by
Dudley E. Kurth, BoSc. (Hons.)

A thesis presented for the degree of Doctor of Philosophy in the University of Tasmania.

CONTENTS

Page
I. Introduction 1
II. Systematic Position 2
III. Distribution and Habitat 4.
IV. Fishing Methods 8
V. The Commercial Catch 12
VI. Sampling 21
VII. Total Length-Standaxd Length 23
VIII. Weight-Length 24
IX. Growth Rate and Age Determination 34
X. Spawming and Gonad Maturity 47
XI. Length and Age at First Moturity 66
XII. Handedness, Reversal and Ambicolowation 70
XIII. Parasites 75
XIV. Raciation 76
XV. Summery 97
XVI. Acknowledgnents 98
XVI. References 99

I. INTRODUCIITON

Apart from the work of thomson and Anderton (1921), Finlay (1928), and Rapson (1940), little is known of the biology of southern hemisphere Heterosomata.

As it is usual for fishery investigations to be first directed towards commercially importent species the relative minor importance of the flatfishes in most southexn countries accounts for the small contributions made to the knowledge of this interesting group. The three papers referred to above, describe work done in New Zealand where flatfish form about ten per cent. of the landed weight or trawled scale fish or seven per cent. of the total catch of all species.

Although the annual eatch of the commexcial species of flounders and soles is less than one per cent. of the total scale fish catch of Australia, they are nevertheless economically important in the areas where they are caught due to the high market price they command.

The greenback flounder is the predominant flatfish of Victorian and Tasmanian waters and forms more than ninety per cent. of the whole Australian flatfish catch. The entire flounder fishery is limited to the operations of onshore fishermen and the numbers taken by either trawl or Danish seine are negligible.

This represents the first attempt to contribute to the biological knowledge of the species in Australia and it should be pointed out that its contents should be regarded as an introductoxy rathex than a comprehensive account of the problems investigated. Throughout the work the writer has been conscious of the need fox a fax more extensive sampling progranme than funds and facilities pernitted but it is hoped that what is presentod will form a useful guide to any future investigation of the greenbeck flounder.

II. SYSTMMAITC POSITION

Rhombosolea tapirina Gunther is one of four species of the genus Rhombosolea belonging to the subtamily Rhombosoleinne of the order Heterosomata All toux speciess are represented in New zealand but tapirina is the only member occuxwing in Australian watexs. The Rhombosoleinae wexe fixst described by Gunther (1862) who published descriptions of six species. This number was added to in subsequent years but it was not until 1926 that any attempt was made to elucidate the accumulated synonymy. This was ably undextaken by J. R. Nomman during his taxonomic atudy of ilatisshes collected during the cruises of P.I.S. "Endeavour". In his report (Noxman 1926) he stated that ho had not attempted to complete the synonymy for every species but had endeavoured to include all of the more important references of Australian ichthyologists. The four species of Rhombosolea recognized by Nownan, namely plebeia,
leporina, retiaria, and tapirina adequately describe the present known merabers of the genus.

The synonymy of $R_{\text {. tapirina }}$ is extensive and is given below with references.

Rhombosoles tapirixa (part) Gunther, 1862, p. 459 ; Macleay, 1882, p. 130.
R. flesiodos Gunther, 1863, p. 117; Macleay, 1882, p. 131; Waite. 1906, P. 197; Stead, 1908, p. 104; MoCulloch, 1921, p. 36; 1934, p. 36, pl. XIII; Waite, 1923. p. 181; Waite, 1927, p. 223; Lora \& Scott, 1924, p. 47: Lond, 1927, p. 13.

Pleuronectes victoriae (Castelnau), 1872, p. 168.
Rhombosolea tapirina Hutton, 1873, p. 401; 1874, p. 106, 13. XIX, fige 83c; 1876, p. 215; Boulengex, 1902, p. 188; Waite, 1909, p. 590; 1911. p. 204, pl. XXXVI: Phillips, 1921, P. 122; 1927, p. 29; Thomson \& Anderton, 1921, p. 87; Lord \& Scott, 1924. p. 47; Morman, 1926, p. 284; Moculloch, 1929. p. 282; haitley, 1929, p. 66.
R. victoriae, Macleay, 1929, p. 132; Waite, 1921, p. 158.
R. monopus Woodward, 1902, p. 272; Stead, 1906, p. 181. The existence of this synonymy can be attributed to the mallness of the early collections, which Pailed to indicate the wide variation of meristic characters. This will be considered in a following section on raciation within the species.
Q. tapirina is vernacularly hown os the Common, Southern, or Greenback Flowner, but as it is nore widely known by the last mentioned name, it will be referred to as such throughout the paper.
III. DISTRTBUITON ANO HABIMAT

The geographical range of the greenback flounder is confined to the southern states of Australia, Tamania, and the South Island of New Zeelsna. The latituainal extent of it te occurrence is from $34^{\circ} \mathrm{s}$. to $48^{\circ} \mathrm{S}$. whist in terms of longitude its range is from 115° E. to $174^{\circ} \mathrm{E}$. In Australia the westem and nor them limits are not known accurately and it is aoubtuh whe ther it occurs in Westerm Australla as there in but a single record fron King George's Sound identified from a skin only, cunther (1862). In Hew Zealand (South I_{0}), Victoria, and Tasmania, it is comon and in the latter two places is the most important comercial platish. It is found on alnoet all parts of the Tasmanian coastrine often in association with the loost "sole", Anmotretis rostratas Gunther.

The latitudinal range of the ppecies is mall in comparison with that of equatorial and northern hemisphere Heterosomata, The distribution of all members of the subfamily Rhombsoleinae is somewhet limited, and apart from the tropical subfamily Feralichthodinae it occupies the smallest gaographical range of all the flatishes.

The greenback floundex occurs mainly in estuaries and
bays although it hos been taken by trawlers down to a depth of nineteen fathons. It may be regarded as an estuarine fish from the point of view of the commercial catch but as trawling in shallow water within the three mile limit is prohibited in Australian waters the extent of its occurrence there is not known. The limited amount of Danish seining done in shallow water axound Tasmania has indicated that quantities of flounder were small, (Blackburn \& Fairbridge 1946).

In New Zealand, Graham (1953) noted that R. tapirina was taken in seine nets in two to five fathoms in Otago Harbour but was less abundant outside the herbour, although taken dowa to nineteen fathoms off Wickliffe Bay. Grahom observed that during the auturn this species was more common in the harbour, but most were outside the harbour where they presumably go after spawning, He also indicated that R. tapirina did not inhabit the very shallow waters of the harbour as did the sand Plounder Rhombosolea plebeia (Richardson). In Australia however it is common in fairly shallow water throughout the year, especially in its young stages.

Although the greenback flounder is Cairly evenly distributed within the limits of its range, certain areas possessing suitable environmental characteristics support large populations and consequently these locelities are well fished. (See Fig. 1) Such an area is Pittwater, near Hobart, in southern Tasmania. This expense of water about eleven miles in length vaxies in

Fig. 1 Map of Victoria and Tasmania hhowing localities mentioned in the text.
breadth from one quarter of a mile to two miles. It is open to the sea through a channel about a quarter of a mile in width which permits a tidal fluctuation of three to four feet. The depth of water in Pittwater vaxies from thirty feet in the central channels to six feet or less on the flats which are partially uncovered at low water and form a large proportion of the total area. The flats are sandy and are covered in parts with beds of Zostera. Tlounders prefer fine muddy sand to hard bottom as they spend most of the daylight hours lying covexed by a fine layex of bottom material, and a soft bottom facilitates their feeding on small mollusca and polychaete worms. Two rivers enter fittwater which exert a seasonal influence on the salinity. Chlorinity varies from $14.68 \% 0$ in winter to 20.00% in summer (oceanic values for this part of teamonias $19.29 \%-19.50 \%$) the slightly higher value of 20.00% being due to evapozation in mid-gumerer. Temperatures range from $8^{\circ}-20^{\circ}$, the minimum reading occurring in July and the maximum in Jenuery. Thus it is apparent that $R_{\text {. tapirina }}$ can tolerate a substantial range of selinity and temperature, as it is present in the locality in numbers at all times of the year. Port Wolshpool, in southeastern Victoria, possesses a similar type of habitat but on a larger scale. It has the same topography of chamels and mud or sand flats covering on area of about 140 square miles. The inlet has a tide range of six to eight feet and the depth
of water varies from five to sixty feet, The Port Welshpood and adjoining Cornex Inlet areas provide moxe floundexs than any other in Australia and supply fifty-one per cent. of the total Victorian catch of this species.

Port Arthux, in southern Pasmanie, is a good example of a non-estuaxine habitat, baing in dixeot contact with the open sea, The port itself is about five miles long and varies in width from one to two miles. Water of depth from twenty to thirty fathoms occupies most of the area and shallow flats are confined to the envixons of the mouths of a few mall creeks. The waters of Port Arthur can be described as oceanic and support large beds of Macrocystis pyrifera (L) Age The range in temperature is from $12.1-17.8^{\circ}$ C. Plounders are not found there in the guentity they are in the estuaries but are never theless numerous enough to be fished for commercially.

Two further localities in Tasnonia which axe topographically similar and which provide suitable conditions for flounders are George's Bay (St. Helens) and Port Sorell. The tidal Plow in George ${ }^{\text {P }}$ Bey, however, is smaller than in Port Sorell and in this regard it is comparable with Comer Inlet.

Whilst flounders can be regarded as an ostuarine fish and all sizes of the adult form are found in shallow waters throughout the year, the location of spawning grounds remains doubtrul. It will be shown later in the section on spawing, that the number of ruming xipe fish in samples was extremely
small as was the percentage of male fish. The largest proportion of males in any one sample was 12.7 per cent. and the lowest nil.
IV. TISHING NETHODS
(a) Arateur fishing

A considerable quantity of flownders are taken by mateure or sport fishermen largely by the light and spear method.

Although it is impossible to grage the extent of this type of fishing in Tasmania it is known that it accounts fox a large proportion of flounders taken and gives rise to many a grievance on the part of the professional fishexnen, This is so because anoteurs generally are not much concerned with the observance of the minimum length laws, usually taking evexy fish they see and often spear underaize fish for sporto the author has seen instances of amateur spearers filling an apple case with young fish in the course of a night's fishing, and then emptying them on the shore before leaving Many areas are worked by both professional and amateur fishermen and it is fairly comon for the former to cover the same ground closely following the latter taking any small fish which may have been discarded. There is a five months closed season for floundexs in Iasmania extending from June to October which applies to amateur and professional fishing alike so that the main fishing period occurs during the wamer nonths. This gives every encouragement to flounder spearers who usually wade to waist
depth whilo fishinge The winter temperatures of Tamenian estuaries vidoh sall to from $8-12^{\circ} \mathrm{C}$ would greatly reduce the number of spearexs, were fishing allowed at that time of the year.

In Viotoria where thexe is no closed season certain areas are naxded off for either anateur or prodessional fishing. This gives the professional grounds some local protection from sateurs during the summer but does not lessen the effect of extensive spenxing on the population generally.

The beach seine is not much used by are teurs due to the more expensive gear and accurate local knowledge essential fox this type of dishing.

As thare are no present means of assessing the quantity of fish taken by anntew spearers theix offect on the fishery cannot be gauged. But it ys considerable, and is odded to by the depredation of juvenile insh that acompanies theix activitles.

(b) Commercial fishing

Due to its availablity and eating qualities the geenbade Llownder was anongst the first fishes to be explouted in the early years of the settlement of Tramania. Although there axe no official records of quantities taken, evidence given before the Royal Commission on Tasmanian Pisheries, 1882 , suggesta that they were at times much more abundant duxing the last centuxy than in the present one. Passages quoted from this

Gomiscion are given below:-
Matween thirty and forty years ago flounders were very scarce indeed, then they appeared in great numbere and were sold as low as ninepenee per dozen. I have known 50 dozen to be taken in a haul at Brown's Rivex Beach...."" "I have heard of 150 dozen large fish being taken in two consecutive ghote of the net thinty years ago in the Tamax Fox some years past the fish have been scaroe, in fact it had almost disappeared out of the Taun and the fishemen had to go to Pore Sorell Por them. Latterly, howewer, the fish have reappeared and fishermen pepoxt that they are nearly as numerous as formexly."

The gear used at that time was mostily the seme net with the dimensions es follows. Length $40-60$ fathoms, depth $9-13$ feet and with mesh vaxying from $1-1.5$ inches. Mesh nete were also employed using $3-4$ inch mesh with the length varying from $300-500$ Pathoms The exficiency of the mosh dets was improved by catching up the Leadine to form pockets As early as 1882 A minumm legal Length of 9 inches hed bean ascigned to the flounder although fishing wes permitted throughout the year. However, during the Royal Commission of 1882 it was stated "slounder are at a certain season unfit for food- Hoverber to February, Their sale should be prohibited during these months". Mother wrimess proposed a clese season of tro monthe "with
heavy penalties ${ }^{1}$ as the answer to depleted grounds.
Nowadays the bulk of the comercial Elounder catch is taken by seine nets al though in some places due to rough and unsuitable bottom spearing is employed. The nets vary from 30-60 fathoms in length. $9-12$ feet in depth with mesh 3-4 inches, lnot to lnot. As the technique of beach seine netting is well boown further description ia moecessaxy except that flounder nets are often worlsed parallel to the shore-mine in shallow water instead of at xight angles to it. A catch of five dozen maxketable flounders in the one haul would be considesed good fishing by present-day standards. According to fishemen h lounders axe very susceptible to weathex conditions and the state of the tide The moon also is said to play an important role in the movements of the insh shorewards Conditions for fishing are onsidexed ideal when the tide has Just onmenced to flood, the wind is very light, and there is no moon. Under these conditions floundexs leave the deep water they prefer during the daylight hours and move across the flats to feed. Under favourable conditions of moon and tide but with rough veather, it has been found that fishing is very poor. The author has also noticed whilst fishing in Tasmania that scarcity of flounders appeared to be associated with low beronetric pressures, other conditions being considered satisfactory.

Professional spearing, unlike the amateur method, is
usually done from a dinghy in depths of up to eight feet. Tasmanian regulations do not allow moxe than three prongs to each spear and most fishemen prefor to use three barbless prongs Pashioned from motoxeycle wheel spokes or wire of the same gauge. The light used to illuminate the fish on the bottom consists of a small six volt battexymoperated lamp with rexlectox guitably mourted on a handle about foux feet long. fhis method of fishing can only be used when the suxface is uncuflled by wind. Tnder such onditions it is possible for an expert fisherman to take ae many fish in this way as would be caught by netting over a similar period of tame

Mesh nets are very rearely used at present due, no doubts to the relative scaxcity of flounders compared with the early days.
V. THE COMMRRCLAL CAMCH

It is not proposed to deal with the study of flounder catches over the years in detail for the following reasona.

The fisheries statistics compiled by the State Departments are incocurate and do not truly represent the amount of fish taken. Two factors contribute to this. A considerable quantiby of fish is caught by amateux fishermen who axe not required by law to fumish retums and professionel fishemen who are required to submit returns either do not or rail to disclose theix catches accurately.

To establish the state of a fishexy it is necessary to
determine the effort in tems of the number of men engaged in Ist, the time spent actually fishing, and the sffect of market prices on supply, In Tesmania where the present investigation Was made, xecords are scanty priox to 1944 when an attempt was made to frolement a gys tem whereby fishermen were issued with a book containing forms to be filled in to give relevant details of their pishing operations month by month. These records were not available to the writer but yearly totals of flounder catches from thege returns compiled by the Fisheriea Division of the Department of Agriculture wexe supplied. All figures guoted before 1944 are teken from the records of fish buyere and wholesalerw.
(a) The Tasmanian Floundex Oateh Economic Importance

The total fish catch of Tamania filuctuates from year to Year, often greatly, due to the varying abundonce of the barracouta. For example, for the years 1945 and 1955 the catches of all fish, not including oxustacee and molluscs, wore 8. 77 milion 10 and 3.33 million lb respectively, However, the bayrecouta catch for those yearg was 6.11 million 1 b and 1.22 milion lb, Thus if the barracouta catoh is neglected the totals of all other species amounted to 2.65 million 10 in 1945 and 2.11 million 16 in 1955. In the omparison of the flounder catch with the total catch of the S tate the baxracouta will therefore not be taken into account.

The percentage by weight of flounder of the total fish production vexies from appxoximately one to two per cent. Table 1 shows the Tasmanian fish catch by species for the two years 1945 and 1955. (These data axe also shown in Pigure 2 (berracouta and shark omitted for convenience) where the relative sizes of the catches can be more easily compared.)

The Tasmanian floundex catch from available records of the pexiod 1931-1956 is show graphically in Figure 3. The fluctuating nature of the histogran from 1931 to 1939 is no doubt due to a certain extent to the inadequacies of the statistical xecords. But as it seems likely from evidence given at the Royel Commission refexred to earliex allowance must be made here for natural changes in abundance. The war years contribute to the lack of information between 1939 and 1945 and in this regerd it is noteworthy that from 1941 to 1945 (when lack of manpower manifested itself in most other fisheries) the Elounder cetch is maintained around $40,0001 \mathrm{~b}$. It should be pointed out that during the war, bleckout restricm tions prohibited the use of underwater lights which geve the fish protection from anateurs and no doubt enabled the populam tion to build itself up; so that in 1945-47 writh the release of fishermen from the sexwices and in fig. 3 the catch rises to circa 60,000 2b.

By 194,6 metums from fishemen had improved to the extent where they gave a fairiy reliable indication of the catch

THIE TASMANLAK SCALE FISH CATCE BY SERCIES TOR THE YEARS 1945 AND 1955 SHOVTNG THE RELATIVE IMEORPAVCE OF GRBENBACK FLOUNDER

1945		1955	
SPECTES	Weraht 13	SPECIM	WHTGHI IB
Barracouta	6,116,652	Shark	$1,265,644$
Shaxdx	877.767	Barracouta	1,219,193
Salmon	335,514	Salmon	337,431
Whi tebait	332,500	Methend	103,422
Rock Cod.	312,623	Trumpeter	67,559
Plathead	304,214	Garfish	66,944
Txumpetex	109,391	Bock Cod	65.135
PLOUNDER	59.938	Trevally	35.835
Muluet	30,994	Whis tebait	33,167
Perch	18,011	Muldet	24.363
Wackerel	16,938	TLOUNDER	19,321
Gaxfish	15,04, 9	Trout	10,092
Trevally	14,956	Perch	9.493
Parrot fish	8,587	Tune.	7,632
Bxeam	7,735	Parrot fish	3,291
Other species	205,855	Othex species	62,653
Total catch	8,766,723	Potal catch	3,331, 175

(Smith 1946) The decline from 62,000 1 b in 1947 to 14,00015 in 1953 is sharp but steady end it would appear thet this represents a fall in abundance. It may be axgued that there is insufficient evidence to male such an assumption without assessing the fishing effort. However, it is the author's opinion that in the case of the greenback 1 tounder the fishing effoxt is largely regulated by the abundence of fish for the following reasone:-
(1) The Ploundex is anonggt the highest priced fish and subject to an wnseturated dmand. If they ace there the fishermen will fish for them.
(2) Men engaged in the fishery uswally ore equipped to catch othex estuaxine fish such as salmon and mullet and are milikely to be forced out of the industry by a dearth of flouncer alone.
(3) The effeot of a sudden increase in the number of men in the fishexy on be alsregarded beoause of the local lnowledge required for seine netting which canot be gained in a short period. In other words the potential number of flounder fisherm men is fairyy constant and thein active participation in this fishery would be largely determined by availability of fish

Prom 1952-1956 inclusive the catch fluctuates between $14,000 \mathrm{Ib}$ and $19,000 \mathrm{lb}$ which is mpproximately equivalent to the catch for 1938 and 1939 although as stated the records from those years are merely an indication of the true weight of fich taken.

In view of possible naturel changes in population density due to enviromental and other causes, the rapid downewd trend from 1947 canot be definitely ascribed to overexploitation of the stocks However, this trend is signilicant in that the period follows one during which the fish had some reapite from spearing and the returns for the years 1947*1956 are a more accurate assessment or the catch than those of previous years.

As individual finherman's retarns were not accessible the monthly variation in the catch camot be given Half-yearly figures, however; have been prepared since 1951 and these axe of interest. The helf-yearly catohes for four yearg are given in Table 2

The closed season for the years quoted operated only duxing the second half-yearly period, amely from July 1 to September 14 inclusive. Latterly it has been extended a month to october 14 in some pexts of the Island From the table it is evident that fishing is about 300 Ib a month better during gring and eariy sumex than it is during late sumner and autume It vould be expected that following the rest from fishing during the winter more fish would be on the fishing grounds but against this must be weighed the fact that unsuitable fishing weather is more prevalent in spring thon late sumner sud autum when long periods of light winds and generally calm conditions occur.

Professional fishermen generelly claim that the increase

TABLE 2

THE DASMANIAN FLOUNDER CATCH FROM 1951-1955 POR THE ITRST AMD SECOND MALF OR RACH XBAR

PLOUNDER CATCE IN LB

VBAR	JAN. 1 - JUNE 30	JULY 1 - DEC. 31
1951	16,369	8,956
1952	no record	no reoord
1953	7.928	6,204
1954	$10,14,6$	6,703
1955	11,143	8,178
Average cate	month	Average catch pex month
for 6 months	1,89910	for $\frac{3}{2}$ months $=2,145 \mathrm{lb}$

in enateur spearing has adversely affected the fishery. In orcer to compare the size composition of flounders from an area relatively inaccessible to spearexs with that of fish from readily accessible Pittwater sone experimental hauls were made In Lime Baye This Bay, although only twelve miles by water from Pittwater, being situated at the northernmost tip of the hook-shaped Ilasmen Peninsula, is isolated by virtue of its distance from well populated areas and lack of roads. The length aistribution of flounders from three hauls from this area together with that of fish from a similar number of ahots of the same net made in Pittwater i.s show in rigure 40 The samples were collected in March 1954 on successive days and the same netting technique was employed in both cases. The bistograms show a distanct difference in the proportion of fith 20 cm and greater available in the two localities. In the pittwater sample only 28 per cent, of the total number taken fall into the 20 cm or greater group but in Line Bay this group forms 57 pex cent. of the total number taken. As both places are fished conmercially but only Pittwater is visited extensively by amateurs the apparent correlation between their activities and the scarcity of larger fish is worthy of consideration. Significant also is the fact that juvenile fish are abundent in Pittwater and the sharp downard trend in the histogram of that sample comences at 19 ca at which length the flounder is large enough to be edible, although still 4 ca below the minimun

Fig. 4 The leng th alstribution of experineatally netted flounders from line Bay compared with a ginilar sample from Pittwater.
legal length In advancing the above contention it is assumed that professional fishermen do not take any quantity of fish below the Legal Length (230 mm) and considering the difficulty of disposal for profit the author feels that this is a safe assumption.

It is realised, however, that the samples represented by the two histograms are insufficient cither in sise or duration to be anything moxe than a basis on which to advance a hypotheais regarding the effect of amateur spearexs on the Rlounder population. Hovever, it appeaxs that if spearing has been detwimental to the professional fishery it has operated through limiting the number of floundex attaining legal siwe rather than reducing the fecundity of the population.
(b) The Victorian Catch Eonomic Importance

Of the forty three main species of edible teleostean fish taken in Victorian watexs the flounder lies tanth in order of catch weight and commends the highest price. The Soutb Australian spotted whiting sillggo punctata. Cuvier, is the most expensive fish on the maxket in Victoxia varying from six to nine shillings per pound as against from five to six ghillings per pound for flounder From 1946 to 1955 inclusive the amual fish catch of Victoria ranged from $10.7-12.8$ million 2 b and during that period the percentage of flounder in the catch varied between 1.3-1.7 per cent. Figure 5 shows the 1956 teleostean catch by species in order of weights.

In Victoxia, wilike Tasmania, there is a well organized central fish market situated in Melboume through which the bulk of the fish sold in the State passes. There is a tendency for flounders to be bought direct from the fishermen, to a linited extent, by guest-houses, hotels, and the like but it is safe to assume that this amount is amall cnough to be disxegarded for the purposes of general obsexvations on the Plounder catche Daba show in Piguxe 5 and Iable 3 are taken from market records and have been checked with figuxes from fishermen's returns. Fiah sold provately are not usually included in their returns.

Figure 6 shows the magaitude of the flounder catch from 1931-1936 in histogran form with a superimposed trend curve obtained by smoothing the data with moving avexage of three. The drop in the mid thirties shows the epfect of the economic depression during that time and the even lowex catches in the early forties result from lack of manpower due to the ware But it is signiticant that even after enjoying a respite during the latter period the postwar fishery does not attain itn prewar level as in Tasmania, and after 1947 a slight dowward trend is evident. The same conditions as regards mumbers of fishexmen and the maxket demand for flounder apply to Victoxia, as has been outlined for Tasmania.
(c) Conclusions

Tasmania.
(i) The lack of reliable catch data priox to 1945, limit

TABLE 3
VICTORIAN ANWUL FLOUNDER CATCH 1931 - 1956
The Tasmanian oatch for the same period Ls also given for comparison.

XBAR

1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

VLOJORLA
工B
330,254
251,759
TASMANLA
LB
15,360
45,382
216,728
212,384
20,224.
$180,84,9$
27,625
192,577
50,835
239,653
20,166
196,221
16,685
189,208
39,104.
271,163
165,788
42,300
105,709
42,976
84,388
107,568
38,760
165,933
59.938

134,861
$199.359 \quad 62.303$
182,761
53,283
186.540

32,112
180,606
30,638
162,905
25.235

185,155
16,394 .
187,012
14.932

150,916
16,849
$164_{49} 482$
19,321
147,977
14,698

Pig. 6 The Victorian greenback flounder catch 1931-56. The trena is indicnted by the curve obtained by smoothing the data mith moving average of three.
to the ensuing ten years the pexiod from which any conclusion can be drawn as to the state of the flounder fishery in Tasmanda
(ii) Although it cannot be established that the decline in total catch since 1945 has in part been due to a decxease In abundance there is some evidence that the activity of spearers may have lime ted the numbexs of legal thah availoble.
(iti) The present minimum legal length of nine inches does not give the mataring fish adequate protection (This question will be covered in a latex section of this paper.)
(iv) The decline is a phase of a natural fluctuation due to environmental dactors which are unrelated to (a), (b), or (c).
(d) Conclusions

Viotoria.

(1) The statistios available are a reasonable indication of the catches for this State but until more detailed infomation such as the number of shots of the net made throughout the year, the quantity of geax used, and the selectivity of the mesh it will be impossible to assess accurately the fishing effort
(2i) The Victomian fishexy is mone stable then that of Tasmania, showing smaller fluctuations in the catah from yeax to geax However, the period from $1946-1956$ can be regarded as a more accurate indication of the state of the fishery because during these recent years prices have been high and the demnd for mounders unsatisfied. Prior to 1946 denand was affected by the economic depression of the $1930-1938$ pexiod and production declined with manpower shortage during the war years.

During the war years the population had an opportundty to increase its strength and any subsequent steep decline could be explained as a depletion of the accumulated stock.

After the wax handling facilities such as taansport, quality, and supply of ice improved which encouraged maximum production.

Whus the slight downard trend since 1946 cannot in the light of available statistics be attributed to a decline in the population due to over-exploitation.

VI. SAMPILNG

(a) Sampling Methods

It was not possible to adopt the accustomed procedure of large-scale observations on fish maricet material in this investigation as a central market ceased to exist in Tammania soon after the first world wax. All fish is sent direct to several buyers some of whom have theis own retail shops and the demand for flounders is such that they are sold to consumers amost immediately. In addition it is the custom to cook and sexve the flounder complate save for the viscera which are removed by the fishermen as soon as possible after catchinge It is also impossible to renove the ovaries without affecting either the appearance or the weight of the fish. Hence these considerations made it necessary for all fish used in the investigation to be either fished for or purchased from comercial fishermen. The last-mentioned avenue of supply had understandable financial limitations.

Samples onllected by the author were obtained by netting which provided the majority of imnataxe fish used. These were supplemented by xegular monthly samples of about a hundred fish taken by sn expexienced fisheman over a period. of nincteen monthes
(1) Netting - What is comonly called a "gaxfish nev" Was used as a seine to fish estuatine beaches Dinensions of the net wese: length, 30 eathors; depth. 4 feet; and 3 inch mesh throughout. The net was woighted with moulded leade and foux foet gix inch lead tipped spreader-poles wexe used at each wing to Icop the leadine at the extrenties of the net on the bottom when nearing the end of each hau. The net was worked from an eleven foot ainghy using ten fathons of cojx hauling line on each wing to enable the working of the net in the deep channels bordexing the flats. The net wras knoted up on the flate A three inch mesh was found to be suitable for the regular capture of flounders as mala aie 10 cn and from tuac to tune smaller sizes were fown entangled in seaweed in the bunt meshes.
(i) Spearinge For the most part the nonthly mamples wexe speaxed The fish were collected in the following maner. Using the equipment cescribed in an earilex section of the peper and fishing from a dinghy every ins sighted was speared or at least an ettempt was made. The number of fish escaping through not being securely speared on missed altogether was
generally less than 10 per cents It was alwayn possible to obtain the sample of oxe huadred in the one night and the size composition of a nights speared catoh when compared with that of a netted catch showed no more variation than that between two successive catches of one or the other method of fishing. The samples can therefore be regarded as rondom. Other methods of specimen and data collection will be discussed in the sections of the paper dealing with spectice aspects of the investigation.
(b) Measuring Methods

All fish wexe measured to the nearest millimetre by placing them blind side down on a standard fish measuring-board. The total length was read to the extremity of the caudal rays. In order to obtain the standard length the distance from the caudal peduncle to the end of the caudal rays was measured with dividers and subtracted from the total Iength All other moasuraments were taken with dividers, Weighing was done on a "Mornaj" pan balance while the fish were wet although all excess water was first shaken off. All weights were recorded to the nearest gran. The raajority of the weighing was done either in the laboratory or in the cabin of the launch used in the investigation where sheltered onditions made acourate weighing possible.

VI	Ti
3 AmD	Ihngiti phiatton

It is more conveniant for practical purposes to express lengths of fish in tems of total leagth but to ascertain whethex
the standard length is a truer value for the purposes of growth strudy in the case of the flounder, its relationship with total leng th was investigated.

The total length measurements of a sample of 1723 specimens ranging from 110 mm to 370 mm were grouped to the nearest cantimetre and the mean stondard length was calculated fore each contimetre group. The resulting graph is shown in Figure 7 . Apart from the extrene values derived from relatively iew specinens all the points lis about a straight line passing through the oxigin. Thus the standard length was found to be 84.20 per cent. of the total length which relationship is constant throughout the life of the tish. This proportion approximates that found in two other species of flatfish nonely, the Colifornia sand dab Cithorichtbys sordicus (Girard), Arora (1951), and the staxy flounder Platichthys stellatus (Pallas), Oreatt (1950). The standard lengths of these fish are 84.00 per cents and 81.95 per cent. of theix total lengths respectively.

For the greenback floundex, if $X=$ total length and $X=$ standard leagth convorsion from one to the other can be made by using the equations:
or

$$
X=0.812 X
$$

$$
X=1.231 X
$$

VIIT. WEIGHI/LENGTH RELATIONSHIP
The weight/length relationship was investigated for the

Fige 7 The total length/standard length relationship in the greenback flounder. Measurements are token from representatives of both sexes.

Firstily to measure the seasonal change in the relationship and to correlate it with increased weight due to gonad development.

Secondly to determine the length at which the weight increase is suitable to define an optimum size fox fishing.

Thirdly to compere the weight/length relation of two representative samples of flounders from two populations possessing significantly different mexistic characteristios.

That the weight/length index of a species varies consider-m ably with the time of year, state of gonads, and feeding conditions has been shown by Claxk (1928) and Ancona (1937). Thus to arrive at a mean value it was thought necessary to treat data from a series of samples extending over a period of twelve months. Although the most obrious cause of changing weight/length value is the increase and decrease in gonad weight, the changes occurring throughout the year are not due to this alone. It appears that linked with the development of the gonad to maturity is the building up of body fats and tissue. This will be cvident when the seasonal variation of the condition factor C for males and females over a pexiod of eighteen months is considexed where the variation in C for males shows comparable fluctuations with the female values al though the relative weight of gonad per weight of fish is very diferent for the sexes. A ripe ovary usually forms about 17.5 per cent. of the total weight of the fish and when spent about 1.1 per cent. In the male however the testis
when ripe rerely exceeds 1.3 per cent. and when spent 0.4 per cent. of the total weight.
(a) Methods

TWo samples of fish were used for weight/length determinetions The fixst consisting of 286 females and 129 males was oolleced during the month of March 1954. The range in total lengths of fish in this sample was irom $110-240 \mathrm{~mm}$ and was therefore largely composed of immatare $\mathrm{an}_{\mathrm{ish}}$ The second, comprised of 1172 fenales and 58 mstes within the range $180-340 \mathrm{~mm}$ total length, wes collected over the pertod of twelye monthe from June 1954 to May 1955 , there being approximately one hundred finh in each monthly sample.

In both samples the mean weight of each tern millimetre group was calctiated and log length plotted against log veighte This relationship was found to be linear as is shown in Pigures 8 and 9. Data from which the calcilations wexe mode are shown in Table 4

The raw data of Table 4 are plotted in Higures 10 and 11 and the points are seen to lie about the curves drave using the mean calculated weights ror each class Calculated weights were derived from the expression: $\log \mathrm{T}_{\mathrm{c}}=\log 0+n \log$ Lo Where C is the condition factor from the expression $C=\frac{W_{a}}{T^{\circ}}$ $W_{c}=c a l c u l a t e d ~ m e a n ~ w e i g h t ; ~ W a n d ~ a c t u a l ~ m e a n ~ w e i g h t ~ a n d ~ i n ~=~$ the regression coefficient The total length of the fish is represented by L. The cho 10 of the above expression as

Fig. 8 The regression of \log weight on \log length fox juvenile mele and female flounderg from Pittwatex, Mexch 1954.

Fige 9 The regression of log weight on log longth for andt male and fenale flowners from Pittwater. for the twelve monthe June 1954 to May 1955.

THE MEAN WEIGHT OR JUVENILE AND ADULT PITTHAIER FLOUNDERS FOR BACH CENTTMETRE OF TOTAL LENGHY

INTYRVATS OR TOTAL IBNGTH man	WEAN WT. GM.		NAAN WT. GM.	
	$\begin{gathered} \text { Males } \\ (110-230 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Females } \\ (110-240 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Males } \\ (180-300 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Pemales } \\ (170-340 \mathrm{~mm}) \end{gathered}$
105-114	19.5	15.3		
115-124	22.0	22.5		
125-134	30.0	26.5		
135-144	33.8	34.5		
145-154	45.3	45.1		
155-164	51.1	51.4		
165-174	61.6	60.7		69.5
175-184	73.8	73.5	90.0	83.0
185-194	78.7	85.1	86.0	89.3
195-204	95.3	101.1	100.3	105.3
205-214	120.0	117.0	118.0	119.7
215-224	133.7	137.4	134.6	137.9
225-234		157.8	15453	158.8
235-244		176.2	173.5	178.8
245-254			195.0	199.1
255-264			201.0	228.1
265-274				252.2
275-284.				287.6
285-m29				313.5
295-304			313.0	339.1
305-314				370.9
315-324				379.4
325-334.				466.6
$335-344$				466.1

Frg. 10 The weight/length relationship in juvenile male and fenale flounders from Pittwater, March 1954.

Fig. 41 The weight/length relationship in adult male and female floundert from data collected over the period of twelve monthe, Jume 1954-May 1955.
against another well-known variation, $K=W / L^{3}$ will be discussed later in this section.

If X is the weight expressed in gm and X the total length in man equations for the curves are:

March 1954. sample (Fig. 10)
Males $\log Y=5.5427+2.802(\log X)$ or $Y=.00003489 X^{2.802}$
Females $\log Y=5.0108+3.040(\log X)$ or $X=.00001025 X^{3.040}$ June 1954 - May 1955 sample (Fige 11)
Moles $\log X=\overline{4.0165}+2.611(\log X)$ or $Y=.0001039 X^{2.611}$
Females $\log Y=\overline{5} .5347+2.823(\log X)$ or $Y=.00003426 X^{2.823}$
(b) Discussion

The values of "n" for females were found to be 3.040 for the $110-24,0 \mathrm{~mm}$ fish and 2,823 for the Largex 170 m 34 mm fish. For males the corresponding figures were 2.802 and 2.611. The difference in values of " n " between the samples (0.138 for females and 0.212 for males) was due to the larger fish being collected throughout twelve months whilst the smaller fish constituted a single month's sample.

It is evident that as they get older the female fish increase in weight for length at a slightiy greater rate than the males although this relationship does not hold for young fish. The curves of the $110-240 \mathrm{~mm}$ fish show that up to 170 mm male fish have a greater weight/length factor than females. This is also evident in the intersection of the regression lines for log weight/log length plots of the same sample. That this is not just an abnomality due to
sompling is bome out by the curves for the $170-340$ m fish which also intersect at approximately 190 mmo The regression lines for this sample also show a tendency to meet.

Hagorman (1952) and Oxautt (1950) show log weight/Log length regressions for both sexes of Dover sole and stavyy flounder respectively in which the male and female regression Lines are pexallel to each others The welght/longth cuxres for Dover sole are also parallel but as the data are largely from mature fish they are not strictly comparable with thoge for greenback flounder. However, Oreutt measured staxyy 17 ounders down to 100 mm standand length at which all were certainly inmature. The gurves for the two sexes of staxy Plounder appear to meet at about 150 ma al though the regression lines do not show ito Thus a different ondition has been met with the greenback floundex than apparently occurs in two other species of flatfigh.

It win be shonn in a later section that the ovaries of inmature floundors begin to mature when the fish is about 160 mm in length and at 200 mm may contain ova that will be spawned during the coming season. It is algnificant therefore that it is while the Leagth is between thege limits that the Semale fish becomes proportionately heavier then the male.

Unlike a large number of other teleosts the ovaries of Platfishes do not lie wholiy in the visceral caviby but axe plsced posteyiorly between the hamal spines and the body wall.

In the ripe female the posterior extremity of the ovary closely approaches the caudal peduncle However, the testis is Considerably smaller than the ovary (not moxe than 0.06 the weight of an ovary from a similar sized fish) and therefoxe does not penotrate the postexior tissue to the same extento In the immature fenale ixsh it is possible to pass a probe backwards between the haenal spines and the body wall through the post visceral cavity of the coelom that will ultinately be taken up by the ovary. In the male fifsh such a space does not exist and the muscular tissue iss closely applied to the spiness Thas the low relative density of the innatuxe femele due to the allowance for gonad development seems a possible axplanation of obsexved unusual wedght/length differences in Young fishe As development of the ovaries takes place the female weight/length factor becomes greater than that of the male and the curyes assume the foxm generally foun with most xishes:
(c) Weight/Length Relationship or Hzsh from Two Areas

In ordex to ascertain any differonces in this relationship between two distrinct areas 265 fish were ollected from Port Soxell and 285 from Pittwatexs Only femeles were used and flounderg Less than 185 mm or greatex than 304 m in total length wexe discarded.

All fish were collected over period of three moaths, namely from July-september 1955.

The data are show in Table 5 and the regression of log weight on log length for these two samples is presented in Figure 12. The two coefficients differ by 0.085 , Pittwater fish being 3.052 and Port Soxell having a value of 2.967 . The equations for the curves are:

```
Pittwater \(\log Y=6.9675+3.052(\log X)\)
    or \(Y=.000009279 X^{3.052}\)
Port Borell \(\log Y=5.14 .81+2.967(\log X)\)
    or \(\quad X=.00001406 X^{2.967}\)
```

Bearing in mind that both samples contain fish of the same size composition and were collected simultaneously the variation in the weight/length ratio must be due to one or more of the following causes.
(i) Intrinsic population charactexistics.
(ii) Difference in mean gonad condition and spawning pexiod.
(iiii) Invironmental factors influencing food supply.
It will be shown in a latex section of the paper that there are significant differences in certain meristic characters in flounders from the two areas but it is thought that the cause of weight/length vaxiation moxe justifiably lies with (ii) than (i). Insufficient information is available to consider the implications of (iii).

As the curves and the regression lines converge towards their lower limits it seems highly probable that the weight/ length ratio of immature fish would be closely comparable for both areas. The mean weights of the 190 man group difrex by

TABLE 5

TFE WBIGTP/LENGTF RELATIONSHIP OF ADULIT FBMALE FIOUNDERS FROM THO LOCALITTES

Intervals of toval lewgit mm	MEAN WEIGHT GMI	
	Port Sorell	Pittwater
185-194	83.1	82.8
195-204	96.4	96.9
205-214.	106.8	115.8
215-224	124.7	131.1
225-234	139.2	149.4
235-244	165.7	170.6
24,5-254	177.5	201.1
255-264.	204.6	210.3
265-274	236.0	24.2
275-284	249.5	261.9
285-294	279.2	299.8
295-304.	330.1	354.3

Fig. 12 Log. Weight - Log. Length relationship of female adult flounders from Pitwater and Port Sorell compared. Both samples were collected during July, Augusts and September, 1955.
only 0.3 gm whilst the 280 men grup which would consist of mature fish have a difference of 12.4 gn . Furthemore, the sharp dechine in mean ove diameter at the end of the spamang season jn 1955 (12gure 24) commenced throe morths earlier at Poxt Soxell. Although it was not feasible to colleot enough moterial to detexmine the limits of the spawaing period of flounders from this area it sems cartain that it in more protracted in P1twater whece as can be seen in Thgure 24 the temperature of the water amoins coolex fox at least two monthe Ionger in the sprimg than at Port Sorej. From this evidence the weight/Length difeexences between the fro samples could be attributed at least in port to differing relative weights of gonads in meture fisho

In the treatment of the seasonal fluctuation of the welght and length of male and femole flounders the "condition factor" 0 was used as the index Hart ot al (1940) have stated that the altemative relationship $\mathrm{K}=\mathrm{W} / \mathrm{T}^{3}$ gives an index of weight relative to that which would be expected under conditions of isogonous growth in all body dimensions. Howewer, the procedure of using the delationship $0=W / L^{n}$ gives an index of the weight relative to the mean weight at any length which Hart et al. regarded as more applicable to the determination of the seasonal trend in relative heaviness. It was thought therefore that 0 was preferable to K for the present purpose as the comparison of the relationship of the scasonal variation of condition factor
with the spawning period is shown more by the trend in relative heaviness than "form". Also as is the case with many other species the cube law does not strictly hold for R_{o} tapirina: that is it will be shown that " n " is not exactly equal to three and in fact is considerably less.

Some further woxkers who have made use of and modified both C and K as indices of "condition" are Claxk (1925), Keys (1928), Hile (1936), Kesteven (1942), Le Cren (1951), and Cassie (1956).

In the preaent analysis "n" was detemined by linear regression as outlined previously in which case it becomes the coefficient of regression of weight on length. 0 was then calculatod from the expression $C=W / L^{n}$ ox $\log 0=\log W-$ $n(\log L)$ where W and L are the mean weights and mean lengths of each monthly sample.

Attention is dram to the small number of male fish in all samples (Table 6). Whereas the proportion of males to females was approximately $1: 2$ in the March 1954 collection of largely frmature flounders the ratio in the adult samples is 1 : 23. It is difetcult to accept this latter figure as repressnting the normal balance of the sexes and it is ooncluded that as they mature male fish do not generally fahabit the shallow water to the seme extent as the females. This will be referred to in the section on spawinge It is possible that the fishing methods were selective to some degree as there

CABLE 6

MALE TO MMALE RATLO TN SMPLIRS OP GREENBACK FLOUNDERS USED TN WETGHI/LENGTI CATCULATTONS

HONTH	Ratio or malis to mbuales	Nutber EXAhINED
Jun.	$1: 16.0$	96
Ju2.	$1: 50.0$	100
Aug.	$1: 50.5$	101
Sept.	$1=59.2$	105
Oct.	$1: 50.0$	100
Nov	$1: 59.2$	105
Dee	$0: 103.0$	103
Jan.	$0: 98.0$	98
Peb.	1:7.8	92
Max.	$1: 16.8$	96
Apr.	1:8.4	92
May	1: 6.8	89
Jun.	1:14.1	99
Jul.	$1: 19.6$	98
Aug.	1:28.6	86
Sept.	$1: 37.6$	113
oct.	1:54.5	109
Nov.	1:21.0	105
Dec.	$1: 35.6$	107

is a higher proportion of male flounders in the three monthly Port Sorell samples than in corresponding Pittwater samples. The former were all taken by beach seine and the latter by spear. Monthly values of C are listed below and presented graph Lcally in Figure 13. for convenience both male and femele values have been multiplied by 10^{3}.

Whilst the condition factor of greenback flounders does not vary greatly during the year, what fluctuations do exist can be broadly correlated with the spawing cycle, the speciess has a wintex spamaing season that extends over a period of up to eight months depending on suitable temperature conditions, and for the remaining four months Rrom November to February, al though occasionally fish mayy be found in roe the majority of them are in the spent condition. In 1954 the condition factor begins to fall in August, the male value more sharply than the female, until it reaches its minimum in October. However, in November it commences to rise again until Jonuary of the following year when it reaches a point not much short of the maximum for that year. The sudden arop in February is surprising but coincides with the month at which the mean ova diameter is at its lowest (see Figure 23). During the remainder of 1955 " CH at no time reaches the equivalent of its maximm value of 1954 which leads to the assumption that environmental conditions were not suitable for as long a period in the latter year. This effect also shows up to the same degree in the male graph,

Fig. $\$ 3$ The seasonal variation of the "ondition factor" C for male and femole flounders from Pittwater 1954-55. Values of 0 have been multiplied by 1000 for simplicity in plotting.

The sudden rise in "C" in October is obviously due to a late spamming xum as a similar peak occurs for that month in Aigure 23.

It has been pointed out that there is a great difference in weight between the gonads of the two sexes. Notwithstanding the two curves are of similar form and trend which indicates the posstbility that other factors such as the formation and absorption of fat tissue and avajability of adequate seasonal food contribute to the degree of variation of ${ }^{\prime \prime}$ throughout the year.

IX GROWTH RATE AND ACE DRTMRMTNATION
Four wellmaown methods of approach to the problem of age and growth detemination were considered in the present study.
(a) Scales

Unlike some northem hemisphere flatrish the scales of the greenback Llowner are useles: for age detemmation Scales from different paxts of the body wexe examined without finding any indicetion that they might be of use.
(b) otoliths

When otoliths were first studied the writer was under the impression that these also were unsatisfactoxy fox growth investigation and collection of them was not as extensive as it might have been. However, in the absence of other ariteria they were reverted to and by exercising care in the selection of readable material it becane possible to follow the growth

Row the first thee years of life As the fish length approached 300 mm a high proportion of otoliths becane unreadable due to theis increased opaqueness and no fish longer than 320 mm possessed otoliths that could be read with certeinty In ordex to ascertain whether grinding the older otoliths facilitated reading, several specimens wexe thus treated to no advantage. The obscurity of the anuli was found to lie not in the actual thickess of the otolith but in the tendency of the annuli to become opaque as the age of the fish increased. It wes found that the otoliths could be most satisfactorily removed from the floundex by sevexing the head with a sharg knife midway between the eyes and the insertion of the right pectoral fine The otaliths can then be lifted out of their sacculi which remain in the portion of the head which has been severed. They were not imnediately visible and hed to be felt for with forceps. After the otoliths had been cleaned by rubbing between the fingexs they wexe stored in small envelopes upon which was written the length of the fish together with the place and date of collection. Where possible both otoliths were collected as nearly 10 per cent. exhibited varying degrees of cxystalliration of one or the other In some cases both otolithe were affected by this condition.

For reading purposes the otoliths were placed under water in a Petri diah, the bottom of which was covered by a coating of black wex, and viewed by means of a low power dissecting
aicroscope. Illumination was provided by a microscope lamp placed about nine inches from the stage in such a manner that the otolith could be read by reflected light one side of the flounder otolith is almost flat whilst the other is slightiy convex and it was found that reading was facilitated by placing Lt with the latter side uppermost.

About half-an-hour aiter belng placed in water a degree of cleaxing was noticed which sharpened the distinction between rones but clearing with clove oil and xylol did not xendex the otoliths more readable. the altemating rings of white opaque and translucent materisl could be distinguished in the otolith Wi thout magnification al though the detail could only be eem under a lens.

Molander (1947) working on plaice and flounder has shown that the opaque zone is associated with the fast growth during spring and summer whilst the hyaline or translucent zone is formed during the slow growing wintex period. The greenback flounder's otolith conformed to Molandex's exposition of seasonal zone formation with the fixgt appearance of the opaque ring occurring in November and 1 ts almost certain presence in fish taken in December. The hyaline zone made its first appeaxance during the month of April. A large variation in the structural composition of the zones and their relative width is presumably Cue to the extenced spawning season of the species. A small proportion of otoliths possessed translucent nuclei. It js
thought that fish possessing such were spawned in late summer and their carly development took place during what is a normally slow growing period. On the whole the otoliths were not easy to read owing to the Exequency of supermumery or false annuli.

Before employing the use of otolith measurements for calculating intermediate leng the the proportional growth of fish and otolith must be established. Al though Jensen (1938) discovered that for the plaice and dab growth was disproportionate quite satisfactory agreement was found between the two for the greenback flounder. Both length and width of the otolith as well as the distance from the nucleus to the ventral and posterior margins were compared with the rish length and it was found that of these measurements the best correlation with the fish length was found using the distance from the centre of the nucleus to the ventral margin. This measurement will be referred to as the otolith width.

The regression Line of otolith width on fish Iength in Higure 14 indicates that the growth of fish and otolith is proportionate in flounders between $13-32 \mathrm{~cm}$ total length. As the regression line intercepts the Y (otolith width) axis at 1 scale division and does not pass through the origin this was subtracted from both the otolith width measurements and the distance from the nucleus to each annulua in the detexmination of intermediate lengths. This adjusts the proportionality and so permits the use of the formula $L_{i}=\left(L_{i} / W\right) I_{a}$ to calculate the

intermediate lengths. The following notation is used in the above expression. -

$L_{1}=$	intermediate length
$L_{f}=$	total fish length
$W=$	width of otolith measured from centre
	of nucleus to ventral or more curved margin.
$I_{a}=$	distance from centre of nucleus to outaide edge of annulus

Successive annuli are designated $I_{a 1}, I_{a 2}$, and $I_{a 3}$, and Likewise intermediate lengths $L_{i 1}, L_{i 2}$, and $L_{i 3}$.

It was necessary to use the outside edge of the annulus as a reference point for measurements because it was often dificult to judge the postition of the contre.

Wor purposes of relating the otolith measurements to age it is necessary to select a birthday month. This month xepresents the period during which the fish pass from one age group to the next and it is usually contenient to choose the month duxing which spawning is most concentrated. The long spawning season of R . tapirina makes the choice of such a birthday month difficult. As the month of July lies approximately in the midale of the spawning season it was chosen as the birthday month and the 31st day as the birthday. The formation of the mid point of the annulus may also be taken to occur in July, the whole period of the laying down of the annulus lasting from May to September.

Thus if the intemnediate leagths of the age groups are calculated using the distance from the nucleus to the outside edge of the annulus forned in September, each length will be greater than the birthday length by approximately three monthe' growth. To accomnt for this perjod the age groups have been designated 0_{t}, It, IIt, and so on.

The minimum water temperature of all the Tasmanian localities Fron which samples were drawn occura in efther July or August, concurrently with the peak of the spawing season. As has been pointed out the annulus is aiso laid down during this period so that in the greenoack flounder $\hat{1}$ ts foxmation is contemporaneous with the spawing season and the months of lowex temperaturea.

The mean otolith size and corresponding values of I_{a} and L_{1} for fish between 130 and 320 mare given in Table 7 . The figures have been correoted according to the I intercept of the regression line as previously mentioned.

The number of tlounders in each age groux from which otoliths were read in conjunction with the intexnediate Iength calculations is shown in Table 8. It will be noticed that the overlap of age groups is not great which is due to the shorthess of the period over which the sample of fish was collected.
the growth curve in Figure 15 has been drawn using the means of the intermediate lengths.
(c) Maxiking Experiments
(i) Methods. - All flounders used in the tagging progranme

Tish Length (cn groups)	Mean Otolith Wiath (scale dive.)		$\frac{122}{c e l e}$	$=123$		$\frac{12}{12}$	$)^{1_{i 3}}$
13	11.4	9.0			10.3		
14	13.0	9.5			10.2		
15	13.9	10.0			10.7		
16	15.1	10.5			11.18		
17	15.1	9.6			10.8		
18	16.0	9.9			11.8		
19	16.8	9.4			10.6		
20	18.4	9.6			10.4		
21	19.2	9.4			10.3		
22	19.6	9.6	16.2		10.7	18.2	
23	21.0	9.6	16.3		10.5	17.9	
24	21.0	8.4	17.0		9.6	19.4	
25	23.0	9.1	17.0		9.9	18.5	
26	23.5	11.0	18.3		12.1	20.2	
27	24.0	8.5	17.5		9.6	18.7	
28	25.3	9.7	17.9		10.7	19.8	
29	26.7	10.0	19.0		10.9	20.6	
30	27.0	8.3	16.7	23.0	9.2	18.6	25.6
31	28.0	9.5	19.0	25.0	10.5	21.0	27.7
32	29.0	9.0	18.0	24.0	9.9	19.9	26.5
	Mean Intermedtate Iengths (om)				10.5	19.4	26.6

TABLE 8

IHW NUMER OR MLOMDDRS CONPATNED IN BACH AGE GROUP FOR BACH CRTVTIMETRE OR TOTAL LRMGIT

Wotal Lenteth (cm groups)	Number in A.ge Grotu			
	$0+$	T+	II+	IIT+
13	1	2		
14	3	1		
15	1	7		
16		11		
17		24		
18		20		
19		9		
20		10		
21		8		
22		2	1	
23		1	3	
24		2	7	
25		1	2	
26			4	
27			2	
28			7	
29			4	
30			1	2
31			1	1
32				1

Fig. 15 The growth curve of the greenback flounaer for the first four years of life as derivec from otolith messurements. The dotted line indicates fourth year growth of a single tagged fisho
were caught by beach seine and transferred as soon as possible to the well of the netting dinghy. Expeximental fishing wass usually done between 9 p. $\mathrm{m}_{\text {. }}$ and 3 an $\mathrm{m}_{\text {. }}$ and all fish reserved for tagging were kept in the well until about $9 a_{0} m$ so that any foish suffexing demage from handing could be rejected. In this way only the most active fish wexe used for tagginge Petoxsen dise tags wexe used exclusively and were atixed in the following mannex with silver wire phe flounder was held in the $2 e f t$ hand in such a way that the snout lay m the palm whith the blind or left side uppexnosts The bodymall was punctured with a long slender awl at the midpoint of the 1 lino from the contre of the lateral line to the dorsal fing and the prepared wire loeded with the blank backing-dise pessed through the fish. The tag was then slipped on to the energent wire which was given two tums with pliers and the turns then bont dow close agoinst the outside surfiace of the tag mo tage were rather loosely afrixed to allow for growth At the outegt of the programe white cellulozd tags were placed on the blind side of the fish but abrasion by sond particles when it wos in close contact wi th the bottom tended to wear away the numbers on the tag as evidenced by the retuma of worn tags that had been out fox only a month Gxey wags wexe then used and placed on the uppernost side. It was conaidered that white tags placed on this side, whilst desimable fox their consplcuousness to fishermen, would rendes the fish more evident to natural predatorg.

To observe the effect of the tags on the fish several. small flounders $13-15$ cn long were tagged and placed in a small aquarium tank in the laboratory. They comenced feeding on nereid worms a week later and al though they did not grow appreciably were all alive and heolthy for twelve weeks when they died due to an overnight breakdown of the aerator.
(1i) Discussion. - In all. 474 southern flounders were tagged in two localities, Pitwater and St. Helens. Total lengths of the fiish ranged from $10-30 \mathrm{~cm}$ and the mumer of tags recovered was 28 or 5.91 per cent of the total released. Of this number $22(4.64 \%)$ were returned with full infornation regarding length, place, and date of capture. The number of fish that were aveilable for accurate measurement amounted to 8 or 1.69 per cent. of the total retarns and this figure included flounders recaptured by the author during the experimental tishing operations. It was found that where fish had been measured by fishermen and then returned to the laboratory for checking differences of up to 1 ca between the two lengths occurred. Fishermen tended to measure to the nearest half inch by placing a rule along the side of the fish of ten after keeping them alive in caufs or wells for a week or so as curios.

The periods of freedom varied from nine to nine hundred and seventyoeight days, with a mean of one hundred and sixtym six days. With the exception of one fish, all wexe retaken
within the tagging area. The fish referred to travelled from Pittwater to the Carlton River, a distance of nine miles in one hundred and eight days. From this it appears that generally the southem flounder does not travel extensively but rather tends to spend its Iire within a restricted area. It might be expected that the percentage return of tags should have been higher than it actually was, taking into account their limited movenents and the intensity of fishing. It nay well be that the nortollty of tagged flounders was abnormally high, as was found in the case of the lemon sole (Parophrys vetulus) by Manzer (1952). This author estimated by extrapolation that over a period of a year the rate of tagging mortality without competition from other types of nortality was from 41 - 49 per cent.

In the present investigation no indication of high mortality was noticed other than the relative small percentage of retums.

Table 9 shows the number of fish tagged from each centimetre group of total length together with the number and percentage of tags returned. The contents of this table axe arrenged graphically in Figure 16 for easier compaxisone It is noticeable thet none of the $10-15 \mathrm{~cm}$ fish were returned and that the highest proportion lay in the larger size groups. A possible explanation of the absence of the small sizes is that professional fishexmen would rarely catch them and anateur spearers, if they did take them, would be loth to disclose the

PABLE 9
THE MREQUENCY DISTRTBUTION OF TAGGDD ADD HECAPTYRED TILOONDERS

TOTAL LANGHA (cm groups)	MOMMBER TACGRD	NUMBXR RRCAPTURED	\% Recap Iurab
10	1	0	0
11	14.	0	0
12	20	0	0
13	24	0	0
14	14	0	0
15	23	0	0
16	24	1	$4 \cdot 17$
17	24.	0	0
18	20	2	10.00
19	28	2	7.14
20	40	2	5.00
21	51	1	1.96
22	68	4	5.88
23	51	6	11.76
24	23	4	17.39
25	20	2	10.00
26	14.	4	28.57
27	9	0	0
28	3	0	0
29	1	0	0
30	2	0	0

Fig. 16 The length distribution of tagged and recaptured flounders and the percentege of recaptures for esch centimetre of totsil length.
information, for olvious reasons. On the other hand the mortality in the mall fish could have been high due to both natural cauces and the effect of the tags. Manzer (1952) found that the size of the fish could not be related with either the number of deaths or the rate at which they took place but the smallest fish tagged during his investigation were in the 25-27 ca group. When the two histograns in Figure 16 (date Table 10) are compared not only do the means differ (19.65 and and 22.93) but the principal mode of the retumed fish is one centimetre greater than that of the tagged sample, This may indicate that mortality decreases with age although one would expect that any differing physical effects of tagging on 20 and 26 cm fish would be negligible.

The period between July and Cotober when the floundex fishery is closed accounts for the laok of xeturns during these months. Only one tegged fish was caught in the experimental hauls made during the closed season.

The increase in length of individual fish duming their release is presented in tigure 17. The time axis covers four years and the points at the extremities of the lines represent the lengths and dates at tagging and recapture. The lines are numbered to correspond with the figures in the last colunu of Table 11 where other detaila of each particular fish may be consulted. The lines marked with an asterisk indicate the specimens which were accurately measured both times by the author.

TABLE 10
gexttstics on racged hud recapitred ghounders mreate hs TWO SEPARATHIS SMPLLRS

	TAGGED PISE	PTCAPMURED TTESE
Heen Lougtb	19.65 cm	22.93 cm
Number	$4 \% 4$	28
S.D.	± 4231	± 2.596
S.18.	± 0.1943	± 0.4905

Fig 17 The growth of tagged flouncr during varying periods of freedom. The dotted lines represent the calculated growth and the figures adjacent to each tag return refer to the serial numbers in the extreme pight-hand colum of Table 11 where more detailed data are shown.

WAG MO．	Date	TEASMS Locality	Length	Date	CAprumes Locely	Lensth	DAYS FRETS	INCRE 3 LETM	GRAPH NO．
A2329	31． 2.51	$S_{\text {E }} \mathrm{H}_{6}$	225 mm	28． 27.51	S． $\mathrm{H}^{\text {c }}$	240 mm	88	15 mm	1
A2384	31． 2.51	S． H 。	250	27．$x .51$	3\％	279	270	29	2
47522	16．22． 51		240	20．iv． 51	P．${ }^{\text {Pr }}$	243	63	3	3
47530	16． 123．$^{2} 51$	P． $\mathrm{VW}_{\text {\％}}$	220	27．iv． 51	P．${ }^{\text {W．}}$	223	70	3	4
AT533	16．23．51	E．${ }_{\text {Wo }}$	235	25．${ }^{\text {\％}} 51$	P．${ }^{\text {筮。 }}$	24.3	99	8	5
A7539	16．2i．51		225	？	19．7．	235	$?$	10	6
A754，		P．${ }^{\text {W\％}}$ ．	247	5．V． 51	Ps都	262	79	45	7
A2266	16．ํ． 51	P．${ }^{\text {霜。 }}$	232	？	P．${ }_{\text {W，}}$	235	？	3	8
42267	16.22 .51	P．${ }_{\text {需。 }}$	260	？	F＊	260	？	0	9
A2280	16．i土． 51	E．Wis	255	25． 7.54	P．${ }^{\text {mi }}$	260	99	5	10
A2283	16．12．51	E．${ }^{\text {W，}}$	240	19．ii． 52	P．${ }_{\text {W，}}$	268	368	28	11
17551	22．2i． 51	S．E．	260	3． 2 로． 51	S．${ }^{\text {H．}}$	260	9	0	12
A7565	22．31．51	S．H．	210	？	S． H_{6}	214	？	4	33
0.7571	22． 12.51	S． H 。	225	27．4ix． 51	3． H ．	235	155	10	14
47581	22．$\frac{1}{2} .54$	S．E．	232	27．x． 53	S．${ }_{\text {H．}}$ ．	330	978	98	15
． 17582	22．2i． 54	S．${ }_{\text {H．}}$	220	？	S． $\mathrm{H}_{\text {c }}$	220	？	0	16
A7587	22．13．51	S．${ }_{\text {S }}$	185	？	S．H．	186	？	1	17
47589	22． 5 ¢1． 51	S． $\mathrm{H}_{\text {，}}$	238	20． 2 2\％． 51	S． H ．	24.2	57	4	18
\＄7594	22.15 .51	S．${ }^{\text {\％}}$	180	20．1v． 51	S． $\mathrm{H}_{\text {\％}}$	184	57	4	19
03554	9．iv． 54	Powo	182	20．\％i． 55	P．${ }^{\text {W．}}$	260	376	78	20
03214	14．$\pm .53$	Pows	198	10． 3 it． 53	$P_{\text {c }} W_{\text {W }}$ 。	220	55	22	21
03216	14．$\pm .53$	P．W．	255	24． 2.53	P．${ }^{\text {W，}}$	255	9	0	22
03201	14．i． 53	P．${ }^{\text {Wrase }}$	224	23．$x, 53$	P．${ }^{\text {W，}}$	273	282	51	23
03221	14，i． 53	P．${ }^{\text {W }}$ 。	218	17．vi̇i̇． 53	P．${ }^{\text {Wes }}$	254	215	36	24
C3234	16． 2.53	$\mathrm{P}_{\text {¢ }} \mathrm{WH}_{8}$	225	4 4． 7 ， 53	Caraton R ．	248	108	23	25
03293	20．$\pm .53$	P．We	204	90114． 53	P．${ }^{\text {W }}$ 。	246	47	12	26
03312	24.1 .53	P W\％	162	20．itite 53	P．${ }^{\text {W }}$ ．	190	57	28	27
03338	10.15	P．${ }_{\text {W．}}^{\text {W }}$	192	2．vix． 53		228	114	36	28

$-44=$
The broken lines draw at yearly intervals are corresponding parts of the growth curve determined by otolith reading.

It is apparent from the agreenent between the calculated growth lines and the growth of the tagged fish that the otolith interpretation is essentially correct. Good agxement occurs in the case of the asterisk-marked lines, but it is only fais in the remainder where the accuracy of measurement cannot be vouched fore The accelexated growth taking place in the summer months shows up in lines 21, 26, and 27, but due to the absence of any reliable shortoterm returns ovex the wintex the extent to which it falls off during this period cannot be determined. Lines 2 and 11 indicate the slowing down of growth in the thira and fourth yeax Had it been possible to obtain more xeliable returns from the $20-25$ cn group over a longex period the calculated growth curve could be extended beyond the stage when otolithe becone unreadable Howtre, it hes not been atteryted with the figures available as the only return that might hawe been of use, line 15, is not strietly accurate. This fish which remained free for over two and a half years was reported by the finder to have the "tail almost eaten away" and its length was estirated at 330 mm on having a standard length of 295 mm . However, intexpolating the growth arroived at by this approximation it seens that a flounder at the end of its four th year would have a total length in the vicinity of 300 min.
(d) Length Frequency Observations

The successivi use of the Peterson method for estimating growth in fishes depends primarily on the species under con sidexation having a relatively mhort breeding season, and also upon fish at the same site having approximately the same growth rate. The greater range in lengths of each yeax brood resultm ing from m extended spawing tends to obscure yearly modes in the frequency distributions, al though this may be overcome to some extent by large sampling teckiques.

In the present investigation the Intexpretation of length frequency rodes was severely limited as the sanpling was not great enough to overoone the ixregularities caused by the extended spawning season of the species.

There being no fish market in Tasmania it was not possible to measure large mubers of flounders and the collections made by the author were rarely greater then 100 fish tor any one mon the In addition the fishing nothods wexe probably selective as regards the limited areas fished nad the gear used. Prectical considerations prevented making large expexinental collections of juvenile fish at regulax intervals and usable data on It fish were thexctore lacking, There were also insuficient numbers of $I V_{+}$and $V_{+} f i s h$ to provide any clue to growth in these two groups.

Howevex there is some indication of the presence of genuine age groups over a short period in some samples whilst othexs
display a modal shofet commensurate with growth.
The length froquencies of female fish from nineteen monthiy collections in pittwater are presented graphically in Figure 18. AJ. length measurenents were grouped to the neasest centinetre. Coly female fish were used as the number of males taken was too small to be of consequence in monthly plots.

In the curves for the months June to October 1954 it is seen that there is a modal shift of 2 om over the four monthe periode Prom the calculated cuxve the anmual growth rate of II+ (19-26cm) Mounders was established to be 0.6 cm per month or 2.4 an for foux months. As growth is prosumably slowex in winter there is reasonable agreement between these two figures. The growth cannot be followed directly in November where two modes occur at 21 and 23 cm . In this ample the 21 cn mode probably represents the Jffish as they become IIts and the 23 m mode is possibly due either to sampling axror or the existence of two mein spemming periods in the protracted breeding season. That growth is greatly retaxded in winter is evidenced by the prinaxy modes of the May - August 1955 samples remaining atatic at 22 an and thon showing an increase of 1 an in September Phe growth of IIt and ITIt fish from August 1954 to April 1955 indicated by modal shift in aiguxe 19 Is comparable with the calculated growth for the period shown by the broken lines drawn through the curves. the IIIt group can be followed more easjly than the II but in both it is

Fig. 18 Length composition of female greenback flounders from Pittwater as shown by measurements of nineteon congecutive monthly collections, June 1954-December 1955. Statistical data shown in Table 12.

Stattstics of femata flounders from which twe data plotted in figure 18 were taken (measurmuny is in ma)

$$
\begin{aligned}
& n=\text { NUMBER EXAMTNED } \\
& \text { A.M. = ARITHMETTC MEAN } \\
& S_{0} D_{0}=\text { SIANDARD DEVIATTON } \\
& \text { S.E. = STANDARD ERROR OF THE NEAN }
\end{aligned}
$$

MONTH	RAIVGE (T. L*)	n	MODE	A. M	S.D.	S.E.
$\begin{aligned} & 1954 \\ & \text { June } \end{aligned}$	19-30	92	22	23.4	± 2.64	± 0.28
July	17-33	96	23	23.6	± 3.21	± 0.33
August	17-34	102	24.	24.1	± 3.21	± 0.32
Sep tember	19-33	105	24	24.5	± 2.68	± 0.26
October	$20-33$	96	24	24.6	± 2.82	± 0.29
November	20-32	104	21823	24.2	± 3.09	± 0.30
December	20-32	98	21:23	24.6	± 2.91	± 0.29
$\begin{aligned} & 1955 \\ & \text { Januaxy } \end{aligned}$	19-33	88	22	23.6	± 2.74	± 0.29
February	19-31	100	22	23.1	± 2.15	± 0.21
March	19-34	93	22	24.4	± 3.40	± 0.35
Apriz	20-33	87	22	25.7	± 3.38	± 0.37
May	19-33	86	22	23.2	± 2.92	± 0.31
June	19-29	93	22	23.0	± 2.38	± 0.25
July	19-36	91	22	23.1	± 3.20	± 0.34
August	18-30	85	22	23.3	± 2.25	± 0.24
September	17-34	113	23	23.4	± 2.74	± 0.26
October	20-34	43	23	23.5	± 2.98	± 0.45
November	18-32	102	22	22.3	± 2.63	± 0.26
December	19-33	104	22	23.0	± 2.41	± 0.24

Fig. 19 Length frequencies of nine consecutive monthly flounder samples from Pittwater covering the fast growing period during spring and early summer. The dotted lines indicate the suggested modal progression for II+ and III+ year groups.
apparent that the fastest growth is during the period Noyember to rebruary.

The sumed frequenctes of all male and female flounders exmmed together with those of a twelve months sample of fenales appeax in Pigure 20. The axithmetic means of the two female samples difier by less than 0.5 on and the mean length of moles is 1.92 cm less then the walue for the corresponding female sample. The statistics of the curves are in Toble 13.
(e) Ganeral Conclusions on Growth Rate

From the stuay of otoliths it appears that in its finst year of life the greenback flounder could be expected to attain a length of epproximately 10.5 cm at a nean rate of 0.75 ma a month During its second year the growth rate decreases to 7.35 mm a month and reaches a length of 19.4 cm . The mean nonthly growth rate during the third year is 6.0 man approximate length at the cad of the year 26.6 cm .

The second and third year calculated growth rates are corroboxeted by tag returns and modal progression of length frequency curves, which also denonstrato a retardation from May to August and an accelexation from November to February

Although it was not possible to celoulate fourth year growth it is estimated to be of the order of 2.8 mm pex nonth and the length attained approxinately 30.0 cm

K. SPAWNTNG AND GONAD MATURTITY

The documentation of maturity spawhing and progressional.

Fig. 20
The length frequency curves of all fiounders examined during the investigation The statistics of the curves are preserted in Table 13.

TABLE 13

stattstics of lengrif pregrency curves shown in fig. 20

```
n = NOMBER EXAMINED
A.M. = ARIIHMETIC INAN
S.D. = STANDARD DEVLATTON
S.E. = STANDARD ERROR OF THE MFAN
```

SAMPTE	$\begin{gathered} \text { RANGE IN } \\ \text { TOTAL LMNGTH } \\ \text { (mma) } \end{gathered}$	n	MODE	$A^{*} \mathrm{Ma}_{0}$	S. D.	S.E.
$\begin{aligned} & \text { March 1954-Dec. } 1955 \\ & \text { (Females) } \end{aligned}$	$12-36$	1,818	22	23.6	± 3.01	± 0.07
$\begin{aligned} & \text { June 1954-Miky } 1955 \\ & \text { (Females) } \end{aligned}$	17-34	1.123	23	24.1	± 3.07	± 0.19
$\underset{\text { (Males) }}{\substack{\text { June } \\ \text { (May } \\ 1955}}$	17.27	89	21	21.7	± 1.76	± 0.09

development of ova in $R_{\text {. tapirina was made somewhat difficult }}$ by four factors.

Pirstly, the spawing season wes found to be greatly prolonged; secondly, the proportion of male fish in the samples was low; thirdly, xunning ripe females wexe rares and finally, the extemel appearance of the ovary varied only slightly duxing the various stages of maturity.

As the length of the spaming season will be dealt with later in this section it will be sufficient to state briefly that spawing takes place over a period of elght months, al though some fish with maturing ox ripe ova may be encountered in any month of the year The mannex in which a prolonged spawning affects growth determination has been mentioned in the previous section and the study of adolescence and age at matuxity is similariy rendexed difficult by this condition The more prom longed the spaming season the greater will be the range in size of developing ova at any chosen time of observation this gives rise to complications when following the growth of owa in frequency distributions from month to month.

Secondly, because of the difficulty of capturing moture and ripe males duxing the investigation, and the absence of adequate observational staging criterion, it was necessary to confine the study of maturity and spawning to female fish. Al though in the $10-17$ cm $f l o u n d e r s$ the percentage of males varied between 25.0 and 56.7 per cent, as maturity was reached the
proportion quickly fell away to 17 per oent. and this downard trend ontinued among the larger fish. The smallest fish taken fron which "milt flowed freely was 18 an long so that the bulk of fish represented by the paxt of the curve lying between 18 and 27 an in Figure 21 would be matare. Reference to the percentage curve in the same figure shows the stendy decine in the proportion of males from 17.0-0.6 per eent. over the length limits of mature fish Considering the alnost equal proportion of the sexes anongst imature fish the question of what factor or factors deternine the change in sex ratio presents itself. Although Kawastki and Hatanaka (1951) found that for two groups of Jimends angustirostris Kitahara the sex ratio renained constant at $1: 0.999$, in othex species the proportion of females may either increase or decrease with age Hile (1935) showed that the number of female ciscos per one hundred males increased from one hundred in the first year of life to 1100 in the sixth yeat. He was of the opinion that the differential mortality of the two sexes was probably the result of their innate physiological mechanism the manifestation of which could vary from one population to another. Previous work on the Lake Huron herring by Van Oosten (1929) demonstrated the reverse condition in which the nales, although not abundant in age groups It and IIt, predominate in older age groupso Van oosten attributed the shitting sex ratio to the earlier attaiment of sexual maturity in females and a resulting

Fig。 21
The numbers of male flounders in each cam. of total length expressed as a percentage of total number examined. The broken line indicates the length composition of male fish.
tendency for them to appear in the commercial catch at an eaxliex age.

The reason for the change in sex ratio in the greenback floundex is not alear fron the data available. Possibly, as Geiser (1923, 1924) oncluded, the differential moxtolity of the seres is due to the greatex inherent ability of the females to survive adverse environmental conditions. A surther possibility is that maies, as they mature, tend to nove to sea and xemain there that there is a higher mortality anongst older male fish seens apperent from a study of the length composition of the tro sexes in the ollections from June 1954. to Hay 1955. In Hegure 20 the mean length of males is mily 2.31 cm less than the female mem length although there is a difference of 8 an between the largest male and female fish measured. At no time during the investigetion was a male taken longer than 26 cm while the largest fenale floundex measured 36 cm.
(a) Methods

Becouse the changes in appearance of the developing ovaxy were tew the author decided to pursue the study of the growth and development of the ovarien ova and use it for the determination of the age at matusity and the spawning season. Ova diameter measurements as moturity woteria have been used by severel workers and sytematized by Claxk (1934). The measuring technigue used in the present study wes singilar but In view of several minor changes it will be as well to outline the procedure.

Ovaries were taken fxom about 1800 flounders over a period of a year and a hall. The flounders were collected at regulax monthly intervals from pittwater, each sample being raxdomy gpeared and consisting of approximately one hundred fish.

Adaitional collections of moll, imature fish were netted by the author from time to time for the investigation of age at maturity. Where possible the whole of the ovary was preserved by placiog it in a $4^{\prime \prime} x 1^{\prime \prime}$ tabe containing a ten per cent. solution of foxmaldehyde. Whexe the size of the ovary precluded its entire preservation a large transverse seotion of the anterior portion was used. fxamination established that the sige dasses of ove were homogeneously distributed throughout the ovary. Any shrinkage ox distension caused by preservation was not detectable even in mature eggs al though a cextain amount of distortion due to pressure exerted by the walls of the tube was evident. Fardening of the ova was completed within a week arter winch they could be handled without cousing any alteration in dianeter.

For measuring puxposes a small piece of ovary was teased out with needies, pleced on a slide, and covered by a suiteble anount of water so that the largest eggs wexe completely submerged. This enabled the material to be viewed without the use of a coverslip which simplified and speeded up the operation. A movable stage microscope was used to make the actual measurem ments in conjurction with an eyepiece micrometer in which one Scale diviston equalled 0.015 mm .

IWrenty to thirty of the largest ova were measured fxom each ovary and the mean diameter noted. Generally the majority of eggs were symmetrical but to obviate errors coused by any that may have been distorted the micrometer was always kept in a vertical position and the dianetex measured parallel to the praduations. When it was required to make measurements of groups of eggs of varied sizes within the one ovary a fraction of the gonad was teased out, and all ova in the field measured. The field was then changed and measuring contimued until from 200 to 300 eggs had been accounted fox.
(b) Dexminology

The maturity of fish can be expressed either in terms of the maturity of its ova, or by the state of development of its ovary. Whilst the changes in appearance of the ovary itself are usually adequate to define the state of maturity of the fish the use of ova diameter measurements is subject to certain qualification. Because it is possible for an adolescent and an adult fish to contain maturing ova it is necessery to draw up a series of texms that will avoid confusion when referring to the maturity of ova as aistinct from the maturity of ovaries. Turthemore, as it is necessary to apply the terminology of eggs and gonads to the state of the fish itself the different stages of maturity are listed under three headings, as follows.
(c) Description of Ovarian Ova
(i) Ovarian Cva.- It became evident at the outset of
the gonad study that the ovarian eggs could be separated finto one or more of three size groups depending on state of maturity.

GroquI: this group comprised the imnature egg stods from which eggs destined to mature would be drawn. The range in ove diameter was found to be from $0.015-0.135 \mathrm{~mm}$ and the ova nere largely transparent with a eranular translucent nucleus approximately half the total ova diameter in size. The smaller eggs tended to remain in clusters after the tissue had been teased out on a slide whilst the larger ones were of ten separated by this operation. Group I ova were visible in all ovaries in all stages of matuxity.

Group II: eggs in this group neasured $0.950-0.525 \mathrm{~mm}$ and had begun to form yolk which gave then a granulated appearance. The granulation gradually became general throughout the egg, rendering it more opaque as the size increased al though the nucleus could be distinguished in eggs up to 0.250 mm in diameter. Prom 0.350 m .525 mm the eggs were darkly opaque, except for a thin transparent periphery.

Group III: all ova ranged from $0.630-0.800 \mathrm{~mm}$ in diameter and were closcly approaching or had undergone maturation in preparation for spawning. They were translucent with a very thin semi-transparent peripheral layer and therefore maxkedly difexent from Group II egge The nucleus was visible if moturation had not taken place and from one to three dark brown oil globules were present which varied in size from $\frac{t}{8}$ to $\frac{4}{4}$ the
egg diameter. The laxgest eggs in the group were found to be identical with those of the species found in the plankton.
(ii) The Overy.- (1) Immature An ovary which con-. tained Group I eggs only. The imnature ovary conld be infallibly distinguished trom one that had spawned and was a recovering as in the spent ovary the largest ova fell into Group II. (2) Maturing There were two types of maturing ovaries. Adolescent: those which had never reached full maturity but would produce ripe eggi in the approaching spawnIng season. Recovering: ovaries which had previously spawned and had begun to mature the next season's ova.

Both adolescent and recovering ovaries contained Group II and Group III eggs, but were readily distinguished by differences in shape and appearance. As in the plasice (Cole and Johnston 1901) the spent ovexy of the greenback flounder does not rever.t to its adolescent form, The recovering ovary is elongated and shrunken with well developed blood vessels whereas that of the adolescent is of a lighter appearance, more rounded and lacks prominent blood vessels. (3) Matures ovaries which contained Group III ova which were usually in process of being spawned.
(iii) The Pish.- To overcone ambiguity in the application of ova diameter and gonad stage criteria to the maturity of the fish three further terms were introduced. Young: the ovary contained Group I ova only. Adolescent: had never
sparmed but pocsessed Group II ova Adult: had spawned previously and contained Group II or III ovo on may not have spamed but oontained Group III ove.

These terms will be adhered to throughout the present paper.
(iv) Discussion. The sime limits of the ova In each group together with their relationship with the meturity of the fish were detemined from the measuronents of from two hundred to three hundred ova chosen at random from each of four adult flomoders with different stages of mature and maturing goneds. The resulting ova frequenoy distribution from (A) maturing, (B) mature, (O) portly spent, and (D) fully spent ovaries are show in Diguxe 22. In all four distrobuthons the inmature stock of Group I ova $1 s$ deorily geen with a node at 0.075 mm In (A) secondery modes at 0.105 and 0.135 mom indieate that portion of the stock has commenced to increase in size as the first step in the maturing process has been taken gwo important features of the behaviour of the developing overy shown by the distributions axe:

Firstly, the spawning act is completed in two stages with an unknow interval between each stage. In the mature ovary (B), two distinct sige groups are present, those about to be spamed and a secondary group ranging in size from 0.360 to 0.495 mm The question arises whether this group of ova nature and are spawned in the current season, whether they constitute the stock from which the following season's eggs will be drewn,

Fig. 22 The size distribution of randomy selected ova from four ovaries in different stages of maturity.
"A ragresents the condition in an overy that has begm to mature, "B" an almost ripe ovary, "C" a rming ripe and partly spent owary, and "D a fully spent orary.

The small lettexs merely distinguish the two sime groups of Stage II ore mentioned in the text.
or whether they degenerate and are resorbed. It is common in some species of flatfishes for all mature eggs to be discharged at spawing, only the imnature stock remaining in the ovary. This condition is met with in the dab (wheeler 1924), the starxy flounder (Orcutt 1950), and the Dover sole (Hagerman 1952) all of which, during the spawning season, contain no intermediate groups of ova between xipe and immature stages. Conversely in the Califoxnia sand dab (Axoxa 1951) and plaice (Franz 1910) a stock of unripe maturing eggs remains after spawning which are ultimately reabsorbed. Such is the case with the greenback flounder.

Observation of ruming ripe ovaries showed that a large number of ova were released during the spawning act which left the ovary quite flaccid. This indicates that the ova which undergo maturation in preparation for spawning do so in a body and not in snall batches over a considerable interval of time. The ultimate fate of the secondary group of ova must now be considered. Two types of readily recognizable ovaries were found to be consistently present in spent fiish, one containing the group of maturing eggs in question and the othex in which it was lacking. (See graphs (C) and (D). Fig. 22). The study of ovaries of type (B) showed that at the time when the mature ova were lying freely in the lumen the secondary group of ova were firmly attached to the walls and in such quantity that they were estimated to be potentially as numerous as those
already mature. No instance of the breaking down and resorptions of this group was noticed throughout the study. Once it has been established that these egge do become mature the question of the interval between spawing of the two groupe presents itself. That the secondary group are the stock from which the ova destined for the following year axe drawn is discounted by curve (D) in which the largest ova gre seen to be in the 0.180 0.315 ma class. While no accurate assessment of the time lapse between maturing batches of ova could be made it is likely, conaidering the length of the spawning season, thet it may be a period of weeks or even months.

The second noticeable chaxacteristic is that not all ova that begin to mature are destined to achieve final maturity. Tramination of fully spent anc maturing adolescent ovaries showed the presence of two ova groups measuring $0.045-0.135 \mathrm{~mm}$ and $0.135-0.180 \mathrm{~mm}$ respectively. The smaller group representa the Imnature stok wilst the larger comprises the succeeding season's crop which has already ontered the maturing stage. In some cases there occuxred a further class ranging from $0.180=$ 0.330 mm which, if in spent adults showed signs of degeneration. It appears that these were ova in which, for some reason, development did not continue and it may well be that they formed a "resexvoix" from which any Losses due to mortality in later stages were replenished. That they did ultimately degenerate wes borne out by microscopical observation and confimmed by
their general absence in ovaxies from Noverber to February when the modal ova diameter was 0.150 mm .

The monthly ova frequency data in Figure 23 show that the growth of eggs from 0.150 to 0.450 xm in the adult and adolescent floundex is accomplished in four to five nonths. During this period growth is regular as is demonstrated by the occurrence of all intermediate size groups in the month to month samples. Fowever, once the ova reach a sise ranging from $0.330-0.450 \mathrm{mn}$, development appears to be halted and a stock of ova awaiting maturation is formed. The existence of this prematuration group is clearly seen in the frequency histograms for the gpawing period. From June to October 1954 (Fig. 23), with the exception of two 1 ish in August and one each in September and October, the laxgeat group of eggs have their mode at 0.450 mm . Duxing the sane pexiod mature ova measure 0.675 0.825 mm which draws attention to the noticeable absence of $0.450-0.675 \mathrm{~mm}$ egs.

Inght has been thrown on the absence of egga in the intermediate stages of the final maturation process by Fulton (1897) working on haddock. He concluded that the relative scarcity of such ova was due to sudden change from the densely opaque condition to the distended transparent form and added that the actual extrusion of eggs took place as quickly. Hickling (1930) also attributed the low percentage of "running ripe" female hake on the spawning grounds at the height of the spawning

Fig. 23 Dianeter frequency histograms of ova from Pittwater flounders sampled monthly from June 1954 to December 1955. The raw data have been grouped about intervals of 5 scale divisions (1 scale div. $=15$ micra). Relevant statistical data are given in Table 14.

TABCE 14
MONTHLY VARIATION IN MEAN OVA DLAMETER (RUPE OVA EXCLUDED) OF EITTWATER FLOUNDER FROM JUNE 1954 TO DECMMBER 1955.

CLASS INTERVAL FIVE SCALE DIVISIONS WEERE
1 SCALE DIVISION $=15 \mathrm{MICRA}$

MONIT	$\begin{aligned} & \text { MEAN DIAM, } \\ & \text { (SC, Div.) } \\ & \hline \end{aligned}$	S.D.	S.Es。	n	Mean diam. (Micra)
1954					
June	18.46	± 7.365	± 0.772	91	277
July	19.44	± 7.066	± 0.714	98	292
Augus t	21.92	± 7.572	± 0.742	104	329
September	20.01	± 7.772	± 0.773	101	301
October	16.68	± 6.514	± 0.668	95	250
November	13.99	± 6.179	± 0.606	104	210
December	11.82	± 4.628	± 0.465	99	177
1955					
January	10.28	± 4.039	± 0.426	90	154
February	12.88	± 4.951	± 0.531	87	193
Maxch	18.22	± 7.161	± 0.755	90	273
April	20.35	± 6.939	± 0.744	87	305
May	19.63	± 6.998	± 0.782	80	294
June	20.70	± 6.705	± 0.695	93	310
Juxy	19.10	± 8.092	± 0.858	89	287
August	22.44	± 7.657	± 0.835	84	337
Septernber	20.00	± 7.054	± 0.670	111	300
October	19.21	± 7.211	± 1.170	38	288
November	13.00	± 5.477	± 0.548	100	195
December	12.40	± 5.320	± 0.527	102	186

season to the ova ripening in batches and boing shed at once. The final maturation process in the greenback flounder appeared to follow this pattern for not only were no eggs between 0.525 mm and 0.630 mm encountered throughout the study but the number of xunning ripe females was extremely amall.
(d) The Place of Spawning

It is generally accepted by foishermen that the greenback flounder seeks the shallow waters of astuaries and tidal rivers in which to spawn and the nuthor's observations supported this belief. Female floundexs about to spam, or actaally in the suming ripe oondition together with males from which it was possible to express milts were found in this type of locality of ten in extremely shallow water. Confimatory evidence was provided by the similex occurrence of planktonic ove and juvenile fish However, it is guspected that spawning is not confined to the estuarine environment as xunning ripe males and females have been taken offshore in dep ths down to firteen fathons from time to time by Daniah seiners. (Fairbridge, unpubiished data 1947.) As there are but saanty details recorded from flounder caught in deep wator no certain opinion can be givan regarding the relative proportion of fish spowning in the two habitats. There is also no spparent seasonal variation in abundance in mature estuarine fish that might suggeat the occurrence of a spawning migration and consequentiy the inehore babitat is regarded as nomal for all months of the year including those in which spawning takes place.
(e) Spewning Dimes

The length of the spaning season for floundex in Tamania bas been a subject for argument and speculation ever since the foirgt fijshing regulations were dxawn up duxing the midale of last centuxy opinions given betoxe royel commissions and enquiries into fisheries regulations veried between a short spaming season of two months in the middle of winter to conthnuously throughout the yeax The results of the present investigetion show that the spawaing period, a though grolonged, can be detined and that a maxked cycle axists. It mast be emphasized, however, that it was not possible to investigate the effect of environnental factors on spawing from one locality to another and the remults presented are indicative of the condition found in one estuary only, namely Pittwater.

The monthily frequency distributions of ova diameters (Table 14, Fig. 23) show a decided seasonal pexiodicity ower nineteen successive months The histograns were constructed by grouping the raw data in class intervals of five scale divisions with values of 5,10 , and 15 scale divisions as mid points. It was thought that as thore was often a degree of distortion in presexved ova which exceeded two scale divisions nothing was lost by grouping and the much tidjex distribution show subsequent to grouping justified this treatment of the raw data.

In considering the curves it should be borme in mind that
ova in the class measuring 30 scale divisions (0.450 mm) axe those awniting matuxation. Because of the suspected rapid development from this stage to full maturity and also considering the few fish obtained containing fully ripe or spamming ova the presence of those 0.450 mm in diameter were takan to be as indicative of inclpicent spawning as was the presence of ova measuring $0.600-0.800 \mathrm{~mm}_{\text {。 }}$

The ovaxies contain a large proportion of well developed egge from Maxch to September but during the remaining montws (Octobex to Februaxy) the number of large owa is considerably diminished and theis place taken by mall ones which form a distinct mode at 0.150 mm This rathex short pexiod when the great majomity of ova are not much larger than the immature stock is brought to an abrupt end with their growth during March and April As growth proceeds the proportion of 0.150 mm egge natuxally decreases and this condition holds, apart from the muggegtion of a recession in July, until September when a share decline in frequency of large ova commences. The seasonal fluctuation in egg maturity is more appaxent in Figure 24 where the mean owa diameter of each monthly sample is plotted. Because ripe ova are almost twice the size of those awaiting maturation and also the number of munning ripe Iish in a gample is not truly indicative of the maturity of the sample, Stage III eggs axe excluded in the calculation of the means.

The curve shows that a definjte spawning peak occurs in August of both yeax but in 1955 the ova achieve a comparable sixe as early as May. In both 1954 and 1955 the decitine in mean diameter takos place in September although at a more rapid xate in the former yoar. As it can be assumed that samples of flounders whoge egge have a mean diameter of . $300-.345 \mathrm{~mm}$ are in a position to spawn the season may be caid to last ircat Maxch to September, although an the value Ror October 1955 indicates, a faix proportion of fish may gpawn during this monthe

It is unfortunate from the standpoint of checking the length of one apawning geazon against another that it was not possible to comence the invertigation before June 1954. As orly hail the season of that year was covered it cannet be proved that the tandency of the 1955 curve to be binodal is characterigtie of each year. The bimodality of the 1955 curve raises the strong possibility that two spawning concontrations exist and which account for the tro classes of owa found in the matwe owary It has been shown that following tho extrusion of repe eggs numerous ova $.390-.495 \mathrm{~mm}$ remain which show no sign of breaking down and which are dostinod to be released ripe at a later stage. The theory that the first stage of mpawning takes place about Maxch followed by a seond and final stage in the extrusion of eggs in Septernex as suggested by the curve must be considered in the light of the probable relationship of spawning and temperatuxe.
$-63-$
In fishes the stimulus to spevn may be provided by a numbex of factors other than temperature. For a number of freshware species the importance of such agenta as the presence of certain types of vegetation, the nature of the bottom and changing levels of water has been shown by Fabricius (1950). However, as these conditions in the habitat of the present species axe relatively stable compaxed with laker and rivers subjected to a continextal climgte and the eges of flounders are pelegicg it is assumed such influence would be oxtrencly mmin. The importance ot temperature and length of day as controlling gpewaing of the minnow (Phoximus laguis) has been outined by Bullough (1939): who found that whilst variations in light influenced goned development temperatuxe wes the more cnitionl to the extent that spawning could not take place until the temperature of the Whter had risen above $17^{\circ} \mathrm{C}$. Furthernore, the change from potential maturity to functional maturity was induced by the rise in tomperature and it was the rofe itself and not the hoight of temparature reached that was considered the important ractox.

Now the greenback elourder in common with most other Heterosomate spawns during the winter months and consequently the developrent of ovartan ova con be correlated with falliag temperatuxe. Duxing the months of $1954-1955$ in which spawaing took place in pittwater the temperature was leas than $13^{\circ} \mathrm{C}$, and a general xise in temperature above this reading was conconitant
with a decrease in mean ova diametex, resulting from the cessation of ova development. In fact, as Figure 24 shows, the close inverse correlation between temperature and owa dianeter duxing the whole period of the investigation is worthy of attention.

Whether any signiticance can be attached to the close agreement of the points at which the two curves intersect between October axd November in both years is problematicel but it is clear that the relatively rapid rise in temperature in 1954 and the sonewhat slower xise in 1955 is reflected in the ege diameter curve.

If indeed age development is induced by a fall in temperature an eaxiser or sharper decline at the and of sumer would bring about a more rapid maturing of ova than would a slow or late fall which would have a direct intuence on the length of the spanning season. That the rate of fall in autum tomperature is subject to variation in succasive aeasons is indicated by a temperature curve of Pitwater for 1950 and 1951. (See Fig. 25) In 1950 the April texperatare of $14.6^{\circ} \mathrm{C}$ was 3.9° higher than in the same nonth of 4951 , and did not fall to below 11° until a month later. In 1955 an even sharper fall cocurred and the temperature was such that it permitted spaning to commence in April. Thus the 1955 spawaing senson may have been abnomally long and the occurrence of large ova from April to June simply the direct reant of

Fig. 24
Montluy variation in mean diameter of eggs from Pittwatex flounders duxing 1954-55, with the coxresponding mean watex-temperature curve.

Fig, 25 The comparison of seasonal water temperature variation at Pittwater, Port Sorell, and St. Helens.
adden temperature drop and consequent aorly maturation of ovt. The drop in megn value for July 1955 may be due to a mall rise of one degree in May which had the effect of halting ox slowing down maturing process and for this reason a shadove of doubt is throw on the interpretation of the two modes ropresentIng two spawing concentrations Whether or not there is a critical temperature that must be reachod befoxe the maturing process commencos. ox that this is inducod by a 1 all in temperature could ba made conclusive by laboratoy experiment ondy. But there is a strong auggention from the appearance of the curves that temperature is an important fastor in the develoment and mpaning of eggs in the speciea

The Inplications of temperature effects open up the question of the possibility of varying lengths of ench year g gpouning seascn. Fox instance the mean tomperature of Pittweter owar twelve months in $1954-1955$ was $13.5^{\circ} 0$ and the months during which the water remainod below thas trmperature extended from Apxil to October, a period of seven monthi For a corresponding period during $1950-1951$ the weter was coldex than the mean of $13.2^{\circ} \mathrm{C}$ fox only axx months, and during the winter of 1950 for only five months. Thus from these reoords alone the possibility of a waxiation of two months in the limits of any two spawning seasons must be allowed if gonad development is induced primarily by alling temperature as seoms highly proboble.

The present regulation which prohiblts the taking of
flounders from July 1 to October 14 , was designed to give proteotion to the fish during the spowning season This aim has been achicved as fow as the spawning peak in September ia oncexned but $3 n 1955$, fox instance, would have cowered only half the period in wkich the ovaries were in a high state of maturity and during which xunning roipe fish were onoountered. The positiom holding in 994 ha of cousse not oleax as samphing Aid not begix whil Jume but the similaxity between the temperature curve fox that yeax and that for 1951 suggeste that a seven months' period af weter wemperature below $13^{\circ} 0$ with coxrespondingly lengthened spawhing in fainly common in Pittwatex Thus if it were doened necessany to protect the Dounder fox the whole of the gpaming season cvery year thas could only be cuauxed by a closure from April to Octobex ixclusive However, recommendetions of this nature cen oniy be made ater a thorough maderstanding of the composition and ondition of the atock has been reached. This inwolves intensive investigetion of catch and ftshing effort based on reliable records over a Large number of yeary nux was therefore quite beyond the seope of this mvestigation

KI. DENGIT AND AGE AT TTRST MATUTTX

The number of matare or neariy mature male fich taicon in the collections during the spowning scason was amal enough to be onsidered inadequate fox puxposes of detexmining age at maturity and the stady wes herefore contined to fcmales. However; it

Was observed that males 17 can in length frequently displayed signs of maturity and during the spawang season fish of 19 com and greater, possessed testes in a ripe or approaching ripe condition.

The length and age of semale filsh at maturity was obtained from the study of the diameters of ova preseat in each atntinetre group of fish length from a sample of 862 floundera taken duxing the spawning scason of 1955. The lengths of the flounderg used for this parpose vaxied from 12 to 36 can

The presence of ova falling in the $0.350-0.800$ mam diameter xange was used as the criterion or maturity as it was assumed that fish with eggs developed to this extent would spawn in the arrent season. The consideration of owt greater than 0.350 mm was promptod by the doubt that agga smaller than this would rach full matuxity by the ond of the season as evidenoed by the breaklown and reaorption of the $0.180-0.330$ man class mentioned earlier in the paper. This group of eggs remaining in adult fish following spawing is certainly reaorbed as the histograms of Figure 23 ahow. It is also evident that the eggs of adolescent flounders may develop to the 0.330 mat stage a year before spawing takes place but axe resorbed without further development, This condition was illustrated by the increasing percentage of this group of eggs found in fish from 17 to 20 cm without the single occurrence of larger ova. In addition frequent breakdow of these egge was noticed in fish of this si.ze xange.

The number of figh of each length cians exomined togethex With the pexoentage which had become mature is pregented in Table 15 These date are plotted in Figuxe 26, where the trend Ls indicated by an eye-drem cuxve, The cume shows that the greenback plounder begins to mature at 20 cn with 60 gex cent. maturity reached at a length of 24 one That the percentage matrae values for lengtha at which all fish ave obviousiy fully mature doez not reach the 100 per cent. level da due to the spread of the gavaing season ower a conaidenable pexiod. Theoretically if maturity were gauged on the possession of funly ripe eggs the curve could be expected to reach 100 per centw only if al piah gpawned struLtwacumy Arora (1951) In using the diametexs of Largest ove present in the ovaxy to ostablish the matuxity of the sand dab confined bia observetions to one month during the height of the spawning geason and atwibuted 100 per cent. maturity to all fish greater than 250 m. In wiew of the proportuon of spent righ containing only smal ove that must haws surely been present in the sample at that time of the apaming period one can only conclude that a furthes cro tervon of maturity was applied a though this is not staged. Spent floundex were readily recognimable from the appesrence of the ovary and on this basis it was found that 011 fish greater than 29 wexe invarigbly adult oither in a spawning ox spent condition.

Howevar, using ova diameter alone it can be stated that

THIR LENGIH FREQUENOY DISIRIEUTION OF MATURE FBMAT: FLOUNDERS. THE FIGURES IN THE RIGHT-HAND COLJMN rapresfin' ite percentage mature te each cenvimetire GROUP

FISH LENGTHE (can, groups)	NO. EXAMINED	FRR CENT MATURE
16	6	$=$
17	3	-
18	9	-
19	17	-
20	62	7
21	121	12
22	154	21
23	107	44
24.	95	55
25	78	73
26	62	64
27	37	67
28	30	80
29	26	61
30	20	72
31	13	76
32	9	71
33	9	100
34.	3	60
35	\cdots	$=$
36	1	100

Fige 26 The maturity of the fomale greaback floumder The eye drawn curve indicates the percentage of fish in each centimetre group possessing ova within the 0.390 .0 .800 mm size range. Ova in this group axe either ripe ox will become so during the current spawning season.
a mean value of approximately 75 per cent of total mature fish observed at any one time possessing $0.350-0.800 \mathrm{~mm}$ eggs indicates 100 per cent. maturity. This is to say at any one time during the spawning season about one quarter of the mature female population are spent fish.

Length at maturity may be converted to age by reference to the growth curve in Figure 15. The range in total lengths of fish axriving at maturity is seen to be from 20-27 cn with the majoxity becoming mature at approximately 24 cm . This falls Largely in the thixd year of life al though as Table 8 indicates maturity may be achieved by larger second yeax fish whilst a small percentege probably do not becone mature before entering their fourth year. However, it may be safely said that 70 per cento of flounders reach adul thood and have spawned at the completion of the third yeax of life.

The present legal length of the greenback Llounder is 23 cm (9 ins.) which from Figure 26 protects approximately 40 per cent. of the spamaing population. Should additional consexvationol measures be deemed necessaxy fuxther protection of immature fish could be brought about by raising the minimum length to 255 man (10 ins.). An increase of one inch would result in the reduction in the percentage of inmature fish Iikely to be taken by more than 10 per cento

XII. HANDEDNESS REVERSAL AND AMBICOLOURATION

It is well known that during the metamorphosis of flatfishes one of the eyes migrates to the gride of the head upon which the other oye is situated. Whather it is the right or left eye that takes part in this transformation is thought to be determined genetically and usually within a species it is the eye of the sume side that makes the migration. Hence some species nomally have thesr eyes on the right aide and are said to be dextral whilst others have then on the left side and designated sinistral. The word normally is used as in certain cases some members of the same gpecies may be ejther dextral or sinistral in varying proportion according to geographical location or other causes although one condition generally predominates. Thas apecies axe regarded as being either nomally sinistral or nomally dextral and my right handed fish belonging to what is predoninately a lest handed apecies and pice versa is asid to be reversed and such are termed. reversals.

Some idea of the number of sinistral and dextral apecies has been given by Gudger (1935) who estimated that of the approximate 289 known species of Heterosomata 87 were nomally dertral and 202 nomally sinistral. In Arctic and cold water species dextrality tends to predominate in the ratio of 60 to 47 whereas in tropical and warn temperate apecies the ratio is 155 sinigtral to 27 dextral.

The problems associated with haudedness have bsen considered
by many authors and have been convenientiy summarized by Hubbs and Hubbs (1945). These authors conclude that anl Pleuronectidae with the axception of two species of the genus Platichtrys and possibly Rhombosoles were nomally dextral and any occurrence of ainistrality is so rare as to appear texatological. They qualified this statament by remarking that adequate data on the number of rights and lefts in the genus Rhombosoles were not available。

Little more than casual observations have been made on instances of reversal in this genus but it appears from futton (1876) that in R. plebeia such forms are not uncomnon and indeed gave xise to the description of Apsette thomsonj by Kyle (1900) which was subsequently regarded as merely a sinistral form of R. plebeia itacli.

According to Norman (1926) there has been but a single recorded instance of reversel in R_{e} tapirina al though Gudger (1935) drew attention to two reversals of the species reported by futton (1874 and 1876) who in the latter paper reported finding in a collection from Dunedin, Now Zealand, as many lefts as rights but did not give the sige of his collection.

The raxity of reversal in R. tapiring was also confixmed by the author in the present investigation to the extent that only one reversed greenback flounder was encountered throughout the study in which over three thousand apecimens were obsexved. Furthermore, no fishermen questioned, remembered having seen such a fish.

A further abnomality common to flatfishes is the condition known as ambicolouration. This phenomenon, characteriwed by the fish possessing varying degrees of pigmentation on the nomally unpignented blind side, is well known in the turbot and Euxopean dab and is often associated with the Lailure of the appropriate eye to completo its migration. Usually comelated with the arrested migration of the eye is the failure of the doxsal fin to complete its development with the result that the structure texminatos in a fleshy hook-like process and is not carried forward to the snout as the the nomal fish. The incidence of ambicolouration in Rhombosolea is thought to be rave although Hasst in 1873, discussing R. plebeia and Ieporina quoted fishermen as saying that such examples were fax from uncommon. The author was able to find but a single recond of an ambicolourate greenback flounder. This fish was taken at Coorong, South Australia, and forwarded to the British Museum where itt was described by Nomen (1926). In consideration of the apparent raxity of ambicolourate greenbeck floundera the description of a specimen 221 mm long taken by the athor in 1953 is given.

This specimen differs from the nownel R. tapirina in the formation of the head, the position of the left eye, the possession of a Left pelvic fin, and the extensive pigmentation of the blind side. Certain peculiarities of the lateral line in the region of the head axe also evident.

The ileshy hook formed by the incomplete development of the dorsal surface is nore pronounced than that of the ambi0 lourate halibut described by Gudger and Firth (1935) and the similax four spotted flounder (Paralichthys oblongatus) by the same authors in 1936. In both of these cases, however, the eyes are almost nomel in position which may explain the relative smalluess of the hooks As on be seen in Figure 27 the extremits of the process in $\mathrm{R}_{\text {. }}$ tapirina is level with the antexior margin of the left eye which is situated almost on top of the heed being slightly towards the gight side. The prominent snout, typical of the species, is lacking which gives a pigmlike expression to the mouth region. Two equal pelvic fins lie side by side and are joined posteriorly by a common membrene but are unoonnected with the anal.

Pigmentation and scale fomation on the blind side is similar in intensity to that of the right side, excegt for a snail part of the head which retaine the nomal whiteness of the blind side. The extent of the unpignented portion of the head is shown by the unstippled ares in Figare 28.

The axrangement of the anteriox portion of the lateral line differs maxkedly from the nomal fish. Instead of the line brenehing slightly forwexd of the operculum with one fork continuing on between the eyes and the other bearing away towards the dorsal it bends almost at right angles towards the dorsal before branching, after which both forla diverge in that

Dextral view of the ambicolourate specinen of Rhombosolea tapirina.

Fig. 28
Sinistral view of the mbicolouxate specimen of Rhombosolea tapirina.
direction at an angle of about 30° to each othere
Mexistic and morphometric characteristies of the ambin colourate apecimen are compared with those for the species in Table 16.

All chavacters of the ambioslourate specimen are seen to be commensurate with the nomal flounder with the exception of those pertaining to the head and oyes. The head length of the former is proportionately shorter then is uaval and although the loss of the snout would be contributory to this it does not entirely sceount for the difference. This appeaxs to be due to a general compression of the antexior part of the head and all relationships incoxporating the heed longth axe concequentiy affeeted.

The relatively wide interorbital space is of course due to the arrested migration of the oye.

The hindered development of the dorsal fin apparently does not invariably lead to a reduction in the number of fin rays. The specimen in question posseases 59 rays which comes well within the range for the species. Although the apecific range for the species is given as 56069 the mean number of dormal rays for the population to which the ambicolourate example belongs is 61 so that it is highly probable if reduction in fin reys is associated with the condition it is only slight,

From time to time speculation has axisen regaraing the swimming and feeding habits of anblcolourate flatilsh It

> MORPHOMETRICS OF THE AMBICOLOURATE SFECIMEN OF R. TAPTRTNA COMPARED WITH THE RANGE IN CEARACTERS OF NORMAL SPECIMENS. ($s=$ sinistrel; $d=$ dextral $)$

CHARACIER	AMBICOLOURATE SPRETMEN	RANGE IN SPECTES
Body depth in length	2.0	1.7-2.1
Head length in total length	3.9	3.1-3.7
Lower jaw in head	2.9	$3.0-3.7$
\#ye diam. in head	4.4	$4.8-6.0$
Orbital width in eye diam.	2.4	$4.0-5.0$
Number of dorsal fin-mays	59	56-69
" anal "	42	40-50
1 " caudal *	18	16-21
" " pelvic (s)"	6	absent
" " * (d)	6	6
" 1 peot. (s) ${ }^{\text {m }}$	11	$10-13$
* * ${ }^{(1)}$	11	10-13

Total length	221 mm
Standerd length	181 mm
Depth of body	110 mrn
Sex	Female

has been suggested that maxkedy ambicolourete forms with a high placed eye may wrim th the rextical plane as is noxmal with othex fish and in Heterosonata prior to metanoxphosiss In view of this it may be mell to record that the specimens described above was taken by spear whilst swimming in the horigontal position nornaily assumed by flatixahos.

TIII. PARASTTYS
The greenback flounder was found to be fairly free of both Gndo and ectom parasites A snall percentage of livers were infosted by encysted nematodes and laxprl aoonthocephalias cccasionally occurred in the gut wall.

The only ectoparasite mcountered was a previously undescribed giscicolid leech belonging to the genus Austrobdella winch has been named Austrobdella bilobeta by Ingram (9957).

Approximately 12 per cent of the flounder population was found to cerry at least one Leech at though as many as seven were found on the one figh. Leechen mere found thonghout the year, there being no indication of seasonal fluctuation in infestation.

From a collection of 296 greenback flounders from Pitwater 51 leeches wexe counted sad the mumber of specimens pex fish is given in Table 17.

With one exception 11 leeches were found attached to the right side of the body in the region of the nouth and gilis Where they produced ulcerated patches and extensive scare The

TABLE
 17

THE TNETSSATTON OF GRUENBACK FLOUNDERS BY AUSTROBDELLA BILOBATA
Number of Fish Examined Number of Leeches Present
261 0
25 1
8 2
1 37
single individuel observed on the left side wes thought to be a recent infection which was probably making its way to the nommal position on the might ox uppermost mide In no inetanees were leeohes round on the fins.
XIV. RACIATHON

Attention bas anready been drawn to diferences in weight/ length matio and termination of spanaing seanon found to occur in the samples of greenback Moundex from Pittwher and Port Sorell. Now it is proposed to consider furthor variatrons Pound In certarn meristic charecters and use them to prove the existence of two aistinct poghlations wh th innted eastmost geographical alstrabutione Itwill wo be summitted that there is justifitable Gvidance that the two populations constitute sub-species on the grounds of signiftcant mexistic and geographical distinctiwenegs.

Diffexances apparent in the mean number sud range of dorsal and anel dinnays of Pitheter and Poxt Sorell flounderg fixgt anoused the auspicion that gome significant degree ot variation might occux within the species Accordingly efforts wote made to collect samplea from as many places as possible with view to applying statistical tests to any variathons in meriacic ox morphometrical chaxacters no found. Hovever, it proved very difficult to make laxge collections in many places due both to the expense and time involved in inshing for a macies charactexized by great fiuctuations in availsbility, Burehernoxe, the localities in which they ane teken comnercinliy ame relatively feve Thus the data were limited to collections af about a hundred
fish from Pittwater, Port Arthur, St. Helone and Port Sorell with amaller amples from Stanley, Port Welshpool and Macquaric Harbour. The location of these points of collection are shom in the chaxt in tigure 1. A considexable number ox morphom metric measurements wers made which gave random resul ts only anc the study of variation was therefore limated to dorsal and anal finxays, gilhrakess and vertebrae all of wich showed comperable agrement in the scparation of the two populations. The data are summarized in Pigure 29 after the manner of Hubbs and Perlmatter (1942) in which the significance of the differences between the means may be visually estimated.

In the figure the means we repregented by the yerticel Lines, the horimontal lines indicate the renges the heavy portion of the horizontal one standard deviation on each arde of the mean and the hollow reetangle twice the atandard exron of the moan on ench side of the mean.

It is readily seen that the gamplea from Pitweter. Boxt Arthur and St. Helens fall into a group whilst the remaining ones, Port Sorell, Stanley, Port Walshpool and Macquaxie Haxboux constitute another with a maxiced unifomity of aamples within the groups.

Reference to Figure 30 will show that these two groupg Lie in two geographically distinct areas east and west of the 147 th mexidian $L a t e r$ the separation of thege two populations will be discussed in some detall but $1 t$ is necessery to give

$-\frac{\square 100}{4}$
\qquad

$$
\frac{\operatorname{di00}}{4}
$$

$$
\frac{d 125}{4}
$$

$\overbrace{}^{\prime \prime}$

NUMEER OF DORSAL RAYS NUMBER OF ANAL RAYS NGMECO OF GI REKERS NO MEREERAS

Fig. 29 Sumary of dorsal may, anal ray, gill raker, and vertebrel cownts from seven sampling localities. The range is indicated by the fine horizontal line, the meen by the vertical line, one stendari deviation on each side of the mean by the heavy horizontel. line, and twice the standard error of the mean by the hollow rectengle. The Iigures to the might of ach diagran indicate the number of specimens exemined.

Fig. 30 Sketch chart of Bass strait mhowing the position of the Pleistocene Bass Land. Bridge as indicated by the 30 and 40 fathom contours taken from the curcent Admiral ty chart. Sampling localities and the geographical range of the two subspecies of Rhombosoles tapirina are also shown.
them descatptive nanes at the stage to facilitate refertnce to tables. Thus the terms Tastem population (E) and Western population (w) will be used in the following sections to distinguish the two groups.
(a) Test of gignificance

The degree of apparent uniformsty of chaxactexs withen each population indicated in Flgure 22 along with the relationm ship of samples with all others was testad statistically by the use of a variation of the well known th tegto The process propounded by Simpson and Roe (1939) teats the signticeance of the arference betwoen two smmples in tems of the standand aryor of difference between thetr meanco The gtandard exuor of difterence between the meang of the two smmeles is expyessed by $4 /$ gignag whexe a quals the ateforace between the wwo means and signa is the astimate of the gtandarienwor of difference between them The last mentioned value my be calculated from sevexal expressions the most commonly used being

$$
\operatorname{sig} \operatorname{cog}_{\mathrm{a}}=\operatorname{sig}^{2} \operatorname{man}^{2}+\operatorname{sig}_{\mathrm{M} 2}^{2}
$$

whene sigmay and signg ge are the gtandaxd muors of the means of the two populations being oonsidexed. However, the athors claim that the above foxmula fis coxrectly used ony when it is required to see whether two separete apecies diffex significantly in the mean for some varinte In oxder to adequately test whether two samples cond be drawn from the one population the farmala

$$
\operatorname{sigha}_{d}=\frac{N 1}{N 2} \quad \text { sigma } \frac{2}{M 1}+\frac{N 2}{N 1} \operatorname{signa} \frac{2}{M 2}
$$

should be used. N1 and N2 are the number of gpecimens in the two somples Ag a large number of calculations in whe comprison of the diferent samples ha beon mede using the firgt fomm in before the author was aware of the eadstence of the second both wexe applied to several seleoted pains of samples and in mo cage dia the Aifercnce in the finel voluec of a/signta warcant the application of the more lengthy expreasiong This was the case even when N w wes up to gix timeg as great as Ne. The oxttrria of gignificavce using the a/gignay test jis ds follows:

d/signa	3.0	amost always significant
8	2.5	usualy mighiflomm
4	2.0	conetimea migutricant
\%	2.0	not stgnificant

Thege critexia are obtained from the transference of criteria of significance of p (probability) into carrosponding values of $d / \operatorname{migna}^{2}$

AI samplea in the comparison calculatione were regarded as Statiatially "Large". Although the specimens collooted from Stanley numbered only 11 it was found that this sample could be sately tested using the same formila as for the other samples.

Velues of a/sigmad obtained in the comparison of each of the stx samples with the remaning five are listed in Tabla 18 .

THE COMPARISON OF SAMPLES FROM EACH LOCALTTY WITH HHOSE EROM ALK OTHER AREAS AS EXPRESSED BY THE d/ σ d TEST OF SIGNLICANCE, (S. $=$ significant, NS. $=$ not significent)
$E=$ eastern subspecies
W = western subspecies
$D_{0}=$ corsal rays
A. $=$ anal rays
$G_{0} H_{0}=$ gill rakers
$V_{.}=$Tertebrae

	CHARACTER	PORT ARTHUR (E)	PITTWATER (E)	PCRT WEISHPOOL (W)	ST. EmTENS (E)	STANLEX (W)
Pt. Sorell (m)	$\begin{aligned} & D_{0} \\ & A_{0} \\ & G . R_{0} \\ & V_{0} \end{aligned}$	$\begin{aligned} & 10.920 \\ & 10.950(\mathrm{~s}) \\ & 25.800 \\ & 9.361 \end{aligned}$	$\begin{aligned} & 13.580 \\ & 14.180(\mathrm{~s}) \\ & 8.630 \\ & 9.365 \end{aligned}$	$\begin{aligned} & 0.401 \\ & 0.609 \text { (N.S.) } \\ & 2.160 \\ & 0.272 \end{aligned}$	$\begin{aligned} & 12.640 \\ & 13.480(\mathrm{~s}) \\ & 10.110 \\ & 8.360 \end{aligned}$	$\begin{aligned} & 0.306 \\ & 0.651 \quad\left(\mathrm{~N} . \mathrm{S}_{\mathrm{o}}\right) \\ & 0.000 \\ & 0.630 \end{aligned}$
Stanley (W)		$\begin{aligned} & 6.081 \\ & 6.422(s) \\ & 8.407 \\ & 5.845 \end{aligned}$	$\begin{aligned} & 7.386 \\ & 7.598(\mathrm{~s}) \\ & 4.230 \\ & 5.793 \end{aligned}$	$\begin{aligned} & 0.536 \\ & 0.649\left(\mathrm{~N}_{4} \mathrm{~S}_{\mathrm{S}}\right) \\ & 1.294 \\ & 0.329 \end{aligned}$	$\begin{aligned} & 4.645 \\ & 7.478(\mathrm{~s}) \\ & 5.060 \\ & 6.250 \end{aligned}$	
St. Helens (S)	$\begin{gathered} \text { D. } \\ \text { A. } \\ \text { G.R. } \\ \text { V. } \end{gathered}$	$\begin{aligned} & 1.858 \\ & 1.980\left(\mathrm{~N} . S_{\mathrm{s}}\right) \\ & 6.144 \\ & 0.832 \end{aligned}$	$\begin{aligned} & 0.387 \\ & 0.056\left(\mathrm{~N}_{\mathrm{o}}\right) \\ & 1.650 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 8.510 \\ & 5.890(\mathrm{~s}) \\ & 5.357 \\ & 6.738 \end{aligned}$		
Pt. Welshpool (W)	$\begin{gathered} D_{0} \\ A_{0} \\ G . R_{0} \\ V_{0} \end{gathered}$	$\begin{gathered} 7.278 \\ 8.330(S) \\ 10.250 \\ 8.3440 \end{gathered}$	$\begin{aligned} & 8.750 \\ & 10.360(S) \\ & 4.160 \\ & 6.290 \end{aligned}$			
Pitwwater (E)	$\begin{gathered} D_{*} \\ A_{0} \\ G_{0} R_{*} \\ V_{0} \end{gathered}$	$\begin{aligned} & 2.300 \\ & 2.630\left(\mathrm{~N} . \mathrm{S}_{.}\right) \\ & 7.940 \\ & 0.199 \end{aligned}$				

Where gemples from within one popilation have been compared with those from the other it will be noticed that for all chasecters examined the a/signad relathonship in strongly signticat with winues lying berween 4 - 160 and 25, 800. On the other hand where samples have been compered with others belongisg to the same populathong rot gignixicant Faluon result for all chamectere with the exeeption that conqexizons involving Poxt Axthur goproach the level of aigntideance with regard to fincays. Fox gill-rakera the reeut th are strongly eignificante Howevers this does noty justify tho gusplaion that a thixd population may be present becense the diffexenee in the means of the fincyy approach gigniscance with reapect to Poxt Artmu and Pittwher only and in any ase it is slight compared with the dxferemees betwen the means of the two populations, Somg factore contributing to quantitative differences in mexistic chanactexs of rishes and the possibility of then operative effect on greenback floundera wil be discusaed latex when the aubject of population bowdaries and the eastwest separathon of the two groups wil be considered.

It in therepore clear that plounders from the alx localitien may bo divided into two well defined groupes and in oxder to calculate the parameters of each group the data from Pittwater, Port Arthux, and St. Helens were combined and likewise those for Port Soreld, Stanely, axd Port Welshpool. The remulting frequency distrinutions are shom in Figure 31 and relevant statistice in Table 19. The separation is most marked in the case of the fincays

Fige 31 Frequency distribution curves of four mexistic characters of floundars from the eastern and western subspecies. The data from Port Arthur, Pittwater, and St. Helens, is sumed in the eastern curve and that from Port Welskpool, Port Sorell, and Stanley, aimilarly treatod in the western curve. Statistics are given in Table 19, and the results of the tests of significence in Table 20.

STATISTICS OF THE SUMRD MURISTIC DATA FROW SMPIRS WITHIN RAOR SUBSEROIFTC AREA

and to a lesser degree for gill-rakers and vertebrea, but as Pable 20 indicates the differences are ajl highly significant with $4 /$ signad vaxying from approximately 13 to 17.

In addition to the six samples mentioned dorsal and anal ray oounts were available from a smaple of 25 specimens fron Macquarie Haxbour on the west coest of Tosmania. As data on gillowakers and vertebrae wrex not trken from these specimons the results were not incorporeted in the calculations in which each semple was compared mith all others in tum but wes simply tested against the parameters for the two populations There is no doubt that Macquarie Harbow flounders belong to the Weatern population as is clear from lable 21. The d/signad Walues 1.176 and 1.007 for dorsal and anal rays respectively when companed with the Westexa population indicate that the sample could have been drawn from sny of the other samples in this population. On the other hand when compared with the means of the Enstern population d/sigmad values of 5.961 and 6.082 for the same characters are significant and the chances that the gamples could have been drawn from a homogeneous population are extremely mand.
(b) Status of the Populations

Once it has been established that a specigs has within it two or more distinctly recognirgble populations their rank should be decided and if necessaxy subspecifio names allotted. The question of the constitution of suitable subspecific, recial and

TABLE 20

GUSULIS OF TESITNG THE SIGNUTICANT DTFWEREAGE OF MERTSTIC CHARAOTERS BETWESE THE TWO SUBSPECIES. ($B_{e}=$ significont)

CHARACIMR	$d /$ sigmag
Dorsals	17.510 S
Anals	19.265 S
Gill Rakers	13.920 S
Vertebrae	13.132 S

TABLE

THE COMPARTSON ON THE MEAN DORSAL AND ANAL ETN RAY COUNTS OF THE MACGUARTE HARBOUR SAMPIA WITH THE MEANS

OT THE EASTERN AND WESTERN SUBSPECTES.
($S_{2}=$ significant: Wh ${ }^{2}=$ not significant)

	BASTEREN SUB-SPECTES	wastern SUB-SPECIES
	d/d	d/6d
Macquarde Harboux:		
Dorsals	5.961 (S)	1.176 (N.S.)
Anals	6.082 (S)	1.007 (N.S.)

vaxietal critexis is controversing and is the subject of an extensive literature However, practical derinition was advanced by Ginsburg in 1938 which has much to comnend it and seems particularly applicable to the fishea wheme speciation is based on quantitative characteres such as finaya, vertebxas, etc.

Briefly Ginsbuxg's method involves the measure of the degree of intergradation of the degree of divergence of one or more apecifie chaxacters between two related populations sud using these measures in an arithotical derinition of the relationship of the populations Other things being equal a giren population is considered a race with respect to another clogely related pogulation when the average intergradation of the character showing the greadest diwergence is between 30 per cont and 40 per cent; a subspecies constitutes a population Intergrading between 15 per cent. and 25 pex cent; it is onsidered to be a full spacise when the degree of intergeadation is not more than 10 per cent Ihe measure of divergence is arrived at by subtracting the measune of intexgradation from 100 pex cents hence the divergence between races is 75 pex cento to 85 per cent. between subspecies 60 per cent. to 70 per cents and ful specien diverge to extent of 90 per cent. or more.

The measure of intergradation is equal to the area nciosed by the two ovexlapping histogrens representing the two populations conctructed on a percentage basis expressed as a percentage
of the sum of thein total areas. The dividing line that foms the basis of the detamination of the measure of intergeadation is taken as the position of intersoction of the two polygons. In Figure 31, for instance, the intersection of the dorgal-way polygons lies between 62 and 63 rays and by arranging the frequencies as percentages (Table 22) the percentage intergradation of one population with the othex can be calculated. The mean of these two percentages is the measure of intergradation. The percentage measure of tutuxgradation for all charactext investigated for Rhombosolee tapiring is given with the percentage divergence in Table 23.

The mplication of Gingburg's cxiteria to this species shows that the percentage divergence for both dorsal and anal rays are well within subspecific limita and for gill rakexs and vertobrae it closely approaches the lower limit. Whilst a docinition of the rank of two populations within a species basea on quantitative characters is perhaps the most desirable it camot be xegarded as comprehensive as the obsexved differenosa may be due to inadequate sarpling. It is well know that the onviromental factors of tomperature and adinity play an important role in the numexical detemination of meristic characters and the examination of gmal] samples from habitats within the population area with a great vaxiation in these rectors may result in the accumulation of spuxious data. Furthermore, geadual changes in envixonnent produce character.

THE PRPCEMPAGE FREQUENCY DISIRIBUTION OF DOREAL ADD ANAL RAYS GILI RAKHRS AND VETEBRAF IN FLCUNERS BELONGING TO THE EASMRN AND MESTHRN SUBSPECTES

INTERGRADATION OR THE BASTHFN AND WBSTERN SUB-SFECIES WIT RESPECT TO FCUR MERISIIC CHARACTIES

CHARACTER	\% INHPRGRADATON OR EASHERN WITE WESTERN	\% INTIERGRADATION OF WESTERN WITY EASTHRN	\% AVRRAGR INTHRGRADATION	$\stackrel{\%}{\text { DIVGRGNCS }}$
Dorsal Reys	22.7	16.5	19.6	80.4
Ansl Rays	17.2	45.1	16.2	83.8
Gill Rakers	22.2	28.3	25.3	74.7
Vertebrae	4.5	58.9	31.7	68.3

$-84=$
gradiants or clines which, as Huxley (1939) points out, when extending through the arow of one or more populations or subw species may be marked by a very gradual slope within the subspecies area but steep across the interbreeding mones. The demareation of interbreeding zones or population boundaxies and the understanding of conditions contributing to their formation and maintenance must be ascertained berore the true relationship between the populations can be fully undexstood. The importance of geographical distribution in the problem of speciation was also exphasized by Huxley (1939) in his statment ${ }^{11}$.... a subu species is a natural or real taxonomic unit in the sense that it is a gelf-weproducing group with a charactexistic geographical distribution distinguished from other slanles groups by measurable charactex diffexences wich can be deternined on any reasomably sized seriess.

However, the nunber of specimens examined and the unifomity of samples within the two popruations of Re tapirina removes wi. thout reasonable doubt the quention of smaling errox and therefore the subspecific separation of the two populations is justified in so much as it fulfils the requirements of Huxiey's (1939) statement with regard to meristic characters. The ansuing aection will show that the geogrephtical distribution of the tro populations is also in agrement with his concept of subspociation.
(c) Intrampecific Variation

Intramspecfic variation of meristic characters in fishes
was fiust recorded by Gill (1863) who found, amongst certain labroid fishes of the western coast of North Amexica, the tendency of a cold water environment to bring about the laying down of more vertebrae than occurred in fishes inhabiting werner waters. However, Cox (1903) discovered that three species of flatfishes (Pleuronectes americonus Walbawn, Iinanda ferruginea Storer and Pleuronectes glauber Gill) from northern New Brunswick on the Atlantic seaboard had reduced finury counts compared with specimens from moxe southern habitats. In his paper Cox did not assume this to be normal for the species he dealt with but drew attention to the greater range in tempexature occurring in New Brunswick waters than much forther south as a probable explanation of anonelous variation. Confirmation of this effect wes prom vided by TGning (1951) who subjected developing eggs of Salmo trutta to various temperatures and was able to demonstrate that the highest number of mays were laid dowa at internediate temperatures whilst at extremely high or low temperatures a fower number of segments resulted. Cox bad put forward the idea that the very young larval fish is plastic enough to be modiried by changes of the enviromment and TRning found that al though this is true the number of segnents were actually determined shortly before the "eyed egg" stage is reached.

A study of the variation in finrays and vertebrae of the starry flounder (platichthys stellatus) from three pointe on the western North Anexican coast from Alaska to Puget Sound was
undextaken by Townsend in 1937 who recorded differences in the means of these characters between the theee places. A further strady of the same species caxried out by orcutt (1950) was extended to Monterey Bay, California, where fish showed no significant difference from Puget Sound specinens. However, when Califormian fiish were compared with those from Alaska a value approaching significance was noted. The starry flounder belongs to the family Pleuronectidae and possesses approxinately the same number of fimrays and vextebrae as the greenback flounder. It is interesting therefore to compare the mexistic counts of the two species with respect to their latitudinal range and the coxresponding sea temperature differences during the winter months when developnent takes place. This is presented in Table 24.

Although any two somples within each sub-species could have been used in the comparison in the table, St. Helens and Port Sorell have been selected as records of seasonal variation of temperature was available for then and in this aspect the environments may be regarded as similas.

In the absence of experimental evidence on the behaviour of the developing embryo of P_{o} tapirina under extremes of temperature and salinity the suggestion that observed differences in mexistic characters are not the result of phenotypical influences camot be fully substantiated. But assuming the variation found in P. stellatus is fairly representative of

THE DITHTRETICE IN MEAN MUMBER OR DORSAL RAYS, ANAL RAYS, AND VERTBBRAE CP STARPY AND GREBNBACK FIOUNDERS SHONLNG GEOCRAPHICAL SERARATION INVOLVED

SPECISS	LOCALITTES CORPARED	LATITUDITNL SkPARATION	DTHYERENCE IN	DITHPER	IN MEA	NO. ${ }^{\text {cr }}$	$1 \mathrm{NO}_{0}$ EXAMIMED
			WIMER WEMP.	DORSAIS	AHAS	VERT.	
Starry Flounder	Puget Sound - Alaska	$4,000 \mathrm{miles}$	$4^{\circ} 0$	2.05	0.34	0.05	313
Greenbeck Flounder	St. Helens - Port Soren	30	$4^{0} 0$	3.38	2.69	0.72	223
Greenback Flounder	St. Helens - Pittwater	104	$3^{\circ} 0$	0.07	0.13	0.07	24.6

the extent which the formation of the number of segments in controlled by temperatare it appears vexy doubtiul whethex the differences between the eastem and westerm sub-species of Mo tapirina could be attributed to it alone. The disparity in mean tempexature between the most nartherly and southeriy area samples is not greater than $3^{\circ} \mathrm{C}$ and the actual monthly fluctuation over a pericd of 21 months for three representative sampling localities is revealed by Figure 25. Port Sorell and Sts Helens closely agrecd in both the extreme range and aeasonal change of water temperature during at least two wintera and presuming that the nownal spaning seasons of both populathons are comparoble ail developing embryos would be subjected to sonewhat similar conditions ixrespective of their location. The inverse correlation between tomperature and spawing has been mentioned previously and in the section on weight/ length attention has been drawn to the more abrupt termination of the spanning season at Poxt Sorell in Auguat 1955 which was two months earlier than in Pitwoter. It should be xemembered that a three months' obsexvation of gonads in a single year does not justily the conclusion that the Port Sorell spaming seasom differs from Pitwater as in the particular period when the deta were collected (July to September) the posaibility of abnommal conditions of flooding from an early thaw and its effect on spawning flounders cannot be overlooked. However, if the spawning sesson in Port Sorell is nomally concurrent with that
in Pittwater the case for sub-specific separation is strengthened and the consideration of differences in finray comthetc. belng a result of mequal temperature during development becomes secondary.

Frurther evidence contraxy to the possibility of temperatureinduced meristic variations is provided by the absence of a definite gradient from gouth to north and the vousual fact that the fish from habitate bordering Eass Stait which have a wamer* environnent possess more segments than those from the southorn portion of Tasmania for instance, where the wintors are considerably colder. If the effect of great temperature renge noted by Cox (1903) in Hiromichi Bay and Bay des Chaleurs were to be involved anongst any of the aroas wadex consideration Pittwater should ahow it because of its sonewhat greatar range of temperature. But as Table 23 indicatem although there is a greater dufexence between St. Helens and Pittwoter in distance and temperature than there 1 s between St. Helens and Port Sorell the meristic divergence is much greater between the two lattex localities. The difference between these two places which is greater than the divergence of the most widely geographically separated samples from Port Arthur and Port Welshpool draws attention to the longitudinal nature of the division between the two populations. This in tum leads to the consideration of posstible genotypical factons which may be xesponsible for the existing vaxiatione
(d) Geographics Isolation of the two Sub-species

It is now generaly accepted by competent evolutionists (Carter 955. Huxley 1940 and Mayr 1942) that inixa-gpecific variation is the product of the isolation of two ow more pax tis of monotypic species Al though four byper of isolation axe recognized, namely geographicel, ecological, biological wat genetic, the firmb of these ainost alway occurs in assoctation wht the sematning thee Huxley (1942) point out thet it is impossible for this reason to separate then into nutuelly exelusiwe categorieg se thot when any one of these four terms are empoyed to deswabe an isodetron the one used mut be the primexy igotating mechanismo

Thas in the case of the greenback cloumder fox whoh it was not possible to mutertake a stady of the ecological sud genetie fectors affecting the two pepulations it is proposed to consider geographical isolation as the primaxy isolating principle sud regard the remindng factore as consequent to it.

Reference to the chart in Fjgure 30 show the diatribution of the two zuburperieg to lie on exthor side of a line apparmately $14^{\circ} \mathrm{F}$ At present no apparent geographenl barcier exicta betwem the two axess separated by this Line which would prevent the free
 Tasmenian oosst There it oovald be cupectea that the replacement of shallow sandy beaches by a scnewhat rugged coastline with farly
deep weter olose inshore would discourage any tendency of the species to venture into these watars. This was borne out uy the obsexved dearth of the apecies in Port Davey in the southwegt comer of the island

Attention should then be turned to the northerr boundary of aech sub-specias which must lie sonkwhere between Sto Helenes and Port Sorell. Notw thstonding the absence of a presen - day physical baxcier between these two places today there is abudant evidence thet such did exist win faivly reoently in geologio tine To undergtand the implications of such a statement it is necessaxy to consider the geological aridence available on the history of Bass Strait ma its mplication to the fish population Curing the Istter part of the Cenozode exe The most compxehensive account of the geological evolution of the Austrelian conthent available appears to be that of David (1932) and this work will be used in the applicntion of geological aspects bo the following discusajom.

During the oligocene pexiod the greatar paxt or the southern portion of southern Australis was subnerged and remeined so until the late pliocene As compgratively modern forms of heteroscmata are known to have emisted in the Midale Docene of Bgypt (Woodwerd 1910) and the Miocenc of Califomis (Joxdan and Ginbert 1919) it is reasonable to suppose that an ancestral form of the genus Rhombosolea whs prewent in gouthern Australian seas during that period. In the paper referred to Jondan and Gilbext drave
attention to the similaxity of the characteristic fish fauna of Mocene Califomia and the present-ay forms found there. With the commencenent of the ELeistocene Period and its accompanying ice ages the sea level of most parts of the world including the Australian region was lowered considerably and fxom one half to one-third of Tasmania becane covered by a thick mantle of ice If, 0 David (1932) has suggested. the sen level duxing the Pleistocene was no less than 200 feet lowex than it is at present the approximate area enclosed by the 40 Iathon contour Jine in Figure 30 would have been above sea level, thus effectively separating the vatexs of westem Bass Strait from the Tasmen Sea. The 30 and 40 fathom contour Iines in the figuxe which show well the pettern of the connexion of the two land masses were obtained from depths given on the current Admixalty chart of the area.

Thus the flatifish population could have become divided by the fommtion of the sowcalled Bans Land Bridge and the differantiation of the characters of each population initiated It is conceiveble that during the period of Lsolation, which Latex will be shown to have persinted until the Late Pleistocenes the onvironments of the eastern and western sides of the Bass Bridge difered considerably for the following reasonse Firstly geological evidence shows that the pleistocene ice capping and subsequent glaciation of Tasmania was confined to from one-third to ono-half the total area of the island, mainly on the northewsstexn and westexn portion

It has been estimated that jee Prom 1,000 to 1,500 feet in thickness covered the Mecquaxie Harbour region which descended almost if not achally to ses level. With the sea leval Lowered as shown in the chart Bass Strait would have taker the shape of e large bay or gulf into which pouxed the cold glacier-fed rivers of the north coast with the result that both the temperature and salsnity of the sea would have been lowered. The western population would tharetore be subjeoted to an enviwonment greatly changed fron that which existed prior to isolation.

Secondiy, the eastern seabosard wh the land relatively free of jee and glaciation was probably under the influence of 2. Warm nox them curreat from the tropical regionse Duxtag this period the southen part of the Australisan continent itself was ioe-free aport from a culotte on the Kosciusko Plateau which dia not oome down below 5,000 feet sbove gea level, so that its influence on tho sea of the eastex ontinental cosst would have been small. It is thought that the greater part of the run-off from the Kosciusko Plateau flowed west into the Mrazay basin to be discharged into the eastern end of the Great Australian Bight. If the warm current Powed south along the east coast as it does at the present time, and the lack of ice on the east Tasmanion coast appears to suggest this, the environment of the eastem population of fishes could be expected to be merkedly different in both
temperature and salinity from that of the western population. Today the southerly limit of the Coral Sea current from October to April is thought to be affected by the flow through Bass Strait of the South-West Tasman water mass (Rochford 1957) but with the Strait closed this wamn curxent could be expected to extend much furthex south along the east cosst of Tasmania. Rochford (personal comumication) considers that a lowexing of sea level to the extent demcribed would still have permitted unintexrupted flow of tropical water from the Coral Sea.

It would be expected that the two isolated populations of the species living in these hypothetically different environments would undergo differentiation. Carter (1951) is of the opinion that differentiation of this type iss slow, even to the subspecific stage taking many thousands of years, and it will now be show that in this case an interval of not less than about 800,000 years elapsed between the time of isolation and the removal of the bamier separating the populations.

The final drowning of the Boss Bridge is thought to have been concuxrent with the end of the Pleistocene Period and the rise in sea level following the melting of the great ice caps. It was certainly after the axdival of the Ilasmaninn aborigines who possessed no seamgoing craft but berore the coming of the Australians and the dingo juaging by the complete absence of fossil evidence of the latter in Tasmania. As the antiquity of the aboxiginal in Tasmoria indicated by the presence of bones
and artelacts in glacial deposits is set between 20,000 and 100,000 years ago it may be taken that Bass Strait assuned its present form about this time.

The majority of woxkers in the evolutionary ficld agree that differentiation will always occur between populations that are sufficiently jsolated and much of it will be adaptive to conditions of the habitat, This is followed by the formation of a polytypic speches through a process of microevolution the greater part of which is caused by micromutation with regard to the significance of microevolution in problems characteristic of the present one in Re tapiring Dobmhansky (1937) points out that quantitative infraspecific differences are chaxactaristics of micrommtation. The supposed differing envinonment of the two populations referred to eaxlier in which the westexn group would have been subjected to colder tempere tures and lower salinity than the eastern group may have caused meristic character differentiation to follow the pattem obsexved in natural populations of Plati sh whexeby coldex waters of low salinity favour increased segnentation than do warmer watexs of higher salinity. If this was so and through a process of micrommtation the number of segments in the populstions become geneticelly controlled the higher mean mexistic counts of ploundexe which at present live in the mamer enviromment may be accounted fore That is that genetic differences evolved during the period of isolation persist even al though the barriex no longer exists.

Mayr (1942) suggested that once a species has become polytypic due to the action of geographical barriexs two altemate procesges may follow. (i) Greatex diferentiation follows and isolating mechanisms bring about a new species that does not interbreed with the parent species.
(ii) the ronoval of the borcier permits interbreeding and the formation of hybrids between the two populations. It is thought that (id) possibly describes the present condition of the wo flomder populetions becuse the differences found between them are not of a specific degree and nothing is lanown of the extent to mhich hybridization occurs. of course, the view that the sub-species axe still in process of differentiation and will eventually becone full species might be supported by the absence of clines and the strongly significant difference between the means of Port Sorell and St. Helens. During the investigation the author was amare of the importance of examining specinens from the bownary area around Plindexs I. to find evidence of population interchenge but was mable to meke any colleotions. This was due primaxily to manceessiful fishing which may indicate that the species, with its naturel tendency towards renaining in the estuary of birth as demonstrated by tagging retums, has not yet become fully established in the regions whexe the barriex once existed.

The bypothests thus far advanced may be briefly sumarized as follows.

Due to the lowering of the sea level during early Pleistocene
a single species of Rhombosolea became isolated into two parts by the Bass Land Bridge. The two populations thus formed romained isolated for about 300,000 years during which time there took place a differentiation of meristic characters gelected by differences in envixoment with regard to teruperature and salinity. The isolating barxier was removed by a rise in sea level about 20,000 to 100,000 years ago but due to the differentiation beconing genotypic through a process of microm evolution quantitative differences in meristic counts persist to the present days

The subspecific nane tamani is proposed for the Dastern subspecies and for the Westerm subspecies R_{0} tapirina tapirina.

The writer presents the hypothesis aware that much more light could be thrown on the problem by more extensive sampling particularly in the boundary areas as will as in the South Island of New Zealand where the species also occuxs but where it has not been posstble to make collections.
XV. SUMMARY

The distrabution and habits of the greenback Slounder (Bhombosolen tgoiring Gun ther) are recorded with refercnce to the commercial fishery in Victoria and Tasmania.

Some of the more fundamental aspects of the biology of the species are presented with particular reference to growth maturity and speciation the assessment of growth and age by otolith interpretation is compored with relevant data from length measurements and marking expeximents Age at maturity and seasonel spawning cycle is related to meesurement of ovarian ova.

The variation in the numbex of finxaya, gillmakers, and wertebree is used to separete the execnbeck flomder stocks of southern Australia into two populations for which subspecific rank is proposed.

Possible faetore contributing to the existence of the two subspecies are examined and a theory contingent on past geological history or the Bass Strait area is presented.

XVI. ACKKOMLEDCMENTS

The author wishes to acknowledge the help and advice of Professor V. V. Hickmen, Zoology Deparbment, Hnivejosity of Tasmenia, undex whose supexvision the work was caxaied out. Sincere thenks axe also due to Mr. A. M. Olsen. O.S.I.R.O. Division of Hisheries and Oceanography, who along with other members of the organizetion, assisted with the collection of specinens and data The Chier of the above Diwision is thanked for arranging for C.S.I.R.O. to cover the cost of the tagging expeximents.

Also remembexed axe the effoxts of Messus. Emest Claxks Donald Alexander and Emest Andrews who spent many a cold night fishing for greenback flounders.

The work reported was accomplished whilst the author was the recipient of a rescarch grant made available by the University of Tasmania who also provided laboratoxy spece and a launch for field wowk.
XVII. PBFERENOES

Ancona, $\mathrm{M}_{0} \mathrm{U}_{0}$ (1937).- La Croissance chea les Animaux Mediterranees. Rapp. Comm. Int. Mer M ${ }^{1}$ edit. 10: 163-224. Arora, Ho L. (1951). \rightarrow An investigation of the California sand dab. Citharichthys sordidus (Giraxd). Calif. Fish Game. 37 (1): 1-42.

Blackburn, M_{*}, and Tairbridge, W.S. (1946).m Report on the Danish-Seining trials by the M,V. "Liawenee in southern Tasmanian whters I. Coun. Sci. Industre Res. Austo 19 (4): 404-443.

Boulenger, GoA. (1902).- Ichthyology in Rep, Coll. Nat. Hist. "Southern Cross" 5: 158.

Bullough, W.S. (1939).- A study of the reproductive cyele in the ninnow in relation to the anvironment. Proc. Zool. Soc. Lond. 109: 79-102.

Carter, G.S. (1951). $=$ Animal Evolution, a study of recent views of its causes. Sidgwick and Jackson (Lond.)

Cassie, $\mathrm{R}_{\mathrm{A}} \mathrm{M}_{\mathrm{o}}$ (1956).- Condition factor of snapper, Chrysophrys nuratus Forster, in Hauraki Gulf. N.Z. J. Sci. Tech. B 38 (4): 375-388.

Castelnau, F. de (1872).- Contributions to the ichthyology of Australia. Proc. Zool. Soc. Vic. 1: 168.

Claxk, FoN. (1925), - The life history of Leuresthes tenuis an atherine fish with tide controlled spawing habits. Cslif Fish and Game Comm, Fish Bull 10: 51p.

Claxk, FoNo (1928): The weight/length relationship of the Califomia sardine (Sardina caenulea) Calif. Fish and Game Comm: Pish Bu11. 26: 20p. Clarkg H.N. (1934). Maturity of the California aaraine (Sardina cerrulee) detexmined by ova diameter measurements. Calif. Fish and Gane Comm Fish Bull. 42: 49p. Cole, F. T, and Johstone, I. (1901). M Pleuronectes. I. M. B. $\mathrm{C}_{\text {. }}$ Mem. 8: 252p.

Cox. P. (1903) $=$ Reduction in the number of \sin mays of certain
Patfishes Exoc. Miramichi Nat. Hist. Ass 3: 42-47. David, $\mathrm{T}_{\mathrm{A}} \mathrm{H}_{\mathrm{s}}$ (1932)- Explanatoxy notes to acompany a new geological map of the Commonwal th of Australiae C.SoIs. Aust. 1775.

Dobzhansky T. (1937).- Genetics and the oxigin os species. Columbia Unys. Press (New Yore).

Pabricius, E. (1950), He Heterogeneous stimulus sumation in the release of spawing activities in fich. Rep. Inst. Hreshw. Res. Drottaing, 31: 57-99.

Tranz, y. (1910). - " Die Eiproduktion der Scholle" and Zux Eiproduktion dex Scholle Nachtrage Wiss. Meeres. Untexsuch. N.S. 2: 217-224.

Fulton, T. T_{F} (1897).- On the growth and maturation of the owarian eggs of teleostean fishes. Gisho Bd. Scot. Ann. Rep. 1897. Geiser, S. 7 . (1923)- Mvidences of a diferentral death rete of the sexes arong aninals. Amer. Mid. Nat. 8 (7): 153m163.

Geiser. S. W" (1924). The differential death rate of the sexes mong animals with a suggested explanation. Wash Univ. Stud. Soi. Sex. $12(1): 73-96$.

Qill. TN $N(1863)=-$ On the labroids of the westerm coest of Morth Anerica Proc. Acad. Nat. Scio Philad. (1863): 22. Ginsbuxg, Io (1938) $=$ Arithmetical definition of the species. sub-species, and race concept with a proposal for a modified nomenclature. \quad Zoologica. $N . y^{23}$ (3): $253-2860$

Graham, D.He (1953): "Treasury of Nev Zealand Mishes. " (Reed: Wellington).

Gudgex. Rom. (1935).- Abnoxalities in Ilatrishes (Heterosomata) I. Reversal of sides. A comparative study or the known data. J. Moroh. 50. 1-39.

Guager, Bowo and Firth, W.T. (1935).- An almost totally ambim colourate halibut Hippoglossus hipgoglossus with partially rotated eye and hooked dorsal fin the only recorded specimen. Aner. Mas. Novit. 811: 7p.

Gunther, A. C. InG. (1862).- Cat. Fish. Brits Muse (Londs) \& (3): $458-460$.

Gunther, A.C.I.G. (1863).- Bibliogxaphicel notices. Arm, Mago Nat. Hist 11 (3): 117.

Hagemang H.B. (1952).- The biology of the Dover sole, Microstomus pacificus (Lockington). Catif. yish and Came Come Pish Bul1, 85: 48p.

Haast, J. (1872). Some undescribed fishea of New Zealand.
Prans. Proce Noze Tnsto 5: 277.
Haxt, Jotw, et al. (1940). Proximate analysis of British
Columbia herring in relation to segson and condition Pactor.
J. Fish. Res. Ea. Canada 4 48-490.

Hickling, Cn (1930)... The ratarel history of the Lake.
Fish. Invest. Iond. Ser 2 , $12(1): 3078$.
Hile, R. (1936). Age and growth of the oisco, Levcichthys artedt
(Le Sewx) in the lakes of the noxth-cestem highlands. Wisconsin.
Bull. U.S. Bur. Pish. 48: 211-317.

bilateral vaiation in fishes. Pep. Mich. Acad. Sci. zo:
$229-310$
Hubbs, $\mathrm{C}_{\mathrm{o}} \mathrm{L}$, and Perlmutter, A. (1942)." Biometric comparison of
several samples with particular reference to racial
investigationsa Amex Mat. 76: 582-92.
Hutton, F.We (1873)-- Hotes on sone New Zealand fiches. Anmo
Mag. Nat. Hist 4 (12): 401.
Futton, F, W. (1874). - Contributions to the ichthyology of New
Zoalond. Transe Proc. N_{A}. Inst. 6: 106.
Wutton, PW. (1876). Contrimutions to the jehthyology of Now
Zesiand Trans. Proce N. Z. Tnst. 8: 215.
Huxley, J.S. (1939).m In a "discusaion on submpecies and
vorieties." Proc. Lirm. Soc. Lond. 151 (2): 105-114

Furley, Jos. (1940).- The new syetenatica. Oxford Univ. Press.
Fuxley, J.S. (1942).-- Rvolution, the modern smthesis. (Haxperx and Brothers, publiaked NoT.). 298.

Jensen, A.s.C. (1938)... Factors determiaing the apparent and the real growtho Rapp. Cons, Rxplor. Mer. 108 (1): 109 -114. Jordan, D.Ss, and Gilbert, J.Z, (1919), Rossil fishes of southern Califorma. II. Fosstl fishes of the (Miocene) Monterey formations of southem California. Ieland Stant. Univ. Eubl. Univ. Sex. (1919).

Kowasaki, Ts, and Hetanaka, W, (1951).- Stuates on the populations of the dlatfishes in Sendai Bay. I. Limende angustirostris Kitohara. Toholu J. Aeric. Res. 2(1): 83-106.

Kesteven, G. I. (1942).- Studies in the biology of the Australian mallet. I. Account of the fishery and preliminexy statem ments of the biology of Mugil dobula Gunthex.

Keys, Ao B. (1928). W The weight/length relation in fishen, Proc. Nat. Acad. Sci. Washington. 14: 922-925.

Kyle, $H_{9} M_{0}$ (1900).- Contributions towards the natural history of the plaice (P . platessa L_{s}) Rep. Fish. Bd. Scot. $18: 189 \mathrm{~m} 24$. Macleay, W. (1882).- Descriptive catalogue of Australian fishes. Proc. Limn. Soc. N.S.W. 6: 130 m 132.

Monter, J.I. (1952).- The effects of tagging on a Pacific coast flounder Paraphrys vetulus. J. Risho Res. Bd. Canada 8 (7): $479-485$.
$-104-$

Mare, J. $\mathrm{C} .(1943$). Age length and weight studies of three species of Columbia River salmon (Onchorhynchus keta, 0 . gorbuschag and 0 . Fisutoh). Stanf. ichthyol. Bul1. $2(6): 157-197$.
 (Columbia Univ. Press, New York).
 2: 36.

MCulloch, A.R. (1929)... A check list of the fishes recorded from N. S. Tifo Mem. Aust, Mus 3: 282. Molender, A.R. (1947).- Obsexvations on the growth of the plaide and on the fomation of anual rings in its otoliths Svenska hyarogre - biol. Komut. Skr N.S. $2(8):$ 111. New Zealand Marine Departant (1928)。" Report of fisheries Tor yeax ended 31st March (Govt. Pxintex: Wellington)

Worman, J. H_{N} (1926). $=$ A report on the flatfishes (Heterosomata) collected by the F.I.S. Mendeavour" Biol. Results mindearoux" 5: 219-300.

Oroatt, H.G. (1950)." The life histoxy of the starey founder. Platichtrys stellatus (Pallas). Calife Hish and Game Comm Pish. BuII. 78: 64p.

Philips, WoJ. (1921)." Notes on the edible fishes of New Zealand. $\mathrm{N}_{\mathrm{Z}}, \mathrm{I} . \operatorname{Sci} \cdot \mathrm{Tech}_{0} 4122$.

Phillips, WoJ. (1927). Bibliography of New Zealand fishes. N.Z. Max. Dept. Fish. Pull. 1: 29.

Rapson, A.M. (1940), The reproduction, growth, and arstribution of the lemon soles (Eelotretis Plavilatus Weite) of Iasman Bay and MaxIborough Sounds M. M. Mar Dept Fish. Bull. 7: 56p.

Rochford, DoJ. (1957).m the identification and nonenctature of the surface watex masses in the Tasman Sea (Date to the end of 1954). Aust. I. Mar. Treshw Res 8 (4): 369~43.

Simpsong G. Ge, and Roe, A. (1939).- Quantitative Zoology. (MoCraw Hill, New Ioxk).

Taning, A. V. (1952) - Experinental stady of mexistic oharecters in tishes. Biol. Rev. 27: 169m193.

Tasmanta (1882).m Royal Commission on Tamanian fisheries. (Gort, Printer: Eobex).

Thomson, J,R, and Anderton, T. (1921). Notes on Rhombosolea. Bul1. N. Z. Ba. Sci. Axt. 2: 84.

Townsend, Is.D. (1937).- Geographioal variation and correlation in Pecific flounders. Copeis 1937. 2: $92-103$.

Van Oosten, J. (1929).- Some fisheries problems on the Great Lakes. Tranc. Aner, Fish. Soc. 59: 63-95.

Waite, R.R. (1906)... Notes on Australian and Tasmanian Rishes. Rec. Aust. Mus. $4(3): 197$.

Waite, ReR. (1909)." New Zealand fishes. Subantarctica Isle M.Z.Vertebrata. 25: 590.

Waite, $\mathrm{H}_{\mathrm{R}}(1911), \mathrm{m}$. Scientific results of the New Zealnd Government trawling expedition, 1907. Pisces pext 2. Rec. Canterbury (N, 2q) Mus. 1 (3): 202-209.

Weite, R.R. (1921).- Inlustrated catalogue of the fishes of South Australia. Rec. S. Austo Mus. 2: 158.

Waite, E.R. (1923).- Rishes of South Australia. (Govt. Printer: Adelaide).

Wheeler, J. $\mathrm{J}_{\mathrm{g}} \mathrm{G}_{\mathrm{g}}$ (1924).- The growth of the egg in the dab. Quart. J. Micr. Sci. 68: 644660.

Whithey, G.F. (1929).-m R.M. Johstone's menoranda re fishes of Tasmanias Pap. Proc. Roy. Soc. Tas. 1929: 44-68.

Woodward, A.S. (1910) - On a Possil sole and Possil eel from the Eocene of Egypto Biol. Mage $\mathrm{N}_{\mathrm{S}} \mathrm{S}$. g (7): 402-405.

Woodward, B.H. (1902).-. West Australian rishes. W.A. Yearbook. 1900-1: 272.

