
 1

IMAGE PROCESSING ON MEDICAL

APPLICATION

AUTOMATIC METHODS TO CALCULATE THE

AREA OF AN ARTICULAR CARTILAGE ON A

MAGNETIC RESONANCE IMAGE

By

Ngo Quang Long

Submitted in the fulfilment of the

Requirements for the Degree of Master of Engineering

School of Engineering, University of Tasmania (July, 2011)

School Of Engineering

University Of Tasmania

 2

Statement of Originality

 The work contained in this thesis has not been previously submitted for a degree or

diploma at any higher education institution. To the best of my knowledge and belief,

the thesis contains no material previously published or written by another person except

where due reference is made.

 Signed : _____________________

 Date : _____________________

Statement of Authority of Access

This thesis may be made available for loan and limited copying in accordance with the

Copyright Act 1968.

 Signed : _____________________

 Date : _____________________

 3

Publication Associated This Research

 In this research, some works have been accepted to publish in International

Workshop on Advanced Computational Intelligence (IWACI) Conference 2010.

 - Ngo, Q and Jiang, D and Ding, C, Application of Artificial Neural Networks in

Automatic Cartilage Segmentation’, Proceedings of IWACI2010, 25-27 August 2010,

Suzhou, China.

 4

ABSTRACT

 Digital image processing plays a more and more important role in the medical

diagnoses. Most widely used method for visualizing internal anatomical features of

human body is magnetic resonance imaging (MRI). MRI can be used for the detection

of osteoarthritis (OA) which affects the cartilage in the joints. Several techniques for

the segmentation of the cartilage in MRI scans of the knee have recently been

developed. One goal of segmentation is to automatically determine area and volume of

the cartilage. Due to noise, however, none of these approaches is satisfactory in fully

automated segmentation of articular cartilage.

 In our research, we attempt to study and develop new automatic methods to extract

the cartilage from MRI knee scans. From cartilage images, cartilage area and volume

are then computed. Three automatic methods are applied for cartilage extraction.

 The first method is bi-directional scanning segmentations method (BSSM), which is

based on two basic properties of intensity value: discontinuity (edge detection

algorithms) and similarity (thresholding algorithms). It is also based on statistical

analysis (curve fitting algorithms and average weight calculation).

 The second method is neural network classifier method (NNCM), which is based on

artificial neural network. For each pixel on an input image, through a neural network

classifier, it is classified as a cartilage pixel if network output value is 1. Alternatively,

it is classified as a background pixel if network output value is 0.

 The third method is active contour models method (ACMM), which uses an initial

contour that approximates the boundary of a cartilage to find the “actual” boundary.

This is an innovative method because we apply BSSM to define the initial contour. We

also apply NNCM to compute the external energy in active contour models algorithms.

 Our three methods have succeeded in automatically extracting the cartilage from

input image. The cartilage area and volume obtained from cartilage image, which is

extracted by BSSM, NNCM, and ACMM, are highly correlation with the results

obtained from reference cartilage image (correlation value in each case p ≈ 1, R2 ≈ 1).

Thus, cartilage area and volume assessments are precise, reliable and acceptable.

Among those methods, the ACMM provides the best results. Considering noise and

complexity of the image, each method has both advantages and disadvantages. BSSM

work well where there is significant high contrast between cartilage and background

 5

regions. It often fails where the contrast is low. NNCM can work well in low contrast.

However, this method does not work accurately if the cartilage pixels have similar

features of background pixels. Those pixels are classified as background pixels. As a

result, this method reduces number of cartilage pixels. The third method, ACMM

demonstrates higher accuracy in extracting cartilage from an input image. ACMM not

only can take advantages of BSSM and NNCM but also can solve the problems

existing in BSSM and NNCM. Therefore, results obtained from ACMM are the most

precise and acceptable.

 6

ACKNOWLEDMENT

 I would like to thank my supervisor, Dr Danchi Jiang, for his enthusiasm and

guidance, and for providing his image processing and computer vision expertise. I

would also like to thank Dr. Changhai Ding for providing MRI images as experiment

samples in my research as well as knowledge about cartilage on MR image.

 This research was partly supported by the Menzies Research Institute, and by the

School of Engineering, Tasmania of University.

 7

CONTENTS
 Pages

Abstract .. 4

Acknowledgments.. 6

1. Introduction ... 13

 1.1 Motivation ... 13

1.2 Background ... 13

1.3 Objectives and Organization of Thesis 14

2. MR Imaging and Data Characteristics ... 15

2.1 Overview ... 15

2.2 Background of MRI .. 15

2.3 Characteristics of MR knee images ... 16

2.4 Conclusion ... 20

3. Bi-directional Scanning Segmentations ... 21

3.1 Overview ... 21

3.2 Pre-processing ... 21

3.3 Bi-directional Scanning Segmentations 22

3.3.1 Cartilage Sub-image Determination 25

3.3.2 Boundary Detection.. 26

3.3.2.1 Edge Detection .. 29

3.3.2.2 Thresholding.. 36

3.3.2.3 Statistical Analysis .. 41

3.4 Application of Bi-directional Scanning Segmentations 47

3.5 Experiment Results ... 49

3.6 Conclusion ... 53

4. Neural Network Classifier ... 54

4.1 Overview ... 54

4.2 Artificial Neural Network ... 54

4.3 Multilayer Perceptrons (MLPs) ... 56

4.4 Network Definition ... 60

4.4.1 Input Network .. 61

4.4.2 Activation Function .. 62

4.4.3 Number of Neurons .. 63

 8

4.5 Network Training .. 63

4.5.1 Back-propagation Algorithms 63

4.5.2 Collecting training data .. 64

4.5.3 Training algorithms .. 67

4.6 Application of Neural Network for Object Recognition 74

 4.6.1 Cartilage Sub-image Determination 77

4.7 Experiment Results ... 77

4.8 Conclusion ... 84

5. Active Contour Models ... 86

5.1 Overview ... 86

5.2 Energy Formulation... 88

5.2.1 Internal Energy ... 88

5.2.2 External Energy .. 90

 5.3 Regularization ... 92

5.4 Active Contour Models Algorithms as Object Recognition 93

5.5 Experiment Results ... 96

5.6 Conclusion ... 106

6. Cartilage Area and Volume Calculation ... 107

6.1 Overview ... 107

6.2 Cartilage Area Calculation .. 107

6.3 Cartilage Volume Calculation ... 108

6.4 Experiment Results and Conclusion ... 109

7. Conclusion, Discussion and Future Work .. 113

7.1 Conclusion ... 113

7.2 Discussion ... 114

7.3 Future Work .. 114

Reference .. 116

Appendix .. 120

 9

LIST OF TABLES AND FIGURES

List of tables ... Pages

2.1 Image types according to image sequence .. 18

3.1 Image types according to image sequence .. 47

4.1 Speed and performance of seven different training algorithms 72

4.2 Speed and performance of five different training algorithms 74

6.1 Results of area calculation by using three methods 110

List of figures ... Pages

2.1 Sagittal T1-weighted fat saturation MR image 16

2.2 MR scanning direction .. 17

2.3 MR image in which articular cartilage do not appear 18

2.4 MR image that contains three cartilage components 19

2.5 Example of a sub-image and its gray profile... 19

3.1 Example of interest regions according to different images 22

3.2(a) Right and left direction according to initial sub-image 23

3.2(b) Flowchart of BSSM .. 24

3.3 Example of a sub-image and its gray profile... 25

3.4 Cartilage boundaries found on a sub-image ... 26

3.5 Operation of boundary detection ... 28

3.6 Example of a sub-image and its gray profile... 29

3.7 A 3x3 region of a point on an image ... 30

3.8 Result of edges found by using different edge algorithms 32

3.9 Result of edges found by using Sobel algorithms 34

3.10 Result of edges found by using Sobel algorithms 35

3.11 Example of histogram of an image ... 36

3.12 Example of using global and adaptive threshold 38

3.13 Example of a sub-image and its gray profile... 39

3.14 Results of using thresholding method ... 40

 10

3.15 Polynomial curve that uses 40 data points .. 43

3.16 Polynomial curve that uses 6 data points .. 43

3.17 Comparison between two approximations of cartilage boundaries 44

3.18 Example of using bi-directional scanning segmentations according to

similarities of high intensity between cartilage and background 45

3.19 Example of using bi-directional scanning segmentations according to

similarities of high intensity between femur and tibia 46

3.20 Flowchart of using BSSM ... 48

3.21 Results of extracting cartilage according to image set 1 50

3.22 Results of extracting cartilage according to image set 2 51

3.23 Results of extracting cartilage according to image set 3 52

3.24 Example of using bi-directional scanning segmentations according to

low contrast between cartilage and background ... 53

4.1 Classification of a region based upon a feature set 55

4.2 Classification at pixel level ... 56

4.3 Using perceptrons as classification at pixel level.................................... 57

4.4(a) Two-layer perceptrons .. 58

4.4(b) Propagation rule and activation function for MLP network 58

4.5 Two-layer perceptrons... 60

4.6 Generation of the input vector from a point on MR image 61

4.7 Example of pixel and pixel patch from a MR image 64

4.8 Original image in which training data collected 66

4.9(a) Example of size relationship between input vector and target vector 67

4.9(b) Example of value relationship between input vector and target vector67

4.10 Original image in which training data collected 73

4.11(a) General flowchart of NNCM .. 75

4.11(b) Operation of NNCM ... 76

4.12 Results of extracting cartilage according to image set 1 78

4.13 Results of extracting cartilage according to image set 2 80

4.14 Results of extracting cartilage according to image set 3 82

4.15 Comparison between neural network classifier method and double

side scanning segmentations method .. 84

 11

4.16 Example of using neural network method according to similarities between

cartilage and background features ... 85

5.1 Example of the movement of a point vi in an active contour 87

5.2 Example of the movement of a point vi in an active contour due to

Continuity energy .. 89

5.3 Example of the movement of a deformable contour due to balloon

Energy ... 90

5.4 Diagram of external energy computation .. 91

5.5 Example of the movement of a deformable contour due to external

Energy ... 92

5.6 Flowchart of using active contour models method 94

5.7 Operation of active contour models method ... 95

5.8 Example of using not good initial patella contour 97

5.9 Example of using good initial patella contour .. 97

5.10 Results of extracting cartilage according to image set 1 100

5.11 Results of extracting cartilage according to image set 2 102

5.12 Results of extracting cartilage according to image set 3 104

6.1 Comparison between reference values and values obtained from

bi-directional scanning segmentations method ... 109

6.2 Comparison between reference values and values obtained from

neural network method .. 109

6.3 Comparison between reference values and values obtained from

active contour models method... 110

6.4 Area comparison between using BSSM, NNCM, and ACMM 111

 12

Abbreviation and Nomenclature

MRI Magnetic Resonance Imaging

MR Magnetic Resonance

OA Osteoarthritis

BSSM Bi-directional Scanning Segmentation Method

NNC Neural Network Classifier

NNCM Neural Network Classifier Method

ACMM Active Contour Models Method

MLP Multilayer Perceptron

RF Radio Frequency

FID Free Induction Decay

BFGS Broyden, Fletcher, Goldfard, and Shanno

 Algorithm

ms milli-second

mm milli-meter

SCG Scaled Conjugate Gradient Algorithm

OSS One Step Secant Algorithm

CPU Central Processing Unit

GHz Giga Hertz

MB Mega Byte

RAM Random Access Memory

MSE Mean Square Error

Chapter 1: Introduction

 13

Chapter 1:

INTRODUCTION

1.1 Motivation

 Magnetic resonance imaging (MRI) is a non-invasive method for producing three-

dimensional tomographic images of the human body. MRI is the most often used for

detection of tumours, lesions, and other abnormalities in soft tissues, such as articular

cartilage in human knee.

 Recently, computer-aided techniques for analysing and visualizing magnetic

resonance (MR) images have been investigated. Many researchers have focused on

invivo morphometry and functional analysis of human articular cartilage with

quantitative MRI - from image to data, and from data to theory. Measuring the

articular cartilage volume from MR images of the knee is one aspect of “image-to-data”

process.

 This thesis presents three automatic methods that have been accepted to publish on

International Workshop on Advanced Computational Intelligent (IWACI) 2010 [1] to

extract the articular cartilage from a MR image for measuring its area and volume.

They are the bi-directional scanning segmentations method (BSSM), the neural

network classifier method (NNCM), and the active contour models method (ACMM).

1.2 Background

 Osteoarthritis (OA) is the most prevalent chronic disease in the elderly, affecting

more than 50% of those 65 years and older (Peyron 1986 [2], Felson 1988 [3] 1990 [4];

Felson et al. 1995 [5]). It causes pain and functional deficits, with substantial effects on

the quality of life (Guccione et al. 1994 [6]). Cartilage loss in knee is one of important

elements for detecting OA. For this reason, MRI is used to detect and track the volume

of the cartilage in the knee [7]. Identifying the articular cartilage is an important step in

calculating its volume.

Chapter 1: Introduction

 14

 Numerous methods have been investigated and applied to determine the cartilage in

the knee. MRI provides insufficient contrast for fully automated segmentation of

articular cartilage based on the gray value distribution alone. For this reason, volume-

growing algorithms (Eckstein et al. 1996 [8]; Piplani et al. 1996 [9]) are sensitive to

irregularities at the cartilage surface and often fail in regions where contrast is low.

Therefore, a B-spline Snake (deformable contour) algorithm is developed that replies

on the interaction of “image forces” (gray value gradient), ‘model forces’ (stiffness of a

parameterized B-spline curve), and ‘coupling forces’ (segmentation of previous

section). This approach can accelerate the interactive segmentation process and

increases consistency between observers (Stammberger et al. 1999 [10]). Other groups

have employed different algorithms, such as “active shape models” (Solloway et al.

1997 [11]), edge detection (Robson et al. 1995 [12]; Kshirsagar et al. 1998 [13]), fitting of

B-spline curves to manually digitized points (Ghosh et al. 2000 [14]), and “live-wire”

algorithm (Steines et al. 2000 [15]). However, none of these approaches has succeeded

in fully automated segmentation of articular cartilage.

1.3 Objectives and Organization of Thesis

 The primary goal of this research is to study, and develop automatic methods for

extracting articular cartilage of knee from MR images. Three automatic methods have

been investigated, including BSSM which is the combination and adaptation of

classical image segmentations (using edge detection, thresholding, curve fitting, and

average weight calculating algorithms) (detail in Chapter 3); NNCM which is an

application of artificial neural network (detail in Chapter 4) and the innovative method,

ACMM which is the combination among active contour models algorithms, NNCM

and BSSM (detail in Chapter 5).

 Based on the successful segmentation using the developed methods, a further goal

can be achieved to calculate the articular cartilage area and volume (detail in Chapter

6), that are important properties of articular cartilage in detecting the

osteoarthritic(OA).

Chapter 2: MRI and Data Characteristics

 15

Chapter 2:

MRI AND DATA CHARACTERISTICS

2.1 Overview

 Three automatic methods that we use in cartilage extraction on a MR knee image

presented in this thesis capitalize on several properties of magnetic resonance images.

Therefore, some knowledge of magnetic resonance imaging (MRI) and the data

produced by MRI scanners is necessary.

 This chapter introduces the background of MRI and describes some important

characteristics of MR knee image.

2.2 Background of MRI

 MRI uses a strong magnetic field and high radio frequency (RF) for obtaining

sectional images. The technique has so far been shown to have no adverse effects on

health. Other important advantages are its multiplanar capabilities and its superior soft

tissue contrast (Peterfy and Genant 1996[16]; Stabler et al 2000[17], Peterfy 2000[18]). In

MRI, the tissue contrast can be substantially modulated by choosing different types of

pulse sequences, and by changing the specific parameters of these sequences (repetition

time, echo time, flip angle, etc.). Therefore, a variety of specific sequences can be

selected for optimal delineation of specific tissues, or even for specific aspects of these

tissues.

 The pixel intensity of a given tissue type depends on the proton density of the

tissue; the higher the proton density, the stronger the free-induction decay (FID)

response signal. MR image contrast also depends on two other specific parameters:

1. The longitudinal relaxation time, T1, and

2. The transverse relaxation time, T2

 T1 measures the time required for the magnetic moment of the displaced nuclei to

return to equilibrium. T2 indicates the time required for the FID response signal from a

given tissue type to decay.

Chapter 2: MRI and Data Characteristics

 16

 For the analysis of cartilage macro-morphology (volume, thickness, and surface

areas), the bone cartilage interface and the articular surface need to be delineated

accurately. In particular, the spatial resolution must be sufficient to permit quantitative

measurements throughout its thickness. For these reasons, a high-resolution pulse

sequence is required that visualizes cartilage with high contrast to its surrounding

tissues. Some investigators have used two different pulse sequences and digital

subtraction techniques to improve contrast (Robson et al 1995[19]; Munsterer et al

1996[20]). However, today it is widely accepted that T1-weighted gradient echo

sequences with spectral fat suppression are best suited for this purpose (Recht et al

1993[21]). These sequences produce images in which the cartilage appears bright

(hyper-intense) compared to all other tissues.

2.3 Characteristics of MR Knee Images

 Images that are used in this thesis were MRI scans of the right knees. The following

image sequence was used: T1-weighted fat saturation magnetic resonance imaging;

repetition time 43ms; echo time 13ms; flip angle 50o; 62 partitions; 512x512 matrix;

greyscale formation. Sagittal images were obtained at a partition thickness of 1.5mm

and an in-plane resolution of 0.31x0.31mm (512x512 pixels). Fig 2.1 shows an

example of a sagittal image.

Figure 2.1 Sagittal T1-weighted fat saturation MR image

Cartilage

Chapter 2: MRI and Data Characteristics

 17

 In order to measure the articular cartilage’s area on a sagittal image, we need to

extract a cartilage from original image. For doing this, we can use BSSM (Chapter 3),

NNCM (Chapter 4), and ACMM (Chapter 5). The volume of a cartilage can be then

computed from 62 sequenced sagittal images.

 Fig 2.1 shows that cartilage is generally located in the middle region of the image.

All the images used in our research had the cartilage located in the middle region. From

the image sequence, the first and the last 13 images of the sequence did not reveal the

cartilage on those images. This is because MR scanning is performed from the medial

side of the knee, over the patella and ends on the lateral side. Fig 2.2 demonstrates MR

scanning direction. The first and the last 13 images from the image sequence was

obtained heuristically. This assumption was used in a consistent manner for the

experiments.

 Figure 2.2 MR scanning direction

 Fig 2.3 illustrates the disappearance of cartilage on a MR image. Fig 2.3 (a) is a

sagittal image on the first 13 image sequence while Fig 2.3 (b) is a sagittal image on the

last 13 image sequence.

MR Scanning direction

Chapter 2: MRI and Data Characteristics

 18

(a)

(b)

Figure 2.3 MR images in that articular cartilage did not appear

(a) A MR image in the first 13 image sequence.

(b) A MR image in the last 13 image sequence.

 In study for the easy readability, the cartilage is divided in three components

namely femur which is the cartilage is attached to femur, tibia which is the cartilage is

attached to tibia, and patella which is the cartilage is attached to patella (Fig 2.4).

Depend on image sequence and MR scanning direction, a sagittal image may contain

one, two, or all of cartilage components. Therefore, we have three typical types of

image according to cartilage components:

1. Images that contain Femur and Tibia

2. Images that contain Femur, Tibia, and Patella

3. Images that contain Femur and Patella

Following table illustrates distribution of image types according to image sequence.

Image Sequence Cartilage types

1 - 13 Do not appear

14-18 Femur and Tibia

19 - 21 Femur , Tibia, and Patella

22 - 37 Femur and Patella

38 - 45 Femur, Tibia, and Patella

46 - 49 Femur, and Tibia

50 - 62 Do not appear

Table 2.1 Image types according to image sequence

Chapter 2: MRI and Data Characteristics

 19

Figure 2.4 A MR image that contains three types of cartilage

 In term of computer vision, a MR image, which is formatted in grayscale [22], is a

512x512 matrix. Each matrix’s element (or call pixel) have intensity value in range [0,

255]. Because cartilage appears bright colour compared to all other tissues

(background), cartilage pixels have high intensity whereas background pixels have

lower intensity. Fig 2.5 is an example of this. Fig 2.5 (a) is a sub-image on an image

that contains cartilage segment. Fig 2.5 (b) is a gray value profile according to a sub-

image. Cartilage pixels have high intensity (greater than 80) compared to background

pixels intensity (smaller than 50).

Figure 2.5 A sub-image (a) and its gray-value profile (b).

A Sub-image

(a)

Femur

Tibia

Patella

(b)

Cartilage Region

Chapter 2: MRI and Data Characteristics

 20

2.4 Conclusion

 This chapter introduced the background of magnetic resonance imaging and

illustrated several characteristics of MR knee images. Base on this, we developed three

automatic methods for extracting a cartilage from an original image.

 Next chapter, we present the first method namely bi-directional scanning

segmentation.

Chapter 3: Bi-directional Scanning Segmentations

 21

Chapter 3:

BI-DIRECTIONAL SCANNING SEGEMENTATIONS

3.1 Overview

 Image segmentation is an essential preliminary step in most image pattern (object)

recognition process. It subdivides an image into its constituent regions or objects. That

is, segmentation should stop when the objects of interest in an application have been

isolated.

 Generally, image segmentation algorithms are based on one of two basic properties

of intensity values: discontinuity and similarity. In the first category, the approach is to

partition an image based on abrupt changes in intensity, such as edges in an image. The

principal approaches in the second category are based on partitioning an image into

regions that are similar according to a set of predefined criteria. Thresholding is an

example of methods in this category that is to extract the objects from the background

is to select a threshold T that separates object pixels and background pixels.

 However, according to complexity in MR knee images that contain unwanted

intensity variations (noises), none of individual segmentation algorithms is satisfactory

in extracting an articular cartilage from an original image. Therefore, we developed a

method that combines various image segmentation algorithms to improve the result.

This method is named bi-directional scanning segmentations method (BSSM) [1] and

will be presented in this chapter.

3.2 Pre-processing

 In order to reduce the noise and other irrelevant parts, a pre-processing step is

required at the beginning. Pre-processing’s goal is to find an interest region that

contains an articular cartilage on an original image. This interest region is used as the

input image for BSSM. Furthermore, NNCM (chapter 4) and ACMM (chapter 5) also

use it as input image.

Chapter 3: Bi-directional Scanning Segmentations

 22

 An interest region can be defined as a function R of the form:

 R(x,y) = R [x, y, f(x,y), g(x,y), p1(x,y), p2(x,y)…]

where R(x,y) is the interest region an image f(x,y) according to x and y coordinates.

g(x,y) denotes feature of a cartilage on this image. p1, p2… indicate some other

properties relating to cartilage that helps for defining R(x,y).

Figure 3.1 Examples of interest regions according to different images.

 Fig 3.1 illustrates interest regions that are defined on different images. The sizes of

interested regions are also different.

3.3 Bi-directional Scanning Segmentations

 Due to as the complexity of MR knee images, segmentation on local regions (sub-

images) of the image is much more effective than segmentation on an entire image.

Therefore, our segmentations algorithms are applied to partitioned sub-images to

extract cartilage segments. In general, our BSSM algorithms include two processes: left

and right process. The left process is to scan the image from an initial position to its left

direction and extract the cartilage on partitioned sub-images during the scan. Similarly,

right process is to extract the cartilage on partitioned sub-images to the right direction

(Fig 3.2(a)).

 Consider an input image as a matrix I that is defined from pre-processing step. Sub-

images are columns of matrix I. Sub-images that contain the cartilage segments are

defined as cartilage sub-images. BSSM algorithms are described as:

 1. From input image [K rows and L columns] I, find initial cartilage sub-image

representing i-th column of matrix I, where i = 1, 2, …, L. Initial cartilage sub-image

determination is described in section 3.3.1.

y x

Chapter 3: Bi-directional Scanning Segmentations

 23

 - Apply boundary detection method to determine cartilage boundaries and

extract a cartilage segment from an initial sub-image. Boundary detection method is

described in section 3.3.2.

 2. Left Process: Staring from the initial sub-image, scan to the next cartilage sub-

image on the left representing (i + ∆)-th column, ∆ = 1, 2, 3…

 - Apply boundary detection method to determine cartilage boundaries and

extract a cartilage segment from a sub-image.

 3. Right Process: Starting from the initial sub-image, scan to the previous cartilage

sub-image representing (i - ∆)-th column, ∆ = 1, 2, 3…

 - Apply boundary detection method to determine cartilage boundaries and

extract a cartilage segment from a sub-image.

 4. Continue apply boundary detection method until all cartilage sub-image on an

input image are processed.

 BSSM is used to isolate a cartilage from its background. We can then measure the

size or area of a cartilage. The success of this operation depends on determining

cartilage boundaries on partitioned sub-images. We then develop a method named

boundary detection for detecting cartilage boundaries. It is the most important part in

BSSM.

 According to three different components of a cartilage namely Femur, Tibia, and

Patella, BSSM aims to isolate individual cartilage component from its background and

other cartilage components. Therefore, boundary detection also tries to detect

individual cartilage component’s boundaries.

Initial cartilage sub-image
Left direction Right direction

x
y

Original image

Figure 3.2(a) Right and left direction according to initial sub-image on an input image

Cartilage boundaries

Cartilage

Chapter 3: Bi-directional Scanning Segmentations

 24

Fig 3.2(b) shows flowchart of BSSM algorithms.

Figure 3.2(b) Operation of BSSM.

Input Image

Find an initial sub-image that
contains cartilage segments

Move to next sub-image on the
right side of an initial sub-image

Apply Boundary Detection
Method

Obtain cartilage boundaries on
a sub-image

Move to next sub-image on the
left side of an initial sub-image

It contains cartilage
segments?

Move to next sub-image
in right direction

Apply Boundary Detection
Method

Obtain cartilage boundaries on
a sub-image

It contains cartilage
segments?

Move to next sub-image
in left direction

End Iteration

Yes Yes

No No

Extract cartilage segment from
a sub-image

Extract cartilage segment from
a sub-image

Chapter 3: Bi-directional Scanning Segmentations

 25

3.3.1 Cartilage and Initial Cartilage Sub-image Determination

 In an MR knee image, the articular cartilage will appear in high intensity whereas

the other tissues (background) appear in low intensity. Consider a sub-image S(x,y) that

contains a cartilage segment show in Fig 3.3 (a) and gray-level profile of S(x,y) as we

traverse along a vertical line. (Fig 3.3 (b)).

Figure 3.3 A sub-image (a) and its gray-value profile (b)

 From the gray-level, cartilage pixels have high intensity in the range [80, 150]

whereas background pixels have very low value in range [0, 50]. Thus, a cartilage sub-

image is determined if there are a group of high intensity pixels with mean value is

greater than a threshold value V.

where g(x,y) is the mean value of a group of high intensity pixels in sub-image S (x,y).

(b)

Cartilage Region

A sub-image S(x,y)

Cartilage sub-image if g(x,y) >= V

Background sub-image if g(x,y) < V

A sub-image S(x,y) is defined

Chapter 3: Bi-directional Scanning Segmentations

 26

 An initial cartilage sub-image is a cartilage sub-image, which locates in the middle

of a cartilage region as well as in the middle of an input image. Consider S1, S2,..Sk, ..SN

(k = 1, 2, 3…, N where N is number of cartilage sub-image) are cartilage sub-image in

the middle region of an input image. An initial cartilage is defined as:

 An sub-image Sk(x,y) is initial sub-image if gk(x,y) is maximum.

Where gk(x,y) is the mean value of a group of high intensity pixels in sub-image Sk(x,y).

3.3.2 Boundary Detection

 Boundary detection method is used to detect the cartilage segments boundaries on

sub-images. Therefore, cartilage segments can be extracted from a sub-image (its

background and other cartilage components). Fig 3.4 generally illustrates the goal of

this method.

Figure 3.4 Cartilage segment boundaries found on sub-image by using boundary

detection.

 We consider two types of a cartilage boundary on a sub-image defined as upper and

lower boundaries (Fig 3.4). Original boundary detection algorithms are based on edge

detection algorithms (detail in section 3.3.2.1) to find cartilage boundaries on a sub-

image. However, because the limitation of edge detection, we develop boundary

detection method with thresholding method (detail in section 3.3.2.2) and statistical

analysis algorithms (detail in section 3.3.2.3).

Upper Boundaries

Lower Boundaries

Sub-image

Chapter 3: Bi-directional Scanning Segmentations

 27

 Consider a cartilage sub-image S(x,y), boundary detection algorithms to find upper

and lower boundaries of a cartilage are described as:

1. Apply Edge detection on sub-image S(x,y), we obtain new image Sedge(x,y)

where:

 Pixel value at location (x,y) is 1 representing edge are found.

 Pixel value at location (x,y) is 0 representing edge are not found.

2. Apply Thresholding on sub-image S(x,y), we obtain new image Sthreshold(x,y)

where:

 Pixel value at location (x,y) is 1 representing cartilage pixel.

 Pixel value at location (x,y) is 0 representing background pixel.

3. Find the highest intensity pixel at location (x0,y) on S(x,y).

4. For next pixel at location x1 = x0 + ∆ where ∆ = 1, 2, 3 …

 If Pixel value at location (x1,y) on Sedge and Sthreshold is 1, upper

boundary is found, denoted by Bup.

5. For previous pixel at location x2 = x0 - ∆ where ∆ = 1, 2, 3 …

 If Pixel value at location (x2,y) on Sedge and Sthreshold is 1, lower

boundary is found, denoted by Blow.

6. Repeat step 4 and 5 until upper and lower boundaries are found.

7. Apply statistical analysis to obtain approximations of upper and lower

boundaries on S(x,y) that is denoted by Aup and Alow respectively.

8. Compute the error:

lowlow

upup

AB

AB

−=

−=

2

1

δ

δ

 If δ1 < α , upper boundary is Bup, otherwise upper boundary is Aup.

 If δ2 < β , lower boundary is Blow, otherwise lower boundary is Alow.

 Where parameters α, and β is relative constant of error terms.

Chapter 3: Bi-directional Scanning Segmentations

Fig 3.5 illustrates flowchart of boundary detection algorithms:

Cartilage sub-image
S(x,y)

Apply Edge Detection
Algorithms

New image Sedge(x,y) Find highest intensity
pixel at location (x0,y)

For next pixel at
location x1 = x0 - ∆
where ∆ = 1,2,3…

Pixel value at
Sedge(x1,y) is 1

Sthreshold(x1,y) is 1

Upper boundary Bup
are found at location

(x1, y)

For next pixel at
location x2 = x0 + ∆
where ∆ = 1,2,3…

Yes

No No

Apply Thresholding
method

New image Sthreshold(x,y)

Figure 3.5 Operation of boun

From previous sub-images, apply
statistical analysis to obtain
approximation of cartilage

boundaries Aup, Alow

αδ <1

Upper boundary
is Bup

Upperboundary is
Aup

Yes

No
Pixel value at
Sedge(x2,y) is 1

Sthreshold(x2,y) is 1
28

Lower boundary Blow
are found at location

(x2, y)

Yes

dary detection.

Compute the errors

lowlow

upup

AB

AB

−=

−=

2

1

δ

δ

βδ <2

Lowerboundary is
Blow

Lower boundary is
Alow

Yes

No

Chapter 3: Bi-directional Scanning Segmentations

3.3.2.1 Edge Detection

 Edge detection is one of image segmentation methods, which is based on the

discontinuity of intensity values. It aims to partition an image by investigating the

intensity changes.

 Consider the sub-image S(x,y) (representing a column of matrix S) in Fig 3.6 (a),

which is composed of light cartilage on dark background. Suppose we plot the gray

values as we traverse the image along a vertical line (Figure 3.6 (b)). There are changes

in intensity values in individual region and in between them. Analysing the contrast

between high intensity pixels and low intensity pixels, the boundary of a cartilage is

found when there is a significant intensity change. To investigate those changes, we

take the derivative of pixels in term of intensity. Thus, edges that are considered as

cartilage boundaries can be calculated. Intuitively, A1, A2 represent actual upper and

lower boundaries of a cartilage segment on a sub-image. Edges are expected to close to

A1, A2.

(b)

A2

A1

A sub-image S(x,y)

(a)

A1

A2
Figure 3.6 (a) A sub-image S(x,y) and its gray-value profile (b).
29

Chapter 3: Bi-directional Scanning Segmentations

 30

 We consider two types of derivatives: first-order and second-order derivatives.

There are many edge-finding algorithms based on that.

First-order Derivative

 First-order derivatives of an image are defined as various approximations of the 2-

D gradient. The gradient of an image f(x,y) at location (x,y) is defined as the vector:



















∂
∂
∂
∂

=







=∇

y
f
x
f

G

G
f

y

x

 It is well known from vector analysis that the gradient vector points in the direction

of maximum rate of change of f at coordinates (x,y). This gives two important

properties: the magnitude and the direction of this vector.

 The magnitude of gradient vector is defined as:

 []2
1

22)(yx GGfmagf +=∇=∇

 This quantity gives the maximum rate of increase of f(x,y) per unit distance in the

direction of gradient vector.

 The direction of gradient vector at point (x,y) is represented by α(x,y), defined as:

 







= −

x

y

G

G
yx 1tan),(α

There are several ways to approximate Gx and Gy. Let the 3x3 area shown in Fig 3.7

presents the intensity values in a neighbourhood at point P(x,y). The following list

some:

P(x-1,y-1) P(x-1,y) P(x-1,y+1)

P(x,y-1) P(x,y) P(x,y+1)

P(x+1,y-1) P(x+1,y) P(x+1,y+1)

 Fig 3.7 A 3x3 region of a point (x,y) in an image.

Chapter 3: Bi-directional Scanning Segmentations

 31

Robert cross-gradient method [23]:

() ()

() ()1,,1

,1,1

++

++

−=

−=

yxyxy

yxyxx

PPG

PPG

Prewitt method [23]:

() ()
() ())1,1()1,()1,1()1,1()1,()1,1(

)1,1(),1()1,1()1,1(),1()1,1(

−+−−−++++−

+−−−−+++−+

++−++=

++−++=

yxyxyxyxyxyxy

yxyxyxyxyxyxx

PPPPPPG

PPPPPPG

Sobel method [23]:

() ()
() ())1,1()1,()1,1()1,1()1,()1,1(

)1,1(),1()1,1()1,1(),1()1,1(

22

22

−+−−−++++−

+−−−−+++−+

++−++=

++−++=

yxyxyxyxyxyxy

yxyxyxyxyxyxx

PPPPPPG

PPPPPPG

Therefore, edges are found at those points where the gradient is maximum.

Second-order Derivative

Laplacian [24] of a 2-D function f(x,y) is a second-order derivative defined as:

2

2

2

2
2

y
f

x
f

f
∂
∂

+
∂
∂

=∇

For a 3x3 region (see Fig 3.7), f2∇ can be approximated as:

())1,1(),1()1,1()1,()1,()1,1(),1()1,1(),(
2 8 +++−++−+−−−− +++++++−=∇ yxyxyxyxyxyxyxyxyx PPPPPPPPPf

The Laplacian is combined with smoothing as a pre-processing to finding edges via

zero-crossing [24]. Consider the function:

2

2

2)(σ
r

erh
−

−=

Where 222 yxr += and σ is the standard deviation. The Laplacian of h (the second-

order derivative of h with respect to r) is:

2

2

2
4

22
2)(σ

σ
σ r

e
r

rh
−








 −
−=∇

Chapter 3: Bi-directional Scanning Segmentations

 32

Discussion on using different edge detections algorithms as boundary detection

Fig 3.8 demonstrates an example of applying different edge detection techniques to

find edges corresponding to a sub-image.

(d)

(e)

Figure 3.8
(a) An example sub-image
(b) Gray-level profile corresponds
to a sub-image.
Edges found by using Robert
method (c), Prewitt method (d),
Sobel method (e), Laplacian
method (f), and zero-crossing
method (g) according to the
profile.

Cartilage Region

A sub-image

 Cartilage Region

(a)

A2 A1

Lower boundary

Upper boundary

Lower boundary
Upper boundary

Lower boundary
Upper boundary

(b)

(c)

A1 A2

(f)

(g)

Chapter 3: Bi-directional Scanning Segmentations

 33

 Fig 3.8 (a) show a sub-image S(x,y). This sub-image is the same shown in Fig 3.6

(a). In Fig 3.8 (a), we present sub-image S(x,y) in horizontal direction as the results

obtained by using various edge detection algorithms. It is compatible with its gray-level

profile (Fig 3.8 (b)). A1, A2 represent actual upper and lower boundaries of a cartilage

segment on a sub-image, respectively.

 The Laplacian and zero-crossing methods fail in detecting the cartilage boundaries

(Fig 3.8 (f) and (g)). It produces more edges that cause confusion to determine which

edges are the cartilage boundaries. The Robert method can detect the lower cartilage

boundary (Fig 3.8(c)). However, the difference between actual lower boundary and

lower boundary found by Robert method is quite large and unacceptable. Furthermore,

Robert method also produces multiple edges that cause complication to detect the upper

cartilage boundary.

 Sobel and Prewitt methods (Fig 3.8 (d) and (e)) provide the results that are more

accurate compared to others. They can detect both upper and lower boundaries of the

cartilage. The difference between the edges and actual boundaries is small and

acceptable. Prewitt method is simpler to implement than Sobel method, but the later

have slightly superior noise-suppression characteristic. Therefore, we apply Sobel

algorithms for edge detection. However, since Sobel algorithm is only based on the

discontinuity of intensity values, edge detection faces two typical issues:

 - The first issue occurs when there is significant intensity change in cartilage

region, multiple edges are more likely to be detected. Hence, it causes complication for

boundary detection in determining cartilage boundaries.

 - The second issue occurs when there is slightly intensity change between cartilage

and background (or other cartilage components) regions. Edges cannot be effectively

detected or are likely to be detected incorrectly. As a result, boundary detection fails to

obtain the correct cartilage boundaries.

Chapter 3: Bi-directional Scanning Segmentations

 34

 Fig 3.9 illustrates the first issue of edge detection. Fig 3.9 (a) is a gray profile of a

sub-image. Fig 3.9 (b) is result obtained by using Sobel edge detection method.

Because there are significant intensity changes on cartilage region, multiple edges are

produced in cartilage region (Fig 3.9 (b)). Those edges also contain two main edges

that indicate upper and lower cartilage boundaries. Therefore, boundary detection

cannot detect cartilage boundaries on this sub-image.

 Figure 3.9 (a) The gray-profile of a sub-image

 (b) Edges found by using Sobel edge detection method

Cartilage Region

(a)

(b)

Chapter 3: Bi-directional Scanning Segmentations

 35

 Fig 3.10 demonstrates second issue of edge detection. Fig 3.10 (a) presents a gray

profile of a sub-image. Fig 3.10 (b) shows the result obtained by using Sobel edge

detection method. Since the intensity changes between cartilage and background

regions in the left side of cartilage region are slight, the edge cannot be detected. In

additional, it is likely to be detected incorrectly where the change is significant. As a

result, upper boundary is determined far away from actual upper boundary.

 Figure 3.10 (a) The gray-profile of a sub-image

 (b) Edges found by using Sobel edge detection method.

Conclusion

 Edges are formed from pixels with derivative values. Intuitively, edges are

considered as cartilage boundaries. Boundary detection method is based on Sobel edge

detection algorithm is used to determine cartilage boundaries on a sub-image. However,

because the limitations of edge detection algorithms mentioned above, we develop

boundary detection method by applying thresholding method.

 Cartilage Region

Lower Boundary
Upper Boundary

Lower Boundary
Upper Boundary

(a)

(b)

Chapter 3: Bi-directional Scanning Segmentations

3.3.2.2 Thresholding

 Unlikely edge detection, thresholding is based on different properties of intensity

values: similarity. The gray-level histogram show in Figure 3.11 (b) corresponding to

an MR image is composed of light cartilage on a dark background (other irrelevant

tissues), in such a way that object and background pixels have gray levels grouped into

two dominant modes. In order to isolate the object from the background, we select a

threshold T that separates these modes. Then, each pixel on image is classified as a

cartilage pixel or a background pixel according to whether its gray value is greater than

or less than threshold value T [25].

 Cartilage pixel if its gray level is > T,

 A pixel is classified

 Background pixel if its gray level is ≤ T.

Figure 3.11 A example of gray level histogram (b) corres

 However, the trouble is that in general the individual his

background overlap (Figure 3.11 (b)). Hence, it is important

threshold level. If we choose a value too high, we may dec

reduce its total pixel number. Conversely, if we choose

(a)

Background
mode
T
36

ponding to an image (a)

tograms of the objects and

 in choosing an appropriate

rease the size of object or

a value too low, we may

(b)

Object mode

Chapter 3: Bi-directional Scanning Segmentations

 37

include extraneous background material. For this reason, we applied Otsu’s method for

choosing a best threshold.

Optimal Thresholding Algorithms

 Otsu’s method (Otsu 1979 [26]) is one of the most popular techniques of finding an

optimal threshold. Essentially, Otsu’s technique maximises likelihood that the threshold

is chosen to split the image between an object and its background. The basis is to use of

the normalised histogram where the number of points at each level is divided by the

total number of points in the image. As such, this represents a probability distribution

for the intensity level as:

N
n

p i
i =

where ni is the number of pixels with gray level i, N is the total number of pixels in an

image, so that pi is the probability of a pixel having gray level i. If we threshold at level

k, we define:

∑

∑
−

+=

=

=

=

1

1

0

)(

)(

L

ki
i

k

i
i

pk

pk

µ

ω

where L is the number of grayscales, so that L - 1 is the largest. By definition,

 1)()(
1

0

==+ ∑
−

=

L

i
ipkk µω

 We would like to find k to maximize the difference between ω(k) and µ(k). This can

be done by first defining the image average intensity as:

 ∑
−

=

=
1

0

.
L

i
iT piµ

And then finding k, which maximizes:

()

)()(
)()(2

kk
kkT

µω
µωµ −

Chapter 3: Bi-directional Scanning Segmentations

 38

Adaptability of sub-image thresholding

 A global optimal threshold can be computed from an entire original image. Due to

noise, a cartilage cannot be partitioned effectively by a global threshold. It causes the

error between the actual cartilage boundaries and the cartilage boundaries found. For

handling such a situation, we need to divide the original image into sub-images and

then utilize a different threshold to segment each sub-image. Since the threshold used

for each pixel depends on the location of the pixel in terms of the sub-images, this type

of thresholding is adaptive.

 Fig 3.12 presents the difference between using global and adaptive thresholds in

partitioning a cartilage segment on a sub-image. Fig 3.12 (b) is the gray-level profile of

a sub-image which is showed in Fig 3.12 (a).

Figure 3.12 An example of using global and adaptive threshold

 (a) A sub-image of MR image and (b) Its gray level profile.

 From Fig 3.12 (b), A1, A2 are lower and upper boundaries of cartilage segment on a

sub-image. A1, A2 are obtained by using adaptive threshold. Similarly, B1, B2 are lower

and upper boundaries of a cartilage segment. B1, B2 are obtained by using global

threshold. A1, A2 are closer to actual boundaries of a cartilage compared to B1, B2.

Therefore, the error between the actual cartilage and the cartilage that is partitioned by

adaptive thresholding method is reduced in terms of size and area.

(a)
(b)

A sub-image

A1
A2

B1 B2

Chapter 3: Bi-directional Scanning Segmentations

 39

Discussion on boundary detection using Thresholding method

 Fig 3.13 illustrates the behaviour of thresholding method corresponding to the first

issue of edge detection (failure to detect cartilage boundaries where there are significant

intensity changes in cartilage region). Fig 3.13 (a) shows the gray-level profile of a sub-

image. It is also a gray profile shown in Fig 3.9 (a). Fig 3.13 (b), and (c) are the results

obtained by using thresholding method and edge detection, respectively. Generally,

pixels that have value 1 are classified as cartilage pixels while pixels that have value 0

are classified as background pixels. In this case, pixels that have value “1” are grouped

into two regions. Obviously, the region that has the largest area is considered as

cartilage region whereas other is considered as noise. The cartilage boundaries are then

defined.

Figure 3.13 (a) Gray profile of a cartilage sub-image

Result obtained by using thresholding method (b) and edge detection (c)

Cartilage Region

Upper Boundary

Lower Boundary

(a)

(b)

(c)

Chapter 3: Bi-directional Scanning Segmentations

 40

 Fig 3.14 demonstrates the behaviour of thresholding method corresponding to the

second issue of edge detection (failure to detect cartilage boundaries when there are

slight intensity changes between cartilage and background regions). Fig 3.14 (a) shows

the gray-level profile of a sub-image. It is also a gray profile shown in Fig 3.10 (a). Fig

3.14 (b), and (c) are the results obtained by using thresholding and edge detection,

respectively. Similar to edge detection, the upper cartilage boundary detected by

thresholding method also includes background segment. This is due to the similarly of

high intensity values of pixels in cartilage and background regions.

Figure 3.14 (a) Gray-level profile of sub-image, and

Result obtained by using thresholding method (b) and edge detection (c)

Cartilage Region

Lower Boundary
Upper Boundary

Lower Boundary Upper Boundary

Lower Boundary Upper Boundary

(a)

(b)

(c)

Chapter 3: Bi-directional Scanning Segmentations

 41

Conclusion

 Thresholding is a method, which selects pixels that have a particular intensity

value, or are within a specified intensity range. It is used to find cartilage within an

image if their high intensity value (or range) is defined. Along with edge detection,

thresholding improves the performance of boundary detection. However, it still cannot

detect cartilage boundaries under condition that is similarity of high intensity value

between cartilage and background region (Refer to Fig 3.14 as an example). Therefore,

our last attempt to improve the performance of boundary detection method is carried

out. That is, using statistical analysis to give an approximation of cartilage boundaries.

3.3.2.3 Statistical Analysis

 When edge detection and thresholding fail to detect the cartilage boundaries on a

sub-image, giving an approximation of a piece of cartilage boundary may be required.

Generally, to provide an approximation of cartilage boundaries in a sub-image, we take

a statistical analysis on a set of cartilage boundaries that were successfully found on

previous sub-images.

 For an input image representing matrix I, consider the current cartilage sub-image

representing jth column of matrix I where Boundary Detection fail to detect the cartilage

boundaries. Boundaries of the cartilage on a sub-image are defined as:

)(

)(
),(

yB

xB
yxB

low

low
low = ;

)(

)(
),(

yB

xB
yxB

up

up

up =

Where Bup(x,y) indicates upper cartilage boundary while Blow(x,y) indicates lower

cartilage boundary at location (x2, y) according to x and y coordinates.

 jyByB lowup ==)()(

Suppose a set of cartilage boundaries on previous sub-images:

 Rup = [),(11
1 yxBup ,),(22

2 yxBup ,…),(nn
n
up yxB]

 Rlow = [),(11
1 yxBlow ,),(22

2 yxBlow ,…),(nn
n
u yxB]

 iyyi −= = j – i where i = 1, 2, 3 …n; n is number of previous sub-images

From Rup, Rlow we can apply statistical analysis to obtain an approximation of upper

and lower cartilage boundaries on a current sub-image.

 There are two types of statistical analysis that are employed: curve fitting

algorithms and average weight calculation.

Chapter 3: Bi-directional Scanning Segmentations

 42

Curve fitting algorithms

 Curve fitting algorithm is using a polynomial curve, which is computed from

previous cartilage boundaries (low or up cartilage boundaries) in set R to provide an

approximation of cartilage boundaries (lower or upper cartilage boundaries) on a

current sub-image.

 Polynomial curve is a polynomial p(x) of degree n:

 1
1

21 ...)(+
− ++++== nn

nn pxpxpxpyxp

 For n = 3, it becomes cubic function:

 43
2

2
3

1)(pxpxpxpyxp +++==

 Curve fitting algorithms to compute an approximation of a cartilage boundary, for

instance, a lower cartilage boundary on a current sub-image, are described as follows:

 Suppose a current sub-image representing jth column of matrix I.The lower cartilage

boundary is defined as Blow(x,y) =
)(

)(

yB

xB

low

low where Blow(y) = j

1. Present a set of lower cartilage boundaries on n previous sub-images:

 Rlow = [),(111 yxB ,),(222 yxB ,…),(nnn yxB]

 Where n is number of previous sub-images

2. Compute the polynomial function at each point:

 54
2

2
3

1)()()()())((pxBpxBpxBpyBxBp iiiii +++==

where i = 1, 2, 3 …n

3. Compute the error between two data point:

))(())((1 xBpxBp iii −= +δ

4. Using Least Mean Square [27] to get the coefficients p1, p2, p3, and p4 to

minimum the error δ.

5. An approximation of a lower cartilage boundary on a current sub-image Blow(x)

is computed from equation:

 54
2

2
3

1)()()()(pxBpxBpxBpyB lowlowlowlow +++=

Chapter 3: Bi-directional Scanning Segmentations

 43

Figure 3.15 Polynomial curve used 40 data points.

 Fig 3.15 demonstrates the polynomial curve, which fit all the previous cartilage

boundaries. From the polynomial curve, a cartilage boundary on current sub-image is

computed.

 The polynomial curve shown on Fig 3.15 used 40 previous cartilage boundaries

points. The curve is accurate, smooth and fit most points on the plot. Fig 3.16 illustrates

a different polynomial curve, which uses the same data as Fig 3.15, but it only uses 6

previous cartilage boundaries points.

Figure 3.16 Polynomial curve used 6 data points.

Chapter 3: Bi-directional Scanning Segmentations

 44

Figure 3.17 Comparison between two approximations of cartilage boundary.

 From Fig 3.17, the fitting curve, which uses 40 data points, is smoother than the

one, which uses only 6 data points. The slope and direction of the 40-points fitting

curve are more consistent compared to of the 6-points fitting curve. Therefore, using a

reasonable number of data points will improve the quality of approximation. From

experiment results, using 40 data points is the most suitable choice.

Average Weight Calculation

 Average weight calculation is simpler implementation than curve fitting algorithms.

It computes the average value of set of previous boundary points and uses it as cartilage

boundary on current sub-image. Average weight calculation algorithms, for instance, to

compute a lower cartilage boundary on a current sub-image, are described as following:

Consider upper cartilage boundary Bup(x,y) are found by using boundary detection

method.

1. Presents sets of cartilage boundaries on n previous sub-images:

 Rup = [),(11
1 yxBup ,),(22

2 yxBup ,…),(nn
n
up yxB]

 Rlow = [),(11
1 yxBlow ,),(22

2 yxBlow ,…),(nn
n
u yxB]

2. Compute the weights of cartilage boundaries on each previous sub-image :

),(),(yxByxBw i
low

i
upi −= where i = 1, 2, 3,…n; n is number of previous

sub-images

Chapter 3: Bi-directional Scanning Segmentations

 45

Compute the average weight of n previous sub-images:

 ∑
=

=
n

i
iw

n
w

1

1

 3. An approximation of a lower cartilage boundary on a current sub-image is

 computed as:

jyByB

wxBxB

uplow

uplow

==

+=

)()(

)()(

Discussion on boundary detection using statistical analysis

 Fig 3.18 illustrates the results obtained by using statistical analysis when there are

similarities of high intensity between cartilage and background pixels. Fig 3.18(b)

shows the result obtained by using boundary detection without statistical analysis. In

this case, the cartilage boundaries (upper boundaries) that are detected including

background pixels. On the other hand, with the use of statistical analysis (Fig 3.18 (c)),

up cartilage boundaries that can be detected is more accurate compared to actual

boundaries.

(a)

(b)

(c)

Figure 3.18 (a) Example region on an image where there are similarities of high intensity between

cartilage and background pixels

Cartilage boundaries detected by using boundary detection without statistical analysis (b); and with

statistical analysis (c)

Cartilage

Background
Upper boundaries

Lower boundaries

Chapter 3: Bi-directional Scanning Segmentations

 46

 Fig 3.19 demonstrates another example of using statistical analysis to detect

cartilage component boundaries. Fig 3.19 (a) is an example image that we apply

boundary detection to detect a cartilage component (femur) boundaries. Fig 3.19 (b)

shows the result obtained by using boundary detection without statistical analysis. In

this case, where femur and tibia regions are connected, femur boundaries (lower

boundaries) between those regions cannot be detected correctly. Femur boundaries are

likely detected wider as tibia boundaries (shown in circle in Fig 3.19 (b)). Therefore,

femur boundaries obtained also contain tibia segments. Using statistical analysis, this

problem can be addressed (Fig 3.19 (c)). Hence, the lower femur boundaries can be

detected more accurately.

(a)

(b)

(c)

Figure 3.19 (a) Example region on an image where there are similarities of high intensity between

femur and tibia pixels

Femur boundaries detected by using boundary detection without statistical analysis (b); and with

statistical analysis (c)

Femur

Tibia

Upper boundaries

Lower boundaries

Chapter 3: Bi-directional Scanning Segmentations

 47

3.4 Application of Bi-directional Scanning Segmentations

 An articular cartilage on the MR image includes three components namely femur,

tibia, and patella. Because BSSM can be used to extract individual cartilage component

from an original image, there are three processes on our application of BSSM to obtain

a cartilage from an input image.

 - The first process is to obtain a cartilage component: femur from original input

image (Refer to Fig 3.20).

 - The second process is to obtain a cartilage component: tibia. Input image

which is used in the second process is an image in which femur is extracted (Refer to

Fig 3.20).

 - The final process is to obtain the last cartilage component: patella. Input image

in this time is an image in which femur and tibia are extracted (Refer to Fig 3.20).

 Fig 3.20 illustrates the algorithms to extract a cartilage from an input image by a

flow chart. In this implementation, the decision of the appearance of different cartilage

components depends on different types of an input image. As mentioned in Chapter 2,

section 2.3, following table illustrates distribution of image types according to image

sequence.

Image Sequence Cartilage types

1 - 13 Do not appear

14-18 Femur and Tibia

19 - 21 Femur , Tibia, and Patella

22 - 37 Femur and Patella

38 - 45 Femur, Tibia, and Patella

46 - 49 Femur, and Tibia

50 - 62 Do not appear

Table 3.1 Image types according to image sequence

Chapter 3: Bi-directional Scanning Segmentations

 48

Figure 3.20 Flowchart of application of BSSM to extract individual cartilage parts from

an original image.

Input Image

Apply Bi-directional Scanning
Segmentations Method on an original

Femur Image that is
extracted from original

Original Image
contains Tibia

New Image = Original Image – Femur Image

Apply Bi-directional Scanning
Segmentations Method on a new image

Tibia Image that is
extracted from original

Original Image
contains Patella

New Image = Original Image – Femur Image – Tibia Image

Apply Bi-directional Scanning
Segmentations Method on a new image

Patella Image that is
extracted from new image

End Iteration

No

No

Yes

Yes

1st Process

2nd Process

3rd Process

Chapter 3: Bi-directional Scanning Segmentations

 49

3.5 Experiment Results

 In the thesis, each method will be tested in two types: visual results and quantitative

evaluation. Visual results will firstly described in this section as well as in section 4.7 -

Chapter 4 (Introduction of method 2), and section 5.5 – Chapter 5 (Introduction of

method 3). Quantitative evaluation is then computed and demonstrated in Chapter 6

(Area and Volume Calculation).

 This section presents the results obtained by using BSSM to extract cartilage from

images sets. According to image type, we have three sets of images for testing as

follows:

 - Image set 1: Images that contain Femur, Tibia, and Patella.

 - Image set 2: Images that contain Femur, and Tibia.

 - Image set 3: Images that contain Femur and Patella.

Image Set 1

 Fig 3.21 shows the cartilage images extracted from Image Set 1. In general,

cartilage image is composed of femur, tibia, and patella images. This is only true in

case of image 1 and 2 when patella appears to be isolated from other components on

original input image. BSSM cannot distinguish femur from patella when patella and

femur are connected vertically. Hence, it does not extract femur from patella separately.

Patella is then considered as femur and femur image contains patella. Cartilage image

now is composed of femur image and tibia image. In case of tibia and femur, this

problem does not exist since they are connected horizontally.

 Intuitively, cartilage images that are extracted by using BSSM are reasonably close

to actual cartilage on original images except in case of image number 2 and 6 in Fig

3.21. In both cases, several femur segments are not detected. This is because of a very

low contrast between those femur segments and background regions.

Image Set 2

 Fig 3.22 shows the cartilage images extracted from Image Set 2. In this case,

cartilage image is composed of femur image and tibia image. Generally, the results

obtained are reasonable, except in case of image number 6 and 8. In both cases, some

tibia segments are not detected. The reason is a low contrast between tibia segments

and background regions.

Image Set 3

 Fig 3.23 shows the cartilage images extracted from Image Set 3. Because femur and

patella are connected vertically, so that BSSM cannot extract femur from patella

Chapter 3: Bi-directional Scanning Segmentations

 50

separately. Therefore, femur image contains tibia. Cartilage images shown in Fig 3.23

are femur images.

 BSSM is good at extracting cartilage from original image. Results obtained from

image set 3 are specifically accurate than results obtained from image set 1 and 2. This

is because contrasts between cartilage and background regions are high on image set 3.

1(a)

1(b)

2(a)

2(b)

3(a)

4(a)

4(b)

5(a)

5(a)

6(a)

6(b)

7(a)

7(b)

8(a)

8(b)

Figure 3.21 (a) Images on Image Set 1 and (b) Cartilage images extracted from Image Set 1

by using BSSM.

3(b)

Chapter 3: Bi-directional Scanning Segmentations

 51

1(a)

1(b)

2(a)

2(b)

3(a)

3(b)

4(a)

4(b)

5(a)

5(b)

6(a)

6(b)

7(a)

7(b)

8(a)

8(b)

Figure 3.22 (a) Images on Image Set 2 and (b) Cartilage images extracted from Image Set 2

by using BSSM

Chapter 3: Bi-directional Scanning Segmentations

 52

1(a)

1(b)

2(a)

2(b)

3(a)

3(b)

4(a)

4(b)

5(a)

5(b)

6(a)

6(b)

7(a)

7(b)

8(a)

8(b)

9(a)

9(b)

10(a)

10(b)

Figure 3.23 (a) Images on Image Set 3 and (b) Cartilage images extracted from Image Set 3

by using BSSM

Chapter 3: Bi-directional Scanning Segmentations

 53

3.6 Conclusion

 BSSM is an automatic method that is used to extract the cartilage from MR

images. It is based on the two properties of intensity value of pixels: discontinuity and

similarity. It can also be based on the statistical analysis such as curve fitting

algorithms and average weight calculation. This approach works well when the contrast

between the cartilage and background regions is high. That is, the cartilage pixels have

high intensity values while its background pixels have low intensity values. When the

contrast is low, BSSM often goes in struggle in detecting the cartilage boundaries.

 Fig 3.24 illustrates the disadvantage of BSSM when it fails to detect the cartilage

boundaries when there is a low contrast between cartilage and background regions.

Figure 3.24 Example of low contrast between cartilage and background regions.

 On the other hand, the success of BSSM depends on how we define rules or

principles of combination between edge detection, thresholding and statistical analysis.

Therefore, we need to find another automatic method, which is more reliable and

accurate. We are going to present the neural network classifier method (NNCM), which

is based on artificial neural network in next chapter.

Chapter 4: Neural Network Classifier

 54

Chapter 4

NEURUAL NETWORK CLASSIFIER

4.1 Overview

 Even though high-speed computers with central processing units capable of

performing millions of operations per second have become widely available, the human

brain can still perform a variety of tasks much more efficiently than computers. Task

such as recognizing cartilage parts from MRI scans can be performed effortlessly by

the human brain, but can only be performed in controlled situations by conventional

computers. The reason that the human brain can perform so efficiently is that it uses

parallel computation effectively. Thousands or even millions of nerve cells called

neurons are organized to work simultaneously on the same problem [28].

 Therefore, in this chapter, we present a method named neural network classifier

method (NNCM), which use artificial neural network as cartilage classification on a

MR image [1].

4.2 Artificial Neural Networks

 Artificial neural networks are an attempt to emulate the processing capabilities of

biological neural systems. The basic idea is to realize systems capable of performing

complex processing tasks by interconnecting a set of very simple processing elements

that might even work in parallel. They solve cumbersome and intractable problems that

are difficult for conventional computers or human beings such as pattern recognition or

clustering data by learning directly from data. An artificial neural network usually

consists of some simple processing units, namely, neurons, via mutual interconnection.

It learns to solve problems by logically adjusting the strength of the interconnections

according to input data. Moreover, it can be easily adapted to new environments by

learning. In addition, it can deal with information that is noisy, inconsistent, vague, or

probabilistic.

 The main features of artificial neural networks are their massive parallel processing

architectures and the capabilities of learning from the present inputs. They can be

Chapter 4: Neural Network Classifier

 55

utilized to perform a specific task only by means of adequately adjusting the connection

weights, that is, by training them with the presented data. For each type of artificial

neural network, there exists a corresponding, learning algorithm by which we can train

the network in an iterative updating manner.

 There exist many types of neural networks that solve a wide range of problems in

the area of image processing. There are also many types of neural networks and they

are determined by the type of connectivity between the processing elements,

characteristics, and training or learning rules. These rules specify an initial set of

weights and indicate how weights should be modified during the learning process to

improve network performance. [29].

 There are two types of classification known in image processing: region-based and

pixel-based classification. An object is classified in region-based classification based

on features that are usually computed to describe the entire object. Those are mostly

geometric features as various sizes and shape measurements. Fig 4.1(a) illustrates this

fact. Other features are computed at pixel level. This means that in pixel-level

classification a feature value is computed for each pixel and so each pixel is classified

individually as show in Fig 4.1(b).

Figure 4.1 (a) Classification of a region based upon a feature set.

Region in image

Neural net classifier

Region
Label

Shape

Texture

Position

Size

Context

 •
•

 •
•
•

Chapter 4: Neural Network Classifier

 56

Figure 4.1 (b) Classification at pixel level.

In our chapter, we will apply pixel-base classification for cartilage recognition.

4.3 Multilayer perceptrons (MLP)[30]

 Multilayer perceptrons (MLP) are one of the most important types of neural

networks because many applications [31] are successful implementations of MLPs.

MLPs are specially suited for object recognition problems. They are fast and reliable

networks for the problems they can solve.

Values from
pixel patch

Object in Image Pixel Patch

Position data

Neural net classifier

Resulting image
based on pixel classification

Chapter 4: Neural Network Classifier

 57

 Fig 4.2 illustrates how MLP is used as neural network classifier (NNC) for object

recognition base on pixel level classification. For each pixel on MR image, a pixel

patch is generated. It is used as the input for the neural network classifier (NNC) as

well as its location. Throughout the network, pixel is classified as object pixel or

background pixel.

Figure 4.2 Using multilayer perceptrons as NNC for cartilage classification at pixel

level.

Values from
pixel patch

Object in Image Pixel Patch

Position data

Neural net classifier

Resulting image
based on pixel classification

Multilayer Perceptrons (MLPs)

Chapter 4: Neural Network Classifier

 Typically, the network consists of a set of processing units that constitute the input

layer, one or more hidden layers, and an output layer. The input signal propagates

through the network in a forward direction, on a la

illustrates the configuration of the MLP.

 Fig 4.3 (b) Propagation rule and activation function for the MLP network.

 A node in a hidden layer is connected to every node in the next

it. In Fig 4.3 (a) weight

connects hj to output node o

X1

X2

Xl

Input nodes

p2

p1

pN

Chapter 4: Neural Network Classifier

the network consists of a set of processing units that constitute the input

layer, one or more hidden layers, and an output layer. The input signal propagates

the network in a forward direction, on a layer-by-layer basic. Fig 4.

he configuration of the MLP.

Figure 4.3 (a) Two-layer perceptron.

Propagation rule and activation function for the MLP network.

A node in a hidden layer is connected to every node in the next

weight wij connects input node xi to hidden node h

to output node ok. Classification begins by presenting a pattern to the input

1

2

l

h1

h2

hm

O1

On

Hidden nodes hj Input nodes xi Output nodes

Hidden Layer Output Layer

g f

 Bias b

58

the network consists of a set of processing units that constitute the input

layer, one or more hidden layers, and an output layer. The input signal propagates

layer basic. Fig 4.3 (a)

Propagation rule and activation function for the MLP network.

A node in a hidden layer is connected to every node in the next layer and previous

to hidden node hj and weight vjk

. Classification begins by presenting a pattern to the input

Output nodes ok

Output Layer

Chapter 4: Neural Network Classifier

 59

nodes xi, 1≤ i ≤ l. From there data flow in one direction through the perceptron until the

output nodes ok, 1≤ k ≤ n, are reached. Output nodes will have a value of either 0 or 1.

Thus, the perceptron is capable of partitioning its patterns space into 2n classes.

The MLP algorithm is described as follow:

1. Present the pattern p = [p1, p2, …, pl] lℜ∈ to the perceptron, that is, set xi = pi

for 1≤ i ≤ l.

2. Compute the values of the hidden layer nodes as it is illustrated in Fig 4.3(b)

















++−+

=

∑
=

l

i
iijoj

j

bxww

h

1

)(exp1

1
 1≤ j ≤ m

The activation function is the sigmoid function
)exp(1

1
)(

x
xf

−+
= and it is

also the most common form of activation function in MLP.

3. Calculate the values of the output nodes according to











+++

=

∑
=

m

j
jjkok

k

bhvv

o

1

)(exp1

1
 1≤ k ≤ n

4. The class c = [c1, c2, …, cn] that the perceptron assigns at p must be a binary

vector. So ok must be the threshold of a certain class at some level τ and

depends on the application.

5. Repeat steps 1, 2, 3 and 4 for each pattern that is to be classified.

 In order to obtain a NNC, there are two main processes: building and training a

network.

- Building a network is to specify a neural network structure and some relative

parameters in a network such as input size, number of layers, activation

function for the network etc…

- Training a network is to obtain the all weights and biases of a network

according to training data.

Chapter 4: Neural Network Classifier

 60

4.4 Neural Network Classifier Definition:

 In order to classify a pixel into two classes: cartilage and background class, two-

layer perceptrons is the most suitable choice. Fig 4.4 presents the structure of the two-

layer perceptrons as neural network classifier (NNC):

Figure 4.4 Two-layer peceptrons

 Where R is the number of elements in input vector, S1 is number of neurons (or

nodes) in hidden layer and S2 is number of neurons in output layer. The weights

iw(S1,R) and biases b1(S1) are weights and biases between input and hidden layer. The

weights lw(S2,S1) and biases b2(S2) are weights and biases between hidden and output

layers.. f1 is activation function of hidden layer and f2 is activation function of output

layer.

 a1 is output of hidden layer, it also is input of output layer. a1 is defined as:

)(1
,

11
1 biwfa

Rs
+=

 a2 is output of output layer, it also is output of a network. a2 is defined as:

).(21
,

22
12 balwfa

SS
+=

Chapter 4: Neural Network Classifier

 61

4.4.1 Input Vectors.

 As mentioned in Section 4.3, input of the network is the vector p computed from

pixel patch of a pixel on the MR image. Pixel patch is a matrix formed by a pixel and

its neighbourhood. In another ways, it is an image window surrounding a pixel. Fig 4.5

illustrates the relationship between the pixel patch and the input vector.

Figure 4.5 Generation of the input vector from a point on MR image.

 Since input vector is formed from pixel patch, there is relationship between sizes of

them. A pixel patch which is a matrix has size of [PxQ], input vector’s size is then

[1,(PxQ)]. For instance, [3x3] pixel patch resulting in [1x9] input vector.

 Input vectors represent the features of object (cartilage) or background on a MR

image. Base on that, the network is trained to dichotomise those classed. Hence, the

input vectors show more information of objects or background features will improve

the network performance. For that reason, an appropriated size of input vector provides

the best results.

 By simulation experiments, we found the most suitable size of input vector is

[1x81] (pixel patch size is [9x9]).

Pixel Patch p1

p2

.

.

.
pN

Pi =

Single point pi
belongs to object
from MRI scan

Input vector Pi

Chapter 4: Neural Network Classifier

 62

4.4.2 Activation Function

 We have three activation functions that can be used in MLPs. First, Log-Sigmoid

function is used most often.

Alternatively, multilayer networks can use the tan-sigmoid transfer function tansig.

Occasionally, the linear transfer function purelin is used in backpropagation networks.

 Depend on the application of the MLPs, we can decide the most suitable function.

To solve problems in cartilage classification, we want to constrain the output value of

the network in the range [0, 1] where output value 0 representing background pixel and

1 representing cartilage pixel. Because the function log-sigmoid generates outputs

between 0 and 1 as the neuron’s net input goes from negative to positive infinity, the

log-sigmoid function is best suitable selection for activation function.

Chapter 4: Neural Network Classifier

 63

4.4.3 Number of Neuron in Layers

 Due to classification of two classes: cartilage class and background class, only one

neuron on output layer is required.

 The number of neurons in the hidden layer was heuristically chosen to be 40 (the

average of the number of elements in input vector). There are no known rules for

specifying the number of neurons in the hidden layers of a network, so this number

generally is based either on prior experience or simply chosen arbitrarily and then

refined by testing.

4.5 Network Training

 Training a network is to specify all weights and biases of a network such as the

weights iw and biases b1 between input and hidden layer, and the weight lw and biases

b2 between hidden and output layers.

4.5.1 Back-propagation Algorithm

 The network is trained by a popular algorithm know as the error back-propagation

algorithm. This process consists of two passes through the different layers of the

network: a forward and a backward pass. During the forward pass, a training pattern is

presented to the perceptron and classified.

 The backward pass recursively, level by level, determines error terms used to adjust

to the perceptron weights. The error terms at the first level of the recursions are a

function of ct and output of the perceptron (o1, o2… on). After all the errors have been

computed, weights are adjusted using the error terms that correspond to their level. The

algorithm description of the back-propagation is given here:

1. Initialization: initialize the weights of the perceptron randomly with numbers

between -0.1 and 0.1; that is,

 wij = random([-0.1,0.1]) 0 ≤ i ≤ l, 1 ≤ j ≤ m

 vjk = random([-0.1,0.1]) 0 ≤ j ≤ m, 1 ≤ k ≤ n

Chapter 4: Neural Network Classifier

 64

 2. Presentation of training examples:

 Present pt = [pt
1, pt

2, …, pt
l] from the training pair (pt, ct) to the perceptron and

apply steps 1, 2, and 3 from the perceptron classification algorithm described earlier

in Section 4.3.

 Collecting the training data will be described in section 4.5.2

3. Forward computation: Compute the error δok, 1 ≤ k ≤ n in the output layer using

))(1(k
t
kkkok ocoo −−=δ

Where ct = [ct
1, ct

2, …, ct
n] represents the correct class of pt. The vector (o1, o2… on)

represents the output of the perceptron.

4. Forward computation: Compute the error δhj, 1 ≤ j ≤ m, in the hidden layer using:

 ∑
=

−=
n

k
jkokjjhj vhh

1

)1(δδ

5. Backward computation: Let vjk denote the value of weight vjk after the tth training

pattern has been presented to the perceptron. Adjust the weights between the output

layer and the hidden layer using

 jokjkjk htvtv ηδ+−=)1()(

Parameter 0 ≤ η ≤ 1 represents the learning rate.

6. Backward computation: Adjust the weights between the hidden layer and the

input layer according to:

 t
ihjijij ptwtw ηδ+−=)1()(

7. Iteration: Repeat steps 2 through 6 for each element of the training set. One cycle

through the training set is called an iteration.

There are several algorithms that are called training algorithms to adjust the weights

and biases of a network. We will discuss about this matter in section 4.5.3.

4.5.2 Collecting Training Data

 Back-propagation network requires two types of training data: input vectors (see

Section 4.4) that represent two classes: cartilage class and background class, and the

corresponding target vectors.

 Input vectors are collected from a typical MR image. Fig 4.7 shows an image in

which training data are collected. There are three types of pixel patch corresponding to

pixel’s location: the cartilage pixel (pixel that lie on cartilage region), the background

pixel (the pixel lie on the background region), and the boundary pixel (the pixel lie on

Chapter 4: Neural Network Classifier

(b)

(c) (e)
(d)

(d)

the adjacent location between cartilage and background regions). Therefore, we have

three types of input vector.

(a)

Figure 4.6 Example of pixel and pixel patch from MRI scan.

(a) Original MRI scan : Point P0 – a pixel belongs to cartilage region, point Pb –

belongs to background region, and Pb – a pixel belongs to boundary regio

(b) Structure of pixel patch that generated from point Pi and its neighbourho

(c) Pixel patch of point P0.

(d) Pixel patch of point Pb.

(e) Pixel patch of point Pa.

 Fig 4.6 illustrates three types of pixel and its features. Corresponding to pi

(gray level), the pixel patch of a cartilage pixel often contains high values (Fig

P11 P15

 Pi

P51 P55

99 103 71 86 101

115 104 93 88 87

106 100 104 105 97

90 102 93 100 99

88 98 99 102 111

95 86 97 92 97

92 100 110 100 50

88 105 99 47 52

101 112 60 33 32

99 51 45 17 16

40 27 15

41 35 19

35 22 17

33 47 30

26 22 35

Point Pb belong
background region Point P0 belong

Object region

Point ng
boun

.

.

.
 P belo
a

dary region
65

 a pixel

n.

ods.

xel level

 4.6 (c))

12 20

6 42

21 30

11 32

19 12

Chapter 4: Neural Network Classifier

 66

while the pixel patch of a background pixel often contains low values (Fig 4.6 (e)). The

pixel patch of boundary pixel contains both low and high values and it falls into two

regions (see Fig 4.6 (d)). It is due to the characteristic of MRI scan. The cartilage pixels

are visualized with high contrast to its surrounding pixels (background).

Figure 4.7 Original image in which training data collected

Target vectors

 The target vectors values are set according to different types of input vectors. For

input vector of an object (cartilage) class, the value of target vector is 1; for input

vector of a background class, the value of target vector is 0. The size of single target

vector is 1-by-1. In additional, corresponding to set of input vectors, the size of target

vectors is 1x[number of input vectors].

 Fig 4.8 illustrates the relations between the input vectors and the targets vector.

Figure 4.8 (a) shows the size relationship while Figure 4.8 (b) shows the value

relationships. m input vectors produces target vectors of size 1xm. In Figure 4.8 (b),

input vector P1 and P3 are object vectors and input vector P2 is background vector. As

the result, the value of target vectors are [1 0 1].

Chapter 4: Neural Network Classifier

 67

Figure 4.8 (a) Example of size relation between input vectors and target vectors.

 Figure 4.8 (b) Example of value relation input vectors and target vectors.

4.5.3 Training Algorithms

 For back-propagation network, there are several training algorithms to adjusted all

the weights and biases of the network to minimize the mean square error (MSE)

between the network outputs and the target outputs. Due to faster training, we applied

three types of training algorithms using optimization techniques: Conjugate Gradient,

Quasi-Newton, and Levenberg- Marquardt.

Conjugate Gradient Algorithms

 The basic back-propagation algorithm adjusts the weights in the steepest descent

direction (negative of the gradient), the direction in which the performance function is

decreasing most rapidly. It turns out that, although the function decreases most rapidly

along the negative of the gradient, this does not necessarily produce the fastest

convergence. In the conjugate gradient algorithms, a search is performed along

conjugate directions, which produces generally faster convergence than steepest

descent directions. There are four variations of conjugate gradient algorithms:

P11 P21 . . . Pm1
P12 P22 . . . Pm2
P13 P23 . . . Pm3
 . . .
 . . .
 . . .
P1n P2n Pmn

Set of m input vectors

t1 t2 . . . tm

Relating target vectors

Input Input Input
Vector Vector Vector
P1 P2 P3

1 0 1

Set of 3 input vectors Relating target vectors

Chapter 4: Neural Network Classifier

 68

Fletcher-Reeves Update [32]

 All the conjugate gradient algorithms start out by searching in the steepest descent

direction (negative of the gradient) on the first iteration.

 00 gp −=

 A line search is then performed to determine the optimal distance to move along the

current search direction:

 kkkk pxx α+=+1

 Then the next search direction is determined so that it is conjugate to previous

search directions. The general procedure for determining the new search direction is to

combine the new steepest descent direction with the previous search direction:

 1−+−= kkkk pgp β

 The various versions of the conjugate gradient algorithm are distinguished by the

manner in which the constant βk is computed. For the Fletcher-Reeves update the

procedure is:

11 −−

=
k

T
k

k
T
k

k gg
gg

β

 This is the ratio of the squared norm of the current gradient to the squared norm of

the previous gradient.

Polak-Ribiere Update [33]

 Another version of the conjugate gradient algorithm was proposed by Polak and

Ribiére. As with the Fletcher-Reeves algorithm, the search direction at each iteration is

determined by:

 1−+−= kkkk pgp β

 For the Polak-Ribiére update, the constant βk is computed by:

11

1
−−

−∆
=

k
T
k

k
T
k

k gg
gg

β

 This is the inner product of the previous change in the gradient with the current

gradient divided by the squared norm of the previous gradient.

Powell-Beale Restart [34, 35]

 For all conjugate gradient algorithms, the search direction is periodically reset to

the negative gradient. The standard reset occurs when the number of iterations is equal

Chapter 4: Neural Network Classifier

 69

to the number of network parameters (weights and biases), but there are other reset

methods that can improve the efficiency of training. One such reset method was

proposed by Powell, based on an earlier version proposed by Beale [36]. This technique

restarts if there is very little orthogonality left between the current gradient and the

previous gradient. This is tested with the following inequality:

2

2.0|1 kk
T
k ggg ≥−

 If this condition is satisfied, the search direction is reset to the negative of the

gradient.

Scaled Conjugate Gradient [37, 38]

 Each of the conjugate gradient algorithms discussed so far requires a line search at

each iteration. This line search is computationally expensive, because it requires that

the network response to all training inputs be computed several times for each search.

The scaled conjugate gradient algorithm (SCG), developed by Moller[39], was designed

to avoid the time-consuming line search. This algorithm combines the model-trust

region approach (used in the Levenberg-Marquardt algorithm,), with the conjugate

gradient approach.

Quasi-Newton Algorithms

 There are two types of Quasi-New algorithms: Broyden, Fletcher, Goldfarb, and

Shanno (BFGS) Alogrithm and One Step Secant Algorithm

Broyden,Fletcher,Goldfarb, and Shanno (BFGS) Algorithm [40, 41]

 Newton's method is an alternative to the conjugate gradient methods for fast

optimization. The basic step of Newton's method is

 kkkk gAxx 1
1

−
+ −=

where 1−
kA is the Hessian matrix (second derivatives) of the performance index at the

current values of the weights and biases. Newton's method often converges faster than

conjugate gradient methods. Unfortunately, it is complex and expensive to compute the

Hessian matrix for feedforward neural networks. There is a class of algorithms that is

based on Newton's method, but which doesn't require calculation of second derivatives.

These are called quasi-Newton (or secant) methods. They update an approximate

Chapter 4: Neural Network Classifier

 70

Hessian matrix at each iteration of the algorithm. The update is computed as a function

of the gradient. The quasi-Newton method that has been most successful in published

studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update [42].

One Step Secant Algorithm [43]

 Because the BFGS algorithm requires more storage and computation in each

iteration than the conjugate gradient algorithms, there is need for a secant

approximation with smaller storage and computation requirements. The one step secant

(OSS) method is an attempt to bridge the gap between the conjugate gradient

algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store the

complete Hessian matrix; it assumes that at each iteration, the previous Hessian was the

identity matrix. This has the additional advantage that the new search direction can be

calculated without computing a matrix inverse.

Levenberg-Marquardt Alogrithm [44]

 Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed

to approach second-order training speed without having to compute the Hessian matrix.

When the performance function has the form of a sum of squares (as is typical in

training feedforward networks), then the Hessian matrix can be approximated as

 JJH T=

and the gradient can be computed as:

 eJg T=

where J is the Jacobian matrix that contains first derivatives of the network errors with

respect to the weights and biases, and e is a vector of network errors. The Jacobian

matrix can be computed through a standard backpropagation technique [45] that is much

less complex than computing the Hessian matrix.

 The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix

in the following Newton-like update:

 eJIJJxx TT
kk

1
1][−
+ +−= µ

 When the scalar µ is zero, this is just Newton's method, using the approximate

Hessian matrix. When µ is large, this becomes gradient descent with a small step size.

Newton's method is faster and more accurate near an error minimum, so the aim is to

shift toward Newton's method as quickly as possible. Thus, µ is decreased after each

Chapter 4: Neural Network Classifier

 71

successful step (reduction in performance function) and is increased only when a

tentative step would increase the performance function. In this way, the performance

function is always reduced at each iteration of the algorithm.

 Therefore, we have total 7 different training algorithms. Depend on speed and

performance of each algorithm, we will determine which one is the most suitable.

Speed and performance of each training algorithm

 The speed and performance of each training algorithm depend on many factors,

including the number of input vectors in the training set, the number of weights and

biases in the network, the error goal and the network is being used for cartilage

recognition. Training algorithm, which provides the best performance, will be selected.

Hence, we have taken several experiments about those different training algorithms to

investigate their speed and performance.

 We made experiments on Matlab environment by using Matlab software. Here are

some computer’s features that we used:

 - Computer: Intel(R), Pentium(R) 4CPU 2.66GHz; 512 MB of RAM

- Operation system: Microsoft Windows XP Professional, Version 2002,

Service Pack 2

First Experiment

 We made a first experiment to get a general idea about speed and performance of

each training algorithm.

 - Training data:

+ 200 input vectors that denote cartilage class, include 100 input vectors of

pixels on cartilage region and 100 input vectors of pixels on cartilage

boundaries.

 + 200 input vectors that denote background class.

 Training data are randomly selected from a sample image shown in Fig 4.9

- Neural Network: Two layer perceptrons with log-sigmoid activation function in

each layer. Hidden layer has 40 neurons whereas only one neuron on output layer.

Chapter 4: Neural Network Classifier

 72

Figure 4.9 Original image in which training data collected.

 The following table is the results of training the network using seven different

training algorithms that are mentioned in previous section in terms of time and mean

square error (MSE). We only take one trial for each training algorithm.

 - The time shown in the table is the total time for the computer to compute all the

weights and biases of a neural network by using a specific training algorithm to

minimize the mean square error (MSE) between network output and target output. The

speed of training a network is faster when the time is shorter.

 - The mean square error (MSE) shown in the table is the mean square error between

network outputs and target outputs. Performance of a network is determined by MSE

value. Network performance is higher when MSE value is smaller.

Algorithms Time (s) MSE

Polak-Ribiere Conjugate Gradient 1.62815 0.13596

Fletcher-Powell Conjugate Gradient 1.43912 0.13024

Powell/Beale Restarts 2.12743 0.15211

Scaled Conjugate Gradient 4.58572 0.12199

BFGS Quasi-Newton 240 0.14801

One Step Secant 3.36133 0.15015

Levenberg-Marquardt 210 0.16421

Table 4.1 Speed and performance of seven different training algorithms

Chapter 4: Neural Network Classifier

 73

 Overall, Levenberg-Marquardt and BFGS Quasi-Newton methods do not perform

well on object recognition problems. The time for computing all network’s weights and

biases by using those training algorithms is significant longer. The Levenberg-

Marquardt is designed for least squares problems that are approximately linear.

Because the output neurons in object recognition problems are generally saturated, it

should not be operated in the linear region.

 As a result, we can use five training algorithms such as Polak-Ribiere, Fletcher-

Powell, Scaled Conjugate Gradient, Powell/Beale Restarts and One Step Secant

methods.

Second Experiment

 In second experiment, we processed intensely in order to choose the most suitable

training methods.

 - Training data and neural network that are used in second experiment are the same

as in the first experiment.

 - For each training algorithm, we made 30 different trials where different random

initial weights and biases are used in each trial.

 The following table summarized the results of training a network with five different

algorithms. During 30 different trials, each entry in the table represents:

- Min Time: is the shortest time for computing all network’s weights and biases

- Max Time: is the longest time for computing all network’s weights and biases

- Mean Time: is the average time for computing all network’s weights and biases.

- Min MSE: is the lowest mean square error.

- Max MSE: is the highest mean square error.

- Mean MSE: is the average mean square error.

- Number of successful trials: that we are successful in computing all network’s

weights and biases to minimize mean square error under condition that gradient

value is less than 0.00001.

Chapter 4: Neural Network Classifier

 74

 Polak-

Ribiere

Fletcher-

Powell

Powell/Beale

Restarts

Scaled Conjugate

Gradient

One Step

Secant

Min Time (s) 1.2161 1.33151 1.11611 2.82169 1.09089

Max Time (s) 3.2315 2.59043 2.65109 4.58572 3.71076

Mean Time (s) 1.67 1.7101 1.5836 3.654 1.7723

Min MSE 0.11771 0.12158 0.12309 0.11809 0.13673

Max MSE 0.15119 0.14373 0.15211 0.14068 0.17612

Mean MSE 0.133507 0.130638 0.132037 0.13056 0.15309

Number of

successful trials
23 13 21 30 29

Table 4.2 Speed and performance of five different training algorithms

 From the table, Scaled Conjugate Gradient is the most suitable training method. It

not only produces lowest MSE but also provides consistency and reliability (Scaled

Conjugate Gradient method has highest successful rate (30/30)). Therefore, we will

select Scaled Conjugate Gradient method for training a network.

4.6 Application of Neural Network Classifier

 When we success in creating a NNC, we apply it as cartilage recognition to extract

a cartilage from an original image. Because NNC can specify a class of a pixel on an

image, one obvious simple way is to apply NNC to all pixels. However, it is not

effective and reliable according to noise. Similar to BSSM, there are also two processes

on our NNCM: left and right process. The left process is to extract the cartilage on

partitioned sub-images on the left direction according to initial sub-image. On the other

hand, right process is to extract the cartilage on partitioned sub-images on the right

direction according to initial sub-image.

 However, because NNC can classify a pixel as cartilage or background, it cannot

classify cartilage pixel into cartilage component’s class. We apply NNCM to obtain a

cartilage instead of individual cartilage component from an input image. A general

flowchart of NNCM is shown as Fig 4.10 (a).

 Consider an input image is a matrix I that is defined from pre-processing step. Sub-

images are columns of matrix I. Sub-images that contain the cartilage segments are

defined as cartilage sub-images. Our NNCM algorithms are described as:

Chapter 4: Neural Network Classifier

 75

1. From input image [K rows and L columns] I, find initial cartilage sub-image

representing i-th column of matrix I, where i = 1, 2, …, L. Initial cartilage sub-

image determination is described in section 4.6.1.

2. Left Process: Corresponding to initial sub-image, find a next cartilage sub-

image representing (i + ∆)-th column, ∆ = 1,2,3… Cartilage sub-image

determination is described in section 4.6.1.

3. Right Process: Corresponding to initial sub-image, find a previous cartilage sub-

image representing (i - ∆)-th column, ∆ = 1,2,3…

4. For each pixel on cartilage sub-images that found in step 1, 2, and 3 , compute

output of a network classifier:

)(log 1
,

1
1 biwsiga

Rs
+=

).(log 21
,

2
12 balwsiga

SS
+=

Where a2 is output of a network; iw and b1 are weights and biases between input

and hidden layer; lw and b2 are weights and biases between hidden layer and

output layer.

R is number of elements of a input vector; S1 is number of neurons of hidden

layer; and S2 is number of neurons of output layer.

Output network is then filtered with a threshold K

- Output value is “1” if a2 > K: this pixel is classified as cartilage pixel.

- Output value is “0” if a2 < K: this pixel is classified as background pixel.

5. Continue until all cartilage pixels are classified on cartilage sub-images.

Input image

Apply neural network
method

Cartilage image that is
extracted from input image

Figure 4.10(a) General flowchart of NNCM

Chapter 4: Neural Network Classifier

Fig 4.10(b) illustrates operation of NNCM.

Figure 4.10 Operati

Input Image

Find an initial sub-image that
contains cartilage segments

Move to next sub-image on the
right side of an initial sub-image

For each pixel on a sub-image

Generate pixel patch to create
an input vector

fornetworkclassifier

Move to next sub-image on the
left side of an initial sub-image

It contains cartilage
segments?

Pixel is classified as cartilage
pixel if output value is 1. Pixel is
classified as background pixel if

output value is 0

For each pixel on a sub-image

eate

It contains cartilage
segments?

End Itera

Yes Yes

No No

Compute neural network
classifier output

Apply threshold K
Generate pixel patch to cr
an input vector
76

on of NNCM.

tion

Compute neural network
classifier output

Pixel is classified as cartilage
pixel if output value is 1. Pixel is
classified as background pixel if

output value is 0

Apply threshold K

Chapter 4: Neural Network Classifier

 77

4.6.1 Cartilage sub-image and initial cartilage sub-image determination

 Unlikely cartilage sub-image determination of BSSM, which is based on the group

of pixels that have high intensity than a reference threshold value V (see Chapter 3), we

apply NNC on each pixel on a sub-image to make determination.

 Where g(x,y) is a group of pixels on a sub-image that are classified as cartilage

class by a NNC.

 An initial cartilage sub-image is a cartilage sub-image, which locates in the middle

of a cartilage region as well as in the middle of an input image.

4.7 Experiment Results

 This section presents the visual results obtained by using NNCM to extract a

cartilage from images sets. The quatitative evaluation of this method is then described

in Chapter 6 (Area and Volume Calculation). We use the same image sets that are used

in case of BSSM in order to test and make comparison between BSSM and NNCM.

 - Image set 1: Images that contain Femur, Tibia, and Patella.

 - Image set 2: Images that contain Femur, and Tibia.

 - Image set 3: Images that contain Femur and Patella.

Image Set 1

 Fig 4.11 shows cartilage images extracted from Image Set 1.

Image Set 2

 Fig 4.12 shows cartilage images extracted from Image Set 2.

Image Set 3

 Fig 4.13 shows cartilage images extracted from Image Set 3.

 Results obtained by using NNCM appeared more accurate compared to the results

obtained by using BSSM. In both cases, the cartilage images were compared with the

original cartilage image. It was observed that NNCM worked well with several images

that BSSM could not work well. It can be observed in the following images as follows:

Cartilage sub-image if g(x,y) ∈ Cartilage class

Otherwise, Background sub-image

A sub-image f(x,y) is defined as

Chapter 4: Neural Network Classifier

 78

 - Image 2, image 6 on Image set 1 in Fig 4.11

 - Image 6, image 8 on Image set 2 in Fig 4.12

1(a)

1(b)

1(c)

2(a)

2(b)

2(c)

3(a)

3(b)

3(c)

4(a)

4(b)

4(c)

Figure 4.11 (a) Images on Image Set 1, Cartilage images extracted

from Image Set 1 by using NNCM (b) and BSSM (c).

Chapter 4: Neural Network Classifier

 79

5(a)

5(b)

5(c)

6(a)

6(b)

6(c)

7(a)

7(b)

7(c)

8(a)

8(b)

8(c)

Figure 4.11 (a) Images on Image Set 1, Cartilage images extracted

from Image Set 1 by using NNCM (b) and BSSM (c).

Chapter 4: Neural Network Classifier

 80

1(a)

1(b)

1(c)

2(a)

2(b)

2(c)

3(a)

3(b)

3(c)

4(a)

4(b)

4(c)

Figure 4.12 (a) Images on Image Set 2, Cartilage images extracted

from Image Set 1 by using NNCM (b) and BSSM(c).

Chapter 4: Neural Network Classifier

 81

5(a)

5(b)

5(c)

6(a)

6(b)

6(c)

7(a)

7(b)

7(c)

8(a)

8(b)

8(c)

Figure 4.12 (a) Images on Image Set 2, Cartilage images extracted

from Image Set 1 by using NNCM (b) and BSSM (c).

Chapter 4: Neural Network Classifier

 82

1(a)

1(b)

1(c)

2(a)

2 (b)

2(c)

3(a)

3(b)

3(c)

4(a)

4(b)

4(c)

5(a)

5(b)

5(c)

Figure 4.13(a) Images on Image Set 3, Cartilage images extracted

from Image Set 1 by using NNCM (b) and BSSM (c).

Chapter 4: Neural Network Classifier

 83

6(a)

6(b)

6(c)

7(a)

7(b)

7(c)

8(a)

8(b)

8(c)

9(a)

9(b)

9(c)

10(a)

10(b)

10(c)

Figure 4.13(a) Images on Image Set 3, Cartilage images extracted

from Image Set 1 by using NNCM (b) and BSSM (c).

Chapter 4: Neural Network Classifier

 84

4.8 Conclusion

 Multilayer Perceptrons (MLPs) are one of the most important types of neural

network that can be used for object classification in image processing. The success of

classification depends on training the sample data with learning rules and training

algorithms. Therefore, NNCM can work well when there is low contrast between object

and background regions that cause difficulty for BSSM. Fig 4.14 is an example of this.

Figure 4.14 Comparison of NNCM and BSSM according to low contrast between

cartilage and background regions

(a) Result of extracting cartilage by using NNCM.

(b) Result of extracting cartilage by using BSSM

Chapter 4: Neural Network Classifier

 85

 However, NNCM may also have drawbacks. When cartilage pixels have features

similar to background pixels, NNCM is likely to consider them as background pixels.

Therefore, it is recommended to decrease the size of a cartilage or its number. Fig 4.15

illustrates this.

Figure 4.15 Example of NNCM when object pixels are similar to background pixels.

(a) Original MR Image and (b) Result obtained by using NNCM.

 Therefore, a final method that can takes advantages of both BSSM and NNCM is

developed. It is based on active contour models, BSSM and NNCM. This method

named active contour models method (ACMM) will be introduced in next chapter.

Chapter 5: Active Contour Models

 86

Chapter 5

ACTIVE CONTOUR MODELS

5.1 Overview

 Active contours was first introduced by Kass et al.1988 [46]. An active contour is a

set of points to enclose a target feature to be extracted. It is a bit like using a balloon to

‘find’ a shape: the balloon is placed outside (or inside) the shape, enclosing it. Then by

taking air out (or in) of the balloon, making it smaller (or bigger), the shape is found

when the balloon stops shrinking (or expanding), when it fits the target shape. By this

manner, active contours arrange a set of points so as to describe a target feature by

enclosing it.

 Give an approximation of the boundary of an object in image; an active contour

model can be used to find the ‘actual’ boundary. Active contour models should be able

to find the boundary in MR images of cartilage when an initial guess is provided by a

user or by some other method, possibly an automated one.

 An active contour is an ordered collection of n points in the image plane:

{ }
{ } { }niyxv

vvvV

iii

n

,...3,2,1,,

,...,, 21

==

=

where n is number of pixels that are supposed to initial contour of the object.

The points in the contour iteratively approach the boundary of an object through the

solution of an energy minimization problem. For each point in the neighbourhood of υi,

an energy term is computed:

 () ()iextii EEE υβυα += int

Chapter 5: Active Contour Models

 87

Figure 5.1. An example of the movement of a point υi, in an active contour. The point

υ’
i, is the location of minimum energy.

where Eint(υi) is an energy function dependent on the shape of the contour and Eext(υi) is

an energy function dependent on the image properties near point υi. α and β are

constants providing the relative weighting of the energy terms.

 Ei, Eint, Eext are matrices. The value at the center of each matrix corresponds to the

contour energy at point υi. Other values in the matrices correspond (spatially) to the

energy at each point in the neighbourhood of υi.

 Each point, υi, is moved to the point υ’
i, corresponding to the location of the

minimum value in Ei. This process is illustrated in Fig. If the energy functions are

chosen correctly, the contour V, should approach, and stop at, the object boundary.

 In this chapter, we present a method named active contour models method

(ACMM) that is mainly based on active contour models to extract the articular cartilage

from original MR knee image [1]. This method has also a combination of two previous

introduced methods: BSSM and NNCM. BSSM is used for defining an initial active

contour and NNCM is used for computing the external energy.

Chapter 5: Active Contour Models

 88

5.2 Energy Formulation

5.2.1 Internal Energy

 The internal energy function is defined to enforce a shape on the deformable

contour and to maintain a constant distance between the points in the contour.

Additional terms can be added to influence the motion of the contour.

 The internal energy function used herein is defined as follows:

)()()(int ibaliconi bEcEE υυυα +=

where Econ(υi) is the continuity energy that enforces the shape of the contour and

Ebal(υi) is a balloon force that causes the contour to grow (balloon) or shrink. c and b

provide the relative weighting of the energy terms.

Continuity Energy

 In the absence of other influences, the continuity energy term causes an open

deformable contour into a straight line and a closed deformable contour into a circle.

The formulation of the continuity energy has been adopted from [47]. The energy term

for each element, ejk(υi), in the matrix, Econ(υi) is defined as follows:

 () 2

11)(
)(

1
)(+− +−= iiijkijk p

Vl
e υυγυυ

where pjk(υi) is the point in the image that corresponds spatially to energy matrix

element ejk(υi).

γ = 0.5 for an open contour. In this case, the minimum energy point is the point exactly

half way between υi-1 and υi+1.

 For the case of a closed contour, V is given a modulus of n. Therefore, υn+i= υi. γ is

then defined as follows:









=

n
π

γ
2

cos2

1

Here, the point of minimum energy of Econ(υi) is pushed outward so that V become a

circle. This behaviour is illustrated in Fig 5.2.

 The normalization factor, l(V), is the average distance between points in V:

∑
=

+ −=
n

i
iin

Vl
1

2
1

1
)(υυ

Chapter 5: Active Contour Models

 89

 Magnitudes have been left squared to reduce the computation load. The

normalization is required to make Econ(υi) independent of the size, location, and

orientation of V.

Figure 5.2 An example of the movement of a point in an active contour due to

continuity energy. The point υ’
i, is the location of minimum energy because it lies on

the circle connecting υi-1 and υi+1.

Balloon Force

 A balloon force can be used on a closed deformable contour to force the contour to

expand (or shrink) in the absence of external influences. A contour initialized within a

uniform image object will expand under the influence of a balloon force until it nears

the object boundary (at which point the external energy function affects its motion). Fig

5.3 illustrates this behaviour.

 Chalana et al. 1995 suggests an adaptive balloon force that varies inversely

proportionally to the image gradient magnitude [48]. The adaptive balloon force is

strong in homogeneous regions and weak near object boundaries, edges, and lines.

 The energy term for element, ejk(υi), in the matrix, Ebal(υi) is expressed as a dot

product:

 ())()(ijkiiijk pne υυυ −•=

Chapter 5: Active Contour Models

 90

Where ni is the outward unit normal of V at point υi and pjk(υi) is the point in the

neighbourhood of υi corresponding to entry ejk(υi) in the energy matrix. Therefore, the

balloon energy is smallest at points farest from υi in the direction of ni.

Figure 5.3 An example of the movement of a deformable contour due to balloon

energy. Because the object has uniform intensity, a balloon force is required to push the

contour toward the object boundary.

ni can be found by rotating the tangent vector, ti, by 90o. ti is easily computed:

ii

ii

ii

ii
it υυ

υυ
υυ
υυ

−
−

+
−
−

=
+

+

−

−

1

1

1

1

So ni is a unit vector normal to ti.

5.2.2 External Energy

 The external energy function attracts the deformable contour to interesting features

in an image. Traditional external energy is looked at image gradient and intensity. For

example, we can use BSSM, which is based on intensity as external energy. However,

it is clearly see that this method has difficulty when there are low contrast between

cartilage pixels and background pixels. This problem is previously illustrated in

Chapter 3. Hence, because NNC (chapter 4) is good at handling this problem, we then

apply a NNC for computing the external energy. Moreover, in order to attract the

deformable contour, the NNC is more advanced than BSSM. Comparison between

NNC and BSSM is demonstrated in section 4.7 Chapter 4. In additional, although using

Chapter 5: Active Contour Models

 91

NN is computationally expensive (in both training stage and in testing stage), in this

thesis’s situation, the speed is not critical. In return, we can get greater benefit by using

NN since NN is a lead toward other more advanced method.

 For each point in the neighbourhood of υi, an external energy is computed:

 Eext(υi) = ENN(υi)

where ENN(υi) is NNC output value. The NNC can be adopted from Chapter 4, which is

specified as:

- Neural network classifier (NNC): two-layer perceptrons with log-sigmoid

activation function in each layer, 40 neurons on hidden layer and 1 neuron on

output layer.

- Output of a network is computed as:

)(log 1
,

1
1 biwsiga

Rs
+=

).(log 21
,

2
12 balwsiga

SS
+=

Where a2 is output of a network; iw and b1 are weights and biases between input

and hidden layer; lw and b2 are weights and biases between hidden layer and

output layer.

R is number of elements of a input vector; S1 is number of neurons of hidden

layer; and S2 is number of neurons of output layer.

Diagram of NNC algorithm is described as Fig 5.4:

Each pixel in the
neighbourhood of vi

Generate an input vector
from image window

Compute output of a
neural network classifier

External Energy of a pixel
Eext = Output value

Obtain an image window
surrounding this pixel

Chapter 5: Active Contour Models

 92

Figure 5.4 Diagram of External Energy Computation by using NNC

 Each point, υi, through the neural network, provides a value from [0 to 1] in which

0 indicates that point belongs to background (other tissues) and 1 indicates that point

belongs to object (cartilage). Point υi, is moved to the point υ’
i, corresponding to the

location of the minimum value ENN.

Figure 5.5 An example of the movement of a deformable contour due to neural network energy.

The point, υ’
i = p15, is the location of minimum energy because it lies on background.

5.3 Regularization

 The energy functions introduced in the previous sections should be scaled so that

the neighbourhood matrices contain comparable values. This process is referred to as

regularization. Here, each of the energy functions is adjusted to the range [0, 1].

The balloon energy is further modified to adapt to the image gradient magnitude.

Regularization is not required for external energy function because neural network

energy function already provide value in the range [0, 1].

Continuity Energy

 At each point in the deformable contour, the elements in neighbourhood matrix for

the continuity energy are simply scaled to the range [0, 1]:

)()(

)()(
)(

max

min'

ijki

jkijk
ijk ee

ee
e

υυ
υυ

υ
−

−
=

Chapter 5: Active Contour Models

 93

Where emin(υi) and emax(υi) are the minimum and maximum valued elements,

respectively, in Econ(υi).

Balloon Energy

 The balloon energy is scaled to the range [0, 1], then adapted to the image gradient

intensity:















∇

∇
−

−

−
=

maxmax

min')(
1.

)()(

)()(
)(

I

I

ee

ee
e i

ijki

iijk
ijk

υ
υυ
υυ

υ

Where
max

I∇ is the maximum gradient magnitude in the entire image

5.4 Application of Active Contour Models Algorithms

 Similar to BSSM, ACMM algorithms tend to extract individual cartilage

components (femur, tibia, and patella) from an original image. Therefore, our

algorithms also include three processes:

- First process: we apply ACMM on original image with initial contour of femur

to obtain femur image (Refer to Fig 5.6).

- Second process: we apply ACMM on an image that femur was extracted with

initial contour of tibia to obtain tibia image (Refer to Fig 5.6).

- Final process: we apply ACMM on an image that femur and tibia were

extracted with initial contour of patella to obtain patella image (Refer to Fig

5.6).

Chapter 5: Active Contour Models

 94

Fig 5.6 illustrates flowchart of ACMM algorithms:

Input Image

Apply Active Contour Models method
on an original image

Femur Image that is
extracted from original

Original Image
contains Tibia

New Image = Original Image – Femur Image

Apply Active Contour Models method
on a new image

Tibia Image that is
extracted from original

Original Image
contains Patella

New Image = Original Image – Femur Image – Tibal Image

Apply Active Contour Models method
on a new image

Patella Image that is
extracted from new image

End Iteration

No

No

Yes

Yes

Figure 5.6 Flowchart of using ACMM to extract a cartilage from an original image.

1st Process

2nd Process

3rd Process

Chapter 5: Active Contour Models

Fig 5.7 illustrates ACMM to extract an individual cartilage component from input

image.

Input image

Bi-directional
Scanning

Segmentations

Neural Network
Classifier

External Energy
Eext

Figure 5.7 Operation of ACM
M
95

Chapter 5: Active Contour Models

 96

 In this implementation, an initial contour V can be provided by a user, or by some

method, possibly an automated one. In our case, we apply BSSM (chapter 3) as an

automated method to define an initial contour V.

 The contour V is stored as a matrix of vectors. Each vector has five elements: x and

y co-ordinates of the contour point, the values of α, β, and the flag for that contour

point. α and β are constants providing the relative weighting of the energy terms. The

flag provides value 0, which indicates the minimum energy at that contour point, and

value 1, which indicates the minimum energy, is not at that contour point. The iteration

will finish when the flags of all contour point are set to 0 which mean the contour V is

enclosed the cartilage boundaries

5.4.1 Initial Contour Definition

 As mentioned in Chapter 3, we can use BSSM to find cartilage boundaries on an

image. Hence, we can apply BSSM to define an initial contour as an automatic method.

Initial contour definition algorithms are described as:

 1. Apply BSSM on input image.

2. For each cartilage sub-image, we obtain cartilage boundaries according to (x,y)

location.

3. Those cartilage boundaries will be considered as initial contour points.

4. Continue until all cartilage boundaries that are detected by BSSM are considered

as initial contour points.

5.5 Experiment Results

Discussion on initial contour

 The first important part in contour algorithm is the quality of the initial contour.

The contour algorithm improves when the image contains little noise and the contrast

between the cartilage parts and other tissues is significant. When the condition of image

is bad: noise and the contrast between the cartilage parts and other tissues is low, the

contour algorithm is likely to attach itself to noise and other tissues boundaries.

 Fig 5.8 shows that initial contour used to obtain actual boundary of patella

segments is not good because it also contain femur segments. Hence, the calculated

patella contour also contains femur segments. The initial patella contour is difference in

Fig 5.9. In this case, the obtained patella contour is reasonable.

Chapter 5: Active Contour Models

 (a) (b)

Figure 5.8 An example of behaviour of contour algorithm when initial c

The initial patella contour and (b) The final computed pat

(a) (b)

Figure 5.9 An example of behaviour of contour algorithm when initial c

good. (a) The initial patella contour and (b) The final computed pat

Femur
o

e

o

e

Patella

Initial Patella

Contour
ntour is not good. (a)

lla contour

ntou

lla c
Patella
r i

on
Femur
 Initial Patella
Contour
97

s

tour.

Chapter 5: Active Contour Models

 Because the initial contour V is defined from applying BSSM, initial contour V

depends on output of this approach. For case BSSM cannot detect femur boundaries

when femur and patella are connected, femur boundaries are also include patella.

Therefore, initial femur contour V is then defined including patella. The final femur

contour is then computed also contain patella. Fig 5.10 illustrates this case.

Figure 5

Experimen

 This se

cartilage f

demonstrat

same image

comparison

 - Im

 - Im

 - Im

Image Set

 Fig 5.11

Image Set

 Fig 5.12

Image Set

 Fig 5.13

 The res

ACMM pro
Patella
(a)

.10

BS

t R

ctio

rom

ed i

 set

 am

age

age

age

1

 sho

2

 sho

3

 sho

ults

vid
98

 (b) (c)

 (a) Original image (b) Initial femur contour V defined from applying

SM (c) Final femur contour is computed by using ACMM.

esults

n presents the visual results obtained by using ACMM to extract

 image sets. The quatitative evaluation of this method will be

n Chapter 6 (Area and Volume Calculation). We apply ACMM to the

s that were used in case of BSSM and NNCM in order to test and make

ong three methods.

 set 1: Images that contain Femur, Tibia, and Patella.

 set 2: Images that contain Femur, and Tibia.

 set 3: Images that contain Femur and Patella.

ws cartilage images extracted from Image Set 1.

ws cartilage images extracted from Image Set 2.

ws cartilage images extracted from Image Set 3.

 obtained by using ACMM are more accurate than BSSM and NNCM.

es cartilage images that are the closest to actual cartilage. ACMM can

Femur

Chapter 5: Active Contour Models

 99

deal with problem existing in BSSM when there are low contrast between cartilage and

background. For example:

- Image 2 , 6 on image set 1 in Fig 5.11

- Image 6, 8 on image set 2 in Fig 5.12

 ACMM also can works well with problem existing in NNCM that NNCM reduces

number of cartilage pixels when some cartilage pixels are classified as background

class because they have same features of background pixels. For example:

- Image 1, 5, and 8 on image set 1 in Fig 5.11

- Image 5, 8 on image set 2 in Fig 5.1

1(a) 1(b) 1(c)

1(d)

2(a) 2(b) 2(c)

2(d)

3(a) 3(b) 3(c) 3(d)

4(a) 4(b) 4(c)

4(d)

Chapter 5: Active Contour Models

 100

Figure 5.11 (a) Images on Image Set 1, Cartilage images extracted from Image Set

1 by using ACMM (b), NNCM (c) and BSSM (d).

5(a) 5(b) 5(c)

5(d)

6(a) 6(b) 6(c)

6(d)

7(a) 7(b) 7(c)

7(d)

8(a) 8(b) 8(c)

8(d)

Figure 5.11 (a) Images on Image Set 1, Cartilage images extracted from Image Set

1 by using ACMM (b), NNCM (c) and BSSM (d).

Chapter 5: Active Contour Models

 101

1(a)

1 (b)

1(c)

1(d)

2(a)

2 (b)

2(c)

2(d)

3(a)

3 (b)

3(c)

3(d)

4(a)

4 (b)

4(c)

4(d)

Figure 5.12 (a) Images on Image Set 2, Cartilage images extracted from Image Set 1 by using

ACMM (b), NNCM (c) and BSSM (d).

Chapter 5: Active Contour Models

 102

5(a)

5 (b)

5(c)

5(d)

6(a)

6(b)

6(c)

6(d)

7(a)

7(b)

7(c)

7(d)

8(a)

8b)

8(c)

8(d)

Figure 5.12 (a) Images on Image Set 2, Cartilage images extracted from Image Set 1 by using

ACMM (b), NNCM (c) and BSSM (d).

Chapter 5: Active Contour Models

 103

1(a)

1b)

1(c)

1(d)

2(a)

2b)

2 (c)

2(d)

3(a)

3b)

3(c)

3(d)

4(a)

4b)

4(c)

4(d)

5(a)

5b)

5(c)

5(d)

Figure 5.13(a) Images on Image Set 3, Cartilage images extracted from Image Set 1 by using

ACMM (b), NNCM (c), and BSSM (d)

Chapter 5: Active Contour Models

 104

6(a)

6b)

6(c)

6(d)

7(a)

7b)

7(c)

7(d)

8(a)

8b)

8(c)

8(d)

9(a)

9b)

9(c)

9(d)

10(a)

10(b)

10(c)

10(d)

Figure 5.13(a) Images on Image Set 3, Cartilage images extracted from Image Set 1 by using

ACMM (b), NNCM (c), and BSSM (d)

Chapter 5: Active Contour Models

 105

5.6 Conclusion

 The active contour models algorithms can be used to extract an object from an

original image. Our method is mainly based on active contour models algorithms. From

an initial contour, we explore it to find the cartilage boundaries by calculating the

internal and external energy. We apply BSSM as an automatic method to define initial

contour. We also apply NNCM to compute the external energy. By doing this, we can

take advantages of those two methods and avoid their disadvantages. Therefore,

ACMM not only work well when there is low contrast between cartilage and

background regions but also handle the problem existing in NNCM that similarly

features of cartilage and background pixels. Therefore, ACMM is the most suitable

approach for obtaining a cartilage from an original MR image.

Chapter 6: Cartilage Area and Volume Calculation

 106

Chapter 6

CARTILAGE AREA AND VOLUME

CALCULATION

6.1 Overview

 After an articular cartilage is extracted from original MR image by using one of

three mentioned methods (bi-directional scanning segmentations, neural network, or

active contour models), we can compute the cartilage’s area and volume.

 This chapter present the way we compute the cartilage’s area and volume from

cartilage image.

6.2 Cartilage Area Calculation

 The area of the cartilage is proportional to the number of pixels of the cartilage.

Then, we make a convert to area unit (such as mm).

 Area = cartilageAδ

 Where Acartilage is the number of cartilage pixels. Parameter δ is the constant ratio to

convert from number of pixel to mm.

 Consider the cartilage image after extraction, that is composed of cartilage pixels

(values are greater than 0) and background pixels (values are 0). Cartilage area

calculation algorithms are described as:

1. Set initial cartilage area ACartiage = 0;

2. For each pixel in cartilage image f(x,y):

If g(x,y) is greater than 0, Acartilage = Acartilage + 1;

 If g(x,y) is 0, remain Acartilage and move to next pixel.

 Where g(x,y) is the value of pixel at location (x,y).

3. Repeat step 2 until all pixels of cartilage image f(x,y) are processed.

4. The area of the cartilage is the final Acartilage.

Chapter 6: Cartilage Area and Volume Calculation

 107

6.3 Cartilage Volume Calculation

 From characteristics of MR knee images, the cartilage volume is calculated from

the set MR knee images. Cartilage volume calculation algorithms are described as:

1. For each cartilage image, apply step 1 to step 4 of cartilage area calculation

algorithms to compute an area of a cartilage on a cartilage image Ai. where i is

the sequence of the cartilage image in MR image set.

2. Calculate the volume of cartilage’s part from two adjacent cartilage images.

 iii AAdV ... 1+= δ

 Where d is the distance between two cartilage images (d in mm). Parameter δ is

the constant convert rati. The volume of a cartilage is the total volume of

cartilage’s parts.

 ∑
=

+=
N

i
iitotal AAdV

1
1..δ

 Where N is the number of cartilage images.

6.4 Cartilage Area Calculation Validation

 We apply three methods (BSSM, NNCM, and ACMM) to extract cartilage from

input images. In each cartilage image, the cartilage pixels were used to compute

cartilage area by using cartilage area calculation that is mentioned in section 6.2. The

results are then compared with reference values, which is the number of pixels that are

computed from reference cartilage images. Reference cartilage images are extracted

manually from input image by using matlab function “imtool” on image processing

toolbox.

 The results obtained from cartilage images extracted manually correlated highly

with the results obtained from cartilage images extracted by using BSSM, NNCM, and

ACMM The correlation value in each case is nearly 1 (p = 1.0054, R2 = 0.9995 in Fig

6.1; p = 1.0064, R2 = 0.9991 in Fig 6.2; p = 0.9946, R2 = 0.9991 in Fig 6.3). The

validation results demonstrated that our three methods for extracting cartilage on an

image were reliable for cartilage area calculation.

Chapter 6: Cartilage Area and Volume Calculation

 108

Figure 6.1 Cartilage area computed from cartilage image extracted by using BSSM

correlated highly with the cartilage image extracted manually by using “imtool”

function technique from Matlab

Figure 6.2 Cartilage area computed from cartilage image extracted by using NNCM

correlated highly with the cartilage image extracted manually by using “imtool”

function technique from Matlab

y = 1.0054x
R2 = 0.9995

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530

Cartiage Area (Computed from cartilage image is extracted manually)(number of
pixels)

C
ar
til
ag
e
A
re
a
(C
om
pu
te
d
fr
om
 c
ar
til
ag
e
im
ag
e
is

ex
tr
ac
te
d
by
 u
si
ng
 D
ou
bl
e
S
id
es
 S
ca
nn
in
g

S
eg
m
en
ta
tio
ns
)(
nu
m
be
r
of
 p
ix
el
s)

y = 1.0064x
R2 = 0.9991

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530

Cartilage Area (Computed from cartilage image is extracted
manually)(number of pixels)

C
ar
ti
la
g
e
A
re
a
(C
o
m
p
u
te
d
 f
ro
m
 c
ar
ti
la
g
e
im
ag
e
is

ex
tr
ac
te
d
 b
y
u
si
n
g
 N
eu
ra
l
N
et
w
o
rk
 m
et
h
o
d
)(
n
u
m
b
er

o
f
p
ix
el
s)

Chapter 6: Cartilage Area and Volume Calculation

 109

Figure 6.3 Cartilage area computed from cartilage image extracted by using ACMM

correlated highly with the cartilage image extracted manually by using “imtool”

function technique from Matlab

6.5 Experiment Results and Conclusion

 The following table is the results of area calculation obtained from cartilage images

that are extracted by using BSSM, NNCM, and ACMM. It also demonstrates the

quantitative evaluation of each method while the visual results are described previously

in Chapter 3, Chapter 4, and Chapter 5.

Image

Sequence

BSSM NNCM ACMM
Manual

Method

Area (number of pixels) Area (number of

pixels)
Area (number of

pixels)
Area (number of

pixels)

1 3757 3600 3745 3740

2 3846 3421 3579 3565

3 4042 3552 3575 3559

4 4398 3547 3699 3670

5 4079 3612 3848 3790

y = 0.9946x
R2 = 0.9991

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3430 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530

Cartilage Area (Computed from cartilage image is extracted
manually)(number of pixels)

C
ar
ti
la
g
e
A
re
a
(C
o
m
p
u
te
d
 f
ro
m
 c
ar
ti
la
g
e
im
ag
e
is

ex
tr
ac
te
d
 b
y
u
si
n
g
 A
ct
iv
e
C
o
n
to
u
r
M
o
d
el
s

m
et
h
o
d
)(
n
u
m
b
er
 o
f
p
ix
el
s)

Chapter 6: Cartilage Area and Volume Calculation

 110

6 3849 4523 4818 4820

7 5012 5516 5626 5590

8 5500 5011 5534 5550

9 4321 4023 4649 4590

10 3810 3199 3543 3520

11 3923 3276 3768 3710

12 4011 3123 3807 3800

13 3902 3566 3746 3745

14 4021 3742 3901 3880

15 3400 2918 3315 3347

16 1572 3122 3514 3460

17 3812 3014 3513 3477

18 3502 3155 3475 3380

19 3490 2977 3475 3400

20 3005 2516 2929 2959

21 2712 2413 2656 2565

22 2900 2676 2880 2751

23 2859 2812 2829 2822

24 3320 3011 3213 3252

25 3002 2892 3116 3031

26 4310 4011 4121 4060

27 4211 3815 4055 4980

28 4602 4556 4700 4651

29 6120 5413 5851 5753

30 5912 5045 5641 5571

31 6220 5359 5849 5722

32 5011 5123 5247 5157

33 5122 4923 5299 5287

34 4723 4899 5080 4982

35 4412 4789 4939 4803

36 3320 3615 3843 3759

Table 6.1 Result of area calculation of the cartilage by using three methods

Chapter 6: Cartilage Area and Volume Calculation

 111

 The graph below illustrates the comparison of the cartilage areas that computed

from a cartilage images extracted from image set by using BSSM, NNCM, and

ACMM.

Figure 6.4 Area comparisons between using BSSM, NNCM, and ACMM

 From the graphs, results obtained from NNCM and ACMM have similar shape and

are close to the manual results. Results obtained from BSSM are also similar but there

are differences in some sections (that are indicated in circle in Fig 6.4). It is due to the

less sensitive ability to the noise of BSSM. The results that are from NNCM are

generally smaller than from ACMM. It express that NNCM is likely to reduce number

of cartilage pixels when some cartilage pixels are classified as background due to

similar features of those pixels and background.

 ACMM, which has advantages of both NNCM and BSSM, provides the most

accurate results.

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

BSSM

NNCM

ACMM

Manual Method

Area Comparison Among Three Methods

Chapter 7: Conclusion, Discussion and Future Works

 112

Chapter 7

CONCLUSION, DISCUSSION and FUTURE WORK

7.1 Conclusion

 In vivo morphometry and functional analysis of human articular cartilage with

quantitative magnetic resonance imaging (MRI), the size of the articular cartilage is an

important element in detecting the Osteoarthritis (OA), which is a major public health

problem in term of joint and knee.

 Extracting an articular cartilage from an original MR knee image is an important

process in cartilage size calculation. For doing this, we have studies and developed

three automatic methods [1] such as BSSM, NNCM and ACMM.

 BSSM is based on two basic properties of intensity value: discontinuity (edge

detection algorithms) and similarity (thresholding method). It is also based on statistical

analysis (curve fitting algorithms and average weight calculation)

 NNCM is a method, which apply a neural network as cartilage classification. For

each pixel on a MR image, through the neural network classifier, it is classified as

cartilage pixel if output value is 1. Alternatively, it is classified as background pixel if

output value is 0.

 ACMM is a method, which uses an initial contour that approximates the boundary

of a cartilage in an MR image to find the “actual” boundary. This is an innovative

method because we apply BSSM to define an initial contour. We also apply NNCM to

compute the external energy. Therefore, it takes advantages of both methods and avoids

the problems existing in BSSM and NNCM.

Chapter 7: Conclusion, Discussion and Future Works

 113

7.2 Discussion

 Our three methods have succeeded in automatically extracting the cartilage from

input image. According to noise and complexity of image, each method has both

advantages and disadvantages.

 BSSM works well when there are significant high contrasts between cartilage and

background regions. It often fails when the contrasts are low.

 NNCM can handle the problem existing in BSSM. However, this method has

problem when there are some cartilage pixels that have similar features of background.

NNCM is likely to consider those pixels as background pixels. Therefore, it reduces the

size of a cartilage on an image.

 Since inheriting advantages of BSSM and NNCM, active contour models method is

the most suitable method for extracting a cartilage. It can solve problems that occur in

both previous methods. Nevertheless, using NN as external energy is computationally

expensive (in both training stage and testing stage). In this thesis’s situation, the speed

is not critical and in return, NN bring greater benefit than other method.

7.3 Future Works

 Since ACMM is an automatic potential method for extracting a cartilage from MR

image, we have some suggestions to improve the performance of this approach.

1. Initial contour improvement: Because we apply BSSM for defining the initial

contour, we can improve the quality of initial contour by improving the performance of

BSSM. For doing this, we can try several ways such as:

- We can apply morphological watersheds for segmentation instead of using edge

detection or thresholding algorithms.

- We can define more rules and principles in the combination of edge detection,

thresholding, and statistical analysis to make this method more flexible and

adaptive with noise.

Chapter 7: Conclusion, Discussion and Future Works

 114

2. External energy computation improvement: Because we apply NNCM to compute

the external energy, we can improve the quality of external energy by improving the

performance of NNCM. For doing this, we can try several ways such as:

- We can apply another type of neural network instead of multilayer perceptrons.

For examples: radial-basic neural networks (RBNN) or transformation radial-basic

networks (TRBNN)

- We can maintain multilayer perceptrons but improve its efficiency by improve the

quality and quantity of training data.

- We can define more rules and principles in using network classifier as cartilage

recognition.

Reference

 115

REFERENCE

1 Ngo, Q and Jiang, D and Ding, C, Application of Artificial Neural Networks in
Automatic Cartilage Segmentation’, Proceedings of IWACI2010, 25-27 August, 2010,
Suzhou, China, pp. 81-85. ISBN 978-1-4244-6336-7, 2010..

2 Peyron JG (1986); “Osteoarthritic”; The epidemiologic viewpoint; Clin Orthop 213:
pp13-19.

3 Felson DT (1988); “Epidemiology of hip and knee osteoarthritis”; Epidemiol Prev 10:
pp1-28.

4 Felson DT (1990); “Osteoarthristic”; Rheum Dis Clin North Am 16: pp499-512.

5 Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman BN, Aliabadi P, and Levy
D (1995); “The incidence and natural history of knee osteoarthritis in the elderly”; The
Framingham osteoarthritis study; Arthritis Rheum 38: pp1500-1505.

6 Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, Kelly H;
Wolf PA; Kreger BE; Kannel WB (1994); “The effects of specific medical conditions
on the functional limitations of elders in the Framingham study”; Am J Public Health
84: pp 351-358.

7 Changhai D, Flavia C, and Graeme J; “How important is MRI for detecting early
osteoarthristic”; Nature clinical practice Reumatology; Vol 4; 2008: pp 1-3.

8 Eckstein F (1996); “Determination of knee joint cartilage thickness using three
dimensional magnetic resonance chondro-crassometry (3D-MR-CCM)”; Magn Reson
Med 36: pp 256-265.

9 Piplani MA (1996); “Articular cartilage volume in the knee; semiautomatic
determination from three-dimensional reformations of MR images”; Radiology 198: pp
855-859.

10 Stammberger T (1999); “Interobserver reproducibility of quantitative cartilage
measurements: comparison between B-spline snakes and manual segmentation”;Magn
Reson Imag 17: pp 1033-1042.

11 Solloway S (1997); “The use of active shape models for making thickness
measurements of articular cartilage from MR iamges”; Magn Reson Med 37: pp 943-
952.

12 Robson MD (1995); “A combined analysis and magnetic resonance imaging
technique for computerised automatic measurement of cartilage thickness in the distal
interphalangeal joint”; Magn Reson Imaging 13: pp 709-718.

Reference

 116

13 Kshirsagar AA (1998); “Measurement of localized cartilage volume and thickness of
human knee joints by computer analysis of three-dimensional magnetic resonance
images”; Invest Radiol 33: pp 289-299.

14 Ghosh S (2000); “Segmentation of high resolution articular cartilage MR images”;
Transactions of the 46th Meeting of the Orthop Res Soc vol 25: pp 246-250.

15 Steines D (2000); “Segmentation of osteoarthritic femoral cartilage from MR
images”; In: Lemke HU; Vannier NW; Inamura K; Farman AG; Doi K (eds)
Proceedings of Computer Assisted Radiology and Surgery; 14th International Congress.
Excerpta Medica Series 1214. Elsevier; Amsterdam; pp 303-308.

16 Peterfy CG, and Genant HK (1996); “Emerging application of magnetic resonance
imaging in the evaluation of articular cartilage”; Radiol Clin North Am 34: pp195-213.

17 Stabler A, Glaser C, and Reiser M (2000); “Musculosketetal MR: Knee”; Eur Radiol
10: pp230-241.

18 Petefy CG (2000); “Scratching the surface: articular cartilage disorders in the knee”;
Magn Reson Imaging Clin North Am 8: pp409-430.

19 Robson MD, Hodgson RJ, Herrod NJ, Tyler JA, and Hall LD (1995); “A combined
analysis and magnetic resonance imaging technique for computerised automatic
measurement of cartilage thickness in the distal interphalangeal joint”; Magn Reson
Imaging 13: pp709-718.

20 Munsterer O, Eckstein F, Hahn D, and Putz R (1996); “Computer aided 3D
assessment of human knee cartilage in vitro and in vivo”; Clin Biomech 11: pp206-266.

21 Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghigi P, Sartoris Dj, and
Resnick D (1993); “Abnormalities of articular cartilage in the knee: analysis of
available MR techniques”; Radiology 187: pp473-478.

22 Rafael CG, and Richard EW; “Digital Image Processing”; Prentice Hall 2nd Edition
2002 chapter 2: pp57-66.

23 Rafael CG, and Richard EW; “Digital Image Processing”; Prentice Hall 2nd Edition
2002 chapter 10: pp572-580.

24 Rafael CG, and Richard EW; “Digital Image Processing”; Prentice Hall 2nd Edition
2002 chapter 10: pp581-594.

25 Rafael CG, and Richard EW; “Digital Image Processing”; Prentice Hall 2nd Edition
2002 chapter 10: pp595-615.

26 Alasdair MA; “Introduction to digital image processing”; Course Technology; a
division of Thomson Learning; Inc; 2004: pp 222-225.

27 From Wikipedia; “Least Mean Squares Algorithms”. Available at:
http://en.wikipedia.org/wiki/Least_mean_squares

http://en.wikipedia.org/wiki/Least_mean_squares

Reference

 117

28 E.Gose, R.Johnsonbaugh, and S.Jost; Pattern Recognition and Image Analysis;1996.

29 B.Jahne, and H.Haubecker; Computer vision and Applications: A guide for Students
and Practitioners; 2000.

30 Bernd J, and Horst H; “Computer vision and applications”; 2000: pp :577-583.

31 Windrow B, Lehr MA; 30 Years of Adaptive Neural Networks: Perceptrons,
Madaline, and Backpropagation; Proc. IEEE, vol 78, no 9, 1990

32 Mathematics source library C&ASM. Available at:
http://mymathlib.webtrellis.net/optimization/nonlinear/unconstrained/fletcher_reeves.ht
ml
- The MathWorks. Available at:
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html

33 Fletcher R, and C.M. Reeves; "Function minimization by conjugate gradients;"
Computer Journal; Vol. 7; 1964; pp. 149-154.
Hagan; M.T, H.B. Demuth; and M.H. Beale; “Neural Network Design”; Boston; MA:
PWS Publishing; 1996.

34 - Y.H.Dai; and Y.Yuan; Convergence Properties of Beale-Powell Restart Algorithm;
Chinese Academy of Siences; Beijing 10080; China. Available at:
ftp://lsec.cc.ac.cn/pub/home/yyx/papers/dy-bp-restart.pdf
- The MathWork. Available at:
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html

35 Powell; M.J.D.; "Restart procedures for the conjugate gradient method;"
Mathematical Programming; Vol. 12; 1977; pp. 241-254.
 Beale; E.M.L.; "A derivation of conjugate gradients;" in F.A. Lootsma; Ed.;
Numerical methods for nonlinear optimization; London: Academic Press; 1972.

36 Powell, M.J.D., "Restart procedures for the conjugate gradient method,"
Mathematical Programming, Vol. 12, 1977, pp. 241-254.
 Beale, E.M.L., "A derivation of conjugate gradients," in F.A. Lootsma, Ed.,
Numerical methods for nonlinear optimization, London: Academic Press, 1972.

37 - M.F.Moller; A Scale Conjugate Gradient Algorithm for Fast Supervised Learning.
Available at:
ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia353_1s07/papers/moller_90.pdf
 - The MathWork. Available at:
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html

38 Moller; M.F.; "A scaled conjugate gradient algorithm for fast supervised learning;"
Neural Networks; Vol. 6; 1993; pp. 525-533.

39 Moller, M.F., "A scaled conjugate gradient algorithm for fast supervised learning,"
Neural Networks, Vol. 6, 1993, pp. 525-533.

40 - Wikipedia. Available at: http://en.wikipedia.org/wiki/Quasi-Newton_method

http://mymathlib.webtrellis.net/optimization/nonlinear/unconstrained/fletcher_reeves.html
http://mymathlib.webtrellis.net/optimization/nonlinear/unconstrained/fletcher_reeves.html
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html
ftp://lsec.cc.ac.cn/pub/home/yyx/papers/dy-bp-restart.pdf
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html
ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia353_1s07/papers/moller_90.pdf
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html
http://en.wikipedia.org/wiki/Quasi-Newton_method

Reference

 118

 - Wolffram Research Center. Available at:
http://reference.wolfram.com/mathematica/tutorial/UnconstrainedOptimizationQuasiNe
wtonMethods.html
 - The MathWorks. Available at:
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html

41 Dennis; J.E.; and R.B. Schnabel; Numerical Methods for Unconstrained
Optimization and Nonlinear Equations; Englewood Cliffs; NJ: Prentice-Hall; 1983.

42 Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983.

43 Battiti; R.; "First and second order methods for learning: Between steepest descent
and Newton's method;" Neural Computation; Vol. 4; No. 2; 1992; pp. 141-166.

44 Hagan; M.T.; and M. Menhaj; "Training feed-forward networks with the Marquardt
algorithm;" IEEE Transactions on Neural Networks; Vol. 5; No. 6; 1999; pp. 989-993;
1994.

45 Hagan, M.T., and M. Menhaj, "Training feed-forward networks with the Marquardt
algorithm," IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1999, pp. 989-993,
1994.

46 Kass M; Andrew W; and Demetri T; “Snakes: Active Contour Models”; International
Journal of Computer Vision (1988); pp: 321-331.

47 Kok Fung Lai. Deformable Contours: Modeling; Extraction; Detection; and
Classification. PhD thesis; University of Wisconsin-Madison; Electrical Engineering
Department; Madison; Wisconsin;1994

48 V.Chalana;W.Costa; and Y.Kim. Integrating region growing and edge detection
using regularization. In Procedding of the SPIE Conference on Medical Imaging. SPIE;
1995

http://reference.wolfram.com/mathematica/tutorial/UnconstrainedOptimizationQuasiNewtonMethods.html
http://reference.wolfram.com/mathematica/tutorial/UnconstrainedOptimizationQuasiNewtonMethods.html
http://www.mathworks.co.uk/access/helpdesk/help/toolbox/nnet/backpro7.html

Appendix

 119

APPENDIX

 All algorithms in this thesis are implemented in Matlab environment by using

Matlab software and Image Processing Toolbox. This appendix provides detailed

Matlab codes of each algorithm.

1. Data Acquisition from MRI to Matlab environment

% The following codes is used to acquire an MRI scan to Matlab environment for

% image processing

% select a MR image for processing

fid=0;

while fid < 1

 [fid,message] = fopen(ImageFile, 'r');

 if fid == -1

 errordlg('Please enter the correct file name','Invalid input');

 return

 end

end

if (strcmp(ImageFile,'')==0)

 errordlg('Please enter the correct file name','Invalid input');

 return

end

filename=char(ImageFile);

% Put MR image into Matlab environment

im_original=dicomread(char(ImageFile));

im_original=uint8(im_original);

Appendix

 120

1. Classical Image Segmentations Algorithms

function [Object1,Object2,Object3]=Main(im_original)

% This function is used to obtain a cartilage from the input image and measure the

% size of individual cartilage types.

% Determine the status of the input image by using "get_status" function.

% Obtain the first object (Femur) by using "get_object1" function.

% Obtain the second object(Tibia) by using "get_object2" function.

% Obtain the third object (Patella)by using "get_object3" function.

% Measure the size of the individual cartilage types by using "getsize" function.

IM = im_original;

[K,L]=size(IM);

condition=0;

% Determine the status of an image.

status=get_status(IM);

% Obtain the first object (first type of cartilage) on an image.

[Object1,condition]=get_object1(IM);

% Obtain the second object (second type of cartilage) on an image.

if status==1|| status==2

 IM2 = IM - Object1;

 Object2 = get_object2(IM2,condition);

else

 Object2 = uint8(zeros(K,L));

end

% Obtain the third object (third type of cartilage) on an image.

if status == 2 || status == 3

 IM3 = IM - Object1 - Object2;

 Object3 = get_object3(IM3);

Appendix

 121

 size(Object3)

else

 Object3=uint8(zeros(K,L));

end

1.2 “get_status” function

function status = get_status(im_original)

% This function is used to get the status of the image.

% Input: original image. Output: Status of the image.

% There are 4 status:

% Status = 0 : Nothing

% Status = 1 : Image contains two objects: Fermur and Tibia

% Status = 2 : Image contains three objects: Fermur, Tibia and Patella

% Status = 3 : Image contains two objects: Fermur and Patella

mediadata = dicominfo(im_original);

ID = mediadata.PatientID;

number = mediadata.InstanceNumber;

if 0 <= number &&number <= 5

 status = 0;

elseif 6 <= number &&number <= 18

 status = 1;

elseif 19 <= number &&number <= 21

 status = 2;

elseif 22 <= number &&number <= 37

 status = 3;

elseif 38 <= number &&number <= 46

 status = 2;

elseif 47 <= number &&number <= 55

 status = 1;

else

 status = 0;

Appendix

 122

end

1.3 “get_object1” function

function [Object1,condition]=get_object1(im_original)

% This function is used to get the first object on an input image.

% Input : original image.

% Output : The first Object.

% To obtain the object boundaries on a sub-image: use “get_bound” function.

% To checking the validation of object boundaries: use “checking” function.

% To obtain the object on the left side of an image: use “half_left_process1”

% function.

% To obtain the object on the right side of an image: use “half_right_process1”

% function.

[K,L]=size(IM);

Object1=IM;

reference_intensity=80;

% Determine a starting object sub-image and upper/lower object boundaries

% on this sub- image.

for i=160:256

 column=IM(:,i);

 [a1 a2]=find(column==max(column(:)));

 position=a1(1,1);

 array1_1(i,1)=column(position,1);

 array1_2(i,1)=position;

end

[b1 b2]=find(array1_1==max(array1_1(:)));

% Determine the starting object sub-image.

started_column=b1(1,1);

Appendix

 123

position=array1_2(started_column,1);

column1=IM(:,started_column);

% Find the upper/lower boundaries on a starting object sub-image.

[temp_lower_bound,temp_upper_bound]=get_bound(column1,position,IM);

upper_bound=temp_upper_bound;

lower_bound=temp_lower_bound;

% Check the validation of boundaries

[n_upper_bound,n_lower_bound]=checking(upper_bound,lower_bound);

upper_bound=n_upper_bound;

lower_bound=n_lower_bound;

% Extract an object on starting sub-image based on upper/lower boundaries

Object1(1:upper_bound,started_column)=0;

Object1(lower_bound:K,started_column)=0;

started_upper_bound=upper_bound;

started_lower_bound=lower_bound;

% Obtain an object on the right side of an image

[Object1,condition]=half_right_process1(Object1,started_column,started_upper_bound

,started_lower_bound,IM);

% Obtain an object on the left side of an image.

Object1=half_left_process(started_column,started_upper_bound,started_lower_bound,

Object1,IM);

1.3.1 “get_bound” function

function [left,right] = get_bound(column,position,IM)

% This function is used to find the upper and lower boundaries of an object on

% a sub-image using edge detection and thresholding.

% Input:

Appendix

 124

% - column : sub_image

% - position : starting point

% - input image

% Output: upper boundary and lower boundary

column1=column;

[K L]=size(IM);

alpha=3;

% Calculate optimal threshold value

reference_value=graythreshold(column1);

% Apply edge detection to find edges combined with threshold value.

for x=3:(K-2)

 column1_1(x,1)=(column1(x-1,1)+column1(x,1)+column1(x+1,1))/alpha;

 if column1_1(x,1)>85

 column1_1(x,1)=85;

 end

end

for x=2:(K-3)

 column1_1Lap(x,1)=column1_1(x+1,1)+column1_1(x-1,1)-2*column1_1(x,1);

end

% Find the upper boundary on a sub-image.

for k=1:50

 if position-k<=0

 var1=column1_1(1,1);

 else

 var1=column1_1(position-k,1);

 end

 if var1<=reference_value

 temp_upper_bound=position-k;

 break;

 elseif k==50

Appendix

 125

 temp_upper_bound=position-50;

 end

end

% Find the lower boundary on a sub-image.

for k=1:50

 var1=column1_1(position+k,1);

 if var1<=reference_value

 temp_lower_bound=position+k;

 break;

 elseif k==50

 temp_lower_bound=position+50;

 end

end

1.3.2 “Checking” function.

% This function is used to check the validation of the upper and lower boundaries of

% an object on a sub- image.

function [newupper_bound,newlower_bound]=checking(upper_bound,lower_bound)

if upper_bound<=0

 new_upper_bound=1;

else

 new_upper_bound=upper_bound;

end

if lower_bound<=0

 new_lower_bound=1;

else

 new_lower_bound=lower_bound;

end

Appendix

 126

1.3.3 “half_left_process1” function.

% The following codes is used to obtain the object in the left side of a sub-image.

% Input: starting object sub-image, starting upper/lower boundaries, original image.

% Output: object in the left side of a sub-image.

function

Object=half_left_process1(started_column,started_upper_bound,started_lower_bound,

Object,IM)

[K,L]=size(IM);

y=started_column;

pre_upper_bound=started_upper_bound;

pre_lower_bound=started_lower_bound;

% Obtain object boundaries on partitioned sub-images.

for q=1:round(L/2)-1

 column5=IM(:,y-q);

 column51=column5;

 column51(1:(pre_upper_bound),1)=0;

 column51((pre_lower_bound):K,1)=0;

 [a2 b2]=find(column51==max(column51(:)));

 position5=a2(1,1);

 array4(y-q,1)=position5;

 if column5(position5,1)>80

% Obtain upper/lower boundaries on a sub-image.

[temp_lower_bound5,temp_upper_bound5]=get_bound2(column5,position5,IM);

 upper_bound5=temp_upper_bound5;

 lower_bound5=temp_lower_bound5;

% Check the validity of boundaries.

[n_upper_bound5,n_lower_bound5]=checking(upper_bound5,lower_bound5);

 upper_bound5=n_upper_bound5;

 lower_bound5=n_lower_bound5;

Appendix

 127

 array41(y-q,1)=upper_bound5;

 array42(y-q,1)=lower_bound5;

% Extract an object from a sub-image

 Object(1:upper_bound5,y-q)=0;

 Object(lower_bound5:K,y-q)=0;

 pre_upper_bound=upper_bound5;

 pre_lower_bound=lower_bound5;

 else

 Object(:,1:y-q)=0;

 limit_swing_left=y-q;

 break;

 end

end

1.3.4 “half_right_process1” function.

% The following codes is used to obtain an object in the right side of an image.

% Input: starting object sub-image, starting upper/lower boundaries, original image.

% Output: Object in the right side of an image.

function

[Object1,condition]=half_right_process1(Object1,started_column,started_upper_boun

d,started_lower_bound,IM)

pre_upper_bound=started_upper_bound;

pre_lower_bound=started_lower_bound;

[K,L]=size(IM);

% Obtain object boundaries on partitioned sub-images

for y=(started_column+1):L

 column2=IM(:,y);

 column21=column2;

 column21(1:(pre_upper_bound),1)=0;

 column21((pre_lower_bound):K,1)=0;

Appendix

 128

 [a2 b2]=find(column21==max(column21(:)));

 position2=a2(1,1);

 array2_0(y,1)=position2;

 if column2(position2,1)>80

% Determine upper/lower boundaries on a sub-image.

[temp_lower_bound2,temp_upper_bound2]=get_bound(column2,position2,IM);

 upper_bound2=temp_upper_bound2;

 lower_bound2=temp_lower_bound2;

 array2_1(y,1)=upper_bound2;

 array2_2(y,1)=lower_bound2;

 if y>=started_column+2&&y<320

 value_1=upper_bound2-array2_1(y-1,1);

 value_2=lower_bound2-array2_2(y-1,1);

 if abs(value_1)>=5

 upper_bound2=array2_1(y-1,1);

 elseif abs(value_2)>=5

 lower_bound2=array2_2(y-1,1);

 end

 end

% Check the validity of boundaries.

[n_upper_bound2,n_lower_bound2]=checking(upper_bound2,lower_bound2);

 upper_bound2=n_upper_bound2;

 lower_bound2=n_lower_bound2;

 array2_1(y,1)=upper_bound2;

 array2_2(y,1)=lower_bound2;

% Extract an object from a sub-image

 Object1(1:upper_bound2,y)=0;

 Object1(lower_bound2:K,y)=0;

 pre_upper_bound=upper_bound2;

 pre_lower_bound=lower_bound2;

 else

Appendix

 129

 if y>=320

 Object1(:,y:L)=0;

 break;

 else

 Object1(:,y)=0;

 array2_1(y,1)=upper_bound2;

 array2_2(y,1)=lower_bound2;

 end

 end

end

% Check for probability of swing back

[m n]=size(array2_1);

array2_1_1=array2_1;

for i=1:m

 if array2_1_1(i,1)==0

 array2_1_1(i,1)=400;

 end

end

[a1 b1]=find(array2_1_1==min(array2_1_1(:)));

min_point=a1(1,1);

condition=0;

if abs(array2_1(started_column+1,1)-array2_1(min_point,1))>=80

 % Do Swing back process.

 Condition=1;

 Object_swing_back=swing_back(array2_1,min_point,IM);

 % Object is extracted from right side of an image.

 Object1=Object1+Object_swing_back;

end

1.4 “get_object2” function.

Appendix

 130

% The following codes is used to extract the second object (second types of cartilage)

% from an original image.

% Input : original image

% Output : Object

% To obtain the object boundaries on a sub-image by using “get_bound” function.

% To checking the object boundaries if it is accepted or not by using “checking”

% function.

% To obtain the object on the left side of sub-image by using “half_left_process2”

% function.

% To obtain the object on the right side of sub-image by using “half_right_process2”

% function.

function Object2 = get_object2(IM2,condition)

[K, L]=size(IM2);

Object2 = IM2;

% Obtain object boundaries on partitioned sub-images.

for i =200:256

 column=IM2(:,i);

 [a1 a2]=find(column==max(column(:)));

 position=a1(1,1);

 array1_1(i,1)=column(position,1);

 array1_2(i,1)=position;

end

[b1 b2]=find(array1_1==max(array1_1(:)));

started_column=b1(1,1);

position=array1_2(started_column,1);

column1=IM2(:,started_column);

% Determine upper/lower boundaries on a sub-image.

[temp_lower_bound,temp_upper_bound]=get_bound(column1,position,IM2);

upper_bound=temp_upper_bound;

lower_bound=temp_lower_bound;

Appendix

 131

% Check the validity of boundaries.

[n_upper_bound,n_lower_bound]=checking(upper_bound,lower_bound);

upper_bound=n_upper_bound;

lower_bound=n_lower_bound;

% Extract an object from a sub-image.

Object2(1:upper_bound,started_column)=0;

Object2(lower_bound:K,started_column)=0;

started_upper_bound=upper_bound;

started_lower_bound=lower_bound;

% Obtain an object on the right side of an image.

Object2=half_right_process2(Object2,started_column,started_upper_bound,started_low

er_bound,IM2,condition);

% Obtain an object on the left side of an image.

Object2=half_left_process2(started_column,started_upper_bound,started_lower_bound

,Object2,IM2);

1.4.1 “half_right_process2” function

% The following codes is used to obtain an object in the right side of a original

% image.

% Input: starting object sub-image, starting upper/lower object boundaries, original

% image.

% Output: Object on the right side of an original image.

function

Object2=half_right_process2(Object2,started_column,started_upper_bound,started_lo

wer_bound,IM2,condition)

[K,L]=size(IM2);

pre_upper_bound=started_upper_bound;

pre_lower_bound=started_lower_bound;

Appendix

 132

% Obtain object boundaries on partitioned sub-images.

for y=(started_column+1):L

 column2=IM2(:,y);

 column21=column2;

 column21(1:(pre_upper_bound),1)=0;

 column21((pre_lower_bound):K,1)=0;

 [a2 b2]=find(column21==max(column21(:)));

 position2=a2(1,1);

 array2_0(y,1)=position2;

 if column2(position2,1)>80

% Determine the upper/lower boundaries on a sub-image.

[temp_lower_bound2,temp_upper_bound2]=get_bound(column2,position2,IM2);

 upper_bound2=temp_upper_bound2;

 lower_bound2=temp_lower_bound2;

 array2_11(y,1)=upper_bound2;

 array2_21(y,1)=lower_bound2;

 if y>=started_column+2&&y<320

 value_1=upper_bound2-array2_11(y-1,1);

 value_2=lower_bound2-array2_21(y-1,1);

 if abs(value_1)>=5

 upper_bound2=array2_11(y-1,1);

 elseif abs(value_2)>=5

 lower_bound2=array2_21(y-1,1);

 end

 end

% Check the validity of boundaries.

[n_upper_bound2,n_lower_bound2]=checking(upper_bound2,lower_bound2);

 upper_bound2=n_upper_bound2;

 lower_bound2=n_lower_bound2;

 array2_11(y,1)=upper_bound2;

 array2_21(y,1)=lower_bound2;

Appendix

 133

% Extract an object from a sub-image.

 Object2(1:upper_bound2,y)=0;

 Object2(lower_bound2:K,y)=0;

 pre_upper_bound=upper_bound2;

 pre_lower_bound=lower_bound2;

 else

 if y>=320

 Object2(:,y:L)=0;

 break;

 else

 Object2(:,y)=0;

 array2_11(y,1)=upper_bound2;

 array2_21(y,1)=lower_bound2;

 end

 end

end

% Check for probability of swing back

if condition~=1

 [m n]=size(array2_11);

 array2_1_1=array2_11;

 for i=1:m

 if array2_1_1(i,1)==0

 array2_1_1(i,1)=400;

 end

 end

 [a1 b1]=find(array2_1_1==min(array2_1_1(:)));

 min_point=a1(1,1);

 if abs(array2_11(started_column+1,1)-array2_11(min_point,1))>=80

 % Do Swing back process.

Object_swing_back=swing_back(array2_11,min_point,IM2);

 % Obtain an object on the right side of an image.

 Object2=Object2+Object_swing_back;

Appendix

 134

 end

end

1.4.2 “half_left_process2” function

% The following codes is used to obtain an object on the left side of an original

% image.

% Input: starting object sub-image, starting upper/lower object boundaries, original

% image,

% Output: Object on the left side of an original image.

function

Object=half_left_process2(started_column,started_upper_bound,started_lower_bound,

Object,IM)

[K,L]=size(IM);

y=started_column;

pre_upper_bound=started_upper_bound;

pre_lower_bound=started_lower_bound;

% Obtain object boundaries on partitioned sub-images.

for q=1:round(L/2)-1

 column5=IM(:,y-q);

 column51=column5;

 column51(1:(pre_upper_bound),1)=0;

 column51((pre_lower_bound):K,1)=0;

 [a2 b2]=find(column51==max(column51(:)));

 position5=a2(1,1);

 array4(y-q,1)=position5;

 if column5(position5,1)>80

% Determine upper/lower boundaries on a sub-image.

[temp_lower_bound5,temp_upper_bound5]=get_bound2(column5,position5,IM);

 upper_bound5=temp_upper_bound5;

 lower_bound5=temp_lower_bound5;

Appendix

 135

 % Check the validity of boundaries.

[n_upper_bound5,n_lower_bound5]=checking(upper_bound5,lower_bound5);

 upper_bound5=n_upper_bound5;

 lower_bound5=n_lower_bound5;

 array41(y-q,1)=upper_bound5;

 array42(y-q,1)=lower_bound5;

% Extract an object from a sub-image.

 Object(1:upper_bound5,y-q)=0;

 Object(lower_bound5:K,y-q)=0;

 pre_upper_bound=upper_bound5;

 pre_lower_bound=lower_bound5;

 else

 Object(:,1:y-q)=0;

 limit_swing_left=y-q;

 break;

 end

end

1.5 “get_object3” function.

% The following codes is used to obtain the third object (third types of cartilage) on

% an original image.

% Input: Image that the first and second object are extracted.

% Output: The third object.

% To obtain an object on the right side of an image: use “half_right_process3”

% function.

% To obtain an object on the left side of an image: use “half_left_process3” function.

function Object3 = get_object3(IM3)

Object3=IM3(150:300,70:150);

[p1,p2]=size(Object3);

% Determine a starting object sub-image and object boundaries on this sub-image.

Appendix

 136

for i=round(p1/2)-20:round(p1/2)

 template=IM3(i,:);

 [a1 a2]=find(template==max(template(:)));

 position=a2(1,1);

 array1_1(i,1)=template(1,position);

 array1_2(i,1)=position;

end

% Determine a starting sub-image.

[b1 b2]=find(array1_1==max(array1_1(:)));

started_row=b1(1,1);

position=array1_2(started_row,1);

template1=IM3(started_row,:);

[a b]=find(template1==max(template1(:)));

position1=b(1,1);

if template1(1,position1)>80

% Determine upper/lower boundaries on a sub-image.

[temp_lower_bound1,temp_upper_bound1]=get_bound3(template1,position,IM3);

 upper_bound1=temp_upper_bound1;

 lower_bound1=temp_lower_bound1;

% Check the validity of boundaries.

[n_upper_bound1,n_lower_bound1]=checking(upper_bound1,lower_bound1);

 upper_bound1=n_upper_bound1;

 lower_bound1=n_lower_bound1;

 started_upper_bound=upper_bound1;

 started_lower_bound=lower_bound1;

% Extract an object from a sub-image.

 Object3(started_row,1:upper_bound1)=0;

 Object3(started_row,lower_bound1:p2)=0;

else

 Object3(round(p1/2),:)=0;

Appendix

 137

end

% Obtain an object on the right side of an image.

Object3=half_right_process3(started_row,started_upper_bound,started_lower_bound,O

bject3,IM3);

% Obtain an object on the left side of an image.

Object3=half_left_process3(started_row,started_upper_bound,started_lower_bound,Ob

ject3,IM3);

1.5.1 “half_right_process3” function.

% The following codes is used to obtain an object on the right side of an image.

% Input: starting object sub-image, starting upper/lower % object boundaries, input

% image.

% Output: An object on the right side of an image.

function

Object3=half_right_process3(started_row,started_upper_bound,started_lower_bound,

Object3,IM3)

[p1,p2]=size(IM3);

pre_upper_bound3=started_upper_bound;

pre_lower_bound3=started_lower_bound;

% Obtain the object boundaries on partitioned sub-images.

for i=1:round(p1/2)

 template7=Object3(started_row+i,:);

 template7(1,1:pre_upper_bound3-2)=0;

 template7(1,pre_lower_bound3+2:p2)=0;

 [a7 b7]=find(template7==max(template7(:)));

 position7=b7(1,1);

 if template7(1,position7)>80

Appendix

 138

% Determine the upper/lower boundaries on a sub-image.

[temp_lower_bond7,temp_upper_bound7]=get_bound3_1(template7,position7,IM3);

 upper_bound7=temp_upper_bound7;

 lower_bound7=temp_lower_bound7;

% Check the validity of boundaries.

[n_upper_bound7,n_lower_bound7]=checking(upper_bound7,lower_bound7);

 upper_bound7=n_upper_bound7;

 lower_bound7=n_lower_bound7;

 pre_upper_bound2=upper_bound7;

 pre_lower_bound2=lower_bound7;

% Extract an object from a sub-image.

 Object3(started_row+i,1:upper_bound7)=0;

 Object3(started_row+i,lower_bound7:p2)=0;

 ori_position=position7;

 else

 Object3(started_row+i,:)=0;

 Object3(started_row+i:p1,:)=0;

 break;

 end

end

1.5.2 “half_left_process3” function.

% The following codes is used to obtain an object on the left side of an image.

% Input: starting object sub-image, starting upper/lower object boundaries, input

% image.

% Output: An object on the left side of an image.

function

Object3=half_left_process3(started_row,started_upper_bound,started_lower_bound,O

bject3,IM3)

[p1,p2]=size(IM3);

pre_upper_bound3=started_upper_bound;

Appendix

 139

pre_lower_bound3=started_lower_bound;

% Obtain object boundaries on partitioned sub-images.

for i=1:round(p1/2)

 if started_row-i<=0

 break;

 else

 template8=Object3(started_row-i,:);

 end

 template8(1,1:pre_upper_bound3-2)=0;

 template8(1,pre_lower_bound3+2:p2)=0;

 [a8 b8]=find(template8==max(template8(:)));

 position8=b8(1,1);

 if template8(1,position8)>80

% Determine upper/lower boundaries on a sub-image.

[temp_lower_bound8,temp_upper_bound8]=get_bound3(template8,position8,IM3);

 upper_bound8=temp_upper_bound8;

 lower_bound8=temp_lower_bound8;

% Check the validity of boundaries.

[n_upper_bound8,n_lower_bound8]=checking(upper_bound8,lower_bound8);

 upper_bound8=n_upper_bound8;

 lower_bound8=n_lower_bound8;

 pre_upper_bound3=upper_bound8;

 pre_lower_bound3=lower_bound8;

% Extract an object from a sub-image.

 Object3(started_row-i,1:upper_bound8)=0;

 Object3(started_row-i,lower_bound8:p2)=0;

 else

 Object3(started_row-i,:)=0;

 Object3(1:started_row-i,:)=0;

 break;

Appendix

 140

 end

end

1.6 “get_size” function.

% The following codes is used to calculate the number of pixels of an object. It is

% also the area of an object.

% Input: Object image that is extracted from original image.

% Output: Number of pixels.

[M,N]=size(Object);

threshold=60;

Size=0;

for i=1:M

 for j=1:N

 if Object(i,j)>threshold

 Size=Size+1; % Calculate the number of pixels

 end

 end

end

2. Artificial Neural Network Algorithms

2.1 Create a Neural Network Classifier:

% The following codes are used to create a network classifier.

% To obtain object input vectors set from a reference image and relating target

% vector: use “getin” function.

% To obtain background input vectors set from a reference image and relating target

% vector: use “getin2” function.

% To choose object input vectors and relating target vector for network input: use

% “getset” function.

% To choose background input vectors and relating target vector for network input:

% use “getset2” function.

Appendix

 141

% Extract three types of cartilage (Object1, Object2, Object3) from a reference

% image by using Bi-directional scanning Segmentations method.

[Object1, Object2, Object3] = main(im_original)

Object = Object1 + Object2 + Object3;

% Generate object input vectors set and object target vector.

[P,T1] = genin(Object,im_original);

% Generate background input vectors set and background target vector.

[Q,T2] = genin2(Object,im_original);

% Choose 200 object input vectors and target vectors for training data.

[P1,t1] = getset(200,P);

% Choose 200 backgroud input vector and target vectors for training data.

[Q1,t2] = getset2(200,Q);

% Create Network Target vector.

T = [t1 t2];

% Create Network Input vector.

Z = [P1 Q1];

Z = double(Z);

% Create Neural Network

net = newff(Z,T,40,{'logsig','logsig'},’trainscg’);

net = init(net);

net.trainParam.goal = 10e-5;

net.trainParam.epochs = 20000;

% Training the network

net = train(net,Z,T);

NETWORK = net;

Appendix

 142

2.1.1 “getin” function.

% This function is used to generate object input vectors and relating target vector.

% Input: Object image, reference original image.

% Output: Object input vectors and relating target vectors

function [P,T] = genin(objectimage,im_original)

image = objectimage;

ori = im_original;

[K L] = size (image);

pad_ori_image=padarray(ori,[4 4],'replicate','pre');

pad_ori_image=padarray(pad_ori_image,[5 5],'replicate','post');

pad_obj_image=padarray(image,[4 4],'replicate','pre');

pad_obj_image=padarray(pad_obj_image,[5 5],'replicate','post');

N = 0;

for i = 5:K+4

 for j = 5: L+4

 if pad_obj_image(i,j)>0

 N = N + 1;

 windows = pad_ori_image(i-4:i+5,j-4:j+5);

 windows = windows';

 vector = reshape(windows,[1 100]);

 set(:,N) = vector;

 set2(:,N)= 1;

 end

 end

end

P = set;

T = set2;

2.1.2 “getin2” function.

% This function is used to generate background input vectors and relating target

% vector.

Appendix

 143

% Input: Object image, reference original image.

% Output: Background input vectors and relating target vectors

function [P,T] = genin2(objectimage,im_original)

image = objectimage;

ori = im_original;

[K L] = size (image);

pad_obj_image=padarray(image,[4 4],'replicate','pre');

pad_obj_image=padarray(pad_obj_image,[5 5],'replicate','post');

pad_ori_image=padarray(ori,[4 4],'replicate','pre');

pad_ori_image=padarray(pad_ori_image,[5 5],'replicate','post');

N = 0;

for i = 5:K+4

 for j = 5: L+4

 if N > 5000

 break;

 end

 if pad_obj_image(i,j)==0

 N = N + 1;

 windows = pad_ori_image(i-4:i+5,j-4:j+5);

 windows = windows';

 vector = reshape(windows,[1 100]);

 set(:,N) = vector;

 set2(:,N) = 0;

 end

 end

end

P = set;

T = set2;

2.1.3 “getset” function.

% This function is used to choose randomly 200 input vectors from input vectors set

% and relating target vectors.

Appendix

 144

% Input: object input vectors and relating target vectors set.

% Output: 200 input vectors and relating targetvectors.

function [out,target] = getset(number,inputset)

[M N] = size(inputset);

data = ceil(N.*rand(1,number));

for i = 1 : number

 if data(1,i)==0

 value = 1;

 else

 value = data(1,i);

 end

 out(:,i) = inputset(:,value);

 target(:,i) = 1;

end

2.1.4 “getset2” function.

% This function is used to choose randomly 200 input vectors from background input

% vectors set and relating target vectors.

% Input: background input vectors and relating target vectors set.

% Output: 200 background input vectors and relating target vectors.

function [out,target] = getset(number,inputset)

[M N] = size(inputset);

data = ceil(N.*rand(1,number));

for i = 1 : number

 if data(1,i)==0

 value = 1;

 else

 value = data(1,i);

 end

 out(:,i) = inputset(:,value);

 target(:,i) = 1;

Appendix

 145

end

2.2 Network Classifier as Object Recognition Algorithms

% The following codes is used to extract an object from an original image by using

% Network Classifier.

% Input: Original image.

% Output: Object image.

% To obtain an object on the right side of an original image: use

% “half_right_processNN” function.

% To obtain an object on the left side of an original image: use

% “half_left_processNN” function.

% To obtain an object on a sub-image: use “useNN” function.

function Object = runNN(original_image, Network)

IM = original_image.

[K,L]=size(IM);

reference_intensity=80;

Object = uint8(zeros(K,L));

% Determine a starting object sub-image and extract object from this sub-image.

for i=160:256

 column=IM(:,i);

 [a1 a2]=find(column==max(column(:)));

 position=a1(1,1);

 array1_1(i,1)=column(position,1);

 array1_2(i,1)=position;

end

[b1 b2]=find(array1_1==max(array1_1(:)));

started_column=b1(1,1);

position=array1_2(started_column,1);

% Obtain an object on a sub-image.

Object = useNN(started_column,position,IM,IM_Network,Object);

Appendix

 146

[pre_up,pre_low,condition1] = bound_range(position,started_column,Object);

pre_up = pre_up-100;

pre_low = pre_low+50;

% Obtain an object on the right side of an original image.

Object =

half_right_process_NN(Object,started_column,pre_up,pre_low,IM,IM_Network);

% Obtain an object on the left side of an original image.

Object=half_left_process_NN(started_column,pre_up,pre_low,Object,IM,IM_Network

);

2.2.1 “half_right_processNN” function.

% This function is used to obtain an object on the right side of an image.

% Input: Starting object sub-image, original image, Network Classifier.

% Output: An object on the right side of an original image.

function Object =

half_right_processNN(Object,started_column,pre_up,pre_low,IM,IM_Network)

[K,L]=size(IM);

% Obtain an object on partitioned sub-images.

for y=(started_column+1):L

 column2=IM(:,y);

 column21=column2;

 column21(1:pre_up-10,1)=0;

 column21(pre_low+20:K,1)=0;

 [a2 b2]=find(column21==max(column21(:)));

 position2=a2(1,1);

 array2_0(y,1)=position2;

 if column2(position2,1)>80

% Obtain an object on a sub-image.

Appendix

 147

 Object=useNN(y,position2,IM,IM_Network,Object);

 [pre_up3,pre_low3,condition] = bound_range(position2,y,Object);

 CheckObject = Object;

 if condition == 0 && y > 320

 Object(:,y:L)=0;

 break;

 end

 else

 if y>=320

 Object(:,y:L)=0;

 break;

 else

 Object(:,y)=0;

 end

 end

end

2.2.2 “half_left_processNN” function.

% This function is used to obtain an object on the left side of an image.

% Input: Starting object sub-image, original image, Network Classifier.

% Output: An object on the left side of an original image.

function

Object=half_left_processNN(started_column,pre_up,pre_low,Object,IM,IM_Network)

[K,L]=size(IM);

y=started_column;

% Obtain an object on partitioned sub-images.

for q=1:round(L/2)-1

 column5=IM(:,y-q);

 column51=column5;

 column51(1:pre_up-20,1)=0;

 column51(pre_low+20:K,1)=0;

Appendix

 148

 [a2 b2]=find(column51==max(column51(:)));

 position5=a2(1,1);

 array4(y-q,1)=position5;

 if column5(position5,1)>80

% Obtain an object on a sub-image.

 Object=useNN(y-q,position5,IM,IM_Network,Object);

 [pre_up,pre_low,condition]=bound_range(position5,y-q,Object);

 if condition == 0

 Object(:,y-q:L)=0;

 break;

 end

 else

 Object(:,y-q)=0;

 limit_swing_left=y-q;

 break;

 end

end

2.2.3 “useNN” function.

% This function is used to obtain an object on a sub-image using Network Classifier.

% Input: Sub-image, Network Classifier.

% Output: An object on a sub-image.

function Object = useNN(column,position,IM,IM_Network,Object)

try

 va1 = 1;

 va2 = 0;

 threshold = 0.9;

 TestIM = IM;

 if 250<column&&column<280

 UP = 25;

 DOWN = 50;

Appendix

 149

 elseif column<=250

 UP = 150;

 DOWN = 100;

 elseif column>=280

 UP = 175;

 DOWN = 175;

 end

 for k=1:UP

 if position-k<=0

 win = IM(1:10,1:10);

 else

 win = IM((position-k)-4:(position-k)+5,column-4:column+5);

 end

 win = win';

 win = reshape(win,[100 1]);

 win = double(win);

 OUTPUT = sim(IM_Network,win);

 TstOutput=real(OUTPUT>threshold);

 if TstOutput == va1

 Object(position-k,column)=IM(position-k,column);

 elseif TstOutput == va2

 Object(position-k,column) = 0;

 end

 end

 for k=1:DOWN

 if position+k+5>512

 break;

 end

 win = IM((position+k)-4:(position+k)+5,column-4:column+5);

 win = win';

 win = reshape(win,[100 1]);

 win = double(win);

 OUTPUT = sim(IM_Network,win);

 TstOutput=real(OUTPUT>threshold);

Appendix

 150

 if TstOutput == va1

 Object(position+k,column)=IM(position+k,column);

 elseif TstOutput == va2

 Object(position+k,column) = 0;

 end

 end

end

3. Active Contour Models Algorithms

% This function is used to obtain an object on an original image by using Active

% Contour Models.

% Input : Original image.

% Output: An object on original image.

function Snake(im_original)

IM = im_original;

% Initializing Contour V

load intcontourV

CV = contourV;

CV(3,:) = 1;

[P Q] = size(CV);

SUM = sum(CV(3,:));

while SUM>20

 for i = 2:Q-1

 if CV(3,i)==1

 % Create windows for vector Vi

 Vi_row = CV(1,i);

 Vi_col = CV(2,i);

 P11 = [Vi_row-2 Vi_col-2]';

 P12 = [Vi_row-2 Vi_col-1]';

 P13 = [Vi_row-2 Vi_col]';

 P14 = [Vi_row-2 Vi_col+1]';

 P15 = [Vi_row-2 Vi_col+2]';

Appendix

 151

 P21 = [Vi_row-1 Vi_col-2]';

 P22 = [Vi_row-1 Vi_col-1]';

 P23 = [Vi_row-1 Vi_col]';

 P24 = [Vi_row-1 Vi_col+1]';

 P25 = [Vi_row-1 Vi_col+2]';

 P31 = [Vi_row Vi_col-2]';

 P32 = [Vi_row Vi_col-1]';

 P33 = [Vi_row Vi_col]';

 P34 = [Vi_row Vi_col+1]';

 P35 = [Vi_row Vi_col+2]';

 P41 = [Vi_row+1 Vi_col-2]';

 P42 = [Vi_row+1 Vi_col-1]';

 P43 = [Vi_row+1 Vi_col]';

 P44 = [Vi_row+1 Vi_col+1]';

 P45 = [Vi_row+1 Vi_col+2]';

 P51 = [Vi_row+2 Vi_col-2]';

 P52 = [Vi_row+2 Vi_col-1]';

 P53 = [Vi_row+2 Vi_col]';

 P54 = [Vi_row+2 Vi_col+1]';

 P55 = [Vi_row+2 Vi_col+2]';

 % Calculate normalization factor l(V)

 [m n] = size(CV);

 for i1 = 1 : n-1

 lv(n,1) = ((abs(CV(1,i1+1) - CV(1,i1)))^2 + (abs(CV(2,i1+1)-CV(2,i1)))^2) ;

 end

 LV = sum(lv(:))/n;

 % Calculate Continutity Energy

 V = 0.5*(CV(1:2,i-1)+CV(1:2,i));

 e11 = (1/LV)*((P11(1,1)-V(1,1))^2+(P11(2,1)-V(2,1))^2);

 e12 = (1/LV)*((P12(1,1)-V(1,1))^2+(P12(2,1)-V(2,1))^2);

 e13 = (1/LV)*((P13(1,1)-V(1,1))^2+(P13(2,1)-V(2,1))^2);

Appendix

 152

 e14 = (1/LV)*((P14(1,1)-V(1,1))^2+(P14(2,1)-V(2,1))^2);

 e15 = (1/LV)*((P15(1,1)-V(1,1))^2+(P15(2,1)-V(2,1))^2);

 e21 = (1/LV)*((P21(1,1)-V(1,1))^2+(P21(2,1)-V(2,1))^2);

 e22 = (1/LV)*((P22(1,1)-V(1,1))^2+(P22(2,1)-V(2,1))^2);

 e23 = (1/LV)*((P23(1,1)-V(1,1))^2+(P23(2,1)-V(2,1))^2);

 e24 = (1/LV)*((P24(1,1)-V(1,1))^2+(P24(2,1)-V(2,1))^2);

 e25 = (1/LV)*((P25(1,1)-V(1,1))^2+(P25(2,1)-V(2,1))^2);

 e31 = (1/LV)*((P31(1,1)-V(1,1))^2+(P31(2,1)-V(2,1))^2);

 e32 = (1/LV)*((P32(1,1)-V(1,1))^2+(P32(2,1)-V(2,1))^2);

 e33 = (1/LV)*((P33(1,1)-V(1,1))^2+(P33(2,1)-V(2,1))^2);

 e34 = (1/LV)*((P34(1,1)-V(1,1))^2+(P34(2,1)-V(2,1))^2);

 e35 = (1/LV)*((P35(1,1)-V(1,1))^2+(P35(2,1)-V(2,1))^2);

 e41 = (1/LV)*((P41(1,1)-V(1,1))^2+(P41(2,1)-V(2,1))^2);

 e42 = (1/LV)*((P42(1,1)-V(1,1))^2+(P42(2,1)-V(2,1))^2);

 e43 = (1/LV)*((P43(1,1)-V(1,1))^2+(P43(2,1)-V(2,1))^2);

 e44 = (1/LV)*((P44(1,1)-V(1,1))^2+(P44(2,1)-V(2,1))^2);

 e45 = (1/LV)*((P45(1,1)-V(1,1))^2+(P45(2,1)-V(2,1))^2);

 e51 = (1/LV)*((P51(1,1)-V(1,1))^2+(P51(2,1)-V(2,1))^2);

 e52 = (1/LV)*((P52(1,1)-V(1,1))^2+(P52(2,1)-V(2,1))^2);

 e53 = (1/LV)*((P53(1,1)-V(1,1))^2+(P53(2,1)-V(2,1))^2);

 e54 = (1/LV)*((P54(1,1)-V(1,1))^2+(P54(2,1)-V(2,1))^2);

 e55 = (1/LV)*((P55(1,1)-V(1,1))^2+(P55(2,1)-V(2,1))^2);

 CE = [e11 e12 e13 e14 e15;e21 e22 e23 e24 e25;e31 e32 e33 e34 e35;e41 e42

e43 e44 e45;e51 e52 e53 e54 e55];

 %Calculate Ballon Energy

 t1 = ((1/sqrt((CV(1,i)-CV(1,i-1))^2+(CV(2,i)-CV(2,i-1))^2))*(CV(1:2,i)-

CV(1:2,i-1)));

 t2= ((1/sqrt((CV(1,i+1)-CV(1,i))^2+(CV(2,i+1)-CV(2,i))^2))*(CV(1:2,i+1)-

CV(1:2,i)));

 ti = t1 + t2;

 ni = rot90(ti);

 eb11 =dot(ni,(CV(1:2,i)-P11));

 eb12 =dot(ni,(CV(1:2,i)-P12));

Appendix

 153

 eb13 =dot(ni,(CV(1:2,i)-P13));

 eb14 =dot(ni,(CV(1:2,i)-P14));

 eb15 =dot(ni,(CV(1:2,i)-P15));

 eb21 =dot(ni,(CV(1:2,i)-P21));

 eb22 =dot(ni,(CV(1:2,i)-P22));

 eb23 =dot(ni,(CV(1:2,i)-P23));

 eb24 =dot(ni,(CV(1:2,i)-P24));

 eb25 =dot(ni,(CV(1:2,i)-P25));

 eb31 =dot(ni,(CV(1:2,i)-P31));

 eb32 =dot(ni,(CV(1:2,i)-P32));

 eb33 =dot(ni,(CV(1:2,i)-P33));

 eb34 =dot(ni,(CV(1:2,i)-P34));

 eb35 =dot(ni,(CV(1:2,i)-P35));

 eb41 =dot(ni,(CV(1:2,i)-P41));

 eb42 =dot(ni,(CV(1:2,i)-P42));

 eb43 =dot(ni,(CV(1:2,i)-P43));

 eb44 =dot(ni,(CV(1:2,i)-P44));

 eb45 =dot(ni,(CV(1:2,i)-P45));

 eb51 =dot(ni,(CV(1:2,i)-P51));

 eb52 =dot(ni,(CV(1:2,i)-P52));

 eb53 =dot(ni,(CV(1:2,i)-P53));

 eb54 =dot(ni,(CV(1:2,i)-P54));

 eb55 =dot(ni,(CV(1:2,i)-P55));

 BE = [eb11 eb12 eb13 eb14 eb15;eb21 eb22 eb23 eb24 eb25;eb31 eb32 eb33

eb34 eb35;eb41 eb42 eb43 eb44 eb45;eb51 eb52 eb53 eb54 eb55];

 % Calculate Internal Engery

 IE = CE + BE;

 % Calculate External Energy using NN

 load neural_network_version2.mat

 Vi_row = round(Vi_row);

 Vi_col = round(Vi_col);

 win11 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col-2)-4:(Vi_col-2)+5);

Appendix

 154

 win11 = win11';

 win11 = reshape(win11,[100 1]);

 win11 = double(win11);

 OUTPUT11 = sim(IM_Network,win11);

 win12 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col-1)-4:(Vi_col-1)+5);

 win12 = win12';

 win12 = reshape(win12,[100 1]);

 win12 = double(win12);

 OUTPUT12 = sim(IM_Network,win12);

 win13 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col)-4:(Vi_col)+5);

 win13 = win13';

 win13 = reshape(win13,[100 1]);

 win13 = double(win13);

 OUTPUT13 = sim(IM_Network,win13);

 win14 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col+1)-4:(Vi_col+1)+5);

 win14 = win14';

 win14 = reshape(win14,[100 1]);

 win14 = double(win14);

 OUTPUT14 = sim(IM_Network,win14);

 win15 = IM((Vi_row-2)-4:(Vi_row-2)+5,(Vi_col+2)-4:(Vi_col+2)+5);

 win15 = win15';

 win15 = reshape(win15,[100 1]);

 win15 = double(win15);

 OUTPUT15 = sim(IM_Network,win15);

 win21 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col-2)-4:(Vi_col-2)+5);

 win21 = win21';

 win21 = reshape(win21,[100 1]);

 win21 = double(win21);

 OUTPUT21 = sim(IM_Network,win21);

 win22 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col-1)-4:(Vi_col-1)+5);

 win22 = win22';

 win22 = reshape(win22,[100 1]);

 win22 = double(win22);

 OUTPUT22 = sim(IM_Network,win22);

Appendix

 155

 win23 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col)-4:(Vi_col)+5);

 win23 = win23';

 win23 = reshape(win23,[100 1]);

 win23 = double(win23);

 OUTPUT23 = sim(IM_Network,win23);

 win24 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col+1)-4:(Vi_col+1)+5);

 win24 = win24';

 win24 = reshape(win24,[100 1]);

 win24 = double(win24);

 OUTPUT24 = sim(IM_Network,win24);

 win25 = IM((Vi_row-1)-4:(Vi_row-1)+5,(Vi_col+2)-4:(Vi_col+2)+5);

 win25 = win25';

 win25 = reshape(win25,[100 1]);

 win25 = double(win25);

 OUTPUT25 = sim(IM_Network,win25);

 win31 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col-2)-4:(Vi_col-2)+5);

 win31 = win31';

 win31 = reshape(win31,[100 1]);

 win31 = double(win31);

 OUTPUT31 = sim(IM_Network,win31);

 win32 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col-1)-4:(Vi_col-1)+5);

 win32 = win32';

 win32 = reshape(win32,[100 1]);

 win32 = double(win32);

 OUTPUT32 = sim(IM_Network,win32);

 win33 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col)-4:(Vi_col)+5);

 win33 = win33';

 win33 = reshape(win33,[100 1]);

 win33 = double(win33);

 OUTPUT33 = sim(IM_Network,win33);

 win34 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col+1)-4:(Vi_col+1)+5);

 win34 = win34';

 win34 = reshape(win34,[100 1]);

 win34 = double(win34);

Appendix

 156

 OUTPUT34 = sim(IM_Network,win34);

 win35 = IM((Vi_row)-4:(Vi_row)+5,(Vi_col+2)-4:(Vi_col+2)+5);

 win35 = win35';

 win35 = reshape(win35,[100 1]);

 win35 = double(win35);

 OUTPUT35 = sim(IM_Network,win35);

 win41 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col-2)-4:(Vi_col-2)+5);

 win41 = win41';

 win41 = reshape(win41,[100 1]);

 win41 = double(win41);

 OUTPUT41 = sim(IM_Network,win41);

 win42 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col-1)-4:(Vi_col-1)+5);

 win42 = win42';

 win42 = reshape(win42,[100 1]);

 win42 = double(win42);

 OUTPUT42 = sim(IM_Network,win42);

 win43 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col)-4:(Vi_col)+5);

 win43 = win43';

 win43 = reshape(win43,[100 1]);

 win43 = double(win43);

 OUTPUT43 = sim(IM_Network,win43);

 win44 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col+1)-4:(Vi_col+1)+5);

 win44 = win44';

 win44 = reshape(win44,[100 1]);

 win44 = double(win44);

 OUTPUT44 = sim(IM_Network,win44);

 win45 = IM((Vi_row+1)-4:(Vi_row+1)+5,(Vi_col+2)-4:(Vi_col+2)+5);

 win45 = win45';

 win45 = reshape(win45,[100 1]);

 win45 = double(win45);

 OUTPUT45 = sim(IM_Network,win45);

 win51 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col-2)-4:(Vi_col-2)+5);

 win51 = win51';

 win51 = reshape(win51,[100 1]);

Appendix

 157

 win51 = double(win51);

 OUTPUT51 = sim(IM_Network,win51);

 win52 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col-1)-4:(Vi_col-1)+5);

 win52 = win52';

 win52 = reshape(win52,[100 1]);

 win52 = double(win52);

 OUTPUT52 = sim(IM_Network,win52);

 win53 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col)-4:(Vi_col)+5);

 win53 = win53';

 win53 = reshape(win53,[100 1]);

 win53 = double(win53);

 OUTPUT53 = sim(IM_Network,win53);

 win54 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col+1)-4:(Vi_col+1)+5);

 win54 = win54';

 win54 = reshape(win54,[100 1]);

 win54 = double(win54);

 OUTPUT54 = sim(IM_Network,win54);

 win55 = IM((Vi_row+2)-4:(Vi_row+2)+5,(Vi_col+2)-4:(Vi_col+2)+5);

 win55 = win55';

 win55 = reshape(win55,[100 1]);

 win55 = double(win55);

 OUTPUT55 = sim(IM_Network,win55);

 EE = [OUTPUT11 OUTPUT12 OUTPUT13 OUTPUT14

OUTPUT15;OUTPUT21 OUTPUT22 OUTPUT23 OUTPUT24

OUTPUT25;OUTPUT31 OUTPUT32 OUTPUT33 OUTPUT34

OUTPUT35;OUTPUT41 OUTPUT42 OUTPUT43 OUTPUT44

OUTPUT45;OUTPUT51 OUTPUT52 OUTPUT53 OUTPUT54 OUTPUT55];

 E = EE + IE;

 [a b]=find(E==min(E(:)));

 if a == 1

 flag = 1;

 new_Vi_row = Vi_row - 2;

Appendix

 158

 if b == 1

 new_Vi_col = Vi_col - 2;

 elseif b == 2

 new_Vi_col = Vi_col - 1;

 elseif b == 3

 new_Vi_col = Vi_col;

 elseif b == 4

 new_Vi_col = Vi_col + 1;

 elseif b == 5

 new_Vi_col = Vi_col + 2;

 end

 elseif a == 2

 flag = 1;

 new_Vi_row = Vi_row - 1;

 if b == 1

 new_Vi_col= Vi_col - 2;

 elseif b == 2

 new_Vi_col= Vi_col - 1;

 elseif b == 3

 new_Vi_col= Vi_col;

 elseif b == 4

 new_Vi_col= Vi_col + 1;

 elseif b == 5

 new_Vi_col= Vi_col + 2;

 end

 elseif a == 3

 flag = 1;

 new_Vi_row = Vi_row;

 if b == 1

 new_Vi_col= Vi_col - 2;

 elseif b == 2

 new_Vi_col= Vi_col - 1;

 elseif b == 3

 flag=0;

Appendix

 159

 new_Vi_col = Vi_col;

 elseif b == 4

 new_Vi_col= Vi_col + 1;

 elseif b == 5

 new_Vi_col= Vi_col + 2;

 end

 elseif a == 4

 flag = 1;

 new_Vi_row = Vi_row + 1;

 if b == 1

 new_Vi_col= Vi_col - 2;

 elseif b == 2

 new_Vi_col= Vi_col - 1;

 elseif b == 3

 new_Vi_col= Vi_col;

 elseif b == 4

 new_Vi_col= Vi_col + 1;

 elseif b == 5

 new_Vi_col= Vi_col + 2;

 end

 elseif a == 5

 flag = 1;

 new_Vi_row = Vi_row + 2;

 if b == 1

 new_Vi_col= Vi_col - 2;

 elseif b == 2

 new_Vi_col= Vi_col - 1;

 elseif b == 3

 new_Vi_col= Vi_col;

 elseif b == 4

 new_Vi_col= Vi_col + 1;

 elseif b == 5

 new_Vi_col= Vi_col + 2;

 end

Appendix

 160

 end

 CV(:,i) = [new_Vi_row new_Vi_col flag]';

 end

 SUM = sum(CV(3,:));

 end

