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ABSTRACT 

The development of predictive microbiology is reviewed and specific limitations 

relating to the generation of kinetic models identified. The issues of variability of 

response, lag time response, fluctuating environments and their effects, microbial 

interactions, choice of model for describing bacterial growth curves, and mechanistic 

versus empirical models are discussed and exemplified using experimental data. A 

philosophy for the development of reliable predictive kinetic models is developed 

and the appropriateness of that philosophy examined by simulations and reference to 

novel and independently published experimental data. 

Specifically, the use of turbidimetric techniques is advocated for primary model 

development, methods of calibration to traditional (i.e. viable count) methods 

demonstrated, and the reliability of that calibration demonstrated. Using that 

methodology, models for the growth of several strains of Staphylococcus aureus 

and Listeria monocytogenes are generated. Novel indices of the reliability of models 

are developed, and used to assess the S. aureus 3b and the L. monocytogenes models, 

for constant environmental conditions, by comparison to published and novel data. 

An assessment of the three~parameter (temperature, water activity, pH) square-root 

modelt is made using data for the growth of L. monocytogenes. A deliberately 

minimal experimental design was used to 'test to destruction' the proposed 

methodology, and revealed potential shortcomings of the lack of replication. 

It is concluded that the experimental strategy proposed offers an efficient method for 

generating the quantity of data required for the development of reliable kinetic 

models from which to predict the growth of spoilage and pathogenic organisms of 

relevance to foods. 

Technologies for the transfer of validated, laboratory-generated models to the food 

industry are demonstrated, and a mechanistic interpretation of the basis of the 

empirical square-root relationship developed. 

t McMeekin, T.A., Ross, T. and Olley, J. 1992. Application of predictive microbiology to assure 
the quality and safety of fish and fish products. Int. J. Food Microbial. 15: 13-32. 

Wijtzes, T., McClure, P.J., Zwietering, M.H. and Roberts, T.A. 1993. Modelling !)acterial 
growth of Listeria monocytogenes as a function of water activity, pH and temperature. Int. J. Food. 
Microbial. 18: 139-149. 
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the generation time, GT, and specific growth rate is: 

specific growth rate = Ioge2/GT 
0.693/GT 

Within this thesis, response times rather than rates are frequently used. When used, the reciprocal of 
response times is denoted by k, while f.l is used to denote the specific growth rate. This is not 
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u .... the growth of bacterial cultures, despite the immense 
complexity of the phenomena to which it testifies, generally 
obeys relatively simple laws ...... The accuracy, the ease, the 
reproducibility of bacterial growth constant determinations is 
remarkable and probably unparalleled, so far as biological 
quantitative characteristics are concerned." 

(Monod, 1949). 



INTRODUCTION 

In 1983, at a Symposium of the Society for Applied Bacteriology, a panel of 30 expert 

food microbiologists using the Delphi technique of intuitive forecasting (Dalkey, 

1967) predicted that the assessment of shelf life by computers, drawing on databases 

for the growth of spoilage organisms, had an 80% probability of being widely used by 

1993. Nonetheless, at least 25% of the panel considered it improbable that such an 

approach would be accepted even at the beginning of the 21st century (Jarvis, 1983). 

In 1992, the UK Ministry of Agriculture, Fisheries and Food launched 'Food 

Micromodel' - a food microbiology advisory service based on a database and 

mathematical models describing the growth response to environmental factors of food­

borne pathogens. This service is a realisation of that earlier prophecy, and part of a 

new approach to the assurance of the microbiological quality and safety of food 

currently known as "Predictive Microbiology". 

Predictive microbiology is based upon the premise that the responses of 

populations of microorganisms to environmental factors are reproducible, and that by 

considering environments in terms of identifiable dominating constraints it is possible, 

from past observations, to predict the responses of those microorganisms. In general, 

a reductionist approach is adopted and microbial responses are measured under 

defined and controlled conditions. The results are summarised in the form of 

mathematical equations which, by interpolation, can predict responses to novel sets of 

conditions, i.e. those which were not actually tested. Proponents claim that such an 

approach will enable: 

i) prediction of the consequences, for product shelf life and safety, of changes 

to product formulation 

ii) objective evaluation of processing operations and, from this, an empowering 

of the HACCP approach 

iii) objective evaluation of the consequences of lapses in process and storage 

control 

iv) the rational design of new processes and products, to achieve required levels 

of safety and shelf life. 

In the decade prior to preparation of this thesis, the potential of predictive 

microbiology has attracted considerable research interest and funding, particularly in 

the United States of America and the United Kingdom, and also Australia and Western 

Europe. In the UK that interest has already borne fruit in the form of Food 

Micromodel. Interest in Europe is being developed through the FLAIR (Food Linked 

Agricultural and Industrial Research) program with -30 laboratories in 10 EEC 
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countries acting collaboratively to examine growth responses of spoilage and 

pathogenic organisms in a wide range of natural products. In the United States of 

America predictive microbiology research is centred at the Microbial Food Safety 

Research Unit of the USDA in Pennsylvania, which has resulted in the preparation 

and release of software called the 'Pathogen Modeling Program'. 

Earlier reviews of the subject include Farber (1986), McMeekin and Olley 

(1986), Baird-Parker and Kilsby (1987), Gibson and Roberts (1989), Gould (1989), 

Roberts (1989, 1990), Gibbs and Williams, (1990), Buchanan (1991a), and Baker 

and Genigeorgis (1993). A monograph on the subject has been prepared by McMeekin 

et al. (1993). 

1.1 LITERATURE REVIEW 

1.1.1 History 

The use of mathematical models in food microbiology is not new. Baird-Parker and 

Kilsby (1987) point out that models for the thermal destruction of microorganisms by 

heat are well established in the literature and industry, e.g. the 'botulinum cook' (see 

Stumbo et al., 1983). Mathematical modelling is also well developed in the 

fermentation industry. The application of mathematical modelling techniques to the 

growth and survival of microorganisms in foods, however, did not receive wide 

attention until the 1980's. McMeekin et al. (1993) suggest that two related trends 

contributed to the increased willingness to consider predictive modelling. The first was 

the marked increase in the incidence of major food poisoning outbreaks during the 

1980's, which led to an acutely increased public awareness of the requirement for a 

safe and wholesome food supply. The second was the realisation by many food 

microbiologists, and clearly identified by Roberts and Jarvis (1983), that traditional 

microbiological methods to determine quality and safety were limited by the time 

needed to obtain results, and that the more rapid, indirect methods did not give a 

response until very large numbers of cells were present, i.e. they had little predictive 

value. Buchanan ( 1991 b) points to another factor in the realisation of the concept: that 

of increased ready access to computing power. 

Predictive microbiology appears to have been spawned from two separate 

lines of research. One of these was control of spoilage of fish, which is considered to 

spoil more rapidly than other flesh products (Olley and Ratkowsky, 1973a). This 

work had its origins at the Torry Research Station in the United Kingdom, with the 

publication of a model describing the effect of temperature on the rate of fish spoilage 

(Spencer and Baines, 1964). The problem of fish spoilage attracted continuing 

research interest and the modelling approach is clearly evident in the work of Olley and 

her colleagues at the now defunct CSIRO Seafood Technology Section (Olley and 

Ratkowsky, 1973a, b) and Nixon of the New Zealand Fishing Industry Board 

(Nixon, 1971). Olley had recognised the fundamental similarity of the response to 
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temperature of many spoilage processes, and also of bacterial growth, and in Daud et 

al. (1978) was able to apply the general spoilage model (Olley and Ratkowsky, 1973a) 

to the spoilage of chicken. 

A second area of research dealt with the prevention of botulism, and other 

microbial intoxications. Genigeorgis' group at the University of California sought to 

go beyond the work of other researchers (e.g. Baird-Parker and Freame, 1967) on 

defining combinations of factors that would prevent pathogen growth and toxin 

formation. Their approach was to model the 'log reduction' of bacterial numbers due 

to intrinsic and extrinsic properties of foods, such as temperature, pH, N aCl 

concentration, etc. described as 'hurdles' by Leistner and Rodel (1976). The log 

reduction was then related to the probability of bacterial growth or toxin production 

(Genigeorgis et al., 1971a). 

At about the same time workers at the UK Ministry of Agriculture Fisheries 

and Food, were also involved in describing growth-controlling combinations of 

factors (Roberts and Ingram, 1973; Bean and Roberts, 1974), but did not begin to 

summarise their results as equations describing the probability of growth or toxin 

production until several years later (Jarvis et al., 1979; Roberts et al., 1981 a,b,c). 

Similarly, in the Netherlands, Kreyger (1972) had used a modelling approach to 

predict the mould-free storage life of cereals during ocean transport but presented 

results as diagrams only. 

During the 1980's increased attention was given to modelling the growth of 

microorganisms of concern, with a number of groups publishing in this area. 

Genigeorgis' approach was applied to growth rate modelling (Metaxapoulos et al., 

1981a, b). Ratkowsky et al. (1982) and Ratkowsky et al. (1983) contributed simple 

and apparently universal models relating the growth rate of bacteria to temperature. 

Broughall et al. (1983) introduced a model relating the growth rate of bacteria to 

temperature and water activity which was built upon by Broughall and Brown (1984) 

to include the effect of pH also. Roberts group began growth rate modelling in 1987 

(Gibson et al., 1987). Their efforts led ultimately to an entirely different approach 

which has become the basis of programmes which resulted in Food Micromodel and 

the Pathogen Modeling Program. 

Roberts and Jarvis (1983) paper may be viewed as the foundation stone of 

the rapid development of predictive microbiology in the subsequent decade. In that 

paper they challenged traditional methods of food quality and assurance testing, which 

they described as "an expensive and largely negative science", and advocated a more 

systematic and cooperative approach. Roberts (1990) recounts: "we have proposed the 

concept of 'predictive microbiology' within which the growth responses of the 

microbes of concern would be modelled with respect to the main controlling factors 

such as temperature, pH and aw .... Models relevant to broad categories of foods 

would greatly reduce the need for ad hoc microbiological examination and enable 
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predictions of quality and safety to be made speedily with considerable financial 

benefit". This succinct statement of the need for such an approach places into 

perspective the vision of Scott (1937) who wrote: "A knowledge of the rates of 

growth of certain microorganisms at different temperatures is essential to the studies of 

the spoilage of chilled beef. Having these data it should be possible to predict the 

relative influence on spoilage exerted by various microorganisms at each storage 

temperature. Further it would be feasible to predict the possible extent of changes in 

populations during the initial cooling of sides of beef in the meatworks when the meat 

surfaces are frequently at temperatures very favourable to microbial proliferation". 

1.1. 2 Approaches and Potential Benefits 

Predictive microbiology has to date usually been considered under two main headings. 

These are kinetic models, that is, modelling the extent and rate of growth of 

microorganisms of concern, and probability modelling: the construction of models 

to predict the likelihood of some event, such as a spore germinating or a detectable 

amount of toxin being foimed, within a given time period . 

The hypothesis underlying the kinetic modelling approach is that many 

perishable foods represent a 'pristine' environment open to exploitation by 

microorganisms, and that the growth of bacteria in this environment approximates a 

'batch culture'. Typically, nutrients will not limit growth until spoilage has occurred or 

infectious dose levels are exceeded and, consequently, factors such as temperature, 

pH, water availability, gaseous atmosphere, preservatives etc. dictate the rate and 

extent of microbial proliferation. Thus, a detailed knowledge of the growth responses 

of microorganisms to those environmental factors should enable prediction of the 

extent of microbial proliferation in foods during processing, distribution and storage 

by monitoring the environment presented to the organism by the food during those 

operations. In the area of kinetic modelling two distinct approaches can also be 

identified. In one, growth rate is modelled and then used to make predictions in 

accordance with exponential population growth. This approach has been used by a 

number of groups (Broughall et al., 1983; Smith, 1987; Blankenship eta!., 1988; Fu 

et al., 1991; Dickson eta!., 1992; McMeekin et al., 1993). In the second, a sigmoid 

function is fitted to the observed population growth curve and the effect of 

environmental factors on the values of parameters of that fitted sigmoid curve are 

modelled. This approach was introduced by Gibson et al. (1988). In both approaches 

models are constructed by following the increase in numbers or biomass of the 

organism, throughout the population growth curve, for a range of levels and 

combinations of environmental factors of interest. Thus, information is obtained about 

the lag phase duration, rate of growth, and maximum population density achieved 

under the conditions studied. 
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In the simplest case, when developing models to predict the probability of 

growth of pathogens or production of toxins, replicate samples of a known inoculum 

are observed under defined environmental conditions for a fixed period of time. At the 

end of the incubation period samples are examined for the presence of toxin, or 

detectable growth. The probability of detectable growth/toxin production within that 

incubation period can be calculated from the proportion of replicates positive for 

growth/toxin production. As this proportion is dependent upon the specific 

environmental conditions, a model relating the probability to those conditions may be 

derived. Typically, observations are made at a number of times, and the probability of 

detectable growth/toxin production is observed to increase with time. To date, the 

primary application of probability modelling has been to describe the effect of 

environmental factors on spore germination. 

Gould (1989) considered that predictive microbiology would "encourage a 

more integrated approach to food hygiene and safety which will impact on all stages of 

food production, from raw material acquisition and handling, through processing, 

storage, distribution, retailing and handling in the home". In addition to the general 

benefits outlined above, modelling also provides a basis for comparison of data from 

diverse sources on the growth of microorganisms in foods, and should result in 

increased productivity by reducing the need for the time consuming and invasive 

microbiological testing procedures currently practiced. Genigeorgis (1981) noted that 

'predictive microbiology' would provide a rational basis for the drafting of guidelines, 

criteria and standards pertaining to the microbiological status of food, and both 

McMeekin and Olley (1986) and Walker and Jones (1992) have pointed to the value of 

predictive microbiology, and devices based upon it, as educational tools for food 

workers and handlers. Davey (1992a) drew attention to major difficulties faced by 

food process engineers due to the poor understanding of the combined influences of 

environmental factors on the kinetics of bacterial growth and inactivation. He 

welcomed predictive modelling as a solution to that problem, and predicted that such 

models, coupled with indirect sensors and computers, would enable 'real-time' food 

process optimisation through automated in-line process control. 

The potential benefits of the modelling approach are numerous but all derive 

from better understanding, and consequently control, of the microbial ecology of 

foods that predictive modelling represents. 

1.1.3 Definitions and Rules for Modelling 

Before commencing a detailed discussion of predictive microbiology it will be useful 

to introduce frequently used mathematical and statistical terms. The material in this 

section is derived largely from material prepared by the candidate and presented in 

Chapter 2 of McMeekin et al. (1993). 
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Independent, explanatory or predictor variables are those which it is 

believed will explain the type and magnitude of the response observed. In the case of 

models for food microbiology, these will typically be temperature, pH, water activity, 

and other agents in the modelled system which affect the rate of response of the 

modelled organism. Response or dependent variables are those properties of the 

system which are governed by the independent variables. In the case of predictive 

models in food microbiology, this will usually be the rate or duration of some 

microbial growth process or the probability of an event or condition arising within a 

given time. 

A model is formulated to describe the known or assumed qualitative 

relationship between the predictor and response variables, but it is the parameters of 

the equation which quantify the relationship. Parameters, which are constants for a 

given set of experimental conditions, must be estimated from the data to give the best 

possible fit to the data. The usual means of estimation of parameters is the 

minimisation of the values of the residuals, which are the differences between the 

observed values of the response variable and those predicted by the fitted equation. 

There is always some error inherent in any measurement of an observation. 

This error is the difference between the particular observation and the mean, or 

predicted, response. Accordingly, in any mathematical description of a data set there 

will also be some error between the predicted and observed values. The behaviour of 

the error can be investigated and described. For example it may, on average, be a 

constant value irrespective of the magnitude of the response. Alternatively it may be a 

function of the magnitude of the response. Description of this behaviour is an integral 

part of the modelling process and is expressed in the error, or stochastic, term of the 

model. The deterministic part of the model describes the relationship between the 

variables. 

The error behaviour is particularly significant when fitting equations to data 

because those observations having larger error will be more influential in determining 

the parameter estimates when using residual minimisation techniques, e.g. least 

squares, for fitting. It is desirable that all observations are given equal weight in the 

fitting process, and for this reason one seeks to 'homogenise' the variance, i.e. to 

make the magnitude of the error independent of the magnitude of the observed 

response. Weighting may be applied to the data during the fitting process, so that 

those values with smaller residuals are given greater weight. An alternative is to 

transform the data mathematically, for example by taking the logarithm or some power 

of all the values, to thus homogenise the variance. The transformed data are then used 

in the fitting process. 

Features of the mathematical expression of models are shown in Fig. 1.1. A 

model such as: 
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y =a+ p x + y x2 

is classified as a linear regression model, since the parameters a, ~. andy appear 

linearly (i.e. as the sum of individual effects), although the relationship between the 

response variable y and the explanatory variable x describes a curved line. In nonlinear 

models the parameters do not appear linearly. The important differences between these 

two types of model are the manner in which they are fitted to data, and their estimation 

properties once fitted. The best estimates of parameters of linear models have explicit 

(algebraic) solutions. Best estimates of nonlinear models, however, do not have 

explicit solutions and are typically estimated by an iterative process in which 

approximate values of the parameter values are used as 'starting' values. Using these 

values a measure of the 'goodness-of-fit' of the fitted model is made. In the next step, 

new parameter values are sought which increase the 'goodness-of-fit' of the model to 

the data. This step-wise process is continued for a predetermined number of steps or 

until no further improvement in goodness-of-fit can be obtained. If at this stage the 

'goodness-of-fit' meets some predetermined criteria of acceptability, this condition is 

known as 'convergence'. Not all data sets will achieve convergence nor does 

achievement of convergence guarantee that those parameter values are the best 

possible. Although nonlinear regression software is readily available, there is an 

element of expertise required when fitting data to nonlinear models. 

independent variable independent (explanatory) variables 

y = a + + yXz + E 

parameters error term 

Fig. 1.1 An example of a mathematical model showing the nomenclature of the 

component terms. The values of the independent variables (X 1, X2 ) are 

known or set before the response (y) is observed. The values of the 

parameters (a, {3, 'YJ are determined by the data, and are fitted to minimise 

the difference, in some sense, between the observed response and that 

predicted by the model. The stochastic term (E) indicates the extent to 

which the predicted response deviates from the observed response (after 

McMeekin et al., 1993). 
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Ratkowsky (1983, 1990) has argued that it is a desirable goal of nonlinear 

modelling to search for models that are "close-to-linear", that is, ones that come close 

to achieving the properties that are attainable in linear models. 'Far-from-linear' 

models may have such highly biased estimators for at least one parameter that one can 

not have much faith that the estimates produced are sufficiently close to the true (but 

unknown) parameter values. Some practical considerations to which modellers should 

pay attention when engaged in nonlinear regression modelling are: 

i) parsimony 

ii) parameter estimation properties 

iii) range of variables 

iv) stochastic assumptions 

v) interpretability of parameters 

which are discussed in greater detail in Chapter 2 of McMeekin et al. ( 1993 ), Chapter 

3 of Bates and Watts (1988) and Chapters 2 and 10 ofRatkowsky (1990). 

It is intuitively apparent that a fundamental aspect of a predictive model is that 

it describes observed data accurately, but it is equally important that it can predict 

accurately responses to novel conditions. Unless a model has a proven mechanistic 

basis, predictions from that model should be based only on interpolation. Hence it is 

essential to have as full a range of the variables as possible. When reliable statistical 

analysis demonstrates that competing models predict equally well, other characteristics 

of the model such as parsimony; parameter estimation behaviour; parameter 

interpretability should be considered. A further, almost trivial, consideration in the 

selection of models is their ease of use, but it is only when all other criteria fail to 

provide discrimination between competing models that this be considered a basis for 

selection. The ease of use of a particular model will, of course, depend upon ones 

own environment, resources and background, and personal preferences. 

Davey (1992b) suggested the adoption of 'express terminology' in predictive 

microbiology to clarify discussion of issues. His comments relate to the use of the 

terms to categorise and describe models unambiguously, and to seek a uniform usage 

of the terms 'interactive' in relation to environmental variables, and 'validated' in 

terms of the ability of models to predict responses to novel conditions, i.e. data not 

used to generate the model. Those comments were, in general, endorsed by Baranyi 

and Roberts (1992), who also suggested consistent terminology for describing rates of 

growth, and also by Whiting and Buchanan (1993). 

1.1. 4 Models 

In kinetic models the response variable is expressed in units of time (i.e. a rate, or the 

time taken for a particular response). The evolution of kinetic models has been well 



9 

reviewed by Ratkowsky eta/. (1991) and Heitzer et al. (1991). In this category are 

recognised four main model types which are: 

Belehradek- or square-root-type models 

Arrhenius-type models 

Modified Arrhenius, or 'Davey' models 

Polynomial, or 'Response Surface' models 

There is less divergence in the form of probability models published to date, but 

slightly different forms have been adopted by the groups of Genigeorgis, Roberts and 

Lund. 

1.1.4.1 Kinetic models 

Belehrddek-type models 

Ratkowsky et al. (1982) introduced a simple model to describe the rate of microbial 

growth as a function of temperature. The model was based upon the observation of 

Ohta and Hirahara (1977) that the square root of the rate of nucleotide degradation in 

carp muscle is related to temperature. Olley (1986) describes how she and her 

coworkers found this relationship well described the growth rate response to 

temperature of many bacteria. The latter model has the form: 

= b (T- T min) ( 1.1) 

where k is the rate of growth, Tis the temperature, T min is a notional 

minimum temperature for growth and b is a coefficient to be estimated. 

Subsequently it was shown that the 'square root' model was a special case of the 

Belehnidek (1930) equation widely used in other biological sciences (Ross, 1987). 

Ratkowsky eta/. (1983) extended the applicability of their equation to include 

temperatures superoptimal for growth. This new model had the form: 

= b (T- T min)O-exp(c(T- T max))) (1.2) 

where k, T, T min. and b have the same meaning as above and T max 1s a 

notional maximum temperature for growth analogous to T min and c is a 

coefficient to be estimated. 

Minor modifications to this model were advocated by Zwietering eta!. (1991) and 

Kohler et al. (1991). This general form was further extended by McMeekin eta!. 

(1987) who included a term for water activity: 



10 

= ( 1.3) 

where k, T , T min and b have the same meaning as above, aw is the water 

activity and aw min is a notional minimum water activity for growth 

and by Adams et al. (1991) who incorporated a term for pH: 

= (1.4) 

where k, T, T min and b have the same meaning as above and pH min is a 

notional minimum pH for growth. 

The success of the Equations (1.3) and (1.4) led McMeekin et al. (1992) to 

conjecture that the effects on microbial growth of temperature, pH and water activity 

might be described by a simple four parameter model of the following form: 

= (1.5) 

where all parameters are as previously defined. 

This equation, and a variation of it, introduced by Zwietering et al. (1992a), 

incorporating a pH term to cover the entire pH range was subsequently applied by 

Wijtzes et al. (1993) to describe data for the growth of Listeria monocytogenes. 

Whilst Eqn. (1.1) may be expressed as a linear model, Eqns. (1.2) to (1.5) 

are nonlinear, and the parameters of those models must be estimated by iterative 

procedures. 

Arrhenius-type models 

The simplest form of 'Arrhenius-type' model in use in predictive microbiology is the 

'classical' Arrhenius equation: 

ln k = Ea InA--
RT 

(1.6) 

where, when applied to microbial growth, k is the rate of growth, A is a 

parameter to be fitted, R is the gas constant (8.314 J K-1 moi-l), T is 

temperature, and Ea is sometimes interpreted as the activation energy of the 

growth-rate-limiting reaction or, to avoid this assumption, is simply referred 

to as a 'temperature characteristic'. 

Although a number of researchers (Ingraham, 1958; James and Olley, 1971; Olley and 

Ratkowsky, 1973a; Mohr and Krawiec, 1980; Fu et al., 1991) have attempted to 

apply this form of the Arrhenius equation, many (Scott, 1937; Daud et al., 1978; 

Ratkowsky et al., 1982; Stannard et al., 1985; Phillips and Grifffiths, 1987) found it 
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was inadequate to describe the rate response to temperature of complex biological 

systems. More sophisticated models were developed to take into account the deviation, 

at high and low temperatures, from the rate predicted by the simple Arrhenius 

equation. A number of models of essentially similar form were developed by Johnson 

and Lewin (1946), Hultin (1955), and Sharpe and DeMichele (1977). The latter model 

was reparameterised by Schoolfield et al. (1981). Of the Arrhenius-type models, the 

model of Schoolfield et al. (1981) has received the most attention in the predictive 

microbiology literature, having been used by workers at U nil ever Research in the UK 

(Broughall et al., 1983; Broughall and Brown, 1984; Adair et al., 1989). In its 

original parameterisation, this nonlinear model has the form: 

P<25 ) 2~8 exp{ ~ (2~8- ~)} 
=----~------------7---~~--~------~ 

K 1+exp{HL (-1 -~J}+exp{HH ( 1 -~J} 
R T112 T R T112 T 

L H 

1 
(1.7) 

where Tis absolute temperature, R is the universal gas constant and, for 

modelling bacterial growth, the other parameters have been interpreted as 

follows: K is the response (e.g. generation) time, P(25) is a scaling factor 

equal to the response rate (1/K) at 25°C, HA is the activation energy of the 

rate-controlling reaction, HL is the activation energy of denaturation of the 

growth-rate-controlling enzyme at low temperatures, HH is the activation 

energy of denaturation of the growth-rate-controlling enzyme at high 
temperatures, TmL is the lower temperature at which half of the growth-rate­

controlling enzyme is denatured, Tm11 is the higher temperature at which half 

of the growth-rate-controlling enzyme is denatured. 

For modelling in the suboptimal temperature region only, the model can be simplified 

by the deletion of terms relating to high temperature inactivation, i.e. the second 

exponential term in the denominator. 

Broughall et al. (1983) further developed this temperature-rate model to 

include the effects of water activity by modelling the change in the parameters ln P(25), 

H A, 1n (-HL) and TmL using expressions of the general form: 

parameter= F + G(aw - 0.95) 

Broughall and Brown (1984) extended this approach to include the effect of pH. The 

effects of pH and water activity on the fitted values of the parameters ln P(25), HA,HL 

and T112L were modelled using expressions of the form: 

parameter= F + G(pH- pHS)+ H(aw- awS) 
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where pHS and awS are approximations of the mid-point of the range of pH and aw 

respectively for which data were obtained. The resulting equation thus required the 

estimation of twenty parameters to describe the effect of temperature, pH and water 

activity on bacterial growth rate in the sub-optimal temperature region. 

give: 

Adair et al. ( 1989) reparameterised the Schoolfield et al. (1981) model to 

ln(K) =A+ (BIT) -lnT + ln{1 + exp[F + (D IT)]+ exp[G +(HIT)] (1.8) 

where K = lag or generation time, A = ln 298 - {[HAl 298 R)] - ln P<25); 

B = -HAIR;D = -Hu R; F = -Hlj(T112L R); G = -HHI(T112H R); H = -HHIR, 

and R and T are as defined above. 

For modelling in the suboptimal temperature region, the model is simplified by the 

deletion of the 'exp [G +(HIT)]' term. This simplified model is another form of the 

Johnson and Lewin model (see Ratkowsky et al., 1991). 

Equations (1.7) and (1.8) are reparameterisations of the model of Sharpe and 

DeMichele (1977) introduced to overcome difficulties in fitting the model to data by 

nonlinear regression methods. The success of nonlinear regression fitting may be 

dependent upon the ability to obtain good initial parameter estimates, a process which 

may be enhanced by reparameterisation. 

Davey/Modified Arrhenius models 

Davey (1989a) introduced an Arrhenius-type model, for the effects of temperature and 

water activity, which was linear and thus allowed for explicit solution of the best 

parameter estimates. This model has the form: 

(1.9) 

where k, aw and T have the same meanings as previously, and Co, C1 , C2, 

C3, C4 are coefficients to be determined. 

Davey (1989a) reported that the model well described seven data sets from the 

literature and subsequently demonstrated the ability of the model to describe lag phase 

duration also (Davey, 1991). 

Polynomial/Response Surface models 

Polynomial models represent a purely empirical approach to the problem of 

summarising growth rate responses. A polynomial-type approach was used by 

Metaxopoulos et al. (1981 a, b) to describe the increase over time in numbers of 

S. aureus in salami as a function of numbers of lactic acid bacteria, pH, water activity 
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and NaN02. Einarsson and Erikson (1986) used a polynomial to model the increase in 

bacterial numbers as a function of time and temperature. Others had used polynomials 

earlier to construct probability models (Raevuori and Genigeorgis, 1975; Genigeorgis 

et al., 1977; Jarvis et al., 1979, Roberts et al., 1981a, b, c). In this technique a linear 

model is constructed, which has the form of a polynomial function in the modelled 

parameters. Multiple linear regression is used to determine the best fit values for the 

parameters. The regression equations have the general form: 

where a, b1,2, ... z are parameters to be estimated and X 1.2 ........ i,j are 

variables. 

Cole and Keenan (1987) modelled the doubling and lag times of 

Zygosaccharomyces bailii in a model fruit-drink system. Doubling time was expressed 

as a polynomial, and lag time was modelled by the function: 

where x was a polynomial expression. 

Thayer et al. (1987) and Gibson et at. (1987) also used similar functions to 

model growth rate, but Gibson eta!. (1988) introduced the approach of Jefferies and 

Brain (1984) in which the parameters of a sigmoid function, which describes the 

growth curve of the organism under study, are modelled as a function of the 

environmental variables. The model which has been most used to date is the so-called 

'Gompertz function'. The appropriateness of this and other functions used will be 

discussed in 1.2 and 3 .1. The effect of environmental factors on the parameter values 

of the fitted equations are then modelled by polynomial expressions. For example, for 

a constant initial inocul urn, Buchanan and Phillips (1990) described the aerobic 

growth curve of Listeria monocytogenes Scott A, as a function of temperature (T), 

initial pH (P), sodium chloride concentration (S) and sodium nitrate concentration (N) 

by the expressions: 

ln M=37.657 + 0.0135T - 13.7331P + 0.4013S + 0.0713N + 0.00372T2 + 

1.9759P2- 0.000667S2 - 0.00007051N2 - 0.083TP + 0.0000842TS -

0.00241 TN - 0.1155PS - 0.0167PN - 0.000125SN + 0.0000292T2 -

0.093 5P3 - 0.00000328S3 + 0.000286TPS + 0.0000315TPN + 

0.00000014TSN + 0.0017PSN - 0.000384T2P - 0.00000855T2S -

0.00000043T2N + 0.000731TP2 - 0.0000441TS2 + 0.00672P2S + 

0.000968P2N + 0.000294PS2 + 0.00000062PN2- 0.00000016S2N 

and 
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ln B=-47.709 + 0.1631T + 18.6861P - 0.33609S + O.OlN - 0.00161T2-

2.7074PL 0.00623S2 - 0.0000863N2 + 0.0242TPS - 0.000906TS + 

0.00594TN + 0.0671PS - 0.00715PN + 0.00337SN - 0.0000684T3 + 

0.1276P3 - 0.000029S3 - 0.00051TPS - 0.0000733TPN -

0.00000033TSN - 0.0000431PSN + 0.000189T2P + 0.0000549T2S -

0.00000047T2N - 0.00222TP2 + 0.0000459TS2 - 0.0007781P2S + 

0.000777P2N- 0.000872PS2 + 0.0000112PN2 - 0.00000038S2N 

where B and M are parameters of the 'Gompertz function'. 

Discussion of the strengths and weaknesses of various kinetic modelling 

approaches may be found in Lowry and Ratkowsky (1983), Stannard eta!. (1985), 

Phillips and Griffiths (1987), Adair et al. (1989), McMeekin eta!. (1989), Davey 

(1989a), Davey (1989b), Kilsby (1989), Ratkowsky eta!. (1991), Zwietering et al. 

(1991), Gill and Phillips (1990), Heitzer et al. (1991), Alber and Schaffner (1992), 

van Impe et al. (1992), and Ross (1993). 

1.1.4.2. Probability models 

Genigeorgis eta!. (1971a) modelled the 'decimal reduction' in the number of 

S. aureus subjected to different environmental conditions. Using MPN methods, the 

primary response measured was the number of cells having initiated growth at times 

up to 20 days after inoculation. The probability, P, of a single cell initiating growth 

was calculated as: 

p = Rc/Rr 

where Rr is the number of cells inoculated into the system and Rc is the number 

having initiated growth. 

The expression: 

log(Rr!Rc) 

represents the number of decimal reductions of a population resulting from its 

exposure to a particular environment. The effect of environmental conditions on P was 

modelled by the polynomial expression: 

log(Rr!Rc) = a+ b1(%NaCl) +b2 (pH)+ b3(%NaCl)2 + b4(pH)2 + 

bs(%N aCl) (pH) 

One of Genigeorgis' motivations was to provide quantitative data, for factors 

other than thermal processing, to enable prediction of safe combinations of conditions 

to prevent pathogen growth and toxin formation (Genigeorgis eta!., 1971a). The use 
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of decimal reduction as a response variable is consistent with the description of the 

effects of thermal processing. 

This model type was used for a number of other organisms and combination 

of environmental factors (e.g. Raevuori and Genigeorgis, 1975; Yip and Genigeorgis, 

1981). A different form of model was adopted by Lindroth and Genigeorgis (1986). 

The probability, P, of one spore of C. botulinum to initiate growth and toxigenesis 

was defined as: 

P(%) = ~N X 100 
moculum 

where MPN is the number of spores which have initiated growth and toxigenesis, and 

inoculum is the number of spores initially present. When no samples were toxic, P% 

was defined as 1 Q-3. 

The probability of any event must have a value between zero and one. The 

following function: 

p = (l.lla) 

or its reparameterisation: 

p = 1 (l.llb) 

where Pis the probability of the response and where 'y' is a function of the 

variables modelled by a polynomial, 

describes this range of values and has been adopted by several probability modellers. 

Lindroth and Genigeorgis (1986) also recognised that the probability of growth 

detection within a given time was also dependent upon the lag time and initial 

inoculum density. They used the model, based on Eqn. lla: 

Log10P(%) = 
eY 

5 ( 1 + eY ) - 3 

where the effect of environmental variables is expressed in 'y' by the expression: 

( 1.12) 

where b 1 -b4 are coefficients to be determined, Tis temperature, S t the 

elapsed time, and where LP, the time to toxigenesis, was modelled by: 



where I is the inoculum concentration, and a, bs -b7 are values to be 

determined. 
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Roberts' group developed a model for the probability of toxin production by 

C. botulinum based on more than 50 000 observations (Gibson and Roberts, 1989). 

The model was of the form of Eqn. 1.11 b, where y was given by a linear polynomial 

expression. 

Lund eta!. (1987) introduced to predictive microbiology the model: 

Log10P = 
= 

A-S (X -T) 

A 

for T<X 

for T>X (1.13) 

where P is the probability of growth, A is the maximum value of LogwP, X 

is the time required for log10P to reach a maximum value, S is the slope of 

the line relating logwP to incubation time and Tis time. 

This model allows for asymptotic values other than 1, i.e. under some conditions, no 

matter how long one waits, not all samples will show growth/toxigenesis. In a second 

stage of the modelling process the parameters A, S and X were expressed as functions 

of the environmental variables by polynomial expression similar to those exemplified 

above. 

So et al. (1987) presented a method to enable ecogram data, an earlier pictorial 

convention for expressing the probability of toxin production, to be summarised in 

models of the for111: 

where Y = % of samples becoming toxic, T is the storage temperature, and 

f3o, /31, and To are parameters to be estimated. 

To was interpreted as the temperature below which no toxin is produced. The 

parameters f3o, /31, and To were expressed as polynomial functions of NaCl and 

NaN02 concentrations. By interpreting the results of the vast literature on challenge 

study data for Clostridium botulinum as probabilities of growth and toxigenesis, 

Hauschild (1982) was able to compare results from divergent challenge studies and 

discern new information regarding factors influencing the safety of cured meat 

products. 

The response measured by probability modellers is dependent upon the time 

for a response to be detectable, which is a function of the time required for 

germination or lag resolution, the rate of growth of the organism, and the number of 

cells initially present which commence growth. The probability of detectable growth, 
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when plotted as a function of time, is a sigmoid curve which has an upper asymptotic 

value representing the maximum probability of growth given infinite time. As will be 

detailed in a later section, Ratkowsky et al. (1991) highlighted the increasingly 

variable nature of the bacterial growth responses under conditions stressful to the 

organism, and showed that the growth rate becomes increasingly variable as a function 

of generation time. Thus, upon closer analysis, the distinction that has traditionally 

been made between probability and kinetic models is an artificial one. One may now 

interpret the sigmoid shape of the probability curve as a reflection of the range of 

growth/lag-resolution rates, the fastest rates resulting in the earliest detection of 

growth. Whilst probability models indicate the absolute likelihood of an event 

occurring given sufficient time, they also include information about the variability of 

rates of growth as recognised by Baker eta!. (1990): "The rate of P increase ..... 

expresses the growth rate .... ". 

The two types of models may be considered as the extremes of a spectrum of 

modelling needs, and research from both 'ends' is now converging. At near growth 

limiting conditions the kinetic modeller must consider the probability of a predicted 

growth rate, or growth at all. Similarly, the probability modeller must include some 

kinetic considerations. In a situation where no growth of an organism of concern is 

tolerable, one would use a probability model to ensure that the chance of lag resolution 

or spore germination is insignificantly low. At the other extreme, in a product which 

must be handled under conditions for which the probability of growth of spoilage 

organisms is unity, one would need only a growth-rate estimate for shelf life 

prediction. The two approaches converge in situations where growth up to some 

threshold is acceptable, but for which the environmental conditions are such that the 

responses are highly variable. Buchanan (1991 b) identified one of the problems 

involved in implementation of probability based models as the translation of 

probabilities into values that can be used to set safe shelf lives, and noted that this 

issue was being increasingly addressed by integration of kinetics and probability based 

models. 

1.1.5 Potential Problems and Solutions 

It should be remembered that predictive microbiology is perhaps more a philosophical 

approach than a specific method or technology, and while it may be successfully 

applied to many problems, it cannot solve all. Despite weaknesses and limitations, 

predictive microbiology has been successfully applied. Limited commercial acceptance 

was realised in the mid- t980's, with some companies in Canada, the United States, 

England, and Europe using predictive modelling in their food operations (Farber, 

1986). In a personal communication Dr. A.C. Baird-Parker (1986) wrote: "We 

[Unilever] routinely use Autologs for the collection of time/temperature data during 

distribution and use this data for predicting the safety and shelf-life of chill stored 
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products. This is based on our internal data base (pathogens and spoilage organisms) 

and the use of the nonlinear Arrhenius equation for predictive mathematical 

modelling." An 'expert system' has been developed by Unilever (Adair and Briggs, 

1993). This, and other commercial applications of predictive microbiology, are usually 

considered proprietary. Nonetheless, there are reports in the literature detailing 

successful applications of the concept. Some criticisms of predictive microbiology will 

be considered here, evidence presented to counter those arguments and strategies 

introduced to overcome some perceived limitations. A complementary defence of 

predictive microbiology is given in McMeekin and Ross (1993). 

Scepticism exists that a model derived in an experimental system can reliably 

predict the growth of the modelled organism in a food. Evidence to support the 

hypothesis underlying the modelling approach (i.e. that growth rates are determined 

by environmental constraints which can be simulated in model systems and that such 

models do lead to reliable predictions in foods), may be found in the kinetic modelling 

literature (Daud et al., 1978; Gill, 1984; Pooni and Mead, 1984; Muir and Phillips, 

1984; Smith, 1987; Gibson et al., 1988, Reichel et al., 1991; Ross and McMeekin, 

1991; Wijtzes et al., 1993). The results of Gibson et al. (1988) and Wijtzes et al. 

(1993) are particularly convincing. Gibson et al. (1988) compared the predictions of 

their model for the growth of Salmonellae in tryptone soya broth (TSB) to 

independently derived literature values for Salmonella growth in foods. Similarly, 

Wijtzes eta!. (1993) compared growth rates of Listeria monocytogenes in TSB as a 

function of temperature, pH, and water activity, to independently derived literature 

values. They concluded that the predictions from the model compared to those 

reported in the literature were very good. Notably, in most cases the growth rates in 

TSB were not slower than those reported in foods. Gibson et al. (1988) concluded 

that "there was good agreement between predicted generation times and those 

published, with the exception of S. typhimurium inoculated into blended mutton at 

10°C". This exception, and the observations of Gibson eta!. (1987) that at 

temperatures approaching those limiting growth C. botulinum appeared to grow better 

in meat products than in laboratory medium, may also have contributed to mistrust. A 

possible explanation for these observations may lie in the extraordinary sensitivity of 

growth rates to small temperature changes at near growth-limiting temperatures, as 

commented on by Muir and Phillips (1984). This temperature sensitivity may also be 

appreciated by consideration of the simple square root model, and may partially 

explain the increasing variance of growth rate estimates as incubation temperature is 

reduced from the optimum for growth. 

Genigeorgis eta!. (1971b) and Raevuori et al. (1975) reported also that 

S. aureus and B. cereus grew better in actual foods or food homogenates than in 

laboratory media, and subsequently used food homogenates as their model systems. 

Ikawa and Genigeorgis (1987) concluded the close agreement between predictions 
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from their model system, and those observed in rockfish fillets, was confirmation of 

the reliability of that experimental design and methodology. 

Gill (1986) identified three problems in the practical application of 

temperature function integrationl yet, ironically, Gill and his colleagues have 

subsequently been more energetic in finding practical solutions to those problems than 

any other group. The first problem identified by Gill, and others (e.g. Pooni and 

Mead, 1984) is the dependence of useful predictions (e.g. time to spoilage, time 

before statutory levels are exceeded) upon the initial number of microorganisms 

present. In some cases it may be feasible to enumerate the organisms of concern. In 

many situations, however, economic factors dictate that the product can not be 'held 

up' for the time taken to obtain results from traditional (viable count-based) methods. 

In those situations two obvious strategies emerge. One is to use a rapid method to 

enumerate the initial microbial load, but there is still no method sufficiently specific 

and rapid or cost effective. The second is to base predictions upon an assumed starting 

inoculum. The value chosen may be based upon that which is achievable using GMP, 

or, in less controlled circumstances, upon a 'worst case'. The latter strategy was 

adopted by Gill and Phillips (1990). They concluded that, for regulatory purposes, a 

process is defined by the product of poorest hygienic condition that the process yields, 

rather than the average product condition, and developed strategies based on this 

realisation (Gillet al., 1988a). For foods produced to a consistent level of quality, that 

level may be used as the baseline for predictions. Chandler and McMeekin ( 1989a), 

using an electronic device based on the concept of relative rates, were able to predict 

the time of spoilage of commercial milk products on the basis of temperature history 

and a model for Pseudomonas growth. Similarly, Gill and Harrison (1985) were able 

to obtain good predictions for the proliferation of E. coli on offal during cooling in 

cartons, based on an assumed initial inoculum, consistent with good slaughter 

technique. 

In many situations it may not be necessary to have knowledge of absolute 

growth rates under each set of conditions: predictions may be based on relative rates. 

In this approach, models are used to predict the growth rate under a particular set of 

storage conditions relative to that under conditions for which the shelf life of product 

is known. For example, milk is typically spoiled by pseudomonads, and has a shelf 

life at 4 °C of 8-10 days. lf the temperature of storage is found to be 1 0°C the shelf life 

at l0°C can calculated without reference to the absolute growth rate for those 

organisms under those conditions. Models for Pseudomonas show that its growth 

rate at l0°C is~ 1.5 times that at 4°C. Thus the shelf life at l0°C is (8-1 0 days)/1.5, 

i.e. - 5-7 days. One can also integrate relative rates, a technique that has been 

1 Temperature Function Integration (Nixon, 1971): the summation of the temperature history of a 
product and it's interpretation in terms of potential bacterial growth. Sec also 6.1.2. 
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incorporated into several predictive microbiology devices (Ross and McMeekin, 

1991). 

The second problem Gill experienced was the identification of a mathematical 

model relating bacterial growth to temperature and which facilitated ready integration. 

The many models available have already been discussed: Gill's group adopted a 

Belehradek-type model. 

Gill's third objection, echoed by Riemann (1992), is that the bacterial/food 

system is complex and incompletely understood. In this regard other potential 

difficulties are apparent, e.g. how reproducible is the lag time of bacteria in such 

systems and how accurately may it be predicted; what, if any, is the effect of 

interactions among the bacteria present. In addition to these problems is that of the 

heterogeneity of some foods and the distribution of microorganisms within them, and 

also the possibility of micro-environments. The problem of heterogeneity was 

considered by Gillet a!. (1991a) and overcome by a 'worst case' strategy. i.e. to find 

the slowest cooling part of a carcass which was contaminated with spoilage or 

pathogenic organisms, and to base predictions on that worst case. In many cases it 

may not be necessary to predict the end result of a temperature history, but simply use 

that history to predict that an event could not have happened. 

An aspect of the system's complexity is that of microbial interactions and the 

differential effects of temperature ranges on the components of the microbiota as 

envisaged by Scott (1937) cited earlier. Available evidence (e.g. Nderu and 

Genigeorgis, 1975; Gill and Newton, 1980; Mackey and Kerridge, 1988; Ross and 

McMeekin, 1991) suggests that microorganisms do not greatly affect the growth of 

one another, except where population densities are very high. Metaxapoulos et al. 

(1981a,b) modelled the growth of S. aureus in fermented meats under commercial 

conditions and obtained good agreement between the predicted increase in numbers of 

S. aureus in the product and that observed. From the point of view of predictions of 

interest in food microbiology, such population densities occur only after spoilage, 

toxigenesis or infectious dose levels are reached. This suggests that, for many 

applications, the effect of the environmental history on each component of the 

microbiota may be modelled and calculated independently without the need to consider 

interactions. Nonetheless, one can envisage situations where microbial interactions 

may occur, especially with Lactobacillus strains which produce bacteriocins or other 

microbial compounds and, if these affect the growth rate of the organisms of concern, 

this factor would have to be included in the model development. This emphasises the 

need to understand the microbial ecology of the product (McMeekin et al., 1993). 

Another objection relates to 'dynamic' environments, i.e. those in which 

environmental conditions change during the life of the product, with several writers 

(Gibson, 1985; Mackey and Kerridge, 1988; Gibbs and Williams, 1990) pointing out 

that models derived from experiments performed under static conditions may not be 
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applicable to fluctuating conditions. The factor most obviously likely to fluctuate is 

temperature and, although one can envisage situations in which changes in pH, 

gaseous atmosphere and water activity may occur, it is temperature which has been 

most investigated. Walker et al. (1990), Fu et al. (1991), and Buchanan and Klawitter 

(1991) hypothesised that incubation conditions would subsequently affect the rate of 

growth of microorganisms and, therefore, that it would be necessary to know the 

previous history of the organism in order to accurately predict its rate of growth in a 

particular environment. Fu et al. (1991) termed this possibility a 'temperature history 

effect'. Microbial cultures, when shifted abruptly from one temperature to another, 

may exhibit a transient growth rate before assuming the growth rate expected at the 

new temperature (Ng eta!., 1962; Shaw, 1967; Araki 1991). Fu eta!. (1991) 

observed a similar effect and concluded that there was a temperature history effect. 

Several investigations (Walker eta!., 1990; Buchanan and Klawitter, 1991; Hudson, 

1993, Li and Torres, 1993a) found no significant temperature history effects on 

growth, but effects on lag time duration were suggested. These conclusions are 

consistent with those of Neumeyer (1992), who also presented data which suggested 

the effect of temperature shifts on lag times might be related to the magnitude of the 

temperature shift. Critical analysis of the results of Fu eta!. (1991) suggest that other 

interpretations are possible, and that temperature history effects need not be invoked to 

explain their observations. Nonetheless, if transitions between temperature are abrupt 

and frequent, i.e. if transitional rates represent a large part of the storage history, 

predictions from the current generation of models may be unreliable. In addition to 

those cited above, there are now many reports (Langeveld and Cuperus, 1980; Gill, 

1984; Smith, 1987; Blankenship et al., 1988; Dickson et al., 1992; Spencer and 

Baines, unpublished in McMeekin et al., 1993) based on a range of products, which 

indicate that predictions from models based on data generated under constant 

conditions can reliably predict growth under dynamic temperature conditions. 

The potential problems considered above relate to limitations in the amount of 

information available from which to make predictions based on models. A more 

fundamental and limiting problem is suggested by the results of Ratkowsky et al. 

(1991) who began to quantify the inherent variability of the growth responses of 

microorganisms, as did Muir and Phillips (1984 ). Similar observations were alluded 

to by Gill (1984), and Mackey et al. (1980). Using the limited amount of replicated 

published data concerning growth rate estimates under varying environmental 

conditions, Ratkowsky et a!. (1991) concluded that those responses became 

increasingly variable at slower growth rates. The following equation characterised the 

relationship between the variance in a response and its magnitude: 
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variance= 4 x (response time)3 x variance(>/k) (1.14) 

where k is the reciprocal of the response time 

In the data presented by Ratkowsky et al. (1991) var>/k is a constant. McMeekin et al. 

(1993) subsequently showed that this relationship was dictated by the distribution of 

response times which, for the data sets they considered, was inverse Gaussian. Alber 

and Schaffner ( 1992) showed that for a strain of Yersinia enterocolitica (serotype 08) 

the variability in response times is better described by a Gamma distribution for which 

logarithmic transformation better homogenises the variance. Ratkowsky ( 1992) 

presented the following general relationship between the variance in growth response 

times and the mean of those responses for a range of possible distribution types: 

v = (1.15) 

where ex is the mean of the probability distribution, V is the variance of the 

probability distribution, n is an integer exponent having values 0, 1, 2, or 3, 

corresponding to the normal, Poisson, Gamma and Inverse Gaussian 

distributions respectively, and cis a constant. 

Table 1.1, abridged from McMeekin et al. (1993), illustrates the consequences of Eqn. 

1.14 for the confidence limits of the predictions of such models. The table gives 

predicted generation times, eo, for the case of S. aureus 3b, which should be used for 

predictive modelling to achieve a certain level of safety. For example, one in ten 

thousandS. aureus 3b have generation times, e, at 12.5°C of less than 69 minutes so 

that predictions of response times based on this value should only overestimate the 

response time once in ten thousand events, i.e. the prediction will fail one time in 

10 000. A high level of confidence requires that more products are predicted to be 

unsafe than actually are, however, so that unnecessary wastage may be a 

consequence. At 12.5°C the difference in the response times corresponding to 95% 

and 99% confidence levels is quite large (nearly a factor of 2) whereas at 30°C, 

because the variability is less, the difference is of the order of 10% of the estimate. At 

30°C the rates are much faster and the generation times are much smaller, so that risks 

of 1()-3 and 1()-6 require generation times of23.5 and 17.75 minutes, respectively. 

Similar exercises can be carried out with data that are distributed in other ways, 

to produce bounds that attempt to take account of the variability of estimates of time­

based quantities such as generation time and lag time. A general approach to modelling 

taking into account the nature of the distribution of responses was presented by 

Ratkowsky (1992). 
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Table 1.1 Values of Generation Time, e (minutes), Required to Achieve 

Minimum Selected Probabilities P[ e < eo] of Prediction Failure for 

S. aureus 3b. [Inverse Gaussian Distribution with Scale Parameter 

c = 0.000817. Data of Neumeyer (1992)]. 

12.5 °C 30°C 

eo P[e < e oJ eo eo 

46 0.000001 17.75 0.000001 

69 0.0001 21.0 0.0001 

136 0.01 27.0 0.01 

203 0.05 30.5 0.05 

2356 0.95 56.25 0.95 

3782 0.99 63.75 0.99 

6038 0.999 73.0 0.999 

Finally, a more philosophical criticism was levelled by Hedges (1991). He 

stated that he was unconvinced that many of the papers in the predictive microbiology 

literature represent a real contribution to science because of the empirical nature of 

many of the models published. He considered that such contributions do not help to 

elucidate underlying processes but merely describe a set of observations. Despite that 

other workers claim to have presented a more scientific (Ross and McMeekin, 1991) 

or mechanistic (McMeekin et al, 1993, Chapter 10) approach, the criticism has some 

basis. In a defence, however, Cole (1991 a) asserted that researchers in the field of 

predictive microbiology are working towards mechanistic models but that currently 

there are none able to deal with the many parameters of interest. He concluded: 

"Therefore, in the meantime, we will continue to develop our predictive models 

..... because of the power that models provide for the food microbiologist in day-to­

day decision making." 

1.1. 6 Technology 

There are a variety of technological applications based on the predictive microbiology 

concept, ranging from simple, disposable, chemical time-temperature integrators, to 

complex 'expert systems' incorporating predictive models amongst the database(s) 

used for decision making. 
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Chemical monitors, which are intended to mimic the response to temperature 

of bacterial growth were reviewed by Olley (1978), McMeekin and Olley (1986), 

Wells and Singh (1988a,b), Taoukis and Labuza (1989a,b), Fu et al. (1991), Labuza 

and Taoukis (1991), Sherlock et al. (1991), Taoukis et al. (1991), and McMeekin et 

al. (1993) who concluded: "There are currently no cheap visual monitor strips 

available which simulate bacterial growth or food spoilage over a wide enough 

temperature range. One type, marketed until recently by the I-POINT® company, 

showed promise and it is hoped that their technology can be rehabilitated. 

Alternatively, in the future, enzymes specifically selected to mimic the bacterial 

growth-rate-temperature relationship ........... could be incorporated into enzyme-

substrate strips". 

Previous discussions of electronic devices include Olley (1978), McMeekin 

and Olley (1986), and Ross and McMeekin (1991). McMeekin et al. (1993) discussed 

comprehensively the existing electronic and chemical devices, their history, and the 

potential for further development and concluded that [semiconductor-based] 

'technology already exists to develop devices able to monitor many of the 

environmental parameters in foods which affect the rate of microbial growth and thus, 

using microprocessor technology, to yield estimates of food quality and safety". 

The potential of monitoring devices relies, however, upon data relating 

growth of food-borne microorganisms to environmental conditions. Buchanan 

(1991b) considered that, despite the many published predictive models for microbial 

growth and toxigenesis, there had been "relatively little transfer of this technology to 

food microbiologists involved in non-research aspects of the field" and further "that 

the limited acceptance of predictive modeling techniques seems to be due in large part 

to a lack of application software that reduces to routine operations the often complex 

mathematical manipulations associated with the use of the models". A similar opinion 

·was expressed by Stecchini et al. (1993). Earlier in this review a range of such 

systems were alluded to, including the Pathogen Modeling Program and Food 

Micromodel. Another example is the applications software associated with the Delphi 

Temperature Logger developed by Gill and his colleagues for assessment of meat 

processing operations. The former two systems were described in Buchanan (1991 b) 

and Walker and Jones (1992), respectively. Cole (1991b) reviewed the use and 

potential of databases, including expert systems, in food microbiology and concluded 

that the most significant developments were in the area of predictive microbiology. A 

number of expert systems are being developed in various institutions around the 

world. As part of the Food Micromodel project, the UK government is developing a 

relational database to allow direct remote access to the models base by industrial users 

of that system (Jones, 1993). Agriculture Canada is developing software to assess 

product safety and to define production system critical control points. MKES (an 

acronym of Microbial Kinetics Expert System) Tools simulates the growth and 
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survival of pathogenic organisms when subjected to many different environmental 

conditions. The responses predicted are used to estimate the significance of the 

individual factors in that situation (Voyer and McKellar, 1993). The Unilever 

company has established a food microbiology expert system. The system incorporates 

a set of rules based on the knowledge and 'decision-making' processes of an expert 

food microbiologist, as well as a database of knowledge of chilled food manufacturing 

and food-borne microorganisms, and is linked to a spreadsheet providing predictions 

based on microbiological growth models (Adair and Briggs, 1993). Zwietering et al. 

(1992a) described the basis of an expert system which models bacterial growth in food 

production and distribution chains. 

1.1.7 Summary 

Predictive food microbiology may be seen as providing a rational framework for 

understanding the microbial ecology of food, and as a large step towards making food 

microbiology "more science, than art". Though many food systems are too complex to 

model in detail, in many cases a number of strategies can be applied to simplify the 

problem, and to allow useful predictions to be made. The potential advantages of 

predictive microbiology are numerous and, although predictive modelling systems are 

already in use on a commercial basis, the full realisation of that potential will depend 

upon a conscientious and rigorous approach to data gathering and modelling, as well 

as ingenious solutions and strategies for the application of those data and models, and 

willingness on the part of the food industry to trial the approach and think in terms of 

the premises upon which predictive microbiology is based. 

1. 2 CONTEMPORARY RESEARCH 

Contemporary research issues in predictive microbiology are reflected in the session 

titles at the 1992 International Workshop on the Application of Predictive 

Microbiology and Computer Modeling Techniques to the Food Industry, namely: 

Probability Models; Kinetic Models; Inactivation/Survival Models; Applications 

Software and Expert Systems; Application of Modeling Techniques to Food Safety; 

Quality and Production, Data Collection and Design of Experiments. Many of these 

have already been discussed in this review, but there remains a number of areas of 

ongoing research worthy of comment. 

To return to an earlier point, Gibson et al. (1987) are generally credited with 

having introduced sigmoid functions to describe the bacterial growth curve objectively 

and reproducibly. In fact, Stannard et al. (1985) fitted their data to a sigmoid function 

and noted: "In comparing data for analysis, the use of a computer program was an 

advantage in fitting the best growth curves and calculating useful parameters of the 

fitted curve". This was an important step. Prior to that work, most growth curves 

which had been used to derive kinetic data for predictive models had been fitted 'by 
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eye' to data considered to represent the exponential phase, although Broughall and 

Brown (1984) refined this by a sophisticated and reproducible routine to determine the 

points that were most likely to represent the exponential phase. 

The choice of the most appropriate function to describe the growth curve was 

discussed by Jennison (1935) and continues to generate research effort. Whilst Jason 

(1983) provided compelling evidence that the logistic model was a good model to 

describe bacterial batch growth, Bratchell et al. (1989) concluded that the modification 

of the Gompertz function due to Gibson et al. (1987) was more reliable than a 

modification of the logistic function which Gibson et al. (1987) had also trialed. This 

finding was supported by Zwietering et al. (1990) who compared the performance of 

five sigmoid functions for describing the bacterial growth curve. The use of fitted 

sigmoid functions also allowed unambiguous definitions and analyses of the lag phase 

and exponential phase duration to be made, based on the fitted parameters (Gibson et 

al., 1988, Buchanan and Cygnarowicz, 1990; Garthright 1991; Zwietering et al., 

1992b). 

Draper (1988) considers that mechanistic models are preferable to empirical 

ones because they usually contain fewer parameters, fit the data better, and extrapolate 

more sensibly. Baranyi et al. (1993) wrote "it is a reasonable aim to choose models 

which can be connected to generally accepted mathematical descriptions of nature". 

The modified-Gompertz function is an empirical appiication of a mechanistic model 

which was initially derived for actuarial purposes, and there is a growing recognition 

that the modified-Gompertz function may not be the most appropriate model to 

describe bacterial batch culture growth (Whiting, 1992; McMeekin et al., 1993; 

Baranyi eta/., 1993). The deterministic model of Jason (1983) is limited because it 

requires a subjective assessment of the end of lag phase to be made. In consequence, a 

number of new mechanistic models have been published. 

Dalgaard (1993) used simply the logistic function, after logarithmic 

transformation of both sides of the equation and inclusion of an additive parameter to 

model the lag phase empirically, and in so doing stated he was able to retain the 

original interpretation of parameters. Baranyi et al. (1993) developed a model which 

also described lag, exponential and stationary phases but had the added advantage that 

the lag and exponential growth stages were treated independently, so that one was not 

influenced by the other in the fitting process. Whiting and Cygnarowicz-Provost 

(1992) included the death phase also in their model, as did van Impe et al. (1992), 

who presented a very comprehensive treatment of growth/survival/death modelling. 

The latter authors pointed out that the Gibson eta!. (1988) modelling approach is valid 

only for constant conditions, and that conditions which fluctuate over time can lead to 

discontinuous predictions. Accordingly they developed a model able to deal with time­

varying temperatures over the whole temperature range for growth and inactivation. 
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Interest in the variability of growth rate responses arose from questions 

regarding the most appropriate fmm of kinetic model (Adair et al., 1989). The results 

of Ratkowsky (1992), described earlier, emphasised that the stochastic behaviour 

cannot be overlooked in modelling, and that failure to correctly deal with the stochastic 

behaviour can lead to incorrect conclusions and unreliable models. Equally 

importantly, this work addressed the limits of confidence one can have in predictions 

from models. 

1.3 OBJECTIVES OF THIS THESIS 

In keeping with the theme of Roberts and Jarvis (1983), there prevails a largely 

cooperative spirit within the international predictive microbiology 'community'. The 

rapid increase in interest and research output in predictive microbiology has, however, 

resulted in a rather ad hoc development of methodologies for data generation, analysis 

and summary. There is consensus, though, that replicated data of good quality are 

fundamental to the development of reliable predictive models for microbial growth in 

food (Bratchell et al., 1989, McMeekin et al., 1993). Traditional methods of growth 

curve generation are extremely tedious and labour intensive and researchers are 

attempting to develop methods and experimental designs which will maximise the data 

available from experiments (McMeekin et al., 1992). Various automated systems have 

been trialed. Buchanan's group, who generate kinetic data using viable count methods 

from broth cultures, use spiral platers and automated plate reading equipment. Other 

groups have advocated the use of turbidimetric methods (Mackey and Kerridge, 1988; 

McMeekin eta!., 1993; Dalgaard et al., in press), particularly automated instruments 

such as the Bioscreen2 (McClure et al., 1993) or automated conductimetric methods 

(Borch and Wallentin, 1993). In another approach, efforts are being made to make 

compatible the results of diverse groups and laboratories. A protocols document has 

been prepared (Anon., 1990) for laboratories participating in the MAFF program in 

the UK. On an even larger scale, efforts are underway to combine existing databases 

and coordinate the modelling efforts at the international level, (R.L. Buchanan, 1993, 

pers. comm.), as is already happening in the FLAIR program operating in \Vestem 

Europe. 

Whiting and Buchanan (1993) proposed that three levels of model could be 

recognised in predictive microbiology. They suggested that models which measure the 

response of microorganisms to a single set of conditions over time be classified as 

'primary' models. Models which describe the response of one or more of the 

parameters of the primary model should be classified as 'secondary' models, and that 

applications of one or more secondary models which make predictions of those 

2BIOSCREEN: Labsystems, U.K. Ltd., Basingstoke, Hants, U.K. 
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models available to 'non-modellers' be called tertiary models. These classifications 

provide a convenient framework to describe this thesis. 

The work reported in this thesis is concerned primarily with the development 

of a labour efficient strategy for the derivation of kinetic models applicable to foods. 

Two primary models to describe the bacterial growth curve are evaluated and a robust 

turbidimetric method developed. Using the proposed strategy, secondary models to 

predict the growth rate of Staphylococcus aureus in response to temperature and water 

activity,and of Listeria monocytogenes in response to temperature, water activity (due 

to [NaCl]) and pH are generated. 

To evaluate the reliability of the methodology, a deliberately minimalistic 

experimental design is used to simulate the conditions under which smaller 

organisations may be likely to develop models. A 'test to destruction' philosophy is 

adopted and no attempt is made to 'fine tune' the results to suit a particular hypothesis. 

Predictions from models developed in this manner are compared to novei and 

published data for the growth of those organisms in foods, and indices by which to 

evaluate the reliability of models are introduced. Technologies for the application of 

predictive models in the food industry, i.e. tertiary models, are also described. 

The work was also concerned with the interpretation of the physiological 

mechanisms underlying the responses of microorganisms to temperature and the 

elucidation of a mechanistic interpretation of the square-root relationship between 

growth rate and temperature. 
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2 KINETIC MODEL GENERATION: HYPOTHESES 

2.1 INTRODUCTION 

A spectrum of needs and strategies exists for developing predictive models for food 

microbiology. There are different types of problem (toxin formation, spoilage, 

pathogen growth, death kinetics); models of different types (e.g. probabilistic, 

kinetic); various methods for collecting data (optical density, viable counts, 

conductimetry, metabolite assays); several mathematical expressions used to 

describe what is essentially the same type of data; and there have been a number of 

indices suggested for evaluating models (Adair et al., 1989; Bratchell et al., 1990; 

Zwietering et al., 1990). Underlying this diversity are fundamental elements 

common to all model development, and which have been recognised by various 

authors (Draper and Smith, 1981; Farber, 1986; Baird-Parker and Kilsby, 1987; 

Roberts, 1990; Ross and McMeekin, 1991). These rue: 

i) Planning 

ii) Data collection and analysis 

iii) Mathematical Description and 

iv) Validation and Maintenance 

This chapter presents a discussion of the modelling process in terms of these 

stages as the basis for the development and rationalisation of the modelling 

philosophy employed and evaluated in this thesis. The philosophy strives to be 

rational, rigorous, yet labour efficient, and to yield reliable and accurate models. 

Although the discussion is from the perspective of the development of kinetic 

models, some of the discussion will also be relevant generally to other model types. 

Much of the material in this chapter is drawn from that presented by the candidate in 

Chapter 2 of McMeekin et al. (1993). 

2.1.1 Empirical vs Mechanistic Models 

Causton ( 1987) states that the essential purpose of mathematical models is to 

describe succinctly a set of acquired data. It is more correct, however, to consider the 

model as describing an underlying process which generates data (McMeekin et al., 

1993). Two major types of model are recognised. Empirical models are derived from 

an essentially pragmatic perspective, and simply describe the data in a convenient 

mathematical relationship. Consequently, they often give little insight into the 

underlying process. Mechanistic, or deterministic, models are built up from 

theoretical bases, and if they are correctly formulated, may allow the interpretation 

of the response in terms of known phenomena and processes. 
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In building regression models to describe natural processes, it is likely that 

the appropriate model will prove to be a nonlinear one. This is because physical, 

chemical and biological models are often solutions of differential equations, and 

such solutions are rarely of the form that the model is linear in its parameters. 

(McMeekin et al., 1993). Draper (1988) also states that mechanistic models are often 

nonlinear in their parameters and more difficult to fit and evaluate and that, 

consequently, appropriate experiments are more difficult to design. 

Empirical models usually take the form of first or second degree 

polynomials. Polynomial models of higher order are rarely fitted partly because of 

the difficulty in interpreting the form of the fitted response surface which, in any 

case, produces predictions whose standard errors are higher than those from lower 

order models (Draper, 1988). Draper (1988) considers that mechanistic models are 

preferable to empirical ones because they usually contain fewer parameters, fit the 

data better, and extrapolate more sensibly, further noting that polynomial models 

often extrapolate poorly. 

2.2 PLANNING 

Factors that need to be considered when designing experiments to gather the data 

upon which the model is based are: the variables to be included; whether there are 

interactions between variables; the range of values of the variables; the amount of 

data required; the experimental model used and the response to measure and model. 

2.2.1 Independent Variables 

When developing models to describe the growth rate response as a function of 

several independent variables, one is modelling a 'response surface' inn dimensions 

where n is the number of independent variables. A response surface design is simply 

an arrangement of experimental points representing possible combinations of 

variables in that n~dimensional space. The choice of response surface design is thus 

one of selecting a set of suitable combinations according to some preselected 

criterion of goodness (Draper, 1988). Desirable features of such a design are given 

in Table 2.1. 

2.2.2 Interactions 

If it is necessary to model the effect of a number of variables acting simultaneously, 

it may be useful to do a factorial experiment first to determine whether there are any 

interactions among the factors. Typically this is done by having each variable either 

present at a single level or absent, and testing the response at each combination of 

the variables, that is, using 2n test conditions where 'n' is the number of variables. 

Factorial experiments may also be designed to include many values of the 

independent variables. The analysis of factorial experiments is fairly straightforward 
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and is discussed in texts on statistics or experimental design (for example Cochran 

and Cox, 1957). 

2.2.3 Range of Values 

The range of the variables to be included in the experimental design will depend 

upon the range expected to be encountered in the product. It is generally accepted 

that it is unwise to extrapolate beyond the range of the data used to generate the 

model so that the full range expected must be tested. It is also sound practice to use 

as full a range of the independent variable as possible to obtain as full a range of the 

response as possible. Even in situations where the expected range of values of the 

independent variable is small, using a wider range may reveal behaviour that could 

not be resolved over a narrower range, and provide greater confidence in predictions 

within the region of concern. 

Statistical principles should also be considered when determining the 

number of levels of independent variables to be tested. When many independent 

variables are being evaluated the number of test conditions rapidly multiplies, so that 

decisions have to be made regarding the feasibility of conducting all experiments 

concurrently. This must also be considered in relation to the method used to measure 

the response. Various strategies have been proposed to deal with this problem. Some 

workers use a central composite design to reduce the number of experimental points 

that are tested on the response surface (Gibson et al., 1988; Buchanan and Phillips, 

1990; Palumbo et al., 1991). The central composite design is described by Draper 

(1988) who comments that it has many of the desirable features referred to in Table 

2.1. For some applications, however, one may be more interested in the response at 

conditions far removed from the centre of the range. For example, many food 

processors will be more interested in the responses of microorganisms at near 

growth-limiting conditions, as these are the conditions which will extend the shelf 

life and safety of their products. In this situation most observations are required near 

the extremes of the range, where growth rate is retarded, rather than the centre of the 

range. This limitation has recognised by some workers, and has been addressed by 

the use of augmented, or supplemental, central composite designs (Buchanan eta!., 

1993a; Benedict eta!., 1993). 

2.2.4 Preparation of Inocula 

Reports on the growth responses of microorganisms have drawn attention to the fact 

that the condition of the inoculum may have an effect on the subsequent growth 

kinetics, particularly the lag phase duration. Consequently, it is necessary to take 

steps to use inocula that are, as far as possible, identical. 

Kinetic models attempt to explain the time taken for a specified growth 

response in terms of environmental variables such as temperature, water activity, 
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pH, etc. As discussed in 1.1.5, recent reports have suggested that growth responses 

(particularly lag time duration) may also be dependent upon the prior temperature 

history of the inoculum used for kinetic experiments, whilst other reports suggest 

that exponential growth rates are independent of temperature history. 

One means to avoid the problem is to perform all experiments 

simultaneously using a single culture for the inoculum. In this situation it may still 

be necessary to take precautions such as reducing or stopping the growth of the 

inoculum, (for example by reducing the temperature to that at which the growth rate 

is negligible), prior to and during the inoculation procedure so that the inoculum 

density does not increase during the time taken to inoculate all cultures. In many 

cases, however, it is not possible to perform all determinations simultaneously and 

special precautions must be taken to prepare standardised inocula. 

Table 2.1 Desirable Features of Response Surface Designs 

The response surface design should: 

1. generate a satisfactory distribution of information about the behaviour of 

the response variable throughout a region of interest, R 

2. ensure that the fitted value at x, y (x), be as close as possible to the true 

value at x, TJ(x). 

3. give good detectability of lack of fit 

4. allow transformations to be estimated 

5. allow experiments to be performed in blocks 

6. allow designs of increasing order to be built up sequentially 

7. provide an internal estimate of error 

8. be insensitive to wild observations and to violation of the usual normal 

theory assumptions 

9. require a minimum number of experimental points 

10. provide simple data patterns that allow ready visual appreciation 

11. ensure simplicity of calculation 

12. behave well when errors occur in the settings of the predictor variables 

13. not require an impractically large number of predictor variable levels 

14. provide a check on the constancy of variance assumption 

[After Draper (1988)]. 
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2.2.5 Inoculum Size 

The possibility that inoculum size has an effect on the growth responses of a culture 

such as lag time, exponential growth rate or maximum population density has also 

been addressed. In general there appears to be no effect of inoculum size on 

exponential growth rate or maximum population density (Jason, 1983; Buchanan 

and Phillips, 1990). It is important to distinguish between the detection time of a 

response and the lag time. All practical bacterial enumeration methods have a lower 

limit of detection. If the inoculum density used is below this level then the time 

taken for an observable change in bacterial numbers is a combination of the lag time 

and the time taken for the population size to increase to a detectable level. 

2.2.6 Mixtures of Strains and Species 

Some workers (e.g. Gibson et al., 1988; Blankenship et al., 1988; Baker et al., 1990, 

Benedict et al., 1993; Hudson and Mott, 1993) prefer to use a mixture of strains of 

the modelled organism, arguing that it is more representative of the situation that is 

likely to pertain to contamination of real foods. Such mixtures are sometimes 

referred to as 'cocktails'. 

An alternative is to model several strains independently and to choose from 

those the strain that represents the worst case, i.e. that strain which grows fastest 

under the conditions of most interest (McMeekin et al., 1993). 

2.2.7 Response Variable 

The primary response measured is usually the change in bacterial population density 

over time. The rate of change is then typically expressed as lag phase duration, 

generation time, or time to reach some specified level or condition, although the 

response is often modelled with rate (i.e. 1/response time) as the dependent variable. 

For reasons discussed below, the response variable is often mathematically 

transformed. For example, the response variable of the square root model is~rate 

and of Arrhenius based models is usually ln (rate). 

In addition to the obvious response variables of lag and generation rates, 

other response variables which have been modelled include the square root of the 

reciprocal of the time taken for the culture to achieve a 30% change in optical 

density (McMeekin et al., 1987; Adams et al., 1991); the logarithm of the reciprocal 

of the time taken for the culture to reach the most rapid rate of growth, given by the 

Gompertz M parameter (see 3.1) (Gibson et al., 1987; Buchanan et al., 1989); 

various transformations of the time taken to achieve a specified increase in 

population numbers, for example; an increase by a specified number of logw cycles 

(Stannard et al., 1985; Gibbs and Williams, 1990), the time taken to reach a 

'specified spoilage level' (see 6.1) indicated organoleptically or by a specified 

microbial load (Daud et at., 1978; Gibbs and Williams, 1990), organoleptic scores 
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(Bremner et al., 1987), metabolite levels (Olley and Ratkowsky, 1973a) and time to 

reach a specified point on the modelled growth curve (Phillips and Griffiths, 1987). 

Lag phase duration and doubling time of a food spoilage yeast were modelled by 

Cole and Keenan (1987). Adair et al. (1989) used the natural logarithm of response 

time. For probabilistic models the response variable is the probability (as a function 

of the independent variables of storage conditions, product parameters and time) that 

some event such as growth initiation or formation of toxin will occur within a 

certain time. 

The form of the response variable chosen will depend upon the nature of the 

problem under investigation (growth rate, probability) and the model chosen to 

describe the response. For example, the use of logarithm of rate originally stemmed 

from the adoption of the Arrhenius model to describe bacterial growth responses. 

Prior to the development of computers and nonlinear regression software, the 

parameters of this model were best estimated from a graph of logarithm of rate 

against the reciprocal of absolute temperature. Similarly, for the square root model 

the fitting process is simplest when the data are expressed with square root of rate as 

the response variable as this leads to a 'straight-line' relationship between the 

response and explanatory variables. 

With the advent of computer software which can perform complex fitting 

processes, one can be more objective about the selection of appropriate response 

variables. The more important issues relate to the stochastic properties of the 

selected response. Stated succinctly, to obtain the best fit of the model to the data, 

the error in the estimate of the selected response must be independent of the value of 

the response or, if there are compelling reasons for the use of a response variable 

which does not have this property, the error behaviour must be compensated for by a 

weighting in the fitting process to give each datum point equal influence in the 

estimation of parameters. 

2.2.8 Experimental Model 

The experimental system used in the development of predictive kinetic models will 

always be based on a growth medium. In practice this will usually be a laboratory 

medium or some type of food. Determination of growth responses in liquid media 

allows a greater range of detection methods. In particular, indirect methods can be 

used which permit many more determinations to be made for a given amount of 

effort compared to direct enumeration methods. The organism is also more likely to 

be uniformly distributed than on a solid medium. A criticism of liquid laboratory 

media, however, is that they may not accurately model conditions in real foods, so 

that the model will subsequently have to be validated in the food product to which it 

is intended to be applied. 
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Conversely, using real foods is both costly and logistically very difficult, 

and in general limits the method of measurement to viable (plate) counts or most 

probable number (MPN) methods. There are also difficulties in applying the test 

organism to the food in a consistent and representative manner. Furthermore, all 

available test methods are invasive. Accordingly, unless a liquid food is used, an 

extra element of variability is introduced from the growth medium as each 

determination must be undertaken on a unique sample of that food. Food-based 

experimental models may also lead to complications due to the presence of normal 

spoilage biota, and may generate models specific for the particular food substrate 

used. 

Some of these problems were encountered and discussed by Gibson et al. 

(1987, 1988) particularly in relation to obtaining sufficient reliable data to model the 

growth curve so that objective measurements of growth parameters could be derived. 

2.2.9 Quantity of Data 

An absolute lower limit to the amount of data required to fit a particular model is the 

number of parameters of that model, but for reliability of the estimates there must be 

many more data points than parameters to be estimated. Bratchell et al. ( 1989) 

demonstrated the effects of insufficient measurements in a region of interest, but 

were unable to quantify those consequences. As a rule of thumb McMeekin et al. 

(1993) suggested that, to fit most of the kinetic models in contemporary use reliably, 

ten to fifteen data points are required per independent variable. 

2.3 MATHEMATICAL DESCRIPTION 

2.3.1 Introduction 

The data obtained by experiment must be further processed to fit the data to the 

model type chosen and evaluate the model's parameters. Generally speaking, the 

selection of a function to describe a particular response is a statistical exercise, as 

one is dealing with estimates of the true response and must consider the probability 

of the response observed being an accurate indication of the true or general response. 

This point is further discussed later. In contrast, the actual fitting of data to a chosen 

function is largely devoid of statistical considerations and is, rather, an exercise in 

algebra. 

2.3.2 The Principle of Least Squares 

The actual process of fitting a function to a data set, that is, to determine the 

parameter values that best fit the model to those data, is based on the principle of 

least squares. This criterion aims to derive parameter values that minimise the sum 

of the squares of the differences between observed values and those predicted by the 

fitted model, i.e. the residuals. The application of the least squares principle is not 
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always straightforward, however, and there is now an extensive literature on function 

estimation (Causton, 1987). 

While the principle of least squares is in itself largely devoid of statistical 

concepts, to use it appropriately to fit functions to data one must consider some 

statistical aspects of the response being modelled. In addition, analysis can be 

applied to the data to determine the statistical properties of the parameter estimates, 

e.g. confidence intervals. Statistical theory shows that, for independent and 

identically distributed nmmal error, least squares estimation is appropriate. When the 

errors are not normally distributed, then least squares estimation is devoid of 

statistical 'underpinning' (Ratkowsky, pers. comm., 1993). 

2.3.3 Stochastic Behaviour 

Earlier the deterministic and stochastic parts of the model were differentiated. The 

stochastic part is included to account for the random var-iation in the response and, if 

fully specified, indicates the probability of the measured response falling within a 

particular range of the response predicted by the deterministic part of the model. 

In fitting functions to data by least squares it is generally assumed that the 

error in the data is homogeneous, that is, the error has about the same magnitude 

irrespective of the value of the observation. The validity of this assumption can only 

be tested by having estimates of the error over the range of response variable values. 

The principle of least squares aims to minimise the sum of the squares of the 

residuals. Consequently, if the error is not homogeneous, more weight will be given 

to those points in which the magnitude of the error is large because the greatest 

reduction in the RSS (sum of squares of the residuals) will be achieved by more 

closely fitting to those points. 

There are a number of methods available to overcome the problem of 

unhomogeneous errors. One is to use weighted least squares regression analysis. In 

this method a weighting is applied to individual data points, in inverse proportion to 

the magnitude of the error variance, for the purposes of estimating the least squares 

parameter values. Another is to transform the model mathematically into a form in 

which the response variable does display homogeneous error. Transformation of the 

model may also be used to improve other properties of the model, such as better 

parameter estimation in the case of nonlinear models. Causton (1987) argues against 

the use of weighted regression analysis, however, on the grounds that with modern 

computing facilities the model can be fitted without undue difficulty in the 

transformation in which the variance in the response variable is homogeneous, and 

that "any fudging with weighted regressions is just not worthwhile." The important 

issue is not the difficulty of fitting the model, however, but that the error behaviour 

is investigated and correctly specified when fitting the model. 



2.3.4 Regression Analysis 

The usual steps involved in fitting any function to data by least squares are to: 

(i) formulate an expression for the sum of the squares of the residuals 
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(ii) partially differentiate the expression obtained with respect to each of the 

parameters, in turn, of the fitted function 

(iii) equate the resulting partial derivatives to zero 

(iv) solve the resulting set of (simultaneous) equations 

These steps are followed for all functions, but the complexity of calculations 

increases rapidly as the number of terms in the equation increases. Even for the case 

of a simple linear regression, which may be performed on many pocket scientific 

calculators, the calculations would normally be performed by a computer with 

appropriate software. 

As alluded to in 1.1.3, when the partial derivatives of nonlinear equations 

are calculated and equated to zero, the resulting equations cannot be explicitly solved 

to generate a single optimal value for each parameter. Intrinsically linear (or non 

intrinsically nonlinear) models can be transformed into a linear form which can be 

used for parameter estimation purposes. As indicated above this may be an 

inappropriate strategy if it leads to an unhomogeneous error, or non-normally 

distributed error, in the transformed response variable. A number of techniques are 

available for fitting nonlinear functions to data including the linearisation method 

(also called the Taylor series or Gauss-Newton method), and its various 

modifications, and the steepest descent method. These are briefly introduced by 

Draper and Smith (1981 ). Software is available commercially that incorporates these 

methods and which can be tailored to suit a particular modelling application but it is 

necessary to be aware of limitations of the methods and the software. 

The ability of nonlinear regression to achieve convergence rapidly depends, 

in part, on good initial parameter estimates. The means by which parameter 

estimates are obtained will be aided greatly by having a model or parameterisation 

for which the parameters are interpretable. If good initial parameter estimates are not 

used the iteration process may converge slowly, or not at all, even though a solution 

may be available. Another potential problem with iterative procedures is that they 

may converge to a local, but not overall, minimum sum of squares value. A further 

problem, associated with the use of commercial software packages is that the 

standard errors of the parameter estimates are usually based upon so-called 'large 

sample-theory', but in most cases in biology and microbiology the sample size is not 

sufficiently 'large'. This may result in considerable bias in the parameter estimates, 

underestimation of the true variance in those estimates and, consequently, false 

confidence in the predictions of the fitted model. 
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2.4 VALIDATION AND MAINTENANCE 

2.4.1 Validation Techniques 

The value of a model ultimately rests on how well it can predict microbial responses 

under novel conditions that were not specifically tested for in the derivation of that 

model, i.e. how well it works in the real world. Methods to assess the predictive 

ability of a model using the data used to generate it, and also to compare the fit of 

different models to the same data set are discussed by Draper and Smith (1981). 

These methods may be used to validate a model based on data obtained at one time. 

If the data are collected over a longer time span the parameter estimates may change 

in time. This can be tested by constructing models from data taken over shorter time 

spans and considering the values of the fitted parameters as a function of time. 

2.4.2 Laboratory to Field 

The validation methods referred to above are useful for comparing 'goodness of fit', 

but the ability of laboratory generated models to predict accurately the behaviour of 

microorganisms of concern in foods in commercial preparation, storage and 

distribution must also be demonstrated before predictive microbiology models can 

be applied practically with confidence. Kilsby (1990, pers. comm.) expressed 

concern at the potential consequences of the premature use commercially of a 

predictive model. From the perspectives of consumer safety and confidence, and 

industry acceptance of the predictive microbiology concept, the result of failure of an 

invalidated model would be serious, and could lead to dismissal of the predictive 

microbiology concept as unreliable. 

For models based on data derived from non-food systems, assurance that 

the model is applicable to food systems is essential, i.e. after the model has been 

developed it must be tested against observations in real foods. This has been 

approached in several ways. 

Both the MAFF and USDA groups have tested their models' predictions 

against data from the literature (Buchanan, pers. comm.; Roberts, pers. comm.; 

Gibson et al., 1988). Gibson et al. (1988) also tested predictions of a model based on 

the growth of Salmonellae in laboratory media against growth in slurries of minced 

defatted pork. 

2.5 RATIONALISATION OF EXPERIMENTAL PROTOCOL 

The following discussion outlines and explains the experimental strategy adopted in 

this study. 

2.5.1 Response Variable 

Section 1.1.5 addressed perceived limitations of predictive microbiology, including 

factors affecting lag times, the apparent need to know the initial inoculum, the 



39 

complexity of food systems, etc. A standard strategy to deal with the complex is to 

adopt a reductionist approach. In this work only the growth rate of the organisms of 

interest is modelled intensively. (Stochastic considerations will determine the 

transformation of the generation time/rate used as the response variable for the 

secondary and tertiary models). Factors, particularly history effects, which may 

potentially affect the duration of the lag phase of a microbial contaminant on a food 

are numerous, and may be specific to individual situations. Consequently, it is 

proposed to develop initially models quantifying growth rate responses only. 

Ultimately, lag phase data may be derived and incorporated. In the interim, for the 

development of tertiary models, provision will be made to allow the inclusion of lag 

phase information where it exists. Similarly, no assumptions are made about the 

inoculum levels in foods, but provision will be made to permit the inclusion of such 

information in tertiary models. It is proposed that this approach, used with strategies 

outlined in L 1.5 will provide useful tertiary models in the short term; and a robust 

database which can be readily augmented when more information is available. To 

further simplify the work the range of the independent variables was restricted to the 

region between the lower limit and the optimum for growth. 

2.5.2 Axenic or Mixed Culture ? Evaluation by Simulation 

To resolve whether to model axenic or mixed strain cultures, the following 

simulation was undertaken. This treatment is concerned only with the simple case of 

a number of strains or species, each of which is growing exponentially. 

The expression: 

relative growth rate = cl(log[cell numbers]) 

d(time) 

is used for any bacterial population. 

Consider the situation of two organisms, each with a unique specific growth 

rate, in a given environment. Based on the assumption of exponential growth, one 

can derive an expression for the apparent relative growth rate of the mixed 

population: 

_ logN(t + t,.rime) -logN(t) 
relative growth rate 

~time 

substituting into the equation expressions for the increase in numbers of the sub­

populations: 

= log(Nt' .lt,.time/GTA + N~.lt,.time/GTB) -log( Nt' + N~) 
relative growth rate -

b. time 
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where Nt' and N~ are the initial densities at some time, t, of organism A and B 

respectively, GTA and GTB are the generation times in the hypothetical environment 

during exponential growth of organism A and B respectively, and t!.time is the time 

interval over which the growth rate is being determined. 

Rearranging: 

relative growth rate 

relative growth rate 

let 

then 

relative growth rate 
log(pA .2D.time/GTA + PB .2t.time/GTB) 

=--~--------------------~ 
t!.time 

Using an analogous procedure to the above one may derive a general equation for the 

observed growth rate of a mixed culture containing n strains or species: 

relative growth rate 
log(pA .211time/GTA + PB .211time/GTB + ........ + + pn .211time/GTn) 

=--~------------------------------------------~ 
t!.time 

h A B n h ... 1 . f . AB w ere p , p , ......... p are t e mltla proportwns o orgamsm , , ...... , n, 

and GT A• GT B··.. ..,GT n are the generation times during exponential 

growth of organism 1, 2, .... , n, respectively, ~time is the time interval over 

which the growth rate is being determined, and where 

k 
k No 

p = A B 
No +N0 + ............. + Ng 

where k = A, B, ...... , n 

Thus, the observed rate of growth of the mixed population is a combination of the 

individual rates and the ratio of the sizes of the sub-populations. The ratio of the 
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sizes of the sub-populations will change with time, however, because those 

organisms with faster growth rates will increase as a proportion of the total 

population as a function of time. 

Consider the situation of two organisms, A and B initially present in equal 

numbers in a given environment. Let them have generation times in that environment 

of 20 and 40 minutes, respectively. Table 2.2 shows how the apparent generation 

time of the mixed population calculated over successive 20 minute intervals falls 

toward that of the fastest growing strain. 

This simple treatment can be extended to predict the behaviour of cocktails 

of strains/species under a variety of environmental conditions by substitution of 

appropriate models for the GT terms into the equation. As a general rule the initial 

rate observed is a weighted mean value of the individual rates under the conditions 

specified, but rises to that of the fastest growing strain as the duration of incubation 

increases. This hypothesis is supported by results of Hayward (1990) for the growth 

of six strains of Aeromonas hydrophila. Superimposition of the plots of square root 

models derived from axenic culture of each strain gave rise to a square root plot very 

similar to that for the growth of a culture containing all six strains initially in equal 

proportions. In practice, of course, there is a limitation to the amount of growth that 

can occur. 

Table 2.2 The Apparent Generation Time for a Population Comprising Two Sub-

populations with Generation Times of 20 and 40 Minutes Respectively 

f'..time Numbers pB Total Annarent GT 
(min) of A ofB Ponulation Size (min) 

0 1000 1000 0.50 0.50 2000 

10 1414 1189 0.54 0.46 2603 26.3 

20 2000 1414 0.59 0.41 3414 25.9 

40 4000 2000 0.67 0.33 6000 24.6 

60 8000 2828 0.74 0.26 10828 23.5 

80 16000 4000 0.80 0.20 20000 22.6 

100 32000 5656 0.85 0.15 37656 21.9 

120 64000 8000 0.89 0.11 72000 21.4 

140 128000 11313 0.92 0.08 139313 21.0 

160 256000 16000 0.94 0.06 272000 20.7 

200 1024000 32000 0.97 0.03 1056000 20.3 
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Where mixtures of strains are used the fastest growing strain may be 

expected to dominate the population, i.e one might ultimately be modelling the 

growth of a single strain only. Thus, one attempts to model the 'worst case' under 

each set of conditions. It is a pragmatic approach but may produce meaningless 

results. Unless the preparation of mixed cultures is meticulously controlled both 

within and between experiments, an additional source of variability is introduced 

because a composite growth curve is generated. The contribution from each of the 

strains present will depend on the relative numbers present initially, their growth 

rate, and their lag time. Consequently, modelling of mixtures of strains is less likely 

to provide good resolution of fundamental microbial responses to environmental 

factors. 

From the above it is concluded that the development of models from the 

study of axenic cultures is more consistent with the general reductionist philosophy 

being advocated, and will provide more fundamental data. It will be possible to 

predict the growth of mixed populations from models for the growth of the 

component species. The converse may not be possible. 

2.5.3 Response Surface Design 

A reductionist approach is advocated also for the experimental design. Reports 

(Chandler and McMeekin, 1989b, c; Davey, 1989a; Adams et al., 1991) indicate 

that, for the independent variables considered in this work, interactions are 

insignificant. It is hypothesised that, in the absence of interactions the growth rate 

response in any dimension is affected only quantitatively by the values of the 

variables in the other two dimensions. That is, the qualitative nature of the response 

in any dimension is identical at all combinations of the other dimensions. (An 

obvious, but not trivial objection, to this assumption is that temperature, pH and 

water activity may act synergistically at the point where growth is prevented, cf 

those combinations where the rate is merely reduced). It follows, that by defining the 

response in any dimension at fixed levels of the other variables, it may be defined at 

all other levels simply by multiplication with a scaling factor. The value of the 

scaling factor is a function of the other variables. Further, it is proposed that the 

shape of growth response surface for the effects of pH, temperature and water 

activity may be unambiguously described by the product of the individual 

(qualitative) responses and that its position in n-dimensional space may be fixed by a 

scaling factor. This possibility is supported by the form of the square-root and Davey 

models in which the rate is a product of functions of temperature and water activity 

and/or pH and a constant (Chandler and McMeekin 1989b, c, Davey 1989a, Wijtzes 

et al., 1993). 

This possibility was recognised by Ross and McMeekin (1991). They 

considered that the first step in the construction of a model was the evaluation of the 
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effect of temperature and other environmental factors on the growth rate of the 

organisms of interest, and that this was best achieved by measuring rates at close 

intervals of the primary factor under consideration and for a number of levels of the 

second. They further speculated (McMeekin et al., 1992) that, in the absence of 

significant interactions between these three variables, the combined effect of those 

factors may be described simply by accurate determination of three independent 

parameters. 

These hypotheses will be investigated in this thesis, i.e. rather than adopting 

a set of variable combinations that are evenly distributed over the response surface, 

or concentrated in a particular region (e.g. the central composite design), the 

_ response to each factor will be described by determination of rates at many levels of 

each factor at a few levels of the other factors. Despite that this is a non-classical 

approach to the description of the response surface, it does fulfil many of the 

desirable properties of response surface designs listed in Table 2.1 and, when 

coupled with the prior knowledge of the non-interaction of the factors, does not 

appear to contravene any of them. Additionally, it is proposed that this approach will 

provide a better foundation for the interpretation of response mechanisms. 

2.5.4 Experimental Model 

The quantity of data required for the development of reliable models was considered 

in 2.2.9. Ross and McMeekin (1991) advocated the use of indirect methods so that 

the quantity of data could be maximised and that, for validation, this data be 

compared subsequently to a smaller data set obtained in real products for validation. 

It was also pointed out in 2.2.8 that broth systems offer several advantages for the 

constmction of primary models. 

The response variable chosen for primary modelling in this study is optical 

density of broth cultures. Optical density is a function of cell density, and the rate of 

change of optical density is thus a function of growth rate. Optical density may be 

rapidly and non-invasively determined with equipment readily available in most 

laboratories. These features reduce the variability between determinations, and 

permit many determinations to be made on the same culture, i.e. the system is data, 

but not labour, intensive. A number of potential difficulties arise in the use of 

indirect methods, however, which are discussed and addressed in 3.2. 

2.5.5 Other Factors 

The preparation and handling of inocula are described in Chapters 4 and 5. 

Consistent with the proposal of Ross and McMeekin (1991 ), it is considered that 

validation to novel data must be undertaken. Evaluation of laboratory derived 

models will be by comparison with novel data obtained by inoculation of the 

modelled organisms into a variety of food products under a range of storage 
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temperatures. To augment this validation process, model predictions will also be 

compared to data from the literature. 



3 PRIMARY MODELLING 

3.1 SELECTION OF A SIGMOID FUNCTION TO DESCRIBE THE 

RESPONSE 

3.1.1 Introduction 
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Sigmoid functions fitted to bacterial growth curves provide an objective and 

reproducible means to analyse those data. Recent developments in the quest for 

suitable functions were reviewed in 1.2. The functions may be manipulated 

mathematically to yield formulae which describe the growth rate and lag phase 

duration in terms of their traditional interpretation, i.e. the fastest rate is based on the 

steepest tangent to the growth curve, and the lag time is taken as the x-coordinate 

(i.e. time) of the point on this line at which the y coordinate (LogN(t)) is equal to 

LogN(O)· These interpretations are illustrated in Fig. 3.1. The origin and application 

of sigmoid functions used in predictive microbiology were discussed in detail by the 

candidate in McMeekin et al. (1993) Chapter 2. 
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Fig. 3.1 A graphical method for the estimation of generation and lag time from a 

bacterial population growth curve. The slope of the tangent to the 

steepest part of the curve estimates exponential growth rate. The 

generation time can be calculated from this tangent as the time for a 

0.301 unit increase in log( cell density), i.e. a doubling of the population. 

The intercept of this tangent with the initial inoculum level (i.e. logN(o)) 

is taken as the end of the lag phase. 
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The function which has gained most prominence is the modification of the 

Gompertz (1825) function (modified-Gompertz) introduced by Gibson et al. (1987), 

although recent reports indicate shortcomings of this model (Garthright, 1991; 

Whiting and Cygnarowicz, 1992; Baranyi et al., 1993; McMeekin et al., 1993; 

Dalgaard eta!., in press). 

Of other models proposed to describe the bacterial growth curve the logistic 

function has most appeal because of its mechanistic basis. It has also been shown to 

describe well the growth of bacterial populations assessed by conductimetric 

methods (Jason, 1983) and radioassay of respired C02 (Boonkitticharoen eta!., 

1989). A practical limitation of the logistic function is that it describes the 

exponential and stationary phases of growth only, i.e. it does not model a lag phase. 

This problem was addressed by Dalgaard (1993), who reparameterised it to enable 

the lag phase to be modelled also. Mechanistic models to describe the entire bacterial 

growth curve have been presented (Whiting and Cygnarowicz, 1992; Baranyi et al., 

1993) but, because of technical difficulties in their implementation and routine use, 

were not considered in this comparison. 

This section describes the results of a study in which generation time 

estimates obtained by fitting the modified-Gompertz and Dalgaard's logistic function 

to simulated VC-based growth curve data were compared. 

3.1.2 Theory 

3 .1.2.1 Modified -Gompertz function 

The modified-Gompertz function introduced by Gibson et al. (1987) may be written 

as: 

Log N(t) =A+ D (exp (-exp( B(M- t)))) (3.1) 

where Log refers to Logw, A is value of the lower asymptote 

[i.e. LogN ( -oo )1. D is the difference in value of the upper and lower 

asymptote [i.e. LogN(oo)- LogN(-oo)], B is a parameter related to the slope of 

the curve and l\1 can be shown to be the time at which the tangent to the 

curve is steepest, and which corresponds to LogN =A+ D/e. 

The fitted function can be manipulated to yield the kinetic parameters of the 

culture such as doubling time, lag time or time to reach a specified level (see 

McMeekin et al., 1993, p. 80). From the first and second derivatives of the equation, 

expressions for the maximum exponential growth rate may be derived, and from this 

the minimum generation time. 

steepest tangent to Eqn. 3.1 = BD/e (3.2a) 

=> minimum generation time(tcmin) = e log 2/BD 

= 0.8183/BD (3.2b) 
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3.1.2.2 The Dalgaard ( 1993) modification of the logistic function 

A mechanistic basis for the logistic function is described by Causton (1977) and was 

derived again de novo by Jason (1983) using impedance data for the growth of 

E. coli. It may be written: 

N _ MPD 
(t) - 1 + exp{.Umax (M- t)} 

where N(t) is the number of cells at timet, MPD is the maximum population 

density, ,u max is the maximum specific growth rate, and M is the time at 

which the number of cells equals MPD/2. 

The specific growth rate, ,u, of the culture is observed to decrease as the 

population approaches the maximum population density (MPD). Consequently ,u 
must have its maximum theoretical value, ,u max, when the population is at infinite 

dilution, i.e. at t = -co. The change in the observed rate, .Uobs, is modelled by the 

expression: 

[
MPD-N(t) l 

.Uobs = J.Lmax MPD- N(o) (3.4) 

To use the logistic function to describe bacterial growth it is necessary first 

to determine the end of the lag phase and then to apply the function to the data 

representing growth after this time. 

Dalgaard (1993) sought to modify the logistic function to enable it to model 

the lag phase also, by inclusion of an additive parameter to represent N(O)· His 

parameterisation may be written: 

LogN(t) = Log A+ { } 
0.693 

l+exp --(M-t) 
tcmin 

D 
(3.5) 

where Log refers to Log10, A and D are as previously defined, M is a 

parameter to be estimated, and tcmin is interpreted as the minimum 

generation time of the culture. 

No mechanistic development was given for this modification, hereafter called the 

modified-Logistic. The consequences for the original interpretation of the logistic 

function parameters due to this reparameterisation are not described but it is 

questionable whether the original mechanistic basis and parameter interpretation 

remain valid. 
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The logistic function describes the increase in absolute numbers of cells. 

The error in estimates of cell numbers is homogenous in LogN (Jarvis, 1989, 

p.36; Dalgaard et al., in press). Accordingly, both sides of Eqn. 3.5 are log­

transformed for fitting to data. 

Because of literature reports (see 1.2) comparing the slope estimate from the 

modified-Gompertz function to other sigmoid functions which are based on 

exponential growth, it was also considered desirable to estimate the steepest slope to 

Eqn. 3.5. In a manner analogous to that used to determine growth rate expressions 

based on fitted modified-Gompertz curves, Eqn. 3.6 based on Dalgaard's logistic 

function was derived. 

(3.6) 

3.1.3 Methods 

An idealised bacterial growth curve (Log(cfu) vs. time) was devised. For calculation 

purposes the curve comprised ten points: three points at equal time intervals 

representing the lag phase, six points at equal time intervals representing the 

exponential phase, and three points at equal time intervals representing the stationary 

phase (the points representing the intercept of the exponential and lag phase, and the 

exponential and stationary phases were common to two growth phases). To obviate 

assumptions about the shape of the growth curve in the acceleration and deceleration 

phases, the intercept points were omitted from the data set used for curve fitting. The 

basic data set is represented in Fig. 3.2. Simulated datasets based upon this pattern 

were used to test the effect of the range of values of LogN (i.e. D) and the 

ratio of the duration of the exponential and lag phases (exp./lag). In all data sets the 

slope of the rising part of the curve was one. In consequence the 'true' generation 

time is 0.30103, i.e. Logw2. Eqns. 3.1 and 3.5 were fitted to the datasets by Ultrafitl 

nonlinear regression software without data weighting. The parameter estimates and 

their 95% confidence limits were recorded, and the steepest slope and generation 

time estimates of each model calculated based on the fitted values. 

3.1.4 Results 

The datasets used are presented in Appendices 1.1-20, and the fitted results 

summarised in Appendix 1.21. Parameter estimates of subsets of those data in which 

i) exp/lag is held constant ( = 4) while D varies, and ii) D is held constant ( = 8) 

while exp/lag varies are presented in Tables 3.1 and Table 3.2 respectively. 

1Ultrafit: BIOSQFT® 49 Bateman St., Cambridge, CB2 lLR, UK. 
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Fig. 3.2 Pattern of data used to generate simulated growth curves. The points (•) 

comprised the dataset; the 'imaginary' points (0) were used for 

calculation purposes only, but indicate the end points of the lag and 

exponential phases. 

Table 3.1 The Effect of the Relative Duration of Lag and Exponential Phases on 

Growth Rate Estimates Derived from the Fitted Parameters of 

Eqns. 3.1 and 3.5, (D = 8). 

Generation Time Steepest Tangent 
Exp./Lag Eqn. 3.1 Eqn. 3.5 Eqn. 3.1 Eqn. 3.5 

13.333 0.318 0.298 1.054 1.010 
4.000 0.335 0.299 1.111 1.005 
1.330 0.345 0.300 1.144 1.005 
0.400 0.347 0.300 1.151 1.004 
0.040 0.357 0.300 1.152 1.004 
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Fig. 3.3 shows that there is a systematic variation in the estimation of 

generation time when using the modified-Gompertz equation to describe the growth 

curve. There is also slight variation in the estimates derived from Eqn. 3.5, the 

estimates being close to the true value of 0.301. Eqn. 3.2b consistently overestimated 

the generation time. Similar results are obtained if one considers the slope estimates 

(i.e. Eqns. 3.2a and 3.6). 

Table 3.2 and Fig. 3.4a demonstrate the effect of the range of the response 

variable on estimates of generation time derived from Eqns. 3.2b and 3.5. Generation 

time estimates derived from the modified-Logistic function are significantly affected 

by the extent of growth of the culture. Figure 3.4b demonstrates the effect of the 

range of the response variable on the slope of the steepest tangent to the curve 

modelled by the two functions. Although the steepest slope of the modified-Logistic 

function is closer to the true value, the variation in estimates of that slope is greater 

than that for estimates of the slope of the modified-Gompertz function. Data sets 

with extreme values of D and exp./lag were deleted from the full data set to create a 

data set more representative of a range of 'typical' growth curves. The slope and 

generation time estimates of the reduced set are shown in Table 3.3. The means and 

standard deviations in that table show that estimates from Eqn. 3.6 are closer to the 

true value, but that the variability of the estimates is greater than that obtained by 

Eqn. 3.2a. Eqn. 3.2a consistently overestimates the true slope by approximately 11 -

15%, whereas Eqn. 3.6 gives estimates close to the true value. 

Table 3.2 The Effect of the Extent of Growth on Growth Rate Estimates Derived 

from Fitted Parameters of Eqns. 3.1 and 3.5, (Exp./Lag = 8). 

Generation Time Steepest Tangent 
D Eqn. 3.1 Eqn. 3.5 Eqn. 3.1 Eqn. 3.5 

8.0 0.335 0.299 1.111 1.005 
5.0 0.335 0.292 1.111 1.025 
3.0 0.335 0.268 1.111 0.918 
1.0 0.335 0.154 1.111 1.015 
0.1 0.335 0.018 1.111 0.978 



51 

0.40 ...,...-----------------------------, 

0.35 D 
D 

D 

0.30-4 •• 

0.254-----------~------------~----------~----------~ 

0 10 20 

Exponential phase /Lag phase 

Fig. 3.3 The effect of the relative lengths of the lag and exponential phase on 

estimates of generation time derived by Eqns. 3.1 ( 0 ) and 3.5 (e ). 

It was noted (results not shown) that, for all data sets, goodness-of-fit 

indices and the behaviour of residuals suggested that Eqn. 3.5 fitted the data better 

than Eqn. 3.1. In addition, the upper and lower asymptotic values of the data sets 

were consistently estimated more accurately by the modified-Logistic function 

(results not shown). 

3.1.5 Discussion 

From an empirical perspective Eqn. 3.5 better describes the idealised bacterial 

growth curves used in this simulation than does Eqn. 3.1. Earlier experience had 

shown it to fit more closely experimental data sets for bacterial growth curves also, 

but inconsistencies were detected between the estimates of tc from Eqn. 3.5 and 

those derived by the traditional methods described in 3.1.1, namely that the tcmin 

estimate decreased as the growth range decreased. These inconsistencies were 

commented upon by Dalgaard et al. (in press). 
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Fig. 3.4 The effect of the extent of growth, D (= LogNmax- LogNmin) on kinetic 

parameters based on fitted values of Eqns. 3.1 ( o ) and 3.5 (• ). 

a) generation time; b) slope of steepest tangent. 
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Table 3.3 The Effect of the Relative Duration of Lag and Exponential Phases on 

Kinetic Estimates Based on Eqns. 3.1 and 3.5. 

Generation Time Steepest Tangent 
D Exp./Lag Eqn. 3.2b Eqn. 3.5 Eqn. 3.2a Eqn. 3.6 

8.0 4.000 0.335 0.299 1.111 1.005 
8.0 1.330 0.345 0.300 1.144 1.005 
8.0 0.400 0.347 0.300 1.151 1.004 
8.0 0.040 0.347 0.300 1.152 1.004 
7.0 3.500 0.337 0.298 1.116 1.008 
6.0 3.000 0.338 0.296 1.121 1.014 
5.0 2.500 0.339 0.293 1.127 1.022 
4.0 2.000 0.342 0.285 1.134 1.036 
3.0 1.500 0.344 0.267 1.142 1.058 
2.0 1.000 0.346 0.227 1.147 1.085 
5.0 4.000 0.335 0.292 1.111 1.025 
3.0 4.000 0.335 0.268 Lill 0.918 

Mean: 1.131 1.015 
SD: 0.0163 0.0396 

This comparison of the two models has confirmed those inconsistencies but 

the results presented in Table 3.3 indicate, prima facie, that the parameter 

interpretations of the logistic model are invalidated by Dalgaard's 

reparameterisation. It is possible, however, that in those data sets representative of 

small growth ranges the data may not have reflected the true shape of the growth 

curve, i.e. such growth curves may not be observed in nature. This possibility was 

addressed by reference to Eqn. 3.4, which was used to calculate ranges of population 

densities above which the slope of the growth curve would be expected to differ by 

more than 5% from fl.max· Some of the simulated data sets did include values which 

would not be expected in nature, i.e. the simulated exponential phase extended 

beyond that which would be consistent with a logistic response. Even when these 

values were removed and replaced with values that fall within the expected 'straight 

line' region of growth, the tcmin estimates were still less than that obtained by 

assessment of the steepest slope. This observation, and consideration of the 

implications of the fitted values for the shape of the growth curve, suggests that the 
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inclusion of the A parameter affects the estimation of tcmin of Eqn. 3.5 so that the 

estimate represents the fastest specific growth rate only if the extent of growth 

represents many log cycles. 

Consistent with the 'worst case' philosophy advocated in Chapter 2, the 

primary objective for this work is to identify a reliable method for the determination 

of the fastest growth rate and to derive kinetic models from that basis. Both Eqns. 3.1 

and 3.5 provide good estimates of the slope. It was concluded that the modified­

Gompertz function was preferable, i) because of its slightly lower variation, and ii) 

for pragmatic reasons, i.e. the modified-Gompertz is widely used and manual 

calculation of the expression describing the maximum slope is simpler. The 

consequences of the overestimation of the true slope by the modified-Gompertz 

function must, however, be addressed. 

It is proposed that Eqn. 3.2a be modified by the inclusion of a factor to 

compensate for the overestimation. Other workers have reported that this 

overestimation is of the order of 10-20% (Whiting and Cygnarowicz-Provost, 1992; 

Baranyi et al., 1993), based on experimental growth curve data. Dalgaard et al. (in 

press) found that Eqn. 3.1 produced slope estimates on average 12% greater than 

Eqn. 3.5. From the results in this chapter a value of 1.131 is found. Consequently, the 

following expression is proposed to describe the true steepest slope of a growth 

curve from the fitted parameters ofEqn. 3.1: 

BD 
S lopemax = --

1.13e 

Thus, for Log(CFU) data: 

. . elog2xl.13 
generatzon tzme = --==---­

BD 
0.925 

= 
BD 

(3.7) 

(3.8) 

Without this correction the true generation time will be underestimated, and will lead 

to falsely high predictions of microbial loads when generation time estimates are 

used to calculate population increases according to models based on exponential 

growth. Whilst this establishes a 'fail safe' rather than 'fail dangerous' situation, it 

may result in unnecessary product wastage. 

These results also have significance for the 'response surface' modelling 

approach, in which the entire curve is modelled as a function of predictor variables. 

It is appropriate, thus, to employ a model which accurately fits the entire growth 

curve. The pattern of residuals of fitted modified-Gompertz models shows systematic 

deviations. Eqn. 3.6 provided a consistently better fit to simulated and experimental 
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data (results not shown). The results of Dalgaard et al. (in press) and Baranyi et al. 

(1993) indicate that models based on exponential growth better describe genuine 

growth curve data than does Eqn. 3.1. The systematic lack of fit of the modified­

Gompertz function was also commented upon by Whiting and Cygnarowicz-Provost 

(1992). Eqn 3.5 may be an appropriate basis for 'response surface' models. 

Another undesirable consequence of the overestimation by Eqn. 3.1 of the 

steepest tangent to the growth curve is that it leads to biased estimates of lag phase 

duration. If the steepest tangent to the curve is overpredicted, the lag phase will be 

overpredicted (see Fig. 3.1). The significance of this error will depend upon the 

duration of the lag phase: if the lag phase is long, the error may be small relative to 

the lag phase duration. Conversely if the lag phase is short, the magnitude of the 

error could equal or exceed that of the true lag phase duration. This error will have 

particular significance in modelling approaches in which lag phase duration is 

modelled discretely. This observation may also account for some of the reported 

variability in lag phase estimates. A 'corrected' lag phase expression is now derived. 

In McMeekin et al. (1993) the candidate developed an expression for the lag 

phase duration based on an interpretation consistent with that depicted in Fig. 3.1. 

The lag time is given by the time coordinate of the point on the steepest tangent 

which corresponds to LogN(O): 

Lag time= M-! (1- exp(l- exp(BM))) 
B 

(3.9) 

The full derivation of this equation is given in McMeekin et al. (1993), Appendix 

2A.8, from which it can be seen that the analogous expression, corrected for the 

overestimation of the rate, is: 

L . 1.13 ( ) ag tzme = M-- 1- exp(l- exp(BM)) 
B 

(3.10) 

Eqn. 3.9 differs from the expression presented by Gibson et al. (1987) and 

subsequently presented by other workers (Buchanan et al., 1989; Buchanan and 

Klawittter, 1991; Garthright, 1991). Eqn. 3.9 is a more general and correct 

expression for the lag time. When A = logN(O)· Eqn. 3.9 reduces to the expression 

presented by Gibson et al. (1987). The use of Eqn. 3.9 eliminates the problem of 

negative values of lag time that may occur using the earlier expression (Buchanan 

and Cygnarowicz, 1990; Garthright, 1991). Negative lag times are only predicted by 

that earlier expression when LogN(-oo) is not well approximated by A, i.e. when there 

is no initial period during which the population density is static. For those cases 

Garthright (1991) suggested that the lag time be interpreted as zero, yet the lag time 

estimated by the traditional method always includes some period during which the 
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population is increasing. A novel interpretation of the lag phase is now proposed to 

support the more traditional approach. 

The lag time is generally taken to represent a period of adjustment by cells 

to a new environment. If all cells in the population resolved the lag phase 

simultaneously one would expect an abrupt transition between lag phase and the 

exponential growth phase. An abrupt transition is seldom observed. If the resolution 

of lag phase does not occur synchronously, it follows that there will be a distribution 

of times required for the resolution of lag by individual cells within the population. 

Thus, for a population, the observed 'lag time' may be interpreted as the average 

response of the entire population. 

The consequences of a distribution of lag times on the observed increase in 

numbers, and the effect on the observed rate of growth, may be appreciated by 

reference to the discussion and simulations presented in 2.5.2. It is apparent that even 

if a subpopulation were replicating at the Jlmax of that organism, the observed growth 

rate of the population would be much lower due to the presence of non-replicating 

cells. Similarly, the exponential growth of the cells which resolve the lag phase most 

rapidly will significantly affect the observed lag time of the population because they 

will come to dominate that population. Thus, if the deviation of lag times about the 

mean is wide, the measured lag time may be shorter than the mean lag time of the 

population initially present. 

It follows that the lag phase duration of a population will have an uncertain 

relationship, and physiological interpretation, to that of individual cells within the 

population. In this interpretation the 'lag time' of a population is affected by the 

mean time for lag resolution of the individual cells, the rate at which the cells grow 

once the lag phase is resolved, and the range of the distribution of responses. This 

interpretation of the lag phenomenon is consistent with the approach of McMeekin et 

al. (1993) and that taken here to develop Eqn. 3.10 and also offers some insight into 

the observed variability of lag time responses. 

3.2 DEVELOPMENT OF A TURBIDIMETRIC METHOD FOR 

DOUBLING TIME DETERMINATION 

3.2.1 Introduction 

The advantages of turbidimetric methods for growth rate determination were 

described in 2.2.8. There are, however, a number of realised and potential problems 

inherent in their use. Firstly, for measurements on dense cultures there is a deviation 

from the response predicted by Beer's Law2 resulting in falsely low estimates of cell 

density. This curvilinear response requires that, in order to obtain accurate estimates 

of cell density, samples must be diluted to ABS<0.3 (Koch, 1981), or that the 

2 Beer's Law: that absorbance is proportional to concentration. 
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observed responses be 'corrected' by reference to some function relating the 

observed to the true absorbance. Secondly, the lower sensitivity limit of turbidity 

measuring devices is usually such that they are unable to detect bacterial populations 

at densities less than ~ 107 cfu/ml. If, at those high cell concentrations, the specific 

growth rate is significantly less than that observed at lower cell densities more 

sensitive methods, such as viable counts, might yield higher estimates of growth rate. 

Koch ( 1981) stated that "the important point about optical density methods 

is that there is no set procedure" and further that "one uses the equipment at hand and 

seeks to obtain useful results". Although absorbance is the usual response variable 

used to monitor culture growth by turbidimetry, percent transmittance (%T) is 

measured on a linear scale, and is easier to read when using analogue instruments 

(i.e. "the equipment at hand"). This section describes the development of an 

objective and robust method for the determination of growth rates from the change in 

%T of growing cultures, and following Koch's pragmatic advice. 

3.2.2 Theory 

Absorbance is by definition related to o/oT as: 

Absorbance = 2- log1o(%T) (3.11) 

Over a finite range, absorbance is proportional to concentration. Thus, generation 

time may be determined from the time taken for the absorbance of a culture to 

double. Consequently it is easier to plot log(absorbance) against time and determine 

generation time from the time taken for log(absorbance) to increase by log(2), i.e. 

0.301. 

The relationship between log(absorbance) and %Tis shown in Fig. 3.5. In the 

range 20% to 60% transmittance (Absorbance 0.70 to 0.22), the relationship between 

log(absorbance) and o/oT is well described (r2 > 0.999) by the straight line: 

log(absorbance) = 0.089525- 0.012293 %T 

From the fitted line it is possible to derive a relationship between generation 

time and the rate of change of o/oT in the range 20- 60 %T: 

slope of regression line = -0.012293 

= change in log(absorbance)/change in %T 

Thus, for one generation: 

change in %T/generation = -0.301/0.012293 

= -24.5 (3.12) 
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Fig. 3.5 Relationship between log( absorbance) and %T ( • ). In the region 

indicated by <•) the relationship is: 

log(absorbance) = 0.089525- 0012293 (~%T) [r2 > 0.999]. 

i.e. in the specified range a population doubling corresponds, in theory, to a 24.5% 

decrease in transmittance. 

The %T of a growing culture decreases with time and produces a sigmoid 

curve when plotted as a function of time. Choosing change in %T (%T of the 

uninoculated culture vessel prior to inoculation minus %T observed at timet) as the 

response variable produces a rising sigmoid curve. In 3.1 it was demonstrated that a 

Gompertz-like function could be used empirically to describe the steepest slope of a 

sigmoid curve. In this section the ability of a Gompertz-like function to describe the 

bacterial growth curve based on change in % T (~% T) data is assessed. 

By analogy with Eqn. 3.1 it is hypothesised that the following function: 

~%T(t) ==A+ D (exp (-exp( B(M- t)))) (3.13) 
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where l\%T(t) is the change in %T after time t; A is the value of the lower 

asymptote [i.e. l\%T(-oo)]; Dis the difference in value of the upper and lower 

asymptote [i.e. l\%T(oo) - l\%T(-oo))], and M is the time at which the tangent 

to the fitted curve is steepest. 

may be used to describe the 6%T growth curve. By analogy with Eqns. 3.2 a,b, and 

by reference to Eqn. 3.12, the generation time at Misgiven by the expression: 

generation tirne(6%T) = 24.5e/BD (3.14) 

3.2.3 Methods and Materials 

3.2.3.1 Relationship between change in %T and population density 

The %T (540nm) of doubling dilutions of a stationary phase (>2d@ 37°C, BHIB) 

culture of Staphylococcus aureus 3b, prepared in 0.1 % peptone and in BHIB with 

varying levels of added salt, were prepared. The %T (540nrn) of dilutions of a 

stationary phase culture (ld @30C + lOd @20°C) of Listeria monocytogenes Scott 

A, prepared in TSB, were also recorded. All diluents and cultures were kept in an ice 

water slurry for the duration of the determinations. The reagent blank ( 100% 

transmittance) value was that of the relevant diluent. 

3.2.3.2 Deviation from Beer's Law 

Listeria monocytogenes Scott A was grown in TSB at 30°C until at stationary phase, 

and held at room temperature for a further 10 days. The culture was placed in an ice 

slurry and aliquots withdrawn and diluted with chilled TSB. Absorbance (540nm) of 

the dilutions was recorded, and absorbance of the undiluted sample (ABS) calculated 

as the product of the absorbance of the diluted sample (ABSctil) and the dilution 

factor. Corresponding values of corrected %T were calculated from ABS usmg 

Eqn. 3.11. 

3.2.3.3 Relationship between wavelength and generation time estimate 

Listeria monocytogenes Scott A in TSB was incubated in side-arm flasks in a 

shaking water bath (Haake) at 31 ± 1 °C. During growth the %T of the culture was 

recorded at 620, 580, 540, 500, 460 and 420 nrn. The full scale deflection and zero of 

the spectrophotometer (Spectronic 20D) were adjusted before each reading to an 

uninoculated flask containing TSB of identical absorbance to that in the culture. 

Generation times at each wavelength were determined from fitted values of 

Eqn. 3.13. 
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Fig. 3.6 Relationship between change in cell density and optical density, and 

showing the effect of medium composition. Data for Staphylococcus 

aureus 3b. 0: grown and diluted in BHIB + l6%w/w NaCl; •: grown 

and diluted in BHIB + 13%w/w NaCl; Ill grown and diluted in BHIB: +: 

grown in BHIB and diluted in 0.1% peptone. Data for Listeria 

monocytogenes Scott A: +.Lines drawn through points are by 

interpolation using Cricket Graph3 

3.2.3.4 Evaluation of Eqn. 3.13 

Growth curves (n = 288) for Staphylococcus aureus 3b, grown in BHIB 

supplemented with up to 20%w/w N aCl and at temperatures from 10 - 40°C, were 

derived as described in 4.1. Data were manually plotted and the generation time 

estimated visually from the steepest tangent to the curve as described in Fig. 3.1. 

Eqn. 3.13 was fitted subsequently to the same data and the generation times 

estimated from fitted values. Estimates from both methods were compared. In 

addition, the slope estimated from Eqn. 3.13 was compared to that estimated by 

linear regression of points within the 20-60%T range for a number of Listeria 

monocytogenes Scott A growth curves. 

3 CA-Cricket GraphTM 1.3.2. Computer Associates Inti., Malvern, PA, USA. 
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3.2.4 Results 

Dilution curves, presented in Fig. 3.6, confirm that in the range 20% T to 60%T there 

is a direct proportionality between cell doubling and il%T. For the five datasets, 

however, in that range a doubling of cell numbers corresponds to an -20.5% (±0.5% 

SD) increase in transmittance compared to the theoretical value of 24.5% (Eqn. 

3.13). The data also show that the relationship is independent of the composition of 

the suspending medium, or bacterium. 

Fig. 3.7 shows both the raw and corrected values for %T derived from 

Listeria monocytogenes Scott A. The slope of the data in the 20 - 60%T range is 

19.67 (r2 = .997) i.e. a generation in that range corresponds to a decrease of 19.67 in 

raw %T. For the corrected data, a population doubling was found to correspond to a 

24.32% change in transmittance. 

Table 3.4 shows that there is no effect of the wavelength of light used for 

measurement of %T on the estimates of generation times obtained by fitting Eqn. 

3.13. It was noted, however, that if a reagent blank of different optical density to the 

growth medium were used, the predicted generation times were significantly and 

systematically affected by the wavelength of light used for the determinations. A 

correction factor, based on the ratio of the optical densities of the two uninoculated 

media, was sufficient to overcome the apparent wavelength effect. The effect results 

simply from the different 6%T which corresponds to a doubling of concentration if 

the full scale deflection of the spectrophotometer, based on the reagent blank, is set 

at other than 100%T. 

Fig. 3.8 compares estimates of the generation time of cultures determined 

from 6%T evaluated by manual methods and using Eqn. 3.14. The results are 

presented as the ratio of the estimates by the two methods. The mean value of the 

ratio is 0.993 ± 0.136 (SO), and regression analysis of the data in Fig. 3.8 indicated 

no significant relationship (r2 = 0.0021) between the ratio of the two estimates as a 

function of generation time. Table 3.5 shows the slope estimated from Eqn. 3.13 and 

that estimated by linear regression of points within the 20-60%T range for Listeria 

monocytogenes Scott A growth curves. Consistent with observations in 3.1, the slope 

of the %T growth curve is overestimated by the Gompertz-like function, and by a 

similar amount. The increase in 6%T in that range is well described by a straight 

line, whereas the residuals plots indicated a systematic lack of fit of Eqn. 3.13 to 

6%T data. 

3.2.5 Discussion 

The results show that %T data can be used to estimate the generation time of a 

bacterial culture, and that description of the 6%T data by a Gompertz-like function 

provides an objective means of growth rate estimation from that data. The theoretical 
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Table 3.4 Effects of Wavelength of Light on Generation Time Estimates from 

%TData 

Wavelength 
(nm) 

620 
580 
540 
500 
460 
420 

Generation Time 
(h) 

1.04 
1.05 
1.06 
1.06 
1.01 
1.08 
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using manual (graphical) methods and by fitting Eqn. 3.13, plotted as a 

function of the estimated generation time. 

6%T corresponding to one population doubling, in the linear part of the curve. 

agrees well with experimental determinations after the data have been corrected for 

deviation from Beer's Law and suggests that the theoretical derivation is sound. The 

theoretical development is based on increase in concentration only and is thus 

completely general, i.e. the calibration factor is not specific to a particular 

suspending medium, strain of organism etc., and is consequently robust. Due to the 

deviation from Beer's Law, a slightly different calibration factor is appropriate to 

uncorrected %T data. Provided that the turbidity of the culture is measured against an 

appropriate reagent blank, the deviation from Beer's Law is neither medium nor 

organism dependent (Dalgaard et al., in press). Use of the experimentally determined 

calibration factor of 20.5% with uncorrected %T data obviates the additional data 

processing steps necessary to correct the data. 

The use of 6%T, rather than %T, as the response variable has no effect on 

the absolute values of the fitted parameters of Eqn. 3.13, and results only in a change 

of sign of the parameter, B. For the ideal situation (blank value= 100%T) the linear 
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Table 3.5 Comparison of Growth Rate Estimates Derived from Eqn. 3.13 or by 

Linear Regression of Data in the Range 20-60%T. 

Estimated Slope 
Eqn. 3.13 Linear Regression Ratio 

(r2) 

0.427 0.385 0.998 1.111 
0.372 0.377 0.995 0.986 
0.394 0.361 0.999 1.090 
0.327 0.336 0.999 0.973 
0.090 0.082 0.983 1.091 
0.083 0.073 >0.999 1.136 
0.039 0.037 0.997 1.053 
0.047 0.041 0.972 1.149 
0.027 0.024 0.993 1.139 
0.130 0.118 0.995 1.109 
0.129 0.117 0.995 1.095 
0.183 0.167 0.994 1.093 
0.189 0.174 >.999 1.083 
0.161 0.156 0.994 1.033 
0.153 0.171 0.996 0.891 
0.193 0.166 0.999 1.164 
0.203 0.166 0.991 1.220 

Mean: 1.083 
SD: 0.079 

range is 40- 80Li%T, although the deviation from linearity over the range 35 - 80 

Li%T is of the order of a few percent only. The fitted value of M fell outside of the 

times corresponding to this range in only a few of the several hundred growth curves 

fitted. Provided that the slope in this region is well estimated, a reliable estimate of 

generation rime may be obtained. Table 3.5 shows that the slope is overestimated by 

Eqn. 3.1 and that, as for Eqn. 3.2, further correction is needed for Eqn. 3.14. The true 

minimum generation time of the %T growth curve can now be calculated from the 

fitted parameters of Eqn. 3.13: 



Generation time = 1. 08 X 20. 5 X e 

BxC 
60.2 

BC 
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(3.15) 

Some workers (McClure et al., 1993) have used turbidimetric methods to 

develop kinetic models but have first related turbidity to cell numbers by calibration. 

Absorbance per cell is reported to vary according to strain (Squiggens et al., 1990) 

and growth rate (Neidhardt et al., 1990, p.437). In addition, the optical density 

response has a narrow range of sensitivity. It is insensitive to change in density at 

high concentrations and is characterised by high relative error at low concentrations. 

These limitations require that a separate calibration be prepared for each condition 

and organism to be modelled, and seem to preclude the use of turbidimetric methods. 

The methodology presented here, however, is general for a range of organisms and 

media (Dalgaard et al., in press). The method assumes that the optical density of the 

medium itself is not significantly affected by the growth of the bacterium and that 

the cell mass does not alter significantly as a function of population density within 

the range of measurement. The methodology presented may be used to determine 

doubling times directly but is unable to provide information regarding the MPD of 

the culture. In many situations however, this is unnecessary. Due to the 

disproportionality of the %T-log(cell density) response below ~20%T, determination 

of the lag phase could be unreliable by this methods. If the determination of lag 

times were desirable, a high inoculum density in the region of proportional response 

would have to be used. 

3.3 COMPARISON OF TURBIDIMETRIC AND VIABLE COUNT 

METHODS FOR GENERATION TIME ESTIMATION 

3.3.1 Introduction 

In 3.2.1 two potential problems relating to the use of turbidimetric methods for 

kinetic modelling were identified. Firstly, because viable count methods remain the 

standard method of enumeration in food microbiology, it is necessary to demonstrate 

the equivalence of results derived from indirect methods and those from VC 

methods. This section explores the relationship between growth rate estimates from 

the turbidimetric method developed in 3.2 and those obtained from viable counts. 

Secondly, the effects of inoculum density are also investigated. 

3.3.2 Methods and Materials 

S. aureus 3b was grown overnight in BHIB without agitation at 35 ± 2°C. Listeria 

monocytogenes Scott A was incubated in TSB for 12 - 15 hours at 30 ± 2°C without 
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agitation. The inocula were placed in an ice-water slurry for 30- 45 minutes before 

inoculation or further manipulation. In one set of experiments, serial dilutions were 

prepared in chilled (4°C) growth medium and a range of dilutions used as inocula for 

duplicate determinations. In a second method, two inoculum levels were used, 

without replication, at a range of incubation temperatures. Equivalent volumes of 

inoculum were added to L-tubes, containing 15 ml BHIB or TSB for experiments 

involving S. aureus and L. monocytogenes respectively, and incubated with agitation 

(40 ± 20 rpm) on a temperature gradient incubator (TGI). The %T of the cultures was 

monitored and, at appropriate intervals, 0.2 ml aliquots withdrawn and serially 

diluted in 0.1% peptone. Viable counts were determined by spreading 0.1 ml of 

appropriate dilutions on PCA. Plates were incubated at 35°C (S. aureus 3b) or 30°C 

(L. monocytogenes Scott A) for 48 ± 6 h. Colonies were counted 'manually' and 

CFU values calculated as described in Appendix 2. Data were fitted to Eqns. 3.1 and 

3.15 as appropriate and generation times derived from fitted parameters for VC data 

and %T data using Eqns. 3.8 and 3.15 respectively. 

3.3.3 Results 

Table 3.6 details the generation times derived from the complementary %T and VC 

data sets and details the temperature and initial inoculum conditions employed for 

each organism. The ratio data are graphed in Figs. 3.9 a,b as a function of inoculum 

density and generation time respectively. There are no trends evident in the data. The 

mean value of the ratios is 1.245 ± 0.159. The mean of the ratios calculated on 

species basis, or experimental block basis, were not significantly different from the 

grand mean. The average difference in coefficient of variation (ratio of the standard 

deviation to the mean), CV(VC)- CV(t.%T), is 0.0067 ± 0.046 based on all duplicate 

pairs, or 0.0011 ± 0.062 if the isothermal, non-replicated, L. monocytogenes data 

sets are treated as duplicates. 

The data also permit consideration of the effect of inoculum density on the 

subsequent growth rate of the culture. To allow comparison of all the data, relative 

generation times were calculated (observed value/mean value at that temperature). 

The results for %T and VC based estimates are presented in Figs. 3.10a,b. 

3.3.4 Discussion 

The average difference in coefficient of variation, CV (VC)- CY(t.%T), indicates that 

bacterial growth rate estimates derived from turbidimetric data are at least as precise 

as those obtained from viable counts, and confirms the results presented in 3.2. 

Though the estimates of generation time obtained from VC data are smaller than 

those from the %T method, the relationship is constant. Consequently a simple 

calibration factor can be used to equate results from the two methods. 
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Table 3.6 Comparison of Generation Time Estimates Derived from Turbidimetric 

and Viable Count Data from the Same Population 

Organism Inoculum Temperature Generation Time (h) Ratio 
Log(CFU/ml) (± o.soC) (%T data) (CFU data) [tc (%T)/tc ( vc)] 

S. aureus 3b 7.1 27 0.89 0.83 1.07 
7.4 27 0.88 0.81 1.09 
5.5 27 0.98 0.67 1.46 
5.2 27 1.08 0.76 1.43 
3.1 27 0.81 0.66 1.22 
3.3 27 0.95 0.69 1.38 

L. monocytogenes 8.5 19.5 2.83 2.07 1.37 
(Scott A) 8.4 19.5 ,., 0'7 ') '") 1 1 ~n 

L.-.0/ £..-.£, .l .J.. • .JV 

8.1 19.5 2.02 1.96 1.03 
8.0 19.5 1.96 2.21 0.89 
3.6 19.5 2.29 1.65 1.39 
3.7 19.5 2.42 1.73 1.40 
2.5 19.5 1.91 1.51 1.26 
2.5 19.5 1.82 1.60 1.14 

8.2 28 0.88 0.86 1.02 
5.0 28 1.00 0.78 1.28 

8.2 27 0.95 0.80 1.19 
5.1 27 1.15 0.95 1.21 

8.3 13 4.17 2.86 1.46 
5.2 13 4.53 3.64 1.24 

8.2 9 9.54 6.58 1.45 
5.1 9 8.00 6.46 1.24 

5.0 6.5 11.27 10.07 1.12 
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Fig. 3.9 Dependence of the ratio of generation time estimates by %T and VC 

methods on a) inoculum density; b) generation time. 
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Fig. 3.10 The effect of inoculum density on generation time estimates 

(standardised to the mean estimate at each temperature) derived from a) 

Eqn. 3.8 (VC data) and b) Eqn. 3.15 (~%T data). 
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The results indicate that 6%T-based estimates of generation time must be 

divided by 1.25 to yield the 'true' generation time, as assessed by viable counts. 

Essentially identical conclusions were drawn by Dalgaard et al. (1993) in a study 

incorporating the data presented here and data for Pseudomonas spp., Shewanella 

putrefaciens and Photobacterium phosphoreum. The results presented here are based 

on a slightly different approach and yield a lower calibration factor. 

The basis of the difference in growth rate estimates from the %T and VC 

methods is unclear. The results in Table 3.6 and Figs. 3.10a and b suggest that the 

% T method is insensitive to initial inoculum densities but that growth rates 

determined from VC methods are faster for lower inoculum densities. With turbidity 

based methods, the times on the growth curve at which the fastest growth rates are 

estimated will always occur at high population densities. At this time the growth rate 

may already be declining due to increasing population density. For the VC based 

growth curves this will occur only where the initial population density is high. If this 

were the basis of the difference the ratio [tc(%T)/tc(vc)J would be expected to be closer 

to one at high population densities. Although this behaviour is evident in the 

S. aureus data in Table 3.6, it is not in the L. monocytogenes data. Consequently, the 

basis of the difference in growth rate estimates by the two methods remains 

unresolved. 

The apparent relationship between generation time and Nco) is not supported by 

the results of other workers (Jason, 1983; Buchanan and Phillips, 1990; Buchanan et 

al., 1993a) who found no evidence of an effect of inoculum size on growth rate. 

3.4 CONCLUSIONS 

Bratchell et al. (1989) and McMeekin et al. (1993) stressed the importance of the 

quality and quantity of data used for model generation in predictive microbiology. 

Bratchell et al. (1989) suggested that, to generate reliable models, 15 - 20 data points 

per growth curve were required. McMeekin et al. ( 1993) considered that 10 - 15 data 

per secondary model parameter are necessary. Thus, to generate a model of even 

moderate complexity using viable count methods would require the preparation and 

interpretation of thousands of culture plates. Turbidimetric methods enable rapid, 

inexpensive and non-invasive data generation and the results presented in this 

chapter show that, provided a rigorous methodology is followed, models derived 

from turbidimetric data are at least as reliable as viable count data for the generation 

of kinetic models. Thus, the many advantages of turbidimetric methods can be 

realised in predictive modelling. Simple calibration factors are required, however, to 

reconcile turbidimetry-based rate estimates with those obtained from viable counts, 

but appear to be general for a range of organisms and growth conditions. 

The method presented is 'self calibrating' and obviates the need to relate 

optical density measurements to cell numbers by reference to calibration curves. 
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There are some limitations to the methodology, which can not be used to model the 

full bacterial growth curve. Information concerning MPD cannot be obtained 

because the response becomes increasingly less sensitive to changes in population 

density at levels greater than -5xl08cfu/ml. Using high inoculum densities lag time 

information could be obtained, but the use of high inoculum densities may be 

unrepresentative of the situation in foods. A better alternative in this situation would 

be to monitor the change in absorbance, which is linearly related to cell numbers at 

lower population densities than %T. 

The original reasons for the use of % T as the response variable were 

pragmatic. The use of absorbance as the response variable is preferable, because of 

its greater sensitivity. Given access to digital spectrophotometers and spreadsheet 

software, absorbance data can be readily derived and manipulated. The data can be 

objectively fitted and interpreted using Eqn. 3.5 and generation times estimated using 

Eqn. 3.6. 

The robustness of the method presented has been demonstrated for the 

determination of growth rates in laboratory broth media. In subsequent chapters, the 

utility of the method for the generation of kinetic models applicable to foods will be 

considered. 
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4 SECONDARY MODELLING 

4.1 INTRODUCTION 

Several groups, independent of the originators of the square root-type models, have 

reported that Belehradek-type models describe the effects of 

temperature on the rate of microbial growth at least as well as other existing models 

(Zwietering et al., 1991; Kohler et al. 1991, Alber and Schaffner, 1992; Duh and 

Schaffner, 1993). Belehnidek-type models for the combined effects of temperature, 

pH and/or water activity on bacterial growth rate were described in 1.1.4. 

The results of McMeekin et al. (1987) and of Chandler and McMeekin 

(1989b,c) suggest that the parameter T min is an intrinsic property of an organism. 

From this observation they proposed that, to generate a Belehnidek-type model for 

the effects of temperature and water activity for a given bacterium/humectant 

system, "it is necessary simply to determine a MINaw [i.e. awmin] value for growth 

of the organism of concern and combine this with the predicted T min value" 

(Chandler and McMeekin, 1989b). A similar strategy was proposed by McMeekin et 

al. (1992) for the combined effect of temperature, pH and water activity. They 

reasoned that if the responses to temperature, water activity and pH are independent, 

then it should follow that the parameters T min. awmin and pH min are independent. 

They hypothesised that it should be possible to construct a model by three. 'one­

variable', experiments to determine accurately these parameter values, and the 

replication of a one or a few sets of conditions to determine the variance in the 

response. From that variance, the variance under all other conditions may be 

estimated by reference to the equations presented by Ratkowsky ( 1992). Further. the 

mean value of the rate under those replicated conditions should be a representative 

value, and thus enable the determination of the scaling factor, 'b' in the square-root­

type equations. Thus, a complete temperature-water activity-pH model could be 

generated from as few as 40 - 50 rate determinations. 

These hypotheses are tested in this chapter through the development of 

complementary Belehnidek-type models based on the approach proposed above and 

the more usual approach based on nonlinear regression of all data simultaneously. 

Using the methods described in Chapter 3, models are developed for the growth rate 

of Staphylococcus aureus in response to temperature and water activity (NaCl), and 

Listeria monocytogenes growth rate as a function of temperature, pH (lactic acid as 

acidulant), and water activity (N aCl). Other topics briefly addressed in this chapter 

include strain to strain variation in responses, the effect of humectant on awmin' and 

environmental history effects. 
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4.1.1 Staphylococcus aureus 

Staphylococcus aureus is a major cause of food borne illness, as well as being an 

opportunistic pathogen of clinical significance. There is a vast literature on both 

aspects of its significance to human affairs. On a world scale, staphylococcal 

intoxication remains a common cause of food poisoning (Genigeorgis, 1989). 

Comprehensive reviews of its significance in food-borne illness include Smith et al. 

(1983), Byles, (1989), Genigeorgis (1989), Halpin-Dohnalek and Marth (1989), and 

Bergdoll (1989), and general information will be found in any reputable 

microbiology text. It is of particular interest in this study because of its tolerance of 

low aw, with many reports indicating a lower aw limit for growth of 0.86. 

Staphylococcus aureus causes food-borne intoxications due to the 

production of a range of thermostable, protein enterotoxins which have an emetic 

effect. Seven toxins of similar molecular weight are currently recognised, namely 

staphylococcal enterotoxins A, B, C1, C2, D, E and F, which are abbreviated as SEA, 

SEB, etc. respectively. From a food safety perspective, it is the ability of a given 

strain of S. aureus to produce SEs that is of direct concern but, until the advent of 

ELISA-based methods, detection and identification of toxins has been laborious. The 

ability to produce SEs is correlated with a number of other, more readily assessable, 

characteristics of S. aureus such as the ability to clot blood plasma (coagulase), 

production of thermostable DNase, and production of haemolysins. These 

characteristics, particularly the production of coagulase, have been used as 

presumptive identifications of toxigenic strains. Hence, the term 'coagulase positive 

S. aureus' is taken to indicate an enterotoxigenic strain. The production of toxin is 

closely linked to the growth of the organism but the relationship between growth and 

toxin production varies for different SEs, and under different growth conditions 

(Smith eta!., 1983). Whereas SEA and SED are produced under nearly all water 

activities at which growth is possible, production of other SEs appears to be more 

sensitive to water activity (Ewald and Notermans, 1988). Also, production of 

enterotoxins appears to be confined to narrow temperature limits within the 

temperature range for growth (Schmidt eta!., 1990). In general, where growth of S. 

aureus is possible, there is a risk of SE production. In the absence of clearer patterns 

of production of SEs, both Leistner and Radel (1979) and Halpin-Dohnalek and 

Marth (1989) concluded that control of the growth of enterotoxigenic 

Staphylococcus aureus was the most appropriate strategy to control staphylococcal 

food poisoning. Accordingly, in the current state of knowledge, a model for 

S. aureus growth rate will have equal utility to a model for the rate of toxin 

production. 
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4.1.2 Listeria monocytogenes 

Despite that Listeria monocytogenes was not considered to be a food-borne pathogen 

until the early 1980's, there now exists a vast literature concerning the ecology and 

physiology of this organism and its significance in food-borne disease. Though it is 

still not regarded as a common cause of food borne illness, it is important because it 

can cause abortion and fatal infections, particularly of the immunodeficient. The 

organism has been reported to grow at 0°C, can grow at water activities as low as 

0.92, and !,TfOwth in laboratory media at pH less than 4.5 has also been reported 

(Walker, 1990). These characteristics enable Listeria to overcome several of the key 

strategies used in food preservation. 

Listeria monocytogenes was recognised as pathogenic for animals since its 

description by Gray et al. in 1926, but was considered to be an uncommon disease of 

humans (McLaughlin, 1987). It is a low grade intracellular pathogen, and first came 

to the attention of the food industry in 1981 as a result of an epidemic in the 

Maritime Provinces of Canada over the period March to September involving 41 

cases with 42% mortality. Other outbreaks were reported in Massachusetts in 1983 

(49 cases, 14 deaths), California in 1985 (2 86 cases, 29 deaths), Switzerland from 

1983-1987 (22 cases) and Philadelphia in 1987 (45% mortality). In Australia, an 

outbreak of Listeriosis occurred in 1990 in which commercially prepared pate was 

strongly suspected of being the vehicle of transmission (Watson et al., 1990). Ten 

cases in pregnant women were identified, with a case-fatality rate of 55% among the 

foetuses. Todd ( 1989) estimated the cost of Listeria-related outbreaks and product 

recalls to the US to be $313 million per annum. 

The high cost, both in human and economic terms of food-borne Listeriosis. 

demands that action be taken to minimise its incidence. The National Advisory 

Committee on Microbiological Criteria for Foods (NAC) of the USA recommended 

a number of control strategies for Listeria, including minimisation of the presence, 

survival and multiplication of the pathogen in foods (NAC, 1991 ). A number of 

characteristics of Listeria suggest that this may be a formidable task. Listeriae are 

non-fastidious organisms and are considered to be ubiquitous in the environment, 

particularly in soils, and associated with plant material. There is also evidence that 

there may be a significant reservoir in the intestinal tracts of humans and other 

animals. Thus, it may be impossible to eliminate Listeria completely from foods and 

an equally important strategy may be the use of predictive models to identify, and 

assess the safety of foods at risk from this organism. 

4.1.3 Existing Predictive Models 

Predictive models for the growth of Staphylococcus aureus have been published 

both prior to undertaking this project and during it (Broughall et al., 1983; Broughall 

and Brown, 1984; Buchanan et al., 1993a). Models for the growth of Listeria 
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monocytogenes have also been published during the preparation of this thesis 

(Buchanan and Phillips, 1990; Cole et al., 1990; Wijtzes et al., 1993). These models 

will provide a useful baseline upon which to assess the hypotheses presented in this 

chapter, and the models evaluated in the subsequent chapter. 

4.2 MATERIALS AND METHODS 

4.2.1 Materials 

Details of strains and their sources, reagents and media, and equipment used are 

presented in Appendix 2. 

4.2.2 Methods 

4.2.2.1 Inoculation procedures 

Inocula of S. aureus were grown for 12- 18 h in 50 mls BHIB at 35°C with shaking 

(50± 10 rpm). Inocula of L. monocytogenes were grown for 18- 24 h in 50 mls TSB 

at 30°C with shaking (50 ± 10 rpm). Approximately 30 minutes before inoculation 

began, cultures were placed in ice-water baths to minimise changes in culture density 

during the inoculation procedure which required ~30 minutes to complete. The 

inoculum volume was adjusted in each block of experiments to achieve -80% 

transmittance at the time of inoculation, and was typically 0.2 - 0.3 mi. 

4.2.2.2 Growth rate estimation 

Per cent transmittance (540nm) was monitored with a spectrophotometer (Spectronic 

20). Measurement times were chosen to correspond to %T changes of 5 - 10% 

between consecutive measurements, and were continued at least until %T fell below 

10%. Per cent transmittance readings were converted to change in %T (6%T) at 

'time elapsed since inoculation' (6t). Doubling times were calculated as described in 

3.2.5. In early experiments the steepest tangent to lines of best fit drawn 'by eye' 

through growth curves were used. Subsequently, the steepest tangent was calculated 

from the parameters of a modified Gompertz function (Eqn. 3.13) fitted by nonlinear 

regression using a SAS 1 PROC NLIN routine written by Dr. G. McPherson, 

Mathematics Dept., University of Tasmania. All growth rate estimates used in the 

models developed for subsequent evaluation and validation (Chapter 5) were based 

on growth rate estimates derived from Eqn. 3.15 from fitted parameters of Eqn. 3.13. 

The basal medium for all S. aureus growth rate determinations was BHIB, and for 

L. monocytogenes was TSB. 

1 SAS: Statistical Analysis System, SAS Institute Incorporated, SAS Circle, Cary, N. Carolina. USA. 
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Cultures were incubated in L-tubes containing 15 ml of growth medium on a shaking 

incubator (TGI, 40 ± 20 rpm) in a constant-temperature room. Linear regression 

analysis was performed using Cricket Graph 1.3.22 (Cricket Software, Malvern, PA, 

USA). 

Tmin 

Cultures were incubated in a TGI as described above. When the %T of the culture 

had fallen below 10% the temperature in that tube was monitored (Fluke 

thermocouple) intermittently for several hours to establish the range of temperature 

experienced by that culture during incubation. The midpoint of that range was used 

as the nominal temperature for curve-fitting. Linear regression of the square root of 

rate, determined as per 4.2.2.2, as a function of incubation temperature in the sub­

optimal range was perfmmed. From the fitted equation: 

.V rate = b * Temperature + c 

Tmin = -c I b 

awmin 

Two methods for estimating awmin were used. The first is the method of McMeekin 

et al. (1987) in which a series of broths of different water activities were incubated 

in a TGI. Growth rates, determined as per 4.2.2.2, as a function of temperature were 

fitted to Eqn. 1.1 (simple square root model) as described above. Linear regression 

of the square of the parameter b, as a function of medium aw in the sub-optimal 

range, was performed. From the fitted equation: 

b2 = d *a + e w 

awmin = -e I d 

In a simpler method, a series of broths of different aw were prepared as follows. The 

aw of culture media was adjusted by the inclusion of N aCl or sucrose to a level 

below that reported as the lower limit for growth of the species under investigation. 

Due to the volume changes upon addition of large amounts of solute, particular care 

was taken to ensure that final concentrations of the growth medium constituents in 

aw adjusted media were the same as those achieved in normal preparations. An 

equivalent volume of the same medium, but without added solute, was also prepared. 

2Cricket Graph 1.3.2: Cricket Software, Malvern, PA, USA. 
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Both media preparations were autoclaved (105°C for 30 minutes to prevent turbidity 

of the broths due to formation of precipitates) simultaneously to avoid differences in 

absorbance of the medium which may result from different time-temperature 

combinations. Culture media, encompassing the aw range of growth of the organism 

under study, were prepared by combining the two media in varying proportions in 

sterile L-tubes. In studies of the water activity and pH effect on growth rate of 

L. monocytogenes, Lactic acid (0.2M) was included as the acidulant, because of its 

significance in dairy products, which have been a vehicle of transmission in several 

food-borne listeriosis outbreaks. At each water activity level the growth rate was 

determined at pH (initial) 5.5 and 7 .2. The L-tubes were incubated at constant 

temperature on a TGI. Growth rate at each water activity was determined as 

described in 4.2.2.2. Linear regression of the rate as a function of medium aw in the 

sub-optimal range was performed. From the fitted equation: 

rate = d * aw + e 

aWmin = -e I d 

The aw of each medium at 25°C was calculated from the tables and equations of 

Robinson and Stokes (1949), Norrish (1966), Bromley (1973), Ross (1975), Chirife 

and Ferro Fontan (1980), Chirife and Resnik (1984) and (Chen, 1990) and measured 

at 25°C with a Novasina aw meter. The effect of temperature on aw for NaCl over 

the temperature range 15-50°C is negligible but increases slightly at lower 

temperatures (Resnik and Chirife, 1988). For sucrose, the water activity at 19.5°C is 

not different at the level of precision reported here, to the values calculated at 25°C 

(Ross, 1975). The values presented are considered to be accurate to about 0.003 -

0.004 aw. 

pH response 

The pH of two preparations of over-strength TSB + 0.2 M lactate, simultaneously 

autoclaved, was adjusted by the addition of sterile NaOH or sterile HCl to pH ~4 and 

pH -8 respectively. Broths were made up to final volume with sterile water. Culture 

media of varying pH were prepared by combining the two media in varying 

proportions in sterile L-tubes. The L-tubes were incubated at 19.5 ± 0.5°C in a TGI 

as described above. Growth rate at each pH was determined as described in 4.2.2.2. 

Aliquots (0.5 ml) were aseptically removed immediately after inoculation and at 

intervals during the incubation and the pH determined using a pH meter with surface 

probe. 
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4.2.2.4 Environmental history effects 

Cultures of Listeria monocytogenes were incubated in TSB + 0.2M lactic acid, 

adjusted to a range of sub-optimal aw (NaCl as humectant) and pH conditions, on a 

TGI with shaking at 19.5 ± 0.5°C. Growth rate was determined as described in 

4.2.2.2. When the cultures had reached <10% transmittance, small aliquots were 

transferred to sterile TSB at the same temperature and the cultures incubated under 

the same conditions. Growth rate in this medium was determined as described in 

4.2.2.2. 

4.2.2.5 Model Generation 

Experimental design 

The S. aureus models were based on a data set (212 data) covering the entire 

suboptimal water-activity (NaCl)-temperature variables-space. The variables 

combinations tested are represented diagrammatically in Appendix 3, Fig. Al. From 

this large data set model parameters were estimated by the two methods described 

below. The results of that exercise led to the use of a minimal experimental design 

for the L. monocytogenes models, consistent with the hypotheses presented. Three 

single-variable experiments were undertaken from which to characterise well the 

response to each variable and from which to estimate the parameters T min, awmin and 

pH min individually. The variables combinations tested are represented 

diagrammatically in Appendix 3, Fig. A2 and are near to the minimum that could be 

used to derive models of the type of Eqn. 1.5 (see 2.2.9 re: 'quantity of data'). The 

same data set was fitted by nonlinear regression. The Murray B and Scott A data sets 

contain 54 and 72 data respectively. This experimental design was used in an attempt 

to 'test to destruction' the hypotheses presented, so that potential shortcomings of 

the strategy would be highlighted. 

'Iterative' models 

The parameters T min, awmin and pH min of the square-root-type models were assumed 

to be characteristic features of the modelled organisms. Models were constructed by 

substitution of the parameter values, estimated by the methods described above, into 

Eqns. 1.3 and 1.5. The coefficient, b, was estimated algebraically by equating the 

model to the mean growth rate of replicated determinations under defined 

conditions. These replicated experiments were also used to estimate the variance in 

the response. 

Nonlinear regression models 

Models of the type of Eqns. 1.3, and 1.5 were fitted to data using SAS PROC NLIN 

routines written by Dr. D. Ratkowsky, University of Tasmania, Hobart, Australia. 
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The data sets used for generation of models by the two methods are shown in 

Appendices 3.1-3. 

4.3 RESULTS 

4.3.1 Parameter Estimation by 'Iterative' Methods 

4. 3 .1.1 T min estimates 

Staphylococcus aureus 

Table 4.1 summarises Tmin determinations for S. aureus strains grown at a range of 

water activities (0.997 - 0.925). For each experiment estimates of T min were 

determined from the gener~tion time and from the time required for the %T of the 

culture to decrease by 30%. 

It was noted that estimates ofT min for S. aureus were higher for data sets 

generated in low water activity media. To test a hypothesis, presented in detail in 

Chapter 7, that this may result from the range of data used in the fitting process, the 

lowest temperature at which growth was observed was compared to the T min 

estimate obtained for individual data sets. The results are presented in Fig. 4.1. 

Listeria monocytogenes 

Table 4.2 presents estimates of T min for two strains of Listeria monocytogenes. 

Estimates were derived for each data set based on generation time data, and the M 

parameter fitted to the data by Eqn. 3.11. Initial estimates were derived from a single 

experimental block for each strain. Other estimates were derived by augmentation of 

that data with complementary data from subsequent experiments (see Table 3.6). 

4.3.1.2 awmtn estimates 

Measured water activities were consistent with calculated values, within the degree 

of precision of the instrument (±2% RH). The instrument was unable to measure 

reliably water activities> 0.98, probably due to condensate formation on the sensor. 

Calibration of the instrument became increasingly difficult, and measurements more 

erratic, as the sensor aged. Higher precision was required and water activities > 0.98 

were considered. Thus, all water activity values shown are calculated, rather than 

measured, values. 

Staphylococcus aureus 

The awmin estimates for Staphylococcus aureus 3b (NaCl) by the method of 

McMeekin et al. (1987)was 0.855 (R2 = 0.943). Estimation of awmin by the second 

method described, for generation time data, is shown in Fig. 4.3, which also shows 

the temperature independence of the parameter awmin· Estimates of awmin by that 
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Table 4.1 T min estimates for strains of coagulase positiveS. aureus. 

Strain T min coq ±SD (n) 

la 7.29 0.40 (4) 
lb 7.77 0.33 (4) 
3a 6.98 0.79 (6) 
BOY 2'b 8.69 0.87 (2) 
BOV4' 7.51 1.25 (2) 
Cad. 010654 7.26 0.13 (2) 
NCTC 6571 9.04 0.60 (3) 
3b 7.27 0.78 (24) 

Table 4.2 T min estimates for two strains of Listeria monocytogenes 

Strain Tmin ±SD (n) 
(OC) 

Initial experimental block 
Murray B 2.10 1.21 2 
Scott A 2.98 1.22 2 

Augmented data set 
Murray B -0.26 1 
Scott A -0.29 1 

method are 0.852 (34°C), 0.874 (30°C), and 0.851 (26°C). The R2 values of the 

fitted lines are 0.974, 0.957 and 0.990 respectively. Estimates of awmin for other 

strains of S. aureus, as a function of NaCl as humectant are shown in Table 4.3. 

Using a method analogous to the latter method described in 4.2.2.3, cultures 

of S. aureus 3b in BHIB adjusted to a range of water activities by the addition of 

NaCl, were incubated (30°C) in a Bactometer3 instrument. From preliminary 

experiments, linear regression of the reciprocal of impedance 'detection 

3 Bactometer: Bactomatic, A Division of MTC, Princeton, New Jersey, U.S.A. 
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Table 4.3 awmin estimates of coagulase positiveS. aureus (NaCl as humectant). 

Strain awmin r2 

Cad.010654 0.880 0.947 
0.877 0.962 

ATCC 25923 0.876 0.987 
0.882 0.920 

NCTC 6571 0.871 0.985 

20 25 
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5 • AA • • -·- 5 - 10 r.I'J w • • = • 5 s 
I I I • '2 

8 • I ~ • • • 6 0 

0.85 0.90 0.95 1.00 

Water Activity (NaCI) 

Fig. 4.1 Relationship between the estimate of Tmin (•) and the lowest 

temperature ( •) at which growth was recorded. 

times' against water activity generated awmin estimates in the range 0.867-0.872 

(results not shown). 

The inhibitory effect of sucrose on growth rate of S. aureus is shown in 

Fig. 4.4 and details of fitted equations summarised in Table 4.4. 
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Fig. 4.2 Estimation of awmin of S. aureus 3b by linear regression of the square 

of the parameter b of Eqn. 1.3 (NaCl as humectant). 

~ 

t: ·-E -t: 
(l,) 
CJ) 
'-' 

<lJ ...... 
~ 

c::: 

0.035 

0.030 

0.025 

0.020 

0.015 

0.010 

0.005 

0.000 +--......~;;........,.--,,--,.-....,..--.---,---.--,.-..---..,..--.----r--.---i 

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 
Water Activity 

Fig. 4.3 Estimation of awmin of S. aureus 3b by linear regression of the growth 

rate at constant temperature against water activity of the medium. 

e : 34°C; Ill: 30°C; 0: 26°C. (NaCl as humectant). 
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Table 4.4 awmin estimates of coagulase positive S. aureus (sucrose as 

humectant). 

Strain Response 

3b 0.924 0.978 generation time 

0.929 0.989 Time to ~%T3o 

NCTC 6571 0.908 0.872 generation time 

0.916 0.981 Time to ~%T3o 

0.918 0.970 Lag Time 

0.01 

0. 00 +-_.,."-"'T---.--r---.--r--w--r---.--r---r--.,r--...,.....--1 

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 

Water Activity 

Fig. 4.4 Relationship between growth rate of Staphylococcus aureus 3b and water 

activity (sucrose as primary humectant). Rate determined from: 

•: generation time (min); 0 :time (min) for 30% decrease in %T3o. 
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Listeria monocytogenes 

The effect of water activity on the growth rate of L. monocytogenes (NaCl as 

humectant) and estimation of awmin are shown in Fig 4.5. Estimates of awmin, based 

on generation time data, were 0.926 and 0.923 for L. monocytogenes strains Scott A 

and Murray B respectively. The R2 values for the regression lines were 0.992 and 

0.995 respectively. Neither strain grew in media at pH: 5.5 within 20 days. 

4.3.2 pH Response 

The relationship between the initial and final pH (pHi and pHf respectively) of the 

cultures is shown in Fig. 4.6a, and the dependence of that change upon population 

density shown in Fig. 4.6b for one culture. Fig. 4.6b is representative of the changes 

observed in all cultures, except those for which pHi was less than 6. 7. In these, the 

extent of growth and change in pH (~pH) was less than that for cultures with 

pHi > 6.8. No cultures with pHi< 5.5 showed growth and, in general, growth in all 

cultures ceased when the pH became less than 5.5. At this pH the lactate is 97.8% 

dissociated, i.e. under the experimental conditions the concentration of undissociated 

lactate is 4.3 mM. Cultures in which the transmittance had not fallen to .:20% after 

-90h were re-incubated at 30°C. After 24h the %T had not changed. These 

observations are consistent with the observations presented above for the growth of 

Listeria monocytogenes in media with reduced water activity. The effect of 

undissociated lactate, on the growth rate of both strains of L. monocytogenes tested, 

is shown in Fig. 4.7. 

The change in pH closely paralleled the growth of the culture. The midpoint 

of the range pHi to pHr, designated pHmid, was chosen as the response variable for 

assessment of the effect of pH on growth rate, as this pH was considered to be most 

representative of that at which the fastest growth rate was observed for each culture. 

Fig. 4.8 shows growth rate as function of pHmid· Similar plots were obtained when 

the pH at the time 'M' of Eqn. 3.1, estimated from calibration curves, was used as 

the response variable. It was noted that for cultures in which pHi was less than 6.7 

(the eight lowest pH data points in Figs. 4.8) the final %T of the culture was not as 

low as for the other growth conditions. From Eqn. 3.4, reduced MPD would be 

expected to result in a lower observed growth rate. The initial %T, final %T and %T 

at time M obtained by fitting the data, were converted to equivalent CFU/ml by 

reference to a calibration chart derived from experiments described in 3.3. A 

correction factor for the expected decrease in rate, calculated at M, was derived from 

these data using Eqn. 3.4. It was found that the %T at M increased as pHmid 

decreased, i.e. the maximum growth rate occurred at lower population density in 

those cultures with low pHi and compensated the effect on growth rate of reduced 
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Fig. 4.5 The effect of water activity (NaCl as humectant) on the generation rate 

of L. monocytogenes. Scott A (e); Murray B (O ). 

MPD. The correction required was calculated to be of the order of 5 - 10% and, 

consequently, was not sufficient to explain the difference in estimated growth rates 

as pH decreased. 

4.3.3 Environmental History Effects 

The effect of growth of Listeria monocytogenes at sub-optimal water activity or pH, 

on the subsequent generation time of L. monocytogenes in non-limiting conditions is 

presented in Table 4.5. There was no consistent effect of preincubation conditions on 

the subsequent growth rate. 
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a) Change in medium pH as a result of growth of Listeria monocytogenes 

at 19.5°C in TSB + 0.2M lactate. Strain Scott A (0), strain Murray B, 

(8). x, +, represent cultures in which no growth occurred, strains Scott A 

and Murray B respectively. 

b) Change in medium pH as a function of time and growth at 19.5°C of 

L. monocytogenes Scott A in TSB. pH of culture(O), %T of culture( G). 
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Fig. 4.7 Growth rate of L. monocytogenes strains Scott A (•) and Murray B (0) 

as a function of undissociated lactate concentration in the growth 

medium (TSB + 0.2M lactate at 19.5°C, aw = 0.990). 
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Fig. 4.8 Growth rate of Listeria monocytogenes strains Scott A (0) and 

Murray B(8) as a function of pHmid in TSB + 0.2M lactate at 19.5°C. 
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Table 4.5 Effects of preincubation conditions on the subsequent generation time of 

L. monocytogenes in TSB at 19.5°C. 

Strain m~ inQculym Pre-Incubation Conditions Generation time (h) 
mls medium initial subsequent 

water activity pH culture culture 

Scott A 0.1/15 0.990 6.5 2.82 1.76 
0.1/15 0.973 6.5 3.97 1.85 
0.1/15 0.954 6.5 5.90 2.38 
0.1/15 0.933 6.5 30.36 2.76 
0.4/15 0.990 7.6 1.96 1.70 
0.4/15 0.990 6.9 2.00 1.60 
0.4/15 0.990 6.0 2.41 1.65 

Murray B 0.1/15 0.990 6.5 3.77 2.30 
0.1/15 0.973 6.5 4.49 1.90 
0.1/15 0.954 6.5 7.23 1.80 
0.4/15 0.990 7.6 1.89 1.62 
0.3/10 0.990 6.6 1.97 1.74 
0.4/15 0.990 5.8 2.99 1.74 

4.3.4 Model construction 

The data summarised above enable the construction of a number of models, but 

models were developed only for those organisms which had been most intensively 

studied, namely S. aureus 3b, and L. monocytogenes strains Scott A and Murray B. 

4.3.4.1 Stochastic considerations 

A clear dependence of Var(tc) upon tc was noted. Thus, other variance­

homogenising transformations were considered. Variance in ln(tc) and 1/~tc for 

L. monocytogenes Scott A are presented in Fig. 4.9 as a function of mean generation 

time. The results do not clearly indicate which transformation of the response 

variable is more appropriate, but suggest that the square root transformation 

homogenises the variance at least as well as the logarithmic transformation. In the 

development of the models described below it is assumed that the variance is 

homogeneous in ~rate . 
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Fig. 4.9 Variance in transformations of generation time estimates of Listeria 

monocytogenes strains Scott A. Var(ln (1/tc)): (0). Var(1/tc)):(•) 

McMeekin et al. ( L 993) reported that the error in the growth rate of S. aureus 

3b was homogenous in .,Jrate. Data obtained by the candidate (not presented) is 

consistent with this observation. From the data presented in Table 3.6 an estimate of 

the variance in .,Jrate may be calculated and used to determine 95% confidence limits 

on the estimates of the models developed for 5. aureus 3b. The confidence intervals 

for the Listeria monocyrogenes models are based on replicate rate determinations at 

19.5 °C, 0.997 aw and pH 7.2. 

4.3.4.2 Staphylococcus aureus 3b 

In developing the iterative model the T min of 5. aureus 3b was estimated to be 8.02 ± 
0.82 (SD) °C and awmin estimated as 0.860 ± .0092 (SD) when NaCl is the 

humectant. To evaluate 'b', these values were substituted into Eqn. 1.14 and equated 

to the mean of the replicated estimates of the generation time of S. aureus 3b at 27°C 

and aw 0.997 (see Table 3.6). The model was subsequently corrected for the 

difference in GT estimates derived from .6.%T and VC data (see 3.3). Thus: 

0.93 (h) = 1/ (b X (T- 8.0) X -.,j(aw - 0.86))2 
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generation timeL\.%T (h) = 1/ (0.147 x (T- 8.0) x ~(aw - 0.86))2 

:. forT~ 36°C, and aw ~ 0.997 

generation timevc (h)= 
1 

2 
(o.165x(T-8.0)x~(aw -0.860) ±0.12) 

(4.la) 

Parameter estimates (upper and lower 95% confidence limits in brackets) derived 

from nonlinear regression of the data to Eqn. 1.3 were 'b' = 0.155 (0.1490, 0.1609), 

awmin = 0.856 (0.852, 0.859), T min= 7.5 °C (7.0, 8.0), and give rise to the following 

model: 

generation timevc (h) = 1 
2 

( 0.155 X (T -7.5) X ~Caw- 0.856) ± 0.12) 
' ) 

(4.1 b) 

4.3.4.3 Listeria monocytogenes 

The effect of pH (0.2M lactate) on growth rate (Fig. 4.7) indicates that there is little 

effect in the range pH 6.2- 7.6, but that at pH< 6.2 the rate declines as a function of 

the pH and growth ceases at pH < 5.5. This response is not well described by the pH 

model presented by Adams eta!. (1991). Cole eta!. (1990) and Wijtzes et al. (1993) 

also presented models describing environmental effects, including pH, on growth 

rate. Cole et at. ( 1990) found a linear relationship between growth rate and hydrogen 

ion concentration. Fig. 4.1 Oa shows that the decline in rate as a function of [H+] for 

both Listeria strains approximates a straight line only for [H+] concentrations greater 

than approximately 0.5 x 1Q-6M (pH 6.3). A model of the type introduced, without 

explanation, by Wijtzes ct al. (1993): 

~=eX (pH- pH min) X {1- exp[d X (pH- pHmax)l} 

(similar to the pH model of Zwietering et al., 1992a), was fitted to the 

L. monocytogenes Murray B pH-rate data. pHmax was set to 9.2, the literature value 

reported by Wijtzes eta!. (1993). The fitted model and data are shown in Fig. 4.10b. 

Convergence was difficult to achieve, and it was noted that the estimates of the 

parameters e and d had extremely wide confidence intervals which were many times 

greater in magnitude than the estimate itself. These observations and the poor fit to 

the experimental data suggest that the model of Wijtzes et al. (1993) is not 

appropriate. 
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Fig. 4.10 a) Relationship between growth rate and [H+] for L. monocytogenes 

strains Scott A (0) and Murray B (e) 

b) The pH model of Wijtzes et al. (1993) fitted to data for the growth of 

L. monocytogenes Murray B. Data (e), fitted model(--). 
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Neither model adequately describes the response over the full data range. To 

simplify the 'iterative' model development, complementary models were developed. 

Below pH 6.2 the effect of pH is well described by a model of the type of Eqn. 1.5, 

but at higher pH a model of the type of Eqn 1.3 is sufficient. The following 

'iterative' model for the generation time of Listeria monocytogenes Scott A, 

calibrated to viable count methods was derived: 

ForT 5:: 37°C, pH~ 6.2 and aw 5::0.997: 

. . (h 1 generation nmevc ) = 2 
(0.165 x cr + o.3) x ,Jca.v- o. 926) ± 0.10) 

and forT 5:: 37°C, aw 5:: 0.997 and pH 5:: 6.2 in the presence of 0.2M lactate: 

. . ( ) 1 generatwn t1mevc ,h/ = ,., 
( 0.197 X (T + 0.3) X ~Caw- 0. 926) X ~(pH- 5.5) ± 0.10 r 

(4.2a) 

Similarly, for Listeria monocytogenes Murray B: 

ForT< 37°C, pH> 6.2 and aw < 0.997: 

. . (h 1 generatwn tlmevc ) = 2 
( 0.159 x (T + 0. 3) x ~Caw- 0. 923) ± 0.12) 

and forT < 37°C, aw < 0.997 and pH < 6.2 in the presence of 0.2M lactate: 

generation timevc (h) = 1 
2 

(0.191 X (T + 0.3) X ~Caw- 0.923) X ~(pH- 5.5) ± 0.12) 

(4.3a) 

To overcome the need to model the temperature/pH/water activity response surface 

by multiple equations, a function to describe the pH response which could be 

integrated with the temperature and water activity terms, was sought. The required 

function should have values near one over much of its range, decline to zero at the 

lower limiting value, and have some degree of interpretability. The function 

PH. 
rate ex: 1 - mm 

pH 
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fulfils some of these requirements but will always display the same rate of decline as 

a function of pH. Accordingly, the nth root of the function was taken, which also 

takes values between 1 and 0, but the rate of decline can be varied to better fit the 

data. Thus, the term: 

PH. 
rate = b X n 1 - mm 

pH 

was devised. The function is nonlinear. 

A new temperature-pH-water activity model of the form: 

-rrate = b X (T- T min) X ~(aw- Qwmin) X n 1- pH min 
pH 

(4.4) 

(4.5) 

was fitted to the data in Appendices 3.2 and 3.3. The parameter estimates of the 

models for L. monocytogenes strains Scott A and Murray B are presented in Table 

4.6. The models corresponding to those parameter estimates for strains Scott A and 

Murray B will be referred to as Eqns. 4.2b and 4.3b respectively. The goodness of fit 

of the various iterative and nonlinear regression model is compared in Table 4.7. 

4.4 DISCUSSION 

Before discussing the results it is useful to reiterate that the parameters T min• awmin 

and pH min are theoretical lower limiting values of temperature, aw and pH 

respectively. These values cannot be experimentally determined: by definition they 

are conditions at which the generation time is infinite. Consequently, they must be 

estimated by extrapolation. There is continued confusion in the literature concerning 

the meaning of these parameters with some authors (e.g. Neidhardt et al., 1990; 

Wijtzes et al., 1993), equating them with the lowest conditions at which growth is 

observed. The determination of the lowest conditions at which growth is observed is 

itself problematic. Some reports fail to distinguish between growth being possible, as 

opposed to simply not being detected within the time frame of the experiments, and 

many reports are based on detection systems which require many generations of 

growth before a positive result (i.e. growth) is recorded. Both lag and generation 

times are increasingly prolonged as conditions for growth become less favourable, 

thus investigators must be cautious in declaring that growth is not possible under a 

particular set of conditions. Using the predictive models developed in this chapter, 

several published experimental methods to determine minimum conditions for 
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Table 4.6 Parameter estimates for L. monocytogenes strains Scott A and 

Murray B fitted to Eqn. 4.5 (L1%T data). 

Parameter Scott A 95% confidence Murray B 95% confidence 
(Eqn.4.2b) interval (Eqn. 4.3b) interval 

b 0.176 0.157 to 0.195 0.156 0.141 to 0.171 
Tmin ec) -0.1 -1.2 to+ 1.0 +0.1 -1.5 to + 1.7 
awmin 0.930 0.927 to 0.934 0.930 0.926 to 0.934 
pH min 5.65 5.63 to 5.66 5.70 5.70 to 5.70 
n 0.131 0.071 to 0.192 0.063 0.018 to 0.107 

Table 4.7 Mean Square Error (~rate) of Models Developed in this Chapter for 

S. aureus 3b, and L. monocytogenes strains Scott A and Murray B 

Organism Mean Squared Error (~rate) 
"Iterative" Method Eqn. Nonlinear Regression Eqn. 

S. aureus 3b 0.006143 4.la 0.005231 4.lb 

L. monocytogenes 
Scott A 0.01572 4.2a 0.003767 4.2b 
Murray B 0.02382 4.3a 0.005187 4.3b 

growth were analysed. For some (e.g. Tapia de Daza et al., 1991; Farber, et al., 

1992) the duration of the experiments would have precluded sufficient generations 

(even ignoring lag phase duration) for growth to be recorded by the criterion used 

(e.g. time to turbidity, time for 1000-fold increase). Thus, conclusions regarding 

combinations of factors which preclude growth must be interpreted with caution. 
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4.4.1 Responses to Individual Constraints 

4.4.1.1 Temperature and water activity 

Troller (1986) points out that the minimum values of temperature and water 

activities which permit the growth of Staphylococcus aureus can be specific to the 

test conditions. Many reports, for example, indicate limiting aw values in the region 

0.90 to 0.86. From several of the compilations of published values of limiting 

temperatures and water activities for S. aureus growth (Jay, 1986; Beuchat, 1987; 

Troller, 1986; Ewald and Notermans, 1988), a temperature range for growth of from 

7 to 45°C, and a lower water activity limit of 0.86 are the most frequently observed. 

A lower temperature limit for growth of 6.5 °C for many strains was reported by 

Schmidt et al., (1990). Troller (1976) observed growth of S. aureus at water 

activities as low as 0.83. Jay (1986) concludes, however, that 0.86 aw and 7°C are 

the generally recognised minimum water activity and temperature for growth. 

Minimum growth temperatures reported for Listeria monocytogenes are 

typically near zero. Walker et al. (1990) reported values for three strains in the range 

-0.4 to -0.1 °C; Junttila et al. (1988) reported values in the range 0.5° to 3.0°C for 77 

pathogenic strains. Other workers observed growth of L. monocytogenes on 

commercial meat products at 0.1°C (Grau and Vanderlinde, 1992) and at 0°C in a 

model meat system (Grau and Vanderlinde, 1993). Estimates of T min range from 

-2.55 to -1.75°C (Wijtzes eta!., 1993), -2.2 to -2.4°C (Grau and Vanderlinde, 1993), 

and values in the range -4.5 to -1.5°C may be calculated from the data presented in 

Walker eta!. (1990). The latter data set covers the range 0 to 9.5 °C only. 

The minimum water activity for the growth of L. monocytogenes was found 

to be 0.92, for NaCl as humectant, by several investigators (Miller, 1991; Tapia de 
Daza et al., 1991; Farber eta!., 1992). Wijtzes et al. (1993) estimated the aw., for ,,,m 

L. monocytogenes to be 0.912- 0.916. 

The minimum pH for L. monocytogenes growth was reported to be 4.39 

(George et al., 1989). Wijtzes et al. (1993) estimated pHmin (HCl as acidulant) as 

4.15 from pH data in the range pH :c;; 6.3, and 4.03 from pH data in the range pH :c;; 

6.7. In phosphate buffered TSB containing 0.1M citrate, Cole eta!. (1990) found that 

the lowest pH which permitted growth (-1()4 increase in numbers at 30°C within 60 

days) was 4.66. 

4.4.1.2 Derived estimates 

The parameter values derived from the data presented in this chapter are 

generally consistent with literature values, and estimates obtained by either method 

of model development are very similar. To simplify discussion, the organisms will 

be considered separately. 
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Staphylococcus aureus 

The estimate of awmin (NaCl) for S. aureus 3b is very consistent with previously 

reported values for the lower water activity limit. Some strain to strain variation was 

noted (Table 4.3). Scott (1953) reported no difference in the minimum water activity 

for growth of S. aureus when either sucrose or NaCl were the primary humectants 

for many strains. Similarly, from the results of Broughall et al. (1983) using glucose 

as humectant, an awmin of -0.86 is estimated. Conversely, Nunheimer and Fabian 

(1940) found that sucrose prevented growth of S. aureus at aw 0.95 - 0.93. Li and 

Torres (1993b) estimated lower limits for growth using various humectants by 

extrapolation of a straight line fitted to rate vs aw. Their estimates of awmin for 

S. aureus ATCC 13566, derived from data in the range 0.980- 0.947 were close to 

0.93 for both NaCl and sucrose as the primary humectants. A partial explanation for 

the divergence of reported values may be found by considering the actual growth 

rate response to water activity as distinct from the modelled response. Fig. 4.11 a is 

reproduced from Scott (1953). Fig. 4.11b is derived from Broughall et al. (1983) 

using the method of McMeekin et al. (1987). These figures, and Figs. 4.2 - 4.4, 

display curvature in the water activity-rate response. A similar trend is apparent in 

analogous data for Staphylococcus xylosus (McMeekin et al., 1987). Li and Torres 

(1993a) alluded to the same effect. 

A consequence of fitting a straight line to such data is that the water activity 

value at which the fitted line corresponds to zero rate will depend upon the range of 

data. Data collected at high water activities will lead to higher estimates of awmin, 

whilst data predominantly at the lower extreme of the water activity range will give 

rise to lower estimates of awmin· This emphasises the importance of gathering data 

over as full a range of the response variable as possible (McMeekin et al., 1993, 

Chapter 2), and also the risks of extrapolation beyond the range of data used to 

generate models. In practical terms, a straight line is a good approximation to the 

water activity response within a given range, but would be expected to result in 

overprediction of the rate in the middle of the range being modelled, and 

underestimation of rate at the upper and lower extremes of the range modelled. This 

pattern of residuals was found upon examination of the residuals of the fitted values 

of Eqn. 4.1a and b. Nonetheless, the observed values may be well approximated 

within the range of the data. 

Thus, if the experiments on sucrose had been continued for a longer time 

period, or conducted at temperatures nearer the optimum for growth, a response 

similar to that observed by Scott ( 1953), i.e. Fig. 4.11 a, may have been observed. 

A slight curvature was also noted in many square root plots (--Jrate vs. 

temperature), and has the same predicted consequence, i.e. if less data is collected at 

the lower end of the temperature range, a higher estimate ofT min would be expected. 
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Fig. 4.11 Relationship between water activity and growth rate of S. aureus. 

a) Reproduced from Scott (1953) for strain 49/1974 growing in BHIB 

with modified water content. b). Data of Broughall et al. (1983) for 

strain NCTC 10655 in glucose modified UHT milk, analysed by the 

method of McMeekin et al. ( 1987) . 
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This was demonstrated in Fig. 4.1. The same analysis was applied to the results of 

Broughall et al. (1983) and is presented in Fig. 4.12. The similarity of these 

responses is consistent with suggestions (M. Cole, pers. comm.) that the relationship 

between temperature and microbial growth rate may consistently deviate from that 

described by a 'square root response'. This possibility is more fully discussed in 

Chapter 7. Once again, in practice the deviation may be small, and still give 

acceptable predictions within the range of the data used to generate the model. These 

possibilities will be evaluated in Chapter 5. 

Listeria monocytogenes 

The estimates of awmin determined here are generally consistent with 

literature values, but the estimates obtained by either method of model development 

were consistently different and were explored more closely. Linear regression of the 

data presented in Fig. 4.5, which were obtained from a single experimental block, 

yielded awmin estimates of 0.923 and 0.926 for strains Scott A and Murray B 

respectively. Other experimental blocks contained data at 19.5°C and aw 0.990. 

When these were combined with the data in Fig. 4.5, and awmin estimated from the 

combined data the awmin estimates were both slightly higher because all the 

additional data had faster rate values at 19.5°C and, in consequence, 'skewed' the 

fitted line. The same effect would have occurred when the entire data set was fitted 

to Eqn. 1.5 by nonlinear regression. The data presented in Fig 4.5, from a single 

experimental block, is self consistent both within and between strains. Rate data 

from other experiments is not consistent. The reasons for the differences are unclear, 

but suggest a lack of control of some variable between experiments. It is possible 

that the rate of rocking of the TGI, which was not well controlled between 

experiments may be responsible, e.g. due to the differences in the rate of aeration of 

the cultures, oxygen depletion may be affecting observed growth rates at the high 

population levels being measured. Pearson and Marth (1990a,b) reported shorter lag 

times (4.4lh cf. 8.15h), shorter generation times and higher MPDs (9.18 cf. 8.39 

log10CFU/ml) for L. monocytogenes cultures which were agitated rather than 

quiescent. Whilst this inconsistency may lead to biased estimates of the parameters 

when fitting the data by nonlinear regression, the manual method of modelling will 

be insensitive to such differences and may, from this perspective, be preferable. 

The estimates of T min derived for both organisms from the original 

experimental block were higher than published estimates, and even when the data set 

used for T min estimation was supplemented with data from other experimental 

blocks, the results were not consistent with reports cited in 4.4.1.1. The reason for 

the relatively high estimates is unknown, but does accentuate the need for 

replication. The problem will be manifest when applying the model to independent 
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Fig. 4.12 Relationship between the estimate ofT min (•) and the lowest temperature 

(~)at which growth was recorded for the data of Broughall et al. (1983). 

data for the growth of these organisms, and would be expected to lead to 

overestimation of the generation times at temperatures a few degrees above 0°C. 

Despite the known discrepancy in the estimates ofT min. these data sets were selected 

for analysis to provide a rigorous evaluation of the hypotheses summarised at 4.4.4. 

4.4.1.3 pH response 

The pH response noted here is inconsistent with others previously described in the 

predictive microbiology literature (Adams et al., 1991; Cole et al., 1990, Wijtzes et 

al., 1993) but is consistent with the more general response described by Neidhardt et 

al. (1990), i.e. a range of one or two pH units in which growth rate is largely 

unaffected by pH, beyond which growth rate declines rapidly as a function of pH. 

From the results presented in this chapter, inhibition due to pH appears to become 

significant only below pH -6.2. Pearson and Marth (1990b) reported that in milk at 

pH 6.28 the growth of L. monocytogenes was not significantly different to that in 

laboratory broth (pH 7 .15), and also noted that L. monocytogenes decreased the pH 

of a modified Tryptose Phosphate Broth by -0.5 pH unit. George eta!. (1988) and 
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Petran and Zottola (1989) recorded similar decreases in pH in broth media 

containing sugars as a result of Listeria growth. The decline in growth rate below 

pH~6.2 is approximately proportional to the decline in pH, as observed by Adams et 

al. (1991) but also appears to be proportional to the decline in [H+] as reported by 

Cole et al. (1990). Extrapolation of the 'straight line portion' of the response for pH 

< 6.2, for either independent variable, results in a lower limiting value corresponding 

to pH- 5.5. 

The data of Adams eta!. (1991) for Yersinia enterocolitica are restricted to 

the range pH < 6.4 and, thus, may represent suboptimal pHs only. For the data of 

Wijtzes et al. (1993) the estimate of pHmin most consistent with published data was 

obtained from data in the range pH < 6.3 only. Extending the range to pH< 6.7 

resulted in a lower estimate of pH min which would be expected if the rate above pH 

-6.2 did not change as a function of pH, i.e. the fitted line would be less steep and 

have a lower pH axis intercept. The pH range tested by Cole et a!. (1990) was 

pH< 7.0. Thus, the apparent qualitative differences may again be a reflection of the 

data range used, and the use of a model inadequate to fully describe the response. 

The inability of L. monocytogenes to grow at pH 5.5 in the presence of 

lactate has been noted before. Irvin (1968) reported complete growth inhibition in 

silage with pH slightly below pH 5.5, but observed growth just above 5.5. Ryser et 

al. (1985) found a similar response in cottage cheese. In silage at pH < 5.5, viable 

counts of cells of L. monocytogenes inoculated into the silage declined (Irvin, 1968). 

A similar limiting pH was found in cultured and uncultured whey (Ryser and Marth, 

1988). The results of Buchanan et al. (1993b) for the rate of inactivation of 

L. monocytogenes due to lactic acid/pH also seem consistent with these observations. 

The latter authors inferred that while growth was possible in the presence of low 

lactate concentrations at some pH's, growth was not possible below pH 5 in the 

presence of~ 0.1 M lactate. They also concluded the rate of inactivation was in part 

due to the concentration of undissociated lactate. At pH 5.5 approximately 97.9% of 

the lactate is in the dissociated form. In the presence of 0.2M lactate this corresponds 

to 4.3 mM of the undissociated acid. If the inhibition were solely due to the 

undissociated form, in the presence of 0.1 M lactate growth would not be expected to 

occur at pH < 5.2. 

By sequentially removing the lowest pH datum in the data set it was noted 

that the estimate of pH min fitted to Eqn. 4.5 was always very close to the lowest pH 

at which data were available. Attempts were made to fit the pH data of the 

L. monocytogenes Scott A and Murray B (see Fig. 4.8) to Eqn. 4.4 but convergence 

was not achieved. Even using the fitted parameter estimates (pH min. n) shown in 

Table 4.6, the fit to the data at pH values below pH 6.2 was poor. This was 

confirmed by comparing the residuals of the 'iterative' and the nonlinear regression 

models. In the majority of conditions the nonlinear regression model estimate was 
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closer to the observed value, but for those data at pH < 6.2, the two component 

'iterative' models produced estimates which were orders of magnitude closer to the 

observed value. More promising results were obtained when [H+] was used as the 

independent variable in Eqn. 4.4. This work is continuing. 

4.4.2 Environmental History Effects 

The effect of preincubation conditions on subsequent growth rate of 

L. monocytogenes Scott A presented in Table 4.5 suggest that there may be a water 

activity history effect. The analogous results for strain Murray B, however, 

contradict this conclusion. Scott (1953) alluded to a lack of water activity history 

effect also: " ... cells grown at 0.96 aw had no greater capacity to form colonies at low 

aw s than cells grown at 0.999". There is no evidence of a pH history effect from the, 

albeit limited, data presented. 

4.4.3 Strain to Strain Variability 

The similarity between estimates of the parameters T min• awmin' and pH min for two 

strains of Listeria monocytogenes considered in this work suggests that a single 

model may be sufficient for this species for a given acidulant and humectant. 

Literature values for growth limiting N aCl concentrations for other strains are also 

consistent with the results presented here, and literature values forT min are also very 

similar between strains. Similarly, the lower water activity limit for S. aureus growth 

is reasonably consistent between strains, as remarked upon by Scott (1953). The 

greater variation reported in this chapter may arise, in part, from the difference 

between awmin an the limiting aw for growth and their respective methods of 

estimation. With regard to temperature, Schmidt et al. (1990) found that for 77 

strains of S. aureus the minimum temperature for growth was found to range 

between 6.5 and 12.5°C. This does not of necessity mean that the T min range is as 

wide. When one considers the sources of errors referred to earlier, Table 4.1 may 

indicate that T min may be more consistent than the observed lowest growth 

temperature. Nonetheless, the T min estimates reported in this chapter appear to be 

higher than would be expected from the literature. If it can be shown that one or 

more of the parameters of the square root type models are constant between strains, 

the work involved in the generation of models would be further reduced. The 

significance of this possibility justifies further study. 

4.4.4 Evaluation of Hypotheses 

The hypotheses in 4.1 can be summarised as follows: 

i) that the effects of temperature, water activity and pH on microbial 

growth are independent and, in consequence, that the parameters T min' awmin and 

pH min are independent 



102 

ii) that this knowledge allows the unambiguous definition of the response 

surface by the independent estimation of the values of these parameters and their 

sequential incorporation into models of increasing complexity without the need for 

nonlinear regression modelling expertise 

iii) that these requirements may be met by the use of an economical 

experimental design in which the response to each variable is well defined, by 

intensive one-variable experiments, which obviates the need for complex response 

surface designs. 

4.4.4.1 Independence of effects 

The independence of the effects of temperature and water activity on microbial 

growth rate demonstrated in this study agree with previous reports (Davey, 1989a, 

Adams et al., 1991; Chandler and McMeekin, 1989b, c; Buchanan et al., 1993a). No 

experimental results were obtained to assess potential interactions between pH and 

temperature, or pH and water activity, but there were no significant correlations 

between the parameters T min, awmin· and pH min fitted by nonlinear regression to any 

data set. This conclusion was reinforced by sequentially fitting parameters by 

nonlinear regression: the same parameter estimates were generated irrespective of 

the starting values, or realistic values assigned to other parameters. Fitted T min and 

awmin values for both Listeria data sets after deletion of data for pH < 6.2 were 

within 0.1 °C and 0.0002 aw of the estimates from entire data sets. Estimates of the 

parameter values also appear to be insensitive to the response used to generate them 

(i.e. 1/tc, l/6%T30, !/impedance detection time, 1/M etc.), but may be dependent 

upon the range of the data used to estimate them. 

4.4.4.2 Iterative approach 

The similarity of the parameter estimates obtained by the two modelling approaches 

support, in general, the hypothesis that square-root-type models can be constructed 

by sequential experiments to determine the values of parameters, and the variability 

in the response and the scaling constant. The models developed for S. aureus 3b best 

illustrate this point. As suggested above, slight differences in the awmin estimates for 

the complementary L. monocytogenes models by the two methods may be due to, as 

yet, unexplained inconsistencies in the data from separate experimental blocks. The 

pH min estimates are not truly comparable because of the different functions fitted. 

The MSEs of models generated by the two methods show that nonlinear 

regression produces models that better describe the data. The MSE of the nonlinear 

regression model to the S. aureus 3b data set is only slightly better than that by the 

'iterative' method. The difference is much greater for the two L. monocytogenes data 

sets. Consideration of the data used to generate the model explains much of the 
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Table 4.8 Parameter estimates of Eqn. 1.3 for the L. monocytogenes data in 

Appendices 3.2 and 3.3, after removal of low pH data. 

Parameter Scott A 95% confidence Murray B 95% confidence 
interval interval 

b 0.161 0.152 to 0.169 0.166 0.147 to 0.170 

T min (°C) -0.1 -1.1 to +0.9 +0.2 -2.0 to+ 1.7 

awmin 0.930 0.927 to 0.933 0.930 0.926 to 0.934 

difference. It was pointed out above that the water activity data set had anomalously 

low rate values. In attempting to produce the best fit to the data set it is probable that 

these values will lead to larger residuals. This was confirmed by examination of the 

residuals. A distinction must be made, however, regarding the ability of a model to 

describe well a specific data set and its ability to model the general response. This 

can be assessed only by comparing predictions to novel data, as will be considered in 

the Chapter 5. 

4.4.4.3 Experimental design 

The full data set for S. aureus 3b covers a large proportion of the temperature-water 

activity response surface, but an almost identical model could be derived by 

considering the temperature response at a single value of water activity, and the 

water activity response at a single value of temperature. This observation was 

applied in the development of the L. monocytogenes models. The use of a minimal 

experimental design for the generation of L. monocytogenes models did reveal 

potential pitfalls in the design, as intended. In using such a minimal design, the 

relative weight of an anomalous result will be greater. Furthermore, while it is easy 

to recognise inconsistencies within the results of a single experimental block, it may 

be difficult to perceive inconsistencies between data from separate experimental 

blocks, particularly if the data gathered only intersect at one point in the variables 

space as is the case with the experimental design proposed (see Appendix 3, Fig. 

A2). Thus, unless the source(s) of these inconsistencies can be found and controlled, 

a more conservative design may be required which measures the full range of each 

variable at two or more values of each other variable. This is also borne out in the 
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T min estimates for both L. monocytogenes data sets. The experiment from which the 

T minS were to be estimated yielded a value inconsistent with literature reports, and 

was re-estimated after additional data became available. In the absence of literature 

values, however, the initial estimate would have been accepted. Had T min been 

estimated from a separate but analogous data set, the inconsistency would have been 

detected and investigated. 

Nonetheless, the methodology proposed appears to satisfy almost all of the 

desirable features of a response surface design (see Table 2.1), with the exception 

perhaps of point 1: the distribution of information throughout a region of interest. In 

the case of the development of temperature-water activity-pH kinetic models it 

appears that extrapolation of the qualitative response to one factor to all values of the 

other factors, is valid. This is possible because of the independence of the effects of 

pH, temperature and water activity on microbial growth rate. If the results presented 

in this chapter are widely representative of bacteria, it should be possible to construct 

efficiently models for the combined effects of these three parameters, using the 

proposed methodology, but subject to the limitations discussed above. 

4.4.5 Summary 

The results presented in this chapter provide support for the hypotheses presented in 

4.1. The practical utility of the models generated has not yet been considered. 

Comparison of the predictions of models developed in this chapter to independent 

data may reveal important differences in the two methods of model generation and 

will be assessed in Chapter 5. 

A number of important considerations in model development are, however, 

highlighted by the results presented in this chapter. 

i) It is important to measure responses over as wide a range as possible to 

obtain consistent estimates of the parameters of square-root type models. 

ii) there may be systematic deviations from the microbial growth rate 

responses to temperature, water activity and pH predicted by Eqn. 1.5 

Points i) and ii) may not be significant in practice, provided that predictions are 

made only by interpolation within the data range used to generate a model. 

iii) the experimental design proposed in this chapter may be too simplistic and 

may fail to reveal anomalous or aberrant results 

iv) anomalous, but self-consistent data, from single experimental blocks 

suggest that there are important, but uncontrolled, variables in the 

experimental protocol used to generate the data in this chapter. 

v) it is important to compare observed and predicted values individually, e.g. 

simultaneous plotting of predicted and observed responses, and examination 

of the residuals for patterns of deviation, to fully assess the appropriateness 

of models. 
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5 MODEL EVALUATION 

5.1 INTRODUCTION 

In 2.4 it was stated that models must be shown to predict accurately the behaviour 

of microorganisms in foods in commercial processing and distribution before they 

can be used in practice. Demonstration of this ability, a process generally termed 

validation, remains an ill defined aspect of predictive microbiology. Even though 

some models are claimed to have been validated, a standard method or set of criteria 

has not been published to date, by which a predictive model for the growth of 

microorganisms in foods can be said to be validated. 

Wijtzes et al. (1993) plotted literature values for the generation time of 

L. monocytogenes against the corresponding predictions of a model generated in 

TSB. From this plot, predictions which would be unsafe in practice could be readily 

visualised, and the overall reliability of the model assessed. Duh and Schaffner 

(1993) developed a model for Listeria growth based on rates measured in BHIB. 

Complementary literature values for the growth of the organism in food were then 

added to the data set and the model fitted to the supplemented data. The close 

similarity in MSE and r2 values of the equations fitted to either data set were taken 

as an indication of the reliability of the models when applied to foods. Another 

measure of the accuracy of models was introduced by McClure eta!. ( 1993 ). Those 

authors compared their models on the basis of the sum of the squares of the 

differences of the natural logarithm of observed and predicted values: 

L ( ln ( GT published)- ln ( GT predicted)) 
2 

(5.1) 

A smaller value indicates a model which, on average, better predicts the observed 

response. 

Two important aspects of the predictive ability of a model are its precision, 

and freedom from systematic error, or bias. In this chapter, indices of bias and 

precision of models are developed and used to assess the goodness-of-fit of 

published models to the data used to generate them. Values of these indices are used 

as a baseline from which to assess the goodness-of-fit of models to independent 

data. Similarly, predictions from models developed in Chapter 4 are compared to 

novel and literature data broadly relevant to the range of conditions for which the 

models were developed. Bias and precision indices are compared to evaluate the 

effect of the method of model generation on the precision and accuracy of Eqns. 

4.1 - 4.3. Despite that Eqns. 4.2a, b and 4.3a, b are based on apparently anomalous 

estimates of T min. for the purposes of this thesis further T min determinations were 

not undertaken. Instead, the practical consequences of points i) - iii) in 4.4.5 were 

investigated by assessing the models without alteration. 
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

Full details of reagents and equipment used are presented in Appendix 2. 

5.2.2 Data Sources and Bases of Comparison 

5.2.2.1 Data sources 

Data for the growth of the modelled microorganisms, independent of that used to 

generate the models, were obtained from three sources: i) by determination of the 

rates of growth of S. aureus 3b inoculated on to foods of varying water activity 

(described in 5.2.3) and stored at various temperatures; ii) Within a collaborative 

projectl, Dr. F. Grau and Mr. P. Vanderlinde of the CSIRO Meat Research 

Laboratory, Brisbane, Australia modelled the growth of L. monocytogenes Murray 

B in a range of meat products. Comparisons are based on results presented in Tables 

1 and 2 of Grau and Vanderlinde (1993) and a third unpublished data set. iii) By 

reference to other published data for the growth of the modelled organisms. 

Some of the literature values were manually calculated (see Fig. 3.1) from 

growth curves presented in publications and must be considered as approximate 

values. Relevant information (i.e. pH, temperature, aw) upon which to base 

predictions was not documented in all publications. In some cases, representative 

values appropriate to the product were used. Alternatively, values cited in other 

publications (Buchanan and Phillips, 1990; Buchanan et al., 1993a; Wijtzes et al., 

1993) in which literature values were compared to model predictions, were adopted 

to facilitate comparison between published models and those developed in Chapter 

4. For data in which the temperature exceeded the range of the modelled data, the 

predicted rate at the highest temperature in the modelled data set was used. 

For publications in which a range of generation times were recorded for 

one or more strains, the shortest recorded generation time was chosen as the basis 

for comparison so that the ability of the models to make 'safe' predictions was 

assessed. Where the models predicted growth rates ~ 0 (i.e. infinite generation 

times), predictions could not be included in calculation of the precision and bias 

estimates and were omitted. Similarly, if growth was predicted but not observed, the 

logarithm of the ratio could not be calculated. These data were also omitted from 

calculation of the indices. 

To assess further the reliability of the square-root type models developed, 

and in contravention of sound modelling practice, predictions were made by 

extrapolation beyond the range of the temperature data used to generate the model, 

in the suboptimal range only (i.e. predictions were made in the region between T min 

and 6°C, the lowest temperature at which growth was recorded). Bias and precision 

1 Jointly funded by the following Australian agencies: Rural Industries Research and Development 
Corporation; Meat Research Corporation; Dairy Research and Development Corporation and Pig 
Research and Development Corporation. 
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indices were calculated both with and excluding extrapolated predictions. 

5.2.2.2 Indices of bias and precision 

Generation time predictions from Eqns. 4.1 - 3 were assessed for their deviation 

from the observed rates. A number of indices were considered, but a measure 

similar to Eqn. 5.1 was considered most appropriate. To permit the derivation of an 

'average' deviation, the ratio of the predicted and observed generation times was 

chosen to standardise the deviation because the data varied greatly in magnitude. 

The ratio alone, however, may be misleading because a 'factor of 1 0' 

underprediction of generation time (observed/predicted= 10) will have more weight 

than a 'factor of 10' overprediction (observed/predicted =0.1) in the calculation of a 

mean. Thus, the logarithm of the ratio was chosen so that over- and underprediction 

were given equal weight in determining the average deviation, i.e. the geometric 

mean of the standardised deviation was calculated. The antilogarithm of this value 

was then calculated which may be interpreted as the average ratio of the predicted 

and observed generation times. 

I log( GT observed I GT predicted) 

BIAS factor = 10 n 

A value less than one indicates that the predicted generation time is, on average, 

greater than the observed generation time and is thus 'fail dangerous'. Conversely, a 

value greater than one indicates that the model is 'fail safe'. Under- and over­

prediction will tend to 'cancel out' in this measure which, consequently, provides no 

indication of the average precision of estimates. The average of the sum of the 

absolute values of the logarithm of the ratio (similar to Eqn. 5.1 in which the square 

of the ratio is used to make all values positive) was thus calculated. The 

antilogarithm of this value will always be greater than or equal to one. 

L I log( GTobserved I GT predicted )I 
PRECISION factor = 10 n 

The larger the value, the less precise is the average estimate. Thus, a precision factor 

of two indicates that the prediction is, on average, a factor of two different from the 

observed value i.e. either half as large or twice as large, while a value of one 

indicates that there is perfect agreement between all predicted and observed values. 

5.2.3 Growth Rate Determinations in Foods 

5.2.3.1 Preparation of inoculum 

S. aureus 3b was grown in BHIB for 18- 20 hat 37 ± 2 °C with shaking (25 ± 5 
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rpm). The cell suspension was centrifuged (lO,OOOg x 20 min) at 4 ± 1 °C. The 

supernatant was decanted and the pellet resuspended in chilled (4 ± 1 °C) 0.9% 

saline. The centrifugation and resuspension steps were repeated twice. In the final 

resuspension, sufficient chilled 0.9% saline was used to produce a just visibly turbid 

suspension. This suspension was diluted 100-fold in chilled 0.9% saline, and then 

stored in an ice-water bath. 

5.2.3.2 Product inoculation 

One hundred millilitres of a washed cell preparation, containing approximately 1 x 

104 CFU S. aureus 3b per ml of chilled (4 ± l 0 C) 0.9% saline was prepared and 

placed in a sterile 150 ml beaker, resting in an ice water bath. Food portions were 

weighed and dipped in this suspension for 5 s, removed and placed onto a stainless 

steel mesh to drain off excess liquid, and reweighed. After -20 inoculations the 

suspension became fouled with food particles and a new suspension was prepared in 

an identical manner. All samples were kept on ice before and after inoculation. 

5.2.3.3 Incubation of inoculated product 

Weighed portions of inoculated product were placed in sterile 180 x 350 mm plastic 

bags (Disposable Products). Excess air was gently squeezed out by hand, and the 

bags firmly folded in half several times, and secured with an elastic band. The 

weight before and after inoculation was recorded on the bag. Batches of 16 - 20 

samples were then placed in water-tight plastic bags in water baths (Lauda) at 

various temperatures (± 0.1 °C). The bags were weighted to ensure that the water 

level was above all samples. Bags were used to improve temperature equilibration 

after removal of samples, i.e. the bags collapsed under the pressure of the water and 

thus minimised the insulating air space between the heating/cooling menstruum and 

the samples. 

5.2.3.4 Assessment of growth 

At 7- 10 intervals, duplicate samples were withdrawn from the bags. Chilled diluent 

(0.1% peptone, 4 ± 1 °C) was added in the ratio 9 mls per gram of product (pre­

inoculation weight). In some samples pH was determined in this dilution. The 

sample was then homogenised (Colworth Stomacher) for 1 min. From this 

homogenate serial tenfold dilutions were prepared in 0.1% peptone (ambient 

temperature). Spread plates of three dilutions on Baird-Parker Agar (BPA), in 

duplicate, and Plate Count Agar (PCA, not replicated) were prepared. BPA plates 

were incubated for 36- 48 h at 37°C, and PCA plates incubated at room temperature 

for 96 ± 10 h. In all blocks of experiments three or four samples were withheld at 

the commencement of incubations. These samples were immediately processed as 

described above to provide estimates of 'zero time' counts for incubations at all 
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temperatures in that block. Numbers of Staphylococcus aureus 3b were determined 

from the number of typical colonies on BPA. Viable counts were determined from 

the number of colonies on PCA. Colony counting procedures used are described in 

Appendix 2. 

5.2.3.5 Growth rate estimation 

Growth rates, estimated from colony counts, were calculated from the fitted 

parameters ofEqn. 3.1 using Eqn. 3.8. 

5.2.3.6 Growth on prawns 

Green prawns (Penaeus monodon (Fabricius, 1798)), were obtained commercially. 

They were manually (sterile gloves) de-shelled and de-veined in a laminar flow 

cabinet on a surface-sterile cutting board lying on a bed of ice. Prior to and after 

deveining the prawns were kept on ice in sterile plastic bags. Some prawns were 

placed into boiling 2% brine for two ruinutes. Following overnight ( 16-18h) storage 

at 2 ± 1 °C, the prawns were divided into 10 ± 1g portions. Prawns were inoculated 

and growth rates determined as per 5.2.3.2- 5.2.3.5. Cooked prawns were incubated 

at 20 and 30 °C. Uncooked prawns were incubated at 12.5, 17.5, 20, 25, 30, and 

32.5°C. These experiments were undertaken in two stages. Raw and cooked prawns 

at 20 and 30°C were studied in the first block and all other experiments on prawns 

in a second block. 

5.2.3.7 Growth on smoked Atlantic salmon 

A side (~2 kg) of commercially smoked, sliced (~3mm thickness), Atlantic salmon 

was obtained from a local producer. Variation in water activity within the product 

was assessed by measuring the water activity of samples ( -5g) taken from various 

sites using a water activity meter (Novasina). From the sites with the most 

consistent aw, 16 cm2 portions were prepared. The samples were inoculated as per 

5.2.3.2 with the following modifications. To obviate the possibility that residual 

moisture from the inoculation process would increase the water activity, the washed 

cell suspension was prepared in 7% saline to match the aw of the product. Earlier 

experiments (results not shown) indicated that no loss of viability of cells resulted 

from this suspending medium over the time course of the inoculation procedure. 

Water activities of product were determined as described in 5.2.3.10 immediately 

after inoculation (n = 5) and at the end of incubations. Incubation temperatures were 

12.5, 17.5, 22.5, 25.0, 27.5, 32.5 and 35.0°C, undertaken in three blocks. Growth 

rates were determined as described in 5.2.3.3 - 5.2.3.5. 
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5.2.3.8 Growth on re-brined smoked salmon 

A commercial fisheries product of low aw ,.e. ~ 0.93, could not be readily obtained. 

Consequently, the smoked salmon product described above was rebrined to achieve 

the desired aw. After initial experiments to determine brining times and 

concentrations, samples of smoked salmon were immersed in a sterile 2.2M 

(aw""' 0.92) NaCl solution for 18 h at 2 ± 1 oc. Before inoculation the samples were 

allowed to drain for 24 h at 2 ± 1 °C on sterile tissue paper in sterile petri dishes to 

remove excess brine. The inoculation procedure was as described in 5.2.3.3 except 

that the suspending medium was 2.2M NaCl. Four inoculated samples were retained 

for water activity determination as described in 5.2.3.10. Incubations were 

performed as described in 5.2.3.3 at 12.6, 17.5, 22.5, 27.5, and 32.5°C in a single 

experimental block. Growth rates were determined as per 5.2.3.3 - 5.2.3.5. 

5.2.3.9 Growth in milk 

Homogenised and pasteurised whole (-3.5% [w/v] milk fat) milk was obtained at 

retail on the day of packaging. 'Full cream' (~ 3.9% [w/w]) UHT milk with >60 

days shelf life remaining was also obtained at retail. Duplicate 50 ml samples of 

whole milk, and unreplicated 50 ml samples of UHT milk, were aseptically 

transferred to sterile 250 ml Erlenmeyer flasks. The flasks were suspended by 

elasticised tape in water baths at various temperatures (± 0.1 °C). All f1asks were 

inoculated with 0.4 ml of a washed cell suspension of S. aureus 3b, prepared in 

0.9% NaCl as described in 5.2.3.1, and containing ~2 x 104 CFU/ml. Water 

circulation in the bath provided gentle agitation throughout the incubation. In 

addition, f1asks were vigorously shaken for 3 - 5 s at all sampling times to aerate the 

sample. At intervals, 1 ml aliquots were withdrawn from the flasks and S. aureus 3b 

and viable aerobic organisms enumerated as per 5.2.3.3 - 5.2.3.4, and growth rates 

determined as per 5.2.3.5. 

5.2.3.10 Water activity determinations 

Water activities in smoked salmon samples were determined by measurement with a 

Novasina aw meter, calibrated against saturated salt solutions. The aw of milk and 

prawns are literature- based estimates. The reported aw of solutions is based on 

published tables (see 4.2.2.3). 

5.3 RESULTS 

Table 5.1 a compares generation times predicted by Eqns. 4.1 a and b to those 

determined by inoculation of S. aureus 3b into a range of foods at various 

temperatures. Table 5.1 b compares the generation time predictions of Eqns. 4.1 a 

and b, to literature reports for the growth of various strains of S. aureus, both in 



laboratory media and in foods. The references cited in that table are 

1: Li and Torres (1993b) 

2: Buchanan eta!. (1993a) 

3: Broughall eta!. (1983). 
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Tables 5.2 a-c are comparisons of the predictions of Eqns. 4.3a and b for 

the generation times of L. monocytogenes Murray B to the generation times for that 

organism determined by Grau and Vanderlinde (see 5.2.2) in meat products. 

Tables 5.3a-c present comparisons of the predictions of Eqns. 4.2a and b, 

developed for L. monocytogenes Scott A. Table 5.3a compares those equations to 

rates determined in laboratory media. Table 5.3b compares the equation predictions 

to generation times determined in foods. To assess the generality of models, Eqns. 

4.2a and b were used to make predictions of the generation time for given 

conditions and were compared to reported generation times of other strains of 

L. monocytogenes. As wide a range of literature values as possible was collated so 

that any deficiencies of the model could be better appreciated. 

Each table details whether the observed generation time falls within the 

95% confidence limits of the model, and includes the value of the bias and precision 

index for the data set, exclusive of the extrapolated values which are denoted by 

italics. Bias and precision estimates, based on all predictions are presented 

separately in Table 5.4. In addition, to assess whether the modelled pH response 

(i.e. in 0.2M lactate) was appropriate to the data of Grau and Vanderlinde (Table 

5.2b), the indices were again determined after deletion of data representing growth 

rates at pH < 6. The revised values are also shown in Table 5.4. 

Table 5.5 presents bias and precision estimates for a number of published 

models, both to the data used to generate the model, and to literature values 

presented in those papers, by the authors, by which to assess their models. 

In all tables, 'NG' denotes that no growth (i.e infinite generation time) was 

predicted by the model. 
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Table S.la Evaluation of Eqns. 4.1 a and b for S. aureus 3b Growth by 

Comparison to Novel Data 

FQQd Tj:J2S< Parameter~ Qbserved Egn. 4.1a Eqn. 4.1b 

temperature water GT predicted GT In 95% predicted GT In 95% 
(OC) activity (h) (h) limits (h) limits 

Milk (Whole) 12.50 0.995 16.50 13.53 yes 11.80 yes 

" 12.50 0.995 7.27 13.53 yes 11.80 yes 

" (UHT) 12.50 0.995 7.51 13.53 yes 11.80 yes 

Milk (Whole) 17.50 0.995 1.57 3.02 no 2.97 no 

" 17.50 0.995 8.31 3.02 no 2.97 no 

" (UHT) 17.50 0.995 2.69 3.02 yes 2.97 yes 

Milk (Whole) 22.50 0.995 1.51 1.30 yes 1.32 yes 

" 22.50 0.995 1.25 1.30 yes 1.32 yes 

" (UHT) 22.50 0.995 1.29 1.30 yes 1.32 yes 

Milk (Whole) 27.50 0.995 0.89 0.72 no 0.74 yes 

" 27.50 0.995 0.80 0.72 yes 0.74 yes 

" (UHT) 27.50 0.995 0.93 0.72 no 0.74 no 

Milk (Whole) 32.50 0.995 0.44 0.45 yes 0.48 yes 

" 32.50 0.995 0.54 0.45 no 0.48 yes 

" (UHT) 32.50 0.995 0.51 0.45 yes 0.48 yes 

Milk (Whole) 37.50 0.995 0.37 0.31 no 0.33 yes 

" 37.50 0.995 0.40 0.31 no 0.33 no 

" (UHT) 37.50 0.995 0.51 0.31 no 0.33 no 

Prawns 32.50 0.995 0.40 0.45 yes 0.48 no 

" (Cooked) 30.00 0.995 0.57 0.56 yes 0.59 yes 

" 30.00 0.995 0.47 0.56 no 0.59 no 

" 25.00 0.995 0.79 0.94 yes 0.97 yes 

" (Cooked) 20.00 0.995 1.80 1.89 yes 1.90 yes 

" 20.00 0.995 1.64 1.89 yes 1.90 yes 

" 17.50 0.995 2.48 3.02 yes 2.97 yes 

" 12.50 0.995 6.12 13.53 no 11.80 yes 

Smoked salmon 12.50 0.965 11.47 17.40 yes 15.05 yes 

" 17.50 0.965 4.05 3.89 yes 3.79 yes 

" 22.50 0.975 1.65 1.52 yes 1.54 yes 

" 25.00 0.955 1.90 1.34 no 1.36 no 

" 27.50 0.975 0.73 0.84 yes 0.87 yes 

" 32.50 0.965 0.57 0.58 yes 0.61 yes 

" 35.00 0.955 0.50 0.53 yes 0.55 yes 

Smoked salmon 12.60 0.920 43.31 29.13 yes 24.65 yes 

" 17.50 0.920 7.93 6.80 yes 6.45 yes 

" 22.50 0.920 3.78 2.91 yes 2.87 yes 

" 27.50 0.920 1.58 1.61 yes 1.62 yes 

" 32.50 0.920 0.99 1.02 yes 1.04 yes 

Bias factor 0.994 0.998 
Precision factor 1.253 1.245 
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Table 5.1b Evaluation of Eqns. 4.1 a, b for S. aureus Growth by Comparison to 

Published Data 

Medium Parameters Observed Eqn. 4.1a Eqn. 4.lb 

temperature water GT prediction In 95% prediction In95% Ref. 

(Strain) (OC) activity (h) (h) limits (h) limits 

BHIB +NaC1 26.00 0.970 1.28 1.03 yes 1.06 yes 1 

(ATCC 13566) 20.00 0.968 2.22 2.37 yes 2.36 yes 1 

16.00 0.967 4.17 5.38 yes 5.14 yes 1 

12.00 0.968 8.33 21.43 no 18.06 yes 1 

26.00 0.950 1.82 1.26 no 1.29 no 1 
20.00 0.950 7.14 2.84 no 2.81 no 1 

16.00 0.950 10.31 6.40 yes 6.07 yes 1 
12.00 0.950 25.00 25.72 yes 21.52 yes 1 

BHIB + NaCl 37.00 0.997 0.30 0.34 yes 0.36 no 2 
(196E) 28.00 0.997 0.60 0.67 yes 0.70 yes 2 

19.00 0.997 1.95 2.22 yes 2.21 yes 2 

19.00 0.973 3.20 2.69 yes 2.67 yes 2 

19.00 0.946 5.70 3.54 yes 3.47 no 2 

19.00 0.997 3.50 2.22 no 2.21 no 2 
12.00 0.997 8.70 16.89 yes 14.35 yes 2 

BHIB 37.00 0.990 0.50 0.36 no 0.38 no 2 
Determinations in laboratory media 

Bias factor 1.073 1.103 

Precision factor 1.432 1.416 

UHT Milk 23.2 0.98 1.12 1.33 yes 1.35 yes 3 
+glucose 20 0.98 1.24 2.13 no 2.13 no 3 
(C-246-3A) 16.4 0.98 3.04 4.35 yes 4.20 yes 3 

12.3 0.98 6.41 16.68 no 14.35 no 3 
20.00 0.96 1.62 2.55 no 2.54 no 3 
16.40 0.96 3.31 5.22 yes 5.01 yes 3 
12.30 0.96 8.61 20.01 no 17.11 yes 3 
26.20 0.90 2.77 2.77 yes 2.69 yes 3 
20.00 0.90 12.20 6.39 yes 6.01 no 3 
20.00 0.88 15.30 12.77 yes 11.02 yes 3 
16.40 0.88 34.40 26.11 yes 21.69 yes 3 
20.00 0.93 4.95 3.65 yes 3.57 yes 3 
16.40 0.93 9.45 7.46 yes 7.04 yes 3 
12.30 0.93 34.40 28.59 yes 24.05 yes 3 

Raw pastry 25.00 0.91 1.60 2.54 no 2.50 no 2 

30.00 0.91 1.20 1.52 yes 1.51 yes 2 

37.00 0.91 0.70 0.92 no 0.93 no 2 

Steak and Kidney 13.00 0.98 8.70 12.32 yes 10.95 yes 2 
Pie Mix 21.00 0.98 2.30 1.81 yes 1.83 yes 2 

30.00 0.98 0.60 0.63 yes 0.66 yes 2 

42.00 0.98 0.40 0.38 yes 0.41 yes 2 
Determinations in Foods 

Bias factor 0.865 0.910 

Precision factor 1.413 1.426 

Combined Results 

Bias factor 0.949 0.989 

Precision factor 1.421 1.422 

I 
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Table 5.2a Evaluation of Eqns. 4.3a and b for the Growth of L. monocytogenes 

Murray B. Beef (fat) Data of Grau and Vanderlinde ( 1993). 

Temperature Water activity pH Observed GT Predicted Generation Times (h) 
(OC) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 

Limit? Limit? 

0.0 0.993 7 62.89 6685.43 yes NG no 
0.0 0.993 7 58.48 6685.43 yes NG no 
2.5 0.993 7 58.14 72.23 yes 112.00 yes 

4.7 0.993 7 26.46 22.58 yes 30.49 yes 

4.8 0.993 7 31.94 21.70 yes 29.20 yes 

7.5 0.993 7 10.67 9.27 yes 11.78 yes 

10.1 0.993 7 5.00 5.21 yes 6.45 yes 

10.1 0.993 7 2.32 5.21 no 6.45 no 

14.9 0.993 7 2.22 2.44 yes 2.95 yes 

15.0 0.993 7 1.87 2.40 yes 2.91 no 

19.8 0.993 7 1.83 1.39 yes 1.66 yes 

19.9 0.993 7 1.68 1.38 yes 1.65 yes 

22.0 0.993 7 1.52 1.13 no 1.35 yes 

24.8 0.993 7 1.56 0.89 no l.06 no 

25.0 0.993 7 1.29 0.88 no l.04 yes 

27.4 0.993 7 1.3 0.73 no 0.87 no 

30.6 0.993 7 4.33 0.59 no 0.69 no 

30.6 0.993 7 0.81 0.59 no 0.69 yes 

Bias factor 1.314 1.091 
Precision factor 1.578 1.506 
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Table 5.2b Evaluation of Eqns. 4.3a and b for the Growth of L. monocytogenes 

Murray B. Data (lean beef) ofGrau and Vanderlinde (1993). 

Temperature Water activity pH Observed GT Predicted Generation Times (h) 
(°C) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 

Limit? Limit? 

0.0 0.993 5.61 NG 42552.33 yes NG yes 

2.4 0.993 5.60 58.48 544.01 yes NG no 

2.5 0.993 5.55 58.14 1011.42 yes NG no 

5.1 0.993 5.56 26.46 225.83 no NG no 

5.5 0.993 5.51 31.94 1174.23 no NG no 
10.1 0.993 5.61 10.67 33.15 no NG no 
15.5 0.993 5.55 5.00 31.58 no NG no 
22.3 0.993 5.56 2.32 12.86 no NG no 
22.6 0.993 5.59 2.22 8.35 no NG no 
24.9 0.993 5.55 1.87 12.41 no NG no 
25.0 0.993 5.59 1.83 6.84 no NG no 

25.4 0.993 5.60 1.68 5.96 no NG no 

27.3 0.993 5.56 1.52 8.62 no NG no 
27.4 0.993 5.59 1.56 5.70 no NG no 
29.8 0.993 5.57 1.29 6.21 no NG no 
29.8 0.993 5.60 1.30 4.35 no NG no 
14.8 0.993 5.73 4.33 7.52 yes 4.68 yes 
35.0 0.993 5.73 0.81 1.37 no 0.83 yes 

0.0 0.993 6.06 81.30 8358.49 yes NG yes 

2.4 0.993 6.09 34.12 92.21 yes 139.45 yes 
4.8 0.993 6.09 18.41 25.75 yes 33.40 yes 

10.0 0.993 6.09 6.71 6.30 yes 7.53 yes 
14.4 0.993 6.10 3.60 3.04 yes 3.60 yes 

14.9 0.993 6.11 3.42 2.80 yes 3.35 yes 

15.7 0.993 6.08 3.11 2.65 yes 3.04 yes 

19.8 0.993 6.11 1.94 1.60 yes 1.89 yes 
19.9 0.993 6.11 1.90 1.58 yes 1.87 yes 

25.1 0.993 6.08 1.22 1.05 yes 1.18 yes 

25.4 0.993 6.11 1.12 0.98 yes 1.15 yes 

30.0 0.993 6.08 0.85 0.74 yes 0.83 yes 

30.1 0.993 6.11 0.79 0.70 yes 0.81 yes 

35.0 0.993 6.08 0.67 0.54 no 0.61 yes 

5.0 0.993 6.34 24.63 20.09 yes 29.01 yes 

15.5 0.993 6.32 3.17 2.26 yes 2.95 yes 
25.1 0.993 6.34 1.03 0.87 yes 1.11 yes 

0.0 0.993 6.68 66.67 6685.43 yes NG no 
2.4 0.993 6.66 28.57 77.70 yes 125.90 yes 

4.9 0.993 6.7 15.85 20.87 yes 28.78 yes 
5.2 0.993 6.98 13.55 18.65 yes 24.84 yes 

10.0 0.993 6.71 5.88 5.31 yes 6.76 yes 
14.8 0.993 6.68 3.00 2.47 yes 3.08 yes 
15.0 0.993 6.98 2.79 2.40 yes 2.91 yes 
20.0 0.993 6.71 1.79 1.37 yes 1.67 yes 
26.0 0.993 6.68 0.96 0.81 yes 0.99 yes 

Bias factor 0.631 0.990 
Precision factor 1.937 1.050 
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Temperature Water activity pH Observed GT Predicted Generation Times (h) 
(OC) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 

Limit? Limit? 

5 0.993 6.89 14.58 20.09 yes 27.11 yes 
5 0.993 6.79 15.16 20.09 yes 27.37 yes 
5 0.993 6.72 15.32 20.09 yes 2756 yes 
5 0.993 6.54 14.79 20.09 yes 28.15 yes 
5 0.993 6.46 15.95 20.09 yes 28.46 yes 
5 0.993 6.41 17.37 20.09 yes 28.68 yes 
5 0.993 6.26 18.10 20.09 yes 29.46 yes 
5 0.993 6.23 16.75 20.09 yes 29.65 yes 
5 0.993 6.23 15.51 20.09 yes 29.65 yes 
5 0.993 6.2 16.13 20.10 yes 29.85 yes 
5 0.993 6.17 17.37 21.00 yes 30.06 yes 
5 0.993 6.15 18.34 21.64 yes 30.21 yes 
5 0.993 6.12 17.16 22.69 yes 30.46 yes 
5 0.993 6.08 18.87 24.25 yes 30.82 yes 
5 0.993 5.96 17.18 30.58 yes 32.25 yes 
5 0.993 5.87 18.71 38.02 yes 33.96 yes 
5 0.980 6.74 15.01 24.67 yes 34.65 yes 
5 0.980 6.72 15.85 24.67 yes 34.73 yes 
5 0.980 6.64 16.37 24.67 yes 35.03 yes 
5 0.980 6.43 16.58 24.67 yes 36.02 yes 

I 5 0.980 6.26 19.98 24.67 yes 37.12 yes 
5 0.980 6.11 21.04 28.32 yes 38.49 yes 
5 0.980 6.1 21.43 28.79 yes 38.60 yes 
5 0.980 6.09 19.09 29.28 yes 38.71 yes 
5 0.980 5.93 18.38 40.17 yes 41.24 yes 
5 0.968 6.82 16.61 31.25 yes 45.24 yes 
5 0.968 6.82 16.37 31.25 yes 45.24 yes 
5 0.968 6.72 18.09 31.25 yes 45.69 yes 
5 0.968 6.71 20.48 31.25 yes 45.74 yes 
5 0.968 6.61 19.54 31.25 yes 46.26 yes 
5 0.968 6.50 18.78 31.25 yes 46.91 yes 
5 0.968 6.49 20.70 31.25 yes 46.98 yes 
5 0.968 6.40 21.31 31.25 yes 47.62 yes 

5 0.968 6.36 20.54 31.25 yes 47.93 yes 

5 0.968 6.33 27.38 31.25 yes 48.19 yes 
5 0.968 6.22 21.92 31.25 yes 49.26 yes 
5 0.968 6.13 29.13 34.73 yes 50.36 yes 
5 0.968 6.13 26.02 34.73 yes 50.36 yes 
5 0.968 6.13 26.57 34.73 yes 50.36 yes 
5 0.968 6.10 29.50 36.47 yes 50.79 yes 
5 0.968 6.09 31.11 37.09 yes 50.94 yes 
5 0.968 6.05 26.65 39.79 yes 51.60 yes 
5 0.960 6.71 20.34 38.01 yes 57.94 yes 
5 0.960 6.69 23.30 38.01 yes 58.06 yes 
5 0.960 6.63 24.35 38.01 yes 58.45 yes 
5 0.960 6.40 24.67 38.01 yes 60.31 yes 
5 0.960 6.28 28.29 38.01 yes 61.61 yes 
5 0.960 6.16 27.60 40.32 yes 63.29 yes 
5 0.960 6.14 37.75 41.58 yes 63.62 yes 

5 0.960 6.12 27.31 42.92 yes 63.96 yes 

5 0.960 6.10 34.71 44.36 yes 64.33 yes 

5 0.960 5.94 38.54 60.48 yes 68.38 yes 

Bias factor 0.699 0.495 
Precision factor 1.430 2.016 



Table 5.3a Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of L. monocytogenes in Laboratory Broth Media 

Reference Temperature Water pH Observed GT Predicted Generation Times (h) 
activity 

(Medium) (OC) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 
Strain Limit? Limit? 

Petran and Zottola (1989) 4 0.995 7 33.50 2937 yes 36.30 yes 
Tryptic Soy Broth 13 0.995 7 4.80 3.03 yes 3.56 yes 
Scott A 35 0.995 7 0.70 0.43 no 0.50 no 

Buchanan et al. (1989) 37 0.995 6 0.60 0.54 yes 0.61 yes 
Tryptose Phosphate Broth 37 0.973 6 0.40 0.79 no 0.92 no 
Scott A 37 0.995 7.5 0.60 0.38 no 0.42 no 

37 0.973 7.5 0.70 0.56 no 0.63 yes 
28 0.995 6 0.50 0.93 no 1.06 no 
28 0.973 6 0.60 1.37 no 1.60 no 
28 0.995 7.5 0.60 0.67 yes 0.72 no 
28 0.973 7.5 0.90 0.98 yes 1.10 yes 
19 0.995 6 0.90 2.01 no 2.29 no 
19 0.973 6 2.50 2.95 yes 3.46 yes 
19 0.995 7.5 1.20 1.44 yes 1.57 no 
19 0.973 7.5 2.20 2.11 yes 2.37 yes 

5 0.995 6 14.40 26.97 yes 32.09 yes 
5 0.973 6 22.20 39.59 yes 4852 yes 
5 0.995 7.5 13.30 19.26 yes 22.00 yes 
5 0.973 7.5 14.10 28.28 yes 33.25 yes 

---...] 



Table 5.3a (cont.) Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of L. monocytogenes in Laboratory Broth Media 

Reference Temperature Water pH Observed GT Predicted Generation Times (h) 
(Medium) (OC) activity (h) Eqn.4.3a In 95% Eqn. 4.3 b In 95% 

Strain Limit? Limit? 

Walker et al. (1990) 0 0.995 7 NG 7884.30 yes 61025.40 yes 
Chicken broth 2.5 0.995 7 30 69.97 yes 90.27 yes 
433 5 0.995 7 25 19.26 yes 23.46 yes 

7.5 0.995 7 13 8.85 yes 10.57 yes 
9.3 0.995 7 5 5.83 yes 6.91 yes 

Walker et al. (1990) 0 0.995 7 131 7884.30 yes 61025.40 yes 
Chicken broth. 2.5 0.995 7 45 69.97 yes 90.27 yes 
433 5 0.995 7 19 19.26 yes 23.46 yes 

7.5 0.995 7 9 8.85 yes 10.57 yes 
9.3 0.995 7 7 5.83 yes 6.91 yes 

Wilkins et al. (1972) 5 0.997 7.2 23.25 18.72 yes 22.12 yes 
1 %tryptone, 1% yeast 10 0.997 7.2 6.93 4.92 yes 5.64 yes 
extract, 0.3%K2HP04 25 0.997 7.2 1.58 0.81 no 0.91 no 
0.1% glucose 30 0.995 7.2 0.91 0.58 no OJ~3 yes 
109 

Bias factor 1.008 0.873 
Precision factor 1.425 1.411 

....... -00 



Table 5.3b Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of L. monocytogenes Scott A in Foods 

Reference Product Temperature aw pH Observed GT Predicted Generation Times (h) 
(OC) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 

Limit? Limit? 

Ferguson and Shelef Soymilk 22 0.995 6.5 1.26 1.08 yes 1.38 yes 
(1990) 5 0.995 6.5 9.04 19.26 no 25.97 no 

Connor et al. Clarified cabbage juice ·30 0.995 5.6 1.90 4.07 no NG no 
(1986) 30 0.989 5.6 1.90 4.46 no NG no 

Clarified cabbage juice 30 0.995 6.1 1.70 0.68 no 0.87 no 
30 0.989 6.1 2.20 0.74 no 0.95 no 

Marshall and Schmidt whole milk 10 0.995 6.4 10.00 5.06 no 6.81 yes 
(1988) 10 0.995 6.4 7.00 5.06 yes 6.81 yes 

Berrang et al. asparagus 4 0.98 5.9 46.00 65.67 yes 70.18 yes 
(1989) 15 0.98 5.9 7.23 5.12 yes 5.17 yes 

broccoli 4 0.98 6.5 79.90 3753 yes 52.24 yes 
15 0.98 6.5 10.50 2.92 no 3.85 no 

Ryser and Marth Camembert cheese 6 0.986 6.1 50.70 18.25 yes 24.48 yes 
(1987) 

...... ...... 
\0 



Table 5.3b (cont.) Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of L. monocytogenes Scott A in Foods 

Reference Product Temperature aw pH Observed GT Predicted Generation Times (h) 
CC) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 

Limit? Limit? 

Ryser and Marth Uncultured whey 6 0.995 5.6 28.90 95.20 yes NG no 
(1988) 6 0.995 6.2 21.10 13.60 yes 20.10 yes 

6 0.995 6.8 18.00 13.60 yes 16.97 yes 
Cultured whey 6 0.995 5.6 19.40 95.20 no NG no 

6 0.995 6.2 10.30 13.60 yes 20.10 yes 
6 0.995 6.8 9.50 13.60 yes 16.97 yes 

Rosenow and Marth Whole milk 4 0.995 6.5 30.50 29.37 yes 40.18 yes 
(1987) 8 0.995 6.5 13.00 7.81 yes 10.30 yes 

13 0.995 6.5 5.90 3.03 no 3.94 yes 
Chocolate milk 4 0.986 6.5 30.00 33.77 yes 46.64 yes 

8 0.986 6.5 10.80 8.98 yes 11.95 yes 

Bias Factor 1.162 1.245 
Precision Factor 1.974 1.509 

-N 
0 



Table 5.3c Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of Various L. monocytogenes Strains in Foods 

Reference Product Strain Temperature aw pH Observed GT Predicted Generation Times (h) 
(OC) (h) Eqn. 4.3a In95% Eqn. 4.3 b In 95% 

Limit? Limit? 

Rosenow and Marth Chocolate milk V7 13 0.986 6.4 4.50 3.49 yes 4.70 yes 
(1987) V7 8 0.986 6.4 8.60 8.98 yes 12.30 yes 

V37CE 4 0.986 6.4 29.50 33.77 yes 48.01 yes 
V7 21 0.986 6.4 1.60 1.36 yes 1.81 yes 
V7 35 0.986 6.4 0.68 0.49 no 0.66 yes 

Whole milk CA 4 0.995 6.4 30.00 29.37 yes 41.36 yes 
V7 8 0.995 6.4 10.80 7.81 yes 10.60 yes 
V7 13 0.995 6.4 5.00 3.03 no 4.05 yes 
V7 21 0.995 6.4 1.90 1.18 no 1.56 yes 
V7 37 0.995 6.4 0.65 0.38 no 0.51 no 

Ryser and Marth Uncultured whey OH 6 0.995 5.6 25.20 95.20 yes NG no 

(1988) V7 6 0.995 6.2 14.80 13.60 yes 20.10 yes 
V7 6 0.995 6.8 14.00 13.60 yes 16.97 yes 

Cultured Whey OH 6 0.995 5.6 16.50 95.20 no NG no 
Scott A 6 0.995 6.2 10.30 13.60 yes 20.10 yes 

OH 6 0.995 6.8 7.30 13.60 yes 16.97 no 

Donnelly and Briggs Whole milk F5069 35 0.995 6.4 0.43 0.43 yes 0.56 no I 
(1986) F5069 21 0.995 6.4 1.08 1.18 yes 1.56 no 

F5069 10 0.995 6.4 3.71 5.06 yes 6.82 no 
F5069 4 0.995 6.4 12.10 29.37 no 41.36 no 

..... 
N ..... 



Table 5.3c (cont.) Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of Various L. monocytogenes Strains in Foods 

Reference Product Strain Temperature aw pH Observed GT Predicted Generation Times (h) 

CO C) (h) Eqn.4.3a In 95% Eqn. 4.3 b In 95% 
Limit? Limit? 

Ryser and Marth Camembert OH 6 0.986 6.1 21.69 18.25 yes 24.49 yes 
(1987) 

Pearson and Marth Skim Milk V7 30 0.995 6.5 0.87 0.58 no 0.75 yes 
(1990b)) 35 0.995 5.6 0.80 3.00 no NG no 

Connor et al. Clarified LCDC 81-861 30 0.995 5.6 1.42 4.07 no NG no 
(1986) cabbage juice 30 0.989 5.6 2.12 4.46 no NG no 

Hudson and Mott Smoked salmon cocktail 10 0.983 6.1 6.70 7.15 yes 9.44 yes 
(1993b) 5 0.983 6.1 21.20 27.20 yes 37.01 yes 

Hudson and Mott Pate NCTC 7973 4 0.995 6.1 68.70 34.26 yes 46.70 yes 
(1993a) L70 4 0.995 6.1 69.00 34.26 yes 46.70 yes 

NCTC 7973 10 0.995 6.1 14.30 5.91 no 7.70 yes 
L70 10 0.995 6.1 14.40 5.91 no 7.70 yes 

,_. 
N 
N 



Table 5.3c (cont.) Comparison of Predictions of Eqns. 4.2a and b to Published Generation Times of Various L. monocytogenes Strains in Foods 

Reference Product Strain Temperature aw pH Observed GT Predicted Generation Times (h) 
CCC) (h) Eqn. 4.3a In 95% Eqn. 4.3 b In 95% 

Limit? Limit? 

Walker et al. UHTMilk 433 0 0.997 7.2 77.00 7662.20 no NG no 
(1990) 433 2.5 0.997 7.2 33.00 68.00 yes 85.09 yes 

433 5 0.997 7.2 19.00 18.72 yes 22.12 yes 
433 7.5 0.997 7.2 9.50 8.60 yes 9.96 yes 
433 9.3 0.997 7.2 9.00 5.67 yes 6.51 yes 

Grant et al. Roast beef CRA 198 5 0.99 6 18.86 29.07 yes 34.77 yes 
(1993) and gravy CRA 198 10 0.99 6 9.43 7.64 yes 8.87 yes 

CRA433 5 0.99 6 17.24 29.07 yes 34.77 yes 
CRA433 10 0.99 6 8.37 7.64 yes 8.87 yes 

Ferguson and Shelef Soymilk DA3 5 0.995 6.5 18.07 19.26 yes 25.98 yes 
(1990) Brie 1 5 0.995 6.5 13.46 19.26 yes 25.98 yes 

Hart eta!. Chicken breast NCTC 11994 6 0.993 5.8 16.90 32.68 yes 28.64 yes 
(1991) NCTC 11994 15 0.993 5.8 4.52 5.50 yes 4.67 yes 

Bias factor 0.920 0.911 
Precision factor 1.589 1.330 

-N 
w 
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Table 5.4 Summary of Bias and Precision Indices for Eqns 4.1-4.3 and the 

Effect of Including Extrapolated Predictions 

Table No. Eqn. No. BIAS factor PRECISION Factor 

Inc. Extrapolation Within Range Inc. Extrapolation Within Range 

5.la 4.1a 0.994 1.253 
4.lb 0.998 1.245 

5.lb 4.1a 0.949 1.421 
4.lb 0.989 1.422 

5.2a 4.3a 0.735 1.314 2.446 1.578 
4.3b 1.027 1.091 1.475 1.506 

5.2b 4.3a 0.422 0.631 2.762 1.937 
4.3b 0.823 0.990 1.251 1.050 

5.2b 4.3a 1.188 1.188 
(pH>6) 4.3b 0.994 1.049 

5.2c 4.3a 0.699 1.430 
4.3b 0.495 2.106 

5.3a 4.2a 0.806 1.008 1.634 1.425 
4.2b 0.648 0.873 1.784 1.411 

5.3b 4.2a 1.106 1.162 1.864 1.974 
4.2b 1.079 1.245 1.552 1.509 

5.3c 4.2a 0.828 0.920 1.604 1.589 
4.2b 0.809 0.911 1.462 1.330 

5.4 DISCUSSION 

There are limitations in comparing the bias and precision of models on the basis of 

literature values for response times. It is not always possible to obtain all the 

relevant information from published reports to enable an appropriate prediction 

from the models. The degree of control over important variables in experimental 

determinations is also often unknown, e.g. how well was the temperature controlled, 

did the pH measured reflect that throughout the incubation? etc. Further, it was not 

possible to obtain published values for the full range of aw modelled for L. 

monocytogenes. For these reasons the most objective comparisons in this chapter 

relate to the data in Table 5.1. 
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Table 5.5 Bias and Precision Indices for Published Models 

Organism Data Type Bias Factor Precision Factor 
(Reference) 

S. aureus 196E literature 0.548 2.393 
Buchanan et al.(l993a) originating 0.998 1.353 

L. monocytogenes Scott A literature 2.004 2.004 
Buchanan and Phillips (1990) 

L. monocytogenes NCTC 9863 literature 1.770 1.770 
Wijtzes et a/.(1993) 

B. thermosphacta MR 165 literature 1.413 1.824 
McClure et al.(1993) 

Salmonella (cocktail of 3) literature 1.225 1.408 
Gibson et al .. (1988) 

L. monocytogenes Murray B originating (fat) 0.993 1.07 
Grau and Vanderlinde (1993) originating (lean) 0.999 1.07 

5.4.1 Model for S. aureus 3b 

The results in Table 5.1 strongly support the hypotheses proposed in 4.1. Models 

developed by the 'iterative' method perform at least as well as models developed by 

nonlinear regression of a full data set. There is virtually no bias in either model. The 

precision of the models is ± ~25% which compares very favourably with other 

published models (Table 5.5). 

When Eqns. 4.1 a and b are compared to published values for the growth of 

S. aureus (Table 5.lb) the models are seen to over-predict generation times in 

foods, i.e. they are 'fail dangerous', but are very similar to published generation 

times for the growth of S. aureus in laboratory broth media. The bias involved is 

quite small for both Eqns. 4.la and b, and the accuracy is as good as other published 

models. It is also noteworthy that all the generation times determined in foods 

reported in Table 5.1 b were generated at the U nil ever Research Laboratories, 

Bedford, UK. It was not possible from the reports to determine whether the same 

strain was used for all experiments, but it is possible that all those determinations 

are based on a single, fast, growing strain. 
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The number of values which fell outside the 95% confidence intervals of 

both models is higher than would be expected, with the nonlinear model performing 

slightly better. The number of observations outside of the predicted 95% range 

suggests that the variance in growth rates determined in laboratory media may be 

narrower than those observed in foods. Foods are more heterogeneous than 

laboratory broths and, for the data presented in Table 5.1 a, included normal spoilage 

biota. These uncontrolled factors and potential interactions may be expected to lead 

to increased variability in responses determined in foods, and may need to be 

considered more fully in the setting of confidence intervals on model predictions. 

5.4.2 Models for L. monocytogenes Murray B 

Comparisons of models on the basis of the generation times of 

L. monocytogenes Murray B in foods (Tables 5.2a-c), which were determined under 

well controlled conditions, would also be expected to be an objective basis for the 

Eqn. 4.3b outperforms its 'iterative' counterpart. From Table 5.2a, Eqn. 4.3b is seen 

to display very little bias and to have about the same degree of precision as other 

good models. Similarly, in Table 5.2b the performance indices of Eqns. 4.3a appear 

poor. Table 5.4 shows that when data relating to pH < 6 were deleted, however, the 

performance indices of Eqn. 4.3a improved, while the performance indices of Eqn 

4.3b were almost unchanged. Eqn. 4.3b predicted 'no growth' for all but two data in 

the range pH< 6. 'No Growth' predictions were not included in the calculation of 

the indices. The comparison of indices are somewhat misleading in this case. The 

improved performance of Eqn. 4.3a after removal of pH < 6 data suggests that the 

pH response in the presence of 0.2M lactate does not reflect the behaviour of the 

organisms in the meat products tested, in which the lactate concentration was 

:::; O.lM (F. Grau, pers. comm). Also, the pH values reported were the average values 

of the pH recorded at each sampling time which may differ from the pHmid· The 

performance of Eqn. 4.3b was generally better than that of the iterative modeL Eqn. 

4.3a, for the data sets presented in Tables 5.2a- b. 

Table 5.2c includes predictions entirely based on extrapolation of the 

model to 5°C. In this case Eqn. 4.3a, which has a slightly lower T min than Eqn. 4.3b, 

consistently outperforms the latter equation. Both models overpredicted all 

generation times observed. As noted in 5.1, the T min estimates for all the 

L. monocytogenes models derived in Chapter 4 were anomalously high. A 

consequence of this is that as the incubation temperature approaches T min, 

predictions from the model will be expected to become increasingly erroneous. This 

is demonstrated in Table 5.6 in which the relative generation times at various 

temperatures are compared for models based on a T min of -0.3°C (Eqn. 4.3a) and 

T min of -2.2°C (representative literature value). From Table 5.6 a bias factor of ~0.5 
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Table 5.6 Relative Generation Times Predicted by Square-root-type Models With 

Different T min Values 

Temperature 
(oC) 

6 
5 
4 
3 
2 
1 
0 

~ 
GT(T min= -2.2oC) 

1.69 
1.85 
2.08 
2.48 
3.33 
6.06 

53.78 

would be expected on the basis of the anomalous T min, and is similar to that 

observed for both models. At higher temperatures the difference in estimates as a 

result of the anomalous T min, will be less pronounced. Thus, the anomalously high 

T min estimates explain the poor performance of Eqns. 4.3a and b at chill 

temperatures. Despite the poor performance indices, use of the shortest generation 

times within the 95% confidence intervals would have produced fail safe estimates 

in all but one case in samples with pH >5.8. As indicated above, the pH min estimate 

is likely to be specific to the experimental conditions employed. 

5.4.3 Models for L. monocytogenes Scott A 

The effect of the anomalous T min estimates can also be perceived in the results 

presented in Table 5.3a for Eqns. 4.2a and b which favour the use of Eqn. 4.2a 

(iterative). Again, under well controlled conditions, there is good agreement 

between the predictions of models and independent observations, and the average 

precision is within ± -40%. The results in Table 5.3b are encouraging from the 

perspective of application of predictive models. Both Eqns. 4.2 a and b 

underestimate observed generation times by approximately 10% and thus provide 

'fail safe' predictions. 

Table 5.3c presents an assessment of the ability of a model developed for 

one strain of bacterium to predict the growth rate of another strain of the same 

species. The results indicate that the 'iterative' model outperforms the 

complementary model developed by nonlinear regression. The performance indices 

indicate slight underprediction of growth rates. Remembering that the fastest growth 
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rates were selected where ranges of rates and strains were presented in publications, 

it is perhaps not surprising that Eqns. 4.2a and b slightly over-predict the reported 

generation times. This observation, and the comments in 5.4.2 relating to the S. 

aureus data in Table 5.lb, supports the proposal of McMeekin et a/.(1993), 

discussed in 2.2.6, that the fastest growing strains of a species should be selected for 

model development. 

The performance indices of both Eqns. 4.2a and b, developed for 

L. monocytogenes Scott A, when applied to other strains of Listeria monocytogenes 

are as good as any of the models assessed in Table 5.5, suggesting that a model 

developed for a relevant strain of one species may have general applicability to 

other strains of the same species. To test this hypothesis an iterative-type 

temperature and water activity model for Listeria monocytogenes was developed 

based on published T min estimates and the minimum water activities permitting 

growth (see 4.4.1.1). The scaling factor, b, was determined by equating the model to 

the average generation time of L. monocytogenes Scott A at 19.5°C, aw =.997 

(Table 3.6). No pH term was included. The model generated is: 

Generation timc(h) = 1 

( )

2 

0.122 X ~(aw- 0.92) X (T + 2.2) 
(5.2) 

and was compared to the literature data in Table 5.3c for pH > 6. The variance 

determined for L. monocytogenes Scott A data was used to estimate the 95% 

confidence intervals for this model. The derivation and assessment of Eqn. 5.2 also 

test again the hypothesis of Chandler and McMeekin (1989b) regarding the 

development of temperature and water activity models. 

The results, shown in Table 5.7, show that the model performs at least as 

well as the equations previously developed and supports the hypothesis, presented 

above, that a large component of the lack of fit of Eqns. 4.2 - 4.3 stems from the 

anomalous estimates of T min· The results also strongly support the hypotheses 

regarding model generation presented in 4.1, and the inter-strain applicability of 

models for L. monocytogenes. 

5.4.4 Extrapolation 

Table 5.4 demonstrates the effect of extrapolation on the bias and precision of 

models to independent data. In most cases poorer performance was indicated when 

extrapolated predictions were made. In some cases, however, the performance 

increased, which indicates that the results are subject to some data set specific 

effects. The data sets collated are relatively small, so that the contribution of 

individual values may be noticeable in the overall results. 
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Table 5.7 Evaluation of Eqn. 5.2- a Theoretical Model for L. monocytogenes 

Reference Strain Temperature aw pH Observed GT Predicted GT 
eq (h) Eqn. 5.2 In 95% 

Limit? 

Rosenow and Marth V7 13 0.986 6.4 4.50 4.44 yes 

(1987) V7 8 0.986 6.4 8.60 9.87 yes 

V37CE 4 0.986 6.4 29.50 26.70 yes 
V7 21 0.986 6.4 1.60 1.91 yes 
V7 35 0.986 6.4 0.68 0.74 yes 

CA 4 0.995 6.4 30.00 23.50 yes 
V7 8 0.995 6.4 10.80 8.68 yes 

V7 13 0.995 6.4 5.00 3.91 yes 

V7 21 0.995 6.4 1.90 1.68 yes 

V7 37 0.995 6.4 0.65 0.59 yes 

Ryser and Marth V7 6 0.995 6.2 14.80 13.43 yes 
(1988) V7 6 0.995 6.8 14.00 13.43 yes 

Scott A 6 0.995 6.2 10.30 13.43 yes 
OH 6 0.995 6.8 7.30 13.43 yes 

Donnelly and Briggs F5069 35 0.995 6.4 0.43 0.65 no 

(1986) F5069 21 0.995 6.4 1.08 1.68 no 
F5069 10 0.995 6.4 3.71 6.07 no 
F5069 4 0.995 6.4 12.10 23.50 yes 

Hudson and Mott cocktail 10 0.983 6.1 6.70 7.22 yes 
(1993b) 5 0.983 6.1 21.20 20.74 yes 

Ryser and Marth OH 6 0.986 6.1 21.69 15.27 yes 
(1987) 

Pearson and Marth V7 30 0.995 6.5 0.87 0.87 yes 
( 1990) 

Hudson and Mott NCTC 7973 4 0.995 6.1 68.70 23.50 yes 
(1993a) L70 4 0.995 6.1 69.00 23.50 yes 

NCTC 7973 10 0.995 6.1 14.30 6.07 no 
L70 10 0.995 6.1 14.40 6.07 no 

Walker et al. 4:13 0 0.997 7.2 77.00 181.77 yes 
(1990) 4:13 2.5 0.997 7.2 33.00 39.83 yes 

433 5 0.997 7.2 19.00 16.97 yes 
4:13 7.5 0.997 7.2 9.50 9.35 yes 
433 9.3 0.997 7.2 9.00 6.65 yes 

Grant et al. CRA 198 5 0.99 6 18.86 18.67 yes 
(1993) CRA 198 10 0.99 6 9.43 6.50 yes 

CRA433 5 0.99 6 17.24 18.67 yes 
CRA433 10 0.99 6 8.37 6.50 yes 

Ferguson and Shelef DA3 5 0.995 6.5 18.07 17.42 yes 
(1990) Brie 1 5 0.995 6.5 13.46 17.42 yes 

Bias factor 1.049 
Precision factor 1.336 
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5.4.5 Conclusions 

The overall performance of the models developed in Chapter 4 is at least as good as 

other published models in terms of bias and precision. Published models were 

assessed only on the basis of the data presented by their authors and may have 

yielded different index values if calculated on the basis of the data collated and 

presented in this chapter. 

Table 5.4 summarises the performance indices of all 'iterative' and nonlinear 

regression fitted models to all relevant data sets and shows that neither method of 

model generation consistently provides lower bias. Nor does either method of model 

generation lead to consistent over- or underprediction. The nonlinear regression 

models generally appear to show better precision, but this may be misleading 

because of the large number of 'no growth' predictions by the nonlinear regression 

models. The exclusion of 'no growth' predictions from the index calculations tends 

to improve the precision index of the nonlinear models compared to the iterative 

models. For those data sets where both models gave the same number of growth 

predictions the precision was virtually identical. 

Thus, the hypothesis of Chandler and McMeekin (1989b) for the development 

of temperature and water activity models is supported by the results of this work, 

and in particular the development and evaluation of Eqn. 5.2. The performance of 

the models evaluated in this chapter also support the general modelling philosophy 

developed in Chapter 2, and confirm the reliability of turbidimetric methods of 

growth rate estimation developed in Chapter 3. 

The hypothesis of McMeekin et al. (1992) in relation to the generation of 

temperature-water activity-pH models cannot be fully assessed on the basis of this 

work due to the difficulty of finding a suitable function to model the pH response, 

and also the uncertain relationship between the experimental system (0.2M lactate) 

and the conditions under which published generation times were obtained. Adams et 

al. (1991) demonstrated the acidulant specificity of pH min in their models, and the 

effects of organic acids are believed to be not solely due to pH effects (Eklund, 

1989). Should an appropriate function to describe the pH response over a reasonable 

range be found, the results in this chapter and the documented independence of 

temperature, water activity and pH effects on microbial growth rate would be 

expected to permit the derivation of reliable models by the proposed approach. 

Potential problems in the proposed methodology have again been 

highlighted in this chapter, in particular the consequences of anomalous parameter 

estimates combined with extrapolation beyond the range of the data. It is 

noteworthy, however, that the T min estimates of Wijtzes et al. (1993) for 

L. monocytogenes were from -1.7 5 to -2.55°C, and have an average which is close 

to the value used in Eq n. 5.2. The T min estimates of Wijtzes et al. (1993) were 
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derived, however, from experiments in the temperature range 5 - 35 °C. This 

suggests that the poorer performance of Eqns. 4.2 - 4.3 when extrapolated 

predictions were made may have its basis in the anomalous T min estimate used, 

rather than extrapolation of the square-root-type models beyond the bounds of the 

data per se. 

Returning to the points raised in 4.4.5, this chapter has again highlighted 

the need for an experimental design which generates reliable estimates of the 

parameters of square-root-type models. Secondly, if there are systematic deviations 

in the responses predicted by the square-root-type temperature-water activity 

models, they have not been shown to reduce their performance compared to other 

model types. 

The results of model evaluations suggest that there may a limit to the 

precision of model predictions to independent data. The highest degree of precision 

of any of the models developed when applied to a literature data set was 

- ± 35%. Even for the S. aureus 3b models predictions are only within± -25% of 

the generation times determined for the same strain in foods under well controlled 

laboratory conditions. These observations are in contrast to that of Monod (1949), 

and may result from the difficulty in determining the growth rates of 

microorganisms in heterogeneous and ill-defined environments such as food. 

Together with the use of the bias index developed in this chapter, the apparent lower 

limiting value of the precision index provides a basis for a rational set of criteria 

whereby a model can be said to have been validated. 



6 TERTIARY MODELS: TEMPERATURE FUNCTION 

INTEGRATION 

6.1 INTRODUCTION 
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Predictive modelling offers a rapid, non-invasive, and objective means of assessing 

the effect on product quality and safety of processing, storage and distribution 

conditions without recourse to traditional (culture-based) microbiological skills and 

facilities. One major area of application is the prediction of product shelf life and 

safety under controlled and constant conditions, e.g. evaluation of the effects of 

changed product formulation. Another is the assessment of elapsed or remaining 

shelf life of foods on the basis of conditions actually experienced during processing 

and distribution. It is easier and faster in almost all situations to monitor 

environmental parameters over time and relate these to bacterial growth than to 

measure that growth directly. Such 'environmental histories', moreover, can be 

analysed by many models specific for groups or species of interest to predict the 

extent of their growth. Using existing methodology, groups or species of 

microorganisms of interest must be isolated and/or enumerated separately. 

Technology which predicts the growth of populations of microorganisms 

under static and defined conditions is well developed. The PMP (Buchanan, 1991b), 

distributed free-of-charge, includes models for the growth of eight pathogens as 

functions of temperature, salt concentration, pH, nitrite concentration and 

aerobic/anaerobic atmosphere, and is contained on a single computer disc. Food 

Micromodel offers essentially the same information but is also able to make 

predictions for the effect of fluctuating conditions. Currently, access to the model is 

available only via a trained operator and at considerable expense. The Delphi logger 

and software (Gillet a/., 1988a,b) enable interpretation of temperature histories but 

for one or two organisms only. To improve the access of non-expert users to the 

benefits of predictive microbiology for interpretation of environmental histories 

simpler 'user friendly' systems are also required. 

Using temperature-based models as examples, this chapter describes some 

simple devices and general strategies for the interpretation of environmental 

histories in terms of potential growth of microorganisms. 

6.2 INTEGRATION 

Predictive microbiology relies on the prediction of rates of growth of 

microorganisms. The rate is expressed in generations per unit time 

(e.g. gen h-1). Ultimately it is of interest to know how this relates to actual numbers 

of microorganisms on the product and the consequences for product safety and 

remaining shelf life, i.e. it is necessary to know how many generations of growth 

have been possible in the period monitored. If it is assumed that, under the 
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conditions of interest, the time taken for growth rate to 'equilibrate' to new 

conditions is negligible, the answer is given by the product of rate and time: 

Growth rate (gen h-1) x Time (h) 

= Number of generations 

The number of generations corresponds to the number of population doublings, thus 

three and a half generations represents a greater than tenfold increase in microbial 

numbers, and six and a half generations correspond to nearly a one hundred-fold 

increase. 

Geometrically, integration of rate can be visualised as the area under a graph 

of rate versus time. Provided the growth rate is constant the above calculation is a 

simple one, as is its geometrical interpretation (Fig. 6.1a). Where rate fluctuates the 

same mathematics hold; they are simply more difficult to apply. A primitive method 

is to plot the data on graph paper an.d count the squares under the curve, or even to 

cut out the area under the curve and calculate the area from the weight of paper. A 

more accurate method is to divide the graph into many small time intervals and 

determine the number of generations in each, using as an approximation the average 

rate value in that interval. The growth calculated for each of these intervals is 

summed to give the total number of generations over the entire time (Fig. 6.1 b). The 

smaller the time interval chosen the more accurate will be the estimate. If the 

relationship between time and rate can be described by a mathematical equation, the 

time interval can be chosen to be vanishingly small and an exact value for the area 

under the graph calculated. This is the mathematical process of integration. 

6.1.2 Temperature Function Integration and Food 

The concept of temperature function integration for predicting bacterial growth was 

envisaged by Scott (1936, 1937), and was again considered in the 1970's by Nixon 

(1971) who presented, and subsequently patented, working designs for predictive 

devices for use with fisheries products. Nixon based his work on results showing 

that the relative spoilage rate of fish over the temperature range 0 - 10°C, and above 

a certain limiting value (analogous to T min), was directly proportional to 

temperature. Thus he was able to integrate temperature values directly and multiply 

the result by a constant value to obtain the extent of spoilage relative to that known 

at some reference temperature. 

The simple relationship between temperature and relative rate of spoilage 

used by Nixon (1971) is inadequate to describe rate of growth or spoilage over a 

wider temperature range and for other systems. More complex mathematical 
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functions are required to model the relationship between temperature, other 

environmental factors, and microbial growth rate. Predictive models define those 

relationships. 

6.2.2 Temperature Function Integration Devices 

A first step in an environmental history integration is to use the predictive model to 

convert the values of the measured environmental parameters at each time interval 

into a predicted growth rate. The environmental factors governing microbial growth 

rate in food are not usually a simple function of time, unless the product is stored 

under very well controlled conditions. In most situations it will not be possible to 

express the environmental history as a mathematical function to be integrated 

implicitly. Instead one must revert to first principles, a tedious, repetitive process 

requiring the determination of a mean value of rate over the time interval, its 

multiplication by the time interval, and the summation of all the separate intervals. 

Alternatively, one could take a mean of all the rate values calculated and multiply 

this by the total time. 

6.2.3 A Manual Tertiary Model 

An ingenious device to simplify the process was devised by Ronsivalli and Charm 

named the 'shelf life prediction slide rule' or 'predictor', consists of three parts: 

i) an index (sliding cursor), 

ii) a shelf life scale, and 

iii) a temperature scale. 

The user selects the observed temperature on the temperature scale, and moves the 

cursor along that line for the appropriate amount of time that the product has been at 

that temperature. Starting with the cursor at this new point, the next time­

temperature combination is added. This process is repeated for each time­

temperature combination the product is known to have experienced (for example, by 

reference to a chart record), so that the cursor always moves further to the right. 

When all parts of the temperature history have been integrated, the overall effect on 

storage life is determined by reading the final position of the cursor against the shelf 

life index, which represents the remaining shelf life of the product at some ideal 

reference temperature. One of the claimed benefits of the device is that users can see 

the economic benefits which can be realised by keeping the product at as low a 

temperature as possible. At the time of invention the relationship between 

temperature and spoilage rate was poorly defined and the device was only reliable in 
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the range 0-7°C. The integrating principal of the device remains sound,however, and 

by incorporating a more appropriate rate-temperature relationship a simple, 

inexpensive, and reliable predictive device could still be manufactured to enable 

interpretation of the effects of temperature history. 

Figure 6.2b depicts a device which incorporates the square root model into 

the predictor. Relative rate values predicted by the square root relationship are 

shown on the shaded scale, for equal time intervals. The relative rate scale slides 

along the temperature axis, however, so that the predictor can be used for any 

organism or spoilage process which the square root model describes. The zero rate 

point, marked 'T min' is aligned with the temperature corresponding to the T min of the 

organism or spoilage process being integrated. The cursor is used as in the original 

version; i.e the growth at each time interval is integrated by moving the cursor the 

appropriate time measure to the right, using the relative rate scale, along the line 

corresponding to the temperature observed over that time interval. In addition, rather 

than using a fixed reference temperature, an adjustable 'reference temperature 

cursor' could be used. This would enable calculation of the elapsed shelf life relative 

to that at any preferred storage temperature. These changes would make its operation 

general for a wide range of organism/food systems. 

6.2.4 A Spreadsheet-based Tertiary Model 

Unless the time-temperature relationship can be defined mathematically the process 

of integration of time-temperature histories is tedious and repetitive, even with an 

aid like the predictor. Repetitive tasks, however, are something to which 

microprocessors are perfectly suited. Microprocessors, together with transducers to 

supply the data in a form that the microprocessor can manipulate, hold one solution 

to the routine application of predictive microbiology. An alternative to the 

construction of dedicated integrators is to use data loggers, which are widely 

available, and to develop applications software to interpret the environmental 

histories collected. The potential of this technology was reviewed by the candidate 

in McMeekin et al. (1993, Chapter 9). 

Applications software written to interpret environmental histories is now 

described, initially for the simple case of temperature as the only fluctuating variable, 

and is exemplified by reference to prototype Excel Lbased software for the growth of 

E. coli. To simplify the description, it is considered in terms of data input, processing 

and output aspects of the application. 

The software is based upon the analysis of a file containing time and 

corresponding temperatures, however, the logger output may have to be processed 

first to achieve the required format. For example, the data may be in the form of 

1 Microsoft Excel Version 4.0 © 1985 -1992. Microsoft Corporation, 1 Microsoft Way, Redmond, 
WA,USA. 
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temperature records only, together with the duration of the recording interval and the 

time of the initial temperature log. Data of the required format can readily be derived 

from this type of information using available spreadsheet functions. 

6.2.4.1 Input 

The fundamental user input is the time-temperature data file. Further inputs are 

necessary to generate growth curves representative of the growth of the organisms of 

concern in foods although, as described in 1.1.5, useful predictions of relative 

increases can be made without this information. Other desirable inputs are 

i) the initial inoculum level 

ii) the known lag time of the organisms on the product at a given temperature 

iii) the level of concern, e.g. the population density at which spoilage occurs, a 

specification which must not be exceeded, etc. 

iv) the maximum population density (MPD) achieved by the organism on the 

product 

The initial bacterial load is required only for quantitative determinations of N(t)· If 

this information is unavailable, the increase in bacterial numbers relative to that at 

t = 0 can be calculated using a default value of 0 Log(CFU/unit food), i.e. 1 

CFU/unit food. An alternative strategy was used by Gillet al. (1988a) who requested 

the user to input the 'assured storage life' of red meats at some reference 

temperature. Assuming that spoilage occurred at 107 CFU-spoilers/cm2, they derived 

an initial bacterial load estimate from the rate of growth of the spoilage organisms at 

that temperature. This approach assumes some knowledge of the lag phase duration 

also. 

The treatment of the lag phase inputs are discussed fully below. Briefly they 

are used to calculate an equivalent number of generation times to that required for 

lag resolution. In the current application, if details of the lag period are unknown a 

default value of zero will yield a conservative, i.e. 'fail safe', estimate. 

The MPD input is used to model the decrease in growth rate as a function of 

population density and is also discussed more fully below. If the information is 

unavailable a default value of I09CFU/ml or g or cm2, representative of the MPD in 

many products in which temperature only is growth-limiting, may be used. Other 

MPD values may be more appropriate to other product types. 

6.2.4.2 Processing 

The increase in bacterial numbers is determined by integration. The number 

of generations of growth occurring in each interval between logs is calculated and 

summed to give the number or increase in number of bacteria at the end of each time 

interval. This approach was also used by Broughall et al. (1983) and Gill and 
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Harrison (1985), but a number of refinements are presented here to generate a full 

growth curve. 

The core of the application is a model which relates the temperature to the 

rate of growth. Let us call this model fCn. Over each interval the rate predicted by 

f(D is calculated from the average of the temperature at the beginning and end of 

that interval. The interval can be calculated from the difference between any of the 

time records, whether entered as absolute or relative time. For the initial interval 

there is no initial temperature datum available and a 'dummy' initial value is used, 

equal to the temperature at the end of the interval. 

The rate estimated by this method can only be considered as a potential 

growth rate because it is dependent upon the population density. In many situations 

of interest to food microbiologists the decline in growth rate as the population size 

increases is insignificant until after spoilage or toxigenic levels are exceeded. It is, 

nonetheless, desirable to model the entire growth curve including lag, and stationary 

phases of grovvth. The dependence of gro\vth rate on population density \vas 

modelled mechanistically by Jason (1983), who showed that the rate of microbial 

growth depends on the initial density as well as the size of the population relative to 

the maximum population density. Jason modelled the decline in rate, as the 

population density approaches the maximum population density (MPD) by Eqn. 3.4: 

MPD-N(t) 
I[ = IL 
r (t) r max MPD _ N(O) 

Thus, the rate over an interval, to)iS given by: 

MPD-N 
- j'(1') (ti-l) rateobs -

MPD-Nco) 
(6.1) 

To avoid circular references within the spreadsheet the value for N estimated at the 

end of the previous interval (i- 1) is used in this calculation. If the amount of growth 

calculated within an interval is large it is possible that the above calculations lead to 

a value for N(t) that is greater than MPD. To circumvent this a further conditional 

statement is used so that, if the predicted N(t) exceeds MPD, the value of MPD is 

returned. MPD may be a function of the environment which the product presents to 

the organisms (Jason, 1983; Buchanan et al., 1993a). Consequently, given the 

appropriate information, a more sophisticated version of the software could include 

routines to calculate the MPD from product formulation information. 

There are finite temperature limits for each organism beyond which growth 

is not normally possible. None of the kinetic models in contemporary use (see 1.1.4) 

define these limits. Square-root-type models do predict 'zero and negative' growth 
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rates beyond finite limits, but the lower limits may be inappropriate because growth 

typically ceases several degrees above T min (Chandler and McMeekin, 1989b; 

Neidhardt et al., 1990). Other situations exist for which the temperature range of 

concern is narrower than the growth range, e.g. due to reduced water activity, growth 

is greatly reduced at temperatures at which the products become frozen; S. aureus 

toxin production occurs over a narrower temperature range than growth (Smith et al., 

1983; Schmitt et al., 1990; see 4.1). Such limits should be built into interpretive 

models to prevent overprediction of risk, and can be readily incorporated into the 

spreadsheet, using conditional statements. A further refinement would be to 

incorporate models which relate the temperature limits for growth to other 

environmental factors, and to use these to control the conditional values. Currently, 

such models have not been developed. 

In the example presented here, for temperatures above T max and below 

7.8°C, the temperature at which some strains of E. coli cease to grow (Ross, 

unpublished; Friedmann eta!., 1969), rateobs is equated to zero. The calculation of 

rateobs, including the conditional values, may be undertaken in a single spreadsheet 

function. With the advent of more sophisticated models, negative growth rates (e.g. 

thermal death, loss of viability) may be modelled and, thus, extend the temperature 

range of applicability of the model. 

The potential number of generations over the interval is calculated by 

multiplication of the modified rate value and the time interval. The realised growth 

will depend, however, on the time required to resolve the lag phase. In the absence 

of details of the lag phase duration, a worst case scenario is adopted and the 

predicted growth is equivalent to the potential growth. If, however, the user has 

details of the lag phase duration in the product at a known temperature the lag phase 

at other temperatures can be predicted also. 

The specified lag time is converted into an equivalent number of generations 

as the product of lag time and the generation rate at that temperature, i.e. 

(
MPD-N(t llJ lag generations = lag time x f (T) x -
MPD-N(O) 

(6.2) 

This strategy was used by Broughall eta!. (1983), and Labuza and Riboh (1982), 

and is routinely employed by workers at the University of Tasmania for planning 

experimental sampling times. It is based upon the observation that the temperature­

lag time relationship is qualitatively the same as the temperature-generation time 

relationship (McMeekin et al., 1993, pp. 211-212), although this realtionship has not 

been rigorously tested under all conditions and variables combinations. Cell density 

at t may now be calculated from the difference between the potential number of 

generations and lag generations, using conditional functions. If the potential number 
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of generations exceeds the lag generations, the population density is calculated, 

based on the Monod equation: 

logN(t) :::: logN(0) 2(potential generations- lag generations) (6.3) 

If the lag generations exceed the potential generations, the lag phase has not yet been 

resolved, and N(t) = N(O)· It should be noted that all operations described above are on 

absolute numbers of cells, rather than log numbers. As it is normal practice to plot 

the logarithm of cell numbers, the absolute cell density predicted is converted to the 

logarithm at this stage. As stated above, if the user is unable to supply a value for 

N(O) the processing steps are unchanged, logN(O) is set to one, i.e. N(O) = 1 , and the 

results represent numbers relative to those at t = 0. 

All of the operations described above can be applied to each temperature 

datum using 'fill' and 'last cell' commands under the control of command macro's 

to generate the predicted density of cells at t.i.e end of each time intervaL 

6.2.4.3 Output 

The principal output is a graph showing the increase in numbers of the 

microorganisms of interest as a product of temperature and time. An 'overlay' chart 

of temperature and logN(t) offers the advantage of showing the effect of temperature 

on rate of population increase, and the use of absolute time on the display enables 

times of product temperature abuse to be readily determined. Hence, the location of 

the product, or the agent responsible for the product, at the time of temperature abuse 

may also be identified. 

The remaining storage life at a given temperature may also be determined 

from the following expression 

Storage Life Remaining 
[Tolerance -log N(final)] x (ljlog1o 2) 

f(T) 
(6.4) 

where logN(jinal) is the calculated value of logN(t) at the end of the temperature 

history and Tolerance is the level of concern, expressed as log(CFU/unit food). The 

calculation is subjected to a conditional statement which yields the calculated value 

of Eqn 6.4 for positive values, and a statement such as "PRODUCT IS ALREADY 

SPOILED" for negative values. The model used for this calculation, f(T), should 

also have conditional statements for the temperature range, as discussed above. For 

storage conditions in which no growth is predicted, the statement 'INDEFINITE' is 

returned for positive values of Eqn. 6.4. The application includes responses for 

nonsense inputs, e.g. if the input value N(O) is set greater than MPD. 



142 

6.2.4.4 User interlace 

Ideally, the operations described above must be presented to the user in an easy to 

use format, which is foolproof, and will not generate nonsense predictions. A 

prototype application incorporating the above approach was developed in Microsoft 

Excel 4.0, which was chosen because it includes many built in functions which 

permit the development of applications software by relatively unsophisticated users. 

The ability to create dialog boxes, command macro's, protect cells and spreadsheets, 

and to link documents enable the basic operations described above to be automated. 

An overview of the prototype application is shown in Fig. 6.3. It is based on 

spreadsheet files, most of which could be replaced by dialog boxes for greater 

security and user robustness. The data file is pasted in to a template file in which the 

data processing occurs. The data file/worksheet and the 'macrosheet', which has 

instructions for management of the files/dialog boxes and processing instructions, 

are hidden from the user. If spreadsheets are used as the interface 'windows', they 

on the spreadsheets so that as the user moves through the various stages of the 

analysis only one window is open at a time. The user is also given options to return 

to earlier windows (e.g. to re-read instructions), bypass them, or to quit the 

application from any window. A 'users view' of the application is shown in Figs. 

6.4a-d. 

Thus, the user is presented with a number of information screens, enters the 

requested information on the input screens, and selects the temperature history file. 

Processing occurs in the 'background' and the user is presented only with the output 

data, and the option of further analysis, i.e. remaining shelf life estimation or to 

return to earlier steps. The application also has potential as an educational tool, and 

an interactive spreadsheet combining the input and output screens is depicted in Fig. 

6.4e. A demonstration version of this application is available. 

6.2.4.5 Further developments 

The potential of applications based on this approach is great. More sophisticated 

applications can be built up as information is obtained, or the need arises. For 

example, the inclusion of the effects of other limiting environmental factors may be 

accommodated by the use of additional data entry boxes, and reference to that 

entered value in the model used for rate calculation. The effects of a second 

fluctuating variable can be accommodated by the addition of another data column in 

the environmental history file and an appropriate model. 

In 1.1.5 it was reported that the interactions between microorganisms in 

foods may, in many cases, be insignificant until the population densities are near to 

MPD. To extend this application to model the growth of mixed cultures requires 

only the relatively simple inclusion of models appropriate to the organisms present. 
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This would be useful for predicting the differential effect of environmental 

conditions on the growth of pathogens cf spoilage organisms, and the consequences 

for shelf life cf safety of foods under various formulations and storage conditions. It 

may be necessary, however, to provide some synthesis of the growth of mixed 

populations in a single environment. The synthesis required may be quite simple. An 

example is based on the results from inoculation of S. aureus 3b on to foods (see 5.2 

- 5.3). S. aureus 3b was observed to enter stationary phase, irrespective of the S. 

aureus density, if the spoilage micro biota reached 'their' MPD first (results not 

shown). The results of Herten et al. (1989) show a similar effect. In this case the 

interaction may be modelled by using the cumulative combined population density 

to control the reduction in growth rates as the total population density increases. 

6.3 CONCLUSIONS 

Theoretically any electronic data loggers may be combined with predictive 

microbiology computer programs to yield estimates of the extent of ~~owth of any 

microorganism of interest. Software can be written to analyse an environmental 

history or any part of it and, combined with a kinetic model, predict the specific 

increase in the number of bacteria of interest, whether spoilage organisms or 

pathogens. Relationships of any complexity could be incorporated into a predictive 

device, in principal, by recourse to 'look up' tables of experimentally determined 

rate values. Consequently, it is not strictly necessary to model mathematically the 

environment-growth rate relationship. 

A single software package could include models for the growth of different 

bacteria. Using such information it is theoretically possible to assess objectively the 

effect of any given period of the environmental history on the overall shelf life and 

safety of a product. This information would be invaluable for Hazard Analysis, 

appraisal of problem areas in processing and distribution chains, for allocation of 

responsibility for loss of product quality through mishandling and for evaluating cost 

versus benefit of changed processing protocols. The complexity of the modelling 

undertaken is governed only by computer technology, and the availability of 

appropriate information upon which to base the models. 



INFORMATION 
(titles, brief instructions etc.) 

INFORMATION 
detailed instructions 

DATA FILES 
DATA~.JPUT 

select data file 
N(O), Lag time@ temperature 
Levelofconcern,~D 

OUTPUT 
Graph: time-temperature-logN( t) 

144 

SPREADSHEET 
(hidden) 

processing 

PRINTOUT 

INPUT 
Storage conditions 

OUTPUT 
Remaining storage life 

Fig. 6.3 Schematic diagram of a tertiary model for the interpretation of 

temperature histories as potential bacterial growth and remaining shelf 

life of products. (Wide shaded lines denote linked spreadsheets.'Inputing' 

a new value in any of the linked files will lead to automatic recalculation 

of values, and amendment of output such as graphs or remaining shelf 

life). 



..... 

~
-~ -------

Fig. 6.4a Introductory window of a prototype tertiary model for bacterial growth and shelf life prediction. 

..... 

.$>. 
Vl 



Analysis 

Fig. 6.4b An example of an 'instructions for use' window for a prototype tertiary model for bacterial growth and shelf life prediction. 

.... ..,. 
0\ 



Fig. 6.4c An example of a 'data input 'window for a prototype tertiary model for bacterial growth and shelf life prediction. 

-..,.. 
-J 



9 60 
0 55 ~ 0 

50 0 
7 45 ~ = 6 40 B ~ 5 ~ U _ .. _,.. ;1o • 

b.O 4 / 25 ~ 
Q '!I I ' ?O fl> 

. 'i .;;J I \ .,.. -"" at. ~ 
,... 2 ' ' \ r-"'" '~ :l5 f:l 

~~ '.,"" \... II '..___________ :lO 0 

1 I '--"' ~) ~ 
0 () 

(") (") (") (") (") (") (") (") 
(1\0 (1\0 (1\0 0\Q 0\Q (1\0 (1\0 (1\0 

0\~ 0\~ 0\~ 0\~ 0\~ 0\~ 0\~ 0\~ 
-...N -...[' --N -..._.. -... 00 -...(") -co -M o- o- ON _,., ~ ~- ~~ -N 
N N N N N N N N 

Time 

Fig. 6.4d Output from a prototype tertiary model for bacterial growth and shellf life prediction. 

....... 
,J:.. 
00 



10 61) 
9 

55 e = 8 I, 51) 
&'114 I ' 4'" ,) 

0 7 I ' 41) ~ I ' 
6 ' ~ I ' 3~) ~-I ' e 5 ( ' ~ 31> ~u ~ ( ' ' 4 I ""'-- ..... 25 ~ t.,.. 

I 

' 20 ~ 3 I ' 
I \ 1:> 2 

, ~ 

' ., 
1() 

\ -- ' 
1 

\ _.,_., - ... ___ .... ___ .... ___ 
5 

___ ..,_, 

0 0 
<">o M <">o M M <">o M <">o 
~0 0\o ~0 0\o 0\o ~0 0\o ~0 -o -o -o -o (]\" (]\ .. (]\" (]\ .. (]\ .. (]\ .. (]\ .. (]\" 
-N :::OM - (10 NO\ ?)o - U') v<D _.,.... 
c ..... ........ M..-. 'VN 
N N N N N N N N 

Time 

Fig. 6.4e An interactive spreadsheet for assessing the effects of various parameters on potential bacterial growth for a given temperature history. 

"'" -.o 



150 

7 MECHANISMS OF THE MICROBIAL GROWTH RESPONSE TO 

TEMPERATURE 

{(It is not sufficient to observe that a particular method or 

model appears to work; it is important to know why it 

works, otherwise there is no means of judging when and 

how it will not." (Bratchell et al., 1989). 

7.1 INTRODUCTION 

Square root-type models have been criticised on the basis of a reported systematic 

underprediction of the true growth rate at low temperatures (M. Cole, pers. comm.) 

and implicitly viewed as inferior because they have no demonstrated theoretical 

basis (Heitzer et al., 1991). Draper (1981) considers mechanistic models preferable 

because they usually contain fewer parameters, usually fit the data better and usually 

extrapolate more sensibly. Ross (1993) and McMeekin et al. (1993) reported the 

development of a mechanistic model for the temperature dependence of growth rate 

responses of bacteria and demonstrated a possible convergence between the master 

reaction-type models and the square root-type models. In this chapter the 

mechanistic model presented in McMeekin et al. (1993), Chapter 10, is revised by 

reference to more recent literature and its utility evaluated by application to 

experimental data. 

7.2 MODEL DEVELOPMENT 

7.2.1 Starting Assumptions 

During exponential growth the production of all cell components is said to be 

'balanced', i.e. there is no surplus nor limiting component, and the overall behaviour 

of an exponentially growing population has the attributes of a first order reaction. 

Van Damm et al. (1988) concluded that emerging thermodynamic approaches to 

modelling of microbial t,rrowth "allow us to understand growth kinetics in terms of 

microbial free energy metabolism", and that the bacterial cell may be considered as a 

catalyst which converts substrates (nutrients) into products (more cells), and which 

can be characterised by the change in free energy of the substrates and products. 

Cellular metabolism is highly integrated and, for bacteria during balanced 

growth, the production of any metabolite and the rate of all cellular reactions behave 

as first order reactions. Although a common starting point in the development of 

mechanistic models for bacterial growth rate is the assumption of the existence of an 

enzyme catalysed reaction which is rate limiting under all growth conditions, a more 
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contemporary interpretation may be that a single enzyme sets the upper and lower 

temperature limits for growth, and that the activity of that enzyme mimics the 

growth rate of the whole cell. The enzyme is presumed to exist in one of two states; 

the catalytically active native, or N-state, and the inactive denatured, or D-state. 

Provided that the enzyme is in the native state, the reaction which the enzyme 

catalyses is well described by the classical Van 't Hoff - Arrhenius equation or its 

more recent formulation (Eyring, 1935). The proportion of the total enzyme present 

in the native state is, however, a function of temperature. Thus, the observed rate of 

reaction results from temperature effects on both the reaction mechanism and the 

amount of active enzyme. Consequently, the reversible transition of the enzyme 

between the native and denatured states as a function of temperature, as well as the 

temperature dependence of the reaction itself, must be modelled. 

The transition between active and denatured states may be described as a 

temperature dependent reaction obeying Arrhenius kinetics. This approach is not 

novel, having been adopted by Johnson and Lewin (1946) to describe the high 

temperature growth of bacteria, and by Hultin (1955) to describe rates of enzymatic 

catalysis in the low temperature region. Sharpe and DeMichele (1977) synthesised 

these two equations to produce a model for the temperature dependence of bacterial 

growth rate in the entire biokinetic region. The latter model was subsequently 

reparameterised by Schoolfield et al. (1981) to overcome difficulties in fitting by 

nonlinear regression. One of the assumptions made by those authors, however, was 

that the thermodynamic functions enthalpy change (M-l) and entropy change (65) are 

independent of temperature for the protein folding-unfolding reaction. For simple 

inorganic reactants this assumption is valid. It is now known, however, that there are 

temperature-dependent changes in !::..H and !::..S as the largely hydrophobic interior of 

the protein is exposed to water in the suspending medium, and that these lead to 

large changes in the heat capacity (!::..C p) of the system upon reversible denaturation 

of the protein. These changes are largely caused by the restructuring of water in the 

region of exposed non-polar amino acid sidechains. The above phenomena are well 

described in the many recent reviews of the thermodynamics of protein 

conformational structure (e.g. Creighton, 1990; Dill, 1990; Castronuova, 1991; Lee, 

1991; Jaenicke, 1991). 

The development of the model from these starting assumptions is analogous 

to that presented by the candidate in Chapter 10 of McMeekin et al. (1993). The 

following mathematical development summarises that work. It should also be borne 

in mind that in this treatment temperature is the only limiting factor considered. 
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7.2.2 Model Derivation 

From the foregoing discussion, it is assumed that the rate of growth in the absence of 

macromolecular denaturation may be described by the empirical Arrhenius-Van't 

Hoff relationship: 

rate = A exp(Ma I RT) (7.1a) 

or its mechanistic interpretation and modification due to Eyring (1935) based in 

absolute reaction-rate theory: 

rate = KT exp(Ml* I RT) (7.1b) 

where the parameters may be interpreted as follows: 

A is a constant related to the number of collisions between reactants per unit time 

Ea is the 'activation energy'l 

R is the gas constant (8.314 J K -1 moP) 

Tis the temperature in Kelvin 

K is similar to A but includes steric and en tropic effects 

t1.H* the enthalpy difference between the transition state complex and the 

reactants 

Equation 7.1 b may be interpreted as the product of the number of collisions 

which could lead to reaction (KT) and the probability (exp(MI* I RT)) of the 

reactants having sufficient energy to overcome the enthalpic barrier to reaction. That 

probability increases as a function of temperature and decreases as a function of 

increasing activation energy. 

Gibbs free energy (G) is a concept that has been used as a measure of a 

system to perform useful work. If a system may exist in several states, the state with 

the lowest Gibbs free energy is energetically favoured, and the system will tend to 

move towards that state spontaneously. To move from a lower to a higher free 

energy state requires the input of energy. The change in Gibbs free energy (L1G) is 

related to M-1 and L\S thus: 

L1G = Ml- TL1S (7 .lc) 

Consider the reversible denaturation of proteins: 

1 The experimentally determined value of Ea in Eqn. 7.la is related to the enthalpy of activation. 
Acccordingly, the entropic component of the free energy of activation (free energy difference 
between the reactants and the activated complex) is mathematically included inK in Eqn. 7.1b from 
the relationship Gibbs free energy = t1H :1:. T LlS 
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Native state . .;;: Denatured state 

For spontaneous reaction to occur,/:iG < 0. Thus, the difference in Gibbs free energy 

of theN-state and D-state is now defined: 

l:iG den = G denatured- Gnative 

Enzymes will adopt the D-state if it is energetically favourable to do so, i.e. 

if tl.Gden < 0. Surprisingly, for protein molecules tl.Gden is a parabolic function of 

temperature (see Appendix 4), a reflection of the delicate balance of relatively large 

forces which determine the stability of the native conformation. Murphy eta!. (1990) 

published equations which permit the description of the difference in Gibbs free 

energy of the native and denatured states as a function of temperature. They 

considered that hydrophobic interactions played the major role in determining the 

stability of the N-state. Murphy and Gill (1991) subsequently gave a slightly 

different interpretation of those results. Based on a 'group additivity' approach 

which addressed the contributions of apolar groups, hydrogen bonding and 

configurational entropy, they concluded that hydrogen bonding was the main 

stabilising force. They reiterated, however, that the temperature dependence of the 

changes in enthalpy ancl entropy between the two states of the protein molecule 

could be summarised in terms of the change in heat capacity, tl.C P· of the protein 

upon unfolding. This was achieved by reference to D.Cp and experimentally derived 

temperatures at which all globular proteins studied exhibit the same change in 

enthalpy and entropy upon denaturation. From the latter paper the following 

equations may be derived readily: 

where: 

tl.Cp 

T*H 
T*s 

:::: 

:::: 

:::: 

Ttl.S = Ttl.S * +tl.CP [Tln(T IT *s )] 

difference in heat capacity of the protein in theN- and D-states 

temperature (K) at which the tl.Cp contribution to enthalpy is 0. 

temperature (K) at which the tl.Cp contribution to entropy is 0. 

Mi* = value of enthalpy at T* H 

tl.S* = value of entropy at T* s 

(7.2) 

(7.3) 

n.b. To further generalise the relationships, all thermodynamic quantities are 

expressed per mol-amino acid-residue in the protein. 
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Synthesis of Eqns. 7.2, 7.3 and 7.1c generates the following expression for the 

temperature dependence of the change in Gibbs free energy associated with protein 

unfolding. 

(7.4) 

Let [N] be the concentration of catalytically active enzyme, and [D] be the 

concentration of inactive enyzme. We wish to determine the proportion of enzyme 

which is active at any given temperature. 

That proportion is given by: 

and as: 

1 

[LJ] + 1 
[N] 

1 
=---

K _ [products] 
eq - [reactants] 

[D] 
= 

[N] 

The proportion of enzyme molecules which are catalytically active is given by: 

1 

[D] + 1 
[N] 

1 
= 

Keq +l 

The relationship between the change in Gibbs free energy and the equilibrium, Keq, 

constant is given by: 

L\G = 

.. · .. Keq = 

-RTlnKeq 

e-D.G!RT 
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Thus: 

. if . 1 proportwn o acnve enzyme= -t:.G /RT 
e den +1 

(7.5) 

Substituting Eqn 7.4 into 7.5 and multiplying the resultant expression by Eqn. 
7.1 b generates the following equation to describe the effect of temperature on the 
rate of enzyme catalysed reactions: 

CT exp(LV{l: I RT) 
7 6 rate= 1 + exp(-n(LV/ * -TL1S * +L1Cp[(T- T *H)- Tln(T IT *s)]) I RT) ( . ) 

where: 

C == a parameter whose value must be estimated 

JJ.H* = activation enthalpy of the reaction catalysed by the enzyme 

L1Cp == difference in heat capacity (per mol. amino acid residue) between theN-

and D-state of the enzyme 

T*H = temperature (K) at which the L1Cp contribution to enthalpy is 0. 

T*s = temperature (K) at which the D.Cp contribution to entropy is 0. 

!J.H* == value of enthalpy at T* H per mol-amino acid residue 

~* = value of entropy at T*sper mol=&TJino acid residue 

T = temperature (K) 

R = gas constant (8.314 J K-1 mol-1) 

n == number of amino acid residues in the protein. 

This equation may also be applied to model the temperature dependence of the rate 

of bacterial growth if the assumptions in 7 .2.1 are accepted. 

7.3 METHODS 

To gain insight into the behaviour of the model, Eqn. 7.6 was used empirically to 

simulate the temperature-v'growth rate curves of a range of bacteria, and also fitted 

by non-linear regression (Ultrafit, Biosoft®, Missouri, USA) to experimental data 

for the temperature dependence of: 

i) rate of dephosphorylation of nitrophenol phosphate by E. coli alkaline 

phosphatase (EC 3.1.3.1, Sigma), data of Salter (1993); 

ii) growth rate of Pseudomonas putida 1442 in Nutrient Broth (NB), data of 

Neumeyer (Unpublished); 

iii) growth rate of Spirillum L9, data of Harder and Veldkamp (1971); and 

iv) growth rate of Aeromonas hydrophila 3459 and Escherichia coli M23 in 

NB, and of Listeria monocytogenes Scott A in TSB (original data). 
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Initially, values of the constants T*H• T*s. Mi*, and AS* used were those 

determined by Murphy et al. (1991): 

T*H = 373.6K 

T*s = 

MI.*= 

AS* = 

385.2 K 

5640 J (mol amino acid residuet1 

18.1 J K-1 (mol amino acid residue)"1 

The value of Mi* derived by Murphy et al. (1991) was based on data of Privalov 

and Gill (1988) for 11 proteins, most from mammalian sources. To accommodate the 

possibility that Mi* is not constant for all proteins, particularly in relation to the 

thermal adaptation of the organism from which the protein originates, a form of Eqn. 

7.6 in which Mi* is a parameter to be estimated was also investigated. 

Square root of rate data was fitted to the square root of Eqn. 7.6 by 

nonlinear regression. The square root of rate was chosen to homogenise the error for 

those data sets for which replicated data was available, and for consistency for those 

data sets where it was not. The estimation behaviour of the parameters in Eqn. 7.6 

was not known and the model fitted as the square root of the parameterisation shown 

above. Initial parameter estimates were determined empirically using a spreadsheet 

(Excel 4.0, Microsoft® Corporation) to calculate and graph values of the response 

for given parameter values: parameter values were manipulated until the graph 

approximated the experimental data. The fitted curves were presented as square root 

plots to facilitate comparison with the square root model. 

7.4 RESULTS 

7 .4.1 Analysis of the Model 

The main features of the Eqn. 7.6 are shown in Fig. 7.1 from which the modifying 

effect of the denominator (proportion of active enzyme) on the rate predicted by the 

numerator (rate in the absence of denaturation) can be more readily appreciated. 

Increasing values of b.C p tend to move the curve further to the right on the 

temperature axis. The 'number of amino acids' value for the growth-range-limiting 

enzyme controls the magnitude of the exponential term in the denominator, and in 

consequence has the effect of controlling the rate of denaturation as a function of 

temperature, i.e. the steepness of the low and high temperature 'cutoffs'. There is a 

strong correlation between the rate coefficient 'C' and the b.H* terms which interact 

to model the magnitude of the observed rate over most of the range. Ml* appears in 

an exponential term, thus small changes in the fitted value of m+ must be 

compensated for by large changes in the fitted value of C. 
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Fig. 7.1. Graphical analysis ofEqn. 7.6. 

7.4.2 Enzyme Catalysis Data 

The activity of alkaline phosphatase (AP) as a function of temperature is shown in 

Fig. 7.2. Allowing five parameters to be estimated from the data yielded the 

following fitted values: C = 7615 ± 18593, !1H+ = 40371 ± 6115 J mol-l, 

11Cp = 56.58 ± 3412 J K-1 (mol amino-acid res.)-1, n = 110 ± 4109 and 11H* = 5636 

± 29460 J mol-l. The Residual Mean Squares (RMS) value was 0.0011. 

Setting 11H* equal to 5640 J K-1 (mol amino-acid res.)-1, and allowing four 

parameters to be estimated from the data yielded similar values, but with much 

narrower confidence intervals: C = 7613 ± 12965, Mi+ = 40371 ± 4357 J moi-l, 11Cp 

= 56.16 ± 1.40 J K-1 (mol amino-acid res.)-1, and n = 109 ± 26. The RMS value was 

0.0010. 

E. coli alkaline phosphatase is composed of 600 - 800 amino acids (Reid 

and Wilson, 1971). The value of n was fixed at 590, calculated from the molecular 

weight of AP (Garen and Levinthal, 1960) divided by an average molecular weight 

of amino acids residues (135g mol-l). Allowing the remaining three parameters to be 

estimated from the data yielded the following values: C = 13736 ± 28943, 11H:f: = 
41818 ± 5399 J mol-l, 11Cp = 55.69 ± 0.32 J K-1 (mol amino-acid res.)-1. The RMS 

value was 0.0017. 'Robust weighting' was used in all cases. The activation enthalpy 

of the same data estimated from an Arrhenius plot was 46200 J mol-L 
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7.4.3 Growth Curves: Simulated Data 

Using thermodynamic parameter values determined by Murphy and Gill (1991) it 

was not possible to generate realistic bacterial growth curves. The range of thermal 

stability of the system predicted using Eqn. 7.6 was far wider than is observed for 

bacteria which are typically restricted to a biokinetic range of -40 K (Neidhardt et 

al., 1990). When M/* also was estimated from the data, however, it was possible to 

produce realistic growth curves. For the simulations the number of amino acids in 

the enzyme growth-range-limiting enzyme was arbitrarily set at 250, and the value of 

C manipulated to give optimal rate values of the same magnitude to simplify visual 

comparison. The simulated curves are depicted in Fig. 7.3. The parameter values 

used to generate the curves are summarised in Table 7.1 

1.1 
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Fig. 7.2 Experimental values and fitted curves of Eqn. 7.6 for the cleavage of 

phosphate from nitrophenol phosphate by alkaline phosphatase. The 

curves shown are for the fitted parameter values given in 7 .4.2, when 

four and three parameters of Eqn. 7.6 were allowed to be fitted to the 

data. 
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Fig. 7.3 Growth curves for a range of thermal classes of bacteria generated using 

Eqn. 7.6. 

Table 7.1 Parameter Values for Eqn. 7.6 Used to Simulate Bacterial Growth 

Curves in Fig. 7.3. 

Parameter Y alues 
Organism c M{:f: 1:1Cp Ml* 

(J moi-1) (J K·1 mol-res:!) (J mol-res:1) 

Antarctic strain 8,000,000 51,000 54 5325 
(psychrophile) 

Pseudomonas Gpl 16L16 20,000,000 55,000 63.5 5257. 
(psychrotroph) 

E. coli 80,000,000 62,000 73 5365 
(mesophile) 

Bacillus spp. NCIB 12522 2,000,000,000 75,000 86 5320 
(thermophile) 
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To assess the divergence between predictions of square root-type and master 

reaction-type models, both simple square root models (Eqn. 1.1), and 4-parameter 

square root models (Eqn. 1.2) were fitted to 'square root of rate' data generated at 

2K intervals by each of the fitted Eqns. 7 .6. Square root of rate values less than 0.1 

in the suboptimal range, and less than 0.5 in the superoptimal range, i.e. those which 

represent very slow growth rates, were deleted from the data sets before fitting 

square root type models to reflect the range of data collected experimentally. 

Cardinal temperatures estimated from the data set simulated using Eqn. 7.6 are 

compared to those of the original experimental data set in Table 7 .2. 

Table 7.2 Fitted Square Root Model Parameters Based on Bacterial Growth Curves 

Simulated Using Eqn. 7.6, and Shown in Fig. 7.3. 

Square root model values 

Organism 
Tmin Topt Tmax 

Antarctic strain 251 288 0.999 
(psychrophile) 252 288 299 

(251) (288) (293) 

Pseudomonas Gp1 16L16 266 288 0.997 
(psychrotroph) 267 302 313 

(266) (302) (310) 

E. coli 276 314 0.999 
(mesophile) 277 314 323 

(276) (314) (322) 

Bacillus spp. NCIB 12522 291 324 0.999 
(thermophile) 291 324 333 

(291) (324) (335) 

Upper row: values of parameters of simple square root models (Eqn. 1.1). Middle row: fitted 4 
parameter square root model (Eqn. 1.2) values. Values in brackets are for 4 parameter square root 
models fitted to the original experimental data sets which were simulated. r2 values shown are for 
Eqns. 1.1. 

/ 
! 
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7 .4.4 Growth Curves: Experimental Data 

Experimental data and fitted Eqns. 7.6 for the growth of five organisms are shown in 

Figures 7 .4a-e. Table 7.3 lists the fitted parameter values, their 95% confidence 

intervals, and RMS values for both Eqn. 7.6 and 4-parameter square root models 

(Eqn. 1.2) fitted to the data of figures 7.4. In general, fitted values of Eqn. 7.6 were 

very sensitive to initial parameter estimates. Convergence could be achieved from 

several sets of initial parameters, but did not always generate the same final values. 

Reduction in the number of parameters to be estimated improved both the ability to 

converge and confidence intervals of estimates. 

7.5 DISCUSSION 

McMeekin et al. (1993) concluded that, if one considered the limitations of 

experimental data, data generated by an earlier form of Eqn. 7.6 could be described 

equally well by the square root model and from their analysis further concluded that 

there was no inherent contradiction between the two model types. That analysis was 

undertaken using simulated data sets. Given good experimental data sets, the ability 

of both the earlier master reaction-type models and the square root model to describe 

experimental data is firmly established in the literature. The results presented in Figs. 

7 .4a-e and summarised in Table. 7.3 reinforce those observations and conclusions. 

The experimental data presented in this chapter, and the literature concerning 

bacterial physiology and protein thermodynamics, enable a more objective 

assessment of the mechanistic bases of Eqn. 7.6 and master-reaction--type models in 

general. 

7.5.1 AP Data 

There have been several detailed studies of E. coli AP. Garen and Levinthal (1960) 

report that the activation energy for dephosphorylation of nitrophenol phosphate by 

E. coli alkaline phosphatase is 28.8 kJ moP, and that AP is 'a reasonably stable 

enzyme'. Garen and Levin thai (1960) and Heppe! et al. (1962) found that 

denaturation at temperatures up to 92.5 °C was reversible, albeit slowly. Garen and 

Levinthal (1960) also found that purified enzyme could not be stored at 85°C 

without loss of activity. At 60°C AP is stable (Garen and Levinthal, 1960). Heppe! et 

al. (1962) noted, however, that there was very little recovery of denatured protein at 

60°C despite that renaturation, which increases in rate with increasing temperature, 

does occur at lower temperatures. These observations suggest that at temperatures 

>60°C (333K) renaturation is not energetically favourable and, by inference, that 

temperatures> 60°C promote denaturation. Heppe! et al. (1962) found that heating 

AP at 90°C for longer intervals leads to irreversible denaturation. After 60 minutes 

at 90°C, a maximum of ~30% of the activity could be recovered, whereas for shorter 

incubations more activity was subsequently recoverable. 
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Fig. 7.4 Eqn. 7.6 fitted to the data of: a) Harder and Veldkamp (1971) for the 

growth of Spirillum L9, and b) Neumeyer (unpublished) for the growth 

of Pseudomonasfluorescens 1412. 
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Fig. 7 .4e Eqn. 7.6 fitted to data for the growth of E. coli M23. A 4-parameter 

square root model fitted to the same data is also shown for comparison. 

The fitted values of Eqn. 7.6 to AP data suggest that AP is stable over a 130 

K range (225 to 335 K), and that AP has an activation enthalpy of -42 kJ moP. 

With the exception of the fitted values for t:.Ht, and n, estimates derived from Eqn. 

7.6 are consistent with the above reports, lending credibility to the mechanistic bases 

of the model. The activation energy, analogous to mt, estimated from the same data 

by Arrhenius plot was within the confidence limits of that estimated from Eqn. 7.6. 

When the parameter n was estimated from the data the result did not agree with 

literature values. The reason for the poor estimation of n may be that it is estimated 

from the steepness of the slope at denaturation, and in the AP data set used there are 

only two or three points in that range. When a literature based value for n was used, 

Eqn. 7.6 continued to fit the AP data well. Thus, the model theory is consistent with 

the data, but until it can be shown that the remaining parameter value which can be 

independently determined (i.e. !lCp) is consistent with the fitted values, the evidence 

to support the model remains circumstantial. Furthermore, the current assessment is 

based on one data set only. 



Table 7.3 Fitted Parameter and RMS Values for Eqns. 7.6 and 1.2 Fitted to Data Presented in Figs. 7.4a-e. 

Organism Fitted parameters and 95% confidence intervals (italics) 

(data source) Equation 7.6 Equation 1.2 
c -till* !Y.Cp till* n RMS RMS b c Tmtn Tmax 

(min-1) (Jmol:1) (JK-1mol:1 (Jmol:1 (res.) 
res:1) res:1) 

Spirillum L9 1.21e+07 57320 62.56 5361 358 1 0.0019 0.()()52 0.0160 0.5000 263.45 309.44 
(Harder and Veldkamp, 1971) 3.17e+07 6330 0.82 2 117 0.0017 0.3710 2.26 1.72 

P. putida 1412 5.66e+06 62047 62.24 5358 266 0.0028 0.()()14 0.0040 0.3940 265.27 309.44 
(Neumeyer, unpub.) 1.37e+07 5788 1.32 3 85 0.0002 0.0470 1.40 0.13 

A. hydrophila 3459 2.56e+07 66054 64.53 5365 330 0.0009 0.0008 0.0049 0.4160 269.18 313.42 
(Ross, unpub.) 6.39e+07 6094 1.2 4 72 0.0003 0.103 1.31 0.43 

L. monocytogenes Scott A 2.68e+06 61097 70.78 5354 221 0.0001 0.0002 0.0053 0.2340 275.47 319.67 
5.03e+06 4654 0.77 3 70 0.0003 0.1270 0.80 3.95 

E.coli M23 5.91e+07 68305 71.87 5360 308 0.0054 0.0048 0.0068 0.3630 277.41 320.47 
(Ross, unpub.) 1.48e+08 - 0.87 4 62 0.0004 0.0820 1.04 0.49 

--- ---------------- -- -------------------

..... 
~ 
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7.5.2 Microbial Growth Rate Data 

The apparent theoretical validity of Eqn. 7.6 for enzymatic catalysis does not appear 

to extend to the growth of whole cells. The results demonstrate that Eqn. 7.6 

describes experimental temperature vs. growth rate data well with the exception of 

rate at superoptimal temperatures. Lowry and Ratkowsky (1983) noted that other 

master reaction-type models displayed the same behaviour and concluded that such 

models were deficient because they failed to consider irreversible protein 

denaturation. Furthermore, Eqn. 7.6 model cannot describe the temperature-growth 

rate relationship without violating one of its theoretical bases, i.e. the constancy of 

M-1* for globular proteins. It is possible that the putative rate-controlling enzyme has 

a unique value of M-1*. The constancy of the fitted values of M-1* for a range of 

species and thermal classes may lend some support to this view, and there is indirect 

evidence in the literature (Doig and Williams, 1991; Fu and Friere, 1992) that M-1* 

for globular proteins may not have a universal value of 5640 J (mol amino-acid­

residue)-1. The fitted values of the parameter M-I* are consistent with those obtained 

for the 'activation energy' of bacterial growth from Arrhenius plots, and within the 

range reported in the literature (60- 70 kJ moi-l). 

7.5.3 Critique of Model Bases 

A simpler interpretation is that the constancy of the fitted value reflects the similarity 

of the biokinetic temperature range of bacteria, and that the reason for the inability to 

fit the data using the theoretical L1H* value is that one of the starting assumptions of 

the master reaction type models is invalid. That Eqn. 7.6 describes the data well, 

however, suggests that whilst the form of the model is correct, the interpretations are 

not. 

Examination of square root plots of experimental data often reveals 

evidence of upwards concavity in the suboptimal region. This is more pronounced in 

some data sets, e.g. Figs, 7.4 a-c. Though not apparent in the E. coli data presented 

in Fig. 7.4e (possibly due to the use of four separate data sets), the data of Gill and 

Harrison (1985) and Smith (1985) for E. coli exhibit similar curvature when 

presented as square root plots. These results are consistent with the original 

assumption that the temperature dependence of the rate of balanced cell growth is in 

accord with absolute reaction rate theory. 

The assumption that a single enzyme limits the growth of the cell at both 

high and low temperatures is not supported in the literature. Neidhardt et al. (1990) 

considered the physiological factors that limit the upper temperature limit for 

growth, and concluded that it is the heat stability of one or more proteins which is 

the limiting factor. Gould (1989) considered the question in more detail and 

concluded that DNA damage is often the key lethal event, but that injury to other cell 

( 
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Fig. 7.5 Square root plot of an Antarctic Carnobacterium spp. for aerobic (w ) 

and anaerobic (D) growth. (Unpublished data of P. Franzmann). The 

solid line is for Eqn. 7.6 fitted to the anaerobic data. 

components may accumulate and eventually inhibit the initiation of growth in a 

manner that is very dependent upon 'environmental stress' factors. The lower 

temperature limit for growth is also considered by Neidhardt et al. ( 1990) who state 

that there is not a single cause determining the minimum temperature for growth. 

Nor is there evidence that it is the denaturation of a protein which sets the lower 

limit for growth. Studies with E. coli cold sensitive mutants have shown that they are 

unable to synthesise functional ribosomes, resulting from a mutation in the genes 

encoding for ribosomal proteins. Similarly, the lower limit for growth of wild-type 

E. coli was found to correspond to the temperature (7.8°C) at which ribosomes fail to 

assemble correctly. (Friedman et al., 1969). Data for the aerobic and anaerobic 

growth of a Carnobacterium species isolated from Antarctica is shown in Fig. 7 .5. 

These data suggest that the temperature limiting system/molecule need not 

necessarily be the same under all conditions or at either temperature limit. In that 

example, although the rate of growth in either environment is similar, the 
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temperature range for growth is greatly reduced in aerobic environments. It may be 

inferred that the thermal sensitivity of different enzymes are responsible for setting 

the limits of growth in either environment. In this example, the thermal sensitivity of 

a protein only required in aerobic environments (e.g. a peroxidase) is a possible 

explanation. 

7 .5.4 Conclusions 

A fundamental purpose of a model is to assist in interpretation of observations, and 

from that paradigm to predict the consequences of other conditions. If the model is 

unsatisfactory it should be abandoned or revised. The above discussion offers a more 

general interpretation of the basis of the ability of Eqn. 7.6 to describe the 

temperature dependence of growth rate. 

Although based in protein thermodynamics, the denominator of Eqn. 7.6 is 

a mathematical function which models an 'on/off' state as a function of temperature. 

Thus it describes inactivation of the cell's ability to reproduce at an upper and lower 

temperature, irrespective of the interpretation applied. Despite the inadequacies of 

Eqn. 7.6 and other master-reaction-type models, from their ability to describe the 

bacterial growth rate response to temperature it may be inferred that the response is a 

synthesis of a response which obeys Arrhenius kinetics, and some other rate 

modifying effect(s) which set the upper and lower temperature limits for growth. 

This less specific paradigm permits further interpretation of the basis of the square 

root models. 

The consequence of fitting a straight line by least squares to square-root-of­

rate data consistent with Eqn. 7.1 b would explain the observation of Cole, described 

in 7.1, i.e. that the square root model often under predicts rate at the lowest 

temperatures. If the primary rate-controlling response to temperature accords with 

absolute reaction rate theory, then Cole's observation is expected. Another 

consequence of the suboptimal response obeying Arrhenius kinetics would be a 

systematic deviation of the estimate ofT min if data were removed (or not collected) 

at the low or high temperature 'ends' of the sub-optimal range. This was illustrated 

in Chapter 4. 

Eqn. 7.6 also predicts that growth rate inhibiting constraints which do not 

alter the activation enthalpy, or the stability of the temperature-limiting systems of 

the cell, will generate the same T min value (subject to the above considerations re: 

range of data). Thus, the status ofT min as a characteristic temperature, but with no 

metabolic significance, is supported. From the mechanistic viewpoint developed in 

this chapter T min is shown to be simply the intercept of the extrapolation of the 

suboptimal region of a square root plot and the temperature axis. 

The consequences of temperature limits for growth, however, and the 

manner in which their physiological basis interacts with the absolute reaction rate 
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predictions must also be considered. It may be appreciated by reference to Fig. 7.1, 

and other figures in this chapter, that there is possible, and observed, a range of 

responses. The interaction of the denominator and numerator of Eqn. 7.6 may lead to 

a square-root-of-rate response in the suboptimal region which is very well described 

by a straight line. Similarly, if the denominator models 'stability' over a very small 

range, upwards curvature of the response in the suboptimal region would be 

predicted. 

On a purely mathematical level, Eqn. 7.6 can be used as a model of three (if 

n and !lH* are held constant) or four parameters which describes the entire 

biokinetic range. McMeekin et al. (1993) suggested that the more contemporary 

theory upon which Eqn. 7.6 is based may provide an explanation, for example, for 

previous observations (Lowry and Ratkowsky, 1983; Ratkowsky, 1990) that the six 

parameter Schoolfield eta!. (1981) model is over-parameterised. That model uses 

four estimated parameters to describe high and low temperature inactivation. The 

paradigm proposed here, by treating the denominator as a temperature dependent 

'on/off' function, supports this conclusion because that behaviour can be described 

by a function which requires the estimation of only one or two parameters (i.e. n, 

!lH*). In Eqn. 7.6, however, the rate of inactivation at both temperature extremes is 

strongly affected by the same parameter (n), thus Eqn. 7.6 may require further 

parameters to accurately model both high and low temperature 'inactivation' 

independently. 

McMeekin eta!. (1993) questioned the need for another 'mechanistic' 

model and reiterated the criticism of Heitzer et a!. (1991) that the master reaction 

type models cannot be considered to be truly mechanistic because their parameters 

can not be experimentally determined. These criticisms apply to Eqn. 7.6 which, 

both philosophically (i.e. on the criteria of mechanistic description) and 

pragmatically (i.e. on the basis of goodness-of-fit and ease of use) can not currently 

be shown to be superior to the square root models. Nonetheless, Eqn. 7.6 has utility 

in that it has led to an interpretation of the effect of temperature on the rate of 

bacterial growth from which the success of the square root model may be 

understood, and which is complementary to the observations of McMeekin et al. 

(1993). More importantly, it has focussed attention on significant features of the 

response which the square root-type models may not well describe, and which 

require further study. The development and analysis of Eqn. 7.6 have also led to a 

number of experimentally testable predictions concerning the estimation ofT min· 

Equation 7.6 appears to describe mechanistically the activity of enzymes, 

however, and may have utility in food processing in which control of the 

inactivation of enzymes is required (Adams, 1991). The parameterisation of the 

model is unsatisfactory, however, and must be investigated and improved before the 

model could be used routinely. 

r 
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8 SUMMARY AND CONCLUSIONS 

A number of limitations in the development of predictive models have been 

addressed in this thesis, and potential solutions demonstrated. The use of indirect 

enumeration methods offers a labour-efficient methodology for the generation of 

sufficient kinetic data to generate reliable models for the growth of microorganisms 

in foods. Growth rate estimates based on turbidimetric data have also been shown to 

be as reproducible as those derived from viable count methods, but to differ by a 

constant ratio. Thus, calibration factors to relate the rate of microbial growth 

determined by turbidimetric methods to those determined by viable count methods 

have been established. The turbidimetric method developed, based on the time for a 

doubling of optical density, is also general for a range of species and conditions and 

does not require calibration to numbers of microorganisms. Potential limitations 

relate to the range of sensitivity of optical density measuring devices. 

Through the development of indices of bias and precision, the robustness of 

the method has been demonstrated by the development and evaluation of predictive 

models for the growth of Staphylococcus aureus and Listeria monocytogenes. 

Models, based on turbidimetric data from laboratory broth cultures and calibrated to 

viable count methods, are as accurate and unbiased as any predictive model for the 

growth rate of microorganisms published to date. The results of this work have 

provided a set of criteria by which such predictive models can be evaluated, and 

validated. 

Primary models to describe the bacterial growth curve were also 

investigated. It was concluded that the modified-Gompertz function, though not an 

ideal description of the curve, could yield realistic kinetic parameters, through the 

application of a calibration factor. 

The hypothesis of Chandler and McMeekin (1987b), concerning the 

development of kinetic models by stepwise determination of the parameters of 

square root type models, was also strongly supported for temperature and water 

activity effects on growth rate. Due to difficulties in modelling the pH response the 

extension of that hypothesis by McMeekin et a!. (1992) could not be convincingly 

demonstrated. The independence of the effects of temperature, pH and water activity 

on the growth rate of microorganisms was confirmed in this study, and suggests that 

the hypothesis of McMeekin et al. (1992) will be demonstrated. 

The experimental approach taken in this study has demonstrated the need 

for replication of data. Although the minimalistic response surface design proposed 

by McMeekin et a!. ( 1992) was demonstrated to produce reliable models, it is 

vulnerable to aberrant results. 

This study has also shown that the variability in microbial growth rates 

determined in laboratory media may be narrower than that which can be expected in 

foods. This issue must be addressed before realistic risk assessment (Buchanan and 
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Deroever, 1993), based on the accumulated knowledge summarised in predictive 

models can be undertaken. Integration of the probability and kinetic modelling 

approaches, and models, should be pursued in this regard. 

Chandler (1988), in reviewing a similar research program, pointed out that 

the square root model remained empirical, and that detailed study in the areas of 

microbial physiology and genetics would be required to understand the basis of the 

'square root' response. In the current study a partial explanation of that response, 

based on the thermodynamics of growth, and the existence of definite temperature 

limits for growth, has been presented. That paradigm has led to testable predictions, 

and provided an understanding of the square root response, so that it can be used 

with greater confidence. 

Prototype applications software for transferring predictive microbiology 

technology to the food industry were described. The methodology now "validated" 

offers a less expensive means of developing and applying predictive models for the 

effects of temperature, pH and water activity, and without recourse to nonlinear 

regression expertise. Predictive microbiology is not a panacea to the problems of 

microbial food spoilage and 'food poisoning' but does offer a powerful and rational 

new weapon with which to understand and tackle those problems. 
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APPENDIX 1 DATA SETS USED IN 3.1 AND SUMMARY 

Appendices 1.1 - 1.20 (overleaf). Data used in the Comparison of Equations 3.1 

and 3.5 (see 3.1). 
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Appendices 1.1 • 1.20. DATA SETS USED IN 3.1 

time I log(N) time I log(N) time I log(N) 

1 0 1 2 0 1 3 0 1 
1 1 3 1 10 1 

3.6 2.6 7.6 2.6 21.6 2.6 
5.2 4.2 9.2 4.2 23.2 4.2 
6.8 5.8 10.8 5.8 24.8 5.8 
8.4 7.4 12.4 7.4 26.4 7.4 
11 9 17 9 38 9 
12 9 20 9 48 9 

4 0 1 5 0 1 6 0 1 
0.3 1 1 1 1 1 
2.2 2.6 2.02 1.02 3.4 2.4 
3.8 4.2 2.04 1.04 4.8 3.8 
5.4 5.8 2.06 1.06 6.2 5.2 

7 7.4 2.08 1.08 7.6 6.6 
8.9 9 3.1 1.1 10 8 
9.2 9 4.1 1.1 11 8 

7 0 1 8 0 1 9 0 1 
1 1 1 1 1 1 

3.2 2.2 
,., 

" 2.8 f\0 
:J L v.o 

4.4 3.4 4 3 3.6 2.6 
5.6 4.6 5 4 4.4 3.4 
6.8 5.8 6 5 5.2 4.2 

9 7 8 6 7 5 
10 7 9 6 8 5 

10 0 1 11 0 1 12 0 1 
1 1 1 1 1 1 

2.6 1.6 2.4 1.4 2.2 1.2 
3.2 2.2 2.8 1.8 2.4 1.4 
3.8 2.8 3.2 2.2 2.6 1.6 
4.4 3.4 3.6 2.6 2.8 1.8 

6 4 5 3 4 2 
7 4 6 3 5 2 

13 0 8 14 0 1 15 0 1 
1 8 10 1 0.1 1 

2.2 8.2 22 3 0.22 1.02 
2.4 8.4 24 5 0.24 1.04 
2.6 8.6 26 7 0.26 1.06 
2.8 8.8 28 9 0.28 1.08 

4 9 40 11 0.4 1.1 
5 9 50 11 0.5 1.1 

16 0 1 17 0 1 18 0 1 
100 1 0.625 1 0.375 1 

201.6 2.6 2.25 2 1.35 2.6 
203.2 4.2 3.25 3 1.95 2.2 
204.8 5.8 4.25 4 2.55 2.8 
206.4 7.4 5.25 5 3.15 3.4 

308 9 6.875 6 4.125 4 
408 9 7.5 6 4.5 4 

19 0 1 20 0 1 
0.125 1 0.0125 1 
0.45 1.2 0.045 1.02 
0.65 1.4 0.065 1.06 
0.85 1.6 0.085 1.08 
1.05 1.8 0.105 1.08 

1.375 2 0.1375 1.1 
1.5 2 0.15 1.1 
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Appendix 1.21. Paramter Estimates and RSS Values for Data Sets 1 - 20 Fitted to 

the Modified-Gompertz function (Eqn. 3.1) and the Modified­

Logisitc Function (Eqn. 3.5) 

Modified Logistic Values Modified Gompertz Values 
Data A GT D M RMS A B D M tc RMS 
Set (x1o3) (x103) 

1 0.978 0.299 8.044 1.394'~@ 0.923 0.328 9.207 5.298 0.335 
2 1.000 0.298 8.002 13.980 

~~::1 
1.014 0.377 8.260 9.030 0.345 95.5 

3 1.000 0.298 8.000 27.983 1.014 0.390 8.021 22.939 0.347 79.5 
4 0.832 0.298 8.336 8.727 0.034 0.230 12.440 4.210 0.318 39.4 

:::::::: 

5 1.000 0.015 0.100 2.053 ~:~~ljjijili 1.000 31.279 0.100 2.037 0.347 0.012 
6 0.979 0.298 7.042 8.991 0.957 0.384 7.902 4.851 0.337 73.1 
7 0.978 0.296 6.324 7.975 1.300 ::::~:~: 0.980 0.459 6.640 4.410 0.338 55.6 
8 0.982 0.293 5.036 ;:; 0110 

~:~~ 
0.995 0.565 5.421 3.977 II 'l':!O 39.8 v.7~7 V.JJ7 

9 0.984 0.285 4.032 5.907 1.003 0.726 4.246 3.554 0.342 25.7 
10 0.989 0.267 3.022 4.842 1.005 0.9% 3.118 3.144 0.344 13.9 
11 0.995 0.227 2.010 3.758 1.004 1.529 2.039 2.748 0.346 5.4 ··:··· 

12 0.999 0.140 1.002 2.733 0.200 1.002 3.113 1.004 2.368 0.346 1.2 
13 8.000 0.140 1.001 2.733 0.200 8.002 3.113 1.004 2.368 0.319 1.2 
14 1.000 0.301 10.000 299.935 0.004::: 

;.; 
1.017 0.311 10.044 23.681 0.347 123.6 

15 1.000 0.015 0.100 0.253 0.003 ~~; 1.000 31.128 0.100 0.237 0.346 0.012 
16 1.000 0.300 8.000 207.986 0.021 ::• 1.015 0.391 8.010 202.935 0.347 80.2 
17 0.951 0.292 5.098 6.222 4.400 •: 0.952 0.525 5.754 3.311 0.335 35.9 
18 0.924 0.268 3.152 3.655 5.1oo H 0.971 0.875 3.453 1.987 0.335 12.9 
19 0.939 0.154 1.122 1.037 1.2ooHi 0.990 2.625 1.151 0.662 0.335 1.4 
20 0.993 0.018 0.114 0.078 0.013' 0.999 26.247 0.115 0.066 0.335 0.014 
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APPENDIX 2 COMMON METHODS AND MATERIALS 

A2.1 MATERIALS 

A2.1.1 Reagents 

NaCl 

Lactic Acid (Min. 88% w/w) 

Univar, AR. Ajax Chemicals, Auburn, NSW, Australia. 

Sucrose 

Analar AR. BDH Chemicals Australia. Kilsyth, Vic., Australia. 

Water 

All water used in the preparation of reagents and media was prepared by glass 

distillation of deionised water. 

A2.1.2 Organisms 

Origin 

The origin of Staphylococcal strains is shown in Table A2.1. Coagulase positive 

staphylococci were characterised by gram stain, colony morphology on BPA, and 

coagulase activity determined by the tube and slide method. 

Listeria monocytogenes strains Scott A, and Murray B, were obtained from 

Dr. F. Grau, CSIRO Division of Food Processing, Brisbane, Queensland. 

Table A2.1 Sources of Coagulse Positive Staphylococcus aureus Described in 

this Thesis 

Strain 

3b 

la 

lb 

3a 

BOV 2'b 

BOV4' 

Source Isolated from: 

Dr. J. Statham, University of Tasmania Imported prawns 

Condensed Milk 

NCTC 6571 Mr. A. Ball, Public Health Laboratory, Hobart, Australia 

ATCC 25923 

Cad 010654 Mr. A. Smith, Cadbury-Schweppes, Claremont, Tas, Australia.Milk 



202 

Maintenance 

Coagulase positive staphylococci were maintained aerobically on BHIA 

slopes at 2°C, and periodically subcultured. Purity and identity of the culture was 

checked at subculture by gram reaction and colony morphology on BPA. Listeria 

monocytogenes was maintained aerobically on TSA slopes at 2°C, and periodically 

subcultured. Purity and identity of the culture was checked at subculture by gram 

reaction, 'tumbling' motility and colony morphology on OLSA .. 

A2.1.3 Culture Media and Diluents 

Brain Heart Infusion Broth (BHIB) was prepared and sterilised according to the 

manufacturer's instructions from commercially prepaxed dehydrated media (Oxoid 

CM 225, Difco 0037-01-6). Brain heart infusion agar (BHIA) was prepared from 

BHIB by the addition of 1.5% bacteriological grade agar (Oxoid, Lll) prior to 

sterilisation, and then sterilised by autoclaving (l21°C x 15 min). 

Baird-Parker Agar (Oxoid, CM 275) was prepared and sterilised according to the 

manufacturer's instructions, including the addition of Egg Yolk Tellurite Emulsion 

(Oxoid, SR 54). 

Oxford Listeria Selective Agar, was prepared from Listeria Selective Agar Base 

(Oxoid, CM 856), sterilised according to the manufacturer's instructions, and 

supplemented with Selective Supplement (Oxoid, SR 140E) containing 

cycloheximide, colistin sulphate, acriflavine, cefotetan and fosfomycin. 

Tryptone Soya Broth (TSB), (Oxoid, CM 129) was prepared and sterilised 

according to the manufacturer's instructions. Tryptone Soya Agar (TSA) was 

prepared from TSB by the addition of 1.5% bacteriological grade agar (Oxoid, L11) 

prior to sterilisation. It was then sterilised by autoclaving (121 °C x 15 min). 

Standard Plate Count Agar (PCA) (Oxoid, CM 463) was prepared and sterilised 

according to the manufacturer's instructions. 

Diluent containing 0.1% peptone (Difco, 0118-01-8) and 0.85% NaCl was used for 

serial dilution and for suspension of food samples for homogenisation. It was 

sterilised by autoclaving (121 °C x 15 min). 

Broth media and diluents were stored in airtight containers in a dark place at room 

temperature. Agar plates were stored in airtight containers at 2°C. Media were stored 

for up to 2 weeks, before being discarded. 



A2.1.4 Equipment 

Balances 
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Mettler PJ 3600 Delta Range®.± 0.01 g precision. Mettler Instrumente AG, Zurich, 

Switzerland. 

pH metering 

General. 

Coming pH meter 120 (Coming Medical and Scientific, Scientific Instruments, 

Halstead, Essex, England) with Orion 91-06 Ag/AgCl probe. 

pH measurement of cultures. 

Orion Model 250A (portable) with calomel sealed flat tip probe (AEP433). Orion 

Research Inc., Boston, Mass., USA. 

Pipettors 

A range of fixed and variable volume pipettors were used throughout this study. 

'Fixopet':100~-tl (fixed); 1 ml (fixed); 'Pluripet':200 - 1000 ~-tl. Kartell Spa Via, 

Delle Industrie, 1 20082 Noviglio, Milan, Italy. 

'Pipetman': 200 - -1000 ~J.l. Gilson Medical Electronics (France) S.A., B.P. 45 -

95400 Villiers-le-Bel, France. 

'Oxford Macro-set': 5- 10 ml. 'Oxford Adjustable': 40 - 200 ~J.l. Oxford 

Laboratories, Inc., Calif., USA. 

Dispensed volume of fixed volume pipettors was checked periodically by weighing 

of water at room temperature, and were typically found to be within ±1% of nominal 

volume. Variable volume pipettors were calibrated, by weighing of water, before 

use. 

Spectrophotometry 

Spectronic 20 (analogue display) or 20D (digital display) spectrophotometers 

(Milton Roy Co., USA) were used exclusively. 

Temperature Gradient Incubator 

Model TN 3. Advantec, Toyo Roshi International, California, USA. 

Thermometry 

A Fluke® 51K/J (John Fluke Manufacturing Co., Illinois, USA) electronic 

thermometer with Iron-Constantan thermocouple bead probe was used routinely to 

determine temperatures, and to calibrate other temperature metering and control 
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devices as necessary. Quoted accuracy:± 0.5°C. The calibration of the instrument 

was periodically checked at 0°C and 100°C. 

Timers 

A range of electronic laboratory timers were used for all growth rate experiments. At 

the commencement of inoculation, the timer was set to zero, and the real time 

recorded in case of timer failure. 

Water Activity Measurement 

Novasina, 'Humidat-IC 1 '. Novasina AG, Pfafflkon, Switzerland. Quoted acuracy: 

± 2 % R.H., reproducibility ±0.2% R.H. The instrument was calibrated on each 

occasion before use by reference to standard salt (Barium Chloride, Sodium 

Choride, Magnesium Nitrate) solutions. 

Water baths 

Static. 

A range of Lauda waterbaths were used: 

RC 20, RM 20, M 20, RM 6. (R denotes refrigerated, the number indicates bath 

capacity (litres)). Temperature control:± 0.1 °C. 

Lauda DR. R. Wobser GMRH !& Co. K.G. 

Lauda-Konighofen, West Germany. 

Shaking. 

Haake SWB 20 (201). Temperature control (measured) ± 0.5°C. 

Haake, Karlsruhe, West Germany. 

A2.2 Methods 

Counting methods 

Three dilutions of samples were routinely plated. Numbers of organisms at each 

sampling time were predicted on the basis of models developed in broth systems. 

From this prediction, the sample dilition expected to yield 30 - 300 colonies on a 

spread plate, and the tenfold higher and tenfold lower dilutions were plated. 

Duplicate spread plates of each dilution were usually prepared. Sometimes, e.g. 

where earlier sampling times had shown good agreement between predicted and 

observed numbers, ony two dilutions were plated in duplicate and the next higher 

and next lower dilutions were plated also, without replication. 

The colonies on all plates were counted and recorded, except in the case of 

very high numbers, for which an estimate based on the number of colonies within a 

subsection of the plate was used. All plates having between 30 and 300 colonies 

were included in the calculation of the number of organisms present in the sample, 
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using the method of Farmiloe et al. (1954). That method gives only 1/10 as much 

weight to the higher tenfold dilution (which has lower precision) whilst 

acknowledging that the overall precision of the mean count is increased by counting 

all countable colonies. Since a larger number of colonies is used to derive the 

weighted mean, the limiting precision of the mean is better than for either the mean 

count of colonies on the first countable plates or the arithmetic mean of colonies 

from two countable dilutions. 
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APPENDIX3 DATA SETS USED FOR MODEL GENERATION. 

The data sets upon which Eqns. 4.1 to 4.3 are based are presented in the following 

tables. The variables space covered by the data sets is shown diagrammatically in 
,, L 

~ '"( Figs. A(. and A?. 

Appendix 3.1 S. aureus 3b Data Set 

Temperature Water Activity Gen. Time (min) Temperature Water Activitfien. Time (min 
(OC) (Eqn. 3.15) CC) (Eqn. 3.15) 

13.6 0.997 497.59 10.6 0.963 2700.56 
14.6 0.997 487.74 11.5 0.963 1487.13 

15.7 0.997 340.86 13.4 0.963 855.68 
16.7 0.997 234.31 14.3 0.963 687.75 

17.5 0.997 196.98 15.3 0.963 561.12 

18.6 0.997 176.92 16.4 0.963 425.40 

19.6 0.997 150.28 17.4 0.963 296.28 

20.6 0.997 121.28 18.1 0.963 259.89 

21.9 0.997 1f'lt: 1f'l 20.0 0.963 216.78 1VJ.1V 

23.1 0.997 95.20 21.6 0.963 157.93 

24.0 0.997 78.66 23.2 0.963 115.77 

25.0 0.997 68.77 24.6 0.963 94.92 

25.9 0.997 64.06 26.0 0.963 77.50 

29.7 0.997 42.26 27.8 0.963 68.90 

30.6 0.997 38.84 29.1 0.963 56.84 

31.6 0.997 ':!..:IV\ 30.7 0.963 47.33 .J.JoVV 

32.6 0.997 33.75 32.4 0.963 43.71 

33.8 0.997 29.04 9.5 0.963 6576.02 

34.8 0.997 28.47 
9.6 0.949 3152.45 

8.9 0.986 6639.14 11.2 0.949 2082.22 

9.9 0.986 4694.65 12.4 0.949 1375.12 

10.7 0.986 3073.57 13.5 0.949 814.54 

11.7 0.986 2185.68 14.1 0.949 675.31 

12.7 0.986 1430.58 15.2 0.949 550.49 
14.1 0.986 875.82 16.2 0.949 440.43 

15.1 0.986 594.26 17.3 0.949 375.68 

16.0 0.986 477.45 18.2 0.949 266.48 

17.0 0.990 311.92 18.9 0.949 245.54 

17.9 0.986 255.44 19.8 0.949 224.33 
18.9 0.986 202.62 20.7 0.949 196.12 
19.7 0.986 155.38 21.5 0.949 171.38 
20.6 0.986 130.90 22.2 0.949 150.20 
22.3 0.986 117.57 23.1 0.949 147.35 

25.8 0.986 65.35 24.5 0.949 112.14 

27.4 0.986 52.47 27.6 0.949 90.34 

29.1 0.986 44.16 29.0 0.949 66.28 

30.7 0.986 37.69 30.8 0.949 57.76 
32.7 0.986 34.51 32.5 0.949 48.68 

34.5 0.949 39.48 
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Appendix 3.1 (cont.) S. aureus 3b Data Set 

Temperature Water Activity Gen. Time (min) Temperature Water Gen. Time 
Activity (min) 

eq (Eqn. 3.15) (OC) (Eqn. 3.15) 

9.8 0.974 4007.16 11.9 0.935 1783.35 

11.0 0.974 2917.90 13.2 0.935 1410.52 

12.0 0.974 1731.57 17.1 0.935 347.86 

12.6 0.974 1195.45 14.2 0.935 1080.05 

13.6 0.974 859.66 15.1 0.935 810.15 

15.2 0.974 556.45 16.1 0.935 649.16 

16.2 0.974 501.43 18.9 0.935 347.86 

17.1 0.974 338.30 20.6 0.935 222.51 

18.1 0.974 250.57 24.0 0.935 135.78 

18.8 0.974 185.91 25.5 0.935 154.33 

19.8 0.974 153.03 27.1 0.935 131.93 

20.6 0.974 131.54 28.8 0.935 103.80 

21.5 0.974 120.41 30.5 0.935 72.05 

22.3 0.974 106.51 32.3 0.935 59.01 

23.8 0.974 79.59 34.5 0.935 52.181 
25.5 0.974 66.53 
27.2 0.974 52.17 12.6 0.914 4956.43 

28.9 0.974 47.08 13.9 0.914 3215.07 

30.6 0.974 41.99 14.7 0.914 2106.15 

32.5 0.974 33.32 15.6 0.914 1366.95 

34.8 0.974 32.70 16.6 0.914 903.37 
17.3 0.914 683.87 

10.1 0.969 2317.11 18.5 0.914 551.49 

11.0 0.969 1348.50 19.3 0.914 411.47 

12.0 0.969 893.25 20.2 0.914 373.59 

13.0 0.969 663.48 21.1 0.914 338.10 

14.0 0.969 535.55 23.0 0.914 182.97 

15.0 0.969 416.48 26.8 0.914 120.93 

16.0 0.969 360.32 28.8 0.914 124.24 

19.0 0.969 193.29 31.0 0.914 89.87 

17.2 0.969 288.98 33.3 0.914 70.77 

18.2 0.969 245.78 36.2 0.914 61.68 

19.8 0.969 164.26 

20.5 0.969 123.37 
22.1 0.969 149.31 

23.9 0.969 105.14 

25.2 0.969 87.39 
25.8 0.969 70.56 

27.8 0.969 49.97 

29.9 0.969 44.02 

32.3 0.969 35.18 

34.8 0.969 31.87 
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Appendix 3.1 (cont.) S. aureus 3b Data Set 

Temperature Water Activity Gen. Time (min) Temperature Water Gen. Time 
Activity (min) 

(OC) (Eqn. 3.15) (OC) (Eqn. 3.15) 

14.6 0.969 392.76 30.0 0.997 52.81 

15.7 0.969 331.68 30.0 0.990 58.63 

16.6 0.969 273.54 30.0 0.982 63.23 

18.9 0.969 186.06 30.0 0.974 72.61 

20.0 0.969 124.20 30.0 0.966 82.11 

20.7 0.969 143.87 30.0 0.958 84.97 

21.6 0.969 120.02 30.0 0.949 109.34 

22.7 0.969 97.23 30.0 0.939 134.77 

23.7 0.969 90.77 30.0 0.929 141.76 

24.7 0.969 79.62 30.0 0.919 177.77 

25.8 0.969 69.33 30.0 0.908 226.26 

27.7 0.969 55.26 30.0 0.898 304.12 

28.7 0.969 51.31 30.0 0.885 394.86 

29.7 0.969 47.13 30.0 0.873 612.88 

30.8 0.969 44.97 

31.7 0.969 37.22 26.0 0.997 70.571 
32.8 0.969 38.90 26.0 0.990 73.11 

33.8 0.969 33.32 26.0 0.982 78.71 

35.0 0.969 34.23 26.0 0.966 79.11 
26.0 0.958 89.56 

34.0 0.997 32.34 26.0 0.949 98.83 

34.0 0.990 34.88 26.0 0.939 117.12 

34.0 0.982 37.65 26.0 0.929 128.54 

34.0 0.974 40.53 26.0 0.919 147.93 

34.0 0.966 47.62 26.0 0.908 186.61 

34.0 0.958 50.27 26.0 0.898 235.56 

34.0 0.949 59.13 26.0 0.885 305.63 

34.0 0.939 71.98 26.0 0.873 477.82 

34.0 0.929 80.84 26.0 0.860 870.83 

34.0 0.919 98.33 

34.0 0.908 115.61 

34.0 0.898 147.28 

34.0 0.885 182.94 
34.0 0.873 272.30 
34.0 0.860 256.25 
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Appendix 3.2 Listeria monocytogenes Scott A Data set 

Temperature Water Activity pH Gen. Time (h) 

eq (Eqn. 3.15) 

6.80 0.997 7.20 19.35 

8.80 0.997 7.20 11.48 

10.60 0.997 7.20 6.34 
12.20 0.997 7.20 4.62 

13.40 0.997 7.20 3.80 
14.30 0.997 7.20 3.76 

15.60 0.997 7.20 3.13 
16.60 0.997 7.20 2.71 
17.40 0.997 7.20 2.51 

18.30 0.997 7.20 2.13 

19.20 0.997 7.20 2.00 

20.20 0.997 7.20 1.73 

21.50 0.997 7.20 1.59 

22.40 0.997 7.20 1.39 

23.30 0.997 7.20 1.21 

24.20 0.997 7.20 1.12 

25.20 0.997 7.20 1.07 
26.20 0.997 7.20 0.97 
27.20 0.997 7.20 0.92 
28.30 0.997 7.20 0.86 
29.20 0.997 7.20 0.78 

30.40 0.997 7.20 0.71 

31.40 0.997 7.20 0.67 

32.50 0.997 7.20 0.62 

33.70 0.997 7.20 0.61 

35.60 0.997 7.20 0.56 

36.80 0.997 7.20 0.59 

38.90 0.997 7.20 0.57 

19.50 0.997 7.20 1.76 
19.00 0.997 7.20 1.85 
19.50 0.997 7.20 2.38 

19.50 0.997 7.20 2.76 

19.50 0.997 7.20 1.70 

19.50 0.997 7.20 1.60 

19.50 0.997 7.20 1.65 

19.50 0.997 7.20 2.07 

19.50 0.997 7.20 2.21 

19.50 0.997 7.20 1.96 

19.50 0.997 7.20 2.21 

19.50 0.997 7.20 1.65 

19.50 0.997 7.20 1.73 

19.50 0.997 7.20 1.51 

19.50 0.997 7.20 1.60 
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Appendix 3.2 (cont.) Listeria monocytogenes Scott A Data set 

Temperature Water Activity pH Gen. Time (h) 
(oC) (Eqn. 3.15) 

28.00 0.997 7.20 0.88 
28.00 0.997 7.20 1.00 
27.00 0.997 7.20 0.95 
27.00 0.997 7.20 1.15 
13.00 0.997 7.20 4.17 

13.00 0.997 7.20 4.53 

9.00 0.997 7.20 9.54 
9.00 0.997 7.20 8.00 
6.50 0.997 7.20 10.07 

0.00 
19.50 0.990 7.20 2.82 

19.50 0.984 7.20 2.86 
19.50 0.979 7.20 3.32 
19.50 0.973 7.20 3.97 
19.50 0.967 7.20 4.25 
19.50 0.960 7.20 5.38 
19.50 0.954 7.20 5.90 
19.50 0.947 7.20 8.49 
19.50 0.940 7.20 12.05 
19.50 0.933 7.20 30.36 

0.00 
19.50 0.990 7.60 1.96 
19.50 0.990 7.45 1.87 
19.50 0.990 7.25 1.86 
19.50 0.990 6.90 2.00 
19.50 0.990 6.55 1.85 
19.50 0.990 6.20 2.07 
19.50 0.990 6.00 2.41 
19.50 0.990 5.85 3.41 
19.50 0.990 5.80 5.80 
19.50 0.990 5.65 10.60 
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Appendix 3.3 Listeria monocytogen.es Murray B Data Set 

Temperature Water Activity pH Gen. Time (h) 
(OC) (Eqn. 3.15) 

6.90 0.997 7.20 17.83 
8.80 0.997 7.20 10.03 

10.60 0.997 7.20 5.65 
12.60 0.997 7.20 4.73 

13.50 0.997 7.20 4.03 
14.90 0.997 7.20 3.55 
15.90 0.997 7.20 3.70 
17.20 0.997 7.20 2.72 
18.00 0.997 7.20 2.88 
18.90 0.997 7.20 2.27 

19.70 0.997 7.20 1.97 
20.80 0.997 7.20 1.72 
21.90 0.997 7.20 1.53 
22.80 0.997 7.20 1.49 
23.40 0.997 7.20 1.25 
24.20 0.997 7.20 1.19 
25.00 0.997 7.20 1.07 
26.30 0.997 7.20 1.01 

27.30 0.997 7.20 0.93 
28.40 0.997 7.20 0.86 
29.30 0.997 7.20 0.84 

30.50 0.997 7.20 0.73 

3L80 0.997 7.20 0.70 
32.70 0.997 7.20 0.67 
33.90 0.997 7.20 0.64 
35.60 0.997 7.20 0.63 
37.20 0.997 7.20 0.58 
38.80 0.997 7.20 0.58 

19.50 0.997 7.20 1.62 
19.00 0.997 7.20 1.73 
19.50 0.997 7.20 1.75 
19.50 0.997 7.20 2.30 

19.50 0.997 7.20 1.90 
19.50 0.997 7.20 1.77 



212 

Appendix 3.3 (cont.) Listeria monocytogenes Murray B Data Set 

Temperature Water Activity pH Gen. Time (h) 
(oC) (Eqn. 3.15) 

19.50 0.990 7.20 3.77 
19.50 0.984 7.20 3.50 
19.50 0.979 7.20 3.97 
19.50 0.973 7.20 4.48 
19.50 0.967 7.20 4.73 
19.50 0.960 7.20 5.78 
19.50 0.954 7.20 7.23 
19.50 0.947 7.20 8.77 
19.50 0.940 7.20 13.20 
19.50 0.933 7.20 23.83 

19.50 0.990 7.60 1.88 
19.50 0.990 7.50 1.87 
19.50 0.990 7.30 1.83 
19.50 0.990 6.90 1.90 
19.50 0.990 6.55 1.97 
19.50 0.990 6.10 2.13 
19.50 0.990 5.90 2.27 
19.50 0.990 5.80 2.98 
19.50 0.990 5.75 4.35 
19.50 0.990 5.70 8.23 
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Fig. A2 Diagrammatic representation of variables combinations tested in the 

generation of kinetic models for L. monocytogenes, Appendices 3.2 - 3.3 
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APPENDIX 4 GIBBS FREE ENERGY OF DENATURATION OF 

PROTEINS AS A FUNCTION OF TEMPERATURE. 

Figure A3 shows the effect of temperature on the Gibbs Free Energy of denaturation 

of an imaginary protein with the following characteristics: 

!J.H* = 
n == 

S* = 

5358 J mol-res.- 1 

330 amino acid res. 

18.1 JK-1 mol-res-1 

Curves for three values of the change in heat capacity of the protein upon 

denaturation, 11Cp, are shown.The values are 50, 65 and 80 J K-1 mol-res.-1. In the 

figure, positive values of 11Gden represent those temperatures at which the protein is 

in catalytically active. 
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Fig. A3 Relationship between 11G den and temperature for an imaginery protein, 

and showing the effect of I:!.Cp on the range of activity. 


