128

THE PROFESSION

Some Gomments
on the Goding
of Programs

Neville Holmes, University of Tasmania

xactness and accuracy are not the

same thing. Compilers require

program code to be exact. Com-

puters provide arithmetic that is

inexact. Programmers must take
particular care with their coding if they
wish to ensure that their programs pro-
duce accurate results.

Programmers must also take particular
care if their compilers are to produce cor-
rect results. Coding must be exact, except
for the comments, which the compiler
ignores. Overlook one inconspicuous
mistake in spelling or punctuation and
your program may run wildly astray or,
much worse, subtly astray. Although com-
pilers, interpreters, and code editors detect
many of these mistakes, not all such errors
render the code invalid; those that do not
will escape automatic detection.

Much could be done to help program-
mers avoid such coding errors. Un-
fortunately, more attention seems always
to be given to making programs under-
standable. The two objectives are not
contradictory, but there seem to be
ingrained attitudes that prevent the use
of certain simple coding techniques such
as those that I'll describe. Cobol provides
a case in point.

TEXT AS CODE

In the 1960s, Cobol’s designers delib-
erately made their coding scheme verbose
with the laudable objective of making it
difficult to code programs that others
would have trouble understanding. Not
only must Cobol programmers use many
required keywords, but the whole system

Computer

of naming data fields in records was well
designed to encourage descriptive nam-
ing. A program’s most significant com-
ponents are its data names, so the
introduction of Cobol’s structured nam-
ing scheme provided a great step forward
for legible programming.

m \

The downside of verbosity is the cod-
ing effort required and the difficulty of
exactly coding all the names within the
code. Thus, developers created many
Cobol preprocessors—programs that
filled in the text required by Cobol and
greatly abbreviated the data names cho-
sen by the programmer.

ICT’s Rapidwrite was such a pre-
processor, and it could produce the fully-
filled out Cobol program listing that
management expected to be able to read.
The Rapidwrite programmer used short
names of up to five letters, but could pro-
vide a long synonym to be used in the
Cobol listing instead of the less mean-
ingful short names that were more con-
venient in practical coding.

Developers proposed many other
schemes for systematic abbreviation of
names in program code in those days of

small main stores and slow cycle times. The
scheme advanced by June Barrett and
Mandalay Grems in 1960 (Comm. ACM,
Vol.3, No.5, pp. 323-324) was based on
eliminating English’s most frequently
occurring letters first, while always
retaining a word’s first letter. However,
this scheme consisted of more than 20
rules—a few too many for the average
programmer.

I prefer a simpler, three-rule scheme for
abbreviating names:

o Always keep the first letter.

e Shorten double letters to single,
treating CK as KK.

e Remove the vowels A, E, I, O, and U.

The last rule resembles one adopted by
the writing system normally used for lan-
guages such as Arabic and Urdu, which
omits vowels from normal text.
Consider a program code sample that
Ted Lewis included in his November 1998

~ In our push to make programs
more understandable, we have
often overlooked the equally
important goal of making them
easier to code correctly.

Binary Critic column (“The Legacy Ma-
turity Model,” p. 128, 125-127), shown
in Figure 1 with comments removed.

I produced the version of this code
shown in Figure 2 by applying the three
rules. I left the first instance of any data
name in full, as a compiler or interpreter
using the rules would require.

This example demonstrates that, in
English-based coding schemes at least,
the significance lies mainly in the conso-
nants. Naturally, this small example only
implies the convenience of such an abbre-
viation system in a large program. How-
ever, I find it useful and convenient to use
this system in naming files and directo-
ries as well.

For greatest benefit, the compiler or
interpreter would need to prevent acci-
dental synonyms, but would tolerate a

Continued on page 126

The Profession
Continued from page 128

Implement Payroll.Update Class{
With Person.Payroll ({
Write Update(typeof (Name) N,
typeof (Gender) G,
typeof (Phone) Ph)

{
Name = N;
Gender = G;
Phone = Ph;
}

Figure 1. A program code sample, which will be used throughout to
demonstrate the effects of various coding technigues.

Implmnt Payroll.Update Cls{
Wth Person.Pyrl {
Wrt Updt(typf(Name) N,
typf (Gender) G,
typf (Phone) Ph)

{
Nm = N;
Gndr = G;
Phn = Ph;
}

Figure 2. The code after application of a three-rule abbreviation
scheme.

Implmnt Payroll.Update Cls
{ Wth Person.Pyrl
{ Wrt Updt (typf (Name) N,
typf (Gender) G,
typf (Phone) Ph

) { Nm = N;
Gndr = G;
Phn = Ph;
} 1 }

Figure 3. The code with enclosure symbols aligned systematically.

variety of the more common misspellings. In the 1960s, the
Autopromt coding system for numerically controlling machine
tools successfully used a similar abbreviation scheme in its com-
piler. Strangely, this compiler technique failed to achieve wide-
spread adoption. Had it done so, programmers would have gained
much-needed relief from having to code programs so exactly.

Computer

THE ULTIMATE CHALLENGE: PUNCTUATION

Misspelling is not the greatest challenge to coding exactness,
however. That honor goes to punctuation: the various nonal-
phabetic, nonideographic marks that impinge so little on the
eye and so greatly on the program.

For example, enclosure symbols such as quotation marks are
much easier to use in prose than in programs. In prose, they sug-
gest how the text should be read out loud more than they pre-
scribe meaning. In programs, punctuation has an enormous
effect on how the compiler reads the enclosed text: Leave out a
quotation mark and error messages flow like water.

Enclosure marks pose two problems in program code. First,
telling symbols apart can be difficult because they tend to look
similar in most print fonts, on the screen or off, particularly
the parentheses and braces of our examples. Second, properly
pairing enclosure marks can be challenging. This difficulty leads
to the coding practice of bringing the enclosure symbols out
where they can be seen more easily, as shown in Figures 1 and
2. Some programmers line up the symbols even more system-
atically, as shown in Figure 3. A layout such as this makes
checking enclosure symbols much easier by lining up the pairs
vertically and spacing them away from nearby text.

There are exceptions. There is no point in splitting short-
range enclosures: In Figure 3, (Name) is clearly a single item
and should be treated as such. Nor can quotation marks, typ-
ically used in program code to delimit character strings, be
given this treatment.

This example suggests that punctuation marks other than
enclosures—especially separators that are easily overlooked, like
commas and semicolons—should also be highlighted through
code layout. This highlighting can be done in the first instance by
spacing out the marks so that they are more easily seen—a prac-
tice completely foreign to natural language text, but clarifying
to code, as can be seen by comparing Figure 3 and Figure 4.

But having these separators at the end of lines causes prob-
lems. If they are scattered, it’s harder to notice that one is miss-
ing. Further, when they are at the end of lines it’s easy to delete
them along with trailing text. So it would really be better to
line them up vertically as well, as shown in Figure 5.

Obviously, code laid out this way acquires a tabular flavor.
This formatting suggests the possibility of doing away with
that pesky punctuation altogether—which is exactly what
Rapidwrite did. RPG, arguably the most productive of coding
schemes, also makes do with very little punctuation. Still widely
used even though it’s nearly as ancient as Fortran, RPG is tarred
with the brush of business and thus lacks respectability in aca-
demic circles. Perhaps it needs a touch from the fairy god-
mother’s OO wand?

CODING VERSUS WRITING

Maybe the layout scheme Ive described seems straightfor-
ward and thus leaves you at best lukewarm. Experience sug-
gests, however, that some readers might feel strangely
disquieted by this scheme, or even stirred to anger.

The problem seems to be psychological and springs from the
unfamiliar arrangement of commas and semicolons. In the early

1960s, someone wrote to one of the less formal programming
newsletters and suggested that semicolons in program code be
aligned vertically at the front of code lines. Many responses to
this proposal adopted an irrationally irate and somewhat inco-
herent tone. Clearly, some programmers’ dander was way up,
and few readers supported the scheme.

Nevertheless, it seemed like a good idea to me, and T adopted
it for the PL/I programming I did at that time and have per-
sisted in the practice. In the early 1980s, I taught a second-year
programming course at a tertiary education institution. The
Pascal examples I presented in class all had their semicolons
up front and vertically aligned. When this news reached my
colleagues they reacted swiftly, passionately, and negatively.

Such punctuation alignment was, they solemnly told me in
a protest meeting, “not structured programming.” After much
discussion, they agreed that I should at least inform the class
that the practice was rarely followed and generally frowned
upon, particularly by my fellow lecturers.

It’s hard to explain the heat of such reactions. I can only infer
that the literary practice of placing periods, commas, semi-
colons, and colons strictly at the immediate end of words is so
habitual that to suggest doing otherwise stimulates instinctive
opposition.

ing as somehow literary—must be deeply ingrained. It’s a

pity that I.D. Hill’s splendid article “Wouldn’t It Be Nice
If We Could Write Computer Programs in Ordinary English—
Or Would It?” (The Computer Bulletin, June 1972, pp. 306-
312) has not been more widely read. It thoroughly demolished
the idea that program code proper should have any literary
content—although program comments are quite another mat-
ter. Indeed, the computing profession would be wise to pro-
mote a more considered view of programming that contrasts
coding and literary endeavor.

A good start would be to abandon expressions like “pro-
gramming languages” and “writing programs” in favor of
“coding schemes” and “program coding.” That’s what they
really are, and that’s what we, or our technicians, really do.

c onfusing program code with prose writing—viewing cod-

Implmnt Payroll.Update Cls
{ Wth Person.Pyrl
{ Wrt Updt (typf (Name) N ,
typf (Gender) G ,
typf (Phone) Ph

) { Nm =N ;
Gndr = G ;
Phn = Ph ;
1} }

Figure 4. The code with separators spaced out to increase their visibility.

Implmnt Payroll.Update Cls
{ Wth Person.Pyrl
{ Wret Updt (typf (Name) N
, typf (Gender) G
, typf (Phone) Ph

) {Nm =N
; Gndr = G
; Phn = Ph
1} }

Figure 5. The code with punctuation spaced out and aligned vertically.

Adopting such terminology consistently in our talk and writ-
ing would dispel loose thinking about what programmers do,
both for programmers themselves and for the profession and
its public at large.

Neville Holmes is a lecturer under contract at the University
of Tasmania’s School of Computing. Contact him at neville.
holmes@ utas.edu.au

COMPUTER

for computer

Circulation: Computer (ISSN 0018-9162) is published monthly by the IEEE Computer Society. IEEE Headquarters, Three Park Avenue,
17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; voice (714) 821-8380; fax (714) 821-4010; IEEE Computer Society Headquarters,1730 Massachusetts
Ave. NW, Washington, DC 20036-1903. IEEE Computer Society membership includes $13 for subscription of Computer magazine
($13 for students). Nonmember subscription rate available upon request. Single-copy prices: members $10.00; nonmembers $20.00.

This magazine is also available in microfiche form.

Postmaster: Send undelivered copies and address changes to Computer, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855.
Periodicals Postage Paid at New York, New York, and at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail (Canadian Distribution) Agreement Number 0487910. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service descriptions, reflect the author’s or firm’s opinion.
Inclusion in Computer does not necessarily constitute endorsement by the IEEE or the Computer Society. All submissions are subject

to editing for style, clarity, and space.

November 2000 127

