumption is made that the €;$s are
independent and identically distributed and have a multivariate normal distri-
bution with mean 0 and covariance I (note that there is no requirement that the
p variates of any single multivariate observation yj; are independent). In a more
general design the assumption on the errors remains the same, but o; will be
replaced by a more complicated form. For example, in a two-way model with
interaction we have: ’

Yim=#ta;+ By + (@B)iy + €ijim

where the e, s satisfy the above assumption. Note that normality is required
for the distribution of the test statistic, but it is not needed to justify the use of
least squares fitting. In contrast, homogeneity of variances is required for the
justification of least squares which is based on equal precision of observations.

SIMULATION METHODS

GENERAL

For the simulations, random data were drawn from N (0, 1) populations (i.e.
normal about a mean of zero and with unit variance) generated using the IMSL
package (routine GGNSM; start seed set by function of the computer clock), and
the test statistics were calculated using the SPSS 9 software package. Each
simulation consisted of 200 runs which provided sufficient resolution to give
unambiguous results (see Appendix 3). In all cases the testing was carried out
with a nominal level (probability of Type 1 error) of o = 0.10.

Since the MANOVA test statistics are affine-invariant, i.e. they behave iden-
tically whether covariance matrices are expressed in raw or canonical form
(proof in Appendix 4), group covariance structure was set in canonical form.
Thus, the covariance matrix of any group with p variables was set initially as
the p X p identity matrix, I, where

100 ..0
010 ..0
I= 001 . .0
000 . .1
000 )
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HETEROSCEDASTICITY

Variance heterogeneity (z) was introduced into only one of the &£ groups in any
one design, and into all p variables of that group, so that the covariance structure
of the ‘contaminated’ group was given by zI, where z is a scalar =1. The
consequences of heteroscedasticity of this pattern (i.e. concentrated with respect
to group, but diffuse with respect to dimension) are worse than when hetero-
geneity is concentrated in less than p dimensions, but less than when heterogeneity
occurs in a greater number of groups (Korin, 1972; Olson, 1974). The magni-
tude of heterogeneity was set sequentially at z = 1 (i.e. data homoscedastic), and
then 5, 10, 15, 20, 30, 40, and 50. In examining power, only homoscedastic
(z = 1) and mildly heteroscedastic data (z = 20) were used.

NORMALITY

Since the marginal densities are normal and the covariance matrix is the identity,
the joint density is multivariate normal (Anderson, 1984). Non-normality was
generated using a normal mixture of N(0,1) probability = 0.8 and N(0,9)
probability = 0.2, and therefore our consideration of non-normality included the
component of kurtosis, but not skewness. When examining the effect of non-
normality all variables in all groups were generated from this normal mixture.

It is noted that our simulations of non-normality may be conservative in that
effects of skewness may be worse than those of kurtosis. However, since
skewness usually manifests as strong heterogeneity and effects of heterogeneity
are much stronger than those of non-normality, the hiatus in not considering
skewness is unlikely to affect conclusions.

NON-CENTRALITY

Except in producing the power curves, the population means of all p variables
in all £ groups were zero (since data were from N(0, 1) or N(0,9) populations).
In generating the power curves, non-centrality was introduced by increasing
the population means of all variables in only one of the k£ groups by incre-
ments of 0.2 to a maximum of 2.0, i.e. the distribution of non-centrality was
concentrated in one group but affected all dimensions (since the centroids, or
multivariate means, of the groups would align along a single dimension in
multivariate space, this is a type of concentrated non-centrality). This procedure
is simpler than the usual way of determining power functions in which a stan-
dardised measure of the distance between group means is described by a
non-centrality parameter (e.g. see Schatzoff, 1966; Lee, 1971; Olson, 1974;
Morrison, 1976). We include the results on power from these studies in our
discussion of the effect of violation of assumptions. Unless stated otherwise,
variance heterogeneity (when present) and non-centrality were coincident in the
same group.

SAMPLE SIZE

Sample size was usually n = 10 observations per variable unless specified
differently. In unbalanced designs, the sample size of one group was half
that of the other k-1 groups which were equal, e.g. 5, 10, 10, 10,... or 10, 20,
20,...
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A NOTE ON SIMULATION STRUCTURE

There are two principal reasons why multivariate simulations are not straight-
forward. First, many of the parameters (e.g. variance heterogeneity and non-
centrality) can be defined in different ways and their definition depends on
subjective judgements by the experimenter. Second, in systematically varying
a particular parameter it is extremely difficult to avoid confounding the effects
of the parameter of interest with other factors, e.g. changing the number of
groups, or number of variables, or number of replicates, also changes the error
degrees of freedom (df..,,,) which will in itself affect the power of a test. Thus,
if the number of groups is changed, to keep df, ., constant some other parameter
must be changed to counter the effect of changing the number of groups, so
the problem of confounding is not avoided. Clearly, the experimenter must make
important decisions about how to structure simulations, and results need to be
interpreted cautiously.

We used the ratio of maximum variance to minimum variance as a measure
of heteroscedasticity. This quantity is computed easily and is more intuitive than
alternatives based on the sum of eigenvalues of covariance matrices. Thus, for
a particular amount of heterogeneity the amount of variance contamination in the
contaminated group was fixed regardless of the number of dimensions or groups,
e.g. we consider that the amount of heterogeneity in (I,I,10I) and in
(LLLLLLLLI,10I) to be equivalent. While it may be argued that in this
example the amount of heterogeneity is different, it was our judgement that the
experimenter most often considers the ratio of maximum to minimum variance
as a ‘natural’ measure, and hence our graphs use this ratio on the x-axis.

Our simulations with respect to power were not intended to be exhaustive but
were kept simple deliberately to give a comparison of the four statistics under
simple deviations from the null hypothesis. The primary concern was to find a
procedure which gave the most robust behaviour under deviations from the
model and then to undertake some calculations on power to cover common cases
to ensure that power is not compromised badly. It is clear that power is affected
by distances between centroids, degrees of freedom, and the relative magnitude
of the error variation. In our simulations these effects are confounded in that we
have not kept df..,, constant, but we emphasise that an ecologist would not
strive for constant df,. For example, having selected p appropriate response
variables and (usually) the maximum number of replicates () that is practicable,
if an experimenter was to change the number of treatment groups, it is unlikely
that p or n would be changed simply to achieve constant df,,,.. However, there
is a need to undertake a more exhaustive study of power with the most important
factors controlled in an orthogonal design.

ROBUSTNESS OF MANOVA STATISTICS

The effects of violations of the assumptions of covariance homogeneity and
multinormality on the rates of Type I error and power of the four MANOVA
statistics are summarised in Table I. Overall, heterogeneous covariance struc-
ture is the most serious violation. Moderate levels of heterogeneity reduces
significantly the power of all four statistics, and inflates dangerously the rates
of Type I error of Roy’s R, Wilk’s W, and Hotelling’s T statistics. The deleterious
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effect on Type I error rates of R, W and T is made much worse by unequal
sample sizes and increasing numbers of dependent (= response) variables. In
contrast, Pillai’s V statistic is much more robust to heterogeneity, and Type I
error rates increase only slightly (but consistently) with dimensionality only
when (approximately) p > k for equal sample sizes. However, in line with the
others, the V statistic also performs badly with respect to Type I error rates if
covariance matrices are heteroscedastic and sample sizes are unequal. In un-
balanced designs, if heterogeneity occurs in the group with smallest », then level
becomes excessively liberal, but if heterogeneity occurs in the largest group,
rates of Type 1 error are made conservative. Non-normality (kurtosis) has a
much less serious impact on rates of Type I error, which are made more con-
servative. However, kurtosis reduces severely the power of all statistics, and if
the assumptions of multinormality and homogeneous covariance matrices are
both violated, power is reduced to negligible levels. A detailed account and
illustration of the behaviours of the statistics follows.

TYPE I ERROR

Summary

For most of the statistics, with the exception of Pillai’s V, rates of Type I error
increase to undesirable levels when data are heteroscedastic and the number of
dependent variables is large. The harmful effect of variance heterogeneity is
made worse if sample size is small and especially if sample sizes are unequal.

Effect of heteroscedasticity

Exceedance rates of the 7, W and R statistics are affected adversely by variance
heterogeneity unless the following conditions are met: (i) if sample size is small,
the number of groups (k) and variables (p) must be small, and the data balanced
(cf. bottom left graphs in Figs 1, 2 and 3), or (ii) if p and & are large, the data
must be balanced, and sample size large (n = 50 in Fig 4). For these statistics,
as dimensionality (p) increases, rates of Type I error rise rapidly with increasing
heteroscedasticity, even with balanced data (Figs 1 and 2). Roy’s greatest root
(R) is the least robust.

The undesirable effects of heteroscedasticity are countered in part by increas-
ing (but maintaining equal) sample sizes (Fig 4). The effect of increasing » in
reducing the likelihood of producing too many significant results is greatest for
T and W, and for n = 50 their exceedance rates are almost identical to those
of the more robust V statistic. This is because V, W and T are asymptotically
equivalent for very large samples (Schatzoff, 1966; Olson, 1974). From his
simulations, Olson (1976) suggested that the three may be considered equivalent
for n sufficiently large that (dfyo,/10p) 2 dfyypothesiss Where df = degrees of
freedom.

For T, W and R, increasing the numbers of groups is much less serious than
increasing p, but when dimensionality is low (p = 2), increases in k result in
unacceptably high rates of Type I error at moderate to high levels of variance
heterogeneity (approximately z = 20; Figs 1 and 2). Increasing the number of
groups when p = 5 has virtually no effect on the rates of Type I error of the W
and 7 statistics, but at this level of p exceedance rates are much greater than the
nominated significance level anyway. Exceedance rates for Roy’s R statistic
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Fig 1.—Effect of heteroscedasticity on rates of Type I error in MANOVA
statistics under conditions of different numbers of groups (grp) and variables
within groups (var), when data are balanced and normal. In all cases n = 10.
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Fig 2.—Effect of heteroscedasticity on rates of Type I error in MANOVA
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increase with numbers of groups regardless of dimensionality. Note that in our
demonstration of the effect of heteroscedasticity, we have presented a ‘moderate
case’ scenario in which scale variability occurs in all dimensions of only one
group. The magnitude of the deleterious effects is less when heterogeneity
occurs in fewer than the total of p dimensions in a single group, and greater if
it occurs in all p dimensions in more than one group (Korin, 1972; Olson, 1974).

The exception to this general pattern is Pillai’s criterion (V) which is the most
robust to departures from covariance homogeneity, providing that sample sizes
are equal. When the number of groups is small (k = 3), this statistic behaves



190 CRAIG R. JOHNSON AND CHRISTOPHER A. FIELD

similarly to the others in that increasing dimensionality increases the likelihood
of Type I error, although at a much lower rate. In contrast, when the number
of groups is large (k = 10), adding more variables reduces Type I error rates
(Figs 1 and 2). Olson (1974) examined the effect of p and k in detail and found
that exceedance rates for Pillai’s V increase with k when k& > p, but decrease
with increasing k for values of k < p.

Note that in focusing on the number of groups (k), number of dimensions (p)
and sample size (n) as the parameters likely to be most useful to practitioners,
df...or has not been kept constant. However, given the dramatic effects on Type
I error, it is unlikely that results of simulations in which dfe,, Were kept
constant would differ qualitatively from those presented here.

Effect of non-normality

Non-normality (kurtosis) on its own has relatively little effect on Type I error
rates. For balanced non-normal data with homogeneous covariance structure,
rates of Type 1 error of all statistics are more conservative than the nominated
significance level (cf. Figs 1 and 2 at z = 1). However, any effect of kurtosis
in compensating for heterogeneity is of small importance because the tendency
of kurtosis to yield too few significant results is overshadowed greatly by the
large exceedance rates caused by variance heterogeneity.

Introducing heteroscedasticity into non-normal data with balanced sample
sizes produces behaviour similar to that for heteroscedasticity in normal data.
For all statistics except Pillai’s V, which is little affected, Type I error rates with
heteroscedastic data are slightly greater for non-normal than for multinormal
data, but only when dimensionality is large (p = 10; cf. Figs 1 and 2).

Effect of unbalanced data

If data are multinormal and homoscedastic, unequality in sample size on its own
does not affect the nominal significance level. However, if data are both un-
balanced and heteroscedastic, rates of Type I error are affected severely and may
be excessively liberal or conservative depending on whether the divergent
variance structure occurs in the group with the smallest or largest sample size
(Ito & Schull, 1964).

When sample sizes are unequal (but multinormality satisfied) and variance
heterogeneity occurs in the group with smallest n, as in our simulations, the
Type 1 error rates of all statistics increases significantly for all levels of
heteroscedasticity (z > 1), dimensionality and number of groups. Even when
the departure from covariance homogeneity is minimal, and sample sizes are
large, and there are few groups (k =3) and variables (p = 2), the rate of
Type I error of all the statistics exceeds the nominal level by an unacceptable
amount (Figs 3 and 4). This dramatic and undesirable effect is exacerbated
by increasing the number of variables, and to a lesser extent by adding more
groups (Fig 3). Conversely, if heteroscedasticity occurs in the group with the
largest sample size, rates of Type I error are also affected adversely, but in
this situation are overly conservative (Ito & Schull, 1964).
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Summary

The ability of all statistics to detect real differences among multivariate group
means is influenced dramatically by both variance heterogeneity and non-
normality. Perturbation of power curves is extreme if both assumptions are
violated (Fig 5). The effects of variance heterogeneity on power are slightly
more harmful when the divergent variance structure and non-centrality are
coincident in the same group.

Violations usually cause serious loss of power at moderate to high levels of
non-centrality. However, exceedance rates are excessive at the lower end of
power curves for statistics whose rates of Type I error are elevated by violations
and for this reason it is important to interpret power curves cautiously. If the
power curve shows an elevated value at the null hypothesis, then the fact that
power is high for non-null values is of little comfort. It is our view that the
experimenter must first ensure that the level of the test is appropriate before
undertaking power comparisons. In Figs 5—7 it is important to realise that if a
procedure has a higher power for some level of non-centrality, this is only useful
when the test has the appropriate level of Type I error. The rate of Type I error
is given by the value of the power curve when non-centrality is 0, i.e. at the left
hand end of the curves in Figs 5—7.

When data satisfy the requirements of multinormality and equal covariance
structure, all test statistics demonstrate similar but not identical power (Figs 5
and 6). The small differences in power are sufficiently consistent to rank
the statistics V= W = T = R for small n when non-centrality is diffuse, i.e.
when group centroids are spread in all dimensions (Schatzoff, 1966; Pillai &
Jayachandran, 1967; Lee, 1971; Olson, 1974). For concentrated non-centrality
(i.e. when group centroids largely align along a single axis, as in our simula-
tions) the order is reversed, and also the power of all statistics is slightly greater.
However, when assumptions are met, for most practical purposes differences
in power are small.

Effect of heteroscedasticity

Moderate levels of variance heterogeneity (z = 20) affects significantly and
adversely the power of all statistics irrespective of normality and balance, although
Pillai’s criterion is least affected (Fig 5, right hand side). The deleterious effects
on power worsen with increasing heteroscedasticity (Olson, 1974). When data
are balanced and multinormal, larger sample sizes ostensibly compensate for the
serious loss of power with heteroscedasticity, €.g. power is similar for n =5
with homoscedastic data, and for n = 50 with heteroscedastic data (Fig 6A).
However, the increase in power with group size may not be solely an effect of
sample size, since in our simulations the ‘amount’ of non-centrality is also
influenced by sample size.

When there are no differences among multivariate group means (Fig 5 when
the mean of Group 1 variables = 0), exceedance rates are set by the rate of
Type I error. Thus, variance heterogeneity affects greatly the lower (i.e. left
hand) end of the power curves for Hotelling’s (7), Wilks’ (W) and Roy’s (R)
statistics (Fig 5A, right hand side) because their rates of Type I error increase
rapidly with heteroscedasticity (Figs 1--3). In contrast, because Pillai’s criterion
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(V) is more robust (Figs 1—3), the lower end of the power curve for V is less
affected and the reduction in power is most apparent at the top end of the curve
(Fig S5A).

Effect of non-normality

The same qualitative pattern holds for non-normal as for heteroscedastic data but
the harmful effects on power are less severe. Whereas non-normality has
minimal effect on rates of Type I error (Fig 2), it reduces dramatically the power
of all statistics (cf. left hand side of Figs SA and 5B). Poor ability to discern
differences among group means in non-normal (but homoscedastic) data might
be ameliorated to some degree by increasing sample size (Fig 6B, but note that
increasing sample size for the same value of group means also increases the
amount of non-centrality). Conservative exceedance rates when there are no
differences among group means (Fig 5B, left hand side) illustrate the effect of
non-normality suppressing Type I error rates when data are homoscedastic (cf.
Figs 1 and 2 at z = 1).

When non-normality and heteroscedasticity are introduced simultaneously,
the effect on power is extreme and the curves are virtually flat (right hand side
of Fig 5B). Moreover, in these circumstances increasing the sample size (and
thus the level of non-centrality) does not improve power (Fig 6B). With hetero-
scedastic non-normal data, exceedance rates of statistics R, T and W increase to
unacceptable levels with increasing dimensionality (p > 2) at very low levels of
non-centrality, reflecting the sensitivity of their Type I error rates to violations
of this kind. Only Pillai’s V tends not to yield too many significant results at low
levels of non-centrality, but at higher levels of non-centrality the power of V is
reduced greatly (Fig SB, right hand side).

Effect of unbalanced data

The most serious effect of unbalance in data is when covariance matrices are
unequal. Because unbalance in data leads to excessive rates of Type I error when
variance structure is heterogeneous (Fig 3), exceedance rates at the lower end
of power curves under these conditions are excessive, and the slope of power
curves for all statistics is slight (Fig 5C, right hand side).

For multinormal homoscedastic data, interpretation of our results is not
straightforward since unbalance in data is confounded with the effect of sample
size, and therefore with the ‘amount’ of non-centrality. For a structure of two
variables in each of three groups, with non-centrality occurring only in the first
group, power at different sample sizes is ranked » = 10,20,20 > n = 10,10,10
>> N=35,10,10 (cf. left hand side of Figs 5A and 5C, and Fig 6C). The

<

Fig 5.—Power curves of MANOVA statistics under certain conditions of co-
variance heterogeneity, normality and balance in the data, numbers of groups
(grp), and numbers of variables within groups (var). Variance heterogeneity,
if present at all, is coincident with non-centrality; z = 1 indicates homoscedastic
covariance structure, z = 20 is moderately heteroscedastic (refer to Figs 1—4).
In balanced designs n» = 10, and in unbalanced designs the sample sizes of
groups 1,2,3,... are n =5,10,10,... respectively. Exceedance rates > 0.10
when data are heteroscedastic but when there are no differences among means
(i.e. mean of Group 1 variables = 0) reflect rates of Type I error.
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Fig 7.—Effect of coincidence, with respect to group, of variance heterogeneity
and non-centrality on power of MANOVA statistics under certain conditions
of normality and balance in the data. In all cases data were moderately hetero-
scedastic (z = 20; refer to Figs 1—4), the number of groups (k) = 3, number
of variables (p) = 5, sample size n = 10 except in unbalanced designs where
n = 5,10,10 for groups 1,2,3, respectively. Variance heterogeneity was always
introduced into Group 1, and therefore was coincident with non-centrality when
the population means of Group 1 were > 0, but was not coincident when the
population means of variables in Group 3 exceeded zero. Note that, if present
at all, heteroscedasticity and non-centrality occurred in all dimensions of
one group (but not necessarily the same group), thus the two were always
coincident with respect to dimension.

essential result is that differences among these curves are relatively small. The
(slightly) greater power of the structure n = 10,20,20 over n = 10,10,10 implies
that the difference is due to different sample sizes, since the ‘amount’ of non-
centrality is less in the first structure than in the latter. Thus, even if loss of
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power can be attributed to unbalance in the data, it is likely that this could be
ameliorated to some extent by increasing sample size. Predictably, our results
suggest that power will be poorest when non-centrality is coincident in the group
with the smallest sample size.

Effect of coincidence of heteroscedasticity and non-centrality

Reduction in power with heteroscedasticity is less pronounced when non-
centrality occurs in a group other than that containing the variance heterogeneity
(Fig 7). However, if data are both non-normal and heterogeneous the small
reprieve for power from non-coincidence with respect to groups is lost and
power curves are equally poor irrespective of coincidence (in our simulations
non-centrality always occurred in all dimensions of one group, and thus was
always coincident with variance heterogeneity with respect to dimension). Olson
(1974) provides a detailed discussion of the effect of coincidence of non-
centrality and heterogeneous variances. He concluded similarly that the effect of
heterogeneity in reducing power is greatest when heterogeneity and non-
centrality are coincident with respect to both group and dimension. Olson’s
results show that the structure used in some of our simulations, in which non-
centrality and heterogeneity occur in all dimensions of the same group, is the
worst case for loss of power.

Effect of number of groups (k) and dimensionality (p)

It is difficult to assess the effect of dimensionality (p) and number of groups (k)
on power from our simulations because changing p or & also changes the amount
of non-centrality (particularly when non-centrality is distributed diffusely among
all dimensions of only one group) and df, . Thus, the slight increase in power
with dimensionality (Fig 5A, left hand side) cannot unequivocally be attributed
to the effect of dimensionality alone. We found power little affected by in-
creasing the total number of groups (Fig 5A, left hand side). Conversely, Lee
(1971) and Olson (1974) found that increases in p or k tended to reduce power
when non-centrality structure and values of their non-centrality parameters were
held constant. The divergence with our simulations does not indicate conflicting
results but reflects a different choice of arbitrary standard. In our study we kept
constant the magnitude of the difference (from zero) of the means of all dimen-
sions of one group, whereas both Lee and Olson maintained a constant value of
a standardised non-centrality measure. The important result of all three studies
is that the effect on power of dimensionality and number of groups when
assumptions are satisfied is small.

ROBUSTNESS OF BOX’S M
Box’s M statistic is extremely sensitive to low levels of heteroscedasticity irres-
pective of the number of groups, dimensionality, normality, or equality of sample
size (Fig 8, see also Hopkins & Clay, 1963; Korin, 1972; Olson, 1974). The test
rejects the requirement of heteroscedasticity at levels of variance heterogeneity
that have no serious effect on the behaviour of some of the MANOVA statistics
it is designed to protect (cf. Fig 8 with Figs 1—4). In this respect it is not a
useful test. Moreover, like its univariate analogue (Bartlett’s test), Box’s M is
highly sensitive to non-normality and cannot, therefore, distinguish between
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non-normality and heteroscedasticity (Fig 8). Other lesser-known tests for
equality of covariance matrices have also proven to be extremely sensitive to
non-normality (Mardia, 1971). These undesirable properties of M are magnified
with increasing sample size. Thus, the test is most useful for indicating when
data are multinormal and homoscedastic.

RECOMMENDATIONS FOR USING MANOVA

It is clear that under certain conditions the power and rates of Type I error of
the MANOVA statistics R, T, W and V are not robust to some violations of the
multivariate general linear model, and that there are considerable differences
among the statistics in their response to violations. These results suggest several
recommendations in designing and analysing multivariate experiments. Speci-
fically, they provide some answers to the questions: (1) is there a ‘most reliable’
MANOVA statistic? (2) what are important features to include in multivariate
experimental design? and (3) does Box’s M statistic provide a satisfactory test
of the assumption of heteroscedasticity with a power commensurate with the
robustness of the MANOVA statistics? They also raise pertinent questions: (1)
is there an alternative statistic to test reliably whether data meet the assumptions
of heteroscedasticity and multinormality? (2) given that if assumptions are violated
it is often desirable to reduce dimensionality, how might this be achieved? (3)
can transformations be found to redescribe data so that test statistics will perform
reliably? (4) are there procedures for multiple range tests for planned and
unplanned multiple comparisons after MANOVA?, and (5) are there alternatives
to parametric MANOVA when data are unsuitable for parametric analysis?

WHICH MANOVA STATISTIC TO USE?

Choice of test statistic necessarily reflects opinions of the relative evils of Type
I and Type II errors. We argue that in most cases the first priority is to ensure
rates of Type I error do not deviate greatly from the nominal level, after which
choice can be based on maximum power (i.e. minimising Type II errors). This
conservative policy minimises the danger of claiming significance too often,
which we view as hazardous, but offers less protection against inability to
detect real differences, which is inconvenient. An exception to this argument
arises in environmental impact studies where power is crucial (particularly in
that df...,, is often small in impact studies).

By these criteria, Pillai’s ¥V statistic emerges clearly as the choice for general
use. For balanced designs V' shows considerable robustness to moderate levels
of variance heterogeneity and is relatively insensitive to violations of the
assumption of normality. In these respects it parallels closely the univariate F-
statistic (Scheffe, 1959; Glass et al., 1972). Also, V is robust in demonstrating
the smallest increase in exceedance rates with dimensionality (p) for a given
amount of heterogeneity, and is the only statistic where for large k, increasing
p reduces the degree of liberality. In many circumstances V can also be recom-
mended on the basis of its power. V has good power over a wide range of
conditions and is the most powerful of the four statistics when non-centrality is
diffuse, i.e. when group centroids are scattered and do not align along a single
main axis. In marine ecological data from benthic studies, non-centrality is often
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diffuse in that it occurs in a large proportion of dimensions across several
groups, particularly when there are strong seasonal or treatment effects (e.g.
Field, 1971; Johnson & Mann, 1986, 1988). In these cases V is the clear choice.

Olson (1974, 1976, 1979) also advocates the V statistic for general use, but
this recommendation is not supported by all researchers. Stevens (1979) based
his recommendations on the power of the statistics, arguing that because differ-
ences in robustness of the V, W and T statistics are small for ‘typical’ amounts
of variance heterogeneity, the W or T statistics are preferable to V if non-
centrality is concentrated in a single group or small number of groups (R is not
usually considered suitable given its excessive liberality). Recall that the ranking
of power of the tests is R> T > W > V for concentrated non-centrality and
V> W > T> R for diffuse non-centrality, at least when the amount of non-
centrality is defined by a standardised measure (Schatzoff, 1966; Lee, 1971;
Olson, 1974, 1976; Stevens, 1979). However, the assertion of equivalent
robustness to even low levels of heteroscedasticity is correct only for very
large samples (cf. Figs 1, 2 and 4 and see Schatzoff, 1966). For small samples
V is clearly more robust than W and 7. From his empirical results, Olson
(1976) suggested that the three can be considered equivalent only when
(dferror! IOP )= dfhypothesisa or equivalemly when (df;,rrorj dfhypothesis) = IOP . Even
if sample size is large, another problem is to assess whether non-centrality is
concentrated or diffuse. Clearly it is inappropriate to base this assessment on
significance tests of different dimensions of the sample to be tested by MANOVA.
A straightforward approach can be based on the fact that if non-centrality is
concentrated then differences among group centroids align along a single dimen-
sion in Mahalanobis’ space. This may occur, for example, when sampling along
a uniform ecological gradient. The distribution of centroids in Mahalanobis’
space can be examined by canonical discriminant analysis (CDA), which is
a standard inclusion in most multivariate software packages (CDA is equiv-
alent to a graphical form of MANOVA, both being based on Mahalanobis’
distances between centroids; see section on Multiple Comparisons p. 209).
Thus, unless assumptions of MANOVA are not violated, W or T should be
used in preference to V only when sample size is sufficiently large and it can be
ascertained that differences among mean vectors are concentrated in very few
dimensions.

In the special circumstance in which non-centrality is concentrated and there
are no violations, then R is the statistic of choice given its superior power. It
should also be noted that if non-centrality is concentrated such that centroids
align in a unidimensional arrangement, then dimensionality of the data can be
reduced greatly (see section on Reducing Dimensionality, p. 202). If the number
of dimensions can be reduced effectively to < 2 and if the number of groups
is small (< 6), then R is robust to moderate levels of variance heterogeneity
(Figs 1 and 2). Thus, for small to moderate departures from homogeneity, if
non-centrality is concentrated and dimensionality small then R would be the
appropriate choice, particularly if power was an issue.

We conclude by commenting that the choice of an appropriate statistic has
been a contentious issue in the literature and is likely to continue to be a topic
of spirited and divisive debate depending largely on judgements on the rather
slippery issue of the relative seriousness of Type I and Type II errors. However,
we contend strongly that the recommendations given here provide for reliable
results. |
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RECOMMENDATIONS FOR DESIGN

Our recommendations for design are based on the view that violations are likely
to occur in multidimensional ecological data sets, and that some kinds of
violations affect adversely the behaviour of all test statistics. Violations are
likely to occur for two reasons; first, as the number of variables increases so do
the number of ways that assumptions can be violated, and second, regarding
marine ecological data in particular, species abundances often manifest large
temporal and spatial variability, and there are often large differences in the
abundances of coexisting species at any point in time or space. In suggesting
guidelines for multivariate experiments, we assume that design requirements
general to all inferential statistics are satisfied, e.g. that observations are dis-
tributed independently.

The most critical implication of our simulation results for design is that sample
sizes be identical (or nearly identical for very large n). When sample sizes are
unequal, the rates of Type I error of Pillai’s V (and the others) are not robust
to even low levels of heteroscedasticity (Fig 3). This behaviour is similar to that
of the F-test of univariate ANOVA in which heteroscedasticity affects severely
the likelihood of Type I error when group sizes are unequal (Scheffe, 1959). If
a small number of replicate measurements are missing from some groups and
inequality among covariance matrices is indicated, in most cases it is preferable
and conservative to make a small sacrifice in power and engineer a balanced
design by randomly discarding replicates from those groups in which n > n;,.

Reducing dimensionality also contributes to minimising the deleterious effects
of heteroscedasticity on rates of Type I error, particularly if the number of
treatment groups is small (see p. 202). This can be facilitated by careful planning
in the design stage and a precise statement of the hypothesis. Researchers must
not yield to the temptation to include variables of peripheral importance.
Similarly, although not so critical, the number of groups should be minimised
insofar as the hypothesis permits.

Predictably, if assumptions are met, the power of all MANOVA statistics
increases with sample size, and for a given absolute increase in sample size the
improvement in power is greatest for small n. Clearly, it is best to take as many
replicates as is practical.

TESTING WHETHER DATA MEET ASSUMPTIONS

Because MANOVA statistics are not robust to all violations, it is necessary to
know when, and which, violations occur, and by what magnitude. A test for
violations is only useful if it does not detect violations to which the MANOVA
statistic of choice is robust. By this standard the M statistic can be rejected as
too sensitive (indeed, its sensitivity is such that calibrating it to be commensurate
with the robustness of the MANOVA statistics is likely to be problematical).
Furthermore, M is sensitive to both non-normality and heteroscedasticity, so it
is not possible to know which assumptions are violated.

We suggest an alternative test proposed by Hawkins (1981) that tests for non-
normality and heteroscedasticity simultaneously. For each data point, a quantity
A;; is computed. The behaviour of these A;s will provide information on the
deviation of the data from normality and heteroscedasticity. The 4;s are com-
puted using the pooled covariance matrix and the deviation of the observation from
the within-group mean. Details of the computation are as follows; first compute
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- Tq-1
Vi = (X;-X;) ' S™ (Xj-X)

where X; is the mean vector for the observations in group i for, each of the k
groups, and S is the pooled covariance matrix. Note that N is En, , the total
number of observations. These quantities are generally easy to compute in any
standard statistics package. The next step is to compute

F (N—k—p)n;V;
T p(=1) (N—k) —n; V)

If the data are normal and homoscedastic, it can be shown that F;; follows an
F distribution with (p,N-p-k) degrees of freedom (recall that p represents the
dimension of the data). Finally

denotes the tail of Fj under this distribution. Once the Vjs have been cal-
culated, the computatlon of Ajys is routine. If the data are normal and hetero-
scedastic, then the A;s will be distributed uniformly over the interval (0,1).
Hawkins (1981) proposes a test statistic based on the 4;s which tests each
group separately as well as overall. For group i the test statistic W, is com-
puted as follows:

Order the AijS as Ai(l)SAi(Z)S .. 'Ai(n,-) . Now
W:=n;—n; IJE] (2j—1) (logd;;+log (1=A;n—j+ 1))

These statistics can be computed for each group and the value compared against
the critical values for the Anderson-Darling statistic (see Anderson & Darling,
1954). A test statistic for the overall data set can be computed by repeating the
procedure on the N Ajs.

At this point there is still the difficulty, as with the M statistic, that rejecting
the null hypothesis of normal and homoscedastic data does not necessarily mean
that the MANOVA procedures are invalid, i.e. the statistic needs to be cali-
brated to be appropriate to the robustness of the MANOVA V statistic. As a first
step in addressing this problem we recommend that the W;s be computed. If
none is rejected then proceed with the MANOVA with assurance. If some are
rejected, it is necessary to examine the A;s to ascertain the type of departure
from the null hypothesis, and whether the violation is harmful in terms of the
validity of the MANOVA. If the data are non-normal but homoscedastic, the
A;s from each group will have the same non-uniform distribution. If the data
are longer tailed than normal (leptokurtic) there will be an excess of large and
small values of 4;s giving rise to a U-shaped distribution. A distribution which
is shorter-tailed than the normal (platykurtic) gives rise to a distribution of 4s
which has a peak in the middle of the interval (0,1). If the data are normal but
heteroscedastic, the A;s will cluster near O for the groups with small variance
and near 1 for groups with large variance.

The simulation results in the previous section indicate that heteroscedasticity
has a much worse effect on level (Type I error) than does non-normality. With
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this in mind, a simple test to detect deviations from the assumptions which are
harmful to MANOVA can be based on the range of the medians of the A; iS-
Specifically, if the overall test based on the W;s indicates problems, then com—
pute the median of the Aj;s for each group i (to give k medians). Now compute
the range of the medians (i.e. the maximum-minimum). If the range is large then
there is an indication of harmful deviations.

Since the distribution of the range of the medians is difficult to work out, we
carried out a simulation to calibrate the range for the situations considered in
this paper. The results are given as boxplots (Fig 9) for each of twelve com-
binations of dimension (p = 2,5,10) and heteroscedasticity (z = 1,10,30,50). In
the case of balanced data, the range exceeds 0.85 for problematic cases of p = 5
and z = 30 or 50 (labelled 7 and 8, respectively), and of p = 10 with z = 10,30
or 50 (labelled 10,11,12, respectively). For unbalanced data where any
heteroscedasticity is harmful, the range exceeds 0.50 for situations in which the
level is liberal.

In summary, we recommend that the test statistic W; be computed for each
group and then for the overall data set. If they do not exceed the critical value
of the Anderson-Darling statistic, then proceed with the MANOVA. Otherwise,
compute the range of the medians as outlined above. If the data are balanced,
a range in excess of 0.85 is a certain indicator of problems with the MANOVA,
while if the data are unbalanced, a range in excess of 0.5 indicates problems.
It should be emphasised that these cut-off values are based on a small simulation
study and there is a need for further work to obtain more precise critical values.

REDUCING DIMENSIONALITY

Minimising the number of variables (p) is important in so far as it reduces the
sensitivity of the R, W and T statistics to violations under all conditions, and of
the V criterion when (approximately) p > k. Other reasons to reduce dimen-
sionality are that it reduces the likelihood of a violation occurring at all, provides
greater power (especially important if the original number of variables is high
relative to df, ), and reduces costs of computation.

>

Fig 9.—Results of simulations to calibrate range of medians of A, is of
Hawkins’ (1981) test for heteroscedasticity and non-normality so that power of
the test is commensurate with robustness of the V statistic. Each boxplot shows
range from first to third quartile, and median (central horizontal line); dotted
lines show extremes, not including outliers (by arbitrary definition) which are
given as stars. Results are for combinations of normal/non-normal, balanced/
unbalanced, and homoscedastic/heteroscedastic data. For balanced data, the
range exceeds 0.85 for problematic cases with respect to level for p =5 and
z 2 30, and for p = 10 with z = 10. For unbalanced data where any hetero-
scedasticity is harmful, the range exceeds 0.50 for situations in which Type I
error rates are liberal. The 12 combinations of heteroscedasticity (z) and
dimensionality (p) structures are: (1) p=2,z=1;2)p=2,z=10; ) p =2,
2=30,Hp=2,2=50;5)p=5,z=1,6)p=5,z=10; (N p =5,z=30;
®p=352=50,9p=10,z=1;(10)p=10,z=10; (11) p = 10, z = 30;
(12) p=10, z=150. In all cases number of groups k = 3; sample size for
balanced data n = (10,10,10), and for unbalanced data n = (5,10,10). Each of
the 12 structures was generated from 50 runs, giving a total of 600 for each
of the 4 combinations of normality and balance.
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We emphasised earlier the importance of including only those variables which
are necessary to the hypothesis. Once a set of variables has been chosen for
analysis, dimensionality can often be reduced effectively by any of several
ordination procedures (e.g. Green, 1979; Field et al., 1982; Gauch, 1982,
Legendre & Legendre, 1983; Piclou, 1984; Austin, 1985; Minchin, 1987).
These procedures describe the relationships between the n x k objects (= repli-
cates X groups in a balanced design) in reduced space and the MANOVA can
be conducted on the scores or co-ordinates of the objects in the reduced number
of dimensions.

Several ordination procedures are applied widely in reducing dimensionality
of multidimensional ecological data, and the question arises as to which method
is most appropriate prior to MANOVA. The choice is sensibly based on how
the different techniques distort the data to represent relationships among objects
in reduced space. Principal components analysis (PCA) uses metric Euclidean
space and thus, in the context of preceding MANOVA, can be recommended
as a straightforward and (potentially) easily interpreted analysis since in most
ecological studies the data space is Euclidean. However, PCA does not always
provide a parsimonious description of ecological data and is particularly ineffec-
tive in reducing dimensionality when data contain pronounced non-linearities.
In these circumstances non-metric or hybrid multidimensional scaling (MDS)
are suitable alternatives (both PCA and MDS are discussed in more detail
below). Ordinations in Mahalanobis’ space, while theoretically possible, are
inappropriate (in the sense of preceding MANOVA) since distinctions between
treatment groups are likely to be increased artificially. For example, canonical
discriminant analysis (= CDA), like MANOVA, is based on Mahalanobis’
distances and maximises among group variation relative to within group varia-
tion. Thus, CDA is an ordination technique analogous to a graphical MANOVA
(see section on Multiple Comparisons p. 209), so that conducting a MANOVA
on CDA scores is to undertake a MANOVA on MANOVA output (that has
already attempted to maximise among groups differences), which clearly is both
unwise and misleading.

Principal components analysis

PCA yields p new uncorrelated variables, the principal components, that are
linear combinations of (usually) linear functions of the original p variables.
Because principal components (PCs) are ordered in terms of decreasing fractions
of the total variance described by the p original variables, the MANOVA can
be conducted on m < p principal components that account for a given amount
of the total variance of the original p dimensions. Other advantages to using
PCA preliminary to MANOVA are that PCs are likely to be more normally
distributed than the original variables by virtue of the central limit theorem
(Morrison, 1976), and because they are uncorrelated, if multinormality is
satisfied, they will also be independent (see Anderson, 1984) which means that
separate transformations can be used on each PC (see p. 208).

The PCA can be conducted on either the covariance matrix (or equivalently,
the total sums of squares and cross products matrix) or correlation matrix that
describes the relationships between the n X k objects (in a balanced design) in
the original p-dimensional space. The choice is important and depends both on
the hypothesis and nature of the data. If the response variables are not measured
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in the same units then linear combinations of variables are meaningless and
covariances difficult to interpret, so the correlation matrix must be used.” For
example, depending on their life-form, the abundances of different species
may be measured either in terms of biomass, percent cover, or as numbers of
individuals.

When all variables are of the same units, e.g. as for some sets of species
abundance data, the decision to use the covariance or correlation matrix in the
PCA depends on the hypothesis. The correlation matrix is equivalent to a
covariance matrix obtained from data that have been standardised so that each
variable has a mean of zero and unit standard deviation (i.e. in terms of the
untransformed observation Y, the standardised observation X;; = (Yy-ui)/ g,
where p; and o; are the mean and standard deviation of the i*" variable respec-
tively). In ecological data, the largest mean scores (e.g. most abundant species)
tend to have the highest variances, therefore standardising by equalising the
variances prevents variables with large values from dominating the analysis.
Thus, if the response of rare and common species are considered to be of equal
importance, it is appropriate to conduct the PCA on the correlation matrix. It
follows that a danger of using the correlation matrix is that, for example, rare
species whose presence or absence is determined largely by chance, can over-
emphasise a spurious result. In these circumstances, there is good reason to
exclude very rare species from the analysis (e.g. Johnson & Mann, 1988). Noy-
Meir et al. (1975) and Pielou (1984) discuss in greater detail the hazards and
advantages of standardising data. Domination by variables with large values can
also be prevented by other kinds of transformations (rescaling) prior to con-
ducting a PCA on the covariance matrix (see below). These transformations
preserve the rankings of means and therefore may be more useful than the
correlation matrix in achieving parity in the contribution of each variable. If
changes in absolute abundance are of interest, or if it is felt the responses of
common species should receive more weight than less abundant ones, the co-
variance matrix should be used. In PCAs of species abundance data using
covariance matrices, the most abundant species tend to have higher variances,
and therefore dominate the first principal components (e.g. Johnson & Mann,
1986). In this situation, fewer PCs calculated from a covariance matrix will
account for an equivalent amount of information as a greater number of PCs
obtained from a correlation matrix from the same set of original variables.

There are several problems associated with using PCA to reduce dimension-
ality prior to MANOVA, so the practice should not be followed automatically.
The most critical is that the combination of variables that account for the largest
amount of variance (i.e. the first PCs) need not be the combination that best
describes variance among groups, which after all, is the focus of interest in
MANOVA. The danger in discarding PCs associated with the smallest eigen-
values, which, for example, may equate with species having relatively small
variances, is that one may be discarding species containing information useful
in emphasising differences in species abundances among groups. It is, there-
fore, a vital precaution to check plots of PC scores, especially of the smallest
ones, against the different levels of classes or factors. If clear differences in
PC scores are evident among groups, those PCs should be included in the
MANOVA. However, the problem is to decide how large these differences
should be, and this decision is largely subjective.

A second point is that some data sets will contain prominent non-linearities,
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so that a small number of PCs that are additive combinations of linear functions
of original variables will not represent a parsimonious description of variance
structure and thus will not be efficient in reducing dimensionality. In these cases
it is not wrong to use PCs, it is simply unwise, because the PCA will be
ineffective in reducing the number of dimensions. However, PCs do not have
to be additive linear functions of original variables, and it may be that additive
quadratic, or higher order polynomial, functions best describe the largest amount
of variance in the smallest number of dimensions. Gnanadesikan (1977) gives
a clear account of generalised polynomial PCA, of which linear functions of the
original variables is a special case. The method is straightforward and involves
adding columns and rows to the covariance (or correlation) matrix that describe
covariance (or correlation) structure of the quadratic (or higher order) terms,
and then conducting a regular PCA on the expanded matrix. For example, in
the simple case of p =2 dimensions in a quadratic PCA, instead of describing
covariance structure of the 2 variables (y; and y,) in a 2 X 2 covariance matrix
as in linear PCA, it is expanded to a 5 X 5 matrix to include covariance structure
of the quadratic terms y;y,, y;%, and y,2. Although software for PCA is
usually tailored for linear PCA, higher order polynomial PCA can be performed
readily using standard packages for eigenanalysis. However, polynomial PCA
is fraught with limiting practical considerations. First, it may be clear that linear
PCA is not appropriate to use, but there is no ready method to determine what
higher order polynomial PCA is most appropriate. Second, as p and/or the
degree of the polynomial increases, so does the dimensionality of the eigen-
analysis and the number of replicates n required for a nontrivial eigenvector
solution, e.g. in the case of p =5, for a quadratic PCA the eigenanalysis is
20-dimensional and it is required that n = 20, and for a cubic PCA, the
eigenanalysis is 55-dimensional, and » must exceed 55.

Another problem arising in using PCs is interpretation. The results of
MANOVA on PCs, particularly if significance is indicated, are not particularly
meaningful other than to indicate an overall ‘treatment’ effect unless each PC,
or at very least the most important PCs, can be given clear interpretations. This
is difficult when many of the original variables of a given PC have high loadings,
or when the PCA is nonlinear.

Multidimensional scaling

Either non-metric or hybrid MDS (N-MDS and H-MDS, respectively) can
reduce effectively the dimensionality of multidimensional data that contain certain
forms of non-linearity. Non-metric MDS has gained widespread acceptance
among quantitative ecologists as a powerful and robust ordination technique
(robust not in the classical statistical sense but in relating abundances of species
to underlying ecological gradients; e.g. Fasham, 1977; Field er al., 1987,
Minchin, 1987). The method of hybrid MDS (hybrid in the sense of combining
both non-metric and metric criteria; see Faith ez al., 1987) is slightly more
robust in most circumstances (P. Minchin, pers. comm.) and has much to
recommend it as a useful approach to handling non-linearity. However, for most
practical purposes, N- and H-MDS yield similar results (P. Minchin, D. Faith
and L. Belbin, unpubl. data). Both techniques are conceptually simple (but
computationally complex) in that they seek to arrange objects, usually in 2- or
3-dimensional space, such that the distances between pairs of objects reflects,



MANOVA IN MARINE BIOLOGY AND ECOLOGY 207

in some defined sense, their dissimilarities. MDS differs from PCA in that it
only requires measures of dissimilarity among objects and does not require that
objects can be positioned in multidimensional space (whether euclidean or
otherwise). Dissimilarity can be defined by any of a host of available measures
that are suited to different kinds of data (see Clifford & Stephenson, 1975; Field
et al., 1982; Krebs, 1989). However, different distance measures have widely
disparate robustness (Faith er al., 1987). Thus, effectiveness of MDS pro-
cedures to reduce dimensionality in a manner suitable for input to MANOVA
depends more on the choice of dissimilarity measure than on whether N- or H-
MDS is used.

An advantage to using N- or H-MDS (other than that of circumventing
problems of non-linearity) is that a measure of dissimilarity can be chosen that
best suits the data, e.g. the Bray-Curtis coefficient is a robust measure of dis-
similarity (Faith et al., 1987) that is usefully applied to species abundance data
in which some species do not occur in most treatments (i.e. this measure is not
affected by large numbers of zero counts), or to binary data (Field et al., 1982).
Note that flexibility in choosing a dissimilarity measure is not the exclusive
domain of non-metric methods; any dissimilarity measure can also be used in
principal coordinates analysis (PCoA), which is effectively a generalisation of
PCA, i.e. a metric linear model. However, using measures of dissimilarity other
than correlation or covariance structure also introduces a problem in that it
becomes difficult to know exactly how data are ‘distorted’ in reduced space,
which therefore obscures detailed interpretation of MANOVA.

Disadvantages to using MDS procedures are that, unlike PCA, the new axes
are not interpretable in terms of the original variables, it is difficult to ascertain
how well the configuration in reduced space represents the arrangement of
objects in higher dimensional space (in situations where data can be defined in
higher dimensional space) and the dimensionality of the reduced space is entirely
an arbitrary decision (specified by the experimenter). Choosing too few dimen-
sions can distort the arrangement of objects but choosing too many will ensure
that some dimensions largely account for ‘noise’ in the data (P. Minchin, pers.
comm.). A pragmatic approach is to compare results of MANOVA on objects
described in 2- and 3-dimensional N-MDS space. Minor problems with MDS
are that the new axes (which have an arbitrary scale) do not necessarily align
with major trends in the configuration space and are not uncorrelated (so cannot
be transformed independently). These problems are minor in that they can be
rectified easily by rotating the MDS axes to align with the major trends using
PCA, i.e. by conducting a PCA on the covariance matrix that describes the final
configuration matrix from the N- or H-MDS. Rotation in this way is usually
an option, and can therefore be conducted routinely, in commercial software
packages.

TRANSFORMATIONS

As 1n the univariate case, multivariate data can be transformed to minimise or
prevent violations, obviating considerations of robustness. Monotone trans-
formations are changes of scale undertaken to improve the efficiency and reli-
ability of tests (for general discussion on transformations see for example Green,
1979; Steel & Torrie, 1981; Legendre & Legendre, 1983).

If violations are indicated, a useful first step is to check scatter plots of
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residuals that may identify outliers which may be corrected or discarded for a
priori reasons. If violations are still evident it is prudent to search first for
a transformation to stabilise variances. There are two reasons for this; first,
violating the requirement of covariance homogeneity is far more serious than
violating that of multinormality. Second, transformations that stabilise variances
will often simultaneously improve normality of marginal distributions (muiti-
normality requires normality of both marginal and conditional distributions but
in practice often only the unidimensional marginal distributions are examined;
see Legendre & Legendre, 1983).

Transformations may be made on original variables, or on PCs if these are
to be used in MANOVA. The greatest problem likely to be encountered in
transforming original ecological variables is that there are nearly always cor-
relations among them (e.g. in species abundances), so the same single trans-
formation must be applied to all variables even though it may not be suitable for
some. Methods used for univariate data can be followed to find a suitable overall
transformation (if it exists) to stabilise variances, viz. by examining the relation-
ship among the p X k standard deviations (¢) and means (u) (i.e. ¢’s and p’s of
all variables from all groups). If dependence of variance on mean follows any
one of the family of general relationships described by oo uX, then the appro-
priate variance stabilising transformation, in terms of the untransformed variate
Y, is Y1'¥ (Draper & Smith, 1981; see their p. 238 for particular values of k).

When conducting MANOVA on PCs, data may be transformed before or after
calculating the PCs, or both. In most cases it is preferable to conduct the PCA
on the transformed original variables if an overall transformation is suitable.
Because ecological variables with larger means tend to have higher variances,
if the hypothesis dictates that variables with large scores should not dominate
the analysis it is usually best to transform the original variables anyway. The
transformations X =log(Y¥ + 1) (Green, 1979) or X =VVY = Y925 (Field et
al., 1982) are often applicable to species abundance data to prevent responses
of abundant species from swamping those of rarer ones. However, although
transformations may prevent abundant species from dominating the analysis,
they may not make means independent of variances, in which case the PCs can
also be transformed. Transforming before and after PCA complicates detailed
interpretation of significant overall MANOVA results.

If the hypothesis is structured such that the experimenter is more interested
in responses of common than of rare species then it is appropriate to transform
the PCs and not the original variables. In this case a PCA on the covariance
matrix of untransformed variables will weight the first PCs toward abundant
species. An advantage of transforming the PCs is that since they are geometric-
ally orthogonal (uncorrelated) and often approximately normal (because of the
central limit theorem), they are often close to independence (Anderson, 1984),
and it is therefore reasonable to use different transformations on each one.
Special problems associated with transforming PCs are that the relationship
between the group standard deviations and means of the PCs (0. and pp,
respectively) can be symmetrical about u,. = 0, which prevents transformation,
and interpretation of significant MANOVA results can be difficult.

Finally, it must be realised that heteroscedasticity may exist in a form where
variances and covariances are not dependent on means, in which case variance
stabilising transformations cannot be found. For example, there may be negli-
gible differences in means among groups, but large differences in variances and
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covariances. Although the statistical analysis may be difficult in this situation,
ecologists should not despair, since variances often contain as much ecological
information as do means. Identifying the offending group(s) and examining the
data carefully may yield an ecologically meaningful interpretation.

MULTIPLE COMPARISONS

MANOVA is properly viewed as a two-step procedure if the null hypothesis is
rejected in an overall test. The second step is to conduct a multiple range test
or simultaneous test procedure (STP) to determine the nature of the differences
among groups. Several tests are used widely for comparing among treatments
after univariate ANOVA (see Day & Quinn, 1989, for discussion), but equiv-
alent multivariate tests are not so available or studied. A major problem in
moving from the univariate to the multivariate case is that the number of possible
comparisons grows dramatically. For example, for a 1-way MANOVA with 6
groups and 3 response variables, there are 398 component hypotheses of
equality in subgroups of two or more groups on one or more variables (see
example in Gabriel, 1968).

There are two classes of multiple comparisons available, those based on
Scheffe-type methods which provide simultaneous tests or confidence intervals
for all possible contrasts, and those based on Bonferroni methods which can be
used when there is a fixed number of multiple comparisons to be tested. Several
factors make Bonferroni techniques desirable; first, they are simple to construct
in that individual tests for a particular comparison are carried out with an
adjusted level of significance a,g; = a/L, where L is the total number of con-
trasts to be tested. Second, provided that L is small or moderate in size, the
confidence intervals from a Bonferroni method will typically be smaller than
those obtained from a Scheffe-method, implying that Bonferroni methods are
more powerful for detecting differences. Miller’s text (1981, chapter 5) has a
useful discussion of the thorny issue of the choice of a family of statistical
statements for which we want to control the error rate, and simultaneous
statistical inference.

A useful strategy for testing differences among groups on variables together
or individually, is to limit the number of comparisons of interest and then use
a Bonferroni procedure (see Day & Quinn, 1989, for discussion of the advan-
tages of limiting the number of planned comparisons). If the contrasts of interest
are restricted to pairwise comparisons on individual variables, we recommend
using a good univariate STP, e.g. Tukey’s studentised range (see Day & Quinn,
1989), with level a/p, where p is the number of dimensions. Alternatively, to
test any contrast among groups over a combination of variables, a 2-sample t-test
with adjusted o and the overall estimate of within-group variance (SS,;duais/4f)
can be used (see Miller, 1981, chapter 5, for details). In some situations the
experimenter simply wants to know which groups differ without specifying the
variables on which they differ, and in this case the desired contrasts are the
pairwise comparisons on all p-variables. Hotelling’s T2-test for comparing two
multivariate means can be used with a significance level 2a/k(k-1), where £ is
the number of groups, and with the overall estimate of within-group variation.

Among the Scheffe-type methods, which are recommended when all possible
contrasts are of interest (usually unplanned), the consensus is that a STP based
on Roy’s largest root (R) is the most powerful (e.g. Wijsman, 1979; Bird &
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Hadzi-Pavlovic, 1983). In fact it is the only procedure among the usual tests with
the property that rejecting the null hypothesis guarantees that there is at least one
contrast that will be rejected (Bird & Hadzi-Pavlovic, 1983). However, because
of its lack of robustness, R cannot be recommended for a STP. A reasonable
alternative procedure suggested by Bird & Hadzi-Pavlovic (1983) is to use the
robust Pillai’s statistic (V) for the overall test, and then to use R for the follow-up
tests after a significant V-test. However, although this will give protection in the
overall test, we have some concern that if we reject with V, then R may be
excessively liberal in identifying differences among groups. Their reported
Monte Carlo results provide some evidence that for this method the Type I error
rate is reasonably controlled with small loss of power (see also Gabriel (1968)
for details of follow-up tests using R).

In the context of discerning the nature of differences among groups, we
recommend following up a significant MANOVA result with a canonical dis-
criminant analysis (CDA; sometimes referred to as canonical variates analysis
or multiple discriminant analysis, e.g. see Legendre & Legendre, 1983; Harris,
1985). In one sense CDA can be considered equivalent to graphical MANOVA
(both procedures are based on eigenanalysis of the matrix HE~!, i.e. the
matrix of variation between multivariate group means scaled by the within-
group variation). CDA is an ordination technique that displays differences
among multivariate group means in a reduced space in which the between-group
variation is maximised relative to within-group variation. Plotting of group
means (centroids) and their 95% confidence ellipsoids on the first 2—3 canonical
axes is the multivariate equivalent of displaying univariate means and associated
confidence intervals. In the same way that graphical display of univariate means
and confidence intervals often indicates clearly the relationships among group
means, plots of relative positions of multivariate group means with confidence
ellipsoids in reduced canonical variates space can reveal similar information.
Robustness of CDA when using confidence ellipsoids will be equivalent to
robustness of MANOVA under the same conditions.

ALTERNATIVES TO PARAMETRIC MANOVA

Data not appropriate for analysis by parametric MANOVA are those for which
(1) levels of variance heterogeneity remain high despite preceding MANOVA
with techniques to reduce dimensionality (e.g. PCA) and/or attempts to find
transformations that stabilise variances, and/or (2) sample sizes are unequal and
there is any amount of variance heterogeneity. In these situations alternatives
to parametric MANOVA include robust non-parametric methods and non-
inferential multivariate methods such as ordination and classification. Here is not
the place to describe these methods in detail, but we point the reader to some
helpful literature.

There has been some development of non-parametric MANOVA procedures.
Mantel & Valand (1970) offer a test statistic suitable for two or more groups,
but only for the 1-way case. However, whereas the permutation distribution of
their statistic is conceptually simple, its computation is likely to be too complex
in most problems. The method proposed by Bhargava (1972) is also limited to
the 1-way case. Moreover, his procedure of comparing one group to the sum
off all remaining groups is counter to our recommendations about maintaining
a balanced sample size.
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More promising are multiresponse permutation procedures (Biondini et al.,
1988), which are likely to emerge as a useful and powerful alternative to para-
metric MANOVA. This technique is distribution-free, does not require a linear
data structure and has P-values which depend on the observed data and not on
a hypothesised error distribution. However, it should be noted that for moderate
to large data sets there will be substantial computational effort in obtaining P-
values. For example, if there are 5 groups with 10 observations per group, the
test statistic has to be computed for 50!/(5 x (10!)) = 6.8 x 10°7 cases.

Also encouraging is the recent work by Rousseeuw & Leroy (1987). In making
a MANOVA procedure less sensitive to deviations from assumptions, a key step
is to use a robust covariance matrix estimate as a basis for the test rather than
the classical covariance estimate used in the tests V, W, T and R. Roussecuw &
Leroy (1987) give a computationally feasible robust estimate. This robust co-
variance estimate can then be used to construct analogues of any of the classical
tests. It will be most interesting to see the results of a Monte Carlo study under-
taken for these tests.

Ordination and classification techniques are descriptive techniques that
(generally) cannot be used for hypothesis testing (see Harris, 1985; also review
of James & McCulloch, 1990 for introduction to relevant literature). They
redescribe multidimensional data enabling relationships among groups to be
viewed in lower (usually 2—3) dimensional space (see section Reducing Dimen-
sionality, p. 202) or in the form of dendrograms. Two families of techniques
applicable to data not suitable for parametric analysis are cluster analyses and
nonmetric- or hybrid-multidimensional scaling (e.g. see Gnanadesikan, 1977,
Field et al., 1982; Gauch, 1982; Pielou, 1984; Austin, 1985; Faith et al., 1987,
Minchin, 1987). Both are based on indices of similarity or dissimilarity, of
which there are many to choose from (e.g. Clifford & Stephenson, 1975; Krebs,
1989). The Bray-Curtis dissimilarity coefficient (Bray & Curtis, 1957) has much
to recommend it for use with species abundance or presence/absence data (Field
et al., 1982; Faith et al., 1987).

SUMMARY OF RECOMMEI\’IDATIONS

(1) In designing multivariate experiments with a view to testing of hypotheses
it is critical that sample sizes are equal, or almost equal if n is large, since in
unbalanced designs none of the statistics is robust to variance heterogeneity.

(2) The number of response variables, and to a lesser extent the number of
groups, in the design should be kept to a minimum in so far as the hypothesis
permits. In many situations the deleterious effects of variance heterogeneity are
exacerbated by increasing p and to a lesser extent k. Also, reducing dimen-
sionality improves power in that it increases df.,,, for a given n.

(3) Box’s M statistic is rejected as a test of homogeneity of covariance matrices
as it is much more sensitive to variance heterogeneity than is the V statistic that
it is designed to protect, and is unacceptably sensitive to non-normality. The test
statistic (W) of Hawkins (1981) is a practical alternative that tests for hetero-
scedasticity and non-normality simultaneously. Our simulations enabled calibrating
the statistic such that its power to identify problematic data is commensurate
with the robustness of V for the situations considered in this paper.
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(4) If violations are indicated, data should be examined to determine whether
it is possible to reduce dimensionality further by principal components analysis
(PCA) or non-metric- or hybrid-multidimensional scaling (N- or H-MDS). PCA
can be conducted on either the covariance matrix (or equivalently the total SSCP
matrix) or correlation matrix describing the relationship between all objects in
p-dimensional space, depending on the hypothesis and nature of the data. It is
often appropriate to conduct the MANOVA on m < p principal components
(PCs) that account for most of the total variance. Other advantages of using PCA
prior to MANOVA are that normality is usually improved, and that different
transformations can be used on each PC. PCA should not be used if it does not
provide a parsimonious description of variance structure. If linear PCA is not
effective in reducing dimensionality, higher order polynomial PCA may provide
an efficient description of data, or alternatively, N- or H-MDS routines may be
useful. Since the axes of N- or H-MDS space are unlikely to align with major
trends in the distribution of objects in the reduced space, rotation of the MDS
axes using PCA (i.e. to align them with major trends) should be undertaken
routinely prior to MANOVA.

(5) Multivariate data can often be transformed to improve agreement with
assumptions. Wherever possible, transformations that stabilise variances should
be used. Since it cannot be assumed that ecological variables are uncorrelated
the same transformation should be applied to all original variables. If PCs are
used in MANOVA, data can be transformed before or after calculation of PCs,
or both. It is preferable to rescale data before PCA if a suitable overall trans-
formation exists. For species abundance data, original variables can first be
transformed prior to PCA to prevent abundant species from dominating the
analysis and if necessary the PCs can then be transformed to stabilise variances.

(6) On the basis that Type I errors are more serious than Type II errors the
V statistic is recommended for general use. For Type I errors, the violation of
the assumption of homoscedasticity is more serious than is non-normality, and
the V statistic is clearly the most robust to variance heterogeneity in terms of
controlling level. Its rates of Type I error are acceptable at moderate levels of
heteroscedasticity providing sample sizes are equal and it is the most powerful of
the four statistics when non-centrality is diffuse (i.e. when group centroids are
not described by a single major trend). Non-normality (kurtosis) has a much
smaller impact on Type I error rates in making all tests slightly more conser-
vative, but it reduces the power of all statistics considerably. Loss of power
is dramatic if assumptions of normality and homoscedasticity are violated
simultaneously.

For large samples (approximately when (df,rror/ dfoypothesis) = 10p) the robust-
ness of Wand T compares to V, and if non-centrality is concentrated (i.e. group
centroids align along a single main axis), then 7 and W are more powerful than
V and would be the preferred choice. In the special circumstance in which non-
centrality is concentrated and there are no violations, or if departures from
homogeneity are small and dimensionality of the data can be reduced to two
dependent variables, then R is the statistic of choice given its superior power for
this distribution of non-centrality.

(7) MANOVA is a two-step procedure if the overall test indicates significance.
The second step is to discern the nature of the differences among means. The
preferred approach is to use Bonferroni-type methods in which the level of
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significance « is adjusted to «/L, where L (the total number of comparisons) is
limited to the fewest possible contrasts of interest. If all possible comparisons
are required, an alternative is to use the V statistic in the overall test, and the
R statistic in a follow-up simultaneous test procedure. Interpretation of a
significant result in MANOVA can be aided greatly by canonical discriminant
analysis which is analogous to a graphical MANOVA.

(8) Classical parametric MANOVA should not be used with data in which high
levels of variance heterogeneity cannot be overcome by transformation and/or
reduction of dimensionality, or in which sample sizes are unequal and assump-
tions are not satisfied. Viable alternatives are to use a robust covariance matrix
estimate rather than the classical covariance estimates used in the V, W, T and
R tests, or permutation techniques. Non-metric non-inferential multivariate
procedures such as some ordination and classification methods may facilitate
useful interpretation.
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APPENDIX 1

GLOSSARY OF TERMS

Balance; data are balanced when sample sizes are equal in all groups. In an unbalanced
design the number of samples for each group is unequal.

Centroid, the point in multivariate space defined by the group mean vector, i.e. coordinates
are the mean values of all variables in that group.

Covariance matrix; square and symmetric matrix giving variances on the diagonal and
covariances on the off-diagonals.

Dimensionality; the number of response (= dependent) variables.

Dispersion matrix; see covariance matrix.

Exceedance; estimate of the probability (= percentage or proportion ‘of occasions) that
a test statistic exceeds the nominal significance level (@) to indicate a significant
difference. _

Fixed effects model; ANOVA model in which the different levels of a factor are fixed
treatments determined by the experimenter, i.e. the concern is with differences
among means that can be ascribed to factors whose levels (‘categories’) are
fixed (cf. random effects model).

Heteroscedasticity; heterogenous variance structure, e.g. inequality of covariance
matrices among groups (cf. homoscedasticity).

Homoscedasticity; homogeneous variance structure, e.g. equality of covariance matrices
among groups (cf. heteroscedasticity).

Kurtosis; symmetrical deviation from the normal distribution; a leptokurtic distribution
1s symmetrical but has more values around the mean and the tails of the distri-
bution than the normal; a platykurtic distribution is symmetrical but has more
values between the mean and the tails than the normal (cf. skewness).

Level; the rate of Type I error (see Type I error, significance level).

Model I, see fixed effects model.

Model II;, see random effects model.

Noncentrality; differences among group mean vectors; non-centrality is said to be concen-
trated when group centroids are arranged along a single dimension in multivariate
space and diffuse when the centroids are spread almost equally in all dimensions.

Normality, data are distributed normally if their frequency distribution is described by a
normal or Gaussian distribution; data are non-normal if their frequency dis-
tribution does not fit a normal curve. Note that multinormality (normality of
multivariate data) requires normatity of both marginal (= individual univariate)
distributions and conditional distributions. Non-normal data can be described
by skewness and kurtosis.

Power; the probability of detecting real deviations from the null hypothems i.e. real dif-
ferences among group means. It is defined as 1-B where 8 = rate of Type Il error.

Random effects model;, ANOV A model in which different levels of a factor are viewed as
a random sample of a population of all possible levels of the factor (cf. fixed
effects model).

Repeated measures; repeated measurement of the same experimental individuals through
time, i.e. measurements through time are not independent.

Significance level; tate of Type I error set by and acceptable to the experimenter,
symbolised by c.

Skewness; asymmetric deviation from the normal distribution; i.e. one tail of the distri-
bution is extended further than the other (cf. kurtosis).

Type I error; rejecting the null hypothesis when it is true, i.e. incorrectly claiming a sig-
nificant test result. Usually expressed as a probability symbolised by «. See
significance level (cf. Type II error).

Type II error; accepting the null hypothesis when it is false, i.e. incorrectly claiming a
non-significant test result. Usually expressed as a probability symbolised by B
(cf. Type I error).
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APPENDIX 2

THE MANOVA TEST CRITERIA

The four statistics are functions of the non-zero eigenvalues (A;) of HE~', where H
and E are the p X p sums-of-squares-and-cross-products matrices for hypothesis (among
groups) and error (within groups) respectively (i.e. the multivariate equivalents of the
hypothesis and error mean squares in the univariate case). The test statistics are defined
as (for further information see Olson, 1974; Ito, 1980; Hull & Nie, 1981, and references):

Pillai’s trace V = trace of H(H + E)~! = sum of 4,/(1 + 4))

Hotelling’s trace T = trace of HE™! = sum of A, .

Wilks® lambda W = determinant of E(H + E)~! = product of 4,/(1 + A,)

Roy’s largest root R = largest eigenvalue of H(H + E)~' =4,/(1 +1,), where
A, is the largest eigenvalue of HE'.

Fig 10.—Demonstration that Monte Carlo simulations provide unambiguous
results. Data are of five repeated simulations for each of three examples of
power curves (A—C) and two of rates of Type I error (D and E). They show
that simulations were reliable, i.e. that independent replicate simulations, each
of 200 runs, gave quantitatively similar and qualitatively identical results.
When the different statistics gave similar results, only values for Pillai’s
criterion are given (A, B and D). The simulation conditions were as follows:
A, Power curve; data are balanced, normal and homoscedastic; n = 10, k = 3,
p =2. B, Power curve; data are balanced, non-normal and homoscedastic;
n=10, k=3, p=2. C, Power curve; data are balanced, non-normal and
heteroscedastic; n =10, k=6, p=15. D, Rates of Type I error; data are
balanced and normal; n =10, k =3, p =2. E, Rates of Type I error; data
are balanced and normal; n = 10, k = 10, p = 10; where n = sample size,
k = number of groups, p = number of variables.
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APPENDIX 3

RELIABILITY OF MONTE CARLO SIMULATIONS
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APPENDIX 4

PROOF THAT MANOVA STATISTICS V, T, W AND R ARE
AFFINE INVARIANT

The proof that MANOVA statistics V, T, W and R are affine invariant (i.e. behave
identically whether dispersion matrices are in raw or canonical form) justifies use of
diagonal matrices in the Monte Carlo simulations. ‘

Let Y denote the original observations and Z the transformed observations where
Z = MY for some choice of M. If £, is the covariance matrix of Y then M is chosen
so that MZ MT is diagonal. The covariance matrix X, is given by ME,MT.

The next step is to show that the test criteria do not change if we transform Y to Z.
Let H and E be the sum-of-squares-and-cross-products matrices for hypothesis (between
groups) and error (within groups) respectively, defined as:

Hy=E, n (YY) (YY)
H,=T n (Z~2)(Z-2)
Ev=E, £ m (YY) (¥,-Y)"
Ez=i)§l ;£=:1 n; (Zij_Zi)(Zij“Zi)T

Since the test criteria are based on functions of the eigenvalues of HE~!, to show
equivalence it suffices to show that HyEy~! and H;E; ! have the same eigenvalues and
that Hy (Hy + Ey)~! and H, (H; + E;)~! have the same eigenvalues. Now

k

HZ = ');1 n; (MYI_MY) (MYI_MY)T
k

=M El n (Y=Y) (Y;i-Y)T

= MH,M"

and it can be similarly shown that
E, =ME,MT"
and
H;+E;,=M(H, +E,) M"
and therefore that
H,E, '=MH,M™M"'E,"'M~! =MHE,~'M~!
and
H;(H; + E;)~' =MHy(Hy + Ey)'M™!

Thus, to complete the verification we need only to show that a matrix A and a matrix
BAB ! have the same eigenvalues. The eigenvalues of A are found by solving the deter-
minantal equation {A—AI| =0, and similarly, those of BAB~! by solving the equation
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IBAB~'—AI| =0
or equivalently  |B|~!/BAB~'—AI| =0
and therefore |AB~'—AB~!| =0
or equivalently |[AB~'—-AB~!| |B| =0

and therefore |A—AT| = 0, which implies that A and BAB™! have the same eigen-
values, and therefore that the test statistics give the same value for Y and Z.

If we wish to model the situation of the mixture of two normals as we have done in
the paper, it suffices to use a normal mixture of N(0,I) and N(0,D1). To see this note
that if Y is a mixture of N(0,V,) and N(0,V,) there exists a matrix M, [M| = 0, such
that MV,MT =1, and MV,M" = DA, where DA is a diagonal matrix whose elements A,
are the latent roots of |[V,—AV,| = 0 (Press, 1972), or equivalently of |V,V,~1—AI| =0,
i.e. are the eigenvalues of V,V,~!. Note that although the above discusses the multi-
variate normal, the argument works for a mixture from any distribution since the results
are based only on the covariance matrix.



