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ABSTRACT 

 
 Digital image processing plays a more and more important role in the medical 

diagnoses. Most widely used method for visualizing internal anatomical features of 

human body is magnetic resonance imaging (MRI). MRI can be used for the detection 

of osteoarthritis (OA) which affects the cartilage in the joints. Several techniques for 

the segmentation of the cartilage in MRI scans of the knee have recently been 

developed. One goal of segmentation is to automatically determine area and volume of 

the cartilage. Due to noise, however, none of these approaches is satisfactory in fully 

automated segmentation of articular cartilage. 

 In our research, we attempt to study and develop new automatic methods to extract 

the cartilage from MRI knee scans. From cartilage images, cartilage area and volume 

are then computed. Three automatic methods are applied for cartilage extraction.  

 The first method is bi-directional scanning segmentations method (BSSM), which is 

based on two basic properties of intensity value: discontinuity (edge detection 

algorithms) and similarity (thresholding algorithms). It is also based on statistical 

analysis (curve fitting algorithms and average weight calculation).  

 The second method is neural network classifier method (NNCM), which is based on 

artificial neural network. For each pixel on an input image, through a neural network 

classifier, it is classified as a cartilage pixel if network output value is 1. Alternatively, 

it is classified as a background pixel if network output value is 0.  

 The third method is active contour models method (ACMM), which uses an initial 

contour that approximates the boundary of a cartilage to find the “actual” boundary. 

This is an innovative method because we apply BSSM to define the initial contour. We 

also apply NNCM to compute the external energy in active contour models algorithms. 

 Our three methods have succeeded in automatically extracting the cartilage from 

input image. The cartilage area and volume obtained from cartilage image, which is 

extracted by BSSM, NNCM, and ACMM, are highly correlation with the results 

obtained from reference cartilage image (correlation value in each case p ≈ 1, R2 ≈ 1). 

Thus, cartilage area and volume assessments are precise, reliable and acceptable. 

Among those methods, the ACMM provides the best results. Considering noise and 

complexity of the image, each method has both advantages and disadvantages. BSSM 

work well where there is significant high contrast between cartilage and background 
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regions. It often fails where the contrast is low. NNCM can work well in low contrast. 

However, this method does not work accurately if the cartilage pixels have similar 

features of background pixels. Those pixels are classified as background pixels. As a 

result, this method reduces number of cartilage pixels. The third method, ACMM 

demonstrates higher accuracy in extracting cartilage from an input image. ACMM not 

only can take advantages of BSSM and NNCM but also can solve the problems 

existing in BSSM and NNCM. Therefore, results obtained from ACMM are the most 

precise and acceptable. 
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Abbreviation and Nomenclature 
 

MRI Magnetic Resonance Imaging 

MR Magnetic Resonance 

OA Osteoarthritis 

BSSM                Bi-directional Scanning Segmentation Method 

NNC     Neural Network Classifier 

NNCM Neural Network Classifier Method 

ACMM Active Contour Models Method 

MLP     Multilayer Perceptron 

RF     Radio Frequency 

FID     Free Induction Decay 

BFGS     Broyden, Fletcher, Goldfard, and Shanno  

     Algorithm 

ms     milli-second 

mm     milli-meter 

SCG     Scaled Conjugate Gradient Algorithm 

OSS     One Step Secant Algorithm 

CPU     Central Processing Unit 

GHz     Giga Hertz 

MB     Mega Byte 

RAM     Random Access Memory 

MSE     Mean Square Error 
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Chapter 1: 

 

INTRODUCTION 
 

1.1 Motivation 

 

 Magnetic resonance imaging (MRI) is a non-invasive method for producing three-

dimensional tomographic images of the human body. MRI is the most often used for 

detection of tumours, lesions, and other abnormalities in soft tissues, such as articular 

cartilage in human knee.  

 

 Recently, computer-aided techniques for analysing and visualizing magnetic 

resonance (MR) images have been investigated. Many researchers have focused on 

invivo morphometry and functional analysis of human articular cartilage with 

quantitative MRI - from image to data, and from data to theory.  Measuring the 

articular cartilage volume from MR images of the knee is one aspect of “image-to-data” 

process.  

 

 This thesis presents three automatic methods that have been accepted to publish on 

International Workshop on Advanced Computational Intelligent (IWACI) 2010 [1] to 

extract the articular cartilage from a MR image for measuring its area and volume. 

They are the bi-directional scanning segmentations method (BSSM), the neural 

network classifier method (NNCM), and the active contour models method (ACMM). 

 

1.2 Background 

 

 Osteoarthritis (OA) is the most prevalent chronic disease in the elderly, affecting 

more than 50% of those 65 years and older (Peyron 1986 [2], Felson 1988 [3] 1990 [4]; 

Felson et al. 1995 [5]). It causes pain and functional deficits, with substantial effects on 

the quality of life (Guccione et al. 1994 [6]). Cartilage loss in knee is one of important 

elements for detecting OA. For this reason, MRI is used to detect and track the volume 

of the cartilage in the knee [7]. Identifying the articular cartilage is an important step in 

calculating its volume. 
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 Numerous methods have been investigated and applied to determine the cartilage in 

the knee. MRI provides insufficient contrast for fully automated segmentation of 

articular cartilage based on the gray value distribution alone. For this reason, volume-

growing algorithms (Eckstein et al. 1996 [8]; Piplani et al. 1996 [9]) are sensitive to 

irregularities at the cartilage surface and often fail in regions where contrast is low. 

Therefore, a B-spline Snake (deformable contour) algorithm is developed that replies 

on the interaction of “image forces” (gray value gradient), ‘model forces’ (stiffness of a 

parameterized B-spline curve), and ‘coupling forces’ (segmentation of previous 

section). This approach can accelerate the interactive segmentation process and 

increases consistency between observers (Stammberger et al. 1999 [10]). Other groups 

have employed different algorithms, such as “active shape models” (Solloway et al. 

1997 [11]), edge detection (Robson et al. 1995 [12]; Kshirsagar et al. 1998 [13]), fitting of 

B-spline curves to manually digitized points (Ghosh et al. 2000 [14]), and “live-wire” 

algorithm (Steines et al. 2000 [15]). However, none of these approaches has succeeded 

in fully automated segmentation of articular cartilage. 

 

1.3 Objectives and Organization of Thesis 

 

 The primary goal of this research is to study, and develop automatic methods for 

extracting articular cartilage of knee from MR images. Three automatic methods have 

been investigated, including BSSM which is the combination and adaptation of 

classical image segmentations (using edge detection, thresholding, curve fitting, and 

average weight calculating algorithms) (detail in Chapter 3);  NNCM which is an 

application of artificial neural network (detail in Chapter 4) and  the innovative method, 

ACMM which is the combination among active contour models algorithms, NNCM 

and BSSM (detail in Chapter 5). 

 

 Based on the successful segmentation using the developed methods, a further goal 

can be achieved to calculate the articular cartilage area and volume (detail in Chapter 

6), that are important properties of articular cartilage in detecting the  

osteoarthritic(OA).
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Chapter 2: 

 

MRI AND DATA CHARACTERISTICS 
 

2.1 Overview 

 

 Three automatic methods that we use in cartilage extraction on a MR knee image 

presented in this thesis capitalize on several properties of magnetic resonance images. 

Therefore, some knowledge of magnetic resonance imaging (MRI) and the data 

produced by MRI scanners is necessary. 

 This chapter introduces the background of MRI and describes some important 

characteristics of MR knee image. 

 

2.2 Background of MRI 

 

 MRI uses a strong magnetic field and high radio frequency (RF) for obtaining 

sectional images. The technique has so far been shown to have no adverse effects on 

health. Other important advantages are its multiplanar capabilities and its superior soft 

tissue contrast (Peterfy and Genant 1996[16]; Stabler et al 2000[17], Peterfy 2000[18]). In 

MRI, the tissue contrast can be substantially modulated by choosing different types of 

pulse sequences, and by changing the specific parameters of these sequences (repetition 

time, echo time, flip angle, etc.). Therefore, a variety of specific sequences can be 

selected for optimal delineation of specific tissues, or even for specific aspects of these 

tissues.  

 The pixel intensity of a given tissue type depends on the proton density of the 

tissue; the higher the proton density, the stronger the free-induction decay (FID) 

response signal. MR image contrast also depends on two other specific parameters: 

1. The longitudinal relaxation time, T1, and 

2. The transverse relaxation time, T2 

 T1 measures the time required for the magnetic moment of the displaced nuclei to 

return to equilibrium. T2 indicates the time required for the FID response signal from a 

given tissue type to decay. 
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 For the analysis of cartilage macro-morphology (volume, thickness, and surface 

areas), the bone cartilage interface and the articular surface need to be delineated 

accurately. In particular, the spatial resolution must be sufficient to permit quantitative 

measurements throughout its thickness. For these reasons, a high-resolution pulse 

sequence is required that visualizes cartilage with high contrast to its surrounding 

tissues. Some investigators have used two different pulse sequences and digital 

subtraction techniques to improve contrast (Robson et al 1995[19]; Munsterer et al 

1996[20]). However, today it is widely accepted that T1-weighted gradient echo 

sequences with spectral fat suppression are best suited for this purpose (Recht et al 

1993[21]). These sequences produce images in which the cartilage appears bright 

(hyper-intense) compared to all other tissues. 

 

2.3 Characteristics of MR Knee Images 

 

 Images that are used in this thesis were MRI scans of the right knees. The following 

image sequence was used: T1-weighted fat saturation magnetic resonance imaging; 

repetition time 43ms; echo time 13ms; flip angle 50o; 62 partitions; 512x512 matrix; 

greyscale formation. Sagittal images were obtained at a partition thickness of 1.5mm 

and an in-plane resolution of 0.31x0.31mm (512x512 pixels). Fig 2.1 shows an 

example of a sagittal image. 

 

 

Figure 2.1 Sagittal T1-weighted fat saturation MR image 

 

Cartilage 
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 In order to measure the articular cartilage’s area on a sagittal image, we need to 

extract a cartilage from original image. For doing this, we can use BSSM (Chapter 3), 

NNCM (Chapter 4), and ACMM (Chapter 5). The volume of a cartilage can be then 

computed from 62 sequenced sagittal images. 

 

 Fig 2.1 shows that cartilage is generally located in the middle region of the image. 

All the images used in our research had the cartilage located in the middle region. From 

the image sequence, the first and the last 13 images of the sequence did not reveal the 

cartilage on those images. This is because MR scanning is performed from the medial 

side of the knee, over the patella and ends on the lateral side. Fig 2.2 demonstrates MR 

scanning direction. The first and the last 13 images from the image sequence was 

obtained heuristically. This assumption was used in a consistent manner for the 

experiments.  

 

 
                 Figure 2.2 MR scanning direction 

 

 Fig 2.3 illustrates the disappearance of cartilage on a MR image. Fig 2.3 (a) is a 

sagittal image on the first 13 image sequence while Fig 2.3 (b) is a sagittal image on the 

last 13 image sequence.  

 

 

MR Scanning direction 
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(a) 

 
(b) 

Figure 2.3 MR images in that articular cartilage did not appear 

(a) A MR image in the first 13 image sequence. 

(b) A MR image in the last 13 image sequence. 

 

 In study for the easy readability, the cartilage is divided in three components 

namely femur which is the cartilage is attached to femur, tibia which is the cartilage is 

attached to tibia, and patella which is the cartilage is attached to patella (Fig 2.4). 

Depend on image sequence and MR scanning direction, a sagittal image may contain 

one, two, or all of cartilage components. Therefore, we have three typical types of 

image according to cartilage components: 

1. Images that contain Femur and Tibia 

2. Images that contain Femur, Tibia, and Patella 

3. Images that contain Femur and Patella 

Following table illustrates distribution of image types according to image sequence. 

 

Image Sequence Cartilage types 

1 - 13 Do not appear 

14-18 Femur and Tibia 

19 - 21 Femur , Tibia, and Patella 

22 - 37 Femur and Patella 

38 - 45 Femur, Tibia, and Patella 

46 - 49 Femur, and Tibia 

50 - 62 Do not appear 

Table 2.1 Image types according to image sequence 
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Figure 2.4 A MR image that contains three types of cartilage 

 

 In term of computer vision, a MR image, which is formatted in grayscale [22], is a 

512x512 matrix. Each matrix’s element (or call pixel) have intensity value in range [0, 

255]. Because cartilage appears bright colour compared to all other tissues 

(background), cartilage pixels have high intensity whereas background pixels have 

lower intensity. Fig 2.5 is an example of this. Fig 2.5 (a) is a sub-image on an image 

that contains cartilage segment. Fig 2.5 (b) is a gray value profile according to a sub-

image. Cartilage pixels have high intensity (greater than 80) compared to background 

pixels intensity (smaller than 50). 

 

 
   

Figure 2.5 A sub-image (a) and its gray-value profile (b). 

 

 

 

A Sub-image  

(a) 

Femur 

Tibia 

Patella 

(b) 

Cartilage Region 
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2.4 Conclusion 

 

 This chapter introduced the background of magnetic resonance imaging and 

illustrated several characteristics of MR knee images. Base on this, we developed three 

automatic methods for extracting a cartilage from an original image.  

 Next chapter, we present the first method namely bi-directional scanning 

segmentation. 
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Chapter 3: 

 

BI-DIRECTIONAL SCANNING SEGEMENTATIONS 
 

3.1 Overview 

 

 Image segmentation is an essential preliminary step in most image pattern (object) 

recognition process. It subdivides an image into its constituent regions or objects. That 

is, segmentation should stop when the objects of interest in an application have been 

isolated.  

 Generally, image segmentation algorithms are based on one of two basic properties 

of intensity values: discontinuity and similarity. In the first category, the approach is to 

partition an image based on abrupt changes in intensity, such as edges in an image. The 

principal approaches in the second category are based on partitioning an image into 

regions that are similar according to a set of predefined criteria. Thresholding is an 

example of methods in this category that is to extract the objects from the background 

is to select a threshold T that separates object pixels and background pixels. 

 However, according to complexity in MR knee images that contain unwanted 

intensity variations (noises), none of individual segmentation algorithms is satisfactory 

in extracting an articular cartilage from an original image. Therefore, we developed a 

method that combines various image segmentation algorithms to improve the result. 

This method is named bi-directional scanning segmentations method (BSSM) [1] and 

will be presented in this chapter. 

 

3.2 Pre-processing 

 

 In order to reduce the noise and other irrelevant parts, a pre-processing step is 

required at the beginning. Pre-processing’s goal is to find an interest region that 

contains an articular cartilage on an original image. This interest region is used as the 

input image for BSSM. Furthermore, NNCM (chapter 4) and ACMM (chapter 5) also 

use it as input image. 
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 An interest region can be defined as a function R of the form: 

   R(x,y) = R [x, y, f(x,y), g(x,y), p1(x,y), p2(x,y)…] 

where R(x,y) is the interest region an image f(x,y) according to x and y coordinates. 

g(x,y) denotes feature of a cartilage on this image. p1, p2… indicate some other 

properties relating to cartilage that helps for defining R(x,y). 

 

   

Figure 3.1 Examples of interest regions according to different images. 

 Fig 3.1 illustrates interest regions that are defined on different images. The sizes of 

interested regions are also different. 

 

3.3 Bi-directional Scanning Segmentations 

 

 Due to as the complexity of MR knee images, segmentation on local regions (sub-

images) of the image is much more effective than segmentation on an entire image. 

Therefore, our segmentations algorithms are applied to partitioned sub-images to 

extract cartilage segments. In general, our BSSM algorithms include two processes: left 

and right process. The left process is to scan the image from an initial position to its left 

direction and extract the cartilage on partitioned sub-images during the scan. Similarly, 

right process is to extract the cartilage on partitioned sub-images to the right direction 

(Fig 3.2(a)).  

 Consider an input image as a matrix I that is defined from pre-processing step. Sub-

images are columns of matrix I. Sub-images that contain the cartilage segments are 

defined as cartilage sub-images. BSSM algorithms are described as: 

 1. From input image [K rows and L columns] I, find initial cartilage sub-image 

representing i-th column of matrix I, where i  = 1, 2, …, L. Initial cartilage sub-image 

determination is described in section 3.3.1. 

y x 
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  - Apply boundary detection method to determine cartilage boundaries and 

extract a cartilage segment from an initial sub-image. Boundary detection method is 

described in section 3.3.2. 

 2. Left Process: Staring from the initial sub-image, scan to the  next cartilage sub-

image on the left representing (i + ∆)-th column, ∆ = 1, 2, 3… 

  - Apply boundary detection method to determine cartilage boundaries and 

extract a cartilage segment from a sub-image. 

 3. Right Process: Starting from the initial sub-image, scan to the previous cartilage 

sub-image representing (i - ∆)-th column, ∆ = 1, 2, 3… 

  - Apply boundary detection method to determine cartilage boundaries and 

extract a cartilage segment from a sub-image. 

 4. Continue apply boundary detection method until all cartilage sub-image on an 

input image are processed. 

 BSSM is used to isolate a cartilage from its background. We can then measure the 

size or area of a cartilage. The success of this operation depends on determining 

cartilage boundaries on partitioned sub-images. We then develop a method named 

boundary detection for detecting cartilage boundaries. It is the most important part in 

BSSM. 

 According to three different components of a cartilage namely Femur, Tibia, and 

Patella, BSSM aims to isolate individual cartilage component from its background and 

other cartilage components. Therefore, boundary detection also tries to detect 

individual cartilage component’s boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

Initial cartilage sub-image 
Left direction Right direction 

x 
y 

Original image 

Figure 3.2(a) Right and left direction according to initial sub-image on an input image 

Cartilage boundaries 

Cartilage 
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Fig 3.2(b) shows flowchart of BSSM algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    

 

 

Figure 3.2(b) Operation of BSSM. 
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3.3.1 Cartilage and Initial Cartilage Sub-image Determination  

 In an MR knee image, the articular cartilage will appear in high intensity whereas 

the other tissues (background) appear in low intensity. Consider a sub-image S(x,y) that 

contains a cartilage segment show in Fig 3.3 (a) and  gray-level profile of S(x,y) as we 

traverse along a vertical line. (Fig 3.3 (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 A sub-image (a) and its gray-value profile (b) 

 

 From the gray-level, cartilage pixels have high intensity in the range [80, 150] 

whereas background pixels have very low value in range [0, 50]. Thus, a cartilage sub-

image is determined if there are a group of high intensity pixels with mean value is 

greater than a threshold value V. 

 

    

 

where g(x,y) is the mean value of a group of high intensity pixels in sub-image S (x,y). 

(b) 

Cartilage Region 

A sub-image S(x,y) 

Cartilage sub-image if g(x,y) >= V 

Background sub-image if g(x,y) < V 

A sub-image S(x,y) is defined 
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 An initial cartilage sub-image is a cartilage sub-image, which locates in the middle 

of a cartilage region as well as in the middle of an input image. Consider S1, S2,..Sk, ..SN  

(k = 1, 2, 3…, N where N is number of cartilage sub-image ) are cartilage sub-image in 

the middle region of an input image. An initial cartilage is defined as: 

 An sub-image Sk(x,y) is initial sub-image if gk(x,y) is maximum. 

Where gk(x,y) is the mean value of a group of high intensity pixels in sub-image Sk(x,y). 

 

3.3.2 Boundary Detection 

 Boundary detection method is used to detect the cartilage segments boundaries on 

sub-images. Therefore, cartilage segments can be extracted from a sub-image (its 

background and other cartilage components). Fig 3.4 generally illustrates the goal of 

this method. 

 

 

 

 

 

 

                                   

 

 

 

 

Figure 3.4 Cartilage segment boundaries found on sub-image by using boundary 

detection. 

 

 We consider two types of a cartilage boundary on a sub-image defined as upper and 

lower boundaries (Fig 3.4). Original boundary detection algorithms are based on edge 

detection algorithms (detail in section 3.3.2.1) to find cartilage boundaries on a sub-

image. However, because the limitation of edge detection, we develop boundary 

detection method with thresholding method (detail in section 3.3.2.2) and statistical 

analysis algorithms (detail in section 3.3.2.3).  

 

Upper Boundaries 

Lower Boundaries 

Sub-image 
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 Consider a cartilage sub-image S(x,y), boundary detection algorithms to find upper 

and lower boundaries of a cartilage are described as: 

1. Apply Edge detection on sub-image S(x,y), we obtain new image Sedge(x,y) 

where: 

  Pixel value at location (x,y) is 1 representing edge are found. 

  Pixel value at location (x,y) is 0 representing edge are not found.  

2. Apply Thresholding on sub-image S(x,y), we obtain new image Sthreshold(x,y) 

where: 

   Pixel value at location (x,y) is 1 representing cartilage pixel. 

  Pixel value at location (x,y) is 0 representing background pixel.  

3. Find the highest intensity pixel at location (x0,y) on S(x,y). 

4. For next pixel at location x1 = x0 + ∆ where ∆ = 1, 2, 3 … 

 If Pixel value at location (x1,y) on Sedge and Sthreshold is 1,  upper  

boundary  is found, denoted by Bup. 

5. For previous pixel at location x2 = x0 - ∆ where ∆ = 1, 2, 3 … 

 If Pixel value at location (x2,y) on Sedge  and Sthreshold is 1,  lower 

boundary  is found, denoted by Blow. 

6. Repeat step 4 and 5 until upper and lower boundaries are found. 

7. Apply statistical analysis to obtain approximations of upper and lower 

boundaries on S(x,y) that is denoted by Aup and Alow respectively. 

8. Compute the error: 

  
lowlow

upup

AB

AB

−=

−=

2

1

δ

δ
 

 If δ1 < α , upper boundary is Bup, otherwise upper boundary is Aup. 

 If δ2 < β , lower boundary is Blow, otherwise lower boundary is Alow. 

 Where parameters α, and β is relative constant of error terms. 
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Fig 3.5 illustrates flowchart of boundary detection algorithms: 
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3.3.2.1 Edge Detection 

 Edge detection is one of image segmentation methods, which is based on the 

discontinuity of intensity values. It aims to partition an image by investigating the 

intensity changes.  

 Consider the sub-image S(x,y) (representing a column of matrix S) in Fig 3.6 (a), 

which is composed of light cartilage on dark background. Suppose we plot the gray 

values as we traverse the image along a vertical line (Figure 3.6 (b)). There are changes 

in intensity values in individual region and in between them. Analysing the contrast 

between high intensity pixels and low intensity pixels, the boundary of a cartilage is 

found when there is a significant intensity change. To investigate those changes, we 

take the derivative of pixels in term of intensity. Thus, edges that are considered as 

cartilage boundaries can be calculated. Intuitively, A1, A2 represent actual upper and 

lower boundaries of a cartilage segment on a sub-image. Edges are expected to close to 

A1, A2. 

 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) 

A2 

A1 

A sub-image S(x,y) 

(a) 

A1 

A2 
Figure 3.6 (a) A sub-image S(x,y) and its gray-value profile (b). 
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 We consider two types of derivatives: first-order and second-order derivatives. 

There are many edge-finding algorithms based on that. 

 

First-order Derivative 

 First-order derivatives of an image are defined as various approximations of the 2-

D gradient. The gradient of an image f(x,y) at location (x,y) is defined as the vector: 
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 It is well known from vector analysis that the gradient vector points in the direction 

of maximum rate of change of f at coordinates (x,y). This gives two important 

properties: the magnitude and the direction of this vector. 

 The magnitude of gradient vector is defined as: 

  [ ]2
1

22)( yx GGfmagf +=∇=∇  

 This quantity gives the maximum rate of increase of f(x,y) per unit distance in the 

direction of gradient vector. 

 The direction of gradient vector at point (x,y)  is represented by α(x,y), defined as: 
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There are several ways to approximate Gx and Gy. Let the 3x3 area shown in Fig 3.7 

presents the intensity values in a neighbourhood at point P(x,y). The following list 

some: 

P(x-1,y-1) P(x-1,y) P(x-1,y+1) 

P(x,y-1) P(x,y) P(x,y+1) 

P(x+1,y-1) P(x+1,y) P(x+1,y+1) 

 

   Fig 3.7 A 3x3 region of a point (x,y) in an image. 

 

 

 



Chapter 3: Bi-directional Scanning Segmentations 

 31

Robert cross-gradient method [23]: 
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Prewitt method [23]: 

 
( ) ( )
( ) ( ))1,1()1,()1,1()1,1()1,()1,1(

)1,1(),1()1,1()1,1(),1()1,1(

−+−−−++++−

+−−−−+++−+

++−++=

++−++=

yxyxyxyxyxyxy

yxyxyxyxyxyxx

PPPPPPG

PPPPPPG
 

Sobel method [23]: 
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Therefore, edges are found at those points where the gradient is maximum.  

 

Second-order Derivative 

Laplacian [24] of a 2-D function f(x,y) is a second-order derivative defined as: 
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For a 3x3 region (see Fig 3.7), f2∇ can be approximated as:
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The Laplacian is combined with smoothing as a pre-processing to finding edges via 

zero-crossing [24]. Consider the function: 
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order derivative of h with respect to r) is: 
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Discussion on using different edge detections algorithms as boundary detection 

Fig 3.8 demonstrates an example of applying different edge detection techniques to 

find edges corresponding to a sub-image.  
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Figure 3.8 
(a) An example sub-image 
(b) Gray-level profile corresponds 
to a sub-image. 
Edges found by using Robert 
method (c), Prewitt method (d), 
Sobel method (e), Laplacian 
method (f), and zero-crossing 
method (g) according to the 
profile. 
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 Fig 3.8 (a) show a sub-image S(x,y). This sub-image is the same shown in Fig 3.6 

(a). In Fig 3.8 (a), we present sub-image S(x,y) in horizontal direction as the results 

obtained by using various edge detection algorithms. It is compatible with its gray-level 

profile (Fig 3.8 (b)). A1, A2 represent actual upper and lower boundaries of a cartilage 

segment on a sub-image, respectively. 

 The Laplacian and zero-crossing methods fail in detecting the cartilage boundaries 

(Fig 3.8 (f) and (g)). It produces more edges that cause confusion to determine which 

edges are the cartilage boundaries. The Robert method can detect the lower cartilage 

boundary (Fig 3.8(c)). However, the difference between actual lower boundary and 

lower boundary found by Robert method is quite large and unacceptable. Furthermore, 

Robert method also produces multiple edges that cause complication to detect the upper 

cartilage boundary. 

 Sobel and Prewitt methods (Fig 3.8 (d) and (e)) provide the results that are more 

accurate compared to others. They can detect both upper and lower boundaries of the 

cartilage. The difference between the edges and actual boundaries is small and 

acceptable. Prewitt method is simpler to implement than Sobel method, but the later 

have slightly superior noise-suppression characteristic. Therefore, we apply Sobel 

algorithms for edge detection. However, since Sobel algorithm is only based on the 

discontinuity of intensity values, edge detection faces two typical issues:  

 - The first issue occurs when there is significant intensity change in cartilage 

region, multiple edges are more likely to be detected. Hence, it causes complication for 

boundary detection in determining cartilage boundaries.  

 - The second issue occurs when there is slightly intensity change between cartilage 

and background (or other cartilage components) regions. Edges cannot be effectively 

detected or are likely to be detected incorrectly. As a result, boundary detection fails to 

obtain the correct cartilage boundaries.  
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 Fig 3.9 illustrates the first issue of edge detection. Fig 3.9 (a) is a gray profile of a 

sub-image. Fig 3.9 (b) is result obtained by using Sobel edge detection method. 

Because there are significant intensity changes on cartilage region, multiple edges are 

produced in cartilage region (Fig 3.9 (b)). Those edges also contain two main edges 

that indicate upper and lower cartilage boundaries. Therefore, boundary detection 

cannot detect cartilage boundaries on this sub-image. 

 

 

 

 

 

 

 

 

 

 

 

                    

 

 

 

 

                   Figure 3.9  (a) The gray-profile of a sub-image 

                (b) Edges found by using Sobel edge detection method 
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 Fig 3.10 demonstrates second issue of edge detection. Fig 3.10 (a) presents a gray 

profile of a sub-image. Fig 3.10 (b) shows the result obtained by using Sobel edge 

detection method. Since the intensity changes between cartilage and background 

regions in the left side of cartilage region are slight, the edge cannot be detected. In 

additional, it is likely to be detected incorrectly where the change is significant. As a 

result, upper boundary is determined far away from actual upper boundary. 

 

 Figure 3.10  (a) The gray-profile of a sub-image  

     (b) Edges found by using Sobel edge detection method. 

 

Conclusion 

 Edges are formed from pixels with derivative values. Intuitively, edges are 

considered as cartilage boundaries. Boundary detection method is based on Sobel edge 

detection algorithm is used to determine cartilage boundaries on a sub-image. However, 

because the limitations of edge detection algorithms mentioned above, we develop 

boundary detection method by applying thresholding method. 
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3.3.2.2 Thresholding 

 Unlikely edge detection, thresholding is based on different properties of intensity 

values: similarity. The gray-level histogram show in Figure 3.11 (b) corresponding to 

an MR image is composed of light cartilage on a dark background (other irrelevant 

tissues), in such a way that object and background pixels have gray levels grouped into 

two dominant modes. In order to isolate the object from the background, we select a 

threshold T that separates these modes. Then, each pixel on image is classified as a 

cartilage pixel or a background pixel according to whether its gray value is greater than 

or less than threshold value T [25]. 

 

                   Cartilage pixel if its gray level is > T, 

              A pixel is classified  

                   Background pixel if its gray level is ≤ T. 

 

 

 

 

Figure 3.11 A example of gray level histogram (b) corres

 

 However, the trouble is that in general the individual his

background overlap (Figure 3.11 (b)). Hence, it is important

threshold level. If we choose a value too high, we may dec

reduce its total pixel number. Conversely, if we choose 
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include extraneous background material. For this reason, we applied Otsu’s method for 

choosing a best threshold. 

 

Optimal Thresholding Algorithms 

 Otsu’s method (Otsu 1979 [26]) is one of the most popular techniques of finding an 

optimal threshold. Essentially, Otsu’s technique maximises likelihood that the threshold 

is chosen to split the image between an object and its background. The basis is to use of 

the normalised histogram where the number of points at each level is divided by the 

total number of points in the image. As such, this represents a probability distribution 

for the intensity level as: 
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where ni is the number of pixels with gray level i, N is the total number of pixels in an 

image, so that pi is the probability of a pixel having gray level i. If we threshold at level 

k, we define: 
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where L is the number of grayscales, so that L - 1 is the largest. By definition, 
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 We would like to find k to maximize the difference between ω(k) and µ(k). This can 

be done by first defining the image average intensity as: 
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Adaptability of sub-image thresholding 

 A global optimal threshold can be computed from an entire original image. Due to 

noise, a cartilage cannot be partitioned effectively by a global threshold. It causes the 

error between the actual cartilage boundaries and the cartilage boundaries found. For 

handling such a situation, we need to divide the original image into sub-images and 

then utilize a different threshold to segment each sub-image. Since the threshold used 

for each pixel depends on the location of the pixel in terms of the sub-images, this type 

of thresholding is adaptive. 

 

 Fig 3.12 presents the difference between using global and adaptive thresholds in 

partitioning a cartilage segment on a sub-image. Fig 3.12 (b) is the gray-level profile of 

a sub-image which is showed in Fig 3.12 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 An example of using global and adaptive threshold  

   (a) A sub-image of MR image and (b) Its gray level profile. 

 

 From Fig 3.12 (b), A1, A2 are lower and upper boundaries of cartilage segment on a 

sub-image. A1, A2 are obtained by using adaptive threshold. Similarly, B1, B2 are lower 

and upper boundaries of a cartilage segment. B1, B2 are obtained by using global 

threshold. A1, A2 are closer to actual boundaries of a cartilage compared to B1, B2. 

Therefore, the error between the actual cartilage and the cartilage that is partitioned by 

adaptive thresholding method is reduced in terms of size and area. 
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Discussion on boundary detection using Thresholding method 

 Fig 3.13 illustrates the behaviour of thresholding method corresponding to the first 

issue of edge detection (failure to detect cartilage boundaries where there are significant 

intensity changes in cartilage region). Fig 3.13 (a) shows the gray-level profile of a sub-

image. It is also a gray profile shown in Fig 3.9 (a). Fig 3.13 (b), and (c) are the results 

obtained by using thresholding method and edge detection, respectively. Generally, 

pixels that have value 1 are classified as cartilage pixels while pixels that have value 0 

are classified as background pixels. In this case, pixels that have value “1” are grouped 

into two regions. Obviously, the region that has the largest area is considered as 

cartilage region whereas other is considered as noise. The cartilage boundaries are then 

defined. 

 

 
 

 
Figure 3.13 (a) Gray profile of a cartilage sub-image  

Result obtained by using thresholding method (b) and edge detection (c) 
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 Fig 3.14 demonstrates the behaviour of thresholding method corresponding to the 

second issue of edge detection (failure to detect cartilage boundaries when there are 

slight intensity changes between cartilage and background regions). Fig 3.14 (a) shows 

the gray-level profile of a sub-image. It is also a gray profile shown in Fig 3.10 (a). Fig 

3.14 (b), and (c) are the results obtained by using thresholding and edge detection, 

respectively. Similar to edge detection, the upper cartilage boundary detected by 

thresholding method also includes background segment. This is due to the similarly of 

high intensity values of pixels in cartilage and background regions. 

 

 

 

 
 

 
Figure 3.14 (a) Gray-level profile of sub-image, and  

Result obtained by using thresholding method (b) and edge detection (c) 
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Conclusion 

 Thresholding is a method, which selects pixels that have a particular intensity 

value, or are within a specified intensity range. It is used to find cartilage within an 

image if their high intensity value (or range) is defined. Along with edge detection, 

thresholding improves the performance of boundary detection. However, it still cannot 

detect cartilage boundaries under condition that is similarity of high intensity value 

between cartilage and background region (Refer to Fig 3.14 as an example). Therefore, 

our last attempt to improve the performance of boundary detection method is carried 

out. That is, using statistical analysis to give an approximation of cartilage boundaries. 

 

3.3.2.3 Statistical Analysis 

 When edge detection and thresholding fail to detect the cartilage boundaries on a 

sub-image, giving an approximation of a piece of cartilage boundary may be required. 

Generally, to provide an approximation of cartilage boundaries in a sub-image, we take 

a statistical analysis on a set of cartilage boundaries that were successfully found on 

previous sub-images.  

 For an input image representing matrix I, consider the current cartilage sub-image 

representing jth column of matrix I where Boundary Detection fail to detect the cartilage 

boundaries.  Boundaries of the cartilage on a sub-image are defined as: 
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Where Bup(x,y) indicates upper cartilage boundary while Blow(x,y) indicates lower 

cartilage boundary at location (x2, y) according to x and y coordinates. 
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Suppose a set of cartilage boundaries on previous sub-images:  

  Rup = [ ),( 11
1 yxBup , ),( 22

2 yxBup ,… ),( nn
n
up yxB ]  

  Rlow = [ ),( 11
1 yxBlow , ),( 22

2 yxBlow ,… ),( nn
n
u yxB ]  

  iyyi −= = j – i       where i = 1, 2, 3 …n; n is number of previous sub-images 

From Rup, Rlow we can apply statistical analysis to obtain an approximation of  upper 

and lower cartilage boundaries on a current sub-image. 

 There are two types of statistical analysis that are employed: curve fitting 

algorithms and average weight calculation. 
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Curve fitting algorithms 

 Curve fitting algorithm is using a polynomial curve, which is computed from 

previous cartilage boundaries (low or up cartilage boundaries) in set R to provide an 

approximation of cartilage boundaries (lower or upper cartilage boundaries) on a 

current sub-image. 

 Polynomial curve is a polynomial p(x) of degree n: 
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 For n = 3, it becomes cubic function: 
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 Curve fitting algorithms to compute an approximation of a cartilage boundary, for 

instance, a lower cartilage boundary on a current sub-image, are described as follows: 

 Suppose a current sub-image representing jth column of matrix I.The lower cartilage 

boundary is defined as Blow(x,y) = 
)(
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low    where Blow(y) = j 

1. Present a set of  lower cartilage boundaries on n previous sub-images:  

  Rlow = [ ),( 111 yxB , ),( 222 yxB ,… ),( nnn yxB ] 

      Where n is number of previous sub-images 

2. Compute the polynomial function at each point: 
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where i = 1, 2, 3 …n 

3. Compute the error between two data point: 

           ))(())(( 1 xBpxBp iii −= +δ  

4. Using Least Mean Square [27] to get the coefficients p1, p2, p3, and p4 to 

minimum the error δ. 

5. An approximation of a lower cartilage boundary on a current sub-image Blow(x) 

is computed from equation: 
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Figure 3.15 Polynomial curve used 40 data points. 

 Fig 3.15 demonstrates the polynomial curve, which fit all the previous cartilage 

boundaries. From the polynomial curve, a cartilage boundary on current sub-image is 

computed. 

 The polynomial curve shown on Fig 3.15 used 40 previous cartilage boundaries 

points. The curve is accurate, smooth and fit most points on the plot. Fig 3.16 illustrates 

a different polynomial curve, which uses the same data as Fig 3.15, but it only uses 6 

previous cartilage boundaries points. 

 

 
Figure 3.16 Polynomial curve used 6 data points. 
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Figure 3.17 Comparison between two approximations of cartilage boundary. 

 

 From Fig 3.17, the fitting curve, which uses 40 data points, is smoother than the 

one, which uses only 6 data points. The slope and direction of the 40-points fitting 

curve are more consistent compared to of the 6-points fitting curve. Therefore, using a 

reasonable number of data points will improve the quality of approximation. From 

experiment results, using 40 data points is the most suitable choice. 

 

Average Weight Calculation 

 Average weight calculation is simpler implementation than curve fitting algorithms. 

It computes the average value of set of previous boundary points and uses it as cartilage 

boundary on current sub-image. Average weight calculation algorithms, for instance, to 

compute a lower cartilage boundary on a current sub-image, are described as following: 

Consider upper cartilage boundary Bup(x,y) are found by using boundary detection 

method. 

1. Presents sets of cartilage boundaries on n previous sub-images:   
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2. Compute the weights of cartilage boundaries on each previous sub-image : 
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Compute the average weight of n previous sub-images: 
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      3.   An approximation of a lower cartilage boundary on a current sub-image is  

            computed as: 
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Discussion on boundary detection using statistical analysis 

 Fig 3.18 illustrates the results obtained by using statistical analysis when there are 

similarities of high intensity between cartilage and background pixels. Fig 3.18(b) 

shows the result obtained by using boundary detection without statistical analysis. In 

this case, the cartilage boundaries (upper boundaries) that are detected including 

background pixels. On the other hand, with the use of statistical analysis (Fig 3.18 (c)), 

up cartilage boundaries that can be detected is more accurate compared to actual 

boundaries. 

 
(a) 

 
(b) 

 
(c) 

 

 

Figure 3.18 (a) Example region on an image where there are similarities of high intensity between 

cartilage and background pixels    

Cartilage boundaries detected by using boundary detection without statistical analysis (b); and with 

statistical analysis (c) 

Cartilage 

Background 
Upper boundaries 

Lower boundaries 
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 Fig 3.19 demonstrates another example of using statistical analysis to detect 

cartilage component boundaries. Fig 3.19 (a) is an example image that we apply 

boundary detection to detect a cartilage component (femur) boundaries. Fig 3.19 (b) 

shows the result obtained by using boundary detection without statistical analysis. In 

this case, where femur and tibia regions are connected, femur boundaries (lower 

boundaries) between those regions cannot be detected correctly. Femur boundaries are 

likely detected wider as tibia boundaries (shown in circle in Fig 3.19 (b)). Therefore, 

femur boundaries obtained also contain tibia segments. Using statistical analysis, this 

problem can be addressed (Fig 3.19 (c)). Hence, the lower femur boundaries can be 

detected more accurately.  

 

 
(a) 

 
(b) 

 
(c) 

 

 

Figure 3.19 (a) Example region on an image where there are similarities of high intensity between 

femur and tibia pixels    

Femur boundaries detected by using boundary detection without statistical analysis (b); and with 

statistical analysis (c) 
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3.4 Application of Bi-directional Scanning Segmentations 

 

 An articular cartilage on the MR image includes three components namely femur, 

tibia, and patella. Because BSSM can be used to extract individual cartilage component 

from an original image, there are three processes on our application of BSSM to obtain 

a cartilage from an input image. 

  - The first process is to obtain a cartilage component: femur from original input 

image (Refer to Fig 3.20). 

  - The second process is to obtain a cartilage component: tibia. Input image 

which is used in the second process is an image in which femur is extracted (Refer to 

Fig 3.20).  

  - The final process is to obtain the last cartilage component: patella. Input image 

in this time is an image in which femur and tibia are extracted (Refer to Fig 3.20). 

 Fig 3.20 illustrates the algorithms to extract a cartilage from an input image by a 

flow chart. In this implementation, the decision of the appearance of different cartilage 

components depends on different types of an input image. As mentioned in Chapter 2, 

section 2.3, following table illustrates distribution of image types according to image 

sequence. 

 

Image Sequence Cartilage types 

1 - 13 Do not appear 

14-18 Femur and Tibia 

19 - 21 Femur , Tibia, and Patella 

22 - 37 Femur and Patella 

38 - 45 Femur, Tibia, and Patella 

46 - 49 Femur, and Tibia 

50 - 62 Do not appear 

Table 3.1 Image types according to image sequence 
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Figure 3.20 Flowchart of application of BSSM to extract individual cartilage parts from 

an original image. 
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3.5 Experiment Results 

 In the thesis, each method will be tested in two types: visual results and quantitative 

evaluation. Visual results will firstly described in this section as well as in section 4.7 - 

Chapter 4 (Introduction of method 2), and section 5.5 – Chapter 5 (Introduction of 

method 3). Quantitative evaluation is then computed and demonstrated in Chapter 6 

(Area and Volume Calculation). 

 This section presents the results obtained by using BSSM to extract cartilage from 

images sets. According to image type, we have three sets of images for testing as 

follows: 

 - Image set 1: Images that contain Femur, Tibia, and Patella. 

 - Image set 2: Images that contain Femur, and Tibia. 

 - Image set 3: Images that contain Femur and Patella. 

Image Set 1 

 Fig 3.21 shows the cartilage images extracted from Image Set 1. In general, 

cartilage image is composed of femur, tibia, and patella images. This is only true in 

case of image 1 and 2 when patella appears to be isolated from other components on 

original input image. BSSM cannot distinguish femur from patella when patella and 

femur are connected vertically. Hence, it does not extract femur from patella separately. 

Patella is then considered as femur and femur image contains patella. Cartilage image 

now is composed of femur image and tibia image. In case of tibia and femur, this 

problem does not exist since they are connected horizontally. 

 Intuitively, cartilage images that are extracted by using BSSM are reasonably close 

to actual cartilage on original images except in case of image number 2 and 6 in Fig 

3.21. In both cases, several femur segments are not detected. This is because of a very 

low contrast between those femur segments and background regions. 

Image Set 2 

 Fig 3.22 shows the cartilage images extracted from Image Set 2. In this case, 

cartilage image is composed of femur image and tibia image. Generally, the results 

obtained are reasonable, except in case of image number 6 and 8. In both cases, some 

tibia segments are not detected. The reason is a low contrast between tibia segments 

and background regions. 

Image Set 3 

 Fig 3.23 shows the cartilage images extracted from Image Set 3. Because femur and 

patella are connected vertically, so that BSSM cannot extract femur from patella 
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separately. Therefore, femur image contains tibia. Cartilage images shown in Fig 3.23 

are femur images. 

 BSSM is good at extracting cartilage from original image. Results obtained from 

image set 3 are specifically accurate than results obtained from image set 1 and 2. This 

is because contrasts between cartilage and background regions are high on image set 3. 

  

 

1(a) 

 

1(b) 

 

2(a) 

 

2(b) 

 

3(a) 
  

4(a) 
 

4(b) 

 

5(a) 

 

5(a) 

 

6(a) 

 
6(b) 

 

7(a) 

 

7(b) 
 

8(a) 

 

8(b) 

Figure 3.21 (a) Images on Image Set 1 and (b) Cartilage images extracted from Image Set 1 

by using BSSM. 

 

3(b) 
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Figure 3.22  (a) Images on Image Set 2 and (b) Cartilage images extracted from Image Set 2 

by using BSSM 
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Figure 3.23  (a) Images on Image Set 3 and (b) Cartilage images extracted from Image Set 3 

by using BSSM 
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3.6 Conclusion 

 

 BSSM  is an automatic method that is used to extract the cartilage from MR 

images. It is based on the two properties of intensity value of pixels: discontinuity and 

similarity. It can also be based on the statistical analysis such as curve fitting 

algorithms and average weight calculation. This approach works well when the contrast 

between the cartilage and background regions is high. That is, the cartilage pixels have 

high intensity values while its background pixels have low intensity values. When the 

contrast is low, BSSM often goes in struggle in detecting the cartilage boundaries. 

 Fig 3.24 illustrates the disadvantage of BSSM when it fails to detect the cartilage 

boundaries when there is a low contrast between cartilage and background regions. 

 

 
Figure 3.24 Example of low contrast between cartilage and background regions. 

 

 On the other hand, the success of BSSM depends on how we define rules or 

principles of combination between edge detection, thresholding and statistical analysis. 

Therefore, we need to find another automatic method, which is more reliable and 

accurate. We are going to present the neural network classifier method (NNCM), which 

is based on artificial neural network in next chapter. 
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Chapter 4 

 

NEURUAL NETWORK CLASSIFIER 
 

4.1 Overview 

 

 Even though high-speed computers with central processing units capable of 

performing millions of operations per second have become widely available, the human 

brain can still perform a variety of tasks much more efficiently than computers. Task 

such as recognizing cartilage parts from MRI scans can be performed effortlessly by 

the human brain, but can only be performed in controlled situations by conventional 

computers. The reason that the human brain can perform so efficiently is that it uses 

parallel computation effectively. Thousands or even millions of nerve cells called 

neurons are organized to work simultaneously on the same problem [28]. 

 Therefore, in this chapter, we present a method named neural network classifier 

method (NNCM), which use artificial neural network as cartilage classification on a 

MR image [1]. 

 

4.2 Artificial Neural Networks 

 

 Artificial neural networks are an attempt to emulate the processing capabilities of 

biological neural systems. The basic idea is to realize systems capable of performing 

complex processing tasks by interconnecting a set of very simple processing elements 

that might even work in parallel. They solve cumbersome and intractable problems that 

are difficult for conventional computers or human beings such as pattern recognition or 

clustering data by learning directly from data. An artificial neural network usually 

consists of some simple processing units, namely, neurons, via mutual interconnection. 

It learns to solve problems by logically adjusting the strength of the interconnections 

according to input data. Moreover, it can be easily adapted to new environments by 

learning. In addition, it can deal with information that is noisy, inconsistent, vague, or 

probabilistic. 

 The main features of artificial neural networks are their massive parallel processing 

architectures and the capabilities of learning from the present inputs. They can be 
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utilized to perform a specific task only by means of adequately adjusting the connection 

weights, that is, by training them with the presented data. For each type of artificial 

neural network, there exists a corresponding, learning algorithm by which we can train 

the network in an iterative updating manner. 

 There exist many types of neural networks that solve a wide range of problems in 

the area of image processing. There are also many types of neural networks and they 

are determined by the type of connectivity between the processing elements, 

characteristics, and training or learning rules. These rules specify an initial set of 

weights and indicate how weights should be modified during the learning process to 

improve network performance. [29].  

 There are two types of classification known in image processing: region-based and 

pixel-based classification. An object is classified in region-based classification based 

on features that are usually computed to describe the entire object. Those are mostly 

geometric features as various sizes and shape measurements. Fig 4.1(a) illustrates this 

fact. Other features are computed at pixel level. This means that in pixel-level 

classification a feature value is computed for each pixel and so each pixel is classified 

individually as show in Fig 4.1(b).  

Figure 4.1 (a) Classification of a region based upon a feature set. 
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Figure 4.1 (b) Classification at pixel level. 

In our chapter, we will apply pixel-base classification for cartilage recognition. 

 

4.3 Multilayer perceptrons (MLP)[30] 

 

 Multilayer perceptrons (MLP) are one of the most important types of neural 

networks because many applications [31] are successful implementations of MLPs. 

MLPs are specially suited for object recognition problems. They are fast and reliable 

networks for the problems they can solve.  
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 Fig 4.2 illustrates how MLP is used as neural network classifier (NNC) for object 

recognition base on pixel level classification. For each pixel on MR image, a pixel 

patch is generated. It is used as the input for the neural network classifier (NNC) as 

well as its location. Throughout the network, pixel is classified as object pixel or 

background pixel. 

 

 
Figure 4.2 Using multilayer perceptrons as NNC for cartilage classification at pixel 

level. 
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 Typically, the network consists of a set of processing units that constitute the input 

layer, one or more hidden layers, and an output layer. The input signal propagates 

through the network in a forward direction, on a la

illustrates the configuration of the MLP.

 

 

 

 

 Fig 4.3 (b) Propagation rule and activation function for the MLP network.
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the network consists of a set of processing units that constitute the input 

layer, one or more hidden layers, and an output layer. The input signal propagates 

the network in a forward direction, on a layer-by-layer basic. Fig 4.

he configuration of the MLP. 

Figure 4.3 (a) Two-layer perceptron. 
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the network consists of a set of processing units that constitute the input 

layer, one or more hidden layers, and an output layer. The input signal propagates 

layer basic. Fig 4.3 (a) 

 

 
Propagation rule and activation function for the MLP network. 

A node in a hidden layer is connected to every node in the next layer and previous 

to hidden node hj and weight vjk 

. Classification begins by presenting a pattern to the input 
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nodes xi, 1≤ i ≤ l. From there data flow in one direction through the perceptron until the 

output nodes ok, 1≤ k ≤ n, are reached. Output nodes will have a value of either 0 or 1. 

Thus, the perceptron is capable of partitioning its patterns space into 2n classes. 

 

The MLP algorithm is described as follow: 

1. Present the pattern p = [p1, p2, …, pl] lℜ∈  to the perceptron, that is, set xi = pi 

for 1≤ i ≤ l. 

2. Compute the values of the hidden layer nodes as it is illustrated in Fig 4.3(b) 

     

















++−+

=

∑
=

l

i
iijoj

j

bxww

h

1

)(exp1

1
 1≤ j ≤ m 

The activation function is the sigmoid function 
)exp(1

1
)(

x
xf

−+
=  and it is 

also the most common form of activation function in MLP. 

3. Calculate the values of the output nodes according to 
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4. The class c = [c1, c2, …, cn] that the perceptron assigns at p must be a binary 

vector. So ok must be the threshold of a certain class at some level τ and 

depends on the application. 

5. Repeat steps 1, 2, 3 and 4 for each pattern that is to be classified. 

 

 In order to obtain a NNC, there are two main processes: building and training a 

network.  

- Building a network is to specify a neural network structure and some relative 

parameters in a network such as input size, number of layers, activation 

function for the network etc…  

- Training a network is to obtain the all weights and biases of a network 

according to training data. 

 

 

 

 



Chapter 4: Neural Network Classifier 

 60

4.4 Neural Network Classifier Definition: 

 

 In order to classify a pixel into two classes: cartilage and background class, two-

layer perceptrons is the most suitable choice. Fig 4.4 presents the structure of the two-

layer perceptrons as neural network classifier (NNC): 

 

 
Figure 4.4 Two-layer peceptrons 

 

 Where R is the number of elements in input vector, S1 is number of neurons (or 

nodes) in hidden layer and S2 is number of neurons in output layer. The weights 

iw(S1,R) and biases b1(S1) are weights and biases between input and hidden layer. The 

weights lw(S2,S1) and biases b2(S2) are weights and biases between hidden and output 

layers.. f1 is activation function of hidden layer and f2 is activation function of output 

layer. 

 a1  is output of hidden layer, it also is input of output layer. a1 is defined as: 
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 a2 is output of output layer, it also is output of a network. a2 is defined as: 
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4.4.1 Input Vectors. 

 As mentioned in Section 4.3, input of the network is the vector p computed from 

pixel patch of a pixel on the MR image. Pixel patch is a matrix formed by a pixel and 

its neighbourhood. In another ways, it is an image window surrounding a pixel. Fig 4.5 

illustrates the relationship between the pixel patch and the input vector.  

 

 

 

 

 

 

 

 

 

Figure 4.5 Generation of the input vector from a point on MR image. 

 

 Since input vector is formed from pixel patch, there is relationship between sizes of 

them. A pixel patch which is a matrix has size of [PxQ], input vector’s size is then 

[1,(PxQ)]. For instance, [3x3] pixel patch resulting in [1x9] input vector. 

 Input vectors represent the features of object (cartilage) or background on a MR 

image. Base on that, the network is trained to dichotomise those classed. Hence, the 

input vectors show more information of objects or background features will improve 

the network performance. For that reason, an appropriated size of input vector provides 

the best results. 

 By simulation experiments, we found the most suitable size of input vector is 

[1x81] (pixel patch size is [9x9]). 
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4.4.2 Activation Function 

 We have three activation functions that can be used in MLPs. First, Log-Sigmoid 

function is used most often. 

 
Alternatively, multilayer networks can use the tan-sigmoid transfer function tansig. 

 

 
Occasionally, the linear transfer function purelin is used in backpropagation networks.  

 
 

 Depend on the application of the MLPs, we can decide the most suitable function. 

To solve problems in cartilage classification, we want to constrain the output value of 

the network in the range [0, 1] where output value 0 representing background pixel and 

1 representing cartilage pixel. Because the function log-sigmoid generates outputs 

between 0 and 1 as the neuron’s net input goes from negative to positive infinity, the 

log-sigmoid function is best suitable selection for activation function. 
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4.4.3 Number of Neuron in Layers 

 Due to classification of two classes: cartilage class and background class, only one 

neuron on output layer is required. 

 The number of neurons in the hidden layer was heuristically chosen to be 40 (the 

average of the number of elements in input vector). There are no known rules for 

specifying the number of neurons in the hidden layers of a network, so this number 

generally is based either on prior experience or simply chosen arbitrarily and then 

refined by testing. 

 

4.5 Network Training 

 

 Training a network is to specify all weights and biases of a network such as the 

weights iw and biases b1 between input and hidden layer, and the weight lw and biases 

b2 between hidden and output layers. 

 

4.5.1 Back-propagation Algorithm 

 The network is trained by a popular algorithm know as the error back-propagation 

algorithm. This process consists of two passes through the different layers of the 

network: a forward and a backward pass. During the forward pass, a training pattern is 

presented to the perceptron and classified. 

 

 The backward pass recursively, level by level, determines error terms used to adjust 

to the perceptron weights. The error terms at the first level of the recursions are a 

function of ct and output of the perceptron (o1, o2… on). After all the errors have been 

computed, weights are adjusted using the error terms that correspond to their level. The 

algorithm description of the back-propagation is given here: 

 

1. Initialization: initialize the weights of the perceptron randomly with numbers 

between -0.1 and 0.1; that is, 

 wij = random([-0.1,0.1])  0 ≤ i ≤ l, 1 ≤ j ≤ m 

 vjk = random([-0.1,0.1]) 0 ≤ j ≤ m, 1 ≤ k ≤ n 
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 2. Presentation of training examples: 

 Present pt = [pt
1, pt

2, …, pt
l] from the training pair (pt, ct) to the perceptron and 

apply steps 1, 2, and 3 from the perceptron classification algorithm described earlier 

in Section 4.3. 

 Collecting the training data will be described in section 4.5.2 

3. Forward computation: Compute the error δok, 1 ≤ k ≤ n in the output layer using 

 ))(1( k
t
kkkok ocoo −−=δ  

Where ct = [ct
1, ct

2, …, ct
n] represents the correct class of pt. The vector (o1, o2… on) 

represents the output of the perceptron. 

4. Forward computation: Compute the error δhj, 1 ≤ j ≤ m, in the hidden layer using: 

 ∑
=

−=
n

k
jkokjjhj vhh

1

)1( δδ  

5. Backward computation: Let vjk denote the value of weight vjk after the tth training 

pattern has been presented to the perceptron. Adjust the weights between the output 

layer and the hidden layer using 

 jokjkjk htvtv ηδ+−= )1()(  

Parameter 0 ≤ η ≤ 1 represents the learning rate. 

6. Backward computation: Adjust the weights between the hidden layer and the 

input layer according to: 

 t
ihjijij ptwtw ηδ+−= )1()(  

7. Iteration: Repeat steps 2 through 6 for each element of the training set. One cycle 

through the training set is called an iteration. 

There are several algorithms that are called training algorithms to adjust the weights 

and biases of a network. We will discuss about this matter in section 4.5.3. 

 

4.5.2 Collecting Training Data 

 Back-propagation network requires two types of training data: input vectors (see 

Section 4.4) that represent two classes: cartilage class and background class, and the 

corresponding target vectors. 

 Input vectors are collected from a typical MR image. Fig 4.7 shows an image in 

which training data are collected. There are three types of pixel patch corresponding to 

pixel’s location: the cartilage pixel (pixel that lie on cartilage region), the background 

pixel (the pixel lie on the background region), and the boundary pixel (the pixel lie on 
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(b) 

(c) (e)
(d) 

(d) 

the adjacent location between cartilage and background regions). Therefore, we have 

three types of input vector. 

 

 
(a) 

 

      

     

 

 

 

 

 

Figure 4.6 Example of pixel and pixel patch from MRI scan. 

(a) Original MRI scan : Point P0 – a pixel belongs to cartilage region, point Pb –

belongs to background region, and Pb – a pixel belongs to boundary regio

(b) Structure of pixel patch that generated from point Pi and its neighbourho

(c) Pixel patch of point P0. 

(d) Pixel patch of point Pb. 

(e) Pixel patch of point Pa. 

 Fig 4.6 illustrates three types of pixel and its features. Corresponding to pi

(gray level), the pixel patch of a cartilage pixel often contains high values (Fig
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while the pixel patch of a background pixel often contains low values (Fig 4.6 (e)). The 

pixel patch of boundary pixel contains both low and high values and it falls into two 

regions (see Fig 4.6 (d)). It is due to the characteristic of MRI scan. The cartilage pixels 

are visualized with high contrast to its surrounding pixels (background). 

 

 
Figure 4.7 Original image in which training data collected 

 

Target vectors 

 The target vectors values are set according to different types of input vectors. For 

input vector of an object (cartilage) class, the value of target vector is 1; for input 

vector of a background class, the value of target vector is 0. The size of single target 

vector is 1-by-1. In additional, corresponding to set of input vectors, the size of target 

vectors is 1x[number of input vectors]. 

 Fig 4.8 illustrates the relations between the input vectors and the targets vector. 

Figure 4.8 (a) shows the size relationship while Figure 4.8 (b) shows the value 

relationships.  m input vectors produces target vectors of size 1xm. In Figure 4.8 (b), 

input vector P1 and P3 are object vectors and input vector P2 is background vector. As 

the result, the value of target vectors are [1 0 1]. 

 

 

 

 

 

 



Chapter 4: Neural Network Classifier 

 67

 

 

 

 

 

 

 

 

 

 

Figure 4.8 (a) Example of size relation between input vectors and target vectors. 

 

 

 

 

 

 

 Figure 4.8 (b) Example of value relation input vectors and target vectors. 

 

4.5.3 Training Algorithms 

 For back-propagation network, there are several training algorithms to adjusted all 

the weights and biases of the network to minimize the mean square error (MSE) 

between the network outputs and the target outputs. Due to faster training, we applied 

three types of training algorithms using optimization techniques: Conjugate Gradient, 

Quasi-Newton, and Levenberg- Marquardt. 

  

Conjugate Gradient Algorithms 

 The basic back-propagation algorithm adjusts the weights in the steepest descent 

direction (negative of the gradient), the direction in which the performance function is 

decreasing most rapidly. It turns out that, although the function decreases most rapidly 

along the negative of the gradient, this does not necessarily produce the fastest 

convergence. In the conjugate gradient algorithms, a search is performed along 

conjugate directions, which produces generally faster convergence than steepest 

descent directions. There are four variations of conjugate gradient algorithms: 
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  .      .             . 
  .      .             . 
  .      .             . 
P1n   P2n     Pmn 

Set of m input vectors 

t1  t2  . . . tm 

Relating target vectors 

Input      Input      Input 
Vector   Vector    Vector 
P1   P2           P3 
 

1    0    1 

Set of 3 input vectors Relating target vectors 
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Fletcher-Reeves Update [32] 

 All the conjugate gradient algorithms start out by searching in the steepest descent 

direction (negative of the gradient) on the first iteration. 

  00 gp −=  

 A line search is then performed to determine the optimal distance to move along the 

current search direction: 

  kkkk pxx α+=+1  

 Then the next search direction is determined so that it is conjugate to previous 

search directions. The general procedure for determining the new search direction is to 

combine the new steepest descent direction with the previous search direction: 

  1−+−= kkkk pgp β  

 The various versions of the conjugate gradient algorithm are distinguished by the 

manner in which the constant βk is computed. For the Fletcher-Reeves update the 

procedure is: 

  
11 −−

=
k

T
k

k
T
k

k gg
gg

β  

 This is the ratio of the squared norm of the current gradient to the squared norm of 

the previous gradient.  

 

Polak-Ribiere Update [33] 

 Another version of the conjugate gradient algorithm was proposed by Polak and 

Ribiére. As with the Fletcher-Reeves algorithm, the search direction at each iteration is 

determined by: 

  1−+−= kkkk pgp β  

 For the Polak-Ribiére update, the constant βk is computed by: 

  
11

1
−−

−∆
=

k
T
k

k
T
k

k gg
gg

β  

 This is the inner product of the previous change in the gradient with the current 

gradient divided by the squared norm of the previous gradient.  

 

Powell-Beale Restart [34, 35] 

 For all conjugate gradient algorithms, the search direction is periodically reset to 

the negative gradient. The standard reset occurs when the number of iterations is equal 
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to the number of network parameters (weights and biases), but there are other reset 

methods that can improve the efficiency of training. One such reset method was 

proposed by Powell, based on an earlier version proposed by Beale [36]. This technique 

restarts if there is very little orthogonality left between the current gradient and the 

previous gradient. This is tested with the following inequality: 

  
2

2.0|1 kk
T
k ggg ≥−  

 

 If this condition is satisfied, the search direction is reset to the negative of the 

gradient.  

 

Scaled Conjugate Gradient [37, 38] 

 Each of the conjugate gradient algorithms discussed so far requires a line search at 

each iteration. This line search is computationally expensive, because it requires that 

the network response to all training inputs be computed several times for each search. 

The scaled conjugate gradient algorithm (SCG), developed by Moller[39], was designed 

to avoid the time-consuming line search. This algorithm combines the model-trust 

region approach (used in the Levenberg-Marquardt algorithm,), with the conjugate 

gradient approach.  

 

Quasi-Newton Algorithms 

 There are two types of Quasi-New algorithms: Broyden, Fletcher, Goldfarb, and 

Shanno (BFGS) Alogrithm and One Step Secant Algorithm 

 

Broyden,Fletcher,Goldfarb, and Shanno (BFGS) Algorithm [40, 41] 

 Newton's method is an alternative to the conjugate gradient methods for fast 

optimization. The basic step of Newton's method is 

  kkkk gAxx 1
1

−
+ −=  

where 1−
kA  is the Hessian matrix (second derivatives) of the performance index at the 

current values of the weights and biases. Newton's method often converges faster than 

conjugate gradient methods. Unfortunately, it is complex and expensive to compute the 

Hessian matrix for feedforward neural networks. There is a class of algorithms that is 

based on Newton's method, but which doesn't require calculation of second derivatives. 

These are called quasi-Newton (or secant) methods. They update an approximate 
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Hessian matrix at each iteration of the algorithm. The update is computed as a function 

of the gradient. The quasi-Newton method that has been most successful in published 

studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update [42]. 

 

One Step Secant Algorithm [43] 

 Because the BFGS algorithm requires more storage and computation in each 

iteration than the conjugate gradient algorithms, there is need for a secant 

approximation with smaller storage and computation requirements. The one step secant 

(OSS) method is an attempt to bridge the gap between the conjugate gradient 

algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store the 

complete Hessian matrix; it assumes that at each iteration, the previous Hessian was the 

identity matrix. This has the additional advantage that the new search direction can be 

calculated without computing a matrix inverse.  

 

Levenberg-Marquardt Alogrithm [44] 

 Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed 

to approach second-order training speed without having to compute the Hessian matrix. 

When the performance function has the form of a sum of squares (as is typical in 

training feedforward networks), then the Hessian matrix can be approximated as 

  JJH T=  

and the gradient can be computed as: 

  eJg T=  

where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and e is a vector of network errors. The Jacobian 

matrix can be computed through a standard backpropagation technique [45] that is much 

less complex than computing the Hessian matrix. 

 The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix 

in the following Newton-like update: 

  eJIJJxx TT
kk

1
1 ][ −
+ +−= µ  

 When the scalar µ is zero, this is just Newton's method, using the approximate 

Hessian matrix. When µ is large, this becomes gradient descent with a small step size. 

Newton's method is faster and more accurate near an error minimum, so the aim is to 

shift toward Newton's method as quickly as possible. Thus, µ is decreased after each 
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successful step (reduction in performance function) and is increased only when a 

tentative step would increase the performance function. In this way, the performance 

function is always reduced at each iteration of the algorithm. 

 Therefore, we have total 7 different training algorithms. Depend on speed and 

performance of each algorithm, we will determine which one is the most suitable. 

 

Speed and performance of each training algorithm 

 The speed and performance of each training algorithm depend on many factors, 

including the number of input vectors in the training set, the number of weights and 

biases in the network, the error goal and the network is being used for cartilage 

recognition. Training algorithm, which provides the best performance, will be selected. 

Hence, we have taken several experiments about those different training algorithms to 

investigate their speed and performance. 

 We made experiments on Matlab environment by using Matlab software. Here are 

some computer’s features that we used: 

  - Computer: Intel(R), Pentium(R) 4CPU 2.66GHz; 512 MB of RAM 

- Operation system: Microsoft Windows XP Professional, Version 2002, 

Service Pack 2 

 

First Experiment 

 We made a first experiment to get a general idea about speed and performance of 

each training algorithm. 

 - Training data:   

+ 200 input vectors that denote cartilage class, include 100 input vectors of 

pixels on cartilage region and 100 input vectors of pixels on cartilage 

boundaries. 

  + 200 input vectors that denote background class. 

 Training data are randomly selected from a sample image shown in Fig 4.9 

- Neural Network: Two layer perceptrons with log-sigmoid activation function in 

each layer. Hidden layer has 40 neurons whereas only one neuron on output layer. 
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Figure 4.9 Original image in which training data collected. 

 

 The following table is the results of training the network using seven different 

training algorithms that are mentioned in previous section in terms of time and mean 

square error (MSE). We only take one trial for each training algorithm. 

 - The time shown in the table is the total time for the computer to compute all the 

weights and biases of a neural network by using a specific training algorithm to 

minimize the mean square error (MSE) between network output and target output. The 

speed of training a network is faster when the time is shorter. 

 - The mean square error (MSE) shown in the table is the mean square error between 

network outputs and target outputs. Performance of a network is determined by MSE 

value. Network performance is higher when MSE value is smaller. 

 

Algorithms Time (s) MSE 

Polak-Ribiere Conjugate Gradient 1.62815 0.13596 

Fletcher-Powell Conjugate Gradient 1.43912 0.13024 

Powell/Beale Restarts 2.12743 0.15211 

Scaled Conjugate Gradient 4.58572 0.12199 

BFGS Quasi-Newton 240 0.14801 

One Step Secant 3.36133 0.15015 

Levenberg-Marquardt 210 0.16421 

Table 4.1 Speed and performance of seven different training algorithms 
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 Overall, Levenberg-Marquardt and BFGS Quasi-Newton methods do not perform 

well on object recognition problems. The time for computing all network’s weights and 

biases by using those training algorithms is significant longer. The Levenberg-

Marquardt is designed for least squares problems that are approximately linear. 

Because the output neurons in object recognition problems are generally saturated, it 

should not be operated in the linear region. 

 As a result, we can use five training algorithms such as Polak-Ribiere, Fletcher-

Powell, Scaled Conjugate Gradient, Powell/Beale Restarts and One Step Secant 

methods.  

 

Second Experiment 

 In second experiment, we processed intensely in order to choose the most suitable 

training methods. 

 - Training data and neural network that are used in second experiment are the same 

as in the first experiment. 

 - For each training algorithm, we made 30 different trials where different random 

initial weights and biases are used in each trial.  

 

 The following table summarized the results of training a network with five different 

algorithms. During 30 different trials, each entry in the table represents: 

- Min Time: is the shortest time for computing all network’s weights and biases  

- Max Time: is the longest time for computing all network’s weights and biases  

- Mean Time: is the average time for computing all network’s weights and biases. 

- Min MSE: is the lowest mean square error. 

- Max MSE: is the highest mean square error. 

- Mean MSE: is the average mean square error. 

- Number of successful trials: that we are successful in computing all network’s 

weights and biases to minimize mean square error under condition that gradient 

value is less than 0.00001. 
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 Polak-

Ribiere 

Fletcher-

Powell 

Powell/Beale 

Restarts 

Scaled Conjugate 

Gradient 

One Step 

Secant 

Min Time (s) 1.2161 1.33151 1.11611 2.82169 1.09089 

Max Time (s) 3.2315 2.59043 2.65109 4.58572 3.71076 

Mean Time (s) 1.67 1.7101 1.5836 3.654 1.7723 

Min MSE 0.11771 0.12158 0.12309 0.11809 0.13673 

Max MSE 0.15119 0.14373 0.15211 0.14068 0.17612 

Mean MSE 0.133507 0.130638 0.132037 0.13056 0.15309 

Number of 

successful trials 
23 13 21 30 29 

Table 4.2 Speed and performance of five different training algorithms 

  

 From the table, Scaled Conjugate Gradient is the most suitable training method. It 

not only produces lowest MSE but also provides consistency and reliability (Scaled 

Conjugate Gradient method has highest successful rate (30/30)). Therefore, we will 

select Scaled Conjugate Gradient method for training a network. 

 

4.6 Application of Neural Network Classifier 

 

 When we success in creating a NNC, we apply it as cartilage recognition to extract 

a cartilage from an original image. Because NNC can specify a class of a pixel on an 

image, one obvious simple way is to apply NNC to all pixels. However, it is not 

effective and reliable according to noise. Similar to BSSM, there are also two processes 

on our NNCM: left and right process.  The left process is to extract the cartilage on 

partitioned sub-images on the left direction according to initial sub-image. On the other 

hand, right process is to extract the cartilage on partitioned sub-images on the right 

direction according to initial sub-image. 

 However, because NNC can classify a pixel as cartilage or background, it cannot 

classify cartilage pixel into cartilage component’s class. We apply NNCM to obtain a 

cartilage instead of individual cartilage component from an input image. A general 

flowchart of NNCM is shown as Fig 4.10 (a). 

 Consider an input image is a matrix I that is defined from pre-processing step. Sub-

images are columns of matrix I. Sub-images that contain the cartilage segments are 

defined as cartilage sub-images. Our NNCM algorithms are described as: 
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1. From input image [K rows and L columns] I, find initial cartilage sub-image 

representing i-th column of matrix I, where i = 1, 2, …, L. Initial cartilage sub-

image determination is described in section 4.6.1. 

2. Left Process: Corresponding to initial sub-image, find a next cartilage sub-

image representing (i + ∆)-th column, ∆ = 1,2,3… Cartilage sub-image 

determination is described in section 4.6.1. 

3. Right Process: Corresponding to initial sub-image, find a previous cartilage sub-

image representing (i - ∆)-th column, ∆ = 1,2,3… 

4. For each pixel on cartilage sub-images that found in step 1, 2, and 3 , compute 

output of a network classifier: 

  )(log 1
,

1
1 biwsiga
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+=  

  ).(log 21
,

2
12 balwsiga
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+=  

Where a2 is output of a network; iw and b1 are weights and biases between input 

and hidden layer; lw and b2 are weights and biases between hidden layer and 

output layer. 

R is number of elements of a input vector; S1 is number of neurons of hidden 

layer; and S2 is number of neurons of output layer. 

Output network is then filtered with a threshold K 

- Output value is “1” if a2 > K: this pixel is classified as cartilage pixel.  

- Output value is “0” if a2 < K: this pixel is classified as background pixel. 

5. Continue until all cartilage pixels are classified on cartilage sub-images. 
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Apply neural network 
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Figure 4.10(a) General flowchart of NNCM 
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Fig 4.10(b) illustrates operation of NNCM. 
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4.6.1 Cartilage sub-image and initial cartilage sub-image determination 

 Unlikely cartilage sub-image determination of BSSM, which is based on the group 

of pixels that have high intensity than a reference threshold value V (see Chapter 3), we 

apply NNC on each pixel on a sub-image to make determination. 

 

    

 

 

 

 

 Where g(x,y) is a group of pixels on a sub-image that are classified as cartilage 

class by a NNC. 

 An initial cartilage sub-image is a cartilage sub-image, which locates in the middle 

of a cartilage region as well as in the middle of an input image.  

 

4.7 Experiment Results 

 This section presents the visual results obtained by using NNCM to extract a 

cartilage from images sets. The quatitative evaluation of this method is then described 

in Chapter 6 (Area and Volume Calculation). We use the same image sets that are used 

in case of BSSM  in order to test and make comparison between BSSM and NNCM. 

 - Image set 1: Images that contain Femur, Tibia, and Patella. 

 - Image set 2: Images that contain Femur, and Tibia. 

 - Image set 3: Images that contain Femur and Patella. 

Image Set 1 

 Fig 4.11 shows cartilage images extracted from Image Set 1.  

Image Set 2 

 Fig 4.12 shows cartilage images extracted from Image Set 2.  

Image Set 3 

 Fig 4.13 shows cartilage images extracted from Image Set 3.  

 

 Results obtained by using NNCM appeared more accurate compared to the results 

obtained by using BSSM. In both cases, the cartilage images were compared with the 

original cartilage image. It was observed that NNCM worked well with several images 

that BSSM could not work well. It can be observed in the following images as follows: 

Cartilage sub-image if g(x,y) ∈  Cartilage class 

Otherwise, Background sub-image  

A sub-image f(x,y) is defined as 
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 - Image 2, image 6 on Image set 1 in Fig 4.11 

 - Image 6, image 8 on Image set 2 in Fig 4.12 
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Figure 4.11 (a) Images on Image Set 1, Cartilage images extracted 

from Image Set 1 by using NNCM (b) and BSSM (c). 

 

 

 



Chapter 4: Neural Network Classifier 

 79

 

5(a) 

 

5(b) 

 

5(c) 

 

6(a) 
 

6(b) 

 
6(c) 

 

7(a) 

 

7(b) 

 

7(c) 

 

8(a) 
 

8(b) 

 

8(c) 

Figure 4.11 (a) Images on Image Set 1, Cartilage images extracted 

from Image Set 1 by using NNCM (b) and BSSM (c). 
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Figure 4.12 (a) Images on Image Set 2, Cartilage images extracted 

from Image Set 1 by using NNCM (b) and BSSM(c). 
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Figure 4.12 (a) Images on Image Set 2, Cartilage images extracted 

from Image Set 1 by using NNCM (b) and BSSM (c). 
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Figure 4.13(a) Images on Image Set 3, Cartilage images extracted 

from Image Set 1 by using NNCM (b) and BSSM (c). 
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Figure 4.13(a) Images on Image Set 3, Cartilage images extracted 

from Image Set 1 by using NNCM (b) and BSSM (c). 
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4.8 Conclusion 

 

 Multilayer Perceptrons (MLPs) are one of the most important types of neural 

network that can be used for object classification in image processing. The success of 

classification depends on training the sample data with learning rules and training 

algorithms. Therefore, NNCM can work well when there is low contrast between object 

and background regions that cause difficulty for BSSM. Fig 4.14 is an example of this. 

 

 
Figure 4.14 Comparison of NNCM and BSSM according to low contrast between 

cartilage and background regions 

(a) Result of extracting cartilage by using NNCM. 

(b) Result of extracting cartilage by using BSSM 
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 However, NNCM may also have drawbacks. When cartilage pixels have features 

similar to background pixels, NNCM is likely to consider them as background pixels. 

Therefore, it is recommended to decrease the size of a cartilage or its number. Fig 4.15 

illustrates this. 

 
Figure 4.15 Example of NNCM when object pixels are similar to background pixels. 

(a) Original MR Image and (b) Result obtained by using NNCM. 

 

 Therefore, a final method that can takes advantages of both BSSM and NNCM is 

developed.  It is based on active contour models, BSSM and NNCM. This method 

named active contour models method (ACMM) will be introduced in next chapter.
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Chapter 5 

 

ACTIVE CONTOUR MODELS 
 

5.1 Overview 

 

 Active contours  was first introduced by Kass et al.1988 [46]. An active contour is a 

set of points to enclose a target feature to be extracted. It is a bit like using a balloon to 

‘find’ a shape: the balloon is placed outside (or inside) the shape, enclosing it. Then by 

taking air out (or in) of the balloon, making it smaller (or bigger), the shape is found 

when the balloon stops shrinking (or expanding), when it fits the target shape. By this 

manner, active contours arrange a set of points so as to describe a target feature by 

enclosing it. 

 

 Give an approximation of the boundary of an object in image; an active contour 

model can be used to find the ‘actual’ boundary. Active contour models should be able 

to find the boundary in MR images of cartilage when an initial guess is provided by a 

user or by some other method, possibly an automated one. 

 An active contour is an ordered collection of n points in the image plane: 
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where n is number of pixels that are supposed to initial contour of the object. 

The points in the contour iteratively approach the boundary of an object through the 

solution of an energy minimization problem. For each point in the neighbourhood of υi, 

an energy term is computed: 

 ( ) ( )iextii EEE υβυα += int  
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Figure 5.1. An example of the movement of a point υi, in an active contour. The point 

υ’
i, is the location of minimum energy. 

 

where Eint(υi) is an energy function dependent on the shape of the contour and Eext(υi) is 

an energy function dependent on the image properties near point υi. α and β are 

constants providing the relative weighting of the energy terms.  

 

 Ei, Eint, Eext are matrices. The value at the center of each matrix corresponds to the 

contour energy at point υi. Other values in the matrices correspond (spatially) to the 

energy at each point in the neighbourhood of υi. 

 

 Each point, υi, is moved to the point υ’
i, corresponding to the location of the 

minimum value in Ei. This process is illustrated in Fig. If the energy functions are 

chosen correctly, the contour V, should approach, and stop at, the object boundary. 

 

 In this chapter, we present a method named active contour models method 

(ACMM) that is mainly based on active contour models to extract the articular cartilage 

from original MR knee image [1]. This method has also a combination of two previous 

introduced methods: BSSM and NNCM. BSSM is used for defining an initial active 

contour and NNCM is used for computing the external energy. 
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5.2 Energy Formulation 

 

5.2.1 Internal Energy 

 The internal energy function is defined to enforce a shape on the deformable 

contour and to maintain a constant distance between the points in the contour. 

Additional terms can be added to influence the motion of the contour. 

 The internal energy function used herein is defined as follows: 

)()()(int ibaliconi bEcEE υυυα +=  

where Econ(υi) is the continuity energy that enforces the shape of the contour and 

Ebal(υi) is a balloon force that causes the contour to grow (balloon) or shrink. c and b 

provide the relative weighting of the energy terms. 

 

Continuity Energy 

 In the absence of other influences, the continuity energy term causes an open 

deformable contour into a straight line and a closed deformable contour into a circle. 

The formulation of the continuity energy has been adopted from [47]. The energy term 

for each element, ejk(υi), in the matrix, Econ(υi) is defined as follows: 
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where pjk(υi) is the point in the image that corresponds spatially to energy matrix 

element ejk(υi). 

γ = 0.5 for an open contour. In this case, the minimum energy point is the point exactly 

half way between υi-1 and υi+1. 

 For the case of a closed contour, V is given a modulus of n. Therefore, υn+i= υi. γ is 

then defined as follows: 
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Here, the point of minimum energy of Econ(υi) is pushed outward so that V become a 

circle. This behaviour is illustrated in Fig 5.2. 

 

 The normalization factor, l(V), is the average distance between points in V: 
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 Magnitudes have been left squared to reduce the computation load. The 

normalization is required to make Econ(υi) independent of the size, location, and 

orientation of V. 

 
Figure 5.2 An example of the movement of a point in an active contour due to 

continuity energy. The point υ’
i, is the location of minimum energy because it lies on 

the circle connecting υi-1 and υi+1. 

 

Balloon Force 

 A balloon force can be used on a closed deformable contour to force the contour to 

expand (or shrink) in the absence of external influences. A contour initialized within a 

uniform image object will expand under the influence of a balloon force until it nears 

the object boundary (at which point the external energy function affects its motion). Fig 

5.3 illustrates this behaviour. 

 Chalana et al. 1995 suggests an adaptive balloon force that varies inversely 

proportionally to the image gradient magnitude [48]. The adaptive balloon force is 

strong in homogeneous regions and weak near object boundaries, edges, and lines. 

 The energy term for element, ejk(υi), in the matrix, Ebal(υi) is expressed as a dot 

product: 

 ( ))()( ijkiiijk pne υυυ −•=  
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Where ni is the outward unit normal of V at point υi and pjk(υi) is the point in the 

neighbourhood of υi corresponding to entry ejk(υi) in the energy matrix. Therefore, the 

balloon energy is smallest at points farest from υi in the direction of ni. 

 

 
Figure 5.3 An example of the movement of a deformable contour due to balloon 

energy. Because the object has uniform intensity, a balloon force is required to push the 

contour toward the object boundary. 

 

ni can be found by rotating the tangent vector, ti, by 90o. ti is easily computed: 
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So ni is a unit vector normal to ti. 

 

5.2.2 External Energy 

 The external energy function attracts the deformable contour to interesting features 

in an image. Traditional external energy is looked at image gradient and intensity. For 

example, we can use BSSM, which is based on intensity as external energy. However, 

it is clearly see that this method has difficulty when there are low contrast between 

cartilage pixels and background pixels. This problem is previously illustrated in 

Chapter 3. Hence, because NNC (chapter 4) is good at handling this problem, we then 

apply a NNC for computing the external energy. Moreover, in order to attract the 

deformable contour, the NNC is more advanced than BSSM. Comparison between 

NNC and BSSM is demonstrated in section 4.7 Chapter 4. In additional, although using 
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NN is computationally expensive (in both training stage and in testing stage), in this 

thesis’s situation, the speed is not critical. In return, we can get greater benefit by using 

NN since NN is a lead toward other more advanced method. 

 For each point in the neighbourhood of υi, an external energy is computed: 

 Eext(υi) = ENN(υi) 

where ENN(υi) is NNC output value. The NNC can be adopted from Chapter 4, which is 

specified as: 

- Neural network classifier (NNC): two-layer perceptrons with log-sigmoid 

activation function in each layer, 40 neurons on hidden layer and 1 neuron on 

output layer. 

- Output of a network is computed as: 

  )(log 1
,

1
1 biwsiga

Rs
+=  

  ).(log 21
,

2
12 balwsiga

SS
+=  

Where a2 is output of a network; iw and b1 are weights and biases between input 

and hidden layer; lw and b2 are weights and biases between hidden layer and 

output layer. 

R is number of elements of a input vector; S1 is number of neurons of hidden 

layer; and S2 is number of neurons of output layer. 

Diagram of NNC algorithm is described as Fig 5.4: 
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Figure 5.4 Diagram of External Energy Computation by using NNC 

 Each point, υi, through the neural network, provides a value from [0 to 1] in which 

0 indicates that point belongs to background (other tissues) and 1 indicates that point 

belongs to object (cartilage). Point υi, is moved to the point υ’
i, corresponding to the 

location of the minimum value ENN. 

 

 
Figure 5.5 An example of the movement of a deformable contour due to neural network energy. 

The point, υ’
i = p15, is the location of minimum energy because it lies on background. 

 

5.3 Regularization 

 

 The energy functions introduced in the previous sections should be scaled so that 

the neighbourhood matrices contain comparable values. This process is referred to as 

regularization. Here, each of the energy functions is adjusted to the range [0, 1]. 

The balloon energy is further modified to adapt to the image gradient magnitude. 

Regularization is not required for external energy function because neural network 

energy function already provide value in the range [0, 1]. 

 

Continuity Energy 

 At each point in the deformable contour, the elements in neighbourhood matrix for 

the continuity energy are simply scaled to the range [0, 1]: 
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Where emin(υi) and emax(υi) are the minimum and maximum valued elements, 

respectively, in Econ(υi). 

Balloon Energy 

 The balloon energy is scaled to the range [0, 1], then adapted to the image gradient 

intensity: 
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Where 
max

I∇ is the maximum gradient magnitude in the entire image 

 

5.4 Application of Active Contour Models Algorithms 

 

 Similar to BSSM, ACMM algorithms tend to extract individual cartilage 

components (femur, tibia, and patella) from an original image. Therefore, our 

algorithms also include three processes: 

- First process: we apply ACMM on original image with initial contour of femur 

to obtain femur image (Refer to Fig 5.6). 

- Second process: we apply ACMM on an image that femur was extracted with 

initial contour of tibia to obtain tibia image (Refer to Fig 5.6). 

- Final process: we apply ACMM on an image that femur and tibia were 

extracted with initial contour of patella to obtain patella image (Refer to Fig 

5.6). 
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Fig 5.6 illustrates flowchart of ACMM algorithms: 
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Figure 5.6 Flowchart of using ACMM to extract a cartilage from an original image. 
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Fig 5.7 illustrates ACMM to extract an individual cartilage component from input 

image. 
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 In this implementation, an initial contour V can be provided by a user, or by some 

method, possibly an automated one. In our case, we apply BSSM (chapter 3) as an 

automated method to define an initial contour V.  

 The contour V is stored as a matrix of vectors. Each vector has five elements: x and 

y co-ordinates of the contour point, the values of α, β, and the flag for that contour 

point. α and β are constants providing the relative weighting of the energy terms. The 

flag provides value 0, which indicates the minimum energy at that contour point, and 

value 1, which indicates the minimum energy, is not at that contour point. The iteration 

will finish when the flags of all contour point are set to 0 which mean the contour V is 

enclosed the cartilage boundaries 

 

5.4.1 Initial Contour Definition 

 As mentioned in Chapter 3, we can use BSSM to find cartilage boundaries on an 

image. Hence, we can apply BSSM to define an initial contour as an automatic method. 

Initial contour definition algorithms are described as: 

  1. Apply BSSM on input image. 

2. For each cartilage sub-image, we obtain cartilage boundaries according to (x,y) 

location. 

3. Those cartilage boundaries will be considered as initial contour points. 

4. Continue until all cartilage boundaries that are detected by BSSM are considered 

as initial contour points.  

 

5.5 Experiment Results 

 

Discussion on initial contour 

 The first important part in contour algorithm is the quality of the initial contour. 

The contour algorithm improves when the image contains little noise and the contrast 

between the cartilage parts and other tissues is significant. When the condition of image 

is bad: noise and the contrast between the cartilage parts and other tissues is low, the 

contour algorithm is likely to attach itself to noise and other tissues boundaries.  

 Fig 5.8 shows that initial contour used to obtain actual boundary of patella 

segments is not good because it also contain femur segments. Hence, the calculated 

patella contour also contains femur segments. The initial patella contour is difference in 

Fig 5.9. In this case, the obtained patella contour is reasonable. 
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Figure 5.8 An example of behaviour of contour algorithm when initial c
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 Because the initial contour V is defined from applying BSSM, initial contour V 

depends on output of this approach. For case BSSM cannot detect femur boundaries 

when femur and patella are connected, femur boundaries are also include patella. 

Therefore, initial femur contour V is then defined including patella. The final femur 

contour is then computed also contain patella. Fig 5.10 illustrates this case. 

Figure 5
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 (b) (c) 

 (a) Original image (b) Initial femur contour V defined from applying 

SM (c) Final femur contour is computed by using ACMM. 

esults 

n presents the visual results obtained by using ACMM to extract 

 image sets. The quatitative evaluation of this method will be 

n Chapter 6 (Area and Volume Calculation). We apply ACMM to the 

s that were used in case of BSSM and NNCM in order to test and make 

ong three methods. 

 set 1: Images that contain Femur, Tibia, and Patella. 

 set 2: Images that contain Femur, and Tibia. 

 set 3: Images that contain Femur and Patella. 

ws cartilage images extracted from Image Set 1.  

ws cartilage images extracted from Image Set 2.  

ws cartilage images extracted from Image Set 3.  

 obtained by using ACMM are more accurate than BSSM and NNCM. 
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deal with problem existing in BSSM when there are low contrast between cartilage and 

background. For example: 

- Image 2 , 6 on image set 1 in Fig 5.11 

- Image 6, 8 on image set 2 in Fig 5.12 

 ACMM also can works well with problem existing in NNCM that NNCM reduces 

number of cartilage pixels when some cartilage pixels are classified as background 

class because they have same features of background pixels. For example: 

- Image 1, 5, and 8 on image set 1 in Fig 5.11 

- Image 5, 8 on image set 2 in Fig 5.1 
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Figure 5.11 (a) Images on Image Set 1, Cartilage images extracted from Image Set 

1 by using ACMM (b), NNCM (c) and BSSM (d). 

5(a) 5(b) 5(c) 
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8(a) 8(b) 8(c) 

 

8(d) 

Figure 5.11 (a) Images on Image Set 1, Cartilage images extracted from Image Set 

1 by using ACMM (b), NNCM (c) and BSSM (d). 
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Figure 5.12 (a) Images on Image Set 2, Cartilage images extracted from Image Set 1 by using 

ACMM (b), NNCM (c) and BSSM (d). 
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Figure 5.12 (a) Images on Image Set 2, Cartilage images extracted from Image Set 1 by using 

ACMM (b), NNCM (c) and BSSM (d). 

 

 

 

 



Chapter 5: Active Contour Models 

 103

 

1(a) 

 

1b) 

 

1(c) 

 

1(d) 

 

2(a) 

 

2b) 
 

2 (c) 

 

2(d) 

 

3(a) 

 

3b) 

 

3(c) 

 

3(d) 

 

4(a) 

 

4b) 
 

4(c) 

 

4(d) 

 

5(a) 
 

5b) 

 

5(c) 

 

5(d) 

Figure 5.13(a) Images on Image Set 3, Cartilage images extracted from Image Set 1 by using 

ACMM (b), NNCM (c), and BSSM (d) 
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Figure 5.13(a) Images on Image Set 3, Cartilage images extracted from Image Set 1 by using 

ACMM (b), NNCM (c), and BSSM (d) 
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5.6 Conclusion 

 

 The active contour models algorithms can be used to extract an object from an 

original image. Our method is mainly based on active contour models algorithms. From 

an initial contour, we explore it to find the cartilage boundaries by calculating the 

internal and external energy. We apply BSSM as an automatic method to define initial 

contour. We also apply NNCM to compute the external energy. By doing this, we can 

take advantages of those two methods and avoid their disadvantages. Therefore, 

ACMM not only work well when there is low contrast between cartilage and 

background regions but also handle the problem existing in NNCM that similarly 

features of cartilage and background pixels. Therefore, ACMM is the most suitable 

approach for obtaining a cartilage from an original MR image. 
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Chapter 6 

  

CARTILAGE AREA AND VOLUME 

CALCULATION 
 

6.1 Overview 

 

 After an articular cartilage is extracted from original MR image by using one of 

three mentioned methods (bi-directional scanning segmentations, neural network, or 

active contour models), we can compute the cartilage’s area and volume. 

 This chapter present the way we compute the cartilage’s area and volume from 

cartilage image. 

 

6.2 Cartilage Area Calculation 

 

 The area of the cartilage is proportional to the number of pixels of the cartilage. 

Then, we make a convert to area unit (such as mm). 

  Area = cartilageAδ  

 Where Acartilage is the number of cartilage pixels. Parameter δ is the constant ratio to 

convert from number of pixel to mm. 

 Consider the cartilage image after extraction, that is composed of cartilage pixels 

(values are greater than 0) and background pixels (values are 0). Cartilage area 

calculation algorithms are described as: 

1.  Set initial cartilage area ACartiage = 0; 

2.  For each pixel in cartilage image f(x,y):  

If g(x,y) is greater than 0, Acartilage = Acartilage + 1; 

 If g(x,y) is 0, remain Acartilage and move to next pixel. 

 Where g(x,y) is the value of pixel at location (x,y). 

3.  Repeat step 2 until all pixels of cartilage image f(x,y) are processed. 

4.  The area of the cartilage is the final Acartilage.  
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6.3 Cartilage Volume Calculation 

 

 From characteristics of MR knee images, the cartilage volume is calculated from 

the set MR knee images. Cartilage volume calculation algorithms are described as: 

1.  For each cartilage image, apply step 1 to step 4 of cartilage area calculation 

algorithms to compute an area of a cartilage on a cartilage image Ai. where i is 

the sequence of the cartilage image in MR image set. 

2.  Calculate the volume of cartilage’s part from two adjacent cartilage images. 

  iii AAdV ... 1+= δ  

 Where d is the distance between two cartilage images (d in mm). Parameter δ is 

the constant convert rati.  The volume of a cartilage is the total volume of 

cartilage’s parts. 

  ∑
=

+=
N

i
iitotal AAdV

1
1..δ  

 Where N is the number of cartilage images. 

 

6.4 Cartilage Area Calculation Validation 

 

 We apply three methods (BSSM, NNCM, and ACMM) to extract cartilage from 

input images. In each cartilage image, the cartilage pixels were used to compute 

cartilage area by using cartilage area calculation that is mentioned in section 6.2. The 

results are then compared with reference values, which is the number of pixels that are 

computed from reference cartilage images. Reference cartilage images are extracted 

manually from input image by using matlab function “imtool” on image processing 

toolbox. 

 The results obtained from cartilage images extracted manually correlated highly 

with the results obtained from cartilage images extracted by using BSSM, NNCM, and 

ACMM The correlation value in each case is nearly 1 (p = 1.0054, R2 = 0.9995 in Fig 

6.1; p = 1.0064, R2 = 0.9991 in Fig 6.2; p = 0.9946, R2 = 0.9991 in Fig 6.3). The 

validation results demonstrated that our three methods for extracting cartilage on an 

image were reliable for cartilage area calculation. 
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Figure 6.1 Cartilage area computed from cartilage image extracted by using BSSM 

correlated highly with the cartilage image extracted manually by using “imtool” 

function technique from Matlab 

 
Figure 6.2 Cartilage area computed from cartilage image extracted by using NNCM 

correlated highly with the cartilage image extracted manually by using “imtool” 

function technique from Matlab 
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Figure 6.3 Cartilage area computed from cartilage image extracted by using ACMM 

correlated highly with the cartilage image extracted manually by using “imtool” 

function technique from Matlab 

 

6.5 Experiment Results and Conclusion 

 The following table is the results of area calculation obtained from cartilage images 

that are extracted by using BSSM, NNCM, and ACMM. It also demonstrates the 

quantitative evaluation of each method while the visual results are described previously 

in Chapter 3, Chapter 4, and Chapter 5. 

 

Image 

Sequence 

BSSM NNCM ACMM 
Manual 

Method 

Area (number of pixels) Area (number of 

pixels) 
Area (number of 

pixels) 
Area (number of 

pixels) 

1 3757 3600 3745 3740 

2 3846 3421 3579 3565 

3 4042 3552 3575 3559 

4 4398 3547 3699 3670 

5 4079 3612 3848 3790 
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6 3849 4523 4818 4820 

7 5012 5516 5626 5590 

8 5500 5011 5534 5550 

9 4321 4023 4649 4590 

10 3810 3199 3543 3520 

11 3923 3276 3768 3710 

12 4011 3123 3807 3800 

13 3902 3566 3746 3745 

14 4021 3742 3901 3880 

15 3400 2918 3315 3347 

16 1572 3122 3514 3460 

17 3812 3014 3513 3477 

18 3502 3155 3475 3380 

19 3490 2977 3475 3400 

20 3005 2516 2929 2959 

21 2712 2413 2656 2565 

22 2900 2676 2880 2751 

23 2859 2812 2829 2822 

24 3320 3011 3213 3252 

25 3002 2892 3116 3031 

26 4310 4011 4121 4060 

27 4211 3815 4055 4980 

28 4602 4556 4700 4651 

29 6120 5413 5851 5753 

30 5912 5045 5641 5571 

31 6220 5359 5849 5722 

32 5011 5123 5247 5157 

33 5122 4923 5299 5287 

34 4723 4899 5080 4982 

35 4412 4789 4939 4803 

36 3320 3615 3843 3759 

Table 6.1 Result of area calculation of the cartilage by using three methods 
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 The graph below illustrates the comparison of the cartilage areas that computed 

from a cartilage images extracted from image set by using BSSM, NNCM, and 

ACMM.  

 

 
 

Figure 6.4 Area comparisons between using BSSM, NNCM, and ACMM 

 

 From the graphs, results obtained from NNCM and ACMM have similar shape and 

are close to the manual results. Results obtained from BSSM are also similar but there 

are differences in some sections (that are indicated in circle in Fig 6.4). It is due to the 

less sensitive ability to the noise of BSSM. The results that are from NNCM are 

generally smaller than from ACMM. It express that NNCM is likely to reduce number 

of cartilage pixels when some cartilage pixels are classified as background due to 

similar features of those pixels and background. 

 ACMM, which has advantages of both NNCM and BSSM, provides the most 

accurate results. 
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Chapter 7 

 

CONCLUSION, DISCUSSION and FUTURE WORK 
 

7.1 Conclusion 

 

 In vivo morphometry and functional analysis of human articular cartilage with 

quantitative magnetic resonance imaging (MRI), the size of the articular cartilage is an 

important element in detecting the Osteoarthritis (OA), which is a major public health 

problem in term of joint and knee.  

 

 Extracting an articular cartilage from an original MR knee image is an important 

process in cartilage size calculation. For doing this, we have studies and developed  

three automatic methods [1] such as BSSM, NNCM and ACMM.  

 

 BSSM is based on two basic properties of intensity value: discontinuity (edge 

detection algorithms) and similarity (thresholding method). It is also based on statistical 

analysis (curve fitting algorithms and average weight calculation) 

 

 NNCM is a method, which apply a neural network as cartilage classification. For 

each pixel on a MR image, through the neural network classifier, it is classified as 

cartilage pixel if output value is 1. Alternatively, it is classified as background pixel if 

output value is 0. 

 

 ACMM is a method, which uses an initial contour that approximates the boundary 

of a cartilage in an MR image to find the “actual” boundary. This is an innovative 

method because we apply BSSM to define an initial contour. We also apply NNCM to 

compute the external energy. Therefore, it takes advantages of both methods and avoids 

the problems existing in BSSM and NNCM. 
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7.2 Discussion 

 Our three methods have succeeded in automatically extracting the cartilage from 

input image. According to noise and complexity of image, each method has both 

advantages and disadvantages. 

 

 BSSM works well when there are significant high contrasts between cartilage and 

background regions. It often fails when the contrasts are low. 

 

 NNCM can handle the problem existing in BSSM. However, this method has 

problem when there are some cartilage pixels that have similar features of background. 

NNCM is likely to consider those pixels as background pixels. Therefore, it reduces the 

size of a cartilage on an image. 

 

 Since inheriting advantages of BSSM and NNCM, active contour models method is 

the most suitable method for extracting a cartilage. It can solve problems that occur in 

both previous methods. Nevertheless, using NN as external energy is computationally 

expensive (in both training stage and testing stage). In this thesis’s situation, the speed 

is not critical and in return, NN bring greater benefit than other method. 

 

7.3 Future Works 

 

 Since ACMM is an automatic potential method for extracting a cartilage from MR 

image, we have some suggestions to improve the performance of this approach. 

 

1. Initial contour improvement: Because we apply BSSM for defining the initial 

contour, we can improve the quality of initial contour by improving the performance of 

BSSM.  For doing this, we can try several ways such as: 

- We can apply morphological watersheds for segmentation instead of using edge 

detection or thresholding algorithms. 

- We can define more rules and principles in the combination of edge detection, 

thresholding, and statistical analysis to make this method more flexible and 

adaptive with noise. 
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2. External energy computation improvement: Because we apply NNCM to compute 

the external energy, we can improve the quality of external energy by improving the 

performance of NNCM. For doing this, we can try several ways such as: 

- We can apply another type of neural network instead of multilayer perceptrons. 

For examples: radial-basic neural networks (RBNN) or transformation radial-basic 

networks (TRBNN) 

- We can maintain multilayer perceptrons but improve its efficiency by improve the 

quality and quantity of training data. 

- We can define more rules and principles in using network classifier as cartilage 

recognition.
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APPENDIX 
 

 All algorithms in this thesis are implemented in Matlab environment by using 

Matlab software and Image Processing Toolbox. This appendix provides detailed 

Matlab codes of each algorithm. 

 

1. Data Acquisition from MRI to Matlab environment 

 

% The following codes is used to acquire an MRI scan to Matlab environment for  

% image  processing 

 

% select a MR image for processing 

fid=0; 

while fid < 1 

    [fid,message] = fopen(ImageFile, 'r'); 

    if fid == -1 

        errordlg('Please enter the correct file name','Invalid input'); 

        return 

    end 

end 

if (strcmp(ImageFile,'')==0) 

    errordlg('Please enter the correct file name','Invalid input'); 

    return 

end 

filename=char(ImageFile); 

 

% Put MR image into Matlab environment 

im_original=dicomread(char(ImageFile)); 

im_original=uint8(im_original); 
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1. Classical Image Segmentations Algorithms 

 

function [Object1,Object2,Object3]=Main(im_original) 

 

% This function is used to obtain a cartilage from the input image  and  measure the  

% size of individual cartilage types. 

% Determine the status of the input image by using "get_status" function. 

% Obtain the first object (Femur) by using "get_object1" function. 

% Obtain the second object(Tibia) by using "get_object2" function. 

% Obtain the third object (Patella)by using "get_object3" function. 

% Measure the size of the individual cartilage types by using  "getsize" function. 

 

IM = im_original; 

[K,L]=size(IM); 

condition=0; 

  

% Determine the status of an image. 

status=get_status(IM); 

 

% Obtain the first object (first type of cartilage) on an image. 

[Object1,condition]=get_object1(IM); 

 

% Obtain the second object (second type of cartilage) on  an image.  

if status==1|| status==2 

     IM2 = IM - Object1; 

      Object2 = get_object2(IM2,condition);         

else 

     Object2 = uint8(zeros(K,L));   

end 

 

% Obtain the third object (third type of cartilage) on an image. 

if status == 2 || status == 3 

     IM3 = IM - Object1 - Object2; 

     Object3 = get_object3(IM3); 
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    size(Object3) 

else 

     Object3=uint8(zeros(K,L));     

end 

 

1.2 “get_status” function 

 

function status = get_status(im_original) 

 

% This function is used to get the status of the image. 

% Input: original image. Output: Status of the image. 

% There are 4 status: 

% Status = 0 : Nothing 

% Status = 1 : Image contains two objects: Fermur and Tibia 

% Status = 2 : Image contains three objects: Fermur, Tibia and  Patella 

% Status = 3 : Image contains two objects: Fermur and Patella 

 

mediadata = dicominfo(im_original); 

ID = mediadata.PatientID; 

number = mediadata.InstanceNumber; 

if 0 <= number &&number <= 5 

    status = 0; 

elseif 6 <= number &&number <= 18 

    status = 1; 

elseif 19 <= number &&number <= 21 

    status = 2; 

elseif 22 <= number &&number <= 37 

    status = 3; 

elseif 38 <= number &&number <= 46 

    status = 2; 

elseif 47 <= number &&number <= 55 

    status = 1; 

else 

    status = 0; 
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end 

 

1.3 “get_object1” function 

 

function [Object1,condition]=get_object1(im_original) 

 

% This function is used to get the first object on an input image. 

% Input : original image. 

% Output : The first Object. 

% To obtain the object boundaries on a sub-image: use “get_bound” function. 

% To checking the validation of object boundaries: use “checking”  function. 

% To obtain the object on the left side of an image: use “half_left_process1”  

% function. 

% To obtain the object on the right side of an image: use “half_right_process1”  

% function. 

 

[K,L]=size(IM); 

Object1=IM; 

reference_intensity=80; 

 

% Determine a starting object sub-image and upper/lower object boundaries  

% on this sub- image. 

 

for i=160:256 

    column=IM(:,i); 

    [a1 a2]=find(column==max(column(:))); 

    position=a1(1,1); 

    array1_1(i,1)=column(position,1); 

    array1_2(i,1)=position; 

end 

[b1 b2]=find(array1_1==max(array1_1(:))); 

 

% Determine the starting object sub-image. 

started_column=b1(1,1); 
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position=array1_2(started_column,1); 

column1=IM(:,started_column); 

 

% Find the upper/lower boundaries on a starting object sub-image. 

[temp_lower_bound,temp_upper_bound]=get_bound(column1,position,IM); 

upper_bound=temp_upper_bound; 

lower_bound=temp_lower_bound; 

 

% Check the validation of boundaries 

[n_upper_bound,n_lower_bound]=checking(upper_bound,lower_bound); 

upper_bound=n_upper_bound; 

lower_bound=n_lower_bound; 

 

% Extract an object on starting sub-image based on upper/lower boundaries 

Object1(1:upper_bound,started_column)=0; 

Object1(lower_bound:K,started_column)=0; 

started_upper_bound=upper_bound; 

started_lower_bound=lower_bound; 

 

% Obtain an object on the right side of an image 

[Object1,condition]=half_right_process1(Object1,started_column,started_upper_bound

,started_lower_bound,IM); 

 

% Obtain an object on the left side of an image. 

Object1=half_left_process(started_column,started_upper_bound,started_lower_bound,

Object1,IM); 

 

1.3.1 “get_bound” function 

 

function [left,right] = get_bound(column,position,IM) 

 

% This function is used to find the upper and lower boundaries of an object on  

% a sub-image  using edge detection and thresholding. 

% Input: 
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%     - column : sub_image 

%     - position : starting point 

%     - input image 

% Output: upper boundary and lower boundary 

 

column1=column; 

[K L]=size(IM); 

alpha=3; 

 

% Calculate optimal threshold value 

reference_value=graythreshold(column1); 

 

% Apply edge detection to find edges combined with threshold value.  

for x=3:(K-2) 

    column1_1(x,1)=(column1(x-1,1)+column1(x,1)+column1(x+1,1))/alpha;    

    if column1_1(x,1)>85 

        column1_1(x,1)=85; 

    end 

end 

for x=2:(K-3) 

    column1_1Lap(x,1)=column1_1(x+1,1)+column1_1(x-1,1)-2*column1_1(x,1); 

end 

 

% Find the upper boundary on a sub-image. 

for k=1:50 

    if position-k<=0 

        var1=column1_1(1,1); 

    else 

        var1=column1_1(position-k,1); 

    end 

    if var1<=reference_value 

        temp_upper_bound=position-k; 

        break; 

    elseif k==50 
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        temp_upper_bound=position-50; 

    end 

end 

 

% Find the lower boundary on a sub-image. 

for k=1:50 

    var1=column1_1(position+k,1); 

    if var1<=reference_value 

        temp_lower_bound=position+k; 

        break; 

    elseif k==50 

        temp_lower_bound=position+50; 

    end 

end 

 

1.3.2 “Checking” function. 

 

% This function is used to check the validation of the upper and lower  boundaries of  

% an object on a sub- image. 

 

function [newupper_bound,newlower_bound]=checking(upper_bound,lower_bound) 

if upper_bound<=0 

    new_upper_bound=1; 

else 

    new_upper_bound=upper_bound; 

end 

if lower_bound<=0 

    new_lower_bound=1; 

else 

    new_lower_bound=lower_bound; 

end 
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1.3.3 “half_left_process1” function. 

 

% The following codes is used to obtain the object in the left side of a sub-image. 

% Input: starting object sub-image, starting upper/lower boundaries, original image. 

% Output: object in the left side of a sub-image. 

 

function 

Object=half_left_process1(started_column,started_upper_bound,started_lower_bound,

Object,IM) 

[K,L]=size(IM); 

y=started_column; 

pre_upper_bound=started_upper_bound; 

pre_lower_bound=started_lower_bound; 

 

% Obtain object boundaries on partitioned sub-images.  

for q=1:round(L/2)-1 

    column5=IM(:,y-q); 

    column51=column5; 

    column51(1:(pre_upper_bound),1)=0; 

    column51((pre_lower_bound):K,1)=0; 

    [a2 b2]=find(column51==max(column51(:))); 

    position5=a2(1,1); 

    array4(y-q,1)=position5; 

    if column5(position5,1)>80 

         

% Obtain upper/lower boundaries on a sub-image.        

[temp_lower_bound5,temp_upper_bound5]=get_bound2(column5,position5,IM); 

        upper_bound5=temp_upper_bound5; 

        lower_bound5=temp_lower_bound5; 

         

% Check the validity of boundaries.        

[n_upper_bound5,n_lower_bound5]=checking(upper_bound5,lower_bound5); 

        upper_bound5=n_upper_bound5; 

        lower_bound5=n_lower_bound5; 
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        array41(y-q,1)=upper_bound5; 

        array42(y-q,1)=lower_bound5; 

 

% Extract an object from a sub-image 

        Object(1:upper_bound5,y-q)=0; 

        Object(lower_bound5:K,y-q)=0; 

        pre_upper_bound=upper_bound5; 

        pre_lower_bound=lower_bound5; 

    else 

        Object(:,1:y-q)=0; 

        limit_swing_left=y-q; 

        break; 

    end 

end 

 

1.3.4 “half_right_process1” function. 

 

% The following codes is used to obtain an object in the right side  of an image. 

% Input: starting object sub-image, starting upper/lower  boundaries, original image. 

% Output: Object in the right side of an image. 

 

function 

[Object1,condition]=half_right_process1(Object1,started_column,started_upper_boun

d,started_lower_bound,IM) 

pre_upper_bound=started_upper_bound; 

pre_lower_bound=started_lower_bound; 

[K,L]=size(IM); 

 

% Obtain object boundaries on partitioned sub-images  

for y=(started_column+1):L 

    column2=IM(:,y); 

    column21=column2; 

    column21(1:(pre_upper_bound),1)=0; 

    column21((pre_lower_bound):K,1)=0; 
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    [a2 b2]=find(column21==max(column21(:))); 

    position2=a2(1,1); 

    array2_0(y,1)=position2; 

    if column2(position2,1)>80 

 

% Determine upper/lower boundaries on a sub-image.        

[temp_lower_bound2,temp_upper_bound2]=get_bound(column2,position2,IM); 

        upper_bound2=temp_upper_bound2; 

        lower_bound2=temp_lower_bound2; 

        array2_1(y,1)=upper_bound2; 

        array2_2(y,1)=lower_bound2; 

            if y>=started_column+2&&y<320 

            value_1=upper_bound2-array2_1(y-1,1); 

            value_2=lower_bound2-array2_2(y-1,1); 

            if abs(value_1)>=5 

                upper_bound2=array2_1(y-1,1); 

            elseif abs(value_2)>=5 

                lower_bound2=array2_2(y-1,1); 

            end 

        end 

  

% Check the validity of boundaries.        

[n_upper_bound2,n_lower_bound2]=checking(upper_bound2,lower_bound2); 

        upper_bound2=n_upper_bound2; 

        lower_bound2=n_lower_bound2;    

        array2_1(y,1)=upper_bound2; 

        array2_2(y,1)=lower_bound2; 

 

% Extract an object from a sub-image         

        Object1(1:upper_bound2,y)=0; 

        Object1(lower_bound2:K,y)=0; 

        pre_upper_bound=upper_bound2; 

        pre_lower_bound=lower_bound2; 

    else 
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        if y>=320 

            Object1(:,y:L)=0; 

            break; 

        else 

            Object1(:,y)=0;             

            array2_1(y,1)=upper_bound2; 

            array2_2(y,1)=lower_bound2; 

        end 

    end 

end 

 

% Check for probability of swing back 

[m n]=size(array2_1); 

array2_1_1=array2_1; 

for i=1:m 

    if array2_1_1(i,1)==0 

        array2_1_1(i,1)=400; 

    end 

end 

[a1 b1]=find(array2_1_1==min(array2_1_1(:))); 

min_point=a1(1,1); 

condition=0; 

if abs(array2_1(started_column+1,1)-array2_1(min_point,1))>=80 

     % Do Swing back process. 

    Condition=1; 

    Object_swing_back=swing_back(array2_1,min_point,IM); 

     

     % Object is extracted from right side of an image. 

    Object1=Object1+Object_swing_back; 

end 

 

1.4 “get_object2” function. 
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% The following codes is used to extract the second object (second  types of cartilage)  

% from an original image. 

% Input : original image 

% Output : Object 

% To obtain the object boundaries on a sub-image by using “get_bound”  function. 

% To checking the object boundaries if it is accepted or not by using “checking”  

% function. 

% To obtain the object on the left side of sub-image by using “half_left_process2”  

% function. 

% To obtain the object on the right side of sub-image by using “half_right_process2”  

% function. 

 

function Object2 = get_object2(IM2,condition) 

[K, L]=size(IM2); 

Object2 = IM2; 

 

% Obtain object boundaries on partitioned sub-images. 

for i =200:256 

    column=IM2(:,i); 

    [a1 a2]=find(column==max(column(:))); 

    position=a1(1,1); 

    array1_1(i,1)=column(position,1); 

    array1_2(i,1)=position; 

end 

[b1 b2]=find(array1_1==max(array1_1(:))); 

started_column=b1(1,1); 

position=array1_2(started_column,1); 

column1=IM2(:,started_column); 

 

% Determine upper/lower boundaries on a sub-image. 

[temp_lower_bound,temp_upper_bound]=get_bound(column1,position,IM2); 

upper_bound=temp_upper_bound; 

lower_bound=temp_lower_bound; 
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% Check the validity of boundaries.  

[n_upper_bound,n_lower_bound]=checking(upper_bound,lower_bound); 

upper_bound=n_upper_bound; 

lower_bound=n_lower_bound; 

  

% Extract an object from a sub-image. 

Object2(1:upper_bound,started_column)=0; 

Object2(lower_bound:K,started_column)=0; 

started_upper_bound=upper_bound; 

started_lower_bound=lower_bound; 

 

% Obtain an object on the right side of an image. 

Object2=half_right_process2(Object2,started_column,started_upper_bound,started_low

er_bound,IM2,condition); 

 

% Obtain an object on the left side of an image. 

Object2=half_left_process2(started_column,started_upper_bound,started_lower_bound

,Object2,IM2); 

 

1.4.1 “half_right_process2” function 

 

% The following codes is used to obtain an object in the  right side of a original  

% image. 

% Input: starting object sub-image, starting upper/lower  object boundaries, original  

% image. 

% Output: Object on the right side of an original image. 

 

function 

Object2=half_right_process2(Object2,started_column,started_upper_bound,started_lo

wer_bound,IM2,condition) 

[K,L]=size(IM2); 

pre_upper_bound=started_upper_bound; 

pre_lower_bound=started_lower_bound; 
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% Obtain object boundaries on partitioned sub-images. 

for y=(started_column+1):L 

    column2=IM2(:,y); 

    column21=column2; 

    column21(1:(pre_upper_bound),1)=0; 

    column21((pre_lower_bound):K,1)=0; 

    [a2 b2]=find(column21==max(column21(:))); 

    position2=a2(1,1); 

    array2_0(y,1)=position2; 

    if column2(position2,1)>80 

 

% Determine the upper/lower boundaries on a sub-image.        

[temp_lower_bound2,temp_upper_bound2]=get_bound(column2,position2,IM2); 

        upper_bound2=temp_upper_bound2; 

        lower_bound2=temp_lower_bound2; 

        array2_11(y,1)=upper_bound2; 

        array2_21(y,1)=lower_bound2; 

        if y>=started_column+2&&y<320 

            value_1=upper_bound2-array2_11(y-1,1); 

            value_2=lower_bound2-array2_21(y-1,1); 

            if abs(value_1)>=5 

                upper_bound2=array2_11(y-1,1); 

            elseif abs(value_2)>=5 

                lower_bound2=array2_21(y-1,1); 

            end 

        end 

  

% Check the validity of boundaries. 

[n_upper_bound2,n_lower_bound2]=checking(upper_bound2,lower_bound2); 

        upper_bound2=n_upper_bound2; 

        lower_bound2=n_lower_bound2;        

        array2_11(y,1)=upper_bound2; 

        array2_21(y,1)=lower_bound2; 
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% Extract an object from a sub-image.         

        Object2(1:upper_bound2,y)=0; 

        Object2(lower_bound2:K,y)=0; 

        pre_upper_bound=upper_bound2; 

        pre_lower_bound=lower_bound2; 

    else 

        if y>=320 

            Object2(:,y:L)=0; 

            break; 

        else 

            Object2(:,y)=0;             

            array2_11(y,1)=upper_bound2; 

            array2_21(y,1)=lower_bound2; 

        end 

    end 

end 

 

% Check for probability of swing back 

if condition~=1 

    [m n]=size(array2_11); 

    array2_1_1=array2_11; 

    for i=1:m 

        if array2_1_1(i,1)==0 

            array2_1_1(i,1)=400; 

        end 

    end 

    [a1 b1]=find(array2_1_1==min(array2_1_1(:))); 

    min_point=a1(1,1); 

    if abs(array2_11(started_column+1,1)-array2_11(min_point,1))>=80 

        % Do Swing back process.        

Object_swing_back=swing_back(array2_11,min_point,IM2); 

  

        % Obtain an object on the right side of an image.  

        Object2=Object2+Object_swing_back; 
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    end 

end 

 

1.4.2 “half_left_process2” function 

 

% The following codes is used to obtain an object on the  left side of an original  

% image. 

% Input: starting object sub-image, starting upper/lower  object boundaries, original  

% image,  

% Output: Object on the left side of an original image.  

 

function 

Object=half_left_process2(started_column,started_upper_bound,started_lower_bound,

Object,IM) 

[K,L]=size(IM); 

y=started_column; 

pre_upper_bound=started_upper_bound; 

pre_lower_bound=started_lower_bound; 

 

% Obtain object boundaries on partitioned sub-images. 

for q=1:round(L/2)-1 

    column5=IM(:,y-q); 

    column51=column5; 

    column51(1:(pre_upper_bound),1)=0; 

    column51((pre_lower_bound):K,1)=0; 

    [a2 b2]=find(column51==max(column51(:))); 

    position5=a2(1,1); 

    array4(y-q,1)=position5; 

    if column5(position5,1)>80 

         

% Determine upper/lower boundaries on a sub-image.        

[temp_lower_bound5,temp_upper_bound5]=get_bound2(column5,position5,IM); 

        upper_bound5=temp_upper_bound5; 

        lower_bound5=temp_lower_bound5; 
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       % Check the validity of boundaries.          

[n_upper_bound5,n_lower_bound5]=checking(upper_bound5,lower_bound5); 

        upper_bound5=n_upper_bound5; 

        lower_bound5=n_lower_bound5;        

        array41(y-q,1)=upper_bound5; 

        array42(y-q,1)=lower_bound5; 

 

% Extract an object from a sub-image. 

        Object(1:upper_bound5,y-q)=0; 

        Object(lower_bound5:K,y-q)=0; 

        pre_upper_bound=upper_bound5; 

        pre_lower_bound=lower_bound5; 

    else 

        Object(:,1:y-q)=0; 

        limit_swing_left=y-q; 

        break; 

    end 

end 

 

1.5 “get_object3” function. 

 

% The following codes is used to obtain the third object (third types of cartilage) on  

% an original image. 

% Input: Image that the first and second object are  extracted. 

% Output: The third object. 

% To obtain an object on the right side of an image: use  “half_right_process3”  

% function. 

% To obtain an object on the left side of an image: use “half_left_process3” function. 

 

function Object3 = get_object3(IM3) 

Object3=IM3(150:300,70:150); 

[p1,p2]=size(Object3); 

 

% Determine a starting object sub-image and object boundaries on this  sub-image. 
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for i=round(p1/2)-20:round(p1/2) 

    template=IM3(i,:); 

    [a1 a2]=find(template==max(template(:))); 

    position=a2(1,1); 

    array1_1(i,1)=template(1,position); 

    array1_2(i,1)=position; 

end 

 

% Determine a starting sub-image. 

[b1 b2]=find(array1_1==max(array1_1(:))); 

started_row=b1(1,1); 

position=array1_2(started_row,1); 

template1=IM3(started_row,:); 

[a b]=find(template1==max(template1(:))); 

position1=b(1,1); 

if template1(1,position1)>80 

 

% Determine upper/lower boundaries on a sub-image.    

[temp_lower_bound1,temp_upper_bound1]=get_bound3(template1,position,IM3); 

    upper_bound1=temp_upper_bound1; 

    lower_bound1=temp_lower_bound1; 

     

% Check the validity of boundaries.    

[n_upper_bound1,n_lower_bound1]=checking(upper_bound1,lower_bound1); 

    upper_bound1=n_upper_bound1; 

    lower_bound1=n_lower_bound1; 

    started_upper_bound=upper_bound1; 

    started_lower_bound=lower_bound1; 

 

% Extract an object from a sub-image. 

    Object3(started_row,1:upper_bound1)=0; 

    Object3(started_row,lower_bound1:p2)=0; 

else 

    Object3(round(p1/2),:)=0; 
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end 

 

% Obtain an object on the right side of an image. 

Object3=half_right_process3(started_row,started_upper_bound,started_lower_bound,O

bject3,IM3); 

 

% Obtain an object on the left side of an image. 

Object3=half_left_process3(started_row,started_upper_bound,started_lower_bound,Ob

ject3,IM3); 

 

1.5.1 “half_right_process3” function. 

 

% The following codes is used to obtain an object on the  right side of an image. 

% Input: starting object sub-image, starting upper/lower % object boundaries, input  

% image. 

% Output: An object on the right side of an image. 

 

function 

Object3=half_right_process3(started_row,started_upper_bound,started_lower_bound,

Object3,IM3) 

 

[p1,p2]=size(IM3); 

pre_upper_bound3=started_upper_bound; 

pre_lower_bound3=started_lower_bound; 

 

% Obtain the object boundaries on partitioned sub-images.  

for i=1:round(p1/2) 

    template7=Object3(started_row+i,:); 

    template7(1,1:pre_upper_bound3-2)=0; 

    template7(1,pre_lower_bound3+2:p2)=0; 

    [a7 b7]=find(template7==max(template7(:))); 

    position7=b7(1,1); 

    if template7(1,position7)>80 
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% Determine the upper/lower boundaries on a sub-image.        

[temp_lower_bond7,temp_upper_bound7]=get_bound3_1(template7,position7,IM3);        

        upper_bound7=temp_upper_bound7; 

        lower_bound7=temp_lower_bound7; 

         

% Check the validity of boundaries.        

[n_upper_bound7,n_lower_bound7]=checking(upper_bound7,lower_bound7); 

        upper_bound7=n_upper_bound7; 

        lower_bound7=n_lower_bound7; 

        pre_upper_bound2=upper_bound7; 

        pre_lower_bound2=lower_bound7; 

 

% Extract an object from a sub-image. 

        Object3(started_row+i,1:upper_bound7)=0; 

        Object3(started_row+i,lower_bound7:p2)=0; 

        ori_position=position7; 

    else 

        Object3(started_row+i,:)=0; 

        Object3(started_row+i:p1,:)=0; 

        break; 

    end 

end 

1.5.2 “half_left_process3” function. 

 

% The following codes is used to obtain an object on the  left side of an image. 

% Input: starting object sub-image, starting upper/lower  object boundaries, input  

% image. 

% Output: An object on the left side of an image. 

 

function 

Object3=half_left_process3(started_row,started_upper_bound,started_lower_bound,O

bject3,IM3) 

[p1,p2]=size(IM3); 

pre_upper_bound3=started_upper_bound; 
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pre_lower_bound3=started_lower_bound; 

 

% Obtain object boundaries on partitioned sub-images.  

for i=1:round(p1/2) 

    if started_row-i<=0 

        break; 

    else 

        template8=Object3(started_row-i,:); 

    end 

    template8(1,1:pre_upper_bound3-2)=0; 

    template8(1,pre_lower_bound3+2:p2)=0; 

    [a8 b8]=find(template8==max(template8(:))); 

    position8=b8(1,1); 

    if template8(1,position8)>80 

 

% Determine upper/lower boundaries on a sub-image.        

[temp_lower_bound8,temp_upper_bound8]=get_bound3(template8,position8,IM3); 

        upper_bound8=temp_upper_bound8; 

        lower_bound8=temp_lower_bound8; 

         

% Check the validity of boundaries.        

[n_upper_bound8,n_lower_bound8]=checking(upper_bound8,lower_bound8); 

        upper_bound8=n_upper_bound8; 

        lower_bound8=n_lower_bound8; 

        pre_upper_bound3=upper_bound8; 

        pre_lower_bound3=lower_bound8; 

 

% Extract an object from a sub-image. 

        Object3(started_row-i,1:upper_bound8)=0; 

        Object3(started_row-i,lower_bound8:p2)=0; 

    else 

        Object3(started_row-i,:)=0; 

        Object3(1:started_row-i,:)=0; 

        break; 
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    end 

end 

 

1.6 “get_size” function. 

 

% The following codes is used to calculate the number of  pixels of an object. It is  

% also the area of an  object. 

% Input: Object image that is extracted from original  image. 

% Output: Number of pixels. 

 

[M,N]=size(Object); 

threshold=60; 

Size=0; 

for i=1:M 

    for j=1:N 

        if Object(i,j)>threshold 

            Size=Size+1;  % Calculate the number of pixels 

        end 

    end 

end 

 

2. Artificial Neural Network Algorithms 

 

2.1 Create a Neural Network Classifier: 

 

% The following codes are used to create a network classifier. 

% To obtain object input vectors set from a reference image and  relating target  

% vector: use “getin”  function. 

% To obtain background input vectors set from a reference image and  relating target  

% vector: use  “getin2” function. 

% To choose object input vectors and relating target vector for  network input: use  

% “getset” function. 

% To choose background input vectors and relating target vector for  network input:  

% use “getset2”  function. 
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% Extract three types of cartilage (Object1, Object2, Object3) from a  reference  

% image by using Bi-directional scanning Segmentations method. 

[Object1, Object2, Object3] = main(im_original) 

Object = Object1 + Object2 + Object3; 

 

% Generate object input vectors set and object target vector. 

[P,T1] = genin(Object,im_original); 

 

% Generate background input vectors set and background target vector. 

[Q,T2] = genin2(Object,im_original); 

 

% Choose 200 object input vectors and target vectors for training  data. 

[P1,t1] = getset(200,P); 

 

% Choose 200 backgroud input vector and target vectors for training  data. 

[Q1,t2] = getset2(200,Q); 

 

% Create Network Target vector.  

T = [t1 t2]; 

 

% Create Network Input vector. 

Z = [P1 Q1]; 

Z = double(Z); 

 

% Create Neural Network 

net = newff(Z,T,40,{'logsig','logsig'},’trainscg’); 

net = init(net); 

net.trainParam.goal = 10e-5; 

net.trainParam.epochs = 20000; 

 

% Training the network 

net = train(net,Z,T); 

NETWORK = net; 
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2.1.1 “getin” function. 

 

% This function is used to generate object input vectors and relating target vector. 

% Input: Object image, reference original image. 

% Output: Object input vectors and relating target vectors 

 

function [P,T] = genin(objectimage,im_original) 

image = objectimage; 

ori = im_original; 

[K L] = size (image); 

pad_ori_image=padarray(ori,[4 4],'replicate','pre'); 

pad_ori_image=padarray(pad_ori_image,[5 5],'replicate','post'); 

pad_obj_image=padarray(image,[4 4],'replicate','pre'); 

pad_obj_image=padarray(pad_obj_image,[5 5],'replicate','post'); 

N = 0; 

for i = 5:K+4 

    for j = 5: L+4 

        if pad_obj_image(i,j)>0 

            N = N + 1; 

            windows = pad_ori_image(i-4:i+5,j-4:j+5); 

            windows = windows'; 

            vector = reshape(windows,[1 100]); 

            set(:,N) = vector;  

            set2(:,N)= 1; 

        end 

    end 

end 

P = set; 

T = set2; 

 

2.1.2 “getin2” function. 

 

% This function is used to generate background input vectors and  relating  target  

% vector. 
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% Input: Object image, reference original image. 

% Output: Background input vectors and relating target vectors 

 

function [P,T] = genin2(objectimage,im_original) 

image = objectimage; 

ori = im_original; 

[K L] = size (image); 

pad_obj_image=padarray(image,[4 4],'replicate','pre'); 

pad_obj_image=padarray(pad_obj_image,[5 5],'replicate','post'); 

pad_ori_image=padarray(ori,[4 4],'replicate','pre'); 

pad_ori_image=padarray(pad_ori_image,[5 5],'replicate','post'); 

N = 0; 

for i = 5:K+4 

    for j = 5: L+4 

        if N > 5000 

            break; 

        end 

        if pad_obj_image(i,j)==0 

            N = N + 1; 

            windows = pad_ori_image(i-4:i+5,j-4:j+5); 

            windows = windows'; 

            vector = reshape(windows,[1 100]); 

            set(:,N) = vector;  

            set2(:,N) = 0; 

        end 

    end 

end 

P = set; 

T = set2; 

 

2.1.3 “getset” function. 

 

% This function is used to choose randomly 200 input vectors from  input vectors set  

% and relating  target vectors. 
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% Input: object input vectors and relating target vectors set. 

% Output: 200 input vectors and relating targetvectors. 

 

function [out,target] = getset(number,inputset) 

[M N] = size(inputset); 

data = ceil(N.*rand(1,number)); 

for i = 1 : number 

    if data(1,i)==0 

        value = 1; 

    else 

        value = data(1,i); 

    end 

    out(:,i) = inputset(:,value); 

    target(:,i) = 1; 

end 

 

2.1.4 “getset2” function. 

  

% This function is used to choose randomly 200 input vectors from  background input  

% vectors set and relating target vectors. 

% Input: background input vectors and relating target vectors set. 

% Output: 200 background input vectors and relating target vectors. 

 

function [out,target] = getset(number,inputset) 

[M N] = size(inputset); 

data = ceil(N.*rand(1,number)); 

for i = 1 : number 

    if data(1,i)==0 

        value = 1; 

    else 

        value = data(1,i); 

    end 

    out(:,i) = inputset(:,value); 

    target(:,i) = 1; 
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end 

 

2.2 Network Classifier as Object Recognition Algorithms 

 

% The following codes is used to extract an object from an original  image by using  

% Network Classifier. 

% Input: Original image. 

% Output: Object image. 

% To obtain an object on the right side of an original image: use  

% “half_right_processNN” function. 

% To obtain an object on the left side of an original image: use  

% “half_left_processNN” function. 

% To obtain an object on a sub-image: use “useNN” function. 

 

function Object = runNN(original_image, Network) 

IM = original_image.  

[K,L]=size(IM); 

reference_intensity=80; 

Object = uint8(zeros(K,L)); 

 

% Determine a starting object sub-image and extract object from this  sub-image.  

for i=160:256 

    column=IM(:,i); 

    [a1 a2]=find(column==max(column(:))); 

    position=a1(1,1); 

    array1_1(i,1)=column(position,1); 

    array1_2(i,1)=position; 

end 

[b1 b2]=find(array1_1==max(array1_1(:))); 

started_column=b1(1,1); 

position=array1_2(started_column,1); 

 

% Obtain an object on a sub-image.  

Object = useNN(started_column,position,IM,IM_Network,Object); 
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[pre_up,pre_low,condition1] = bound_range(position,started_column,Object); 

pre_up =  pre_up-100; 

pre_low = pre_low+50; 

 

% Obtain an object on the right side of an original image. 

Object = 

half_right_process_NN(Object,started_column,pre_up,pre_low,IM,IM_Network); 

 

% Obtain an object on the left side of an original image. 

Object=half_left_process_NN(started_column,pre_up,pre_low,Object,IM,IM_Network

); 

 

2.2.1 “half_right_processNN” function. 

 

% This function is used to obtain an object on the right side of an  image. 

% Input: Starting object sub-image, original image, Network Classifier. 

% Output: An object on the right side of an original image. 

 

function Object = 

half_right_processNN(Object,started_column,pre_up,pre_low,IM,IM_Network) 

[K,L]=size(IM); 

 

% Obtain an object on partitioned sub-images.  

for y=(started_column+1):L 

    column2=IM(:,y); 

    column21=column2; 

    column21(1:pre_up-10,1)=0; 

    column21(pre_low+20:K,1)=0; 

    [a2 b2]=find(column21==max(column21(:))); 

    position2=a2(1,1); 

    array2_0(y,1)=position2;   

    if column2(position2,1)>80 

 

% Obtain an object on a sub-image. 
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        Object=useNN(y,position2,IM,IM_Network,Object); 

        [pre_up3,pre_low3,condition] = bound_range(position2,y,Object); 

        CheckObject = Object;       

        if condition == 0 && y > 320 

            Object(:,y:L)=0; 

            break; 

        end 

    else 

        if y>=320 

            Object(:,y:L)=0; 

            break; 

        else 

            Object(:,y)=0;             

        end 

    end 

end 

 

2.2.2 “half_left_processNN” function. 

 

% This function is used to obtain an object on the left side of an  image. 

% Input: Starting object sub-image, original image, Network Classifier. 

% Output: An object on the left side of an original image. 

 

function 

Object=half_left_processNN(started_column,pre_up,pre_low,Object,IM,IM_Network) 

[K,L]=size(IM); 

y=started_column; 

 

% Obtain an object on partitioned sub-images.   

for q=1:round(L/2)-1 

    column5=IM(:,y-q); 

    column51=column5; 

    column51(1:pre_up-20,1)=0; 

    column51(pre_low+20:K,1)=0; 
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    [a2 b2]=find(column51==max(column51(:))); 

    position5=a2(1,1); 

    array4(y-q,1)=position5; 

    if column5(position5,1)>80 

  

% Obtain an object on a sub-image.        

        Object=useNN(y-q,position5,IM,IM_Network,Object);  

      [pre_up,pre_low,condition]=bound_range(position5,y-q,Object); 

        if condition == 0 

            Object(:,y-q:L)=0; 

            break; 

        end 

    else 

        Object(:,y-q)=0; 

        limit_swing_left=y-q; 

        break; 

    end 

end 

 

2.2.3 “useNN” function. 

 

% This function is used to obtain an object on a sub-image using  Network Classifier. 

% Input: Sub-image, Network Classifier. 

% Output: An object on a sub-image. 

 

function Object = useNN(column,position,IM,IM_Network,Object) 

try 

    va1 = 1; 

    va2 = 0; 

    threshold = 0.9; 

    TestIM = IM; 

    if 250<column&&column<280 

        UP = 25; 

        DOWN = 50; 
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    elseif column<=250 

        UP = 150; 

        DOWN = 100; 

    elseif column>=280 

        UP = 175; 

        DOWN = 175; 

    end 

    for k=1:UP 

        if position-k<=0 

            win = IM(1:10,1:10); 

        else 

            win = IM((position-k)-4:(position-k)+5,column-4:column+5); 

        end 

        win = win'; 

        win = reshape(win,[100 1]); 

        win = double(win); 

        OUTPUT = sim(IM_Network,win); 

        TstOutput=real(OUTPUT>threshold); 

        if TstOutput == va1 

            Object(position-k,column)=IM(position-k,column); 

        elseif TstOutput == va2 

            Object(position-k,column) = 0; 

        end 

    end     

    for k=1:DOWN 

        if position+k+5>512 

            break; 

        end 

        win = IM((position+k)-4:(position+k)+5,column-4:column+5); 

        win = win'; 

        win = reshape(win,[100 1]); 

        win = double(win); 

        OUTPUT = sim(IM_Network,win); 

        TstOutput=real(OUTPUT>threshold); 
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        if TstOutput == va1 

         Object(position+k,column)=IM(position+k,column); 

        elseif TstOutput == va2 

            Object(position+k,column) = 0; 

        end 

    end     

end 

 

3. Active Contour Models Algorithms 

 

% This function is used to obtain an object on an original image by using Active  

% Contour Models. 

% Input : Original image. 

% Output: An object on original image. 

 

function Snake(im_original) 

IM = im_original; 

% Initializing Contour V 

load intcontourV 

CV = contourV; 

CV(3,:) = 1; 

[P Q] = size(CV); 

SUM = sum(CV(3,:)); 

while SUM>20 

    for i = 2:Q-1 

        if CV(3,i)==1 

            % Create windows for vector Vi 

            Vi_row = CV(1,i); 

            Vi_col = CV(2,i); 

            P11 = [Vi_row-2 Vi_col-2]'; 

            P12 = [Vi_row-2 Vi_col-1]'; 

            P13 = [Vi_row-2 Vi_col]'; 

            P14 = [Vi_row-2 Vi_col+1]'; 

            P15 = [Vi_row-2 Vi_col+2]'; 
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            P21 = [Vi_row-1 Vi_col-2]'; 

            P22 = [Vi_row-1 Vi_col-1]'; 

            P23 = [Vi_row-1 Vi_col]'; 

            P24 = [Vi_row-1 Vi_col+1]'; 

            P25 = [Vi_row-1 Vi_col+2]'; 

            P31 = [Vi_row Vi_col-2]'; 

            P32 = [Vi_row Vi_col-1]'; 

            P33 = [Vi_row Vi_col]'; 

            P34 = [Vi_row Vi_col+1]'; 

            P35 = [Vi_row Vi_col+2]'; 

            P41 = [Vi_row+1 Vi_col-2]'; 

            P42 = [Vi_row+1 Vi_col-1]'; 

            P43 = [Vi_row+1 Vi_col]'; 

            P44 = [Vi_row+1 Vi_col+1]'; 

            P45 = [Vi_row+1 Vi_col+2]'; 

            P51 = [Vi_row+2 Vi_col-2]'; 

            P52 = [Vi_row+2 Vi_col-1]'; 

            P53 = [Vi_row+2 Vi_col]'; 

            P54 = [Vi_row+2 Vi_col+1]'; 

            P55 = [Vi_row+2 Vi_col+2]'; 

  

            % Calculate normalization factor l(V) 

            [m n] = size(CV); 

            for i1 = 1 : n-1 

                lv(n,1) = ((abs(CV(1,i1+1) - CV(1,i1)))^2 + (abs(CV(2,i1+1)-CV(2,i1)))^2) ; 

            end 

            LV = sum(lv(:))/n; 

  

 

            % Calculate Continutity Energy 

            V = 0.5*(CV(1:2,i-1)+CV(1:2,i)); 

            e11 = (1/LV)*((P11(1,1)-V(1,1))^2+(P11(2,1)-V(2,1))^2); 

            e12 = (1/LV)*((P12(1,1)-V(1,1))^2+(P12(2,1)-V(2,1))^2); 

            e13 = (1/LV)*((P13(1,1)-V(1,1))^2+(P13(2,1)-V(2,1))^2); 
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            e14 = (1/LV)*((P14(1,1)-V(1,1))^2+(P14(2,1)-V(2,1))^2); 

            e15 = (1/LV)*((P15(1,1)-V(1,1))^2+(P15(2,1)-V(2,1))^2); 

            e21 = (1/LV)*((P21(1,1)-V(1,1))^2+(P21(2,1)-V(2,1))^2); 

            e22 = (1/LV)*((P22(1,1)-V(1,1))^2+(P22(2,1)-V(2,1))^2); 

            e23 = (1/LV)*((P23(1,1)-V(1,1))^2+(P23(2,1)-V(2,1))^2); 

            e24 = (1/LV)*((P24(1,1)-V(1,1))^2+(P24(2,1)-V(2,1))^2); 

            e25 = (1/LV)*((P25(1,1)-V(1,1))^2+(P25(2,1)-V(2,1))^2); 

            e31 = (1/LV)*((P31(1,1)-V(1,1))^2+(P31(2,1)-V(2,1))^2); 

            e32 = (1/LV)*((P32(1,1)-V(1,1))^2+(P32(2,1)-V(2,1))^2); 

            e33 = (1/LV)*((P33(1,1)-V(1,1))^2+(P33(2,1)-V(2,1))^2); 

            e34 = (1/LV)*((P34(1,1)-V(1,1))^2+(P34(2,1)-V(2,1))^2); 

            e35 = (1/LV)*((P35(1,1)-V(1,1))^2+(P35(2,1)-V(2,1))^2); 

            e41 = (1/LV)*((P41(1,1)-V(1,1))^2+(P41(2,1)-V(2,1))^2); 

            e42 = (1/LV)*((P42(1,1)-V(1,1))^2+(P42(2,1)-V(2,1))^2); 

            e43 = (1/LV)*((P43(1,1)-V(1,1))^2+(P43(2,1)-V(2,1))^2); 

            e44 = (1/LV)*((P44(1,1)-V(1,1))^2+(P44(2,1)-V(2,1))^2); 

            e45 = (1/LV)*((P45(1,1)-V(1,1))^2+(P45(2,1)-V(2,1))^2); 

            e51 = (1/LV)*((P51(1,1)-V(1,1))^2+(P51(2,1)-V(2,1))^2); 

            e52 = (1/LV)*((P52(1,1)-V(1,1))^2+(P52(2,1)-V(2,1))^2); 

            e53 = (1/LV)*((P53(1,1)-V(1,1))^2+(P53(2,1)-V(2,1))^2); 

            e54 = (1/LV)*((P54(1,1)-V(1,1))^2+(P54(2,1)-V(2,1))^2); 

            e55 = (1/LV)*((P55(1,1)-V(1,1))^2+(P55(2,1)-V(2,1))^2); 

            CE = [e11 e12 e13 e14 e15;e21 e22 e23 e24 e25;e31 e32 e33 e34 e35;e41 e42 

e43 e44 e45;e51 e52 e53 e54 e55]; 

  

            %Calculate Ballon Energy 

            t1 = ((1/sqrt((CV(1,i)-CV(1,i-1))^2+(CV(2,i)-CV(2,i-1))^2))*(CV(1:2,i)-

CV(1:2,i-1))); 

            t2= ((1/sqrt((CV(1,i+1)-CV(1,i))^2+(CV(2,i+1)-CV(2,i))^2))*(CV(1:2,i+1)-

CV(1:2,i))); 

            ti = t1 + t2; 

            ni = rot90(ti); 

            eb11 =dot(ni,(CV(1:2,i)-P11)); 

            eb12 =dot(ni,(CV(1:2,i)-P12)); 
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            eb13 =dot(ni,(CV(1:2,i)-P13)); 

            eb14 =dot(ni,(CV(1:2,i)-P14)); 

            eb15 =dot(ni,(CV(1:2,i)-P15)); 

            eb21 =dot(ni,(CV(1:2,i)-P21)); 

            eb22 =dot(ni,(CV(1:2,i)-P22)); 

            eb23 =dot(ni,(CV(1:2,i)-P23)); 

            eb24 =dot(ni,(CV(1:2,i)-P24)); 

            eb25 =dot(ni,(CV(1:2,i)-P25)); 

            eb31 =dot(ni,(CV(1:2,i)-P31)); 

            eb32 =dot(ni,(CV(1:2,i)-P32)); 

            eb33 =dot(ni,(CV(1:2,i)-P33)); 

            eb34 =dot(ni,(CV(1:2,i)-P34)); 

            eb35 =dot(ni,(CV(1:2,i)-P35)); 

            eb41 =dot(ni,(CV(1:2,i)-P41)); 

            eb42 =dot(ni,(CV(1:2,i)-P42)); 

            eb43 =dot(ni,(CV(1:2,i)-P43)); 

            eb44 =dot(ni,(CV(1:2,i)-P44)); 

            eb45 =dot(ni,(CV(1:2,i)-P45)); 

            eb51 =dot(ni,(CV(1:2,i)-P51)); 

            eb52 =dot(ni,(CV(1:2,i)-P52)); 

            eb53 =dot(ni,(CV(1:2,i)-P53)); 

            eb54 =dot(ni,(CV(1:2,i)-P54)); 

            eb55 =dot(ni,(CV(1:2,i)-P55)); 

  

            BE = [eb11 eb12 eb13 eb14 eb15;eb21 eb22 eb23 eb24 eb25;eb31 eb32 eb33 

eb34 eb35;eb41 eb42 eb43 eb44 eb45;eb51 eb52 eb53 eb54 eb55]; 

            % Calculate Internal Engery 

            IE = CE + BE; 

  

            % Calculate External Energy using NN 

            load neural_network_version2.mat 

            Vi_row = round(Vi_row); 

            Vi_col = round(Vi_col); 

            win11 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col-2)-4:(Vi_col-2)+5); 
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            win11 = win11'; 

            win11 = reshape(win11,[100 1]); 

            win11 = double(win11); 

            OUTPUT11 = sim(IM_Network,win11); 

            win12 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col-1)-4:(Vi_col-1)+5); 

            win12 = win12'; 

            win12 = reshape(win12,[100 1]); 

            win12 = double(win12); 

            OUTPUT12 = sim(IM_Network,win12); 

            win13 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col)-4:(Vi_col)+5); 

            win13 = win13'; 

            win13 = reshape(win13,[100 1]); 

            win13 = double(win13); 

            OUTPUT13 = sim(IM_Network,win13); 

            win14 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col+1)-4:(Vi_col+1)+5); 

            win14 = win14'; 

            win14 = reshape(win14,[100 1]); 

            win14 = double(win14); 

            OUTPUT14 = sim(IM_Network,win14); 

            win15 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col+2)-4:(Vi_col+2)+5); 

            win15 = win15'; 

            win15 = reshape(win15,[100 1]); 

            win15 = double(win15); 

            OUTPUT15 = sim(IM_Network,win15); 

            win21 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col-2)-4:(Vi_col-2)+5); 

            win21 = win21'; 

            win21 = reshape(win21,[100 1]); 

            win21 = double(win21); 

            OUTPUT21 = sim(IM_Network,win21); 

            win22 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col-1)-4:(Vi_col-1)+5); 

            win22 = win22'; 

            win22 = reshape(win22,[100 1]); 

            win22 = double(win22); 

            OUTPUT22 = sim(IM_Network,win22); 
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            win23 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col)-4:(Vi_col)+5); 

            win23 = win23'; 

            win23 = reshape(win23,[100 1]); 

            win23 = double(win23); 

            OUTPUT23 = sim(IM_Network,win23); 

            win24 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col+1)-4:(Vi_col+1)+5); 

            win24 = win24'; 

            win24 = reshape(win24,[100 1]); 

            win24 = double(win24); 

            OUTPUT24 = sim(IM_Network,win24); 

            win25 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col+2)-4:(Vi_col+2)+5); 

            win25 = win25'; 

            win25 = reshape(win25,[100 1]); 

            win25 = double(win25); 

            OUTPUT25 = sim(IM_Network,win25); 

            win31 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col-2)-4:(Vi_col-2)+5); 

            win31 = win31'; 

            win31 = reshape(win31,[100 1]); 

            win31 = double(win31); 

            OUTPUT31 = sim(IM_Network,win31); 

            win32 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col-1)-4:(Vi_col-1)+5); 

            win32 = win32'; 

            win32 = reshape(win32,[100 1]); 

            win32 = double(win32); 

            OUTPUT32 = sim(IM_Network,win32); 

            win33 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col)-4:(Vi_col)+5); 

            win33 = win33'; 

            win33 = reshape(win33,[100 1]); 

            win33 = double(win33); 

            OUTPUT33 = sim(IM_Network,win33); 

            win34 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col+1)-4:(Vi_col+1)+5); 

            win34 = win34'; 

            win34 = reshape(win34,[100 1]); 

            win34 = double(win34); 
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            OUTPUT34 = sim(IM_Network,win34); 

            win35 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col+2)-4:(Vi_col+2)+5); 

            win35 = win35'; 

            win35 = reshape(win35,[100 1]); 

            win35 = double(win35); 

            OUTPUT35 = sim(IM_Network,win35); 

            win41 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col-2)-4:(Vi_col-2)+5); 

            win41 = win41'; 

            win41 = reshape(win41,[100 1]); 

            win41 = double(win41); 

            OUTPUT41 = sim(IM_Network,win41); 

            win42 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col-1)-4:(Vi_col-1)+5); 

            win42 = win42'; 

            win42 = reshape(win42,[100 1]); 

            win42 = double(win42); 

            OUTPUT42 = sim(IM_Network,win42); 

            win43 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col)-4:(Vi_col)+5); 

            win43 = win43'; 

            win43 = reshape(win43,[100 1]); 

            win43 = double(win43); 

            OUTPUT43 = sim(IM_Network,win43); 

            win44 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col+1)-4:(Vi_col+1)+5); 

            win44 = win44'; 

            win44 = reshape(win44,[100 1]); 

            win44 = double(win44); 

            OUTPUT44 = sim(IM_Network,win44); 

            win45 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col+2)-4:(Vi_col+2)+5); 

            win45 = win45'; 

            win45 = reshape(win45,[100 1]); 

            win45 = double(win45); 

            OUTPUT45 = sim(IM_Network,win45); 

            win51 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col-2)-4:(Vi_col-2)+5); 

            win51 = win51'; 

            win51 = reshape(win51,[100 1]); 
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            win51 = double(win51); 

            OUTPUT51 = sim(IM_Network,win51); 

            win52 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col-1)-4:(Vi_col-1)+5); 

            win52 = win52'; 

            win52 = reshape(win52,[100 1]); 

            win52 = double(win52); 

            OUTPUT52 = sim(IM_Network,win52); 

            win53 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col)-4:(Vi_col)+5); 

            win53 = win53'; 

            win53 = reshape(win53,[100 1]); 

            win53 = double(win53); 

            OUTPUT53 = sim(IM_Network,win53); 

            win54 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col+1)-4:(Vi_col+1)+5); 

            win54 = win54'; 

            win54 = reshape(win54,[100 1]); 

            win54 = double(win54); 

            OUTPUT54 = sim(IM_Network,win54); 

            win55 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col+2)-4:(Vi_col+2)+5); 

            win55 = win55'; 

            win55 = reshape(win55,[100 1]); 

            win55 = double(win55); 

            OUTPUT55 = sim(IM_Network,win55); 

  

            EE = [OUTPUT11 OUTPUT12 OUTPUT13 OUTPUT14 

OUTPUT15;OUTPUT21 OUTPUT22 OUTPUT23 OUTPUT24 

OUTPUT25;OUTPUT31 OUTPUT32 OUTPUT33 OUTPUT34 

OUTPUT35;OUTPUT41 OUTPUT42 OUTPUT43 OUTPUT44 

OUTPUT45;OUTPUT51 OUTPUT52 OUTPUT53 OUTPUT54 OUTPUT55]; 

            E = EE + IE; 

            [a b]=find(E==min(E(:))); 

  

            if a == 1 

                flag = 1; 

                new_Vi_row = Vi_row - 2; 
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                if b == 1 

                    new_Vi_col = Vi_col - 2; 

                elseif b == 2 

                    new_Vi_col = Vi_col - 1; 

                elseif b == 3 

                    new_Vi_col = Vi_col; 

                elseif b == 4 

                    new_Vi_col = Vi_col + 1; 

                elseif b == 5 

                    new_Vi_col = Vi_col + 2; 

                end 

            elseif a == 2 

                flag = 1; 

                new_Vi_row = Vi_row - 1; 

                if b == 1 

                    new_Vi_col= Vi_col - 2; 

                elseif b == 2 

                    new_Vi_col= Vi_col - 1; 

                elseif b == 3 

                    new_Vi_col= Vi_col; 

                elseif b == 4 

                    new_Vi_col= Vi_col + 1; 

                elseif b == 5 

                    new_Vi_col= Vi_col + 2; 

                end 

            elseif a == 3 

                flag = 1; 

                new_Vi_row = Vi_row; 

                if b == 1 

                    new_Vi_col= Vi_col - 2; 

                elseif b == 2 

                    new_Vi_col= Vi_col - 1; 

                elseif b == 3 

                    flag=0; 
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                    new_Vi_col = Vi_col; 

                elseif b == 4 

                    new_Vi_col= Vi_col + 1; 

                elseif b == 5 

                    new_Vi_col= Vi_col + 2; 

                end 

            elseif a == 4 

                flag = 1; 

                new_Vi_row = Vi_row + 1; 

                if b == 1 

                    new_Vi_col= Vi_col - 2; 

                elseif b == 2 

                    new_Vi_col= Vi_col - 1; 

                elseif b == 3 

                    new_Vi_col= Vi_col; 

                elseif b == 4 

                    new_Vi_col= Vi_col + 1; 

                elseif b == 5 

                    new_Vi_col= Vi_col + 2; 

                end 

            elseif a == 5 

                flag = 1; 

                new_Vi_row = Vi_row + 2; 

                if b == 1 

                    new_Vi_col= Vi_col - 2; 

                elseif b == 2 

                    new_Vi_col= Vi_col - 1; 

                elseif b == 3 

                    new_Vi_col= Vi_col; 

                elseif b == 4 

                    new_Vi_col= Vi_col + 1; 

                elseif b == 5 

                    new_Vi_col= Vi_col + 2; 

                end 
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            end 

            CV(:,i) = [new_Vi_row new_Vi_col flag]'; 

        end 

        SUM = sum(CV(3,:)); 

    end 


