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Abstract

Marine propellers operate in unsteady non-uniform wake regions generated by the hull
and control surfaces subjecting the propeller to unsteady loading. Hydroelastic tailoring
of propeller blades is a method to reduce unsteady loading as a propeller blade passes
through a wake deficit. This project seeks to gain greater insight into the effect of hy-
droelastic tailoring on a propeller by simplifying the problem into a single hydrofoil with
a sinusoidal pitch oscillation. In this study, a hydrofoil with a NACA 0009 section and
a trapezoidal planform area was used to investigate bending hydroelastic effects numeri-
cally using fluid-structure interaction modelling. The complexity of the numerical model
was varied in a systematic manner, starting with a two-dimensional foil through to a
three-dimensional two-way coupled fluid-structure interaction simulation. The commer-
cial package ANSYS was used with CFX for computational fluid dynamics and ANSYS
mechanical for the structural simulation.

In this study ANSYS was demonstrated to be a suitable tool to simulate fluid-structure
interaction in the case of an oscillating hydrofoil in pure pitch. The computational
fluid dynamics results were validated in two-dimensions using NACA 0012 and 0015
sections for both static and dynamic cases using published experimental results. In
three-dimensions, stainless steel and aluminium, were investigated in addition to the rigid
(uncoupled) case. This study varies independent parameters including Reynolds number,
reduced frequency, amplitude of pitch oscillation and the mean incidence controlling the
hydrofoil response.

Comparison of static one-way and two-way coupled results shows that there are small
but apparent differences between predicted bending deformations. However, bending de-
formations were shown to virtually have no effect on forces and moments, at least up to
moderate incidences. Rigid three-dimensional lift and moment predictions show similar
behaviour to both the two-dimensional unsteady viscous predictions and classical linear
inviscid theory for cases of zero mean incidence. In particular, lift and moment vary
linearly with amplitude of oscillation for all reduced frequencies. The lift and moment
amplitude minima occur at reduced frequencies of about 0.6 and 0.7 respectively for
both two and three-dimensional predictions; However, in the three-dimensional case the
amplitudes, relative to the lift and moment at static incidence are reduced. For a four
degrees mean incidence, the amplitudes of the lift and moment minima are significantly
reduced for two and three-dimensional predictions compared with the zero degree mean
incidence case. Above a reduced frequency of one, for four degrees mean incidence, the
rigid three-dimensional lift and moment amplitude predictions no longer vary linearly
with incidence amplitude. The dynamic coupled analysis typically showed bending de-
formations to be similar to those for static predictions at a zero mean incidence but to be
reduced for a four degrees mean incidence at maximum incidence. Lift and moment for
the dynamic coupled cases are only slightly influenced for reduced frequencies less than
one depending on material properties and Reynolds number. For a reduced frequency
greater than one the lift and moment show a slight increase and vary non-linearly with
the incidence amplitude.
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incidence angle (α = ᾱ). . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 Hysteresis 2D and 3D comparison for CL, CD and CM variation over
a cycle for mean incidence of 0◦ and incidence amplitude of 3◦ and
varying reduced frequency (k). . . . . . . . . . . . . . . . . . . . . . 65

3.16 Hysteresis 2D and 3D comparison for CL, CD and (CM) variation
over a cycle for mean incidence of 4◦ and incidence amplitude of 3◦

and varying reduced frequency (k). . . . . . . . . . . . . . . . . . . 66

3.17 2D and 3D comparison of the hysteresis loop for CL, CD and CM
over a cycle for mean incidence of 0◦ and reduced frequency of 0.785
and varying incidence amplitude (∆α). . . . . . . . . . . . . . . . . 68

3.18 Hysteresis 2D and 3D comparison for CL, CD and CM variation over
a cycle for mean incidence of 4◦ and reduced frequency of 0.785 and
varying incidence amplitude (∆α) . . . . . . . . . . . . . . . . . . . 69

3.19 2D and 3D comparison of computed Cp at a reduced frequency (k) of
3.142 at a incidence amplitude (∆α) of 3◦ for a mean incidence (ᾱ)
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cidence (ᾱ) of 0 and 4◦ at a Reynolds number (Re) of 1.12 × 106

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.10 Comparison of computed drag phase angle (ΦD) for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence
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Chapter 1

Introduction

Although there has been extensive investigation of Fluid Structure Interaction
(FSI) and/or aeroelastic effects in aeronautical applications, such as; gas turbine
blades, helicopter rotors, wind turbine blades and aeroplane wings; limited inves-
tigation of these effects have been conducted for low aspect ratio hydrofoils and
marine propellers. Helicopter rotor blades, wind turbine blades and aeroplane
wings are usually investigated using two dimensional (2D) fluid dynamics analysis.
Marine propellers are, in relation to the above, low in aspect ratio and inherently
three dimensional (3D). Additionally, marine propellers operate in unsteady non-
uniform wake regions generated by the hull and control surfaces subjecting the
propeller to unsteady loading.

Propellers have traditionally been made from a nickel-aluminium-bronze (NAB)
alloys, which have excellent corrosive resistance and a high yield strength but are
expensive to machine, prone to fatigue-induced cracking and have relatively poor
acoustic damping [2]. Possible alternatives to NAB cited by Mouritz et al. [80] are
stainless steel, titanium alloy, sonaston and composites. In recent times there has
been growing interest into the use of hydroelastic tailoring of propeller blades to
reduce the acoustic signature, dampen vibrations, delay cavitation and broaden the
efficiency peak. Hydroelastic tailoring makes use of material properties to alter the
amplitude of deflection. This varies the geometry and the flow physics to favourably
alter the resulting response of the structure and delay onset of cavitation.

This chapter introduces the concept of hydroelasticity, previous and related work to
propeller hydroelasticity, motivation and the link from a propeller to an oscillation
hydrofoil and methodology undertaken in this thesis.

1.1 Hydroelasticity

Hydroelasticity is akin to aeroelasticity in which significant mutual interaction oc-
curs between inertia (dynamics), elastic (solid mechanics) and fluid dynamics [25].
Hydroelastic phenomena can be visualised using items in our everyday environment,
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such as; a tree that responds to the wind and bends, seaweed or kelp flutters in the
tide reacting to the turbulent flow; a flag flapping or a leaf deforming in the wind.
Examples of hydroelastic phenomena in sailing is the effect of a composite mast
bending depending on whether the yacht is sailing upwind or downwind [6, 79];
and a sail adapting shape depending on the separated regions and the fluid flow-
ing around it [102]. Figure 1.1 shows a schematic of a union plot with each circle
representing a field of study relating to hydroelasticity. Where the circles overlap
a combined area is produced symbolising a situation were each field of study has
an influence on each other. These areas overlap producing the following areas of
study (figure from [49] adapted to hydrodynamics):

 

static 

hydroelasticity 
maneuvering 

/flight mechanics 

structural 

dynamics 

dynamic 

hydroelasticity 

fluid dynamics 

Figure 1.1: Schematic of the field of hydroelasticity [49]

1. Between elasticity and dynamics (structural dynamics);

2. Between fluid dynamics and dynamics (maneuvering or flight mechanics);

3. Between fluid dynamics and elasticity (static hydroelasticity),
Where inertial forces have little effect; and,
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4. Among all three (dynamic hydroelasticity),
Where the inertial forces become important, and phenomena such as flutter,
galloping or vortex induced vibration occur.

Any of areas in points 1, 3 or 4 can fall under the hydroelastic banner but due to
historical reasons only points three and four tend to be considered hydroelastic [11].
It can be difficult to distinguish between static and dynamic hydroelasticity as the
change can be dictated by the point at which the inertial interaction is significant
or there is a natural mode of vibration in the static problem that may cause an
instability forcing the system dynamic.

A common term used when discussing hydroelasticity is FSI: a descriptive term
that explains the physics during a hydroelastic reaction, as shown in Figure 1.2.
This figure shows the positive feedback of the system. In a static FSI case, fluid
flow and the structure are coupled through the force exerted on the structure by the
fluid, resulting in the fluid force causing the structure to deform. As the structure
deforms, its orientation to the flow changes, and the fluid force may change. The
orientation and velocity of the structure relative to the fluid flow determines the
fluid force. As the fluid exerts a force on the structure, the structure exerts a
reaction force on the fluid [11].

 

FLUID FORCE ON STRUCTURE 

Magnitude 

Coherence 

Time lag 

STRUCTURAL DYNAMICS 

Natural frequency 

Mass 

Damping 

Vibration amplitude 

FLUID/STRUCTURE BOUNDARY MOTION 

Oscillating separation 

Local surface velocity 

Instantaneous angle of attack 

Motion relative to a gap 

FLUID DYNAMICS 

Velocity, density, viscosity 

External flow field 

Turbulence 

Vortices 

Figure 1.2: Feedback loop between the fluid and structure [11]
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1.2 Marine Propellers

Mouritz et al. [80], reviewed recent composite applications in naval ships and sub-
marines. Composites for marine propellers have the advantage that fibres can be
aligned with the major hydrodynamic loadings and centripetal forces, to minimise
strain. Improved vibration damping properties and fatigue performance can also
be achieved. Composites have the potential to reduce the magnitude of resonant
vibrations in the engine and propeller shaft by about 25%, resulting in less hull
vibration and noise [80]. Other possible benefits include lower electrical/magnetic
signatures, lower noise signatures, reduced corrosion and increased cavitation in-
ception speeds by using flexible blades [80].

Milcachy et al. [78] proposed a method for the design of flexible composite shape-
adaptive propellers. They used a steady flow analysis with a linear propeller’s
variation in efficiency with respect to advance ratio. Applying an iterative opti-
misation they found an optimum loaded shape, then derived the unloaded shape
and resulting composite lay-up for a hydrofoil and a propeller. They also proposed
a ‘closed form’ expression for the efficiency gain. They did not include any dy-
namic or vibration considerations, but focused on the structural aspect with little
information about the nature of the hydrodynamic loading.

1.2.1 Experimental Modelling

Searle et al. [85] tested and completed sea trials with four composite propellers
and a NAB propeller all with the same geometry for benchmarking. These tests
were preliminary but demonstrated that composite propellers could be as efficient
as the NAB propeller. Secondly, the tests showed that it is possible to tailor the
elasticity of the material to change the shape of the propellers efficiency envelope.

Gowing et al. [40] conducted experiments on a self twisting hydrofoil. The foil was
constructed using laminated construction techniques to produce an orthotropic
composite material that twists as the load is applied. They thought that this
concept could be utilised on a propeller blade so that the blade would twist in
response to loads. The twisting results in the tip deflecting and reducing the loading
and strength of the tip vortex and the likelihood of cavitation. This demonstrated
hydroelastic tailoring of the foil can be utilised to delay cavitation, with the lift
and drag characteristics remaining unchanged.

As part of a three year Office of Naval Research (ONR) sponsored project, an
experimental investigation of flexible composite propellers was conducted by Chen
et al. [24]. They published the design, fabrication and testing of pitch-adapting
composite propellers. They investigated the potential performance improvements
through pitch adaptation with composite propellers through delayed cavitation and
vibration performance, reduced weight and manufacturing cost. Lifting-surface
theory, panel methods and finite element analysis (FEA) were used throughout
the design phase to optimise the shape whilst coupling hydrodynamic loading with
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structural deformation. The loaded body was calculated in FEA to obtain the
deformed shape. This deformed shape was then used to recalculate fluid forces.

Three propellers were selected out of the final four designs; one rigid (P5474) and
two pitch adaptive. The rigid propeller was not truly rigid and did exhibit some
change in rake. Of the two flexible propellers, P5475 had a larger pitch change
than P5487. The experimental results showed the efficiency improvement was up
to 5% for the flexible propeller when compared with the rigid. To provide some
context, Breslin and Andersen [17] provides some information about unconventional
propellers that details power reduction in percentages for ducted propellers of 5-
20%. Although perhaps a situation closer to hydroelastic reponse is an optimization
problem with an improvement in efficiency of approx 4% [56] or a 6% improvement
due to addition of antifouling paint[57].

The flexible propeller’s performance improvements were more significant in wake
inflow than in open water. This was due to each blade having the ability to au-
tomatically adjust its pitch distribution to better align to the local variation in
the wake as it rotated [106]. In the paper’s review discusion, Mr Eckhard Prae-
fke noted, as shown in figure 1.3, that the deflection of the two flexible propellers
(P5475 and P5487) were almost directly in line but the rigid propeller (P5474)
showed the opposite behaviour. He suggested that perhaps the behaviour might
be the result of the effect of added mass on the dynamic blade deflections.
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Figure 1.3: Measured and predicted pitch change of P5474, P5475 and P5487 in a
four cycle wake [24] showing the phase of three propeller’s with varying flexibility
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1.2.2 Numerical Modelling

Two of the most common terms when referring to the type of FSI are one-way and
two-way analyses. These terms reflect how the loads and deflections are transferred.
A one-way analysis solves the fluids and then uses the resultant loads to calculate
the structural deflection. A two-way model will iterate between the fluid and
structural models to obtain a converged solution.

Uncoupled Models

Classical hydrodynamic models of propeller action normally fall into four categories:
momentum or blade element models, lifting line models, lifting surface models and
boundary element models (BEMs) [20]. Momentum models proposed by Rankine
in 1865 are based on the axial motion of the water as the propeller is idealised as
a disk. This theory was based on three assumptions: the propeller consisted of an
infinite number of blades and hence did not account for blade shape; the propeller
operated in an ideal fluid; and, the propeller can generate thrust without causing
rotation in the slip stream [20]. This model was later modified which allowed the
propeller to impart swirl. This theory is known as the Rankine-Froude momentum
theory. In 1878 Froude developed blade element theory. Momentum or blade
element models are based on dividing the blade into a large number of spanwise
strips. Each strip can be regarded as a foil section subjected to a resultant incident
velocity [20]. This velocity consists of an axial velocity combined with a rotational
velocity, which varies linearly along the blade. Froude theory forms the basis of
modern blade element methods [20].

The lifting line model is a mathematical model of propeller action; it assumes the
aerofoil blade sections are replaced by a single line vortex whose strength varies
from section to section. Lifting line models are ideal for aeroplane propellers due
to their high aspect ratio but not for marine propellers with a low aspect ratio [20].
The vortex-lattice model (VLM) are a subsection of lifting surface models. The
VLM is based on the concept of straight line segments of vortices joined together
to make vortex panels that cover the propeller blade [20]. The VLM places vortex
and source lattices on the mean camber surface of the blade and therefore does
not capture the effect of blade thickness [64]. The VLM was first applied to an
unsteady propeller by Kerwin and Lee [62].

BEMs or panel methods are based on dividing the propeller surface into elements
and applying the appropriate sources/sinks (no circulation), and dipoles (allows
circulation). One well known BEM code for predicting propeller flow is PROPCAV
(PROPeller CAVitation) [63]. The BEM code has been developed to model a 3D
cavitating unsteady flow model of a propeller by Young and Kinnas [109] and has
been further expanded to include supercavitating propellers [108, 110–112] and
surface piercing propellers [104, 107, 108, 112, 113]. Both the lifting surface and
BEM methods accounted for viscous drag by standard drag coefficients and have
been extended to couple with structural codes.
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Coupled Models

Traditionally fluid forces and structural responses were calculated uncoupled. Fluid
forces were calculated assuming an infinitely rigid blade with no geometric variation
and then used to calculate the structural deflections. The first published attempt
to estimate the strength of propeller blades was made by Taylor [92]. To apply the
beam stress formula to a propeller he assumed the blade was a cylindrical section.
The deflections were based on a simple cantilever beam loaded linearly over the
length [84]. The simple cantilever beam approach worked well for conventional
blade geometry without skew and with relatively high aspect planforms [4]. In
all of these models, the fluid loads acting on the blade surface were obtained by
employing either the quasi-steady method, lifting line method, or lifting surface
method.

In 1962 Breslin [18] wrote a review and extension of theory for near-field propeller-
induced vibratory effects. In 1980 Brooks [19] developed a theory for a flexible
propeller operating in a spatially non-uniform inflow and conducted a series of ex-
perimental studies. The theoretical model is based only on the first mode of vibra-
tion. This study concluded that propellers in non-uniform flow fields can develop
widely differing unsteady response where the excitation is near the blade’s funda-
mental natural frequency. The hydrodynamic induced damping is a key contributor
to blade behaviour. The damping is determined primarily by blade geometry and
the fundamental mode shape. In some cases, the unsteady loading near resonance
may reduce the unsteady forces over a large frequency range. This occurs typically
for propellers with large hydrodynamic damping and for loading frequencies above
the propeller’s natural frequency [19].

Two-Way FSI

Atkinson and Glover [4] in 1988 made the first step in creating a practical design
tool to account for two-way coupled FSI. They used an unsteady lifting surface
analysis developed by Szantyr [91] coupled with a finite element model using thick
shell elements to analyse the performance of a propeller. This procedure was ap-
plied to both a highly skewed and a low aspect propeller blade. The hydroelastic
effects of the highly skewed propeller showed that it can generate high stress re-
gions and significantly affect the propeller performance. The low aspect propeller
behaved differently such that in both cavitating and non-cavitating cases the blade
exhibited high local deflections around the outer edge and near the blade tip. In
the cavitating analyses the hydroelasticity greatly affected the size and shape of
the produced cavity.

Lin and Lin [69] developed a non-linear coupling procedure with a non-cavitating
steady lifting surface method. The calculation included thrust, torque and effi-
ciency coefficients, and deflections. The coupling procedure used displacements as
unknowns for the structural calculations and vortex strength in the fluid. They
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concluded that reducing blade thickness increased deflection, thrust and torque but
did not alter efficiency. This work considered the effect of geometric non-linearity.

Young developed a fully coupled 3D BEM combined with a 3D FEM to determine
the hydroelastic response of surface piercing [104, 109, 110], supercavitating [111]
and cavitating [109] propellers. Young used the BEM code PROPCAV coupled
with the 3D transient FEM code DYNAFLOW, as well as ABAQUS in later work
with composite propellers [105, 116]. Young [104] details two hydroelastic coupling
methods, a BEM to a FEM and BEM to a single degree of freedom (SDOF) model.
Details of the BEM and FEM coupling can be found in [105, 110, 111]. The hydroe-
lastic coupling method assumed small blade deformations, allowing linear decom-
position of the perturbation velocity potential. Applying Bernoullis equation, the
total pressure was expressed in terms of the rigid and elastic blade components,
with the change in load stiffness and damping matrices due to the contribution
of centrifugal and Coriolis’ forces given in Young [105]. Added mass and hydro-
dynamic damping matrices were computed using the BEM and are superimposed
via user-defined hydroelastic elements in ABAQUS [105, 116, 117]. Coupling of
the hydrodynamics with a structural analysis model to include the effect of blade
vibration is described in [113].

Young et al. [117] used the BEM/FEM model to predict steady and unsteady
performance of flexible composite propellers operating in a spatially-varying wake.
They compared the results of rigid and flexible blades traversing a wake deficit. The
rigid composite propeller as described in [117], undergoes predominantly bending
with minimal twisting [114]. Whereas the flexible propeller undergoes coupled
bending and twisting deformations. To validate their predictions Young [106, 116]
and Young et al. [117] compared their results with experimental data for two com-
posite propellers from tests conducted by the Naval Surface Warfare Center, Carde-
rock division (NSWCC) as described in the previous section. These tests were con-
ducted in open water [105, 106, 117] and behind a four cycle wake screen [106, 117].
The measurements included thrust, torque, blade deflection, cavitation inception,
and dynamic strains. From these studies, Young [105] concluded that flexible com-
posite propellers can achieve higher propeller operating efficiency than their metal-
lic counterparts by allowing the blade to de-pitch near the tip to reduce the load.
This work makes an argument for the need for hydroelastic prediction in the case of
more extreme geometries (highly skewed), where high stress concentrations, severe
blade distortions and/or resonant blade vibrations may occur [115]. Young con-
cluded that pure bending without twisting has negligible influence on the propeller
performance [114]. The flexible propeller showed an improved efficiency either side
of the design advance coefficient (J) value [114].

Liu and Young [70] used a BEM/FEM coupled solver, developed by Young to
study the deformation coupling effects on hydroelastic behaviour of composite ma-
rine propellers. A sample design was used to investigate the influence of material
properties and fibre orientations on the twisting deformation. A correlation was
identified between the twisting deformation, pitch alteration, and propeller effi-
ciency. Young et al. [118] investigated the effects of the anisotropic behaviour of
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composite marine propellers in both open water and an unsteady wake. Preliminary
analyses indicated that self-twisting composite propellers may be more susceptible
to hydroelastic instability failures during ‘Crash-back’. To investigate this oper-
ating condition advanced FSI analysis is necessary. ‘Crash-back’ is an emergency
operating condition of a submarine when the submarine reverses its power while
travelling forward [87].

1.3 Motivation

This project seeks to gain greater insight into the effect of hydroelastic tailoring
on a submarine propeller by simplifying the problem into a single hydrofoil with a
sinusoidal pitch oscillation. This approach enabled the investigation of the effect
of bending deformation in isolation using a simple hydrofoil analogy to a propeller
operating in a non-uniform flow. This enables investigation into hydroelastic trends
across a broad range of oscillation frequencies and changes in amplitude without
experimental limitations.

Recent increases in computer power coupled with advances in numerical methods,
enables coupled two-way analyses of FSI in a reasonable time frame for simple
geometries and reasonable grid sizes. This is not to say that numerical simulations
can completely replace experiments, since experiments are essential to validate
computational simulation.

The major motivation of this thesis is to use RANSE methods in FSI prediction
and to investigate the effect of bending deformation in isolation using a simple
hydrofoil analogy to a propeller operating in a non-uniform flow.

1.4 Problem Development

The propeller operates in the aft body of a submarine. A ‘typical’ submarine
consists of four control surfaces on the aft body and a fairwater in the mid section
as shown in Figure 1.4. The shape of the after body and control surface preceding
the propeller causes deficits in the wake. As the propeller blade rotates through
these deficits the local blade section incidence and velocity magnitude vary. The
blade response will vary depending on the dynamic, elastic and hydrodynamic
properties of the propeller and coupling effects of different motions, added mass
and damping.
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Figure 1.4: DARPA SUBOFF submarine geometry

To compare a hydrofoil with a propeller; the ‘gust response’ of a propeller blade
passing through a wake deficit is compared with a 2D foil (flat plate) unsteady
sinusoidal ‘gust response’, see Figure 1.5.

Figure 1.5: Foil (flat plate) in a travelling gust

Blade sections are first set at an angle to the plane of rotation according to the
local pitch, see Figures 1.6 and 1.7 for propeller notation and angle definitions.

10



Figure 1.6: Propeller notation diagram [14]

Figure 1.7: Helical vortex element and inflow velocities [17]
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βp(r) = arctan
P (r)

2πr
= arctan

P (r)

Doπ
= helixangle (1.1)

α = βp − βi = βp(r)− arctan
U∞(1 + a)

rωp(1− ar)
(1.2)

The terms aU∞ and a′rωp are the induced velocities. From Breslin and Ander-
sen [17], when the propeller is lightly loaded the free or trailing vortices can be
considered to be convected by the undisturbed flow relative to the blades and
consequently induced pitch angle (βi) can be replaced by the fluid pitch angle:

βa(r) = arctan
Ua(r)

rωp
(1.3)

which removes the induced velocities and implicitness in equation 1.2. Therefore
the lightly loaded (linear) propeller is analogous to a wing where trajectories of the
trailing vortices are assumed to be independent of the wing loading. The advance
coefficient (J) is:

J =
U∞
NDo

=
2πU∞
ωpDo

(1.4)

From Breslin and Andersen [17] we can consider each blade individually as it ro-
tates through a spatially distributed wake in terms of harmonics. With the wake
harmonic order of numbers (n), the wavelength at any radius is:

λp =
2πr

n
(1.5)

and the frequency of rotation (N) of the propeller is:

N =
ωp
2π

=
U

λp
=
f

n
(1.6)

or:

ωi = nωp (1.7)

= n(2πN) (1.8)

Then, using general expressions for a travelling gust and knowing the wavelength
from equation 1.5 the velocity variation of the first harmonic in time becomes:

Ua = U∞ +
∆U

2
(cos (nωpt)) (1.9)

Substitution of equation 1.9 into equation 1.3 gives:
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βa(r) = arctan

(
U∞ + ∆U

2
(cos (nωpt))

rωp

)
(1.10)

Substitution of equation 1.4 into equation 1.10 gives:

βa(r) = arctan

((
J

π

)(
1−

(
∆U

2U∞

)
(cos (nωpt))

))
(1.11)

α = arctan
P (r)

Doπ
− arctan

((
J

π

)(
1−

(
∆U

2U∞

)
(cos (nωpt))

))
(1.12)

Then assuming a P(r)/Do of 1 and a J of 1 gives:

α = arctan
1

π
− arctan

((
1

π

)(
1−

(
∆U

2U∞

)
(cos (nωpt))

))
(1.13)

Because we wish to find the maximum variation in α we need the difference between
the maximum and minimum from equation 1.13 which gives:

∆α = arctan

((
1

π

)(
1−

(
∆U

2U∞

)))
− arctan

((
1

π

)(
1 +

(
∆U

2U∞

)))
(1.14)

To obtain the equivalent propeller reduced frequency we substitute 1.8 and 1.6 into
the standard reduced frequency equation from Sears theory [13], [17], [68]:

k =
ωc

2U
=
nc

2r
(1.15)

Equation 1.15 shows that the reduced frequency of a propeller can be adjusted by
the chord length (c) to radius ratio (r) and is dependent on the harmonic number
(n).

When the harmonic numbers and mean axial velocities are combined with the
derivation, an idealised comparison of a propeller to a single hydrofoil can be made.
For this comparison the harmonic with the largest amplitude and resulting change
in axial amplitude is needed. The flow in the aft region consists of the boundary
layer of the hull and the wake from the control surfaces and fairwater. Results from
experiments investigating the flow around the axi-symmetric body of the DARPA
(Defence Advanced Research Project Agency) SUBOFF model with various ap-
pendages shows the largest harmonic amplitude is generated by the four control
surfaces [42, 52]. Large amplitudes are present at harmonic numbers (n) of 4, 8
and 12 and an approximate change in axial velocity ( ∆U

Uref
) ≈ 0.23 respectively is

shown in Figures 1.8 and 1.9. These correspond to a reduced frequency (nc/2r)
of 0.8, 1.6 and 2.4 assuming a c/r ≈ 0.4 and a change in amplitude of oscillation
(∆α) ≈ 1.9◦.
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1.5 Methodology

This thesis numerically models a flexible 3D hydrofoil with a sinusoidal incidence
variation by systematically increasing the model complexity. To be able to accu-
rately predict and model FSI with a stable numerical solution, a solid understanding
of the rigid body dynamics was required. This was undertaken by the investigation
of the rigid body dynamics behaviour both statically and dynamically. To validate
the RANSE codes ability to predict unsteady behaviour in comparison to classical
theories, and other numerical methods such as the panel codes. This methodol-
ogy allowed for the numerical model’s sophistication to be built-up in a systematic
manner starting with a two-dimensional hydrofoil. The steps followed were:

1. 2D rigid body fluid dynamics,

(a) Steady state/stationary

(b) Unsteady/dynamically oscillating

2. 3D rigid body fluid dynamics,

(a) Steady state/stationary

(b) Unsteady/dynamically oscillating

3. 3D steady two-way coupled FSI, and:

4. 3D unsteady two-way coupled FSI.

The first step using a 2D model enabled validation with experiments and compari-
son to analytical theories such as; Theodorsen and Sears, panel code and evaluation
of the available RANSE models. This is detailed in Chapter 2. Chapter 3 uses the
2D mesh extended in the spanwise direction to create the 3D model. This 3D
model is compared to the 2D results and then two-way coupled and calculated
statically (Chapter 4) and dynamically (Chapter 5).

1.5.1 Geometry selection

A NACA 4 digit section was selected as the base section for the hydrofoil. The 4
digit NACA section was first published in 1933 for the purpose of practical design
and construction of airplane wings [50]. The section was chosen because; the section
has good stall characteristics, the centre of pressure movement is small across a large
range of Reynolds number, the boundary layer transitions to turbulent flow near the
leading edge is stable and transitions in the same location regardless of operating
conditions. This minimizes the effect of transition on the modelling. A trapezoidal
planform of 120 mm root chord length, 60 mm tip chord length and 300 mm span
was chosen giving an aspect ratio of 2 as defined in equation 1.16. This planform
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or aspect ratio was chosen as being representative of a typical submarine propeller
blade.

AR =
b2

Aref
=
b

c̄
(1.16)

A constant thickness of 9% (NACA 0009) was chosen for the hydrofoil to provide
sufficient flexibility to allow an FSI response. The structural properties of the
hydrofoil are described later. For details of the section shape coordinates see Abbott
and von Doenhoff [1].

The fluid domain geometry for the numerical model was based on the water tunnel
test section of the AMC cavitation research laboratory (CRL). The test section is
not representative of the freestream and some blockage will occur [5]. Modelling
the CRL test section will allow for comparisons when the experimental tests are
conducted in further work and account for some of the blockage effects. The CRL
water tunnel test section is 2.60 m long and has an inlet cross section of 0.60 m
wide x 0.60 m deep and an outlet 0.60 m wide x 0.62 m deep with the sloping face
on the opposite side to were the model is mounted [15].

The inlet was simplified for ease of a structured grid as shown in Figure 1.10. The
domain was assumed to be a constant cross section throughout, to simplify the
model. The inlet was located 2.5 c upstream (at upper left of Figure 1.10) from the
leading edge, the outlet was located 11.5 c (at bottom right of Figure 1.10). The
walls of the tunnel were modelled to match the blockage of the tunnel section and
interaction of the foil with the tunnel boundary layer. The shortening of the inlet
length will not allow the boundary layers to be developed to the same thickness as
in the tunnel test section but there the interaction is modeled.

1.5.2 Fluid Dynamics

The dimensionless parameters of interest in the fluid model include Reynolds num-
ber (Re), co-efficient of pressure (Cp), wall shear co-efficient (Cτ ), lift co-efficient
(CL), drag co-efficient (CD) and moment co-efficient (CM): Reynolds number is
defined in the following equation:

Re =
ρU∞c

µ
(1.17)

The static 2D results are compared with experimental results for Cp:

Cp =
p− p∞
1
2
ρU∞

2 (1.18)

The wall shear (Cτ ) (equation 1.19) is compared between Panel code (XFOIL) and
RANSE (ANSYS) numerical models:
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Figure 1.10: Computational domain

Cτ =
τ

1
2
ρU∞

2Aref
(1.19)

The force coefficients CL, CD and CM in equations 1.20, 1.21 and 1.22 respectively
are compared at all stages of analysis. These coefficients are also used for grid
convergence studies.

CL =
L

1
2
ρU∞

2Aref
(1.20)

CD =
D

1
2
ρU∞

2Aref
(1.21)

CM =
M

1
2
ρU∞

2Arefc
(1.22)
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1.5.3 Structural Parameters

The dimensionless parameter investigated on the structure at the tip of the hydro-
foil is:

CδL =
δEI

LS3
(1.23)

This parameter is a combination of non-dimensional deflection (δ/L) and the stiff-
ness parameter for a cantilever beam (kstiff = EI/L) [95]. This parameter and
the hydrofoils twist (θ) is used to compare the deflections in the coupled analyses
at the tip of the hydrofoil.

1.5.4 Dynamics

The non-dimensional parameters of interest in the dynamic analyses are the fre-
quency ratio, reduced frequency and reduced natural frequency as described in
equations 1.24, 1.25 and 1.26. The origins of the reduced frequency will be ex-
panded on in Chapter 2

frequency ratio =
f

fn
(1.24)

k =
1

reduced velocity
=

ωc

2U∞
(1.25)

kn =
ωnc

2U∞
(1.26)

1.5.5 Material Selection

Additional non-dimensional parameters of interest for material selection were the
density ratio equation 1.27, the frequency ratio and reduced natural frequency
equations 1.25 and 1.26.

density ratio =
ρm
ρw

(1.27)

By expanding equation 1.24 using fn = (1/2π)
√

(kstiff/m) [97] and (kstiff =
EI/L) [95] we find that:

f

fn
∝ E

ρm
(1.28)

Based on previously described parametric dependencies an isotropic homogeneous
material was selected. An isotropic homogeneous material was chosen for sim-
plicity and serves the purpose of minimizing variables when modelling the FSI.
Aluminium, stainless steel and brass were selected to investigate their specific non-
dimensional parameters in this modelling case. Table 1.1 compares the structural
properties of the three materials investigated.
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Table 1.1: Structural parameters

Stainless Steel Aluminium Brass Units

Density 7.75 2.77 8.50 T/m2

E 193 71 36 GPa
fn(1st) in air 106 108 - Hz
fn(1st) in water 66 46 36 Hz

ρm/ρw 7.76 2.77 8.52
E/ρm 24.87 25.61 4.22 1 x 106

Stainless steel and aluminium have been selected as their first mode of vibration
in air is less than 2% difference (Table 1.1). These two materials have different
mass ratios but identical reduced natural frequencies (first mode of vibration) in
air and similar reduced natural frequencies (first mode of vibration) in water. Brass
was not investigated in this thesis as it has a difference density ratio. The natural
frequencies in air were calculated using ANSYS CFX and then a flat plate approx-
imation was used to calculate the change in frequency due to imersion in water
from Blevins [12]. The modal calulation is desribed in chapter 5.

1.5.6 Test Matrix selection

The velocity range was determined by the CRL water tunnel limits of 2-12 m/s
giving the two Reynolds numbers of 3.36×105 to 1.12×106 (based on the root chord
corresponding to a freestream velocity of 2.5 and 8.3m/s). The reduced natural
frequency (kn) was calculated using the natural frequencies from Table 1.1. The
corresponding reduced natural frequencies in air and water at standard temperature
and pressure conditions is shown in Table 1.2.

Table 1.2: Structural natural frequency range

Stainless Steel Aluminium
kn in air@2.5m/s 16 16
kn in air@8.3m/s 5 5
kn in water@2.5m/s 10 7
kn in water@8.3m/s 3 2

Static incidence angles (α) of 0, 2, 4, 6, 8, and 10◦ were modelled. The static inci-
dence angles were run with a dynamically deformed mesh, which enabled a check
of the mesh behaviour at large angles of incidence. Ranges of reduced frequency,
0 − 3.1; incidence amplitude of 1, 2, 3 and 5◦; and, mean dynamic incidence of 0
and 4◦ were selected for the dynamic numerical models. These values are based
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on the problem development in section 1.4 which used a propeller having an esti-
mated reduced frequency of (nc/2r) of 0.8, 1.6 and 2.4 and a change in incidence
amplitude of approximately 1.9◦. The mean incidence of 0◦ was selected to enable
comparison with previous analytical theory and the 4◦ mean incidence case. The
mean incidence of 4◦ was selected as propeller blades typically operate at a fluid
pitch of approximately 4◦. Based on these numbers a test matrix was selected for
the rigid body dynamic case and is shown in Table 1.3. The rigid 2D and 3D ma-
trices were larger than the coupled case due to the smaller run time. This enabled
an extensive investigation of the trends of CL, CD and CM and the respective phase
angle to the pitch oscillation to determine the coupled test matrix. The coupled
dynamic run matrix is shown in Table 1.4.

Table 1.3: NACA 0009 oscillating about 1/2c run matrix RANSE rigid body dy-
namic

k ᾱ ∆α
0.031 0,4◦ 1,2,3,5◦

0.094 0◦ 3◦

0.157 0◦ 3◦

0.188 0◦ 3◦

0.251 0◦ 3◦

0.314 0,4◦ 1,2,3,5◦

0.534 0◦ 3◦

0.785 0,4◦ 1,2,3,5◦

1.571 0,4◦ 1,2,3,5◦

3.142 0,4◦ 1,2,3,5◦
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Table 1.4: NACA 0009 oscillating about 1/2c test matrix RANSE dynamic hy-
droelastic

k ᾱ ∆α
0.031 0,4◦ 3◦

0.314 0,4◦ 3◦

0.785 0,4◦ 3◦

1.571 0,4◦ 3◦

3.142 0,4◦ 3◦
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Chapter 2

Numerical Validation

To be able to accurately predict and model FSI with a stable numerical solution a
solid understanding of the rigid body dynamics was required. A review of current
methods both analytical and numerical for prediction of a hydrofoil undergoing a
sinusoidal pitch variation in two and three-dimensions is described in this chapter.
This review provides a basis for selection of the CFD model used in later chapters
and validation of the computation grid and moving mesh method in 2D. Both
steady state and a rigid 2D oscillating foil in pure pitch is detailed in this study.

Steady state studies were conducted by dynamically deforming the mesh to the
required incidence angle, then using the deformed mesh to compute the RANSE so-
lution. Grid independence and temporal convergence were undertaken for a NACA
0009 section with geometrically similar meshes used for experimental validation.
Validation was conducted for steady state using experimental results from Gregory
and O’Reilly [41] with a NACA 0012 section. Dynamic validation was conducted
with results from Piziali [83] using a NACA 0015 section. The validation studies
were conducted with k − ε, k − ω and Shear Stress Transport (SST) turbulence
models to assess each model’s effectiveness. The use of different foil sections for
the convergence and validation studies was necessary to provide direct comparison
with available experimental data. Preliminary work for this chapter was published
by the author of this thesis in Hutchison et al. [53].

Additional computational comparisons were undertaken between panel codes and
RANSE simulations to expand on the static and dynamic properties of the models
and to investigate their limitations. Unsteady dynamic results for RANSE simula-
tions for a reduced frequency range of 0.031-3.142 with an oscillation incidence up
to and including 5◦ with no cavitation were evaluated for comparison with results
from other chapters.
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2.1 Previous and Related Work

In 1922 studies began into the field of unsteady flow about airfoils. In 2005, Cebeci
et al. [23] wrote in regard to Prandtl.

...in 1922 he proposed the problem of incompressible flow past an
oscillating airfoil neglecting the influence of viscosity and thus to take
the Laplace equation as a governing equation. He pointed out that,
according to Kelvins theorem, every change in CL must be accompanied
by the detachment of a vortex from the airfoils trailing edge.

In 1924, Birnbaum showed that the reduced frequency parameter has a special sig-
nificance in the study of an oscillating airfoil [23]. The reduced frequency parameter
is a measure of the wave length of the shed vortical wake from the oscillating foil
to the semi-chord.

The characteristics of unsteady flow about a foil are significantly different from
those for a steady flow. For unsteady flow the stagnation point will vary with
time and flow reversal will begin to develop in the velocity profiles. Unsteady flow
about a foil can have flow reversal without stall and the point of zero wall shear
does not necessarily coincide with stall [23]. The stall characteristics of an unsteady
foil can exceed those of the static case and are significantly affected by frequency
and amplitude of oscillation. An unsteady foil is generally referred to as pre-stall,
light stall or dynamic stall. The pre-stall condition is when the foil is oscillated in
the range prior to static stall, light stall is normally defined as oscillating the foil
around the static stall incidence and dynamic stall or post stall is oscillating the
foil to an amplitude higher than static stall. This thesis only concentrates on the
pre-stall range with a maximum incidence analysed in the dynamic case of 9◦, see
Section 1.5 for complete test matrix selection details.

Since 1924, work in this area has been progressed in various experimental, analyt-
ical and numerical studies. An overview of the previous and related work for 2D
oscillating hydrofoils is given in the following sections.

2.1.1 Experimental

NASA in the late 1970s and early 1980s conducted a number of experiments into
dynamic stall and unsteady loading of airfoils [21, 22, 48, 71–73, 76]. These studies
obtained CL, CD and CM measurements by integrating surface pressures. They
also investigated boundary layer transition, separation and reattachment charac-
teristics, as well as flow reversal and chordwise unsteady pressures. McCroskey
et al. [73] found that in general, unsteady motion is more important than airfoil
shape when determining dynamic stall characteristics.

In 1982, McCroskey and Pucci [76] conducted ten specific experiments on the foil
sections; NACA 0012, Vertol VR-7 and NLR-7301 undergoing pitch oscillations
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to evaluate unsteady viscous theories and computation methods. McCroskey and
Pucci [76] and McCroskey [75] identified four distinct regimes of viscous-inviscid
interactions corresponding to varying degrees of unsteady flow separation. These
were; no stall, weak interactions; stall onset, mild interactions; light stall, strong
interactions, and; deep dynamic stall, viscous dominated. If a foil oscillates with
a maximum incidence which is below the static stall incidence, the boundary layer
on both upper and lower surfaces will remain fully attached, except for a small sep-
aration bubble near the upper surface on the leading edge for maximum incidence
less than 5◦, which produces transition from laminar to turbulent flow. Jumper
et al. [60] conducted experimental studies for an airfoil undergoing constant pitch-
ing about the mid chord with an analytical prediction for CL. This paper showed
reproducibility of the results for pre-stall, dynamic stall and post-stall conditions.

Koochesfahani [65] demonstrated experimentally that thrust production for a foil
due to pitching motion occurs only above certain reduced frequencies. He also
found that the structure of the wake can be substantially modified by amplitude of
oscillation, frequency and shape of the wave form. In 1993, Piziali [83] conducted a
comprehensive set of experiments investigating the pressure distributions on a foil
undergoing pitching motions for 2D and 3D airfoils for the development of com-
putational and empirical methods. In 1994, Hart [43] investigated experimentally
unsteady flow induced by periodic change of incidence. These experiments pro-
vided details of the change in boundary layer profile on the suction and pressure
sides and phase lag for 2D and 3D hydrofoils for varying reduced frequency.

Tsang et al. [98] used a direct force measurement technique employing piezoelectric
load cells to investigate a 2D NACA 0012 section airfoil undergoing dynamic stall.
Experiments were carried out at a Reynolds number of 7.7 × 104 and reduced
frequencies of 0.005, 0.01, 0.02, and 0.04. They investigated the effect of reduced
frequency, mean dynamic incidence and amplitude of oscillation concluding that,
this range of reduced frequency in the pre-stall condition, has little effect on CLmax.
By using an FFT they suggested non-linear interaction between the pitching airfoil
and the fluid force by the presence of higher harmonics in addition to the primary
oscillation frequency.

Berton et al. [7–9] applied embedded Laser Doppler Velocimetry (LDV) to measure
velocity in the boundary layer of rotary wings and for oscillating or rotating models.
Models included a flat plate, airfoil and half wing in 2D and 3D configurations.
They carried out flow visualization on a NACA 0012 section airfoil at a Reynolds
number of 1 × 104 and 2 × 105 oscillating in pitch through stall conditions, using
smoke illuminated by a light sheet to take pictures of the wake sheet. These studies
focused on large incidence pitch variations and the characteristics of the laminar
separation bubble. They showed the different flow features during upstroke and
downstroke as reattachment, large separation bubble and high vortical flow.

Lee and Gerontakos [67] tested a NACA 0012 section foil at a Reynolds number of
1.35 × 105 oscillating sinusoidally at reduced frequency of 0.025, 0.05, 0.5 and 0.1
to investigate the behaviour of the unsteady boundary layer. Closely spaced arrays
of hotfilm sensors were used to investigate pre-stall, stall and post-stall conditions.
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To supplement the hot-film data, surface pressure distributions, hot-wire wake
measurements and smoke-flow visualisations were obtained. Lee and Gerontakos
found only small values of reduced frequency were required to delay the onset of
the various boundary-layer events, and produce significant variations in magnitude
of CL, CD and CM peak values.

2.1.2 Analytical Solutions

Analytically determining airloads on an oscillating airfoil was first attempted by
Glauert [39] in 1929 and later solved by Theodorsen [94]. The theory developed
by Theodorsen [93], Von Karman and Sears [100], and Wagner [101] is some of the
most referenced literature used to explain unsteady loading for unsteady flow about
thin-airfoils. These analytical solutions were for both frequency and time domains.
They all give exact closed-form solutions for the pressure distributions and hence
the forces and moments for an airfoil either pitching or heaving for 2D incompress-
ible flow [68]. Theodorsen’s and Sears’ problem is compared in this chapter, as
comparisons in this thesis are made in the frequency domain. Comparisons with
Theodorsen’s prediction is made with the CFD solution in Chapter 3.

The approach of Theodorsen [94] gives a solution to the unsteady airloads on a 2D
harmonically oscillated airfoil in inviscid, incompressible flow subjected to a small
disturbance, shown in Figure 2.1(a). The airfoil is represented by the thick black
line of length c, the shed wake vorticity indicated by γw and the bound vorticity
on the foil is indicated by γb. Both the airfoil and the shed wake are represented
by a vortex sheet. The shed wake extends as a planar surface from the trailing
edge downstream to infinity. This assumption of a planar wake is justified if the
incidence angle disturbances remain small [68]. Theodorsen’s theory assumes any
possibility of lag in the adjustment of flow is applied at the trailing edge [10].
Bisplinghoff et al. [10] gives a detailed explanation of the mathematics behind
Theodorsen’s approach. Theodorsen’s theory introduces amplitude reduction and
phase lag effects on the circulatory part of the CL response.
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(a) Theodorsen

(b) Sears

Figure 2.1: Model of a thin airfoil encountering a sinusoidal vertical gust [68].
Comparison of Theodorsen and Sears problem derivations.

Von Karman and Sears [100], analysed this problem as a thin airfoil moving through
a sinusoidal vertical gust field Wg. The gust is considered as an up wash velocity
that is uniformly convected by the freestream, as shown in Figure 2.1(b). The
assumptions are that the flow can be considered 2D and the airfoil thickness and
the amplitude of oscillation are small compared with the chord [86]. In Von Karman
and Sears [100], the mid chord was the reference point for the original work. The
Sears function can be adapted for a leading edge reference point as this is equivalent
to a frequency dependent phase shift. The lift and moment in Von Karman and
Sears [100] are both expressed in components: Quasi-steady, apparent mass and
wake effect. Both Theodorsen and Von Karman and Sears used Bessel functions
to solve for the coefficients.

The significance of the apparent mass contribution to both total CL and phase
angle for pure pitch oscillation about the mid chord is shown in Figure 2.2 (CL is
normalised by 2πᾱ where, α = ᾱsinωt considering a pure harmonic variation in
α, that is α = ᾱeiωt). The phase of the force lags the oscillation amplitude which
means the lift build-up occurs more slowly than the rate of oscillation indicated by
the reduced frequency (Figure 2.2(b)).

26



 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

N
o
rm

al
is

ed
 l

if
t 

am
p
li

tu
d
e

k

Total lift
Circulatory(Theodorsen)
Apparent mass

(a) Lift amplitude

-40

 0

 40

 80

 120

 0  0.5  1  1.5  2  2.5  3  3.5  4

Φ
[d

eg
]

k

Total Phase
Circulatory(Theodorsen)

Apparent mass

(b) Lift phase

Figure 2.2: Circulatory and apparent mass contributions to unsteady lift response
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A comparison of the coefficients obtained from Theodorsen and Sears theories is
shown in Figure 2.3. The amplitude is shown in Figure 2.3(a) and the phase in
Figure 2.3(b). In these figures |C(k)| and |S(k)| are Theodorsens and Sears function
and |S ′(k)| is Sears function computed relative to the leading edge. These figures
show while the difference is small for reduced frequency less than 0.2 as reduced
frequency increases the error becomes increasingly large [61]. The unsteadiness of
the airfoil traversing a gust becomes significant above 0.1 or higher.

Kerwin [61] noted that the unsteadiness of the airfoil traversing a gust becomes
significant when the reduced frequency is above 0.1 or higher. Ericsson and Red-
ing [35] showed the Karman-Sears wake lag can be approximated by the constant
lag effect only as long as reduced frequency is low, approximately less than 0.16
(k= ωc

U∞
). At higher frequencies, a constant phase lag is the best approximation.
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2.1.3 Numerical Solutions

McCroskey [74] conducted some of the earliest numerical investigations. He devel-
oped simple formulae to describe the detailed inviscid, incompressible flow field of
unsteady flow about an airfoil with thickness and camber. Ekaterinaris [33] and
Ekaterinaris and Menter [34] conducted detailed numerical analyses to investigate
the use of k − ε and SST models to predict dynamic stall. They observed that,
in general, none of the turbulence models could predict the hysteresis effect dur-
ing the downstroke. It has been shown that upwind-biased schemes, even though
more computationally intensive, provide an improved solution of unsteady flows
because they have no dependence on the specified numerical dissipation parame-
ters and they appear to have less grid sensitivity compared with central difference
schemes [33]. More recently a series of numerical simulations of dynamic stall for
3D foils using various planform shapes was completed providing detailed informa-
tion on the interaction of dynamic stall and the tip vortex [88–90]. Spentoz et
al. [88–90] studies obtained CL, CD and CM measurements by integrating surface
pressures. They also investigated boundary layer transition, separation and reat-
tachment characteristics, as well as flow reversal and chordwise unsteady pressures
and compared results with experimental results. Spentzos et al. [89] highlighted
that high reynolds number experiments are rare and that there was a need for
further investigations. Spentzos et al. [90] conducted further comparison with ex-
periments and identified that there was strong similarities in the flow topology of
wing with different planforms.
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2.2 Methodology

2.2.1 RANSE Set-up

The unsteady flow field was solved with the commercial package ANSYS CFX
version 12.1 with a 2D, one layer deep, structured mesh consisting of hexahedral
elements. The inlet had specified velocity components and a turbulence intensity
of 0.5%. This turbulence intensity value is the approximate value of the AMC
Tom Fink Cavitation Tunnel [16]. The geometry is based on the AMC Tom Fink
Cavitation Tunnel details are contained in Section 1.5.1. The domain outlet had
constant pressure with zero turbulence gradient. A symmetry boundary condition
was applied in the spanwise direction on either side of the one layer deep mesh.
The foil was moved dynamically with a specified displacement. The high resolution
advection scheme was used for the validation data; it was later changed to a specific
blend factor of one to make it second-order accurate [36] for the remaining dynamic
analyses. A transient scheme of second order backward Euler convergence was used
with a maximum of 10 internal calculating loops with a maximum residual target
of 1x10−4.

2.2.2 Mesh Development

The structured grid for the present study was constructed using a C-topology with
an H-topology at the trailing edge as shown in Figure 2.4. The inlet velocity
boundary was located 2.5 c upstream from the leading edge, the outlet pressure
opening was located 11.5 c downstream from the trailing edge and the first cell
height was 0.02% c, corresponding to an average y+ of 1.

2.2.3 Grid Independence and Temporal Convergence

Steady state convergence was conducted by dynamically deforming the mesh to
the required incidence. This procedure was conducted for incidence angles (α) of
2, 5 and 10◦ until a grid independent solution was reached. Grid independence
and temporal convergence studies were conducted on the NACA 0009 section and
a similar mesh was then used to model the NACA 0012 and NACA 0015 sections.
A displacement diffusion mesh deformation model was used to generate the mesh
for steady flow computations at 0, 2, 5 and 10◦ incidences and Re values of 3x105

and 10x105. It was found that a grid with 27284 elements had an average error of
0.2% using the Richardson extrapolation technique, which is less than the typical
requirement of 1%.

A plot of the convergence in CL is shown in Figure 2.5. The resulting mesh was then
used to assess time step convergence with a reduced frequency of 0.25 and Re of
3x105. Temporal convergence was used to determine the number of time steps per
period required using three criteria; average Courant number for one cycle, force on
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(a) Undeformed α=0◦ (b) Deformed α=10◦

Figure 2.4: C-grid topology for NACA 0009 section

the foil and velocity at a point 1/2 chord behind the foil. The temporal convergence
plots for force and velocity at a point in the wake is shown in Figure 2.6. A total of
100 time steps per period was selected, this had an average Cn < 1 for the duration
of one cycle. The simulated time covered 5 complete cycles, the first cycle contains
transients from the steady start up solution after which the second and the third
cycle are identical.
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2.2.4 Mesh Deformation

The mesh deformation model utilised in ANSYS CFX version 12.1 is a displace-
ment diffusion mesh deformation model [37]. This enables motion on a specified
boundary which in this case is the foil surface. Equation 2.1 is used to determine
the diffusion of the motion to the remaining nodes in the domain. The mesh stiff-
ness was chosen by iterating between the 2D and 3D solutions in combination with
the convergence study to allow for a 10◦ pitch and tip deflection in the same di-
rection as the pitch without a fold in the mesh. The steady state convergence was
conducted with the deformed mesh resulting from the deformation at 0, 2, 5 and
10◦ incidences. The 2D and 3D steady state convergence is conducted in section
2.2.3 and 3.1.2 respectively.

∇ · (Γdisp∇δm) = 0 (2.1)

where:

δm = displacement relative to the previous model

Γdisp= mesh stiffness, in this case equation 2.2

Γdisp =
1[m5s−1]

Volume of Finite Volumes
(2.2)

2.3 Static Computation

2.3.1 Validation

Steady state experimental validation was conducted with data from Gregory and
O’Reilly [41] using a pressure coefficient Equation 1.18 on a smooth NACA 0012
section at a Rec of 2.88x106 for incidence angle of 0, 2, 4, 6, 8, and 10◦. Results
from these experiments were compared with XFOIL and the k − ε, k − ω, and
SST turbulence models is shown in Figure 2.7. Rec uses a reference chord of unit
length (i.e. c = 1). Good agreement is shown across all of the incidence angles
for the k − ε, and SST models. At an incidence angle of 10◦ the k − ω model
showed decreased pressure at the trailing edge and a leading edge fluctuation on
the suction side that was not characteristic of the experimental results, the k − ω
was not used in any further comparisons. Although the residuals had converged,
the convergence had an oscillation which suggested that the foil had stalled. The
k− ε, SST and XFOIL predictions compared well with experiment, therefore these
were investigated further. Close to stall the k−ε predicted the trailing edge pressure
closest to experiment.
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2.3.2 Results and Discussion

Once convergence and validation were established the computed wall shear coeffi-
cient and force coefficients from RANSE simulations for steady flow were compared
with XFOIL [26] predictions. The XFOIL background amplification factor was set
at 4.28 to match the RANSE model turbulence intensity of 0.5%. The values of
CL and CD for a NACA 0009 section using XFOIL and k − ε and SST turbulence
models were predicted for incidence angles 2, 5 and 10◦ as shown in Figure 2.8.
The k − ε, and SST models compared well in CL with XFOIL results and data
from Abbott and von Doenhoff [1] with a slight variation at α=10◦. CD predicted
by k − ε, and SST models were higher than the XFOIL calculation. The differ-
ence in CD can be seen in the difference in predicted wall shear coefficient on the
pressure side of the foil (Figure 2.9).
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Figure 2.8: Comparison of data from Abbott and von Doenhoff [1] and computed
XFOIL and RANSE results for CL and CD at varying incidence angles (α) for
NACA 0009 section

The comparison for incidence angles 2, 5 and 10◦ computed using XFOIL and
RANSE results for CL and CD for a NACA 0009 section is shown in Figure 2.9.
The positive chordwise values represent the pressure side of the foil and the negative
values the suction side. The suction side for incidence angle of 2 and 5◦ shows a
greater extent of reduced wall shear for XFOIL than the k − ε and SST models.
The magnitude of wall shear at incidence angle of 2 and 5◦ are higher for the
k − ε and SST models than XFOIL. The k − ε model has the greatest difference
on the pressure side, but on the suction side the k − ε and SST are more similar
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in magnitude. At an incidence angle of 10◦ the suction side wall shear has a large
difference in magnitude between XFOIL and RANSE equation turbulence models.
Both of the RANSE models assume a turbulent boundary layer, although the
SST model is recommended for high accuracy in the boundary layer simulations.
The SST model is designed to give better accuracy in flows with adverse pressure
gradients [37] and includes transport effects in the formulation of the eddy viscosity.
This may explain the observed difference between the k − ε and SST models with
wall shear predictions. Both the k− ε and SST models are further investigated for
static and dynamic force calculation in the next sections.
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2.4 Dynamic Computation

2.4.1 Validation

Dynamic validation was conducted using experimental results contained in Piziali
[83]. These experiments were conducted at a Reynolds number of 1.98 × 106 and
a pitch centre at 1/4 c for a NACA 0015 section. Details of the test matrix for this
validation study is contained in Table 2.1.

Table 2.1: NACA 0015 section 1/4c dynamic validation with Piziali [83]

k ᾱ ∆α
0.038 4◦ 2,4◦

0.093 4◦ 2,4◦

0.131 4◦ 2,4◦

0.188 4◦ 2,4◦

Piziali [83] conducted a detailed series of oscillating wing aerodynamic tests with
fast response pressure transducers. The CL, CD and CM were calculated from the
pressure, normal to the chord, neglecting skin friction. The moment was calculated
by integrating these pressures over the chord neglecting any moment due to the
thickness of the foil.

Results from the k − ε, and SST models were compared with the experimental
results from Piziali [83]. The results compared well for reduced frequency values
of 0.131 and 0.188 for both turbulence models. However, for the lower reduced
frequency values of 0.038 and 0.093, when using the k − ε model, for an incidence
amplitude of 2 and 4◦ and a mean incidence of 4◦, as shown in Figure 2.10, although
convergence was reached there was a large mean offset of CD from the experimental
data. The results compared well for all cases using the SST model. The SST model
uses the k−ω model near solid walls and the k− ε model near the boundary layer
edges and in free shear layers [23]. Therefore it could be assumed that both the
k − ε and SST models would yield similar results but the SST model modifies the
eddy viscosity by forcing the turbulent shear stress to be bounded for a constant
time inside the boundary layer [23]. This may explain the offset of CD at a reduced
frequency of 0.038 and 0.093. From this comparison it was decided that the SST
was to be used for the remainder of the numerical modelling. A full set of SST
results is presented in Appendix A, Figures A.1- A.3.
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As an example of the results contained in Appendix A the following describes one
of the data sets. CL, CD, and CM for a reduced frequency of 0.188, incidence
amplitude of 2◦ and mean incidence of 4◦ are presented in Figures 2.11, 2.12 and
2.13 respectively. The arrows in the graphs indicate the direction of the hysteresis
in time and show the upstroke i.e. for Figure 2.11 the hysteresis loop is in the
clockwise direction. A slight over estimate of CL and underestimate for CD was
apparent in the upstroke, but the downstroke compared well for both CL and
CD. For CM the results compared well on the upstroke but with the reversal of
direction the change in the CM slope is not as large as in the experimental data
(Figure 2.13). This resulted in a lower moment on the downstroke. The variation in
the downstroke can be attributed to the RANSE models assuming a fully turbulent
boundary layer with no transition. If transition was modelled it would be expected
that there would be a variation in the predicted pressure peak on the suction side
of the airfoil at the leading edge resulting in a closer approximation [33]. This may
cause a small under prediction of the twist in the full coupled dynamic models in
Chapter 5.
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2.4.2 Panel code and RANSE comparison

Following the dynamic validation of the RANSE model contained in the previous
section, oscillating hydrofoil studies of a NACA 0009 section were conducted to
compare solutions from the dynamic panel code which is a modified Hess and Smith
method contained in Cebeci et al. [23] and SST models. The unsteady method can
be used with an unsteady interactive boundary layer method. More details of the
code are contained in Cebeci et al. [23]. Details of the test matrix is contained in
Table 2.2. Comparisons could only be made for reduced frequency values up to
0.185 beyond which the panel code did not converge.

Table 2.2: NACA 0009 section 1/2c test matrix for panel code comparison

k ᾱ ∆α
0.031 0,4◦ 3◦

0.314 0,4◦ 3◦

0.785 0,4◦ 3◦

The SST and unsteady panel code results for CL and CM at mean incidence of 4◦

is shown in Figure 2.14. From these figures it can be concluded that the unsteady
panel method predicts low reduced frequency values well where no hysteresis is
evident; but over predicts the hysteresis for both CM and CL at reduced frequency
values of 0.314 or higher.
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2.5 Chapter Summary

This chapter has reviewed previous numerical methods and conducted validation
with published experimental results. A RANSE method for simulation of an hy-
drofoil oscillation in pure pitch was selected from validation results. The SST
turbulence model provided the best comparisons with co-efficient of pressure exper-
imental data from Gregory and O’Reilly [41] and dynamic validation by comparing
the force coefficients with experimental data from Piziali [83]. After conducting
validation of the RANSE code a comparison with an unsteady panel code from
Cebeci et al. [23] was conducted. The unsteady panel method compared well to
the SST model at low reduced frequency values where no hysteresis is evident but
over predicts the hysteresis for both CM and CL at reduced frequency values of
0.314 or higher.

This chapter demonstrates that RANSE solutions provide a more accurate simu-
lation for an unsteady hydrofoil oscillating in pure pitch. It is therefore concluded
that for reduced frequencies in the range from 0.013-3.142 the SST model gives the
more reliable solution.
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Chapter 3

Rigid Body Fluid Dynamics

The investigation of a 3D NACA 0009 hydrofoil with trapezoidal planform at steady
incidence angle and unsteady oscillation in pure pitch is described in this chapter.
It uses the previously developed 2D grid as a basis for the 3D fluid dynamic grid and
compares the static and dynamic characteristics of rigid 2D and 3D foils. The effect
of 3D fluid flow is investigated by comparing results to 2D as well as comparisons
with Theodorsen’s 2D analytical theory, which was explored in chapter 2. This
chapter presents static results and indicative dynamic hysteresis plots for CL, CD
and CM at 0 and 4◦ mean incidence, and maximum CL, CD, CM and phase angle
of the force and moment for the unsteady pitch oscillation.

3.1 Methodology

From Chapter 2, the SST model was shown to give the most accurate results in
the dynamic case. The current chapter investigates initially steady state and then
dynamic behaviour of a hydrofoil sinusoidally oscillating in pure pitch. Steady
state incidence angles analysed were 1, 3, 4, 5 and 10◦. Details of the test matrix
for the dynamic case at a mean incidence of 0 and 4◦ for variation in incidence
amplitude and reduced frequency are shown in Table 3.1. The pitch centre of the
hydrofoil oscillation is located at 1/2 c. All cases were run for Reynolds numbers of
3.36× 105 and 1.12× 106. Results for RANSE simulations were summarized using
their maximum CL, CD and CM and phase angle to the incidence oscillation with
respect to reduced frequency. The phase angle was determined through a least
squares fit of a sine function of the order of peaks over one cycle. For example,
CD has a double peak for a mean incidence of 0◦ therefore the least squares fit was
conducted for the second harmonic, this is discussed in section 3.2.2. These runs
were completed over 1.5 cycles with results converging after half a cycle: it was
noted from the 2D analyses that once the run was converged the hysteresis plot
started and finished at the same point over a cycle.
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Table 3.1: NACA 0009 1/2c run matrix RANSE

k ᾱ ∆α
0.031 0,4◦ 0,1,2,3,5◦

0.094 0◦ 3◦

0.157 0◦ 3◦

0.188 0◦ 3◦

0.251 0◦ 3◦

0.314 0,4◦ 0,1,2,3,5◦

0.534 0◦ 3◦

0.785 0,4◦ 0,1,2,3,5◦

1.571 0,4◦ 0,1,2,3,5◦

3.142 0,4◦ 0,1,2,3,5◦

3.1.1 Mesh Development

The basis for the 3D grid was the previously validated 2D grid which was extrap-
olated to the 3D geometry, as shown in Figures 3.1 and 3.2. The structured grid
was constructed using a C-topology with an H-topology at the trailing edge and
a Y-grid extrapolated from the tip of the foil as shown in Figure 3.2(b). The 3D
foil as described in Section 1.5.1 is a trapezoidal planform of 120 mm root chord
length, 60 mm tip chord length and 300 mm span. The inlet velocity boundary was
located 2.5 × the root chord upstream from the leading edge. The outlet pressure
opening was located 11.5 × the root chord downstream from the trailing edge. The
domain was 0.6 m wide × 0.6 m deep.

Figure 3.1: Detail of entire computational domain mesh.
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(a) Foil

(b) Tip

Figure 3.2: CFD 3D mesh of the hydrofoil.
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3.1.2 Grid Independence and Temporal Convergence

Steady state convergence was conducted by dynamically deforming the mesh to the
required incidence angle (this method is detailed in Chapter 2). This procedure
was conducted for incidence angles of 2, 5 and 10◦ until a grid independent solution
was reached. A plot of the CD convergence for the 3D CFD mesh with increasing
number of elements is shown in Figure 3.3. This mesh was also checked to ensure
that there was no cell inversion at an incidence angle of 10◦ when the tip is deflected.
A grid with 1 303 723 elements, corresponding to 30 elements along the span was
selected.
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Figure 3.3: CFD 3D convergence CD.

The temporal convergence plots for force and velocity at a point in the wake are
shown in Figure 3.4(a) and 3.4(b) respectively, at a reduced frequency of 3.142 and
Re of 3x105. A total of 100 time steps per period was selected. The simulated
time covered 3 complete cycles, the first cycle contains transients from the steady
start up solution after which the second and the third cycle are identical. The
resulting forces in 3D on the hydrofoil through three pure sinusoidal pitch oscilla-
tions is shown in Figure 3.5. The points plotted in red represent each time step in
Figure 3.5(a). This figure illustrates that the 3D run is similar to the 2D and also
converges within half a cycle. The convergence is also indicated by the hysteresis
cycle forming a closed loop.
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3.2 Results and Discussion

This section is divided into steady state, and unsteady fluid dynamics sections.
The steady state results compare the values of CL, CD and CM for the 2D and
3D models. The 2D results were shown to be Reynolds number independent in
Hutchison et al. [53], as such only one Reynolds number is presented for comparision
to 3D. The unsteady fluid dynamics section is divided in three sections presenting
qualitative results, hysteresis loops and the summary results for the maximum
values and their corresponding phase angles (Φ) between CL, CD and CM and the
dynamic incidence over a cycle.

3.2.1 Steady State

2D and 3D comparisons of static CL and CD is shown in Figure 3.6. The slope of
the 2D and 3D CL curves are 0.11 and 0.06 respectively and have no dependence
on Reynolds number (Figure 3.6). The slope of the 2D curve of 0.11 is the same
as predicted by theory of finite span in White [103], but the 3D curve is 5% less.
This has been attributed to the trapezoidal planform as the theory is based on a
rectangular planform. The 3D CD curve shows a Reynolds number dependence and
a small increase in magnitude from the 2D curve. The 3D CD curve with the lower
Reynolds number has the greatest increase from the 2D curve of approximately
0.01 at an incidence angle of 10◦. The 2D and 3D comparisons of static CM curves
is shown in Figure 3.7. The slope of the 2D and 3D CM being 0.025 and 0.012
respectively.

3.2.2 Unsteady Fluid Dynamics Forces and Moments

This section presents hysteresis plots for the CL, CD and CM at 0 and 4◦ mean
incidence. A summary of the maximum amplitude of CL, CD and CM over a cycle
is also presented. The reference chord for the 3D co-efficient calculations was the
root chord of 120 mm.

This section begins with a descriptive set of figures to illustrate some of the com-
plexities in the fluid around the foil and within the wake. The pressure on the
wall intersecting the foil at 0 and 4◦ mean incidence, at a Reynolds number of
1.12 × 106, incidence amplitude of 3◦ and reduced frequency of 0.785 at varying
dynamic incidence angles is shown in Figures 3.8 and 3.9. The upstroke is the top
two sets of figures and the downstroke is the bottom two figures. The pressure over
a cycle is symmetric at 0◦ mean incidence(Figures 3.8). The high pressure region
at the tip of the NACA section will move around the leading edge throughout an
oscillation. At 4◦ mean incidence the pressure distribution over a cycle is not sym-
metric between the downstroke and the upstroke; rather the region of minimum
pressure increases and decreases on the suction side with the largest suction region
at the mean incidence on the upstroke (Figures 3.9).
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To look at the vorticity in the wake and around the foil the Q-criterion was used
from -100 to 100 [s−2]. The Q-criterion is the second invariant of the velocity
gradient tensor [38] i.e. a measure of vorticity in the wake. The hydrofoil in
Figures 3.10 and 3.14 is at the mean incidence, at a Reynolds number of 1.12×106

and a reduced frequency of 0.785. The spanwise effect at a Q-criterion at -100 [s−2]
is shown in Figure 3.10. This shows that the flow is 2D for most of the foil’s span
with a vortex at the tip and the root of the foil. The nature of the wake was looked
at further at the tip and mid span of the foil. The effect of mean incidence change
in the wake for an incidence amplitude of 3◦ at the mid span and tip of the foil
respectively, is shown in Figures 3.11 and 3.12. The effect of change of incidence
amplitude from 1 to 5◦ at the mid span of the foil at a mean incidence of 4◦ is
shown in Figure 3.13. The wake travelling downstream at the tip and mid span for
a 0◦ mean incidence is compared in Figure 3.14.

At the tip of the foil there is a pronounced difference in the behaviour of the tip
vortex at 0 and 4◦ mean incidence, although at the tip the pressures about the foil
are symmetric for both 0 and 4◦ mean incidences. The spacing and magnitude of
the vorticity travelling downstream varies between the 0 and 4◦ mean incidences
(Figure 3.12). When the foil oscillates at 0◦ mean incidence the positive Q-criterion
wavelength corresponds to the twice the oscillation frequency. In contrast, at the
tip at 4◦ mean incidence, the wave length between a positive region is equal to
the oscillation frequency. The size of these regions has increased to approximately
twice the size of the region in the 0◦ mean incidence case. This is due to the two
regions effectively merging into one when the foil is oscillated at 4◦ mean. The tip
vorticity in the 4◦ mean incidence case is biased to one side of the foil and gets shed
downstream once an oscillation cycle is complete. A possible implication of this is
that the 0 and 4◦ mean incidence may have a different signature in the wake. This
difference is not visible in the integral properties.

The spacing and magnitude of the vorticity travelling downstream at the foil’s mid
span is approximately equal for both 0 and 4◦ mean incidences (Figure 3.11). As
the incidence amplitude is increased from 1 to 5◦ the spacing between the vorticity
in the wake remains the same, although the width of the wake is increased in the
z direction (Figures 3.13). In summary, the magnitude of wake vorticity increases
with increased incidence amplitude but the frequency at which the vorticity travels
downstream remains equal at the mid span.

The pressure at the mid span and root of the foil are not symmetric at a point
in time, but are symmetric at 0◦ mean incidence throughout a cycle. At 4◦ mean
incidence, the Q value around the foil is more asymmetric (Figure 3.11(b)), al-
though at 0◦ mean incidence does have a small asymmetry (Figure 3.11(a)). As
the incidence amplitude is increased from 1 to 5◦ the vorticity around the foil also
increases when the incidence amplitude increases (Figures 3.13). Around the tip of
the foil the invariant Q value around the foil is also symmetric in both cases. The
differences between 0 and 4◦ mean incidences is discussed further in the summary
of forces and moments in Section 3.2.2.

The wake travelling downstream at the tip and mid span at a 0◦ mean incidence
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is compared in Figure 3.14. This figure shows that the positive regions travelling
downstream from the foil are approximately half a cycle apart, i.e. 90◦ out of phase.

(a) ᾱ = 0◦

(b) ᾱ = 4◦

Figure 3.10: Isosurface of -100 Invariant Q value for Reynolds number of 1.12×106,
incidence amplitude of 3◦ and reduced frequency of 0.785 at a dynamic incidence
equal to the mean incidence angle (α = ᾱ).
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(a) ᾱ = 0◦

(b) ᾱ = 4◦

Figure 3.11: Invariant Q value at the foil mid span for Reynolds number of
1.12 × 106, incidence amplitude of 3◦ and reduced frequency of 0.785 at a dy-
namic incidence equal to the mean incidence angle (α = ᾱ). This figure shows the
effect of changing the mean incidence on the mid span.
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(a) ᾱ = 0◦

(b) ᾱ = 4◦

Figure 3.12: Invariant Q value at the tip of the foil for Reynolds number of
1.12 × 106, incidence amplitude of 3◦ and reduced frequency of 0.785 at a dy-
namic incidence equal to the mean incidence angle (α = ᾱ). This figure shows the
effect of changing the mean incidence on the tip.
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(a) ∆α =1◦

(b) ∆α =5◦

Figure 3.13: Invariant Q value at the foil mid span for mean incidence of 4◦,
Reynolds number of 1.12× 106 and reduced frequency of 0.785 at a dynamic inci-
dence equal to the mean incidence angle (α = ᾱ). This figure shows the effect of
incidence amplitude.
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(a) Tip of the foil

(b) Mid span of the foil

Figure 3.14: Invariant Q value at the tip and mid span for 0◦ mean incidence at a
Reynolds number of 1.12 × 106, incidence amplitude of 3◦ and reduced frequency
of 0.785 at a dynamic incidence equal to the mean incidence angle (α = ᾱ).
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Hysteresis

Hysteresis plots for the cases shown in Table 3.2 is shown in Figures 3.15- 3.18.
This is a ‘T’ of the larger test matrix in Table 3.1. These figures present the 2D
results on the left and 3D on the right for CL, CD and CM respectively. In the first
two sets of six, Figures 3.15 and 3.16, the reduced frequency is varied for 0 and
4◦ mean incidence values with a constant change of dynamic incidence of 3◦. For
the second two sets of six, Figures 3.17 and 3.18, the incidence amplitude is varied
for 0 and 4◦ mean incidence values with a constant reduced frequency of 0.785.
The trend of the maximum CL, CD and CM is discussed in more detail in the next
section. Note the arrow indicates increasing incidence in all cases.

Table 3.2: Hysteresis figures

Figure ᾱ k ∆α
Figure 3.15 0◦ 0.031,0.314,0.785,1.571,3.142 3◦

Figure 3.16 4◦ 0.031,0.314,0.785,1.571,3.142 3◦

Figure 3.17 0◦ 0.785 0,1,2,3,5◦

Figure 3.18 4◦ 0.785 0,1,2,3,5◦

The dynamic CL and CM vary about the static CL and CM curves (Figures 3.15
to 3.18). The change in lift is associated with the circulation growth on the hydro-
foil, the circulation will increase, decrease and change direction throughout a cycle
as it oscillates as shown in Figures 3.8 and 3.9. CL and CD hysteresis loops are in
the clockwise direction, whilst CM hysteresis loops are anticlockwise. The CM loop
is opposing the change of incidence which is considered to be a stable condition.
If the loop was in the opposite direction, it shows a reinforcing of the change in
incidence, which is indicative of flutter. Flutter is not investigated in this thesis
and was not present in any of the results.

A double peak for CD is present at a 0◦ mean incidence but not at a mean incidence
of 4◦. The CD hysteresis curves follow the same mean shape as the static CD
curve but the mean magnitude changes with reduced frequency and change of
dynamic incidence. The 4◦ mean incidence does not pass through where the CD
is minimised except at an incidence amplitude of 5◦. This indicates lift and drag
are odd and even functions respectively of the dynamic incidence. There is less
variation between the maxima and minima of the forces for the 3D than the 2D
cases. The peak of the cycle occurs at approximately the same point in time for
both 3D and 2D. These differences in the dynamic case are not proportional to the
steady state 2D to 3D relationship. This difference can be explained in terms of
the spanwise circulation/lift reducing to zero at the tip and the pressure equalising
over the tip in the 3D case. The 3D spanwise CP variation is further discussed and
compared in Figure 3.19.

The CL hysteresis loop variation with increasing reduced frequency is shown in
Figures 3.15(a), 3.15(b), 3.16(a) and 3.16(b). At the lowest reduced frequency of
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0.031 the dynamic CL loop remains on the static CL curve throughout the cycle.
At a reduced frequency of 0.314 the peak reduces and the lift loop changes slope.
From Theodorsen’s theory presented in Chapter 2 a reduced frequency of 0.314
occurs just prior to the minima of the maximum lift and at the point at which the
lift phase angle changes from a lag to a lead. The CL loops hysteresis increases
at reduced frequencies of 0.785, 1.571 and 3.142. These three reduced frequencies
intersect at the same point at the maximum incidence angle.

The CD loop variation with reduced frequency about a mean incidence of 0◦ is
shown in Figures 3.15(c) and 3.15(d). The 2D loop has hysteresis evident at the
lowest reduced frequency. In the 3D case hysteresis is not present until a reduced
frequency of 0.314. At a reduced frequency of 0.031 the CD loop is offset from the
static curve in both 2D and 3D. In 2D the CD mean reduces with reduced frequency
and begins to produce thrust for part of the cycle at a reduced frequency of 3.142
(Figure 3.15(c)). It is typical for a foil undergoing a pitch oscillation to produce
thrust only above a certain reduced frequency and incidence amplitude [65]. In
3D, the mean CD reduces less than the 2D cases for a given reduced frequency
(Figure 3.15(d)). Although at a reduced frequency of 3.142 the foil does produce
thrust for part of the cycle, it is proportionally less than the time of producing
thrust in the 2D case.

The CL, CD and CM hysteresis variation of reduced frequency at 4◦ mean incidence
is shown in Figures 3.16(c) and 3.16(d). The CD loops in 2D and 3D both vary
about the static curve with no shift in the mean, although there is increase hys-
teresis as the reduced frequency increases. Above a reduced frequency of 0.785 and
1.571, thrust is produced for part of the cycle in 2D and 3D respectively. Reduced
frequencies 0.314, 0.785, 1.571 and 3.142 all intersect at the point of maximum in-
cidence angle for both 0 and 4◦ mean incidences. At 0 and 4◦ mean incidences the
CD loops change direction between the upstroke and downstroke over an increased
incidence angle change with the increase in reduced frequency. That is, the phase
angle of the maxima and minima both increase with reduced frequency.

The variation in CM hysteresis loop with increasing reduced frequency is shown
in Figures 3.15(e), 3.15(f), 3.16(e) and 3.16(f). Similarly to CL, at the lowest
reduced frequency of 0.031, the CM loop remains on the static CM curve. Reduced
frequencies 0.314 and 0.785 show the maxima and minima reducing in magnitude.
At reduced frequencies of 1.571 and 3.142 the CM maxima and minima begin to
increase in magnitude. At the maximum incidence the CM loops remaining less
than the corresponding static curve values except for at a reduced frequency of
3.142. The moment curves unlike CL and CD curves intersect at incidences below
the maxima and minima.
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Figure 3.15: Hysteresis 2D and 3D comparison for CL, CD and CM variation over
a cycle for mean incidence of 0◦ and incidence amplitude of 3◦ and varying reduced
frequency (k).
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Figure 3.16: Hysteresis 2D and 3D comparison for CL, CD and (CM) variation over
a cycle for mean incidence of 4◦ and incidence amplitude of 3◦ and varying reduced
frequency (k).
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The variation in CL loops for a change in incidence amplitude with a 0◦ mean
incidence is shown in Figures 3.17(a) and 3.17(b). The CL loops increase linearly
with increasing incidence amplitude for both 2D and 3D. The variation in CL loops
for a change in incidence amplitude at 4◦ mean incidence is shown in Figure 3.18(a)
and 3.18(b). The 2D case for the 4◦ mean show a similar trend to the 0◦ mean
incidence. The 3D case shows the maxima and minima increase in magnitude as
the incidence amplitude increase but is offset from the static results. This static
offset appears to be different for each of the incidence amplitude. This trend is
continued through the CM loops as shown in Figures 3.17(e), 3.17(f), 3.18(e) and
3.18(f) and CD loops at 4◦ mean incidence as shown in Figures 3.18(a) and 3.18(b).
Figures 3.17(c) and 3.17(d) show the CD loops at 0◦ mean incidence. These loops
show the variation with increasing amplitude at a reduced frequency of 0.785.
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Figure 3.17: 2D and 3D comparison of the hysteresis loop for CL, CD and CM
over a cycle for mean incidence of 0◦ and reduced frequency of 0.785 and varying
incidence amplitude (∆α).
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Figure 3.18: Hysteresis 2D and 3D comparison for CL, CD and CM variation over a
cycle for mean incidence of 4◦ and reduced frequency of 0.785 and varying incidence
amplitude (∆α)
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Figure 3.19: 2D and 3D comparison of computed Cp at a reduced frequency (k)
of 3.142 at a incidence amplitude (∆α) of 3◦ for a mean incidence (ᾱ) of 0 and
Reynolds number (Re) of 3.36 × 105 at the mean incidence during the dynamic
cycle.

The 2D and 3D comparison of computed Cp is shown in Figure 3.19. It can be
seen from this figure that the Cp is less at all 3D spanwise locations than the 2D
case. This plot illustrates Cp reducing closer to the tip. This difference can be
explained in terms of the spanwise circulation/lift reducing to zero at the tip and
the pressure equalising over the tip in the 3D case.
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Summary plots

The maximum CL, CD and CM throughout one cycle and the associated phase angle
is shown in Figures 3.20 to 3.31. These plots are shown with a spline fit a complete
set of figures with splines and points is contained in Appendix B. The force results
are normalised on the static force at the maximum incidence. Each set of results
relating to CL, CD and CM and associated phase angle has one figure presenting
the 3D comparison of computed maximum force at varying reduced frequency and
for a 0 and 4◦ mean incidences and an incidence amplitude of 1, 2, 3, and 5◦

at a Reynolds number of 3.36 × 105. This is followed by a comparison of 2D
to 3D and 3D Reynolds number of 3.36 × 105 to 1.12 × 106 for 0 and 4◦ mean
incidence and a change of incidence amplitude of 3◦. From Hutchison et al. [53] it
was found that there is no dependence on Reynolds number for the 2D unsteady
results. Figures 3.21 and 3.23 have an additional comparison with 2D analytical
predictions from Theodorsen’s theory from [68].

A minima in CL/CL0 for 0◦ mean incidence occurs at a reduced frequency of ap-
proximately 0.6 (Figure 3.20). For 4◦ mean incidence there is minimal variation
before a reduced frequency of 0.785 with an almost constant relationship between
CL/CL0 and reduced frequency. At a reduced frequency greater than 1.1, the results
are dependent on incidence amplitude. The lift amplitude increases with increasing
incidence but is always lower than the value obtained at a 0◦ incidence. A reduced
frequency of one is the point at which a particle in the freestream will travel a
distance equal to the root chord length over one cycle. Therefore, at frequencies
higher than one, a particle does not travel a full chord length over a cycle and will
influence the next cycle by affecting the trailing edge streamlines. This, combined
with the asymmetry of the pressure around a foil at 4◦ mean incidence (Figures 3.8
and 3.9), is attributed to be the cause of the difference between 0 and 4◦ mean
incidences at a reduced frequency greater than one.

Theodorsen’s prediction, are compared to the RANSE 2D and 3D results in Fig-
ure 3.21. The 2D magnitude and position of the minima matches the prediction
from Theodorsen’s analytical prediction. The slope of Theodorsen’s analytical pre-
dictions slope is approximately the same as the 2D and 3D 0◦ mean incidence but
the RANSE solution predicts a greater rate of change in CL/CL0 at the minima.
The minima for 0◦ mean incidence is less for the 3D case compared to the 2D case,
but they occur at the same reduced frequency value. The slope of the results for
the increase in CL/CL0 after the minima is steeper for the 2D case than the 3D
case for both 0 and 4◦ mean incidences. There is no variation in Reynolds number
for 3D results.

71



 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 0.01  0.1  1  10

C
L
/C

L
0

k

α– =0º, ∆α=1º
α– =0º, ∆α=2º
α– =0º, ∆α=3º
α– =0º, ∆α=5º
α– =4º, ∆α=1º
α– =4º, ∆α=2º
α– =4º, ∆α=3º
α– =4º, ∆α=5º

Figure 3.20: 3D comparison of computed normalised maximum CL for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
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Figure 3.21: 2D and 3D comparison of computed normalised maximum CL at
varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106.
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The lift phase angle from the dynamic incidence is shown in Figure 3.22 and 3.23.
Until reduced frequencies greater than 0.2 there is no phase angle between the
maximum lift and maximum incidence (Figure 3.22). The lift phase angle matches
for both 0 and 4◦ mean incidence at a reduced frequency less than one. The lift
phase angle diverges and has a small dependence on change of incidence amplitude
similar to CL/CL0 at a reduced frequency greater than one. As the incidence ampli-
tude increases to 5◦ at a 4◦ mean incidence the phase angle approaches the 0◦ mean
incidence data. This is interesting as it suggests that the closer the oscillation goes
to oscillating through 0◦ incidence it approaches the phase angle of 0◦ incidence.
The lift phase angle for 0◦ mean incidence does not vary with change of incidence
amplitude.

Theodorsen’ analytical prediction shows a steady decrease in lift phase angle to the
minima at a reduced frequency of 0.15, in comparison the RANSE lift phase angle
prediction decreases from a reduced frequency of approximately 0.03 (Figure 3.23).
The lift phase angle in 2D has a greater slope than the 3D after the minima at
reduced frequency of approximately 0.15. The mean incidence angle only effects
3D lift phase angle results.
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Figure 3.22: 3D comparison of computed lift phase angle (ΦL) for varying reduced
frequency (k) at a Reynolds number of 3.36 × 105 for a mean incidence (ᾱ) of 0
and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure 3.23: 2D and 3D comparison of computed maximum lift phase angle (ΦL)
at varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106.
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CD/CD0 has a dependence on mean incidence and change of incidence amplitude
as shown in Figure 3.24. The dependence is greater with the increase in mean
incidence and incidence amplitude; this is also shown in the hysteresis plots in the
previous section. Comparison of 2D and at both Reynolds numbers for 3D shows
a dependence on Reynolds number CD/CD0 (Figure 3.25). This is similar to the
trend expected in a steady state case for CD. A 4◦ mean incidence has a higher
value of CD/CD0 for a given reduced frequency. In 2D, a greater CD/CD0 variation
with reduced frequency than the 3D case is shown but it shows the same mean
incidence trend.

The relationship of drag phase angle variation with respect to reduced frequency
for 4◦ mean incidence is approximately linear with the log of reduced frequency
and has no dependence on change of incidence amplitude (Figure 3.26). There
is a small dependence on Reynolds number at 4◦ mean incidence (Figure 3.27).
From 2D to 3D the magnitude of drag phase angle is reduced, whilst they are both
constant with log of the reduced frequency.

The relationship of drag phase angle variation with respect to reduced frequency
for 0◦ mean incidence is dependant on the change of incidence amplitude. A large
minima occurs for an incidence amplitude of 1◦ at a reduced frequency of approx-
imately 0.8 (Figure 3.26). This minima becomes less pronounced as the incidence
amplitude increases. The 2D minima is more pronounced at 0◦ mean incidence
(Figure 3.27). The minima in the data at a 0◦ mean incidence is explained by Fig-
ure 3.15 from the previous section. At a small reduced frequency the CD changes
from the maxima to minima rapidly over a change in incidence amplitude of less
than 1◦. This change occurs between the upstroke and downstroke over a 0.08◦

change in CD amplitude. This suggests that a small increase or decrease in the
rate of change of CD can have a large effect on the drag phase angle. This is more
exaggerated in the 2D case and hence has an effect for larger incidence amplitude.
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Figure 3.24: 3D comparison of computed normalised maximum CD for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure 3.25: 2D and 3D comparison of computed normalised maximum CD at
varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106
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Figure 3.26: 3D comparison of computed drag phase angle (ΦD)for varying reduced
frequency (k) at a Reynolds number of 3.36 × 105 for a mean incidence (ᾱ) of 0
and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure 3.27: 2D and 3D comparison of computed maximum drag phase angle (ΦD)
at varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106.
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The maximum CM variation with reduced frequency is shown in Figure 3.28.
CM/CM0 varies similarly to CL/CL0, but the minima is at a greater reduced fre-
quency. A minima in CM/CM0 for 0◦ mean incidence at a reduced frequency of
approximately 0.7. At 4◦ mean incidence There is minimal variation in magnitude
until a reduced frequency of 1.1. There is a small increase in the magnitude of
CM/CM0 as the incidence amplitude increases with reduced frequency. Figure 3.29
compares 2D and 3D for both Reynolds numbers. The 2D slope of the results
for the increase in CM/CM0 after the minima is steeper for the 2D case than the
3D case for both 0 and 4◦ mean incidences (Figure 3.28). This figure shows no
dependence on Reynolds number. The minima at 0◦ mean incidence is less for the
3D case compared to the 2D case, but they occur at the same reduced frequency
value, this trend is also similar to CL/CL0.

At a reduced frequency less than 0.3, the moment phase angle is similar for both
0 and 4◦ mean incidences; except at an incidence amplitude of 3◦ and a 0◦ mean
incidence (Figure 3.30). The moment phase angle has a small dependence on inci-
dence amplitude at a reduced frequency greater than 0.3 and for 4◦ mean incidence.
The moment phase angle is not dependant on Reynolds number (Figure 3.31). The
2D result has a greater negative slope than the 3D cases and a similar minima to
CM/CM0.
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Figure 3.28: 3D comparison of computed normalised maximum CM for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure 3.29: 2D and 3D comparison of computed normalised maximum CM at
varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re of 3.36× 105 and 1.12× 106
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Figure 3.30: 3D comparison of computed moment phase angle (ΦM) for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure 3.31: 2D and 3D comparison of computed maximum moment phase angle
(ΦM) at varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for
a mean incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36 × 105 and
1.12× 106.
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3.3 Chapter Summary

This chapter investigated the behaviour of 2D and 3D rigid body hydrofoils both
in steady state and undergoing a pure pitch oscillation at 0 and 4◦ mean inci-
dences with a change in incidence angle and reduced frequency. The main point
from this chapter is that a 3D simulation is required as 2D over predicts unsteady
forces/effects, and the mean incidence angle has an effect on the forces and moment
with varying reduced frequency.

The slope of the 2D and 3D CL curves are 0.11 and 0.06 respectively. The slope of
the 2D is as expected from White [103], but the 3D is 5% greater than expected
from finite span theory. This has been attributed to the trapezoidal planform as
the theory is based on a rectangular planform. CD increases in magnitude with
decreasing Reynolds number, having the greatest increase of approximately 0.01
at an incidence angle of 10◦. The slope of the 2D and 3D CM are 0.025 and 0.012
respectively.

The spacing and magnitude of the vorticity travelling downstream at the foil mid
span is approximately equal for both 0 and 4◦ mean incidences. As the incidence
amplitude is increased from 1 to 5◦ the spacing between the vorticity in the wake
remains the same, although the width of the wake is increased in the z direction.
At the tip of the foil there is a pronounced difference in the behaviour of the tip
vortex at 0 and 4◦ mean incidence, although at the tip the pressures about the foil
are symmetric for both 0 and 4◦ mean incidences. The spacing and magnitude of
the vorticity travelling downstream varies between the 0 and 4◦ mean incidences.
When the foil oscillates at 0◦ mean incidence the positive Q-criterion wavelength
corresponds to twice the oscillation frequency. In contrast, at the tip at 4◦ mean
incidence, the wave length between a positive region is equal to the oscillation
frequency.

The lift hysteresis varies about the static lift curve with increasing hysteresis as
reduced frequency increases. The hysteresis is less in the 3D case compared to the
2D. This was attributed to the fact that 3D flow has the ability to equalise over
the tip. The drag has a double harmonic at a mean incidence of 0◦ due to the
static drag being a mirror about the incidence angle of 0◦ This means lift and drag
are odd and even functions respectively of the dynamic incidence. The moment
varies in a similar shape to the lift hysteresis loops but it does not vary around
the static moment, suggesting that moment is dominated by the dynamics of lift
and circulation. There is less variation between the maxima and minima of the
forces in the 3D than in the 2D cases. From these analyses and comparisons we
can conclude a simplified 2D analyses of a 3D object will over predict unsteady
effects.

Rigid 3D lift and moment predictions show similar behaviour to both the present 2D
unsteady viscous predictions and classical linearised inviscid theory for cases of 0◦

mean incidence. In particular, lift and moment normalised on to the static incidence
value at maximum dynamic incidence and are linear with incidence amplitude for
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all reduced frequencies for 0◦ mean incidence results. The amplitudes of the lift
and moment minima occur at reduced frequencies of about 0.6 and 0.7 respectively
for both 2D and 3D predictions. However, in the 3D case the amplitudes, relative
to the lift and moment at static incidence, are reduced. At a mean incidence of 4◦,
the amplitudes of the lift and moment minima are significantly reduced for 2D and
3D predictions compared with the 0◦ mean incidence. Above a reduced frequency
of one, for 4◦ mean incidence, the rigid 3D lift and moment amplitude predictions
no longer vary linearly with incidence amplitude. The lift amplitude increases with
increasing incidence but are always lower than the 0◦ incidence.

Reduced frequencies of 0.8, 1.6 and 2.4 were identified in chapter 1.4 as being
representative of those experienced by a propeller operating in an unsteady flow
field caused by wakes from the control surfaces and fairwater of a submarine. The
approximate incidence amplitude is 2◦ with a 4◦ mean incidence. From this chapter
we can conclude that a 2D analyses will predict a larger change in force from the
maxima to minima. A 4◦ mean offset may reduce the effect of unsteady loading
at a reduced frequency less than one but increase when the reduced frequency is
greater than one, although the amplitudes for 4◦ mean incidence are less than those
for 0◦ mean incidence. The effect of unsteadiness on lift and moment magnitude
may not be pronounced in modes with an approximate reduced frequency less than
0.1 but drag and phase angle of all responses may be affected.

The implication of these conclusions on propeller design is that varying the mean
incidence amplitude may have the largest effect on the forces and moments at
a reduced frequency lower than one. In the case of a submarine as shown in
Chapter 1, the first harmonic has a corresponding reduced frequency of 0.8 and
an approximate mean incidence of 4◦. Therefore, by reducing the mean incidence
amplitude it maybe possible to reduce the maximum CL. For other wake signatures
it could be possible to adjust the response to achieve a lower maximum CL by using
equation 1.15 in combination with adjusting the mean incidence amplitude.
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Chapter 4

Static Hydroelasticity

The investigation of the two-way FSI of a 3D NACA 0009 hydrofoil with trapezoidal
planform at steady angles of incidence is described in this chapter. A structural
model is developed for coupling with the 3D CFD model which was developed in
Chapters 2 and 3. Fluid forces and structural deflections of a two-way coupled
numerical simulation in ANSYS are presented. Comparisons are made with the
rigid 3D (uncoupled) CFD static results. This chapter begins with a section on
previous work relating to hydroelastic foils. Although, some of the related work
is relevant to the next chapter, for consistency all the related hydroelastic work is
discussed here.

4.1 Previous and Related Work

Hydroelastic foils have been extensively investigated at low Reynolds number for
micro air vehicles [3], flapping wing propulsors [51, 58, 96, 99] and as a means to
extract power [59, 119]. Many studies have investigated a heave/plunge motion as a
way to generate thrust, however a foil oscillating in pure pitch requires a minimum
reduced frequency to generate thrust [23] and as such have not been as extensively
investigated.

Munch et al. [77] used an experiment of a NACA 0009 oscillating hydrofoil to
validate a 2D model using a SST turbulence model. These tests were conducted at
freestream velocities of 0.05, 5, 10 and 15 m/s. The model had a chord of 100 mm
and span of 150 mm. The results compared well with experiment for an amplitude
of oscillation of 2◦ and frequency of between 1-1500 Hz. Munch et al. [81, 82] later
investigated FSI with a specific focus on hydraulic machines so as to identify the
flow action in the case of vibrating blades.

Heathcote et al. [45, 46, 47] conducted experiments, including PIV measurements,
with three foils with a NACA 0012 section with an aspect ratio of six and a rect-
angular planform. The foils tested had varying stiffness in the spanwise direction
and were rigid in the chordwise direction. The experiments were conducted with
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a zero freestream velocity [44, 46] and a Reynolds number ranging from 1 × 104

to 3× 104. From these tests it was concluded that an intermediate flexibility was
beneficial with an observed thrust benefit; however if the wing was too flexible, the
tip and root began to move out of phase reducing the thrust benefit[47].

Some of the work closest to this thesis was conducted in the area of hydroelasticity
by Ducoin et al. [30] who investigated the structural behaviour of a deformable
NACA 66 hydrofoil in a forced ramped pitching motion for both cavitating and
noncavitating flows. They conducted both experimental and numerical analyses
with four pitching velocities investigated with a triangular pitching motion at re-
duced frequencies of 8, 10, 11, and 12. The incidence was varied from 0 to 15◦ for a
zero flow case and Reynolds number of 0.75×106. Two foils were tested; a rigid [28]
and a deformable [30] foil made from plastic. The rigid case used pressure trans-
ducers to record the pressures, and the flexible case, used a video camera to record
the deflections [30]. After comparing results they concluded that in the noncavi-
tating case, the hydrofoil displacements are affected by pressure fluctuation caused
by laminar to turbulent transition for small pitch velocities. This was suppressed
at high velocities [28, 30]. In the cavitating analysis the structural displacement
was thought to affect the cavitation behaviour.

Ducoin et al. [27, 32] conducted both a numerical and experimental investigation
into the effect of flexibility on a stationary foil in uniform flow. They compared
coupled and uncoupled simulations to assess the effect of FSI with ANSYS CFD
and Complete Structural Design. Uncoupled simulations were computed after the
CFD simulations were solved with the foil assumed rigid and then the resulting
forces were used to compute the structural deflections. Results from experimental
visualisation of the foil displacement compared well to the coupled numerical simu-
lations. The maximum vertical displacement in the coupled simulation was 10.7%
higher in the coupled case while the change in lift was 10.6% higher. The change in
lift was correlated to the change in pressure distribution at the foil tip due to the
deflection. This corresponded to a large variation in the minimum pressure at the
leading edge of the tip suction side. Ducoin et al. [31] used a RANSE k − ω SST
model coupled with a transition model. They found that the structural response
is strongly linked to hydrodynamic phenomena such as boundary layer transition
and leading edge vortex shedding. An investigation of the effect of pitch veloc-
ity revealed that the increased speed influenced the boundary layer transition and
hydrofoil loading which resulted in a higher incidence angle before stall [29, 31].
Hysteresis was evident after stall on the downstroke. Fluctuating displacements
have been observed when leading edge vortex shedding occurs during stall, for
both numerical and experimental approaches.

This thesis differs from Ducoin’s work as the aim of this thesis is to investigate a
hydrofoil oscillating in a pure sinusoidal pitch motion (not triangular) while not
exceeding the static stall incidence.
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4.2 Methodology

In two-way coupled analyses the CFD and structural solvers pass results between
each other until convergence is reached. This process requires the CFD to con-
verge on an initial solution and passes the forces to the structural ANSYS package;
the structural package using these forces calculates the resulting hydrofoil deflec-
tion; the deflection is then passed to the connecting surface or FSI boundary and
the CFD interface and surrounding mesh will deform to reflect the solution and
solve again. This process continues until convergence is reached for the CFD, the
structural solver and the interface.

This analyses used a steady state ANSYS and CFX numerical model. This means
that there is no elapsed time although CFX still uses a pseudo-timestep[37]. The
pseudo time is not shared with the mechanical solver. In a static structural (steady
state) analysis, inertia and damping effects due to time variation are ignored. The
static analyses are modelled non-linearly to allow for large deformations [55]. The
element type used in the structural analyses was SOLID186. This is a high order
3-D solid element that exhibits quadratic displacement behaviour and supports
large deflection [54]. The load for the coupling process used an under-relaxation
factor of 0.75. The base of the foil is cylindrical to be used in the dynamic analyses
is shown in Figure 4.1. In this analyses the hydrofoil is rigidly fixed around the
cylinder labelled ’A’. This figure shows the fluid solid interface labelled ’B’.

Figure 4.1: Structural numerical model
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A diagram of the structural foil (shown in yellow) within the CFD domain is shown
in Figure 4.2.

Figure 4.2: Structural numerical model constraints

A static two-way analysis was conducted at incidence angles of 1, 3, 4, 5 and 10◦

for both aluminium and stainless steel at a Reynolds numbers of 3.36 × 105 and
1.12 × 106. Results were compared for CL, CD, CM and maximum tip deflection
and twist.

4.2.1 Grid Independence and Temporal Convergence

The CFD model grid independence and temporal convergence was detailed in Chap-
ter 3. The structural grid was checked for independence using the results from the
converged CFD model at 10◦ and completing a one-way coupling using various
meshes until the tip deflection converged. Results are shown in Table 4.1. Mesh B
was selected and is shown in Figure 4.3.

Table 4.1: Structural grid convergence details of mesh constraints

Mesh Maximum size of mesh Number of cells around Maximum deflection
on the foil[mm] the NACA section δmax

A 16 70 10.868
B 6 50 11.024
C 6 70 11.261
D 4 35 9.561
E 4 70 11.261
F 2 70 11.347
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Figure 4.3: Structural numerical model within fluid domain
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4.2.2 Coupling

At the beginning of the coupled analysis, an investigation into the coupling proce-
dure and the effect of unmapped nodes was conducted. An unmapped node has
all of neighbouring integration point faces completely non-matching with any inte-
gration points from the other side [66]. A data transfer type used was conservative
interpolation mapping. This means, ANSYS structural transferred the load from
an unmapped node to a mapped node. It was difficult to achieve zero unmapped
nodes at the leading edge of the foil between the structure and CFD mesh due to
the curvature. To investigate the effect of this, a sensitivity analyses was conducted
for two variations in percentage unmapped nodes at the maximum incidence angle
of 10◦ for a two-way coupled analyses. This resulted in a mesh which had 4.5%
unmapped nodes on the CFD side and 3.6% on the structural side.

4.3 Results and Discussion

The investigation of a coupled (two-way FSI) static hydrofoil is divided into two
parts. This section begins with qualitative results of pressure contours over the foil
and at the root for rigid and coupled aluminium and stainless steel. This is then
followed by results for CL, CD, CM , deflection and twist at incidence angle of 1, 3,
4, 5 and 10◦ for Reynolds number of 3.36× 105 and 1.12× 106. Note, the planform
area is considered the same as the undeformed mesh although it is recognised that
the projected area will vary with deflection.

The variation in pressure on the rigid, aluminium and stainless steel foils, on the
pressure side and suction side, for incidence angle of 5◦ is shown in Figure 4.4 and
4.5. All pressure distributions are very similar in magnitude and position, despite
material and associated deflection changes. The variation of rigid, stainless steel
and aluminium pressures on the wall at the root of the foil at incidence angle of 10◦

is shown in Figure 4.6. The outline of the deflected foil shape is shown in black.
Again all pressure distributions are very similar in magnitude and position, despite
material and associated deflection changes.
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4.3.1 Forces and Moments

This section presents the results for a NACA 0009 3D hydrofoil at incidence angle
of 1, 3, 4, 5 and 10◦ using a two-way coupled analysis and compares the resulting
CL, CD and CM to the rigid/uncoupled case. CL, CD and CM respectively at
incidence angle of 1, 3, 4, 5 and 10◦ with a Reynolds number of 3.36 × 105 and
1.12×106 is shown in Figures 4.7, 4.9 and 4.8. There is little variation in Reynolds
number for CL and CM . Although, CL and CM are slightly higher at the higher
Reynolds number. It was expected that the aluminium and stainless steel case at
the lower Reynolds number would be closer to the rigid results because there will be
less force acting on the surface. The results for CL and CM for both materials are
similar to the rigid case up to incidence angle of 5◦ after this there is a noticeable
variation. Similarly, the results for the aluminium and stainless steel foils are
essentially identical at the higher Reynolds number but compare more favourably
with the rigid results than those at the lower Reynolds number. The results for
the pressure distribution show that deformations have little effect and the forces
confirm this up to 5◦ incidence.

To investigate this possible artefact the percentage difference from the original rigid
undeformed mesh at incidence angle of 5 and 10◦ for CL and CM is presented in
Table 4.2. Three sets of runs where compared; rigid uncoupled with an undeformed
mesh (rigid undeformed), coupled two-way(coupled) and a rigid uncoupled run
using the resulting deformed coupled CFD mesh (deformed rigid). As there was
no difference between materials in the previous results only one material needed
to be compared. The rigid undeformed case is used as a benchmark for the other
two cases, this case is used to calculate a percentage difference to the coupled and
deformed rigid cases. It is noted that there is less of a difference in the percentage
difference at the higher Reynolds number. At 5◦ the variation is less than 4% for
all cases. Although the larger variation of CL and CM at 10◦ could be due to
incipient stall characteristics, the offset of these results at each Reynolds number
for the coupled cases matches the offsets for the drag. This suggests that the offsets
are due to the coupling process. The CD offset is further investigated in the next
paragraph.
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Figure 4.7: Comparison of computed CL for aluminium, stainless steel and rigid
hydrofoil at for incidence angle (α) of 1, 3, 4, 5 and 10◦ for Reynolds number of
3.36× 105 and 1.12× 106
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Figure 4.8: Comparison of computed CM for aluminium, stainless steel and rigid
hydrofoil at for incidence angle (α) of 1, 3, 4, 5 and 10◦ for Reynolds number (Re)
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Table 4.2: Coupled mesh comparison

Reynolds number α [deg] Run CL % diff. CM % diff.
from rigid from rigid

undeformed undeformed
3.36× 105 5 coupled -4 1
3.36× 105 5 deformed rigid 0 1

1.12× 106 5 coupled 0 1
1.12× 106 5 deformed rigid 2 1

3.36× 105 10 coupled -10 -9
3.36× 105 10 deformed rigid -3 -2

1.12× 106 10 coupled -5 -1
1.12× 106 10 deformed rigid -1 -4
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Figure 4.9: Comparison of computed CD for aluminium, stainless steel and rigid
hydrofoil at for incidence angle (α) of 1, 3, 4, 5 and 10◦ for Reynolds number (Re)
of 3.36× 105 and 1.12× 106
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The rigid results show that the lower Reynolds number has an increase in CD when
compared with the higher Reynolds number case (Figure 4.9). The CD curve in the
coupled case for aluminium and stainless steel has a constant offset from the rigid
uncoupled analyses. This was investigated in this study by the same procedure used
previously for CL and CM . It was found that CD had a constant offset through all
incidence angles, shown in Figure 4.9. This was approximately 0.017 and 0.007 for
a freestream velocity of 2.5 and 8.3 m/s respectively. The offset in CD was further
investigated by comparing a coupled two-way(coupled) and a rigid uncoupled run
using the resulting deformed coupled CFD mesh (deformed rigid), i.e. the cases
used the same CFD mesh with only the method of calculation changed. Wall shear
on the foil, velocity at the mid-span and velocity profile at the trailing edge are
shown in Figures 4.10, 4.11 and 4.12. The wall shear in the coupled case has a
wider band of wall shear at the leading edge in the spanwise direction. The wall
shear is greater in the coupled case. The wall shear has minimal spanwise variation,
as shown in Figure 4.10. The velocity on a plane intersecting the foil at mid-span
is shown in Figure 4.11. The boundary layer at the trailing edge is clearly thicker
in the coupled case. The yellow line in this figure shows the point at which the
velocity was extracted to create the velocity profile in Figure 4.12. The boundary
layer is thicker in the coupled case on both the suction and pressure side, with a
more pronounced difference on the suction side. Therefore it was concluded that
the CD offset variation was attributed to the coupling process.

When comparing the rigid results to coupled the error is relatively small for CL and
CM at small to moderate incidence angles. The CD trend is later investigated in
the dynamic hydroelastic analysis Chapter 5. By normalising CD with the coupled
static case, the offset error is removed and the dynamic trend can be compared to
the rigid analysis. This does not affect any conclusion made in this thesis.
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(a) Coupled

(b) Deformed Rigid

Figure 4.10: Comparisons of foil wall shear for coupled and deformed rigid cases
for incidence angle of 10◦ and Reynolds number of 1.12× 106.
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(a) Coupled

(b) Deformed Rigid

Figure 4.11: Comparisons of foil velocity for coupled and deformed rigid cases at
the mid span for incidence angle of 10◦ and Reynolds number of 1.12 × 106. The
yellow line illustrates the point at which the velocity is measured for Figure 4.12
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Figure 4.12: Comparison of computed foil velocity for coupled and deformed rigid
cases at the mid span and trailing edge of the foil for incidence angle of 10◦ and
Reynolds number of 1.12× 106.
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4.3.2 Deflections

The deflections for the two-way coupled foil for aluminium and stainless steel at
Reynolds numbers of 3.36 × 105 and 1.12 × 106 is shown in Figure 4.13. The
largest deflection is for aluminium at an incidence angle of 10◦ resulting a 7 mm
tip deflection for a Reynolds number of 1.12 × 106 . The deflection at Reynolds
number of 3.36 × 105 for aluminium is only 8.5% of the deflection at a Reynolds
number of 1.12 × 106. Stainless steel has a deflection at incidence angle of 10◦

of 2.6 mm at a Reynolds number of 1.12 × 106 and approximatley 8% of this at
Reynolds number of 3.36 × 105. Also as expected the deflection increases linearly
with incidence angle. The difference in deflection between the two materials is
comparable to the ratio of Young’s modulus to the third significant figure.

The comparison of the one-way and two-way interaction is shown in Figure 4.14.
These results shows that there are small but apparent differences between pre-
dicted bending deformations. However bending deformations have been previously
shown to virtually have no effect on forces and moments at least up to moderate
incidences. The twist variation with incidence angle is shown in Figure 4.15. From
this plot it can be seen that the twist although small in magnitude reduces with
increase in incidence angle which is the opposite to bending. The variation of the
non-dimensional deflection, CδL = (δEI)/(LS3) with incidence angle is shown in
Figure 4.16. This figure shows at an incidence angle of 1◦ the lower Reynolds num-
ber has a higher non-dimensional deflection and a linear relationship from 3 to 10◦

with a small gradient and the larger Reynolds number marginally higher than the
lower. By making the deflection non-dimensional a Reynolds number dependence
is evident, this is partially attributed to the coupling procedure as described for
CL and CM where there was a larger difference at the higher Reynolds numbers.

99



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12

δ 
[
m

m
]

α [deg]

Al Re=3.36x10
5

SS Re=3.36x10
5

Al Re=1.12x10
6

SS Re=1.12x10
6

Figure 4.13: Static deflection (δ) variation with incidence angle (α).

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6

δ 
[
m

m
]

α [deg]

Al 2-way
SS 2-way

Al 1-way
SS 1-way

Figure 4.14: Static deflection (δ) variation with incidence angle (α) at Reynolds
number of 1.12× 106 comparing one-way to two-way coupling.

100



 0

 0.05

 0.1

 0.15

 0.2

 0  2  4  6  8  10  12

θ 
[d

eg
]

α [deg]

Al Re=3.36x10
5

SS Re=3.36x10
5

Al Re=1.12x10
6

SS Re=1.12x10
6

Figure 4.15: Twist (θ) variation with incidence angle (α).

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12

C
δL

α [deg]

Al Re=3.36x10
5

SS Re=3.36x10
5

Al Re=1.12x10
6

SS Re=1.12x10
6

Figure 4.16: Non-dimensional static deflection (CδL) variation with incidence angle
(α).

101



4.4 Chapter Summary

The investigation of the two-way FSI of a 3D NACA 0009 hydrofoil with trapezoidal
planform for steady angles of incidence is described in this chapter. There is little
variation in Reynolds number for CL and CM . Although CL and CM are slightly
higher at the higher Reynolds number. The results for CL and CM are similar to
the rigid case up to an incidence angle of 5◦ after this there is a noticeable variation.
That is, at 10◦ incidence the results for the aluminium and stainless steel are almost
identical at the lower Reynolds number but considerably different from the rigid
case for the same Reynolds number. Similarly, the results for the aluminium and
stainless steel foils are essentially identical at the higher Reynolds number but
compare more favourably with the rigid results for the higher Reynolds number
than those for the lower Reynolds number. To investigate this possible artefact the
percentage difference from the original rigid undeformed mesh at incidence angle
of 5 and 10◦ for CL and CM was calculated. By comparing the three sets of runs;
rigid uncoupled with an undeformed mesh (rigid undeformed), coupled (coupled)
and an rigid uncoupled run but using the resulting deformed coupled CFD mesh
(deformed rigid). It was found that there was a reduced difference in percentage
at the higher Reynolds number. At 5◦ the variation is less than 4% for all cases.

The CD curve in the coupled case for aluminium and stainless steel has a constant
offset from the rigid uncoupled analyses. This is investigated in this study by this
same procedure as for CL and CM and it was found to have a constant offset through
all incidence angles. This was approximately 0.017 and 0.007 for a freestream
velocity of 2.5 and 8.3 m/s respectively. Therefore it was concluded that the CD
offset and the CL and CM variation was attributed to the coupling process by
small vibrations on the surface of the foil resulting from the moving mesh between
iterations. Consequently, the boundary layer is thicker in the coupled case and
has a greater viscous component. When comparing the rigid results to coupled
the error is relatively small for CL and CM at small to moderate incidence angles.
The CD trend shows an increasing reduced frequency once normalised on the static
value at maximum incidence. By normalising CD with the coupled static case, the
offset error is removed and the trend can be compared to the rigid analysis.

The effect of static incidence is investigated using a two-way coupled FSI. The
static deflection increases linearly with incidence angle up to moderate angles. The
difference in deflection between the two materials is comparable to the ratio of
Young’s modulus to the third significant figure. The foil’s twist remains less than
0.2◦ and becomes less as the angle of incidence is increased. Comparison of static
one-way and two-way coupled results shows that there are small but apparent dif-
ferences between predicted bending deformations. However, bending deformations
were shown to have virtually no effect on forces and moments at least up to mod-
erate incidences.
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Chapter 5

Dynamic Hydroelasticity

The investigation of the coupled (two-way FSI) 3D NACA 0009 hydrofoil with a
with trapezoidal planform undergoing a sinusoidal pitch oscillation is described in
this chapter. Results are presented as hysteresis plots, a summary of maximum
CL, CD, CM and structural deflections and twist. Comparisons are made with the
3D (uncoupled) rigid body fluid dynamic results. The previous work relating to
hydroelastic foils was discussed in Chapter 4.

5.1 Methodology

This section builds upon the methodology presented in earlier chapters. From the
transient CFD analyses in Chapter 2, 100 time steps per cycle was shown to achieve
temporal convergence. All results that did not produce a closed hysteresis loop were
excluded from the summary of maximum forces, moment and structural response.
An initial estimate of time step for a coupled analysis is ∆t = 1/(20×fresponse) [55].

This analysis uses a coupled two-way transient structural and CFD model. This
means both the structural and CFD analyses will model transient effects [37]. A
dynamic structural analysis determines the dynamic response of the structure under
transient loads [55]. The basic structural equation [55] solved in this analyses is:

(M)ü+ (c)u̇+ (K)u = F (t) (5.1)

The structural constraints on the foil are shown in Figure 5.1. The base of the foil
is attached to a cylinder which is surrounded by a frictionless support label ‘A’ in
the figure and is constrained in the y direction. This arrangement enables the foil
to be constrained as if mounted on a bearing allowing for rotation. The rotation
is applied as a remote displacement which is shown as labelled ‘B’. The fluid-solid
interface is shown as labelled ‘C’, which is the surface of the foil.

To ensure that the fully coupled dynamic run had minimal start-up transients,
the simulations were restarted from the rigid CFD results on the CFD side of the
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Figure 5.1: Dynamic structural numerical model

solution. This effectively prevented a sudden impulse loading from starting the foil
in motion and ensuring the CFD model has already developed the induced phase
angle between the forces and moments and incidence amplitude. This resulted
in stable runs after half a cycle. The numerical run matrix for these analysis is
shown in Table 5.1. Compared to the uncoupled simulation, this simulation models
more complex physical phenomena and is more numerically intensive with the
opportunity to encounter numerical and physical instability. The coupled analyses
took approximately five times longer to solve than the uncoupled results.

Table 5.1: NACA 0009 1/2 c run matrix RANSE

k ᾱ ∆α
0.031 0,4◦ 3◦

0.314 0,4◦ 3◦

0.785 0,4◦ 3◦

1.571 0,4◦ 3◦

3.142 0,4◦ 3◦
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5.2 Results and Discussion

Initially, results from a modal analysis in air, using ANSYS, were calculated to
investigate mode shapes and frequencies of interest. Using these frequencies an
approximation is used to calculate the reduction in frequency due to immersion
in water. Results are presented as hysteresis and summary plots of maximums.
The hysteresis plots for the CL, CD and CM are presented at 4◦ mean incidence,
an incidence amplitude of 3◦, a reduced frequency of 0.785 and Reynolds number
1.12× 106. Summary plots for the maximum CL, CD and CM , deflection and twist
for a change in mean incidence, varying reduced frequency and incidence amplitude
are detailed. Comparisons are made with the 3D (uncoupled) rigid body fluid
dynamic results in both the hysteresis loops and summary plots.

5.2.1 Modal Analyses

The modal frequencies for each material is shown in Table 5.2, and the resulting
mode shapes (calculated with ANSYS) are shown in Figure 5.2.

Table 5.2: Modal analyses in air [Hz]

Mode Stainless Steel Aluminium

1 106 108
2 446 453
3 789 796

Using an approximation from Blevins [12] the effect of added mass of the foil
immersed in water will reduce the natural frequency. For the first mode this is a
reduction in a natural frequency of 62% for stainless steel and 43% for aluminium
which results in a natural frequency in water for stainless steel of 65 Hz and for
aluminium of 46 Hz. For a velocity of 2.5 m/s (Re = 3.36×105) the natural reduced
frequency (equation 1.26) of stainless steel is 10 and aluminium is 7. For a velocity
of 8.3 m/s (Re = 1.12 × 106) the natural reduced frequency of stainless steel is
3 and aluminium is 2. Therefore at a velocity of 2.5 m/s (Re = 3.36 × 105) the
reduced natural frequcies are outside the run matrix. At a velocity of 8.3 m/s (Re =
1.12×106) the reduced natural frequency are within the run matrix (Table 5.1). The
results for the two highest reduced fequencies of 1.571 and 3.142 did not converge
to a stable solution and are not included in the results.
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(a) Mode 1

(b) Mode 2

(c) Mode 3

Figure 5.2: First three mode shapes of the foil for both stainless steel and alu-
minium
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5.2.2 Forces and Moments

The hysteresis plots of CL, CD and CM for aluminium and stainless steel cases is
shown in Figure 5.3. The arrows in Figure 5.3 indicate the direction of the loop
on the upstroke. The first thing to note in this figure is the incidence change for
the rigid case is 1 to 7◦, but for the coupled case the incidence change is 1.36
to 6.64◦. The coupled incidence amplitude is calculated at the root of the foil.
The difference in angle is caused by the difference in the method of implementing
rotation in the simulation between the rigid and coupled results. From the rigid
results in Chapter 3 the effect of a 0.36◦ variation of incidence amplitude can
be approximated. With this in mind the magnitude of the forces and moment
maxima and phase is compared through normalising on the equivalent static force
at maximum incidence in Figures 5.4 to 5.15. The shape of the hysteresis loops
is compared to the rigid case and the coupled materials. The magnitude of the
coupled materials are directly compared to each other, but compared to the rigid
magnitude in the summary plots. The magnitude of variation caused by the small
change in incidence angle does not affect the conclusions made.

The shape of these coupled CL and CM hysteresis loops are wider just prior to the
maxima and minima (Figure 5.3) compared with the rigid results. The effect of
this is to produce a non-linear relationship on the upstroke and downstroke, this
is more pronounced in the CM loop. The CD is offset higher than the rigid plot
with a smaller change in amplitude in comparison with the rigid case. The CD
offset was discussed in Section 4.3 where it was concluded that this was a spurious
feature of the coupling process. There is a small change between aluminium and
stainless steel in the coupled case at the maximum and minimum for CL, CD and
CM .
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Figure 5.3: Force and moment hysteresis plots comparing rigid and coupled (flexi-
ble) results for 4◦ mean incidence, 3◦ incidence amplitude, a reduced frequency of
0.785 and Reynolds number of 1.12× 106
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The normalised maximum CL, CD and CM throughout one cycle and the associated
phase angle is shown in Figures 5.4 to 5.15. CL and CM results are normalised
using the rigid static value at the maximum incidence angle of the oscillation.
The CD is normalised with the coupled static force results. Each set of CL, CD
and CM results compares individual Reynolds numbers for rigid, aluminium and
stainless steel for 0 and 4◦ mean incidence for varying reduced frequencies and for
an incidence amplitude 3◦. As previously stated any results that did not produce
a closed hysteresis loop were omitted.

The normalised maximum CL with reduced frequency for a Reynolds number of
3.36 × 105 and 1.12 × 106 is shown in Figures 5.4 and 5.5 respectively. The rigid
results are shown as a solid line, and the coupled as points. At a reduced frequency
of 1.571 the normalised maximum CL result for aluminium lies above the rigid
result, while at the next reduced frequency of 3.142 both aluminium and stainless
steel have a higher normalised CL. At the higher Reynolds number the 0◦ mean
incidence results are less than the rigid results at a reduced frequency of 0.031 but
match for a reduced frequency of 0.314 and 0.785.

The 4◦ mean incidence case has a small negative gradient and is less than the rigid
case up until a reduced frequency of one. After a reduced frequency of one, the
material type has an effect and the coupled case predicts a normalised CL greater
than the rigid case. The stainless steel results have the highest normalised CL at a
reduced frequency of 3.142. At the higher Reynolds number the 4◦ mean incidence
results is under the rigid results at a reduced frequency of 0.031 but match at a
reduced frequency of 0.314 and 0.785.

The lift phase angle variation with reduced frequency for a Reynolds number of
3.36× 105 and 1.12× 106 is shown in Figures 5.6 and 5.7 respectively. The phase
angle for a Reynolds number of 3.36× 105 varies similarly to the rigid results. The
phase angle for a Reynolds number of 1.12 × 106 diverges as it approaches the
point at which the simulations became unstable. Both aluminium and stainless
steel diverge at approximately the same rate.

In summary, from the normalised CL results for a Reynolds number of 3.36 × 105

and 1.12 × 106 there is minimal difference up until a reduced frequency of one.
At a reduced frequency greater than one the coupled results show an increase in
normalised CL when compared to the rigid case. The lift phase angle does not
vary for a Reynolds number of 3.36 × 105 but diverges at a Reynolds number of
1.12× 106 as this is the point at which the simulations become unstable.

109



 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 0.01  0.1  1  10

C
L
/C

L
0

k

Rigid α–  = 0º
Al α–  = 0º
SS α–  = 0º
Rigid α–  = 4º
Al α–  = 4º
SS α–  = 4º

Figure 5.4: Comparison of computed maximum normalised CL for varying reduced
frequency (k) incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 3.36× 105
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Figure 5.5: Comparison of computed maximum normalised CL for varying reduced
frequency (k) incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 1.12× 106
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Figure 5.6: Comparison of computed lift phase angle (ΦL) for varying reduced
frequency (k) incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 3.36× 105
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Figure 5.7: Comparison of computed lift phase angle (ΦL) for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of1.1× 106
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The normalised maximum CD for a Reynolds number of 3.36× 105 and 1.12× 106

is shown in Figures 5.8 and 5.9. The coupled results are normalised with the static
coupled analyses at the point of maximum incidence. At a Reynolds number of
3.36×105, after normalising the coupled results, they have similar trends to the rigid
results at reduced frequencies of 0.031 and 0.314. The 0◦ mean incidence begins to
increase non-linearly after a reduced frequency of 1.571. At a reduced frequency of
3.142 the results are dependent on material, with stainless steel increasing rapidly.
After a reduced frequency of 0.785 the 4◦ mean incidence results begins to increase
non-linearly. At a Reynolds number of 1.12×106 all values for both 0 and 4◦ mean
incidences are nearly constant and slightly above the rigid results.

The drag phase angle variation with reduced frequency for a Reynolds number of
3.36×105 and 1.12×106 is shown in Figures 5.10 and 5.11. At a Reynolds number
of 3.36 × 105 the results are constant, and then decrease at a reduced frequency
of 0.785 for a 0◦ mean incidence. Aluminium increases at a reduced frequency of
0.785 then reduces to a similar value as for the rigid. The phase angle for this
case at 4◦ mean incidence behaves the same for both coupled and rigid cases. At a
Reynolds number of 1.12×106 the drag phase angle is above the rigid and diverges
similarly to the lift as it approaches the unstable solutions.

The normalised CM for a Reynolds number of 3.36× 105 is shown in Figures 5.12
and 5.14 respectively. The rigid results are shown as a solid line, and the coupled
as points. For the 0◦ mean incidence, the results compare with the rigid, except at
a reduced frequency of 3.142, the moment for stainless steel is reduced. At 4◦ mean
incidence there is no material dependence with CM remaining less than the rigid
case for reduced frequencies less than one. At a reduced frequency of 1.571 the
result is the same for rigid and coupled. After this, the coupled case then increases
more rapidly than the rigid. The phase angle of the CM maximum is the same for
coupled and rigid results.

The moment phase angle for a Reynolds number of 3.36×105 and 1.12×106 is shown
in Figures 5.14 and and 5.15 respectively. At a Reynolds number of 3.36× 105 the
phase matches for the rigid and coupled case. At a Reynolds number of 1.12× 106

the coupled phase is less than the rigid phase until a reduced frequency of 0.785.
At a reduced frequency of 0.785 the phase diverges.
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Figure 5.8: Comparison of computed maximum normalised CD for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 3.36× 105
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Figure 5.9: Comparison of computed maximum normalised CD for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 1.12× 106
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Figure 5.10: Comparison of computed drag phase angle (ΦD) for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 3.36× 105
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Figure 5.11: Comparison of computed drag phase angle (ΦD) for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number (Re) of 1.12× 106
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Figure 5.12: Comparison of computed maximum normalised CM for varying re-
duced frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0
and 4◦ at a Reynolds number (Re) of 3.36× 105
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Figure 5.13: Comparison of computed maximum normalised CM for varying re-
duced frequency (k) incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0
and 4◦ at a Reynolds number of 1.12× 106
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Figure 5.14: Comparison of computed moment phase angle (ΦM) for varying re-
duced frequency (k) incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0
and 4◦ at a Reynolds number of 3.36× 105
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Figure 5.15: Comparison of computed moment phase angle (ΦM) for varying re-
duced frequency (k) incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0
and 4◦ at a Reynolds number of 1.12× 106
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The deflection, twist and non-dimensional deflection is shown in Figures 5.16 to
5.19. The phase for all structural responses have not been presented as they were
less than 3◦ in all cases. The last two results in the coupled case for a Reynolds
number of 1.12 × 106 did not converge within the run time and became unstable.
These are not presented in the summary plots.

The deflections remained small at the lower Reynolds number, less than 0.8 mm.
This is greater than the static case which was approximately 0.2 mm. At the higher
Reynolds number the deflection is less than the static angle equivalent at maximum
incidence angle. For example, aluminium in the dynamic case at an incidence of
7◦ has an approximate deflection of 4 mm and 5 mm in the static case. The non-
dimensional bending shows that until a reduced frequency of approximately one,
the trend of non-dimensional bending in relation to reduced frequency is almost
constant. Above one the deflection increases rapidly.

The twist for a Reynolds number of 3.36×105 and 1.12×106 is shown in Figures 5.20
and 5.21. The twist at a Reynolds number of 3.36 × 105 remains less than a
degree for all reduced frequencies. At a reduced frequency of 3.142 there is a slight
increase in twist which is greater for aluminium. The twist at a Reynolds number
of 1.12 × 106 reduces approximately half a degree from a reduced frequency of
0.031 to 0.785. The twist for aluminium is larger than stainless steel at a Reynolds
number of 1.12× 106.
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Figure 5.16: Comparison of computed maximum deflection (δ) for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number of 3.36× 105
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Figure 5.17: Comparison of computed maximum deflection (δ) for varying reduced
frequency (k), incidence amplitude (∆α) of 3◦ and mean incidence (ᾱ) of 0 and 4◦

at a Reynolds number of 1.12× 106
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Figure 5.18: Comparison of computed maximum non-dimensional deflection (CδL)
for varying reduced frequency (k), incidence amplitude (∆α) of 3◦ and mean inci-
dence (ᾱ) of 0 and 4◦ at a Reynolds number of 3.36× 105
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Figure 5.19: Comparison of computed maximum non-dimensional deflection (CδL)
for varying reduced frequency (k), incidence amplitude (∆α) of 3◦ and mean inci-
dence (ᾱ) of 0 and 4◦ at a Reynolds number of 1.12× 106
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Figure 5.20: Comparison of computed maximum twist (θ) for varying reduced
frequency (k), at a Reynolds number of 3.36× 105
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Figure 5.21: Comparison of computed maximum twist (θ) for varying reduced
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5.3 Chapter Summary

In this chapter the results of FSI simulations were presented for aluminium and
stainless steel undergoing a pure pitch oscillation. Using an approximation from
Blevins [12] the effect of added mass of the foil immersed in water will reduce
the natural frequency. For a velocity of 2.5 m/s (Re = 3.36 × 105) the natural
reduced frequency of stainless steel is 10 and aluminium is 7. For a velocity of
8.3 m/s (Re = 1.12 × 106) the natural reduced frequency of stainless steel is 3
and aluminium is 2. At a velocity of 8.3 m/s (Re = 1.12 × 106) the reduced
natural frequency are within the run matrix. The results for the last two reduced
frequencies of 1.571 and 3.142 did not converge to a stable solution and are not
included in the results.

The effect of coupling on the hysteresis to produce a non-linear relationship on the
upstroke and downstroke, this is more pronounced in the CM loop. The CD is offset
higher than the rigid plot with a smaller change in amplitude in comparison with
the rigid case. The CD offset was discussed in Section 4.3, where it was concluded
that this was a spurious feature of the coupling process. There is a small change
between aluminium and stainless steel in the coupled case at the maximum and
minimum for CL, CD and CM .

In conclusion, a reduced frequency of one is significant. At a Reynolds number
of 3.36 × 105 it is the reduced frequency at which the non-dimensional deflection
becomes non-linear, and CL and CD for both mean incidence varies with material.
The CL at a reduced frequency greater than one has a larger magnitude maxima
than the rigid results, although the coupled 4◦ mean incidence remains less than
the rigid results for a 0◦ mean incidence. In Chapter 3, the rigid results had an
increase in incidence amplitude at 4◦ mean incidence increases the magnitude of
normalised lift, but there was no affect at the 0◦ mean incidence. This implies that
the bending is increasing the magnitude of lift as there is an increase in the coupled
analysis for both 0◦ and 4◦ mean incidence increases and minimal change in twist.

CM at a Reynolds number of 3.36×105 when coupled has little variation at reduced
frequency greater than one for 4◦ mean incidence. At a reduced frequency greater
than one for 4◦ mean incidence the CM for stainless steel is less than the rigid
case, with a similar CM for aluminium. In Chapter 3, the rigid case, an increase in
incidence amplitude at 4◦ mean incidence increases the magnitude of normalised
CM , but there was no affect at the 0◦ mean incidence. Therefore coupling has
reversed the CM trend between 0 and 4◦ mean incidence.

The twist is significant at a Reynolds number of 1.12× 106. The twist phase angle
to the incidence amplitude was small for all cases. The lift, drag and moment
phase angle, as the reduced frequency approached the natural reduced frequency
of stainless steel is 3 and aluminium is 2. The CL, CD, deflection and twist all
remained constant or reduced, the CM however marginally increased.

Reduced frequencies of 0.8, 1.6 and 2.4 were identified in Chapter 1.4 as being
representative of those experienced by a propeller operating in an unsteady flow
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field caused by wakes from the control surfaces and fairwater of a submarine. The
approximate incidence amplitude is 2◦ with a 4◦ mean incidence. From this chapter
we can conclude that coupling may affect modes that occur at reduced frequencies
greater than one.
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Chapter 6

Conclusions

Marine propellers operate in unsteady non-uniform wake regions generated by the
hull and control surfaces subjecting the propeller to unsteady loading. Hydroelastic
tailoring of propeller blades is a method to reduce unsteady loading as a propeller
blade passes through a wake deficit. This project sought to gain greater insight
into the effect of hydroelastic tailoring on a propeller by simplifying the problem
to a single trapezoidal planform hydrofoil with a sinusoidal pitch oscillation. This
simplification was achieved through comparison of the ‘gust response’ of a blade
passing through a wake deficit to a 2D foil’s unsteady sinusoidal ‘gust response’.
This analogy was used to determine the run matrix parameters. By considering
a 3D hydrofoil of similar aspect ratio to a propeller blade and largely focusing
on bending, the FSI behaviour has been investigated using the commercial AN-
SYS CFX for the computational fluid dynamics coupled with ANSYS mechanical
structural package. To be able to accurately predict and model FSI with a stable
numerical solution, a solid understanding of the rigid body dynamics was required.
This was undertaken by the investigation of the rigid body dynamics both statically
and dynamically.

The commercial CFD package ANSYS CFX using the RANSE Shear Stress Trans-
port (SST) model has been shown to accurately predict the unsteady forces on an
oscillating hydrofoil in pure pitch in both two and three dimensions. Validation
was conducted both statically and dynamically. Static validation was undertaken
with the co-efficient of pressure from experimental data at an incidence angle of
2, 5 and 10◦. Results using XFOIL, k − ε and SST models compared well to the
experimental data. However, results from the k − ω model at an incidence angle
of 10◦ did not compare well with experimental data and indicated early stall onset
and was not used in any further analyses. Dynamic validation was undertaken
with experimental results for CL, CD and CM . Results compared well for reduced
frequency values of 0.131 and 0.188 for both k − ε and SST turbulence models.
However, this was not the case for the lower reduced frequency values of 0.038 and
0.093, where the use of the k − ε turbulence models resulted in a large mean CD
offset. The SST model modifies the eddy viscosity by forcing the turbulent shear
stress to be bounded by a constant time inside the boundary layer [23]. For this
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reason the SST model was used for the remainder of the numerical modelling. Re-
sults from this model compared well for CL and CD, but under-predicted the CM
on the downstroke.

The effect of static incidence is investigated using a two-way coupled FSI. The
static deflection increases linearly with incidence angle up to moderate angles. The
difference in deflection between the two materials is comparable to the ratio of
Young’s modulus to the third significant figure. The foil’s twist remains less than
0.2◦ and becomes less as the angle of incidence is increased. Comparison of static
one-way and two-way coupled results shows that there are small but apparent dif-
ferences between predicted bending deformations. However, bending deformations
were shown to have virtually no effect on forces and moments at least up to mod-
erate incidences.

At the tip of the foil there is a pronounced difference in the behaviour of the tip
vortex at 0 and 4◦ mean incidence, although at the tip the pressures about the foil
are symmetric for both 0 and 4◦ mean incidences. The spacing and magnitude of
the vorticity travelling downstream varies between the 0 and 4◦ mean incidences.
When the foil oscillates at 0◦ mean incidence the positive Q-criterion wavelength
corresponds to twice the oscillation frequency. In contrast, at the tip at 4◦ mean
incidence, the wave length between a positive region is equal to the oscillation
frequency. The variation between 2D and 3D has been attributed to the spanwise
circulation/lift and 3D flow has the ability to equalise over the tip. The magnitude
of wake vorticity increases with increased incidence amplitude but the frequency
at which the vorticity travels downstream remains equal at the mid span.

The CL hysteresis varies about the static CL curve with increasing hysteresis as
the reduced frequency increases. The hysteresis is less in the 3D case compared
to the 2D case. This was attributed to the 3D flow having the ability to equalise
over the tip. The CD has a double harmonic at a mean incidence of 0◦ due to the
static CD being a mirror about the incidence angle of 0◦. This means CL and CD
are odd and even functions respectively of the dynamic incidence. CM varies in a
similar shape to the CL hysteresis loops but it does not vary around the static CM ,
suggesting that CM is dominated by the dynamics of CL and circulation.

The effect of coupling on the CL and CM hysteresis loops was to produce a non-
linear relationship on the upstroke and downstroke, this is more pronounced in
the CM loop. The CD is offset higher than the rigid plot with a smaller change
in amplitude in comparison with the rigid case. The CD offset was discussed in
Section 4.3 where it was concluded that this was a spurious feature of the coupling
process. There is a small change between aluminium and stainless steel in the
coupled case at the maximum and minimum for CL, CD and CM .

Classical linearised inviscid theory for CL and associated phase angle was used to
compare to 2D RANSE results. This theory is only valid at 0◦ mean incidence and
small incidence amplitude. The 2D magnitude and position of the minima matches
the prediction using classical linearised inviscid theory. The classical theory pre-
dicted slope is approximately the same as the 2D and 3D 0◦ mean incidence but
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the RANSE solution predicts a greater rate of change in CL/CL0 at the minima.
The minima for 0◦ mean incidence is less for the 3D case compared to the 2D case,
but they occur at the same reduced frequency value. The slope of the results for
the increase in CL/CL0 after the minima is steeper for the 2D case than the 3D
case for both 0 and 4◦ mean incidences. There is no variation in Reynolds number
for the 3D results. A minima in CL/CL0 for 0◦ mean incidence occurs at a reduced
frequency of approximately 0.6. For 4◦ mean incidence there is minimal variation
before a reduced frequency of 0.785 with an almost constant relationship between
CL/CL0 and reduced frequency. The implication of these conclusions on propeller
design is that varying the mean incidence amplitude may have the largest effect on
the forces and moments at a reduced frequency lower than one. In the case of a
submarine as shown in Chapter 1, the first harmonic has a corresponding reduced
frequency of 0.8 and an approximate mean incidence of 4◦. Therefore, by reduc-
ing the mean incidence amplitude it maybe possible to reduce the maximum CL.
For other wake signatures it could be possible to adjust the response to achieve a
lower maximum CL by using equation 1.15 in combination with adjusting the mean
incidence amplitude.

At a reduced frequency greater than one and 4◦ mean incidence, for the rigid
3D case, the results are dependent on incidence amplitude. The amplitude of
maximum CL increases with increasing incidence but is always lower than the
0◦ mean incidence. A reduced frequency of one is the point at which a particle
in the freestream will travel a distance equal to the length of the root chord in
one cycle. Therefore at frequencies higher than one, a particle does not travel
a full chord length and will influence the next cycle and affect the trailing edge
streamlines. Rigid 3D CL and CM predictions show similar behaviour to both the
2D unsteady viscous predictions and classical linearised inviscid theory for cases
of 0◦ mean incidence. In particular, when CL and CM are normalised using the
static incidence value at the maximum dynamic incidence, they vary linearly with
incidence amplitude for all reduced frequencies for a 0◦ mean incidence.

When coupled at a Reynolds number of 3.36 × 105 and at a reduced frequency
greater than one, the non-dimensional deflection becomes non-linear, and CL and
CD for both mean incidences vary with material. The CL at a reduced frequency
greater than one has a larger maxima magnitude than the rigid results, although
the coupled 4◦ mean incidence remains less than the rigid results for a 0◦ mean
incidence. In the rigid case an increase in incidence amplitude at 4◦ mean incidence
increases the magnitude of normalised CL, but there was no effect at the 0◦ mean
incidence. This indicates that the bending is increasing the magnitude of CL as
there is an increase in the coupled analysis for both 0◦ and 4◦ mean incidence.

When coupled at a Reynolds number of 3.36×105 there is little variation in CM at
reduced frequency greater than one for 4◦ mean incidence. At a reduced frequency
greater than one for 4◦ mean incidence, stainless steel has a lower CM than the rigid
case although, aluminium is the same as the rigid. In the rigid case an increase in
incidence amplitude at 4◦ mean incidence increases the magnitude of normalised
CM , but there was no affect at the 0◦ mean incidence. Therefore coupling has
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reversed the CM trend between 0 and 4◦ mean incidence.

The twist is significant at a Reynolds number of 1.12× 106. The twist phase angle
to the incidence amplitude was small for all cases. The CL, CD and CM phase angle
to the incidence amplitude increased rapidly as the reduced frequency approached
the first mode of natural reduced frequency of stainless steel and aluminium is
three and two respectively. The CL, CD, deflection and twist all remained constant
or reduced. The CM however marginally increased.

Reduced frequencies of 0.8, 1.6 and 2.4 were identified in chapter 1.4 as being
representative of those experienced by a propeller operating in an unsteady flow
field caused by wakes from the control surfaces and fairwater of a submarine. The
approximate incidence amplitude is 2◦ with a 4◦ mean incidence. It was concluded
that a 2D analysis will predict a larger change in force from the maxima to minima.
A 4◦ mean offset may reduce the effect of unsteady loading at a reduced frequency
less than one but increase it when the reduced frequency is greater than one even
though the amplitudes of the forces and moments for 4◦ mean incidence are less
than those for 0◦ mean incidence. At an approximate reduced frequency less than
0.1 the effect of unsteadiness on CL and CM magnitude may not be obvious but will
affect CD and phase angle of all responses. From the dynamic coupled results it
was concluded that coupling will affect harmonics that occur at reduced frequencies
greater than one.

ANSYS CFX has been demonstrated to be a suitable tool to simulate fluid struc-
ture interaction in the case of an oscillating hydrofoil in pure pitch. Solution times
for uncoupled simulations are reasonable but once the simulation is coupled the
results take approximately three to four times longer, therefore the jump to fully
coupled analysis should only be taken when absolutely necessary for the param-
eters described above. A two-way fluid structure analysis is needed to assess the
maximum forces and dimensionless bending for aluminium and stainless steel foils
when oscillating sinusoidally in pitch at a reduced frequency greater than one.
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Chapter 7

Further Work

This study has provided an insight into the effect of isotropic material with varying
mass and stiffness ratios on the forces acting on a hydrofoil undergoing sinusoidally
varying pitch oscillation. This study has also provided a solid foundation for the
numerical investigation into the physics of fluid structure phenomena. The direct
extension of this thesis would be to investigate the effect of incidence amplitude
on the coupled case and analysing results closer to the reduced natural frequency.
There are several variations that could be done; for instance testing of a material
with a different fundamental frequency in air, or a composite material. This would
enable an investigation into composite lay-up and hone in on the possibility of
lowering the reduced frequency at which material property has an effect. Further
investigation into the accuracy of physics of wall shear and the viscous component
would enable better drag and possibly twist prediction. A sensitivity analysis of
the effect of increasing or decreasing viscosity would also be interesting.

During this analysis it was noticed that the minima in the hysteresis loop produced
a greater twist variation and minimal deflection. Analyses of the minima when
there is minimal deflection would be interesting as this would show if bending
increases the structural rigidity, thus making the force required to twist the foil
greater. The amplitude of force oscillation may also be of interest in the prediction
of acoustics for a potential hydroelastically tailored propeller.

An experimental data set for the hydrofoils used in this study would provide invalu-
able validation and complement the current analysis. As this is a foundation study
there is components during the unsteady oscillation such as: the behaviour of the
boundary layer; movement of stagnation point pressure; and shedding mechanisms
that could be further investigated either numerically or experimentally.
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Appendix A

Two Dimensional Dynamic
Validation
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Figure A.1: Comparison of computed and experimental CL for 4◦ mean incidence
for a NACA 0015
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Figure A.2: Comparison of computed and experimental CD for 4◦ mean incidence
for a NACA 0015
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Figure A.3: Comparison of computed and experimental CM for 4◦ mean incidence
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Figure B.1: 3D comparison of computed normalised maximum CL for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure B.2: 2D and 3D comparison of computed normalised maximum CL at vary-
ing reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean incidence
(ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106.
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Figure B.3: 3D comparison of computed lift phase angle (ΦL) for varying reduced
frequency (k) at a Reynolds number of 3.36 × 105 for a mean incidence (ᾱ) of 0
and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure B.4: 2D and 3D comparison of computed maximum lift phase angle (ΦL)
at varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106.

A-vii



 0

 1

 2

 3

 4

 5

 6

 7

 0.01  0.1  1  10

C
D

/C
D

0

k

α– =0º, ∆α=1º
α– =0º, ∆α=2º
α– =0º, ∆α=3º
α– =0º, ∆α=5º
α– =4º, ∆α=1º
α– =4º, ∆α=2º
α– =4º, ∆α=3º
α– =4º, ∆α=5º

Figure B.5: 3D comparison of computed normalised maximum CD for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure B.6: 2D and 3D comparison of computed normalised maximum CD at
varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106
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Figure B.7: 3D comparison of computed drag phase angle (ΦD)for varying reduced
frequency (k) at a Reynolds number of 3.36 × 105 for a mean incidence (ᾱ) of 0
and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure B.8: 2D and 3D comparison of computed maximum drag phase angle (ΦD)
at varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36× 105 and 1.12× 106.
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Figure B.9: 3D comparison of computed normalised maximum CM for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure B.10: 2D and 3D comparison of computed normalised maximum CM at
varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for a mean
incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re of 3.36× 105 and 1.12× 106
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Figure B.11: 3D comparison of computed moment phase angle (ΦM) for varying
reduced frequency (k) at a Reynolds number of 3.36×105 for a mean incidence (ᾱ)
of 0 and 4◦ at incidence amplitudes (∆α) of 1, 2, 3, and 5◦.
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Figure B.12: 2D and 3D comparison of computed maximum moment phase angle
(ΦM) at varying reduced frequency (k) at a incidence amplitude (∆α) of 3◦ for
a mean incidence (ᾱ) of 0 and 4◦ and Reynolds number (Re) of 3.36 × 105 and
1.12× 106.
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