
 

 

Students’ Understanding of Statistical  

Inference: Implications for Teaching 

by 

Robyn Reaburn, B.App.Sci.(Medical Technology), 

BA, Dip.Teach.,Grad.Dip.Sci.,MSc. 

Submitted in fulfilment of the  

requirements for the Degree of Doctor of  

Philosophy 

University of Tasmania, October, 2011. 

  



ii 

 

 

 

 

 

This thesis contains no material which has been accepted for a degree or diploma 

by the University or any other institution, except by way of background informa-

tion and duly acknowledged in the thesis, and to the best of my knowledge and 

belief no material previously published or written by another person except where 

due acknowledgement is made in the text of the thesis, nor does the thesis contain 

any material that infringes copyright.  

  



iii 

 

 

 

This thesis may be made available for loan and limited copying in accordance 

with the Copyright Act of 1968. 

  



iv 

 

The research associated with this thesis abides by the international and Australian 
codes on human and animal experimentation, the guidelines by the Australian 
Government‟s Office of the Gene Technology Regulator and the rulings of the 
Safety, Ethics and Institutional Biosafety Committees of the University.  
  



v 

 

 

Abstract 

It was of concern to the researcher that students were successfully completing in-

troductory tertiary statistics units (if success is measured by grades received), 

without having the ability to explain the principles behind statistical inference. In 

other words, students were applying procedural knowledge (surface learning) 

without concurrent conceptual knowledge. 

This study had the aim of investigating if alternative teaching strategies could as-

sist students in gaining the ability to explain the principles behind two tools of 

statistical inference: P-values and confidence intervals for the population mean. 

Computer simulations were used to introduce students to statistical concepts. Stu-

dents were also introduced to alternative representations of hypothesis tests, and 

were encouraged to give written explanations of their reasoning. Time for reflec-

tion, writing and discussion was also introduced into the lectures. 

It was the contention of the researcher that students are unfamiliar with the hypo-

thetical, probabilistic reasoning that statistical inference requires. Therefore stu-

dents were introduced to this form of reasoning gradually throughout the teaching 

semester, starting with simple examples that the students could understand. It was 

hoped that by the use of these examples students could make connections that 

would form the basis of further understanding. 

It was found that in general, students‟ understanding of P-values, as demonstrated 

by the reasoning used in their written explanations, did improve over the four se-

mesters of the study. Students‟ understanding of confidence intervals also im-

proved over the time of the study. However for confidence intervals, where sim-
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ple examples were more difficult to find, student understanding did not improve 

to the extent that it did for P-values.  

It is recommended that statistics instructors need to appreciate that tertiary stu-

dents, even those with pre-tertiary mathematics, may not have a good appreciation 

of probabilistic processes. Students will also be unfamiliar with hypothetical, 

probabilistic reasoning, and will find this difficult. Statistics instructors, therefore, 

need to find connections that students can make to more familiar contexts, use 

alternative representations of statistical processes, and give students time to re-

flect and write on their work.  
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1. Introduction 

1.1  Why do this research? 

I have long felt that many students, although they can successfully follow the pro-

cedure to carry out a hypothesis test, do not understand the reasoning behind this 

process. In particular, it appears that students find difficulty in explaining the rea-

soning behind the P-values in hypothesis testing and in understanding that confi-

dence intervals are used to estimate population parameters.   

I, myself, was a successful undergraduate statistics student in that I received high 

grades. Looking back, however, I realise that although I was successfully follow-

ing the process I would not have been able to explain the reasoning behind confi-

dence intervals and hypothesis tests.  

I am now a lecturer of a first year statistics unit at a tertiary institution and I have 

found that when students are asked questions that require conceptual understand-

ing (in contrast to procedure) they often demonstrate a lack of understanding. For 

example, in one assignment students are asked to calculate the confidence interval 

for a mean, and then in a separate question they are asked to calculate the interval 

where 95% of the individuals are expected to lie. These questions cause intense 

angst and confusion. It is apparent from their answers that the students often do 

not appreciate the difference between the questions.  

In another assignment students may be asked to explain the meaning of the phrase 

“significant difference” when testing for differences in population means. Since 

the sample means are not identical, why can it be concluded from the given P-
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value that the population means may not be different from each other? It is appar-

ent from the student answers that the students can successfully complete the  

process and conclude that the null hypothesis should be accepted. Many of them 

cannot, however, explain the role of sampling variation and what the P-value is in 

conceptual terms. It would appear that the students are using procedural knowl-

edge only.  

The literature indicates that my suspicion, that many students do not understand 

hypothesis testing, is also of concern to others. For example, Garfield (2002, p. 3) 

has found “that students can often do well in a statistics course, earning good 

grades on homework, exams and projects, yet still perform poorly on a measure of 

statistical reasoning such as the Statistical Reasoning Assessment.” Garfield and 

Ahlgren (1988) also report that students use procedural knowledge without  

understanding the concepts behind what they are doing:  

The experience of most college faculty members in education 
and the social sciences is that a large proportion of university 
students in introductory statistics courses do not understand 
many of the concepts they are studying … Students often tend 
to respond to problems involving mathematics in general by 
falling into “number crunching” mode, plugging quantities into 
a computational formula or procedure without forming an in-
ternal representation of that problem. (p. 46) 

 

My experiences as both a student and lecturer confirm that this “number crunch-

ing mode” can lead to success in a statistics course if success is only measured by 

the grade received. The purpose of this study was to find alternative methods of 

instruction that would enhance the students‟ gaining of conceptual knowledge of 

hypothesis testing and the estimation of population parameters.   
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1.2 The Research Questions 

Before this research commenced the Data Handling and Statistics unit was taught 

in a didactic style and little attempt was made to discover the students‟ concep-

tions before and during the unit. The unit was taught in four modules. The first 

module consisted of the summarisation of data and data collection methods. The 

second module introduced probability and probability distributions. The third 

module introduced confidence intervals and hypothesis testing. The final module 

introduced the Analysis of Variance (ANOVA) and simple and multiple linear 

regression.  One consequence of the way the material was presented was that stu-

dents had to grapple with the formal hypothesis testing procedures at the same 

time as they were introduced to hypothetical and probabilistic reasoning. They 

had little or no time to gather experience with drawing conclusions using prob-

ability and to become familiar with hypothetical reasoning before the use of for-

mal procedures. 

With these factors in mind the research questions were: 

 What are students‟ understandings of probability and stochastic processes 

on entering university? Are there any differences in understandings be-

tween those students who have studied statistics in their previous mathe-

matics courses and those who have not? 

 What are students‟ understandings of P-values at the end of their first ter-

tiary statistics unit? How did these understandings change over the time of 

the study? 
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 What are students‟ understandings of confidence intervals at the end of 

their first tertiary statistics unit? How did these understandings change 

over the time of the study? 

1.3 A note on the terminology 

Students come into any learning environment with their own views of the world 

which they have gained over their life experience. These beliefs may be inconsis-

tent with formal knowledge, that is, “inconsistent with commonly accepted and 

well-validated explanations of phenomena or events” (Ormrod, 2008, p. 245). In 

the educational literature views that are not consistent with formal knowledge, are 

referred to as “misconceptions,” “misunderstandings” or, in the more recent lit-

erature, “alternative conceptions” (Sotos, Vanhoof, Van den Noortgate, & 

Onghena, 2007).  In the literature pertaining to tertiary statistics education, how-

ever, the term “misconceptions” is generally retained. Therefore this term is used 

for this study.  

As stated in Section 1.2, the study aims to investigate students‟ understanding. 

This is based on the reasoning used in their answers to specified questions. What 

is meant by “understanding” and “reasoning” in mathematics and statistics educa-

tion has resulted in considerable debate (for example, see Ben-Zvi & Garfield, 

2004). Therefore it is important to define what is meant by these terms in this 

study. In this study students are considered to have “understanding” if they can 

make connections among related concepts, can represent concepts in different 

ways, and have conceptual and not just procedural knowledge (Australian Cur-

riculum, Assessment and Reporting Authority (ACARA), 2011). “Reasoning” is 
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shown when students justify the strategies they use and justify their conclusions 

(ACARA, 2011).  
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2. Literature Review – part I: Statistical Reasoning 

2.1 What is statistics? 

“Statistics is the science of collecting, organising, analysing, interpreting, and 

presenting data” (Doane & Seward, 2007, p. 3). In practice, statistics involves the 

use of numbers within a context and involves data collection, summarising these 

data in some way and making interpretations and decisions. 

There are two general areas of statistics, descriptive statistics and inferential  

statistics. With descriptive statistics, data are summarised with graphs, tables and 

numbers such as means and standard deviations. Inferential statistics involves the 

making of conclusions about entire populations from samples (Doane & Seward, 

2007). This latter field involves the use of probability and hypothetical reasoning. 

Because variation is universal, and no two samples are alike, no sample is likely 

to be exactly representative of the population from which it was drawn. The use 

of samples, therefore, always results in uncertainty concerning the accuracy of the 

conclusions inferred from samples. 

Statistical analyses require some mathematical skills. The use of computers, how-

ever, has greatly reduced the time taken in computation, so that analyses are now 

much easier to do, although not necessarily easier to understand.  Although statis-

tics requires the use of numbers, from the students‟ viewpoint there are important 

differences between statistics and other branches of mathematics with which they 

may be more familiar. In statistics the numbers always have a context, there is a 

need for correct data collection, and there is always uncertainty about the answers 

to questions posed about populations when samples are used. For students who 
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are used to working towards a single “correct” answer in other branches of 

mathematics the need to address these differences can be unexpected and discon-

certing. 

These differences have led some writers to look at statistics as being not a branch 

of mathematics at all. For example, Shaughnessy (2006, p. 78) states, “Statisti-

cians are quite insistent that those of us who teach mathematics realise that statis-

tics is not mathematics, nor is it even a branch of mathematics.” 

The successful use of statistics, however, does require skills that are usually re-

garded as mathematical. Not only does the discipline of statistics require the 

summary and interpretation of data with graphs and numbers such as the mean 

and median, it also requires hypothetical reasoning that in turn uses the mathemat-

ics of probability. Common statistical procedures are based on what Cobb and 

Moore (1997, p. 803) refer to as “elaborate mathematical theories [and] the study 

of these theories is part of the training of statisticians.”  

2.2 Statistical reasoning 

In practice, statistical reasoning involves being able to assess how well data are 

collected, describe the data, draw conclusions from the data, and allow for the un-

certainty that results from the use of a sample. Students, therefore, need to under-

stand how sampling is influenced by the variation that is present in every process 

(Wild & Pfannkuch, 1999). They need to grapple with the question, if variation is 

omnipresent and sampling variation is also omnipresent, what can be said about a 

population, when there is only a sample available? (Moore, 1990). Students need 

to recognise that a sample gives some information about a population, and the 
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sample puts limits on the estimated value of a characteristic of the population. 

That is, students need to be able to cope with the conflicting ideas that samples do 

not exactly represent a population but are in some way still representative of that 

population (Rubin, Hammerman, & Konold, 2006).  

A result of the tension between the representativeness and variability of samples 

is that statistical inference leads to the formation of conclusions based on a hypo-

thetical reasoning process (hypothesis testing), and which are stated in probabilis-

tic terms. The result of the presence of variation leads the user of statistics to an-

swer the following question, “Is the observed effect larger than can be reasonably 

attributed to chance alone?” (Moore, 1990). 

2.3 Hypothesis testing and confidence intervals 

2.3.1 Hypothesis testing 

What distinguishes science from other fields of knowledge? It was in the search 

for the answer to this question that Popper (1963) proposed the criterion of “falsi-

fiability, or refutability, or testability” (p. 37). By this criterion, “statements or 

systems of statements, in order to be ranked as scientific, must be capable of con-

flicting with possible, or conceivable observations” (p. 39). A “theory that is not 

refutable by any conceivable event is non-scientific” (p. 36). 

This proposal, that scientific statements must be capable of being falsified, is 

sometimes introduced to students with reasoning similar to this. A statement is 

made such as: 

All swans are white. 
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It is not possible to prove this statement true. No matter how many white swans 

are observed, there is always the possibility that the next swan observed may not 

be white. In contrast, it is possible to disprove this statement by the observation of 

only one swan of another colour. Therefore, according to Popper‟s criterion of 

falsification, because the statement about swans is capable of being disproved, it 

is scientific. 

Similar reasoning is used in statistical hypothesis testing. A proposition (the “null 

hypothesis”, designated H0) is made about a parameter (for example, the mean) of 

an entire population. This is written in such a way so that the sample data may be 

used to find evidence against it. The sample data are then collected and the appro-

priate sample statistic calculated. If the sample statistic is one that could be rea-

sonably expected from a population with the proposed characteristic, then the hy-

pothesis is accepted. If, however, the sample statistic is not one that would be ex-

pected from a population with the proposed characteristic the hypothesis is re-

jected. A complication is added by the omnipresence of sampling variation. Since 

it is known that if another sample were taken it would be different from the first, 

and that any one sample may or may not be representative of the population from 

which it was drawn, the decision to reject or accept the hypothesis is always made 

with uncertainty. Thus the hypothesis is never definitively proved or disproved. 

To manage this uncertainty the mathematics of probability is used to assist in 

making the decision to reject or accept the hypothesis. A probability is calculated 

using the following reasoning: If the null hypothesis about the population is true, 

how likely is the sample statistic or a statistic that is even less likely? For exam-
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ple, if the hypothesis is about the value of a population mean, the probability 

would be expressed in mathematical terms as: 

)|)0|((|   oHxP  

where x is the mean of the sample, and µ is the mean of the population. If this 

probability is found to be very low, then it is concluded that evidence has been 

found against the null hypothesis and it is rejected. If this probability is not very 

low, then the hypothesis is accepted. 

Lipson, Kokonis and Francis (2003) have summarised the reasoning involved in 

hypothesis testing as a stepwise process. The first step involves the recognition 

that no two samples are alike, even if they had been drawn from the same popula-

tion. The second step involves comparing the sample result with that expected 

from the hypothesised population. To do this, a knowledge of sampling distribu-

tions (the pattern into which the sample statistics from the hypothesised popula-

tion would fall) is required. If the hypothesis should be rejected, then the next step 

involves recognition that there is an inconsistency between the sample and the 

hypothesised population, and that the sample may not belong to that of the hy-

pothesised population.  

A diagrammatic model of a hypothesis test is in Figure 2.3.1.1. 
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Figure 2.3.1.1. Model of a hypothesis test. 

The population – We 
know nothing about it, 
but will make a hy-
pothesis about it. 

Take a Sample – the only way we can 
tell something about the population. This 
sample may or may not be representative 
of the population. 

Work out the probability of getting our 
sample or a sample with a characteristic 
even further away from the hypothesis, 
assuming the hypothesis is true. 

To do this requires 
knowledge of sampling 
distributions.  

If, according to the hypothesis, 
the sample observation (including 
any observation more extreme) is 
very unlikely, the initial hypothe-
sis is rejected.  

If, according to the hypothesis, the 
sample observation (including any 
observation more extreme) is not 
unlikely, the initial hypothesis is 
accepted. 

Some students find this hypo-
thetical reasoning difficult. 
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In summary, successful hypothesis testing requires: 

 An understanding of randomness and probability. 

 An understanding of data collection and the recognition that samples may 

not be representative of the parent population. 

 An understanding of what summary statistics such as the mean and stan-

dard deviation represent, that is, an understanding that is more than just 

how these numbers are calculated. 

 An understanding of how sample statistics such as the mean relate to the 

equivalent statistics in the population (in populations these statistics are 

known as parameters). 

 An understanding that variation is omnipresent, and of the extent of varia-

tion to be expected in the data. 

 An understanding of the legitimate interpretations of hypothesis tests, in-

cluding the setting up and correct interpretations of the null and alternative 

hypotheses, and correct interpretations of P-values and levels of signifi-

cance.  

These areas are discussed in turn in Sections 2.4 and 2.5. 

2.3.2 Confidence intervals 

Confidence intervals estimate a population parameter based on a sample. They 

give a range in which it is considered likely the value of the population parameter 

will lie. In the Data Handling and Statistics unit at the University of Tasmania, 

students are required to estimate and interpret confidence intervals for the mean.  
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To understand the process, students need to know that approximately 95% of data 

that belongs to a Normal distribution will be within two standard deviations of the 

mean. They also need to know that if an infinite number of samples of the same 

size were taken, and the sample means calculated for each one, these sample 

means in turn would form a Normal distribution. What follows is a statement 

known as the Central Limit Theorem. If the sample size is large enough (a rule of 

thumb is 20 or more) then the distribution formed by the sample means is a Nor-

mal distribution, regardless of the distribution of the original population. This 

Normal distribution has the same mean as the original population, and the stan-

dard deviation of the sample means (known, rather confusedly, as the standard 

error of the mean) is equal to the standard deviation of the original population 

divided by the square root of the sample size. Therefore, a larger sample size will 

result in a smaller standard error.  

If sample means have a Normal distribution, then the same rule applies to this dis-

tribution as any other Normal distribution. Approximately 95% of the sample 

means are then found within two standard errors of the population mean. This in-

dicates that most sample means are within a “reasonable” distance of the popula-

tion mean. The direct consequence of this knowledge is illustrated in Figure 

2.3.2.1. 

Students then have to contend with the idea that the process used to make the es-

timate of the population mean will be “true” 95% of the time, as 5% of the time a 

sample mean will be found that is outside of the two standard error interval. Sec-

tion 2.5.4.6 examines the literature describing misconceptions students have about 

the process of finding and interpreting confidence intervals.  
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Figure 2.3.2.1. The relationship between the distribution of sample means and the 
process of finding a confidence interval to estimate the value of the population 
mean.  
 

2.4 Misconceptions with probabilistic reasoning 

2.4.1 Introduction 

According to constructivist theories of learning all students come into any learn-

ing environment with their own preconceptions that may or may not be correct. 

Students combine concepts into a schema – a mental representation of an associ-

ated set of perceptions, ideas or actions. If new knowledge is understood, this 

means that a student has successfully assimilated the new information into an ap-

-2se +2se 

If a sample mean falls 
between these two 
numbers, adding and 
subtracting two stan-
dard errors (se) from 
this mean will give an 
interval that contains 
the value of the popu-
lation mean. 

μ 
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propriate schema. If the student has an inappropriate or non-existent schema then 

assimilating later ideas can become difficult, if not impossible (Krause, Bochner, 

& Duchesne, 2007).  

If students have pre-existing inappropriate or non-existent schemas about prob-

ability they will not be able to understand statistical inference. Statistical infer-

ence relies on the mathematics of probability from the selection of the sample to 

the drawing of the final conclusions. The literature shows, however, that a per-

son‟s intuitive views of probability are often inappropriate or incomplete. These 

inappropriate or incomplete views may be difficult to detect because probability 

questions, using examples such as coin tosses, can be simple to answer. As people 

get older their intuitive perceptions of statistical phenomena, even though inap-

propriate, may get stronger, and formal instruction may not correct these intuitive 

views (Moore, 1990). Furthermore, it has been found that students may use the 

formal views inside the classroom, but revert to their own intuitive views, 

whether correct or not, outside the classroom (Chance, delMas, & Garfield, 

2004). 

Over the last three decades a body of research has been produced on probabilistic 

reasoning. This research has identified several errors in intuitive reasoning that 

are described in the following sections.  

2.4.2 The contribution of Tversky and Kahneman 

In their groundbreaking work, Tversky and Kahneman (1982b) provided exten-

sive research that described the judgement heuristics (the “rules of thumb”) that 

are used in probabilistic reasoning. One of these judgement heuristics is known as 



30 

 

the “representative heuristic,” in which probabilities are evaluated by the degree 

to which A resembles B. If A is very similar to B, the probability that A originates 

from B is judged to be high. If A is not similar to B, the probability that A origi-

nates from B is judged to be low (Tversky & Kahneman, 1982b). This heuristic 

manifests itself in several forms. The first of these involves the neglect of base 

rate frequencies and is illustrated the following example. The participants in 

Tversky and Kahneman‟s study had to assess the probability that “Steve” was a 

farmer, salesman, airline pilot or librarian. Steve was described as being meek and 

tidy with a passion for detail. The participants tended to suggest that Steve was a 

librarian, as he fitted the stereotype of a librarian. In using this reasoning, how-

ever, the participants ignored the base rate frequencies, that is, the number of each 

occupation in the population.  

Using this representative heuristic also led participants not to realise that devia-

tions from the expected value generated by a random process are more likely in 

samples of small size. The participants, therefore, expected that 50% of coin 

tosses would be heads even with a small number of tosses. This expectation was 

reinforced by a belief in the “fairness” of the laws of chance. Therefore in a series 

of coin tosses the independence of each event was ignored so that if a series of 

Tails had been tossed, a Head was regarded as more likely than a Tail. This latter 

misconception is known as the “Gambler‟s fallacy” (see also Fischbein & 

Schnark, 1997).  

This heuristic also led the participants to predict that two samples drawn from a 

population would be more like each other than is the case in reality. The partici-

pants who used the representativeness heuristic also expected that one outlier in 
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data (say a very high result) would be cancelled out by further data (say a very 

low result) instead of being merely diluted by other data (Tversky & Kahneman, 

1982b).  

Tversky and Kahneman (1982b) described another judgement heuristic that they 

referred to as “availability” (p. 11). This led the participants to judge the likeli-

hood of an event by the ease with which instances of it could be brought to mind. 

By this heuristic a class that can easily be retrieved will appear more numerous 

than a class of equal or higher frequency that cannot be so easily retrieved. There-

fore the subjects considered words in the form of „_ _ _ _ ing‟ to be more com-

mon than words in the form „_ _ _ _ _ n _‟, even though the first example is a 

subset of the second (Tversky & Kahneman, 1983). This heuristic also led to the 

participants assuming correlation between variables when, in fact, this correlation 

does not exist (Tversky & Kahneman, 1982b, pp. 11-13).  

Tversky and Kahneman (1982b, pp. 15-16) also described the phenomenon of 

“anchoring” where a person will make an estimate from an initial value and then 

make adjustments to suit the situation. Unfortunately, the adjustments are usually 

insufficient. For example, in a study where the subjects had to judge the probabil-

ity of getting seven consecutive red marbles where 90% of the marbles are red (a 

“conjunctive” event) the participants started with the probability of the initial 

draw (0.90) and then estimated down for seven in a row but then did not make the 

adjustment large enough (the final probability is 0.48). When they had to judge 

the probability of getting at least one red marble in seven tries where 10% of the 

marbles were red, the subjects started with the probability of the initial draw 
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(0.10) and then estimated up to allow for the seven tries but again did not make a 

large enough adjustment (the final probability is 0.52). 

2.4.3 Other misconceptions about probability 

Since the work of Tversky and Kahneman other researchers have examined peo-

ple‟s understanding of probability.  Konold (1989) added another judgement heu-

ristic to the list, the “outcome approach.” With this heuristic it was found that par-

ticipants in his study made errors because they had a desire to predict the outcome 

of a single trial in a probabilistic process, and would judge their predictions as 

correct or not on this single trial. Lecoutre (1992) added the “equiprobability 

bias,” where two outcomes of different probabilities are judged to be equally 

probable even when this is not the case. For example, participants in her study 

judged that if two dice were rolled then a combination of a „5‟ and a „6‟ was 

equally likely as two sixes. The participants failed to realise that there were twice 

as many ways of achieving a „5‟ and a „6‟ rather than two sixes.  

Fischbein and Schnark (1997) have described what they call the “time-axis fal-

lacy” where they found that people can predict the probability of events in the fu-

ture, but do not use later knowledge to predict the probability of events in the 

past. This fallacy can be illustrated with an example. 

You have an urn with two white marbles and two black marbles. 
You take out a white marble. Without replacing it, you take out a 
second marble. What is the probability that this second marble is 
also white?  

You put all the marbles back and then take out a marble and put 
it aside without looking at it. You take out a second marble that 
is white. What is the probability that the first marble was white? 
(Adapted from Fischbein and Schnark, 1997) 
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 It was found that in answering the second part of this question the participants 

correctly realised that the second draw could not influence the first draw, but they 

failed to realise that knowledge of the second draw could be used to determine the 

probability of the first draw (Falk, 1986). 

If a student has poor intuitive ideas on how probabilistic processes work, it can be 

expected that this student will have difficulty understanding statistical inference 

and hypothesis testing, which are based on these probabilistic processes.  In addi-

tion, Garfield and Ahlgren (1988) have found that these problems are exacerbated 

if the student has poor basic mathematical skills, especially in the use of propor-

tions, fractions, decimals and percents.   

2.4.4 Misconceptions about conditional probability 

Because hypothesis testing involves conditional probabilities it is important that 

students can interpret conditional statements.  

Formally, a conditional probability is presented as 

       
      

    
 

The sample space is therefore restricted to points in an event B; that is, only 

points in A that are in set B are of interest. For example, if the probability of get-

ting a king, given that the requirement that the card is a spade, the formula would 

read 
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In this case, the only card of interest is the one card that is both a king and a 

spade, out of the total number of spades. Cards of other suits are not of interest.  

Watson and Kelly (2009) found that students in elementary school can use infor-

mal conditional reasoning with probabilities, and can understand that sampling 

without replacement affects the probabilities of outcomes of subsequent selec-

tions. Students can also calculate conditional probabilities accurately when the 

data are in the form of a frequency table. However, when conditional statements 

are put into social contexts, the students‟ background knowledge may interfere 

with the calculations of these probabilities. The “time-axis fallacy” may also play 

a part; that is, students can predict the probability of events in the future given 

past events, but cannot give the probability of events in the past given later 

knowledge (Fischbein & Schnarch, 1997). 

2.5 Other misconceptions about statistical reasoning 

2.5.1 Misconceptions about randomness 

Randomness has a different mean-ing in everyday speech compared to its mean-

ing in mathematics. In everyday speech randomness can refer to any event that 

cannot be predicted, is haphazard, or is without a definite purpose. In mathemat-

ics, a process is random if the occurrence of an event follows a probability distri-

bution. Therefore, if an event has a 60% chance of occurring (for example select-

ing a red marble from a bag with 60 red marbles and 40 blue marbles), although 

the result of each individual selection cannot be predicted, it is known that in the 

long term a red marble will be drawn approximately 60% of the time. 
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The varying meanings that students apply to the term randomness have been in-

vestigated by LeCoutre, Rovira, LeCoutre and Poiteviniau (2006). Some partici-

pants in their study believed that randomness applied for any occurrence where 

the cause is unknown. If a cause is found, these participants then believed that the 

occurrence was no longer random. The authors also found that some participants 

believed that randomness applied to any situation where the probability was easy 

to compute. Of interest was the finding that a background in probability study had 

little effect on the accuracy of the participants‟ beliefs. This illustrates how stu-

dents‟ intuitive knowledge, while inappropriate, may be difficult to correct 

(Krause et al., 2007). 

2.5.2 Misconceptions about sampling 

In general, senior high school students and students in undergraduate statistics 

courses have little experience with sampling (Rubin, Bruce, & Tenney, 1991). 

Students, therefore, have no knowledge of the extent to which samples may or 

may not be representative of populations, and how much one sample may vary 

from the next.  As a result, students generally expect samples to be much more 

representative of the population than they really are, and if a sample is found to be 

representative, they regard it as “accurate” (Rubin et al., 1991). It has also been 

found that some students ignore the effect of sample size on the characteristics of 

a sample. They will concentrate on the possible increase of the within sample 

variation as a sample size increases, without realising the effect that increasing 

sample size has on the standard error (Finch, 1998). This latter finding has also 

been noted by delMas, Garfield, Ooms and Chance (2007). 
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2.5.3 Misconceptions about measures of central tendency 

For students to perform hypothesis tests successfully, they need to understand 

concepts related to the mean and other measures of central tendency. In particular, 

it needs to be understood that the arithmetic mean is in some way representative 

of a group. It is because of this representativeness that many common hypothesis 

tests are about the mean of a population, or the difference in means of two popu-

lations. The calculation of the arithmetic mean, the mode and median are simple, 

yet students from primary school to the tertiary level have been found to have dif-

ficulties with using and understanding these statistics.  

For some school students the mean is defined as the algorithm to calculate it, and 

there is no conceptual understanding of what the answer might represent. In a 

study of students from Grades 4 to 8, Mokros and Russell (1995) found that some 

students did not see the arithmetic mean as representative of the data, but saw the 

mode as the most representative number instead. Mokros and Russell did, how-

ever, find that reasoning improved as the students became older. In a study by 

Strauss and Bichler (1988), some school students (aged 8 to 14) did not see the 

mean as a number representative of  a data set, but were more likely to do so as 

the students became older. Some of the students in Strauss and Bichler‟s study 

also had difficulties understanding the result when the mean was a fraction that 

had no counterpart in reality, such as one third of a soccer ball per person. As the 

students in this study became older they approached the mean in a more concep-

tual way, in that they either saw the mean as a “reasonable” number, as a “mid-

point” or as a “balance” point, where the sum of distances of the data points 
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above the mean to the mean is equal to the sum of the distances of the data points 

below the mean to the mean (p. 36).  

Once students see the mean as a representative number for a data set, they should 

also be able to see that this representativeness allows for comparisons of data sets. 

This understanding should later be extended to making inferences involved in 

comparing populations (Gal, Rothschild, & Wagner, 1990). 

Watson and Moritz (1999) gave students from Grades 6 to 9 a problem that re-

quired them to compare two data sets that were presented in the form of graphs. 

Many of the students did not use the mean in their conclusions, and of those who 

did (10% of the Grade 6 students and 54% of Grade 9 students), did not always do 

so successfully. Similarly, for students in Grades 3 to 9, Gal, et al. (1990) found 

that some students did not use the mean in their comparisons even though they 

had demonstrated familiarity with the algorithm. In a study of students from 

Grades 5 to 8, Hancock, Kaput and Goldsmith (1992) also found that some stu-

dents did not use means to make comparisons between groups of unequal size, 

many using totals instead. Hancock et al. (1992) also found that students tended to 

give individual cases in a group more importance than is desirable. In addition, 

they would produce graphs if required for their assessments, but then would ig-

nore them when drawing their conclusions, indicating that they did not see the 

representative nature of these forms of data representation either. 

Because understanding generally improves as the students become older it would 

be expected that late secondary students and tertiary students would have a more 

sophisticated and accurate understanding of the mean and other measures of cen-

tral tendency. These students should also be more likely to know which measure 
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of central tendency is most appropriate for a given data set. However, many still 

have difficulty with these ideas. Pollatsek, Lima and Well (1981) found that when 

given a situation in which a weighted mean was required, a “surprisingly large 

proportion” of college students could not calculate it, did not understand the con-

cept, and did not recognise that the ordinary mean was not appropriate. Many of 

these students did not comprehend that an error had been made, even when given 

follow up questions that were designed to prompt them to recognise their errors.  

Groth and Bergner (2006) examined the understanding of Grade 12 students and 

preservice teachers related to the mean, median and mode. They found that most 

students chose to use the mean of data when it was more appropriate to use the 

median. Only 7% of these students could discuss which measure was most suit-

able for each example they were given. Although some students could explain 

that the mean and median measured the centre of the data or were in some way 

representative of the data, there were still students who could only explain these 

measures in terms of the algorithms used to calculate them.  

2.5.4 Misconceptions about statistical inference  

Garfield and Ahlgren (1988) have described how students in tertiary institutions 

may not understand the concepts of inferential statistics and therefore fall into 

“„number crunching‟ mode, plugging quantities into a computational formula or 

procedure without forming an internal representation of that problem” (p. 46). 

The following sections describe the literature regarding misconceptions in statisti-

cal inference, particularly those regarding hypothesis testing and the generation of 

confidence intervals. 
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2.5.4.1 Misconceptions about variability 

Because variation is omnipresent, Reid and Reading (2005) suggested that the 

success of students in statistics depends on how well they can develop an under-

standing of variation in different contexts. The ability to look at a data set, with its 

variation, as a whole comes with experience. Garfield, delMas and Chance (2007) 

found that at the beginning of an introductory university statistics course their 

students tended to focus on individual points, and the range, but not to focus on 

where most of the data were. They found that extensive practice was needed for 

students to see the data as a whole. In a study of pre-service teachers, Leavy 

(2006) found that these teachers concentrated on the summary statistics and ig-

nored the variation, rather than focussing on the data as a whole.  

Liu and Thompson (2005) studied in detail tertiary students‟ understanding of the 

standard deviation. The students were required to arrange the bars in a histogram 

of discrete data so that the highest standard deviation would be produced. Initially 

the students spread the bars evenly across the x-axis, illustrating they were not 

considering the standard deviation in terms of total deviation from the mean. Liu 

and Thompson concluded that few students had a conception of the standard de-

viation that combined both frequency and deviation from the mean.   

2.5.4.2 Misconceptions about sampling distributions and the Central Limit 
Theorem 

The understanding of sampling distributions requires the integration of several 

concepts – sampling and variability, the Normal distribution, the distribution of 

sample means, and standard errors (Batanero, 2008; Chance, delMas, & Garfield, 

2004). Therefore if students have misconceptions about any of these topics, or 

have not or cannot put them together correctly, they are not going to have a full 



40 

 

conceptual understanding of how statistical inference takes place. DelMas, Gar-

field, Ooms, and Chance (2007) found that indeed there are students who cannot 

use these concepts simultaneously. In particular, they cannot deal with concurrent 

use of the mean of the sample, the mean of the population and the mean of the 

sampling distribution.  

It has also been found that students may expect sets of data to be normally dis-

tributed when this is not the case. Bower (2003) described how some students 

have a tendency to believe that the larger the sample size, the closer the distribu-

tion of any statistic will approximate a Normal distribution, even when there is an 

obvious lower bound such as zero. These students will believe, therefore, that 

something is wrong if a non-Normal distribution is found. DelMas et al. (2007) 

discovered that there are some students who, at the end of a tertiary statistics unit, 

showed a more fundamental lack in understanding, in that they could not draw a 

Normal distribution when given its parameters.  

The law of large numbers states that as the number of trials increases, the ob-

served proportions of a probabilistic process will converge to the theoretical pro-

portion. For example, the larger the number of coin tosses, the closer the propor-

tion of heads will be to fifty percent. The Central Limit Theorem states that if the 

sample size is large enough, the means of samples of a fixed size will form a 

Normal distribution, even if the original population is not normally distributed. 

Thompson, Liu and Saldanha (2007) describe how some students mix up the law 

of large numbers with the Central Limit Theorem. These students believe that as 

the sample size increases, the distribution of the sample means will not necessar-

ily be Normal, but look more like the distribution of the original population. As a 
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consequence, they do not understand that variability among samples means is less 

than that of the individuals of the population, and that variability among sample 

means will decrease with an increase in sample size.  

Lipson (2002) studied students‟ understanding of the sampling distribution of a 

statistic (for example, that sample means form a Normal distribution) in contrast 

to the distribution of the sample (the pattern formed by the individuals in the 

sample). In her study, 43% of the participants could state that the sample statistic 

was determined from the sample, and that the variability of this sample statistic is 

described by the sampling distribution. Twenty two percent of the participants, 

however, stated that the distribution of the sample (the individuals) was the same 

as the distribution of the sampling statistic. This left 35% percent of the students 

who did not clearly indicate their reasoning. Further evidence of difficulties with 

the distribution of samples was supplied in a study of teachers by Liu and Thomp-

son (2005) who found that the participants did not incorporate the idea of the dis-

tribution of sample statistics at all, and therefore did not consider whether or not a 

statistic was unexpected when deciding on the outcome of inferential reasoning. 

Lipson (2002, p. 1) concluded that the concept of the sampling distribution is 

“multifaceted and complex” and as a result students find this difficult. 

If students have misconceptions about the distribution of the sample, the distribu-

tion of sampling statistics and the Central Limit Theorem, it is not surprising that 

they may try to cope by looking for rules to apply when carrying out statistical 

inference, and not use conceptual understanding. Unfortunately, learning by ap-

plying rules may lead to error. If understanding is not present, a student may ap-

ply the rules inconsistently or even misremember them (Chance et al., 2004). 
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2.5.4.3  Misconceptions about null and alternative hypotheses and their in-
terpretation 

Part of the procedure for hypothesis testing is to propose a hypothesis about the 

population of interest. This hypothesis should be falsifiable (see Section 2.3.1) 

and has to be stated correctly, so that when the hypothesis test is completed an 

incorrect statement will not be accepted or rejected. Unfortunately, some students 

do not even realise that the null hypothesis refers to a population, but instead 

think that a null hypothesis can refer to both a population and a sample (Sotos, 

Vanhoof, Van den Noortgate, & Onghena, 2007).   

A further problem is that the steps can be carried out correctly but the meaning of 

the results can be misinterpreted as students may have an inappropriate under-

standing of what accepting or rejecting a null hypothesis really means. This latter 

problem was investigated by Haller and Krauss (2002). Of particular interest is 

that many of their subjects were instructors in undergraduate statistics courses. 

The researchers surveyed 113 staff and students (including statistics instructors) 

from psychology departments at six universities. The participants were given the 

example of an independent samples t-test to determine if there was a significant 

difference in the means of control and experimental groups. In their example the 

P-value was .01. The participants were asked to agree or disagree with each of the 

following statements. 

1. You have absolutely disproved the null hypothesis (that is, there is no dif-

ference between the population means). 

2. You have found the probability of the null hypothesis being true. 

3. You have absolutely proved your experimental hypothesis (that there is a 

difference between the population means). 
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4. You can deduce the probability of the experimental hypothesis being true. 

5. You know, if you decide to reject the hypothesis, the probability that you 

are making the wrong decision. 

6. You have a reliable experimental finding in the sense that if, hypotheti-

cally, the experiment were repeated a great number of times, you would 

obtain a significant result on 99% of occasions.  

Eighty percent of the participants who were statistics instructors marked at least 

of one of these statements as true, while all the psychology students marked at 

least one of these statements as true. When analysed by statement, Statement 5 

had the highest percentage incorrect (average 74%). For this statement it appears 

that the caveat, “if Ho is true”, was not known, forgotten or ignored. Statements 4 

and 6 were the next highest in percentage incorrect (average 47%); while State-

ments 1 to 3 were the most often correct (average incorrect 18%). 

Further investigation by Haller and Krauss (2002) showed that for some of these 

students and instructors the results of a hypothesis test was regarded in the same 

light as a mathematical proof. Thompson et al. (2007) also found in their research 

this tendency to believe that the results of a hypothesis test indicate proof. Sub-

jects, believed that to reject a hypothesis test means that the hypothesis has been 

proved wrong, and that further evidence in unnecessary.   

It cannot be expected that students will have a good understanding of hypothesis 

testing if their instructors have misconceptions as well. It would also appear that 

that students of statistics wish to be able to make definite conclusions about their 

data, which is not possible.  
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2.5.4.4   Misconceptions about the interpretation of the P-value and the 
level of significance (α) 

In the hypothesis testing procedure, the level of significance (denoted by α) indi-

cates the level of probability at which the null hypothesis will go from being ac-

cepted to rejected. It also indicates the maximum chance of rejecting the null hy-

pothesis if this hypothesis is actually true. The P-value is the probability that 

given a particular hypothesis about a population parameter, the sample statistic or 

one even more unlikely, is observed.  

Several studies have found a combination of the following misconceptions about 

the level of significance to be held by both students and researchers. The level of 

significance may be regarded as the probability that one of the hypotheses is true. 

The level of significance may also be regarded as the probability of being wrong, 

or just as the probability of making a mistake (Batanero, 2008; Nickerson, 2000).  

Similar misconceptions apply to the meaning of the P-value. The P-value is be-

lieved by some to be the probability that the null hypothesis is true. The P-value 

is also interpreted as the probability that the event of interest could happen, given 

that the null hypothesis is true (Gliner, Leech, & Morgan, 2002). Students may 

also believe that any one P-value will be replicated if the experiment is replicated. 

They do not realise that a particular sample statistic is unlikely to be replicated, 

and, furthermore, do not realise that the probability of having a sample statistic 

that exactly replicates the null hypothesis is extremely small (Cumming, 2006; 

Mittag & Thompson, 2000; Nickerson, 2000). 

Mittag and Thompson (2000) found that students may believe that the P-value 

indicates the strength of a relationship. Therefore they will believe that statistical 
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significance also implies practical significance (Gliner et al., 2002). A study of 

researchers, however, found that these subjects were generally aware that this was 

not the case (Mittag & Thompson, 2000).  

2.5.4.5  General misconceptions about hypothesis tests 

Students may carry out hypothesis tests with correct procedures and conclusions, 

but then give these conclusions unwarranted meanings. For example, if a null hy-

pothesis is rejected, students may conclude that the theory behind the experiment 

is true. If the null hypothesis is accepted, then the experiment might be regarded 

as a failure (Nickerson, 2000).  

Another problem is that students may carry out a hypothesis test, and then look 

for non-statistical reasons for their conclusions. For example, Lipson, Kokonis, 

and Francis (2003) found that even when the students in their study verbalised 

that the likelihood of the sample coming from the hypothesised population was 

small, they tended to look for a practical explanation (deliberate tampering with 

the sample, for example) rather than dealing with the statistical solution. Kaplan 

(2009) found that students rated the results of statistical inference on the strength 

of their own beliefs. Therefore if they did not believe a conclusion, the students 

would look at problems in design and ask for further information. They did not do 

this, however, if they believed the results. The students did not realise that it was 

necessary to discuss the strengths and weaknesses of any experiment, and not just 

when they were surprised by the result.  

2.5.4.6  Misconceptions about the interpretation of confidence intervals 

Confidence intervals are relatively simple to calculate but appear to cause prob-

lems in interpretation. The purpose of confidence intervals is to estimate a popula-
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tion parameter from the sample, with an indication of the uncertainty due to 

chance variation (Moore, 1990). If, for example, it is stated that the 95% confi-

dence interval for the mean is between 20 cm and 25 cm, the value of the popula-

tion mean is believed to be between these two numbers (including the end points). 

To the educated reader, the 95% indicates that the process used will give a correct 

estimation 95% of the time, but that for any one interval it is not known whether 

the answer given is correct. That is, the accuracy of the individual result is un-

known, but the overall level of uncertainty is known. 

In a study of undergraduate students, delMas et al. (2007) found that about one 

third of students believed that a confidence level indicated the percentage of 

population values that lie between the confidence limits. These students also had a 

tendency to believe that the confidence level represents the percentage of sample 

values within the confidence limits. In addition, the majority of the subjects in 

delMas et al.‟s study indicated that the level of confidence denoted the percentage 

of all sample means that lie between the confidence limits. These students did not 

understand that their knowledge of Normal distributions led to a process that al-

lows estimation of the population mean. As a result, they were not able to take the 

step from the knowledge that 95% of all sample means are within two standard 

errors of the population mean, to knowledge that this leads to a process that en-

ables inference about the population mean.  

In a study of researchers, Cumming (2006) found that there was a common mis-

conception that if a sample were taken and the sample mean and confidence inter-

val were calculated, then the level of confidence would give the percentage of 
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means that would fall within the original confidence interval if replicate samples 

were taken.   

2.6 The persistence of preconceived views 

2.6.1 Introduction 

Students can hold multiple and contradictory views on probability as well as on 

other topics in mathematics, and on many other physical phenomena (Konold, 

1995). In the classroom, students may use the formal methods, but resort to their 

own intuitive knowledge and methods outside the classroom. Because intuitive 

beliefs appear self evident and obvious, students are reluctant to change them 

(Fischbein & Schnarch, 1997). When presented with information that conflicts 

with their previous views, students may rather look for and find evidence for their 

misconceptions than use a new theory (Dunbar, Fugelsang, & Stein, 2004; 

Shaughnessy, 1992). If the new theories do not fit into the structure provided by 

their intuitive theories, these new theories are then integrated into their schema 

with difficulty (Dunbar et al., 2004). It is for this reason that instruction may not 

correct previously held misconceptions.   

2.6.2 How students change their previous conceptions  

In his book “The Structure of Scientific Revolutions,” Kuhn (1996) suggests that 

scientists work with traditions that provide coherent models that define rules and 

standards for accepted scientific practice, referred to as paradigms. The observa-

tion of new phenomena may influence these paradigms in three ways. Firstly, the 

observations might fit in well with the existing paradigms. Secondly, a new the-

ory may be developed that articulates well with the existing paradigms. Thirdly, a 
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new paradigm may result that replaces the old paradigm. This will happen, how-

ever, only if attempts at articulation fail. Kuhn states: “Only when these attempts 

at articulation fail do scientists encounter the third type of phenomena, the recog-

nised anomalies whose characteristic feature is their stubborn refusal to be assimi-

lated to existing paradigms” (p. 97). Strike and Posner (1985) made a similar 

claim for individuals. Students will not make a major change in a former concep-

tion, or form a new conception, until they have found that less radical changes 

will not work. This change will not take place, however, unless the new/adjusted 

conception is at least minimally understood, appears initially plausible and has 

explanatory power. These ideas are further developed in the discussion on theo-

ries of learning in Chapter 3.  

2.7 Implications of the literature for teaching statistics 

For those who teach applied statistics courses, the message from the literature is 

twofold. Firstly, because it appears that students can successfully complete statis-

tics courses using procedural knowledge only, if conceptual understanding is con-

sidered to be important, then conceptual understanding will need to be assessed 

(Kelly, Sloane, & Whittaker, 1997). 

Secondly, it has to be appreciated that the concepts such as randomness, distribu-

tions of sample statistics and probabilistic conclusions are abstract and complex. 

Understanding these concepts is complicated by the lack of background in 

mathematics that many students may have. Students may also have difficulty in 

working with the non-deterministic view of the world that the discipline of statis-

tics requires (Yilmaz, 1996). 
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With these factors in mind, Cobb and McClain (2004) recommended that the 

teaching of statistics should focus on developing statistical ideas, use real data and 

classroom activities that promote statistical understanding, use appropriate tech-

nological tools that promote statistical reasoning, and promote classroom dis-

course. In addition, assessment should be used to monitor students‟ conceptual 

development. Furthermore, it has to be recognised that it is easy to underestimate 

the difficulty students have in understanding basic concepts of probability and 

statistics, and to overestimate how well students understand these concepts.  
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3. Literature Review part II: The nature of learning 

3.1 Introduction - What is learning? 

If someone says they have “learnt” something, what do they mean? For some 

people learning has taken place if they can reproduce a series of facts, whereas for 

others, learning means something more comprehensive. For example, on giving 

students a text to study, Martin and Säljö (1976) found that some students aimed 

just to reproduce the contents of the text (“surface learning”), whereas other stu-

dents tried to understand the intention of the author of the text (“deep learning”). 

In a more general context, deep learning, in contrast to learning that merely re-

produces content, can be considered to have occurred when the student can under-

stand the material, relate parts to a whole, integrate it with existing knowledge 

and apply it in real world situations (Boulton-Lewis, 1995). 

Boulton-Lewis (1995) described the acquisition of knowledge as a series of steps 

where students begin with declarative knowledge and progress to procedural 

knowledge, conditional knowledge, theoretical knowledge and then to metatheo-

retical knowledge. In this system, declarative knowledge consists of factual 

knowledge. Procedural knowledge allows the manipulation of declarative knowl-

edge to undertake a task, to solve a problem, and to make decisions. These can be 

compared with surface learning. Conditional knowledge allows a person to know 

when to use certain procedures for different purposes. Theoretical knowledge 

(deep learning) involves being able to make abstracted or generalised statements 

going beyond particular instances. Metatheoretical knowledge is knowledge about 
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the process of abstraction and theory building (Krause et al., 2007; Mason & 

Spence, 1999).  

With this in mind it can be said that students who can complete their statistics 

courses but cannot explain the reasoning behind what they do have achieved sur-

face learning or procedural knowledge, and have not achieved theoretical knowl-

edge or deep learning.  

3.2 How learning occurs 

3.2.1 Introduction 

One aim of this research was to discover students‟ understanding about probabil-

ity and hypothesis testing so that the teaching of statistics to first year university 

students could be adapted to make deep learning more likely to be achieved. From 

reading students‟ work in the past it was clear that some of these students had 

ideas about statistical inference and hypothesis testing that were not in their lec-

ture notes, not in their text, and were never presented to them in their lectures or 

tutorials. These students were not merely reproducing what they had learnt or 

read, but were somehow processing this information for themselves. 

It is proposed that examining the theories of how students learn may enhance 

teaching practice so that deep learning, without misconceptions, may become 

more likely. Because this research is focussed on students‟ understanding, the fol-

lowing discussion concentrates on cognitive models of learning. Cognitive learn-

ing theories concentrate on internal mental processes and on how learners ma-

nipulate both new and familiar information.  
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3.2.2 Information processing theory 

Information processing theory states that human memory does not simply retain 

information but is an active system. This system actively selects the sensory data 

that are to be processed, transforms the data into meaningful information, and 

stores much of the information for later use. Learning comes about when informa-

tion from the environment is transformed into cognitive structures. 

Several models have been proposed to describe how human memory works. The 

first to be described here is the “multistore” model (Krause et al., 2007). Accord-

ing to this model, information is noted by the senses and if attention is paid to the 

information, it will be transferred to the short term memory. If the information is 

considered important enough it will be transferred to the long term memory, if 

not, it will be forgotten. This long term memory is made up of episodic memory, 

which holds memories of personal events, semantic memory, which holds lan-

guage and knowledge of how the world works, and procedural memory, which 

holds knowledge of procedures for performing the skills we need (Krause et al., 

2007).  

An alternative model is called the “levels of processing model” where attention is 

paid to the level of information processing. According to this model “deep proc-

essing” occurs when information is analysed and enriched by making connections 

with existing knowledge. Information that is analysed more deeply will be re-

membered (Krause et al., 2007). 

These information theories are useful when designing a teaching program because 

they alert instructors to the possibility that since information is not just merely 

taken in without further processing, learners may gain ideas that were not in-
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tended by the lesson. They also can help instructors to understand why students 

may not retain information they have been given. Learners may not retain infor-

mation because they have failed to pay adequate attention, they may be not moti-

vated to remember, they might have inadequate memory skills, or they might not 

have the right cue to recall the information. These problems may be exacerbated 

if students are taught in a didactic way (Perkins & Simmons, 1988). Learners may 

also not retain the information because the short term memory is limited (Krause 

et al., 2007). Consequently, if too much new information is given at once, stu-

dents will not be able to process this information effectively (Wieman & Perkins, 

2005). 

3.2.3 Constructivist theories of learning 

Constructivist theories, like information processing theories, suggest that learners 

are not passive recipients of knowledge, but play an active part in their own learn-

ing. Rather than learners passively receiving knowledge as it is given, learners 

actively construct new knowledge by linking it to prior knowledge and under-

standing. It is argued by some (radical constructivists) that knowledge, no matter 

how it be defined, is in the heads of persons, and that as a result learners have no 

alternative but to construct what they know on the basis of their experience (von 

Glaserfield, 1995). 

There are variants of this theory. Psychological constructivism focuses on indi-

vidual learners and how they construct their own knowledge. Social constructiv-

ists focus on social interaction as a key component to learning, and indeed, may 

argue that this interaction is essential for learning (Krause et al., 2007). It is ar-

gued that as learners live in their own particular social and cultural environments, 
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particular meanings are given to the events and objects that are encountered, and 

therefore all learning is socially mediated (Tobin, Tippins, & Gallard, 1994). 

According to constructivism, learners operate with a schema. A schema is a clus-

ter of ideas about a particular object or experience that is used by the person to 

organise existing knowledge in a way that makes sense. When learners come 

across a new situation, they may be able to assimilate the new knowledge into a 

pre-existing schema without modification. If an inconsistency arises between new 

information and a current schema, learners experience disequilibrium, and then 

have to modify the existing schema by the process of accommodation (Krause et 

al., 2007).  

Using constructivist theory, Perkins and Simmons (1988) described how errors 

may occur as students acquire new information.  

 Students may have naïve, underdifferentiated, and malprioritised concepts 

that may rival and override those of the new topic.  

 Students may have difficulty accessing freshly acquired knowledge, espe-

cially if it was given in a didactic fashion.  

 Students may mix up the new knowledge in various ways, and the result is 

a garbled version of what was intended.  

 Observations that do not fit into their previous intuitions may be ignored, 

and only observations that fit into these prior intuitions will be acknowl-

edged (see Section 2.6.1). 

 Students may not be aware of the need for coherence in their knowledge, 

and therefore may prefer to keep to their previous intuitions than to seek 

internal coherence.  
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If Perkins and Simmons are correct, then students will resist the process of ac-

commodation; that is, they will prefer to hold to a view of the world that is inter-

nally inconsistent rather than go through the process of modifying an existing 

schema. Students will only modify an existing schema if something easier will not 

work, and if the new schema is in some way plausible. 

3.2.4 Implications of the cognitive models for teaching 

If we accept that learners construct knowledge and understandings based on what 

they already know and believe, then it would seem important that instructors 

should discover what knowledge their students have, and what their problems are 

likely to be. “It is easier to orient students towards a particular area of conceptual 

construction if one has some idea of the conceptual structures they are using at 

present” (von Glaserfield, 1995, p. 185).  

If students have prior conceptions that are not consistent with what is being 

taught, instead of undergoing the process of accommodation, they may build fur-

ther misconceptions, or use what is being taught inside the learning environment 

but use their own ideas outside it (Bransford, Brown, & Cocking, 2000). Because 

these students are using what is taught inside the learning environment they may 

appear to have made an accommodation when, in fact, they have not done so. 

Strike and Posner (1985) stated: 

Typically, students will attempt various strategies to escape the full 
implication of a new conception or to reconcile it with existing be-
liefs. Accommodation may, thus, have to wait until some unfruitful 
attempts at assimilation are worked through. It rarely seems charac-
terised by a flash of insight, in which old ideas fall away to be re-
placed by new visions, or as a steady logical progression from one 
commitment to another. Rather it involves much fumbling about 
and many false starts and mistakes. (pp. 221-222) 
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The cognitive models of learning therefore suggest that instructors, being aware 

of likely problems, should give their students opportunities to work through new 

material and should give them the time needed to come to terms with it. These 

models also suggest that the instructors need to monitor their students‟ under-

standing to check that an appropriate assimilation or accommodation has taken 

place. 

Information processing models suggest that instruction should be designed to as-

sist students to store new information in the memory by attracting the learners‟ 

attention to the relevant information and organising this information in a way that 

makes it easy to assimilate (Krause et al., 2007). They also suggest that only a 

certain amount of new material should be given at one time.  

3.3 Affective factors 

It would be expected that instructors who are keen for their students to gain con-

ceptual understanding, and, it must be said, achieve good grades, will usually try 

to develop the best program possible for their students. However, the aims of the 

instructors may be thwarted by the beliefs and aims of their students, which may 

not coincide with theirs. Pintrich, Marx and Boyle (1993) stated: 

The assumption that students approach their classroom learning 
with a rational goal of making sense of the information and coor-
dinating it with their prior conceptions may not be accurate. Stu-
dents may have many social goals in the classroom context be-
sides learning – such as making friends, finding a boyfriend or 
girlfriend, or impressing their peers – which can short circuit any 
in-depth intellectual engagement. (p. 173) 

Even if the students have a desire to achieve a high grade, they may have different 

approaches to their learning: 
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Even if the focus is on academic achievement, students may adopt 
different goals for or orientations to their learning. For example, it 
appears that a focus on mastery or learning goals can result in 
deeper cognitive processing on academic tasks than a focus on the 
self (ego-involved) or a focus on performance (grades, besting 
others), which seems to result in more surface processing and less 
overall cognitive engagement (Pintrich et al., 1993, p. 173).  

Students‟ beliefs about intelligence also influence the way they approach their 

learning. For example, if students believe that intelligence is fixed they are more 

likely to display helpless behaviour when faced with a difficult task. If they be-

lieve that knowledge is fixed and certain, they are more likely to acquire surface 

learning instead of deep learning. They will also tend to regard tentative knowl-

edge as absolute. If students believe that learning is quickly achieved, they may 

oversimplify information, perform poorly on tests, and be overconfident about 

their understanding of information. If they believe knowledge is composed of iso-

lated facts they will have difficulties in understanding (Schommer, 1993).  

In the university environment, where it is not compulsory to attend all classes, 

differing motivations and attitudes to learning may be reflected in attendance. 

Those students who are motivated only to gain the minimum requirements to pass 

may have irregular attendance. Some students are reluctant to be involved in 

whole class discussion, either because they prefer to let others make the effort of 

contributing, are shy, or because they have language difficulties. Some of these 

latter problems may be overcome when the students work in small groups. In con-

trast, there are students who are motivated to understand their subjects as much as 

possible, or who develop an interest as the semester continues.  
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3.4 The use of the SOLO taxonomy in assessing learning  

Piaget suggested that as people grow older they have increasingly more complex 

ways of reasoning available to them (Krause et al., 2007). At first children learn 

using concrete modes, and as they grow older they are able to use increasingly 

abstract modes of reasoning. Biggs and Collis (1982) suggested that there are 

natural stages in the growth of learning of any complex material that are analo-

gous to the developmental stages of reasoning described by Piaget. As a result 

Biggs and Collis developed a system for assessing learning (The SOLO Taxon-

omy – Structure of Observed Learning Outcomes) that takes into account the 

demonstration of increasingly abstract knowledge and increasing complexity of 

the learner‟s reasoning. In this system, an answer that does not address the ele-

ments of a task is considered to be “Prestructural.” An answer that employs a sin-

gle element of the task only is considered to be “Unistructural,” whereas an an-

swer that employs several elements in a task is considered to be “Multistructural.” 

Those answers that create connections among the elements of a task to form an 

integrated whole are considered to be “Relational” (Watson & Callingham, 2003). 

Using the principles of the SOLO model, a form of assessment can be developed 

where students are not only assessed on right/wrong answers, but can be assessed 

on the level of sophistication of their reasoning. 

With these ideas in mind, the items in the questionnaires used in this study were 

designed so that a hierarchical structure could be used in grading the responses to 

them. Therefore answers that showed a higher level of statistical reasoning were 

assessed with a higher score than those that showed a lower level of reasoning. 

For example, one of the questions asked the students to determine the probability 
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of a coin coming up with a Head after four Tails had come up in a row, and to 

give an explanation for their answer. Those students who did not address the task 

were considered to give a Prestructural response and received a code of “0.” 

Those students who answered that as there were “only two outcomes” the prob-

ability is 0.5 were considered to give a Unistructural response and received a code 

of “1.” Those students who added that as the toss of coin is “not affected by the 

outcomes of previous tosses” the probability is 0.5 were considered to give a 

Multistructural response, as this response indicates that the students were consid-

ering more aspects of the overall picture. These students received a code of “2.” If 

a student had considered the pros and cons of the competing explanations would 

have been considered to give a Relational response (no student did this).  

Further details of the assessment models used in this study are explained in Chap-

ter 4. 
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4. Literature review part III: Measurement in the so-
cial sciences 

4.1 Scales used in measurement 

Measurement can be defined as the assignment of numbers to objects or events 

according to rules (Stevens, 1946). The attributes of the things being measured 

determine the scale that applies the numbers, and in turn the scale determines the 

mathematical properties of the measurements and the statistical operations that 

can be applied to the measurements. 

The simplest form of measurement uses a nominal scale where numerals are used 

only as labels. For example, a “1” may be used for a person enrolled in a Bachelor 

of Arts, and a “2” may be used for a Bachelor of Science. With a nominal scale 

numerals are used only as labels and no order is implied with these numerals. In 

general, the only statistic available for nominal data is the number of cases in each 

category. Yet even though nominal data have no implied order, nominal data such 

as race or gender may still be important explanatory variables (Wright & Linacre, 

1989).  

At the next level of complexity the labels are ordered into successive categories, 

which increase or decrease in status along some intended underlying variable (an 

“ordinal” scale). For example, a person‟s level of understanding may be described 

as “none”, “average” or “extensive.” These ordered categories can be considered 

to be related to each other by a series of steps. Therefore “none” would be consid-

ered as step zero, “some” could be considered to be one step up, and “extensive” 

to be the next step up. This form of ordering, however, does not reflect the dis-
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tances each step may require (Wright & Linacre, 1989). For example, it might be 

harder to go from “average” to “extensive” than from “none” to “average”.  

The next level of complexity involves the use of an interval scale where the inter-

vals are equal (Stevens, 1946). Such scales are often used in the physical world 

and are often simple to understand. For example to measure length a particular 

item of interest is matched against another length that has been standardised in 

some way, for example, marked in centimetres. The measurement of length also 

involves a “ratio” scale. By this it is meant that a zero length is a true zero, as it is 

not possible to have a length that is less than zero, and 20 cm, for example, is 

twice as long as 10 cm.  

The measurement of temperature also involves an interval scale but the process of 

measurement is indirect. In a common mercury thermometer temperature (in Cel-

sius or Fahrenheit) is measured by the expansion of mercury in a calibrated glass 

tube, unlike the measurement of length where a length is lined up against a stan-

dard length. There is another important difference between these measuring 

scales. Whereas temperature measured on the Celsius or Fahrenheit scales uses 

interval scales these are not ratio scales. This is because it is possible to have a 

temperature below zero, and 20o, for example, is not twice as hot as 10o on either 

scale.   

In the social sciences much measurement is even more indirect than that of tem-

perature and the choice of scale is more problematic. Attributes such as intelli-

gence cannot be measured by a simple measuring instrument, but instead are 

measured by a person‟s responses to some form of test or observation of behav-

iour. The data then, consist of counts of observations. This problem is further 
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complicated by a disagreement as to what the nature of intelligence is and what it 

is that intelligence tests measure (Gould, 1981). Because the measurement may 

differ with the process or the test used to take the measurement, it is important 

that the test used, the scores of others being measured and the context of the test 

be known to the reader (Willmott & Fowles, 1974). This is in contrast to the 

measurement of length where if a reading of 1.2 m is given, for example, nothing 

else needs to be known about the process by which the measurement was made – 

the measure is “invariant.” 

With these factors in mind the question arises as to how attributes and behaviour, 

where the data are in the form of counts can be measured and be placed on a scale 

so that comparisons between individuals or changes in individuals can be quanti-

fied. Before this issue can be addressed, however, the process of measurement 

itself needs to be examined.  

4.2 Measurement Theory 

In the 1920s, Campbell listed the logical requirements of measurement that be-

came the basis for what is now known as the Theory of Fundamental Measure-

ment. According to this theory, any property being scaled must be described by a 

quantitative variable, where a quantitative variable is one whose values are de-

fined by a set of ordinal and additive relations (Barrett, 2003). For an ordinal 

scale to exist, the suitable relations must be defined within it, and the relationships 

on the scale must be transitive and strongly connected (Michell, 2002). 
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Formally, this can be described in the following manner (Barrett, 2003). In the 

real number system, if X, Y and Z are three values of a variable Q, then Q is ordi-

nal if and only if: 

 X ≥  Y and Y ≥  Z then X ≥  Z (transitive property) 

 both X ≥  Y and Y ≥  X then X = Y (antisymmetric property) 

 either X ≥  Y or Y ≥  X (are “strongly connected” – that is, every pair can 

be compared) 

Once it is established that the variable Q is ordinal, then to establish additivity, 

the following axioms must apply:  

For any ordinal variable Q (X + Y = Z): 

 X + (Y + Z) = (X + Y) + Z (associative property) 

 X + Y = Y + X (commutative property) 

 X ≥  Y if and only if X + Z ≥  Y + Z (monotonic property) 

 If  X > Y there exists a value of Z such that X = Y + Z (that is, the relation 

is solvable) 

 X + Y > X (positivity) 

 There exists a natural number n such that nX ≥ Y (that is, there are no in-

finite elements or non-zero infinitesimals - The Archimedean condition) 

If these apply the relation is additive and Q is a quantitative variable. The practi-

cal consequence of these axioms is that the measuring scale is capable of being 

ordered, and it is possible to designate less than, more than, and equality.  

How can these axioms be applied to the social sciences, where physical objects 

are not usually measured, and many of the attributes measured are variables that 

are latent or unobservable? Mental attributes such as intellectual abilities, person-
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ality traits and social attitudes are often judged on answers to test items on a ques-

tionnaire or similar. For example, a person‟s spelling ability may be judged by the 

number of spelling errors in a test, but this is not “measuring” spelling (Wright, 

1997). If care is not taken, a measurement made by placing subjects on a scale 

may just be a monotonic transformation of the observed test scores (Barrett, 

2003). As Michell (2001) states: 

 Psychological tests are thought to provide clues about processes 
underlying intellectual performance. However, just because per-
formance on such tests possess quantitative features (e.g., test 
scores), it does not follow that these features reflect the workings 
of exclusively quantitative causes. (p. 213) 

 
In particular, Wright (1997) points out the importance of noting that raw scores 

(for example test marks) are not measures. This is due to the inequality of the 

units and the non-linearity of the raw scores. If the test score is plotted against an 

ability measure, the increase in value for one more right answer is steepest where 

the items are most dense, towards the 50% correct point. At the extremes (towards 

0% and 100%) the increase in the curve is flatter. In other words, this means it is 

much more difficult for a person to move from a score of 90% to 95% than from 

50% to 55%. The result of this non-linearity is that any statistical method (includ-

ing linear regression, factor analysis and ANOVA) that uses raw scores (including 

those generated by Likert Scales) will be affected by bias (Wright, 1997).  

In 1964, Luce and Tukey published a set of axioms that showed that if two or 

more variables (for example A and X) are non-interactively related to a third vari-

able (P) then differences between the elements in A and X may be equated by 

their effects on P, a process known as “conjoint additivity” (Michell, 1994). By 
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this process latent or unobservable variables such as intelligence can be measured 

on an interval scale (Barrett, 2003).  

For these variables to show conjoint additivity they must show the condition of 

solvability; that is, for any a in A and x,y in X there must exist b in A such that 

(a,x) = (b,y), where (a,x) and (b,y) denote the elements in P determined by the 

conjoined elements in A and X. Similarly, for any a and b in A and x in X there 

must exist y in X such that (a,x) = (b,y) (Michell, 1994). 

Second, there must be no differences on either A or X that are infinitesimally 

small or infinitely large relative to the others (the Archimedean condition), and 

third, the sums of differences on one factor must retain whatever parity the part 

differences have with differences on the other factor. That is, for any a1,a2 and a3 

in A, x1, x2 and x3 in X,  

if (a2,x1) ≥  (a1,x2) and (a3,x2) ≥  (a2,x3) then (a3,x1) ≥  (a1,x3) (Michell, 1994). 

Any measure that is to be used in a statistical method needs to be additive (or con-

joint additive) and linear. The measure should also be invariant, that is, the values 

attributed to any variables in the measurement system should be independent of 

the measurement instrument used (Bond & Fox, 2007). The measurement should 

also be subject to item free and sample free calibration and be consistent, in that if 

a person answers a more difficult question correctly (or endorses a more extreme 

statement), then all of the less difficult items (or less extreme statements) should 

be answered correctly (Wright, 1997). Finally, the test used should be unidimen-

sional, in that it describes only one attribute of the object measured. One of the 

processes by which this can be achieved is described in Sections 4.4 and 4.5. 
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4.3 Should the social sciences use measurement? 

“Our main purpose is briefly stated in the subtitle of the new journal, Psycho-
metrika, namely, to encourage the development of psychology as a quantitative 
rational science.” Thurstone (1937) 

Given that much of what is studied in the social sciences is latent, and therefore 

not directly measurable, it is reasonable to ask why mathematical procedures 

should be used at all – why the processes described in the previous section should 

even matter. It could be argued that human attributes such as attitude and behav-

iour should remain in the qualitative realm. 

One motivation for the quantification of human attributes came about from the 

view that true, scientific knowledge must be measurable and amenable to mathe-

matical analysis. It was also felt that quantification led to a more thorough, rigor-

ous knowledge such as that found in the physical sciences. One such argument 

was put by Thorndike (as cited in Barrett, 2003, p. 426), “Whatever exists at all 

exists in some amount. To know it thoroughly involves knowing its quality as 

well as its quantity.” 

Another reason for using measurement in the social sciences is that in everyday 

discourse values and attitudes are readily quantified. Thurstone (1928) stated: 

“The main argument so far has been to show that since in ordinary conversation 

we readily and understandably describe individuals as more and less pacifistic or 

more and less militaristic in attitude, we may frankly represent this linearity in a 

unidimensional scale” (p. 538).  

One motivating factor in the search for quantification of human attributes and be-

haviour was that if these could be measured, then it would be possible to quantify 
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changes in individuals across time and to make comparisons between groups. An 

early example of such a quantitative comparison is found in the work of Trabue 

who studied the development of language ability (measured by the “completion-

test”) from Grade 2 students to college graduates (Thurstone, 1925). Intelligence 

tests, first introduced by Binet to identify students who needed learning support, 

also provided a stimulus to quantify human attributes (Gould, 1981).  

Finally, and possibly most importantly, quantification was considered desirable 

because it enables statistical inference (Wright, 1997). This desire for inference 

has, unfortunately, led to the use of statistical tests on data unsuitable for these 

tests. Such misuse may be ignored or even unknown by the readers of the re-

search, and their conclusions may give the impression of legitimacy just because 

the tests were carried out (Merbitz, Morris, & Grip, 1989). 

If the social sciences are to use valid quantification, forms of measurement need 

to be used that comply with the theory of fundamental measurement. The search 

for such methods has been continuing over the last century. One response to this 

need has been the development of item response theory, which is discussed in the 

next section.  

4.4 Item Response Theory 

When giving tests to measure human attributes (or in fact in the making of any 

measurement), experimental error is unavoidable. Unless adequate control is pro-

vided for the “error,” or “nuisance,” variables, valid inferences cannot be made 

(van der Linden & Hambleton, 1997). 
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In general, there are three ways of coping with this experimental error. These are 

matching or standardisation, randomisation, and statistical adjustment. If the con-

ditions are matched or standardised, then the subjects operate under the same lev-

els of error or nuisance variables, and thus the effects of these variables cannot 

explain any difference in experimental outcomes. Unfortunately this technique 

has restricted generalisability as the experimental results obtained will hold only 

in similar conditions. 

Randomisation is based on the principle that if error variables cannot be manipu-

lated to create the same effects, random selection of conditions guarantees that 

these effects, on average, can be expected to be the same, and will therefore not 

have a systematic influence of the responses.  

In contrast, statistical adjustment is a technique of post hoc control. Mathematical 

models are used to make adjustments to test (raw) scores by processes based on 

item response theory (IRT). Much of the work in statistical adjustment can be re-

lated back to Thorndike, who was one of the early pioneers in the search for 

methodology to transform the counting of observations to measurement. Being 

aware of the non-linearity of raw scores, he searched for a way of obtaining a 

scale that could be applied to compare ability over different age and grade groups. 

Thurstone (1928) has described Thorndike‟s method in a study on completion 

tests of language scales. In this study, Thorndike calculated the proportion of cor-

rect answers for each grade, and then graded the difficulty of each item using the 

deviation from the mean for all the correct answers for that grade. He then de-

vised a common educational scale across all grades by adding to each scale value 

the mean value for the grade. This process had the disadvantage, however, that it 
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assumed that the dispersion of abilities to be normally distributed and having 

equal dispersion across all grades. Using the same data, Thurstone found that in 

fact the dispersion increased as the students became older.  

Thurstone (1925), therefore, devised a method in which it was still assumed that 

the distributions of ability in each age/grade group followed a Normal distribu-

tion, but that allowed for variability in the dispersion around the mean for each 

group. For each age group he placed each test item on the Normal curve such that 

the percentage to the right of this point represented the percentage of students 

who answered the question correctly. From these placements on the scale 

Thurstone then presented a formula to calculate the standard deviation. This 

method allowed for the item difficulties to be described in two ways, by age/grade 

level using the z-score, or by finding the 50% mark for each age/grade level, so 

comparison between the different age/grade levels could be made. Thus 

Thurstone‟s methodology gave a rating for difficulty for each item that allowed 

each group to have its own level of dispersion. However it still had the disadvan-

tage of assuming a Normal distribution for the pattern of response, even when the 

data suggested otherwise. 

Modern IRT methods are similar to Thurstone‟s work in that the models place 

item locations and respondent values as points on a scale of the quantitative vari-

able (Bock, 1997). However, they differ in that the continuous variable control-

ling the probability of a correct response is assumed to be latent variable such as 

ability, and not an independently measured variable such as chronological age 

(Bock, 1997). 
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In the 1940s the Normal ogive model (based on the work of Thurstone) was in-

troduced. In this model, the probability of detecting a stimulus was written as a 

function of the strength of the stimulus. If the probability of success of a person 

with ability θ on item i is represented by Pi(θ), this model has the form:  

    
 

   

        

  

 
   

    

The difficulty parameter bi is the point on an ability scale where the person has a 

probability of success on the item of 0.50. The value of ai is proportional to the 

slope of the tangent to the response function at this 0.50 point. As ai increases, the 

ability of the item to discriminate between persons with varying abilities also in-

creases (van der Linden & Hambleton, 1997). With this model the ability variable 

is assumed to be normally distributed (Bock, 1997).  

IRT was developed further by Lazarsfield in the 1950s who was studying the ad-

justment patterns of returned soldiers. He administered multiple item attitude 

questionnaires and then used dichotomously classified responses (0,1) to develop 

probabilistic models that were dependent on the conditional probability of the re-

sponse pattern. Of importance was his introduction of the idea of “local independ-

ence,” by which he meant the statistical independence of one person‟s response 

from another person‟s response having the same value of the underlying latent 

variable. Although he used his model to assign respondents to classes, he did not 

use the model to estimate values of the parameter for individuals (Bock, 1997). 

Further developments in item response theory were made in the 1980s by Birn-

baum and Lord who substituted the ogive model with a logistic item response 

model. This logistic model is in the form: 
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In this model, z has the form z = a(θ-b), where θ is the latent ability variable. 

One advantage of this model was that Maximum Likelihood Estimates (MLE) of 

a person‟s scale score became possible, thus allowing a judgement as to the preci-

sion of the MLE estimates. This model, however, still gave no general solution 

for how to estimate the parameters of the item response models using samples of 

test data (Bock, 1997). 

A great step forward occurred in 1960 when Rasch presented a new method of 

analysis that gave independent measures of the difficulty of the item and the abil-

ity of the person. Rasch recognised that as long as the test items belong to a cali-

brated set of items that define the variable under study, then no matter who re-

sponds to the test, each test or rating scale item will have a constant level of diffi-

culty, and that each person will have a constant level of ability regardless of 

which particular test items are encountered (Wright & Linacre, 1989). Therefore: 

A person having a greater ability than another person should have 
the greater probability of solving any item of the type in question, 
and similarly, one item being more difficult than another means 
that for any person the probability of solving the second item is 
the greater one (Rasch, 1960, as cited in Bond & Fox, 2007, p.10). 

Rasch also recognised that the interaction between a person and an item cannot be 

fully predetermined and will also involve an additional, unpredictable component. 

With this knowledge Rasch determined a mathematical model that converts ob-

served counts, on an ordinal scale, into a unidimensional, linear scale. In so doing, 

the ordinal scale was transformed into an interval where the size of each step 

could be quantified and compared to the size of the other steps. A table of ex-
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pected probabilities is produced that determines the likelihood of each person 

with a specified ability correctly answering an item with a specified level of diffi-

culty. For items of a level of difficulty above a person‟s level of ability, this prob-

ability of success will decrease as the difference between the ability and difficulty 

increases. For items of a level of difficulty below a person‟s level of ability, this 

probability of success will increase as the difference between the ability and diffi-

culty increases (Bond & Fox, 2007).  

An advantage of the Rasch model is that sufficient statistics are used to estimate 

the parameters. With these sufficient statistics, consistent maximum likelihood 

estimates of the parameters can be made that are independent of other parameters, 

thus resulting in an invariant measure. Another advantage is that since this model 

uses individuals, rather than groups, no assumptions about the distribution of 

abilities need to be made (Wright, 1997). In addition, the measures that result 

from the Rasch model show conjoint additivity (Bond & Fox, 2007, see Section 

4.2).  

Because for each Rasch analysis the mean of the item difficulty is calibrated as 

zero, Rasch measurements of item difficulty and person ability are at the interval, 

rather than ratio, level of measurement. In addition, if longitudinal measures are 

made, it is possible to „anchor‟ the scale by the inclusion of items of the same dif-

ficulty (Bond & Fox, 2007). 

In summary, Rasch analysis provides the social sciences a method of measure-

ment of latent variables that fulfil the requirements of fundamental measurement 

theory, including conjoint additivity. The mathematics behind this model is de-

scribed in the next section. 
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4.5 The Mathematics of the Rasch Model 

The Rasch model will be introduced with the dichotomous model which is used 

when there are only two responses. From this model the Partial Credit Model will 

be developed, which is used when responses are graded onto a scale which takes 

into account partially correct answers.  

4.5.1 The Dichotomous model 

The dichotomous model is used when the answers are classified either as correct 

or incorrect only. Usually a correct answer is coded as “1” and an incorrect an-

swer is coded as “0.” To perform the Rasch analysis, firstly the percentage of cor-

rect answers is calculated for each person, and then for each item. These raw 

score totals are sufficient statistics for estimating the person ability (θj) and the 

item difficulty (δi).  

To estimate the person ability θj, the odds of success are first computed by calcu-

lating the ratio of each person‟s percentage correct (p) over the percentage incor-

rect (1-p), and then the natural log of these odds is calculated. A similar process is 

used for the items. These log odds ratios, known as logits, are then placed on a 

scale of intervals of one logit. In Rasch analysis, the average logit is arbitrarily set 

at 0, so that positive logits indicate a higher than average probability and negative 

logits indicate a lower than average probability.  

In the calculations the person estimates are firstly constrained while the item es-

timates are calculated. These first estimates are then used in an iterative process to 

produce an internally consistent set of item and person parameters. The iteration 

process continues until the maximum difference in item and person values during 
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successive iterations converges to a preset value. When this is complete, the dif-

ference in person ability and item difficulty values will produce the Rasch prob-

abilities of success, and as a result, the ordinal level data are transformed into in-

terval level data that is suitable for inference (Masters & Wright, 1997).   

Given θj and δi the function (f) expressing the probability of a successful response 

can be expressed as: 

    

          
 

           

             
  

where Pij1 is the probability of person j scoring 1 on item i, Pij0 is the probability 

of person j scoring 0, θj is the ability of person j, and δi is the difficulty of item i . 

This difficulty defines the location on the measurement variable at which a score 

of 1 on item i is as likely as a score of 0.  

From this equation it follows that when item difficulties are greater than person 

abilities (negative θj – δi values) persons have a lower than 50% chance of cor-

rectly answering the item. When item difficulties are lower than person abilities 

(positive θj – δi values), persons have a higher than 50% probability of correctly 

answering the item (Bond & Fox, 2007). 

Using conditional MLE the parameters for the items can be estimated without 

knowing the parameters for the persons, and vice versa. That is, person free 

measures and item free calibrations are obtained. Therefore abstract measures that 

transcend specific persons‟ responses to specific items at a specific time are 

achieved (Masters & Wright, 1997). 
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4.5.2 The Partial Credit Model 

The Partial Credit Model (Masters, 1982) is developed from the dichotomous 

model (van der Linden & Hambleton, 1997). It can be used in any situation in 

which performances on an item or an assessment criterion are recorded in two or 

more ordered categories, and where there is an aim of obtaining measures on a 

latent unidimensional variable (Masters & Wright, 1997). These ordered catego-

ries can be considered as a series of steps. In this study the Partial Credit Model 

was used because students‟ answers were graded on a scale according to the level 

of understanding shown by their answers, rather than simply graded as right or 

wrong.  

In the Partial Credit Model, the probability of a student responding in the xth cate-

gory as opposed to the x-1th category is dependent on the difficulty of the xth level. 

The Partial Credit Model considers the number of steps a person has made beyond 

the lowest level of performance (Callingham & Watson, 2005). The derivation of 

the mathematical model follows.  

For an item with more than two response categories, and when there is increasing 

ability of the person being tested, there comes a point where a lower score be-

comes less likely because the next higher score becomes more likely. That is, as 

ability increases, there is a point where a person is more likely to score a „1‟ than 

a „0‟, and then a point where a person is more likely to score a „2‟ instead of a „1‟. 

It follows from the intended order 0<1<2, …,<mi of a set of categories that the 

conditional probability of scoring x rather than x-1 on an item should increase 

monotonically throughout the ability range. This is modelled as: 
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Where Pijx is the probability of person j scoring x on item i, Pijx-1 is the probability 

of person j scoring x-1, θj is the ability of person j, and δix is an item parameter 

governing the probability of scoring x rather than x-1 on item i. These parameters 

are estimated by an iterative, conditional or joint maximum likelihood procedure 

(Masters, 1982).  

How well the model fits the data, and fits on a unidimensional scale, can be as-

sessed by the “goodness of fit.” Goodness of fit in a Rasch model is applied to 

item fit, person fit, and global fit, where the latter indicates the overall fit of a set 

of data to the Partial Credit Model.   

Item and person fit are assessed with the weighted (“infit”) and the unweighted 

(“outfit”) mean square procedures. If a person j with ability θj responds to item i, 

the person‟s response xij takes a value between 0 and the maximum possible score 

on item i, mi. If the probability of person i scoring h on item i is denoted by Pijh, 

then: 

The expected value of xij is:    

          

  

   

 

The variance is:    
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The standardised difference between person j’s observed and expected response 

to item i is: 

                   

The outfit mean square for each item i is then: 

       
   

 

 

 

For each person j: 

       
 

 

 

   

These outfit statistics can be oversensitive to outliers. Therefore the “infit” is also 

used, which is weighted. 

The weighted mean square for each item i is then: 

       

 

 

   
      

 

 

 

For each person j: 

  

          
 

 

 

     

 

 

 

   

(Masters & Wright, 1997). 

The expected value of these statistics is +1. An infit or outfit mean square value 

of (1 + x) indicates 100x% more variation between the observed and the model 

predicted response than if the data and the model were perfectly compatible. An 
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outfit square of less than one indicates 100x% less variation than predicted by the 

model (Bond & Fox, 2007). 

4.5.3 How Rasch analysis was used in this study 

In this study, each participant was asked to answer two questionnaires, one on en-

try to the unit, and the other at the end of the unit. The participants were also 

asked to allow the answers to one of the tests used for formal assessment to be 

included in the study. The questionnaires were analysed quantitatively using the 

Rasch partial credit model. Using this model, independent assessments of the dif-

ficulty of the items and the students‟ ability were gained. It was planned that a 

similar analysis would be carried out on responses to the test items, but it was 

found that these did not fall on a unidimensional scale and were therefore unsuit-

able for Rasch analysis.  The partial credit model was used because each answer 

in the questionnaires was not merely graded as correct or incorrect, but was rated 

according to the level of sophistication of reasoning used in the answer.  

A judgement needs to be made as to which items fit on the unidimensional con-

tinuum. To decide whether or not an item fits on this continuum the “fit” statistics 

are used. These fit statistics are the infit mean square (infit MNSQ) and the outfit 

mean square (outfit MNSQ), where the mean square is the mean value for the 

squared residuals for an item. The infit MNSQ gives more weight to the perform-

ances of persons with abilities close to the item‟s difficulty. If this statistic is sat-

isfactory, then it can be concluded that a single construct is being measured. The 

outfit MNSQ is more sensitive to the influence of outlying scores (Bond & Fox, 

2007). Both of these statistics, the infit and outfit MNSQ, can be transformed to a 

t statistic known as the standardised z value (ZSTD) that follows approximately 
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the t or standardised Normal distribution when the items fit the model‟s expecta-

tions (Hsueh, Wang, Sheu, & Hsieh, 2004). Items with infit and outfit ZSTD val-

ues of greater than ±2 are considered to be poor fitting and are examined further. 

They may be removed from the analysis or modified. Winsteps 

(www.winsteps.com.htm), a program dedicated to Rasch analysis, displays these 

standardised values in “bubble chart” by which the fit of the items and persons 

can be visualised. An example can be seen in Figure 4.5.3.1. 

 

Figure 4.5.3.1. An example of a “bubble chart” for a Rasch analysis. 

Once the items that were on the unidimensional scale were selected, they were 

placed in order of difficulty and then grouped according to this level of difficulty. 

Each group was then analysed by the cognitive demands were made by the ques-

tions in this group, and then a set of criteria were determined that characterised 

the qualitative changes demanded for successful answers for each group 

(Callingham & Watson, 2005).  
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The students were then divided into groups according to their ability, using the 

groupings obtained from the item analysis. For example, as the highest group of 

items in the first questionnaire had ratings from 0.7 logits and above, the students 

with an ability rating of 0.7 logits and above were placed in the highest ability 

group. These groupings were then used to qualitatively compare the answers 

across groupings. The abilities of the students were also compared between the 

first and second questionnaires, to see if there was any improvement overall, and 

to see if there were any significant differences in the ability between the semesters 

of the study for each student cohort. This comparison was made possible because 

if a number of test items are common to both tests, the Rasch analysis enables 

these common items to be anchored to first analysis‟ difficulty ratings. A correla-

tion was also made between the initial ability of the students and their final scores 

for the Data Handling and Statistics unit, to see if it was possible to predict a stu-

dent‟s success from their initial ability ratings.  

One of the statistics generated by Rasch analysis via the Partial Credit Model is 

the Rasch-Thurstone threshold. This threshold gives the item difficulty on a scale 

at a point at which the lower and higher categories of an answer have equal prob-

ability of being observed. An example is shown in Figure 4.5.3.2 – an item person 

map. In this figure the items are listed with their difficulty ratings, and the per-

sons, indicated by an „X‟ are indicated by their ability ratings. There are two per-

sons who have the same rating as the item “tute A .1”. Both have a 50% chance of 

gaining a score of zero, and a 50% chance of gaining a score of one on this item. 

Those persons who have a higher ability score, and are therefore above these two 

on the chart, have a greater than 50% chance of scoring one on this item. Persons 
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on the chart have a greater than 50% probability of obtaining the indicated score 

for any item below them on the scale (the lower the item the more likely they are 

to gain the indicated score) and a less than 50% probability of obtaining the indi-

cated score for any item above them on the scale (the higher the item the less 

likely they are to gain the indicated score). 
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Figure 4.5.3.2 . An example of an Item and person map. 
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5. The use of computer technology in statistics  
education 

5.1 Introduction 

Computers are widely used in statistics education to perform routine data analysis 

tasks and thus relieve the student from tedious calculations. In this role the com-

puter is just an advanced calculator. Although this is helpful, the use of computers 

in this way does not enhance learning of abstract concepts (Mills, 2002). 

In contrast, the use of computers for simulations provides a model of a system or 

process that demonstrates scientific or other principles. Computer simulations 

have been used in a variety of contexts such as economics, decision theory, New-

tonian mechanics, physics, and mathematics (de Jong et al., 1999). In statistics, 

computer simulations allow students to do what they cannot do in reality, that is, 

repeat a study many times (Burrill, 2002). Therefore students can observe for 

themselves the extent and effect of the variability that is inherent in, and compli-

cates, any statistical analysis. 

5.2 Discovery Learning and Simulation 

Constructivist theories of learning are based on the assumption that students do 

not merely take in information, but actively build knowledge for themselves in the 

light of their previous knowledge. This understanding has led some authors to 

conclude that knowledge students construct on their own is more valuable than 

knowledge that has been shown, demonstrated or explained by a teacher (Klahr & 

Nigam, 2004).  
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It is argued that one way students can be prompted to construct their own knowl-

edge is to use some form of discovery learning, where the students are actively 

engaged in activities that will lead them to discover a principle for themselves, 

instead of just being told by the instructor. In the sciences students can be given 

questions in which they need to form testable hypotheses, and then plan and exe-

cute an experiment (de Jong & van Jooligen, 1998). In statistics, simulation pro-

vides one of the means by which an experiment can be carried out. For example, 

using a computer enables students to take hundreds of random samples, and ex-

amine the population of the means of these samples.  

The literature demonstrates, however, that discovery learning without guidance is 

not necessarily successful. Students are not always proficient in noticing regulari-

ties in the data and may also be poor at interpreting graphs. Because students may 

be resistant to conceptual change, they may not be able to adapt hypotheses even 

when the data are contradictory (de Jong & van Jooligen, 1998). In statistics edu-

cation, it has also been found that students can apparently be successful in their 

use of the computer simulation software yet still demonstrate a lack of under-

standing and hold misconceptions afterwards (delMas, Garfield, & Chance, 

1999). Without careful guidance, students may even continue to build on previous 

misconceptions (Mills, 2002). 

For conceptual change to take place, or for new knowledge to be assimilated, the 

literature suggests that guided discovery learning or a combination of discovery 

learning and direct instruction is needed (delMas et al., 1999; Lane & Peres, 

2006). Guided discovery learning involves giving the students a structure, a series 

of questions that guide the learner to a predetermined goal (Lane & Peres, 2006). 
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Lane and Peres suggest that knowledge acquisition is improved if students are 

asked to make predictions as to what will happen before a simulation: the “query 

first – answer later” method. By this means students are forced to confront dis-

crepancies between what they expect and what actually occurs and therefore are 

encouraged to make accommodations of their current schemas (Garfield & 

Ahlgren, 1988; Hardiman, Pollatsek, & Well, 1986; Mills, 2002; Posner, Strike, 

Hewson, & Gertzog, 1982). If the students are not put in a position where they are 

made to face these discrepancies, they may look for, and find evidence for, their 

own previous knowledge, which may not be accurate (Shaughnessy, 1992). In this 

study for example, students drew a histogram of the means of the random samples 

they had taken from a normally distributed population. They were then asked to 

predict the shape of the distribution of sample means taken from a Uniform, then 

binomial population, and then take random samples and draw histograms of the 

means from these populations. Most students thought that these distributions 

would be the same as the parent populations and were therefore surprised by their 

results.  

5.3 Simulation in statistics 

Statistical inference is based on probability. One of the ways to look at a probabil-

ity is in terms of a long term frequency. For example, the probability of getting a 

“3” on a throw of a die is one in six. This does not mean that one “3” will turn up 

once in the next six throws, but if the die were thrown a very large number of 

times approximately one sixth of the numbers will be a “3”. According to Chance 

and Rossman (2006) the application of the long term frequency idea of probabil-

ity to inferential statistics, that is, to consider what would happen if a random 
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process were repeated many times, is difficult for many people to understand. The 

advantage of computer simulation is that many repeated trials can be carried out 

quickly.  

Another advantage of computer simulation is that it is possible to carry out trials 

of problems that may be impossible to do in reality. For example, a simple simu-

lation can determine what would happen to the ratio of male and female births if 

China‟s “one child” policy was replaced with a “stop when a son in born” policy. 

Other advantages include that the feedback is immediate and it is possible to re-do 

the simulation quickly. In Microsoft Excel, for example, any simulation based on 

random numbers can be repeated with the press of one button. It is also possible 

to link graphical representations to numerical representations (Snir, Smith, & 

Grosslight, 1995) and in Microsoft Excel the graphical representations update 

automatically as the data are changed.  

Computer simulations can also be used to demonstrate hypothesis tests. For ex-

ample, Erickson (2006), described a procedure whereby the hypothesis test for the 

equality of two population means can be demonstrated. He gave an example 

where data had been collected to test the effect of a new fertiliser on plant growth. 

The null hypothesis was that the fertiliser has no effect on growth. If this was the 

case, then group membership would have no influence on height. Using simula-

tion, membership of the two groups can be repeatedly randomly shuffled and the 

difference in mean heights calculated. These differences can then be compared 

with that of the original grouping. If the observed difference in mean height of the 

original grouping is greater than that obtained when the plants are randomly shuf-

fled, then it can be concluded that there was something special about the original 
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grouping; that is, the fertiliser does make a difference. An example of the results 

of such a process is shown in Figure 5.3.1. 

 

With this process the distribution of statistics and the comparison of the test statis-

tic with the distribution are modelled visually. Students can, therefore, draw a 

subjective conclusion as to the likelihood of the test statistic, if the null hypothesis 

were true, before calculating the numerical P-value (Erickson, 2006). 

Simulation, however, does not automatically produce understanding or produce 

sound statistical reasoning. For example, Lipson (2002) found that the sampling 

software used in her study helped in the understanding of sampling distributions 

but then the students failed to link the sampling distribution to hypothesis testing 

and estimation. Lipson, Kokonis and Francis (2003) found that the ways students 

interacted with the software were complex and often difficult to understand by the 

instructors with statistical expertise.  

Simulation, then, is one tool to help students understand the role of variation in 

statistical decision making, and can be used to challenge students‟ assumptions 

 

Figure 5.3.1. Example of the results obtained when data are shuffled at random, 
compared with the observed test statistic. 
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and preconceived notions. However, simulation does not guarantee good under-

standing. 

5.4 How computers were used in this study 

Computers in this study were used in three ways. The first was to provide students 

with a relatively quick way of performing the often tedious calculations involved 

in statistical analysis. Secondly, computers were used to demonstrate simple prin-

ciples such as the effect of errors and extreme values on the values of the mean 

and median. Thirdly, computers were used for simulations to provide guided dis-

covery learning. Neither of the last two practices had been used in the teaching of 

the unit before this study. Each simulation had a predict-test-evaluate format. That 

is, students were given a scenario and asked for a prediction. This was followed 

by a simulation of the scenario after which students were asked to re-evaluate 

their previous prediction.  The details of the computer demonstrations and simula-

tions are found in Appendix D.  
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6.  The Study Design 

6.1 Introduction  

In the physical and biological sciences, it is possible to design experiments in 

which confounding factors are controlled, treatments are randomly allocated and 

given in known amounts, and a control (objects of study without the treatment) is 

included. These experiments are carried out in a positivist environment, in that the 

only phenomena of interest are those that can be observed and measured. The data 

are subject to numerical analysis, and causal relationships are determined by alter-

ing the variables one by one. These experiments are also replicable, in that they 

can be repeated in identical circumstances. In education, however, experiments 

with these conditions are not possible. Each educational research setting, even 

with the same materials and lesson plan, is a unique interaction between the re-

searchers, the instructors and the students. As a consequence, even if random al-

location is used to allocate students to different learning environments, it is im-

possible to control for all the variables. Therefore educational experiments are not 

replicable, and if judged by the standards used in the physical and biological sci-

ences, are not scientific. It is necessary, therefore, for other methods to be found 

for carrying out educational research other than by a traditional scientific experi-

ment. The following sections describe some current research designs in education 

and their potential for providing scientific knowledge. This is then followed by a 

description of the design of this study, the instruments used in the study, and the 

details of the analyses used to assess these instruments. 
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6.2 Research Designs in Education 

Educational researchers have to make decisions about the nature of the research 

design, and, if researching in the classroom, the relationship between the re-

searcher and the instructor. The research could be performed by a researcher who 

is not part of the institution where the study is occurring and is thus separate from 

the usual instructional environment. For example, a researcher might enter an in-

stitution to carry out work with the students separate from their usual instruction. 

Because such a researcher would not have preconceptions of the students, this 

form of research can have the advantage of objectivity. Other advantages include 

that the researcher may also be able to study concepts that a busy instructor may 

not have time to examine, and may not be able to investigate because of con-

straints in the curriculum. If care is not taken, however, this form of research may 

be irrelevant to the usual instructor‟s needs or even invalid owing to lack of 

knowledge or understanding of the social situation (Hammersley, 1993).  

An alternative is for the research to be performed by the researcher in collabora-

tion with the usual instructor. The researcher might enter the usual classroom en-

vironment and participate in the students‟ instruction. This allows for objectivity 

from the researcher as well as input from the usual instructor who has knowledge 

of the setting and the participants that an outsider cannot have (Hammersley, 

1993). This collaborative setting is the form of research recommended by the Na-

tional Research Council (NRC) (2002).  

A third option is for the research to be performed by the instructor alone, as oc-

curs in action research. This has the advantage that the researcher has the knowl-

edge base of the setting and participants, but can have the disadvantage of a lack 
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of objectivity resulting from not being able to see the phenomenon in its wider 

context (Hammersley, 1993).  

The study design itself then needs to be addressed. Three research paradigms that 

are in use in educational research are the qualitative research paradigm, the scien-

tific research paradigm and the critical theoretic research paradigm (Ernst, 1998). 

The qualitative research paradigm is concerned with human understanding and 

interpretation and uses methods such as ethnographic studies and case studies. 

These studies are interested in the nature of social phenomena, and tend to pro-

duce unstructured data and often describe a small number of cases in detail 

(Atkinson & Hammersley, 1998). The critical theoretic research paradigm aims to 

understand a phenomenon with the aim of promoting social and institutional 

change. The current study was not carried out within either of these paradigms, 

and therefore these are not examined further. 

The scientific research paradigm uses the positivist approach and is concerned 

with prediction, objectivity, replicability and the discovery of scientific generali-

sations (Ernest, 1998). Therefore the data are structured and quantitative. How-

ever, it has been argued (in Section 6.1) that replicability is not possible in a class-

room context. How then, can scientific research be carried out in education? This 

issue is discussed in the next section. 

6.2.1 Scientific Research in Education 

In the previous sections it was claimed that educational research cannot always be 

performed in controlled conditions, or use randomised treatments, and cannot be 

replicated. This lack of replicability can lead to difficulty in assigning causal ef-
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fects (Posner et al., 1982). To complicate matters further, the investigator is often 

a participant in the research, and the data may not be quantitative. As a conse-

quence, the level of certainty that applies to research in the social sciences is 

lower than in the physical sciences (NRC, 2002).  

If the positivist view is taken, that only quantitative measures, within strictly con-

trolled conditions, contribute to true knowledge (NRC, 2002), it will then be as-

sumed that other forms of knowledge are not genuine, or at the very least, infe-

rior. Consequently any education research, with its lack of strictly controlled con-

ditions, will be considered to be inferior.  

Since the beginning of research in education, the validity of the methodologies of 

the social sciences compared with those used in the physical sciences have been 

constantly questioned (NRC, 2002). Despite the continuing debate as to its valid-

ity, educational research continued to develop in tandem with the development of 

models of human behaviour (NRC, 2002).  

It has been argued that if certain principles are followed, educational research can 

indeed provide genuine and even scientific knowledge. This view has resulted in 

the development of the “design study,” or the “design experiment.” Design ex-

periments are created with the aim of “seek[ing] to trace the evolution of learning 

in complex, messy classrooms and schools, test and build theories of teaching and 

learning, and produce instructional tools that survive the challenges of everyday 

practice” (Shavelson, Phillips, Towne, & Feuer, 2003, p. 25). 

The question is then raised concerning how these aims can be achieved using re-

search that is in some way “scientific.” According to the Committee on Scientific 

Principles for Educational Research of the NRC (2002) a scientific study should 
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first pose significant questions that reflect understanding of the relevant theoreti-

cal, methodological and empirical work that has come before, and use empirical 

means that are based on observation (NRC, 2002). The study should also allow 

direct investigation of the questions of interest with methods that are appropriate 

and effective, and provide a “logical chain of reasoning from evidence to theory 

and back again that is coherent, shareable, and persuasive to the sceptical reader” 

(NRC, 2002, p. 4). The findings should also be generalisable across studies, and 

be available for professional scrutiny and critique. The authors claim that science 

progresses both by proposal of new theories and by elimination of theories that 

have been refuted by newly acquired evidence.1 It is therefore proposed that sci-

entific research in education should propose hypotheses, or conjectures that are 

stated in “clear, unambiguous, and empirically testable terms” (NRC, 2002,  

p. 18). 

The methodology of design research is further described by Cobb, Confrey,  

diSessa, Lehrer, and Schauble (2003). Researchers create the conditions for de-

veloping new theories while allowing for the possibility that these theories may 

be refuted (cf. with Karl Popper, Section 2.3.1) by modifying  classroom settings, 

procedures, and instructional artefacts (Shavelson et al., 2003). As a result, design 

experiments are prospective, in that designs are implemented with a hypothesised 

learning process in mind that can be exposed to scrutiny. They are also reflective, 

in that during the experiment conjectures can be confirmed, refined or refuted. In 

the latter case alternatives may be generated. This feature of design experiments 

                                                 

1 That science progresses by this “neat” fashion is a matter of debate. Scientific discovery can be 
made by flashes of insight and other non-conventional means. Scientific theories may be around 
for years before they are accepted by the scientific community, as was tectonic plate theory.   
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leads to them being inherently cyclical in nature. As hypotheses or conjectures are 

refined or refuted, the design is adjusted so that the experiment may recommence; 

that is, the research is carried out with cycles of “design, enactment, and analysis” 

(Baumgartner et al., 2003, p. 6). Design experiments are also collaborative, in that 

practitioners (instructors for example) work together with researchers. In this way 

both the researchers‟ aims and the instructors‟ knowledge of the local context 

may be considered. 

In summary, in a design experiment, before each teaching episode a set of hy-

potheses are proposed and a sequence of situations planned to test these hypothe-

ses. These hypotheses are then confirmed, refined, or refuted (Steffe, Thompson, 

& Von Glaserfield, 2001). It is this feature of generating testable hypotheses that 

leads to the claim that design based research can generate causal explanations and 

therefore result in “scientific” knowledge such as obtained in the more traditional 

scientific experiments (Baumgartner et al., 2003).  

6.2.2  How “Scientific” Does Knowledge Have To Be? 

From the discussion in the previous sections it is apparent that what constitutes 

“scientific” knowledge varies according to a person‟s point of view. If one is a 

positivist, all information that is not measureable is not scientific and conse-

quently not valid. It can be argued that by aiming for “scientific” knowledge the 

educational researcher is, by implication, subscribing to the view that other forms 

of knowledge are inferior, and may be asking too much of the type of data that 

results. It can be argued that if the educational research provides knowledge so 

that students‟ educational experiences might be improved, or produces “Instruc-

tional tools that survive the challenges of everyday practice” (Shavelson et al., 
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2003, p. 25), then the research is valid. Any research should be appreciated for the 

value of the knowledge it produces, whether “scientific” or not.  

It was stated earlier that design experiments are collaborative. Another form of 

research frequently used in education, with similarities to the design research 

methodology, but is not collaborative, is known as Action Research. This is de-

scribed in the next section.  

6.2.3 The Action Research Method of educational research 

Action research occurs when practitioners carry out research in their own envi-

ronments. In the education context, “Action research is any systematic enquiry 

conducted by teacher researchers, principals, school counsellors, or any other 

stakeholders in the teaching/learning environment to gather information about 

how their particular schools operate, how they teach, and how well their students 

learn” (Mills, 2007, p. 5). Because the research is practitioner based it is insider 

research; that is, the researcher will influence what is happening (McNiff, Lomax, 

& Whitehead, 2003). 

Action research has had a varied history that is reflected in the various philoso-

phical/ethical views in today‟s literature on the topic. In the USA, an early propo-

nent of action research was Kurt Lewin, who “focussed on understanding and 

changing human actions, often around issues of reducing prejudice and increasing 

democratic behaviours” (Noffke, 1994, p. 10). As a result, much of action re-

search in the USA has been aligned with the progressive education movement. In 

Australia, action research arose during a time when there was a shift towards col-

laborative curriculum planning and action research was seen as part of the devel-
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opment of a more participatory education system (Noffke, 1994). In Britain, ac-

tion research emerged in the 1960s and 1970s as part of a shift away from a cen-

tral curriculum development that predetermined what is to be learned by students, 

toward curricula that emphasised the students‟ own search for meaning 

(Hammersley, 1993; Noffke, 1994). One of the major influences on action re-

search was Stenhouse, who first, advocated inquiry learning, and second, and 

most important in this context, emphasised the role of the teacher as a reflective 

practitioner. A reflective practitioner is one who has made a commitment to the 

systematic inquiry into his or her own teaching and the testing of theory, and who 

is ready to allow others to observe his/her work and is prepared to discuss it 

(Hammersley, 1993). 

The varied antecedents of action research have led to differing emphases on the 

nature and purpose of modern action research. Depending on the researcher, ac-

tion research can be performed to modify classroom practice, to do something 

good in the world through direct social action, to encourage emancipation of a 

disadvantaged group in society or to enhance the professional development of 

teachers (Feldman & Minstrell, 2000). Whatever the reason for which the action 

research is carried out, like the design experiment, action research it is inherently 

cyclical. Practitioners review their own practice, identify what they want to im-

prove, try it out, and review what happens (McNiff et al., 2003).  
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6.2.4 How this study fitted the research paradigms 

This study had the following features of a design experiment and the action re-

search method. 

 It was cyclical – each intervention was subjected to review and retrial. 

 The aim was to generate knowledge of teaching and learning so that im-

provements in these areas could be made.  

 Testing took place through practice (here the practice of teaching). 

 Validity was enhanced through triangulation. 

 The findings are to be made public and therefore subject to review.  

 This study was practitioner based.  

This study was not collaborative as the researcher was also the practitioner, and 

therefore did not have this characteristic of a design experiment.  

6.3  The study – aims, participants, tasks, interventions 

6.3.1 The aims of the study 

The first of the aims of this study was to gain knowledge of the students‟ under-

standings of statistical processes on entering university. In the first week of the 

semester the students were given a questionnaire that included items on stochastic 

processes, conditional probability, the use of proportional reasoning, and the de-

termination of differences between sets of data. Details of this questionnaire are 

described in Section 6.3.3.3. The other aims were to gain knowledge of students‟ 

beliefs and difficulties in understanding P-values and confidence intervals, and to 

use this knowledge to develop teaching programs so that student understanding of 



98 

 

these concepts could be enhanced. Knowledge of students‟ understandings of P-

values and confidence intervals was gained from the reasoning used in responses 

to a second questionnaire given at the end of the unit and by the reasoning used in 

responses to selected questions in the second of two tests that were part of the 

students‟ formal assessment. The second questionnaire and test items are de-

scribed in Sections 6.3.3.4 and 6.3.3.5. 

6.3.2 The participants in the study 

This study was carried out over four teaching semesters at the University of Tas-

mania. The subjects of the study for each of the four semesters (pre-intervention 

and the three cycles of the intervention) were volunteers from the Data Handling 

and Statistics unit at the University of Tasmania, which is a first year one-

semester unit. As described in the previous section, the participants were asked to 

complete two questionnaires and to make available their responses to the second 

of their formal tests. At the beginning of the study the first questionnaire was 

given to students on both campuses of the University where the unit is taught. The 

responses of all these students were used in the analysis. Owing to circumstances 

beyond the researcher‟s control, only students at one campus were available after 

this time for the study, and the interventions were applied only to these students.   

6.3.3 The sources and analysis of the questionnaires and the test items 

6.3.3.1 Introduction 

Because participants in the study were volunteers, it was important that the ques-

tionnaires were not too time consuming so that the participants would be more 

likely to complete them. The challenge, therefore, was to use or design questions 
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that would be quick to answer, but still allow an assessment of the students‟ statis-

tical understanding. Therefore multiple choice and short answer questions made 

up the major portion of these questionnaires.  Interviews could not be used owing 

to ethical considerations. As the researcher was the lecturer, the lecturer could not 

know who had agreed to participate, and only the student numbers of the partici-

pants were given to the researcher after the unit results were published.  

If written well, multiple choice questions can assess different levels of under-

standing from surface to deep learning. They can also be written so students must 

discriminate among options that vary in degree of correctness, thus allowing for a 

hierarchical system of grading. They also have the advantage of minimising writ-

ing so that a substantial amount of material can be covered in a relatively short 

time. Multiple choice items also reduce the guessing students carry out with a 

true-false test (Kubiszyn & Borich, 2003). However a disadvantage is that is has 

been found that students may use surface strategies and game playing strategies in 

choosing their answers (Biggs, 1999). 

Restricted-response items, that is, short answer questions, are often used to meas-

ure comprehension, application and analysis (Kubiszyn & Borich, 2003). These 

also allow for grading on a hierarchical scale. In the questionnaires used for this 

study, students were usually asked to give reasons for their answers. The impor-

tance of this process was demonstrated in the trial of the first questionnaire. The 

respondents were given a situation where the probability of a success was a half. 

On being asked what number of successes out of 50 trials would be surprising, 

one respondent answered “25.” At first this would appear that this respondent 

could not understand the concept of a simple expected value.  However the expla-
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nation showed that the respondent was thinking of variability, and therefore did 

not expect to get “exactly 25,” but a number near it. Therefore, whereas the an-

swer of “25” was incorrect a higher order of reasoning was being used than the 

answer initially indicated.  

6.3.3.2 The sources of the questionnaire items 

Several of the questionnaire items were based on The Statistical Reasoning As-

sessment (Garfield & Ahlgren, 1988). The Statistical Reasoning Assessment 

(SRA) was developed and validated as part of the ChancePlus Projects in the 

United States of America to evaluate the effectiveness of a new statistics curricu-

lum for high school students. The aim of the SRA was to assess students‟ statisti-

cal understanding in contrast to assessing computational accuracy and procedural 

knowledge. The items were designed to assess understanding about statistical 

measures, uncertainty, samples and association. The SRA was also designed to 

assess common misconceptions. These included misconceptions about sample 

size, the representativeness of a sample, and the equiprobability bias. 

After distributing the test to experts for content validation, the authors of the SRA 

then administered the questions to students in the form of open ended questions. 

Based on these answers selected responses were used to construct a multiple 

choice format. Criterion related validity was then attempted by correlating the 

student scores on the SRA with the student marks obtained from the formal as-

sessments. This resulted in a low correlation. The authors suggested that this find-

ing shows that the use of successful statistical reasoning and the presence of mis-

conceptions are unrelated to students‟ performance in a statistics unit.  
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The authors of the initial SRA graded their questionnaire by placing questions 

into categories depending on whether the reasoning was correct or identified the 

presence of misconceptions. Watson and Callingham (2003) used many of the 

items of the Statistical Reasoning Assessment, however, they used a hierarchical 

grading system based on the SOLO Taxonomy. A hierarchical grading procedure 

was used to grade the questions in the questionnaires and tests in this study. 

Therefore the student who might answer “25” in the question described earlier 

would receive a higher score than a student who gave another incorrect answer 

because of poor statistical reasoning. This hierarchical system of grading has two 

practical advantages. One is that it allows for Rasch analysis (details are in Chap-

ter 4) and the other is that students who are guessing are more likely to be de-

tected.  

6.3.3.3 The first questionnaire 

The first questionnaire was designed to assess the presence of some of the mis-

conceptions identified by Fischbein and Schnarch (1997), Kahneman and Tversky 

(1982), Tversky and Kahneman (1982a), and Garfield and Ahlgren (1988) and 

whether or not certain correct reasoning was present. These misconceptions in-

cluded the representativeness heuristic (Tversky & Kahneman, 1982a), the time-

axis fallacy (Fischbein & Schnarch, 1997), and the over or underestimating of 

sampling variability (Garfield & Ahlgren, 1988). Examples of successful reason-

ing included the calculation and interpretation of simple and conditional prob-

abilities, being able to recognise independence in a simple context, and the ability 

to interpret a simple two-way table (Garfield & Ahlgren, 1988).  
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Because hypothesis testing involves the use of conditional probabilities it was 

considered important to assess whether or not students could answer simple con-

ditional probability questions. If they could not do this, then it was expected that 

they would find the more sophisticated conditional reasoning involved in hy-

pothesis testing to be difficult. There were three questions regarding conditional 

probability included in the first questionnaire. One required the use of a frequency 

table. The second involved forward and backward conditional statements, and the 

third involved conditional reasoning without the use of numbers.  

A final question was included to see if students could make judgements about dif-

ferences between two data sets in a simple context. This also involved judgements 

based on equal and unequal sample sizes (Watson & Moritz, 1999). If students  

could not use informal processes to determine differences in a simple context, it 

was expected that they would have difficulty in the determination of differences 

with hypothesis testing using any other reasoning than that provided by proce-

dural knowledge. A summary of the statistical reasoning tested for, whether cor-

rect or incorrect, and the questions that relate to each form of reasoning tested for 

is given in Table 6.3.3.3.1. The questionnaire is provided in Appendix B1 and the 

coding rubric is in Appendix C1, with explanations in Chapters 7 and 8. 
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Table 6.3.3.3.1 

 Statistical reasoning assessed in the first questionnaire 
Reasoning Questions 
Correct  
Correctly interprets probabilities B1, B2, B3d*# 

Calculates simple probabilities C1#, D2# 

Understands sampling variability D6c#, D1b*, D3#, 
D4#, D6a# 

Understands independence in simple contexts C2#, C3#, C4# 

Correctly interprets conditional probabilities in two way 
tables 

E2●, F1, Ad* 

Calculates simple conditional probabilities E3a# 

Makes simple inferences when the group sizes are equal F2abc▲ 

  
Misconceptions  
Holds the outcome orientation misconception B3e*# 

Holds the law of small numbers D1c* 
Believes that previous outcomes influence independent 
events 

C2#, C3#, C4# 

Over or underestimates sampling variability C2#, C3#, C4#, D5#, 
D6b▲ 

Takes the time factor is taken into account with condi-
tional probability 

E3b● 

Makes incorrect simple inferences when the group 
numbers are not the same size 

F2d▲ 

* SRA 
#Watson and Callingham (2003) 
●Watson and Kelly (2007) 
▲Watson and Moritz (1999) 

6.3.3.4 The second questionnaire 

Three of the questions in the second questionnaire were repeated from the first 

questionnaire as “anchors” for the Rasch analysis (see Section 4.5.3). These an-

chors provided a means by which the students‟ ability ratings could be compared 

between the beginning and the end of the unit. The other questions were included 

to assess students‟ knowledge about statistical significance, their ability to judge 

the likelihood of outcomes using standard errors, and their ability to explain the 
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use of random processes and the importance of random sampling. There were also 

questions that were included to judge their ability to use hypothetical and condi-

tional probability reasoning, with and without labelling the probabilities involved 

as P-values. A summary of the statistical reasoning tested for and the questions 

that relate to these can be found in Table 6.3.3.4.1. The questionnaire is provided 

in Appendix B2 and the coding protocol is in Appendix C2. 

Table 6.3.3.4.1 

 Statistical reasoning assessed in the second questionnaire  
Reasoning Second 

questionnaire 
Correct   
Understands sampling variability 8d* 
Understands importance of large samples 6 part 2b* 
Makes simple probability judgements when problem ex-
pressed in words 

2b♠, 5ab 

Calculates simple expected values 2a 
Describes randomness 1# 

Draws conclusions from a conditional probability 2c♠ 

Interprets a P-value 4♦ 

Draws conclusion from a P-value 4♦ 

Takes variability into account using a standard error 5ab 
Explains the importance of chance processes in sample 
selection and allocation of treatments 

5d, 9♥, 8b 

  
Misconceptions  
Over/under estimates sampling variability 5c 
* SRA 
#Watson and Callingham (2003) 
♠Brightman and Schneider (1992) 
♦Written by researcher and used in Australian Maritime College Exams 
♥From the assessment used in the Graduate Diploma in Science (statistics) at the 
University of Tasmania. 
 

6.3.3.5 The test 

Part of the formal assessment of the Data Handling and Statistics unit involved 

two 50-minute tests. These tests were written by the senior lecturer who was in 
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charge of the unit and were part of the formal assessment and could not be 

changed for this study. The questions from the second test (given in the last week 

of the unit) that were included in this study assessed students‟ interpretation of P-

values, interpretation of confidence intervals, and tested for the presence of the 

misconception that high P-values indicate that the null hypothesis is true. The sta-

tistical reasoning tested for and the questions involved are described in Table 

6.3.3.5.1. The test items are found in Appendix B3 and the coding protocol is 

found in Appendix C3. 

Table 6.3.3.5.1 

Statistical reasoning assessed in the selected test items 
Reasoning Test 

item 
Correct   
Interprets a P-value 3 
Draws conclusion from a P-value 3 
Interprets a confidence interval in terms of an estimate of 
the population mean 

5a, 6d 

Compares groups based on their averages 8bf 
  
Misconceptions  
States that the  “95%‟” in a confidence interval represents 
where the samples will be 

5b 

Believes a high P-value indicates the null hypothesis is 
true 

1 

 

6.3.3.6 The analysis of the questionnaires and the test 

The questionnaires were analysed quantitatively using the Rasch partial credit 

model. Using this model, independent assessments of the difficulty of the items 

and the students‟ ability were gained. It was planned that a similar analysis would 

be carried out on responses to the test items, but it was found that these did not 

fall on a unidimensional scale and were therefore unsuitable for Rasch analysis. 
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After the completion of the Rasch analysis, the items in each questionnaire were 

then divided into groups, in decreasing order of difficulty, depending on the cog-

nitive demands of the items. The students were then divided into groups accord-

ing to their ability, using the groupings obtained from the item analysis. For ex-

ample, as the highest group of items in the first questionnaire had ratings from 0.7 

logits and above, the students with an ability rating of 0.7 logits and above were 

placed in the highest ability group.  

The responses to the first questionnaire for all the semesters involved in the study 

were combined into one analysis. This was reasonable because this questionnaire 

was administered at the beginning of each semester before any teaching took 

place. The ability ratings were then compared among semesters using the 

Kruskal-Wallis H procedure, to determine if there were significant differences in 

mean ability among the students from each of the four semesters involved in the 

study. This was of interest as the cohorts of students were different from the first 

semester to the second semester in each calendar year. In general, the students in 

the first semester of each calendar year were enrolled in courses that required a 

higher Tertiary Entrance Score than those in the second semester. The items in the 

first questionnaire were also tested using the Mann-Whitney U procedure, to see 

if there were any differences between the responses of the students who did and 

did not have previous statistical experience. The responses of the second ques-

tionnaire were also combined into one analysis, even though there were different 

teaching programs for each semester. This was partly because only a small num-

ber of students agreed to participate in the study for the second cycle of the inter-

vention. Even without this problem this combination was reasonable because 



107 

 

some of the items from the first questionnaire were repeated and used to anchor 

the item difficulties of the second questionnaire.  As a consequence, the item and 

person difficulties would be placed on the same place of the logit scale no matter 

if the analyses were separated or not.  

The final quantitative analysis of the questionnaires compared the gain (or other-

wise) in students‟ ability from the first to the second questionnaire by the means 

of a paired t-test. Correlations were then calculated and interpreted between the 

ability ratings from the first and second questionnaires, the first questionnaire and 

the students‟ final result of their formal assessments, and the second questionnaire 

and the students‟ final result of their formal assessments.  

A qualitative analysis of the students‟ responses for each questionnaire then fol-

lowed. In this analysis, the responses of the students for each item were compared 

over the ability groups, to see how the form of reasoning used by the students in 

the higher ability groups differed from those in the lower ability groups.  

6.4 The design for this study  

6.4.1 Introduction 

The aims of this study were to gain knowledge of students‟ beliefs and difficulties 

in reasoning about P-values and confidence intervals, and to use this knowledge 

to develop teaching programs that would enable students to explain how these 

statistical methods are derived and used in inferential statistics.  The study was 

cyclical, in that each the nature of each intervention was based on the results and 

experiences of the previous semester. The following sections describe the teach-
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ing strategies used for the pre-intervention semester, and the three cycles of the 

intervention.  

6.4.2 The pre-intervention semester 

The first semester of the study, the pre-intervention semester, was used to gain 

knowledge of students‟ beliefs before the teaching program was altered. Tradi-

tionally, the unit had been taught with the use of two lectures, one tutorial session 

and one “practical” session per week, where the statistical calculations they re-

quired to carry out the formal assessment were demonstrated and practiced with 

the use of Microsoft Excel. The lectures were presented in didactic form, that is, 

they were used to pass on, and explain the information that the students were re-

quired to know. The students were expected to take notes and although they were 

encouraged to ask questions if required, very little questioning actually took 

place. The tutorial sessions were used to give the instructions for their formal as-

sessments, and to answer questions from the formal notes that they were given in 

place of a text book.  

The material of the unit was, and continued to be, divided into four modules. At 

the end of each module the students were assessed by a project, and they were 

given a test at the end of modules two and four. The content of the unit is shown 

in Table 6.4.2.1. 
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Table 6.4.2.1  

A description of the Data Handling and Statistics unit for the pre-intervention 
semester 

Module 1  Introduction to the discipline of statistics, sam-
pling and experimental design 

 Introduction The discipline of statistics, its uses, and the 
branches of statistics 

 Types of data Measurement, categorical, response and ex-
planatory variables 

  Displaying data  Histograms, scatterplots and ogives 
 Summary statistics Mean, median, mode, variance, standard devia-

tion, range and IQR 
 Sampling methods Random sampling 

Systematic sampling 
Cluster sampling 
Stratified sampling 

 Survey and ex-
perimental design 

Survey design and sources of error in surveys  
Experimental design 

 Statistical inde-
pendence 

Contingency tables 

Module 2   Probability 
 Introduction to 

probability 
Classical 
Empirical 
Subjective 

 Discrete distribu-
tions 

Binomial 
Poisson 

 Continuous distri-
butions 

Normal 
Standard Normal 
t-distribution 

Module 3  Statistical inference 
 Introduction  Sampling distribution of the mean 

Confidence intervals 
 Hypothesis testing One sample t-test 

Two sample t-test 
Chi-squared tests for independence and good-
ness of fit 

Module 4  Statistical applications 
 Linear regression Simple linear regression 

Multiple regression 
 ANOVA One factor ANOVA 
 Setting the level of 

significance 
Type I and Type II errors 
Considerations for setting the level of signifi-
cance 
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Evidence of students‟ understandings of P-values and confidence intervals in the 

pre-intervention semester was collected using the responses to the second of the 

questionnaires and from responses to selected items in the second test that was 

used as part of students‟ formal assessment.  

These responses were coded based on the SOLO taxonomy; the coding rubrics are 

in Appendix C. The responses were then subjected to a Rasch analysis (using the 

Partial Credit Model) to give ratings of the item difficulty and of the students‟ 

ability at the beginning of the semester. The results of the quantitative and quali-

tative analyses, described in Section 6.3.3.6, are in Chapters 7 and 8. Descriptive 

analyses of the progression of students‟ reasoning about P-values and confidence 

intervals are in Chapters 9 and 10. 

6.4.3 The first cycle of the intervention 

The responses from the students at the end of the pre-intervention semester 

showed that most students were able to carry out hypothesis testing and to calcu-

late confidence intervals successfully, in that the procedures were followed and 

the answers were numerically accurate. In contrast, the responses to questions that 

required the students to show their reasoning showed that for many of these stu-

dents understanding was not present. This was evident from the fact that no stu-

dent attempted to define the meaning of a P-value in the first of the questions 

where this would have helped to a answer the problem, and only one quarter of 

the students attempted to define the meaning of the P-value in the second question 

where this would have helped explain the problem. Only one quarter could suc-

cessfully answer questions that asked for an explanation of the meaning of a con-

fidence interval.  
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As described in Chapter 2, Garfield and Ahlgren (1988) and Yilmaz (1996) point 

out that in general, early tertiary students are not familiar with hypothetical, prob-

abilistic reasoning and find it difficult, and these difficulties can be made worse if 

instruction is given in a didactic fashion. In addition, Rubin, Bruce and Tenney 

(1991) point out that in general, tertiary students have not been exposed to sam-

pling and do not have a realistic understanding of the relationship between sam-

ples and the original population and the variation between samples of the same 

population. This intervention was designed, therefore, to give students exposure 

to sampling and to give students exposure to the hypothetical, probabilistic proc-

ess. 

The first strategy that was used in order to enhance learning was the introduction 

of guided discovery learning via the use of computer simulation. For each simula-

tion, the students were given a scenario, asked to make a prediction of the out-

come, and then use the simulation to test their prediction (delMas et al., 1999; 

Garfield & Ahlgren, 1988; Mills, 2002). Each simulation was carried out before 

the relevant material was introduced formally in a lecture or tutorial. For example, 

to introduce the Central Limit Theorem, students were given some data that were 

normally distributed. They were then informed that they would be taking samples 

from these data and calculating the sample means. They were asked to predict the 

shape of the distribution that these sample means would have. They then used Mi-

crosoft Excel to take 500 samples, calculate the mean of these samples, and draw 

a histogram of these means. These means formed a Normal distribution. They 

were then asked to undergo a similar process for data that were uniformly distrib-

uted. As they had been led to believe that the sample means would have the same 
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distribution as the population distribution, most of the students predicted that the 

sample means would have a Uniform distribution as well, and seemed to be sur-

prised when a Normal distribution resulted. They then repeated the process with a 

Binomial distribution, one with a small sample size (n = 5) and then with a larger 

sample size (n = 25). It was only after this practical exercise was completed that 

the Central Limit Theorem was introduced formally in a lecture. A simpler exam-

ple was used to compare the characteristics of the mean and median. The students 

entered a set of given numbers, with a range from 5 cm to 10 cm, into an Excel 

spreadsheet and calculated the mean and median. They were then asked to replace 

one of the numbers with a very large number of their choice. They immediately 

saw that the mean changed dramatically, but the median remained unchanged. 

The carrying out of simulations such as this is one of the benefits of using com-

puters to enhance the learning of statistics, as repeated sampling is quick, and 

since visual effects such as graphs are connected to the data, any changes to the 

data gives an immediate visual demonstration. The details of all the simulations 

the students carried out are found in Appendix D. 

The second strategy was to introduce the reasoning behind hypothesis testing 

early in the unit (Week 2) using examples such as the Chinese Birth problem, 

where the students used coins to simulate what would happen to the ratio of girls 

to boys if the “One child policy” in China was replaced by a “Have children until 

a boy is born” policy. After this introduction, each time a hypothesis test was in-

troduced the students were asked a series of questions.  

 What is the assumption about the population? 
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 Given this assumption, were our sample results very unlikely, unlikely, 

likely, or very likely? 

 What conclusion can we make about our assumption about the popula-

tion? 

Because it was believed that this hypothetical thinking was unfamiliar to the stu-

dents, the formal language of hypothesis testing (for example, null hypothesis and 

P-value) was not introduced until half way through the semester. This was so that 

students could become accustomed to hypothetical thinking without simultane-

ously having to learn the formal language. 

The third strategy used in the semester was to familiarise students with the proc-

ess of confidence intervals by having them physically draw random samples and 

looking at the characteristics of their samples. First, students were asked to take 

random samples from a population. The population consisted of 100 workers at a 

shipping port, whose blood lead concentrations were written onto equally sized 

squares of paper and these were placed in a paper bag. For each sample, the stu-

dents calculated the mean, and these values were placed on a number line. By 

these means the students were introduced to the ideas that sample means vary 

from sample to sample, and that sample means can be used to make an estimate of 

the value of the population mean. It was after this that the students were intro-

duced to the Central Limit Theorem with a computer simulation, and this was fol-

lowed by a formal introduction to confidence intervals. 

A detailed description of the traditional teaching plan, and the additional material 

introduced for the first cycle of the intervention is given in Appendix A. The evi-

dence used to judge the success or otherwise of this cycle of the intervention was 
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the same as in the previous semester; that is, the responses to the second ques-

tionnaire and the second test. The results of the quantitative and qualitative analy-

ses, described in Section 6.3.3.6, are in Chapters 7 and 8. Descriptive analyses of 

the progression of students‟ understanding about P-values and confidence inter-

vals are in Chapters 9 and 10. 

6.4.4 The second cycle of the intervention 

The analysis of the student responses (given in detail in Chapters 9 and 10) after 

the first cycle of the intervention showed that unlike the pre-intervention semes-

ter, where no students had made an attempt to define a P-value for either of the 

questions about P-values, 22% of the students attempted to explain the meaning 

of the P-value for one question, and 30% of the made this attempt for the other 

question where this was useful. Most of their explanations, however, showed mis-

conceptions. There was no apparent improvement in the understanding of confi-

dence intervals. Therefore some additional teaching strategies were introduced 

into the second cycle.  

Constructivist theories of learning propose that student learning is enhanced if 

connections can be made between students‟ previous knowledge and the new 

knowledge being introduced. However students are not, in general, familiar with 

the probabilistic process used in hypothesis testing and the calculation of  

P-values. An example, therefore, needed to be found that would introduce this 

process and be easily understood.  After some searching, an example was found 

that was believed could take this role. This is the “It is hot outside” problem 

(Shaughnessy & Chance, 2005) represented in table form in Table 6.4.4.1. With 

this problem the proposition was made that the weather is hot, but when the data 
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were collected (looking out of the window), it was observed that everyone was 

wearing winter clothes. Because it is unlikely that people would be wearing win-

ter clothes on a hot day, the observation was incompatible with the proposition 

and the proposition was rejected. This problem was considered to be easy to un-

derstand and was used as the template for all further hypothesis testing.  

Table 6.4.4.1 

An example of the probabilistic hypothetical process 
My hypothesis It is hot outside today 
Data When we look out of the window, everyone 

we see is wearing winter clothes (woolly 
hats, gloves and coats). 

What is the probability of see-
ing people wearing winter 
clothes if it is hot outside? 

Very, very low. 

What do you conclude about my 
hypothesis? 

It is incorrect. 

 

Morgan (2001) and Pugalee (2001) state that by writing down their reasoning, 

students become aware of gaps in their knowledge and their understanding is in-

creased as they strive to fill in these gaps. Students, therefore, were also encour-

aged to write down the meaning of the appropriate P-value for every hypothesis 

test they were introduced to in the unit.   

To help increase students‟ understanding of confidence intervals, students were 

introduced to sampling as in the previous cycle. In this cycle, however, the intro-

duction to sampling started in the first week of the semester, and more opportuni-

ties were given for students to take samples and to make estimations of the value 

of the population mean. The introduction to confidence intervals took place in 

stages. First of all, the sampling exercise was used not only to give a demonstra-

tion of the variation among sample, but also to introduce the idea that “most” 



116 

 

sample means were “nearby” to the population mean. As the semester progressed, 

the students were then introduced to the idea that the proportion of means that are 

“nearby” is known. After the introduction to the Central Limit Theorem, they 

were introduced to the idea that because approximately 95% of sample means are 

within two standard errors of the population mean, 95% of the time the interval 

that consists of the sample mean ± two standard errors would contain the value of 

the population mean.   

One result of the introduction of these strategies was that there was an increased 

amount of interaction among the students and between the students and lecturer. 

The consequence was that as the formal lectures became more conversational and 

the difference between the tutorials and the formal lectures became increasingly 

blurred.  

The evidence for the success or otherwise from this cycle of the intervention was 

the same as in the previous semesters; that is, the answers to the second question-

naire and selected items of the second test. The results of the quantitative and 

qualitative analyses, described in Section 6.3.3.6, are in Chapters 7 and 8. De-

scriptive analyses of the progression of students‟ understanding about P-values 

and confidence intervals are in Chapters 9 and 10. 

During this cycle notes were also taken by the researcher of the teaching strate-

gies used to teach P-values and confidence intervals and the students‟ reactions to 

these strategies. This was so that more knowledge about students‟ problems in 

these areas could be gained to assist in the planning of the third cycle of the inter-

vention. Owing to ethical considerations the researcher could not know who was 
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participating in the study, therefore no identifying information was kept, and the 

notes of the students‟ work were written in a descriptive format only. 

6.4.5 The third cycle of the intervention 

It was difficult to make conclusions about students‟ understanding for the second 

cycle of the intervention because only six students agreed to participate in the data 

collection. The data that were available, however, showed that some students 

were confused about the nature of the P-value as their answers were inconsistent. 

For example, one student stated that a P-value of .01 indicated that a new drug 

worked better than the previous drug 1% of the time, but recommended that the 

new drug be used. Misconceptions were also revealed in their understanding of 

confidence intervals. However, two out of the six students answered both parts of 

the confidence interval question correctly. 

Confrey (1990) and Tobin, Tippins and Gallard (1994) stated that learning and 

understanding is improved if students are encouraged to explain their reasoning; 

the act of searching for the words to explain their meaning clarifies their ideas. 

Therefore the strategy used in the previous cycle, namely the encouragement of 

students to write and share their ideas, was extended to confidence intervals as 

well as the work on P-values.  

Moreno and Duran (2004) and Ozgun-Koca (1998) found that using multiple rep-

resentations can improve students‟ learning and understanding. In this cycle of the 

intervention alternative representations were used for each hypothesis test so that 

students could gain a visual representation of the likelihood of each test statistic, 

if the null hypothesis were true. For example, if the test statistic, t = 3.6, were cal-

culated, a diagram such as that in Figure 6.4.5.1 would be drawn.  
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Figure 6.4.5.1. Example of a t-distribution used to give a visual demonstration of 
the likelihood of the test statistic. 
 

The students were then asked to consider how likely the given statistic or one of a 

more extreme value would be if the null hypothesis were true using words (for 

example “unlikely”, “likely”). They then were asked to consider if the given sam-

ple statistic belonged to the proposed distribution or a distribution centered on 

another parameter. 

From discussions in the previous cycle of the intervention, it became apparent that 

some students were confused about why statistical hypotheses are written in the 

way they are, that is, as the hypothesis of no difference. In this cycle, therefore, a 

link was made between the writing of null hypotheses and the scientific method as 

proposed by Popper (1963). According to Popper, it is never possible to prove a 

statement true. As a result scientific statements are those that make conjectures 

that can be falsified. Similarly, null hypotheses are also statements that cannot be 

proven true, but are written in a form so that evidence can be found against them. 

t = 0 t = 3.6 
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In the earlier cycles of the intervention, the students were introduced to the hypo-

thetical, probabilistic process early on in the semester, however the formal termi-

nology (in particular null hypothesis and P-value) was not introduced to later in 

the semester. In the third cycle this terminology was introduced with the first ex-

ample (“It is hot outside”) so that students had more time to become familiar with 

these terms. Therefore the presentation of the problem in Table 6.4.4.1 was al-

tered to that in Table 6.4.5.1.  

Table 6.4.5.1 

The “It is hot outside” problem in its new format 

Null Hypothesis It is hot outside today 
Data When we look out of the window, everyone 

we see is wearing winter clothes (woolly 
hats, gloves and coats). 

P-value Q: What is the probability of seeing people 
wearing winter clothes if it is hot outside? 
A: Very, very low. 

What do you conclude about my 
hypothesis? 

It is incorrect. 

 

The evidence for the success or otherwise from this cycle of the intervention was 

the same as in the previous semesters; that is, the answers to the second question-

naire and selected items of the second test. Qualitative and quantitative analyses 

were carried out as described in Section 6.3.3.6, and the results of these analyses 

are found in Chapters 7 to 10.  
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6.5  A summary of the study design 

Aims 

 To gain knowledge of students‟ understandings of statistical processes on 

entering university. 

 To gain knowledge of students‟ beliefs and difficulties in understanding 

P-values and confidence intervals. 

 To use this knowledge to develop teaching programs so that students‟ un-

derstanding of P-values and confidence intervals can be enhanced. 

Tasks requested from participants 

Participants were asked to complete: 

 One questionnaire on entry to the unit 

 One questionnaire at the end of the unit, and to give 

 Permission to use results of the second test that was used in the formal as-

sessment.  

The Pre-intervention semester (See Section 6.4.2) 

The unit was taught as per previous practice.    

The total number of participants was 26, 13 of these were from the Hobart cam-

pus. The Hobart students completed the first questionnaire only. Thirteen partici-

pants were from the Launceston campus, nine of whom completed the second 

questionnaire, and 12 of whom completed the test.  
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Cycle one of the intervention (See Section 6.4.3) 

The changes that were introduced were: 

 The use of guided discovery learning with the use of computer simulations 

in a “predict, test, re-think” format. 

 The introduction of the hypothetical reasoning used in hypothesis testing 

early on in the semester. No formal language (e.g., the term “P-value”) 

was used.  

 The demonstration of sampling variation by taking samples from a popu-

lation and calculating and comparing the sample means. 

The total number of participants was 26 out of a possible 29, 20 of whom com-

pleted the second questionnaire, and 23 of whom completed the test.  

Cycle two of the intervention (See Section 6.4.4) 

The further changes that were introduced were: 

 The introduction of the hypothetical, probabilistic process by the “It is hot 

outside” problem. 

 The encouragement of students to write down the meaning of each P-

value in words. 

 The staged introduction of confidence intervals.   

The total number of participants was 7 out of a possible 27, four of whom com-

pleted the second questionnaire, and six of whom completed the test.  
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Cycle three of the intervention (See Section 6.4.5) 

The further changes that were introduced were: 

 The encouragement of students to write about confidence intervals as well 

as P-values.  

 The use of alternative representations for P-values.  

 The introduction of Popper‟s work on falsifiable statements.  

 The introduction of formal statistical terminology (e.g., the term “P-

value”) from the beginning of the semester.  

The total number of participants was 16 out of a possible 26, 12 of whom 

completed the test. The second questionnaire was not given.  

6.6  Constraints on the research 

The participants in the study were student volunteers. Therefore the numbers were 

restricted not only by the number who enrolled in the unit but also by those who 

chose to participate by allowing their data to be used. Because the lecturer was 

also the researcher, it was important that no student could be penalised, or believe 

to be penalised, if he/she chose not to participate. Therefore the researcher did not 

know who had agreed to participate and was only given the student enrolment 

numbers (so that the test results could be used) after the students‟ unit results 

were published. This restricted the data that could be collected during the second 

cycle of the intervention when teaching notes were made. Only general summa-

ries and impressions could be recorded. This also prevented the use of follow up 

interviews. 
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Complications were also added by the nature of the students involved. In the first 

semester of each year the students were mainly from the biomedical science pro-

grams, whereas in the second semester the students were mainly from the aqua-

culture and environmental science programs. The score required for university 

entrance to the biomedical science programs is higher than that to enter the other 

programs. In addition, there is a requirement that the students in the biomedical 

science programs should have successfully completed a pre-tertiary mathematics 

unit. The mathematical competence of the biomedical science students, therefore, 

tended to be higher than the other students.  

Because the participants were working towards various degrees, the course con-

tent, as set by the School of Mathematics and Physics at the university where this 

study took place, had also to be covered and could not be changed by the re-

searcher. 

Chapters 7 and 8 describe the results of the Rasch analysis of the questionnaires. 

The responses of the students are also analysed to see what forms of reasoning the 

students used, and how this reasoning varied from students with high and low 

ability, where the ability was determined by the Rasch analysis. These are fol-

lowed by Chapters 9 and 10 in which descriptive analyses are given of the pro-

gression of students‟ understanding about P-values and confidence intervals over 

the time of the study.   
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7. Results of the Quantitative and Qualitative 
Analysis of the First Questionnaire 

7.1 Introduction 

This chapter begins with the results of the Rasch analysis of the first questionnaire 

and is followed by a qualitative analysis of students‟ responses grouped according 

to their ability levels. All of the Rasch analyses were carried out using Winsteps 

version 3.70.1.1 (www.winsteps.com.htm). Each analysis used the Partial Credit 

Model. Details of the theory underpinning this model can be found in Section 

4.5.2.  

Students‟ responses to each item in the questionnaire were assigned a score de-

pending on the statistical reasoning shown in the response. For each item, com-

parisons were made among the scores of the four semesters (the pre-intervention 

semester and the three cycles of the intervention) and among the scores of stu-

dents with and without previous statistical experience. Because the data were 

made up of discrete numbers (from zero to three), the assumptions for 2-sample t-

tests and ANOVA, that is, normality and homogeneity of variance, could not be 

met. Instead of 2-sample t-tests, therefore, testing for differences between two 

groups (previous statistical experience or not) was carried out by using the Mann-

Whitney U test, a non-parametric procedure. When testing for differences among 

three or more groups (among the four semesters), the Kruskal-Wallis H was used 

instead of the Analysis of Variance (ANOVA).   

For the Mann-Whitney U test and the Kruskal-Wallis H tests, the ranks of the 

measurements were used instead of the actual measurements. These “ranks” were 

obtained by ordering the data from highest to lowest. For data that are appropriate 
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for t-tests or ANOVA, these non-parametric tests are approximately 95% as pow-

erful as their parametric counterparts. However, if the assumptions of t-tests or 

ANOVA are “seriously” violated, then the non parametric tests are more power-

ful2 (Zar, 1974). The term “powerful” in this context reflects the ability of a test to 

detect significant differences if they exist.  

For these non parametric tests the null and alternative hypotheses are of the form: 

H0:  The groups have the same measure  

H1:  The groups do not have the same measure 

Similarly to ANOVA, the null hypothesis for the Kruskal-Wallis test is rejected if 

at least two groups are found to be significantly different from each other; reject-

ing the null hypothesis does not imply that all the groups are significantly differ-

ent. 

On the completion of the Rasch analysis, the items were placed on a scale in order 

of difficulty, and then grouped according to this level of difficulty. Each group 

was then analysed by the cognitive demands that were made by the questions in 

this group, and then a set of criteria were determined that characterised the quali-

tative changes demanded for successful responses for each group (Callingham & 

Watson, 2005). A qualitative analysis of the students‟ responses for each ques-

tionnaire then followed. The students were then grouped by level of ability, where 

the groupings were based on the item groupings described above. The responses 

of the students for each item were then compared over the ability groups, to see 

                                                 

2 As it happened, when the tests were repeated using ANOVA or 2-sample t-tests, all the P-values 
were within 2% of the figures obtained by these tests.  
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how the forms of reasoning used by the students in the higher ability groups dif-

fered from those used by the students in the lower ability groups.  

7.2 Rasch analysis of the First Questionnaire 

7.2.1 Introduction 

The first questionnaire was designed to answer the following questions: 

 What understandings and misconcpetions were held by students before 

undertaking the unit?  

 Are there any differences in initial understanding between the students 

in each semester? 

The second question was of interest because the students were from different co-

horts. In general, the students in the first semester of each calendar year were en-

rolled in courses that required a higher Tertiary Entrance Score than those in the 

second semester. 

7.2.2 Items in the First Questionnaire 

There were 23 items in the first questionnaire. These included questions that re-

quired students to calculate and interpret simple and conditional probabilities. 

Other questions required students to demonstrate knowledge and understanding of 

variation and to make judgements about differences between samples using in-

formal estimates of the centre of the data and the extent of the variation in the 

data. They were also required to make a judgement in a situation where the events 

were independent, but there were different numbers of trials. A summary of the 

items with their labels used in the Rasch analysis is found in Table 7.2.2.1. 
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Table  7.2.2.1 

A description of the items used in the Rasch analysis with the labels used in this 
analysis 

Question Label Description of knowledge shown 
B1 Snakes Can indicate that a probability of 1/6 does not indicate that 

the event will occur exactly 1 in 6 times. 
B2 Cancer Can accurately interpret the statement “14% of women will 

develop breast cancer sometime during their lifetime.” 
B3 Eczema Can accurately interpret the statement “For application to 

skin areas there is a 15% chance of developing a rash.” 
C1 Coin1 Can calculate the probability of 4 tails in a row when toss-

ing a fair coin. 
C2 Coin2 Can indicate that after 4 tails in a row, the next toss will 

still be independent. 
C3,C4 Coin3-4 Can continue with reasoning by independence for another 

coin toss. 
D1 Hospital Can determine that for events that are equally likely and 

independent (boy or girl being born) that the sample with 
the lowest sample size is more likely to deviate from the 
expected number of 50%. 

D2 Spinner 1 Can calculate the chance of an even number for this situa-
tion. 

D3 Spinner 2 With the knowledge from Spinner 1, can calculate the ex-
pected number of even numbers for 50 trials. 

D4 Spinner 3 Can indicate that if 50 more trials in Spinner 2 were carried 
out, the same number of even numbers would not be ex-
pected. 

D5 Spinner 4 Can give an indication of the number of even numbers that 
would not be expected in 50 spins of the spinner in Spinner 
1. 

D6a Tute A Can determine that the data from 50 spins of the spinner 
(when presented in graphical form), are not likely to be real 
because the graph is perfectly symmetrical.  

D6b Tute B Can determine that the data from 50 spins of the spinner 
(when presented in graphical form) are not likely to be real 
because the graph presents several unlikely events.  

D6c Tute C Can determine that the data from 50 spins of the spinner 
(when presented in graphical form) are likely to be real be-
cause the graph is centred on the expected value and a rea-
sonable amount of variation is present.  

E1 Teacher Can determine the most likely out of two conditional prob-
abilities presented in verbal form.  

E2 Factory Can determine a conditional probability when the data are 
in a simple 2 x 2 table.   
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 Table 7.2.2.1 (Continued) 
 Label Description of knowledge shown 

E3a Urn A Can calculate a simple forward probability. 
E3b Urn B Can calculate the probability of an event in the past given 

later information.  
F1 Med Can make a judgement of the effectiveness of a treatment 

using proportional reasoning. 
F2a A-B Can compare the scores of two sets of data of equal size, 

presented in graphical form, where all of one group have 
higher individual scores than the other, without using for-
mal algorithms. 

F2b C-D Can compare the scores of two sets of data of equal size, 
presented in graphical form, where one group has a higher 
mean score than the other. 

F2c E-F Can compare the scores of two sets of data of equal size, 
where the mean, median and mode are equal, but one group 
has a larger range than the other.  

F2d G-H Can compare the scores of two sets of data of unequal size, 
where one group has a higher mean than the other.  

 

7.2.3 The Rasch Analysis of the Items (Partial Credit Model) 

In the process of the Rasch analysis it was found that some items fitted poorly to 

the model and these were removed and the analysis re-run. This was a step-wise 

process. At first only the items with the more extreme t-statistics, less than nega-

tive three or greater than plus three, were removed. This process continued until 

all the items remaining in the analysis had a satisfactory t-statistic within the 

range of negative two to plus two. By the end of this process, the items that were 

removed were Snakes, Hospital, Spinner 1, Spinner 2, Coin 1, Factory, and A-B, 

C-D, E-F and G-H. The fitting of the items in the original analysis before these 

items were removed can be seen in the bubble chart in Figure 7.2.3.1. Because of 

the way the items‟ arrangement changed as the items with very large t-statistics 
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were removed, some items that appeared to have a poor fit in the first analysis 

remained in the final analysis. 

 

Figure 7.2.3.1. Bubble chart for item fit in the first attempt at the Rasch analysis. 

 

The variables Snakes, Spinner1 and Factory appeared close together in the bubble 

chart, as did the items Hospital, Spinner 3, Coin 1, A-B, C-D, E-F, G-H and Med. 

This raised the question of whether or not factor or cluster analysis would be suit-

able for these data. When a factor analysis was attempted, the Kaiser-Meyer-

Olkin statistic was 0.529, which indicates that these data are probably not suitable 

for factor analysis. An examination of the factors produced confirmed this suppo-

sition. Only one factor was produced with a small number of items, and these 

items had no relation either to the pattern in Figure 7.2.3.1 or to the cognitive de-

mands of the items. The cluster analysis was also unsatisfactory, as it did not 
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show linkages that relate to the items either by place on the chart, or by cognitive 

demand.  

The list of items used in the main analysis with their mean difficulty measures are 

shown in Table 7.2.3.1. This list is in order of difficulty, and is measured in logits, 

the logarithm of the odds of success. This analysis had an item reliability score of 

0.95 (maximum obtainable is 1.0, see Appendix E1). This indicates that the repli-

cability of item placements along the scale if these same items were given to an-

other equal sized sample of similar participants, is predicted to be high (Bond & 

Fox, 2007).  

Table 7.2.3.1 

 Items in decreasing order of mean difficulty for the Rasch analysis 

NAME MEASURE 
Urn B 1.80 

Spinner 4 1.13 
Coin 1 0.55 
Tute B 0.55 
Tute C 0.25 

Spinner3 0.06 
Med -0.15 

Tute A -0.37 
Coin3-4 -0.45 
Teacher -0.61 
Coin 2 -0.64 
Urn A -0.70 
Cancer -1.43 

 

More detail of the items is shown in Figure 7.2.3.2, which shows the item map 

with the Rasch-Thurstone thresholds for each category of each item. There are 

five people (indicated by “X”) at the same level as items Spinner4.1 and Tute C.2. 

This indicates that these people have a 50% probability of scoring a zero or one 
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for Spinner 4, and a 50% probability for scoring a one or two for Tute C. Further 

details of the Rasch Thustone thresholds are described in Section 4.5.3. The 

spread of the participants and the questionnaire items were well matched, in that 

in general, they both cover the same range. 
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Figure 7.2.3.2.  Item and person map of the Rasch analysis of the first question-
naire, showing the Rasch-Thurstone thresholds. Each “X” represents one person. 
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The items were then divided according to increasing complexity of the reasoning 

needed to respond to the questions successfully. Examining the variable map gave 

tentative groupings where there was an apparent jump in difficulty. The decision 

concerning where to separate these groupings was assisted by importing the item 

difficulties into a spreadsheet and using these to produce a bar graph of the item 

difficulties in order of increasing difficulty. This bar graph is shown in Figure 

7.2.3.3. 

 

Figure 7.2.3.3.  Items in order of difficulty from lowest to highest for the first 
questionnaire 
 

The items were then assessed on the type of reasoning required by the students to 

respond to each question at each level successfully. As a result of this process, the 

items were divided according to the lines in Figure 7.2.3.3. From the bar graph, it 

would appear that Tute A should be placed into the lower grouping. To gain a 

category one response for Tute A, however, the student needed to have an under-
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standing that probabilistic processes show variation, which requires a higher cog-

nitive level than what was needed to answer Coin 3-4.1. Coin 3-4.1 was placed in 

the lower grouping as a response at this level only required the interpretation of a 

simple verbal and numeric statement, as did the other items in this grouping. The 

groupings, together with the cognitive demands made on the students in each 

level of difficulty are summarised in Table 7.2.3.2.  
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Table 7.2.3.2 

 Summary of the cognitive demands made on the students for each group of items  

Description of Item Measure of 
difficulty Scoring Rubric Reasoning used 

Urn B  .2 2.24 Correctly calculated the probability of a past event given 
later knowledge 

The presence of variation in probabilistic 
processes was recognised and the predic-
tion of the degree of this variation in-
cluded a “greater than” and a “less than” 
response. Independent probabilistic proc-
esses were calculated correctly. The prob-
ability of an earlier event given later 
knowledge was calculated correctly.  

Spinner 4  .2 1.56 Prediction of what would be unusual was correct and in-
cluded both “greater than” and “less than” response 

Urn B  .1 1.37 Conditional probability not recognised therefore joint 
probability was calculated 

Tute B  .2 0.99 Explanation was based on two or more reasons 
Coin1  .2 0.99 Probabilities of multiple independent events were success-

fully calculated 
Spinner 4  .1 0.69 Prediction of what would be unusual was correct but in-

cluded  “greater than” or “less than” only 
The presence of variation in probabilistic 
processes was recognised but the degree 
of this variation was not predicted com-
pletely. Independent probabilistic proc-
esses were recognised, and proportional 
reasoning was used. Explanations were 
complete.  

Tute C  .2 0.68 Explanation was based on two or more reasons 

Spinner 3  .2 0.50 Explanation was based on expectation of variation 
Med  .2 0.29 Explanation of comparison between two groups was based 

on proportional reasoning 
Tute B  .1 0.11 Explanation was based on one reason only 
Coin 1  .1 0.11 Multiple independent events were not successfully calcu-

lated, but independence was correctly identified 
Tute A  .2 0.07 Prediction was based on expectation of variation in real 

situation 
Coin3-4  .2 -0.01 Identified independence of each outcome 
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Table 7.2.3.2 (Continued)  

Description of Item Measure of 
difficulty Scoring Rubric Reasoning used 

Teacher  .2 -0.17 Recognised the difference in two conditional statements 
and explanation was based on unequal probability 

The presence of variation in probabilistic 
processes was not recognised. Simplified 
explanations were given. Tute C  .1 -0.19 Explanation was based on one reason only 

Coin 2  .2 -0.20 Recognised independence of coin tosses 
Urn A  .2 -0.26 Correctly calculated probability of future event given past 

knowledge 
Spinner 3  .1 -0.37 Simplified explanation, for example, “It's chance only” 
Med  .1 -0.58 Used proportional reasoning but only described one group 
Tute A  .1 -0.80 Identified situation as made up but no explanation given  
Coin 3-4  .1 -0.88 Simplified explanation, for example, “1 in 2 chance” Simple probabilistic statements in verbal 

and numeric form were interpreted cor-
rectly. 

Cancer  .2 -0.99 Verbal probability statement interpreted correctly 
Teacher  .1 -1.05 Explanation based on personal experience, for example, 

“More teachers in my school are women” 
Coin 2  .1 -1.08 Simplified explanation given, for example, “It's just 

chance” 
UrnA  .1 -1.14 Calculated probability of future event given past knowl-

edge as a joint probability 
Cancer  .1 -1.87 Interpreted verbal probabilistic statement in a way that un-

derestimated probability/did not recognise difference be-
tween incidence and mortality 
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7.2.4 Rasch analysis of persons 

The person analysis had a person reliability score of 0.60 (maximum score avail-

able is 1.0). This gives a measure of the replicability of person ordering that 

would be expected if a test of similar items were given to the same people. The 

lower score compared to the item reliability score indicates that this reliability is 

not as high as the item reliability.  

A histogram of these data is shown in Figure 7.2.4.1. The histogram shows that 

most of the students had an ability measure between -1.5 and +2.0 logits, with one 

student having an ability measure below -2.5. The results of the Kruskal-Wallis 

test (P = .424, α = .05) indicated that there was no significant difference in person 

ability scores on the first questionnaire among the four semesters. The details of 

the analysis are in Appendix E1. 

 
Figure 7.2.4.1. Histogram of the person ability scores for the Rasch analysis of 
the first questionnaire. 
 

The students were then divided into four groups, according to where they could 

achieve in relation to the item difficulty levels found in Table 7.2.3.2. These 
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groups were labelled, from highest to lowest, as A, B, C and D. This is illustrated 

in Figure 7.2.4.2. Students in Group D were able to interpret simple probabilistic 

statements, those is Group C were able to answer more difficult items but only 

using simple explanations, those in Group B were able to recognise the presence 

of variation in probabilistic processes, and to use proportional reasoning, whereas 

those in Group A were able to show a more accurate understanding of the degree 

of variation shown by probabilistic processes.  

 

 

 
Table 7.2.4.1 shows the scores obtained by the students for each item in the Rasch 

analysis, with their corresponding frequencies. Unless indicated, there was no 

significant difference in the scores between the semesters, and no significant dif-

ference in the scores according to whether the students had previous statistical 

experience or not (Appendix E1). A qualitative analysis of the students‟ responses 

is found in Section 7.3. 
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Figure 7.2.4.2. Ability levels of students divided to correspond with table 
7.2.3.2.Each column represents one student.  
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Table 7.2.4.1     
     
Frequency of scores received by the 75 students for each of the items of the 
first questionnaire 
     
 Score 
Item 3 2 1 0 
Cancer N/A 59 12 4 
Eczema N/A 68 6 1 
Coin 1 N/A 28 4 43 
Coin 2 N/A 43 23 9 
Coin 3-4 N/A 33 36 6 
Hospital ** 22 12 34 7 
Spinner 1 N/A N/A 73 2 
Spinner 2 N/A 24 41 10 
Spinner 3 N/A 33 15 27 
Spinner 4 N/A 10 18 10 
Tute A N/A 43 13 19 
Tute B N/A 15 30 30 
Tute C N/A 19 35 21 
Med N/A 40 10 25 
A-B 20 21 25 9 
C-D 9 19 27 20 
E-F 6 25 10 34 
G-H 10 19 9 37 
Factory N/A N/A 65 10 
Teacher N/A 48 12 15 
Urn A N/A 48 15 12 
Urn B N/A 6 8 61 
Snakes N/A N/A 72 3 

N/A – not applicable – this score was not available for this item. 
** There is a significant difference (P < .01) between students who claimed previous statis-
tical experience than those who did not. The mean rank for the group without previous sta-
tistical experience (2.06) is higher than for those students with previous statistical experi-
ence (1.40). 



 

140 

 

7.3 Qualitative analysis of the first questionnaire 

In this section the students‟ responses are compared across the ability groups, to 

see what types of reasoning the students used and how these varied between the 

ability groups. Because it was desired that the knowledge gained would be as 

complete as possible, all the items are included, regardless of whether or not they 

fitted the unidimensional scale in the Rasch analysis. The items are divided ac-

cording to the form of required reasoning: the interpretation of verbal probabilis-

tic statements, the interpretation and calculation of statistically independent 

events, the interpretation and calculation of conditional events, and the judgement 

of differences between groups. The students were also required to answer items 

that would indicate whether or not they expected variation in stochastic processes.   

7.3.1 Questions requiring interpretation of verbal probabilistic statements 

In this section the questions that required the students‟ ability to interpret verbal 

probabilistic statements are examined.  

“Cancer”  

The students were asked to choose the best interpretation, out of a set of options, 

for the following.  

 

 
 
The responses according to ability are found in Table 7.3.1.1. The majority of the 

students in groups A to C gave the response: “Not many women get breast cancer, 

but it is not that uncommon.” This response was given a score of “2.” The re-

sponses “Not many die from breast cancer, but it is not that uncommon,” and “It 

It is estimated that 14% of women will develop breast 
cancer sometime during their lifetime. 
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is not likely that a woman will get breast cancer” resulted in a score of “1.” All 

other responses received a code of “0.” 

Table 7.3.1.1 

Responses to “Cancer” according to the students’ ability 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Not many women get breast cancer, 
but it is not that uncommon  10 28 19 2 

Not many women die from breast 
cancer, but it is not that uncommon  1  1 1 

It is not likely that a woman will get 
breast cancer  2 2 4  

It is not likely that a woman will die 
of breast cancer  1  1 

More women than not will get breast 
cancer   1 1 

It is very likely that a woman will get 
breast cancer    1 

 

Of  all the items that remained in the final Rasch analysis, this one was the least 

difficult for the students. The level of difficulty was 1.43 logits below the mean of 

zero.  Seventy-nine percent of the students received the highest score of “2,” and 

a further 16% received the score of “1.” 

“Eczema” 

The students were given a series of options to answer the following question.  

 
 
 

 

 

 

The following message is printed on a bottle of prescription 
medication: 

Warning: For application to skin areas there is a 
15% chance of developing a rash. If a rash develops, 
consult your physician. 

Which is the best interpretation of this warning? 
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The responses, according to ability, are found in Table 7.3.1.2. Very few students 

did not give the response, “About 15 out of 100 people who use this medication 

develop a rash.” This response resulted in the highest score of “2.” The responses 

“Don‟t use the medication on your skin; there is a good chance of developing a 

rash” and “There is hardly any chance of getting a rash in using this medication” 

resulted in a score of “1.” 

Table 7.3.1.2 

Responses to “Eczema” according to the students’ ability  
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
About 15 out of 100 people who use 
this medication develop a rash 13 28 21 6 

If a rash develops, it will probably in-
volve only 15% of the skin   1   

There is hardly any chance of getting 
a rash in using this medication   2 3  

Don‟t use the medication on your 
skin; there is a good chance of devel-
oping a rash 

  1  

 

Ninety-one percent of the students received a score of “2,”,with a further 8% of 

the students receiving a score of “1.” Because the students did so well on this 

item, it had a very low t-score (Figure 7.2.3.1) and did not fit on the unidimen-

sional scale.  

“Snakes” 

The students were required to imagine they were playing a game of snakes and 

ladders where a “6” was required for a player to commence the game. They were 

asked to choose from the five statements. 
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All but three students responded to this question correctly (option (c)). This high 

number of correct responses resulted in a very low t-score and the item did not fit 

on the unidimensional scale for the Rasch analysis; this is illustrated in Figure 

7.2.3.1.  

The responses to these items suggested that the students found it easy to interpret 

verbal probabilistic statements. The responses to Snakes indicated that they could 

interpret a probability in terms of a long term frequency, and the responses to Ec-

zema indicated they could also do this when the probability was given in terms of 

a percentage. The responses to Cancer indicated that most students thought an 

incidence of 14% was “not that uncommon,” or “not likely,” but some of the re-

sponses indicated that there was an association in their minds of cancer and death, 

with the result they did not realise the question only referred to incidence. 

  

After four rounds no-one has started. Which of the follow-
ing statements best matches your conclusion? 

a. Since a „6‟ hasn‟t come up yet, it will come up in 
the next round. 

b. Since the chance of getting a „6‟ is 1 in 6, the die 
should have come up with a „6‟ four times by 
now, so something is wrong with it. 

c. Throwing a die is a chance event, so it just hap-
pens like this sometimes. 

d. If a „6‟ doesn‟t come up soon, there must be 
something wrong with the die. 

e. There must be something wrong with the die.  
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7.3.2 Questions requiring an understanding of statistical independence 

This section examines the questions that needed an understanding of statistical 

independence to be successfully answered. Formally, events A and B are inde-

pendent if the conditional probability of A given B is the same as the uncondi-

tional probability of A, that is,  

P(A|B) = P(A). 

Informally, understanding independence can be thought as recognising that events 

governed by randomness have no memory, so that the previous outcomes have no 

influence on any future outcomes. For example, the probability of a head on the 

toss of a fair coin will remain at 50%, even if several heads in a row have resulted 

from previous tosses. 

The coin questions 

The first coin question, Coin 1, required the students to calculate the probability 

of getting four tails in a row. The second question asked the students to choose 

from a series of options to indicate whether a head or a tail would be more prob-

able for the fifth toss, or whether they are equally likely. The third and fourth 

questions asked them to calculate the probability of getting each of a head and a 

tail on the fifth toss.  

“Coin 1” 

This item, with a difficulty score of 0.55 logits, was the hardest out of the coin 

questions. The results (Table 7.2.4.1) show that 57% of the students could not 

correctly calculate the probability of four heads in four coin tosses and thus did 

not achieve a score of “2.” Neither could they state that the probability was 50% 
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each and every time the coin was tossed (which would result in a score of “1”). 

The numbers of each response given, as shown by ability group, are in Table 

7.3.2.1. 

 

Table 7.3.2.1 

 Responses given to the probability of tossing four tails in a row by ability group 
 Response 
Ability 
group 

1 in 16 
(correct) 

1 in 2 1 in 4 1 in 8 Other No re-
sponse 

Total 

Group A 9 1 1 1 0 1 13 
Group B 12 8 3 1 6 1 31 
Group C 8 11 3 0 2 1 25 
Group D 0 5 1 0 0 0 6 
 

It would appear that one of the “1 in 4” and one of the “1 in 8” responses came 

from inappropriate arithmetic. For example, the reasoning given by two students 

were 

“50% each time therefore 1/4” 

“½ * ½ * ½ * ½ = 1/8” 

There may have been other students with correct reasoning but faulty arithmetic 

but this cannot be determined as most of the students did not explain how they got 

their answers. It is apparent that the majority of the students in Group A could 

answer this question successfully, and that the proportion of students who could 

do this decreased down the groups until Group D, where none of the students 

could do so.  

“Coin 2” 

The students were then asked to choose from a series of options to determine 

which choice someone should make for the fifth toss. Should a person choose 
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Heads, Tails, or doesn‟t it matter? Table 7.2.4.1 indicates that approximately 57% 

of the students received a score of “2.” This indicates that these students gave the 

correct response (“it does not matter”) with a suitable justification. Approximately 

31% of the students gave the correct response without a full justification, or a jus-

tification that relied on the fact that there were only two outcomes but did not 

mention the independence of each toss (score “1”). Table 7.3.2.2 shows that a 

higher proportion of students of lower ability groups provided responses that 

scored “1.”  This question had an item difficulty of 0.64 logits below the mean, 

1.19 logits below Coin 1, and was the easiest of the Coin questions.  

Table 7.3.2.2 

Responses to “Coin 2” according to the ability of the students. 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Response directly states that each toss 

is independent/Does not depend on 
what happened before 

8 9 8  

Response implies independence, for 
example, the probability is “still” 
50% 

3 13 6 2 

Response is correct (1/2) but does not 
use independence in argument – only 
two outcomes   

2 5 9 3 

Response is incorrect  4 2 1 
 
 

“Coin 3-4” 

The students were then asked to calculate the probability of first, a head for the 5th 

toss, and then the probability of a tail for the 5th toss. Because most students com-

bined their responses these two questions were coded together. Table 7.2.4.1 

shows that 92% of the students either calculated the probability correctly with a 
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full explanation based on independence (score “2”) or with a response that im-

plied independence or based on the argument that there were only two outcomes 

(score “1”). This item, with an item difficulty of 0.45 logits below the mean, was 

the second easiest of the coin questions. The responses, according to ability, are 

found in Table 7.3.2.3. This table shows that Group A students were more likely 

to use the independence of the coin tosses in their reasoning. Six students (from 

Groups B and C) showed inconsistency, in that they stated that heads or tails 

would be more likely for the 5th toss and then went on to say that the probabilities 

of heads or tails were 50% for this toss. 

Table 7.3.2.3. 

Responses to “Coin 3-4” according to the ability of the students. 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Response directly states that each toss 

is independent/Does not depend on 
what happened before 

5 10 5  

Response implies independence, for 
example, the probability is “still” 
50% 

3 10 6 1 

Response is correct (1/2) but does not 
use independence in argument – only 
two outcomes  

5 10 12 4 

Response is incorrect  1 2 1 
 

 
 “Hospital” 

The students were asked to answer the following question. 

 

 

 

Half of all newborns are girls and half are boys. Hospital 
A records an average of 50 births per day. Hospital B re-
cords an average of 10 births per day. On a particular day, 
which hospital is more likely to record 80% or more of 
female births? 
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To respond to the Hospital Problem successfully, it is necessary to look beyond 

the probability of each single birth, and to appreciate the effect of sample size. If 

the sample size is ignored, it will be concluded that as the two events are de-

scribed by the same statistic, and as each birth is independent, the two hospitals 

will be equally likely to record 80% or more girls. As a sample increases in size, 

however, the sampling statistic (here the proportion of girls born) is more likely to 

approach the theoretical value for the entire population (Fischbein & Schnarch, 

1997). Using the Binomial distribution the probabilities are: 

P(x ≥  8| n = 10, p = 0.5) = 0.0547 

P(x ≥  40| n = 50, p = 0.5) = 0.0000 

It was not expected that students would have been able to carry out these calcula-

tions. What was required was that they should use their intuition to answer the 

question: Is it more likely to get eight or more girls out of 10 births, or 40 or more 

girls out of 50 births? 

The most common response (given by 49% of the students) was that the two hos-

pitals were equally likely to record 80% or more of female births in a day as each 

birth was an independent event. Even though this response is incorrect, it resulted 

in a score of “1,” as it indicated a higher level of statistical understanding than 

lead to a response of Hospital A. Those students who stated that Hospital B was 

more likely to record 80% of more female births, either because the sample size 

was smaller for Hospital B, or larger for Hospital A, received a score of “3.” 

Those students who said that it was “easier” for B to get 80% or more female 

births received a score of “2.” Twenty-three (40%) of the students gave the cor-

rect response of Hospital B. 
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For this question, the Mann-Whitney U test was significant according to whether 

or not the students claimed to have experience with statistics in previous mathe-

matics courses (P = .016, see Appendix E1). Those students who did not claim 

previous statistical experience had a higher mean rank (48.03) than those who did 

(34.83). This is possibly due to the students with previous statistical experience 

being distracted by their knowledge of statistical independence. In Table 7.3.2.4 

students responses are divided by the category of previous experience as well as 

by ability.  
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Table 7.3.2.4 

Students’ responses to the “Hospital” question according to previous statistical experience and ability level 

 Previous statistics experience No previous statistics experience 
Ability Group A B C D A B C D 

Response (n = 8) (n = 25) (n = 19) (n = 5) (n = 5) (n = 6) (n = 6) (n = 1) 
More likely for B as the sample size is 

smaller/Less likely for A as the sam-
ple size is larger 

1 7 4 1 1 2   

“Easier” for B  5 3 2 4  4  

Equally likely – the probability of 
50% for each birth is constant 7 8 10 2  4 2 1 

A – more births, more girls  4 2      

No response  1       
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A high proportion of students from all ability groups gave the equally likely op-

tion, and as a result, this item did not fit on the unidimensional scale for the Rasch 

analysis. In Figure 7.2.3.1 it can be seen the Hospital item had a high t-score.  

7.3.3 Students’ Awareness of Variation in Stochastic Processes  

The Spinner and the Tutorial questions described in this section were included to 

test students‟ awareness of the presence of variation in stochastic processes. The 

correct responses required awareness that if repeated, any process that has a ran-

dom component will be unlikely always to give identical results. Even though a 

large number of trials will converge to the expected value determined by the con-

ditions of the process, a small number of trials are likely to show variation in the 

outcomes.  

The spinner questions 

The first question was to set the scene for the questions after it. Once students de-

termine that out of 50 spins the expected value of the number of spins that land on 

an even number is 25, they are asked a series of questions to determine if they are 

aware that this result will not be achieved for every set of 50 spins.  
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“Spinner 1” 

 

 

 

 

All but two students gave the correct response of ½ or 1 in 2 or 50%. Because 

such a high number students answered this question correctly, the question had a 

very low t-score, and did not fit into the unidimensional model of the Rasch 

analysis.  

“Spinner 2” 

 

 

If the students answered they would expect the spinner to land on an even number 

25 times, and indicated that they expected that the answer would not necessarily 

be exactly 25 they received a code of “2.”  Table 7.2.4.1 shows that 32% of the 

students achieved this score. If the students indicated that they would expect ex-

actly 25 even numbers then the students received a code of “1.” This was 

1 2 

3 4 

A tutorial group used this spinner. If you were to spin it once, what 
is the chance it will land on an even number? 

Out of the next 50 spins, how many times do you think the 
spinner will land on an even number?  
Why do you think this is? 
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achieved by 55% of the students. The remaining students could not make this cal-

culation. With such a high number of students receiving a score of “1” or “2,” this 

item had a low t-score and did not fit on the unidimensional scale of the Rasch 

analysis. The responses according to ability are in Table 7.3.3.1. 

Table 7.3.3.1 

Responses to “Spinner 2” by ability 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Approximately 25 6 14 6  
             25 6 15 17 4 
Can‟t tell as it is random 1 2 2 2 
 

“Spinner 3” 

 

 

 

The Spinner 3 item was included to prompt the students to think about variation. 

For this question 76% of the students gave a response that showed that they 

would expect some variation between groups of 50 spins to occur, with varying 

degrees of sophistication in their responses. Those responses that stated that the 

process was random or similar received a score of “2,” while those that stated that 

it was “just chance” or “anything can happen” received a score of “1.” 

The results of questions Spinner 2 and Spinner 3 are combined in Table 7.3.3.2 to 

show how many students in each ability group indicated that they would expect 

variation in the number of even spins that land on an even number for each set of 

50 spins. For groups A and B it is apparent that most of the students were aware 

If you were to spin it 50 times again, would you expect to 
get the same number out of 50 to land on an even number? 
Why do you think this? 
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that variation is to be expected. Students in groups C and D were much less likely 

to be aware of this variation.  

The item difficulty rating of Spinner 3, 0.06 logits above the mean, illustrates that 

it was not too difficult for most of the students to answer successfully. It is of 

concern, however, that nearly a quarter of the students did not consider that the 

results of different trials would vary, even when prompted to do so. 

Table 7.3.3.2  

The number of students in each ability group who were aware/not aware that 
variation is to be expected in the spinner questions. Some students did not answer, 
therefore the number of responses does not sum to 75. 

 Variation is 
expected 

Variation is 
not expected 

Ability Group A 12 1 

Ability Group B 23 3 

Ability Group C 15 9 

Ability Group D 2 3 
 

“Spinner 4” 

 
 
 
 

Using the Binomial distribution the probability distribution for the number of 

times the spinner lands on an even number out of 50 spins is illustrated in Figure 

7.3.3.1. From this distribution it is apparent that the most likely outcome is for the 

spinner to land on an even number 25 times out of 50 spins. The probability of 

getting below 13 or above 37 is extremely low. 

 

How many times out of 50 spins, landing on an even number, 
would surprise you? Why do you think this is? 
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Figure 7.3.3.1. The probability distribution for the number of times a spinner 
lands on an even number out of 50 trials when the probability of landing on an 
even number is 50%. 
 

The students were not expected to be familiar with the Binomial distribution, nor 

were they expected to be able to carry out the calculations that resulted in Figure 

7.3.3.1. Therefore some leeway was given for their responses. Those who gave 

responses of above 35 (or a number close to 35), and below 15 (or a number close 

to 15), received the highest score of “2.” Most of the students, however, gave re-

sponses that were one sided, in that they stated above a certain number, or below 

a certain number, but not both, and these were given a score of “1.” This omission 

contributed to this question having the second highest difficulty rating, 1.13 logits 

above zero, 2.56 logits above the easiest item. Another difficulty was the inability 

of 31 of the students to think in terms of a range of numbers. For example, one 

student gave a response of “40,” instead of 40 and above. The responses accord-

ing to ability are found in Table 7.3.3.3. 
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Table 7.3.3.3 

Reponses to “Spinner 4” by ability 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Above 35 (approximately) AND be-

low 15 (approximately) 3 4 2  

Above 35 (approximately) OR below 
15 (approximately) but not both 8 9 4  

Zero only  2 1 1 

50 only  5 7 2 

25 only    2 

Other single number stated 1 2 3  

Zero and 50 only 1 2 1 1 

No number is unexpected  2 2  

No response   4  

Idiosyncratic*  5 1  
* Idiosyncratic – these responses were either incomprehensible, or did not address the question 

The Tutorial Questions 

In these questions students were given graphical representations of the supposed 

results for three tutorial groups that spun the spinner (shown in Spinner 1) 50 

times and recorded the number of times an even number was obtained. These 

questions not only tested for students‟ awareness of variation in stochastic proc-

esses but further tested their ideas concerning what reasonable outcomes might 

be. The following introduction to the question was given. 

  

The members of three statistics tutorial groups did 50 spins and 
graphed the number of times the spinner landed on an even number. 
Each circle represents one person in the tutorial group. In some cases, 
the results were just made up without actually doing the experiment. 
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 “Tute A” 

 

 

 

 

The student responses, according to their ability grouping, are found in Table 

7.3.3.4. It is apparent that 75% of the students realised the results were likely to 

have been made up. Those responses that stated that the results were too symmet-

rical or perfect received a score of “2.” Those responses that stated the results 

were likely to have been made up without an explanation received a code of “1.” 

This item had a difficulty rating of 0.37 logits below zero and was the easiest of 

the Tute questions. Approximately one quarter of the students, however, were not 

concerned about the symmetry of the problem, giving further evidence that some 

students were not aware of the likelihood of variation in the outcomes of a sto-

chastic process. 

  

50454035302520151050

Tutorial A

a. Do you think tutorial A‟s results are made up or 
really from the experiment? 

i. Made up 
ii. Real from experiment 

Explain your answer. 
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Table 7.3.3.4 

Responses to “Tute A” according to ability group 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Made up     

Too perfect/neat/uniform 12 27 13  

Real     

Follows bell shaped curve 1  1  

Got expected number  3 5 3 

No response   2 2 

Idiosyncratic*  1 4 1 
* Idiosyncratic – these responses were either incomprehensible, or did not address the question. 
 
 

“Tute B” 

 

 
 

 

 

This item gave results which at first glance, being more varied than for Tute A, 

appear more likely to be real. When the graph is examined closely, however, sev-

eral problems are revealed that indicate that the results were likely to have been 

made up. There are no results for 25, the number with the highest probability; 

there are multiple results on each of some values, with gaps in-between; and the 

answers of 46, 50 and 6 even numbers are so unlikely as to be virtually impossi-

50454035302520151050

Tutorial B

b. Do you think tutorial B‟s results are 
made up or really from the experiment? 

i. Made up 
ii. Real from experiment 

Explain your answer. 
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ble. From Figure 7.3.3.1 it is also apparent that the results of 11 and 39 even 

numbers are also extremely unlikely.  

Some students, however, did state that the range was too wide, without being spe-

cific about the probability of each result. Those students who gave more than one 

reason for saying the results were made up were given a score of “2,” and those 

students who gave one reason only were given a score of “1.” Table 7.2.4.1 indi-

cates that 60% of the students realised the results were likely to have been made 

up. The responses grouped according to ability are found in Table 7.3.3.5. 

Table 7.3.3.5 

Responses to “Tute B” by ability group. Because some students gave more than 
one response, the total number of responses is greater than the number of stu-
dents.  

Ability Group A B C D 
Response (n = 13) (n = 31) (n = 25) (n = 6) 
Made up     

Too many answers on too few values 2 6 1  

Would not get zero and/or 50 evens 
out of 50 3 6   

No 25s/not clustered around 25 4 3 1  

The range is too wide 11 8 1  

Real     

More random than Tutorial A  11 11  

No response   5 3 
 

Approximately 35% of the students in Group B and 44% of the students in Group 

C looked at the increased variation compared with tutorial A and therefore con-

sidered the results to be real. Half of the Group D students did not respond.  

According to the Rasch analysis, this question, with an item difficulty of 0.55 

logits above the zero, was the hardest of the Tute questions. For some of the stu-
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dents who stated that the data were likely to be real, it is unclear whether or not 

they were just comparing the pattern with the pattern in Tute A or actually looking 

at the numbers on the horizontal axis.  

 

 “Tute C” 

 

 

 

 

The results in the plot are clustered around 25 with some variation, and the range 

is from 20 to 30. Therefore these results could be real. Students who gave more 

than one reason for saying “real” were given a code of “2,” students who gave 

one reason only were given a code of “1” and students who said the results were 

made up received a code of “0.” Table 7.2.4.1 indicates that 72% of the students 

recognised the results as likely to be real. According to the Rasch analysis, this 

item with an item difficulty of 0.25 logits above zero, was the second most diffi-

cult of the Tute questions. Table 7.3.3.6 gives the students‟ responses according to 

their ability.  

  

50454035302520151050

Tutorial C

c. Do you think tutorial C‟s results are made up or 
really from the experiment? 

i. Made up 
ii. Real from experiment 
Explain your answer. 
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Table 7.3.3.6 

Responses to Tutorial C according to ability group. Because some students gave 
more than one response, the total number of responses is greater than the number 
of students.   

Ability Group A B C D 
Response (n = 13) (n = 31) (n = 25) (n = 6) 
Made up     

Range is too small  4 3 1 

Real     

Grouped around 25 with some varia-
tion 11 10 4 2 

The range is reasonable 3 3 3  

More varied than tutorial A  4 4  

Shows randomness  1 2  

No response  5 8 2 

Idiosyncratic*   3 1 
* Idiosyncratic – these responses were either incomprehensible, or did not address the question. 

7.3.4 Questions requiring judgements of differences between groups  

For the items in this section the students were required to make judgements of 

differences between groups without the use of formal statistical procedures. For 

the first item (Med) the students were required to compare the number of people 

whose eczema improved for those who were treated and the control group. As 

there were unequal numbers of people in the two groups proportional reasoning 

was required to answer the item successfully.   

For the second series of items the students were required to compare the results of 

a test between two groups, where the results were shown in graphical form. For 

the first pair, the two groups had equal numbers and all of one group did better 

than the other (A-B). For the second pair the two groups again had equal numbers 

and there is some overlap in the results, but one group clearly had a higher mean 
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score than the other (C-D). In the third pair there were equal numbers in each 

group and whereas the means, medians, and modes were equal, one group had a 

wider spread than the other group (E-F). For the last pair (G-H) the group num-

bers were not identical. It was expected that students would have to make a 

judgement of the value of either the mean or median to make a decision as to 

which group performed “better.” Students were not expected to be familiar with 

ideas of statistically significant differences.  

 “Med” 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

A new medication is being tested to determine its effectiveness in the treat-
ment of eczema, an inflammatory condition of the skin. Thirty patients with 
eczema were selected to participate in the study. The patients were randomly 
divided into two groups. Twenty patients in an experimental group received 
the medication, while ten patients in a control group received no medication. 
The results after two months are shown below. 
 
 Experimental Group 

(Medication) 
Control Group (No 
Medication) 

Improved 8 2 
No improvement 12 8 
 
Based on this data, you think the medication was: 
A. Somewhat effective B. Basically ineffective 

 
If you chose option A, select the one 
explanation below that best describes 
your reasoning. 

If you chose option B, select the one 
explanation below that best describes 
your reasoning. 

a. 40% of the people (8/20) in the ex-
perimental group improved 

a. In the control group, 2 people im-
proved even without the medication. 

b. 8 people improved in the experi-
mental group while only 2 improved 
in the control group 

b. In the experimental group, more 
people didn‟t get better than did (12 
vs. 8). 

c. In the experimental group, the 
number of people who improved is 
only 4 less than the number who 
didn‟t improve (12-8) while in the 
control group the difference is 6 
(8-2). 

c. the difference between the numbers 
who improved and didn‟t improve is 
about the same in each group  
(4 vs. 6). 

d. 40% of patients in the experimental 
group improved (8/20), while only 
20% improved in the control group 
(2/10) 

d. In the experimental group, only 
40% of the patients improved (8/20). 
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Students who compared the groups to each other using proportional reasoning 

(Ad) received the highest score of “2.” Table 7.2.4.1 indicates that 53% of the 

students were able to do this. Students who used proportional reasoning but only 

mentioned the results of one group (Aa, Bd), or used the raw numbers and not the 

proportions (Ab) received a score of “1” (13%). All other students received a 

score of “0.” Table 7.3.4.1 shows the responses of the students according to abil-

ity group. This item had an item difficulty of 0.15 logits below the mean, indicat-

ing that the item was of average difficulty. 

Table 7.3.4.1 

Responses to “Med” according to ability group 
Ability Group A B C D 

Responses (n = 13) (n = 31) (n = 25) (n = 6) 
Somewhat effective     

Option Ad 10 18 11 2 

Option Aa  1 3  

Option Ab  1  1 
     

Basically ineffective     

Option Bd 3 2 3 1 

Option Ba  2 1  

Option Bb  1 2  

Option Bc  3 4  

No response  3 1 2 
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Comparisons between groups  

“A-B” 

 
 
  
 

 

 

 

 

 

 

 

There was a wide variety of responses. Those students who received the highest 

score of “3” either stated that all of Group B had a higher results than all of the 

other group, estimated the means but did not calculate them, or used totals while 

also indicating that the group sizes were equal. Scores of “2” were given for re-

sponses that referred to Group B‟s results without referring to the results of the 

other group. Scores of “2” were also given for responses where the means had 

been calculated fully (a less efficient strategy for this item) or for responses that 

referred to the totals of each group but did not make the equal group sizes ex-

plicit. A score of “1” was given to those responses that stated Group B had “more 

A tertiary institution is comparing the scores of some tutorial 
groups on a test of basic statistics facts. The test had nine ques-
tions.  
The scores for two of these tutorial groups are shown in the 
charts below. Each circle represents one person. Therefore for 
Group A four people answered two questions correctly, and two 
people answered three questions correctly. 

Did the two groups perform equally well, or did one group per-
form better? Please give reasons for your answer.  

 

 

 
9876543210

Number of Questions Correct

Group A

 

9876543210

Number of Questions Correct

Group B
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questions correct” or similar without further explanation. Table 7.2.4.1 shows that 

88 % of the students stated that Group B had a better performance than Group A. 

The responses, according to ability group, are in Table 7.3.4.2. It is apparent that 

the students in the ability Groups A and B were much more likely to give com-

plete explanations than those in the other two groups.  

Table 7.3.4.2 

Responses to “A-B” by ability group  
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Entire group in B did better than the 
entire group in A 6 6 2  

Mean and/or median used in 
 answer 2 7 1  

Group B had “more” correct answers 3 8 10 1 

Totals used  1   

Scores of one group compared with 
the other  5 3  

Scores of one group mentioned only  2 4 1 

“B did better” – no further explanation   2  

Group A did better 1 1 2  
No response 1 1 1 2 

Idiosyncratic*    2 
*Idiosyncratic – indicates that the response did not have any relationship with the question or was 
unintelligible  
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“C-D” 

 

 

 

 

 

 

 

 

 

 
 
Again a wide variety of responses was given. A score of “3” was given to those 

students who calculated/estimated the means, used the totals and stated that the 

number of people in each group was equal, or used the frequency of the number 

of people with each score. A score of “2” was given to the students who stated the 

scores of one group and not the other, and a score of “1” was given to those stu-

dents who stated that one group did “better” or similar, without further explana-

tion. Table 7.2.4.1 indicates that 73% of the students correctly chose Group C as 

having the better performance. Table 7.3.4.3 shows the responses by ability. This 

shows that in Ability Groups B and C the most common reason given was that 

“more” people got “more” correct, without giving a full explanation.  

 

 

 

 

9876543210

Number of Questions Correct

Group C

 

9876543210

Number of Questions Correct

Group D

Did the two groups perform equally well, or did one group per-
form better? Please give reasons for your answer.  

(For this question group C has a mean of 4.9, and group D has a 
mean of 4.2. This information was not given to the students.) 
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7.3.4.3 

Responses to “C-D” by ability grouping  
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Mean and/or median used in 
 answer 4 3 1  

Totals used 1 1 1  

Scores of one group compared with 
the other 3 6 6  

C “performed better” – no further  
explanation  2 1  

“More people in group C got “more” 
correct  4 12 10 2 

The groups were equal  4 3  

Group D did better 1 1  1 

No response  1 3 2 

Idiosyncratic*  1  1 
*Idiosyncratic – indicates that the response did not have any relationship with the question or was 
unintelligible  
 

“E-F” 

 

 

 

 

 

 

 
 

This question confused some students who tried to say that one group had “more” 

higher or lower results than the other. It is apparent that these students did not re-

  
 

 
9876543210

Number of Questions Correct

Group E

 
9876543210

Number of Questions Correct

Group F

Did the two groups perform equally well, or did one group 
perform better? Please give reasons for your answer. 
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gard the mean or the median as a balancing point, as in this example it is clear 

that every lower score is balanced by a higher score. It is also apparent from  

Table 7.3.4.4 that some students made their judgements according to the range, 

saying that this one group was “more consistent” than the other. Overall, 55% 

stated that the two groups performed equally well.  

Table 7.3.4.4 
 
Responses to “E-F” by ability grouping  

*Idiosyncratic – indicates that the response was unintelligible  
  

Ability Group A B C D 
Response (n = 13) (n = 31) (n = 25) (n = 6) 
Equal     

Means and/or median used in 
 response 7 8 4  

Totals used 2 4 3 1 

No explanation 1 2 4  
     
Group E     

More consistent  3   

More got higher scores 1 6 6  

Averages used   1 1 

No explanation  3 3  
     
Group F     

More got higher scores 1 1 1  

No explanation 1  1 1 
     

No response  4 2 2 

Idiosyncratic*    1 
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 “G-H” 

 

 

 

 

 

 

 

 

 

Students who estimated or calculated the mean or median, or used proportional 

reasoning received the highest score of “3.” Those students who stated that group 

H had a higher mean or stated that most of Group H had “higher results” with no 

further explanation got a score of “2,” while those who just stated that Group H 

got a “better” results with no further explanation received a score of “1.” From 

Table 7.2.4.1 it is apparent that only 51% of students stated that Group H had the 

superior performance.  

It was expected that the students would use some sort of proportional reasoning (a 

higher proportion of the group H group had higher scores) or would use a meas-

ure of central tendency such as the mean or median to answer this last question. 

Table 7.3.4.5, however, shows that many students chose Group G as having the 

best performance because there were more people in Group G, or because they 

thought there were “more” people in the higher range or because they thought 

  

 

 
9876543210

Number of Questions Correct

Group G

 

9876543210

Number of Questions Correct

Group H

Did the two groups perform equally well, or did one group 
perform better? Please give reasons for your answer. 

(The average of group G is 5.5 and the average group H is 6.2. 
This information was not given to the students.) 
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Group G was more “balanced.” Some of the students said the problem could not 

be solved, or was not fair, and there were some who gave no explanation at all. It 

is expected that all students attending university would have carried out the algo-

rithm for the mean during their previous education. Therefore these incorrect re-

sponses suggest that there is a poor understanding of the reasons for which means 

are calculated. This example also demonstrates the proposition of Gal, Rothschild 

and Wagner (1990) that students, having learned a statistical skill, may not actu-

ally use the skill when it is needed outside of the classroom environment in which 

it was originally learned.  

Table 7.3.4.5 

Responses to “G-H” by ability group 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Group H     

Group H has a higher mean/median 10 8 2  

Proportional reasoning – a higher 
proportion within the group has 
higher scores 

2 3 7 1 

More got higher scores   1  

No explanation  3 2  
     
Too hard/cannot be done 1 2 1  

Not fair   1  
     
Group G     

More people therefore performed 
better  3 4  

More in higher range  2 2  

More balanced  1 1  

No explanation  3 2 2 
     
Equal  4 2  

     
No response  2  3 
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7.3.5 Conditional probability questions 

The conditional probability questions were in three forms. The first question re-

quired the students to calculate a simple conditional probability where the data 

were presented in the form of a table. According to Watson and Kelly (2007), 

students tend to find conditional probability questions easier when in the form of 

a table than in verbal form. The second question asked the students to distinguish 

between two conditional probability statements and to determine which probabil-

ity was higher. The third question required the students to calculate probabilities 

in a simple context. However, whereas the first probability was in the “forward” 

direction (what is the probability of the second event if the first was ...?), the sec-

ond probability was in the “backward” direction (what is the probability of the 

first event if the second event was ...?). Research by Fischbein and Schnark 

(1997) shows that many people do not realise that although the second event does 

not affect the first, the first probability can be revised as a result of knowledge of 

the second event (the “time-axis fallacy” – see Section 2.4.3). 
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“Factory” 

 

 
From Table 7.2.4.1 it is apparent that 87% of the students gave the correct re-

sponse of (c), and thus received a score of “1.” With this high number of correct 

responses, the item had a t-score that was very low, so that the item did not fit on 

the unidimensional scale. The number of incorrect responses, by ability group, is 

shown in Table 7.3.5.1. It is evident that students in Group D were considerably 

more likely then students in other ability groups to have made an error. 

Table 7.3.5.1 

Number and percentage of incorrect responses to “Factory” by ability group 
Ability Group A B C D 

Response (n = 13) (n = 31) (n = 25) (n = 6) 
Number of incorrect responses 2 2 2 4 
Percentage of group incorrect 15 6 8 67 
 

  

The table below shows the number of defective TV‟s produced every week at 
two factories by the day shifts and by the night shifts. 
 

 Factory A Factory B 
Day 40 30 
Night 40 60 

 

a. How many defective TV‟s are produced at Factory B every week? 

b. How many defective TV‟s are produced by a night shift every week? 

c. If you were told that a defective TV was produced at Factory A, what is 
the probability it was produced by a day shift? 
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“Teacher” 
 
 

 

 

 

The highest score of “2” was given to those students who chose “b” and could 

explain their thinking; Table 7.2.4.1 shows that 64% of students obtained this 

score. A score of “1” was given to students who stated “b” but used personal ex-

perience for their justification; this score was given to 16% of the responses. The 

item difficulty was 0.61 logits below zero, and therefore it was one of the easier 

items in the questionnaire. The responses, by ability group, are shown in Table 

7.3.5.2. 

Table 7.3.5.2 
 
Responses to “Teacher” by ability grouping  

Ability Group A B C D 
Response (n = 13) (n = 31) (n = 25) (n = 6) 
There are two choices for a teacher, 
male or female, but there are many 
occupations for a woman to choose 

5 15 11 1 

The probability of a schoolteacher is 
approximately 50%, the probability of 
a woman being a schoolteacher is 
much less 

7 5 1  

More women than schoolteachers  2 6 1 

Personal experience  1 1  
     
Both (a) and (b) mean the same thing 1 6 2 1 

     
No response  2 2 2 

Idiosyncratic*   2 1 
*Idiosyncratic – indicates that the response did not have any relationship with the question or was 
unintelligible  

Which probability do you think is bigger? 

a. The probability that a woman is a schoolteacher 
OR 

b. The probability that a schoolteacher is a woman. 
OR 

c. Both (a) and (b) are equally likely. 
 
Please explain your answer. 
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 “Urn A” and “Urn B” 

 

The answer to both questions is 1/3. For both questions a score of “2” was given 

for correct responses with an explanation. A score of “1” was given for correct 

responses where the probability only was stated, or for those responses where the 

joint probability (one in six) was calculated. Table 7.2.4.1 shows that whereas 

84% of the students were able to get a score of “2” or “1” for Urn A, only 19% 

could do so for Urn B. Urn A was one of the easiest items on the questionnaire; 

Urn B, however, was the hardest item of all. The difference in item difficulty 

scores was 2.5 logits. The responses, according to student ability groups, are 

found in Tables 7.3.5.3 and 7.3.5.4. 

  

An urn has 2 white balls and 2 black balls in it. Two balls are drawn 
out without replacing the first ball. 
 

a. What is the probability that the second ball is white, given 
that the first ball was white? Please explain your answer  
(Urn A). 

 
b. What is the probability that the first ball was white, given 

that the second ball was white? Please explain your answer 
(Urn B). 
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Table 7.3.5.3 
 
Responses to “Urn A” by ability grouping.  

Ability Group A B C D 
Response (n = 13) (n = 31) (n = 25) (n = 6) 
1 in 3 – There are three balls 

left, one of which is white 12 26 16 3 

1 in 6 – calculated a joint 
probability 1 4 3  

Other numerical answer, ex-
cluding 1 in 6   5 2 

     
No response  1 1 1 

 

Table 7.3.5.4 
 
Responses to “Urn B” by ability grouping  

Ability Group A B C D 
Response (n = 13) (n = 31) (n = 25) (n = 6) 
1 in 3  2 4 3  

1 in 6 – calculated a joint 
probability 2 1   

1 in 2 – result of second draw 
cannot affect first draw 6 12 11 1 

1 in 4 1 4 3 2 
     
No response 2 10 8 3 

 

Almost all of the students who answered correctly for Urn A stated that since 

there were originally four balls, and one had been removed, the remaining prob-

ability was 1 in 3. Almost all of the 44% of the students who answered Urn B in-

correctly stated that the result of the second draw could not influence the first 

draw. This confirms the presence for some students of the time-axis fallacy de-

scribed by Fischbein and Schnark (1999). 
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Of the nine students (12% of the total) who gave the correct response for Urn B, 

only three of them gave a full explanation. Another drew a diagram and two oth-

ers gave partial explanations, stating that they were not confident that they were 

correct. The other three students gave no explanation at all.  

7.4 Summary and discussion 

Almost all of the students could successfully interpret simple probability state-

ments as shown by their responses to Snakes, Cancer and Eczema. However, the 

results show that although most (65%) of the students were aware that the out-

come of a coin toss is independent of the outcomes before it, only 39% of the stu-

dents could successfully calculate the probability of getting four heads in a row.  

The responses to Hospital indicate that although many of the students were aware 

that each birth was independent, they were not aware that the sample size had an 

influence on the likelihood that a statistic (here the number of girls born in a day) 

would deviate from the expected value. For this sample of students, those who 

had no previous statistical experience were more likely to give a correct response. 

It would be interesting to see if this result were repeated with another study.   

The Spinner questions showed that 76% could state that they would not expect the 

same outcome in repeated random experiments, which leaves almost one quarter 

of the students not able to do so. This has worrying implications for students of 

statistics, where the whole subject is based on the idea that individual and sam-

pling variation is universal. It is also apparent that the students did not think 

through which outcomes would be unexpected in the Spinner scenario. Only 12% 

of the students, when asked which outcomes would be unlikely, gave responses in 
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terms of greater than AND less than given numbers. For the answer to Tute A, 

where the given outcomes were completely symmetrical, 75% of the students in-

dicated the results were made up. For the answer to Tute B, where there were sev-

eral “unreal” outcomes, only 60% of the students stated that the results were made 

up, and for Tute C, where the results were reasonably to be expected in this situa-

tion, 72% of the students stated that the results were real. In each case there was a 

substantial minority of students who did not give the correct response. Overall, 

only 37% of the students responded correctly for all three Tute questions.  

For the conditional probability questions, 87% of the students could calculate the 

conditional probability when the data were presented in a table. For the school-

teacher problem, 80% of the students could distinguish appropriately between the 

two statements. The simple forward conditional problem (Urn A) was answered 

successfully by 84% of the students, whereas only 19% could successfully answer 

the “backward” probability (Urn B). In general, the students thought that because 

the choice of the second ball would not influence the choice of the first ball they 

did not appreciate that probabilities in the past could be reassessed in the light of 

later information.  

The responses to the questions Med, and A-B, C-D, E-F and G-H show that some 

of the students did not use proportional reasoning when required. In addition, only 

55% of the students correctly answered E-F where the mean, median, and modes 

were equal, but the ranges were different. The idea of the mean as a balancing 

point or a representative number did not seem to be present. Their responses con-

firmed the findings of Groth and Bergner (2006) that some students come to uni-
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versity without any more knowledge of the mean apart from the algorithm used to 

calculate it.  

The questionnaire was designed so that no formal statistical experience would be 

necessary to answer the questions, and it was hoped that the questions would be 

within the capabilities of students who were comfortable with numbers. The re-

sults of the first questionnaire confirm that students entering university, even with 

pre-tertiary mathematics qualifications, may have some misconceptions about 

stochastic processes. They may expect short runs in a repetitive trial to be more 

like the long term expected value than will happen in reality, and also have unre-

alistic views about what the likely outcomes are for a stochastic process (Tversky 

& Kahneman, 1982b). In addition, some students expected that the outcomes of 

stochastic trials to be repeated without variation.  

The responses to the first questionnaire also demonstrate that students may find 

conditional probabilities easier when the data are in tabular from than when the 

data are presented in a verbal form (Watson & Kelly, 2007). Some students dem-

onstrated internally inconsistent views on probability. For example, they may 

have stated that a head is more likely after four tails in a row, but then said the 

probability of a tail on the next toss is “still” 50%.  

Finally, the responses of some students, even though they all had post Grade 10 

mathematics experience, suggested that these students were not familiar with the 

mean as a representative number that could be used to make comparisons between 

sets of data (Groth & Bergner, 2006). In addition, some of these students did not 

use proportional reasoning when it would have assisted in making comparisons 

between sets of data.  
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This chapter described students‟ responses to a questionnaire that was given at the 

beginning of their first unit in statistics on entering university. The next chapter 

describes their responses to a questionnaire that was given to them at the end of 

the unit, and tests for their understanding of randomness, random allocation, and 

significant differences.  
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8.  Results of the Quantitative and Qualitative 
Analysis of the Second Questionnaire 

 

8.1 Introduction 

This chapter begins with the results of the Rasch analysis of the second question-

naire. This is then followed by a qualitative analysis of the responses given for 

each item by the students at varying levels of ability. The relationship between the 

ability of the students, as judged by the first questionnaire, and the ability of the 

students as judged by the second questionnaire is then investigated. This is fol-

lowed by an investigation of the relationship of the ability score from the first 

questionnaire and the students‟ final mark from their formal assessment. An in-

vestigation into the relationship between the students‟ ability scores from the   

second questionnaire and the students‟ final mark from their formal assessment is 

also included.  

All of the Rasch analyses were carried out using Winsteps version 3.70.1.1 

(www.winsteps.com.htm). Each analysis used the Partial Credit Model. Details of 

the theory of this model can be found in Section 4.5.2. As explained in Section 

7.1, in testing for differences in means among three or more groups (over the 

three semesters), the Kruskal-Wallis H was used instead of the Analysis of Vari-

ance (ANOVA).   

Thirty-three students completed the second questionnaire. The reduction in num-

bers is because some students dropped out of the unit, some were absent on the 

day the second questionnaire was administered, and, owing to circumstances be-

yond the researcher‟s control, the second questionnaire was not administered to 
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the students in the third cycle of the intervention. In the pre-intervention semester 

9 students answered the second questionnaire, 20 did so in the first cycle of the 

intervention, as did 4 in the second cycle of the intervention. 

8.2. Rasch analysis of the second questionnaire 

8.2.1 Introduction 

The second questionnaire was administered at the end of the Data Handling and 

Statistics unit. It was designed to test students‟ ability to explain informally the 

processes behind P-values and hypothesis testing and to explain why randomness 

in inferential statistics is so important. 

8.2.2 Items in the Second Questionnaire 

There were 17 items in the second questionnaire. The students were first required 

to give an example of a random event and explain why it was random. They were 

also asked to judge the likelihood of two sample means based on the number of 

standard errors these means were away from the proposed population mean, and 

to give an explanation. For some of the items the students were asked to explain 

why random sampling or allocation was important. They were also required to 

explain the meaning of “significant difference” for a scenario where one sample 

mean was higher than the other, and to make an inference based on graphical 

data.  

Four questions were repeated from the first questionnaire (Hospital, UrnA, UrnB 

and Med); these were used to anchor the analysis so that a comparison could be 

made between the ability level of the students at the first and second question-
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naires. A paired t-test was then used to see if there was a significant change in 

ability. In the second questionnaire, the question Med (renamed Med A) had an 

addition (named Med B) requiring the students to choose from a list of comments 

about the validity of the experiment that produced the Med data. A summary of 

the items on the second questionnaire with the labels used in the Rasch analysis is 

found in Table 8.2.2.1.  

Table 8.2.2.1 

A description of the items used in the Rasch analysis.  
Label Description of knowledge shown 
Random Can give an example of a random event and explain why it is ran-

dom. 
CB 1 Can calculate a simple expected value. 
CB 2 Can judge the probability of an event in words – very likely, fairly 

likely, possible, unlikely or very unlikely. 
CB 3 Can use hypothetical reasoning based on the probability to make 

judgements.  
Fish Can explain the meaning of a “significant difference,” and the mean-

ing of a P-value.  
Cereal A Can make judgements on the likelihood of an event based on the 

number of standard errors the event is from the proposed population 
value. 

Cereal B Can make judgements on the likelihood of an event based on the 
number of standard errors the event is from the proposed population 
value.  

Cereal C Can make an estimate of a value that is unlikely given a proposed 
value. 

Cereal D Can explain the importance of random sampling. 
Med A Can make a judgement on the effectiveness of a treatment using 

proportional reasoning.  
Med B Can make judgements on the experimental design used in Med A. 
Urn A Can calculate a simple forward probability. 
Urn B Can calculate an event in the past given later information. 
Pacific A Can make a judgement on the difference between two groups using 

both the centre and variation of the results.  
Pacific B Can explain the reasons for random allocation. 
Hospital Can determine that for events that are equally likely and independ-

ent (boy or girl being born) the sample with the lowest sample size 
is more likely to deviate from the expected number of 50%. 

Fred Can explain the importance of random allocation. 
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8.2.3 The Rasch Analysis of the Items (Partial Credit Model) 

In the process of the Rasch analysis it was found that some items fitted poorly to 

the model and these were removed and the analysis re-run. This was a step-wise 

process. At first only the items with the more extreme t-statistics, less than nega-

tive three or greater than plus three, were removed. This process continued until 

all the items remaining in the analysis had a satisfactory t-statistic within the 

range of negative two to plus two. By the end of this process, the items that were 

removed were Hospital, Cereal A, Cereal B and Cereal C.  The fitting of the 

items in the original analysis before these items were removed can be seen in the 

bubble chart in Figure 8.2.3.1. Because of the way the items‟ arrangement 

changed as the items with very large t-statistics were removed, some items that 

appeared to have a poor fit in the first analysis remained in the final analysis. This 

final analysis had an item reliability score of 0.90. Table 8.2.3.1 shows the list of 

items retained in the final analysis with their mean levels of difficulty.  This 

shows that the hardest question was Med B. This is the question where the 

students were asked to make judgements about the experimental design used in 

Med A. The variable map in Figure 8.2.3.2 shows the items with their respective 

Rasch-Thurstone thresholds.  
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Figure 8.2.3.1. Bubble chart of the items of the second questionnaire.  
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Table 8.2.3.1 

 Items of the second questionaire in order of mean difficulty 
NAME MEASURE 
Med B 2.61 
Urn B 2.08 

Pacific B 1.83 
Fish 1.83 

Cereal D 1.61 
CB 3 1.61 

Pacific A 1.48 
CB 2 1.35 
Fred 1.35 
CB 1 0.80 

Random 0.80 
Med A 0.02 
Urn A -0.55 
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Figure 8.2.3.2. Item and person map of the Rasch analysis of the second ques-
tionnaire, showing the Rasch-Thurstone thresholds. Each “X” represents one 
person. 
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Figure 8.2.3.2 shows that, according to the analysis, all the students have a less 

than 50% chance of getting the highest score for Med B and Urn B. It also shows 

that there were ten questions that were found to be difficult by most of the 

students. 

The items were then divided according to increasing complexity of the reasoning 

needed to answer the questions successfully. Examining the variable map gave 

tentative clusters where there were apparent jumps in difficulty. The decision 

about where to separate these clusters was assisted by importing the item 

difficulties into a spreadsheet and using these to produce a bar graph of the item 

difficulties in order of increasing difficulty. This bar graph is shown in Figure 

8.2.3.3.  

 

 

Figure 8.2.3.3. Items in order of difficulty according to their Rasch-Thurstone 
thresholds, showing the division of items according to the cognitive demands 
made by these items.   
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The items were then assessed on the type of resoning required by the students to 

answer each question successsfully at each level. As a result of this process, the 

items were divided according to the lines in Figure 8.2.3.3. “Urn A .2” was placed 

above the lowest group because this score for Urn A required the students to give 

an explanation.  

The cognitive demands made by these items are summarised in Table 8.2.3.3. 

This table demonstrates that as student ability decreased, they were less likely to 

be able to explain the meaning of a “significant difference,” to be able to explain 

the importance of random allocation, and less likely to use proportional reasoning 

when required.



 

188 

 

Table 8.2.3.3  

Summary of the cognitive demands made on the students in each cluster of items. 

Description of 
Item 50%PRB Scoring Rubric Reasoning used 

Med B .2 3.21 Recognises that the data given are sufficient for a conclusion to 
be drawn  

Probabilities given in numerical form are de-
scribed verbally. The importance of random 
allocation is recognised. The term “significant 
difference” is understood, and the P-value is 
defined. Both the centre and variation of the 
data are used when making comparisons be-
tween two data sets.  

Urn B .2 2.68 Calculates a reverse conditional probability and explains 
Pacific B .2 2.42 Recognises and describes the importance of random allocation 
Fish  .2 2.42 Describes the difference between observed and significant dif-

ferences, defines P-value 
Cereal D .2 2.2 Recognises and describes the importance of random allocation 
CB 3 .2 2.2 Uses a probability in a hypothetical reasoning process to make a 

conclusion 
Pacific A .2 2.07 Uses both the centre and variation of two data sets to make a 

comparison  
Med B  .1 2.02 Does not recognise that the data given are sufficient for a con-

clusion to be drawn 
Fred  .2 1.95 Recognises and describes the importance of random allocation 
CB 2  .2 1.95 Correctly describes the  level of a given numerical probability in 

words 
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Table 8.2.3.3 (Continued)  

Description of 
Item 50%PRB Scoring Rubric Reasoning used 

Urn B  .1 1.48 Calculates a reverse conditional probability does not explain The importance of random allocation is recog-
nised but explained in superficial terms. The 
importance of sampling variation in determin-
ing differences in data is recognised, but the 
centre of the data is not used as well. Propor-
tional reasoning is used when necessary. 

Pacific B  .1 1.23 Recognises that random allocation of is necessary but only a 
superficial explanation is given (e.g., “bias introduced”) 

Fish  .1 1.23 Describes that the observed differences are due to sampling 
variation, but does not define the P-value 

Cereal D  .1 1.01 Recognises that random allocation of is necessary but only a 
superficial explanation is given (e.g., “bias introduced”) 

CB 3  .1 1.01 Bases a conclusion of a hypothetical reasoning process on the 
presence of possible sampling variation only 

Pacific A  .1 0.88 Uses the variation of two data sets to make a comparison, but 
not the centre 

Fred  .1 0.75 Recognises that random allocation of is necessary but only a 
superficial explanation is given (e.g., “bias introduced”) 

CB 2  .1 0.75 Over or understates the level of a given probability in words 
CB 1  .2 0.68 Correctly calculates the value of a simple expected value 
Random  .2 0.68 Correctly identifies a random process and gives suitable reasons 

for answer 
Med A  .2 0.62 Uses proportional reasoning when comparing two data sets 

where the results are given as the percentage of success 
Urn A  .2 0.05 Calculates a forward conditional probability and explains answer 
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Table 8.2.3.3 (Continued)  
Description of 

Item 50%PRB Scoring Rubric Reasoning used 

CB 1 “.1” -0.51 Correctly calculates the value of a simple expected value but 
inappropriately rounds up the answer 

The necessity for proportional reasoning when 
necessary is not recognised. Can calculate 
simple probabilities in simple contexts and 
identify a random process. Explanations are 
not usually given, and when given, are inaccu-
rate.  

Random “.1” -0.51 Correctly identifies a random process but reasons for answer are 
not given 

Med A “.1” -0.58 Does not use proportional reasoning when comparing two data 
sets where the results are given as the percentage of success 

Urn A “.1” -1.15 Calculates a forward conditional probability but does not ex-
plains answer 
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8.2.4 Rasch analysis of persons 

The analysis of persons had a person reliability score of 0.32 (see Appendix E2). 

This shows that the level of replicability of person ordering that would be ex-

pected if a test of similar items were given to the same people is not high. A his-

togram of the person ability scores for the second questionnaire is found in Figure 

8.2.4.1. The histogram shows that the students who completed the second ques-

tionnaire had an ability score between -0.5 and 2.5 logits. In the previous ques-

tionnaire, the majority of the students had ability scores between -1.5 and 2.0 

logits. There is no significant difference in students‟ ability among the three se-

mesters where the second questionnaire was given (see Appendix E3). 

 

 

The students were then divided into three groups, according to the levels in the 

items of difficulty reported in Table 8.2.3.3. These groups were labelled, from 
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Figure 8.2.4.1. Histogram of person ability scores for the Rasch 
analysis of the second questionnaire.  
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highest to lowest as Group A, Group B and Group C. Figure 8.2.3.2 demonstrates 

that there was only one student who had a better than 50% chance of answering 

some of the more difficult items correctly, and that overall the students found the 

second questionnaire difficult. As a result there were very few students in group 

A, and most of the students were in group B. As the qualitative analysis described 

in Section 8.3 progressed it became apparent that the students at the higher level 

of Group B were giving answers at greater depth, and thus receiving higher 

scores, than the students at the lower level of Group B. As a result, Group B was 

divided into two (Groups B1 and B2) according to the dotted line in Figure 8.2.4.2. 

This resulted in three students in Group A, 16 students in Group B1, 12 students in 

Group B2 and two students in Group C. 

 

 

 

 

 

 

 

 

 

 

Table 8.2.4.1 shows the frequency of the scores the students received for the 

questions in the second questionnaire. There were no significant differences in the 

scores among the three semesters for any of these items (see Appendix E2). 

 

Figure 8.2.4.2. Ability levels of students.  
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Table 8.2.4.1      
     
Frequency of scores received by the 33 students for each of the items on 
the second questionnaire 
 Score 
Item 3 2 1 0 
CB 1     
Pre-intervention N/A* 5 4 0 
First cycle of intervention N/A 11 5 4 
Second cycle of intervention N/A 1 2 1 
Combined N/A 17 11 5 
CB 2     
Pre-intervention N/A 0 5 4 
First cycle of intervention N/A 4 6 10 
Second cycle of intervention N/A 1 2 1 
Combined N/A 5 13 15 
CB 3     
Pre-intervention N/A 1 5 3 
First cycle of intervention N/A 3 5 12 
Second cycle of intervention N/A 0 1 3 
Combined N/A 4 11 18 
Fish     
Pre-intervention N/A 0 6 3 
First cycle of intervention N/A 0 11 9 
Second cycle of intervention N/A 0 2 2 
Combined N/A 0 19 14 
Fred     
Pre-intervention N/A 1 4 4 
First cycle of intervention N/A 6 4 10 
Second cycle of intervention N/A 0 1 3 
Combined N/A 7 9 17 
Cereal A     
Pre-intervention 4 1 3 1 
First cycle of intervention 7 8 4 1 
Second cycle of intervention 1 0 2 1 
Combined 12 9 9 3 
Cereal B     
Pre-intervention 2 1 0 6 
First cycle of intervention 0 5 5 10 
Second cycle of intervention 1 1 0 2 
Combined 3 7 5 18 
Cereal C     
Pre-intervention N/A 4 4 1 
First cycle of intervention N/A 5 10 5 
Second cycle of intervention N/A 1 3 0 
Combined N/A 10 17 6 
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Table 8.2.4.1 (Continued)     

Score 
Item 3 2 1 0 
Cereal D     
Pre-intervention N/A 0 4 5 
First cycle of intervention N/A 0 13 7 
Second cycle of intervention N/A 0 2 2 
Combined N/A 0 19 14 
Random     
Pre-intervention N/A 4 1 4 
First cycle of intervention N/A 14 4 2 
Second cycle of intervention N/A 2 0 2 
Combined N/A 20 5 8 
Urn A     
Pre-intervention N/A 7 0 2 
First cycle of intervention N/A 16 2 2 
Second cycle of intervention N/A 3 1 0 
Combined N/A 26 3 4 
Urn B     
Pre-intervention N/A 1 1 7 
First cycle of intervention N/A 2 3 15 
Second cycle of intervention N/A 0 0 4 
Combined N/A 3 4 26 
Med A     
Pre-intervention N/A 4 3 2 
First cycle of intervention N/A 12 5 3 
Second cycle of intervention N/A 3 0 1 
Combined N/A 19 8 6 
Med B     
Pre-intervention N/A 0 1 8 
First cycle of intervention N/A 2 2 16 
Second cycle of intervention N/A 0 1 3 
Combined N/A 2 4 27 
Hospital     
Pre-intervention 5 3 1 0 
First cycle of intervention 3 7 9 1 
Second cycle of intervention 2 0 1 1 
Combined 14 6 11 2 
Pacific A     
Pre-intervention N/A 2 1 6 
First cycle of intervention N/A 12 2 6 
Second cycle of intervention N/A 1 0 3 
Combined N/A 15 3 15 
Pacific B     
Pre-intervention N/A 0 4 5 
First cycle of intervention N/A 0 8 12 
Second cycle of intervention N/A 0 4 0 
Combined N/A 0 16 17 

*N/A- not applicable – this score was not available for these questions 
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8.3 Qualitative analysis of the second questionnaire 

In this section the students‟ responses are compared across the ability groups, to 

see what types of reasoning the students used and how these varied between the 

higher and lower ability groups. Because it was desired that the knowledge gained 

would be as complete as possible, all the items are included, regardless of whether 

or not they fitted the unidimensional scale in the Rasch analysis. 

8.3.1 The circuit breaker questions 

These questions required the students to make a judgement of the likelihood of 

getting 3 defective circuit breakers in a box of 25 if the underlying rate of defec-

tives for all the circuit breakers was 5%. The students were required to use a 

probabilistic hypothetical process. In essence, they were required to carry out a 

hypothesis test but without the formal procedures.   

You work for a manufacturer of circuit breakers. Owing to the difficulty 
of the process, it is expected that 5% of these will be defective. The oc-
currence of the defective breakers occurs randomly. The breakers are 
sold in boxes of 25. 
One of your customers buys a box with three defective breakers. This is 
12% of the contents of the box. Your customer is furious. You are told 
that your underlying rate is 12%, not 5% and they will take their custom 
elsewhere. 

a. If 5% are defective overall, then on average how many defective 
breakers would you expect to find per box? (“CB1”) 

b. It can be calculated that If the underlying rate is 5%, the prob-
ability of getting 3 or more defectives in a box is 13/100.  Based 
on these figures, getting three or more defective circuit breakers 
in a box is: 

i. Very likely 
ii. Fairly likely 

iii. Possible 
iv. Unlikely 
v. Very unlikely (“CB2”) 

c. Does this box provide sufficient evidence that the underlying 
rate of defectives for all the circuit breakers is greater than 5% 
as the customer claims? Explain your answer. (“CB3”) 
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“CB 1” 

The highest score of “2” was given for the answer 1.25. The integer answer (1) 

resulted in a score of “1.” Table 8.2.4.1 indicates that all except five of the stu-

dents gave one of these answers. Table 8.3.1.1 shows the answers by student abil-

ity group. It shows that as the ability decreased the students were more likely to 

give the integer answer. The Rasch analysis indicates that this was the easiest of 

the three circuit breaker questions that remained in the analysis.  

Table 8.3.1.1 

Answers to “CB 1” by ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
1.25 3 10 5  

1  4 6 1 

Other  1 1  

No answer  1  1 
 

 “CB 2” 

In this question the students were required to interpret the numerical probability 

(13%) in words. The score “2” was given for the response “fairly likely,” and a 

score of “1” was given for the response “very likely” or “possible.”  Table 8.2.4.1 

indicates that 55% of the students received one of these scores. Table 8.3.1.2 

shows that the other options were more likely to be given as the student ability 

decreased. This question was found to be harder than CB 1, having an item diffi-

culty of 1.35 logits above zero, 0.55 logits above CB 1. 
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Table 8.3.1.2. 

Answers to “CB 2” by ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
Fairly likely 2 2 1  

Very likely/possible 1 8 4  
Other  6 7 2 

 
 
 

“CB 3” 

For this question students were required to use the given probability (13%) to 

decide whether or not the observed box was an unusual event given the 

underlying rate. This probability indicates that if the underlying rate of defectives 

is still 5% a box with three defectives is not an unusual event. Reponses that used 

the probabiltiy of 13% resulted in a score of “2.” Those students who stated that 

because randomness is always present, there will be boxes with more or less than 

the observed value, or carried out a formal hypothesis test without further 

explanation received a score of “1.” Table 8.2.4.1 shows that only 45% of the 

students used one of these forms of reasoning. As a result, this item had a 

difficulty rating of 1.61 logits above zero, 0.26 logits above CB 2, and 0.81 logits 

above CB 1. Table 8.3.1.3 gives the answers according to the students‟ ability 

group.  
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Table 8.3.1.3 

Answers to “CB 3” according to ability group.  
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
With a probability of 13%, a box 
with three defectives is not unusual, 
even if overall 5% are defective 

1    

Used a formal hypothesis test with-
out further explanation 1  4  

Variation is present, other boxes will 
have different numbers of defectives  4   

This box does not necessarily reflect 
the whole population 

 1  1 

Cannot decide from one box  5 5  

This box is just due to random 
chance 1 5   

No answer  1 1 1 

Idiosyncratic*   2  
* Answers were unitelligilbe 
 

8.3.2  Explaining the meaning of “significant difference” 

In the Fish question the students were asked to explain why, given that one treat-

ment had a higher sample mean than the other treatment, the conclusion was that 

there was no significant difference in means? To explain this, the students needed 

to appreciate the role of sampling variation, and to think of the sample means that 

are to be expected if they both samples have come from two populations with 

equal means. 
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For the highest score of “2” students needed to explain specifically the meaning 

of the P-value. Table 8.2.4.1, however, indicates that no student did so. The ma-

jority of the students gave an explanation in terms of the usual variation that is to 

be expected between samples. The answers, according to student ability, are 

shown in Table 8.3.2.1. This was found to be one of the harder questions, with a 

difficulty rating of 1.83 above zero, 2.38 logits above the easiest question (Urn 

A). 

 

  

You are looking at the effects of supplementing trout fish feed with 
vitamin E. Some of the fish are given the standard commercial feed, 

and others are given the same feed with double the level of vitamin E. 
After a suitable time, you measure the weights of the fish. The results 

are in the table below: 
 Standard feed Extra E 

Mean weight (g) 256.4 263.1 
Standard deviation (g) 12.3 11.2 

 
You perform the two sample t-test and the P-value you receive is 0.45. 

Therefore you tell your supervisor that the extra vitamin E has not 
made any difference to the mean weight of the fish. 

Your supervisor says that the mean weight of the fish given „extra E‟ 
is higher than the mean weight of those who were given the standard 
feed. Explain to your supervisor why you say that even though the 
„extra E‟ feed has a higher mean weight, the „extra E‟ feed has not 

made a significant difference. 
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Table 8.3.2.1 

Answers to “Fish” according to ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
The two means are within one  
standard deviation of each other, the 
means are close together 

1 2 1  

Results show that the differences 
could be due to – 

 

sampling variation 

1 3 1  

A “significant difference” means that 
the means are too far apart to be ex-
plained by normal sampling variation 

 2   

There is a high chance that these sam-
ple results could be recorded even if 
there is no difference in the overall 
population 

  1  

Results are not significant – no  
explanation 

 4 2  

P-value less than 0.05 but no further 
explanation given     

Hypothesis test carried out with no 
further explanation  1  1 

P-value defined in answer but not ac-
curately defined   2  

The difference in means is  
significant  1   

P-value is too high to prove Ho is in-
correct    1 

No answer 1 2 4  

Idiosyncratic*  1 1  
*Answers were self-contradictory 
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8.3.3  Judgement as to the likelihood of sample means, given a population 
mean 

For the Cereal questions the students were required to judge how likely a sample 

mean would be given the value of the population mean. They were also asked to 

consider what values of the sample mean would be unlikely given the population 

mean and the standard error of the mean. They then had to consider the effect of 

non-random sampling on their conclusions.  

“Cereal A” 

 

 

 
 

 

 

 

 

 

The highest score (“3”) was given to those students who answered “very likely” 

and used the standard error in their reasoning. A score of “2” was given to those 

who chose “likely” or “possible” and used the standard error in their reasoning. 

Students who used the standard error appropriately, but stated that they had used 

the standard deviation, received a score of “1.” All other answers, including those 

that used the standard deviation, received a score of “0.” Table 8.3.3.1 gives the 

answers of the students according to their ability. As similar reasoning was used 

You are working for a consumer organisation. As part of your duties, 
you select 49 boxes of “Get up and Go” cereal at random and weigh 
the boxes. On the label of the boxes you read that the minimum weight 
of the box is 800g. 
The standard deviation of the weight of the boxes is 14g. Therefore the 
standard error of the mean (the standard deviation of all possible sam-
ple means) is estimated to be 2g. 
 

a) Assume the manufacturer‟s claim that the minimum weight of 
800g is correct. For your 49 boxes, is a sample mean of 799g 

i. Very likely  
ii. Likely 

iii. Possible 
iv. Unlikely 
v. Very unlikely? 

         Give reasons for your answer. 
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across all the ability levels, the item did not fit into the unidimensional scale on 

the Rasch analysis.  

Table 8.3.3.1 

Answers to “Cereal A” according to ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
Used reasoning based on the  
standard deviation, not the standard 
error 

1    

Used reasoning that did not refer to 
the standard error or the standard 
deviation 

2 4 1  

Used reasoning based on the fact 
that the sample mean was within one 
standard error of the proposed popu-
lation mean 

 7 7 1 

Used reasoning based on the fact 
that the sample mean was within two 
standard errors of the proposed 
population mean 

 2 1  

Used reasoning based on the stan-
dard error, but stated the standard 
deviation was used 

 3   

Used reasoning based on the stan-
dard deviation, not the standard  
error 

  3  

No answer    1 
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“Cereal B” 

Cereal B followed directly from Cereal A. This time the sample mean is exactly 

two standard errors lower than the proposed population mean.  

 

 

 

 

 

 

Those students who answered “likely” with an appropriate explanation using 

standard errors received the highest score of “3.” Those responses that indicated 

“very likely” or “possible” with an appropriate explanation using the standard er-

ror received a score of “2.” Those students who used the standard error appropri-

ately but stated that they had used the standard deviation received a score of “1.”  

Table 8.3.3.2 shows that 30% of the students received either a “3” or a “2,” with 

15% of the students receiving a score of “1.”  As for to Cereal A, similar forms of 

reasoning were used by the students in all the ability groups, and therefore this 

item did not fit onto the unidimensional scale of the Rasch analysis.  

  

b) Again assuming the manufacturer‟s claim to be 
correct, for your 49 boxes, is a sample mean of 
796g 

i. Very likely?  
ii. Likely? 

iii. Possible? 
iv. Unlikely 
v. Very unlikely? 

           Give reasons for your answer. 
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Table 8.3.3.2 

Answers to “Cereal B” by ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
Used reasoning based on the fact 
that the sample mean is two standard 
errors from the population mean 

1 10 4 1 

Used reasoning that did not refer to 
the standard error or the standard 
deviation 

2 2 1  

Used reasoning based on the stan-
dard deviation, not the standard  
error 

 1 4  

No answer   3 1 
Idiosyncratic*  3   
*Idiosyncratic – indicates the answer did not relate to the question or was unintelligible  
 

“Cereal C” 

Here the students were required to make a prediction of the sample means that 

would be unlikely if the population mean was 800g. They were expected to take 

the standard errors into account.  

 

 

 

Responses that indicated that sample means of three standard errors or more be-

low 800g would be unexpected scored “2.” Responses that indicated that sample 

means of two standard errors or more below would be unexpected resulted in a 

score of “1.” A score of “1” was also given for those responses that used the exact 

number, that is, a response of  “794 g” instead of “< 794 g.” Those responses that 

used the standard error appropriately, but stated that the standard deviation had 

c) At what value of a sample mean below 800g 
would you start to suspect the manufac-
turer‟s claim to be untrue? Give reasons for 
your answer. 
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been used, also received a score of “1.” Those responses that used the standard 

deviation of 14 g resulted in a score of “0.” The answers, according to ability 

group, are in Table 8.3.3.3. 

The responses to the Cereal questions indicate that there is some confusion in dis-

tinguishing between the standard error and standard deviation. Some students 

used the standard error in their reasoning but stated that they had used the stan-

dard deviation, and some other students used the standard deviation even though 

in this context it was not appropriate to do so. In addition, some students used rea-

soning in Cereal A and Cereal B that did not use any measure of spread of the 

data. For example, “There is a lot of variation.” Owing to similar forms of reason-

ing being used across all ability groups, the item did not fit onto the unidimen-

sional scale of the Rasch analysis.  
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Table 8.3.3.3 

Answers to “Cereal C” by ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
Less than 796 g, more than two 
standard errors from 800 g 1 4 2 1 

Less than 794 g, more than three 
standard errors from 800 g 2 3 1  

Less than 796 g, more than two 
standard deviations from 800 g   1  

Less than 796 g, no explanation   1  

796 g, two standard errors from  
800 g  2   

794 g, more than two standard errors 
from 800 g   3   

One standard deviation of 14 g 
above or below    1 

Other number  4 4  

Idiosyncratic*   3  
* Idiosyncratic – indicates the answer did not relate to the question or was unintelligible 
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8.3.4  The Use of Informal Inference 

“Pacific A” 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forty students from the Pacific University participated in a study 
of the effect of sleep on test scores. Using random allocation, 20 of 
the students were required to stay up all night studying the night 
before the test (no-sleep group). The other 20 students (the control 
„sleep‟ group) were required to be in bed by 11:00pm on the eve-
ning before the test. The test scores for each group are shown in 
the graphs below. Each dot on the graph represents a particular 
student‟s score. For example, the 3 dots above the 40 in the top 
graph indicated that 3 students in the no-sleep group scored 40 on 
the test. 
  
(Sample statistics: sleep:    = 60.6, s = 16.1, no-sleep:    = 55.7, s = 
15.1. These results were not given to the students) 

 

 

 

100959085807570656055504540353025

no_sleep

100959085807570656055504540353025

sleep



 

208 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the highest code of “2” students were required to make the judgement of a 

possible difference considering both the difference in means and the variation in 

the two groups (answer d). Students who considered the amount of overlap only 

(answer c) received a code of “1.” Table 8.2.4.1 shows that only 55% of the stu-

dents were able to make these judgements successfully. Frequencies of the an-

swers, according to ability groups, are shown in Table 8.3.4.1. Pacific A had an 

item difficulty of 1.48 logits, 2.03 logits above the easiest item in the Rasch 

analysis.  

Table 8.3.4.1 

Answers to “Pacific A” according to ability group 
Ability Group A B1 B2 C 

Answer (n =  3) (n = 16) (n =12) (n = 2) 
d 2 8 1  
c  4 1 2 
e  2 1  
f 1 2 9  

 
 

A. Examine the two graphs carefully. Then circle the conclusion 
from the 6 possible conclusions listed below the ONE you MOST 
agree with. 

a. The no-sleep group did better because none of these stu-
dents scored below 35 and the highest score was achieved 
by a student in this group. 

b. The no-sleep group did better because its average appears 
to be a little higher than the average of the sleep group. 

c. There is no difference between the two groups because 
there is considerable overlap in the scores of the two 
groups. 

d. There is no difference between the two groups because the 
difference between their averages is small compared to the 
amount of variation in the scores. 

e. The sleep group did better because more students in this 
group scored 75 and above. 

f. The sleep group did better because its average appears to 
be a little higher than the average of the no-sleep group. 
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8.3.5  Questions that deal with randomness – what is random, and why 
randomise? 

The first of the questions that dealt with randomness (Random) asked the students 

to give an example of “something that happens in a random way” and to explain 

why their chosen example was random. Statistically, a random event is one where 

an individual outcome cannot be predicted but the long term pattern can be pre-

dicted.  By the end of the unit students should have had an understanding of this. 

Therefore a code of “2” was given to students who gave a suitable example with 

an appropriate explanation and a code of “1” was given to students who used a 

suitable example but without an accompanying explanation. Frequencies of the 

answers, according to ability groups are in Table 8.3.5.1. This table shows that 

most students were able to give a suitable answer with an explanation, but as the 

level of ability decreased the students were more likely not to answer or to give an 

idiosyncratic explanation. This was one of the easier questions, with an item diffi-

culty level of 0.80 logits above zero.  

Table 8.3.5.1 

Answers to “Random” by ability group 
Ability Group A B1 B2 C 

 (n =  3) (n = 16) (n =12) (n = 2) 
Coin/die/Tattslotto or similar 

with explanation 3 12 7  

Coin/die/Tattslotto or similar 
with no explanation  1 1  

No answer    1 

Idiosyncratic*  3 4 1 
* Idiosyncratic – indicates the answer did not relate to the question or was unintelligible 
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“Cereal D” 

This is the last of the Cereal questions (see Section 8.3.3). 

 

 

 

 

 

For the highest score of “2” the students were required to explain that for the sta-

tistical analyses to be valid, each possible sample had to be equally likely. Re-

sponses that indicated that by not using random sampling bias may be introduced 

in some way, or that the conclusions will be invalid, received a score of “1.”  Re-

sponses that indicated that the boxes from one place may have been from the 

same batch and could be similar also received a score of “1.”  All other answers 

received a score of “0.” The answers, according to ability group, are found in  

Table 8.3.5.2. This item had a difficulty level of 1.61 logits above zero, and was 

in the middle range of difficulty for this questionnaire.  

  

You are working for a consumer organisation. As part of your 
duties, you select 49 boxes of “Get up and Go” cereal at ran-
dom and weigh the boxes. On the label of the boxes you read 
that the minimum weight of the box is 800g. 
The standard deviation of the weight of the boxes is 14g. 
Therefore the standard error of the mean (the standard devia-
tion of all possible sample means) is estimated to be 2g. 
 
(d) If you didn‟t use random sampling, how would this affect 

your previous answers in this question?   
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Table 8.3.5.2 

Answers to “Cereal D” according to ability group 
Ability Group A B1 B2 C 

 (n =  3) (n = 16) (n =12) (n = 2) 
The sample could be biased 

and the results will be invalid 1 6   

Not every sample will be 
equally likely  1   

The results will be invalid, 
sampling must be random  2  1 

The boxes manufactured at the 
same time could have similar 
errors 

 1 2  

The results could be  
biased/skewed   5  

The results won‟t represent the 
population  1   

The results will not fit a Nor-
mal distribution   2   

No answer 2 1 1  

Idiosyncratic*  2 4 1 
      *Idiosyncratic – indicates that the answer did not relate to the questions or was unintelligible 

“Pacific B” 

Pacific B followed on from Pacific A (see Section 8.3.4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forty students from the Pacific University participated in a study 
of the effect of sleep on test scores. Using random allocation, 20 
of the students were required to stay up all night studying the 
night before the test (no-sleep group). The other 20 students (the 
control „sleep‟ group) were required to be in bed by 11:00pm on 
the evening before the test. 

Atlantic University repeated the same study but allowed the stu-
dents to choose which of the groups (sleep or no-sleep) they 
could go into. The Pacific University claims that allowing the 
students to choose could bias the results. Atlantic University 
claims that this does not matter. 

 Which University do you think is correct? Give reasons for your 
answer. 
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The coding was similar to that of Cereal D, in that those who stated that there was 

not an equal chance of getting each allocation received the highest score of “2,” 

and those who stated that bias could be introduced received a code of “1.” Table 

8.2.4.1 shows that no student received the highest available score, and that 48% of 

the students gave answers that indicated that bias would be introduced if random 

allocation did not take place. The answers, according to ability, are found in Table 

8.3.5.3. This question had an item difficulty rating of 1.83, 0.35 logits above Pa-

cific A. 

Table 8.3.5.3 

Answers to “Pacific B” according to ability group 
Group A B1 B2 C 

 (n =  3) (n = 16) (n =12) (n = 2) 
Letting students self-select will 
bias results and invalidate the 
statistical analysis 

1    

Letting students self-select will 
bias results 1 9 6  

Pacific is correct – no further 
explanation 1 1   

Letting students self-select will 
mean the allocation is not ran-
dom 

 2 2  

Since people prefer to sleep, 
there will not be enough stu-
dents in the non-sleep group 

 1   

It is better to let students self-
select  2 3 1 

No answer  1 1  

Idiosyncratic*    1 
     *Idiosyncratic – answer does not address question 

“Fred” 

In this question “Fred” had a paper rejected because he had not randomly allo-

cated his treatments. He then did so, and found that his allocations were just as 
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before. The students were required to think what they would say to him to con-

vince him that the random allocation was required. The reasoning is that the hy-

pothesis tests, which look at the probabilities of sample outcomes if a hypothesis 

about the population is true, would be invalid if every allocation were not equally 

likely. The question of bias is also important; random allocation decreases the ef-

fects of unknown confounding factors that may be present. The instructions to the 

students were the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fred is a plant geneticist and sent the results of his research to a sci-
entific journal but his paper was rejected. He has sought help from a 
statistician. Here is their conversation: 
 
Fred: I‟ve just had my paper containing some important results re-
jected because I didn‟t use random allocation of my treatments. Now 
I have to repeat the whole experiment!  
Statistician: Tell me what you did. 
Fred: I had a bench with eight pots sitting next to each other along 
the bench. In the first four pots I put my new wonder species and in 
the next four pots I put the standard species. As I expected, my won-
der species produced much higher growth.  
Statistician: OK. Of course, there may have been some other factor 
varying along the bench which is responsible for the difference. 
Fred: I‟m not that stupid! The temperature, light and everything else 
is controlled in this glasshouse. If I thought there was another effect, 
I would have allocated the treatments to take account of the fact. 
Statistician: In that case, our task is simple. We will produce an al-
location plan by generating random numbers in the computer. 
They do this, and find that the wonder variety is allocated to the first 
four pots, and the standard variety to the other four pots, just as be-
fore. 
Fred: Great! You have just proved my results were valid because 
they were obtained under the layout recommended by random allo-
cation. 
Statistician: No! The editor rejected the WAY you obtained the 
layout, not the layout itself. 
Fred: !!!!! 

Can you explain to Fred why the randomisation was so important?  
See if you can provide an argument for randomisation that will over-
come Fred‟s problem. 
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The coding was similar to the previous questions in this section, in that the high-

est scores were given to students who could state that each possible allocation 

should be equally likely. Table 8.2.4.1 indicates that 21% of the students received 

this score. Twenty-seven percent of the students gave answers that mentioned that 

unintended bias could be a problem if the treatments were not randomly allocated. 

These students, and those who stated that allocation should be random without 

further explanation received a score of “1.” Table 8.3.5.4 shows the student an-

swers according to ability. This question had an item difficulty rating of 1.35 

logits above zero, which is 1.90 logits above the easiest question.  

Table 8.3.5.4 

Answers to “Fred” according to ability group 
Ability Group A B1 B2 C 

 (n =  3) (n = 16) (n =12) (n = 2) 
Each layout needs to be equally 
likely 2 2 1 1 

Allocation should be random 1 1 3  

Random allocation makes the 
statistical calculations legiti-
mate 

 2 1  

Random allocation removes 
bias  8 2  

It is only chance it happened 
that way    1 

No answer  3 3  

Idiosyncratic*   2  
*Idiosyncratic –indicates the answer either does not answer the question or is unintelligible 
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8.3.6  Repeated questions from the first questionnaire 

“Hospital” 

Further details for the coding of the Hospital problem can be found in Section 

7.3.2.  

 

 

 

 

 

 

Table 7.3.2.4 demonstrates that 45% of the 75 students chose hospital B when 

answering the first questionnaire, whereas in the second questionnaire 61% of the 

33 students chose hospital B (Table 8.2.4.1). Because the same students answered 

both questionnaires, the samples are not independent and a test for the difference 

in proportions was not carried out.  In the first questionnaire 45% of the students 

chose the equally likely option, whereas in the second questionnaire 27% of the 

students did so. Further analysis of the Hospital questions indicates that out of the 

33 students who answered both questionnaires, 7 received the highest score of “3” 

in both questionnaires. Eleven students changed their answers, with 10 receiving a 

higher score than for the first questionnaire, and one student receiving less than 

for the first questionnaire.  The answers, according to ability, are found in Table 

8.3.6.1. 

  

Half of all newborns are girls and half are boys. Hospital A 
records an average of 50 births per day. Hospital B records an 
average of 10 births a day. On a particular day, which hospital 
is more likely to record 80% or more of female births? 

a. Hospital A (with 50 births a day) 
b. Hospital B ( with 10 births a day) 
c. The two hospitals are equally likely to record such an 

event. 
 Please explain your answer. 
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Table 8.3.6.1 

Answers to “Hospital” for the second questionnaire, by ability 
Ability Group A B1 B2 C 

 (n =  3) (n = 16) (n =12) (n = 2) 
 Hospital B – More likely to de-
viate from average with smaller 
sample size/more likely to be 
close to average with larger sam-
ple size 

1 5 6  

Hospital B – More likely to get 8 
of 10 then 40 out of 50   6  2 

     
Equal –Probability of 50% boy or 
girl for every birth 2 4 5  

     
Hospital A – More likely to get 
more girls with more births  1 1  

 

 “Urn A and Urn B” 

Further details of the coding for the items Urn A and Urn B can be found in Sec-

tion 7.3.5. 

 

 

 

 

 

 

 

Table 7.3.5.3 indicates that in the first questionnaire 76% of the 75 students gave 

the correct answer of one in three for Urn A. For the second questionnaire, 70% of 

the 33 gave the correct answer for Urn A. Because the same students answered 

both questionnaires, the samples are not independent and a test for the difference 

An urn has 2 white balls and 2 black balls in it. Two balls are 
drawn out without replacing the first ball. 

a. What is the probability that the second ball is white, 
given that the first ball was white? Please explain your 
answer 

 
b. What is the probability that the first ball was white, given 

that the second ball was white? Please explain your an-
swer. 
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in proportions was not carried out. Table 8.3.6.2 indicates that most students used 

the argument that since there were two black balls and one white ball left, the 

probability of getting a white ball on the second draw was one in three.  

Table 8.3.6.2 

Answers to “Urn A” for the second questionnaire, by ability group 
Ability Group A B1 B2 C 

Answer (n = 3) (n = 16) (n = 12) (n = 2) 
1 in 3 – There are three balls 
left, one of which is white 2 14 5 2 

1 in 3 – no explanation  2 1  

1 in 6 – calculated a joint  
probability 1    

Other numerical answer   2  

No answer   1  

Idiosyncratic*   3  
        * Idiosyncratic – indicates the answer either does not answer the question or is unintelligible  
 

The answers to Urn B by ability group are found in Table 8.3.6.3. This shows that 

21% of the students gave the correct answer of one in three in the second ques-

tionnaire, compared to 12% in the first questionnaire (Table 7.3.5.4).  
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Table 8.3.6.3 

Answers to “Urn B” for the second questionnaire, by ability group 
Ability Group A B1 B2 C 

Answer (n = 3) (n = 16) (n = 12) (n = 2) 
1 in 3 – There are three balls in 

question, one of which is 
white 

2    

1 in 3 – no explanation 1 3 1  
1 in 2– because at  the begin-

ning there were four balls, 
two of which were white 

 9 7 2 

One in four – because at the 
beginning there were four 
balls 

 3 1  

Other numerical answer   1  
No answer  1 2  
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 “Med A” (called “Med” in the first questionnaire) 

The instructions were. 

 

Table 7.2.4.1 indicates that 53% of the 75 students who completed the first ques-

tionnaire used proportional reasoning to answer this question. For the second 

A new medication is being tested to determine its effectiveness in the treatment 
of eczema, an inflammatory condition of the skin. Thirty patients with eczema 
were selected to participate in the study. The patients were randomly divided 
into two groups. Twenty patients in an experimental group received the medi-
cation, while ten patients in a control group received no medication. The re-
sults after two months are shown below. 
 

 Experimental Group (Medi-
cation) 

Control Group (No Medica-
tion) 

Improved 8 2 
No improve-
ment 

12 8 

 

Based on this data, you think the medication was: 
 
A. Somewhat effective B. Basically ineffective 

 
If you chose option A, select the one 
explanation below that best describes 
your reasoning. 

If you chose option B, select the one 
explanation below that best describes 
your reasoning. 

a. 40% of the people (8/20) in the ex-
perimental group improved 

a. In the control group, 2 people im-
proved even without the medication. 

b. 8 people improved in the experi-
mental group while only 2 improved 
in the control group 

b. In the experimental group, more 
people didn‟t get better than did (12 
vs. 8). 

c. In the experimental group, the 
number of people who improved is 
only 4 less than the number who 
didn‟t improve (12-8) while in the 
control group the difference is 6 (8-2). 

c. the difference between the numbers 
who improved and didn‟t improve is 
about the same in each group (4 vs. 
6). 

d. 40% of patients in the experimental 
group improved (8/20), while only 
20% improved in the control group 
(2/10) 

d. In the experimental group, only 
40% of the patients improved (8/20). 
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questionnaire, 58% of the 33 students used proportional reasoning. The answers, 

according to ability, are found in Table 8.3.6.4. 

Table 8.3.6.4 

Answers to “Med A” for the second questionnaire by ability group 
Ability Group A B1 B2 C 

Answer (n = 3) (n = 16) (n = 12) (n = 2) 
Somewhat effective     

Option Ad 2 12 6 1 

Option Aa  1   

Option Ac  1 1  
     

Basically ineffective     
Option Bd 1 1 2  

Option Bb    1 

Option Bc  1 1  
     

No answer   2  
 

 “Med B” 

Med B was a new question that followed from Med A. It asked the students to 

consider the experimental design used in Med A.  

 

Listed below are several possible reasons one might question the results of the 
experiment described above. Please circle the letter for EVERY reason you 
agree with. 
 

a. It‟s not legitimate to compare the two groups because there are differ-
ent numbers of patients in each group. 

b. The sample of 30 is too small to permit drawing conclusions. 
c. The patients should not have been randomly put into groups, because 

the most severe cases may have just by chance ended up in one of the 
groups 

d. I‟m not given enough information about how doctors decided whether 
or not the patients improved. Doctors may have been biased in their 
judgements. 

e. I don‟t agree with any of these statements. 
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Students who answered “e,” received a score of “2.” Those who answered “d” 

received a code of “1.” Those who answered both “d” and “e” received a score of 

“0” as these answers are inconsistent with each other. Table 8.2.4.1 indicates that 

18% of the students received a score of “1” or “2.” The frequency of the answers, 

according to ability groups are found in Table 8.3.6.5. Med B had the highest item 

difficulty rating on the Rasch analysis (2.61 logits above zero). This is in contrast 

to Med A with an item difficulty rating of 0.02 logits above zero. It can be con-

cluded that the students found comparing the numbers in Med A simpler than 

making judgements on the experimental design.  

Table 8.3.6.5 

Answers to “Med B” by ability group 
Ability Group A B1 B2 C 

Answer (n = 3) (n = 16) (n = 12) (n = 2) 
(e) 1 1   

(b) and (d) 2 6 4  

(a) and (b) and (c) and (d)   1  
(b) and (c) and (d)  3 1  

(a) and (c) and (d)   1  

(a) and (b) and (d)    1 

(a) and (b)     1 

(a) and (d)  2 2  

(b) and (d)     

(b) and (c)   2  

(a)  1   

(c)  1   

(d)  1 1  

No answer  1   
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8.4 Relationships among ability measures and scores from formal 
assessments 

A paired t-test was carried to see if there was a significant change in the students‟ 

ability measures from the first to second questionnaire. The results indicate that 

there was a significant gain in the mean ability between questionnaires one and 

two. The mean ability measure for the first questionnaire for these 33 students 

was 0.311, and the mean ability measure for the second questionnaire was 0.787, 

a significant difference (P < .001, see Appendix E3). To investigate differences 

among semesters, each student‟s ability measure from the first questionnaire was 

subtracted from the ability measure of the second. A single factor ANOVA was 

then carried out on these differences. The results indicate that there was no sig-

nificant difference between the means of these differences among the semesters 

(P = .133, see Appendix E3). This indicates that although the students were from 

different cohorts (see Section 6.6) the overall performance on these questionnaires 

did not differ. 

The ability measures from the first questionnaire were then correlated with the 

ability measures of the second questionnaire. This relationship is demonstrated in 

Figure 8.4.1. The correlation coefficient was .178, and the relationship was non-

significant (P = .374, see Appendix E3).  
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Figure 8.4.1. Scatterplot of the relationship of the students’ ability measures be-
tween the first and second questionnaires.  

 

The relationship between the students‟ ability measures from the first question-

naire and their scores from their formal assessment was then investigated, and is 

demonstrated in Figure 8.4.2. The score from the formal assessment was a result 

of a combination of the students‟ results from four projects and two in-class tests. 

Even though scores are not “measures” (see Section 4.2) it would be expected that 

if there was a relationship between the ability level and the score from the formal 

assessment there would be some trend in Figure 8.4.2; however, there was no 

such trend. The correlation coefficient was 0.017 and the relationship was non-

significant (P = .935, see Appendix E3).  
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Figure 8.4.2. Relationship between the students’ final scores of the formal as-
sessment and the ability measures from the first questionnaire.  

Similarly, the relationship between the students‟ ability measures from the second 

questionnaire and their scores from their formal assessment was also investigated, 

and is demonstrated in Figure 8.4.3. The correlation coefficient was 0.354, and 

the relationship was significant at the 10% level (P = 0.070). However, the point 

(2.44,94), indicated by the star, is influential. When this point was removed from 

the analysis the relationship was non-significant (P = .387), with a correlation co-

efficient of 0.177. 
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Figure 8.4.3. Relationship between the students’ final scores from the formal as-
sessment and the ability measures from the second questionnaire.  

The lack of correlation between the ability score from the first questionnaire and 

the final score from the formal assessment indicates that this ability measure does 

not predict the outcome of an individual student. It is possible that students with 

poor prior understanding of statistical concepts (including probability) can make 

up for this lack of understanding as the semester progresses. The results of the 

ability measure from the second questionnaire also do not predict the final out-

come of an individual student on formal assessment. The items in the second 

questionnaire tested for the ability to explain inferential processes in an informal 

manner, while in general, the formal assessments were based on formal statistical 

procedures. 

The two questionnaires were also assessing different forms of reasoning, which 

possibly explains the lack of correlation between the ability scores from the 

analysis of these questionnaires. As described, the second questionnaire tested for 

informal reasoning used in inferential processes, whereas the first questionnaire 

examined students‟ prior knowledge of statistical concepts.  
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8.5 Summary and Discussion 

The responses to the second questionnaire demonstrated five main problems in 

students‟ understanding when undertaking inferential processes. First, the Cereal 

questions showed that some students confused the terms “standard deviation” and 

“standard error.” Some of the students used the standard deviation when the stan-

dard error should have been used, while other students stated they had used the 

standard deviation but had actually correctly used the standard error.  

Second, most of the students did not use both the means and standard deviations 

when making a comparison between two data sets in the Pacific A question. They 

were more likely to use the standard deviations alone. An increase of 1.2 logits in 

ability was required for the students to make this upward transition in reasoning, a 

substantial gain in a questionnaire that encompassed a range of a little of 4 logits.  

There was also a tendency for students not to use the given probability in making 

their conclusions, but to use other arguments. In the Circuit Breaker questions, 

the students preferred to say that one box did not give strong enough evidence to 

claim that the underlying rate of defectives had changed, because other boxes 

could have more or less defectives within them. Again an increase of 1.2 logits in 

ability was required for the students to make this upward transition in reasoning, a 

substantial gain in a questionnaire that encompassed a range of a little of 4 logits.. 

When answering the question that asked the students to explain the nature of a 

“significant difference,” none of the students attempted to explain the meaning of 

the given P-value. Some of the other responses, however, did indicate that some 
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of the students showed they understood the effect of sampling variation when 

making a judgement of difference between two samples. These students either 

stated that the means were not far apart when the standard deviations were taken 

into account, or stated that the given difference in means could occur just from 

sampling variation.  

In addition, few students could explicitly state that for calculations based on prob-

ability, all possible combinations of treatment allocation or selection need to be 

equally likely. Most of the students, however, were aware that a lack of random 

selection and random allocation could introduce some sort of “bias” or somehow 

skew the results.  

Finally, it was observed that there was no significant correlation between the rated 

ability of the students from the first questionnaire to the rated ability of the stu-

dents from the second questionnaire; nor was there a significant correlation be-

tween these ability measures and the students‟ final score from their formal as-

sessments. This suggests that two questionnaires and the formal assessments 

tested for dissimilar forms of statistical reasoning. 

The next two chapters describe the development of students‟ understanding of  

P-values and confidence intervals as the intervention progressed. They also con-

tain a description of the teaching strategies used for the semester of the second 

cycle of the intervention during which there was a focus on improving students‟ 

understanding of confidence intervals and P-values. 
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9. An Analysis of Students’ Understanding of P-
values.  

9.1. Introduction 

This chapter describes the progression of students‟ understanding of P-values as 

the intervention progressed. It describes the work through four semesters, the pre-

intervention semester, and the three cycles of the intervention. In the first semes-

ter of this study (the second teaching semester of 2007) the unit was taught as in 

previous years. This was followed by the first and second cycles of the interven-

tion (the first and second teaching semesters of 2008) and then by the third cycle 

of the intervention (in the first teaching semester of 2009).  In addition, the teach-

ing program of second cycle of the intervention is described. During this cycle 

notes were taken of the students‟ responses to certain problems, and their reac-

tions to the different strategies. This was so that more knowledge about students‟ 

problems in understanding P-values could be gained to assist in the planning of 

the third cycle of the intervention.  

A P-value answers the following question: If the proposition (hypothesis) about 

the population is true, how likely is the sample, or an even more unlikely sample? 

An understanding of the procedure for calculating a P-value requires considera-

tion of what samples might be likely if the proposed population characteristic is 

true. For example, if the proposition is that the mean of a population is 200 g, then 

it would be expected that most of the sample means would be “nearby” to 200 g. 

If the sample mean were 205 g, and the researcher wanted to know if the popula-
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tion mean had increased, then the P-value would be determined by the calcula-

tion: 

                

What constitutes “nearby” depends on the standard deviation of the population, 

and therefore the standard error of the mean for each case.  

Students‟ understanding of P-values was assessed by examining the responses to 

the following questions in the test that was held during the last week of each se-

mester, with the same wording each time.   

 
 

 

 

 

 

 

 

 

An ideal response to Question 1 would indicate that the P-value is the probability 

of the observed sample statistic or one more extreme if the null hypothesis were 

true. As a result this P-value would indicate that the observed sample statistic is 

very likely if the null hypothesis were true, but does not prove the null hypothesis 

true. Responses similar to this would receive a code of “3.” Other acceptable re-

sponses include that the true situation in the population could be close to that of 

the null hypothesis or that hypothesis tests only find evidence against the null hy-

1. A P-value of 0.98 indicates that the null hypothesis is 
almost certainly true. Is this statement correct? Give 
reasons for your answer.   

 

2. In the test of a null hypothesis that a new drug pro-
duces the same expected benefit as the standard drug, 
versus the alternative hypothesis that the new drug 
produces a higher expected benefit than does the 
standard drug, a P-value of 0.01 is obtained.  Explain 
what this result means to a patient who has read the 
result on the web but has no statistical training. Avoid 
all statistical jargon. 
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potheses but cannot prove them true (code “2”). An acceptable response that 

would receive a lower score (“1”) is the general statement that nothing is ever 

proved in inferential statistics.  

An ideal response to Question 2 would include a definition of the P-value in this 

context. If it were true that the new drug has the same expected benefit as the 

standard drug, then the probability of the results shown by the new drug would be 

only 1%. That is, the new drug‟s results were unlikely if it did not work better 

than the standard drug. A response similar to this would receive a code of “3.” 

Students who performed a standard hypothesis test without further explanation 

received a code of “2,” whereas those who stated that the new drug “works better” 

without further explanation received a code of “1.”  

9.2 Results of the pre-intervention semester (Semester 2 – 2007) 

9.2.1 Teaching strategies 

The pre-intervention semester was taught according to the previous practice 

where the students were first introduced to descriptive statistics, probability the-

ory, and then the formal hypothesis testing procedure. With this format, the for-

mal hypothesis testing procedure and its terminology were introduced in one lec-

ture. As a result the terms “null and alternative hypothesis,” “level of signifi-

cance,” “P-value,” “rejecting/accepting the null hypothesis” were all introduced at 

the same time as the probabilistic hypothetical reasoning procedure. Subsequent 

lectures consisted of describing hypothesis tests in various contexts.  

Each week of the semester consisted of two traditional lectures where the students 

were given the information they were required to know with some explanation. 
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Each week the students were also required to attend one tutorial where they were 

given exercises to work on, for example writing null and alternative hypotheses 

for a given set of problems. They also attended one computer, “practical” session, 

where they were given the instructions to carry out the required statistical proce-

dures in Microsoft Excel.  

9.2.2 Student answers to the P-value items in the test  

Out of the 13 students that agreed to take part in the study, 12 completed the test. 

In their answers to question one, no student attempted to explain the meaning of 

the P-value. Most of the answers indicated that the students were aware that in-

ferential statistics and the process of hypothesis testing do not result in certainty 

but no further reasoning was given. Two students indicated the statement was 

true.  

For the second question, all students apart from two gave an answer that con-

tained a mention of the null and alternative hypotheses and the P-value, even 

though the instructions stated to avoid statistical jargon. Only four of these at-

tempted an explanation of the meaning of the P-value, but none did so success-

fully.  Their answers indicated that these students believed either that the P-value 

is the probability of being incorrect (also reported by Gliner, Leech & Morgan, 

2002), that it indicates the rate of replication of the conclusion, or that the P-value 

gives the probability of seeing a difference.  

In summary, the evidence indicated that most of the students were not confident 

enough to attempt to explain the meaning of the P-value, and those who did make 
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this attempt held misconceptions as to its meaning. Most of the students, however, 

were aware that the practice of inferential statistics does not result in certainty.  

9.3  Results of the first cycle of the intervention (Semester 1 – 2008) 

9.3.1 Teaching strategies 

In the first cycle of the intervention extensive guided discovery learning via com-

puter simulation was introduced. For each idea introduced via simulation, for ex-

ample the distribution of sample means, the material was not introduced into the 

lecture or tutorial until after the simulation had been carried out. In addition, the 

hypothetical probabilistic process via the use of the “Chinese Birth Problem” was 

introduced early in the semester. For this problem the students were asked to in-

vestigate the influence on the ratio of boys to girls in the Chinese population if the 

“One child policy” were replaced with a “Have children until a boy is born” pol-

icy. The students were each required to investigate 10 families by using a coin 

(details are in Appendix D). There were 26 students in this cycle of the interven-

tion, 23 of whom completed the test. 

9.3.2 Student answers to the P-value items in the test 

This semester was the first where students attempted to explain the meaning of 

the P-value in their responses to Question 1. Five students attempted to explain 

the P-value, but only one was correct. Sixteen students indicated that the state-

ment was false because accepting a null hypothesis only indicates there is insuffi-

cient evidence to reject it. For the second question, seven students attempted to 

explain the meaning of the P-value. Their answers indicated that the students be-

lieved either that the P-value gives the probability of a difference between the 
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treatments, or the P-value gives the rate at which the two treatments will give the 

same result, or the P-value gives the probability that the null hypothesis is correct. 

One student, however, gave an answer that although not being entirely correct, 

would give the reader a partial understanding of the meaning of the P-value. This 

student said: “Since the likelihood of obtaining our test value is very unlikely as-

suming the same benefit as the standard drug, we conclude that the new drug 

gives a greater expected benefit than the standard drug.” 

Of the other fourteen students, nine used the expressions P-value and/or null and 

alternative hypothesis without further explanation and five students stated that the 

new drug works “better” with no other explanation. The students who stated that 

the new drug works better without further explanation may have taken the instruc-

tion not to use statistical jargon to a greater extent than was intended by the writer 

of the test, and it is difficult to know if understanding was present or not. Those 

students who used the null and alternative hypothesis process without explanation 

may have done this because they did not have conceptual understanding and 

therefore resorted to procedural knowledge, but again, it is difficult to know if this 

was the case.  

Of interest is the change in the explanations given for the answers to Question 1. 

For the pre-intervention semester, some of the students just stated that hypothesis 

tests do not result in certainty. In this semester, however, most of the students 

stated that accepting a null hypothesis test means that there is insufficient evi-

dence to reject it. This shows a more sophisticated level of reasoning of the nature 

of hypothesis tests than just a general “statistics does not give proof” statement.  
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9.4 Results of the second cycle of the intervention (Semester 2 – 
2008) 

9.4.1 Teaching strategies 

From the responses given at the end of the pre-intervention semester and at the 

end of the first cycle of the intervention it was apparent that the students were 

finding the hypothetical, probabilistic reasoning used in hypothesis tests difficult. 

Some of the students could explain that hypothesis testing does not result in de-

finitive proof, or that accepting a null hypothesis just means that there is not 

enough evidence to reject it, but did not explain their reasoning any further. 

It was felt by the researcher that a suitable example that would be easily under-

stood was needed to introduce the hypothetical, probabilistic process. If a suitable 

example could be found, it was intended that it could act as a template for further 

hypothesis tests. After some searching, the following example, the “It is hot out-

side” problem, where a statement about the weather was assessed according to the 

clothes people were observed wearing, was found (Shaughnessy & Chance, 2005, 

see Section 6.4.4). The example was placed in a table as shown in Table 9.4.1.1. 

Table 9.4.1.1 

The first example of the hypothetical probabilistic process used in the second cy-
cle of the intervention - The “It is hot outside” problem.  
My hypothesis It is hot outside today. 
Data When we look out of the window, everyone we 

see is wearing winter clothes (woolly hats, 
gloves and coats). 

What is the probability of see-
ing people wearing winter 
clothes if it is hot outside? 

Very, very low. 

What do you conclude about 
my hypothesis? 

It is incorrect. 
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This was followed by another example where the process was believed to be more 

complicated. It is based on a Sherlock Holmes story in which the theft of a race 

horse was being investigated (“Silver Blaze,” also described in Shaughnessy & 

Chance, 2005).  It is described in Table 9.4.1.2.   

Table 9.4.1.2 

An example of the probabilistic hypothetical process based on the Sherlock 
Holmes story, Silver Blaze. 

The hypothesis The horse was stolen by a stranger. 
Data The guard dog did not bark. 
What is the probability of the 
guard dog not barking, if there 
was a stranger on the prem-
ises? 

Very, very low. 

What do you conclude about 
the hypothesis? 

It is incorrect. 

Conclusion  The horse was stolen by someone the dog knew 
– it was an inside job. 

 

To introduce the use of numerical probabilities into this process, it was then re-

peated with the “Chinese Birth Problem,” which had been used to introduce the 

process of simulation to the students in the previous week (Section 9.3.1). When 

the results of all the students were collated, it was found that the simulation pre-

dicted there would be 116 girls and 140 boys born. The resulting table, based on 

the examples in Tables 9.4.1.1 and 9.4.1.2, is shown in Table 9.4.1.3. 
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Table 9.4.1.3 

The “Chinese Birth Problem,” using the probabilistic hypothetical process based 
on table 9.4.1.1 
My hypothesis The ratio of girls to boys will remain unchanged. 
Data 116 girls, 140 boys. (The results of the in-class 

simulation) 
What is the probability of get-
ting 116 girls or fewer out of 
256 births if the hypothesis is 
correct? 

0.08 (8%) 

What do you conclude about 
my hypothesis? 

Some agreed with it, and some did not. This led 
to questioning by the students – how low is “too 
low”?  
In answer, they were informed that how low is 
“too low” is determined by a convention, and 
this convention used a value of 5% (0.05).  

 

This table format was then used as a basis for all other hypothesis tests used 

throughout the semester.  For every hypothesis test, the students also were re-

quired to write out the meaning of the P-value for the specific context. For exam-

ple, if the test was for the difference in two population means, they were required 

to write something similar to: 

The P-value is the probability of getting two sample means this far or 
further apart if the populations have equal means.  
 

The students were encouraged to discuss their ideas with each other and then with 

the rest of the class. As they became more familiar with this process, time spent in 

interaction between the students and the lecturer increased, and the lectures be-

came less formal. In this semester, seven students agreed to take part in the study, 

six of whom completed the test. 

9.4.2  Student answers   

In answer to Question 1, four of the students agreed with the proposition that a 

high P-value would indicate that the null hypothesis was very likely to be true. 
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One stated that there was not enough evidence to prove the statement true, and the 

other answer was incomprehensible. The answers indicated that the students ei-

ther believed that the P-value gives the probability that the null hypothesis is cor-

rect or that the P-value gives the rate at which the null hypothesis will occur. For 

the second question, the students showed that they believed either that the P-value 

gives the rate at which the new treatment will work better, the P-value gives the 

probability of the observation (partly correct) or a low P-value indicates that the 

alternative hypothesis is true. 

Some of the responses to Question 1 and 2 were inconsistent, suggesting that 

these students were confused about the nature of the P-value. Further evidence of 

this confusion was shown by internal inconsistencies within some answers. For 

example, one student stated that the new drug works better 1% of the time, but 

then stated that the new drug worked better.  

This semester was disappointing for two reasons. One reason was the apparent 

lack of improvement demonstrated in understanding. The second reason was the 

low number of students who agreed to take part in the study making it difficult to 

draw firm conclusions. Further details of students‟ progression throughout this 

semester are found in Section 9.6.  

9.5  Results of the third cycle of the intervention (Semester 1 – 2009) 

9.5.1 Teaching strategies 

This was the final semester of the intervention where data were collected for this 

research. The students were again encouraged to ask questions and to reflect on 

each problem. This time the students were also shown a visual representation of 
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each hypothesis test, and encouraged to create one for themselves. It was found 

that as these changes were introduced the time students spent interacting with 

each other and the lecturer increased more than in the second cycle of the inter-

vention, and the difference between tutorials and lectures became increasingly 

blurred.   

For each hypothesis test, the students were encouraged to write out the meaning 

of each P-value, and to share their ideas with each other before sharing them with 

the rest of the class. It was also decided to introduce some of the formal terminol-

ogy of hypothesis testing from the first week of the unit, so that this could become 

familiar to the students over time. The revised table for the “It is hot outside” 

problem is shown in Table 9.5.1.1.  

Table 9.5.1.1 

The new grid for the “It is hot outside”problem 
The null hypothesis 
about the population 

It is hot outside today. 

Data When we look out of the window, every-
one we see is wearing winter clothes 
(woolly hats, gloves and coats). 

P-value What is the probability of seeing people 
wearing winter clothes if it is hot outside? 

Decision about hypothe-
sis 

Reject/ Accept 

Conclusion  It is not hot outside today. 
 

In addition, a visual representation of each hypothesis test that was based on 

the appropriate distribution was introduced. To give a visual representation of 

each hypothesis test, each test statistic (for example the value of “t”) was lo-

cated on the sampling distribution and located on a sketch graph. For exam-
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ple, if the null hypothesis was that there was no difference in means, and the t-

statistic was 3.6, a diagram such as shown in Figure 9.5.1.1 was drawn. 

 

 

 

 

 

 

 

 

 

Figure 9.5.1.1.  Diagram showing position of a proposed t-statistic. 

 

Following the diagrammatic representation, questions similar to these were asked.  

o Where do you think 3.6 will be (before adding the appropriate number 

and arrow)? 

o If the population distribution is really centered on our proposed value, do 

you think our sample data belongs to this distribution, or another distri-

bution? 

o How likely do you think our sample data are (or values even further 

away), if Ho is true? (In verbal terms – likely/unlikely). 

The responses were then compared to the numerical probability. This was calcu-

lated using the relevant probability distribution (for example, using the Binomial 

distribution), or by reading the P-value from the computer calculations.  

 
0 

3.6 
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A further change was made by introducing students to Popper‟s work on falsifi-

able propositions in science (see Section 2.3.1). This was introduced to help stu-

dents to be able to put statistical hypotheses in the wider scientific context. Spe-

cifically, Popper‟s ideas were introduced to help students realise why the null hy-

pothesis is the one of no difference, because it is easier to find evidence against an 

equality than to find evidence for a difference. If a greater understanding could be 

achieved, it was believed that it would be less likely that students would learn the 

convention for writing null hypotheses by rote and then make mistakes because 

understanding was not present.   

9.5.2 Student answers to the P-value items in the test 

Sixteen students agreed to take part in the study in this semester, twelve of whom 

completed the test. All of these students indicated that the proposition in Question 

1 was false. Eight of the students not only attempted to explain the meaning of the 

P-value, but also did so correctly. One student defined the P-value as being the 

probability that the null hypothesis is true. The other students did not explain the 

meaning of the P-value in their answers, but merely stated that hypothesis tests do 

not give proof.  

For Question 1, the biggest difference in results between this and the previous 

semesters was the proportion of those who correctly explained the meaning of the 

P-value. This difference is illustrated by the codes given to the students for this 

question, which are shown in Figure 9.5.2.1. This increase in score for this cycle 

of the intervention is confirmed by the results of the Kruskal-Wallis test that 

showed the difference in scores for the four semesters was significant with the 

third cycle of the intervention having the highest mean rank (P < .001). The de-
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tails of this analysis are found in Appendix E4 and the mean ranks are displayed 

in Table 9.5.2.1. 

 

Figure 9.5.2.1. Percentage of students in each semester who received the indi-
cated codes for Question 1 of the test.  
 

For the Question 2, three of the students not only explained the meaning of the P-

value in their answers, but also did this correctly. Six gave correct answers to the 

question itself, but did not explain the P-value. Two students used the null and 

alternative testing procedure without further explanation. The comparison be-

tween the scores from the four semesters is shown in Figure 9.5.2.2. In the first 

three semesters no students received the highest score of “3,” whereas in the last 

semester no student received a score of “0.” This increase in score for this cycle 

of the intervention is confirmed by the results of the Kruskal-Wallis test that 

showed the difference in scores for the four semesters was significant with the 

highest mean rank being for the third cycle of the intervention (P = .015). The de-
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tails of this analysis are found in Appendix E4, and the mean ranks are shown in 

Table 9.5.2.1. 

 

 
Figure 9.5.2.2. Percentage of students who received the indicated score for Ques-
tion 2 of the test. 
 

Table 9.5.2.1 

Mean ranked scores for the P-value questions 
 Mean Rank 
Semester Question 1 Question 2 
Pre-intervention 22.14 26.00 
Cycle 1 26.04 26.86 
Cycle 2 13.33 15.25 
Cycle 3 42.54 36.33 

 
 

9.6  A description of the teaching strategies used in the teaching of 
P-values in second cycle of the intervention 

This section gives a description of the strategies used to teach P-values in the sec-

ond semester of the intervention. Notes were kept throughout the semester of not 
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only the students‟ answers but also their reactions to different strategies. The in-

tention of keeping these notes was to gain further information into students‟ diffi-

culties to assist in the planning of the third cycle of the intervention. Owing to 

ethical considerations the researcher could not know who was participating in the 

study, therefore no identifying information was kept, and the notes of the stu-

dents‟ work were written in a descriptive format only. 

9.6.1  Stage 1 – Introduction to probabilistic reasoning 

 

The initial step was to introduce the students to simulation and to introduce the 

idea that the sample may not be exactly representative of a population via the use 

of the “Chinese birth problem” described in Section 9.4.6. The students were then 

asked to consider if a sample would have exactly 50% boys and 50% girls even if 

the population had this ratio. The students answered confidently that this would 

not be expected. Because null hypotheses are usually framed in terms of no dif-

ference, the following proposition was then posed: “My proposition is that the 

population ratio of boys to girls is unchanged. How far away from the one to one 

ratio would the sample have to be before you would think I was incorrect?” Some 

students suggested that they would disagree with the proposition if the proportion 

of girls was less than 85% of the boys, while others disagreed and stated that they 

would disagree with the proposition if the proportion of girls to boys was greater 

than 40:60/60:40. 

The actual probabilities of getting these proportions were not calculated. The aim 

of this exercise had been to make sure that students were familiar with the princi-

ples of simulation, that they had become aware of sampling variation, and that 
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they were aware that samples do not exactly reflect the population from which 

they were drawn.   

The next step was to introduce numerical probability into the “Chinese Birth 

Problem.” At this stage the actual calculation procedures were not introduced, so 

that the students could think about the problem without being distracted by these 

procedures. The students had to use the probability of getting 116 girls or less out 

of 256 births, 8%, to make a judgement of the likelihood of this sample, assuming 

the ratio in the populating was still 1:1. They were asked to choose between the 

options of very “unlikely,” “unlikely,” “likely” and “very likely,” and then decide 

if the sample indicated that the population ratio had changed or not.  

The students wrote down their answers and these were collected and were re-

turned at the next session. It was apparent from the students‟ answers that they 

found the reasoning difficult, and some stated this explicitly. This difficulty was 

reflected in inconsistency. For example, some students stated that the sample was 

unlikely but the population ratio would remain the same as before, and others 

stated that the sample was likely but the population ratio would change.  

Students who were consistent in their reasoning were divided between those who 

stated that the sample was unlikely if the hypothesis were true and that the popu-

lation ratio had changed, and those who stated that the sample was likely if the 

hypothesis were true so the population ratio had not changed. Some of the latter 

specifically stated that the observed ratio was not sufficiently different from the 

proposed population ratio to state that the population ratio would change. It was 

also apparent from their answers that some of the students did not appreciate how 
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varied samples from a population could be, and that they expected a sample ratio 

to be closer to the population ratio than would be expected in reality.  

Because it had become evident that this form of hypothetical reasoning was diffi-

cult for some of the students, an example was sought that could act as a model for 

their reasoning, an example that the students could connect to easily. After some 

searching the “It is hot outside” and the “Silver Blaze” examples were found and 

it was at this point they were first used (Section 9.4.1). The reasoning used for 

these examples was then repeated with the Chinese Birth Problem with the addi-

tion of the actual P-value. Table 9.6.1 shows the Chinese Birth Problem as it was 

presented to the students. The students did not agree with each other as to whether 

or not the given probability was too low to accept the hypothesis. They were told 

that the level of the “cut-off point” was a matter of convention, that it was 0.05 

(5%) and that later on they would work on why this level might be changed to a 

higher or lower level.  

Table 9.6.1 

The Chinese Birth Problem with the associated P-value as given to the students 

My hypothesis The ratio of girls to boys will remain unchanged. 
Data 116 girls, 140 boys. 
What is the probability of get-
ting 116 girls or less out of 
256 births if the ratio if the 
hypothesis is correct? 

0.08 (8%) 

What do you conclude about 
my hypothesis? 

Some agreed with it, and some did not. The stu-
dents were told of the convention of 0.05. 
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9.6.2  Stage 2 – Consolidation – hypothetical probabilistic reasoning in an-
other context 

Before the students proceeded further with hypothesis testing, they were intro-

duced to the mathematics of probability and the concept of a probability distribu-

tion. In this unit, the students were introduced to the Poisson, Binomial, Normal 

and Student‟s t- distributions. They were then given an example where they were 

asked to use the Poisson distribution to make a decision about the effect of tem-

perature on the hatching rate of a species of butterfly. In this example, the number 

of butterfly eggs that hatched on a leaf after the temperature in the greenhouse 

had been raised by 3o Celsius was compared to the average number that  had 

hatched per leaf before the temperature change. With the given data, the P-value 

in this example was 0.04 (4%). 

The student responses were collected and returned at the next session. These indi-

cated that a small number of students were so unhappy that only one leaf was 

taken into account they would not discuss the problem any further. Some of the 

responses were inconsistent. These stated that the given outcome was very 

unlikely if the temperature change had made no difference, but then concluded 

that the temperature had not altered the hatching rate, or used the reverse reason-

ing.  

Most of the students, however, argued that the outcome was so unlikely if the 

temperature had not made a difference that the hatching rate really had been al-

tered by the change. Most of the students also explicitly used the probability in 

their answers.  

 



 

247 

 

9.6.3  Stage 3 – Simulation of P-values 

After the students had been introduced to the hypothetical reasoning used in hy-

pothesis tests they carried out a series of simulations in their practical sessions to 

further their understanding of P-values. One of the benefits of the Excel program 

is that the spreadsheet capability can be used to collect a large number of “sam-

ples” easily, and if these samples are based on the random number generator the 

process can be repeated quickly.  

With these simulations, the Excel program was used to generate the samples that 

would be expected in each case if the null hypothesis were true, and, if the data 

were graphed, to give a visual representation of the variation among samples. The 

sample statistics that were generated from these random samples were then com-

pared with the value of the appropriate test statistic.  

The first such exercise was based on an idea from Ericksen (2006). In this situa-

tion the null hypothesis (that the population of voters was evenly divided for or 

against a proposition to enable city dwellers to keep koalas as pets) was simulated 

and compared to the result of a pre-election poll. The result of this pre-election 

poll was that out of the 50 voters surveyed; only 19 stated that they were in favour 

of the proposition. In the simulation, 500 samples (n = 50) were constructed. The 

proportion of samples that had 19 or less “yeses” (an estimate of the P-value) was 

then calculated. The students‟ simulations gave estimates of the P-value between 

.045 and .070. The calculated P-value, P(X ≤  19|p = 0.5) is 0.059. The results of 

one such simulation are demonstrated in Figure 9.6.3.1. The columns representing 

the samples with 19 or less voters in favour of the proposition are left unshaded.  
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Figure 9.6.3.1. Results of a simulation showing the number of samples with 19 or 
less voters in favour of a proposition, assuming the population overall is evenly 
divided. The P-value from this simulation is estimated to be 0.062. 
 
The next time the students met after the simulation, a comparison was made be-

tween the Koala exercise and the “It is hot outside” problem; this comparison is 

shown in Table 9.6.3.1.  

Table 9.6.3.1 

Comparison of the “Koala” and “It is hot outside” problems. 
 It‟s hot outside Koala 
Hypothesis It‟s hot outside. The proportion of all the voters 

who agree with the proposition is 
50%. 

Data  Everyone we see is wear-
ing winter clothes. 

19 out of 50 people agree with the 
proposition. 

Probability of 
our outcome, if 
hypothesis is 
true. 

Very, very low. From practical: 4.5%, 6.2%, 5.1% 
(Student results) 
Calculation in Excel: 
=binomdist(19,50,0.5,1) = 0.059 

What we think 
about our hy-
pothesis 

It is not hot outside. Two answers were given – one for 
and one against the hypothesis. 
The students were reminded of the 
convention of the “cut-off” of 
0.05. 
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The next simulation was again based on the work of Erickson (2006). The data 

were obtained from the Census at School website3 and consisted of a randomly 

drawn sample of the heights of 38 Grade 12 students. From these data an Excel 

spreadsheet was designed so that the difference between the mean of the first 16 

Grade 12 students in the sample (all female) and the mean of the last 18 Grade 12 

students (all male) was automatically calculated. The difference in mean heights 

was 11.62 cm. The students then used the spreadsheet to allocate the 34 students 

in the data set randomly between the two groups of the same size as before. Each 

time the difference in means was automatically recalculated. Each student per-

formed the reallocation 20 times, and then placed his or her results on a tally on 

the whiteboard. Out of 360 results, a difference of 11.62 cm or more was ob-

served only 3 times. This gave an approximate P-value of 0.01.  An example of 

one such simulation is found in Figure 9.6.3.2.  

 

                                                 

3 http://www.abs.gov.au/censusatschool 
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Table 9.6.3.2. Results of a simulation comparing the difference in means when the 
data are randomly allocated compared to the test statistic (unshaded bar). 
 

9.6.4  Stage 4 – Introduction to the formal hypothesis testing procedure 

In the lecture following the Grade 12 heights simulation students were introduced 

to the formal hypothesis testing procedure. The students worked on the handout 

shown in Figure 9.6.4.1 by filling in the gaps and answering the questions. It was 

at this point that the terms “P-value” and “null hypothesis” were first introduced. 

They were then introduced to the formal calculations associated with the 2-sample 

t-test for the difference in means. After this they were given the handout pre-

sented in Figure 9.6.4.2. This handout lists common problems in the understand-

ing of P-values. It was intended that if known misconceptions were made explicit 

to the students, then these misconceptions could be avoided (Garfield & Ahlgren, 

1988).   
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Figure 9.6.4.1. The handout used to introduce the formal hypothesis testing 
procedure for the difference in two population means.  

 

 

 

 

 

Our question 
about the whole 
population 

Do adult males have a higher mean height than 
adult females? 

The hypothesis 
– known as the 
“null hypothe-
sis”. This is 
also about the 
population. 

Ho: M = F 
 
The null hypothesis is usually the one of NO DIF-
FERENCE. Statisticians put up a statement and 
then look for evidence against it. You will see that 
this usually gives a benchmark by which the ap-
propriate probabilities can be calculated. 

The data from 
our sample 

 

P-value  This is the probability of getting a sample with a 
difference of 11.62cm or more, given that the null 
hypothesis is true.  
That is, P(difference in means is 11.62cm or 
more|No difference). 
From our practical we estimate this to be ______. 
Formal calculations show the P-value to be 0.002. 

Decision about 
the hypothesis 

Choose one of these statements: 
A. This probability is so low that we will reject the 
null hypothesis. 
B. This probability is not low enough for us to say 
we have strong enough evidence against the null 
hypothesis to reject it, and we will accept the null 
hypothesis. 
Remember: Our cut-off point for going from B to 
A is 0.05 (5%). 

Conclusion in 
plain English 
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Figure 9.6.4.2. The handout given to explain the meaning of the 
P-value and to describe some common misconceptions.  
 

The next time the class met was in a tutorial session. In this tutorial the students 

were given a hypothesis test to work on (The Fish Problem) where it was stated 

that in the previous year the population mean weight for the fish in a holding pond 

before release was 300 g. This year, a sample only was taken when the fish were 

at the same stage of development, and the sample mean was 280 g.  Did this sam-

The P-value tells you how likely it is to get the sample you got 
(or a more extreme sample) if the null hypothesis is true. 

Many people are confused about the P-value and try to read too 
much into it. In an experiment, you get a certain set of results, 
like a sample mean. The hypothesis test asks whether random 
chance can account for those sample results if the null hypothesis 
is true. 

The P-value is the likelihood, if Ho is actually true, that random 
chance could give you the results you got. It is a conditional 
probability: 

P-value = P(this sample | Ho is true) 

When you write it in symbols like that, you can see right away 
that the P-value is not the probability that the hypothesis is true 
or false: 

    * The P-value is not the probability that Ho is true. 

    * The P-value is not the probability that Ho is false. 

    * The P-value is not the probability that your results are due to 
random chance. 

    * The P-value is not the probability that your results are not 
due to random chance. 

Once again, the P-value is just a measure of how likely your re-
sults would be if Ho is true and random chance the only factor in 
selecting the sample. 

There‟s one other thing: the P-value is not a measure of the size 
or importance of an effect. A small P-value means you can be 
pretty confident in rejecting Ho. But it doesn‟t tell you by how 
much you‟re rejecting Ho (the effect size), or whether that rejec-
tion has any practical consequences. 

(Reference: http://www.tc3.edu/instruct/sbrown/stat/pvalue.htm) 

http://www.tc3.edu/instruct/sbrown/stat/pvalue.htm
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ple give evidence to suggest that the mean weight was less than the previous 

year?  The students were given a handout, which is illustrated in Table 9.6.4.2, 

and were asked to fill in the gaps.  

 
Table 9.6.4.2 

The handout used for the Fish Problem. 
Our question about the 
whole population 

 

The hypothesis – known as 
the “null hypothesis”. This 
is also about the population. 

Ho:  
 
 

The data from our sample  
P-value  The P-value is 0.16. 

Write the meaning of this P-value is words, re-
membering it is a conditional probability. 

Decision about the hypothe-
sis 

Choose one of these statements: 
A. This probability is so low that we will reject the 
null hypothesis. 
B. This probability is not low enough for us to say 
we have strong enough evidence against the null 
hypothesis to reject it, and we will accept the null 
hypothesis. 
Remember: Our cut-off point for going from B to 
A is 0.05 (5%). 

Conclusion is plain English  
 

The students‟ comments while they were working on this problem indicated that 

most of the students were now comfortable with the hypothetical reasoning in-

volved in hypothesis testing. These students used arguments suggesting that the 

sample mean was likely in a population with a mean of 300 g. Although explana-

tions such as this do not give a formal explanation of the meaning of a P-value 

they do show evidence of understanding of the process of the hypothesis test. A 

minority stated that they still found the reasoning difficult – some stating that they 

did not “get it.” 
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The students were then asked to give an example of an experiment they had 

worked on in their own disciplines. As it happened, most of the students were 

aquaculture students, and they had been working on fish nutrition. As a result, 

another fish problem was proposed. In this problem the mean weight of fish that 

had been given extra Vitamin C was compared to the mean weight of those who 

had been given the standard feed (the difference in means was reported as 0.7 kg). 

They were asked to write out the null hypothesis (Ho), what the P-value would be 

in words (it had a numerical value of 0.27), and their conclusions. The answers 

were collected and returned in the next session. 

Most of the students showed an understanding that was very close to being cor-

rect. These students stated that the P-value was the chance of seeing a difference 

of 0.7 kg in the means if Ho was true. Some students had an understanding that 

was close to the formal definition of the P-value, stating that the P-value was the 

probability of seeing a difference of 0.7 kg. A smaller number of students gave 

evidence of misconceptions of the meaning of the P-value, for example, that the 

P-value was the probability that Ho was correct. 

Overall, the students were starting to gain an understanding of formal hypothesis 

testing. It was apparent, however, that a small number of students still had prob-

lems in understanding the meaning of the P-value. For some of these with prob-

lems the consequence was that they drew the incorrect conclusion for the hy-

pothesis test. Instead of accepting the null hypothesis, it was rejected and the con-

clusion was made that the extra level of Vitamin C had increased the mean weight 

of the fish.  
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In later sessions the students were given more examples of hypothesis tests that 

they worked on together in groups. For each hypothesis test they were asked to 

explain the meaning of the P-value in context, and draw a conclusion from the 

value of this P-value, and then share their conclusions with the rest of the stu-

dents.  During the discussions it was apparent that a small minority of students 

were still struggling with the process of the hypothetical reasoning based on the 

P-value.  

9.6.5  Stage 5 – P-values in other contexts – chi-squared tests for inde-
pendence, the analysis of variance, and linear regression 

Toward the end of the semester the students were introduced to some applications 

of hypothesis testing, chi-squared tests for independence, the analysis of variance 

(ANOVA) and simple and multiple linear regression. The first application to be 

introduced was the chi-squared test for independence. It was introduced with the 

means of a simulation in a practical session, which was based on work taken from 

Burrill (2002). The aim was for the students to compare the rate of children suf-

fering from Haemolytic Uraemic Syndrome (HUS) who had been given a certain 

antibiotic to the rate for those who had not.  In the sample, five children who had 

been given antibiotics suffered from HUS. First of all, the students had to calcu-

late the expected number of children in the sample who had been given antibiotics 

who would suffer from HUS if the disease occurred at random; this number was 

1.7. The simulation then randomly allocated the children to the groups who had 

been given antibiotics and those who had not, and the number of children with 

HUS who had been given antibiotics was recorded. Because the exercise was 

based on the random number generator in Excel, the simulation was easily re-
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peated. Each student repeated the simulation 20 times and the class data were tal-

lied. The results of this simulation are found in Table 9.6.5.1. 

Table 9.6.5.1 

Results of the simulation with the expected numbers of children affected with HUS 
if the disease occurs at random 

Number of children 
with HUS 

Count 

0 50 
1 63 
2 46 
3 15 
4 16 

5 (Observed value) 0 
Total 190 

 

Because none of the 190 simulations predicted that 5 children would be affected, 

the P-value was estimated to be less than 0.01 (1/190). The conclusion was that 

treatment with antibiotics did increase the chance of a child contracting HUS. 

Figure 9.6.5.1 shows the bar graph of the data in Table 9.6.5.1. The test statistic, 

the number of children who contracted HUS who received antibiotics, is desig-

nated with the solid fill. This figure gives a visual illustration of the comparison 

of the test statistic with the predicted values if the disease occurred at random. It 

suggests that the administration of the antibiotic to children did increase the 

chances of the children to suffer from HUS.  
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Figure 9.6.5.1. Results of a simulation comparing the actual number of times five 
children were observed with HUS compared to the number if the disease occurred 
at random.  
 

One of the applications of hypothesis testing with which the students were ex-

pected to become familiar with was the single factor Analysis of Variance 

(ANOVA). This process was introduced in an informal way. The students were 

given data that consisted of the time to answer calls for an airline reservation sys-

tem for five different shifts during a week. The students were asked to plot the 

data (Figure 9.6.5.2) and to make a judgement as to which groups were signifi-

cantly different from each other based on an estimate of the mean and spread of 

the data in each group.  
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Figure 9.6.5.2. Times to answer calls for an airline reservation system for five 
shifts.  
 

At the next lecture the students‟ predictions were written on the whiteboard be-

fore the formal procedure for ANOVA was introduced. All the students agreed 

that groups 1 and 2, 1 and 3, and 1 and 5 had means that were significantly differ-

ent from each other. They did not agree on whether or not groups 2 and 4, and 2 

and 5 had means that were significantly different from each other, and they all 

agreed that the other combinations of groups did not have means that were sig-

nificantly different. The students were then asked to explain the meaning of the P-

value in this context, that is, the probability of the observed differences, or those 

more extreme, if all the population means were equal. The formal procedures in-

dicated that significant differences were found between the means of groups 1and 

2, 1 and 3, 1 and 5, 2 and 4, and 2 and 5. This corresponded closely with the stu-

dents‟ predictions.  

The final of the simulations the students carried out in a practical session involved 

observing what happens to the estimation of the equation of the line of best fit 
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when measurements are taken. The process of measurement always results in er-

ror, therefore the equation derived from measurement data will be only an estima-

tion of the situation for the entire population. As for any sample data, it is ex-

pected that variation will exist from sample to sample.  

The simulation asked the students to pretend that they were the “God of Algebra” 

so that they know what the true equation was for their data, in this case 

 y = 3x + 2.  A random component was then added to each “y” value. The original 

data and the data with the random component were graphed and their equations 

compared. For any data in Excel that are based on the random number generator 

the random numbers are easily recalculated and so the simulation can be quickly 

repeated. One example is shown in Figure 9.6.5.3. The complete line is that for 

the “true” situation, y = 3x + 2, and the dotted line is that for the data with the 

random component. 

 
Figure 9.6.5.3. Comparison of the line for the “true” situation, and the line of 
best fit for the “sample” data.  
 
A similar process was then carried out where the true situation was one where 

there was no influence of the independent variable on the dependent variable; in 

this case the true situation was given the equation y = 3. A random component 

y = 2x + 3

y = 1.1653x + 5.2369
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was added as before and the two lines were drawn again, and their equations 

compared. One example of this process is shown in Figure 9.6.5.4. This figure 

illustrates how a person may be misled into believing that there is a significant 

relationship between two variables when in fact, this is not the case. The P-value 

in this context is the probability of the sample gradient or greater if the population 

gradient is zero (that is, there is not a significant relationship between the two 

variables). 

 
Figure 9.6.5.4. Comparison of the line for the “true” situation where there is no 
relationship between the dependent and independent variable, and the line of best 
fit for the “sample” data.  

9.6.6  Stage 6 - revision  

A week before the final lecture, the students were given a practice test and were 

asked to bring their answers to this final lecture. The question in this practice test 

that related to P-values was the following. 
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A P-value of 0.9 means that it is almost certain that the null hypothe-
sis is true.  

True or false? Give reasons for your answer.    
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As the students shared their answers it became apparent that some students were 

convinced that the statement was true. They were asked “What is a P-value?” As 

the discussion progressed it also came apparent that although some students were 

confident in correctly describing a P-value, they still thought that the high P-value 

would mean the null hypothesis would be likely to be true. An example was given 

to them where the “true” value of the parameter was very close to that proposed in 

the null hypothesis, and they were asked to consider what the P-values might be 

like for sample statistics close to the null hypothesis. The P-values would be high, 

even though the hypothesis did not identify the correct parameter. The semester 

ended with a test that contributed to the formal assessment, part of which was 

used for this study. A discussion of the student answers to the selected questions 

from this test is found in Section 9.4.2. 

9.7  Summary of the misconceptions identified during the study in 
comparison to the literature 

The following summarises the misconceptions shown by the students in their un-

derstanding of P-values during the four semesters of the study. These misconcep-

tions were demonstrated in the student responses to the test items that were part of 

the second test used in the formal assessments. The study showed that the follow-

ing misconceptions about P-values were held by some of the students.    

First, some of the students stated that if the P-value is below 0.05, then the null 

hypothesis is accepted. Those students who had this view would appear not to 

have understood the meaning of P-value in any way, but have merely attempted 

to learn a rule which they then misapplied. This tendency has also been observed 
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by Chance, delMas and Garfield (2004). If the student had an idea of the true na-

ture of the P-value, it would seem unlikely that this mistake should be made.  

Second, some of the students stated that the P-value is the probability that the null 

hypothesis is true. This misconception has also been observed by Gliner, Leech 

and Morgan (2002). This is a simpler interpretation than the correct definition of 

the P-value, and would appear to make sense to the students. Therefore, not only 

was it the most commonly held misconception about P-values, but also it was te-

naciously held. Telling the students that this was not the meaning of the P-value 

did not appear to make any difference.  

Other misconceptions included that the P-value is the probability of being incor-

rect (also observed by Gliner, Leech and Morgan, 2002), that the P-value indi-

cates the rate of replication of the conclusion, that the P-value gives the probabil-

ity of seeing a difference and the P-value gives the rate at which a specific treat-

ment will show a difference. In addition, there was one other misconception that 

was partly correct, that the P-value gives the probability of the observation. This, 

too is a simpler interpretation than the correct definition of the P-value, and also 

appears to make sense to the students.  

9.8  How students’ understanding changed over the intervention 

At the end of the pre-intervention semester no students attempted to explain the 

meaning of a P-value in their responses to the test questions, even though this 

could have improved the quality of their explanations. As the intervention pro-

gressed, the proportion of students who used the meaning of the P-value to ex-
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plain their answers, increased. The largest improvement was noted at the end of 

the third intervention. 

The third intervention used a combination of strategies, the introduction of hypo-

thetical, probabilistic process early on in the semester, simulations, students writ-

ing down their reasoning, students comparing their work with others, alternative 

representations, and relating the process of hypothesis tests to the general scientif-

ic method as described by Popper (1963).  

Some of these strategies enabled the students to make connections between the 

unfamiliar and the familiar. It was apparent from the students‟ responses at the 

time of their entry into the statistics unit that in general, they had not been ex-

posed to hypothetical, probabilistic reasoning. The introduction of the “It is hot 

outside” problem, however, enabled students to understand the process in a sim-

ple context. Once this was completed, they were able to connect more difficult 

problems to the initial problem. The representation of the hypothesis tests in visu-

al form enabled students to make connections between the probability distribu-

tion, what sample statistics would be likely given the population parameter, the 

likelihood of the test statistic given the parameter, and the numerical result for the 

P-value. Some of the simulations also led the students to have a visual representa-

tion of what sample statistics are likely given a population parameter, and they 

were able to compare their test statistics with these “likely” sample statistics.  

Other simulations, for example the one used to introduce the Central Limit Theo-

rem (see Section 6.4.3), allowed the students to “discover” some statistical prin-

ciples for themselves. The element of surprise that resulted from the predict, test, 

re-evaluate format appeared to increase students‟ interest. Even the simple com-
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parison between means and medians, where a data point was replaced by a large 

number, seemed to startle the students, and some of them appeared to enjoy 

putting in the largest number they could think of to see how much they could 

make the mean change, while the median remained constant. These simulations 

are all possible because of a spreadsheet‟s ability to instantaneously update the 

calculations and to “resample.” 

The connection of the writing of null hypotheses with Popper‟s ideas on falsifica-

tion was of interest to the students. It was apparent that some of them had not 

been exposed to ideas of what makes a scientific proof, and that repeated observa-

tions in confirmation of a theory do not give definitive proof. This process 

enabled some students to make a more intelligent decision about the null hypothe-

sis, instead of just learning that the null hypothesis is the one of “no difference.”  

It is not contended that one strategy alone led to the increase in understanding 

shown by the students. It is believed that it was the combination of strategies that 

led to the observed improvement. This combination helped to gain the students‟ 

interest and enabled them to make connections between the unfamiliar to the fa-

miliar, and connections between visual and written representations.  

9.9  Implications for teaching 

This study confirms the proposition that students find the reasoning used in infe-

rential statistics unfamiliar and difficult (Garfield & Ahlgren, 1988; Yilmaz, 

1996). As a result, students often make the error that a P-value is the probability 

that the null hypothesis is true, as this is a simpler concept to understand.  
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One of the implications of constructivist theories of learning is that instructors 

need to be aware of the misconceptions that students are likely to have or to de-

velop and take steps to avoid these. This study demonstrated, however, that mere-

ly pointing out the misconceptions does not necessarily mean that the students 

will avoid them or correct them. If students have an idea that makes sense to 

them, it will persist. Students will not change a conception unless they see some 

benefit (Posner et al., 1982), and so the instructor needs to take steps that will en-

courage the students to make sense of the conception the instructor wishes the 

students to have. 

As a result of this study, the concept of a P-value is now taught with the following 

combination of strategies in the Data and Handling Statistics unit. First, the  P-

value is introduced with a simple example (the “It is hot outside problem”) and 

the terms “P-value” and “null hypothesis” are introduced in the first week of 

semester so that the students have more time to become familiar with the termi-

nology. 

Second, for each hypothesis the students are encouraged to write out the meaning 

of the P-value in that particular context and the students are encouraged to help 

each other in this process. The students are not rushed and individual questions 

are answered. In addition, diagrams are used as well as verbal explanations. In 

these diagrams the test statistic is placed on a diagram of the hypothesised distri-

bution and questions are asked to assist the students to make a link between the 

likelihood of the value of the test statistic, and the numerical probability of the P-

value. 



 

266 

 

By these means the students are encouraged to develop connections between the 

unfamiliar hypothetical, probabilistic reasoning used in hypothesis testing and 

something familiar, so that they can find a means of developing a concept of the 

P-value that is personally meaningful.  

The next chapter describes in a similar fashion the students‟ understanding of 

confidence intervals over the period of the study.  
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10. An Analysis of Students’ Understanding of Con-
fidence Intervals 

 

10.1 Introduction  

This chapter describes the progression of students‟ understanding of confidence 

intervals as the intervention progressed. It describes the work through four semes-

ters, the pre-intervention semester, and the three cycles of the intervention. In the 

first semester of this study (the second teaching semester of 2007) the unit was 

taught as in previous years. This was followed by the first and second cycles of 

the intervention (the first and second teaching semesters of 2008) and then by the 

third cycle of the intervention (in the first teaching semester of 2009).  In addi-

tion, the teaching program of second cycle of the intervention is described. Dur-

ing this semester notes were taken of the students‟ responses to certain problems 

and their reactions to the different teaching strategies. This was so that more 

knowledge about students‟ problems in understanding confidence intervals could 

be gained to assist in the planning of the third cycle of the intervention.  

At the end of this introductory statistics unit, students were expected to be able to 

perform simple hypothesis tests, and be able to estimate population means from 

given samples. A population mean can be estimated with the value of the sample 

mean (a “point” estimate). Alternatively, a range of values can be calculated in 

which it is believed the value of the population mean is likely to be. This process, 

finding the 95% “confidence interval for the mean,” takes into account the stan-

dard error (and hence the precision) of the estimate. The calculations for confi-

dence intervals are relatively simple; all that are needed is the value of the sample 
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mean, the value of the standard deviation of the sample (as the population stan-

dard deviation is not usually known), and the “t” value for the appropriate level of 

confidence. In this unit, the practice is to use approximate 95% confidence inter-

vals and therefore the value of “t” is “2.” Using this value the formulae to deter-

mine the limits of the 95% confidence interval are: 

Lower limit 
n
sx *2

 

                    n
sx *2

 

where    refers to the sample mean, s refers to the sample standard deviation, and 

n refers to the size of the sample. It is then likely that the value of the population 

mean is in the range from the lower to upper limit. The likelihood that this has 

occurred is indicated by the level of confidence.  The “95%,” therefore, indicates 

that a process has been used that will give a range that includes the actual value of 

the population mean 95% of the time the process is used. For any single interval, 

however, it cannot be known if the value of the population mean is included or 

not. 

It appears that students find the reasoning behind the use of these formulae diffi-

cult to understand. To understand the process the following knowledge needs to 

be brought together. 

1. Ninety-five percent of individuals in a normally distributed population are 

within approximately two standard deviations of the population mean. 

2. If the sample size is large enough, sample means form a Normal distribu-

tion (The Central Limit Theorem). This distribution is centred on the 

Upper limit
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population mean and has the standard error as its standard deviation. The 

standard error (     is linked to the population standard deviation (σ) by 

the formula nx /  .  

3. As a result of (1) and (2), 95% of the possible sample means with a given 

sample size are within two standard errors of the population mean.  

4. Since a sample mean will be within two standard errors of the population 

mean 95% of the time, the interval calculated by the formulae above will 

include the value of the population mean 95% of the time.  

From the student answers, it appeared that they found steps one to three to be 

fairly straightforward, but had difficulty in grasping the reasoning from step three 

to step four.  

To assess students‟ understanding of confidence intervals the students were re-

quired to answer the following questions in a test held in the final week of each 

semester, with the same wording used each time.   

 

 

 

An ideal response to part (a) would state that the mean number (or expected num-

ber) of visits by Tasmanians to a doctor in 1998 was estimated to be between 7 

and 11.  This response would result in a code of “2.” A response that stated the 

above, but added “95% of the time,” or stated that on average, Tasmanians visited 

a doctor between 7 and 11 times would receive a code of “1.”   

The 95% confidence interval for the expected number of 
visits by Tasmanians to a doctor during 1998 is 7 to 11. 

a. In completely non technical words, explain what 
this statement means. 

b. What does the 95% refer to? 
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An ideal response to part (b) would state that the given interval has a 95% chance 

of including the value of the population mean. Alternatively, it could be stated 

that the process used would include the value of the population mean 95% of the 

time it was used. These responses would receive a code of “2.”  A response that 

stated that 95% of sample means will be within two standard errors of the popula-

tion mean, but did not explain how these related to the confidence interval would 

receive a code of “1.” 

10.2  Results of the pre-intervention semester (Semester 2 – 2007)  

10.2.1 Teaching strategies 

The pre-intervention semester was taught according to previous practice, where 

the students were introduced to the Central Limit Theorem, and then to confi-

dence intervals in a lecture. Each week of the semester consisted of two tradi-

tional lectures where the students were given, with some explanation, the material 

they were required to know. The students were also required to attend one tutorial 

per week where they were given exercises to work on, for example calculating the 

confidence interval from given sample statistics. The students also attended one 

computer, “practical” session per week, where they were given the instructions to 

carry out the required statistical procedures in Microsoft Excel. There were no 

computer exercises that related to confidence intervals, except how to calculate 

statistics such as the mean and standard deviation in Excel. There were 14 stu-

dents who provided data for this part of the study, 12 of whom completed the sec-

ond test. 
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10.2.2 Student answers to the confidence interval questions 

In their answers to part (a) of the question, one quarter of students answered cor-

rectly. The other students stated either that between seven and eleven Tasmanians 

visited a doctor, that 95% of Tasmanians went to the doctor 7 to 11 times, or that 

the average falls between 7 and 11, 95% of the time. 

For part (b), one quarter of the students answered correctly, but apart from one 

student, these were not the students who answered part (a) correctly. The other 

students either stated that 95% refers to the number of Tasmanians visiting a doc-

tor, 95% refers to the proportion of means that fall within 7 and 11, or that the 

mean for 95% of the population is between 7 and 11. 

10.3  Results of the first cycle of the intervention (Semester 1 – 2008)  

10.3.1 Teaching strategies  

In the first cycle of the intervention guided discovery learning via computer simu-

lation was introduced. For each idea introduced via simulation, the appropriate 

material was not introduced into the lecture or tutorial until after the simulation 

had been carried out. The first of the simulations that applied to confidence inter-

vals introduced the Central Limit Theorem. Thompson, Liu and Saldanha (2007) 

have reported that it is common for students to think that the distribution of sam-

ple means will have the same distribution of the parent population. This simula-

tion was designed to encourage students to gain this belief but then be confronted 

with conflicting evidence. In this simulation, students were given some data that 

were normally distributed. They were then informed that they would be taking 

samples from these data and calculating the sample means. They were asked to 
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predict the shape of the distribution that these sample means would have. They 

then used Microsoft Excel to take 500 samples, calculated the mean of these sam-

ples, and draw a histogram of these means. These means formed a Normal distri-

bution. They were then asked to undertake a similar process for data that were 

uniformly distributed. Because they had been led to believe that the sample means 

would have the same distribution as the population distribution, most of the stu-

dents predicted that the sample means would have a Uniform distribution as well, 

and seemed to be surprised when a Normal distribution resulted. They then re-

peated the process with a Binomial distribution, one with a small sample size (n = 

5) and then with a larger sample size (n = 25).  

In the tutorial that followed the practical, the students were given a handout to 

encourage them to consider the consequences that result from sample means be-

ing normally distributed (see Figures 10.6.2.1 and 10.6.2.2). For example, ap-

proximately 67% of sample means will be within one standard error of the popu-

lation mean. In the next practical class, the students carried out a simulation with 

the aim that they would see the proportion of intervals that would include the 

value of the population mean. For this simulation, students constructed 100 ran-

dom samples drawn from a population with a given mean. They calculated the 

mean, standard deviation and standard error for each sample, and then calculated 

the interval constructed by adding and subtracting one, two and then three stan-

dard errors from the sample mean. Using the “IF” function in Excel they deter-

mined the number of intervals out of the 100 that had the value of the population 

mean within them for each number of standard errors. It was only after these 
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simulations were carried out that the students were given a formal lecture on con-

fidence intervals. 

10.3.2 Student answers to the confidence interval questions  

For this semester 23 students participated in the study. Approximately one third of 

these gave a correct answer to part (a). For example, “There is a 95% chance that 

the mean number of visits is between 7 and 11.” The other students indicated they 

thought that 95% of Tasmanians visited a doctor between 7 and 11 times, or that 

the mean for 95% of the population is between 7 and 11, or that 95% of the sam-

ple means fall within 7 and 11.   

For part (b), approximately one quarter of the students gave a correct answer, 

however only three students answered both parts correctly. The misconceptions 

shown were different from those in 2007, and indicated an improvement in under-

standing. The students in this semester stated that 95% of sample means fall 

within two standard deviations of population mean, or that 95% of data falls be-

tween 7 and 11 or that 95% refers to the probability that the number of visits is 

between 7 and 11. 

It is apparent from the answers to parts (a) and (b) that several students believed 

the confidence interval to be about the number of visits to the doctor, rather than 

an estimate of the value of the population mean.  
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10.4  Results of the second cycle of the intervention (Semester 2 – 
2008)   

10.4.1 Teaching strategies 

As a result of the simulation to introduce students to the Central Limit Theorem, it 

was apparent that students were more confident in their knowledge that sample 

means form a Normal distribution if the sample size is large enough. It was also 

apparent, however, that some students had not connected the fact that approxi-

mately 95% of the sample means were within two standard errors of the popula-

tion mean to the process of calculating confidence intervals. The responses from 

some of the students also indicated that they thought that confidence intervals re-

fer to the number of occurrences and not to the population mean.  

As a result, for this semester the students were required to carry out two addi-

tional simulations where they would use a sample mean to estimate the value of 

the population mean. These were both carried out by hand so that there would be 

no distractions from following the computer instructions.  

In the second week of the semester the students were given small paper bags con-

taining 100 squares of paper on which were written the blood lead levels for 

workers at a sea port. Working in groups, samples of size 10 were collected and 

the means of these samples calculated. To ensure random sampling, the samples 

were taken with replacement, and the bags shaken each time. A number line was 

drawn on the whiteboard and the sample mean values were place on it. This gave 

a range of values for estimates of the population mean. The students were asked to 

agree on the range in which they thought the population mean value might be. The 

results for one tutorial group are shown in Figure 10.4.1.1. This tutorial group de-
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cided that they would estimate the value of the population mean for the blood lead 

levels to be between 17.5 µg/l and 22.5 µg/l.  

 
Figure 10.4.1.1. Values of sample means calculated from one tutorial group.  

 

This exercise was designed so that students would become aware of sampling 

variation and that the value of a sample mean will not be exactly the same as the 

value of the population mean. They were also made aware that “most” sample 

means are “near” the population mean although what constitutes “most” and 

“near” was not clarified at this point.  

Later on in the semester, the students were introduced to the Central Limit Theo-

rem via simulation, as described in Section 9.3.1, and then the formal theory of 

confidence intervals. In the tutorial after this formal introduction, the students 

were asked to carry out a second simulation to determine the proportion of bum-

blebees out of the total number of bees in a national park (bumblebees were in the 

news at that time, as they were displacing native bees in the Tasmanian environ-

ment). The students were given large jars of counters of different colours, one of 

which represented the bumblebees, and asked to take a sample of 30 “bees.” From 

this the students calculated the confidence interval for the proportion of bumble-

bees.  
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Another strategy was to use diagrams so that students could visualise the deriva-

tion of confidence intervals. One such diagram is illustrated in Figure 10.4.1.2.  

 
Figure 10.4.1.2. Example of a diagram used to illustrate the derivation of confi-
dence intervals.  

 

10.4.2 Student answers to the confidence interval questions 

The responses of six students were available for the study in this semester. In an-

swer to part (a), half gave correct answers, for example, “The mean number of 

visits to doctors is between 7 and 11.” The other students demonstrated miscon-

ceptions, either stating that the mean will fall between 7 and 11, 95% of the time, 

or that 95% of Tasmanians visited a doctor between 7 and 11 times.  

For part (b), two of the students gave correct answers, and these students gave 

correct answers to part (a) as well. The other students stated that 95% of the time 

the sample means would be between 7 and 11, that the population mean will be-

tween these two numbers 95% of the time, or that the “95%” refers to two stan-

dard deviations either side of the population mean. From these responses it was 

μ 
+2se -2se 

A sample mean will be 
between these two 
numbers 95% of the 
time. Therefore if we 
go two standard errors 
either side of a sample 
mean this interval will 
contain the population 
mean 95% of the time.  
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apparent that some students did not understand that they are using a process of 

inference to find the value of the population mean, and did not appreciate that the 

population mean is a single figure.  

The number of students who agreed to participate in the study for this semester 

was small, making it difficult to come to firm conclusions. Further details of the 

students‟ progression throughout the semester are found in Section 10.6.  

10.5  Results of the third cycle of the intervention (Semester 1 – 
2009)   

10.5.1 Teaching strategies 

This was the final semester of the intervention in which data were collected for 

this research. In this semester the students carried out the same simulations, all 

those that were carried out by hand and by computer, from the previous two cy-

cles. Throughout the semester the students were also asked to write down what 

confidence intervals were for and the principles behind their derivation. It was 

intended that by discussing their answers with each other and with the lecturer, 

students would become aware of the gaps in their knowledge and try to fill in 

these gaps (Morgan, 2001; Pugalee, 2001). Because some students appeared to 

find this process difficult, care was taken not to rush the students. This part of the 

intervention, combined with the intervention to increase understanding of P-

values (described in Sections 9.4.1 and 9.5.1) led to an increased interaction be-

tween the students and between the students and the lecturer. One result was that 

the lectures became more informal and on some occasions there was no difference 

between the lectures and tutorials.  
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10.5.2  Student answers to the confidence interval questions 

Sixteen students agreed to provide data for the study in this semester, twelve of 

whom completed the test. Eight of these students answered part (a) correctly, in 

that they stated that the value of the population mean was between 7 and 11. The 

other students stated either that 95% of Tasmanians visited a doctor between 7 

and 11 times, or that there is a 95% chance that the number of people visiting a 

doctor is between 7 and 11, or that there is a 95% chance that a Tasmanian visited 

a doctor 7 to 11 times.  

For part (a), the biggest difference between this and the previous semesters was 

that no student received a code of “0.” Figure 10.5.2.1 shows the distribution of 

scores given to the students over the period of the study. It also shows that in the 

third cycle of the intervention, a higher percentage of students received a score of 

“2.”  The differences between the scores of the semester, however, were not sig-

nificant as determined by the Kruskal-Wallis test (P = .397). Details of the analy-

sis can be found in Appendix E5. 
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Figure 10.5.2.1. Percentage of each code given to the students’ answers to part 
(a) of the confidence interval question in the test.  
 

For part (b), six students in the third cycle answered correctly, but only two stu-

dents answered both parts correctly. The other students either stated that the 

“95%” refers to two standard deviations, that there is a 95% chance that the re-

sults (not specified) will fall between 7 and 11, or that 95% refers to the range of 

population means that fall within two standard deviations.  

The biggest difference between the scores received by the students in the final 

semester and the previous semesters in the study is the higher proportion of stu-

dents who received a code of “2.” Figure 10.5.2.2 gives the distribution of codes 

given to the students‟ answers for part (b) of the confidence interval question dur-

ing the four semesters of the study. The Kruskal-Wallis test indicates that the dif-

ferences among the semesters were significant, with the third cycle of the inter-

vention having the highest mean rank (P = 0.009, see Appendix E5). The mean 
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ranks for both the confidence interval questions for each semester are displayed in 

Table 10.5.2.1. 

 

Figure 10.5.2.2. Percentage of each code given to the students to answer part (b) 
of the confidence interval question in the test.  
 

Table 10.5.2.1 

Mean ranked scores for the confidence interval questions 
 Mean Rank 
Semester Part (a) Part (b) 
Pre-intervention 25.05 26.86 
Cycle 1 25.22 21.62 
Cycle 2 32.50 31.00 
Cycle 3 32.00 38.58 

 
 

10.6  A description of the teaching strategies used in the teaching of 
confidence intervals in the second cycle of the intervention  

This section gives a description of the strategies used to teach confidence inter-

vals in the second cycle of the intervention. Notes were kept throughout the se-

mester of not only the students‟ answers but also their reactions to different 

strategies. This was so that more knowledge about students‟ problems in under-

standing confidence intervals could be gained to assist in the planning of the third 

0

10

20

30

40

50

60

70

80

90

100

P
re

-I
n

te
rv

en
ti

o
n

(n
=1

2
)

C
yc

le
 1

 
(n

=2
3

)

C
yc

le
 2

(n
=6

)

C
yc

le
 3

(n
=1

2
)

Fr
e

q
u

e
n

cy
 (

%
)

0

1

2



 

281 

 

cycle of the intervention. Owing to ethical considerations the researcher could not 

know who was participating in the study, therefore no identifying information 

was kept, and the notes of the students‟ work were written in a descriptive format 

only. 

10.6.1 Stage 1 – Introduction to the distribution of sample means 

The initial step in the teaching of confidence intervals had the aim of giving stu-

dents experience of the presence of variation and its extent among samples in a 

simple context. It was also intended to give students the idea that although a sam-

ple mean will not have the exact value of the population mean, the sample mean 

can be used to estimate the value of the population mean.  

In the introduction to this exercise, the students were instructed that they were 

going to carry out some inferential statistics, in that they were going to draw a 

conclusion about a population from a sample. They were then given envelopes 

that contained pieces of paper that had written on them on the blood lead levels of 

100 people. They were asked to take multiple samples of size 10, with replace-

ment after each individual draw, and calculate the mean of each sample. There 

were two tutorial groups. The sample means for each group were placed on a 

number line and these are reproduced in Figures 10.6.1.1 and 10.6.1.2.  
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Figure 10.6.1.1. Sample means obtained by the first tutorial group. 

 

 
Figure 10.6.1.2. Sample means obtained from the second tutorial group. 

In each tutorial group the students were asked to come to an agreement on which 

results they would regard as outliers, and which results they would include in the 

range that would estimate the value of the population mean. The students in the 

first tutorial came to the conclusion that the population mean was a value between  

17.5 µg/l and 22.5 µg/l. The students in the second tutorial came to the conclusion 

that the population mean was a value between 15.9 µg/l and 23.9 µg/l. For this 

example the value of the population mean (20.0 µg/l) was known, and this value 

was marked on the diagrams and the conclusion was written, “Most sample means 

are close to the population mean, but a small number are far away.” 

At the end of the lecture that was held after the tutorial described in the previous 

paragraph, the students were asked to answer the question, “What is the relation-

ship between sample means and the population mean?” The answers were col-

lected to be returned at the next lecture. Most of the students wrote down the con-

clusion from the tutorial exactly as it had been written on the whiteboard, but 

some tried to explain the conclusion in their own words. In general, these students 
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stated that sample means give an idea of the population mean, but are not exactly 

the same as the population mean.  

At the beginning of the next lecture, after their responses to the question de-

scribed in the previous paragraph had been returned, a plot of the sample means 

from both tutorial groups, shown in Figure 10.6.1.3, was displayed to the stu-

dents. The mean of the sample means, marked with the triangle and reference 

line, is 20.0 µg/l, which is equal to the population mean, and the students were 

asked to add the following statement to their conclusion from the tutorial, “The 

mean of the sample means we collected is the same as the population mean.” The 

students were then told it is possible to know the proportion of sample means that 

will be “near” and “far away” from the population mean and this would be dealt 

with later in the unit.  The next section describes the practical session that was 

used to introduce the Central Limit Theorem and the formal introduction to confi-

dence intervals.  

 

 

 

Figure 10.6.1.3.  Plot of the sample means calculated from data collected in 
the tutorials. The mean of the sample means is shown by the reference line 
(plot produced in Tinkerplots (Konold & Miller, 2005)). 
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10.6.2  Stage 2 – Putting the information into a mathematical format  

After being introduced to the idea that “most” sample means were “near” the 

population mean, and that sample means could be used to estimate the value of 

the population mean, the students were then introduced to the Central Limit Theo-

rem via computer simulation. This theorem states that if a sample size is large 

enough, sample means calculated from samples of the same size form a Normal 

distribution. Using Excel, the students constructed four distributions: A Normal 

distribution, a Uniform distribution, and two Binomial distributions, one with a 

sample size of five and other with a sample size of 25. Samples were then drawn 

and the means of these samples calculated. The students were then required to 

plot histograms of these sample means. 

Before the distributions were created, the students were asked to predict what sort 

of distribution the sample means would have. For the Normal distribution they 

generally predicted that the sample means would be normally distributed, and this 

was the result. Most of the students then predicted that the sample means from the 

Uniform distribution would also be Uniform, and were therefore surprised at the 

resulting Normal distribution. By the time they had progressed to the Binomial 

distributions most of the students were suggesting that a Normal distribution 

might result. As the instructor walked around the room, if a histogram was on a 

student‟s screen, he/she was asked the following series of questions.  

 What shape does the histogram have? 

 What distribution do the sample means have when the original population 

is Normally/Uniformly/Binomially distributed (as appropriate)? 

 Were you surprised?  
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The idea of the Central Limit Theorem was reinforced whenever students finished 

the work and left the room. As they left they were asked to explain the principle 

they had observed that session. If they did not give an answer that in some way 

described the Central Limit Theorem they were asked a series of questions.  

 What distribution did the sample means from the Normal distribution 

have? 

 What distribution did the sample means from the Uniform distribution 

have? 

 What distribution did the sample means from the Binomial distribution 

with the larger sample size have?  

 What is your conclusion? 

The next step was for the students to put together the knowledge of Normal 

distributions gained from a previously held formal lecture, and the knowledge 

that sample means form a Normal distribution. In the previous simulation, 

they had also found that the standard deviation of the sample means was less 

than that of the standard deviation of the original population. They were given 

a handout (Figure 10.6.2.1) in a tutorial and asked to work in groups to give 

the answers. In this handout they were expected to be able to state that ap-

proximately 67% of sample means would be within one standard error of the 

population mean, approximately 95% of sample means would be within two 

standard errors of the population mean, and that approximately 99.7% of sam-

ple means would be within three standard errors of the population mean.   
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Figure 10.6.2.1. The first part of the worksheet given to students to make the con-
nection between Normal distributions and the distributions of sample means.  

 
After the answers had been discussed, the students were then encouraged to make 

the link between the distribution of sample means and statistical inference for the 

value of the population mean. Because sample means form a Normal distribution, 

when an individual sample mean is calculated it will be within two standard errors 

of the value of the population mean 95% of the time (approximately). The second 

part of the students‟ handout is shown in Figure 10.6.2.2. 

Write down what you know about the characteristics of data that have 
a normal distribution. 

 

 

 

 

 

A little interlude: 
Recently you took several samples from a population and found that 
the standard deviation of the sample means was less than that of the 
original population. In fact the standard deviation of all the means,       
 is related to the standard deviation of the individuals σ, in the origi-
nal population by the following formula: 

nx


 

 
Now, using this information and what you know about normal distri-
butions, write down what you know about the characteristics of sam-
ple means. 
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Figure 10.6.2.2. The second part of the worksheet showing the implications for 
statistical inference for the value of the population mean that result from sample 
means belonging to a Normal distribution.  
 
The next time the students met was for a practical session where they were given 

a simulation that gave a practical demonstration of the proportion of sample 

means that fall within one, two or three standard errors of the population mean. 

Although the students calculated confidence intervals, this term was not intro-

duced at this stage. The students generated 100 samples with a known population 

mean using Excel. For each sample, the mean, standard deviation, and standard 

error were calculated. The required intervals were then determined (sample mean 

± one standard error, sample mean ± two standard errors, and ± three standard er-

rors). Using the “IF” function in Excel, the students then added up the number of 

confidence intervals that included the value of the population mean in each case. 

For one standard error, the student results were in the range of 60% to 74%. For 

Implications for inference 

A sample is taken so that the value of the population mean 
can be estimated. The mean of this sample is calculated. 

How often will this sample mean be within one standard 
error of the population mean? ____________________ 
How often will this sample mean be within two standard 
errors of the population mean? ____________________ 
How often will this sample mean be within three standard 
errors of the population mean? ____________________ 
How often will this sample mean be outside of three stan-
dard errors of the population mean? 
____________________ 

In conclusion, is it more likely that the value of the sample 
mean is close to the value of the population mean, or far 
away? 
__________________________________________ 
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two standard errors, the students results were in the range of 92% to 98%, and for 

three standard errors, the results were in the range of 99% to 100%.  

10.6.3 Stage 3 - Formal introduction to confidence intervals for the mean  

The formal introduction to confidence intervals took place in the next lecture that 

was scheduled after the practical sessions described in the previous section. The 

purpose of this lecture was to demonstrate the importance of knowing the stan-

dard error as well as the sample mean, and to demonstrate how confidence inter-

vals are derived.  

The example given was of a peanut butter manufacturer who had two factories, 

where one of the factories was newer than the other so that the jars were being 

filled with greater precision. For both factories the jars were to be filled to 500 g. 

For the older factory the standard deviation of the fill was 5 g, and for the newer 

factory the standard deviation of the fill was 2 g. In both factories a sample of 25 

jars was taken and the sample mean for both factories was 498.7 g. The students 

were required to calculate the standard errors and work out how many standard 

errors the sample mean was below the required population mean for each factory. 

Would they be concerned about this sample mean if they were the quality control 

manager? For the older factory, the sample mean was 1.3 standard errors below 

the proposed population mean, and the students indicated that they would not be 

concerned about this sample value. For the newer factory, however, the sample 

mean was 3.25 standard errors below the proposed population mean, and the 

sample indicated that the jars were being under filled.  



 

289 

 

This example illustrated how a point estimate (reporting only the value of the 

sample mean) was not adequate, as the same statistic could have different conse-

quences in different contexts. Therefore in many scientific journals the standard 

error is reported. The students were told about an alternative method, the confi-

dence interval. They had been given lecture notes based on the peanut butter fac-

tory examples, and a diagram from these notes is reproduced in Figure 10.4.1.2. 

The students were then asked to consider the previous computer session when 

they had observed the proportion of intervals that included the value of the popu-

lation mean for each number of standard errors either side of the sample mean. 

They then calculated the approximate confidence interval for the peanut butter 

factory. For the older factory, the confidence interval for the mean was from 

496.7 g to 500.7 g, and for the newer factory, the confidence interval for the mean 

was from 498.3 g to 499.1 g. The confidence interval for the mean in the newer 

factory did not include the required value for the peanut butter jars.  

In the next lecture the students were given a handout that was designed to con-

solidate their newly acquired knowledge about the connection between a popula-

tion and its sample means, and confidence intervals. The work was based on 

Rowntree (1981). The first section of the handout asked the students to consider 

what they could say about a population of gnomes if one gnome should come and 

visit them. What could they say about the height of the population of gnomes? 

They then had to imagine what further information they could gain if some more 

gnomes came to join their original visitor, which would let them gain an estimate 

of the population standard deviation. They were also asked to write down what 
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they knew about their sample mean and the relationship this sample would have 

to the population of gnomes.  

The final section of the handout (also based on Rowntree, 1981) included the dia-

gram shown in Figure 10.6.3.2. The values of three supposed sample means were 

marked by A, B and C. The students had to draw the length of two standard errors 

either side of each sample mean and indicate which of these intervals would in-

clude the value of the population mean.  

 

 

 
Figure 10.6.3.2. Part of the exercise to consolidate knowledge of confidence in-
tervals. The x-axis on the normal curve is marked in standard errors.  
 

10.6.4  Stage 4 – Practice and consolidation  

Towards the end of the semester, the students were given the paper bags with the 

blood lead data they had used at the beginning of the semester (as described in 

- 2 +2 µ 

B C A 
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Section 10.6.1). From these data, the students were asked to draw out a sample of 

25 and to calculate the 95% confidence interval for the population mean. One 

group found the range to be very wide. On querying their results one of the group 

realised that the standard deviation, not the standard error had been used.  

The students were then asked, “What does the „95%‟ refer to?” They were asked 

to write down their answers and these were returned the next time the students 

met. The answers to the question indicated that although approximately half of the 

students could explain the meaning of the “95%” some of the students believed 

that the “95%” indicated that 95% of the individuals would be within the calcu-

lated range. The other students stated that 95% of the sample means would be 

within the calculated range. It is apparent from these answers that some students 

did not realise that they were making an inference about the population mean. In 

addition, whereas they realised that approximately 95% of a normally distributed 

population is within two standard deviations of the population mean, they had not 

made the connection from this fact to how confidence intervals are derived.  

Because there had been previous exposure to confidence intervals it had been 

hoped that more of the students would have been able to explain the meaning of a 

confidence interval. A new handout was devised in an attempt to aid in the visual 

representation of the principle behind the calculation of confidence intervals. The 

introduction to this handout is shown in Figure 10.6.4.1. 
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Figure 10.6.4.1. The introduction to the new handout on confidence intervals. 

 

The handout continued with a series of questions for the students to answer about 

the distribution of sample means, including the proportion of sample means that 

would be within one, two or three standard errors of the population mean. The 

handout continued with the diagram shown in Figure 10.6.4.2. At the conclusion 

of the handout, the students were required to calculate the confidence interval and 

state what it meant for this situation.  

  

You have several hundred fish in a 
holding pond. You want to know the 
mean weight of the fish. Measuring the 
weight of ALL the fish is not practical. 
Therefore you take a SAMPLE of 25 
fish. The mean of this sample is 300g. 
The standard deviation of this sample 
is 20g. 

What is your estimate of the value of 
the mean weight of all the fish? 
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Figure 10.6.4.2. The final part of the new handout on confidence intervals.   

μ 
+2se -2se 

If a sample mean falls 
between these two 
numbers, adding and 
subtracting two stan-
dard errors from this 
mean will give an in-
terval containing the 
population mean. This 
is called finding the 
95% confidence inter-
val for the mean. 

Do these confidence 
intervals include the 
value of the popula-
tion mean? 
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10.6.5  Stage 5 – Responses to questions on part of the formal assessment 

During the unit the students had to complete four projects as part of their formal 

assessment. The data for the third project partly consisted of the catch in tonnes of 

the fishing fleet of Tasmania for four fishing trips. The skippers of the boats were 

divided into two groups, “experienced” and “inexperienced.” The students were 

asked to calculate the 95% confidence interval for the mean fishing catch for 

boats with experienced skippers, and then for inexperienced skippers. They then 

had to use the data to estimate the range in which the tonnages of 95% of the in-

dividual catches for all the boats would fall and explain why this second interval 

was wider than either of the confidence intervals. 

The calculations for these two questions are almost identical but the interpreta-

tions of the answers are very different. The answers to the confidence intervals 

are found by subtracting and adding two standard errors to the sample means. The 

answers give an estimate of the value of the population mean. Approximately half 

of the students could successfully give this explanation. To calculate the range 

where 95% of the individual tonnages will be requires subtracting and adding two 

standard deviations to the sample mean. Because the latter answer refers to the 

range of individuals, and not to the mean, this range is much wider than for the 

confidence interval. Approximately a third of the students gave an explanation 

along these lines. Some students stated that the range was wider because the stan-

dard deviation was used, but did not explain why this was. Some of the students 

claimed that the interval for the second analysis was wider because the whole data 

set was used. 
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At the first lecture after the projects were returned the differences between the 

two questions were explained. The idea of trying to find a mysterious number 

“out there” was introduced by the statement, “Only the god of mathematics knows 

what the value of the population mean is, and he will not tell us!” It was then sug-

gested that an educated guess can be made, that the sample can give us an idea of 

what the value of the population mean might be.  

10.6.6 Stage 6 – revision  

In the week before the final lecture, the students were given a practice test and 

were asked to bring their answers to this final lecture. Before the students shared 

their answers to this test, they were given a list of some of the questions that had 

been asked through the semester, and they were asked how they would be an-

swered. The first of these questions was, “What is the value of the population 

mean?” Initially there was no response. After a short time they were asked to 

think about how the boy found out the mean weight of the fish in the holding 

pond. A student then answered that the boy took a sample and calculated the con-

fidence interval. The questions on this practice test that directly related to confi-

dence intervals are presented in Figure 10.6.6.1.  
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Figure 10.6.6.1. The question on the practice test relating to confidence intervals.  

During the discussion on this question it became apparent that some students still 

had not realised that a confidence interval makes an estimate of the value of a pa-

rameter. Disturbingly, there were a small number of students who did not realise 

that the population mean is one, fixed number, but stated that the confidence in-

terval gives a range where the population mean would be 95% of the time. In ad-

dition, there were a small number of students who believed that the confidence 

interval represented where 95% of the sample means will fall. This statement, 

while not correct, does connect with the fact that 95% of sample means are within 

two standard errors of the population mean, but here the connection to the deriva-

tion of confidence intervals has not been made. There were no more lectures or 

A new bus service has been trialled. To be profitable, in the 
long term, the expected amount taken in as fares per trip must 
be at least $100. 
Over the trial period of 64 days (n=64), the average amount 
taken in fares per trip is $97 ( x =97) and the standard devia-
tion of the amounts is $16 (s=16). 

a. The standard error of the sample mean is $2. Present 
the formula which is used to compute the standard er-
ror and list the values taken by each element in the 
formula. 

b. The sampling distribution of the average amount taken 
per trip is well approximated by a Normal distribution. 
Why is it reasonable to make this statement?  

c. Present a formula for computing an approximate 95% 
confidence interval for the expected amount taken per 
trip, and establish that it produces limits of $93 and 
$101. 

d. Based on the 95% confidence interval, advise the op-
erator on how this finding relates to his requirement 
that, in the long term, the expected amount taken per 
trip must be at least $100. 
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tutorials until the day of the test. The results of the relevant test questions for this 

semester were presented in Section 10.4. 

10.7 Summary of the misconceptions identified during the study in 
comparison to the literature 

This study shows that the following misconceptions about confidence intervals 

were held by some of the students. These misconceptions were demonstrated in 

the student responses to the test items as part of the formal assessments.  

When answering the confidence interval questions, some students stated that 

ninety-five percent of the sample means will be within the calculated interval; this 

confirms the findings of delMas, Garfield, Ooms and Chance (2007). Other stu-

dents stated that ninety-five percent of the population will be within the calculated 

interval, and this is also confirms the findings by delMas et al. (2007). There was 

one additional misconception not found in the literature, this was that ninety-five 

percent of the population means will be within the stated interval. 

The last misconception is disturbing, as it suggests that these students, fortunately 

a very small number, may not even be aware of what the difference is between a 

sample and a population. Owing to the ethical considerations brought to bear by 

the researcher being the instructor, it was not possible to carry out follow up in-

terviews to find out if this really was the case, or whether this statement was made 

because there was only a lack of understanding of the confidence interval, and the 

students felt that some answer was required. The other misconceptions do relate 

closely to true statements, that 95% of a population is within two standard devia-

tions of the population mean, and that 95% of the sample means are within two 

standard errors of the population mean.  
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10.8 A summary of students’ understanding over the intervention 

The student responses to the test items about confidence intervals at the end of the 

pre-intervention cycle (Section 10.2.2) showed that only one quarter of the stu-

dents could give correct answers. This rose to three quarters by the end of the 

third cycle of the intervention, but for all semesters in the study most of the stu-

dents who gave correct responses did not do so for both parts of the question.  

The answer that showed the least understanding was the answer that “between 7 

and 11 people visited a doctor” for the year. This answer occurred twice in the 

pre-intervention semester, and once in the third cycle of the intervention. This re-

sponse is particularly worrying because it makes no sense at any level of under-

standing. It is not conceivable that only 7 to 11 people visited a doctor in Tasma-

nia over a whole year. 

Another response that showed little understanding was that the confidence inter-

val gives the proportion of population means between the two numbers. This is 

also concerning because statistical inference is based on the relationship between 

samples and populations, and this response suggests that the students involved did 

not understand the meaning of the terms “population” and “sample.” This needs 

to made clear at the beginning of the unit. 

The other misconceptions, and the more common misconceptions shown by the 

students, were that 95% of the population visited a doctor between 7 and 11 

times, that 95% of the sample means were between these numbers, that the mean 

(not stated whether population or sample mean) is between these numbers 95% of 

the time, or that the mean for 95% of the population is between these numbers. 



 

299 

 

These responses, although not correct in this context, do have the virtue of mak-

ing some sense, unlike the responses discussed in the previous paragraphs.  

Constructivist theory states that if something does make sense to students then 

they will not change their understanding unless they can see some benefit to do 

so. It would seem that the students with these understandings find it easier to keep 

these beliefs than to make the effort to change. What is also of interest in these 

responses is that they show a relationship to the true situation. It is true that ap-

proximately 95% of sample means are within two standard errors of the popula-

tion mean, and these students seem to have gained this knowledge but failed to 

apply it to the correct derivation of confidence intervals.  

It is the belief of this researcher that no one teaching strategy was of significant 

benefit in helping students understand the principle behind confidence intervals. 

Instead, there was a combination of strategies that led to an improvement in stu-

dents‟ understanding. The simulations, both by computer and by hand demon-

strated first, that no two sample means will be identical, and second, the principle 

of the Central Limit Theorem. The addition of the diagrams helped give a visual 

connection to the theory, and the writing about their understanding helped stu-

dents realise where they had gaps in their knowledge and motivated them to 

search for the understanding they needed.  

10.9  Implications for teaching 

It is evident that in each semester there were students who did not understand 

what confidence intervals are for, that is, to find an estimate of the value of the 

population mean. The proportion of students with correct answers did not increase 
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over the study to the same extent as for the questions relating to P-values. This 

could be because an example was not found that could play the role of the “It is 

hot outside” problem that was used in the teaching of P-values.  

This study confirms a tenet of constructivist theory, that repetition alone, although 

it may help students to remember, will not help understanding. The example of 

the boy with the goldfish bowl had the aim of putting a confidence interval into a 

context that the students could relate to, but this was not entirely successful. 

As a result of this study, the concept of confidence intervals is now taught with 

the following combination of strategies in this unit. First, the students are intro-

duced to the ideas that a sample mean can be used to estimate the population 

mean and that “most” samples are “near” the population mean by physically 

drawing samples. This exercise also allows the students to observe the extent to 

which samples can vary. Second, the Central Limit Theorem is introduced by 

computer simulation. After the students have come to appreciate that sample 

means form Normal distributions, they are then encouraged to consider the con-

sequences of this fact. That is, that sample means have the characteristics of all 

normally distributed data. Students are also asked to write their reasoning of the 

purpose and process of determining confidence intervals at regular intervals.  

One of the demonstrations used in this study is now not always used in the teach-

ing of the unit. Unless the student cohort appears to be of above average computer 

competence, the demonstration “How confidence intervals work” (see Appendix 

D8) is not used, as students tend to become caught up in the instructions without 

thinking about what the results mean. 
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Over recent semesters the students are told that confidence intervals make an 

“educated guess” as to the value of the population mean. Students seem to be 

comfortable with this terminology. However, more research is needed in this area. 
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11. Discussion with Implications for Teaching  

This chapter summarises the findings of the study – the students‟ understanding 

of probability and stochastic processes on entering university and the students‟ 

understandings of confidence intervals and P-values at the end of the unit. The 

implications of these findings for instructors of statistics are also discussed. Some 

areas for future research are also identified. This study asked the following ques-

tions. 

 What are students‟ understandings of probability and stochastic processes 

on entering university? Are there any differences in understandings be-

tween those students who have studied statistics in their previous mathe-

matics courses and those who have not? 

 What are students‟ understandings of P-values at the end of their first ter-

tiary statistics unit? How did these understandings change over the time of 

the study? 

 What are students‟ understandings of confidence intervals at the end of 

their first tertiary statistics unit? How did these understandings change 

over the time of the study? 

What are students’ understandings of probability and stochastic processes 
on entering university? Are there any differences in understandings be-
tween those students who have studied statistics in their previous mathe-
matics courses and those who have not? 

The discipline of inferential statistics would not exist if variation were not univer-

sal. Without variation, all samples would be representative of the population and 

all samples would be alike. As a result of variation, the mathematics of probabil-
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ity is used to make inferences about populations when only samples are available. 

The answers to the first questionnaire indicated that a substantial proportion of the 

students had unrealistic views about probability and variation on entering the uni-

versity. Approximately one quarter of the students did not expect variation in out-

comes for a stochastic process; a similar proportion believed that the outcomes of 

an experiment, represented in graphical form, would be real, even though the out-

comes presented were exactly symmetrical around the expected value.   

According to Rubin, Bruce, and Tenney (1991), in general, students at senior high 

school and undergraduate level have little experience in sampling, and therefore 

do not appreciate how representative (or not) samples may be of their parent 

populations, and how much one sample may vary from another. This assertion 

was confirmed by the present study.   

In a study by Tversky and Kahnemann (1982b), the authors found evidence to 

suggest that the participants did not have realistic ideas of the outcomes of sto-

chastic processes. In this study, when students were asked about the outcomes of 

a process where the two outcomes (odd or even numbers) were equally likely, 

40% of the students did not realise that out of 50 trials, getting 6, 46 or 50 even 

numbers would be in any way unusual. This item was presented in graphical form 

and the previous item consisted of a graph that was exactly symmetrical. The re-

sponses from some of these students suggest that they might have only been com-

paring the pattern of data with the previous item, and not reading the numbers on 

the horizontal axis. However, some students specifically stated that any quantity 

of even numbers would be expected out of 50 trials; these students clearly did not 
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have a realistic view of the possible variation in outcomes for a process such as 

this.  

In general, two out of the three conditional probability questions, which were in a 

written and graphical form, were relatively easy for the students. For the ques-

tions where the students were required to calculate the numerical probability, 84% 

of the students answered successfully when the question was in a simple “for-

ward” form (You have two white and two black balls, what is the probability of 

getting a white ball on the second draw if the first ball was white?). When the 

question was asked in a “backward” form, however, only 19% of the students 

could answer the problem successfully (If the second ball was white, what is the 

probability of getting a white ball on the first draw?).  Most of the students argued 

that a later event could not affect an earlier event, not realising that later informa-

tion could shed light on an earlier event. This gives further evidence to the pres-

ence of the “Time Axis Fallacy,” described by Fischbein and Schnarch (1997). 

There may be implications for the understanding of Bayes‟ theorem, where earlier 

probabilities are revised in the light of later knowledge. Students will not under-

stand the use of Bayes‟ theorem without the knowledge that later information can 

change earlier estimates of the probability of an event. It may even be that famili-

arity with Bayes‟ theorem would improve students‟ performance on this question. 

Students‟ understanding of Bayes‟ theorem could well be a topic of further re-

search.  

Tversky and Kahneman (1982b) found that the participants in their study had a 

tendency not to realise that deviations from the expected value of a random proc-

ess are more likely in samples of small size. The findings of the present study 
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suggest that students who have previous formal knowledge of statistical inde-

pendence may be more likely to have this misconception than those who do not 

have this previous knowledge, but confirmation is needed from a study involving 

more students without previous statistical experience than were available in this 

study. This was the only item in the first questionnaire where a significant differ-

ence was found between these two groups of students (Appendix E1). The stu-

dents with previous statistical experience gave more importance to the independ-

ence of each individual outcome than to the sample size. It is possible that this 

knowledge led them not to ask the question, “Is it more likely to get 8 girls born 

out of 10 births, or 40 girls born out of 50 births?” In addition, some of the stu-

dents showed evidence of holding the Gambler‟s fallacy (Fischbein &Schnark, 

1997), that is, the belief that after several Tails had been obtained when tossing a 

coin that a Head would be more likely.  

Of particular interest to the researcher were the responses to the questions in 

which the students were asked to compare the scores for two groups where the 

information was given in graphical form. Watson and Moritz (1999) gave the 

same questions to students in Grades 3 to 9. Twenty-nine percent of the Grade 9 

students in their study used strategies that involved using either multiple calcula-

tions or proportional reasoning. It would be expected that because the students in 

the present study were older, a higher proportion would be using such strategies. 

This did occur, but to a lesser extent than was expected by the researcher. When 

the students were required to compare the scores for two groups that had the same 

mean, median and mode, but where one had a wider range than the other, only 

55% of them answered this question successfully by stating that the two groups 
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performed equally well. Others answered by saying that one group was more 

“consistent” than the other, or that one group had more members with “higher” or 

“lower” scores. It would appear that these students did not see the arithmetic 

mean as a balancing point or as a representative number of a group. The latter 

problem was also illustrated by the number of students, who, after performing 

three comparisons where the group sizes were equal, could not perform a fourth 

comparison when the group sizes were not equal. For the unequally sized groups, 

only 51% of the students correctly identified the group with the superior perform-

ance. Of these, 39% used proportional reasoning, whereas the others used an es-

timate of the mean and median, or gave no explanation. Thirty-five percent of the 

students stated that the group with the inferior performance was better because 

there were either more people in the group overall, the scores were more “bal-

anced” or there were “more people in the higher range.” Eight per cent of the stu-

dents either said the problem could not be done at all, or was “not fair.” Groth and 

Bergner (2006) have suggested that some students come to university without any 

knowledge of the arithmetic mean apart from the algorithm used to calculate it 

and this study confirms their proposition. It is extremely unlikely that there are 

any tertiary students who have not calculated the arithmetic mean at some time in 

their previous education. Yet, it appears that some of these students do not have 

an understanding of what means are used for. As a result of the answers to these 

questions, the researcher has inserted questions about the purpose of the arithme-

tic mean into a tutorial session of the first year tertiary statistics unit, and has 

found that the students usually have difficulty in answering. 
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There were two ways of approaching the question where there are different num-

bers of people in each group. One way was to estimate the mean or median, and 

the other was to use proportional reasoning. Proportional reasoning was required 

to answer an item where the benefit (or otherwise) of a trial medication was to be 

assessed by examining the number of people in the treatment and control groups 

who improved. Fifty-three percent of the students explicitly used proportional 

reasoning, comparing the proportions in both the treatment and control group. 

Sixteen percent used proportional reasoning but only mentioned the proportions 

in one group, while the other students used reasoning that did not involve propor-

tions. Garfield and Ahlgren (1988) found that any misconceptions students may 

have about probabilistic processes are exacerbated if students have poor mathe-

matical skills, citing proportional reasoning as one of those skills that is most im-

portant.  

Students‟ will also have problems if they lack other basic mathematical skills. For 

example, it was shown in this study that only 57% of the students could correctly 

calculate the probability of getting four Tails in a row when tossing a coin. Thirty-

three percent gave an answer of 1 in 2, and 11% gave the answer of 1 in 4. For a 

small number of students, it was evident that it was their basic arithmetic, not 

their reasoning that was at fault (for example, “      
    

    
    

  ”). 

It was evident that students were generally unfamiliar with sampling, and in gen-

eral did not have realistic views on the variation that arises from stochastic proc-

esses. It is recommended therefore, that statistics‟ instructors do not to assume 

this knowledge exists and should give their students exposure to these processes. 

This exposure can be provided by the modern computer where large numbers of 
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samples can be generated very quickly and easily using programs such as Micro-

soft Excel. Possible alternatives to Excel include Fathom software (Konold & 

Miller, 2005) and samplers available on the World Wide Web. In the unit, as now 

taught by the researcher, students are asked to predict the range of sample means 

they expect to get from a given population and then to compare their prediction 

with their actual values.  

This study has also provided further evidence that students may have very little 

idea of the purpose of the arithmetic mean or the mean and may not see these 

numbers as representative numbers that can be used for comparisons. For these 

students hypothesis tests for the comparison of two means will have little mean-

ing. As a result, instructors need to provide opportunities for the students to con-

sider the purposes of these statistics, for example, by providing data sets and ask-

ing the students to make comparisons between them.  

It was of concern to the researcher that because some of the students studying the 

Data Handling and Statistics unit were enrolled in a course where there was a 

higher Tertiary Entrance Score than other units, and where there was a require-

ment to have completed a pre-tertiary mathematics unit, that these students would 

be more mathematically competent than the other students. These students were 

concentrated in the first semester of each calendar year. It was found however, 

that there was no significant difference in mean ability among the semesters for 

the students who completed the first questionnaire. This suggests that the stu-

dents‟ previous mathematical experience did not influence their ability to com-

plete the first questionnaire. The details of this analysis are in Appendix E1.  
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What are students’ understandings of P-values at the end of their first terti-
ary statistics unit? How did these understandings change over the time of 
the study? 

The results of this study indicated that, whereas a minority of students explained 

the P-value fully in their final formal assessments before the initial intervention, 

the proportion that did so increased over the time of the study.  This was con-

firmed by the Kruskal-Wallis test where the highest mean rank was found at the 

end of the third cycle of the intervention (see Appendix E4). Apart from the sec-

ond cycle of the intervention, where only six students contributed data, there was 

an increase in mean ranked scores for both test questions that applied to P-values. 

Students who described the P-value correctly indicated that the P-value was the 

probability of a sample observation or a more extreme observation, if the null hy-

pothesis were correct. Some of the students showed a partial understanding, in 

that they stated that the P-value is the probability of the observation if the null 

hypothesis were true. Although this reasoning is incomplete, it does indicate that 

these students realise that hypothesis tests look at the likelihood of observations 

given a proposition about a population. This partial understanding of a P-value is 

simpler to understand than the correct definition, and would appear to make sense 

to the students. 

The most common misconception in defining P-values was found to be the belief 

that P-values give the probability that the null hypothesis is true. This misconcep-

tion has also been reported by Gliner et al. (2002). It was found in this study that 

this misconception was difficult to correct. Telling the students in lectures and 

tutorials, and including an explanation in the students‟ lecture notes, was not ef-

fective. Garfield and Ahlgren (1988) suggested that known misconceptions 
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should be pointed out to students so that they may be avoided, but this study sug-

gests that if a belief is firmly held, this may not be enough. Strike and Posner 

(1985) suggested that students will not change their conceptions unless presented 

with a good reason to do so. One way to do this is to confront students with their 

misconceptions by the use of the predict-test-evaluate format (Garfield & 

Ahlgren, 1988; Hardiman et al., 1986; Mills, 2002; Posner et al., 1982). Finding a 

way to use this format for abstract ideas as the P-value, however, is difficult.  

Some text books try to avoid this misconception, that the P-value gives the prob-

ability that the null hypothesis is true, by using the term “not reject the null hy-

pothesis” in place of “accept the null hypothesis” when the P-value is higher than 

the level of significance (For example Lind, Marchal & Mason, 2001, and  

Croucher, 2002). During the time of this study the practice used by the instructors 

in the unit, “accept the null hypothesis was used.” Since the time this study was 

completed the practice has been changed to “not reject the null hypothesis.” It is 

observed, however, that some students are still holding this misconception. More 

research needs to be done in this area. 

The responses to the first questionnaire indicated that over 80% of the students 

could answer simple conditional probability questions, both in tabular and verbal 

form. This study showed, however, that the more complex process of the hypo-

thetical, probabilistic reasoning used in hypothesis testing was difficult, and con-

firmed that students were unfamiliar with this process (Garfield & Ahlgren, 

1988). This may partly explain why students have difficulty in making the change 

from believing that the P-value is the probability of the null hypothesis being true, 

to the correct definition. It seems likely that this misconception seems more intui-
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tive than the formal definition of a P-value, and makes sense to the students. 

Strike and Posner (1985) stated that for a concept to be changed, the student must 

find the new interpretation makes sense, and that some benefit is to be gained by 

making the change. If this misconception works well for students trying to make 

sense of the process of hypothesis testing, they will be reluctant to make the extra 

effort to change their understanding. 

Other misconceptions shown by this study included that the P-value is the prob-

ability of being incorrect (also identified by Gliner et al., 2002), the rate of repli-

cation of the conclusion, the probability of seeing a difference, or the rate at 

which the treatment will show a difference.  

Cobb and McClain (2004, cited in Garfield and Ben-Zvi, 2008, p. 48) suggest that 

statistics instructors should not underestimate how difficult the process of hypo-

thetical, probabilistic reasoning is for new students of statistics. In this study this 

was demonstrated not only by students‟ difficulties in understanding  P-values, 

but also by the fact that only one student confidently used the given probability in 

the circuit breaker questions in the second questionnaire, without resorting to a 

formal hypothesis test. The ideal answer to this item would have stated that even 

if the underlying rate of defective circuit breakers is only 5%, the probability of 

13% of getting three defectives in a box of 25 breakers suggests that this event is 

not so rare as to suggest the underlying rate is greater than specified. Most stu-

dents avoided using these numbers in their reasoning, being content to state that 

since variation exists, other boxes will have more or less defectives. This suggests 

that students found the latter reasoning easier to do than to use the hypothetical 

reasoning involving the numerical values. 
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A small number of students stated that if a P-value were below .05, then the null 

hypothesis should be accepted. All of these students made no attempt to otherwise 

define the P-value, suggesting that these students do not have an understanding 

that the P-value is a probability that in some way relates to the sample observa-

tion, but instead have tried to learn a rule, which they then have misapplied. The 

tendency of students to try to compensate for a lack of understanding by learning 

rules has also been noted by Chance et al. (2004).  

Some considerable time was spent by the researcher (including consultation with 

colleagues) to find an example that used probabilistic reasoning and to which stu-

dents could easily relate. If the right example were found, it was hoped it could be 

used to help the unfamiliar become familiar. Eventually an example was found in 

Shaughnessy and Chance (2005) and became the basis for the “It is hot outside” 

problem where the students were asked to judge the likelihood of observing peo-

ple walking about in winter clothing if the weather were hot. In the last two cycles 

of the intervention this problem was introduced in the first week of the semester 

and became the basis of all further work in hypothesis testing. With this process 

the students became familiar with the terminology, procedure and reasoning of 

hypothesis tests over a period of time. Although there is no formal evidence, from 

the researcher‟s point of view the students appeared to accept the process of hy-

pothesis testing more readily than before the intervention, where all of the ele-

ments of hypothesis testing had been introduced in one lecture.  

In this study it was also found that the use of diagrams in the process of hypothe-

sis testing and calculating P-values was an aid to understanding for some stu-

dents. In these diagrams, the distribution of the sample statistic centred on the 
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value of the null hypothesis was drawn and the test statistic placed on the distribu-

tion. On the basis of the placement of the test statistic, a visual judgement could 

be made as to the likelihood of this statistic or a more extreme statistic given the 

null hypothesis and related to the numerical P-value.  

Morgan (2001) and Pugalee (2001) suggested that if students are encouraged to 

explain their reasoning, their ideas are clarified as they work to explain their 

ideas. Consistent with this, another strategy was to ask students to write down the 

definition of the P-value for each context in words. Each time this was done the 

students were encouraged to talk to each other before sharing their answers to the 

whole group. It was also found important to allow the students time to do their 

writing in a relaxed atmosphere. 

From this study, it is apparent that students‟ understanding of P-values can be en-

hanced, but one strategy will not work for all students, but rather a mixture of 

strategies is required. It is of note that it was in the third cycle of the intervention, 

where all strategies were combined, that the highest mean ranks were obtained for 

the P-value questions. The results suggest that instructors need to appreciate how 

unfamiliar students are with the hypothetical, probabilistic reasoning used in mak-

ing decisions with P-values. Consequently, students will have problems in ex-

plaining a P-value, and if they resort to learning a rule, they are likely to make 

mistakes in its use. It is therefore recommended that instructors use examples 

from a variety of sources, and use a variety of techniques in aiding students to 

make sense of their work.  
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What are students’ understandings of confidence intervals at the end of 
their first tertiary statistics unit? How did these understandings change 
over the time of the study? 

The Central Limit Theorem states that if the sample size is large enough, the sam-

ple mean belongs to a Normal distribution, regardless of the distribution of the 

original population. Because the sample means are normally distributed, then it 

follows that approximately 95% of the sample means will be within two standard 

deviations of the population mean. The standard deviation of the sample means is 

less than that of the population, and is called the “standard error of the mean.” It 

follows that if 95% of sample means are within two standard errors of the popula-

tion mean, then 95% of the time the sample mean ± two standard errors will in-

clude the value of the population mean.  

This study has indicated that students find such reasoning difficult. They seem to 

find the information that sample means belong to a Normal distribution fairly 

easy to comprehend, but then have immense difficulty in making the leap to how 

this leads to a process for estimating the population mean. The teaching of the 

topic was taken in steps, the first of which introduced students to the idea that 

sample means vary, and that “most” sample means are “near” the population 

mean. The students performed a simulation as an introduction to the Central Limit 

Theorem, and were then introduced to the idea that the facts about any Normal 

distribution can be applied to sample means. It is because sample means are nor-

mally distributed that the process of estimating a population mean by a confi-

dence interval is possible.   
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The difficulty that students have in understanding confidence intervals is illus-

trated by their misconceptions: that the confidence interval contains 95% of the 

sample means (the most common misconception), that 95% of the population is 

within the interval (also reported by delMas et al., 2007), or that the interval con-

tains the mean for 95% of the population. From students‟ responses it was also 

evident that some students did not realise the purpose of confidence intervals, that 

is, to use the sample to make an estimate of the value of the population mean. 

This misconception persisted despite the fact that students were given practice in 

taking samples and using them to estimate the population mean.  

The belief that 95% of the sample means (approximately) are within the confi-

dence interval is only a small difference from the knowledge that 95% of the 

sample means are within two standard errors of the population mean. It is there-

fore understandable that students should hold such a misconception. It is a state-

ment that is easily understood, although factually incorrect, and this is possibly 

why the misconception is hard to correct. If the students believe that this miscon-

ception helps their understanding and it makes sense, then they will not be moti-

vated to change it. The challenge for instructors is to find ways that will cause the 

students to want to change this belief. 

It was also apparent that some students were extremely confused by the distinc-

tion between the “standard deviation” and the “standard error.” This was illus-

trated by the responses to questions both in the test and the second questionnaire. 

Some students stated they had used the standard deviation in their responses but 

had actually used the standard error as required. Others stated they had used the 

standard error in their responses but had actually used the standard deviation, and 
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there was a small number who used the standard deviation and seemed oblivious 

to the existence of the standard error. These problems are possibly not helped by 

the terminology, and this is another occasion when directly telling the students 

about a problem did not necessarily prevent it.  

The strategy that had some positive effect was coming back to the concept of the 

confidence interval several times, not just restating the problem, but giving the 

students time to write about their understanding. The students were also encour-

aged to ask questions of each other and of the researcher. Writing about a topic 

helps students recognise gaps in their knowledge and understanding, and helps 

them to fill in these gaps (Morgan, 2001; Pugalee, 2001). Strike and Posner 

(1985) also pointed out that students, when working to achieve accommodation of 

new ideas, may attempt many strategies and make many mistakes before this ac-

commodation is achieved. It is of note that it was when this strategy was used, in 

the third cycle of the intervention, the mean rank for the second part of the confi-

dence interval question was at its highest (see Appendix E5). Whereas there was 

not a significant difference in mean ranks among the semesters for the first part of 

the confidence interval question, it was of note that no student received the lowest 

score in the third cycle of the intervention (see Figure 10.5.2.1), which was a 

change from previous semesters.  

It is recommended, therefore, that statistics instructors, appreciating students‟ dif-

ficulties in this area, give students time to reflect upon and write about their un-

derstanding, and to create an environment in which students feel comfortable to 

share their work with others.  
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Constraints on the research - suggestions for further research 

In this study, the researcher and the instructor in the statistics unit were the same 

person. It was imperative, therefore, that students were not constrained in any way 

to take part in the research, and did not feel that they could be penalised if it was 

not their wish not to take part. One consequence was that the number of students 

who agreed to take part varied considerably, for no apparent reason. The partici-

pation rate varied from 20% to 85% of the students taking the unit.  

More importantly, because the researcher was only given the student numbers of 

those who participated after their unit results had been formalised and published 

(all their assessed work was labelled by student number only) it was not possible 

to carry out follow up interviews. It is believed that in particular, the area of stu-

dent understanding of confidence intervals requires more research. The literature 

is not extensive in this area, and this study shows that students are having difficul-

ties that are not easily corrected. More research is required into the influence of 

the different terminology (standard deviation, standard error) on student under-

standing. More research is also required into the difficulties students have in mak-

ing the connection between understanding that sample means belong to a Normal 

distribution, that 95% (approximately) of sample means are within two standard 

errors of the population mean, and the consequence that 95% of the intervals cal-

culated by the sample mean ± two standard errors will contain the value of the 

population mean. The last step appears to be the problem, and if more knowledge 

could be gained about this problem, it is likely that alternative strategies could be 

developed to aid students in making this step. More research is also required into 
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students‟ understanding so that instructors may find ways to change the belief that 

a confidence interval contains 95% of the sample means.   

Because the participants were working towards various degrees, the course con-

tent, as set by the School of Mathematics and Physics at the university where this 

study took place, had to be covered and could not be changed by the researcher.  
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12. A personal reflection 

This study originated from frustration – frustration that the students I taught were 

not “getting it.” In discussions with colleagues and on reading the literature it be-

came apparent that my concern was of concern to others as well. It also originated 

from the realisation of my own lack of understanding as an undergraduate. De-

spite my high grades, I cannot say that I “got it” before doing post-graduate work 

in statistics. I now realise that I had not really appreciated the significance of the 

Central Limit Theorem, particularly that it described a connection between sam-

ples and populations. I also remember the frustration of trying to learn what the P-

value represented by rote and failing at this. As conceptual understanding was 

achieved, the P-value became easy to use. I was determined, therefore, to find al-

ternative ways to make it possible that my students would understand the con-

cepts behind their work – to try and reduce the number of  “cook book” statisti-

cians.  

During the study I have found that it is possible to help students to develop a 

greater understanding than is achieved by didactic teaching. This was achieved by 

a combination of teaching methods, increased interaction with the students, and 

by the connecting the strange world of inferential statistics to things they already 

know. A world where nothing is certain is unfamiliar to many, and some of the 

students who said they were “good at maths” openly stated that they found this 

world frustrating and uncomfortable. These students were used to working in an 

environment where there were right answers and enjoyed finding these answers. 

Although there is no empirical evidence, it is my belief that with the new teaching 

program the students are much more engaged in their work. Some of them say 
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that they have to think about the numbers, that the scientific journals they read 

make more sense, and that they now listen to reports in the media with more scep-

ticism. I also find that the increased interaction I have with the students during 

instruction time has made my job more interesting and enjoyable. It is now not 

unusual for students to tell me about how their work in statistics has helped in 

their other subject areas. It is also not unusual for a student to stop me as I go 

about the campus to tell me about something he or she has read where statistical 

analysis was important and that he or she thought interesting.  

From my point of view as instructor, the introduction of the simulations has 

smoothed the teaching path in three areas where previously I felt the students 

were having particular difficulties. First of all, although not all the students make 

the final link between the Central Limit Theorem and confidence intervals, they 

are much more likely than before to remember that sample means form a Normal 

distribution. In the previous teaching format the students did not often remember 

this, and again repetition was not a successful strategy. I have also found that stu-

dents‟ understanding of the principles behind the analysis of variance has im-

proved. Asking the students to make a visual assessment of where the significant 

differences are before the formal lecture has led the students to appear more inter-

ested  when the variation “among” and “within” groups is discussed. They also 

seem to enjoy seeing how their predictions compare with the results of the formal 

calculations. The third area where the students now seem to have much less diffi-

culty is testing for a significant relationship between the dependent and independ-

ent variables in linear regression. Because the students have seen how the gradient 
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of the lines may vary even when there is no relationship, they seem comfortable 

with the idea that a non-zero gradient may occur in this situation.  

I have also found that since the students have been introduced to visual represen-

tations of P-values, the last lecture of the semester, on Type I and Type II errors, 

goes much more smoothly. Because they are already familiar with sketches of 

probability distributions, they appear to find the diagrams used to describe how 

the distribution of the “true” situation may overlap with the distribution of the 

proposed situation (the null hypothesis) easier to understand. The questions on the 

test that ask students to explain the consequence of a Type I error in a particular 

context are usually done well.  

A constant frustration throughout the study has been students‟ understanding of 

confidence intervals. A colleague recently asked, “How do we get across that 

there is this number „out there‟ we are trying to find?” There has been an im-

provement in understanding over the time of the study, but not to the same extent 

as for P-values. Since the time of the study I have been stating that the sample 

mean allows us to make an educated guess of the value of the population mean, 

and this seems to work well. Here more research is needed.  

Another frustration is the materials supplied by the School of Mathematics and 

Physics, which the students were given in place of a text book. The students fre-

quently complain (verbally and in their student evaluations of the unit) about 

these materials, stating that they are difficult to comprehend. There is hope for the 

future, however, as it has been suggested that these materials be rewritten and that 

I should be involved. It is gratifying that my research should be of use in this way.   
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Finally, it has been pleasing to me to read comments such as, “The lecturer makes 

a boring subject interesting,” in the student evaluations. It is my aim that one day 

the students will say, “This subject is interesting.” 
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Appendix A: Details of the Data Handling and Statistics Unit - The traditional teaching pro-
gram with the additions for the first cycle of the intervention 
 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 1   
Lectures 
 

Introduction to the unit 
 Introduction to the discipline of statistics 
 Why do we use samples? 
 Classifying data 

Introduction to simulation  
The Chinese birth problem. If the one child policy was replaced with a 
“keep having children until a boy is born” policy, what would be the 
effect on the ratio of girls to boys born? 

Practical  Introduction to Microsoft Excel, including pivot tables and 
graphing 

 

Tutorial  The unusual event problem (A table of data was 
presented that gives the number of people present 
and the number who died for each gender and 
cabin class on the Titanic. Without being told the 
source of the data, students were required to give 
suggestions that would explain the pattern of data.)  

 Introduction to the first project 
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 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 2   
Lectures Further introduction to unit and how to obtain data 

 Displaying data 
 Measures of central tendency and spread 
 Sampling 
 Survey design 
 Experimental design 

Comparison of the mean and median 
Measures of central tendency and spread were not covered until af-
ter the practical session, where the effects of extreme values on the 
values of the mean and median had been demonstrated  

The results of the Chinese problem were used as an introduction to hy-
pothetical, probabilistic reasoning. From the sample, would they con-
clude that the ratio of boys to girls will change? 

Practical Work on project The effects of extreme values or errors on the mean and median 
 The students entered a small data set into Excel, calculated the 

mean, median and standard deviation, and then introduced a 
very large number into the data.† 

 The button (clustering problem). What is “random”? 
Tutorial The effect of bias on reported statistics 

An example of a double blind experiment from The Aus-
tralian, and an article from New Scientist (Hype and Her-
ceptin) showing how the influence of financial and other 
interests can influence the statistics chosen in reporting 
results. 

Students were asked the following questions 
Means versus medians 

 Why does the Real Estate Institute of Tasmania report quarterly 
median house prices? 

Randomness 
 What does “random” mean? 

   
   



 

342 

 

   
   
   
 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 3   
Lectures Introduction to statistical independence 

 The statistical definition of independence 
 Independence in a contingency table 
 Introduction to probability 

The use of probability to make decisions 
Problems that need probability reasoning in their solution 

The effect of sample size on the outcomes of a Binomial experiment  

Practical Work on project Variation among samples 
Students were instructed that they were going to take samples from a 
population with a given mean and asked to predict the lowest and high-
est sample means they would expect to get. After the samples were 
taken they compared their results to their predictions. They also com-
pared the standard deviation of the means to the standard deviation of 
the original data 

Tutorial Questions about project 1 – due week 4  
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 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 4   
Lectures Introduction to probability distributions 

 Introduction to probability distributions 
 The Binomial distribution with example 
 The Poisson distribution with example 

 

Introduction to probability distributions 
 The Binomial distribution was introduced by students using a 

probability tree to calculate Binomial probabilities. The result-
ing pattern was linked to the Binomial formula  

 The introduction to the Poisson distribution was followed by an 
example where it was proposed that a change in experimental 
conditions did not affect the outcome. The Poisson distribution 
was used to calculate the probability of the outcome assuming 
the change in conditions made no difference. The students were 
then required to make a conclusion about the effect of the 
change in conditions 

Practical  Introduction to calculating probability in Excel A real application of the use of the Poisson distribution 
The V1 rockets problem – this was based on the work of Clarke 
(1946). The students were asked to compare the frequencies pre-
dicted by the Poisson distribution with the observed frequencies and 
decide whether the data were Poisson distributed. This example was 
again used to demonstrate Chi-squared goodness-of-fit tests in week 
9 

Tutorial Project 2 The consequences of the data being Poisson distributed were discussed 
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 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 5   
Lectures Continuous probability distributions 

 The Normal distribution 
 The Standard Normal distribution 
 The t-distribution – traditional lecture  

 

Practical Work on project Introduction to the Central Limit Theorem via simulation  
Students simulated populations with Normal, Uniform and Binomial 
distributions, took sample means and observed the distribution of 
the sample means 

Tutorial Probability problems using the Normal, Binomial and 
Poisson distributions 

Applications of the Central Limit Theorem  
If sample means are normally distributed, then sample means be-
long to a distribution that has the characteristics of any Normal dis-
tribution   

WEEK 6   
Lectures The sampling distribution of the mean and confidence in-

tervals 
The students were asked the following questions: 

 What do we mean by the word “sample” in statistics?  
 Does random sampling guarantee representativeness?  
 What can we say about the population from a sample?  

Practical Work on assignment Introduction to hypothesis testing by simulation 
The survey problem. How likely it is that 19 or less people are 
found in favour of a proposition in a sample of 50, if the population 
is evenly split? 

How confidence intervals work. 
Tutorial Questions on project 2  
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 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 7   
Lectures  Practice test 1  

 Introduction to hypothesis testing 
 

Introduction to hypothesis testing (no formal hypothesis testing lan-
guage used) 

How likely is it that 19 or less people are found in favour of a 
proposition in a sample of 50, if the population is evenly split? The 
answer to this question was estimated from the results of the practi-
cal and was compared with the probability calculated using the Bi-
nomial distribution  

Practical  Calculation of 2-sample t-tests in Excel Introduction to 2-sample t-tests via simulation 
The Grade 12 heights problem* - How likely is it that two sample 
means this far apart will occur if the population means are equal?  

Tutorial  Consolidation of confidence intervals - The Gnome‟s visit 
(see Appendix C for details)   

 

WEEK 8   
Lectures 
 

Test 1 
 

Introduction to 2-sample t-tests (based on the Grade 12 heights prob-
lem) 

How likely is it that two sample means this far apart will occur if 
the population means are equal? The answer to this question was es-
timated from the results of the practical and was compared with the 
probability calculated from the formal calculations. Formal hy-
pothesis testing language was not used 
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 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
Practical Work on project Introduction to chi-squared tests of independence via simulation 

The haemolytic uraemic syndrome (HUS) example -How likely is it 
that this number of children treated with antibiotics will get HUS if 
antibiotic treatment makes no difference? (REF) 

WEEK 9    
 Introduction to chi-squared tests for independence and 

goodness-of-fit 
 

Introduction to chi-squared tests for independence and goodness-of-fit 
 Test for independence - How likely is it that this number of 

children treated with antibiotics will get HUS if antibiotic treat-
ment makes no difference? The answer to this question was es-
timated from the results of the practical and was compared with 
the probability calculated from the formal calculations 

 Goodness-of-fit - The V1 rocket problem – are the data Poisson 
distributed?  

The formal language for hypothesis testing used in this lecture - the 
null hypothesis, the alternative hypothesis, cut-off point – level of 
significance, probability – P-value 

Practical Calculation of chi-squared tests in Excel Introduction to hypothesis tests on the line of best fit via simulation 
Example of fitting line of best fit to a problem where there are er-
rors in the measurement.* 

Tutorial Project questions Project questions 
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 Teaching plan – pre-intervention Additional material and/or alterations for the first cycle of intervention  
WEEK 

10 
  

Lectures Introduction to regression analysis 
 Simple regression analysis 
 Multiple regression analysis 

Introduction to regression analysis 
The determination of the significance of the line of best fit was 
linked to the work in the last practical session.  

Practical Regression analysis in Excel  Regression analysis and an introduction to the Analysis of Variance 
(ANOVA) 

 Regression analysis in Excel 
 Demonstration – the Analysis of Variance – a visual assessment 

of whether or not two or more groups may have the same mean.† 

Tutorial  Introduction to assignment 4  
WEEK 

11 
  

Lectures  
 

Introduction to ANOVA, and Type I and Type II errors 
 ANOVA 
 Type I and Type II errors 

 

ANOVA 
Students used the work from the practical to estimate which groups 
had significantly different means before the lecture. These estima-
tions were compared with the results of the formal calculations  

Practical Calculation of ANOVAs in Excel ANOVA in excel 
Tutorial  Revision   
WEEKS 
12 &13 

Revision and Test 2  
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Appendix B: The Questionnaires and test questions 

B1 The first questionnaire 

Please answer questions in either the spaces provided or, when applicable, by cir-
cling the most appropriate answer.  

Please note that these questions are designed to gather information on students‟ 

understanding of probability as they enter a statistics unit and are of varying diffi-
culty. If you find any of these difficult, this does not in any way reflect your abil-
ity to complete the Data Handling and Statistics unit successfully.  

Student Number:………………………………………………. 

Section A:  

For questions one to five please circle the answer that is applicable to you. 

1 Campus: Launceston Hobart  
 

2 Gender: Male Female  
 

3 Semester: 1 2  
 

4 Course: Biomedical 
Science 

Aquaculture Pharmacy Medicine Other 
 
 

5 Highest level at which 
you studied mathematics 

 
…………… 

  

6 Was there any statistics 
in your last mathematics 
course? 

 
Yes 

 
No 

 

 

Section B:  

1. You are playing the game snakes and ladders with four other people. This 
game requires you to get a „6‟ on a die before you can start. After four 
rounds no-one has started. Which of the following statements best matches 
your conclusion? 

a. Since a „6‟ hasn‟t come up yet, it will come up in the next round. 
b. Since the chance of getting a „6‟ is 1 in 6, the die should have come 

up with a „6‟ four times by now, so something is wrong with it. 
c. Throwing a die is a chance event, so it just happens like this some-

times. 
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d. If a „6‟ doesn‟t come up soon, there must be something wrong with 
the die. 

e. There must be something wrong with the die.  
 

2. It is estimated that 14% of women will develop breast cancer sometime dur-
ing their lifetime. What is the best interpretation of this statement? 

a. It is very likely that a woman will die of breast cancer. 
b. Not many women die from breast cancer, but it is not that uncommon. 
c. Not many women get breast cancer, but it is not that uncommon.  
d. It is not likely that a woman will die of breast cancer. 
e. More women than not will get breast cancer.  
f. It is very likely that a woman will get breast cancer. 
g. It is not likely that a woman will get breast cancer. 
h. More women than not will die of breast cancer. 

 

 

3. The following message is printed on a bottle of prescription medication: 

 

 

 

 

          Which is the best interpretation of this warning? 

a. Don‟t use the medication on your skin; there is a good chance of de-
veloping a rash. 

b. For applications to the skin, apply only 15% of the dose. 
c. If a rash develops, it will probably involve only 15% of the skin. 
d. About 15 out of 100 people who use this medication develop a rash. 
e. There is hardly any chance of getting a rash in using this medication. 

 

Warning: For application to skin areas there is a 15% 
chance of developing a rash. If a rash develops, consult 
your physician. 
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Section C. 

 

1. Imagine that you are the captain of your local cricket team. The next sea-
son is coming up and you know that it is important that you win the toss 
so you can choose whether or not you will bat first.  

You decide that you will choose heads for the entire season. What is the 
chance that the coin will come up tails (and you losing the tosses) 4 times 
out of 4? 
 

 

 

2. Suppose tails did come up 4 times out of 4. For the 5th toss, should you 
choose 

a. Heads 
b. Tails 
c. Doesn‟t matter 

Please explain your answer. 

 

 

 

3. What is the probability of getting heads on this next toss? Explain your 
answer. 

 

 

 

4. What is the probability of getting tails on this next toss? Explain your an-
swer 
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Section D 

1. Half of all newborns are girls and half are boys. Hospital A records an av-
erage of 50 births per day. Hospital B records an average of 10 births a 
day. On a particular day, which hospital is more likely to record 80% or 
more of female births? 

a. Hospital A (with 50 births a day) 
b. Hospital B ( with 10 births a day) 
c. The two hospitals are equally likely to record such an event. 

 Please explain your answer. 

 

 

 

2. A tutorial group used this spinner. If you were to spin it once, what is the 
chance it will land on an even number? 

 

 

 

 

3. Out of the next 50 spins, how many times do you think the spinner 
will land on an even number? Why do you think this is? 

 

 

 

 

 

1 2 

3 4 
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4. If you were to spin it 50 times again, would you expect to get the 
same number out of 50 to land on an even number? Why do you 
think this? 

 

 

 

5. How many times out of 50 spins, landing on an even number, 
would surprise you? Why do you think this is? 

 

 

 

 

6. The members of three statistics tutorial groups did 50 spins and 
graphed the number of times the spinner landed on an even num-
ber. Each circle represents one person in the tutorial group. In 
some cases, the results were just made up without actually doing 
the experiment. 

 

 

 

a. Do you think tutorial A‟s results are made up or really from the 
experiment? 

i. Made up 
ii. Real from experiment 

Explain why you think this. 

 

 

 

50454035302520151050

Tutorial A
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b. Do you think tutorial B‟s results are made up or really from the 
experiment? 

i. Made up 
ii. Real from experiment 

Explain why you think this is 

 

 

 

 

c. Do you think tutorial C‟s results are made up or really from the 
experiment? 

i. Made up 
ii. Real from experiment 

Explain why you think this is 

 

 

 

50454035302520151050

Tutorial B

50454035302520151050

Tutorial C
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Section E 

1. Which probability do you think is bigger? 
 

a. The probability that a woman is a schoolteacher 
                                                  OR 

b. The probability that a schoolteacher is a woman. 
c. Both (a) and (b) are equally likely. 
 

Please explain your answer. 

  

 

 

2. The table below shows the number of defective TV‟s produced every week at 
two factories by the day shifts and by the night shifts. 

 

 Factory A Factory B 

Day 40 30 

Night 40 60 

 

a. How many defective TV‟s are produced at Factory B every week? 
 

b. How many defective TV‟s are produced by a night shift every 
week? 

 

c. If you were told that a defective TV was produced at Factory A, 
what is the probability it was produced by a day shift? 
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3. An urn has 2 white balls and 2 black balls in it. Two balls are drawn out 
without replacing the first ball. 

 
a. What is the probability that the second ball is white, given that the 

first ball was white? Please explain your answer 
 

 

 

 

b. What is the probability that the first ball was white, given that the 
second ball was white? Please explain your answer. 
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Section F 

1. A new medication is being tested to determine its effectiveness in the treat-
ment of eczema, an inflammatory condition of the skin. Thirty patients with 
eczema were selected to participate in the study. The patients were ran-
domly divided into two groups. Twenty patients in an experimental group 
received the medication, while ten patients in a control group received no 
medication. The results after two months are shown below. 

 

 Experimental Group (Medica-
tion) 

Control Group (No Medica-
tion) 

Improved 8 2 
No improvement 12 8 
 

Based on this data, you think the medication was: 

 

A. Somewhat effective B. Basically ineffective 
 

If you chose option A, select the one 
explanation below that best describes 
your reasoning. 

If you chose option B, select the one 
explanation below that best describes 
your reasoning. 

a. 40% of the people (8/20) in the ex-
perimental group improved 

a. In the control group, 2 people im-
proved even without the medica-
tion. 

b. 8 people improved in the experimen-
tal group while only 2 improved in 
the control group 

b. In the experimental group, more 
people didn‟t get better than did (12 
vs. 8). 

c. In the experimental group, the num-
ber of people who improved is only 
4 less than the number who didn‟t 

improve (12-8) while in the control 
group the difference is 6 (8-2). 

c. the difference between the numbers 
who improved and didn‟t improve 
is about the same in each group (4 
vs. 6). 

d. 40% of patients in the experimental 
group improved (8/20), while only 
20% improved in the control group 
(2/10) 

d. In the experimental group, only 
40% of the patients improved 
(8/20). 
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2. A tertiary institution is comparing the scores of some tutorial groups on a 
test of basic statistics facts. The test had nine questions.  

 
a.  The scores for two of these tutorial groups are shown in the charts 

below. Each circle represents one person. Therefore for Group A 
four people answered two questions correctly, and two people an-
swered three questions correctly. 

 

 

 

 

 

 

Did the two groups perform equally well, or did one group perform better? 
Please give reasons for your answer. 
 

 

b.   Now compare tutorial groups C and D.  

 

 

 

 

 

 
Did the two groups perform equally well, or did one group perform better? 
Please give reasons for your answer. 
 

 

 

9876543210

Number of Questions Correct

Group D

 

9876543210

Number of Questions Correct

Group C

 
9876543210

Number of Questions Correct

Group A

 
9876543210

Number of Questions Correct

Group B
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c.  Now compare groups E and F 

 

 

 

 

Did the two groups perform equally well, or did one group perform better? 
Please give reasons for your answer. 

 

 

 

d.   Now compare groups G and H 

 

 

 

 

 

Did the two groups perform equally well, or did one group perform better? 
Please give reasons for your answer. 

 

 

 

 

 

  

Thank you very much for your time. 

 
9876543210

Number of Questions Correct

Group E

 
9876543210

Number of Questions Correct

Group F

 

9876543210

Number of Questions Correct

Group G

 

9876543210

Number of Questions Correct

Group H
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B2 The Second Questionnaire 

Student number: ……………………………………………….. 
Please note that this questionnaire is investigating forms of statistical think-
ing different to that in your formal assessments. How hard or easy you find 
these questions does NOT reflect your ability to complete successfully the fi-
nal test.  
 

Question 1.  

Give an example of something that happens in a random way. Explain why you 
think this is an example of randomness. 

 
 

 

 

Question 2.  

You work for a manufacturer of circuit breakers. Owing to the difficulty of the 
process, it is expected that 5% of these will be defective. The occurrence of the 
defective breakers occurs randomly. The breakers are sold in boxes of 25. 
One of your customers buys a box with three defective breakers. This is 12% of 
the contents of the box. Your customer is furious. You are told that your underly-
ing rate is 12%, not 5% and they will take their custom elsewhere. 
 

a. If 5% are defective overall, then on average how many defective 
breakers would you expect to find per box? 

 
 

b. It can be calculated that If the underlying rate is 5%, the probabil-
ity of getting 3 or more defectives in a box is 13/100.  Based on 
these figures, getting three or more defective circuit breakers in a 
box is: 

i. Very likely 
ii. Fairly likely 

iii. Possible 
iv. Unlikely 
v. Very unlikely 

 

 

Continued next page 
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c. Does this box provide sufficient evidence that the underlying rate 
of defectives for all the circuit breakers is greater than 5% as the 
customer claims? Explain your answer. 

 

 

 

 

Question 3. 

Half of all newborns are girls and half are boys. Hospital A records an average of 
50 births per day. Hospital B records an average of 10 births a day. On a particu-
lar day, which hospital is more likely to record 80% or more of female births? 

d. Hospital A (with 50 births a day) 
e. Hospital B ( with 10 births a day) 
f. The two hospitals are equally likely to record such an event. 

 Please explain your answer. 
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Question 4. 

You are looking at the effects of supplementing trout fish feed with vitamin E. 
Some of the fish are given the standard commercial feed, and others are given the 
same feed with double the level of vitamin E. After a suitable time, you measure 
the weights of the fish. The results are in the table below: 
 Standard feed Extra E 
Mean weight (g) 256.4 263.1 
Standard deviation (g) 12.3 11.2 
 
You perform the two sample t-test and the p-value you receive is 0.45. Therefore 
you tell your supervisor that the extra vitamin E has not made any difference to 
the mean weight of the fish.  

Your supervisor says that the mean weight of the fish given „extra E‟ is higher 
than the mean weight of those who were given the standard feed. Explain to your 
supervisor why you say that even though the „extra E‟ feed has a higher mean 
weight, the „extra E‟ feed has not made a significant difference. 

 

 

 

 

 

 

 

Question 5. 

You are working for a consumer organisation. As part of your duties, you select 
49 boxes of “Get up and Go” cereal at random and weigh the boxes. On the label 
of the boxes you read that the minimum weight of the box is 800g. 
The standard deviation of the weight of the boxes is 14g. Therefore the standard 
error of the mean (the standard deviation of all possible sample means) is esti-
mated to be 2g. 

a. Assume the manufacturer‟s claim that the minimum weight of 800g is cor-
rect. For your 49 boxes, is a sample mean of 799g 

(i) Very likely  
(ii) Likely 
(iii) Possible 
(iv) Unlikely 
(v) Very unlikely? 

Give reasons for your answer. 
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b. Again assuming the manufacturer‟s claim to be correct, for your 49 boxes, 
is a sample mean of 796g 

(i) Very likely  
(ii) Likely 
(iii) Possible 
(iv) Unlikely 
(v) Very unlikely? 

Give reasons for your answer. 

 
 
 
 

 
c. At what value of a sample mean below 800g would you start to suspect 

the manufacturer‟s claim to be untrue? Give reasons for your answer. 
 
 
 
 
 

d. If you didn‟t use random sampling, how would this affect your previous 
answers in this question?   
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Question 6. 

A new medication is being tested to determine its effectiveness in the treatment of 
eczema, an inflammatory condition of the skin. Thirty patients with eczema were 
selected to participate in the study. The patients were randomly divided into two 
groups. Twenty patients in an experimental group received the medication, while 
ten patients in a control group received no medication. The results after two 
months are shown below. 
 
 Experimental Group (Medica-

tion) 
Control Group (No Medica-
tion) 

Improved 8 2 
No improvement 12 8 
 
Based on this data, you think the medication was: 
 
A. Somewhat effective B. Basically ineffective 

 
If you chose option A, select the one 
explanation below that best describes 
your reasoning. 

If you chose option B, select the one 
explanation below that best describes 
your reasoning. 

a. 40% of the people (8/20) in the ex-
perimental group improved 

a. In the control group, 2 people im-
proved even without the medica-
tion. 

b. 8 people improved in the experimen-
tal group while only 2 improved in 
the control group 

b. In the experimental group, more 
people didn‟t get better than did (12 
vs. 8). 

c. In the experimental group, the num-
ber of people who improved is only 
4 less than the number who didn‟t 

improve (12-8) while in the control 
group the difference is 6 (8-2). 

c. the difference between the numbers 
who improved and didn‟t improve 
is about the same in each group (4 
vs. 6). 

d. 40% of patients in the experimental 
group improved (8/20), while only 
20% improved in the control group 
(2/10) 

d. In the experimental group, only 
40% of the patients improved 
(8/20). 

Continued next page 
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Listed below are several possible reasons one might question the results of the 
experiment described above. Please circle the letter for EVERY reason you agree 
with. 
 

a. It‟s not legitimate to compare the two groups because there are different 
numbers of patients in each group. 

b. The sample of 30 is too small to permit drawing conclusions. 
c. The patients should not have been randomly put into groups, because the 

most severe cases my have just by chance ended up in one of the groups 
d. I‟m not given enough information about how doctors decided whether or 

not the patients improved. Doctors may have been biased in their judge-
ments. 

e. I don‟t agree with any of these statements. 
 

Question 7 

An urn has 2 white balls and 2 black balls in it. Two balls are drawn out without 
replacing the first ball. 

c. What is the probability that the second ball is white, given that the 
first ball was white? Please explain your answer 

 

 

 

d. What is the probability that the first ball was white, given that the 
second ball was white? Please explain your answer. 
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Question 8 

Forty students from the Pacific University participated in a study of the effect of 
sleep on test scores. Using random allocation, twenty of the students were re-
quired to stay up all night studying the night before the test (no-sleep group). The 
other 20 students (the control „sleep‟ group) were required to be in bed by 
11:00pm on the evening before the test. The test scores for each group are shown 
in the graphs below. Each dot on the graph represents a particular student‟s score. 
For example, the 3 dots above the 40 in the top graph indicated that 3 students in 
the no-sleep group scored 40 on the test.  

 

 

 

A. Examine the two graphs carefully. Then circle the conclusion from the 6 pos-
sible conclusions listed below the ONE you MOST agree with. 

a. The no-sleep group did better because none of these students scored below 
35 and the highest score was achieved by a student in this group. 

b. The no-sleep group did better because its average appears to be a little 
higher than the average of the sleep group. 

c. There is no difference between the two groups because there is consider-
able overlap in the scores of the two groups. 

d. There is no difference between the two groups because the difference be-
tween their averages is small compared to the amount of variation in the 
scores. 

e. The sleep group did better because more students in this group scored 75 
and above. 

100959085807570656055504540353025

no_sleep

100959085807570656055504540353025

sleep
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f. The sleep group did better because its average appears to be a little higher 
than the average of the no-sleep group. 

 

B. Atlantic University repeated the same study but allowed the students to choose 
which of the groups (sleep or no-sleep) they could go into. The Pacific Univer-
sity claims that allowing the students to choose could bias the results. Atlantic 
University claims that this does not matter. Which University do you think is 
correct? Give reasons for your answer. 

 

 

 

 

Question 9 

Fred is a plant geneticist and sent the results of his research to a scientific journal 
but his paper was rejected. He has sought help from a statistician. Here is their 
conversation: 
 
Fred: I‟ve just had my paper containing some important results rejected because I 
didn‟t use random allocation of my treatments. Now I have to repeat the whole 
experiment!  

Statistician: Tell me what you did. 

Fred: I had a bench with eight pots sitting next to each other along the bench. In 
the first four pots I put my new wonder species and in the next four pots I put the 
standard species. As I expected, my wonder species produced much higher 
growth.  

Statistician: OK. Of course, there may have been some other factor varying 
along the bench which is responsible for the difference. 

Fred: I‟m not that stupid! The temperature, light and everything else is controlled 
in this glasshouse. If I thought there was another effect, I would have allocated 
the treatments to take account of the fact. 

Statistician: In that case, our task is simple. We will produce an allocation plan 
by generating random numbers in the computer. 

They do this, and find that the wonder variety is allocated to the first four pots, 
and the standard variety to the other four pots, just as before. 

Fred: Great! You have just proved my results were valid because they were ob-
tained under the layout recommended by random allocation. 

Statistician: No! The editor rejected the WAY you obtained the layout, not the 
layout itself. 

Fred: !!!!! 
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Can you explain to Fred why the randomisation was so important?  See if you can 
provide an argument for randomisation that will overcome Fred‟s problem. 
 

 

 

 

 

 

 

 

 

Thank you for your time 
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B3 The Test Questions used in this study 

1. A P-value of 0.98 indicates that the null hypothesis is almost certainly 
true. Is this statement correct? Give reasons for your answer.   

 

 

 

2. In the test of a null hypothesis that a new drug produces the same expected 
benefit as the standard drug, versus the alternative hypothesis that the new 
drug produces a higher expected benefit than does the standard drug, a p-
value of 0.01 is obtained.  Explain what this result means to a patient who 
has read the result on the web but has no statistical training.   

 

 

 

3. A large number of Tasmanian residents were asked for their estimate of 
the number of times they visited a GP in 2009.  From the data, 95% confi-
dence limits were calculated for the mean number of visits by Tasmanians 
to a GP during 2009.  The confidence interval was reported as 7 to 11. 

(a) In completely non-technical words, explain what this reported statement 
means. 

 

 

 

(b) What does the “95%” refer to? 
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Appendix C: The coding protocols 

C1  Coding protocol for the first questionnaire 

Question Score Explanation 
B1 1 c 

“Snakes” 0 All others 
B2 2 c 

“Cancer” 1 g, b 
 0 NR, all others 

B3 2 d 
“Eczema” 1 e, a 

 0 b, c, NR, multiple selections 
C1 2 1 in 16 or similar 

“Coin 1” 1 50%, 50-50 every time the coin is tossed 
 0 Other number, NR 

C2 2 =, ½, each value ½ with reasoning that implies inde-
pendence 

“Coin 2” 1 =, ½, each value ½ with reasoning that does not imply 
independence, for example “there are only two out-
comes” 

 0 NR, a, b, illogical reasoning 
C3, C4 2 =, ½, each value ½ with reasoning that implies inde-

pendence 
“Coin 3-4” 1 =, ½, each value ½ with reasoning that does not imply 

independence, for example “there are only two out-
comes” 

 0 NR, a, b, illogical reasoning 
D1 

“Hospital” 
3 b- reasoning suggests that probability for Hospital B is 

higher 
 2 b- “easier” or similar for Hospital B 
 1 c – uses argument of independence of individual births 
 0 Hospital A, NR, illogical reasoning 

D2 1 50%, ½, 50-50, half 
“Spinner 1” 0 NR, other 

D3 2 Possibility of variation in outcomes indicated 
“Spinner 2” 1 Strict probability used 

 0 NR, not reasonable number 
D4 2 Recognition of the possibility of variation 

“Spinner 3” 1 Anything can happen 
 0 Yes, NR 
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Coding protocol for the first questionnaire (continued)  
Question Score Explanation 

D5 2 >35, <15 or similar 
“Spinner 4” 1 >35 or similar only, larger extremes 

 0 0 and/or 50 only, other single number, NR 
D6a 2 Made up – too perfect/symmetrical/neat 

“Tute A” 1 Made up – other reasoning 
 0 Real, NR 

D6b 
“Tute B” 

2 Made up with reasoning that includes two or more of: 
 Too many results on two few numbers 
 Would not get 0 and/or 50 evens 
 No 25s 
 Not clustered around 25 
 Range is too wide 

 1 Made up – one of above reasons 
 0 No reason for choice, NR, Real 

D6c 
“Tute C” 

2 Real with reasoning that includes two or more of: 
 Grouped around 25 
 Some variation present/evidence of randomness 
 Range is reasonable 

 1 Real – with one of above reasons 
 0 Made up, NR 

E1 
“Teacher” 

2 b, Reasoning which takes all women‟s occupations, pro-
portion of teachers into account 

 1 b, personal experience that large numbers of teachers are 
women 

 0 a, NR, c same question 
E2 1 1 in 2/50%/ ½  

“Factory” 0 Other answer 
E3a 2 1/3 with reasoning explained 

“Urn A” 1 1/3 without reasoning explained/ joint probability calcu-
lated  

 0 NR, other answer 
E3b 2 1/3 with reasoning explained 

“Urn B” 1 1/3 without reasoning explained, joint probability calcu-
lated  

 0 NR, other answer 
F1 

“Med” 
2 Ad – Uses proportional reasoning comparing one group 

to the other 
 1 Aa, Ab, Bd – Uses the results from one group without 

mentioning results of other group/uses raw scores for 
both groups 

 0 All others, no response 
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Coding protocol for the first questionnaire (continued) 

Question Score Explanation 
F2 

“A-B” 
3 Group B – All of Group B has a higher score than all of 

Group A, estimates means without full calculations, uses 
totals and explains that numbers in each group are equal 

 2 Group B – uses Group B‟s results without reference to 
Group A, fully calculates means, uses totals without stat-
ing that group sizes are equal 

 1 Group B – “more” correct or similar 
 0 Group A, NR 

F2 
“C-D” 

3 Group C – calculates/estimates mean, uses totals and 
explains that numbers in each group are equal, calculates 
frequency of each score 

 2 Group C – uses Group C‟s results without reference to 
group D, uses totals without stating that group sizes are 
equal 

 1 Group C – “more” correct or similar 
F2 

“E-F” 
3 Equal – mean or median used, uses totals and explains 

that numbers in each group are equal 
 2 Equal – uses totals without stating that group sizes are 

equal 
 1 Equal – no explanation 
 0 One group performed better than the other 

F2 3 Group H – mean, median used/proportional reasoning 
“G-H” 2 Group H – uses results of one group only 

 1 Group H – “more” correct or similar 
 0 Cannot be done, not fair,  NR 
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C2  Coding protocol for the second questionnaire 

Question  Coding Explanation 
1 2 Coin, Die or similar with appropriate explanation 

“Random” 1 Coin, Die or similar, no explanation 
 0 NR, Can‟t think of anything, Car breakdown or similar. 

2a 2 1.25 
“CB 1” 1 1 

 0 NR, other answers 
2b 2 (ii) 

“CB 2” 1 (i), (iii) 
 0 (iv), (v), NR 

2c 2 No, used probability of 13% in reasoning 
“CB 3” 1 Variation exists, other boxes may have less/Used formal 

hypothesis test with no further explanation 
 0 NR, Yes 
3 

“Hospital” 
3 b- reasoning suggests that probability for Hospital B is 

higher 
 2 b- “easier” or similar for Hospital B 
 1 c – uses argument of independence of individual births 
 0 Hospital A, NR, illogical reasoning 
4 2 Explains P-value in reasoning 

“Fish” 1 Difference comes about by normal variation between 
samples 

 0 NR, other answer 
5a 3 (i) - Appropriate use of standard errors in answer 

“Cereal A” 2 (ii), (iii) - Appropriate use of standard errors in answer 
 1 Appropriate use of standard error in answer but students 

states that standard deviation was used 
 0 NR, other answer 

5b 3 (ii) - Appropriate use of standard errors in answer 
“Cereal B” 2 (iii) - Appropriate use of standard errors in answer 

 1 Appropriate use of standard errors in answer but student 
states that standard deviation was used 

 0 NR, other answer 
5c 2 Three or more standard errors below 800 g 

“Cereal C” 1 Two or more standard errors below 800 g, 794 g instead 
of <794 g, used standard errors but student states that 
standard deviation was used 

 0 NR, other answer 
5d 2 All possible samples need to be equally likely  

“Cereal D” 1 Bias introduced/conclusions invalid 
 0 NR, Other 
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Coding for second questionnaire (Continued) 
Question  Coding Explanation 

6a 
“Med A” 

2 Ad – Uses proportional reasoning comparing one group 
to the other 

 1 Aa, Ab, Bd – Uses the results from one group without 
mentioning results of other group 

 0 All others, no response 
6b 2 e 

“Med B” 1 d 
 0 NR, any other answer, or combination of answers 

7a 2 1/3 with reasoning explained 
“Urn A” 1 1/3 without reasoning explained, joint probability calcu-

lated  
 0 NR, other answer 

7b 2 1/3 with reasoning explained 
“Urn B” 1 1/3 without reasoning explained, joint probability calcu-

lated  
 0 NR, other answer 

8a 2 d – uses both mean and standard deviation 
“Pacific A” 1 c – uses standard deviation only 

 0 NR, others 
8b 

“Pacific B” 
2 Pacific university - all possible allocations of treatments 

should be equally likely 
 1 Pacific University – bias may be introduced 
 0 NR, Atlantic  
9 2 All possible combinations must be equally likely 

“Fred” 1 Bias may be introduced/random allocation must be used 
but no explanation given 

 0 NR, other answers 
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C3  Coding protocols for the test items 

Question  Coding Explanation 
1 3 False – P-value is probability of sample value or 

more extreme if Ho true, so sample likely if Ho true 
 2 False – Can only find evidence against Ho/True 

situation could be a value close to Ho 
 1 False - cannot prove true or untrue in inferential sta-

tistics 
 0 True 
2 3 If it were true that the new drug has the same ex-

pected benefit as the standard drug, then the prob-
ability of the results shown by the new drug is only 
1%. 

 2 Hypothesis test performed with no further explana-
tion 

 1 New drug will do “better” or similar 
 0 Inappropriate use of P-value 

3a 2 Average number of visits to a doctor was between 7 
and 11 

 1 Average number of visits to a doctor was between 7 
and 11, 95% of the time/on average Tasmanian vis-
ited a doctor between 7 and 11 times  

 0 7 to 11 Tasmanians visit a doctor, other answer 
3b 2 Process used is correct 95% of the time/Chance pa-

rameter will be included is 95%  
 1 95% of sample means will be within two standard 

errors of the population mean 
 0 True for 95% of population, 95% of time population 

mean is between 7 and 11, other answer 
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Appendix D: The simulations and demonstrations 

D1  Introduction 

This appendix contains the instructions for the simulations and demonstrations as 

they were given to the students. At the time of writing the students had access to 

Microsoft Excel 95. The instructions need altering if they are to be used in Micro-

soft 97 or a later version.  

D2  Introduction to simulation – the Chinese birth problem 

The aims of this exercise were: 

 To introduce students to the process of simulation. 

 To introduce students to the idea that samples will not replicate exactly the 

populations from whence they came.  

Student instructions 
Using simulation, an experiment or process in real life can be mimicked to see 
what would happen if the conditions were changed. In statistics, simulation is use-
ful because we can repeat a process many times that could not be repeated in real-
ity. 

Example: The Republic of China has had a one child policy for many years. In 
rural areas this has caused distress to those who want a boy to carry on a farm. 
What would happen to the ratio of male to female births if the policy was changed 
so that a couple could keep having children until a baby boy was born? (Assume 
that no prenatal testing takes place) 

Choose one of the options below: 

 There would be an increase in the number of boys born compared to girls 
born. 

 There would be an increase in the number of girls born compared to boys 
born. 

 The ratio of boys born to girls born would remain equal. 
This is not a question that could be answered easily in reality. However, with a 
coin it will take just a few minutes. For this simulation a „head‟ will represent a 
boy, and a „tail‟ will represent a girl. 
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Now do 10 trials. In each trial toss a coin and keep tossing until a head is ob-
tained. This will represent the number of children born until a boy is born. Each 
trial will represent the births for one family, therefore you will be trialling the 
births for a total of 10 families. Record your answers in the table below. 

Trial number H or T B or G 
Example (do not include this in your final tally) TTH GGB 
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
Total number of children born:   
Number of boys:   
 

Now, answer the question again.   

What would happen to the ratio of male to female births if the policy was changed 
so that a couple could keep having children until a baby boy was born? 

Choose one of the options below: 

 There would be an increase in the number of boys born compared to girls 
born. 

 There would be an increase in the number of girls born compared to boys 
born. 

 The ratio of boys born to girls born would remain equal. 
Is this answer different to your first answer? If so, what was incorrect with your 
reasoning? What is the correct explanation? 

 

D3  Demonstration – Means vs. Medians 

The aims of this exercise were: 

 To introduce students to the formulae for calculating summary statistics in 

Microsoft Excel. 

 For students to observe the effects of an error in the data on the mean and 

median of this data. 
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Student instructions 

1. Open up the excel file butterfly.xls. This contains the data for the butterfly 
wing lengths for 20 specimens. 

2. Go to cell A17 and type mean=. In cell B17 type =average(B2:B16). Re-
member you can highlight the data in the brackets instead of typing in the 
cell range. Press enter. Write the answer here:___________ 

3. Go to cell A18 and type median=. In cell B18 type =median(B2:B16). 
Press enter. Write the answer here:____________ 

4. Go to cell A19 and type std.dev.=. In cell B19 type =stdev(B2:B16). Press 
enter. Write the answer here: ________ 

5. Now change one of the numbers to a very high value, say 1000. Before 
you do this, answer the following question: 

a. After the value is changed, the new mean will be: 
      Higher  Lower  The same 

b. The new median will be: 
       Higher  Lower  The same 

c. The standard deviation (a measure of the spread of the data will be: 
      Larger   Smaller  The same 

6. Write down the new values: 
a. The new mean is: _________ 
b. The new median is: ___________ 
c. The new standard deviation is: _________ 
 

7. Experiment with a few more changes, then circle the correct answer in the 
following statements: 

a. If there is an error in the data, the mean/median is the LEAST af-
fected by this error. 

b. If there is an extreme value (an outlier) in the data, the 
mean/median is LEAST affected by this extreme value. 

 

8. The Real Estate Institute of Tasmania reports quarterly median house 
prices. This is because: 
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D4  Simulation – What is “random”? 

The aim of this exercise was to stimulate students‟ thinking of the meaning of 

randomness in the statistical sense. The exercise was in the “predict, test, re-

evaluate” format (see Section 5.4). 

Student instructions  

Section A 

One problem that occurs in epidemiology is how deal with the situation when 
several people in a small area come down with the same disease. Is there a com-
mon cause for this event, or is this a chance event? For example, if five children 
in a town of 3,000 people get the same form of leukaemia, does this mean there is 
something wrong in the town‟s environment, or is this just a chance happening? 

You might remember that in 2006 the ABC studios in Brisbane were relocated at 
great expense after there were several cases of breast cancer in the women who 
worked there. A Statistical analysis concluded that this was a cluster, and not a 
chance happening, even though the cause could not be identified. 

(For more information go to www.abc.net.au/rn/healthreport and go to the tran-
script for February 5th, 2007). 

Here is a 5 X 5 grid. You have 50 buttons to distribute. If the buttons are distrib-
uted at RANDOM, how many buttons do you expect to see in each cell? As you 
think about this consider the following questions: 
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1. Do you expect that a random process will give a perfectly even spread, 
that is, exactly two buttons per cell?  

2. If you answered no to question 1, how much variation is allowable before 
you will say the pattern is not random, but clustered? 

3. Look at grid A which gives the number of buttons in each cell. Were the 
buttons distributed randomly, or are they clustered? Why do you think 
this? 

4. Look at grid A which gives the number of buttons in each cell. Were the 
buttons distributed randomly, or are they clustered? Why do you think this 

Grid A 

3 0 3 4 1 

3 3 3 3 5 

1 1 3 0 3 

2 1 2 1 2 

0 2 2 1 1 

 
5. Now look at Grid B. Were the buttons distributed randomly, or are they 

clustered? Why do you think this? 
 

Grid B 

2 1 3 0 3 

1 3 1 2 1 

5 3 1 2 1 

2 2 2 1 2 

3 1 1 6 1 

 

Section B 

Now you are going to simulate this for yourself. 

1. Go to an Excel worksheet and in cell A1 type in X and in cell B1 type in Y. 
2. In cell A2 type =ROUNDUP(5*RAND(),0). Be careful to match up all the 

parentheses. Press enter. This will give you a number between one and 
five, produced by a random process. You will notice that the random 
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number generator recalculates every time you press enter, do not worry 
about this. 

3. Copy across to cell B2 and then down until row 51. You now have 50 
pairs of numbers. 

4. Highlight the two columns and then make a pivot table; put X in the rows 
section, and Y in the columns section. Pick up Y or X and place in the ta-
ble to give the counts. Make sure your data are in the form of counts, and 
not sums. 

5. You have now simulated distributing 50 buttons into a 5 X 5 grid. Look at 
this pattern. Is it more (less) clustered than you expected? If you have 
time, do another pivot table and see the results. 

6. Now go back to your answers for questions 3 and 4 in Section A. Do you 
agree with your answers from before? Give reasons. 

 

Section C. 

Now consider, what makes something random? This will be discussed in your tu-
torial and lectures. You will also be given the answers to questions 3 and 4.   
 

 

D5  Demonstration – the V1 rocket problem 

The aims of this exercise were 

 To give students a real example of a Poisson process where the assump-

tion of independence was extremely important.  

 To introduce students to a goodness-of-fit problem in an informal manner.  
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Student instructions (most of the following is directly quoted from Clarke 
(1946)  

A Real and Interesting Problem for You to Work On* 

An Application of the Poisson Distribution 

By R.D.Clarke, F.I.A. 

Of the Prudential Assurance Company, Ltd. 

 

Readers of  Lidstone‟s Notes on the Poisson frequency distribution (J.I.A. Vol 
LXXI, p.284) may be interested in an application of this distribution which I re-
cently had occasion to make in the course of a practical investigation. 

During the flying-bomb attack on London, frequent assertions were made that the 
points of impact of the bombs tended to be grouped in clusters. It was accordingly 
decided to apply a statistical test to discover whether any support could be found 
for this allegation. 

An area was selected comprising 144 square kilometres of south London over 
which the basic probability function of the distribution was very nearly constant, 
i.e. the theoretical mean density was not subject to material variation anywhere 
within the area examined. The selected area was divided into 576 squares of ¼ 
square kilometre each, and a count was made of the numbers of squares contain-
ing 0,1,2,3,…,etc. flying bombs. Over the period considered the total number of 
bombs within the area involved was 537. The expected number of squares corre-
sponding to the actual numbers yielded by the count were then calculated by the 
Poisson formula. 

The result provided an example of conformity/non conformity to the Poisson 
law. 

The actual results were as follows - complete the table: 

No. of flying 
bombs per square 

Probability of no. of 
bombs per square 

(Poisson) 

Expected no. of 
squares 

(Poisson) 

Actual no. of 
squares 

0   229 
1   211 
2   93 
3   35 
4   7 

5 and over   1 
   576 

 
The closeness of fit which in fact appears lends support/no support to the clus-
tering hypothesis. 
 

*From the Journal of the Institute of Actuaries, Vol. 72 (1946), p.481. 
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One of the assumptions of the Poisson distribution is that each unit of 

time/volume/space is independent from the others. Because these data fitted a 

Poisson distribution, it was concluded that these rockets were falling randomly. 

D6  Simulation – the sampling distribution of the mean 

The aim of this exercise was for students to discover that if the sample size is 

large enough, the means of these samples means form a Normal distribution. . 

The exercise was in the “predict, test, re-evaluate” format (see Section 5.4). 

Student instructions 

The Distribution of Sample Means 

Today we are going to examine the “sampling distribution of the mean”. What is 
meant by this? 

By the distribution, we mean the pattern into which the data fall. Figure 1 shows 
the histogram of the heights of 200 grade 5 children. You can see that the shape of 
this histogram is very close to that of a Normal distribution. The data are left 
skewed, that it, there are a small number of children who are shorter than the rest. 
The result is that the shape is not exactly symmetrical. 

 

Figure 1. Distribution of heights of 200 grade 5 children. 

Now, if you were to take a large number of samples from these data, and then cal-
culate the sample mean for all of these samples, would a histogram of these 
means have the same shape as the original data? Complete the following sen-
tence: 
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I think that the histogram of the means will have the same shape/different shape 
to that of the original data. 

It would be possible, but very time consuming, to take a large number of samples 
from these data and then calculate and graph the means. So we will go another 
route using simulation. 

Scenario 1 – the original population forms a Normal distribution 
1. A random observation from a Normal population with mean μ = 100 and 

standard deviation σ = 20 can be produced in Excel by: 

=NORMINV(RAND(),100,20) 

Type this in cell A2 of a new sheet. Copy this across for 5 columns (A2 to 
E2). These numbers consist of a random sample of size 5 from the Normal 
distribution.  

2. In cell F1 type in the word MEAN, and in cell F2 calculate the mean of this 
sample.  

3. Now, highlight the cells from A2 to F2 and copy these cells down to row 
1001. Now you have 1000 samples of size 5 from a normally distributed 
population which has a mean of 100 and a standard deviation of 20. In column 
F the means of all these samples has been calculated. (It might take a moment 
or two for Excel to do the calculations, wait!) 

4. What shape will the histogram of the means have? To answer this question, in 
cells H2:H14 type the numbers 70, 75, 80 … up to 130. From here on you 
must follow these directions VERY CAREFULLY! In particular, do NOT 
press enter until you have fully read the instructions. Highlight all the cells 
from I2:I14. Type: 

=FREQUENCY(F2:F1001,H2:H14) 

Check that you have not made a mistake and then PRESS CTRL, SHIFT and 

ENTER. This is an array formula and excel will add braces to the outside of 
the formula. 

5. Now highlight the cells from H2 to I14 and use the chart tool to draw a col-
umn chart. What shape does histogram have? Sketch it here. 

 

 

 

6. You can press F9 and see what happens each time you draw ANOTHER 1000 
samples of size 5. 

7. What is your conclusion? When a population has a Normal distribution, the 
sample means form ________________________________. 
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8. Calculate the mean of all the means, and the standard deviation of the means. 
Mean = ________________, Standard deviation = ___________________ 

THIS WORK TAKES UP CONSIDERABLE MEMORY. TO STOP THE EX-
ERCISES GETTING TOO SLOW, CLEAR THE SHEET BEFORE DOING 
THE NEXT EXERCISE. 

Scenario 2. The Population Has A Uniform Distribution 

A Uniform distribution is one where every number has an equal chance of being 
selected. Therefore the random number generator in excel produces a Uniform 
distribution because every number between 0 and 1 has the same chance of being 
selected.  

In the previous section, we saw that if the original POPULATION is normally 
distributed, the SAMPLE means form a _______________ distribution.  

The population in this exercise is uniformly distributed; the histogram of a Uni-
form distribution is in Figure 2. Note that every bar is roughly the same height. 

 

What shape do you think the histogram of the SAMPLE MEANS will have?  

 

 

 

Now to find out. 

 

Figure 2. Example of a Uniform distribution. 
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1. Go to a new sheet in Excel. In cell A2 type =rand(). Copy this formula across 
to cell E2. These five numbers represent a random sample of size five from 
the uniformly distributed population.  

2. Go to cell F1 and type in the word MEAN. Go to cell F2 and calculate the av-
erage of the five cells.  

3. Highlight all the cells from A2 to F2 and copy these down to row 1001. You 
now have 1000 samples of size 5 from a population which has a Uniform dis-
tribution. The averages of all these samples are in column F. 

4. In cells H2 to H11 type in the numbers 0.1, 0.2, 0.3 … up to 1. Highlight the 
cells I2 to I11 and use the frequency formula as before, that is, type: 

=FREQUENCY(F2:F1001,H2:H11) 

And then press CTRL, SHIFT and ENTER. 

5. Highlight the cells H2 to I11 and produce a column chart. What distribution 
does this histogram have? _________________ Are you surprised? Sketch it 
here. 

 

 

 

 

Scenario 3 – A Binomial distribution 

In this section you will use the random numbers to construct samples from a Bi-
nomial distribution where the probability of a success is 0.75. To do this, all the 
random numbers that are less than 0.75 will be labelled „1‟, and all those with 
random numbers 0.75 or less will be labelled „0‟. 

1. Go to a new sheet in Excel. In cell A2 type =rand(). Copy this formula across 
to cell E2. Then, making sure these five cells are highlighted, copy these cells 
down to row 1001.  

2. Now go to cell G2 and type: =IF(A2<0.75,1,0). Press enter and then copy this 
formula across to cell K2. 

3. In cell L1 type: mean. In cell L2 type: =average(G2:K2). Press enter. Then 
highlight the cells from G2 to L2 and copy them down to row 1001. The L 
column represents the mean of 1000 samples of size 5, drawn from Binomial 
distribution where the probability of a success is 0.75. 

4. What pattern will the histogram of the averages have? To find out, draw a his-
togram. To do this go to cell N2 and type in 0.1, 0.2, … up to 1 in cell N11. 
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Then go to Tools, Data Analysis and use the histogram tool. The L column 
goes into the Data Range box (leave out the label), and the cells in the N col-
umn go into the bin range. Don‟t forget to select chart output.  

5. What does the pattern of the means look like? Sketch it here. 

 

 

 

6. Now repeat steps one to five, but this time you will select samples of size 25. 
Therefore the random numbers will go in columns A to Y, and the 1‟s and 0‟s 
will go in columns AA to AY, and the means will go into column AZ. Draw 
the histogram. Make the bin from 0 to 1, in steps of 0.1. What pattern does the 
histogram of the means have? Sketch it here. 

 

 

 

Now go back to the original problem of the heights of children in grade 5. What 

distribution will the sample means have from this population? 

 

 

 

NOW FOR THE OVERALL CONCLUSION.  

FOR ANY POPULATION: 

IF THE SAMPLE SIZE IS LARGE ENOUGH, THE SAMPLE MEANS FORM 
A ______________  DISTRIBUTION. FOR THIS TO BE TRUE, THE ORIGI-
NAL POPULATION MUST BE/DOES NOT HAVE TO BE A NORMAL DIS-
TRIBTUTION. 

(THIS IS TRUE EXCEPT FOR SOME RARE EXTREMELY SKEWED POPU-
LATIONS.) 
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D7  Simulation – hypothesis testing 

The purpose of this simulation was to introduce students to hypothesis testing in 

an informal and visual way. The assumption in this exercise is that the population 

is evenly divided between those who are and are not in favour of a local council 

proposition to keep koalas as pets. If a formal hypothesis test was to be carried 

out this assumption would constitute the null hypothesis.  This simulation also 

gives students a practical demonstration of the sampling variation that can result 

from taking repeated samples from the same population. 

This simulation is based on an article by Erickson (2006). The exercise was in the 

“predict, test, re-evaluate” format (see Section 5.4). 

Student instructions 
A survey 

There is a proposition on the ballot in the upcoming council election which, if 
passed, will make it legal to keep koalas as pets. As president of the local Koala 
Foundation, you hope that this proposition will fail. In a poll of 50 voters, only 19 
(38%) will say they will vote yes.  

You are now very happy. Since only 38% of your sample vote yes, you are sure 
the proposition will fail. However, your 50 voters are only a sample from the to-

tal population of voters. If you should survey another 50 voters, do you expect to 
get exactly 19 in favour again? Why or why not? 

Is this proportion of 38% likely to be true for the whole population of voters?  

50% is the threshold, the borderline between success and failure. Let us imagine, 
then, that the population as a whole is evenly split, 50% for and 50% against.  

Now ask, if the situation for the whole population is 50% in favour of the propo-
sition, how likely is it that we get a sample result as low as 38%? Or, if 50% of 
all the voters are in favour of the proposition, how likely is it that we will get a 
sample of 19 voters out of 50 in favour? Let us use the computer to answer this 
question. 

Step 1: Go to an Excel workbook. In cell A1, type:  =rand().  

(The random function gives a number where all the numbers between 0 and 1 are 
equally likely. You will notice that each time you do something in the worksheet 
these numbers change. Don‟t worry about this.) 
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Copy this cell across to column AX, and then keeping the top row highlighted, 
copy down to row 500. You should now have 500 rows of 50 numbers each. 

Step 2: Now go to cell A503 and type: =if(A1>0.5,1,0). Again copy this cell 
across to column AX and then down to row 1002.  

Each row represents a sample of 50 people. Each cell represents a single person. 
Owing to the way it is set up a „1‟ represents a person who said „yes, they are in 
favour‟, and a „0‟ represents a person who said „no‟, they are not in favour.  

Step 3: How many of your samples of 50 (represented by each row) have 19 or 
less people in favour? To find out, go to cell AY503 and type: 
=sum(A503:AX503). Press enter and copy down for the 500 rows.  

Have a quick look at the range of values you have. What is the lowest number out 
of 50 people in favour of the proposition (out of your 500 simulations)? (Don‟t 
spend too much time on this)_______________ 

What is the highest number out of 50 people in favour (out of your 500 simula-
tions)? __________________ 

Now for the tricky bit. Make sure you follow the instructions EXACTLY.  

When you get to step 4b, do NOT press enter without reading to the end! 

Step 4a: Go to cell BA503, and type: 12. Continue down the column with the 
numbers 13, 14, etc until you get to 40. The numbers should be in cells BA503 to 
BA531. 

Step 4b: Highlight the cells BB503 to BB531 and type: 
=frequency(AY503:AY1002,BA503:BA531)  Do NOT press enter! 

Check that you have typed in the formula correctly, and then press control, shift 
and enter at the same time. 

Step 5: Highlight the cells BA503 to BB531 and draw a column graph. What is 
the shape of this graph? 

How many times, out of 500 samples, do you get a sample where there are 19 
people or less in favour of the koala proposition? To answer this, go to step 6. 

Step 6: Go to cell BA533 and type:  19 or less=  
In cell BB533 type: =SUM(BB503:BB510). This gives you the number of sam-
ples with 19 or less people in favour. 

Step 7: To make this number a proportion, in cell BA534 type: proportion= 
In cell BB534 type: =BB533/500. You can make this into a percentage in the cell 
below (*100) if you wish. 

Now, in how many samples out of 500 are 19 people or less in favour of the 
proposition, if the population is evenly split? What proportion of the total number 
of samples is this? Remember you can press F9 and automatically repeat the 
whole process with a new set of 500 samples. 

 

Conclusion: Therefore, IF the POPULATION is evenly split, getting a SAMPLE 
with 19 people or less out of 50 in favour is: 
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a. Almost impossible 
b. Unlikely but still possible 
c. Very likely 
d. Almost certain 

From your sample of 19 people out of 50 in favour, could you conclude that the 
proposition might still pass when ALL of the ratepayers vote? 

 
Conclusion: Therefore, IF the POPULATION is evenly split, getting a SAMPLE 
with 19 people or less out of 50 in favour is: 

a) Almost impossible 
b) Unlikely but still possible 
c) Very likely 
d) Almost certain 

From your sample of 19 people out of 50 in favour, could you conclude that the 
proposition might still pass when ALL of the ratepayers vote? 

 

At the next lecture the hypothesis test was set up formally, but without the alter-
native hypothesis. The P-value was calculated using the Binomial distribution: 

P(x ≤ 19|n = 50, p = 0.5) = 0.0595. 

 The formula in excel, with which the students were familiar is: 

=BINOMDIST(19,50,0.5,1) 

 

D8  Demonstration/simulation – how confidence intervals work 

The aims of this demonstration were: 

 For students to see that some confidence intervals include the value of the 

population mean, while others do not. 

 For students to see that the proportion of the confidence intervals that in-

clude the value of the population mean depends on the number of standard 

errors used in the calculation. 
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Student Instructions 

 

Aim: To use computer simulation to demonstrate how confidence intervals 

work. 

1. Open up Excel. In cell A2 type „=12+rand()‟ and then copy across for 30 
columns, i.e. to column AD. Then copy down all these columns for 100 
rows, i.e. to row 101. You should now have numbers in 100 rows for 30 
columns. Each row will be treated as a separate random sample of size n = 
30. Notice that each time you press enter the random function will recal-
culate the values in the cells; don‟t worry about this.  

Note: Since these numbers belong to a Uniform distribution the average 
for the whole population of numbers will be 12.5. 

2. Go to cell AE1 and type „mean‟. In cell AF1 type „std.error‟. In cell AG1 
type „LL‟ (for lower limit) and in cell AH1 type „UL‟ (for upper limit). 

3. Now to calculate the mean for each of our samples of size 30. Go to cell 
AE2 and type „=average(A2:AD2)‟. Press enter and copy this formula 
down for the 100 rows.  

4. Now to calculate the standard error for each of the samples. Go to cell 
AF2 and type =stdev(A2:AD2)/sqrt(30)‟. Again press enter and copy 
down for the 100 rows. 

5. Now you have 100 samples of size 30. You have also calculated the stan-
dard error for each of these samples. Remember that it is usual to not be 
sure of the population standard deviation and to have to estimate it from 
the sample.  

Approximately how many of these sample means do you expect will be 
within one standard error of the population mean? ___________ 

6. Now calculate the one standard error below the sample mean. Go to call 
AG2 and type =AE2-1*AF2. Press enter and copy down. 

7. Now calculate the one standard error above the sample mean. Go to call 
AH2 and type =AE2+1*AF2. Press enter and copy down. 

8. You now have the upper and lower limits for an interval which estimates 
where the population mean lies. Does this interval actually contain the 
population mean? Go to cell AI2, and type (be careful!) 
=IF(AND(12.5>AG2,12.5<AH2),1,0). Copy down. If your interval does 
contain the population mean this formula will return „1‟, if the interval 
does not contain the population mean this formula will return „0‟.  

Look at some of the rows with a „0‟ and you will see that the numbers be-
tween the upper and lower limit do NOT include 12.5.  

9. How many of these intervals contain the population mean? To determine 
this, click in cell AI102 and then go to the tool bar and press , the Auto-
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Sum button, and press enter. What is the number? __________ is it close 
to what you estimated in step five? 

10. Press F9 and you will see that the values in the worksheet are recalculated. 
Repeat this and watch the pattern to see how many of your intervals con-
tain the population mean. 

11. Now repeat the process for two standard errors above and below the mean. 
First of all, how many sample means do you expect will be within two 
standard errors of the population mean? _________ Now all you need to 
do is go to cells AG2 and AH2 and change „1*‟ to „2*‟ and copy the for-
mulas down. How many of these sample means are within two standard 
errors of the population mean? ______ Is this what you expected? 

12. Now repeat the process for three standard errors. First of all make your 
prediction (______), and then compare it with your actual value 
(_______). 

 

D9  Simulation – The Grade 12 Heights problem 

This exercise was based on the work of Erickson (2006). The aim of this simula-

tion was to simulate the null hypothesis, in this case that there is no difference in 

mean heights between year 12 male and female students. Each time the simulation 

was carried out the difference in means was recorded and compared with the dif-

ference in means when the data were divided by gender. The results were pooled 

so that an informal P-value could be calculated. This simulation was followed by 

a lecture that introduced the formal 2-sample t-test procedure. 

Student Instructions 

1. Open up the file G12heights.xls. This file contains the heights and gender of 
a random sample of 34 grade 12 students who participated in the Census at 
Schools program. These data were obtained from the random sampler avail-
able from the Australian Bureau of Statistics web site: www.abs.gov.au. 

2. Are adult males taller than females? You are most likely to say „yes‟, but it 
is likely that all the females doing this unit know some males shorter than 
they, and all the males will know some females taller than they. So how can 
we say males are taller than females? This is where a summary statistic such 
as the mean becomes useful. A more precise question would be: Is the mean 
height for males taller than the mean height for females?  
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3. Have a look at the data in the G12 file. The data have been sorted into males 
and females, and the mean heights for each gender have been calculated. 
Have a look in cell H2, you will notice that in this sample the male mean 
height is 11.62cm higher than the mean height for females. What are we 
likely to find for the whole population? Answer the following question: 

4. If you took another random sample from this Census at School data for 
grade 12 students, will you get the same difference between the mean male 
and mean female height? Explain your answer: 

5. We will call the observed difference of 11.62cm the test statistic. Now, 
imagine that in reality, the mean heights for males and females are equal. If 
this is the case, gender will have NO INFLUENCE on height. Could this be 
true? How can we test this? One way of testing this follows: 

6. Go to the worksheet and in cell B2, type in =rand() and copy this formula 
down to cell B35.  

7. Highlight the data in columns B and C. and go to Data, Sort, sort by RAN-
DOM, and press OK.  

8. Now the results are distributed randomly, what is the difference in means 
between the first and second group? Is it close to 11.62? Write your differ-
ence down in the table below.  

Test statistic = 11.62 
  

Randomised Results: 7: 14: 
1: 8: 15: 
2: 9: 16: 
3: 10: 17: 
4: 11: 18: 
5: 12: 19: 
6: 13: 20: 
 

9. Repeat step 2 until you have 20 differences in means recorded. Note that 
this process assumes that being a male or female doesn‟t make a difference 
to the overall mean height.  

10. Place your results on the tally in the whiteboard. These will be discussed 
in the next lecture. Answer the following. 

11. Does the observed difference of 11.62cm belong to the distribution of dif-
ferences when the data are scattered at random?  Yes/No 

12. If there is really no difference in male and female mean height, then the 
observed difference in the sample of 11.62cm is:    

          Common      Likely       Unlikely       Very Unlikely 
13. From these data, do you think that males really do have a mean height that 

is higher than that for females? Give reasons for your answer. 
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D10. Simulation – the chi-squared test for independence.  

This simulation is based on a paper by Burrill (2002). The purpose of this exercise 

was to introduce students to the chi-squared test for independence in an informal 

way. The students were required to compare the observed results with those ob-

tained if the null hypothesis were true, that is, that the two categorical variables 

were independent. The students were introduced to the formal procedure for the 

chi-squared test for independence in the lecture after this exercise. 

 
Student Instructions 
 
Headline in newspaper: Antibiotics can worsen E-coli infections. 
 
According to a study from the University of Washington School of Medicine 
(Wong, Jelacic, Habeeb, Watkins, & Tarr, 2000)*, children who may be infected 
with the bacteria E-coli 0157:H7 should not be treated with antibiotics because 
they raise the risk of a potentially deadly complication called haemolytic uraemic 
syndrome (HUS). Researchers looked at 71 children with E-coli poisoning, nine 
of whom were treated with antibiotics. Of the nine, five developed HUS. Among 
the remaining 62, five developed HUS. Do the data support the headline? 
The original data are shown in Table 1. 
Table 1. Data showing incidence of HUS with treated and untreated children 

 Antibiotics No Antibiotics Total 
HUS 5 5 10 
No HUS 4 57 61 
Total 9 62 71 
At this time, do you think that the evidence suggests that the researchers are cor-
rect, that treating with antibiotics increases the chance of a child getting HUS? 
Now the totals in each row and column have to remain constant, that is the total 
number getting HUS remains at 10, and the total number given antibiotics re-
mains at 9 and so on. Fill in the next table, assuming that the antibiotics have a 
STRONG POSITIVE effect on contracting HUS, i.e. everyone receiving antibiot-
ics will get HUS. 
 
Table 2. Strong positive evidence relating antibiotics and HUS 

 Antibiotics No Antibiotics Total 
HUS   10 
No HUS   61 
Total 9 62 71 
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The other extreme is that antibiotics have a STRONG NEGATIVE effect on get-
ting HUS, i.e. everyone receiving antibiotics will NOT contract HUS. Assuming 
this is the scenario, fill in Table 3. 
Table 3. Strong negative evidence relating antibiotics and HUS 
 Antibiotics No Antibiotics Total 
HUS   10 
No HUS   61 
Total 9 62 71 
 
Now assume that the HUS affects children with E-coli 0157:H7 completely at 
random. If this is the case, the proportion of all the children with E-coli 0157:H7 
who contract HUS, will be the same as the proportion of those taking antibiotics 
and contacting HUS, and the same as the proportion of those who did not take 
antibiotics yet contracted HUS. (For example, if ¼ of all the children with E-coli 
0157:H7 contract HUS, then ¼ of the children who are not on antibiotics will get 
HUS, and ¼ of those not taking antibiotics will get HUS).  Complete the follow-
ing table. Go to one decimal place. 
 
Table 4. Numbers of children contracting HUS if disease occurs at random. 
 Antibiotics No Antibiotics Total 
HUS   10 
No HUS   61 
Total 9 62 71 
 

Compare this with Table 1, which contains the actual numbers contracting HUS, 
so do you think there is a relationship between contracting HUS and whether or 
not a child receives antibiotics? Give reasons. 
The random number generator was then used in Excel to simulate the number of 
children who contracted HUS who were on antibiotics. The students were asked 
to repeat the simulation 10 times and to tally their results on the whiteboard. The 
students were then asked:  
Now answer the question again. Do you think there is a relationship between con-
tracting HUS and whether or not a child receives antibiotics? Give reasons. Is this 
answer different from your last answer? 
 

*Wong, C., Jelacic, S., Habeeb, R., Watkins, S., & Tarr, P. (2000). The risk of 
hemolytic-uremic syndrome after antibiotic treatment of escherichia coli 
O157:H7 infections. The New England Journal of Medicine, 342, 1930-1936. 
 

D11  Simulation – Fitting a line of best fit to data with measurement error 

This exercise was based on the work by Franklin (1992). The aim of this exercise 

was to show students that as measurements involve error, the underlying regres-
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sion population parameters (β0 and β1) are different from the estimated coeffi-

cients obtained from the sample, a and b. The exercise gives a visual representa-

tion of the way a sample line may vary around the “true” line. The other aim of 

the exercise is for the students to have a visual demonstration of regression lines 

with gradients that are not significantly different from zero.  

 
Student instructions 
 

Finding the Line of Best Fit for Real Data 
 
Most of you will have found the equations of lines in school. For example, given 
the points (2,7) and (4,11) you would have found that the equation of the line that 
goes through these two points is:  y  = 2x + 3. The „2‟ here refers to how steep the 
line is, the gradient, and the „3‟ here refers to where the graph intercepts the Y-
axis, the intercept. The graph looks like this: 

 

You may also have found the “line of best fit” for experimental data, since for 
real data you do not get all the points falling exactly on the line. Therefore, the 
graph may look like this: 
 

 

No matter how sophisticated your equipment, ALL MEASUREMENTS ARE 
MADE WITH ERROR. Also, your data are only a sample and may not represent 
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the entire population. If you were to repeat the experiment, you will not get ex-
actly the same values. How does the inevitable experimental error affect your es-
timates of the gradient and intercept? Imagine that you are the deity of linear al-
gebra, so that you alone know the true gradient and intercept of an experiment a 
lowly mortal is about to perform. This will mean that you alone know that the true 
relationship between X and Y is: Y = 2X +3.  
 

1. Go to a new sheet in excel. In cell A1 type X, and in the A column type in 
the whole numbers from 1 to 5.  

2. In cell B1 type Yactual, and in cell B2 type: =2*A2+3. Copy this formula 
down. These are the values that experimenters will get if their equipment 
is perfect, so that no errors are made in the measurements. 

3. Now to model the experimental error, go to cell F1 and type error, and 
then go to cell F2 and type, =NORMINV(rand(),0,1). Copy the formula 
down. This mimics an error from a Normal distribution with mean zero 
and standard deviation 1.  

4. Now go to cell C1 and type the heading Yobserved, and in cell C2 type 
=B2+F2. Copy this formula down. This column mimics the readings you 
get in a real experimental situation, where there are errors in the measure-
ment.  

5. Now highlight the cells A1:C6, and plot a scatterplot, making sure the 
cells in the A column are in the X-values cell in the window.  

6. How do the real results compare with the actual situation? First of all, put 
the mouse over one of the Yactual data points. Right click, go to add 
trendline, options, display equation on graph, and click OK. Do the same 
for the Yobs data, but also right click on the trendline and format it so that 
it is a dashed line. The result should look something like this: 

 

7. See how far the estimate of the gradient and intercept of the line of best fit 
for the experimental data are from the true situation. By pressing F9 you 
can repeat the whole experiment. Try this several times, and see how the 
situation changes each time you repeat your experiment.  
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Remember, in the real experimental world you do not know what the true 
situation is, you only estimate it from your sample data. From the example 
shown here you would say that the line follows the equation : y = 1.2x + 5.2, 
and would not know that it is really y = 2x +3. 

One of the problems with experimental data is that we might think that we 
have a relationship between x and y when none really exists. That is, a person 
changes the x values thinking that this will change the value on y, and meas-
ure these y values. Again you are the deity of linear algebra and know that the 
x values have no effect on y. The values of y are equal to 2 no matter what 
else changes. Graphically, it looks like this: 

 

As we know, in our experiment the measurements will be made with an error. 
What effect will this have on our line?  

1. Go to column A and type in the heading and numbers as before.  

2. Go to column B and put in the heading Yactual and type in „2‟ for every 
number. 

3. Go to column F and type in the heading and the same formula to mimic 
the measurement errors made in the experiment.  

4. Go to column C and type in the heading and formula as the previous sec-
tion. Then draw the charts and add the trendlines, and format the observed 
trendline as before.  

5. Note your observations. Does the experimental data follow a horizontal 
line, or is it sloped? Press F9 again to mimic the repeating of your experi-
ment. Write down the equation of two of your experimental lines.  

 

From an idea in: Franklin, L (1992), Using simulation to study linear regression, The College 
Mathematics Journal, 23, pp. 290-295. 
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D12  Demonstration – The Analysis of Variance 

The aim of this demonstration was for students to gain an informal understanding 

of the process of the Analysis of Variance. The students were required to plot 

some data and make a judgement of which groups were significantly different 

from each other. The formal procedure for the Analysis of Variance was intro-

duced in the lecture following this exercise. 

Student Instructions  

Introduction to the Analysis of Variance 

In the chapter of your notes, “Analysis of Variance for Designed Experiments”, 
an example is given where an airline examines the time spent per call by tele-
phone operators who answered callers wishing to make airline reservations. The 
data are in the file „Airline.xls‟, and represent the times for calls (in seconds) to 
reservation operators in an airline reservation system. The calls were grouped ac-
cording to the time of day or day of week. Group 1 represents calls made on 
weekdays between 8am and 4pm. Group 2 represents calls made between 4pm 
and midnight, group 3 represents calls made between  midnight and 8am, group 4 
represents calls made on a Saturday, and group 5 represents calls made on Sun-
day. 
 
Open up this file. Using the data in columns A and B, draw a scatterplot showing 
the spread of results for each group. It should look something like this: 
 

 

Calculate the overall mean, and the mean for each group. How does each group 
mean compare with the overall mean? 

Group 1 has a mean that is lower/higher than the overall mean. 

Group 2 has a mean that is lower/higher than the overall mean. 

Group 3 has a mean that is lower/higher than the overall mean. 
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Group 4 has a mean that is lower/higher than the overall mean. 

Group 5 has a mean that is lower/higher than the overall mean. 

Are there significant differences between the average times between the groups? 
You already know how to compare the means for two groups (the 2-sample t-
test), but what about 5 groups at once? It is not valid to compare the groups by 
doing a series of 2-sample t-tests; the reason for this will be explained in the lec-
ture. 

Now print out the graph (at a fairly large size). Mark the position of the mean for 
each group. Now compare how far each group mean is from the other. To decide 
whether or not there is a significant difference in means you will need to consider 
the position of each mean, the difference of means between each group, and the 
overlap between the spread in each group. Now answer the following: 

I think group 1 is/is not significantly different to group 2. 

I think group 1 is/is not significantly different to group 3. 

I think group 1 is/is not significantly different to group 4. 

I think group 1 is/is not significantly different to group 5. 

I think group 2 is/is not significantly different to group 3. 

I think group 2 is/is not significantly different to group 4. 

I think group 2 is/is not significantly different to group 5. 

I think group 3 is/is not significantly different to group 4. 

I think group 3 is/is not significantly different to group 5. 

I think group 4 is/is not significantly different to group 5. 

 

Please bring these instructions to the next lecture
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Appendix E: Statistical analyses 
All analyses were completed using PASW Statistics 18.0.2 (SPSS inc., http://www.spss.com), unless otherwise stated. 

E1 Analyses of the first questionnaire 

Table E1.1 

Summary of the Rasch item analysis for the first questionnaire (Winsteps)  

     SUMMARY OF 13 MEASURED Items 

+-----------------------------------------------------------------------------+ 

|           RAW                          MODEL         INFIT        OUTFIT    | 

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD | 

|-----------------------------------------------------------------------------| 

| MEAN      83.2      75.0         .00     .17      1.01    -.1   1.02    -.1 | 

| S.D.      30.5        .0         .83     .02       .25    1.9    .27    1.4 | 

| MAX.     130.0      75.0        1.80     .23      1.48    2.7   1.64    1.8 | 

| MIN.      20.0      75.0       -1.43     .15       .62   -3.9    .60   -3.1 | 

|-----------------------------------------------------------------------------| 

| REAL RMSE    .18  ADJ.SD     .81  SEPARATION  4.39  Item   RELIABILITY  .95 | 

|MODEL RMSE    .17  ADJ.SD     .81  SEPARATION  4.67  Item   RELIABILITY  .96 | 

| S.E. OF Item MEAN = .24                                                     | 

+-----------------------------------------------------------------------------+ 

UMEAN=.000 USCALE=1.000 

Item RAW SCORE-TO-MEASURE CORRELATION = -1.00 
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Table E1.2 

Summary of the Rasch person analysis for the first questionnaire (Winsteps) 

 
SUMMARY OF 75 MEASURED Persons 

+-----------------------------------------------------------------------------+ 

|           RAW                          MODEL         INFIT        OUTFIT    | 

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD | 

|-----------------------------------------------------------------------------| 

| MEAN      14.4      13.0         .19     .41       .99     .0   1.02     .1 | 

| S.D.       4.1        .0         .71     .07       .37    1.1    .52    1.0 | 

| MAX.      23.0      13.0        1.90     .97      2.29    2.8   2.73    3.0 | 

| MIN.       1.0      13.0       -2.87     .38       .44   -1.9    .27   -1.5 | 

|-----------------------------------------------------------------------------| 

| REAL RMSE    .44  ADJ.SD     .55  SEPARATION  1.24  Person RELIABILITY  .60 | 

|MODEL RMSE    .42  ADJ.SD     .57  SEPARATION  1.36  Person RELIABILITY  .65 | 

| S.E. OF Person MEAN = .08                                                   | 

+-----------------------------------------------------------------------------+ 

Person RAW SCORE-TO-MEASURE CORRELATION = .99 

CRONBACH ALPHA (KR-20) Person RAW SCORE RELIABILITY = .59 
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Figure E1.1.  Results of Kruskal-Wallis test for differences 
in ability among the four semesters of the study.  
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Table E1.2 
 
 Items and P-values for the Kruskal-Wallis test for differences in scores 
among semesters for each item in the first questionnaire. 

Item P-value  Item P-value 
Snakes .074  Tute B .920 
Cancer .471  Tute C .841 
Eczema. .787  Teacher .743 
Coin 1 .128  Factory  .635 
Coin 2 .416  Urn A .116 
Coin 3-4 .547  Urn B .361 
Hospital .016  Med .428 
Spinner 1 .574  A-B .270 
Spinner 2 .371  C-D .543 
Spinner 3 .422  E-F .952 
Spinner 4 .374  G-H .487 
Tute A .577    

 

Table E1.3 
 
Items and P-values for the Mann Whitney U tests for differences in scores for the 
students with and without previous statistical experience. 

Item P-value  Item P-value 
Snakes .074  Tute B .920 
Cancer .471  Tute C .841 
Eczema. .787  Teacher .743 
Coin 1 .128  Factory  .635 
Coin 2 .416  Urn A .116 
Coin 3-4 .547  Urn B .361 
Hospital .016*  Med .428 
Spinner 1 .574  A-B .270 
Spinner 2 .371  C-D .543 
Spinner 3 .422  E-F .952 
Spinner 4 .374  G-H .487 
Tute A .577    

                          * Significant at α = .05 

 



 

404 

 

 

Figure E1.2. Back to back histograms and statistics for the “Hospital” question.  
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E2 Analyses of the second questionnaire 

 

Table E2.1 

Summary of the Rasch item analysis for the second questionnaire (Winsteps)  

 

     SUMMARY OF 13 MEASURED Items 
+-----------------------------------------------------------------------------+ 

|           RAW                          MODEL         INFIT        OUTFIT    | 

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD | 

|-----------------------------------------------------------------------------| 

| MEAN      26.7      33.0         .00     .28      1.02     .0   1.00     .0 | 

| S.D.      14.8        .0         .96     .03       .28    1.2    .24     .9 | 

| MAX.      55.0      33.0        1.44     .37      1.41    1.5   1.35    1.1 | 

| MIN.       8.0      33.0       -1.89     .25       .55   -2.2    .60   -1.5 | 

|-----------------------------------------------------------------------------| 

| REAL RMSE    .30  ADJ.SD     .92  SEPARATION  3.06  Item   RELIABILITY  .90 | 

|MODEL RMSE    .28  ADJ.SD     .92  SEPARATION  3.30  Item   RELIABILITY  .92 | 

| S.E. OF Item MEAN = .28                                                     | 

+-----------------------------------------------------------------------------+ 

UMEAN=.000 USCALE=1.000 

Item RAW SCORE-TO-MEASURE CORRELATION = -1.00 

429 DATA POINTS. APPROXIMATE LOG-LIKELIHOOD CHI-SQUARE: 720.10 
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Table E2.2 

Summary of the Rasch person analysis for the second questionnaire (Winsteps) 

 
     SUMMARY OF 33 MEASURED Persons 

+-----------------------------------------------------------------------------+ 

|           RAW                          MODEL         INFIT        OUTFIT    | 

|          SCORE     COUNT     MEASURE   ERROR      MNSQ   ZSTD   MNSQ   ZSTD | 

|-----------------------------------------------------------------------------| 

| MEAN      10.5      13.0        -.40     .44      1.02     .0   1.00     .0 | 

| S.D.       3.2        .0         .58     .02       .44    1.2    .49    1.1 | 

| MAX.      20.0      13.0        1.29     .49      1.90    2.3   2.13    2.4 | 

| MIN.       6.0      13.0       -1.29     .41       .44   -1.8    .43   -1.6 | 

|-----------------------------------------------------------------------------| 

| REAL RMSE    .48  ADJ.SD     .33  SEPARATION   .69  Person RELIABILITY  .32 | 

|MODEL RMSE    .44  ADJ.SD     .39  SEPARATION   .88  Person RELIABILITY  .44 | 

| S.E. OF Person MEAN = .10                                                   | 

+-----------------------------------------------------------------------------+ 

Person RAW SCORE-TO-MEASURE CORRELATION = 1.00 

CRONBACH ALPHA (KR-20) Person RAW SCORE RELIABILITY = .43 
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Figure E2.1. Box plots and statistics for the Kruskal-Wallis test for the differences 
in students’ ability among semesters for the second questionnaire.  
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Table E2.3 
 

Items and P-values for the Kruskal-Wallis test for difference in scores among se-
mesters for each item in the second questionnaire.  

Item P-value 
Pacific B .094 
Fish .567 
Cereal D .564 
Fred .505 
Random .207 
CB 1 .491 
CB 2 .639 
CB 3 .372 
Med A .675 
Med B .780 
Urn A .963 
Urn B .464 
Pacific A .861 

 
 

E3 Comparisons between ability scores and final scores from formal as-
sessment 

Table E3.1 

Results of Paired t-test comparing students’ ability from the first and second 
questionnaire (Microsoft Excel).  

t-Test: Paired Two Sample for Means 
 

  
First 

 Questionnaire 
Second  

Questionnaire 

Mean 0.311 0.787 

Variance 0.240 0.331 

Observations 33 33 

Pearson Correlation 0.130 
 Hypothesized Mean 

Difference 0 
 df 32 
 t Stat -3.870 
 P(T<=t) one-tail 0.000 
 t Critical one-tail 1.694 
 P(T<=t) two-tail 0.001 
 t Critical two-tail 2.037 
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Table E3.2 

Results of ANOVA on differences of ability score among semesters (Microsoft Ex-
cel). 
 

ANOVA: Single Factor 
   SUMMARY 

    Semester Count Sum Average Variance 
 Pre-intervention 9 2.22 0.247 0.108 
 Cycle 1 20 13.33 0.667 0.613 
 Cycle 2 4 0.12 0.030 0.463 
 

      ANOVA 
     Source of Variation SS df MS F P-value 

Between Semes-
ters 1.99 2 0.997 2.151 0.134 

Within Groups 13.907 30 0.464 
  

      Total 15.902 32 
    

 
 
Table E3.3 

Results of correlation analysis between the ability scores from the first question-
naire (Q1), the second questionnaire (Q2), and the final score (final), with all 
data included. 

  Q1 Q2 Final 

Q1 Pearson Cor-
relation 

1 .178 .017 

Sig. (2-tailed) 
  

.374 .935 

Q2 Pearson Cor-
relation 

.178 1 .354 

Sig. (2-tailed) .374   .070* 

Final Pearson Cor-
relation 

.017 .354 1 

Sig. (2-tailed) .935 .070   

                               * Significant at α = .10 
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Table E3.4 
 
Results of correlation analysis between the ability scores from the second ques-
tionnaire (Q2), and the final score (final), with the influential point excluded. 
 
 

  Q2 Final 

Q2 Pearson 
Correlation 

1 .177 

Sig. (2-
tailed)  

.387 

Final Pearson 
Correlation 

.177 1 

Sig. (2-
tailed) 

.387 
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E4. Comparison among semesters for the P-value and confidence interval 
questions on the test  

 

 

Figure E4.1. Box plots and statistics for the Kruskal-Wallis test for difference 
in scores among semesters for the first P-value question. 
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Figure E4.2. Box plots and statistics for the Kruskal-Wallis test for difference 
in scores among semesters for the second P-value question. 
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Figure E4.3. Box plots and statistics for the Kruskal-Wallis test for difference 
in scores among semesters for the first confidence interval question. 
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Table E4.1 

Mean ranked scores for the confidence interval questions 
 Mean Rank 
Semester Part (a) Part (b) 
Pre-intervention 25.05 26.86 
Cycle 1 25.22 21.62 
Cycle 2 32.50 31.00 
Cycle 3 32.00 38.58 

Figure E4.4. Box plots and statistics for the Kruskal-Wallis test for difference 
in scores among semesters for the second confidence interval question. 
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Table E4.2 

Mean ranked scores for the P-value questions 
 Mean Rank 
Semester Question 1 Question 2 
Pre-intervention 22.14 26.00 
Cycle 1 26.04 26.86 
Cycle 2 13.33 15.25 
Cycle 3 42.54 36.33 

 

 

 


