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Abstract

This thesis explores a class of models for modelling the time between trades,
known as trade duration, in the after-hours electronic market for U.S. equity
futures. These electronic markets have grown signi�cantly over the last 10 years
but little empirical work has been done to describe them. This is particularly
so with duration modelling. High frequency trade duration data for the S&P
500 and NASDAQ-100 modelled in this thesis are collected from the GLOBEX
electronic trading platform from the Chicago Mercantile Exchange for the period
of 2004 to 2008.
This thesis �rst �ts standard linear Autoregressive Conditional Duration (ACD)

models with Exponential, Weibull and Generalized Gamma error distributional
assumptions to the period 2004 to 2006. The Generalized Gamma distribution
outperforms the alternatives but still provides unsatisfactory results in the form
of serially correlated residuals (volume is used as an additional mark in the model
speci�cations). In order to improve the models, nonlinear forms of ACDmodel are
estimated. In particular, the threshold and logarithmic forms are implemented.
Although the results improve with these more �exible forms, there remains con-
tinued evidence of nonlinearity in the results.
As a consequence, and taking into consideration the fact that the sample pe-

riod of this thesis is much longer than the 3 month samples typically examined
in the existing ACD literature, the thesis then examines the S&P 500 data for
potential structural changes. Structural breaks are detected using a range of con-
ditional Lagrange Multiplier tests associated with Andrews (1993) and Andrews
and Ploberger (1994). Fitting Weibull ACD models to the segmented sub-periods
identi�ed with the structural break tests signi�cantly improves the model esti-
mation results.
Finally, this thesis examines the evidence for structural breaks in ACDmodels

in the global �nancial crisis period using S&P 500 data from 2006 to 2008. The
most signi�cant structural change is found to occur in July, 2007, which is consis-
tent with the onset of the crisis. Many of the structural change points detected
in the data can be aligned with economic events during the crisis period, and
sub-period estimations reveal the impact of the crisis on the electronic futures
market.
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Chapter 1

Introduction

1.1 Overview and Motivation

Over the past decade or so, information technology-related developments have

facilitated the acquisition and storage of all transaction (i.e. tick by tick) data

and consequently, the availability of intraday and overnight financial databases.

These ultra-high-frequency financial data have become invaluable to the study

of the various issues related to the trading process and market microstructure,

giving birth to the so-called high-frequency models. An inherent feature of such

tick by tick data is that they are characterized by irregular spacing in time, as

the transactions that generated these data may be clustered and/or scattered

(Dacorogna et al. 2001). Short durations indicate heavy trading activity, high

liquidity and new information. Longer durations indicate lack of trading activity,

low liquidity and no new information. Newly developed market microstructure

theory argues that durations convey valuable information and hence should also

be modelled. Research work such as Goodhart and O’Hara (1997) and Madhaven

(2000) suggest that the waiting time between trades plays an important role

1



1. Introduction 2

for understanding the processing of private and public information in financial

markets. Diamond and Verrecchia (1987) and Easley and O’Hara (1992) also

argue that traders may learn from the timing of trades by providing theoretical

justifications for developing time series models of trade waiting times. Similar

to other information such as price, volume, and bid-ask spread, duration should

also be modelled.

Acknowledging the fact that the dynamic behaviour of durations contains

useful information about intraday market activities, Engle and Russell (1998)

proposed an autoregressive conditional duration model to describe the evolution

of time durations. Zhang, Russell and Tsay (2001) extended the ACD model

to account for non-linearity and structural breaks in the data. These duration

models provide platforms on which duration related market microstructure the-

ories are tested. Stylised facts of durations in high frequency financial data such

as trade clustering and duration over dispersion can also be captured. In this

thesis, a subset of linear and non-linear ACD models with and without struc-

tural breaks is applied to a large set of overnight data spanning the recent global

financial crisis.

Meanwhile the trading environment in financial markets has changed dra-

matically over the last 10 years, with increasingly more instruments transacted

electronically. Developments in electronic markets have lead to increased speed

of trading and extended trading hours and locations. In particular, after-hours

electronic markets have become increasingly popular in the past few years; both

volume of trade and the number of market participants have increased dramat-

ically. These newly developed after-hours electronic markets provide extended

trading hours and unlimited trading locations, attracting investors worldwide.
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Whilst many of the existing ACD models are based on short intervals of floor

market data, there is very little, if any, duration modelling research based on

the after-hours electronic markets. The question of how traders in after-hours

electronic markets behave remains relatively unexplored. This motivates an ap-

plication of duration modelling in this newly developed market in this thesis.

Additionally, in contrast to much of the existing literature, which considers rela-

tively short samples, the modelling is applied over a relatively longer period. This

thesis provides empirical applications of duration models based on the after-hours

electronic equity futures market for the S&P 500 and the NASDAQ-100 from July,

2004 to September, 2006 for the majority of the chapters. In the chapter 7, the

S&P 500 data from October, 2006 to December, 20081 is examined during the

global financial crisis.

As well as empirically fitting linear and logarithmic ACD models, this the-

sis contributes to the financial literature by studying structural changes based

on the trade durations in the after-hours market during a non-crisis and crisis

period. The thesis is essentially four potential papers presented as separate chap-

ters following the literature review, market description, and overview of the global

financial crisis chapters. Papers 1 and 2 presented as chapters 4 and 5 include lin-

ear and logarithmic applications of ACD models. Papers 3 and 4 study structural

change effects under ACD modelling before and during the global financial crisis

period, and are presented as chapters 6 and 7 respectively. Chapter 8 concludes.

1This 2006 to 2008 crisis period data sample is a continuation of 2004 to 2006 S&P 500 data
sample.



1. Introduction 4

1.2 Key Research Questions

1.2.1 ACDModelling and the After-hours Electronic Mar-

ket

The after-hours equity futures market studied in this thesis includes trading from

all around the globe. The floor market and the after-hours market together trade

almost 24 hours a day. Hence participants in these after-hours markets are able

to adjust their positions almost immediately according to available information

(news, events, and private information). As well as news announcement impacts

from the extended trading hours, there are also geographical effects from remote

traders worldwide. According to statistics from Global Exchange2 (GLOBEX),

20% of the volume in the electronic market was transacted outside the US during

2009. The extended scope of trading drives a competitive and liquid futures mar-

ket. Unlike the floor market, the fact that traders in the after-hours electronic

markets are anonymous may also influence some investors’ trading behaviour.

This thesis fills a gap in empirically modelling after-hours electronic futures du-

rations.

1.2.2 ACD Modelling and Error Distributions

This thesis applies linear ACD and log-ACDmodels based on Exponential, Weibull,

and Generalized Gamma distributional assumptions on the error term. While

much existing research work tends to build up an ACD model by allowing more

general distribution assumptions on the error term, less research focuses on the

2GLOBEX is an electronic futures trading platform provided by the Chicago Mercantile
Exchange.
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actual distribution forms in the real data. These distribution forms can differ

across different type of markets. In this thesis, ACD models with each of the

above three error distribution assumptions are estimated and compared.

1.2.3 ACD Modelling Under the Global Financial Crisis

Most existing ACD model literatures are based on relatively short intervals of

duration data in normally behaved market conditions. Many theoretical devel-

opments in ACD models, such as IBM data in Engle and Russell (1998) and

three NYSE securities data in Bauwens and Giot (2000), are also based on data

samples within normal market conditions. Research has also been carried out to

explore how to extend ACD models by relaxing distributional restrictions rather

than on extended samples. For example, the Stochastic Conditional Duration

(SCD) model in Bauwens and Veredas (1999) and the Stochastic Volatility Du-

ration (SVD) model in Ghysels, Gourieroux, and Jasiak (2004). However, in the

real world market conditions may be changing due to news, events, and market

uncertainties, the empirical implementations of the more flexible but complicated

ACD models may be diffi cult. How ACD models perform under volatile market

conditions, such as the recent 2007-2008 global financial crisis, still remains un-

clear. The issue of how the clustering behaviour of durations is captured in this

type of market during crisis events is addressed in chapters 6 and 7 of this thesis.

1.3 Thesis Structure

This thesis is presented in eight chapters. Following the introduction in chapter

1, chapter 2 provides a review of duration models and structural break studies.
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The review begins with issues concerning why researchers study durations. The

discussion of various forms of ACD models proceeds from linear to nonlinear

models. Linear forms of ACD models are closely related to the original duration

model of Engle and Russell (1998). Many extensions have followed from the

strong similarity between ACD models and GARCH models, such as Generalized

Gamma ACD from Lunde (2000), logarithmic ACD from Bauwens and Giot

(2000), and threshold ACD from Zhang, Russell, and Tsay (2001).

There are three major types of nonlinear ACD models discussed in the liter-

ature review, namely the regime-switching, logarithmic, and latent factor-based

classes. The developments in distributional form assumptions of the error term

are then presented. Following the introduction of different forms of ACD models,

tests to examine their performance are discussed. These tests are presented in

the order in which problems are encountered with the estimation misspecifica-

tions. Some existing applications of ACD models based on trade durations, price

durations, and volume durations are then presented.

After the review of ACD models, a brief review of the developments of struc-

tural break tests in conditional models is then presented. The focus is on break

tests based on multiple unknown locations, such as the Andrews and Ploberger

(AP) Lagrange Multiplier based tests and CUSUM type tests from Inclan and

Tiao (1992). The AP LM based tests methodology for detecting breaks are pri-

marily introduced since these tests are applied in chapters 6 and 7 of this thesis.

Following the literature review in chapter 2, a description of the after-hours

electronic futures market and an overview of the 2007-2008 global financial crisis

are given in chapter 3. The first part of chapter 3 documents developments in

electronic trading through the GLOBEX platform, including information about
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how the market operates, and the products available on this after-hours trading

system. The second part of proceeds an overview of the 2007-2008 global financial

crisis. It outlines the background, build-up, and global consequences of the crisis.

More details related to the crisis events are studied in chapter 7.

Chapter 4 marks the beginning of the empirical applications of ACD models

in this thesis. In this chapter, linear ACD models with Exponential, Weibull, and

Generalized Gamma distributional assumptions on error terms are applied. These

models are pursued to the highest lag orders which produce convergence. The

long memory pattern in the data is found through its autocorrelation function

and lags length within the model. This chapter shows that applying more general

forms of distributional assumptions and allowing higher lag orders, results in ACD

models which fit the sample data better.

The role of volume within the ACD models is then explored in chapter 4.

Using volume as an additional mark in the model exposes a significant negative

relationship between volume and expected duration. At the end of this chapter,

a threshold ACD model is applied to the S&P 500 data as a first attempt at a

nonlinear ACD model. Compared with results from the linear ACD models, the

threshold model obtains much improved estimates. This implies the necessity of

exploring nonlinear modelling for the after-hours market data set.

In chapter 5, as an attempt at a nonlinear ACD modelling, the logarithmic

ACD models are applied to the S&P 500 data. Compared with other nonlinear

forms of ACDmodels described in the model reviews of chapter 2, the logarithmic

ACD model is far less costly to estimate. Two types of log-ACD modes are

presented in the chapter based on the assumptions on the error function within

the model. Over-dispersion ratios are presented before and after the estimates.
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An improved Weibull log-ACD (2,2) model with volume as additional mark is

obtained in this chapter.

Considering the data sample studied in this thesis is very long (more than 2

years), in subsequent chapters we study possible structural changes. In chapter

6, the Andrew and Ploberger Lagrange Multiplier based tests are applied to

the sample data set in order to locate multiple unknown break points within

the sample. A Weibull ACD(1, 1) model is first fitted to the sample data, and

the obtained model derivatives are then used to perform the break tests, which

divides the data sample into a number of sub-periods. Each of the sub-periods is

then estimated using a simple Weibull ACD (1,1) model. The ACD parameters

and summary statistics for each individual sub-periods are then presented; and a

comparison of the sub-periods shows that different duration patterns are evident.

This build-up leads to a more detailed structural changes study over the financial

crisis period in chapter 7.

Following the structural breaks detection framework of chapter 6, the S&P 500

data traded on the GLOBEX after-hours market over the financial crisis period

is studied in chapter 7. The investigation of duration during the 2007-2008 global

financial crisis provides key information on the progress of the crisis. This sample

is complicated for the follow two reasons. First, in early 2007 CBOT and CME

merged, and secondly later in the same year the global financial crisis began,

making it highly possible that this volatile sample data experiences multiple

structural breaks. The most significant change point identified over the October

2006-December 2008 period is found on 24th, July 2007, a point which aligns

perfectly with anecdotal assessments of the crisis as beginning in ‘mid July 2007’.

Many of the major breaks points are aligned with economic events during the
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same period.

Weibull ACD (1,1) models are then applied to each of the sub-periods detected

to study the individual diurnal patterns. Distinctive duration behaviours are

found across different sub-periods. The relationship between economic events

and the ACD models are then tabulated, by studying ACD model parameter

changes across event dates. The changing forms of distribution for the data

as the crisis develops are also discussed in this chapter. The structural breaks

detected from ACD models in this thesis strongly indicate that durations are

valuable information which help to identify the market microstructure.

Finally chapter 8 concludes with the findings and future suggestions origi-

nating from this thesis. Results summarized from the linear and nonlinear ACD

models indicate strong nonlinear patterns in the after-hours market. The after-

hours electronic market data set examined in this thesis experienced a large num-

ber of structural breaks, and by allowing explicitly for structural breaks in the

longer and more volatile data set does improve overall estimates. The individual

market dynamics are better captured and explained by modelling duration under

different market conditions.



Chapter 2

Literature Review

2.1 Introduction

Market microstructure theory has received increased attention since the rapid

developments in high frequency data analysis in financial markets. As suggested

by papers such as Easley and O’Hara (1992) and Diamond and Verrecchia (1987),

the time between trades may reveal information and should be modelled. The

ACD model framework used in this thesis brings forward the necessity of a review

of literature on duration modelling.

Section 2.2 discusses developments in high frequency data and ACD models.

In addition to the introduction of the standard ACD model from Engle and

Russell (1998), extensions of ACD models, ACD model testing, and ACD model

applications are also presented in section 2.2. Motivated by the structural effect

studies in chapter 6 and 7 of this thesis, a review of structural break studies under

ACD framework is presented in section 2.3.

10
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2.2 Market Microstructure Theory and Dura-

tion

Recent market microstructure theory, such as in Easley and O’Hara (1992), argues

that the time between trades may reveal information and should be modelled.

Diamond and Verrecchia (1987) also provide theoretical justifications for study-

ing time series models of durations. They argue that durations are important

in leading markets to price discovery with different levels of information about

the value of traded assets. The same paper suggests that longer durations lead

to negative adjustment of asset values, suggesting that long durations are more

likely when informed traders are selling an asset, but with a short-sell constraint

limiting them from doing so. On the other hand, Easley and O’Hara (1992)

suggest the long durations imply that the value of the particular asset has not

changed, corresponding with uninformed market traders, and short durations im-

ply the existence of asymmetric information with a high level of trading activities.

The same paper also suggests that spreads will decrease when the time between

transactions increases. As the absence of trades implies that no news arrives,

and therefore the likelihood of informed trading decreases, the adverse selection

component of the spread declines.

According to Easley and O’Hara (1987), a high trading rate could include

trades broken up from large volume trades by informed traders. Market mi-

crostructure papers such as Glosten and Milgrom (1985), Hasbrouck (1988),

Goodhart and O’Hara (1997), O’Hara (1995), and Madhaven (2000) suggest that

the durations of trades, order arrivals and price changes play important roles

in understanding the processing of private and public information in the mar-
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ket. Easley et al. (1996) claim information such as the probability of informed

trading can be extracted from duration modelling. Other market microstructure

papers such as Diamond and Verrecchia (1987), Easley, Kiefer and O’Hara (1997),

and Hasbrouck (1991) also suggest waiting time between consecutive trades pro-

vides valuable information and should be modelled. In the context of irregular

spaced duration time series, traditional time series models are technically no

longer applicable, and aggregating the data into regular intervals may lead to

loss of information.

Intraday high frequency data often exhibits intraday seasonality. For example,

Engle and Russell (1998) show the inverted-U shaped daily pattern for durations,

which represents a higher level of trading activity at the start and end of a trading

day in the floor market. Dungey, Fakhrutdinova, and Goodhart (2008) also found

a complex diurnal pattern in the after-hour electronic market. These patterns

provide information on the features of the exchange and traders’behaviours. For

example a high level of overseas trading activities can be recognized from their

time zone in this diurnal pattern, since the after-hour electronic market offers

trades all over the world. The overnight information plays an important role as

traders prefer to benefit as quickly as possible from their information. It often

appears as high volume of trading before the floor markets open in the morning,

as investors take advantages of their private information. The raw duration

is assumed to be a multiplicative function of a stochastic series (the adjusted

duration) and a deterministic pattern (daily seasonality). In high frequency data

modelling, the daily pattern is often removed to ensure an unbiased estimation.

A popular method for removing the diurnality is using a spline following Engle

and Russell (1998). In later chapters, all the durations are diurnally adjusted.
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2.3 Types of Duration Models

2.3.1 Linear Form ACD Models

A distinctive feature of intraday high frequency data is that the time intervals

between each transaction are irregular. These irregularly spaced durations are

often treated as a point process, which is defined as a stochastic process that

generates a random list of points on the time axis (Bauwens and Giot, 2001). If

the duration x is a realization of the random variable X, the distribution function

of X can be written as F (X) = Pr(X ≤ x). A survival function captures the

probability that some specific event will survive beyond a specific time. A survival

function is defined mathematically as S(X) = Pr(X ≥ x) or simply 1 − F (X),

since in general F (X)+S(X) = 1. The density function is defined as f(x) = dF (x)
dx
,

or it can be rearranged to the form f(x) = −dS(x)
dx

. A hazard function is the ratio

of the density function and the survival function, h(x) = f(x)
S(x)

. In high frequency

financial data, a hazard function indicates the probability that a duration ends

given that it lasts as long as x. In order to capture the distribution of the error

term in a ACD formation, εi, the concept of a baseline hazard is introduced. A

baseline hazard is the hazard function of εi, defined by the density function of ε

over the associated survival function:

λ0(t) =
p0(t)

S0(t)
(2.1)

The conditional intensity can be then written as:

λ(t | N(t), t1, ...tN(t)) = λ0(
t− tN(t)

ψN(t)+1

)
1

ψN(t)+1

(2.2)
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Although durations have been studied since the 1950s via survival analysis,

the first to model the clustering feature of times between trades is the ACDmodel

introduced by Engle and Russell (1998). The ACD model provides a generalized

autoregressive framework for conditional durations. The intraday duration data

are treated as a collection of events and the time of the event represents the time it

occurred in a point process. Apart from the time between trades, other trading

information such as price, volume and spread can also be added as additional

marks in an ACD model, and the point process then becomes a marked point

process.

Since past dynamics affect the rate of arrivals, the ACD model falls into the

class of accelerated failure time model (AFT). The expectation of the ith duration

xi is given by:

ψi ≡ E(xi | xi−1, ..., x1) = ψi(xi−1, ..., x1; θ), (2.3)

where θ is the parameter set. In the general form of an ACD(p,q) model, the

duration xi is assumed to be the product of the expected duration and an inde-

pendent and identically distributed (i.i.d.) error term. The conditional expected

duration is assumed to follow an autoregressive conditional process such as:


Xi = ψiεi

ψi = ω0 +
∑p

j=0 γjxi−j +
∑q

j=0 ωjψi−j,

εi ∼ i.i.d. (2.4)

where ω0 is a constant, γj and ωj model parameters with
∑
γj +

∑
ωj < 1. ACD

models are often treated as counterparts of GARCH models. The duration clus-

tering captured in ACD models is similar to the volatility clustering in GARCH
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models.

ACD models may incorporate many alternative assumptions on the distribu-

tional form of the error term εi. The simplest form of ACD model is an exponen-

tial ACD (EACD) (1,1) model from Engle and Russell (1998). It shares many

similarities with the GARCH model introduced by Bollerslev (1986). Similar to

clustered volatilities, clustered trade arrivals have also been found by much recent

evidence and these clusters of trading may occur from information-based cluster-

ing or liquidity-based clustering. As in Engle and Russell (1998), Equation (2.4)

can be rewritten into an ARMA form by introducing a martingale difference,

which further suggesting strong similarity between ACD and GARCH models.

Engle and Russell (1998) also considered the assumption that the ACD model

error term follows a standard Weibull distribution where the scale parameter is

set to be one. This model is called Weibull ACD (WACD) model. In this case

the conditional hazard function is solely determined by the shape parameter. If

the shape parameter is larger (smaller) than one, there is an increasing (decreas-

ing) conditional hazard function. For exponential ACD, the conditional hazard

function is flat since the shape parameter is one. The choice of the error term

distribution makes a huge difference in ACD models and has great importance,

since the expected duration enters the conditional heteroskedasticity equation as

explanatory variables.

Drost and Werker (2004) found consistent estimates when QML estimation

is based on the standard Gamma family distribution. Since the Exponential and

Weibull distribution both belong to the Gamma family, quasi-maximum likeli-

hood (QML) estimators can be obtained for the ACD parameters by using both

Exponential and Weibull distributions. The same property also applies to the
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Generalized Gamma distribution ACD (GGACD) model from Lunde (2000). In

practice, QML might be easier to implement but less effi cient, whereas a fully

effi cient maximum likelihood (ML) estimate is often more effi cient and preferred.

Grammig and Maurer (2000) suggest QML estimates perform poorly in finite

samples and that QML with monotonic hazard rates yield unsatisfactory re-

sults even with very large sample sets. When the true data generating process

involves non-monotonic hazard functions, the QML estimators of the standard

ACD Model are less effi cient and biased. When the estimators are biased, the

predicted expected durations also tend to be biased.

Grammig and Maurer (2000) argue that the assumption of monotonic hazard

functions maintained in the standard ACD specifications is too restrictive. They

introduced the Burr-ACD model which assume a Burr distribution for the error

term. A Burr distribution can be treated as a Gamma mixture of Weibull distri-

butions; its special cases lead to Exponential, Weibull and Log-logistic distribu-

tions. The hazard functions for the Generalized Gamma and Burr distribution

are both hump-shaped as determined by their two shape parameters. As sug-

gested by Grammig and Paurer (2000), ACD models allowing for non-monotonic

hazard functions are clearly in favour compared to standard ACD models with

monotonic hazards.

Apart from the above, there have also been many other distributional form

assumptions of the error term, for example Hautsch (2002) uses a Generalized F

distribution, De Luca et al. (2004) use a mixture of two Exponential distribu-

tions based on information and agents. Both papers find their model fits intraday

data very well. Bauwens, Giot, Grammig, and Veredas (2000) suggest that the

standard ACD models fail to model observations in the tails of their distribution
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and often yield unsatisfactory performance in forecasting. All the above argu-

ments against the standard ACD model pushed the development of ACD models

forward.

Extended ACD models are based on the analogy between ACD and GARCH

models. Following the idea of the Fractionally Integrated GARCH (FIGARCH)

model from Baillie, Bollerslev, and Mikkelsen (1996), a Fractionally Integrated

ACD (FIACD) model was proposed by Jasiak (1998) to capture the well-known

long memory phenomenon in the financial high frequency data. More recently,

Dungey, Henry, and McKenzie (2008) also investigate US Treasuries using a FI-

ACD model. However, since the long-memory of the high frequency data could

also be caused by structural breaks and different regime effects, there is an out-

standing issue about the effi ciency of the FIACDmodel. Fernandes and Grammig

(2006) introduce the augmented ACD (AACD) model, following the approach

taken by Hentschel (1995), who develop a class of asymmetric GARCH models.

Empirical studies such as Dufour and Engle (2000a), Zhang, Russell, and

Tsay (2001), and Fernandes and Grammig (2001) suggest that the linear specifi-

cation of ACD model is not suffi ciently flexible to capture the adjustments in the

duration process. Nonlinearity is an important characteristic of duration data,

particularly when we want to link real economic events with the durations. The

following section describes the properties of some of the nonlinear ACD models.

2.3.2 Regime-switching Class of ACD Models

As nonlinearity has been a common issue in financial time series data, it is not

surprising that there is evidence of nonlinearity in duration processes addressed in

papers such as Dufour and Engle (2000a) and Zhang, Russell, and Tsay (2001).
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Engle and Russell (1998) found that even a 3-month period of IBM intraday

duration data experiences significant nonlinearity. Later research in Ghysels,

Gourieroux, and Jasiak (2004) found nonlinear ACD models may be more appro-

priate than linear specifications for modelling high frequency financial data. One

approach has been to divide the duration process into different regimes according

to different thresholds or filters. A k-regime TACD(1,1) model follows:


xi = ψiε

k
i

ψi = ω0 + γk1xi−1 + ωk1ψi−1,

if xi ∈ Rj (2.5)

where Rj is a matrix of threshold values for each regime. As in the general form

of ACD model in equation (6.11), the {ε(k)
i } are also assumed to be drawn from

an i.i.d. process with positive density function f (k)(·) with {ε(k)
i } set to be 1. The

error terms εi in each sub-regime are independent.

Zhang, Russell, and Tsay (2001) use a three-regime threshold ACD (TACD)

model to capture the nonlinear relation between the conditional expected dura-

tion and lagged durations. The threshold values are obtained by treating the

duration process as a self-exciting threshold autoregressive process, and using a

grid search algorithm to locate the optimum combination of the grid thresholds

that maximize the conditional likelihood. Although the grid search algorithm is

computationally demanding when the data set is large, Zhang, Russell, and Tsay

manage to locate 3 significant regimes and identify a fast trading regime as the

informed regime and a slow trading regime as uninformed trading regime.

Zhang, Russell, and Tsay (2001) identify 6 structural breaks in a 3-month

sample of IBM data and divide their data into 7 sub-periods. The break points

located can be closely aligned with real economic events and each sub-period
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divided is fitted with a separate TACD model. Their model shows different

characteristics in each different regime. By looking into the nonlinear dynamics,

they argue that the TACD model gives a better understanding of the correlated

waiting times between transactions. More literature regarding to detection of

structural breaks is shown in the next section of this literature review (Section

3).

While the threshold ACD models are able to provide improved estimates

over sub-period duration processes, their transition from one regime to another

involves a jump process and is not smooth. Literature on smooth transition

autoregressive (STAR) processes covers the transition problem. The smooth

transition ACD model can be treated as an alternative to the threshold ACD

model and they are very closely related. A transition function is assumed to

be a logistic function to make the transitions between different states. Granger,

Teräsvirta, and Anderson (1993), Teräsvirta (1994) and Teräsvirta (1998) study

the smooth transition for the conditional mean and Gonzales-Rivera (1998) and

Lundberg and Teräsvirta (2002) study for the conditional variance. Following a

similar idea, Meitz and Teräsvirta (2006) introduced the smooth transition ACD

(STACD) and the time-varying ACD (TVACD) models. The TVACD model

considers the situation where the data sets last relatively long periods. In this

case certain events and new economic environments might change the structure

of the time series process. Thus, having a fixed set of parameters over such a

period may no longer be appropriate. Solutions to this problem could lead to di-

viding the data sample into sub periods and estimating individually as in Zhang,

Russell, and Tsay (2001), however this involves heavy computational work to

locate the number and timing of the break points. The TVACD model allows
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the parameters to change smoothly over time, with a logistic transition function

and time is its transition variable.

Another type of regime-switching ACD model is the Markov switching ACD

(MSACD) model proposed by Hujer, Vuletic, and Kokot (2003). The MSACD

models make use of an unobservable stochastic process which follows a Markov

chain. The idea of MSACD model in Hujer, Vuletic, and Kokot (2003) is based

on the Expectation-Maximization (EM) algorithm in Dempster, Laird, and Ru-

bin (1977). They advocate that a Markov switching model can be based on

non-Gaussian marginal distributions. MSACD model is suggested to be a bet-

ter description of duration process than the standard ACD models in Engle and

Russell (1998). Hujer, Vuletic, and Kokot (2003) show that the MSACD is also

a better forecasting tool for time series of durations, and it yields better forecast

performance than linear ACD models. The MSACD model results for trade dura-

tions are shown to be consistent with the market microstructure model in Easley,

Kiefer, O’Hara, and Paperman (1996). The literature in the regime-switching

ACD models confirms that nonlinear ACD specifications are more powerful and

appropriate to model the financial duration process than linear specifications.

2.3.3 Nonlinear Logarithmic ACD Models

One popular nonlinear extension of the standard ACD model is a more flexible

logarithmic-ACD (log-ACD) model as proposed by Bauwens and Giot (2000).

One of the major advantages of the log-ACD model is that it avoids the negative

durations problem caused by possible negative coeffi cients. Hence the log-ACD

model requires far fewer restrictions on the model specification. The log-ACD

specification is also able to model the next conditional mean duration asymmet-
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rically with shorter and longer durations of conditional mean respectively. Two

forms of log-ACD models ( log-ACD1 and log-ACD2 ) exist, differentiated by the

form of the error term function. For log-ACD1 model, the error function assumes

g(εi−j) = lnxi−j, where the log-ACD2 model assumes the error function follows

g(εi−j) = εi−j =
xi−j

eΨi−j
. In fact, the log-ACD2 specification seems to fit high

frequency data better overall and is often preferred.

Maximum likelihood is used to estimate log-ACD models. The unconditional

moments and the autocorrelation functions of the log-ACD model are studied in

Bauwens, Galli, and Giot (2003). According to Bauwens, Giot, Grammig and

Veredas (2000), the log-ACD model implies a non-linear relation between the

duration and its lags. The same paper compares different ACDmodels via density

forecasts, and finds that the threshold models do not necessarily outperform the

log-ACD models. Log-ACD models can be also further classified according to

the error distribution forms. For example, Bauwens et al. (2008) study the

Exponential, Weibull, Gamma, Burr and Generalized Gamma forms of log-ACD

models.

2.3.4 Latent Factor-based Duration Models

Some literature treats the conditional duration as a latent variable instead of a

deterministic variable. In the GARCH literature, it is well known that compared

with GARCH frameworks, using unobserved latent variables in stochastic volatil-

ity (SV) modelling yields favourable results, and the dynamics of the financial

time series are better captured. The advantages of SV models over GARCH

models were discussed in Danielson (1994), Kim, Shephard, and Chib, (1998),

and Ghysels, Harvey, and Renault (1996).
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Based on the similarities to GARCH models, Bauwens and Veredas (1999)

introduced the Stochastic Conditional Duration (SCD) model. The SCD model

follows: 
xi = ψiεi

lnψi = ω + β lnψi−1 + ui,

|β| < 1 (2.6)

where the two error terms εi ∼ i.i.d and ui ∼ i.i.d in equation (2.6) are the two

sources of unobservables in the observed and conditional durations. The unob-

served latent variables in the SCD model can be treated as information flows

driving the duration process that cannot be observed directly. The second line

of Equation (2.6) can be treated as a stationary autoregressive process. The pa-

rameter of the lagged log conditional duration, β, is forced to be less than unity.

Compared with traditional ACD models, the latent variables in SCD models can

yield more complex shapes for the hazard functions. Also the distributional as-

sumptions for εi and ui can be different, which makes the SCD model a mixture

model. The above conditions give greater flexibility in modelling the dynamics

of the duration process and also make it possible for the SCD model to capture

the unobservable information in the market. Bauwens and Veredas (1999) also

find the SCD model yields favourable results in a comparison study with the log-

ACD model. However, the more complex assumptions make the exact likelihood

function very diffi cult to locate and time consuming to estimate. The multidi-

mensional integral requires heavy simulations which are especially extensive when

the data set is large. Bauwens and Veredas (2004) use QML methods with the

Kalman filter1, but again this has the problem of estimate effi ciency since it is

not using the true likelihood of durations.

1An alternative is the Monte Carlo Markov Chain (MCMC) technique in Strickland, Forbes,
and Martin (2006)
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Ghysels, Gourieroux, and Jasiak (2004) propose a more flexible Stochastic

Volatility Duration (SVD) model, which allows one to estimate the dynamics for

the conditional variance. Note that the traditional ACD model does not allow for

independent dynamic parameterization for the conditional mean and conditional

variance. The reason for this restriction is that the traditional ACD model as-

sumes that the higher order conditional moments are directly linked to the first

moment of conditional mean. Ghysels, Gourieroux, and Jasiak (2004) indicate

that this assumption is too restrictive, and information from variance such as

market liquidity and risk could be lost. The SVD model however, combines the

dynamics of the conditional mean and conditional variance with two time vary-

ing factors in the model. The SVD model starts from two independent Gaussian

random factors, and analyses the conditional mean and conditional variance dy-

namic patterns using a VAR representation. The initial SVD model is build

on standard exponential duration model with gamma heterogeneity from cross-

sectional and panel data literature. It assumes duration xi = U
aV
, where U follows

an exponential distribution with intensity one, V follows a gamma distribution

and is independent of U . In terms of Gaussian factors, the SVD model can be

expressed as:

xi =
H(1, F1)

aH(b, F2)
, (2.7)

where a and b are positive parameters, F1 and F2 are i.i.d. standard normal

variables, and H(b, F ) = G(b,Φ(F )) where Φ is the c.d.f. of the standard normal

distribution and G(b, ·) is a quantile function of Gamma (b, b) distribution.

Since the SVD model belongs to the family of nonlinear ACD models, its like-

lihood function is diffi cult to evaluate. In fact there have been few applied studies
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of SVD models in the literature. Ghysels, Gourieroux, and Jasiak (2004) use a

two-step procedure, which first assumes the marginal distribution of duration xi

follows a Pareto distribution depends only on a and b, and then uses simulated

moments method to obtain the autoregressive parameters. Strong dynamics in

both conditional mean and variance factors are found using Paris Stock Exchange

data in Ghysels et al. (2004). Note that Bauwens, Giot, Grammig, and Veredas

(2004) argue that the assumption of Pareto distribution in the first step of the

above procedure might not be appropriate. The forecasting performance of the

SVD is also found to be very poor compared with traditional ACD and log-ACD

models in Bauwens et al. (2004).

Another latent variable based models is the discrete mixture ACD (MACD)

model of Hujer and Vuletic (2004). Instead of treating the duration process as

linear and following a particular form of distribution, they combine the idea of

mixture models and ACD models. In common with other latent variable ACD

models, the introduction of a discrete-valued latent regime variable increases

the flexibility of the model, in order to capture the specific characteristics of

intraday duration data. The discrete mixture ACD model proposed by Hujer and

Vuletic (2004) can also be viewed as a compromise of the two extreme models

of Markov switching ACD in Hujer, Vuletic,and Kokot (2003) and the discrete

mixture exponential ACD model in De Luca and Gallo (2004).

Overall, the ACD literature is moving forwards in favour of the nonlinear

models. The more comprehensive models give greater flexibility and better un-

derstanding of the market information. However, the problem of evaluating the

more complicated likelihood function is yet to be solved. Further research on

ACD models is still needed.
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2.4 ACD model Testing

Not only the optimal specification of ACD models is far from finalized, but also

there are issues about how to examine their adequacy. To date most of the

papers in the ACD literature only use simple examinations of the standardized

residuals. However, within the limited papers on this issue, there are some helpful

procedures proposed for examination of an ACD model. A few approaches are

briefly reviewed in the following paragraphs.

The most obvious approach to examine the goodness of fit of an ACD model

is to check the dynamical and distributional properties of the standard residuals

from the model. If the ACDmodel is correctly specified, the residual series should

be i.i.d. The standardized residuals follow:

ˆ
εi = xi/

ˆ

ψ, i = 1, ..., n.

Checking the Ljung-Box Q-statistics is a common approach which has been

adopted by many papers following Engle and Russell (1998). Some use Box-

Pierce statistics to check whether the temporal dependence has been captured by

the underlying ACD model. Graphically, Quantile Quantile-plots are also used

to check the standardized residuals, as presented in Bauwens and Veredas (2004)

and De Luca and Gallo (2004). Other papers including Li and Mak (1994) and

Bauwens and Giot (2000) suggest this approach of checking the serial correlations

in the residuals is very questionable.

Other approaches have also been proposed apart from examining the residu-

als. Under an ACD model, many things can go wrong and cause misspecifica-

tions. Some common sources are: an incorrect functional form of the conditional



2. Literature Review 26

mean; an inappropriate distributional form for the error term; failure to account

for nonlinearity; possible higher-order ACD models; inappropriate use of QML

estimation, and inconstancy of the model parameters.

One approach to test the functional form is to fit an ACD specification into

a more general form and use the Lagrange Multiplier (LM) test. The LM test

is useful to test model misspecifications. Meitz and Teräsvirta (2006) develop a

powerful LM type test which can be used to test against higher order models,

linearity, and parameter constancy types of misspecification in the conditional

mean functional form.

Other tests have been developed to test the misspecification of an inappropri-

ate distributional form of the error term. For example Fernandes and Grammig

(2005) propose the D-test to consider the distance between the parametric den-

sity function and nonparametric estimate, and the H-test to map the hazard rate.

Diebold, Gunther, and Tay (1998) introduce a test framework which evaluates

the density forecasts of the ACD model. If the density forecast is correct, the

probability integral2 transforms of the density forecast should be i.i.d uniform

under the null hypothesis. A rejection of the null hypothesis indicates a mis-

specification of the goodness of fit but the test does not show the cause of the

rejection. This test is also used in Bauwens, Giot, Grammig, and Veredas (2004).

Engle and Russell (1998) divide their duration data into a number of bins from

0 ∼ ∞ and regress the estimated residuals against its previous duration. If the

estimated residuals are truly i.i.d., the regression coeffi cient of determination

should be zero. This approach is designed to detect nonlinear dependencies of

2The probability integral transform follows: qi =
∫ xi
−∞ f(s)ds. see Gunther et al (1998) for

more details.
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ACD models, and is also adopted by Zhang, Russell, and Tsay (2001).

Overall, more tests to examine the adequacy of the ACD models are yet to

be developed. Considering various sources of model misspecification, to fully

test a model requires several of the above individual tests, which each involves

a significant amount of empirical work. The LM test in Meitz and Teräsvirta

(2006) examines some misspecifications but a more general form of test is still

missing to fully evaluate ACD models effi ciently.

2.5 ACD Model Applications

Over the last decades, ACD models have been primarily used to evaluate trade

durations and price durations. Few have considered volume durations and other

economic events. In the following subsections, review of these different types of

ACD model applications are presented.

2.5.1 Trade Duration Applications

Trade duration is simply defined as the time difference between two consecutive

trades. It is the type of duration that has been mostly applied in the literature.

The main features of trade duration found in most papers are that trade duration

is often clustered and experiences over-dispersion. The clustering phenomenon

of the trade duration, where long (short) durations are likely to be followed by

long (short) durations, is often related to information arrivals in the market. The

autocorrelation functions (ACF) of the trade duration in most papers suggest slow

decreasing persistence. Some papers such as Jasiak (1998), Engle and Russell

(1998), and Bauwens et al. (2004) show long memories behaviours for the trade
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durations. The sum of ACD coeffi cients is very close to unity. Another feature of

the trade duration is that it is often found to be over-dispersed (with its standard

deviation is larger than its mean). A dispersion ratio is used in Bauwens et al.

(2008) and finds evidence of over-dispersion in 5 selected stocks data from New

York Stock Exchange. A dispersion ratio is defined as standard deviation/mean

of a time series. An over-dispersion means a distribution with a higher than

expected variance. It basically implies that there is more variability around the

model’s fitted values. Dispersion problem is more often cited in the literature for

generalized linear models3. The over dispersion test is also used in ACD models

as one of model diagnostics, for example in Engle and Russell (1998). Many

of the findings in trade duration applications such as Engle and Russell (1998),

Zhang, et al. (2001), and Fernandes and Grammig (2006) suggest diffi culties in

fully removing serial correlations in the residuals.

A major issue dealing with trade duration is how to treat zero durations.

As markets become more liquid, many transactions take place at the same time

(down to per second accuracy). Most papers follow the approach in Engle and

Russell (1998), which simply aggregates the simultaneous transactions into one.

All other transactions are deleted and volume occurred at the same time are

aggregated. Many researchers argue that by deleting the intervening transactions

information can be lost. Zhang, et al. (2001) investigate the effects of multiple

simultaneous transactions and show that it is not the number of transactions at

the time that matters, it is the occurrence of zero durations. However, Veredas,

Rodriguez-Poo, and Espasa (2001) argue that the occurrence of zero durations

may be caused by traders posting limit orders to be executed at the same price.

3For more information, see Dean (1998) and Cox (1983).
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The same authors argue that by deleting the simultaneous trades the dynamics

of the trade duration may be changed. Bauwens (2006) find higher Ljung-Box

statistics and residual correlation when zero durations are removed. This is an

interesting issue and not many studies have been conducted on this matter. It is

especially more complicated for the after-hours electronic markets, where trades

follow price-time priority rules. In such cases zero durations could be raised

from many factors, including input/process delay and the electronic platform’s

matching logic.

2.5.2 Price Duration Applications

Price duration is defined as the time taken for a fixed change in an asset’s price.

Engle and Russell (1998) show that the conditional hazard function of price

duration is closely linked to the instantaneous volatility of price. The diurnal

pattern for price duration can be treated as intraday volatility diurnal pattern

following the inverse relationship between price duration and volatility. Papers

such as Bauwens et al. (2004) and Fernandes and Grammig (2006) find it is

relatively easy to fit an ACD model on price durations, and to remove serial

correlations in the model residuals. Bauwens et al. (2004) also found that for

price durations, more complicated nonlinear ACD models such as Threshold-

ACD and stochastic volatility duration models do not necessarily outperform the

standard ACD and log-ACD models.

Most of the market microstructure theory on price durations relate to volatil-

ity and risk. Compared with trade durations, price durations are far less studied.

Some applications include Engle and Lange (2001), Prigent, Renault, and Scaillet

(2001), Gerhard and Hautsch (2002), and De Luca and Gallo (2004).
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2.5.3 Volume Duration Applications

Volume duration on the other hand is defined as the time consumed to achieve

a given level of aggregated volume for an asset on the market. It was introduced

by Gourieroux, Jasiak, and Le Fol (1999). Since volume duration is a measure

of volume changes it is also helpful to measure liquidity. Only a handful of

ACD applications have been conducted on volume durations, including Bauwens

et al. (2004), Bauwens and Veredas (2004) and Fernandes and Grammig (2006).

Bauwens et al. (2004) suggest log-ACD models with a flexible error distributional

form (such as Burr and Generalized Gamma) perform very well on price and

volume durations, but the EACD and SVD perform badly.

2.5.4 Other Types of Duration Applications

Apart from stock market transaction durations, duration modelling have been

applied in wide areas in economic activities. For example, Fischer and Zurlin-

den (2004) study the duration between central banks interventions on foreign

exchange market; Focardi and Fabozzi (2005) apply duration modelling in credit

risk analysis by treating defaults in credit portfolio as a point process; Rossi, Noè,

and Sianesi (2008) use ACD models to capture the continuous process dynamics

on discrete manufacturing sub-systems in the fibre-glass industry.

2.6 ACD Models and Structural Breaks

The purpose of presenting an overview of the structural break literature is that

two of the chapters in this thesis involve modelling ACD models with structural

breaks. The above ACD model literature also indicates that the nonlinear ACD
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models are mostly preferred over the linear ACD models. Some popular tests

for nonlinearity are the F-test by Tsay (1986), augmented F-test from Luukko-

nen, Saikkonen and Teräsvirta (1988), threshold test by Tsay (1989) and general

nonlinearity test by Tsay (1991). There have been tremendous developments in

structural break research since the 1990s, especially in detecting unknown loca-

tion structural breaks with nuisance parameters under the alternative hypothesis.

It is interesting to review recent development in this area and link them with the

work in the ACD models.

It is well established that ignoring structural breaks in financial time series

can lead to false integrated models and yield long memory in the autocorrelation

function (Andreou and Ghysels, 2008). Mikosch and Starica (2004) illustrate

empirically that if one ignores changes in the mean or variance, the sample ACF

can yield false long-range effects. Early empirical papers present the consequences

of unaccounted structural breaks and regime switches in financial time series,

such as Diebold (1986) and Lamoureux and Lastrapes (1990). Hillbrand (2005)

presents a theoretical explanation for this false long memory effect caused by

ignoring the structural changes.

Many of the conditional model structural break tests are based on GARCH

models. For example, Kulperger and Yu (2005) use the partial sums of residuals

from GARCH models to obtain the properties of structural break tests. Their

residual-based CUSUM test shares the condition of fourth order stationarity with

Giraitis, Kokoszka, and Leipus (2000) and Horvath et al. (2001). Chen et al.

(2005) also use a CUSUM-based residual test based on nonparametric estimation.

Andreou and Werker(2005) provide the asymptotic distribution of the CUSUM

test based on the rank of GARCH residuals for detecting structural breaks, this
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statistic converges to a Brownian Bridge distribution and does not involve nui-

sance parameters. Chu (1995) and Lundberg and Teräsvirta (2002) detect struc-

tural breaks in GARCH models using the Lagrange Multiplier tests. Berkes et

al. (2004) test the stability of GARCH parameters using a likelihood-ratio (LR)

based test. This test is based on quasi-likelihood scores and is able to determine

specific parameter’s structural changes in a GARCH model. Compared with AR

processes, GARCH models are more sensitive to change points in the underlying

time series process. The ACD models share this property based on the strong

similarity between ACD and GARCH models.

Early literature, such as Chernoff and Zacks (1964), Gardner (1969), Far-

ley and Hinich (1970), James, James, and Siegmund (1987), Kim and Siegmund

(1989), and Jandhyala and MacNeil (1991) discuss structural break tests based on

a known change point. However, the change point is quite often unknown in mod-

ern financial time series, especially in the newly available intraday high frequency

financial time series. Bai and Perron (1998) test multiple structural breaks at

the same time, which is different from the single break at one time approach

in the other papers. However, their test requires the exact number of breaks

to be known within the period, and cannot be performed on conditional mod-

els. In the case of an unknown number of break points with unknown locations

in conditional models, these traditional optimal tests are no longer applicable.

The problem of testing multiple unknown break points is to jointly estimate the

length between breaks and their locations, meanwhile providing the parameters

and orders of the time series within each sub-period. When the change point

is unknown, the nuisance parameter is not identified under the null hypothesis

and the test statistics are not in a standard distributional form. When the time
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series follow a stochastic volatility process, additional diffi culties arise in opti-

mization and lead to very heavy computation. Some other empirical studies on

testing multiple unknown break points include Davis et al. (2005), Lavielle and

Moulines (2000), Hall and Sen (1999), and Lavielle (1999).

Recently developed work around is based on the method of binary and se-

quential sample segmentation. Two of the most popular structural break tests in

the recent literature are the CUSUM4 break test of Inclan and Tiao (1992), and

the Lagrange Multiplier (LM) based structural break tests of Andrews (1993) and

Andrews and Ploberger (1994). The CUSUM tests were initially proposed for the

variance of i.i.d. processes and are widely applied to the residuals in GARCH

models to test the structural breaks. The CUSUM test of Inclan and Tiao (1992)

follows:

IT =
√
T/2max

[(
k∑
j=1

Xj/
T∑
j=1

Xj

)
− k/T

]
,

k

(2.8)

where 0 < k < T, Xt = r2
t . The process {rt} is a return process which follows an

ARCH (∞) process, with rt = ut
√
σt. The algorithm for detecting the variance

changes is to use an iterated cumulative sums of squares. The CUSUM test is able

to detect multiple breaks. However, as suggested in Smith (2008), the CUSUM

test tends to reject too frequently based on the raw returns or data with fat tails,

and is only able to detect breaks in the unconditional level of volatility. The

CUSUM-type test has been extended in recent literature and applied to strong

mixing processes (Kokoszka and Leipus, 2000).

Another popular type of structural break test for unknown location change

points is the LM based tests developed by Andrews (1993) and Andrews and

4This test uses the iterated cumulative sums of squares algorithm to detect multiple struc-
tural changes.
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Ploberger (1994). Zhang et al. (2001) apply the Andrews and Ploberger (1994)

approach and divide their sample data into a number of sub-periods and hence

reduce a significant level of nonlinearity effects. Three common tests of the

LM based structural break tests are the Supreme (Sup-LM), Exponential and

Weighted Average (Exp-LM and Ave-LM) tests.

The LM-based tests developed by Andrews and Ploberger are designed for

testing multiple unknown breaks. Andrews (1993) solve the nuisance parameter

problem by developing the sup-LM test and tabulated critical values of the test

statistics. Andrews and Ploberger (1994, 1996) further extend the methods into

more general conditional models. However, the LM based structural break tests

failed to detect change points around the boundary of the sample data. According

to Andrews (1993), the LM-based tests yield poor results if the break is too close

to the boundary (they propose the initial 15% and the final 15% of the data).

Andrews and Ploberger (1994) and Hansen (1996) ignore the boundary portion

of data for testing structural breaks. The LM-based tests follow binary and

sequential sample segmentation classes of structural break test, which is similar

to the CUSUM test. The multiple change points detection applied is treated as

an extension of the single change point problem. The whole sample data is first

tested for the most significant structural break. If a change point is detected, the

data sample is segmented into two sub-samples and retested following the same

process. This process is continued until no further change points are detected.

The Ave-LM follows

lim
c→0

2(Exp-LMTC − 1)/c =

∫
LMT (π)dJ(π), (2.9)
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where π ∈ (0, 1) is the percentage location of the sample data within the change

point, and c>0 is a scalar constant that depends on a weight function. If c is

small, less weight is given to the alternatives for a large structural break. When

c → 0, the alternative hypothesis is very close to the null. In other words, the

Ave-LM statistic is designed for alternatives which are very close to the null

hypothesis by taking the limit of the Exponential LM statistics. There is also

another extreme case, when c→∞, in which case the Exponential LM statistics

becomes an Average Exponential form:

lim
c→∞

log((1 + c)p/2Exp-LMTC) = log

∫
exp(

1

2
LMT (π))dJ(π), (2.10)

which is designed for testing against a more distant alternatives. When the

constant c
1+c

is replaced by another constant r > 0, the limit as r → ∞ of the

Exp-LM statistic becomes the “Sup-LM”statistic. The Sup-LM statistics can

be written as:

lim
c→∞

(logExp-LM r
T )/r = sup

π∈Π∗
LMT (π). (2.11)

The Sup-LM test is inspired by Davies (1987). Andrews and Ploberger (1994)

developed the Exponential Lagrange Multiplier statistic (Exp-LM) andWeighted

Averages of LM tests (Ave-LM) to improve the power of the LM-based structural

break tests. The models to which the test can be applied have also been extended

from linear regression model to more general forms of models. The asymptotic

uniform distribution p-values of LM based structural break tests are tabulated in

Hansen (1996). Hansen (1997) investigates the restriction problems with models

which contain unidentified parameters extending the work of Andrews (1993) and

Andrews and Ploberger (1994). Hansen (1998) extends the LM-based structural
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changes tests into conditional models.

Monte Carlo experiments in Smith (2008) find that the traditional diagnostic

tests such as robust LM tests for autocorrelation in Wooldridge (1990) failed to

detect structural breaks in GARCH related models. According to Smith (2008),

the LM-based tests in Andrews (1993) and Andrews and Ploberger (1994) are

found to have more accurate size and better power to detect a range of breaks in

the dynamics of conditional volatility.

Some other forms of structural break tests have also been developed; for ex-

ample the Generalized fluctuation test framework developed by Kuan and Hornik

(1995) and Leisch et al. (2000). Seigmund (1970), and Davis et al. (2005) present

a method of testing structural breaks in a stochastic volatility process based on

minimum description length criterion. There is also recent evidence which sug-

gests that stock market volatility is better measured with short-memory processes

with level shifts. Granger and Hyung (2004) show that long memory parame-

ters with regimes are significantly reduced by allowing structural breaks in the

process. Beltratti and Morana (2006) apply structural breaks to exchange rate

returns and yields very good forecast results. Structural break tests are also ap-

plied in the tails of distribution of time series, such as Quintos et al. (2001) and

Mickosch and Starica (2000). The structure of the financial returns’distribution

function can also be tested for structural change. Some of the non-parametric

change point tests for distribution function changes can be found in Inoue (2001)

and Lavielle (1999). Sowell (1996) also extend the tests for parameter instability

to the GMM framework.
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2.7 Summary

In this chapter, a review of duration modelling is presented. The review started

with the necessity of studying durations and their close relation with market

microstructure theory. The original ACD model from Engle and Russell (1998)

and some of its extensions are also reviewed. Types of tests for testing the ACD

models and types of durations have been applied are then discussed. In addition,

literature based on structural break study is also presented.

In the following chapter, we introduce the after-hours electronic futures mar-

ket and its backgrounds and developments. The background, build up, and con-

sequences of the global financial crisis are also introduced.



Chapter 3

The After-Hours Electronic

Market and the Global Financial

Crisis

3.1 Introduction

As the duration modelling in this thesis is based on the after-hours electronic

market, section 3.2 provides an introduction on developments, brief history, and

operations of this market. Since most electronic futures contracts are transacted

through GLOBEX, this electronic platform is also introduced. An overview of

the 2007-2008 global financial crisis is included in section 3.3, as in the final part

of the thesis the sample period extends to include these years.

38
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3.2 The After-hours Electronic Market

3.2.1 Overview

Over the last decade, an increasing volume of trading activity has moved towards

electronic exchanges and trading hours have extended beyond standard business

hours. Consequently the volume in these electronic markets has grown tremen-

dously, and currently the electronic markets are in a dominant position in the

trading institutions. For example, the statistics from the Chicago Mercantile Ex-

change (CME) group shows that during 2008, about 80% of the volume traded

was transacted electronically. With the development of improved technology,

electronic trading attracts increasingly more participants and plays an important

role in the current trading era. Interestingly there have only been few empiri-

cal studies on this after-hours electronic market. This overview of this market

contributes in building up the duration modelling of this thesis. The overview

begins with the developments in electronic market in the following section.

3.2.2 Developments in Electronic Markets

In a floor (open outcry) market, physical locations and human interventions are

needed to gather buyers and sellers to negotiate for transactions. With devel-

opments in computer technology, the need for physical location becomes less

important. According to Levecq and Weber (2002), following NASDAQ, the first

electronic stock market set up in 1970s, more exchanges have sought to expand

their trading services through electronic trading. Electronic trading can be more

convenient and can be accessed in remote locations and over extended trading

hours.
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Nowadays the electronic trading offers more convenient trading and easier

access than the floor market. Most of these electronic markets make the limit

order book visible to investors and apply a standard price/time priority struc-

ture to ensure the flow of transactions. When new bids (offers) are submitted

to market, they are assigned priority from the highest (lowest) price in the limit

order book. Orders with equal prices are then processed according to the time

of entry. In electronic markets, investors must enter their orders into the sys-

tem and any modification or cancellation requires another transaction. Levecq

and Weber (2002) argue that the physical entry and the response time from the

platform for a modification or cancellation can create a delay. This delay be-

tween the traders’intentions and intentions listed on the market exposes traders

to risk in receiving unwanted executions or missing a trade. For this reason and

many others, the floor based market still owns a certain portion of participants.

Currently electronic contracts trade simultaneously with the floor, after-hours

electronic trading.

Some of fully automated electronic markets include the German Deutsche Ter-

minborse (DTB), the Swiss Options and Financial Futures Exchange (SOFFEX),

the Irish Futures and Options Exchange (IFOX) and the New Zealand Futures

and Options Exchanges (NZX). The most popular electronic trading is the CME

Group’s Global Exchange platform, GLOBEX, which covers financial, foreign ex-

change, equity, commodity and many more markets. Details on GLOBEX are

presented in the next subsection. A number of other electronic markets now also

offer after-hours trading systems, such as American Computerized Commodity

Exchange System and Services (ACCESS) from the New York Mercantile Ex-

change; Sydney Computerised Overnight Market (SYCOM) in Australia; the
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French Marché à Terme International de France (MATIF), and the Automated

Pit Trading market (APT) from the London International Financial Futures Ex-

change.

3.2.3 GLOBEX

The GLOBEX electronic trading platform has become the world’s largest elec-

tronic futures exchange, offering the broadest varieties of derivative products

around the clock and around the globe. The GLOBEX platform is investigated

in detail in the following subsections.

History

According to the CME group web site1, the GLOBEX platform was originally

proposed by Chicago Board of Trade (COBT) for the purpose of allowing evening

floor trading in the late 1980s. They soon found the demand for trading from non-

U.S. trading hours overwhelming. In 1987 the CME Group passed the proposal

and the first global electronic platform for futures contracts was launched in 1992.

The percentage of GLOBEX electronic trade volume was only 1% of the whole

market in the year 1996 and just under 10% before 2000. The CME group also

expanded the varieties of trading products offered.

An important milestone “open access”policy was implement in 2000. Since

then the interest in the electronic markets has grown steadily. Customers are able

to trade directly, with a financial guarantee from their brokers on GLOBEX, with-

out the obligation to route orders through a broker via telephone This policy lead

1Relevant websites include: http://www.cmegroup.com/globex/developin
g-to-cme-globex and http://www.cmegroup.com/globex/resources/history-of-globex.html.
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to a huge increase in the volume traded on the electronic market. More traders

switched over from the pit market. In 2002, the average daily volume transacted

electronically in GLOBEX exceeded 1,000,000 contracts. The GLOBEX volume

exceeded pit market volume in 2004 and after that the GLOBEX began to take

over market in term of total volume traded. Later in the same year a record

1 billionth transaction took place. By the end of 2004 the GLOBEX exchange

accounted for 58% of all trading volume within all the trading markets in the

CME group.

In 2007, CBOT was merged with the CME group, and in that year GLOBEX

volume exceeded 1 billion contracts with the additional volumes acquired from

CBOT. In August 2008, the CME group’s market position was further improved

through the acquisition of the New York Mercantile Exchange (NYMEX) (and its

sub-division COMEX2). Consequently the CME group now includes the CME,

CBOT, NYMEX, and COMEX, and has become the largest futures and options

exchanges in the world, offering the widest range of global benchmark products

across all major asset classes. The CME group electronic markets are also one

of the most liquid in the world. From the latest information available3, up to

2008, the volume traded in GLOBEX reached a historical record of 82% of the

market. The CME continues to introduce new contracts such as the E-micro

Foreign Exchange Contracts4 and the new ASCI products5.

The GLOBEX volume percentage of the market was reduced in 2009-2010

due to the global financial crisis, but still finished up with 80% of the market

2The statistics are collected from CME group Annual Reports from 2002 to 2009.
3From 2009 GME group Annual Report.
4These contracts are 1/10th the size of the corresponding forex futures contracts, making

trading more accessible to a wider range of investors.
5Argus Sour Crude Index (ASCI), it reflects the value of sour crude oil traded and delivered

in the U.S. Gulf Coast market.
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transaction volumes. The open pit market still holds around 20% of the market

volume. As argued by Coppejans and Domowitz (1999), floor markets have a

unique traditional way of trading and will continue to coexist with the electronic

market due to the structures of fee and charges, margins, and other factors. In

2008, there were more than 1,100 direct connections to GLOBEX in more than

86 countries and foreign territories6. There are also telecommunication hubs in

Singapore, London, Amsterdam, Dublin, Milan and Paris to ensure faster and

more effi cient trading with lower connectivity costs.

Operation Cycle and Clearing

The GLOBEX order routing interface is supported by iLink, which is connected

based on the FIX 4X protocol. It allows traders to access the electronic markets

whenever they are open and supports customized trading systems to enter, modify

and cancel orders and receive order confirmations. Anyone who has an account

with a Futures Commission Merchant (FCM) or an Introducing Broker (IB) who

has a CME Clearing Guarantee, can trade on the platform. Customers from all

over the world are able to participate trading through GLOBEX platform, enter

orders and view book of orders and prices of CME group products directly. One

restriction of this platform is that it only offers limit orders7.

Generally there are five entry states through the GLOBEX futures market

daily trading cycle, namely the enabled state and no-cancel state in the pre-

opening period, continuous trading state, surveillance intervention state, and

system maintenance state. The CME GLOBEX session starts at a predetermined

time before the trading session opens. In a market enabled/pre-opening state,

6These statistics are collected from CME Globex Reference Guide.
7This restricts the broker to a given price/or better in bidding/offering.
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traders can enter, modify and cancel orders for the next trading day; in a pre-

opening/no-cancel state traders can only enter orders for the next trading day

without modification or cancellation. When the trading session actually starts,

it enters the continuous trading state. In this period of time orders are sent and

matched in real time. When the trading session closes, there is a surveillance

intervention state. In this state traders can only process cancellations. The last

state is the maintenance period, no order entry, modification or cancellations can

take place during this time. In cases of emergency, traders may still cancel orders

through the GLOBEX Control Centre8 (GCC).

As a combination of the CME, CBOT, and NYMEX, the CME group has its

own Clearing House, which guarantees and processes all matched transactions of

CME group contracts and ensures the transactions’financial integrity. Currently

the CME Clearing House is one of the largest organizations for clearing in the

world and it handles approximately 90% of all U.S. futures and options on futures

volume. It monitors and settles more than one billion trades every year, worth

more than $1,000 trillion.

Products Range

The products currently covered on GLOBEX include equity, interest rate, foreign

exchange, commodity, real estate, weather, the NYMEX and COMEX products,

Kansas City Board of Trade (KCBT) and Minneapolis Grain Exchange (MGEX)

products, Total Return Asset Contracts (TRAKRS9), and OneChicago Security

futures products. Other well known indexes such as S&P MidCap 400, S&P

8See CMEGlobex Reference Guide at http://www.cmegroup.com/globex/files/GlobexRefGd.pdf
for more detail

9The first broad-based index products traded on a U.S. futures exchange to be sold by
securities brokers. See more details on www.cmegroup.com/equities.
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SmallCap 600, Dow Jones Industrial Average, Nikkei 225 Stock Average are also

traded. Not all electronic trading on CME GLOBEX are after-hours. Some

contracts trade simultaneously with the floor in side-by-side market (Foreign

Exchange), and some contracts are only traded electronically (E-minis and E-

micros). The S&P 500 and NASDAQ-100 data used in the thesis are from the

equity product range. In the following, the standard S&P 500 and NASDAQ-100

contracts, E-minis, and E-micros are introduced.

S&P 500 and NASDAQ-100 The data set used in this thesis is the standard

NASDAQ-100 and S&P 500 equity futures contracts traded on GLOBEX. The

S&P 500 futures contract was launched in GLOBEX on the 1995 and NASDAQ-

10010 in 1996. The standard contracts that trade in after-hours time are the

same contracts which trade in the pit market during the day trading hours. The

platform closes for maintenance everyday between 16:30 (All times are in CST)

and 17:00. The trading hours for most of the electronic contracts are 17:00 to 8:15

and 15:30 to 16:30 with the exception of Fridays where there is no electronic trade

following the closure of the open outcry pit on Friday afternoon. On Sundays

trading begins at 17:00 and finishes at 8:15 on Monday morning. On public

holidays the platform trades reduced hours. The product fees in open outcry and

GLOBEX can be different and charges can be higher or lower in two markets.

Fees are also charged per side (buy and sell) per contract. A clearing fees of $12.5

is required for both markets.

The standard equity futures contracts for the NASDAQ-100 traded on the

CME are contracts for $100 multiplier times the equity index price with 0.25

10Nasdaq-100 includes the top 100 large-cap domestic and international non-financial com-
panies on the Nasdaq Stock Market.
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ticks. For the S&P 500, the multiplier is $250 and minimum tick is 0.10. The

trading of the same products do not overlap between the open outcry pit and the

electronic trading, but it is possible for traders to change their portfolio holdings

in these indices almost 24 hours a day by using both electronic and pit markets.

E-minis E-minis offer one-fifth the size of a standard contract, with these

smaller contracts designed to appeal to retail investors. It is available electroni-

cally and trades 24 hours other than during GLOBEX maintenance hours. The

E-mini versions of S&P 500 and NASDAQ futures contract were launched in 1997

and have become very popular since early 2000. At that time the existing stan-

dard contract became too large for many small traders. The E-minis contract

has quickly became the most popular equity index futures contract in the world.

Hedge funds preferred the E-minis in early 2000, when the majority of standard

futures contracts were still mostly traded in open outcry market11.

E-micros The E-micro was introduced by the CME in 2009. It is a smaller

version (one-tenth) of standard size foreign exchange futures contracts. The E-

micro foreign exchange includes 6 currency pairs, namely EUR/USD, USD/JPY,

GBP/USD, AUD/USD, USD/CHF and USD/CAD. It aims to attract more retail

investors and provides reduced margin requirements. In 2010, E-micros started to

offer E-micro S&P CNX Nifty futures contracts in equity class12 The risk exposed

in the E-micro is also smaller and it has becoming a more regulated marketplace.

All contracts including standard sized futures, E-minis, and E-micros are settled

by CME Clearing.

11See Growth of CME Globex Platform available at http://www.cmegroup.com.
12It is offered as International index futures contracts.
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3.3 Overview of the Global Financial Crisis

3.3.1 Introduction

The 2007-2008 Global Financial Crisis (GFC) is generally regarded as the worst

financial crisis since the 1930s. It has resulted in losses in many leading banks

and large financial institutions due to the collapse in value of mortgage-based

securities in the US and Europe. This period of duration data may contain rich

source for studying potential structural changes of the after-hours market. More-

over, the approach of studying the global financial crisis through trade duration is

unexplored in the GFC literature. As chapter 7 of this thesis tests for structural

breaks in ACD models around this financial crisis period of data, it is necessary

to review the events of the crisis period. In the following subsections, a brief in-

troduction to the background, causes, and consequences of the subprime financial

crisis is presented.

3.3.2 Prior to the Crisis

Following the dot-com collapse in 2001, the US Federal Reserve kept interest rates

very low due to fears of recession. To keep the national consumption level and US

consumer’s purchasing power continually rising became a national security pri-

ority following the terrorist attack in 2001 (Blackburn, 2008). Under this policy,

historically low interest rates made loans cheap and easy. The US Federal Reserve

created easy credit conditions and encouraged debt-financed consumption.

Consequently debt related investments grew significantly in the early 2000s.

According to the statistics shown in Blackburn (2008), the total debt in the U.S.

economy increased from 255.3% in GDP in 1997 to 352.6% in GDP in 2007. These
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huge increases were particularly strong in the household and financial sectors,

such as banks and other financial mortgage institutions. The number of mortgage-

backed securities (MBS) and collateralized debt obligations (CDO) issued also

increased. Investments from all around the world came to take advantage of

this policy and heavily invested in the mortgage backed market, especially the

housing industry. As a consequence of increased demand, housing prices steadily

increased throughout 2001 to 2006.

On the other hand, the banking system was tainted by poor systematic risk

management. The so-called shadow banking system13, which consists of non-

depository banks and financial entities including investment banks and hedge

funds, developed dramatically over the same period. Some of the major exam-

ples include Citigroup, Merrill Lynch, HSBC, Barclays Capital and Deutsche

Bank. Under this shadow banking system, entities create huge leverages by bor-

rowing extra debts from investment banks and hedge funds. In some entities,

their borrowed assets were worth almost thirty times of their capital. After the

early 2000s, this shadow banking system quickly expanded as the rules that gov-

ern borrowing and lending were loosened. This huge portion of debt created

significant levels of potential systematic risks in the market. As many of these

debt-mortgages were multi-nationally related, huge leverage was formed by these

debt-related assets in the banking and mortgage institutions. Goodhart (2008)

pointed out that the low interest rates lead to under-pricing of risk and also low

risk spreads, thus the liquidity of banks decreased dramatically. The reduced

liquidity implies that if there is a problem in the banking system, the central

13Financial intermediaries involved in this system create credit across the globe and its mem-
bers are not subject to regulatory oversight. Some of these intermediaries include hedge funds,
unlisted derivatives and other unlisted instruments. The shadow banking system did not accept
traditional bank deposits, therefore it has escaped from regulation.
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bank is the only one that can be relied on by the lending banks. While US hous-

ing prices continued to rise, banks encouraged considerably higher loans. This

bubble peaked around 2005 and 2006.

3.3.3 The Prelude

Throughout 2005 to 2006, US interest rates began to rise towards more histori-

cally normal levels due to the pressure of a falling US dollar. This rise in interest

rates caused fears in lending markets, which were especially obvious in the hous-

ing industry. As a result, US housing prices, which had been growing steadily,

started to decline. Increased interest rates caused rising defaults in mortgages and

meanwhile, shrinking housing values began to cause losses in the lower tranches

of CDOs and collateral mortgage obligations (CMO). Institutions holding these

instruments, such as hedge funds started to suffer losses. Coupled with the fear

of defaults hitting the higher tranches, the market turned bearish through late

2006 to early 2007.

The increasing fear of defaults created a credit crunch in mid 2007, investors

started to lose confidence in the value of sub-prime mortgages. Leading invest-

ment banks in US and Europe were also affected since their asset base constituted

a large portion of U.S. mortgage based securities. According to Pezzuto (2008),

investment banks started to be suspicious about the potential credit losses of

their counterparties which led to a tightening inter-bank lending. As banks re-

duced their exposure in the interbank markets the inter-bank lending interest

rates rose. This also led to increased rates for credit default swaps (CDS), mak-

ing the liquidity problems in the banking system and credit crunch conditions

even worse.
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3.3.4 The Crisis

It is commonly accepted that the global financial crisis started in July 2007, fol-

lowed by the collapse of Deutsche Bank and failure of large mortgage brokers.

By the early August 2007, the world’s central banks were injecting liquidity into

the global financial system but were still unable to stop the crisis from building.

Investors lost confidence and tightened their spending in fear of further losses.

In September 2008, the Lehman Brothers collapsed and filed for bankruptcy pro-

tection. Merrill Lynch was also sold to the Bank of America in the same month.

Soon credit ratings started to decline for American International Group (AIG)

and the US Federal Reserve had to lend $85 billion to AIG to avoid bankruptcy.

Meanwhile the US Federal Reserve continued to inject liquidity into the market,

and the US government carried out a series of plans to calm the market. However,

the crisis continued to spread throughout US and worldwide.

3.3.5 The Aftermath

As a consequence of the GFC, many financial institutions continue to face liquid-

ity issues. Following worsened housing and stock markets, governments around

the globe struggled to save large financial institutions. These collapses of large

US financial institutions and downturns in stock markets quickly spread out to

the global financial market.

By November 2008, the US stock index S&P 500 had dropped around 20%

from its peak level in 2007. Housing prices had also dropped 20% from their 2006

high14. Altman (2009) suggests that the total home equity value had also shrunk

14Data collected from Yahoo finance.
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dramatically from its peak level of $13 trillion in 2006 to $8.8 trillion in mid-2008.

By the end of 2009, the International Monetary Fund (IMF) estimated that large

banks in US and Europe lost more than $1 trillion.

Since modern financial markets are highly integrated at a global level, the

sudden rise in US financial market volatility and risk aversion was quickly trans-

ferred worldwide. The sharp drop in demand for capital intensive goods was also

quickly transmitted through the global supply chain. In the UK, the rising cost

of liquidity caused losses in mortgage house related financial entities, and also

lead to the first bank run in the UK for 150 years at Northern Rock. A number of

other European banks also suffered. Stock indices and the market value of equi-

ties and commodities in Europe also declined. The after-hours electronic market

during global financial crisis period is investigated in chapter 7 of this thesis.

3.4 Summary

This chapter provides backgrounds and overviews of the after-hours electronic

market and the 2007-2008 global financial crisis. Trading volume in the after-

hours market has grown significantly in the past years, of which the GLOBEX

in CME group is the most liquid trading platform in the world, offering the

widest varieties of products. The history of GLOBEX developments is reviewed

in order to gain a better understanding of the market. Information on products

available in this market is presented to improve the understanding of trading

mechanisms, including some of the popular futures products such as E-minis

and E-micros. The second section reviews the build-up of the global financial

crisis. The large volume of duration data during the crisis provides opportunities
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to explore duration data linear and nonlinear behaviours. Considering the data

sample in this thesis is relatively long (2 years), it provides an unique empirical

study on duration modelling under potential structural changes. Some of major

economic events during the crisis are also addressed to back up the structural

analysis in chapter 7.

The following chapters include four papers. In chapter 4, the empirical analy-

sis part of this thesis begins by fitting simple linear ACD specifications. Then

the analysis moves towards more complicated nonlinear model in chapters 5 to 7.

Two types of nonlinear forms of ACD models are addressed based on after-hours

market in this thesis, namely the logarithmic ACD model in chapter 5, and ACD

model with structural breaks in chapter 6 and 7.



Chapter 4

Linear ACD models

4.1 Introduction

This chapter1 studies the time between trades of the after-hours electronically

traded equity futures market, a market which is previously unstudied in this

regard. Using a relatively long (2 years) data set, trades in the NASDAQ and

S&P 500 equity futures are shown to require different forms of autoregressive

conditional duration models, including longer lag lengths than previous spot data

applications. Additionally, volume provides an informative mark in both cases.

The S&P 500 necessitates a threshold model where the majority of trades display

the typical low autocorrelation and strong clustering evident in other assets, but

with large durations more autocorrelated with weak clustering.

The trading environment in financial markets has changed rapidly in the past

10 years. Many instruments are increasingly traded on electronic exchanges and

trading hours are extending beyond standard business hours. A particularly suc-

cessful example of these innovations is the trade in equity futures contracts on

1This chapter consists of joint work with Mardi Dungey and Nagaratnam Jeyasreedharan,
as stated in the Statement of Co-Authorship enclosed with this thesis.

53
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the GLOBEX exchange. Equity futures contracts which trade on the open outcry

Chicago Mercantile Exchange (CME) pit are now also generally available outside

pit hours on the electronic market. Since 1993 the standard size contract for

the S&P 500 has been available in this format, followed in the mid-1990s by the

NASDAQ contract, and growth in volume has been relatively rapid. However, to

date, the behaviour of the after-hours market has been relatively little studied;

Coppejans and Domowitz (1999) compare the electronic and open outcry mar-

kets and Dungey, Fakhrutdinova and Goodhart (2009) explore the volume and

volatility characteristics of the NASDAQ and S&P 500 futures contracts.

This chapter makes three contributions. First, it considers trade duration,

that is the time between trades, in the after-hours equity futures markets for the

NASDAQ and S&P 500 indices. The time between trades provides information

to the market, indicating the presence of news and potentially in the absence of

trade that there is no new information, see Easley and O’Hara (1992). Trade

duration has not previously been modelled for the after-hours market. Being

after-hours it has a peculiarly marked diurnal pattern, with relatively intense

trade in the period immediately following the close of the open outcry market,

lower volume and intensity in the Asian trading zone, an increase in activity and

intensity in European trading hours and a dramatic increase in both intensity and

volume immediately prior to the opening of the pit - corresponding particularly

with the 8:30am EST scheduled macroeconomic news announcement period in

the US. Modelling trade duration in this market is thus a completely different

proposition from previous empirical work on duration modelling, which typically

involves spot equity market contracts; for example Engle and Russell (1998),

Zhang, Russell and Tsay (2001).
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Second, the data sample of this chapter covers two years, a significant increase

on the usual 3 month sample analyzed in existing papers on time between trades.

A particular challenge is to fit a consistent model to this length of sample - given

that Zhang, Russell and Tsay (2001) find evidence for 7 structural breaks in a

3 month data set. The final contribution is to include volume of trade as an

additional mark in the modelling process, which makes a small, but significant,

negative contribution to conditional duration. That is, an observed larger trade

volume results in a smaller time to the next trade - which may be interpreted as

either due to the arrival of public information resulting in market participants

making portfolio adjustments, or alternatively in the absence of public informa-

tion, that when market participants observe a high volume trade they interpret

this as private information which encourages them to trade, thus increasing trade

intensity.

The modelling framework of the chapter is based on the ACD models pro-

posed by Engle and Russell (1998) and subsequent extensions. The ACD models

account specifically for the observed serial correlation and clustering in trade du-

ration, and are closely related in form to the GARCH framework. Like GARCH,

the preferred lag structure in most applications strongly suggests an ACD(1,1)

starting point, although various alternatives exist for the assumed error distrib-

ution; including the Exponential, Weibull, Generalized Gamma, Burr, General-

ized F and mixtures of distributions; see Russell and Engle (1998), Lunde (2000),

Grammig and Maurer (2000), Hautsch (2002) and De Luca and Gallo (2004). The

markets explored here require both an extension of the lag structure and account-

ing for non-linearities through a two regime threshold ACD model. Specifically,

the duration model on the NASDAQ futures data incorporates higher order lags,
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while the more intensely traded S&P 500 contract is more effectively modelled

with a threshold model, featuring differing levels of higher order lags for large

duration observations.

The chapter proceeds as follows. Section 4.2 provides a brief overview of the

after-hours electronic equity futures market for the NASDAQ and S&P 500 con-

tracts, followed by the description of the sample period in Section 4.3. The ACD

framework is outlined in Section 4.4. Section 4.5 documents the development of

the final model via the benchmark ACD(1,1) model, extensions to the lag order,

the introduction of volume and threshold models. Section 4.6 concludes.

4.2 The After-hours Electronic Equity Futures

Market

The standard equity futures for the NASDAQ and S&P 500 traded on the CME

are contracts for $250 times the equity index price with 0.10 ticks. Both contracts

trade in the CME open outcry pit between the hours of 8:30 CST to 15:15 CST

and on the electronic GLOBEX exchange after-hours. The after-hours trading

period currently begins at 17:00 CST on Sunday evenings (corresponding to the

opening of trade in the Japanese trading day) and continues until 8:15 CST

Monday morning. For the remainder of the working week the contract begins

trade at 15:30 CST after the closure of the pit, and continues to trade until

8:15 CST the next morning, with the exception of Fridays where there is no

electronic trade following the closure of the open outcry pit on Friday afternoon.

The electronic exchange closes for maintenance everyday between 16:30 CST and

17:00 CST, and on public holidays trades reduced hours.
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Figure 4.1: Annual Volume of Trade on the CME

There is no overlap in trade of the open outcry pit and the electronic trading

of these contracts. The two platforms are trading the same product, thus making

it possible for market participants to change their portfolio holdings in these

indices almost 24 hours per day. Although there is no electronic trading in the

standard contract during the open-outcry market, E-mini contracts which are

one-fifth of the standard contract size and only available electronically do trade

24 hours (other than the half-hour shutdown for maintenance).

Total volume accounted for by electronic trade in this market has been growing

rapidly in recent years. Figure 4.1 shows that total volume traded in the electronic

market has grown from 200 million in 2002 to more than 2 billion 2007, although

this includes the consolidation of the CME and CBOT trades into the total

volume in 2007.

It is not at first evident how 4 contract forms (standard future, electronic,

E-mini, and E-micros) for the same instrument coexist. However, the standard

contract trades electronically only when the pit floor is closed and is five times
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larger than the E-mini product which trades for virtually 24 hours. The E-micro

version of S&P CNX Nifty only became available in 2010 and the E-micro con-

tracts are still more developed in foreign exchange products. The smaller contract

is designed to appeal to retail investors. Additionally, trade on the electronic

platforms is more expensive than trade in the pit via transaction fees, although

precise details of the transaction fees vary by market participant and are not

readily and publicly available. As the E-minis trade during the pit period of

8:30 CST to 15:15 CST. Hasbrouck (2003) and Coppejans and Domowitz (1999)

have compared the relative effi ciency of the E-mini and open outcry market -

finding that the open outcry market is more effi cient at absorbing local informa-

tion. However, this comparison is made more diffi cult by the difference in size

and transaction fees of the contracts. Trading in the pit and on the electronic

platform for the standard contract do not overlap - rather in combination they

complete the trading day, so their relative effi ciency can not be easily compared.

Dungey, Fakhrutdinova and Goodhart (2009) investigate volume and price

impact for the after-hours standard equity futures contracts for the S&P 500 and

NASDAQ indices. They find that the period of highest average volume in the day

occurs immediately prior to the opening of the open outcry pit, peaking around

7:30 CST, which corresponds to the time of prescheduled macroeconomic news

releases in the US at 8:30 EST. They find that price impact for the S&P 500

contracts is lowest in the high volume period immediately prior to the opening

of the open outcry pit, and higher in general during the European and Asian

trading hours, but for the NASDAQ, price impact is highest immediately post-

close of the open outcry market. This may suggest that the relatively low volume

traded on the NASDAQ compared with the S&P 500 has made the gains from
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anonymous electronic trading lower than those for the highly liquid S&P 500,

reducing the attractiveness of trade in the post-close period for this instrument.

4.3 The Data Sample

Information on the transactions on the GLOBEX electronic exchange for the

NASDAQ and S&P 500 futures contracts were obtained from the CME for the

period from July 1, 2004 to September 30, 2006. The data comprise 213,332

observations for the NASDAQ and 1,053,524 observations for the S&P 500. Fol-

lowing Engle and Russell (1998), after cleaning the data set to remove negative

durations2 and aggregating volume for transactions with the same time stamp to

be treated as a single transaction, the sample data was found to contain 149,314

observations for the NASDAQ and 684,010 observations for the S&P 500. The

data display a distinct diurnal pattern, and it is customary in this literature to

remove this pattern prior to estimation. Using a piecewise linear spline with 17

knots representing hourly intervals during the after-hours trade period covered

the data are diurnalised using a multiplicative specification of the diurnality, in

a manner similar to that proposed in Engle and Russell (1998).

Table 4.1 contains basic descriptive statistics of the diurnally adjusted dura-

tion and volume, clearly indicating the near unit mean. Variance of the adjusted

durations for NASDAQ is slightly higher than S&P500, suggesting larger fluctu-

ations on the waiting time and less frequent trading activities in NASDAQ in our

sample data. The lower variance of the adjusted volumes for NASDAQ further

implies a less volatile market. In both indices there is evidence of relatively large

2Negative duration is possible here since the trading time continues over mid-night.
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Table 4.1: Descriptive Statistics
for Adjusted Durations and Adjusted Volume

in the NASDAQ and S&P 500.
NASDAQ S&P 500

Duration
number of observations 149314 684010
mean 0.9994 0.9973
max 66.3147 70.5960
min 0.0014 0.0061
variance 4.1081 3.6010
skewness 5.7514 5.4368
kurtosis 67.4259 62.4087
Jaque-Bera (p-value) 0.0000 0.0000

Volume
mean 1.0000 0.9999
max 67.1146 116.9578
min 0.2262 0.2102
variance 2.0121 2.3732
skewness 6.8145 9.4208
kurtosis 117.2487 270.6885
Jaque-Bera (p-value) 0.0000 0.0000

higher order moments, strongly rejecting normality. Figures 4.2 and 4.3 show

the average adjusted daily duration and volume pattern for the NASDAQ and

S&P 500 data beginning from midnight CST each day. Trade at midnight CST

is equivalent to the Asian trading day, and the durations are relatively high. Du-

ration then decreases until 8:15 CST when the GLOBEX market ceases shortly

before the open of the pit trading session. During the morning electronic trade

duration drops first during the European trading day and most dramatically

around the 7:30 CST period (corresponding to the usual announcement time for

pre scheduled US macroeconomic news). As discussed in the previous section,

diurnal volume in these markets peaks at this time.

Immediately following the closure of the floor market at 15:15 CST trading

is relatively intense in the electronic market, and volume is again relatively high.

Dungey, Fakhrutdinova and Goodhart (2009) associate this higher trading volume
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Figure 4.2: Diurnal (a) Durations and (b) Volume Patterns for NASDAQ

with a desire on the part of market participants to settle their end of day positions

in the anonymity of the electronic market as opposed to the open outcry pit,

despite the higher costs of trading the same contract on the electronic market.

After this point, trade duration begins to climb again as the market becomes less

active entering the Asian trading zone. Overall, the figures indicate the existence

of a negative relationship between volume and duration. This feature will be

incorporated into the formal model of duration in Section 4.5.4.
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Figure 4.3: Diurnal (a) Duration and (b) Volume Patterns for S&P 500

4.4 ACD Models

The (irregular) time between consecutive trades in a single market is defined

as xi = ti − ti−1, where ti represents the time of the current trade and ti−1 is

the immediately previous trade. Assuming that the trade duration, xi, evolves

according to the process

xi = ψiεi, (4.1)

where ψi ≡ E(xi|xi−1, . . . , x0) represents conditional expected duration and εi

is an error process, the autoregressive and clustering aspects of duration are
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captured through specification of the conditional expected duration as

ψi = ω +

p∑
j=0

γjxi−j +

q∑
k=0

ωkψi−k, (4.2)

where ω, γj and ωk are parameters, and p and q represent the lag orders, denoted

as an ACD(p, q), see Engle and Russell (1998).

A number of alternatives have been considered for the error distribution εi, in-

cluding the Exponential (EACD), Weibull (WACD), Generalized Gamma distri-

bution (GGACD), Burr and Generalized F; see Engle and Russell (1998), Lunde

(2000), Grammig and Maurer (2000), and Hautsch (2002). De Luca and Gallo

(2004) use a mixture of two distributions.

This chapter concentrates on comparisons of the EACD, WACD and GGACD

forms of the model. In each case the duration, xi, is restricted to be non-negative

The probability density function

f(x) =
α

βαΓ (κ)
xκα−1e(−x/β)α , (4.3)

represents the Generalized Gamma distribution with two shape parameters, α

and κ and scale parameter β, which in the case of κ = 1 is equivalent to the

Weibull distribution and when α = κ = 1 is the Exponential distribution. Each

of these functions possesses high concentration at shorter durations and a long

right tail for longer durations.

A number of alternative specifications to the conditional duration given in

equation (4.2) also exist. Expressing equation (4.2) in log form rules out neg-

ative durations which have occurred in other applications with the addition of
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further explanatory variables to the conditional duration model; Bauwens and

Giot (2000), but are not an issue in the current application. Jasiak (1998) in-

troduced the fractionally integrated ACD model, the FIACD to account for long

memory, while Zhang, Russell and Tsay (2001) introduced the threshold ACD

model, where different conditional means, error distributions and persistence are

allowable in each regime. In the two regime threshold model, the conditional

duration equation (4.2) is replaced by

ψi =


ω(1) +

∑p1

j=1 γ
(1)
j xi−j +

∑q1
k=1 ω

(1)
k ψi−k, if 0 < xi ≤ r1

ω(2) +
∑p2

j=1 γ
(2)
j xi−j +

∑q2
k=1 ω

(2)
k ψi−k, if r1 < xi <∞

(4.4)

which is notated as TACD(p1, q1 : p2,q2) where p1 and q1 represent lag orders

in the first regime, and p2, q2 represent lag orders in the second regime and r1

is some exogenously chosen cut off point delineating the regimes. Other recent

alternatives include Markov Switching ACD models, as in Hujer et al. (2003);

mixtures of distributions applied to price durations in De Luca and Gallo (2004)

and trade durations in Hujer and Vuletíc (2007), stochastic volatility duration

models such as Ghysels, Gourieroux and Jasiak (2004) and the simultaneous

modelling of price and trade duration in Engle and Russell (2005).

The next section presents the results of applying the ACD model with varying

error assumptions and threshold ACD specifications to the NASDAQ and S&P

500 equities futures data. Parameter estimates are undertaken using maximum

likelihood based on the log-likelihood functions for the individual models using

RATS version 7.
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4.5 Empirical Results

The majority of the existing literature has fitted ACD(1, 1) models with alter-

native distributional assumptions. EACD(1,1), WACD(1,1) and GGACD(1,1)

models are fitted to the two data series in the next section, followed by exten-

sions to higher lag orders and then the potential role of volume traded in providing

further information. Finally, evidence of non-linearity in the S&P 500 results lead

to the estimation of a threshold ACD model for this data.

4.5.1 ACD(1, 1) Specifications

Table 4.2 reports the coeffi cient estimates, Ljung-Box statistics and AIC and SBC

statistics for EACD(1,1), WACD(1,1) and GGACD(1,1) models for the NASDAQ

and S&P 500 data. Consider first the results for the NASDAQ data reported in

Table 4.2. The Ljung-Box statistics for each model are relatively high, ranging

between 280 and 372 for the Q(20) statistic , although this reflects the large

sample size in addition to potential problems with the fit of the model. The

parameter estimates in the GGACD(1,1) and WACD(1,1) also provide some ev-

idence as to which model best describes the data. There is considerably more

variation in the parameter estimates for autocorrelation and clustering across the

specifications than obtained by De Luca and Gallo (2004) in their comparison of

ACD(1,1) models for price durations across different distributional assumptions.

The parameter estimates for κ and α reported in the final column of Table 2 do

not support the EACD (α = κ = 1) or WACD (κ = 1) specification in preference

to the GGACD.

The parameter values themselves support a relatively low autocorrelation
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Table 4.2: Parameter Estimates for ACD(1,1) Models
of the NASDAQ and S&P 500 with Different Distributional Assumptions

Parameter EACD(1,1) WACD(1,1) GGACD(1,1)
NASDAQ

ω 0.0196 0.0307 0.0570
(0.0002) (0.0018) (0.0033)

γ1 0.1158 0.1561 0.2121
(0.0006) (0.0041) (0.0064)

ω1 0.8720 0.8256 0.7779
(0.0006) (0.0051) (0.0071)

α - 0.5466 0.2714
(0.0008) (0.0052)

κ - - 3.4202
(0.1165)

Ljung-Box Q(10) 239.0057 254.7124 258.3202
Ljung-Box Q(20) 372.6006 294.7861 280.1999
AIC 1.7020 0.8851 0.8694
SBC 1.7022 0.8854 0.8697

S&P 500
ω 0.0125 0.0182 -

(0.0001) (0.0003)
γ1 0.0834 0.0938 -

(0.0002) (0.0007)
ω1 0.9074 0.8881 -

(0.0003) (0.0007)
α - 0.6668 -

- (0.0007)
κ - - -

Ljung-Box Q(10) 1400.8710 1123.8400 -
Ljung-Box Q(20) 1971.5400 1489.7580 -
AIC 1.7293 1.3711 -
SBC 1.7294 1.3712 -
standard errors in (), all parameters are significant at the 1% level.
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component to the conditional duration equation, with γ1 less than 0.25. The

clustering component, given by the parameter ω1 is stronger at around 0.8 in

each estimation. The general form of low autocorrelation and high clustering

parameter estimates are common to existing literature estimating ACD models

for IBM equities in Engle and Russell (1998), Disney stocks in Hautsch (2006)

and US Treasuries in Dungey, Henry and McKenzie (2009). The shape para-

meter κ, from the GGACD(1,1) estimation supports a mixture of more than 1

Weibull distribution, while the α parameter suggests a smaller influence from

the Exponential distributions. Thus far the results for the NASDAQ data sup-

port a GGACD(1,1) specification on the basis of the non-unit values of α and κ,

although measures of fit suggest that a less complex distributional assumption

provides a slightly better fit to the data.

The S&P 500 data has a far greater intensity than the NASDAQ data as

described in Section 4.3, and the Ljung-Box coeffi cients are an order of magnitude

higher than those reported for the NASDAQ. The estimated value of α in the

WACD specification rejects the null hypothesis of α = 1, which would support

an EACD specification. In this case the GGACD(1,1) model failed to converge,

producing extremely high estimates of κ, suggesting that there are problems

remaining with the specification. The next section explores generalizations of

these baseline specifications to examine the most likely means of improving the

estimates.

4.5.2 Higher Order Lag Effects

Although many applications do find that ACD(1,1) models with varying distri-

butional assumptions provide the best characterizations of their data, a small



4. Linear ACD models 68

number of papers have favoured higher order lag lengths, (Dungey et al., 2009;

Engle and Russell, 2005; Zhang et al., 2001). To explore lag effects, the WACD

and GGACD specifications for the NASDAQ and the WACD specification for the

S&P 500 are considered with extended lag lengths. Higher lag order ACD mod-

els are modelled in the order of increasing number of lag numbers, this process

continues until the models fail to converge. The models are chosen based on

Ljung-Box and AIC statistics of each model estimates. A similar process is not

applied to the EACD models as none of the more general specifications reported

in Section 4.5.1 support an Exponential distributional assumption.

The best results for the NASDAQ are a WACD(5,5) and GGACD(3,3) and

are reported in Table 4.3. It is evident that the WACD(5,5) has reduced the

Ljung-Box statistics considerably over the results reported in Table 4.2, and the

sum of the estimated coeffi cients,
∑5

j=1

(
γj + ωj

)
≈ 0.9997, indicates persistence

in the adjusted durations. The unconditional mean adjusted duration for this

specification is given by E(ψi) = ω/
(

1−
∑5

j=1

(
γj + ωj

))
≈ 3.0814 seconds. It

is notable that there is a drop in the value of the estimate of ω by two orders of

magnitude compared with the WACD(1,1) specification from Table 4.2, but the

shape parameter, α is unchanged to two decimal places.

The GGACD(3,3) specification contains some problematic outcomes. The

Ljung-Box statistics are not reduced over the GGACD(1,1) specification, and

importantly the sum of the ωj and λj parameters,
∑3

j=1

(
γj + ωj

)
≈ 1.0000, and

the specific case where these parameters sum to unity is not encompassed in the

GGACD model. The shape parameter values for α and κ are not greatly changed

from the GGACD(1,1) specification. Of the two longer lag lengths investigated

for the NASDAQ model the WACD(5,5) seems the more satisfactory.
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Table 4.3: Parameter Estimates for WACD(5,5) and GGACD(3,3) Models
of the NASDAQ

Parameter WACD(5,5) GGACD(3,3)
ω 0.0009 0.0030

(0.0001) (0.0003)
γ1 0.2321 0.2977

(0.0009) (0.0063)
γ2 -0.2510 -0.3261

(0.0003) (0.0081)
γ3 0.0188 0.0465

(0.0003) (0.0022)
γ4 0.0196 -

(0.0007)
γ5 -0.0100 -

(0.0006)
ω1 1.5840 1.5498

(0.0001) (0.0035)
ω2 -0.5463 -0.5238

(0.0002) (0.0043)
ω3 -0.0262 -0.0435

(0.0002) (0.0009)
ω4 -0.0125 -

(0.0001)
ω5 -0.0087 -

(0.0004)
α 0.5485 0.2784

(0.0009) (0.0005)
κ - 3.2759

(0.0038)

Ljung-Box Q(10) 183.7966 293.5161
Ljung-Box Q(20) 191.1481 306.5236

AIC 0.8799 0.7370
SBC 0.8807 0.7386
standard errors in (), all parameters are significant at the 1% level.
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Specifications incrementing the lag lengths in the S&P 500 WACD(1,1) model

fail to converge providing further evidence of the diffi culties in fitting the S&P

500 data.

4.5.3 Volume Effects

As lag length adjustments have not made a substantial improvement to the model

specifications, this section turns to the possible inclusion of other marks in the

process; specifically, whether volume transacted has any extra information over

the simple duration information. Bauwens and Veredas (2004) documented evi-

dence of a significant relationship, but were restricted to daily volume proxies in

their analysis. A further stream of literature, such as Bauwens et al. (2004) and

Fernandes and Grammig (2006), considers the price durations, but given the diffi -

culties with the unsigned price data in this sample, which introduces problems of

bid-ask bounce requiring an approximating algorithm and associated uncertainty,

this is left for future work.

Figures 4.2 and 4.3 suggest a negative relationship between volume and trade

duration, an increase in volume transacted is associated with a decrease in trade

duration, consistent with trade volume possessing information in this market, and

that lack of trade indicates a lack of new information. The conditional duration

equation (4.2) is augmented with the transacted volume information using the

WACD(1,1) models reported in Table 4.2 as the baseline models.

Table 4.4 reports the results for the WACD(1,1) models for the NASDAQ and

S&P 500 datasets augmented with volume information. In each case the volume

parameter is negative and statistically significant at the 1% level. This result

is consistent with the hypothesis that higher transacted volumes indicates some
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Table 4.4: Parameter Estimates for WACD(1,1) Models with Volume
for the NASDAQ and S&P 500

Parameter NASDAQ S&P 500
ω 0.0359 0.0227

(0.0014) (0.0031)
γ1 0.1541 0.0938

(0.0045) (0.0068)
ω1 0.8255 0.8857

(0.0049) (0.0072)
α 0.5470 0.6673

(0.0007) (0.0007)
v -0.0011 -0.0007

(0.0000) (0.0000)

Ljung-Box Q(10) 246.6640 1093.8550
Ljung-Box Q(20) 284.1930 1422.3710

AIC 0.8841 1.3701
SBC 0.8844 1.3702
standard errors are given in parentheses
all parameters are significant at the 1% level.

form of information entering the market and shortening trade durations. There

are two possible mechanisms for this outcome. In the first case public information

may be causing market participants to reassess their positions and increasing

trade intensity. In the second case, market participants observe increased trade

volume and interpret it as an indicator of private information, and are hence

encouraged to trade themselves, thus increasing trade intensities. Comparing

the results with those reported in Table 4.2 there are few changes in the other

parameter estimates. In particular, the shape parameter α, is little changed

in either case. However, the Ljung-Box statistics have been improved by the

inclusion of the additional volume mark.
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4.5.4 Threshold Effects

While the NASDAQ data has been modelled in a way which may be considered

acceptable, there remain considerable problems with the S&P 500 data. Since

NASDAQ is less frequently traded, only S&P500 data sample is used to test

threshold effects in this chapter. NASDAQ data could also be tested for thresh-

old effects, however, the purpose of threshold effects modelling in this chapter is

to provide a preliminary nonlinear ACD attempt. As shown in Section 4.3 there

are some indications of different tail behaviours for large durations. Accounting

for the possibility that these larger durations behave significantly differently to

the bulk of the durations through a threshold model can significantly improve the

model estimates. Zhang, Russell and Tsay (2001) found considerable improve-

ments in estimates for the 3 months worth of IBM data examined in Engle and

Russell (1998) by introducing non-linearities.

Table 4.5 reports the parameter estimates for a two regime threshold model

with Weibull distribution TWACD(4,1:4,1) including the volume mark process

as a further explanatory variable. That is, the complete model estimated is:

ψi =


ω(1) +

∑4
j=1 γ

(1)
j xi−1 + ω

(1)
1 ψi−k + v

(1)
i , if 0 < xi ≤ r1

ω(2) +
∑4

j=1 γ
(2)
j xi−j + ω

(2)
1 ψi−k + v

(2)
i , if r1 < xi <∞

(4.5)

where the regime cutoff, r1 is chosen to be 19 seconds. A range of different al-

ternatives from 10 to 40 was examined on the basis of the quantile-quantile3 plot

of the adjusted duration series in Figure 4.4. It is diffi cult to meet convergence

for most of the attempts and cut off value 19 produced the most satisfactory

3The QQ plot applied here only provides a rough range of possible threshold values, we
understand not much literature make use this plot on this problem. A grid search could provide
a more accurate value but is rather time consuming.
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Figure 4.4: Quantile-Quantile plot of S&P500 Data

outcome. Note that this is a relatively large duration compared with the average

adjusted duration of 1 second. Some 622 standardized duration observations ex-

ceed the cutoff point, leaving 683388 observations in the first regime. As the aim

of threshold modelling in this chapter is to provide a preliminary attempt on non-

linear ACD modelling, and the data sample is very large, the more complicated

grid search is not carried on. A grid search could provide a more accurate value

but is rather time consuming in terms of computational work and convergence

problems.

The results in Table 4.5 show a remarkable improvement in the performance

of the model compared with the WACD(1,1) for the S&P 500, with the Ljung-

Box statistics dropping by a factor of 5, to levels commensurate with the mod-

els estimated for the NASDAQ data in earlier sections. The model supports

the two thresholds, with quite distinct characteristics. In the first regime the

mean adjusted duration is relatively small at 0.0312. The coeffi cient γ(1)
4 is in-
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Table 4.5: Parameter Estimates for ThresholdWACD(4,1:4,1) Model
for the S&P 500

Parameter estimate standard error
ω(1) 0.0312 (0.0003)
γ

(1)
1 0.1653 (0.0018)
γ

(1)
2 -0.0486 (0.0022)
γ

(1)
3 -0.0173 (0.0019)
γ

(1)
4 -0.0016 (0.0013)
ω

(1)
1 0.8744 (0.0007)

α(1) 0.6670 (0.0007)
v(1) -0.0009 (0.0000)
ω(2) 0.3718 (0.2322)
γ

(2)
1 0.0838 (0.0094)
γ

(2)
2 -0.1279 (0.0175)
γ

(2)
3 -0.0473 (0.0106)
γ

(2)
4 -0.0572 (0.0131)
ω

(2)
1 1.3734 (0.0762)

α(2) 0.5827 (0.0158)
v(2) -0.0038 (0.0203)

Ljung-Box Q(10) 225.5850
Ljung-Box Q(20) 261.6080

AIC 1.3678
SBC 1.3681
standard errors are given in parentheses.

significant at 10% so that dropping that coeffi cient makes the preferred form a

TWACD(3,1:4,1). The sum of the γj and ωj coeffi cients in this first regime is 0.95,

indicating considerable persistence. The volume coeffi cient, v(1) is negative and

significant, indicating as previously that increased volume results in decreased

trade duration.

In the second regime, however, a number of important differences are evident.

Firstly, the mean duration, ω(2) is increased 10 fold over the first regime, although

this estimate is statistically insignificant. This could be due to the fact that the

second regime contains values from a much larger range from around 19 to 70, and

its number of observations is much smaller compared to the first regime. The role
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of volume with these longer duration transactions is also negative but is increased

by over 6 times that of the first regime. The sum of the γ(2)
j and ω(2)

1 coeffi cients

is greater than 1, due mainly to the estimate of ω(2)
1 indicating an extremely high

degree of persistence in these right tail duration observations, a feature of the

data which is not well handled by the standard model specifications.

The threshold ACD model provides a much improved description of the S&P

500 data than previous simpler specifications. There is a clear need to account for

non-linearities in this dataset and a future research agenda would be to explore

the use of mixture models such as De Luca and Gallo (2004) and Hujer and Vuletíc

(2007) and stochastic volatility duration models such as Ghysels, Gourieroux and

Jasiak (2004) which hold promise of more flexibly incorporating the possibility

of different regimes in the data.

4.6 Conclusions

This chapter provides, to the best of the author’s knowledge, the first attempt to

model the time between trade durations of an electronic after-hours equity futures

market. The contributions of the chapter are the application to the previously

unexploited after-hours electronically traded data, the use of a much longer data

sample than previously explored in models of trade duration, and the use of

volume as an informative mark. The preferred modelling framework is found to

include relatively long lag lengths and threshold effects.

The markets studied comprise data from the standard NASDAQ and S&P

500 equity futures contracts traded on the Chicago Mercantile Exchange using

data from the GLOBEX electronic trading platform during periods when the
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open outcry market for this contract is closed. The empirical results show that

the trade duration of the equity market future contracts for the NASDAQ are

characterized by relatively low autocorrelation and strong clustering, regardless

of the distributional assumptions employed. In the S&P 500 data, the majority

of the distribution also exhibits low correlation and high clustering, but large

duration observations require a separate specification characterized by higher

autocorrelation and no real clustering. The results show that the addition of

volume information to the ACDmodel captures a statistically significant negative

relationship between the trade duration and volume, consistent with either of

two possibilities. The first of these possibilities it that public news results in

large volume and high trade intensity as market participants adjust portfolios,

and the second is that in the absence of public information, market participants

interpret large volume trades as indicative of private information which feeds

back to encourage further trading activity.

In terms of removing serial correlations from ACD model residuals, the es-

timation results are unsatisfactory, especially for the more liquid S&P 500 data

sample. This brings up the need for addressing the nonlinearity within the data.

In the following chapter, the same S&P500 data are used to investigate the non-

linearity problem, under nonlinear logarithmic ACD models.



Chapter 5

Logarithmic ACD Modelling

5.1 Introduction

In recent duration model studies, nonlinear ACD models have been found to be

preferred to linear specifications. Traditional linear time series models often yield

poor outcomes, especially in high frequency data studies. Results from linear

ACD specifications in previous chapter further support these findings. The IBM

intraday data used for the benchmark linear ACD model study in Engle and

Russell (1998) was examined by Zhang et al. (2001), who found that even this 3-

month period of data experiences a significant level of nonlinearity. In addition,

Zhang et al. (2001) and Ghysels et al. (2004) suggest nonlinear ACD models

outperform linear models on high frequency duration data.

The objective of this chapter is to build logarithmic ACD (log-ACD) models

to estimate high frequency duration data in the after-hour electronic futures

market. The log-ACD model was first proposed by Bauwens and Giot (2000),

and was initially designed for relaxing the positivity restrictions on the parameters

of a linear ACD model. Subsequently Bauwens et al. (2008) suggest that log-

77
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ACD models also capture a nonlinear relationship between the duration and its

lags. Bauwens et al. (2008) also study the moments of log-ACD models and

compare volume durations using linear ACD and log-ACD models. The same

paper provides analytical formulae for log-ACD moments. Nonlinearity is found

to be only a minor problem since their data set is relatively small. However, when

the data sample becomes large, it is more likely the data exhibits nonlinearity

and potentially creates a significant problem to its corresponding linear ACD

model. In this thesis, with a 2-year long sample of intraday high frequency data,

the nonlinearity problem is too risky to ignore.

Apart from log-ACD models, there are many alternatives in the literature of

nonlinear duration modelling. Some studies relax the distributional forms of the

model, for instance Hujer and Vuletic (2006) develop discrete mixture duration

models to capture more specific characteristics of intraday duration data. This

discrete mixture model can be further extended by introducing of a more flexible

discrete mixture-valued latent regime variable, see Bauwens and Veredas (2004).

De Luca and Gallo (2004) use a mixture of two Exponential distributions to fit

intraday duration data, relaxing the restrictions on the distributions of the error

terms. The later developments in latent factor ACD models are often applied on

stochastic volatility durations such as Ghysels et al. (2004).

Zhang et al. (2001) introduce the threshold ACD model to overcome the non-

linearity problem. In addition they applied Andrews and Ploberger structural

break test to divide their data into a number of sub-periods to reduce nonlin-

ear effects. However, they continue to find nonlinear dependence in the linear

Weibull ACD (2,2) model within the sub-periods. Hence their proposed 3-regime

threshold ACD model is applied individually in each of the sub-periods and yields
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a better result in term of capturing nonlinearity.

Compared with threshold ACD models and mixture of distribution models,

log-ACD models are far less costly to estimate. This chapter demonstrates that

log-ACD models are able to capture the nonlinearity problem without heavy

model estimation and complicated procedures. The data set used in this chapter

is the same S&P 500 data set from chapter 4. The less traded NASDAQ data

are not used in this chapter in order to focus on the development of the log-ACD

models. The S&P 500 data examined here covers 2 years, and as such it is very

likely the data experiences nonlinearity. Further contribution of this chapter is

to examine the performance of log-ACD models over a relatively long period of

intraday data, across two forms of log-ACD models.

The rest of the chapter is constructed as follows. Section 5.2 describes the

log-ACD model and its error term distributional forms. Section 5.3 gives some

background of the after-hours electronic market. Estimation results are shown

in Section 5.4. Section 5.5 discusses the effect of the volume and Section 5.6

concludes.

5.2 Model Description

The starting points of both traditional ACD and log-ACD models are similar,

they both assume the duration process is a function of the conditional expected

duration and an error term. If we let xi be the duration, the duration process for

a log-ACD becomes:

xi = eψiεi, (5.1)
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where eψi = Ψ, which is the new conditional expected duration, and εi is an

error term with many possible distribution forms. Common assumptions are

Exponential, Weibull and Generalized Gamma.

The most general form of the log-ACD specification is:

Ψ = lnE(xi | Ii−1) = ω0 +

p∑
j=0

γjg(εi−j) +

p∑
j=0

ωjΨi−j, (5.2)

where Ii−1 is the information set given at time ti−1, ω0 is a constant, ωj and γj

are coeffi cients for the past durations and past conditional expected durations,

and g(εi−j) denotes a function of the error terms. There are two possible choices

for g(·), and therefore two forms of log-ACD models are available. If we assume

g(εi−j) = ln xi−1, the log-ACD model becomes:

Ψ = ω0 +

p∑
j=0

γj lnxi−j +

p∑
j=0

ωjΨi−j, (5.3)

where equation (5.3) denotes the log-ACD form 1 (log-ACD1) model, and g(·)

is set to be the logarithm of the past durations. By taking the exponential

power, the logarithm of past durations converts back to observed past durations,

although the past conditional expected duration Ψ will still be affected.

If we assume g(εi−j) = εi−j, together with equation (5.1) the log-ACD speci-

fication becomes:

Ψ = ω0 +

p∑
j=0

γj
xi−j
eΨi−j

+

p∑
j=0

ωjΨi−j, (5.4)

where the new g(·) will be able to capture some level of nonlinearity when com-

bined with equation (5.1). This new g(·) in the equation giving rise to the log-

ACD form 2 (log-ACD2) model. The log-ACD2 model is often the standard model
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used in logarithmic ACD model studies. In fact, quite often the estimated results

can be very different for these two forms, where the extent of difference between

the two models depends on the significance of nonlinearity in the data. In this

chapter, log-ACD2 models are primarily investigated. The log-ACD models can

be further categorized into different log-ACD forms, base on the functional form

of the distribution of the error terms used. For example if εi−j is assumed to fol-

low Exponential distribution, the model becomes an Exponential log-ACDmodel.

Bauwens et al. (2008) study the moments of Exponential, Weibull, Gamma, Burr

and Generalized Gamma distributional forms of log-ACD models.

Three forms of log-ACD2 models are studied in this chapter: Exponential

log-ACD(EL-ACD), Weibull log-ACD(WL-ACD) and Generalized Gamma log-

ACD(GGL-ACD) models1. The GGL-ACD model by definition embeds or sub-

sumes the other two models. The log likelihood function for GGL-ACD is:

`(x | θ, xio) =
T∑

i=io+1

ln(
α

Γ(κ)
) + κα ln(

xi
λ

)− κα(lnxi + ψi)−
( xi
λeψi

)α
, (5.5)

where λ = Γ(κ)/Γ(κ + 1/α), θ = (ω, γ1, ..., γm, ω1, ..., ωq, α), x = (xio+1, ...., xT ),

and κ and α are gamma process parameters. When κ = 1, λ reduces to 1/Γ(1 +

1/α), and equation 5.5 will then reduce to a Weibull log likelihood function:

`(x | θ, xio) =
T∑

i=io+1

α ln

[
xiΓ(1 +

1

α
)

]
+ln(

α

xi
)−αψi−

(
Γ(1 + 1/α)xi

eψi

)α
, (5.6)

where α is the Weibull parameter. When α is set to be 1, λ in equation (5.5)

becomes 1, and equation (5.6) will become an Exponential log likelihood function

1The log-ACD1 model results are shown in Appendix table 5.7, but with unsatisfactory
results, therefore we focus on the three distribution form of log-ACD2 models.
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as below:

`(x | θ, xio) = −
T∑

i=io+1

ψi −
xi
eψi

. (5.7)

One of the advantages of the log-ACD model is that it allows negative vari-

able coeffi cients to exist, which is especially important when adding additional

market variables into ACD models with potentially negative coeffi cients. Tradi-

tional ACD models have non-negativity problems when adding negatively signed

variables. In equation (5.2), Ψ = lnE(xi | Ii−1). Theoretically, as long as

E(xi | Ii−1) > 0, the parameters in equation (5.2) can be any number from

negative infinity to positive infinity. The limitations on log-ACD model para-

meters are almost nonexistent although the bound
∣∣∣∑ωj

∣∣∣ < 1 is imposed for

the purpose of covariance stationary of Ψ. As negative coeffi cients are accepted,

the log-ACD model has significant advantages in incorporating additional marks

such as volume or bid-ask quote.

The trade-off is that it seems very diffi cult to derive any analytical expressions

for the unconditional moments. When we take the expectation of equation (5.3)

or (5.4) we arrive that

µ = E(eΨ) = E[e

ω0+

p∑
j=0

γjg(εi−j)+
p∑
j=0

ωjΨi−j

], (5.8)

which cannot be directly computed. Although Bauwens et al. (2008) pro-

vide an analytical formulae for the log-ACD model unconditional moments, the

procedure is rather complicated. They derive that under the conditions of:

E[exp(mγωj−1g(εi))] < ∞, µm < ∞ for an arbitrary positive integer m and
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|ωj| < 1, the unconditional moments for log-ACD model follows:

E(xmi ) = µm exp(
mω0

1− ω )

∞∏
j=1

E[exp(mγωj−1g(εi))], (5.9)

where ω = ω1, and γ = γ1 for log-ACD (1,1) model. In order to compute the

unconditional moments, one does requires the knowledge of E(εp) for log-ACD1

models, and E(exp(pε)) for log-ACD2 models. Since the moments of E(εp) are

available for the Generalized Gamma (including Exponential and Weibull) and

Burr distributions, it is possible for one to derive the unconditional moments

for the log-ACD1 model. However, it is very complicated to derive the uncon-

ditional moments of log-ACD2 models. The moment generating function pro-

vides E(exp(pε)), which is only available analytically for the Gamma distribu-

tion. To obtain an approximation of the moments for other distributions such

as the Weibull, the Burr and the Generalized Gamma, one can use the Taylor

expansion:

E(exp(pε)) =
∞∑
k=0

pk

k!
E(εk), (5.10)

where the infinite series of integer moments E(εk) must converge to a finite value

for E(exp(pε)) to exist. For the Burr distribution its moment is determined by

a ratio of two shape parameters, therefore E(exp(pε)) does not exist. For the

Weibull and the Generalized Gamma distributions, the unconditional moments do

exist but only if its shape parameter is larger than one. So far it is obvious that it

is possible but very complicated to derive the unconditional moments for log-ACD

model, especially for log-ACD2 form. Instead, recent literature such as Bauwens,

et al. (2008) have focused on the over-dispersion ratios, autocorrelation functions

(ACF), and differences between other moments of ACD models to explain the
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model.

5.3 Brief Market and Data Description

The after-hours S&P 500 futures data used in this chapter were collected from

the Chicago Mercantile Exchange (CME) through the GLOBEX trading system2.

The futures contracts traded after-hours in the electronic GLOBEX platform are

the same contracts traded in the CME open outcry markets (the open outcry

market only operates between 8:30 CST and 15:15 CST). During open outcry

market trading time, the after-hours trading on GLOBEX is closed. It opens at

15:30 CST after the closure of the pit, and runs until 8:15 CST the next morning.

The process continues for the rest of the week, except that on Fridays there are no

electronic trades following the closure of the pit in the afternoon. In addition the

electronic market trades reduced hours on US public holidays. There is a short

period of closure everyday between 16:30 CST and 17:00 CST for maintenance

of the GLOBEX electronic exchange system.

The electronic trading platform and the open outcry pit cover almost 24 hours

of a day without overlap, thus market participants are able to exchange the same

product in their portfolios in these indices at almost any time in a trading day.

Apart from the standard sized contracts examined here, some other non-standard

sized contracts, in particular the E-mini3 contracts, trade almost 24 hours on the

GLOBEX platform. Since the development of the electronic market in late 1990s,

electronic trading has become more and more popular. Currently three contract

2GLOBEX is an electronic trading platform which runs continuously and is not restricted
by borders or time zones.

3E-minis were introduced for the S&P500 in 1997 and for the NASDAQ in 1999. They have
1/5th size of a standard contract.
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forms (standard future, electronic futures, E-mini) coexist in this market.

Since the opening hours for the after-hour electronic contracts are different

from the standard contracts, traders may react differently to news announce-

ments. According to Dungey, Fakhrutdinova and Goodhart (2009), the highest

average volume in the after-hour period occurs immediately prior to the opening

of the open outcry pit, peaking around 7:30 CST, which corresponds to the release

time for prescheduled macroeconomic news in the US at 8:30 EST. Price impact

for the S&P 500 contracts is also found to be lowest in the high volume period

in that opening period, and higher in general during the European and Asian

trading hours. Based on the liquidity of the market, the gains from information

released can differ between the electronic and floor markets.

The intraday tick by tick data are from the S&P 500 futures contracts from

July 1, 2004 to the end of September 2006. The trade durations are computed

from the original tick transaction data set. All zero durations are removed by

considering unique times, consistent with Engle and Russell (1998). A trade is

treated as a transfer of ownership from one or more sellers to one or more buyers

at a point in time, so that volume associated with transactions occurring at same

time are aggregated. All negative durations are deleted. The data were diurnally

adjusted prior to analysis in order to remove the typical time of day effect, see

Engle and Russell (1998). Engle and Russell (1998) assume the deterministic

seasonality effects act multiplicatively as

xi = x̃is(ti−1), (5.11)

where x̃i is the seasonally adjusted duration, and s(ti−1) is the seasonality compo-
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nent. The diurnally adjusted durations which are fractions above or below normal

are expressed by taking ratios as x̃i = xi
s(ti−1)

. This is estimated by regressing the

raw durations on the time of the day using a piecewise linear spline specification

based on trade duration data with 1 hour intervals. There are 17 knots repre-

senting hourly intervals within a trading day, skipping the floor market trading

hours. This leaves 684,010 observations for the S&P 500 data.

5.4 Estimation Results

Both forms of log-ACD (log-ACD1 and log-ACD2) models are applied to S&P 500

data. However, log-ACD2 forms are the primarily focus here since the log-ACD1

models provided unsatisfactory results. For log-ACD1 specification where g(·) in

equation 5.3 is assumed to be lnx, the logarithmic effects will be lost when the

exponential factor takes power of the expected duration on the left hand side.

In fact the log-ACD1 results are similar to the linear ACD models examined in

chapter 4, which also fail to consider the nonlinearity in the data (Bauwens et al.,

2008). As the degree of nonlinearity is large, the difference between the two forms

of log-ACD models become larger and the misspecifications in log-ACD1 model

is also larger. The results for the log-ACD1(1, 1) models are shown in Table 5.7

in the Appendix to this chapter. Results in the following sections are based on

log-ACD2 models.

The results from the Generalized Gamma log-ACD2 model are not available

due to failure of convergence. When it comes to a more general form like this,

there are often too many parameters to maximize concurrently. Consequently, we

present the results for the Exponential and Weibull log-ACD2 models only. The
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Table 5.1: Estimation Results from EL-ACD(2,2) form 2 model
for S&P 500

Variable Coeffi cient Standard Error Significance
ω -0.0070 0.0000 0.0000
γ1 0.1001 0.0004 0.0000
ω1 1.7935 0.0017 0.0000
γ2 -0.0939 0.0004 0.0000
ω2 -0.7947 0.0017 0.0000

Ljung-Box Q(10) 86.2730 0.0000
Q(20) 132.9840 0.0000

AIC 1.7157
SBC 1.7158

Table 5.2: Estimation Results from WL-ACD(2,2) form 2 model
for S&P 500

Variable Coeffi cient Standard Error Significance
ω -0.0084 0.0002 0.0000
γ1 0.0779 0.0001 0.0000
ω1 1.7681 0.0005 0.0000
γ2 -0.0720 0.0001 0.0000
ω2 -0.7700 0.0050 0.0000
α 0.6692 0.0007 0.0000

Ljung-Box Q(10) 104.2400 0.0000
Q(20) 169.2980 0.0000

AIC 1.3662
SBC 1.3663

Exponential and Weibull log-ACD(2,2) models both yield satisfactory results.

The Ljung-Box Q(20) statistic is 132 for EL-ACD(2,2) model and 169 for WL-

ACD (2,2) model from Table 5.1 and 5.2 , suggesting that serial correlations

in the residuals are significantly removed. Tsay’s nonlinearity test F-statistic is

1623 and significant at the 1% level, strongly indicating that there is nonlinearity

in the raw durations. Table 5.3 compares the same estimates using the linear

Weibull ACD(2,2) model; the Ljung-Box Q(20) statistics are much lower for log-

ACD2(2, 2) model. This suggests that when the nonlinearity problem of the data

can be better addressed, the effi ciency of ACD models can be further improved.
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From this paragraph onwards, we refer log-ACD as the log-ACD model form 2

for simplicity. The differences between the Exponential and the Weibull log-ACD

model results are minor. The EL-ACD(2,2) model has slightly better Ljung-

Box Q(20) statistics and the WL-ACD(2,2) model has a more convincing AIC

statistics (1.36 compared to 1.71). It is hard to choose which model is better, since

both Ljung-Box and AIC statistics are essential criteria for ACD models. It leads

to a question that what is really an accurate measure of goodness of fit of ACD

models. Looking at the standardized residuals of ACD model is only one of many

other methods for testing the model. Purely relying on either of the Ljung-Box

or AIC statistics can be miss-leading. In this chapter the combination of these

two criteria is used for the model selections, a better model needs to produce

lower Ljung-Box and AIC statistics. Following such selection criteria, there is no

clear advantage in either model as the model which produces lower Ljung-Box

statistics has a higher AIC statistic. At this stage there is no preference between

the two models.

Table 5.3: Comparison of a WL-ACD(2,2) (form 2) and a Standard Linear
WACD(2,2) model

for S&P 500
WL-ACD(2,2) WACD(2,2)

Variable Coeffi cient Coeffi cient
ω -0.0084 0.0016
γ1 0.0779 0.1573
ω1 1.7681 1.5627
γ2 -0.0720 -0.1429
ω2 -0.7700 -0.5788
α 0.6692 0.6695

Ljung-Box Q(10) 104.2400 297.7900
Q(20) 169.2980 319.5850

AIC 1.3662 1.3711
SBC 1.3663 1.3712
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The α coeffi cient in Weibull log-ACD (2,2) model is 0.6692, suggesting that

the distribution shape parameter is against a standard Exponential distribution.

Note that there are some negative coeffi cients in Table 5.1 and Table 5.2, espe-

cially the unusual negative equation constant ω0. This is common in log-ACD

models since the only restriction on parameter coeffi cients is
∣∣∣∑ωj

∣∣∣ < 1. The∑
ωj for EL-ACD(2,2) and WL-ACD(2,2) are 0.9988 and 0.9981 respectively.

Table 5.4: Over-dispersion Statistics
Before and After Log-ACD(2,2) Estimates

raw data EL-ACD(2,2) WL-ACD(2,2)
Observations 684010 684010 684010
Mean 0.9973 0.9999 1.0301
standard deviation 1.8976 1.6927 1.7456
over-dispersion ratio 1.9027 1.6928 1.6946

High frequency financial data often experience over-dispersion4, where the

standard deviation is larger than the mean. The S&P 500 data also experience

the same problem in all models examined in this chapter. Table 5.4 lists the

dispersion statistics before and after the Exponential and Weibull log-ACD(2,2)

models. The over-dispersion ratio used in Bauwens and Giot (2000), has improved

from 1.9 to around 1.6 after the log-ACD2 estimates in this chapter. However

it is still larger than 1, indicating that the data still experience over-dispersion.

The over-dispersion ratio for open outcry markets data are usually around 1.3,

see Bauwens et al. (2008). From the results in this chapter, it is likely that the

after-hours electronic market data experiences a larger degree of over-dispersion

than the pit market data.

The normalized series is shown in Figure 5.1, where panel (a) is the diurnally

adjusted duration and panel (b) is the normalized innovations of our Weibull

4The over-despersion ratio is standard deviation divided by the mean.
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Figure 5.1: (a) Adjusted Durations and (b) Normalized Durations after WL-
ACD(2,2) model.

log-ACD(2,2) model. Four major spikes with relatively large magnitude can

be seen in panel (b). It is quite unusual to have such abnormal spikes after

estimation, therefore we look back into these individual dates. It is found that

most of the unusual durations are around 7:30 CST. It is well known that this

time corresponds to macro news announcements in the US. However, the detailed

causes for the spikes in these particular dates remain unknown. No major events

nor news announcements corresponding to each particular day are found except

for the last spike on July 7th, 2005. On that day, four explosions were reported on

the London underground and bus system leading to some transportation networks

being shut down (the 7th July London terrorist attack). In a similar manner to

public holidays, these abnormal data points should be removed. The revised

normalized series is shown in Figure 5.2.

The Weibull log-ACD (2,2) model has been re-estimated based on the revised

data, with the results shown in Table 5.8 in Appendix of this chapter. The coef-
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Figure 5.2: (a) Adjusted Durations and (b) Normalized Durations after WL-ACD
(2,2) Model with Volume Based on Revised Data

ficients show only minor differences from those reported previously. The model

is improved slightly, with a reduced Ljung-Box statistic. No major differences

have been found. The model estimates in the next sections are all based on the

revised data. The over-dispersion ratio has improved slightly from 1.69 to 1.66

for the revised data, as shown in Table 5.5

Table 5.5: Over-dispersion Statistics Before and After Weibull Log-ACD(2,2)
Estimates based on revised data

raw data WL-ACD(2,2) with revised data
Observations 684010 684010
Mean 0.9973 1.0293
standard deviation 1.8976 1.7158
overdispersion ratio 1.9027 1.6670

5.5 Volume Effects

Since the Exponential log-ACD and Weibull log-ACD both provide similar re-

sults, only the Weibull logACD model is chosen for the study of volume effects.
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Volume is added as an additional variable to the model, WL-ACD (2,2) model

and the results are shown in Table 5.6. The coeffi cients for lag durations and lag

conditional expected durations only slightly differ to the WL-ACD(2,2) model

in the initial estimates reported in Table 5.2. The Ljung-Box Q(20) has ma-

jor improvement from 169 to 97 and the AIC and SBC statistics also improved

slightly. The volume coeffi cient is a small negative number, it suggests there is

a negative effect from volume on durations. This is consistent with the market

microstructure theory, where high volume corresponds with heavy trading ac-

tivities. Easley and O’Hara (1992) argue that longer durations correspond with

uninformed trading and imply the stock value has not changed, hence less trading

took place within the particular time period. Therefore it is more likely to have

low volume in the market when the duration is relatively long. On the other

hand, when duration is short, the intensive trading activities imply that asym-

metric information is available in the market and the value of the particular asset

is changing quickly. In this short period of value adjustment of the asset, high

volume occurs since investors prefer to take advantage of their information avail-

able until the asset price is fully adjusted. The results in this chapter support

the same theory applying in the after-hours futures market. The over-dispersion

ratio improves to 1.66 compared to the previous ratio 1.69 in last section. By

adding volume to the model and using the revised data, the model specification

has improved.

The autocorrelation functions for the adjusted duration and normalized inno-

vations with 20 lags are presented in Figures 5.3 and 5.4. A very long tail found

in the ACF graph in Figure 5.3 indicates the data display long memory. From
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Figure 5.3: Autocorrelation Function for the Adjusted Duration Series with 20
lags

Residual Analysis

5 10 15 20
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Q= 97.73 Pvalue 0.00000
AIC= 1.364 SBC= 1.365

Figure 5.4: Autocorrelation Function for the Normalized Innovation Series with
20 lags



5. Logarithmic ACD Modelling 94

Table 5.6: Estimation Results from WL-ACD(2,2)
for Revised S&P 500 Data with Volume

Variable Coeffi cient Standard Error Significance
ω -0.0124 0.0004 0.0000
γ1 0.0813 0.0007 0.0000
ω1 1.6912 0.0071 0.0000
γ2 -0.0718 0.0007 0.0000
ω2 -0.6949 0.0070 0.0000
α 0.6700 0.0007 0.0000
ν -0.0004 0.0000 0.0000

Ljung-Box Q(10) 81.7470 0.0000
Q(20) 97.7400 0.0000

AIC 1.3645
SBC 1.3646

Figure 5.3, it is clear that the immediate correlations are obviously different to

later lags, but after the 2nd or 3rd lags, the correlation effects become very simi-

lar. Historical influence from the 10th and 15th lags are almost the same. Figure

5.4 shows the ACF for the normalized innovation series. Clearly, the normalized

innovations have no significant serial correlations. The long memory pattern is

commonly found in high frequency intraday data, especially in duration data, as

described in earlier chapters. However, long memory could also arise by ignor-

ing structural breaks within the sample. Further analysis on potential structural

breaks problem is presented in later chapters (chapter 6 and 7).

5.6 Conclusions

In this chapter, log-ACD models are used to study the after-hours electronic

futures market. Two forms of log-ACD models are studied and log-ACD2 is found

to fit better for S&P 500 data. Log-ACD1 models perform poorly, especially when

the degree of nonlinearity is large. Both Exponential and Weibull log-ACD form
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2 models yield satisfactory results. However, there are still some event effects or

abnormal data points apparent, which are subsequently identified and removed

in later estimation.

Volume was added as an additional factor in the model and produced an im-

proved model both in terms of removing serial correlations and fitting the data.

The after-hours electronic futures data used in this chapter failed to pass the

F-test of linearity indicating very strong nonlinearity, the linear Weibull ACD

models yield poor results compared with the Weibull log-ACD2 model. Although

a more precise log-ACD2 model (with higher lag order or more general distrib-

utional assumptions) is still required to fully capture the nonlinearity problem,

it is shown that the sample log-ACD2 model is able to handle a certain degree

of nonlinearity. Compared with the traditional linear form of ACD models, the

log-ACD2 models have much improved estimates from the after-hours electronic

futures market data. Finally, the Weibull log-ACD2 (2,2) model is found to be

the best log-ACD2 models considered for the data in this chapter. The log-ACD

model residuals continue to find over-dispersion. Unfortunately, it is very diffi cult

at this juncture to interpret the unconditional moments of the Weibull log-ACD2

model.

In the following chapter, we build another formulation of nonlinear ACD

models to better model duration patterns in the after-hours electronic futures

market by including structural breaks.



5. Logarithmic ACD Modelling 96

5.7 Appendix

Table 5.7: Log-ACD form 1 Results for Exp log-ACD(2,2)
Variable Coeffi cient Standard Error Significance
ω 0.0051 0.0001 0.0000
γ1 0.1156 0.0008 0.0000
ω1 1.6704 0.0035 0.0000
γ2 -0.0939 0.0007 0.0000
ω2 -0.7947 0.0034 0.0000
α 0.6601 0.0007 0.0000

Ljung-Box Q(10) 5394.2360 0.0000
Q(20) 9484.736 0.0000

AIC 1.3772
SBC 1.3773

Table 5.8: Estimation Results After Removal of the Spikes
for S&P 500 (WL-ACD (2,2) form 2)

Variable Coeffi cient Standard Error Significance
ω -0.0093 0.0003 0.0000
γ1 0.0789 0.0007 0.0000
ω1 1.7585 0.0053 0.0000
γ2 -0.0724 0.0006 0.0000
ω2 -0.7606 0.0053 0.0000
α 0.6697 0.0007 0.0000

Ljung-Box Q(10) 110.4090 0.0000
Q(20) 156.0910 0.0000

AIC 1.3649
SBC 1.3650



Chapter 6

ACD Modelling with Structural

Breaks (Pre-Crisis Period)

6.1 Introduction

The traditional linear ACD from Engle and Russell (1998) has been suggested to

perform poorly where data experiences nonlinearity or structural breaks (Zhang

et al., 2001; Ghysels et al., 2004). Through the development of ACD models, the

non-linearity problem commonly observed in duration data has been extensively

addressed. In the previous chapter, we examined after-hours S&P 500 data sam-

ple using logarithmic ACD models from Giot (2000). As addressed by Zhang

et al. (2001), Mikosch and Starica (2004), Hillebrand (2005), and many other

papers, nonlinearity and long memory patterns could also occur through ignoring

structural change effects. Hence this chapter studies the structural stabilities of

the ACD model parameters for the same S&P 500 duration data examined in the

previous chapter.

Structural breaks based on linear models using least squares have been well

97



6. ACD Modelling with Structural Breaks (Pre-Crisis Period) 98

studied in the literature, but relatively few structural breaks studies are based

on more general conditional models, particularly through maximum likelihood

in the ACD framework. Many of these ACD models are based on the strong

similarity to GARCH models, and long memory features in the estimated data

are commonly found. The long memory pattern observed could be caused by

ignoring potential structural breaks within the model. However, most studies on

nonlinearity, structural breaks, or threshold effects using ACD models which are

more flexible and less restrictive, only involve a relatively short sample period, for

example the 3 month data sample in Zhang et al. (2001). This chapter studies a

two-year period of intraday high frequency data between 2004 and 2006, making

any potential structural break problem hard to ignore.

The after-hours electronic markets only became popular in early 2000s. Among

existing literature, this chapter provides an unique structural break study based

on the after-hours electronic futures market duration data. It is particularly

interesting not only to see how the structural breaks affect ACD models, but

also how the structures behave in the after-hours futures market in the period

examined.

In this chapter, the LM-based structural break test of Andrews (1993) and

Andrews and Ploberger (1994) are applied to a Weibull ACD (WACD) model to

test for structural breaks. The sample data is then segmented into sub-periods

and studied individually using a WACD. An alternative approach would be to use

regime switching models but we do not pursue this as it requires us to exogenously

specify the number of regimes. By considering structural breaks in the sample

data, the nonlinearity problems outlined in previous chapters for estimating ACD

model are being addressed. The chapter is constructed as follows: Section 6.2
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gives a brief literature review on structural breaks detection; Section 6.3 and 6.4

present data description and methodology; Section 6.5 illustrates the results and

finally Section 6.6 concludes.

6.2 Brief Review of Structural Break Tests

Ignoring structural breaks can be costly. Mikosch and Starica (2004) provide ev-

idence of false long memory in the autocorrelation function if one ignores struc-

tural breaks. Andreou and Ghysels (2009) also summarize the problems of ignor-

ing structural breaks in financial time series, such as false integrated models that

yield long memory in the autocorrelation function.

Hillebrand (2005) provides a theoretical explanation for this effect, where by

ignoring the structural changes, a spurious integrated GARCH process is ob-

tained. By comparing the source of stochasticity in GARCH and AR processes,

Hillebrand (2005) concludes that GARCH models are more sensitive to change

points than AR processes. Since ACD models and GARCH models share many

similar properties, ACD models should also be expected to be sensitive to struc-

tural breaks. Diebold (1986) and Lamoureux and Lastrapes (1990) also highlight

the consequences of unaccounted structural breaks and regime switches in finan-

cial time series.

There are many ways to categorize the existing change-point tests in the fi-

nancial time series literature, here we only introduce literature relevant to tests

based on multiple unknown change points in ACD models. The traditional opti-

mal tests such as in Farley and Hinich (1970), and Kim and Siegmund (1989) do

not apply in the case when the change points are unknown, because the nuisance
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parameter is not identified under the null hypothesis and the test statistics are

not in a standard distributional form. This problem was not solved until An-

drews (1993) developed the sup-LM test and tabulated critical values of the test

statistics. Further developments includes Andrews and Ploberger (1994, 1996),

Hansen (1996), Sowell (1996), Bai and Perron (1998), and Hall and Sen (1999).

The test from Bai and Perro (1998) allows multiple structural breaks to be tested

at the same time, but the exact number of breaks within the period is required

to be known. Smith (2008) conducts Monte Carlo experiments and finds that

the traditional diagnostic tests such as Wooldridge (1990) robust LM tests for

autocorrelation failed to detect structural breaks in GARCH related models.

Two of the more popular structural break tests in recent literature are the

CUSUM break test of Inclan and Tiao (1992), and the LM-based structural break

tests of Andrews (1993) and Andrews and Ploberger (1994).

The CUSUM test of Inclan and Tiao (1992) was originally designed for the

problem of multiple change points caused by a change in the variance of a sequence

of independent processes. The algorithm for detecting the variance changes is to

use an iterated cumulative sums of squares. CUSUM-type tests have been ex-

tended in the recent literature and applied to strong mixing processes (Kokoszka

and Leipus, 2000). Smith (2008) points out that when returns experience fat

tails, the CUSUM test tends to over-reject structural breaks.

The LM-based tests on the other hand, developed by Andrews (1993) and

Andrews and Ploberger (1994), have more accurate size and better power to

detect a range of breaks in dynamics of conditional volatility. The LM based

tests used to detect breaks in this chapter are designed for testing unknown

breaks. The SupLM test is inspired by Davies (1987) and has the limitation that
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it depends on only one sample point. Andrews and Ploberger (1994) developed

the Exponential Lagrange Multiplier statistic (ExpLM) and Weighted Averages

of LM tests (AveLM) to improve the power of the LM-based structural break

tests. Their tests have since been extended from linear regression models to more

general models. For example, Sowell (1996), and Hall and Sen (1999) extend tests

for parameter instability to the GMM framework, Hansen (1998) tests structural

changes in conditional models.

One problem of the LM-based tests is that if the break point is too close to

the boundary, say the beginning 15% or final 15% of the data, the LM-based

tests can yield poor results (Andrews, 1993). Additionally, there are a number of

cautions when applying these break tests. Vogelsang (1997) find that applications

with CUSUM and LM-based tests may overestimate the number of breaks and

find incorrect locations.

There are also many other forms of structural break tests, namely the general-

ized fluctuation tests in Kuan and Hornik (1995) and Leisch et al. (2000). Davis

et al. (2005) present a method for detecting the optimal number and location

of multiple change points in stochastic volatility process based on a minimum

description length criterion.

6.3 Data Description

The data were collected from Chicago Mercantile Exchange (CME) and comprise

trades posted on the GLOBEX trading system1 as intraday tick by tick on the

1GLOBEX is an electronic trading platform which runs continuously and is not restricted
by borders or time zones.
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S&P 500 futures contracts from July 1, 2004 to the end of September 2006.

The trade duration data are computed from the original tick transaction data

set. Consistent with Engle and Russell (1998), all zero durations are removed

by considering unique times. A trade is recognized as a transfer of ownership

from one or more sellers to one or more buyers at a point of time, the volume

associated with transactions occurring at the same time are aggregated. The

data were diurnally adjusted prior to analysis in order to remove the typical time

of day effect, see Engle and Russell (1998).

Engle and Russell (1998) assume the deterministic seasonality effects act mul-

tiplicatively. Similarly to previous chapters, the sample data is diurnally adjusted

using spline based on 1 hour intervals. Skipping the floor market trading hours,

there are 17 knots representing hourly intervals within a trading day. The diur-

nal adjusted duration series includes 684,004 observations and experiences long

memory in its ACF. The ACF is decays at a very slow rate as shown in Figure

6.3 in the Appendix to this chapter.

6.4 Methodology

The test used for detecting structural breaks in this chapter is the LM-based

tests of Andrews (1993) and Andrews and Ploberger (1994), henceforth AP test.

Similar to the CUSUM test, this LM-based methodology falls into the category

of binary and sequential sample segmentation class of structural break test. Ba-

sically it treats the multiple change points detection as an extension of the single

change point problem. It first tests the total sample of the data, then if a change

point is detected, the data sample is segmented into two sub-samples and retested.
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This process is continued until no further change points are detected. By apply-

ing these LM-based tests, it is possible to estimate the number and location of

breaks.

Consider a time series data yt for t = 1, ....T parameterized by θt. Use π ∈

(0, 1) as the percentage location of the sample data within the change point. The

process becomes two, with parameters θ1 and θ2 when there is a break:

θt =

{
θ1(π) for t = 1, ...[Tπ]

θ2(π) for t = [Tπ], ...T

}
, (6.1)

where [Tπ] is the proportion of sample occurring before the break, rounded to

the nearest integer.

The null hypothesis of no structural breaks is that the parameters in all pe-

riods are the same:

H0 : θt = θ0 . (6.2)

In the case when the break point is already known, the problem is very simple,

breaks can be detected by using a standard Chow test. Alternatively one can use

a standard LM test for structural break:

LMT (π) =
T

π(1− π)
g1T (θ̃, π)T∗S−1

T DT (DT
TS
−1
T DT )−1DT

TS
−1
T g1T (θ̃, π), (6.3)

where g(yt; θ̃) = ∂ log f(yt; θ̃)/∂θ̃, which is the partial derivative of the log density

of parameter vector; g1T = (1/T )

T∑
t=1

g(yt; θ̃), with

ST = (1/T )

Tπ∑
t=1

(g(yt; θ̃)− g1T (θ̃))(g(yt; θ̃)− g1T (θ̃))T , (6.4)
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and DT = (1/T )
T∑
t=1

(∂g(yt; θ̃)/∂θ̃
T

).

However, most of the time the change point is unknown. Standard distribu-

tional theory can not be applied here. The null hypothesis of no structural break

becomes singular information matrix, and the log-likelihood will be the same for

all possible break points when θ1 = θ2. In such a context, Andrews (1993) intro-

duce the (Average) Exponential LM test and reported the critical values of the

non-standard distribution. The optimal test statistic Exp-LMT is defined by

Exp-LMT = (1 + c)−p/2
∫

exp(
1

2

c

1 + c
LMT (π))dJ(π), (6.5)

where p is the dimension of parameter set θ. A weight function J(·) is applied

here over values of π in Π (Π is the space of the full data sample, ie Π = [0, 1]),

and c>0 is a scalar constant that depends on the J(·) function. The value of

the constant c determines whether the power of the alternative is far or close

within the sample.2 Andrews and Ploberger (1994) suggest that among the class

of all tests of asymptotic significance level α, the Exp-LMT test has the best

weighted average power asymptotically. At asymptotic level α, the Exp-LMT

test maximizes

lim
T→∞

∫
P (ϕT rejects|θ0 +B−1

T h, π)dQπ(h)dJ(π) (6.6)

over all tests ϕT , where BT is a nonrandom s × s diagonal matrix and s is

the dimension of the new parameter of the next regime, so that s = p + q. A

weight function Q(·) for h is introduced here to measure the extra weights in the

2The Exp-LMT test depends on c unless in the special case of J(π) is a pointmass
distribution.
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parameter changes, where h follows θ2 = θ1 + h. In equation (6.5), there are

two extreme cases according to values of the scalar constant c. If c → 0, the

Exponential LM test reduces to the “Average LM”test statistic (Ave-LM). The

Ave-LM follows

lim
c→0

2(Exp-LMTC − 1)/c =

∫
LMT (π)dJ(π). (6.7)

The Ave-LM statistic is especially useful for testing alternatives which are

very close to the null hypothesis. This is because when c → 0, less weight is

given to the alternatives for a large structural break. However, when limit is set

towards the other extreme as c → ∞, the Exponential LM statistics take on an

Average Exponential form:

lim
c→∞

log((1 + c)p/2Exp-LMTC) = log

∫
exp(

1

2
LMT (π))dJ(π), (6.8)

which is particularly useful for testing against more distant alternatives. The Sup-

LM statistic can be generated from Exp-LM statistic by replacing the constant

term c
1+c

with another constant r > 0. When r → ∞, the Sup-LM statistic is

defined as:

lim
c→∞

(logExp-LM r
T )/r = sup

π∈Π∗
LMT (π), (6.9)

where Π∗ ⊂ Π and Exp-LM r
T is the Exp-LMT statistic with c

1+c
replaced by

r. Andrews (1993) find that the Sup-LM test performs poor results if Π =

[0, 1]. By dropping a proportion of the sample data, estimate results can be

improved. According to Andrews (1993), the boundary was defined at 15%. ie

Π = [π0, 1− π0], and π0 = 15%.
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Since the Sup-LM test only depends on one sample point, the power of the

test is limited. The distribution of the Sup-LM test depends on the proportion of

sample dropped and on the number of parameters. The Ave-LM test and Exp-

LM test, however, are possible to consider all the break points for the structural

break test.

The model used in this chapter is the Weibull ACD (WACD) model of Engle

and Russell (1998) and is described as follows. If trades in a particular market

occurred at time ti, the duration which is the irregular interval between consec-

utive trades xi = ti − ti−1, where ti−1 is the immediately previous trade. The

duration, xt, is diurnally adjusted before entering the model. After removing the

daily pattern the expectation of the ith duration is written by

ψi ≡ E(xi | xi−1, ..., x1) = ψi(xi−1, ..., x1; θ),

where ψi ≡ E(xi|xi−1, . . . , x0) represents the conditional expected duration and

θ denotes the parameter space. Duration xi is assumed to follow

xi = ψiεi , (6.10)

where {εi} v i.i.d.3 and εi is an error process. The clustering and autoregres-

sive aspects of duration can then be captured by the specification of conditional

expected duration. The basic ACD(p, q) model can be written as:

ψi = ω +

p∑
j=0

γjxi−j +

q∑
k=0

ωkψi−k, (6.11)

3{εi}with density p(ε;φ),φand θ are variation free
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where ω, γj and ωk are parameters, and p and q represent the lag orders, see Engle

and Russell (1998). For a Weibull ACD, the error term εi is assumed to follow a

Weibull distribution. The conditional log likelihood function for a WACD model

is

`(x | θ, xio) =
T∑

i=io+1

α ln

[
Γ(1 +

1

α
)

]
+ ln(

α

xi
) + α ln(

xi
ψi

)−
(

Γ(1 + 1/α)xi
ψi

)α
,

(6.12)

where xi ≥ 0 and α > 0 is a shape parameter for a Weibull distribution. The

WACD model is estimated by maximum likelihood of equation (6.12). Other

models such as log-ACD and Generalized Gamma ACD models could also be

considered as in previous chapters. However, the log-ACD model appears to

produce very unstable estimates in the presence of substantial non-linearities and

it is very diffi cult to obtain convergence for Generalized Gamma ACD models4.

Consequently a Weibull ACD (1, 1) is used for structural breaks study in this

chapter. Higher lag orders of Weibull ACDmodels are not pursued in this chapter

for the following reasons: first, low lag orders ACD models are far less costly

to estimate than higher order ACD models; and second, higher lag orders ACD

models can produce some individual negative coeffi cients, as long as
∑p

j=0 γj > 0,∑q
k=0 ωk > 0,

∑p
j=0 γj +

∑q
k=0 ωk < 1 are satisfied. These negative coeffi cients

may cause problems in the residuals and conditional expected durations. More

importantly, it is more likely for a model with some negative coeffi cients to reach

a local maximum instead of the global. These parameter limits problems have

been addressed in Bauwens and Giot (2000).

4As discussed similarly in chapter 4.



6. ACD Modelling with Structural Breaks (Pre-Crisis Period) 108

6.5 Structural Break Application Results

In this section, the Andrews Ploberger test is applied to the WACD model pa-

rameters. The S&P 500 sample data is the same as previous chapters from 1st

July 2004 to 29th September 2006. Following chapter 4, the model specification

is a Weibull ACD (1, 1) with volume as an additional mark5. The ACD model

parameters are fitted into the AP break test in a consistent manner with the

GARCH break test literature. A Weibull ACD(1,1) with volume is estimated as

follows:

ψi = ω + γ1xi−1 + ω1ψi−1 + v1voli−1, (6.13)

where voli−1 is the past volume parameter. The AP break test examines the

structures of the conditional expected duration ψi, constant ω, lagged duration

xi−1, lagged conditional expected ψi−1, and volume parameter v1. The Sup-LM

and Ave-LM break test statistics for all coeffi cients are selected to determine

the break point locations. After the break has been detected, Weibull ACD(1,1)

models are fitted for the sub-periods, and the AP test is reapplied to detect

additional breaks. As ultra high frequency data lasts 2 years, a 22 day6 filter is

applied for the detection process. All qualified test statistics have to be significant

at 1% level. Note that it is still possible for a shorter sub-period (less than 22

days) to occur, as a break point is found to be located close to the end point of

previously defined period.

Nineteen break points are detected using the above filters using twenty-seven

months data, averaging just over a month for every subperiod. Table 6.1 shows

5Other marks such as bid-ask spread, price are not added due to lack of data.
622 days of S&P 500 intraday data have around 20,000 data points and is normally treated

as a working month.
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Table 6.1: Three Major Break Level Statistics
from A Weibull ACD(1,1) Model for The S&P 500 Data

(01/07/04-11/04//05)
Break Date: 29/09/04
aveLM=46.19 (0.00)
supLM=103.70 (0.00)

(01/07/04-12/05/06)
Break Date: 4/11/05
aveLM=112.16 (0.00)
supLM=239.03 (0.00)

(12/04/05-12/05/06)
Break Date: 06/01/06
aveLM=32.48 (0.00)
supLM=76.99 (0.00)

(01/07/04-29/09/06)
Break Date: 12/05/06
aveLM=185.34 (0.00)
supLM=385.09 (0.00)

(13/05/06-16/06/06)
-No Break-

(13/05/06-29/09/06)
Break Date: 16/06/06
aveLM=174.07 (0.00)
supLM=362.12 (0.00)

(17/06/06-12/05/06)
Break Date: 07/07/06
aveLM=13.59 (0.00)
supLM=35.78 (0.00)

Date follows day/month/year order

the detection process for the first four major break points. Figure 6.1 shows the

hierarchical orders of the detection process, with level 1 representing the first

break detected. The maximum of the LM, which is the Sup-LM test statistic,

of 385.09 is obtained on 12th May 2006. Back in early May, 2006, Kirkland,

Washington based Merit Financial Inc. filed for bankruptcy. Since then, the

potential subprime crisis started build up though out late 2006 and early 2007.

This significant break point located for the sample data further incorporated the

changes in market structure from duration’s perspective. Figure 6.2 is the plot

of Andrews and Ploberger test statistics over the whole sample, and shows at
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Figure 6.1: Levels of Breaks in Detection Order. (Level 1 is the 1st Break Date
Found on May 12th, 2006)

the 545940th observation (05/12/06) the highest breakpoint statistic is obtained.

The detection process continues until test statistics reach to the filtering criteria.

The statistics for the full detection process of all 19 breaks are given in Table 6.4

in the Appendix.

Summary statistics of the raw data for the 20 sub-periods (19 breaks) are

shown in Table 6.2. Over the 20 subperiods, the number of observations vary from

14566 to 71662, and the average durations vary from 0.61 to 1.31. Sub-period 8

(04/16/05-05/02/05) has the lowest mean and standard deviation of 0.6650 and

1.3002 while the highest mean occurred in sub-period 13 (11/05/05-01/06/06)

at 1.3131. The adjusted volume is generally larger than 1 after sub-period 16

(05/13/06-06/16/06). Note the average mean adjusted duration and adjusted

volume for the whole sample raw data sample is around 1.

A separate Weibull ACD (1,1) model is fitted on each of the 20 sub-periods

and the parameters are shown in Table 6.3. Some of the parameters are quite

different across different regimes. The constant parameter ω0 in 20 sub-periods
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Breakpoint Test Statistics
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Figure 6.2: Lcation of the Break for the First Run on the Whole Data, Where
x-axis is the Number of Observation and This Break Occurs on May 12th, 2006.

varies from 0.0058 to 0.0835. A smaller range is evident for the lagged duration

parameters, changing from 0.0674 up to 0.1261. Impacts from past durations

are evidently stronger towards to the end of the period in 2006. The estimated

coeffi cients show γ1 + ω1 are all very close to 1, indicating that there is a high

level of persistence in the adjusted durations. The estimates of α in the stan-

dardized Weibull distribution are around 0.6 to 0.7 across all periods, indicating

the conditional hazard function is decreasing at a moderate rate.7 The volume

parameter changes significantly from a minimum of -0.0003 in sub-period 10 to

a maximum of -0.0042 in sub-periods 5 and 13, the negative impacts from past

volume are 14 times stronger in the latter periods. Note that in Table 6.3, the

conditional expected duration ω0/(1− γ1 − ω1) is 0.72 and 0.66 in sub-periods 8

7Information on Weibull distribution and hazard function is presented chapter 4.
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Table 6.2: Summary Statistics
of Individual Sub-periods

sub-period NumObs Mean SD adjusted
duration volume

1: (07/01/04-08/18/04) 39999 0.9851 1.7791 0.9219
2: (08/19/04-09/29/04) 29762 1.1178 2.0960 0.9014
3: (09/30/04-11/03/04) 41048 0.7556 1.3770 0.9515
4: (11/04/04-12/06/04) 23131 0.9645 1.8091 0.9242
5: (12/07/04-01/05/05) 16899 1.3109 2.5452 0.8964
6: (01/06/05-03/22/05) 58613 1.0431 1.9457 0.9551
7: (03/23/25-04/15/05) 17953 0.9779 1.866 0.9626
8: (04/16/05-05/02/05) 17756 0.6650 1.3002 1.0543
9: (05/03/05-07/05/05) 44303 1.1570 2.1437 0.9488
10: (07/06/05-07/21/05) 14566 0.8844 1.6958 1.1288
11: (07/22/05-10/05/05) 54773 1.1038 1.9846 0.9775
12: (10/06/05-11/04/05) 31606 0.8048 1.4348 1.1139
13: (11/05/05-01/06/06) 35947 1.3131 2.4432 0.9597
14: (01/07/06-01/27/06) 17086 0.9133 1.8228 0.9956
15: (01/28/06-05/12/06) 71662 1.1784 2.1112 0.9936
16: (05/13/06-06/16/06) 46591 0.6067 1.877 1.1727
17: (06/17/06-07/07/06) 16191 0.9792 1.9551 1.0307
18: (07/08/06-08/10/06) 31687 0.8649 1.5358 1.1084
19: (08/11/06-09/06/06) 15323 1.2425 2.4661 1.0484
20: (09/07/06-09/29/06) 18737 0.9867 1.7701 1.0314

and 16. The sample mean in the raw durations in the corresponding periods are

0.66 and 0.60 respectively for the two periods from Table 6.3, thus it is reasonable

that the conditional expected durations in these period are less than one.
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The individual WACDmodel parameters are plotted to assist further analysis.

Changes in ω0 and α parameters are all within an reasonable range and there is

no obvious trend. The parameter plots are in Figures 6.5, 6.6, 6.7, and 6.8 in the

Appendix. The past conditional expected duration parameter ω1 experience a

slow downward trend as shown in Figure 6.6. This pattern indicates that weaker

impacts arises from expected durations along the time line. The past durations

parameter γ1, changes almost symmetrically with parameter ω1, with a slightly

upward trend as shown in Figure 6.7. Note that the distributional shape para-

meters α do not fluctuate very much, indicating the sample duration distribution

form remains in a similar form during the sample period examined. However, the

distributional shape may change sometime if sample period examined is more

volatile. This matter is addressed in the following chapter where a more volatile

crisis period sample data is examined. Interestingly the only parameter which

varies significantly is from volume. Hence analysis based on volume parameter v

changes is primarily focused in this chapter.
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The volume parameters for all 20 individual sub-periods are graphed in Figure

6.3. The vertical grid line represents the most significant break which occurred

on 12th May, 2006. As can be seen the magnitude of the negative coeffi cient

becomes smaller immediately following the most significant break point. Before

12th May, 2006, the volume parameters seems to fall into two regimes, with the

first regime in the range from -0.0003 to -0.0023, and second regime from -0.0028

to -0.0042. However, immediately following the most significant break point, the

parameter v has contracted with small standard errors. This could be caused by

the large increase in number of observations in these sub-periods. After 3 more

sub-periods, event effects start to fade and volume coeffi cient starts to climb

back. The cause of this most significant break point is possibly the bankruptcy

of the Washington based Merit Financial Inc. took place in early May, 2006.

The merger plan between CBOT and CME was only announced in October,

2006, whereas the data examined in this chapter ends in September, and the

most significant break is detected in May, 2006. Apart from the most significant

break found on 12th May, 2006, it is very diffi cult at this stage to interpret this

structural change in relation to the market. However, in the following chapter,

more analysis can be drawn based on structural changes since the data sample

continues through the global financial crisis period where many economic events

occurred.

The Weibull ACD(1,1) still does not fit some of the sub-periods very well.

Some further studies such as fitting a more complicated ACD model may help to

remove the nonlinear pattern of the data. For example Zhang et al. (2001) fit a

three-regime Threshold ACD model while detecting the structural breaks. Also

if we relax the filter for breaks and allow more break detections, the model may
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fit better.8

6.6 Conclusions

In this chapter, we performed Andrews Ploberger structural break tests on a

Weibull ACD model using after-hour electronic futures market data set spanning

two years. The sample is divided into 20 sub-periods from 07/01/04 to 09/29/06

using the AP test. The parameters change significantly across different sub-

periods, especially for volume parameters. Although the Weibull ACD (1,1)

model still does not fit some of the sub-periods very well and some remaining

nonlinearity is evident due to the restriction of the filters and model selection,

the overall model fitting improves by picking up all the sub-periods. A more

complex ACD model with higher lag orders could be fitted into the structural

break detection in the future studies.

In next chapter, testing structural breaks within ACD model is applied to

S&P 500 data during the 2007-2008 global financial crisis period. This new data

sample is expected to have larger degree of structural effects given that many eco-

nomic events took place during the sample period, potentially allowing duration

dynamics to be better interpreted as aligning with these economic events.

8We also applied the AP breaks test on the residual from a Weilbull ACD(1,1) model by
treating them as an AR(1) process. If the ACD model is correctly estimated and there are no
structural breaks in the data, the residuals should not be serially correlated. Three breaks are
located and presented in Table 6.5 in Appendix.
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6.7 Appendix

Residual Analysis
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Q= 209165.00 Pvalue 0.00000

AIC= 1.369 SBC= 1.369

Figure 6.4: ACF with 50 lags for S&P Raw Data
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Table 6.4: Subperiods AveLM and SupLM Test Statistics(July 04-Sep. 06)

Break Date Break Level SupLM p-value AveLM p-value
18/08/04 4 83.6973 0.000 35.7033 0.000
29/09/04 3 103.6969 0.000 46.1897 0.000
03/11/04 6 103.6545 0.000 97.4823 0.000
06/12/04 5 40.705524 0.000 15.6366 0.000
05/01/05 6 78.8267 0.000 34.2424 0.000
22/03/05 4 143.6403 0.000 66.5692 0.000
15/04/05 6 237.5907 0.000 113.5759 0.000
02/05/05 5 234.9926 0.000 110.3186 0.000
05/07/05 6 143.4637 0.000 66.3300 0.000
21/07/05 7 408.7457 0.000 197.6461 0.000
05/10/05 8 137.9263 0.000 62.8841 0.000
04/11/05 2 239.0274 0.000 112.1628 0.000
06/01/06 3 76.9878 0.000 32.4823 0.000
27/01/06 4 267.0580 0.000 126.57462 0.000
12/05/06 1 385.0941 0.000 185.3365 0.000
16/06/06 2 362.1198 0.000 174.0727 0.000
07/07/06 3 65.0091 0.000 27.6672 0.000
10/08/06 5 35.7799 0.000 13.5921 0.000
06/09/06 4 81.0641 0.000 35.5097 0.000

Table 6.5: Three Sub-periods from Testing the Model Residuals
sub-periods

1: (07/01/04-07/08/05)
2: (07/09/05-06/14/06)
3: (06/15/06-09/29/06)
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Chapter 7

ACD Modelling with Structural

Breaks (Crisis Period)

7.1 Introduction

In this chapter the study of potential structural breaks in ACDmodels is extended

to a comprehensive investigation of durations data around the 2007-2008 global

financial subprime crisis period.

The subprime crisis of 2007 is recognized as the worst financial crisis since the

1930s Great Depression. Worldwide financial institutions, banks, and stock mar-

kets suffered severely and economic activity declined significantly. The details

of crisis impacts were introduced in chapter 3. Relevant literature on the crisis

includes Blackburn (2008), Kolb (2010), Ely (2009), Liebowitz (2009), and Rein-

hart and Rogoff (2008). In this severe time period, significant structural effects

are highly likely due to the economic events taking place. While the ACD class

of models are able to capture the temporal dependence of the clustering duration

process within a short period, the question of whether ACD models are adequate

124
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for modelling longer periods of data, especially during extremely volatile market

movements, remains uncovered.

The crisis period data provides a rich sources of price, volume, and investor

behavioural changes, producing an opportunity to study duration changes to-

gether with other marks in market. Duration shifts are often associated with

news events and structural changes, and it is of interest to see whether these

are aligned. WACD models are fitted to the data sample for the period from

the beginning of October, 2006 to the end of December, 2008, to study the

ACD structure through extreme volatile market changes and potential multiple

structural changes. Popular approaches available for testing unknown structural

breaks in conditional models include the Sup-LM based tests in Andrews (1993)

and Andrews and Ploberger (1994); CUSUM test from Inclan and Tiao (1992)

and multiple structural break test in Bai and Perron (1998). In this chapter we

adopt the Sup-LM based tests as in chapter 6, to locate the structural breaks

from the model and break up the data sample into sub-periods. A basic Weibull

ACD(1,1) model is fitted in each individual sub-period.

The application in this chapter follows the earlier chapters in being based on

the after-hours futures market traded through the Global Exchange (GLOBEX)

platform. However the sample is now based on crisis period and is for 2 later

years than the earlier part of the thesis. The volume in this market has grown

significantly. In fact, electronic market trading from the Chicago Mercantile

Exchange (CME) takes around 80% of total market volume traded, and electronic

trading is generally seen as the way of future. The after-hours market provides

trading after the clock and records transaction from all over the world. For these

reasons, the data in the crisis period in the electronic market can be treated as
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a relatively complete documentation of investors’trading behaviour during the

global crisis, embedded with many uncovered stories.

The chapter is constructed as follows: Section 2 introduces the after-hours

market and the financial crisis; Section 3 provides the data description; Section

4 outlines the methodology, Section 5 includes the estimation results and finally

Section 6 concludes.

7.2 The After-hours Market During The Global

Financial Crisis

The 2007-2008 Global Financial Crisis (GFC) has been generally considered as

the worst financial crisis since 1930s. The S&P 500 data sample examined in this

chapter starts from 2006, when the U.S. interest rate started to rise again due to

the pressure of a falling US dollar. Rising defaults in mortgages and shrinking

housing values started to cause damage; first apparent in hedge funds. In late

2006, fears of losses in higher tranches of asset backed securities started to grow.

Consequently the U.S. stock market was bearish from the end of 2006 till early

2007.

In mid 2007, the build up of increasing fear of defaults created a credit crunch,

investors started to lose confidence in the value of sub-prime mortgages. Tighter

inter-bank lending made it diffi cult for suffering companies to recover. Market

investors lost confidence in sub-prime mortgage values, leading to huge level of

trading to adjust portfolios.

The crisis started to strike the market following the collapse of two Bear

Stearns hedge funds on 17th, July 2007. Foreign investment banks suspended
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investment funds in the subprime mortgage market, and the U.S. Federal Reserve

intended to cut the discount lending rate and agreed to lend directly toWall street

firms. Unfortunately the market deteriorated further and more firms collapsed

during the year 2008. In September 2008, a series of economic events took place.

Followed by the takeover of Fannie Mae and Freddie Mac, Merrill Lynch was sold

to Bank of America, and Lehman Brothers collapsed. American International

Group survived bankruptcy due to a $85 billion loan facilitated by the Federal

Reserve.

Since global financial markets are highly integrated, the sudden rise in US

financial market volatility and preference for liquidity was quickly distributed

worldwide. Many leading banks and large financial institutions were affected due

to the collapse in the value of mortgage-based securities in US and Europe during

2007 to 2008.

The details of futures contracts traded on GLOBEX in the after-hours are

not introduced here again (see more details in chapter 3). Around the 2007

global financial crisis period, the volume traded in the electronic market increased

dramatically. Figure 7.1 suggests that more transactions took place in the 2006-

08 period, compared with the former two-year (2004-06) period examined in

Chapters 4, 5, and 6. A merger between CME group and the Chicago Board of

Trade (CBOT) took place in late 2006, and all the electronic products merged

in January 2007. This is responsible to some degree for the huge (67%) growth

in total volume traded in the CME group, and 82% growth in GLOBEX from

the 2006 to 2007 financial year1. Also, from January 2008, the U.S. stock market

experienced a major downturn. With the presence of over-night and international

1The statistics are collected and calculated from CME group annual reports 2002 to 2009.
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Figure 7.1: GLOBEX Yearly Trading Volume Percentage Growth

news events, investors may prefer to access GLOBEX to adjust their positions

rather than wait until the next day for the floor market to open. According to

statistics from CME web site, the volume traded in the whole year of 2008 for

all markets was 2.98 billion contracts, and volume traded on GLOBEX was 2.43

billion contracts, taking almost 82% of the whole market. Not only have more

transactions occurred within U.S., there have been growing trade from all over

the world. In 2009, 19% of volume traded in the electronic market was transacted

outside U.S. trading zone, compared with 17% in 2008 and 9% in 2007.

7.3 Data Description and Methodology

The data sample used in this chapter is the standard equity futures contracts

for the S&P 500 traded in the after-hours electronic market on the GLOBEX
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Figure 7.2: Time Series Plot of Adjusted Durations for S&P 500 During Crisis
Period

exchange from beginning of October 2006 to the end of December 20082. The

sample period is selected to include the global financial crisis of 2007 to end of

2008. The duration data in this chapter are first diurnally adjusted using a spline

to remove the daily pattern as in Chapter 6. The adjusted duration time series

data for the S&P 500 have 1,349,514 observations over the sample period. A time

series plot of the adjusted durations is shown in Figure 7.2.

Apart from duration, volume is also considered in the model as an additional

mark. Volume is also diurnally adjusted to remove the daily seasonality. All the

transactions occurring at the same time are aggregated to avoid zero durations.

The diurnal patterns for duration and volume are shown in panel (a) and (b) in

Figure 7.3, where the horizontal axis represents the time of a day in the form

of number of seconds from mid-night, and vertical axis is the adjusted diurnal

series.

The duration and volume diurnal patterns during pre-crisis and crisis period

2The data sample in this chapter is a continuation of the data (July 2004-September 2006)
examined in previous chapter.
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Figure 7.3: Diurnal (a) Duration and (b) Volume Pattern for S&P 500 During
Crisis Period

are shown in Figure 7.3 and 7.43. The diurnal patterns for the crisis period

have clearly changed from the pre-crisis data. The differences are clear for both

adjusted duration and volume between mid-night and 8:30 am. Compared to

the 2004-2006, the adjusted duration during crisis period drops and volume rises

more quickly in the early morning before 8:30 am. This indicates that the trading

activities were more intensive, and investors acted more quickly according to their

available information during the morning period, which is consistent with Dungey,

Fakhrutdinova, and Goodhart (2009). The quickly rising diurnal adjusted volume

is consistent with this view.

The range of diurnal adjusted duration is between 10 and 80 seconds during

the crisis period, compared to from 10 to 170 seconds before the crisis period,

32004-2006 diurnal pattern is from Figure 4.3 in chapter 4.
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indicating the average level of waiting time during the crisis is much shorter.

However, the range of diurnal adjusted volume has actually decreased during the

crisis. This might due to less clustering of trading during crisis period. In other

words, compared with non-crisis period, the trading activities during the crisis

period are more evenly distributed, but with shorter waiting time. Clustering

behaviour is also discussed later in this chapter in association with changes in

ACD model parameters.

From the comparison between Figure 7.3 and 7.4, it is clear that the adjusted

volume pattern has shifted downwards overall during the crisis period. As the

time period between mid-night and 8:30 am mostly corresponds trading activities

from Europe, it is a good indication that worldwide investors trading behaviour

has changed due to the global financial crisis.

Figure 7.4: Diurnal (a) Duration and (b) Volume Pattern for S&P 500 During
2004 to 2006 Period.
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The LM-based tests of Andrews (1993) and Andrews and Ploberger (1994)

are adopted for detecting structural breaks in the ACD model of this chapter.

The LM-based tests treat the multiple change points detection as an extension

of the single change point problem as described in chapter 6. The sample data

are first fitted with a Weibull ACD (1, 1) model. The Weibull ACD (1, 1) model

used in this chapter follows:


Xi = ψiεi

ψi = ω0 +
∑m

j=0 γjxi−j +
∑q

j=0 ωjψi−j + vivol,

εi ∼ i.i.d. (7.1)

where ω, γj and ωk are parameters, and p and q represent the lag orders. The

adjusted volume is added as an additional mark in the model, with a parameter v1.

Manganelli (2005) introduced a vector autoregression approach to model duration

and volume simultaneously, producing greater feedback on volatility. However,

this thesis does not pursue this approach as structural effects during GFC period

is our main focus. The Andrews and Ploberger (AP) tests are then applied to the

derivative series at the maximizing ACD parameters. The date which generates

the largest AP LM statistics is recognized as the most significant break. Two

separate Weibull ACD (1,1) models are again applied on the two sub-periods

divided by the break as before. The new ACD model parameter derivative series

are then used for succeeding round of the AP test. The same process continues

until no further break points are located. Details of the Andrews and Ploberger

LM-based tests have been covered in chapter 6, and the methodology of Weibull

ACD model is also explained in chapter 4, and are therefore not repeated here.
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7.4 Results

In this section, the results of structural break detection and ACDmodel estimates

over individual sub-periods are presented. In order to limit the number of breaks,

a filter is implemented. If the length of a particular sub-period is less than 22

days4, we stop further testing for breaks. However, it is still possible for a shorter

inter break period to emerge as the result of finding a break located near the

end point of a previously defined sub-period. This is consistent with the filter

adopted in structural break studies in chapter 6. In the following subsections,

the general break test results, Weibull ACD model estimated results over the

segmented sub-periods, and their relations to market events are presented.

7.4.1 Structural Breaks Detection Statistics

The most significant break over the period of 2006-08 occurred on 24th July,

2007, with the highest Andrews and Ploberger LM test statistics. This date is

consistent with many chronologies of the crisis which place its beginning in mid-

July, 2007. Figure 7.5 presents the hierarchy of the complete detection process.

The first break is recorded with symbol A1 on 24th, July 2007. The detection

process continues until break statistics are no longer significant at 1% level, or

reaches the 22 days limit. The final sub-periods are recorded as dark shaded

boxes in Figure 7.5. There are 30 breaks detected in total, and the S&P 500

duration data are segmented into 31 sub-periods. Almost 2/3 of all sub-periods

occurred after the most significant break on 24th, July 2007.

To illustrate the individual detection process graphically, Figure 7.6 provides

4This comes from an average of 22 business days in a month.



7. ACD Modelling with Structural Breaks (Crisis Period) 134

the locations of breaks A1, B1, and B2 over their timeline of sample observa-

tions. The dates with highestSubLM statistics are recognized as breaks in their

particular sample range. The same detection process continues for the rest of

the hierarchy in Figure 7.5. The calendar length of the data sample before break

point A1 is 10 months, and after is 17 months. However, the break detection

graph in Figure 7.6 clearly indicates a disproportionately larger number of obser-

vations after break point A1. In particular, around 81% of the sample data are

recorded within the 19 months after the 24th July, 2007, whereas only 19% within

the 10 months before 24th July, 2007. Clearly more frequent market structures

took place after the trigger of the GFC.
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Table 7.1: Break Levels, SupLM, and AveLM Statistics
Break points date SupLM AveLM

A1 27/07/2007 11734.0390 5856.6780
B1 27/02/2007 502.4437 244.1396
B2 05/09/2008 4125.5584 2053.4134
C1 31/01/2007 422.1132 203.6206
C2 15/03/2007 879.9792 432.8807
C3 24/03/2008 823.5639 404.2477
C4 20/10/2008 1333.0450 659.0057
D1 11/12/2006 137.2361 62.0176
D2 01/06/2007 381.3638 138.5892
D3 14/01/2008 1928.7662 955.1089
D4 20/06/2008 307.1334 146.1626
D5 07/10/2008 443.6384 215.5278
D6 05/12/2008 436.0073 209.9600
E1 26/10/2006 66.0545 27.3587
E2 03/01/2007 71.1958 31.2462
E3 14/05/2007 28.8596 10.7311
E4 28/06/2007 119.7857 54.9419
E5 20/08/2007 1060.5757 522.0218
E6 21/04/2008 142.2736 64.9666
E7 18/07/2008 244.3920 115.8616
E8 30/10/2008 105.3707 46.7086
F1 24/11/2006 35.5652 13.0193
F2 17/04/2007 42.3944 16.5050
F3 01/11/2007 412.4973 199.4475
F4 20/05/2008 93.2994 41.0876
F5 01/08/2008 44.7753 17.7970
G1 24/09/2007 102.4862 45.1242
G2 30/11/2007 144.5467 66.1161
H1 18/10/2007 153.6428 70.8131
H2 04/01/2008 119.5095 54.0799

Table 7.1 presents the Andrews Ploberger SupLM and AveLM statistics for

all the breaks detected in Figure 7.4. The SupLM and AveLM statistics are all

significant at 1% level. Break point A1 yielded the largest AP LM statistic of

11734, and its average LM statistic is 5856, strongly indicating possible structural

effects within the examined sample period. As we move through the hierarchy,

the corresponding SupLM and AveLM statistics become smaller and smaller.

At the bottom level of the detection hierarchy, the AveLM statistics for F1 and
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F2 are 13 and 16 respectively.

The general statistics of 31 sub-periods divided by these 30 break points

are listed in Table 7.2. The most significant break point A1 occurred between

sub-period 12 and 13. As mentioned before, there are many more duration ob-

servations from sub-period 13 onwards, indicating an increased level of market

participation after the major change occurred. The conditional and unconditional

mean duration are relatively smaller after sub-period 13. Only 1 sub-period has

an average duration less than 1 second in the pre-crisis5 periods, compared with

10 sub-periods after the crisis was triggered. Short duration is an indication of

more frequent trading and hence is an indication of increased liquidity in the

market as we have controlled for volume. Standard deviations become smaller

and skewness and kurtosis becomes larger on average after sub-period 13.

7.4.2 ACD Model Estimate Results Over Sub-periods

The Weibull ACD (1, 1) model parameters for all 31 sub-periods are tabulated in

Table 7.3. These parameters, namely the constant term ω0, past observed dura-

tion parameter γ1, past expected duration parameter ω1, volume parameter v1,

and Weibull distribution shape parameter α, from equation (7.1), are presented

graphically from Figure 7.6 to Figure 7.10. A ±2 standard error confidence in-

terval is inserted in each plot. The interpretation of these parameter changes are

presented in the following subsections.

5From here onwards, we treat periods before 24th, July 2007 as pre-crisis periods.
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Table 7.2: Summary Statistics for Individual Sub-periods
Sub NumObs Adj vol Adj vol Cond. Uncond. SD
period /transac. /day Mean Mean

1: (10/02/06-10/26/06) 19654 1.2012 1243 1.0332 4.0869 1.7609
2: (10/27/06-11/24/06) 22320 1.2983 1449 1.7122 2.1528 3.1556
3: (11/25/06-12/11/06) 10758 1.2258 942 1.6610 2.2410 2.8191
4: (12/12/06-01/03/07) 8861 1.1794 804 2.4234 3.0353 4.7939
5: (01/04/07-01/31/07) 20752 1.1016 1143 1.8147 2.0708 3.3973
6: (02/01/07-02/27/07) 16587 1.2090 1055 2.2048 2.4196 4.4210
7: (02/28/07-03/15/07) 32005 1.2426 3314 0.8157 0.9129 1.6208
8: (03/16/07-04/17/07) 25452 1.0911 1207 1.8094 2.0964 3.6274
9: (04/18/07-05/14/07) 23168 1.1125 1356 1.6049 1.9486 3.0250
10: (05/15/07-06/01/07) 19406 1.1503 1594 1.6575 1.6857 3.1579
11: (06/02/07-06/28/07) 33261 1.1208 1864 1.1403 1.3167 2.0851
12: (06/29/07-07/24/07) 25703 1.1980 1621 1.4093 1.7006 2.8473
Pre-crisis Average 21494 1.1776 1466 1.6072 2.1389 3.0593

13: (07/25/07-08/20/07) 66674 1.1952 3795 0.6188 0.7142 1.1143
14: (08/21/07-09/24/07) 54679 1.0751 2177 1.0156 1.0939 1.8984
15: (09/25/07-10/18/07) 30143 1.1184 1686 1.2766 1.3139 2.3225
16: (10/19/07-11/01/07) 18195 1.1335 2062 1.0539 1.3012 1.9716
17: (11/02/07-11/30/07) 57095 1.0279 2795 0.8163 1.0180 1.4498
18: (12/01/07-01/04/08) 48228 0.9838 2259 1.0508 1.1346 2.1391
19: (01/05/08-01/14/08) 11972 1.0376 2368 0.6162 0.9125 1.1118
20: (01/15/08-03/24/08) 167626 1.0151 3403 0.6718 0.9780 1.2264
21: (03/25/08-04/21/08) 40826 1.0120 2066 1.0348 1.1718 1.8516
22: (04/22/08-05/20/08) 32552 0.9402 1457 1.3312 1.3814 2.4188
23: (05/21/08-06/20/08) 40913 0.9232 1803 1.1986 1.3397 2.1436
24: (06/21/08-07/18/08) 52427 0.9168 2289 0.8501 1.0071 1.5314
25: (07/19/08-08/01/08) 19551 0.8633 1688 0.9878 1.1879 1.7272
26: (08/02/08-09/05/08) 43068 0.9094 1506 1.2155 1.3941 2.0992
27: (09/06/08-10/07/08) 92035 0.9915 3968 0.5397 0.7706 0.9348
28: (10/08/08-10/20/08) 56469 0.8819 5533 0.3385 0.4590 0.5341
29: (10/21/08-10/30/08) 35003 0.6952 2704 0.5182 0.5631 0.8582
30: (10/31/08-12/05/08) 83372 0.6601 2117 0.7055 0.8822 1.1667
31: (12/06/08-12/31/08) 28788 0.6032 914 1.3053 1.6255 2.7308
Post-crisis Average 51559 0.9465 2434 0.9023 1.0657 1.6437
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Mean Shifts

In last subsection, we mentioned that the average conditional and unconditional

mean of duration decreased after 24th July, 2007. In particular, the conditional

mean has decreased from 1.6 to 0.9 seconds, and the unconditional mean also

halved from 2.1 to 1.1 seconds. This downwards shift in the mean duration is well

reflected in the declines of the constant term ω0 in ACD model, since this fixed

parameter of WACD model directly affects the mean level of expected durations.

In Figure 7.7, large fluctuations of the parameters are shown before the most

significant break A1, which is the bold grid line located between periods 12 and

13 (period 13 is the period immediately following 24/07/2007). The standard

errors are also much bigger as represented by the longer band intervals shown in

Figure 7.7. After the GFC was triggered in mid-July, 2007, consistent with the

break at period 13, the level of ω0 is smaller than previously with tighter standard

errors. Although tighter standard errors could be associated with the increase in

the level of trading activity, it also provides an indication of a more homogenous

sample distribution. The decline in standard deviation and increased number of

observations after period 13 are both responsible for the decline in the standard

errors. At this stage, it is unclear whether there is a change in the form of

distribution of the data by looking at ω0 alone.

Interestingly, the smallest values of ω0 are recorded in periods 7, 13, 20, and

28. These periods are the exact periods follow immediately after some of the

most significant breaks, namely B1, A1, C3, and B2 in Figure 4 shown in last

subsection. This is another clear indication of sharp drops in the mean level of

expected durations right after major events, leading to changes in structure of
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the ACD model. It is reasonable to presume that investors quickly make their

adjustments according to the information available. These actions cause increased

level of trading activity and possible price adjustments. The level of price and

trading intensity calms down when everyone is informed and asset prices have

fully adjusted. This is consistent with the market microstructure literature, such

as Easley and O’Hara (1992) and Easley et al. (1996).
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Changes of Expected and Observed Durations

Changes in the past observed durations parameter γ1 and past expected dura-

tions parameter ω1 are shown in Figures 7.8 and 7.9. The loadings are slightly

higher for parameter γ1, and lower for ω1 in the pre-crisis periods. The S&P

500 trade durations are more dependent on the past observed durations, and less

dependent on past expected durations before the crisis. After the crisis was trig-

gered, duration depends less on the past observed durations, but more on the past

expected durations. This is explained by the more predictive and more clustered

market after the crisis, since investors all consistently started to lose confidence

in the market after the crisis. This is especially the case after September 2008

(around period 28), when the ω1 parameter is very close to 1. In this case, the

next duration is almost solely dependent on the past expected duration regard-

less of the past observed duration. In this case it suggests that in the time when

an economic event occurs, durations experience less clustering as the dependence

from past observed durations is lower. This is consistent with the analysis from

diurnal patterns in Figure 7.3. The graphs of γ1, and ω1 in Figures 7.8 and 7.9

are almost symmetric, indicating a negative relationship exists between the past

observed and past expected duration parameters.

Movements of γ1 along the sub-periods are generally positively related to the

ω0 movements in last subsection. Lower dependence on observed durations cor-

responds to lower magnitude of the fixed components ω0 in the ACD model from

equation (7.1). The past expected duration parameter ω1 also reaches its maxima

in periods 7, 13, 20, and 28, which correspond with the the exact minimum ω0

sub-periods in Figure 7.7.
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Changes in Distributional Form

The shape parameter, α, in all sub-periods in the pre-crisis periods is in the

range between 0.67 to 0.72. From Figure 7.10, immediately following period 13,

α jumped to 0.81, indicating that the shape of the distribution is changing dra-

matically. If we examine the same period, period 13 in Table 7.2, the conditional

mean duration is 0.61 and unconditional mean is 0.7361, both well below the

overall average of 1. According to Easley and O’Hara, short durations imply a

high level of trading activities and asymmetric information.

To get a better idea of implications of different α values, Figure 7.12 shows the

probability density functions for α = 0.4, 0.6, 0.8, and 1. In the estimation results,

the shape parameter reached 0.95 in period 28, implying that the distribution in

this period is close to a standard exponential form. The huge increase in α means

that the waiting time of transactions becomes more exponential and durations

are more homogeneous when events occur. On the other hand, huge increase

in volume trade during crisis period may also contribute to the change of data

probability distribution function. This is discussed in detail in the following

subsection.

Recall that in the relatively calm period of the data set from 2004-2006 in

chapter 6, the shape distribution parameters changed very little between the

range of 0.63 to 0.73 from the same Weibull ACD (1, 1) estimates with struc-

tural breaks. The crisis period data set implies the presence of more dramatic

changes in the shape of distributions for sub-periods. Ignoring possible changes

in the distribution forms, especially during a volatile period may lead to biased

estimation of ACD model parameters.
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Volume Effects

The influence of volume also changes dramatically over the sample period. Ear-

lier, Figure 7.1 showed the huge increase in volume during this sample period.

Figure 7.11 further shows the details of the parameter v1, which changes over the

sub-samples. The fact that volume coeffi cients are negative is consistent with the

traditional market microstructure theory, where higher volume leads to smaller

duration. From Figure 7.11 it is shown that the absolute value of parameter v1

is smaller after the crisis was triggered. Some of the maxima of |v1| occurred

in periods 7, 13, 20, and 28, suggesting that negative volume effects are smaller

in the most heavily traded periods after structural breaks. Note that the tradi-

tional microstructure theory assumes shorter duration indicates higher volume.

The volume parameter results in this chapter further suggest that volume effects

become less important in the extremely heavy trading sub-periods.

One possible explanation for this phenomenon is that at the most volatile

time, with stress and uncertainty permeating the market, investors may just

trade purely for liquidity regardless of the volume. This is consistent with aver-

age volume statistics from Table 7.2. The average adjusted volume per trading

day has increased from 1466 per day in the pre-crisis period to 2434 per day in

the post-crisis period. The average adjusted volume of transactions per day in-

creased dramatically immediately after a number of the major breaks, especially

evident for sub periods 7, 13, and 28. However, at the same time the average

volume per transaction decreased from 1.1776 in the pre-crisis period to 0.9465

in the crisis period. Trades are more clustered and there is greater dependence

on observed duration in the pre-crisis period, where traders wait for information
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to arrive. This gives time for volume to build up and hence higher volume per

transaction. In the period of market stress, duration tends to follow an exponen-

tial distribution, as discussed in last subsection, trades are less clustered. More

trades are transacted for the purpose of liquidity, hence we observe lower volume

per transaction but higher volume per trading day. In general, all parameters

from pre-crisis sub-periods experience larger standard deviations than in the cri-

sis periods, this might due to small number of observations for each subperiods

in the pre-crisis period.

The analysis of the changes in the parameters in this section suggests that

there are significant alterations to the duration process in crisis periods. Using

sub-samples identified by an endogenous break point test we find that in peri-

ods of particular stress the dependence of expected duration on past observed

duration decreases while the dependence on past expected duration rises. At

the same time, the effect of volume on duration declines in impact. Over the

period of the crisis, the distribution of the unconditional duration tends closer to

an exponential, which is consistent with increasing homogeneity of trade. The

results strongly suggest that applying duration analysis to sub-periods may give

important insights into the prevailing trading dynamics which will be undetected

if structural breaks are ignored.

Interestingly, our parameter analysis also identifies a pre-crisis fluctuation

phase (periods 8 to 12), and a worst phase (period 28) during the 2007-08 financial

crisis. The pre-crisis fluctuation periods start with the Shanghai Stock Exchange

wobble in early 2007, while the worst phase corresponds to the rescue package

from US Congress and interest rate cut by 6 of world leading central banks in

early October 2008, right after break point C4. Compared to other periods within
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the sample, period 28 produces smallest ω0, v1, and largest ω1, and α. These

suggest that during this period, average waiting time between trades is extremely

short and became less dependent on volume; meanwhile past expected duration

plays the dominant role in determining expected durations, and the α parameter

rises to 0.95 which is very close to an exponential distribution.

Some of the significant break points, such as A1, B1, B2 and C4 produce

an insightful story of the build-up, and different stages of the crisis from the

perspective of duration. The duration process is clearly informative regarding

to the intensity of information arrival in the market, which is consistent with

the proposal in the beginning of this paper. This paper provides an analysis

of the 2007-08 crisis from a new angle, in a complementary approach to the

traditional price adjustment research agenda. Through our analysis of the WACD

model parameters, the occurrence and intensity of trade is indicative of different

levels of information arrival in the market. A complex ACD model specification

with static parameters may be developed to cover the whole sample period in

this paper, however, the study of individual subsamples clearly unveils further

valuable information from duration process. Such information is normally ignored

by neglecting structural breaks within the sample period.
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7.4.3 Relationship with the Market Events

Many of the structural changes in ACD model parameters can be aligned with

events happened during the crisis period. Some of the economic events between

2007 and 2008 are listed in Table 7.4. In this subsection we align some of the

most significant breaks with economic events occurring in the same periods.

The most significant break point, A1, occurred on 24th, July 2007, right after

the collapse of two of Bear Stearns hedge funds. Mid-July 2007 is generally

considered as the starting date for GFC by many economic analysts, such as

Almunia et al. (2009) and Brunnermeier (2009). In the month of July, 2007, the

Dow Jones Industrial Average (DJIA) closed above 14,000 points at record high

in the history at that time. The high level of DJIA points reflects bullish market

with an increasing price overall. Some further economic events between 2007 and

2008 are listed in Table 3. Break point B1, which occurred on 27 February 2007,

captures the date when Chinese stock market wobble took place. At that time

the Shanghai Stock Exchange experienced its largest drop in 10 years, triggered

major drops in worldwide major stock markets. Some other significant breaks

worth looking at, in particular are breaks B2 and C4 occur during the turbulent

period in September and October 2008. Breakpoint B2, the biggest structural

change in the crisis period, marks a change after 5 September 2008. This is

consistent with the announcement of the takeover of Fannie Mae and Freddie

Mac on 6 September, which is followed by the Lehman Bros bankruptcy and

AIG rescue in the immediate period. This period, until the 7 October 2008 is

not particularly long but incorporates major disruptions and most of the key

US crisis events. The end of this period, which is C4, is marked by the marked
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easing in monetary policy around the world. The next period, labelled period

28, runs from 8 October 2008 to 20 October 2008, a very short time span, but

which importantly incorporates the annoucements of bank recapitalisation plans

around the world by major governments, including the US, UK, Switzerland,

France, Germany and the Netherlands and general statements that systemically

important banks would not be allowed to fail; see King (2011).

The effects of these events on duration modelling is significant. Each of the

loadings on observed and expected duration, as well as the mean level of duration

and volume impacts differ following these events. Clearly the structure of condi-

tional duration is affected by these economic developments, providing important

evidence that extreme market conditions, and policy reactions to them, directly

effect revealed market microstructure.
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7.5 Conclusions

In this chapter, the Andrews and Ploberger Structural break tests are performed

based on a WACD (1,1) model over the global financial crisis period of Oct. 2006

to Dec. 2008. 30 breaks were detected using a 22 day filter. During mid-2007,

there is a major market environment change due to the collapses of major Wall

street financial institutions, leading to a new structure. This major structural

change is exactly captured as the most significant change in our WACD model.

Some of the most significant change points are consistently aligned with the

economic events in the same periods. Incorporating these events with our ACD

estimations in sub-periods, yields a better understanding of the S&P 500 trade

duration process in the electronic futures market.

Compared with the non-crisis period of the market, the trade durations for

S&P 500 are found to be less clustered, especially in the crucial times of the

crisis. During the crisis investors worldwide traded heavily through the after-

hours electronic market, which makes the market duration and volume diurnal

pattern start to change.

The WACD model parameters of all sub-periods reflect the development of

the crisis. All findings are consistent with market microstructure except volume

parameters are found to be positively related to duration in the most critical

times of the crisis.



Chapter 8

Conclusions

8.1 Introduction

This thesis examined the after-hours electronic futures market before and during

the recent (2007-2008) global financial crisis period from the perspective of trade

durations. Under market microstructure theory, duration and volume play im-

portant roles in determining price adjustment and market effi ciency. Papers such

as Easley and O’Hara (1992), O’Hara (1995), and Madhaven (2000) also stress

the information content of duration.

There have been rapid developments in after-hours electronic markets in the

last 10 years. With the increased availability of intraday high-frequency data

sets duration modelling has become feasible for these new products. The after-

hours electronic markets have received little attention in duration modelling in

the financial time series literature, justifying our empirical contribution. In this

thesis we applied a class of models for trade durations in the after-hours electronic

market for U.S. equity futures. Using data for the pre-crisis period (2004-2006)

and then data during the GFC period (2007-2008) allows examination of changes

159
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in the market behaviour with respect to trade duration.

The thesis began with a review of literature on ACD models. A review of

structural break test studies is also included as structural changes are highly likely

to occur in our data sample examined, especially for the data during GFC period.

A background to the after-hours electronic equity futures markets and a brief

overview of the causes and developments of the 2007-2008 GFC followed. The

remainder of the thesis comprises of four papers. These papers cover applications

of linear ACD models, threshold and logarithmic nonlinear ACD models, and

structural breaks studies within the ACD framework based on the after-hours

electronic futures market data. The lag structure of ACD models and the role

of volume (as a mark) across different periods were also examined. The main

findings from this thesis are summarized in the following sections.

8.2 Thesis Contributions

In this thesis we applied different forms of ACD models to the after-hours elec-

tronic equity futures market. The models examined include linear and nonlinear

(logarithmic and threshold) forms of ACD models pursued to higher lag orders

using Exponential, Weibull, or Generalized Gamma distributional assumptions.

The thesis offered a detailed comparison study of the overall fit of the linear

ACD models by allowing different forms of error distribution. The results from

nonlinear logarithmic and threshold ACD models were compared to linear ACD

models.

Apart from demonstrating the effects of error distribution assumptions on

model fitting, the thesis also challenged the dominance of linear and logarithmic
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ACD models in the literature based on an approximately two-year-long after-

hours intraday data set. As this data set is much longer than data usually

examined in the duration modelling literature, long memory, structural change,

and nonlinearity problems arise. Although these problems are addressed in the

existing ACD literature our much longer data set brings these problems to the

fore.

In order to further address the nonlinearity within our long data set, we stud-

ied structural breaks within the estimated ACD models. The study empirically

contributes to the financial time series literature by testing structural break ef-

fects in ACD models with application to the after-hours electronic equity futures

markets. We present a comparison study between the Weibull ACD model with

and without potential structural breaks.

The thesis also extends duration studies over the 2007-2008 global financial

crisis using ACD models with potential structural changes. The Weibull ACD

model applied to the GFC data sample captures the clustering of the duration

in the after-hours equity futures market, and provides a sequence of structural

changes which we posit arise from the market participants’trading behaviours.

This thesis also contributes to the global financial crisis literature by analyz-

ing structural changes during the crisis solely from modelling the time intervals

between trades.

The detected structural breaks align with financial crisis timelines, picking

up the most significant change point as 24th July, 2007, closely related to the

dates associated with the start of the crisis in a now relatively large body of

literature. The changes in parameters of the ACD model imply a decreased trade

duration immediately after these large structural changes. Analysis from past
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observed and expected duration parameters suggests a lower degree of clustering

after the major breaks. The duration error distributional shape also changes

over the crisis. It is found that immediately following major structural changes,

the waiting time between transaction behaves more exponentially and is more

homogenous. By evaluating the information obtained from modelling duration,

particularly under potential structural breaks in the market, this thesis confirms

the market microstructure theory, as suggested by Easley and O’Hara (1992),

that duration between trades contains valuable information.

8.3 Main Findings

The main findings of the four papers embedded in this thesis are presented in

chapters 4, 5, 6, and 7. In chapter 4, linear ACD models with Exponential,

Weibull, and Generalized Gamma distributional assumptions on error terms are

examined based on NASDAQ and S&P 500 data sets. Trade durations from both

data sets experience long memory, low autocorrelation, and strong clustering, but

the S&P 500 data requires a more complex model due to large duration observa-

tions. For the NASDAQ duration data, a Weibull ACD (5, 5) model produced

the best estimate results in terms of removing residual serial correlations. The

S&P 500 data set contains much larger observations and experiences convergence

problems when allowing more general forms of error term distribution assump-

tions. Also in chapter 4, we presented a threshold approach to the S&P 500 data

and implemented a threshold Weibull ACD (4, 1) model. The addition of volume

to the ACD model in both data sets captures statistically significant negative

relationships between conditional expected duration and volume. This negative
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relationship is consistent with the market microstructure theory.

Although the threshold Weibull ACD model produces the best estimates for

the S&P 500 data set in chapter 4, it also indicates that nonlinearity and struc-

tural effects should be considered more carefully. The S&P 500 data also failed

to pass the F-test of linearity, further indicating the necessity of a nonlinear

approach. For this reason, in chapter 5 we applied nonlinear logarithmic ACD

models on the same S&P 500 data set. A logarithmic Weibull ACD (2, 2) model

with volume as an additional mark is found to be the best logarithmic ACD

model. The logarithmic ACD models are shown to be capable of handling a cer-

tain degree of nonlinearity. Moreover, compared with threshold ACD models, the

logarithmic ACD models are far less costly to estimate. In chapter 5, it is shown

that by taking nonlinearity into account, the model estimates can be greatly im-

proved. However, the over-dispersion ratios from the logarithmic ACD model for

S&P 500 data imply that the residuals are still over-dispersed.

Apart from nonlinearity, another characteristic of the intraday high-frequency

data is the long memory in the autocorrelations, which could be caused by ig-

noring structural breaks within the model. Therefore in chapter 6, we focused

on the potential for structural breaks within ACD models using the same S&P

500 data as in chapter 5. The Andrews and Ploberger structural break tests

applied to the Weibull ACD model found 19 break points during the period July,

2004 to September, 2006. This period is consequently divided into 20 sub-periods

which were modelled individually using a Weibull ACD (1, 1) model. Detailed

model parameters and summary statistics are summarized for each individual

sub-period. The results in chapter 6 showed that by allowing structural breaks,

the overall model fitting can be further improved. Market movements in duration
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are better captured from studying duration models in the individual sub-periods.

The individual sub-periods parameters are compared and plotted in this chapter.

Finally the S&P 500 data set during the 2007-2008 global financial crisis

period is investigated in chapter 7. The recent global financial crisis has been

analyzed by many economists. However, the work in this thesis provides an

unique analysis of the crisis through the lens of trade durations. In chapter 7,

structural breaks using a Weibull ACD (1, 1) model are tested by applying break

tests from chapter 6. The data set examined in chapter 7 is further complicated

not only because the financial crisis took place in mid 2007, but also contains

the merger of the COBT electronic market with the CME in early 2007. There

were 30 break points identified and the most significant break was found to be

on 24th July, 2007, a date which aligns perfectly with anecdotal assessments of

the onset of the global financial crisis. The 31 individual sub-periods were fitted

with Weibull ACD (1, 1) models and the parameter statistics were summarized.

Each of the Weibull ACD parameters, namely the constant, past raw durations,

past conditional expected durations, volume, and distribution shape parameters

were plotted and studied across its sub-periods. The changing distribution shape

parameters across different sub-periods, between events indicates possible shifts

in the actual error distributions. The changes in distributional form will not be

picked up if one ignores the structural changes. In chapter 7, events during the

crisis period are studied and related to the parameter changes across different

sub-periods. The results in the parameters analysis showed that the crisis events

can also be studied from trade durations. Results from this chapter further

demonstrate that the ability of trade durations to reflect market information.

Overall, we found that the traditional linear ACD models from Engle and
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Russell (1998) struggle to handle relatively long period duration data in the

after-hours electronic futures market. The data nonlinearity and long memory

problems evident in the data made the model residual serial correlations very

diffi cult to incorporate with linear ACD models. By applying nonlinear ACD

models such as threshold and logarithmic models, the overall estimation results

improved significantly. Volume plays an important role in duration modelling and

has an negative relationship with duration, consistent with market microstructure

theory.

Results from the model estimates consistently suggest that the data sam-

ple from the after-hours electronic futures market experiences long memory and

a large degree of clustering. Duration data from this electronic market using

the GLOBEX platform is particularly complicated due to the following effects.

Firstly, the overnight effects; both informed and uninformed traders have the

opportunity to make adjustments to their portfolios in reaction to events which

occur overnight, making the response to such events in this market almost imme-

diate. Secondly, the news announcement effects; the electronic trading benefits

informed traders who are able to take advantage of their available private infor-

mation before news announcements in the day trading period. The anonymous

nature of the market may provide further benefits in this context. Thirdly, the

internationalized trading platform makes price adjustments in this market sen-

sitive to events and news on a global scale. Finally, since the introduction of

E-mini and E-micro versions of futures contract in this electronic futures market,

small retail and liquidity traders have increased trade in these smaller value con-

tracts, shrinking the relative importance of the standard contracts. Hence strong

nonlinearity and structural effects are highly possible in the after-hours futures
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market.

The structural break effects study in chapter 7 applied to the S&P 500 fu-

tures data during the 2007-2008 GFC period suggests a high level of structural

changes. The after-hours futures market during the GFC is very volatile, not

only because of native U.S. events, but also policies and events from financial

institutions worldwide. The model error distribution shapes differ across various

structural periods, indicating possible behavioural changes in trading. Results

from Weibull ACD models in individual sub periods indicate that times between

trades are less clustered and more homogenous immediately after a significant

break (event). Effects from trade volume to conditional expected duration be-

comes smaller immediately after an significant break point. It is possible this

result is obtained due to the large scale of volume transacted, but the detailed

reasons remain unclear, and provides scope for future research. Through du-

ration modelling, the influences on the electronic market from GFC associated

news events becomes clearer. Successful identification of distinctive structures

from modelling durations further supports the importance of modelling duration

in modern financial markets.

8.4 Future Extensions

The usefulness of linear ACD models may be limited, especially in liquid markets.

This has been demonstrated from the NASDAQ and S&P 500 results in chap-

ter 4. With the development of increasingly flexible nonlinear ACD models, the

after-hours high-frequency data can be better modelled. For instance, in chapter

4, we attempted a threshold ACD (4, 1) model which provided a better estimate
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over linear models. This attempt also raised a question of whether the clustering

of durations could be linked to sources in different time zones, such as trading

activities from Europe, U.S., and Asia. Duration clustering in this after-hours

market may be influenced by factors such as informed and uninformed traders

coexisting, participants being anonymous, and other trading regulation restric-

tions1. Perhaps a more in-depth threshold ACD model study could provide more

insight into this after-hours electronic market.

Research on ACD models has extended in many more directions, especially

the regime smooth transition ACD models of Meitz and Teräsvirta (2006), la-

tent factor models of Ghysels, et al. (2004), and the mixture distribution ACD

models of Hujer and Vuletic (2004). The above more complex forms of nonlin-

ear ACD model with greater flexibility are of prime interest. These models may

improve model estimation for the after-hours electronic equity futures market

data, although the more complex ACD models are more time consuming and in-

volve heavy computational burden. In addition, more flexible error distribution

assumptions could also improve duration modelling in this after-hours market.

As the results in chapter 7 show, the error distributions could be changing, es-

pecially in the light of economic events and their ensuring structural changes,

and a more flexible distributional assumption could improve the model. In this

thesis, we restricted our attention to the Exponential, Weibull, and Generalized

Gamma distributions, alternative distributional assumptions, such as Burr distri-

bution, Generalized F-distribution, or even mixed distributions may yield further

improvements in results over the after-hours market data, although at the cost

1Different stages of trading cycle in after-hours limits buy/sell and modify contracts. See
chapter 3.



8. Conclusions 168

of additional computational intensity.

In a similar manner to the existing ACD literature, we also find that trade

durations are diffi cult to model properly in terms of removing residual serial cor-

relations. In future studies, price durations and volume durations could also be

used to examine the after-hours futures market. It would be interesting to exam-

ine a comparison ACD model study based on the after-hours electronic market

using all these three forms of durations. In addition, other marks associated

with the transactions such as bid-ask spread and price could also be added to

the model, although data availability is a limitation in the data set used for this

thesis.

The structural effects within the ACD models analyzed in this thesis are

limited due to detection filter restrictions. A less restrictive detection criteria

may provide a wider range of structures over the global financial crisis period.

The increased number of structures detected using a less restrictive filter may

also provide the opportunity to evaluate a more complex regime transition ACD

model to better understand the GFC period. The Weibull ACD (1, 1) model was

used to study structural effects in this thesis, and more sophisticated models with

flexible distributional assumptions may contribute to analyzing the structural

changes and the after-hours financial markets more precisely.
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