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ABSTRACT
Kelian 1s a bulk tonnage, breccia- and vein-hosted, structutally controlled, base metal sulfide-rich
low sulfidation epithermal gold-silver deposit. The Keltan mine is located in Bast Kalimantan,

Indonesia on the island of Borneo. Containing ~ 240 metric tonnes of gold, Kehan 1s a ‘giant’ gold

deposit 2nd Indonesia’s largest gold-only resource.

The deposit occurs principally within a structural inlier of felsic volcaniclastic rocks (the Kelian
Volcanics) surrounded by Eocene terrestrial and shallow marine sedimentary rocks of the Kutai
Basin. A new U-Pb zircon age determination for the Kelian Volcanics indicates an Upper
Cretaceous age (67.8 + 0.3 Ma). The Kelian Volcanics have been uplifted along a dextral strike-skip
basement fault (West Prampus Fault) at its intersection with a regional scale northwest—&ending
crustal lineament. At the surface, this lineament manifests as a series of noi:t‘tmvc:st—strikjngr_ﬁ‘fI ;:stril{em
slip and oblique-slip faults that were intimately linked with golé-l mineralisation. The intersection
of these two regionﬂ~scﬂe structures was a focus for magma emplacement in the Lower Miocene.
Feldspar — hornblende-phyric andesite intrusions were emplaced in rhombic, extensional domains

defined by northwest- and northeast-striking faults.

in addition to being a magmatic centre during the Early Miocene, the Kelian area was a focus for
intense hypogene brecciation. Detailed facies mapping has delineated the subsurface facies and
remnants of the eruptive facies of a maar-diatreme complex, and genetically related, mineralised
phreatic and hydraulic breccias. Intrusion of quartz-phyric shyolite {19.8 £ 0.1 Ma) and quartz —
feldspar-phyric rhyolite (19.5 0.1 Ma) into an active hydrothermal system at Kelian triggered
phreatomagmatic and hybrid phreatomagmmatic — phreatic explosions and eruptions. The Kelian
Breccia Complex records the effects of magma intrusion into an active hydrothermal system and
the ensuing distuption, reorganisation and enhancement of that system. The root zones of the
phreatomagmatic explosions are preserved and provide direct textural evidence of magma — water
interaction. Widespread phreatic explosions were trggered by the catastrophic disruption of the
hydrothermal system caused by magma emplacement and diatreme formation. Seven breccia facies
have been defined for the mineralised phreatic breccias based on cement assemblag.es. The return
towards steady state conditions is recorded by the progression from explosive phreatic breccias, to

in-situ hydraulic breceias. -

Syn-mineralisation faults occur in four main groups: norﬂ’lWCSt*, northeast-, north- and east-striking.

Northwest-striking faults accommodated early, syn-magmatic dextral strike-slip motion followed by
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dip-slip motion during syn-mineralisation, whereas all other syn-mineralisation faults were
extensional Structural controls on gold minetalisation are indicated by the parallelism of trends in
gold assay data with mapped faults and the spatial distribution of shéeted and conjugate extension
and extensional shear veins developed about the syn-mineralisation faults. The 383, Water Tank,
Tepu and Sungai Jiz ore 2zones are localised afong major aorthwest-striking faults zones. The Tepu
and 383 ore zones are also associated with east-strking faults that may have controlled late-stage
mineralisation. The northeast-trending high-grade core of the deposit consists of the 255, 393 and
394 ore zones. These ore zones are each centred on breccia bodies located at the intersection of
multiple fault sets. Vein-hosted mineralisation in the 393 ore zone is strongly related to extensions
across north-northeast- and northeast-striking faults. Thc; 255 and Hanging Wall ore zones are
localised along northeast faults and at the intersection of northeast -striking faults with southern
projection of the West Burung Fault.

Mineralisation occurs as disseminations, in sheeted and conjugate veins and as breccia cement.
Unlike many low-sulfidation epithermal gold deposits, quartz is only a minor cotﬁponent andsbase-
metal sulfides are abundant at Kelian. A revised paragenetic sequence consisting of ten
minetalisation stages (1A, 1B, 2A, 2B, 3A, 3B, 3C, 3D, 4, 5} has been defined for the Kelian system.
‘There is an overall progression through the paragénetic sequence from pyrite-dominated to base
metal-sulfide-dominated and finally sulfpsait dominated mineralisation. Gangue minerals also
change from adularia and/or quartz to quartz — illite and finally carbonate dominated through the
paragenesis. Stage 1 mineralisation consists of proximal illite — pyrite - quartz cemented veins and
breccias and distal calcite — quartz 1+ epidote veins. Stage 2 mineralisation consists of pyrite —
quartz — illite and minor base metal sulfides in the northern Kelian area, and adularia — quartz —
pyrite in the south. A transition to abundant base-metal-sulfides (galena, sphalerite, chalcopyrite)
occurs Detween stages 2 and 3A. In addition to base-metal sulfides, stage 3A mjncraﬁsaﬁon
contains ubiquitous pyrite, local sulfosalts and abundant native gold. Stage 3B mineralisation is
coeval with-stage 3A, but occurs at depth on the flanks of the Kelian system. Tt consists of base-
metal sulfides along with pyrrhotite — marcasite — melnikovite. Widespread boiling is indicated by
abundant bladed carbonate in stage 3C. Stage 4 mineralisation consists of sulfosalts and sulfides
intergrown with laminated and bladed rhodochrosite. Gold deposition occurred throughout stages
1 to 4, but was most significant during stage 3 and 4. Native gold principally occurs as inclusions
within and intergrown with pyrite, sphalerite, galena, arsenopyrite, quartz, bladed carbonate and
sulfosalts.

Hydrothermal alteration is zoned about contacts, faults, breccias and veins. Within andesite

intrusions, alteration grades from proximal quartz — illite - pyrite (QIP) through illite — carbonate —




pyrite (ICP) and illite — chlorite — carbonate (ICC) to distal chlozite — calcite — jliite (CCTy
assemblages. Alteration zonation in volcaniclastic host rocks grades from proximal QIP to distal
smectite — illite (SMT) alteration. Local, intense adulasia — quartz — illite (AQT) and/or carbonate
alteration assemblages are spatially associated with adularia and carbonate infilf tespectively.
Alteration distributiéa is controlled by lithology, structure and host-rock permeability. Variations
in illite crystallinity and composition have been qualitatively assessed through the use of 4 portable
short wave infrared mineral analyser (PEIMA). Illite crystallinity increases systematically with

increasing gold grades.

Fluid inclusion analyses revealed the presence of anomalously saline fluid inclusions, in particular
in stages 3A and 3C, during which thé bulk of gold aﬁd base metals were deposited. The salinity
and l-lomogenisaﬁon temperature artays suggest that isotherfngl mixing of low-salinity (~0 to 2 %
eq. wt.% NaCl) with moderate-salinity fluids (10 to 25 % eq. wt.% NaCl), rather than boiling
resulted in the spread in salinity values for sphalerite, carbonate and quartz (stage 3). Saﬁm‘u’es of
~ 410 6 eq. wt.% NaCl for adularia, quartz (stages 2B and 4), thodochrosite and proustite-
pyrargyrite may also reflect a component of mixing with the moderate saligity fluid.

Sulfur and C-O isotopes results from Kelian are conststent with a magmatic source for S and C.
Origins for the inferred mineralising brme cannot be confirmed given the data available, but 2
magmatic source is inferred. Gold was transported as a bisulfide complex, most hikely Au{HS),,
and Pb and Zn were likely transported as chloride complexes. A reduced, H,S-rich, saline fluid is
. inferred to have entered the base of the hydrothermal systemn at Keltan and to have transported
Au, Pb and Zn. Gold deposition at Kelian is inferred to have resulted from a combination of: 1)
boiling; 2) desulfidation due to stripping of H,S by base metal sulfide deposition; 3) isothermal
mixing between a reduced, sulfur-rich, saline flud and a reduced, sulfur deficient, dilute fluid; and
4) wall rock sulfidation.
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