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Abstract

Worldwide, ecosystems have demonstrated the potential for dramatic shifts to an

alternative persistent state under gradual long-term environmental changes or following

sudden short-term perturbations. Such shifts are documented for numerous marine

examples from coral reef to pelagic communities and may become more common as

ecological dynamics adjust to climate-driven changes. These shifts are often sudden,

challenging to predict and can have disastrous and unpredictable consequences on both

ecosystem functioning and the human activities that rely on the associated natural

resources. They often result in irreversible dramatic changes in community structure

and productivity and represent a growing concern for managers of natural systems.

In ecosystems where the presence of an alternative persistent state is well documented, the

drivers of these shifts (e.g. anthropogenic stressors or changes in environmental conditions)

can be analysed retrospectively so as to address key management questions, as has occurred

in several applications on coral reefs. However, phase shifts are often swift and observed a

posteriori, i.e. after the ecosystem has shifted to the alternative state. Thus, thresholds in

ecosystem dynamics are difficult to identify empirically despite that this is crucial for sound

management of marine resources. Additionally, controlled experimental assessment of the

effects of alternative management scenarios on community state is hardly ever achievable

in marine ecosystems. When they occur, phase shifts are unique to each ecosystem, hence

case-specific simulation models present a valuable tool to explore ecological dynamics

with alternative persistent community states, test the effects of management scenarios

and inform decision-making.

On the east coast of Tasmania, shallow rocky reef communities on the exposed coast mainly

occur in two alternative persistent states: (1) the seaweed bed state characterised by a

dense productive canopy of macroalgae; or, (2) the sea urchin ‘barren’ state characterised

by a poorly productive rocky habitat largely bare of seaweeds as a result of destructive

grazing by the long-spined sea urchin (Centrostephanus rodgersii). The establishment of
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these widespread sea urchin barrens result from a combination of both: (1) the climate-

driven range extension of the long-spined sea urchin C. rodgersii from Australia’s mainland

to Tasmania; and (2) depletion of key reef predators by fishing. Large southern rock lobster

(Jasus edwardsii) individuals constitute the main predator of the long-spined sea urchin

in Tasmania. Relative to the seaweed bed state, C. rodgersii barrens represent dramatic

losses of habitat, species diversity and productivity, including commercial species such as

blacklip abalone (Haliotis rubra) and southern rock lobster, the two most valuable fisheries

in Tasmania. Thus, the spread of sea urchin barrens presents a major and pressing threat

for the lobster and abalone fishing industries.

This thesis presents a suite of models specifically developed to better understand the

dynamics of Tasmanian rocky reef communities and inform management interventions to

mitigate destructive grazing of seaweed beds by the invasive long-spined sea urchin.

Chapter 2 investigates the causal relationships between positive feedback and the

occurrence of alternative states in community dynamics. Modelling of community feedback

informed by available qualitative knowledge about ecosystem structure constitutes a

valuable framework to detect the potential for alternative states in ecological dynamics

as illustrated with some examples from Tasmanian rocky reef communities. Qualitative

modelling assists to understand the essential features of temperate reef dynamics around

Tasmania, and provides a useful first step towards quantitative modelling of rocky reef

dynamics. The approach provides an ideal framework to (i) collate all available information

about rocky reef ecology, (ii) test model structure uncertainty, and (iii) identify key drivers

of alternative states in ecosystem dynamics.

The quantitative model presented in the subsequent chapters captures the dynamics of

the three key groups or species (i.e. the rock lobster, sea urchin, and seaweed assemblage)

directly involved in the positive feedback that drives the shift between alternative states

on Tasmanian rocky reef. Chapter 3 describes the development, parameterisation and

calibration of a mean field model of the local dynamics (reef area of 100 m2 - 10 ha)

of a reef community. The model’s ability to capture the potential for phase shifts, from

dense seaweed bed to sea urchin barrens habitat and back, is validated against large-

scale patterns observed on rocky reefs where C. rodgersii occurs. In the simulations,

the time for extensive sea urchin barrens to form is of the order of two decades, while
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restoration of seaweed cover from the sea urchin barrens habitat takes about three decades

if relying on management interventions that cannot effectively reduce urchin density to

zero. Thus, restoration of seaweed beds seems unrealistic to implement within the current

timeframe of management plans. Comprehensive model-independent sensitivity analysis

of model behaviour to parameter estimates also suggests that, in addition to lobster fishing

mortality, recruitment rates of sea urchins and rock lobsters, which are strongly influenced

by large scale oceanographic features and highly variable in eastern Tasmania, are key

factors in determining the potential for sea urchin barren formation in the model.

In Chapter 4, sets of Monte-Carlo simulations with this model are used to address three

sets of questions related to management for mitigation of sea urchin destructive grazing

of Tasmanian seaweed beds. Model behaviour suggests that thresholds in shifting from

seaweed bed to sea urchin barren and restoration of seaweed cover reveal the existence of a

hysteresis in model dynamics. The hysteresis implies that the establishment of sea urchin

barrens cannot be reversed easily. These thresholds provide valuable ecological reference

points to prevent the establishment of sea urchin barrens. The model indicates that

culling of sea urchins appears as the most effective management strategy to minimise the

ecological impact of C. rodgersii on Tasmanian reef communities. Indirect interventions

relying solely on the rebuilding of rock lobster population (through reduction in fishing or

implementation of a maximum legal catch size) perform poorly but, when combined with

direct control of the sea urchin population, they can provide optimal outcomes both in

terms of minimising barren formation and fishery performance. Finally, the model shows

that to allow lobsters to play their critical ecological ‘service’ role in preventing sea urchin

barrens formation, a reduction in lobster fishing mortality from current levels is required.

A maximum sustainable yield as estimated from the single species stock assessment model

does not account for the ecosystem service delivered by larger lobsters, and the models

emphasise the need for an ecosystem-based fishery management approach.

This suite of models contributes to the general understanding of mechanisms and drivers

that can facilitate shift between alternative states in ecological dynamics. The quantitative

simulation model provides specific information to managers about the drivers of shifts

between the seaweed bed and the sea urchin barren state in the dynamics of Tasmanian

rocky reefs. In particular, the presence of a hysteresis in reef community dynamics means

that effort to prevent barrens formation constitutes a more viable and cost effective
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management strategy than the restoration of seaweed beds once extensive barrens habitat

has developed. The commercially-fished rock lobster is an essential reef predator delivering

key ecosystem services to Tasmanian rocky reefs and model simulations highlight the

necessity for fisheries management to move away from a single species focus and account for

the ecological role of targeted commercial species. The tools implemented here to inform an

ecosystem-based management of Tasmanian rocky reefs are generic and ‘transportable’ to

other ecosystems with alternative states. While C. rodgersii barrens currently constitute

a pressing concern for managers of reef communities and fisheries in Tasmania, the long-

spined sea urchin is only one example of a species that is dramatically restructuring

Tasmanian reef communities. There are many other ‘natural’ invaders, whose ecosystem

roles and impacts are unknown, currently extending their distribution from Australia’s

mainland to the warming Tasmanian waters. In the coming decades, climate-driven

changes are likely to bring more surprises to Tasmanian rocky reefs, and just as many

challenges for the associated fisheries and their managers.
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Chapter

1 Introduction

“Variability is normality.” Valdivia (1978) about the northern Humboldt ecosystem

following the 1973 collapse of the world champion Peruvian anchoveta fishery.

Variability across a range of scales in space and time is a key characteristic of

ecological dynamics (Doak et al., 2008), underpinned by a suite of disparate causal

mechanisms. Beyond short-term variability of natural dynamics (e.g. seasonal or

interannual), environmental or anthropogenic perturbations can facilitate sudden shifts

between alternative persistent community states (May, 1977; Scheffer et al., 2001; Beisner

et al., 2003; Scheffer and Carpenter, 2003). In these cases, ecological communities can

manifest ‘phase shifts’ in which large changes in species abundances are observed without

any tendency to return to the previous configuration (Scheffer et al., 2001). Alternative

states have been reported both in terrestrial and aquatic systems (Schroder et al., 2005),

and shifts from one state to another can be continuous or discontinuous (Scheffer et al.,

2001; Beisner et al., 2003). Discontinuous transitions represent ecological hysteresis, i.e.

dynamics where a small change in parameters or species abundance can lead to a dramatic

shift to a new community state that persists when the change is reversed (Donahue et al.,

2011). However, detailed observations of this kind of transition in nature are scarce, in

particular for communities with hysteresis. Indeed, such ecosystems (e.g. coral reefs

or eutrophic lakes) are commonly described as in one community state or the other

with some limited understanding of the actual transition dynamics (Scheffer et al., 1993;

Scheffer and Carpenter, 2003). These shifts in community dynamics can dramatically

alter ecosystem functioning and have disastrous consequences on the human activities

that rely on use of natural resources (Scheffer et al., 2001). Phase shifts are challenging

to anticipate and their consequences difficult to predict (Scheffer and Carpenter, 2003;

Doak et al., 2008). While natural variability implies constant changes in environmental

conditions (seasonal and interannual variability in environmental conditions), which make

ecological dynamics difficult to predict (Doak et al., 2008) and the management of natural
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resources uncertain (e.g. years of low recruitment in fishery management), it can lead

with no warning to dramatic changes in ecosystem functions and structure in dynamics

with alternative states (Hastings and Wysham, 2010). Thus, detecting the potential

for alternative states in ecosystems and better understanding these dynamics and their

drivers are essential to maintain ecosystem well functioning and avoid the unpredictable

consequences of discontinuous ecosystem shifts (van de Koppel et al., 1997; de Young et al.,

2008; McClanahan et al., 2011).

Two main types of perturbations can alter the state of an ecosystem: 1) a sudden stochastic

event that modifies state variables on short time scales (e.g. an extreme weather event

that causes a dramatic mortality event for a population) and 2) a sustained external

constraint (e.g. fishing pressure) that affects population growth rates (birth, mortality or

migration) over long time scales (Scheffer et al., 2001; Beisner et al., 2003). There has

been a resurgence of interest in phase shift theory over the last few decades (Petraitis and

Dudgeon, 2004) as the effects of human activities on ecosystems become better understood

(Scheffer et al., 2005; de Young et al., 2008; Ling et al., 2009a). Human-induced stresses on

ecosystems can be categorised arbitrarily into two groups: 1) large scale atmospheric and

oceanographic changes (e.g. as a result of anthropogenic carbon emissions) can affect most

components of ecosystems, from the physical environment (e.g. temperature) to animal

physiology (Cury et al., 2008; Running, 2008; Overland et al., 2010; Johnson et al., 2011);

and 2) local human activity through direct exploitation of natural resources (e.g. fishing)

or indirect human inputs (e.g. pollution) that can significantly affect the local natural

environment (Scheffer et al., 2005; Edgar et al., 2009). The effects of both global climate-

driven changes and local human activities can potentially have dramatic consequences on

the dynamics of ecosystem with alternative persistent state as they can facilitate sudden

shift to a less desirable ecosystem state (Scheffer and Carpenter, 2003; Genkai-Kato, 2007).

Thus, better understanding anthropogenic as well as environmental drivers of phase shifts

have become a major concern for the sound management of ecological systems (Folke et al.,

2004; Genkai-Kato, 2007; de Young et al., 2008).

Because phase shifts are often swift, evidence for alternative states in nature are typically

collated a posteriori, i.e. once a community has shifted to an alternative state and the

dramatic consequences of a shift are observed (Scheffer et al., 2005; Ling et al., 2009a).

While there exists a body of theoretical literature about alternative states and phase
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shifts, demonstrating their existence in natural systems (de Young et al., 2004; Petraitis

and Dudgeon, 2004), characterising the nature of the anthropogenic and/or environmental

drivers of these shifts (Scheffer and Carpenter, 2003), identifying key thresholds in

ecological dynamics that manifest hysteresis (McClanahan et al., 2011), and predicting

their effects on ecosystem function, each constitute major challenges for ecologists and for

the robust management of human activities in systems with the capacity for rapid phase

shift (de Young et al., 2008; Overland et al., 2008). Moreover, these features are also

difficult to assess experimentally (Petraitis and Dudgeon, 2004). In particular, controlled

experimental testing of the long-term effects of alternative management scenarios is

effectively hard to achieve in ‘real world’ ecosystems (Scheffer and Carpenter, 2003).

Therefore, mathematical models, albeit difficult to parameterise and validate, have a

central role in helping to predict and understand alternative states in ecosystems where

anthropogenic effects can lead to dramatic irreversible changes (Scheffer et al., 2001;

Mumby et al., 2007; Firn et al., 2010; Melbourne-Thomas et al., 2010; Estes et al., 2011;

Fung et al., 2011; McClanahan et al., 2011). Phase shifts are unique to each ecosystem,

and so case-specific simulation models present a valuable tool to (i) explore ecological

dynamics in which there are possible alternative community states, (ii) test the effects of

management scenarios, and (iii) inform decision making (Scheffer and Carpenter, 2003;

de Young et al., 2008). Several ecological models of marine ecosystems with potential

alternative community states have been developed in recent years and applied usefully

to management support of real ecosystems (see Mumby et al., 2007; Melbourne-Thomas

et al., 2010 for some coral reef examples).

On the east coast of Tasmania in southeastern Australia (cf. map given in Fig. 1.1),

shallow (< 35 m depth) exposed rocky reef communities mainly occur in two alternative

persistent states: (1) the seaweed bed state characterised by a dense productive canopy

of macroalgae; or, (2) as sea urchin ‘barrens’ habitat characterised by a poorly productive

and bare rocky habitat following destructive grazing by the long-spined sea urchin

(Centrostephanus rodgersii). The establishment of these widespread sea urchin barrens

in eastern Tasmania results from a combination of (1) climate-driven range extension

of the long-spined sea urchin C. rodgersii from Australia’s mainland to Tasmania via

strengthening eddy activity associated with southern incursions of the tropical East

Australian Current (Ling et al., 2009b); and (2) the depletion of key predators of the

sea urchin by fishing. Large southern rock lobster (Jasus edwardsii) individuals constitute
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the only effective predator of the long-spined sea urchin in Tasmania (Ling et al., 2009a).

Sea urchin barrens are observed in many temperate regions around the globe (Lawrence,

1975; Mann, 1982; Chapman and Johnson, 1990; Steneck et al., 2004) and constitute

an impoverished state compared to productive macroalgal beds in terms of productivity,

complexity of habitat and species diversity (Ling, 2008). Since the 1980s, sea urchin

barrens up to 10-50 ha in extent have become established in exposed shallow-water

regions on the northeast coast of Tasmania as a consequence of destructive grazing by

Centrostephanus rodgersii (Johnson et al., 2005; Ling et al., 2009a). Amongst other

Tasmanian reef species, high-value blacklip abalone (Haliotis rubra) and southern rock

lobster (Jasus edwardsii) fisheries, with a combined value of about AUD$150M pa, severely

decline on urchin barrens (Johnson et al., 2005).

Figure 1.1: Map of Tasmania with the key sites mentioned in the thesis.
The top left corner shows the position of Tasmania in the southeastern
corner of Australia. Map credits: Google Earth.

The spread of extensive C. rodgersii barren is regarded as a principal threat to rocky reef

fisheries in eastern Tasmania (Johnson et al., 2005; Pecl et al., 2009; Johnson et al., 2011).

However fisheries management is single-species-oriented and does not account for the
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ecological impacts of C. rodgersii. On Tasmanian rocky reefs, manipulative experiments

to examine effects of fishing have been carried out at small scales (e.g. 0.25x0.25m to

4x4m plots in Strain, 2009; Strain and Johnson, 2012). While these studies help to refine

understanding of the ecology of individual species (e.g. Ling et al., 2009b) and a limited

number of pairwise interactions (e.g. Strain, 2009), we lack the practical ability to carry

out controlled experiments at a complexity and scale sufficiently large to understand how

these species and interactions affect the dynamics of the larger system (Schroder et al.,

2005). In particular, there is currently no framework to inform management interventions

so as to mitigate the ecological effects of Centrostephanus rodgersii invasion along the east

coast of Tasmania.

This thesis presents a suite of ‘minimum realistic’ ecological models (Fulton et al., 2003a)

developed within the boundaries of current knowledge of Tasmanian reef ecology (empirical

observations, results of manipulative experiments or existing models; e.g. Punt and

Kennedy, 1997; Johnson et al., 2005; Guest et al., 2009; Ling et al., 2009a; Strain, 2009).

These models are specifically designed to capture the potential for alternative community

states characterised as either dense, diverse and productive stands of macroalgae, or poorly

productive sea urchin barrens following destructive grazing of macroalgal beds by C.

rodgersii. The art of building robust, reliable and hence useful ecosystem models lies in

making a series of fine choices, which can be difficult to objectively assess (Klepper, 1997).

The three primary chapters of this thesis (Chapters 2-4) describe a set of approaches to

step-by-step (i) collate and synthesise available information about rocky reef ecology, (ii)

develop, parameterise, test and validate a parsimonious simulation model of Tasmanian

reef dynamics with alternative community states, and (iii) identify thresholds in ecosystem

dynamics and inform effective management interventions.

Through qualitative modelling of community responses to long-term perturbations,

Chapter 2 explores and defines generic mechanistic links between positive feedback and

the occurrence of alternative states. Positive feedback diminishes a system’s overall

resistance to change, and can create and maintain correlations in the relative abundance

of variables that coincide with alternative states. With specific models of the dynamics

of Tasmanian rocky reef communities, which capture effects of climate change, fishing

and persistent alternative states, we demonstrate the ability of qualitative modelling to

predict the potential for alternative states in ecosystems and thus identify this possibility
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to managers and inform management intervention. We show that qualitative knowledge of

community structure permits a thorough analysis of system feedback and an assessment

of the potential for an ecosystem to exhibit alternative states.

While they may be deemed as essential to support decision-making, robust simulation

models of ecosystems with alternative states are nonetheless challenging to build, test and

validate. Chapter 3 develops TRITON (Temperate Reefs In Tasmania with lObsters and

urchiNs), a model of the local dynamics of seaweed-based reefs with alternative community

states, and presents simulation-based calibration and analyses of model sensitivity to input

parameters. Pattern-Oriented-Modelling, i.e. comparing patterns emerging from model

dynamics across Monte-Carlo simulations with large-scale observations of Tasmanian reef

communities, provides a valuable approach to validate the dynamics of TRITON. Using the

computationally efficient, model-independent extended Fourier amplitude sensitivity test

(Saltelli et al., 1999), we rank the influence of key parameters on different aspects of model

behaviour. The model validation exercise contributed to both (i) a better understanding

of the key drivers of Tasmanian rocky reef dynamics (e.g. fishing of rock lobster), and (ii)

identification of priority areas for further work through assessment of model limitations

stemming from incomplete knowledge of seaweed-sea urchin-lobster dynamics.

In Chapter 4 we address a range of questions for the management of Tasmanian reef

communities using Monte-Carlo simulations with TRITON. First, we use the simulations

to help characterise thresholds in community dynamics. These tipping points constitute

essential reference points for management to minimise the risk of barrens formation

or facilitate the recovery of seaweed beds from the barren state, but it is difficult to

directly observe them empirically (see Mumby et al., 2007 for a model-based derivation of

thresholds in coral reef dynamics). Distinct differences in community thresholds for the

“forward’ shift’ (i.e. barrens formation from high seaweed cover) and “backward’ shift’ (i.e.

recovery of seaweed cover from the barrens condition) reflect a hysteresis in reef dynamics;

once sea urchin barrens have formed extensively, restoration of dense seaweed beds is much

more difficult to achieve than prevention of barren formation in the first place. Alternative

management scenarios (i.e. a combination of reducing lobster fishing, implementing a

maximum legal catch size to protect large lobster individuals as key reef predators, culling

of sea urchins and translocating large lobsters from deep to shallow reefs exposed to

destructive sea urchin grazing) are assessed both in terms of mitigating the ecological
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effects of sea urchin grazing and lobster fishery performance. Model simulations highlight

the need for the Tasmanian rock lobster fishery management objectives to move away

from a single-species-oriented maximum sustainable yield towards a more conservative

ecologically sustainable yield that accounts for the ecosystem services delivered by rock

lobster to rocky reef communities.

The General Discussion (Chapter 5) summarises all key findings, illustrates the

complementarity of the different approaches applied in this thesis to comprehend the

dynamics of Tasmanian rocky reefs, including the risks of moving between alternative

community states, and attempts to inform an ecologically sound management of the

Tasmanian southern rock lobster fishery. Over the last two decades, fisheries scientists have

emphasised the necessity to better account for the ecosystem effects of fishing and to shift

management practises away from the traditional single species focus towards an ecosystem-

based approach (Cury et al., 2005; Smith et al., 2007, 2011). With this simple example

from Tasmanian rocky reefs, on which rock lobsters exert essential predation control on sea

urchins, we illustrate some of the misleading assumptions of single-species management

in circumstances in which the target species delivers key services to the ecosystem. We

highlight the need for fishery management targets, such as maximum sustainable yield

(MSY), to account for the ecological services delivered by commercial species, and we

show that a more holistic and conservative approach to maintain ecosystem functioning,

where ecological dynamics can manifest alternative community states and where phase

shifts are difficult to reverse, is essential for the long term sustainability of the fishery.
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Chapter

2 Exploring alternative states in

ecological systems with a qualitative

analysis of community feedback

2.1 Abstract

Demonstrating and predicting the existence of alternative states in natural communities

remains a challenge for ecologists and is essential for resource managers. Positive

feedback is often presented as central in maintaining alternative ecosystem states, but

no formal approach relates this part of theory to real world applications. Through

qualitative modelling of community response to long-term perturbations, we define generic

mechanistic links between positive feedback and the occurrence of alternative states.

Positive feedback diminishes a systems overall resistance to change, and can create

and maintain correlations in the relative abundance of variables that coincide with

alternative states. Through specific models of the dynamics of Tasmanian rocky reef

communities, which are affected by climate and fishing and persist within alternative

states, we demonstrate the ability of our theoretical framework to predict alternative

states in ecosystems and inform management intervention. A qualitative knowledge of

community structure permits a thorough analysis of system feedback and an assessment of

the potential for an ecosystem to exhibit alternative states. We illustrate the usefulness of

the approach to inform management priorities, and to focus monitoring and field research

on the key drivers of ecosystem dynamics.

2.2 Introduction

Ecological communities can manifest phase shifts in which large changes in species

abundances are observed without any tendency to return to the previous configuration

(Scheffer et al., 2001). Alternative states have been reported both in terrestrial and aquatic

systems (Schroder et al., 2005), with shifts from one state to another that can be smooth
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or abrupt (Scheffer et al., 2001; Beisner et al., 2003). There has been a resurgence of

interest in phase-shift theory over the last few decades (Petraitis and Dudgeon, 2004) as

the effects of human activities on ecosystems become better understood (Scheffer et al.,

2005; de Young et al., 2008; Ling et al., 2009a). Dramatic phase shifts, their potential

anthropogenic genesis, and their associated effects on the livelihoods of those who rely on

natural resources, have become a major concern for resource managers. Two main types

of perturbations can alter the state of an ecosystem: 1) a sudden stochastic event that

modifies state variables on short time scales (e.g. an extreme weather event that causes

a dramatic mortality event for a population) and 2) a sustained external constraint (e.g.

fishing pressure) that affects population growth rates (birth, mortality or migration) over

long time scales (Scheffer et al., 2001; Beisner et al., 2003).

Evidence for alternative states in nature is often collated only after the dramatic

consequences of a shift become evident (Scheffer et al., 2005; Ling et al., 2009a). While

there exists a body of theoretical literature about alternative states and phase shifts,

demonstrating their existence in natural systems (Petraitis and Dudgeon, 2004) and

predicting their effects on ecosystem function remain as major challenges for ecologists

and managers (de Young et al., 2008; Overland et al., 2008). While quantitative ecosystem

models have a central role in helping to predict and understand alternative states, they

remain difficult to parameterise and validate (Levins, 1998; Scheffer and Carpenter, 2003

but see Mumby et al., 2007 as a useful example). A central aspect of this problem is

the relevance of positive feedback in creating and maintaining alternative states. Positive

feedback has been recognised as a necessary but not sufficient condition for alternative

states in both the theoretical literature (Thomas, 1981; Cinquin and Demongeot, 2002;

Soulé, 2003) and the empirical ecological literature (Scheffer et al., 2001; Scheffer and

Carpenter, 2003). Nevertheless, while conceptual models have been used to illustrate

phase shifts and positive feedback in ecosystems (Beisner et al., 2003; Suding et al., 2004),

there remains a gap between theory and practice. Specifically, a formal mathematical

approach based on the feedback properties of natural systems is lacking.

Around Tasmania in south-eastern Australia, subtidal rocky reefs typically occur in one

of two alternative states (Fig. 2.1). In one state, the reef is dominated by a dense

cover of seaweed (the seaweed bed state) but, where there is overgrazing of seaweeds

by sea urchins, seaweed beds are denuded and reduced to bare rock (the sea urchin
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barren state). Additionally, the understorey of intact seaweed beds can be dominated

by alternative epilithic community types that can be described as either pink-benthos

(dominated by encrusting algae) or brown-benthos (dominated by sessile invertebrates and

a semi-consolidated matrix of filamentous algae and sediment) states. Tasmanian rocky

reef communities offer a well-studied example of an ecological system with alternative

states and this paper explores the general dynamics of these states and likely mechanisms

that underlay their formation and maintenance.

a (i) a (ii)

b (i) b(ii)

Figure 2.1: Examples of the alternative states observed on Tasmanian
subtidal rocky reefs. a) (i) intact macroalgal canopy of Ecklonia radiata
and Phyllospora comosa; a) (ii) barren habitat and long-spined sea urchin
Centrostephanus rodgersii ; b) (i) blacklip abalone Haliotis rubra, pink
encrusting coralline algae, canopy of Ecklonia radiata; b) (ii) matrix of
green algae, red filamentous algae and sediment. Photo credits: S.D. Ling;
J.P. Valentine; C.R. Johnson.
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Overstorey states: seaweed bed versus sea urchin barren (Fig. 2.1a).

Sea urchin barrens constitute an impoverished state compared to productive macroalgal

beds (Ling, 2008), and are observed in many temperate regions around the globe

(Lawrence, 1975; Mann, 1982; Chapman and Johnson, 1990; Steneck et al., 2004). Since

the 1980s, sea urchin barrens up to 10-50 ha in extent have become established in exposed

shallow-water regions on the northeast coast of Tasmania as a consequence of intensive

grazing by the sea urchin Centrostephanus rodgersii (Johnson et al., 2005). This sea

urchin has extended its range southward from New South Wales to the east coast of

Tasmania as a result of enhanced dispersal of larvae from strengthened flow of the East

Australian Current (Johnson et al., 2005; Ling et al., 2009b). Increase in the abundance of

C. rodgersii and depletion of large lobsters (as a key predator of the sea urchin) by fishing

have been identified as the two critical factors driving the shift to the barren state (Ling

et al., 2009a). In Tasmania, high-value blacklip abalone (Haliotis rubra) and southern

rock lobster (Jasus edwardsii) fisheries, with a combined value of about AUD$150M pa,

decline on urchin barrens (Johnson et al., 2005).

Dominant understorey states: pink benthos versus brown benthos (Fig. 2.1b).

On subtidal reefs in eastern Tasmania, epilithic understorey assemblages under seaweed

canopies are often dominated either by non-geniculate coralline algae and other encrusting

algal species (the pink state), or by sessile invertebrates and filamentous red algae that

capture and bind sediments to form a semi-consolidated matrix (the brown state). Brown

benthos is generally avoided by emergent abalone and ostensibly reduces settlement

of abalone larvae and recruitment of abalone juveniles (Strain, 2009). Manipulative

experiments indicate that the shift from pink to brown benthos states can be driven by

heavy fishing of legal size abalone (Haliotis rubra) as a key herbivore in the system (Strain,

2009). Abalone grazing maintains pink encrusting algae by preventing their overgrowth

by invertebrates and filamentous red algae. However, as the brown benthos establishes,

abalone populations are locally reduced as they avoid this habitat type (Strain, 2009).

On Tasmanian rocky reefs, manipulative experiments have been carried out at small

scales (e.g. 0.25x0.25m to 4x4m plots in Strain, 2009). While these studies help to

refine understanding of the ecology of individual species (e.g. Ling et al., 2009b), and a
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limited number of pairwise interactions (e.g. Strain, 2009), we lack the practical ability

to carry out controlled experiments at a scale sufficiently large to understand how these

species and interactions affect the dynamics of the larger system (Schroder et al., 2005).

Given the lack of precise quantification of ecological processes, we adopt Puccia and Levins

(1985) loop analysis (referred to as qualitative modelling in this paper) to develop a causal

understanding of the qualitative dynamics of subtidal rocky reefs in eastern Tasmania.

This method emphasises the contribution of the structural feedback properties of a system

rather than the precise magnitude of its species interactions. We first identify generic

and mechanistic links between positive feedback and occurrence of alternative states in

ecosystem dynamics, and test this theoretical framework against specific examples from

Tasmanian reef communities.

We develop models of Tasmanian reef systems where interactions were informed by

both empirical observations and results of manipulative experiments (e.g. Johnson

et al., 2005; Guest et al., 2009; Ling et al., 2009a; Strain, 2009). As our models focus

on general community dynamics, they only explicitly represent individual key species

(e.g. C. rodgersii, lobsters, abalone) and the species assemblages (e.g. seaweed bed)

on which these species depend for food and habitat. As part of a larger study that

includes quantitative models of subtidal rocky reef communities around Tasmania, we

use qualitative modelling to 1) investigate the role of positive feedback in structuring

the responses of natural systems to perturbations, 2) understand and predict the long-

term ecosystem effects of perturbations from fishing rock lobster and abalone, and an

increase in sea urchin abundance, and we confront model predictions with empirical results

about system dynamics. 3) We also test the potential influence of uncertain ecological

interactions and the importance of model structure to system dynamics (Dambacher et al.,

2002). Through these models of Tasmanian reefs, we illustrate and discuss the ability of

qualitative modelling to predict alternative states in ecosystems and inform management

interventions.

2.3 Material and Methods

First, we provide a brief introduction to the methods of qualitative modelling through two

generic three-variable ecosystem models (models 1 and 2; Fig. 2.2), and then analyse the

influence of positive feedback on system dynamics using generic example models (Fig. 2.2
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and 2.3). Finally, we present a suite of models of Tasmanian rocky reef communities as a

case study to test the value of the approach to detect the potential for alternative states

in ecological systems (Fig. 2.4-2.6).

2.3.1 Qualitative modelling of ecosystem feedback: generic models

A model can be represented as a signed directed graph (Fig. 2.2a and 2.3a), where

variables, whether individual species or species assemblages (functional groups), are

depicted graphically as nodes. Nodes are connected by links that represent the sign of

direct effects (Puccia and Levins, 1985). Graphically, an arrow (→) signifies a positive

interaction (e.g. a prey contributes to a predators diet), a line with a filled circle (!)

represents a negative effect (e.g. depletion of a prey population by a predator). Self-effects

are represented as lines originating and terminating at the same node (e.g. " for a positive

self-effect).

Interacting populations can also be described through a set of Lotka-Volterra equations

dN

Ndt
= AN+ k (2.1)

where the rate of change in abundance of population variable Ni is controlled by rates

of birth, death and migration. These rates can be embodied as interactions within and

between populations (e.g. consumption-based birth or death rates), which are summarised

in the community matrix A, or effects that are intrinsic to the population (e.g. non-

predation mortality), which are summarised in the vector k. Each ai,j element of the

community matrix represents the direct effect of variable j on variable i, and thus the

sign structure of A is equivalent to the sign directed graph of the system (Fig. 2.2a; Fig.

2.2b). Thus for model 2, a positive direct effect of variable 2 on variable 3 is shown in the

signed digraph as an arrow leading from node 2 to node 3, and in the community matrix

as the positive term a3,2.

In Eq. 2.1, the system of equations is at an equilibrium state when the rate of change for

each population is zero, and the equilibrium abundances are denoted by an asterisk (N*).

This equilibrium is maintained by the constancy of the rates in A and k. For a change in
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any system parameter (∂ph), the shift in abundance for each population is calculated as

dN*

dph
= −A−1

[
∂A

∂ph
N*+

∂k

∂ph

]
(2.2)

While Eq. 2.2 can be used to predict changes in equilibria, it requires full quantification

of the systems parameters. We can however approach this equation through a qualitative

analysis considering only the sign structure of the community matrix (Dambacher et al.,

2005). From the matrix equality: −A−1 = adj(−A)/det(−A), Eq. 2.2 can be rewritten

as

dN* =
−1

(−1)n+1det(A)︸ ︷︷ ︸
overall system feedback

adj(−A)︸ ︷︷ ︸
relative response

[
∂A

∂ph
N*+

∂k

∂ph

]
dph

︸ ︷︷ ︸
strength of input

(2.3)

where det is the matrix determinant, adj is the classical adjoint, or adjoint, matrix, and

n is the number of variables or size of the system. The matrix determinant represents

the systems resistance to a long-term perturbation and scales the magnitude of all of

its responses, while the adjoint matrix details the relative response of each variable to a

perturbation or input to a specific variable. In the first term of Eq. 2.3 we use a somewhat

complicated multiplier for the system determinant, which maintains a sign convention for

both even- and odd-sized systems. This is for two practical purposes. Firstly, we wish to

consider that system stability depends on negative feedback being stronger than positive

feedback, and the denominator of the first term of Eq. 2.3, which defines the overall

system feedback, will be negative in any stable system. Secondly, it follows that for a

stable system, the entire first term of Eq. 2.3 will be positive (Dambacher et al., 2003),

and thus the adjoint matrix will return the correct sign for a positive input to the system.

Positive inputs arise from an increase in a rate of birth or immigration or a decrease in a

rate of death or emigration, while negative inputs come from the opposite processes (e.g.

increased rate of death, etc.).

In a qualitative analysis we are interested only in the sign of the input rather than its

magnitude, and thus we can omit the last term of Eq. 2.3 and use the sign (sgn) of the

adjoint matrix to predict the direction of change in population abundances

sgn("N*) = sgn(adj(−A)). (2.4)

Eq. 2.4 returns the qualitative change in equilibrium abundance for the system due to
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positive inputs in the abundance of a variable; for negative inputs the signs of the adjoint

matrix are simply reversed. For a more detailed derivation of the above equations, see

Dambacher et al. (2005). In Fig. 2.2, adjoint matrices for models 1 and 2 are given in

symbolic and qualitative form. Inputs are read down the column of the input variable,

and responses along the rows. For example, a positive input to variable 1 is read down

the first column, and for both models 1 and 2, the predicted response of variable 2 to this

input is a decrease in abundance: this is read as the first element of the second row, which

is detailed as -a2,1a3,3 in the symbolic adjoint matrix (Fig. 2.2c) and a negative sign in

the qualitative adjoint matrix (Fig. 2.2d). For a negative input, the sign of this response

would be switched to positive.

For the models presented later in this paper, we use qualitative adjoint matrices where

variable responses can be completely determined when all terms in an element of the

symbolic adjoint matrix are of the same sign. When both negative and positive terms

occur, however, the predicted sign of the response is ambiguous, and the sign of the

predicted response depends on the relative strength of specific interactions. For example,

in model 2, the predicted response of variable 1 to an input to variable 2 has both positive

(a1,2a3,3) and negative (-a1,3a3,2) terms (Fig. 2.2c). In this instance, if the relative strength

of the terms were known, then a qualitative prediction could be made based on an algebraic

condition. Thus, if the direct effect of variable 3 on 1 was known to be relatively strong,

then it is likely that condition 1 (a1,2a3,3 < a1,3a3,2) is true, and variable 1s response

would be negative. In this study, ambiguous predictions are given in brackets within the

qualitative adjoint matrices, and the algebraic conditions supporting the predicted signs

are denoted as superscripts (e.g. Fig. 2.2d). When no simple interpretation or assumption

can elucidate ambiguity, the qualitative prediction is given as a question mark.
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Figure 2.2: Models 1 and 2 are generic three-variable models. Each
qualitative model is given as (a) a sign-directed graph associated with (b) a
symbolic community matrix (A), and adjoint matrices of the negative of the
community matrix given in (c) symbolic (adj(−A)) and, in (d) qualitative
form (sgn(adj(−A))). The numbers given in the nodes of the graph
define the positions of each variable in the matrices. In the qualitative
adjoint matrix, ambiguous predictions are given in parentheses with the
condition supporting the predicted sign in superscript (e.g. (+)i for a
positive response under condition i). The determinant of the community
matrix, or overall system feedback (det(A)), is given symbolically with the
positive feedback cycles highlighted in bold (e).



2.3. Material and Methods 17

Figure 2.3: Models 3 and 4 are generic three-variable models. Each
qualitative model is given as (a) a sign-directed graph associated with (b) a
symbolic community matrix (A), and adjoint matrices of the negative of the
community matrix given in (c) symbolic (adj(−A)) and, in (d) qualitative
form (sgn(adj(−A))). The numbers given in the nodes of the graph
define the positions of each variable in the matrices. In the qualitative
adjoint matrix, ambiguous predictions are given in parentheses with the
condition supporting the predicted sign in superscript (e.g. (+)i for a
positive response under condition i). The determinant of the community
matrix or overall system feedback (det(A)), is given symbolically with the
positive feedback cycles highlighted in bold (e).
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2.3.2 Role of positive feedback in creating alternative states

While negative feedback is a process (e.g. prey-predator relationships) that brings a

variable back towards its original value in response to a perturbation, positive feedback

(e.g. competition between two species) gives rise to a chain of events that keeps displacing

a variable away from its original value in the same direction as the initial change (Levins,

1998). Positive feedback structures how a system will respond to a perturbation in two

important ways through its influence on both the first and second term of Eq. 2.3. In the

first term, positive feedback can weaken the overall system feedback, thereby increasing

the sensitivity of the system to a given perturbation. In the second term, positive feedback

affects the relative magnitude and sign of each variables response, as detailed in the

elements of the systems adjoint matrix. The importance of these two influences is next

explored through a number of example model systems (Fig. 2.2 and 2.3).

(i) Positive feedback weakens system resistance to a perturbation. The overall feedback of

a system can be made up of both positive and negative feedback cycles, and even where the

net feedback is negative, the presence of positive cycles will increase a systems sensitivity

to a perturbation. For instance, model 2 only differs from model 1 by the presence of

a positive link from variable 2 to 3 and, compared to model 1, its overall feedback is

diminished by the presence of a single positive feedback cycle a1,3a3,2a2,1 (Fig. 2.2e),

which decreases its resistance to a perturbation. For an input to variable 3, the algebraic

arguments in the third column of the adjoint matrices are identical for both models 1 and

2 (Fig. 2.2c), but by virtue of the a3,2 link, which does not even enter into the algebraic

arguments in the third column of model 2’s adjoint, the magnitude of model 2’s responses

will be greater.

(ii) Positive feedback can structure alternative states. The elements of a systems adjoint

matrix can provide a mechanistic understanding of how each variables response will be

influenced by the feedback properties of the perturbed system. In general, the elements of

the adjoint matrix are composed of subsets of the feedback cycles detailed in the system

determinant. Thus, where the effect of positive feedback is strong, then its effect can be

traced through individual response predictions in the adjoint matrix. In systems with

strong positive feedback, correlations in the predicted changes in equilibrium values can

emerge in the adjoint matrix that are consistent with alternative states.
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Models 1 and 3 provide a sharp contrast for the effects of positive and negative feedback on

correlation patterns in the adjoint matrix. Model 3 (Fig. 2.3) is an example of a system

where only positive feedback emerges from interspecific links. The rows of the adjoint

matrix for this system show a perfect pattern of correlation: variables 2 and 3 are always

positively correlated with each other and negatively correlated with the predicted responses

of variable 1. Thus, this model demonstrates a potential to maintain two alternative states

where either variables 2 and 3 are at a relatively high abundance and variable 1 is at a

relatively low abundance, or vice versa. In model 1, which lacks any positive feedback,

the rows of the adjoint matrix do not show a regular pattern of correlation. For instance,

the responses of variables 1 and 2 are negatively correlated to an input to variable 1, but

positively correlated when the input is via variable 2.

In natural systems, the influence of positive feedback on community responses is hardly

ever as clearly evident as in model 3, as system dynamics are usually determined by a mix

of both positive and negative feedback cycles. Models 2 and 4 (Fig. 2.2 and 2.3) contain

both positive and negative feedback cycles that create ambiguous response predictions,

and potentially inconsistent correlation patterns in the adjoint matrix. These ambiguities,

however, can be interpreted to understand how the relative strength of positive and

negative feedbacks can contribute to alternative states.

In model 2 the right-hand side of the condition 1 and 2 (Fig. 2.2d) are subsets of the

positive feedback cycle detailed in the determinant for each model system (Fig. 2.2d and

e). Thus, if the interactions creating the positive feedback (a2,1, a1,3, a3,2) are sufficiently

strong then conditions 1 and 2 are likely to prevail, in which case the rows of the qualitative

adjoint matrix (Fig. 2.2d) will show regular correlations, and the system can maintain two

alternative states. In model 4, condition 1 (a1,1a3,3 > a1,3a3,1) is guaranteed by system

stability, which requires the overall system feedback to be negative (i.e. a1,1a2,2a3,3 >

a1,3a3,1a2,2+a1,3a3,2a2,1). Hence, under the assumption of system stability, the qualitative

adjoint matrix of model 4 is consistent with two alternative states (Fig. 2.3).

This example illustrates how the presence of positive feedback cycles can structure

correlations in variables equilibrium values, and can contribute to the occurrence of

alternative states. For models 2-4, an input to any variable in the system has the potential

to either reinforce the existing state or shift the system to the alternative state. Model 1,
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however, lacks positive feedback and thus does not have a system structure that supports

the existence of alternative states. In models 2 and 4, ambiguous predictions can be

interpreted assuming conditions of 1) relatively strong positive feedback (model 2), or 2)

system stability (model 4), so that regular correlation patterns consistent with alternative

states emerge in the adjoint matrix. A simple but important feature demonstrated in

models 3 and 4 is whether or not a positive feedback cycle contains an even number of

negative links or just positive links. Where positive feedback has an even number of

negative links (Models 2 and 4; Fig. 2.2) then alternative states will be characterized by

both positive and negative correlations among variables, where there is only positive links

then all variables will be positively correlated.

The absolute effect of positive feedback on the system determinant (i.e. diminished

resistance to change) is difficult to quantify in practice. However, the occurrence of

regular correlation patterns in the qualitative adjoint matrix constitute a reliable means

to characterize the influence of positive feedback and the potential for alternative states

in ecosystem dynamics. Next, we test the utility of this framework through models of

Tasmanian rocky reefs, where communities persist within alternative states, and have

been affected by a sustained fishing pressure and an increase in the abundance of sea

urchins (Ling et al., 2009a).

2.3.3 Model specification

We collated empirical data on the different components of subtidal rocky reefs in Tasmania,

identifying key variables and interactions between them (Table 2.1). Our models address

general community dynamics and only represent key species, and the essential species

assemblages in terms of food or habitat support for these species; abalone (AB), southern

rock lobster (RL) and long-spined sea urchins (CR for Centrostephanus rodgersii) are

considered as individual species. Seaweed bed (SW) includes canopy-forming algae such

as Ecklonia radiata, Macrocystis pyrifera, Phyllospora comosa and a raft of other fucoid

macroalgae comprising numerous understorey seaweeds as well as associated assemblages

of invertebrates. Thus, SW represents an essential source of food and habitat for abalone,

rock lobster and the sea urchins. Basal-level benthic communities are described as either

pink benthos (PB, i.e. pink encrusting algae comprising non-calcareous encrusting and

calcareous non-geniculate coralline algae) or brown benthos (BB, i.e. sessile invertebrates



2.3. Material and Methods 21

and a matrix of filamentous red algae and sediment). Each variable is self-regulated to

account for density-dependent processes and an external supply of recruits (Puccia and

Levins, 1985).

A wide range of environmental conditions and fishing pressure affects temperate reefs

along the east coast of Tasmania. Rather than considering a single model including every

possible interaction, we break our analysis into sets of different models to capture the

variability in community structure between regions. This array of models does not address

the magnitude of variability encountered in the community composition of each state,

rather it summarises the alternative configurations observed on Tasmanian reefs as they

relate to general functioning and provision of ecosystem services. These models are meant

to account for the range in productivity, habitat structure and state of the commercial

fisheries within rocky reef communities at a scale ranging from 10 m2 to 10 ha. Based

upon available knowledge, we assessed the strength or certainty of each models ecological

interactions (Table 2.1) to tackle model structure uncertainty.
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Overstorey models.

The alternative overstorey models (Fig. 2.4a) capture the known range of possible effects

of grazing by the sea urchin Centrostephanus rodgersii on the seaweed canopy and the

main commercial invertebrate reef species. A macroalgal-dominated overstorey versus sea

urchin barrens constitute the two alternative states of the overstorey community, and are

characterised by the presence or absence of a dense seaweed canopy (Fig. 2.1a). Large

lobsters (carapace length >140 mm), which are harvested by fishing, are the main natural

predators of the invasive sea urchin (Ling et al., 2009a). However, lobsters are generalist

feeders and the sea urchin does not constitute the core of their diet (Guest et al., 2009).

Thus, other connections are also possible. The suite of models A to D (Fig. 2.4a) tests the

effects of including these uncertain interactions (‘RL!AB’ and ‘CR!AB’; see Table 2.1)

on overstorey dynamics. We discuss model predictions against empirical field observations

of the qualitative effects of a positive input in the abundance of C. rodgersii (CR) or rock

lobster (RL) on other overstorey variables (Fig. 2.4b).

Understorey models.

The alternative models of the understorey (Fig. 2.5a) address key changes in dominant

interactions within each state of the benthic community under the macroalgal canopy.

As either the pink- or the brown-benthos dominated state (Fig. 2.1b) establishes, the

abundances of understorey variables vary significantly (Strain, 2009; Strain and Johnson,

2012), which affects the strength of some interactions (Table 2.1) hence community

structure. Model E (Fig. 2.5a) considers every possible interaction, while models F and

G (Fig. 2.5a) only include the dominant interactions in each of the pink- and the brown-

benthos dominated states, respectively. The pink-benthos state, dominated by encrusting

algae, is sheltered from direct sunlight by the dense seaweed canopy and is maintained

clean from invertebrates and recruiting filamentous algae by the grazing (and perhaps

‘bulldozing’) effects of abalone (model F; Fig. 2.5a). Reciprocally, the pink coralline

algae constitute an essential habitat for adult abalone, the metamorphosis of larvae and

development of juveniles. However, as the brown benthos overgrows the encrusting algae

(model G; Fig. 2.5a), abalone begin to avoid the overgrowth areas (Strain and Johnson,

2012), causing abalone to no longer significantly impact on other variables. In more

sheltered areas, along with the proliferation of sessile invertebrates, red filamentous algae
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act to bind sediments and form a semi-consolidated sediment matrix, which inhibits the

recruitment of native canopy-forming macroalgae (Valentine and Johnson, 2005). We

confront understorey model predictions with observed effects of an input in the abundance

of brown benthos, abalone, or the seaweed bed (Fig. 2.5b).
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Figure 2.4: a) Models A to D of the overstorey dynamics. A signed-
directed graph, a list of the interactions included and the qualitative adjoint
matrix are provided for each model. SW stands for seaweed bed, RL for
rock lobster, AB for abalone and CR for Centrostephanus rodgersii, the
long-spined sea urchin. The numbers given in the node define the positions
of each variable in the matrices. When an ambiguous prediction can be
elucidated with simple assumptions, the sign is given between parentheses
with a supporting condition referenced by a superscript number. These
conditions are provided below the set of models. Question marks represent
ambiguous predictions, where quantitative knowledge about the relative
strength of some specific interactions is required to determine the sign of
the response. b) Matrix presenting the observed effects of a positive to CR
and RL on overstorey variables. The subscripts point to the supporting
field observations that are specified below the matrix.
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Model combining overstorey and understorey dynamics: example of the Maria

Island marine reserve.

To illustrate the interdependencies between over- and understorey communities, model

H (Fig. 2.6) combines the overstorey model B and the understorey model F as a

representation of the dynamics in the Maria Island marine reserve on the east coast of

Tasmania. The structure of model H is supported by field observations and experiments

within the reserve. Over 20 years, protection from fishing at Maria Island has restored the

pristine community state with a large biomass of large lobsters that maintains low densities

of sea urchins though predation. The presence of large rock lobsters also negatively

affects abalone directly through predation and indirectly by causing a greater proportion

of animals to remain cryptic within the interstices of the reef (Pederson et al., 2008). The

understorey community tends to be dominated by a pink benthos of encrusting algae,

which is maintained by a relatively high abundance of abalone and, in shallow water, by

the sweeping action of canopy-forming macroalgae on the substratum. Note that model

H only captures the overall dynamics of an intact seaweed bed community, while many

other combinations of understorey and overstorey models could adequately describe other

configurations of Tasmanian reefs.
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Figure 2.5: a) Models E to G of the understorey dynamics. A signed-
directed graph, a list of the interactions included and the qualitative adjoint
matrix are provided for each model. The numbers given in the nodes of
the graphs define the positions of each variable in the matrices. BB stands
for brown benthos, PB for pink benthos dominated by encrusting algae,
AB for abalone and SW for seaweed bed. When a prediction is ambiguous,
the sign is given in parentheses with a supporting condition referenced by
a superscript number. All these conditions are provided below the models.
b) Matrix presenting the observed qualitative effects of a positive input to
BB, AB or SW on the understorey community. The subscripts point to
the supporting field observations that are specified below the matrix.
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2.4 Results

For all models, qualitative adjoint matrices (Fig. 2.4a, 2.5a and 2.6a) provide a

comprehensive description of community responses to perturbation. When possible,

ambiguous predictions are elucidated in the qualitative adjoint matrices under simple

assumptions of strong positive feedback (e.g. condition 2; Fig. 2.6) or system stability

(condition 2; Fig. 2.4a). The algebraic conditions that support the predicted signs are

listed after each set of models (Fig. 2.4, 2.5 and 2.6). As model complexity increases with

the number of interactions included, so does ambiguity. Question marks in the adjoint

matrices indicate predictions where ambiguity remains and can only be interpreted with

quantitative information about the relative strength of individual interactions.

2.4.1 Positive feedback and model dynamics

Overstorey models.

In all overstorey models (Fig. 2.4a), the positive feedback cycle ‘SW→RL!CR!SW’

ensures regular correlations among responses of SW, RL and CR. These correlations are

contingent on strong positive feedback (condition 1) and model stability (condition 2).

All adjoint matrices contain a block with similar sign predictions for the first 3 variables,

i.e. responses to perturbations of the seaweed bed (SW) and rock lobster (RL) are always

positively correlated, but negatively correlated with responses of C. rodgersii (CR). For

instance, in the adjoint matrix of model A, a positive input to the abundance of CR

(first column) positively affects CR (first row) and is detrimental to SW, RL and AB

(respectively, second, third and fourth row). Positive inputs to the abundance of SW and

RL (respectively, second and third row) induce the opposite effects, i.e. a decrease in CR

abundance and an increase in SW, RL and AB.

While correlation patterns between SW, RL and CR hold in all adjoint matrices for models

B to D (Fig. 2.4a), abalone (AB) do not necessarily respond in phase because they are

not directly involved in the positive feedback and do not transmit feedback to any other

variable. In model A, abalone dynamics are only under the influence of SW via the

link a4,2, hence AB reacts in phase with SW and RL. In models B to D (Fig. 2.4a),

the additional links a3,2 (‘RL!AB’) and a3,4 (‘CR!AB’) exert opposing effects to a3,1
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(‘SW→AB’) on abalone dynamics. Thus, the sign of the responses of abalone depends

on the relative strength of these interactions and may or may not be in phase with the

alternative states. When the barren state fully develops, abalone populations always

respond negatively as the negative effect on abalone of the loss of the seaweed canopy

greatly exceeds the magnitude of the combined negative effects on abalone of predation

or threat of predation by rock lobster and competition with C. rodgersii. Thus, for all

overstorey models (Fig. 2.4a), predictions of the qualitative effects of an increase in urchin

abundance agree with empirical observations (Fig. 2.4b).

Understorey models.

In the understorey models (Fig. 2.5a), brown benthos (BB) always responds to changes

in the direction opposite to abalone (AB), pink benthos (PB) and the seaweed canopy

(SW). The correlation patterns in the adjoint matrices of models E and F concur with

empirical observations of a brown- or pink-benthos dominated state. These correlations

are caused by a number of positive feedback cycles (e.g. ‘BB!PB!BB’ in all models;

‘AB!BB!PB→AB’ in model E and F; ‘BB!SW→PB!BB’ in model E and G), and

are also consistent across the ambiguous predictions, the signs of which were determined

by conditions for system stability (i.e. conditions 1-12; Fig. 2.5a).

The correlation patterns consistent with alternative states hold in all adjoint matrices

of the understorey models, despite differences in system structure. In the pink-benthos

dominated state (model F; Fig. 2.5a), the positive feedback cycle ‘AB!BB!PB→AB’

dominates. Both abalone and the seaweed canopy, which remains unaffected by the other

variables, contribute to the maintenance of the pink coralline algae. Conversely, once

the brown-benthos dominated state is established (model G; Fig. 2.5a), the positive

feedback cycle ‘BB!SW→PB!BB’ replaces the former one as the dominating driver of

the dynamics and can directly affect the canopy cover by blocking macroalgae recruitment,

while abalone no longer contributes strongly to feedback to any of the other variables.

Understorey model predictions agree with known community effects of inputs to BB, AB

or SW (Fig. 2.5b).

Model combining overstorey and understorey dynamics.

The adjoint matrix for model G coupling overstorey and understorey dynamics (Fig. 2.6)

presents correlation patterns consistent with the alternative states observed when each
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of the overstorey and understorey communities were considered separately. Conditions

1, 3 and 4 are related to the stability of each subsystem, while condition 2 assumes

strong positive feedback (Fig. 2.6). Perturbations to the overstorey dynamics affect

the understorey community through the effects of SW and RL on understorey variables.

However, alternative states are not necessarily in phase between the two subsystems, as it

is only the overstorey variables that transmit feedback to the understorey dynamic, and

the effects of a4,1, a4,2, a5,1 and a6,1 exert opposing influences on understorey variables,

the sign predictions of which are ambiguous.

2.4.2 Sustained perturbations and ecosystem states

Overstorey models.

In the adjoint matrices associated with model A to D (Fig. 2.4a), the qualitative effects

of fishing rock lobster or abalone can be treated as a negative input to variables 3 or 4,

and read as the negative of the 3rd and 4th columns of the adjoint matrix, respectively.

An increase in sea urchin recruitment translates as a positive input to sea urchins, the

effects of which are given in the 1st column. For example, in model A, increasing fishing

pressure on rock lobster results in a decrease in seaweed, rock lobster and abalone, and an

increase in urchin density. An increase in C. rodgersii abundance produces similar effects.

Thus, fishing rock lobster or an increase in the sea urchin population can both displace the

state of the overstorey community towards the urchin barren state and shift ecosystem

functioning away from its productive seaweed bed state, which is consistent with field

observations (Fig. 2.4b; Johnson et al., 2005; Ling, 2008). Note that only the structure of

models B and D allow for positive inputs to rock lobster abundance to negatively affect the

abundance of emergent abalone as observed in marine reserves around Tasmania, where

populations of large lobsters have rebuilt following over a decade of protection from fishing

(Fig. 2.4b; Barrett et al., 2009).

Understorey models.

While fishing abalone does not affect the overstorey community (Fig. 2.4a), it facilitates

the establishment of the brown-benthos dominated state in the understorey models, where

qualitative predictions of fishing abalone can be read as the negative of the 3rd column
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of the adjoint matrices (Fig. 2.5a). Accordingly to empirical observations (Fig. 2.5b;

Strain and Johnson, 2010), harvesting abalone is predicted to weaken abalone services to

the pink-benthos dominated state (models E and F) and can therefore facilitate a shift

towards a brown-benthos dominated state in which ongoing fishing of abalone no longer

affects community dynamics (model G). The change in qualitative predictions across the

different models, where different positive-feedback mechanisms dominate in each state,

illustrates the potential for a dramatic shift in the understorey dynamics under heavy

abalone fishing.
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Figure 2.6: Model combining under- and overstorey dynamics of reef
communities within the Maria Island marine reserve on the east coast of
Tasmania. Signed-directed graph (a) and qualitative adjoint matrix (b)
are provided. The numbers given in the node define the positions of each
variable in the matrices. CR stands for Centrostephanus rodgersii, the
long-spined sea urchin, SW for the seaweed bed, RL for rock lobster, AB
for abalone, PB for pink benthos, and BB for brown benthos. When an
ambiguous prediction can be elucidated with simple assumptions, the sign
is given between parentheses with a supporting condition referenced by a
superscript number. These conditions are provided below the set of models.
Question marks represent ambiguous predictions, where quantitative
knowledge about the relative strength of some specific interactions would
be required to determine the sign of the response.
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2.5 Discussion

In all models of Tasmanian rocky reefs, patterns in sign responses driven by the presence

of positive feedback emerge in the adjoint matrices consistently with the alternative

community states observed empirically. In overstorey systems, any perturbation, in

particular lobster fishing or an increase in sea urchin abundance, pushes the community

towards a dense seaweed bed supporting a high abundance of lobster or, alternatively, a

sea-urchin-dominated barren with reduced seaweed cover and where lobster populations

decline (Johnson et al., 2005; Ling et al., 2009a). In understorey systems, perturbations

facilitate the establishment of either a brown- or a pink-benthos state, where abalone

are typically lacking from the brown-state, and abundant in the pink-state (Strain and

Johnson, 2010).

2.5.1 Ecosystem monitoring and management

Sets of variables or species that react in phase with alternative states present a particular

interest for ecosystem monitoring and intervention. Correlations in sign predictions may

rarely be consistent with alternative states for the whole model system, as ambiguous

predictions increase throughout the qualitative adjoint matrix with increasing model

complexity. As illustrated with abalone in the overstorey models, variables that are

indirectly influenced by the positive feedback can respond with ambiguity and are not

necessarily in phase with the alternative states. Still, a thorough analysis of the qualitative

adjoint matrix of a system can help detect regular correlations, by either studying only

the effects of a subset of long-term perturbations (i.e. selection of columns), or a subset of

all the responses of modelled variables (i.e. selected rows). For example, Dambacher and

Ramos-Jiliberto (2007) developed qualitative models of Danish shallow lakes, where the

predicted responses of four of the ten model variables (in the adjoint matrix) displayed

regular correlations with the alternative states of the lake system (either a clear-water

or a turbid state). When such regular patterns emerge in the relative responses of some

variables to sustained perturbation, qualitative modelling can guide the choice of the most

appropriate set of indicators to monitor the evolution of ecosystem state. For instance, in

the Tasmanian example, on the basis of the regular correlation identified in the overstorey

models, a decrease in catch rates of rock lobster may constitute a reliable indicator of a

deteriorating state of the seaweed bed towards a sea urchin barren. Even if other factors
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(e.g. fishing, low recruitment) directly drive a decline in large lobsters, the model clearly

identifies an increased risk of the system moving towards a sea urchin barren. Conversely,

inconsistent predictions across overstorey models A to D discount abalone abundance as

a reliable variable for monitoring the state of the overstorey community.

Thus, qualitative modelling can help to identify the most appropriate variables to reliably

track the state of any particular system and focus management on the key drivers of

ecosystem dynamics, although each particular context would deserve further specific

considerations. For instance, from model predictions, abalone does not appear as an

effective lever for management interventions against the spread of sea urchin barrens.

2.5.2 Assessing the potential for alternative states

In all models, correlation patterns in variable responses emerge and concur with the

theoretical framework for alternative states presented above (Fig. 2.2 and 2.3). However,

qualitative modelling can only partially contribute to the identification of alternative

states in nature, as only observations and manipulative experiments can unequivocally

demonstrate the existence of persistent alternative states (Petraitis and Dudgeon, 1999).

If the demonstration of dominant positive feedback in system dynamics constitutes

an insufficient proof of alternative states (Scheffer et al., 2001), this framework can

nevertheless inform the needs for a precautionary management approach and further

manipulative experiments.

Moreover, the approach provides some informative conditions about the relative balance

required between positive and negative feedback for a system to display alternative states.

In these models of Tasmanian rocky reef communities, we only use two general assumptions

to elucidate ambiguous predictions: 1) the interactions creating the positive feedback are

assumed to be sufficiently strong to overwhelm interactions shared with negative feedback

cycles (e.g. condition 1 in Fig. 2.4a); but 2) positive feedback cycles are not so strong

as to compromise system stability as defined in Dambacher et al. (2003), i.e. at each

level of feedback, negative feedback cycles dominate over positive ones (e.g. condition

2 in Fig. 2.4a), which is consistent with the systems persistence through time. In the

combined model of the marine reserve (Fig. 2.6), condition 1 relies more specifically on

the stability of the understorey subsystem, which a fortiori is consistent with the stability
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of the whole model system. Thus, correlation patterns consistent with alternative states

generally require that positive feedback cycles be sufficiently, but not overwhelmingly,

strong relative to negative feedback cycles to allow for system stability.

These algebraic conditions for alternative states in community dynamics are consistent

with the two rules proposed by Thomas (1981) to relate the structure of regulatory

networks to their dynamical properties: 1) the presence of a positive feedback cycle or

circuit is a necessary conditions for multiple stable states, while 2) a necessary condition for

the existence of an attractive cycle is the presence of a negative circuit. Several theoretical

studies on cellular differentiation and genetic networks have illustrated Thomas conjecture

using a range of mathematical modelling approaches (e.g. Cinquin and Demongeot, 2002;

Soulé, 2003). Here, the conditions for the relative balance of positive and negative feedback

cycles in our models are consistent with Thomas conjecture, and moreover define the

parameter space where system dynamics can display alternative states in response to long-

term perturbations. These conditions provide some valuable information for field research

to focus on measuring critical interactions, the relative strengths of which determine the

potential for alternative states in community dynamics.

Note that in this study we only consider the qualitative aspect of long-term shifts in

system equilibrium. Thus, our approach can only complement field experiments or specific

quantitative models because it does not cover some essential aspects related to alternative

states in ecological dynamics, in particular the nature of the transition trajectory from one

state to the other or the characterisation of key thresholds in system dynamics (Scheffer

et al., 2001). Nonetheless, a qualitative analysis of community feedback provides the

means for managers to understand the underlying dynamics of an ecosystem, predict its

potential for alternative states, and identify effective ways to intervene to minimise the

likelihood of a shift to a particular state.

2.5.3 Model structure uncertainty

Models A to D demonstrate how structural uncertainty, i.e. the inclusion of uncertain

interactions a4,3 (RL!AB) and a4,1 (CR!AB), can significantly affect model predictions

and should not be underestimated in model building. However, in our examples with the

Tasmanian rocky reef system, structural uncertainty does not affect the gross dynamics
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of overstorey models, as the sign structure associated with the variables involved in the

positive feedback driving the dynamics was unchanged in the adjoint matrices of all models

A to D. Nonetheless, with the inclusion of these interactions in models B to D, the

predicted responses of abalone to inputs in seaweed, lobster or sea urchin abundances

become ambiguous as opposed to fully-determined in model A. A positive input in the

abundance of lobster has a positive effect on abalone population in model A. The same

input will induce the opposite effect in model B, however, if the negative effect a4,3 of rock

lobster on abalone is strong. For example, a decline in the density of emergent abalone was

observed in the Maria Island marine reserve (Fig. 2.4b; Barrett et al., 2009) after recovery

of a population of large lobsters. Large lobsters can directly prey on juvenile abalone and

induce cryptic predator-avoidance behaviour among medium-sized individuals, and thus

restrict their access to food (Pederson et al., 2008). The interaction a4,1 (the local effect

of the sea urchin on abalone in intact seaweed beds) was identified through small-scale

experiments (Strain, 2009), but its effects on community dynamics (Model C) have not

been reported at larger scales in the field. Thus in models B to D, depending on the

relative strength of interactions a4,1, a4,2, a4,3, the sign of abalone response to inputs can

be switched and a similar perturbation can lead to opposite predictions about abalone

abundances relative to model A.

In the ecological modelling literature, testing for uncertainty in ecological models often

focuses on sensitivity analysis of parameter values (Saltelli et al., 2000) while the question

of model structure uncertainty usually remains underestimated at best or unaddressed

(Laskey, 1996; Dambacher and Ramos-Jiliberto, 2007; Hosack et al., 2008). We emphasise

the importance of assessing structural uncertainty in models of complex systems, especially

in ecological models where the understanding of system interactions is incomplete.

Modellers often define confidence intervals around the mean values of model parameters

to account for the robustness of the quantitative information supporting the model. Then,

testing for model sensitivity to parameter values is recognised as essential (Saltelli et al.,

2000). In the same manner, ranking the robustness of the qualitative information (e.g.

ecological interactions) used in model building is essential to test every assumption built

into the model structure itself. As illustrated here with models A to D, qualitative

modelling of feedback properties is well suited to assess structural uncertainty in models

of complex systems (Hosack et al., 2008; Metcalf et al., 2008). Perhaps most importantly,

recognition of structural uncertainty in models and resolution of the effect of that
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uncertainty on qualitative dynamics is extremely valuable to modellers and managers

alike in prioritising future research.

2.6 Conclusions

In our qualitative models of subtidal reef communities in Tasmania, dominant positive

feedback structures the relative responses of variables to long-term perturbations and

qualitative predictions are consistent with observed alternative states. In the overstorey

models, perturbations reinforce either a productive seaweed bed state favourable to

commercial species, or a low-productive urchin barren state. In the understorey models,

qualitative adjoint matrices agree with sustained changes in population growth rate

promoting either a pink-benthos dominated state with high abundance of abalone and

seaweed bed, or a brown-benthos dominated state. The conditions specified for each

model inform the relative balance required between positive and negative feedback for

system dynamics to display alternative states.

We illustrate with both a theoretical framework and empirical models of rocky reefs

communities around Tasmania how qualitative modelling of feedback properties can

identify mechanistic causal relationships between positive feedback and the presence of

alternative states in ecosystem dynamics. Thus, based upon only qualitative knowledge

of key variables and interactions, the approach can detect the potential for alternative

states in ecosystem dynamics and inform the need for both caution in management

of human activities that affect key variables, and also field experimentation to further

investigate their existence. As illustrated with these Tasmanian examples, the approach

can provide valuable insights on the indirect effects of human activities on ecosystem state

and qualitative predictions can help distinguish the most adequate variables for both

ecosystem monitoring and management intervention.
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Chapter

3 Pattern-oriented validation and

sensitivity analysis of a model with

alternative community states: A

simulation model of ecological

dynamics of temperate rocky reefs in

Tasmania

3.1 Abstract

While they can be very useful to support decision-making in ecosystem management,

robust simulation models of ecosystems with alternative states are challenging to build

and validate. Because of the possibility of alternative states in model dynamics, no trivial

criteria can provide reliable and useful metrics to assess the goodness-of-fit of such models.

This paper outlines development of the model TRITON, and presents some simulation-

based validation and analysis of model sensitivity to input parameters. TRITON is a model

of the local dynamics of seaweed-based rocky reefs communities in eastern Tasmania, which

now occur in two alternative persistent states, either as dense and productive seaweed

beds, or as sea urchin ‘barren’ habitat, i.e. bare rock largely denuded of macroalgae and

benthic invertebrates due to destructive overgrazing by sea urchins. Pattern-oriented-

modelling, i.e. comparing patterns in model dynamics from Monte-Carlo simulations with

direct observations of Tasmanian reef communities over large scales, provides a valuable

approach to calibrate the dynamics of TRITON.

Using the computationally efficient, model-independent extended Fourier amplitude

sensitivity test, we identify sea urchin and rock lobster recruitment rates, as well as

lobster fishing as key parameters of influence on overall model behaviour. Through a

set of independent sensitivity tests, we tease apart different sets of drivers facilitating the

‘forward’ shift from the seaweed bed to the urchin-dominated state, and the reverse shift

from denuded sea urchin barren to recovery of barrens back to the seaweed cover. If solely
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relying on rock lobsters to deplete sea urchins once barrens have established, chances of

restoring seaweed beds are marginal: seaweed bed restoration takes up to three decades in

the simulations and is unrealistic to implement under current fishery management plans.

This model validation exercise provided both a better understanding of the key drivers of

community dynamics (e.g. fishing of rock lobsters), and an assessment of priority areas

for further empirical work identified from limitations of the model arising as a result of

incomplete understanding of seaweed-urchin-lobster dynamics.

3.2 Introduction

Models of ecological dynamics can be helpful to inform decision-making and improve

the management of human activities that rely on natural resources (Clark et al., 2001;

Smith et al., 2011). More specifically, simulation models constitute unique decision-

support tools to assess the effects of different management scenarios in ecosystems with

alternative community states, where anthropogenic effects can lead to dramatic and

possibly irreversible changes in structure and function across entire landscapes (Scheffer

et al., 2001; Mumby et al., 2007; Firn et al., 2010; Melbourne-Thomas et al., 2010; Estes

et al., 2011; Fung et al., 2011). However, building reliable simulation models requires

a comprehensive understanding of key processes and drivers of system dynamics, and

the accuracy of simulations will depend on the robustness of model parameterisation.

Ecological processes, especially trophic interactions, are by essence variable and the

dynamics of systems can be sensitive to this variation. However, ecological processes

are usually difficult to measure precisely (Novak, 2010). It follows that even in well-

studied ecosystems, a complete and precise understanding and quantification of ecological

processes is rarely possible. Thus, uncertainty arises as a major feature of ecological

models, stemming from the variable nature of ecological processes, from imperfect

understanding of the mechanisms underpinning ecosystem dynamics, and limited ability

to quantify complex natural processes with precision (Saltelli et al., 2000).

In this context, useful ‘minimum realistic’ ecological models must adequately address

questions of interest to management while accounting for the amount and reliability of

the information available about the study system (Fulton et al., 2003a). The art of

ecosystem modelling lies in making a series of choices and, to a certain degree, an ecological

model is only as reliable as the modeller’s understanding of system dynamics (Klepper,



3.2. Introduction 40

1997; Boschetti et al., 2011). Therefore, a simulation model requires some objective

assessment prior to its application and several approaches are available to validate and

calibrate the dynamics of complex ecosystem models (Klepper, 1997; Turley and Ford,

2009; Duboz et al., 2010). Model calibration is often undertaken by optimising the fit of

simulated community dynamics to available empirical observations. Snapshots or mean

observations about the composition of the study system are often used as metrics for

model validation (e.g. mean species biomasses; Marzloff et al., 2009), although these model

fitness criteria poorly characterise the variability of system dynamics, which may be of

critical importance. In ecosystems that exhibit alternative states, ecologists exhaustively

study and describe communities in one state or the other, while discontinuous shifts in

community dynamics are, by definition, swift and are thus rarely observed or monitored

(Scheffer et al., 2001). Therefore, precise information of a system with hysteresis (i.e.

where a small change in parameters or species abundance can lead to a dramatic shift

to a new community state that persists even when the change is reversed; see Donahue

et al., 2011) at its threshold points is usually lacking. Lack of observations of community

dynamics for systems that manifest hysteresis, make validation of ecosystem models with

alternative states particularly challenging (Scheffer and Carpenter, 2003 but see Mumby

et al., 2007; Lauzon-Guay et al., 2009; Fung et al., 2011 for examples of model validation).

Given inability to formally and comprehensively validate the accuracy of ecosystem models

against reality, predictions from ecosystem models are inherently uncertain. Uncertainty

of simulation models can be broken down into three main components:

(i) structural uncertainty, which refers to model structure and its resolution, e.g. the

extent to which species are aggregated or the nature of functional groups; the

number and certainty of trophic interactions considered; spatial and temporal scales

of processes, etc. (Laskey, 1996; Hosack et al., 2008; Marzloff et al., 2011a);

(ii) choice of model formulation, which includes programming choices (e.g. discrete

versus continuous time (Deng, 2008), timing of processes operating at different

scales; whether the model is spatially explicit) as well as the actual representation

of ecological processes in the model (e.g. alternative ways to account for density-

dependence in functional responses; Skalski and Gilliam, 2001);

(iii) uncertainty in model parameterisation; uncertainty in individual parameter
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estimates, which can rapidly compound depending on interactions in the model,

directly contributes to uncertainty of model outputs (Saltelli et al., 2000; Cariboni

et al., 2007).

Assessing these different sources of model uncertainty is an essential ingredient of ecological

modelling (Saltelli et al., 2000; Marzloff et al., 2011a). An added complication for models

with alternative community states is that sensitivity analysis can be of limited value (van

Nes and Scheffer, 2003). This is because simulation outcomes may only reflect whether

the community reaches one state or the other and only partially depict hysteresis in model

dynamics. Additionally, the modelled community is more prone to shift to the alternative

state when parameter space is near bifurcation points, so linear and partial sensitivity

tests can be limited because they typically neglect the influence of interactions between

multiple input parameters giving rise to complex non-linear dynamics (Saltelli et al., 1999;

van Nes and Scheffer, 2003).

In this paper, we explore and validate the behaviour of a model of subtidal seaweed-based

reef community dynamics in eastern Tasmania, south east Australia. These temperate

rocky reefs occur in two alternative community states, as dense stands of seaweed or as

bare rocky expanses known as sea urchin ‘barren’ habitat (Ling et al., 2009a). On the

east coast of Tasmania, the climate-driven range extension of the long-spined sea urchin

Centrostephanus rodgersii represents a major threat for endemic seaweed bed communities,

including high value commercial species (Johnson et al., 2005; Ling et al., 2009a). Within

its’ new eastern Tasmanian range, C. rodgersii can form and maintain extensive barren

habitat, i.e. areas of bare rock up to 10s ha, following the destruction of seaweed beds by

its grazing activity. Compared to the seaweed beds, sea urchin barrens have dramatically

lower productivity, habitat complexity and species diversity (Ling, 2008), and key fishery

species (abalone and rock lobsters) do not occur in commercially harvestable quantities.

Thus, preventing the formation of further C. rodgersii barrens, and promoting the reverse

shift back to seaweed communities where barrens occur, is a priority for the management

of reef communities and fisheries in eastern Tasmania (Ling et al., 2009a; Pecl et al.,

2009). It is therefore important that managers are aware of the existence of fundamentally

different ecologies in each alternative states and that they better understand the ecological

mechanisms that drive the shift from dense seaweed bed to urchin barrens, and the
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circumstances in which these shifts are likely to occur. Here, we calibrate and validate

model behaviour against observed patterns that describe community dynamics, including

shifts between these alternative states. Structural uncertainty has been comprehensively

tested in this model (Marzloff et al., 2011a) and hence this paper focuses on sensitivity to

uncertainty in model formulation and parameterisation. Using Monte-Carlo simulations,

we explore the effects of parameter uncertainty on the behaviour of the model. The

objectives of this work are three-fold.

(i) First, to calibrate the propensity of the simulated community to shift from the

seaweed bed to the sea urchin barren state against known probability of barren

formation in southeastern Australia. In addition, comparison of the dynamics

emerging from Monte-Carlo simulations against observed patterns contributes to

model validation.

(ii) To quantify model sensitivity using the extended Fourier amplitude sensitivity

test (FAST), a quantitative model-independent sensitivity analysis technique for

complex simulation models (Saltelli et al., 1999). The extended FAST assesses the

contribution to model output of each input parameter, including through interactions

with other factors. We analyse model global behaviour as well as specific components

of its dynamics: by decomposing overall model dynamics into ‘forward’ shift (from

seaweed bed to barren) and ‘backward’ shift (from barren back to seaweed bed)

components, the sensitivity tests overcome problems inherent to sensitivity analysis

of models with hysteresis (van Nes and Scheffer, 2003).

(iii) To use model sensitivity analysis as a means to both, identify key ecological

processes that drive Tasmanian reef community dynamics, and highlight gaps in

knowledge about processes of high influence on community dynamics. In this respect,

model sensitivity analysis provides a valuable tool to guide and prioritise future

experimental and other empirical ecological research on Tasmanian rocky reefs.

3.3 Material and Methods

We developed a simulation model of Tasmanian reef communities, which we have called

TRITON (Temperate Reefs In Tasmania with lObsters and urchiNs), to test the ecological
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Figure 3.1: Conceptual diagram of TRITON, a model of local community
dynamics on rocky reefs in eastern Tasmania. The boxes represent the three
functional groups or species explicitly interacting in TRITON, namely
southern rock lobster, long-spined sea urchin and the seaweed assemblage.
Each box lists all the parameters defining the dynamics of each group.
Interactions between the three groups are represented as arrows, where a
full circle at the end of lines indicates a negative effect to the adjacent
group while an actual arrow head points to a group positively affected in
this interaction. Photography credits: Scott D. Ling.

consequences of different management scenarios. Currently, a major concern for the

management of Tasmanian subtidal reef communities is the formation of sea urchin

barrens following incursion of the long-spined sea urchin Centrostephanus rodgersii from

Australia’s mainland to Tasmanian waters (Ling et al., 2009a). By destructively grazing

seaweeds and benthic invertebrates, C. rodgersii can form extensive barren areas denuded
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of macroalgal cover, with flow-on effects reducing local abundances of the two most

valuable commercial reef species in Tasmania (southern rock lobster, Jasus edwardsii and

blacklip abalone, Haliotis rubra) (Johnson et al., 2005). Large lobster individuals (carapace

length >140 mm) constitute the only efficient predators of C. rodgersii in Tasmanian

waters (Ling et al., 2009a), so that commercial and recreational fishing of lobster directly

facilitates the formation of C. rodgersii barrens. If simulation modelling is to support

the management of this ecological phenomenon, the ability of TRITON to realistically

capture the potential for discontinuous shifts between the two alternative states (seaweed

bed versus sea urchin barren) is essential. The following subsections describe the structure

of the TRITON model, its parameterisation and the empirical data available to calibrate

model dynamics. Next, we outline the extended Fourier amplitude analysis test (FAST;

Saltelli et al., 1999) used to test model sensitivity to parameter values, before specifying

both the simulation characteristics and the important output metrics screened for the

sensitivity tests.

3.3.1 TRITON: local dynamics of Tasmanian rocky reef communities

TRITON represents the mean community dynamics of an individual patch of rocky

reef (area 100 m2 - 10 ha; depth 8 - 35 m on open exposed reef habitat where C.

rodgersii barrens occur in Tasmania). The dynamics of three functional groups or species

are explicitly captured (Fig. 3.1): each difference equation respectively represents the

dynamics of the seaweed bed (as SW in the equations) (Eq. 3.1), sea urchin (as CR

for Centrostephanus rodgersii) (Eq. 3.2) and rock lobster (as RL) (Eq. 3.3). Size-

structured dynamics for both sea urchin and rock lobster populations are key for TRITON

to realistically capture both, the effects of size-related fishing regulations (i.e., legal catch

size), and the size-structured nature of lobster predation on urchin (cf. Eq. 3.2).

(i) The seaweed bed includes all canopy-forming macroalgae (dominated by Ecklonia

radiata at depth> 6 m, or Phyllospora comosa on shallow reef, and including a

raft of other large phaeophytes that contribute to the canopy structure including

representatives of the genera Cystophora, Sargassum, Sierococcus, Carpoglossum,

Acrocarpia and Xiphophora) and understorey algal assemblages (e.g. filamentous

and foliose rhodophyta, small foliose chlorophyta and phaeophyta, and corallines
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and other encrusting red algae). Quantitative information on the dynamics of the

different guilds of algae that constitute the seaweed bed is lacking. The understanding

of the details of overgrazing of these different algal species and groups by C. rodgersii

is also incomplete. Thus, in the model, the seaweed bed compartment corresponds

to the current minimum realistic representation of temperate algal communities.

Seaweed assemblage (SW in the following equations) dynamics follows logistic growth

(Eq. 3.1), with parameters derived from monitoring of macroalgal recovery from a

barren state over two years following the experimental removal of grazers (Ling,

2008). Propagules supply is constant and assumed independent from the local state

of the seaweed bed, as external supply from adjacent macroalgal beds is not limiting

(CR Johnson, personal observation). Although a range of herbivorous species rely

on macroalgae as part of their diet, only the long-spined sea urchin Centrostephanus

rodgersii (CR) has demonstrated the ability to overgraze Tasmanian seaweed beds

on exposed rocky reefs on the open coast. The native purple sea urchin (Heliocidaris

erythrogramma) also forms barren habitat (on a smaller scale than C. rodgersii)

in sheltered bays in eastern Tasmania, but TRITON focuses exclusively on the

dynamics of inshore exposed reefs where the effect of H. erythrogramma is marginal.

Thus, grazing by the long-spined sea urchin is the only explicit source of seaweed

biomass loss in the model. Urchin grazing rate is assumed to be constant as,

contrary to northern hemisphere strongylocentroid urchins that destructively graze

seaweed by forming a grazing front once critical density and behavioural thresholds

are reached (Lauzon-Guay et al., 2009), there is no evidence of density-dependence

on Centrostephanus rodgersii grazing rate. Indeed, the effects of individual grazers

are additive: on barren habitat, sea urchin destructive grazing shows a remarkably

consistent ratio of 0.6 m2 of grazed area per individual, irrespective of the size of

the barrens patch (Flukes et al., unpublished data). Although all size classes of

emergent urchins consume seaweed at exactly the same rate for a given biomass of

urchins (the last term in Eq. 3.1), larger urchin individuals have a high destructive

impacts on standing macroalgae in the model as urchin population dynamics (see Eq.

3.2) capture biomass gain from one size class to the next due to individual growth.



3.3. Material and Methods 46

The equation for the seaweed assemblage is given as:

SWt+1 = max(0, rSW + SWt × (1 + αSW × KSW − SWt

KSW︸ ︷︷ ︸
Logistic growth

)− βSW,CR ×
NCR∑

s=1

CRs,t

︸ ︷︷ ︸
Loss to sea urchin grazing

)

(3.1)

with SWt, seaweed biomass at time t (g. 200 m−2); rSW , seaweed recruitment rate

(g. year−1. 200 m−2); αSW , seaweed intrinsic growth rate (year−1); KSW , seaweed

carrying capacity (g. 200 m−2); βSW,CR, sea urchin grazing rate (g of SW. g of CR−1.

year−1. 200 m−2); CRs,t, biomass density of sea urchin (CR for C. rodgersii) in size

class s at time t (g. 200 m−2).

(ii) Population growth of C. rodgersii, the long-spined sea urchin, is size-structured (Eq.

3.2) and fitted against data from large-scale population surveys on the east coast

of Tasmania (cf. Appendix A; Ling et al., 2009b; Johnson et al., 2011). Despite

its destructive grazing of seaweed beds, sea urchin population dynamics (CR for

Centrostephanus rodgersii in the equations) is independent of seaweed consumption

because sea urchins forage on drift material, ephemeral filamentous algae and

microalgae to subsist on barren habitat in the absence of attached macroalgae (Ling

and Johnson, 2009). In TRITON, the size structure of sea urchin individuals is

distributed across 21 size classes ranging from 40 to 120 mm test diameter using 4.12

mm increments, while individuals smaller than 40 mm are not considered because

they stay cryptic in crevices with virtually no effect on standing macroalgae through

grazing (SD Ling, unpublished data; Ling and Johnson, In press; Ling et al., 2009a).

The effect of habitat complexity on survival of juveniles (provision of crevices to

shelter from predation) is implicitly modelled in the Monte-Carlo simulations through

changes in mean recruitment rate. Only adult animals of test diameter superior to

70 mm are fully emergent (Ling and Johnson, In press; Ling et al., 2009a), hence

it is these animals that are exposed to lobster predation in the model. Recruitment

is stochastic and external given that C. rodgersii has a planktotrophic larval stage

of c. 3 months duration that can therefore disperse with currents at scales of 100-

1000 km (Huggett et al., 2005; Banks et al., 2007). The southern rock lobster is

the only effective predator of the spiny sea urchin in Tasmanian waters. Because

a lobster’s ability to handle a given size of sea urchin is determined by the size of

its front pair of walking legs (Ling et al., 2009a), predation of C. rodgersii by rock
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lobster is constrained by the relative size of prey and predator (Eq. 3.2). Hence, size-

structured predation by lobsters (third term of Eq. 3.2) is the only explicit source of

natural mortality on sea urchins in the model. The predation rate βCR,RL accounts

for density-dependence of C. rodgersii predation following any of Holling’s type I, II

or III functional response (Holling, 1966; cf. Appendix A for further details about

the definition and parameterisation of Holling’s functional responses in TRITON).

CRs,t+1 = max



0, rCR︸︷︷︸
Recruitment to the first size class (Only if s = 1)

+ CRs,t × exp(−βCR)︸ ︷︷ ︸
Biomass at t affected by natural mortality

+
j<s∑

j=1

δ′s,j × CRj,i − (
NCR∑

i>s

δi,s)× CRs,t

︸ ︷︷ ︸
Growth between different size classes accounts for individual weight gain

−βCR,RL

NRL∑

i=minCL

RLi,t

︸ ︷︷ ︸
Size-structured predation

−CRs,t × (1− exp(−FCRs))︸ ︷︷ ︸
Culling mortality





(3.2)

with CRs,t, biomass of sea urchin in size class s at time t (g. 200 m−2); rCR, urchin

recruitment rate to the first size class s = 1 (g. year−1. 200 m−2) where the mean

recruitment rate µCR varies stochastically: the probability of any recruitment a given

year follows a binomial of probability pCR of successful recruitment; when recruitment

occurs a given year, its magnitude is drawn out of a lognormal distribution of mean

0 and standard deviation σCR; βCR, urchin natural mortality (year−1); FCR, urchin

harvesting mortality (year−1); δi,j , biomass-based growth transition probability from

size class j to i (year−1); δ′i,j , abundance-based growth transition probability from

size class j to i (year−1); βCR,RL, size-structured lobster predation rate on sea urchin

of size class s (g of CR. g of RL−1. year−1. 200 m−2), which follows any of Holling’s

type I, II or III functional responses. Only lobsters from size classes bigger than

minCL, defined from the following allometric relationship, can prey on sea urchins

of class s: the minimum carapace length (CLmin, in mm) for rock lobster to predate

upon sea urchin individuals of a given test diameter (TD, in mm) can be expressed

after Ling et al. (2009a) as: CLmin = α1log(TD)− α2 where the scalars α1 and α2
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define the allometry of the size-structured interaction.

(iii) The size-structured lobster (RL for rock lobster) population component is derived

from the Tasmanian rock lobster fishery stock assessment model (see Punt and

Kennedy, 1997; McGarvey and Feenstra, 2001), and so TRITON represents the

lobster population across 31 size classes ranging from 65 to 215 mm of carapace

length by 5 mm increments. This also enables a realistic representation of the

effects of size-related fishing regulations (since minimum or maximum legal catch

sizes are to the nearest 5 mm). This representation of size-structured dynamics

enabled close fitting against observed population recovery from fishing following

protection from fishing (Barrett et al., 2007). The natural mortality term accounts

for sources of mortality that are not explicitly captured elsewhere in the equation,

e.g. through predation by sharks or cephalopods (Pecl et al., 2009). The lobster

population in the model relies on the local state of the seaweed bed as an essential

source of habitat and food. More specifically, abundances of juveniles are lower

on barren habitat than in adjacent kelp beds, while initial observations suggest

that abundances of large predatory-capable lobsters seems largely unaffected by

barren habitat (Johnson, unpublished data). Indeed, canopy-forming macroalgae,

as opposed to barren habitat, can facilitate both, settlement of lobster puerulus by

providing a complex three-dimensional structure and (by inference) an appropriate

settlement cue, and development of juvenile lobsters by supporting a broad diversity

of invertebrate species (Ling, 2008). Therefore, a constant coefficient, ranging from 0

(for no recruitment on barren habitat) to 1 (for no effect of barrens on recruitment),

scales lobster recruitment as a function of the state of the seaweed bed (cf. last term

of Eq. 3.3). Lobster recruitment rate rRL is (i) stochastic following a lognormal

stochastic function and (ii) independent of the local lobster population given that

lobsters have an 18-24 month pelagic larval stage, implying large-scale dispersal
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(Bruce et al., 2007). The equation is:

RLs,t+1 = max




0, rCR

[
1− (1− βRL,SW (1− SWt

KSW
))

]

︸ ︷︷ ︸
Recruitment to the first size class (Only if s = 1) gets reduced as barren habitat expands.

+
j<s∑

j=1

δ′s,j ×RLj,i − (
NRL∑

i>s

δi,s)×RLs,t

︸ ︷︷ ︸
Growth between different size classes accounts for individual weight gain

+ RLs,t × exp(−βRL)︸ ︷︷ ︸
Biomass at t affected by natural mortality

−RLs,t × (1− exp(−FRLs))︸ ︷︷ ︸
Fishing mortality





(3.3)

where RLs,t denotes the biomass of rock lobsters in size class s at time t (g. 200

m−2); rRL, lobster recruitment rate (g. year−1. 200 m−2) in which mean recruitment

rate µRL varies stochastically following a lognormal stochastic function of mean 0 and

standard deviation σRL; βRL,SW is a scalar, ranging from 0 for no lobster recruitment

on barren grounds to 1 for no effect of barren habitat on lobster mean recruitment;

βRL, lobster natural mortality (year−1); δ′s,j , biomass-based transition probability

from size class j to s, or element of the sth row, jth column of the transition

probability matrix (year−1 or g. g−1. year−1); δi,s, abundance-based transition

probability from size class s to i (year−1 or individual.individual−1.year−1); SWt,

seaweed biomass (g. 200 m−2); FRLs, fishing mortality for lobster of class s (year−1).

Recruitment rates vary stochastically for both lobster and sea urchin populations (See

Eq. 3.2 and 3.3), while propagule supply is assumed constant for the seaweed bed (Eq.

3.1). Recruitment is independent of local spawning population densities. For all three

modelled groups, larval / propagule settlement occurs over much larger spatial scales than

individual reefs, and hence is not limited locally (Banks et al., 2010; Linnane et al., 2010;

Coleman et al., 2011; Johnson, unpublished data). Both the sea urchin and lobster have

lengthy larval phases (∼3 and 18-24 months respectively) during which time they can be

transported far from their natal reef, and sporogenous seaweeds are often torn from the

substratum in storms and drift along the coast depositing spores. The three-dimensional

seaweed bed provides both essential substratum for lobster puerulus settlement and a

diversity of food sources for juvenile lobsters (Ling, 2008), and so lobster recruitment is

affected by the extent of barren habitat (Eq. 3.3).
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Model time is discrete because it is more computationally efficient than using continuous

time, and also more flexible to implement using the object-oriented Python programming

language (Python Software Foundation, 2008). A two-week time-step was adopted as a

compromise between computational efficiency and adequate convergence between discrete-

and continuous-time dynamics (Deng, 2008).

3.3.2 Parameterisation

Variables are expressed in fresh weight biomass density with a default parameterisation for

a reef area of 200 m2 (variables in g. 200 m−2). Biomass density allows for weight-based

(rather than abundance-based) trophic interactions and was derived from experimental or

other empirical observation (see Appendix A). All modelled processes were parameterised

from in situ observations or measurements (Redd et al., 2008; Ling and Johnson, 2009),

field- or laboratory-based experiments (Hill et al., 2003; Ling et al., 2009a), or well-

validated models (Punt and Kennedy, 1997). For each parameter, Table 3.1 summarises

data sources (Punt and Kennedy, 1997; Punt et al., 1997; McGarvey and Feenstra,

2001; Hill et al., 2003; Ling, 2008; Barrett et al., 2009; Ling and Johnson, 2009; Ling

et al., 2009a,b) and the estimated distribution of each parameter value (i.e. mean and

standard deviation for normal distributions; minimum and maximum bounds for uniform

distributions). For normally distributed parameters, values within the 90% confidence

interval (bounded by the 5 and 95% quantiles) were explored during the sensitivity

analyses. As well as enveloping uncertainty in modelled processes, these ranges implicitly

encompass the span of environmental conditions (e.g. habitat, depth) and anthropogenic

forcing (e.g. fishing pressure) encountered on Tasmanian rocky reefs. Appendix A

comprehensively describes all data sources and the estimation of model parameters.
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Table 3.1: Parameter estimates (mean and standard deviation for
normally-distributed errors; mean, minimum and maximum estimates
otherwise) and ranges (90% confidence intervals for normally distributed
estimates) used for the sensitivity analysis of the TRITON model of
Tasmanian reef dynamics. The table lists all parameters defining
population dynamics of the three model groups (i.e. seaweed bed, urchin,
lobster), trophic interactions and allometric relationships in the model.

Parameter Units Estimate Standard error Confidence interval

Seaweed bed logistic growth
Fitted against data from Ling, 2008.

αSW year−1 4.43 1.65 1.72− 7.14
KSW g SW.200 m−2 3.4×105 3.6×104 2.8× 105 − 4× 105

µSW g SW.200 m−2.year−1 5000 2500− 10000

with α, intrinsic growth rate; K, carrying capacity; µ, mean annual recruitment rate.

Sea urchin size-structured population growth
Growth transition matrix derived from Ling and Johnson, 2009.
β is the annual natural mortality; µ, the mean annual recruitment rate.
Fitted against data from Ling et al., 2009b; Johnson et al., 2011.

βCR year−1 0.11 0.1− 0.15
µCR g CR.200 m−2.year−1 4100 2500− 10000

The annual stochastic recruitment function follows a binomial with a 0.4 probability
of success, which is combined with a lognormal with a standard deviation σCR of 0.5.

Lobster size-structured population growth
Growth transition matrix derived from McGarvey and Feenstra, 2001.
β is the annual natural mortality; µ, the mean annual recruitment rate.
Fitted against data from Barrett et al., 2007.

βRL year−1 0.23 0.20− 0.26
µRL g RL.200 m−2.year−1 350 200− 800

The annual stochastic recruitment function follows a lognormal with a standard deviation
σRL of 0.6.

Lobster dependency on the state of the seaweed bed
Lobster recruitment is scaled by: (1− β)× (1− BSW

KSW
)

with BSW, seaweed bed biomass density; KSW, seaweed bed carrying capacity.

βSW,CR constant 0.64 0.11 0.46− 0.83
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Parameter Units Estimate Standard error Confidence interval

Urchin grazing rate
βSW,CR g SW.g CR−1.year−1 5.94 1.10 4.13− 7.75

Functional responses of lobster predation on urchin

With BCR, urchin biomass density (g. 200m-2):
Holling Type I as βCR,RL = min(βBCR,β′)

β g RL−1.year−1 6.68 ×10−4 2.27 ×10−5 6.31 ×10−4 - 7.05 ×10−4

β′ g CR.g RL−1.year−1 9.40 3.00 4.46 - 14.33

Holling Type II as βCR,RL = β(BCR)
1+β′(BCR)

β g RL−1.year−1 11.09×10−4 1.68 ×10−4 8.34 ×10−4 - 13.85 ×10−4

β′ g CR−1 1.10×10−4 0.20 ×10−4 7.76 ×10−5 - 14.19 ×10−5

Holling Type III as βCR,RL = β(BCR)2

1+β′(BCR)2

β g CR−1.g RL−1.year−1 2.35 ×10−7 0.55 ×10−7 1.46 ×10−7 - 3.25 ×10−7

β′ g CR−1.g CR−1 2.50 ×10−8 0.60 ×10−8 1.47 ×10−8 - 3.60 ×10−8

Allometric and other size-based relationships

Length-weight relationship for the long-spined sea urchin
B = 0.00267× TD2.534,
with B, urchin individual weight (g); TD, urchin test diameter (mm).

Length-weight relationship for the southern rock lobster
B = 0.000271× CL3.135,
with B, lobster individual weight (g); CL, lobster carapace length (mm).

Size-Structured predation of lobster on urchin
CLmin = 43.5× log(TD)− β, with β ∈ [48.91 : 71.01]
with CL, lobster carapace length (mm); TD, urchin test diameter (mm).
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a

b

Figure 3.2: Sensitivity results from 50-year-long Monte-Carlo simulations
for model calibration under historical fishing conditions. (a) Extended
FAST sensitivity indices reveal that recruitment rates for urchin and lobster
have the highest influence on model behaviour; (b) Surface plot of the
probability of shift from seaweed bed to sea urchin barren as a function of
urchin and lobster recruitment. The white vertical line marks the minimum
mean recruitment rate that can produce realistic biomass densities of sea
urchin and achieve levels of barren formation across simulations similar to
those observed across rocky reefs in New South Wales (Andrew and O’Neill,
2000) and Tasmania (Johnson et al., 2005, 2011) where C. rodgersii is long
established (i.e. 50% of rocky reef coverage).



3.3. Material and Methods 54

3.3.3 Model validation

No meaningful optimisation could be designed to calibrate the goodness-of-fit of the

model against multiple quantitative criteria (e.g. Klepper, 1997; Duboz et al., 2010).

In particular, because of the occurrence of alternative states, aiming for model mean

dynamics to capture mean community composition is not meaningful. Because of the

model complexity, neither could an interpretable analytical solution be derived so as to

formally validate the occurrence of alternative stable states within the estimated parameter

space as was achieved, for example by Fung et al. (2011). Initially proposed as a means to

calibrate agent-based models (Grimm et al., 2005), pattern-oriented modelling constitutes

an effective way to validate and calibrate the behaviour of TRITON against the data

available for Tasmanian reef dynamics. We focused on the ability of simulations to

mimic observations on the two alternative community states and the dynamics of the

‘forward’ shift from the seaweed bed to the sea urchin barren state. The ranges of

biomass densities of the three model groups were estimated for both community states

from large surveys of reef habitat and species abundance around Tasmania. We converted

seaweed percentage cover and sea urchin density to biomass densities directly comparable

to model outputs (Fig. 3.5a). The frequency of occurrence of the two alternative states

in different regions of the coastline with different fishing and urchin invasion history was

derived from these surveys (Johnson et al., 2005, 2011). Historical fishing mortalities were

estimated from the rock lobster stock assessment model (FRL within 1-1.8 year−1; Klaas

Hartmann, pers. comm.). In regions where C. rodgersii has been present for several

decades and where key reef predators have been depleted by fishing (e.g. New South

Wales, the Furneaux group and north-eastern Tasmania), about 50% of coastal rocky

reef habitat is reported as sea urchin barren (Andrew and O’Neill, 2000; Johnson et al.,

2011). Recruitment, i.e. juveniles entering the population, is possibly the most challenging

process to understand and measure in marine ecology and fisheries sciences. Thus, in

marine ecosystem models, recruitment rates are widely recognised as the most uncertain

parameters and are commonly used as calibration factors (e.g. Marzloff et al., 2009).

Lobster predation directly controls sea urchin dynamics in TRITON so we adjusted C.

rodgersii recruitment to ensure that simulations could achieve realistic sea urchin biomass

densities while accurately producing ‘forward’ shifts from the seaweed bed to the urchin

barren state. A pilot global sensitivity analysis was used to adjust sea urchin mean



3.3. Material and Methods 55

recruitment rate (µCR; Eq. 3.2) to calibrate model behaviour under historical fishing

patterns (Fig. 3.2). A final aspect of model validation specifically tested for alternative

formulations of the lobster predation rate. Density-dependence of lobster predation rate on

urchin density was successively represented as a Holling type I, II or III functional response

(Holling, 1966), and the effects on model behaviour compared (Fig. 3.3). The effects of

alternative formulations of lobster predation rate were also examined by comparing the

scores on the first two axes of the PCA of simulation outcomes with each of the Holling

type I, II or III functional responses. The comparison of the projection of simulations

outcomes with each functional response on the first two PCs was both, qualitative based

on the visual inspection (Fig. 3.4), and statistical using a MANOVA with the type of

functional response as a factor.

3.3.4 Global sensitivity analysis with the extended Fourier amplitude

sensitivity test (FAST) (Saltelli et al., 1999)

The extended Fourier amplitude sensitivity test (extended FAST) provides a robust

quantitative and model-independent sensitivity analysis method for models of complex

systems dynamics (Saltelli et al., 1999). Unlike correlation- or regression-based analysis

techniques, the ANOVA-like extended FAST is suited to quantitative sensitivity analysis

of complex non-linear models because it does not assume linearity or monotony between

model inputs and outputs. With the extended FAST, parameter space is explored

comprehensively following a Latin-Hypercube-Sampling-like stratified design (see Saltelli

et al., 1999). In the absence of sufficient empirical data to derive distributions, and to

sample extremes as frequently as mean values, we assumed uniform distributions for input

parameters within the bounds given in Table 3.1. The extended FAST assigns a unique

frequency to each input parameter. These frequencies define the cyclic exploration of

each parameter’s range through successive Monte-Carlo simulations. Thus the extended

FAST computes the relative contribution of each input to the variance of the output using

multidimensional frequency decomposition that, again, is free of assumptions about model

behaviour. The contribution of each input is reported as a total sensitivity index. This

index includes both the main effect attributable to that parameter and higher degree effects

from interactions with other parameters. Higher degree interactions often contribute more

than the primary effect of any individual parameter to variance in model output, so

these total sensitivity indices are useful to quantify a parameter’s overall influence on
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the dynamics of complex ecosystem models (Saltelli et al., 1999). The extended FAST

method was implemented using the sensitivity package of the R software for statistical

computing (R Development Core Team, 2010). Using Rpy2, a high-level interface between

R and Python (Python Software Foundation, 2008), we automated all sensitivity analyses

between R and the TRITON simulation model. Each parameter range was divided into

500 levels. This resolution was adopted following preliminary tests of the sensitivity of

the extended FAST. This brought the total number of Monte-Carlo simulations per test

to 500× n, where n refers to the number of input parameters screened.
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a

b

c

Figure 3.3: Extended FAST indices quantifying the contribution of
input parameter values to model output variance, using the first principal
component from the PCA (accounting for 77% of the total variance)
on mean-centred normalised biomass density outputs, under alternative
formulations of the functional response of lobster predation on sea urchin,
assuming either Holling type I (a), II (b) or III (c) relationships. Fig. 3.4
provides a graphical summary of final model state across the three model
groups.
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a b

c d

Figure 3.4: Effect of different formulation of lobster predation rate on
the scores of simulation outcomes on the first two axes of the PCA,
which capture 91% of the total variance. Scores are plotted for all
functional responses (a) then respectively for Holling Type I (b), II (c) and
III (d) functional responses. MANOVA Pillai’s Trace statistic suggests
a significant effect (F2,23997 = 724.16) of the functional response on
simulation outcomes but this is likely to occur due to the very large number
of replicates (8000 simulations for each response).



3.4. Results 59

3.3.5 Types of simulations and key outputs screened for sensitivity analysis

Sensitivity analysis is key to test the robustness of a model and to assess the utility of

its application in simulating ecological features of interest. In the case of TRITON, we

used sensitivity analysis to dissect the influence of the different input parameters on the

model’s ability to shift from seaweed bed to sea urchin barren and back. Two main types

of sensitivity tests were conducted: (1) we investigated the general behaviour of TRITON

with a global sensitivity test in which all parameters varied and initial conditions were

unconstrained for all three groups; and then (2) focused on the ‘forward’ (kelp bed to

urchin barren state) and ‘backward’ (seaweed recovery from the barren state) shifts. In

each of these cases, initial conditions were constrained to mimic either an urchin-free

seaweed bed or, alternatively, a well-established sea urchin population on barren habitat.

Model outputs were saved monthly for each 50-year-long simulation, and the extended

FAST applied to several output metrics. The first of these was the simulated biomass of

each model group. Note that the relative biomass of the seaweed bed is directly convertible

to percentage cover of seaweed (or alternatively, percentage cover of reef that is barren

habitat). We used the first axis of a Principal Component Analysis on the three normalised

biomass densities as a one-dimensional summary of community state (accounting for 77%

of the total variance). For simulations focusing on the ‘forward’ and ‘backward’ shifts,

we additionally measured the time for the community to shift to the alternative state as

an important feature of model dynamics. In the model, the barren state was defined as

seaweed bed cover dropping under 10%, while the seaweed bed state corresponded to more

than 75% of seaweed cover (see Fig. 3.5). All figures were produced in R and surface plots

rely on the ‘Krig’ function of the ‘fields’ package (R Development Core Team, 2010).

3.4 Results

3.4.1 Calibration and validation of TRITON

At a holistic level, the capacity of the model to demonstrate shifts (in either direction)

between seaweed- and sea urchin dominated reefs represents a validation of the observed

dynamics. First, parameters of influence on model dynamics can provide the most effective

means to calibrate model behaviour accordingly to observations: sensitivity analysis with

the first set of Monte-Carlo simulations, initialised in the seaweed bed state and run under



3.4. Results 60

historical fishing levels for the east coast of Tasmania, reveal that urchin and lobster

recruitment rates are the most influential parameters on the model’s ability to shift to

sea urchin barrens (Fig. 3.2a). Moreover, the relationship between the two variables

in affecting the risk of barren habitat formation is non-linear (Fig. 3.2b); for a given

level of sea urchin recruitment, with declining annual lobster recruitment (from 800 g.200

m−2.year−1) there is initially little affect on the likelihood of barrens formation until a

threshold of 600 g.200 m−2.year−1 is reached, at which point risk of barrens increases

linearly with declining lobster recruitment to 400 g.200 m−2.year−1, below which there

is little further affect on the likelihood of barrens forming. The smallest value of mean

sea urchin recruitment rate that can achieve levels of barrens formation (∼50% of reef

area) observed in NSW (Andrew and O’Neill, 2000) and Tasmania (Johnson et al., 2005,

2011) in areas where C. rodgersii is long established (i.e. the point at which the chance of

barrens formation is 0.5; Fig. 3.2b) is 5000 g.200 m−2.year−1.). Consequently, sea urchin

recruitment rates are varied between 5000 and 10000 g.200 m−2.year−1 in sensitivity tests

presented in the rest of this paper.

Demonstrating the minor influence of the formulation of density dependence in lobsters’

predation on urchins also contributes to model validation. The second set of sensitivity

tests investigated the effects of alternative formulations of lobster predation on sea urchins,

i.e. of implementing Holling’s type I, II or III functional response. FAST sensitivity indices

were computed for all parameters in TRITON under each formulation of the functional

response, i.e. including the two parameters that define the shape of the functional response

(Fig. 3.3). For each of the three formulations (i.e. Holling’s type I, II or III), the

two parameters defining the shape of the functional response had no more influence on

model behaviour than did most of the other 14 input factors. Indeed, the influence of the

two parameters of the functional response was marginal compared to those parameters

with greatest influence on model behaviour (i.e. lobster fishing mortality, initial urchin

population, lobster recruitment, initial seaweed cover, sea urchin recruitment). The

projection of simulation outcomes on the first two PCs also suggests that the type of

functional response adopted has marginal influence on model behaviour (Fig. 3.4). The

patterns of the scores on the first two PCs, which capture 91% of the total variability,

are visually very similar for all three functional responses. While scores on the first two

PCs with the Holling Type I response (Fig. 3.3b) show a slightly different distribution

compared to the Type II and III, the overall patterns are virtually similar. Note, however,
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Figure 3.5: Frequency (logarithmic scale) of community states as a
function of sea urchin versus seaweed bed biomass densities from (a) the
8000 Monte-Carlo simulations with TRITON and from (b) large-scale
surveys on the east coast of Tasmania (Johnson et al., 2005, 2011). Arrows
in (a) represent the mean simulation trajectory in terms of fortnightly
change in sea urchin and seaweed bed biomass densities.
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that results from the MANOVA suggest significantly different mean scores on the first two

PCs for each Holling Type functional response, but this is likely to occur due to the very

large number of replication (8000 simulations) bringing the multivariate standard errors

to marginal values. Given that the model wasn’t sensitive to the particular choice of

functional response or to the parameterisation of this response, we chose to use Holling’s

type III functional response in all of the following simulations given that it is the most

commonly used response to describe predation behaviour in decapods (see Table A.8;

Appendix A).

We aggregated monthly outputs from the 8000 Monte-Carlo simulations of the FAST

global sensitivity analysis with random initial conditions to compare patterns emerging

from simulations with TRITON to patterns observed in large-scale surveys (Johnson et al.,

2005, 2011) of Tasmanian temperate reef communities (Fig. 3.5). Fig. 3.5a describes the

frequency of the different community states in terms of seaweed bed versus sea urchin

biomass densities with overlayed arrows representing the model mean trajectory (i.e.

fortnightly change in biomass through simulations) at different points of reef state. In Fig.

3.5b, data from a large-scale survey (Johnson et al., 2005, 2011) describes the frequency

of reef communities on the east coast of Tasmania in 2000-2002 being in any given state.

Importantly, both the modelled and observed reef communities identify two dominant

states representing (i) the seaweed bed state with a high cover of seaweed and a low

density of sea urchin and (ii) the sea urchin barren state with virtually no algal cover

and a high density of sea urchins. This indicates broad agreement of the behaviour of the

model with observations of the occurrence of the two states in the field.

3.4.2 Sensitivity analysis and parameters of influence on model behaviour

The sensitivity to input parameters of final abundances (after 50 years of community

development) of seaweed, sea urchins and lobsters, and of overall community structure, was

examined across 8000 Monte-Carlo simulations with unconstrained initial conditions (Fig.

3.6 and 3.7). Total extended FAST sensitivity indices quantify input parameters’ relative

contribution to model output variance for a given sensitivity test, but note that their

absolute values are not comparable for different extended FAST tests. Overall, a similar

suite of the most influential variables were identified for each component of community

structure, namely fishing mortality of lobsters, lobster recruitment and recruitment rates
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and initial abundances of sea urchins, although other variables were also influential.

However, the rank order of influence differed depending on whether it was final densities

of seaweed, sea urchins or lobsters that were examined. Final biomass density of seaweed

is predominantly determined by, in order of importance: the initial density of sea urchins;

lobster fishing mortality; seaweed growth rate; seaweed initial condition; and urchin

recruitment (Fig. 3.6a). The five most influential parameters on final sea urchin biomass

densities are lobster fishing mortality, sea urchin and lobster recruitment rates, as well as

the two coefficients of Holling’s type III functional response defining lobster predation rate

(Fig. 3.6b). The final biomass density of lobsters is mostly determined by: lobster fishing

mortality; recruitment rate; and sea urchin initial conditions (Fig. 3.7a). In comparison,

other input parameters defining lobster population dynamics (e.g. initial condition,

natural mortality, dependency to the state of the seaweed bed) have a lesser influence.

Given these results, it is not surprising that overall community structure described by the

first principal component of the mean-centred normalised simulated biomasses of the three

groups (and accounting for 77% of the total variance; Fig. 3.7b) is most influenced by, in

order of importance: lobster fishing mortality; initial sea urchin abundance; lobster and

sea urchin recruitment rates; the two parameters defining lobster predation; and finally

seaweed growth rate. Across all four outputs considered in this sensitivity analysis, the

initial abundance, carrying capacity and recruitment rates of the seaweed assemblage; sea

urchin natural mortality and their grazing rate; initial abundances and, natural mortality

of lobsters, and the coefficient of lobster dependency on the state of the seaweed bed; and

the parameter defining size-structured predation of lobsters on sea urchins have relatively

marginal influences on the end point community structure in the simulations.

The final two sets of Monte-Carlo simulations quantify the contribution of input

parameters to two specific and important features of model behaviour, respectively, the

‘forward’ shift from the seaweed assemblage to sea urchin barren habitat (Fig. 3.8), and

the reverse (‘backward’) shift from sea urchin barrens to recovery of dense seaweed cover

(Fig. 3.9). We conducted these sensitivity analyses on the scores of the first principal

component of the mean-centred normalised simulated biomasses of the three model groups,

as a one-dimensional summary of final community state (which explained 77% of the

total variance in final community composition). Lobster recruitment rate, lobster fishing

mortality, sea urchin recruitment rate and the two parameters defining lobster predation

rate were the five most influential parameters on model’s ability to shift from dense seaweed
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Figure 3.6: Sensitivity analysis based on extended FAST indices
quantifying the contribution of all model input parameter values to model
output variance. Final biomass densities of (a) seaweeds, (b) sea urchins
at the end of 50-year simulations with unconstrained initial conditions are
used as model outputs.

assemblage to sea urchin barrens (Fig. 3.8 a). TRITON’s ability to shift from a sea urchin

barren back to dense seaweed cover was essentially influenced by the values of lobster

fishing mortality and recruitment rates, as well as sea urchin recruitment levels and the



3.4. Results 65

a

b

Figure 3.7: Sensitivity analysis based on extended FAST indices
quantifying the contribution of all model input parameter values to model
output variance. Final biomass densities of (a) rock lobsters ) at the end of
50-year simulations with unconstrained initial conditions are used as model
outputs. Additionally we considered the sensitivity of input parameters
to final overall community structure described by the first principal
component (PC1) from PCA on mean-centred normalised biomass density
outputs across all three model groups (b).
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dependency of lobster recruitment on the state of the seaweed cover (Fig. 3.9 a). Seaweed

recruitment rate and the second coefficient of Holling’s type III functional response, which

determines the position of the plateau in the functional response (i.e. maximum predation

rate), were also quite influential on model’s ability to realise recovery of seaweed cover

on (initially) barren habitat. Additionally, we considered the subset of simulations that

respectively shifted ‘forward’ (Fig. 3.8 b), and ‘backward’ (Fig. 3.9 b), to investigate the

effects of the two most influential parameters (lobster fishing mortality and mean lobster

recruitment rate) on transition times for the modelled community to shift from its initial

state to the other. For linear increases in lobster fishing mortality and decreases in lobster

recruitment, the time to destruction of seaweeds and development of extensive sea urchin

barren habitat becomes shorter in an essentially linear manner (Fig. 3.8b). Conversely, as

fishing mortality on lobsters decreases and their recruitment increases, the time to recovery

of seaweed cover from the barren state decreases in an approximately linear fashion (Fig.

3.9b). A final important point to emerge for all sensitivity analyses (Fig. 3.6-3.9) is that

interaction terms contribute consistently more - and in most cases very much more - to the

variance of model outputs than first order ‘main’ effects due to single input parameters

acting directly on their own.

3.5 Discussion

3.5.1 Pattern-oriented model validation

Validation and calibration of the TRITON model, which captures alternative community

states in Tasmanian seaweed-sea urchin-rock lobster dynamics, is one of the main

objectives of this paper. Mean observed community state, commonly used as an objective

to calibrate complex ecosystem models (e.g. Marzloff et al., 2009), is not a reliable or

meaningful criterion to assess the realism of a model in which arises alternative community

states. In addition, the set of difference equations comprising the TRITON model are

not analytically tractable to identify the parameter space in which the model shifts

discontinuously from the seaweed-dominated state to the sea urchin barren state and back

as has been possible for models of coral reef community dynamics with hysteresis (see

Fung et al., 2011). Thus, calibration and validation of TRITON relies on two large-scale

features that emerge from the dynamics of rocky reef communities under the threat of C.

rodgersii destructive grazing. First, following the long-term establishment of C. rodgersii
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in regions where key urchin predators are ostensibly at relatively low abundances, about

50% of inshore rocky reef habitat occurs as extensive C. rodgersii barren habitat (Andrew

and O’Neill, 2000; Johnson et al., 2005). We restricted mean recruitment rate for C.

rodgersii to allow for the model to both simulate realistic biomass densities of sea urchins

on barren habitat, and to realise the shift from seaweed bed to sea urchin barren with a

probability of 0.5 under depletion of large lobsters by fishing (Fig. 3.2). Second, intensive

surveys of seaweed cover and barren habitats along the east and southeastern coasts of

Tasmania, including quantifying densities of sea urchins and other reef species, provided a

benchmark of the range and frequency of community states observed on the east coast of

Tasmania (Johnson et al., 2005). The ability of TRITON to reproduce these large-scale

patterns, showing the two main community states of high seaweed bed with low sea urchin

abundance or sea urchin barren habitat with virtually no macroalgal cover (Fig. 3.5), is

a useful validation of the model.

The capacity to investigate mean simulation trajectories (Fig. 3.5b) illustrates the value

of TRITON to explore features of reef community dynamics that are challenging (or

impossible) to observe or measure in any detail or with sufficient precision in the field (e.g.

the existence of thresholds points leading to shifts in community state). It is an important

result that the model demonstrates an ecological hysteresis (Scheffer and Carpenter, 2003;

Donahue et al., 2011) in model dynamics, showing two stable community states (i.e. the

zones where simulation trajectories converge), and an unstable equilibrium zone, where

the trajectories diverge, developing towards one state or the other (Fig. 3.5b). The mean

simulation trajectories confirm the occurrence of two alternative community states sensu

Petraitis and Dudgeon (2004) such that under identical environmental conditions, initial

conditions determine whether the simulated community develops to the sea urchin barren

or seaweed-dominated state. We conclude that pattern-oriented modelling, originally

proposed to validate agent-based model (Grimm et al., 2005), can provide a valuable

approach for a simulation-based assessment of the dynamics of ecological models that

manifest alternative community states.

3.5.2 Model sensitivity to input parameters

Breaking down the sensitivity analysis into a series of tests screening for different model

outputs and different aspects of model behaviour (i.e. ‘forward’ and ‘backward’ shifts)
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Figure 3.8: Sensitivity of the ‘forward’ shift, from high seaweed biomass
to sea urchin barren habitat, to model input parameters (i.e. this analysis
was restricted to those simulations in which the ‘forward’ shift occurred).
Initial conditions correspond to the seaweed bed state with seaweed cover
at >50% of carrying capacity, low initial sea urchin density (< 40000 g.
200 m−2) and random rock lobster biomass density. a) Extended FAST
indices quantifying the contribution of input parameter values to model
output variance in overall community structure (described as the first PC
from the PCA on mean-centred normalised biomass density outputs of
all groups) for 50-year simulations. b) Time to barrens establishment (in
months) as a function of the two parameters most influential in affecting
the likelihood of the transition to barrens, viz. lobster recruitment rate
and lobster fishing mortality.
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is a means to robustly identify input parameters that have a consistently small or large

influence on simulation outcome (Klepper, 1997). Overall, the identity of variables most

influential in accounting for variance in simulation outcomes is similar across the different

types of sensitivity tests we conducted (unconstrained initial conditions, or a constrained

focus on the ‘forward’ or ‘backward’ shift), and whether we considered final abundances of

individual groups (seaweed, sea urchins and lobsters) or of the community as a whole (Fig.

3.6, 3.7, 3.8 and 3.9). These analyses identified, lobster fishing mortality, lobster and urchin

recruitment rates, as well as initial densities of the sea urchin as the key drivers of model

dynamics. Conversely, seaweed recruitment rates, initial cover and carrying capacity (i.e.

upper limit of seaweed biomass density); sea urchin natural mortality and grazing rate; and

the initial biomass and natural mortality rates of rock lobster and the parameter defining

size-structured predation of lobster on urchin, all have relatively marginal influence on the

simulation outcomes.

At a more detailed level, the independent sensitivity tests were useful to identify differences

in the key variables influencing the different individual components of community

structure, and in comparing the influence of each input variable on particular groups

(seaweed, sea urchins or lobsters) with the influence on overall community structure (as

described by the first principal component from the PCA). While input parameters that

most influence model dynamics are broadly similar for each component of the community,

the detailed differences between these four different tests (Fig. 3.5) are informative:

(i) Seaweed biomass density is the only component for which dynamics is driven

primarily by the initial state of the sea urchin population rather than lobster fishing

mortality. This occurs as a result of the hysteresis in model dynamics with initial

sea urchin biomass density sitting either higher or lower than the threshold above

which the seaweed bed gets depleted by grazing (cf. Fig. 3.5b). Note that seaweed

growth rate also exerts relatively high influence on seaweed dynamics, suggesting that

rocky reefs where seaweed productivity is low (due to shading, unsuitable substrate

or nutrient-poor conditions) will be more prone to sea urchin barren formation for

the same level of sea urchins. Declining nitrate availability as a result of a changing

ocean climate increasingly influenced by nitrate-poor waters of the East Australian

Current (Johnson et al., 2011) may play a key role in this context.
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(ii) Sea urchin dynamics in the model is essentially affected by input factors related to

lobster predation pressure (the recruitment rate of lobsters, fishing mortality and

the coefficients of Holling Type III functional response), as well as recruitment rates

of the sea urchins themselves. This implies that, at the scale of an individual rocky

reef, exposure to large-scale oceanographic features transporting urchin larvae (Banks

et al., 2007), the suitability of the reef substrate (e.g. appropriate settlement cues,

complexity of crevice structure; Andrew (1993)) for urchin metamorphosing larvae

and settlement, or exposure to predation (Ling and Johnson, In press) can locally

limit the potential for the C. rodgersii population to develop. Of all of these variables,

clearly lobster fishing mortality is the key feature amenable to ready management

intervention.

(iii) The rock lobster population is influenced largely by fishing and the mean recruitment

rate to the population in the model. To a lesser extent lobster biomass density is also

influenced by the initial biomass of sea urchins and the strength of the dependency

of lobster recruitment on macroalgal cover. These latter two factors relate directly to

the reduced potential for local lobster recruitment once extensive sea urchin barren

habitat forms.

(iv) Not surprisingly, sensitivity indices focussed on effects on the variance in overall

community structure (as described by the first principal component) identify all the

parameters important to each of the three components of community structure when

they are examined separately (Fig. 3.6 and 3.7a).

Conducting independent sensitivity tests to dissect model sensitivity in the ‘forward’ and

‘backward’ shifts separately (Fig. 3.8 and 3.9) was also very useful. This approach

overcomes concerns about sensitivity analyses of models with multiple equilibria (van

Nes and Scheffer, 2003). It identified that model shifts from high seaweed cover to sea

urchin barren habitat, and the reverse shift realising recovery of seaweeds, are both driven

predominantly by lobster fishing mortality, lobster and sea urchin recruitment rates, as

well as lobster predation rates. Note however, that the reverse shift is also sensitive to the

coefficient that scales lobster recruitment to the level of canopy cover; a strong dependency

of lobster recruitment on the seaweed canopy creates a strong positive feedback between

seaweeds, urchins and lobsters once the macroalgal canopy is lost, which contributes to
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Figure 3.9: Sensitivity of the ‘backward’ reverse shift, from sea urchin
barrens to recovery of dense back to seaweed bed state, to model input
parameters (i.e. this analysis was restricted to those simulations in which
the ‘backward’ shift occurred). Initial conditions correspond to sea urchin
barren habitat, with seaweed cover<10% of carrying capacity, initial urchin
density > 70000 g. 200 m−2 and random rock lobster biomass density. a)
Extended FAST indices quantifying the contribution of input parameters
to model output variance in overall community structure (described as
the first PC from the PCA on mean-centred normalised biomass density
outputs of all groups) for 50-year simulations. b) Time to recovery
of seaweed cover (in months) as a function of the two most influential
parameters influencing this transition, viz. lobster recruitment rate and
lobster fishing mortality.
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the high resilience of the urchin barren state (Marzloff et al., 2011a). Parameters of

high influence identify the key ecological processes that drive community dynamics in the

model. Given that the emergent dynamics of the model broadly matches observations of

community state on eastern Tasmania reefs (Fig. 3.5), we can have some confidence that

sensitivity analysis of TRITON helps to identify the likely key drivers of the dynamics in

nature, and thus assists with both prioritising ongoing work in the field and in identifying

options for improved management of Tasmanian reef community dynamics.

Transition times in shifting from one state to the other are important characteristics of

the dynamics of systems with alternative states. Thus, transition times are a key element

in exploring model sensitivity (Fig. 3.8b and 3.9b). For models with hysteresis, simulation

outcomes are essentially binary, which can prove problematic when conducting sensitivity

analyses, in particular in undertaking partial sensitivity tests to one input parameter

at a time (van Nes and Scheffer, 2003, 2004). In the case of TRITON, the simulated

community ultimately moves either towards the barren or the seaweed-dominated state

(Fig. 3.5), and so quantifying the influence of parameters on the time for the model to

shift ‘forward’ from seaweed bed to sea urchin barrens, or ‘backward’ to effect seaweed

recovery, provides valuable insight into the detailed dynamics. Notably, the ‘forward’ shift

(18.7 years +/- 0.17 standard error) occurs on average about ten years more quickly than

the ‘backward’ shift (28.8 +/- 1.08 standard error). These mean transition times, which

provide another illustration of hysteresis in model dynamics in the sense that ‘forward’

and ‘backward’ shifts are independent dynamics with different transition times, have very

strong implications for management of rocky reef communities in Tasmania. Preventing

the further spread of extensive sea urchin barrens appears as the only realistic and time-

efficient management option. With no human interventions currently available to directly

deplete the sea urchin population at an appropriate scale, the time frame for restoration

of the original seaweed bed state from C. rodgersii barrens is of the order of three decades

under the most drastic measures for the lobster fishery (Fig. 3.9 b). This exceeds by far

the time span of current management plans for the Tasmanian lobster fishery.

The sensitivity analysis highlights that interactions between input parameters, rather

than direct linear effects, have a major influence on simulation outcomes. The dominant

influence on model behaviour of these interactions between input parameters is common

in model of complex dynamics (Saltelli et al., 1999, 2009). In the context of the dynamics
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of Tasmanian rocky reef, strong interactions between input parameters highlight the value

of ecological models to inform managers of natural resources about non-trivial effects

of management interventions and environmental changes on ecosystem state. While

qualitative modelling can track the influence of indirect effects and the contribution of

high level feedback to community dynamics (Marzloff et al., 2011a), simulation-based

sensitivity analysis suggests that the quantitative model TRITON captures non-trivial

interactions between modelled processes and can provide some valuable insights about

indirect responses of reef community to perturbations or management interventions.

3.5.3 Model limitations and guidance for future research

Derivation of all parameter estimates was based upon the best available information

(see Appendix A for further details). However, the results presented here are only as

useful as the precision and accuracy of the parameter estimates, and so it is worthwhile

acknowledging areas where parameter definition or the relative coarseness in representing

ecological processes may limit the realism of TRITON. The last section of Appendix A lists

some of the ecological processes of seaweed-urchin-lobster dynamics on subtidal rocky reefs

around Tasmania that are captured rather coarsely in TRITON, and which would benefit

from further field-based research. In particular it would be useful to have quantitative

estimates of the effects of storm and wave action on seaweed cover (e.g. Reed et al.,

2011); size-dependent vulnerability of macroalgae to grazers and the magnitude of any

size-structured dynamics of seaweed beds; density-dependence in sea urchin grazing rate;

importance of seaweed habitat to the recruitment, productivity and carrying capacity of

lobster population; lobster predation rates at medium and high sea urchin densities (i.e.

density dependence in predation impact); and effects of habitat, depth and reef profile

on all of the modelled processes. If any of these effects is large, then the detail of model

dynamics may be different to that presented here. However, it is unlikely that any of

these effects would materially influence the qualitative dynamics of the phase shifts and

hysteresis in broad terms.

3.6 Conclusions

Communities with the potential for multiple stable states and ecological hysteresis offer

high stakes particular challenges for managers because one of the alternative states is
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usually poorly productive and less desirable (Johnson and Mann, 1988; van de Koppel

et al., 1997; Lawrence et al., 2007; Melbourne-Thomas et al., 2011b; Strain and Johnson,

In press). It thus becomes of critical importance to avoid transition to that state, not

the least reason for which is that it can be impractical for management intervention

to effect the return shift. In this context, and particularly because it is not usually

possible to identify tipping points from field based exercises (Hastings and Wysham, 2010;

Osman et al., 2010; but see Carpenter et al. (2011) for a quite unique “whole-ecosystem”

experiment), models of ecological communities with alternative states are essential to

inform key thresholds in system dynamics and test the effects of alternative management

strategies (Mumby et al., 2007; McClanahan et al., 2011). However, validating this kind of

model remains challenging. Here we present a comprehensive simulation-based exploration

of the TRITON model that captures the potential for Tasmanian seaweed-sea urchin-

lobster community dynamics to shift between two alternative states, dense seaweed bed

or sea urchin barren habitat. The series of Monte-Carlo simulations depicted the model’s

overall behaviour and Pattern-oriented-modelling, i.e. comparison of patterns emerging

from simulations to large-scale patterns observed in the field, provided an efficient way

to assess the robustness and realism of broad TRITON dynamics. The extended FAST

routine (Saltelli et al., 1999), available within R’s sensitivity package, provides a unique,

computationally efficient framework to design robust model-independent sensitivity tests.

Using the extended FAST, we identified parameters of influence to overall model dynamics,

as well as to independent features of model hysteresis, i.e. ‘forward’ and ‘backward’

shifts between the two alternative community states. This enabled assessment of whether

management intervention in this system is practicable, and to identify the nature of the

intervention that is likely to have most effect in influencing community dynamics. Of the

relatively small suite of parameters to which the model is most sensitive, fishing mortality

of lobsters emerges as the single factor to which the model is particularly sensitive and on

which human behaviour has a large and direct effect.
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Chapter

4 Alternative states on Tasmanian

rocky reefs: Identifying thresholds in

community dynamics and assessing

management interventions to limit

destructive grazing of sea urchins

4.1 Abstract

Like many shallow temperate marine systems worldwide, Tasmanian inshore rocky reefs

can occur in alternative persistent community states. The shift from dense productive

seaweed beds to sea urchin ‘barrens’ habitat, i.e. largely bare rock following the destructive

grazing of macroalgal cover and sessile invertebrates by sea urchins, significantly affects

ecosystem structure and functioning and has major implications for the management

of rocky reef communities. Along with dramatic loss of habitat and species diversity,

the establishment of extensive barren habitat constitutes an immediate threat to the

productivity of Tasmanian fisheries. The transition to barren habitat, however, can be

swift and is difficult to study empirically. In particular, knowledge about key thresholds

in community dynamics, which provide reference points for sound management of the

system, and an assessment of the effectiveness of possible management levers to mitigate

the ecological impacts of sea urchin grazing are lacking.

Through Monte-Carlo simulations with a model of the eastern Tasmanian rocky reef

community that realistically captures (i) the potential for both ‘forward’ shifts from

dense seaweed beds to sea urchin barrens and ‘backward’ shifts from barren habitat to

seaweed recovery, and (ii) the associated hysteresis, we identify thresholds in community

dynamics and test the effectiveness of alternative management options both in terms

of mitigating the ecological effects of sea urchin destructive grazing, and performance

of the lobster fishery. Differences in the threshold for ‘forward’ and ‘backward’ shifts

reflect a hysteresis in reef dynamics, i.e. once sea urchin barrens form extensively,
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restoration of dense seaweed beds becomes much more difficult to achieve than prevention

of barren habitat formation in the first place. The risk of barrens formation increases

significantly with lobster fishing mortality. The modelling suggests that direct culling of

sea urchin populations combined with a reduction in lobster fishing pressure is likely to

be more effective in terms of ecological outcomes and improved fishery performance, than

intervention aimed only at rebuilding lobster populations to control urchin density through

predation. The model simulations highlight the need for the Tasmanian rock lobster

fishery management objectives to move away from a single-species orientation focussing on

maximum sustainable yield towards a more conservative ecologically sustainable yield that

accounts for the ecosystem services delivered by rock lobster to rocky reef communities.

4.2 Introduction

Variability is a key characteristic of ecological dynamics (Doak et al., 2008). In some

ecological systems, in addition to relatively short-term space-time variability in dynamics

(e.g. seasonal, interannual), environmental or anthropogenic perturbations can facilitate

sudden shifts between alternative persistent community states (May, 1977; Scheffer et al.,

2001; Beisner et al., 2003; Scheffer and Carpenter, 2003). These abrupt changes in

community dynamics can dramatically alter ecosystem functioning and have disastrous

consequences for the human activities that rely on them. These phase shifts are challenging

to anticipate and their consequences difficult to predict (Doak et al., 2008), so that

systems with the potential for these shifts represent particular challenges for ecologists

and managers alike (Sutherland et al., 2009).

Phase shifts are often swift and are usually observed a posteriori, i.e. once the community

has shifted to the alternative state. Hence, thresholds in the dynamics of marine

ecosystems with alternative persistent states are notoriously difficult to identify empirically

(de Young et al., 2008; Doak et al., 2008; Hastings and Wysham, 2010). Additionally,

experimental assessment of the effects of alternative management scenarios on community

state is hardly ever achievable in marine ecosystems at an appropriate scale. For these

reasons, and because the triggers and behaviours of phase shifts are unique to each

ecosystem, tailored case-specific simulation models represent a valuable tool to explore

ecological dynamics with alternative community states, test the effects of management

scenarios and inform decision making for particular circumstances (Scheffer and Carpenter,
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2003; de Young et al., 2008). Several ecological models developed to capture the essential

dynamics of marine ecosystems with alternative community states have been developed

over the last decade, and include some designed explicitly for application in management

support (see Mumby et al., 2007; Melbourne-Thomas et al., 2010 for some coral reef

examples).

We developed a model, called TRITON (for Temperate Reefs In Tasmania with lObsters

and urchiNs), of the dynamics of seaweed-based reef communities in eastern Tasmania

(Chapter 3). In this region, shallow (< 35 m depth) exposed rocky reef communities

essentially occur in one of two alternative persistent states: (1) as a dense cover of

macroalgae; or (2) as sea urchin ‘barrens’ habitat characterised by a poorly productive

and largely bare rock habitat following destructive grazing of the seaweeds and sessile

benthic invertebrates by the long-spined sea urchin (Centrostephanus rodgersii). The

establishment of these widespread sea urchin barrens results from the combined effects of

climate-driven range extension of the sea urchin from Australia’s mainland to Tasmania via

strengthening eddy activity of the tropical East Australian Current (Ling et al., 2009b)

and depletion of biomass of large southern rock lobster (Jasus edwardsii) as the only

effective predator of the long-spined sea urchin in Tasmania (Ling et al., 2009a). Relative

to the seaweed bed state, C. rodgersii barrens represent dramatic losses of habitat, species

diversity and productivity, including commercial species such as blacklip abalone (Haliotis

rubra) and southern rock lobster, the two most valuable fisheries in Tasmania (Ling, 2008).

Thus, the spread of sea urchin barrens in eastern Tasmania has been identified as a major

threat to the sustainability of the important lobster fishing industry (Johnson et al., 2005;

Pecl et al., 2009).

In this paper, we address a range of key questions for the management of Tasmanian reef

communities using Monte-Carlo simulations with the TRITON model:

(i) What are the characteristics thresholds in community dynamics? These tipping

points, which cannot easily be directly observed empirically, provide essential

reference points for management to minimise the risk of barren formation or facilitate

the recovery of seaweed beds from the barren state;

(ii) What are the merits and overall effectiveness of alternative management scenarios to

either prevent the establishment of sea urchin barren habitat, or restore dense seaweed
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beds from sea urchin barrens? Here we test, both independently and conjointly, the

effectiveness of available management levers: reducing lobster fishing, implementing

a maximum legal catch size to protect large lobsters as key predators of the sea

urchins, and culling of sea urchin populations and translocating large lobsters from

deep to shallow reefs exposed to sea urchin destructive grazing.

(iii) How is the performance of the rock lobster fishery in eastern Tasmania, estimated

from simulated catches with TRITON and overlain with a version of the current

Tasmanian rock lobster stock assessment model, affected by different management

scenarios? Over the last two decades, fisheries scientists have increasingly emphasised

the need to account for the ecosystem effects of fishing, and to shift management

practises away from a traditional single species focus towards an ecosystem-based

approach (Smith et al., 2007, 2011). It is in this context that this question is

addressed. With this simple example in which lobsters play an important ecological

role as predators of sea urchins, we illustrate some of the misleading assumptions of

single-species focus when the target species delivers key services to the ecosystem.

We highlight the need for fishery management targets, such as maximum sustainable

yield (MSY), to account for ecological services delivered by commercial species, and

suggest that these targets may need to be revised to maintain ecosystem functioning.

This will be particularly important for ecological systems in which the dynamics are

characterised by alternative community states with hysteresis, i.e. where phase shifts

are particularly difficult to reverse.

4.3 Material and Methods

We outline below (1) a concise description of the TRITON model; (2) characteristics of the

simulations and model outputs presented in this paper; and (3) some specifics about the

different sets of Monte-Carlo simulations designed to test the consequences of alternative

management scenarios.

4.3.1 TRITON model of Tasmanian lobster-sea urchin-seaweed community

dynamics.

The TRITON (Temperate Reef In Tasmania with lObsters and urchiNs) model provides

a ‘minimum-realistic’ (Fulton et al., 2003a) representation of the dynamics of Tasmanian
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inshore rocky reef communities with a specific focus on shifts in community structure from

the seaweed-dominated to the sea urchin barrens state and back. Fishing of southern

rock lobster, a key predator of sea urchins on Tasmanian inshore reefs, is the major

anthropogenic activity affecting community state (Ling et al., 2009a). Thus, to focus

on key management questions related to the establishment of C. rodgersii barrens on the

East coast of Tasmania, TRITON only explicitly describes the dynamics of three functional

groups or species: (1) the seaweed assemblage (e.g. Phyllospora comosa, Ecklonia radiata

and a range of other canopy forming and understorey brown, red and green macroalgal

species); (2) the long-spined sea urchin, Centrostephanus rodgersii ; and (3) the southern

rock lobster, Jasus edwardsii. Predation of lobsters on sea urchin is size-structured given

that it is large individuals (carapace length >140 mm) that effect predation control on C.

rodgersii (Ling et al., 2009a).

The mean field model realistically captures benthic dynamics at the scale of a patch of

reef (area of 102-104 m2) across the most common depth range of sea urchin activity,

i.e. 8-35 m (Chapter 3). The default parameterisation corresponds to a 200 m2 area of

reef (Table 3.1) and uses the latest information available about the ecology of Tasmanian

reef community. Model uncertainty has been tested comprehensively with regards to

model structure (Marzloff et al., 2011a), formulation and parameterisation (Chapter 3).

The difference equations capturing the dynamics of each functional group are detailed in

Chapter 3. When referring to simulations with a simplified version of the single-species

Tasmanian rock lobster stock assessment model, lobster population dynamics follows Eq.

4.1. Eq. 4.1 is similar to Eq. 3.3 capturing rock lobster dynamics in TRITON except

that stochastic recruitment to the first size class is assumed lognormal and independent of

both local biomass density of lobster (i.e. large-scale regional supply of larvae) and local
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extent of sea urchin barren habitat.

RLs,t = max



0, rCR︸︷︷︸
Recruitment to the first size class (Only if s = 1) unaffected by sea urchin barrens

+
j<s∑

j=1

(δ′s,j ×RLj,i)− (
NRL∑

i>s

δi,s)×RLs,t

︸ ︷︷ ︸
Growth between different size classes accounts for individual weight gain

+ RLs,t × exp(−βRL)︸ ︷︷ ︸
Biomass at time t affected by natural mortality

−RLs,t × (1− exp(−FRLs))︸ ︷︷ ︸
Fishing mortality





(4.1)

with RLs,t denotes the biomass of rock lobsters in size class s at time t (g. 200 m−2); rRL,

lobster recruitment rate (g. year−1. 200 m−2) in which mean recruitment rate µRL varies

stochastically following a lognormal stochastic function of mean 0 and standard deviation

σRL; βRL, lobster natural mortality (year−1); δ′s,j , biomass-based transition probability

from size class j to s, or element of the sth row, jth column of the transition probability

matrix (year−1 or g. g−1. year−1); δi,s, abundance-based transition probability from size

class s to i (year−1 or individual.individual−1.year−1); SWt, seaweed biomass (g. 200

m−2); FRLs, fishing mortality for lobster of class s (year−1).

TRITON is implemented using the open-source object-oriented Python programming

language version 2.6 with the ‘numpy’ and ‘scipy’ packages (Python Software Foundation,

2008). Discrete-time modelling was chosen for ease of implementation and computational

efficiency. A two-week-long time step was adopted to prevent numerical instability and

ensure consistency of model behaviour with results from continuous-time modelling using

differential equations (Deng, 2008).

4.3.2 Simulation characteristics and model outputs (Table 4.1)

All results presented in this paper rely on two types of model outputs, viz. standing

biomass density fresh weight (g.200m−2) and annual catches as fresh weight, i.e. biomass

loss due to fishing mortality (g.200m−2.year−1). For each 50-year-long simulation, model

outputs were saved monthly. We adopted two different ways to explore tipping points in

modelled reef dynamics:

(i) We first considered all monthly biomass outputs within each 50-year-long simulations
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and used seaweed bed relative cover to characterise community state. This approach

allowed to closely monitor model dynamics (every monthly time step) so as to

precisely seize the critical thresholds at which, either the model shift from the

seaweed-dominated state to sea urchin barren habitat (e.g. Fig. 4.2) or shift back

to dense seaweed bed from established barrens (Fig. 4.4). For these analyses, we

adopted 75% of seaweed cover as the threshold above which sea urchin grazing only

has marginal effects on seaweed bed cover (See Fig. 3.5a displaying TRITON’s mean

trajectory through simulations).

(ii) We also adopted a more general approach to characterise thresholds in terms of

long-term probability of model to shift across all simulations. When considering the

long-term probability of barren habitat formation (e.g. Fig. 4.1 or 4.5) or seaweed

bed restoration (e.g. Fig. 4.3 or 4.7) across simulations, we computed mean values

of monthly outputs over the last 10 years of the simulation to minimise effects of

interannual stochasticity. From Fig. 3.5a displaying TRITON’s model dynamics, we

can safely assume that the model has shifted from the seaweed bed to the barren state

if seaweed bed relative cover is below 10% at the end of a simulation; For the reverse

shift from sea urchin barrens (less than 10% of seaweed cover) to dense seaweed bed,

successful recovery of the seaweed bed state can be assumed if seaweed cover is above

50% at the end of the simulation (cf. Table 4.1).

These tipping points were characterised in terms of standing biomass density of the

following modelled groups: sea urchin, rock lobster and large size classes of rock lobster

(carapace length > 140 mm).
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Table 4.1: Characteristics of the different sets of Monte-Carlo
simulations: (a) initial conditions corresponding either to the seaweed bed,
or to sea urchin barren habitat; (b) ranges of values for sea urchin fishing
mortality, maximum legal catch size for lobsters, and the mean lobster
recruitment rate associated with the different management scenarios.

a) Initial conditions for each of the two states (biomass densities in g. 200 m−2)

Dense seaweed cover Sea urchin barrens
Seaweed assemblage 2× 105 − 4× 105 0− 4× 104

(i.e. more than 50% cover)* (i.e. less than 10% cover)*
Sea urchins 0− 4000 7× 105 − 1.4× 105

(i.e. less than 10% of (i.e. more than 50% of
carrying capacity on barren) carrying capacity on barren)

Rock lobsters 0− 1.4× 104 0− 1.4× 104

* The same values are used to define presence (1) or absence (0) of a shift to the alternative state at the end of a

simulation: a persistent shift to sea urchin barrens is assumed if the seaweed bed drops below 10% cover, while

recovery of seaweeds corresponds to the seaweed bed re-growing above a 50% of cover.

b) Simulation characteristics in terms of sea urchin culling or harvesting, maximum legal
catch size for lobsters, and mean lobster recruitment rate. Lobster fishing mortality

varies between 0 and 2.5 year−1

Sea urchin cull rate Maximum legal size Lobster recruitment rate
FCR (year−1) FmaxRL (mm) µRL (g.200 m−2.year−1)

Range 0 - 2.5 135 - 165 200 - 800
Low 0 - 0.5 135 - 145 200 - 400

Moderate 0.5 - 1.5 145 - 155 400 - 600
High 1.5 - 2.5 155 - 165 600 - 800
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Using R’s generalised linear model (GLM) routine (R Development Core Team, 2010),

we fitted logistic binomial models (Fig. 4.1, 4.2, 4.3 and 4.4) to relate seaweed cover or

the probability of community shift (i.e. barren formation or restoration of the seaweed

bed; Table 4.1) to the standing biomass density of different model groups. The binomial

GLM routine estimates the coefficients α and β in: log( p
1−p) = α + βx where p is the

predicted variable (probability of community shift, or seaweed relative cover expressed as

the ratio of seaweed standing biomass density on seaweed carrying capacity) and x is the

explanatory variable (standing biomass density of large lobsters, i.e. of carapace length

>140 mm, or sea urchins). We use α and β to objectively characterise model thresholds as

x =
log( p

1−p )−α

β . Thresholds were defined as: the points where the risk of sea urchin barrens

formation equals p = 5%; or the points where the probability of long term seaweed bed

recovery equals p = 95%; or the points associated with p = 75% of seaweed cover as an

adequate threshold above which the effect of C. rodgersii destructive grazing on the dense

seaweed canopy is marginal (cf. Fig. 3.5a about mean trajectory through simulation).

The extended Fourier Amplitude Sensitivity Test (extended FAST; Saltelli et al., 1999),

available within R’s sensitivity package, was used to comprehensively explore parameter

space and define the envelope around parameter uncertainty through Monte-Carlo

simulations. Python package Rpy2 provided an interface between Python (Python

Software Foundation, 2008) and the R language for statistical computing (R Development

Core Team, 2010) to automate the different sets of Monte-Carlo simulations. For each

scenario tested, parameter space was comprehensively sampled with each parameter’s

distribution assumed uniform between the minimum and maximum bounds specified in

Table 3.1. Thus, when testing each management scenario, we identically accounted for

parameter uncertainty including the effects of interactions between input parameters. The

Monte-Carlo simulations also allowed us to capture variability in environmental conditions

from reef to reef (e.g. habitat, depth, exposure to urchin larvae). For each scenario

tested, the total number of runs in each Monte-Carlo simulation is equal to 500 times the

number of input parameters (Saltelli et al., 1999). The extended FAST also provided a

robust model-independent ANOVA-like assessment of the relative contribution of input

parameters to variance in model outputs (Saltelli et al., 1999), including those parameters

associated with the different management levers (e.g. fishing mortality; see Table 4.1b

and Fig. 4.5a and 4.7a).
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4.3.3 Scenario testing (Table 4.1)

The sampling design across Monte-Carlo simulations was fixed to enable assessment of each

scenario under identical conditions. The exceptions, of course, are those parameters related

to the management levers themselves, namely lobster and sea urchin fishing mortality (FRL

and FCR), lobster maximum legal size and lobster ‘initial condition’ (which defines the level

of translocation of large lobsters to an area). Table 4.1 summarises the parameters specific

to each of the separate management scenarios considered: culling sea urchins under a range

of lobster fishing mortality, implementing a maximum legal size, or a combination of the

previous two. We also tested the effects of culling or harvesting sea urchins under different

lobster recruitment levels, given that lobster recruitment in the region may decrease with

climate-driven changes in large-scale oceanographic features in eastern Tasmania (Pecl

et al., 2009; Johnson et al., 2011). We investigated the effectiveness of these alternative

management interventions (Table 4.1) in either (1) preventing overgrazing of macroalgae

and formation of sea urchin barrens with simulations initiated in the seaweed-dominated

state (Fig. 4.5 and 4.6), or (2) restoring dense, productive seaweed beds from sea urchin

barrens with simulations initiated with the system supporting sea urchin barrens (Fig.

4.7 and 4.8). Fig. 4.9 is based on a subset of simulations that shifted either from the

seaweed bed to sea urchin barrens (Fig. 4.9a), or back to dense seaweed cover (Fig. 4.9b).

For each of these simulations, we recorded the time (in months) for the community to

shift to the alternative state, then applied the kriging function from R’s ‘fields’ package

(R Development Core Team, 2010) to express the time for modelled community to shift

as a function of the two most effective management levers (as determined from sensitivity

analysis; see Fig. 4.5a and 4.7a), for rock lobster and sea urchin fishing mortalities. Finally,

for comparison, we simulated lobster population dynamics with a simplified version of the

stock assessment model (Eq. 4.1; see appendix A) that currently supports management of

the Tasmanian southern rock lobster fishery in the central east coast of Tasmania (Punt

and Kennedy, 1997). We assessed fishery performance (yield as annual catches) under a

suite of different management scenarios, using both (1) the single species model that does

not account for the risk of sea urchin barrens formation, and (2) TRITON (Fig. 4.10a

and 4.10b).
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4.4 Results

We consider results from simulations with TRITON along three main avenues: (1)

identification of key thresholds in reef community dynamics; (2) comparison of the

effectiveness of different management options to limit the effects of sea urchin destructive

grazing of Tasmanian seaweed beds; and (3) performance of the lobster fishery under

different management scenarios, comparing assessment approaches with and without

consideration of the ecosystem effects of fishing.
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a
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Figure 4.1: Probability of barren habitat forming (a, b, (c) through 8000
Monte-Carlo simulations initialised with high seaweed cover. Black crosses
show the final state for each simulation. The blue line with dots and
error bars (standard error) corresponds to all data points binned into 20
even intervals of biomass density (from 0 to the maximum value). Red
sigmoid curves represent binomial logistic models fitted against the biomass
densities of the different species modelled, i.e. (a) sea urchins; (b) rock
lobster (all size classes combined); and (c) large lobsters (carapace length
>140mm). Threshold points for the TRITON model to shift from the
seaweed bed to the sea urchin barren state are marked by green solid lines
with 95% confidence intervals given as dashed lines.



4.4. Results 88
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Figure 4.2: Proportion of seaweed bed cover through 8000 Monte-Carlo
simulations initialised with high seaweed cover. The blue line with dots and
error bars (standard error) corresponds to monthly model outputs binned
into 20 even intervals of biomass density (from 0 to the maximum value).
Red sigmoid curves represent binomial logistic models fitted against the
biomass densities of the different species modelled, i.e. (a) sea urchins; (b)
rock lobster (all size classes combined); and (c) large lobsters (carapace
length >140mm). Threshold points for the TRITON model to shift from
the seaweed bed to the sea urchin barren state are marked by green solid
lines with 95% confidence intervals given as dashed lines.
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Table 4.2: Summary statistics of binomial logistic models of the
probability of a shift in community structure from the seaweed-dominated
state to sea urchin barrens. The different models consider, either the
probability of a community shift at the end of 50-year simulations (a, c, e),
or the relative seaweed bed cover (b, d, f) as metrics to define threshold
points in terms of biomass density of sea urchin (a, b), rock lobster (c, d)
and large (carapace length superior to 140 mm) rock lobster (e, f).

a) Parameter Estimate Standard error z value P value
αCR -4.74 1.4 x 10−1 -34.54 <2 x 10−16

βCR 2.03 x 10−4 6.3 x 10−6 32.15 <2 x 10−16

Null deviance: 10233.9 on 7999 df; Residual deviance: 1879.9 on 7998 df

Variance explained: 81.6%; AIC: 1883.9; BCRthreshold5% = 8858 (7099 - 10845) g.200m−2

b) Parameter Estimate Standard error z value P value
αCR 2.644 2.3 x 10−3 1159 <2 x 10−16

βCR -5.013 x 10−5 5 x 10−8 -1110 <2 x 10−16

Null deviance: 4671322 on 4799999 df; Residual deviance: 1687397 on 4799998 df

Variance explained: 63.9%; AIC: 2798730; BCRthreshold75% = 30832 (30689 - 30976) g.200m−2

c) Parameter Estimate Standard error z value P value
αRL 4.284 8.9 x 10−2 47.9 <2 x 10−16

βRL -1.16 x 10−3 2.5 x 10−5 -45.8 <2 x 10−16

Null deviance: 10233.9 on 7999 df; Residual deviance: 4448.1 on 7998 df

Variance explained: 56.5%; AIC: 4452.1; BRLthreshold5% = 6225 (5825 - 6660) g.200m−2

d) Parameter Estimate Standard error z value P value
αRL -1.417 1.8 x 10−3 -767 <2 x 10−16

βRL 6.627 x 10−4 6.9 x 10−7 962.2 <2 x 10−16

Null deviance: 4671322 on 4799999 df; Residual deviance: 3052508 on 4799998 df

Variance explained: 34.6%; AIC: 4175824; BRLthreshold75% = 3795 (3782 - 3808) g.200m−2

e) Parameter Estimate Standard error z value P value
αRL140+ 1.63 3.5 x 10−2 46.2 <2 x 10−16

βRL140+ -7.79 x 10−3 2.6 x 10−4 -29.26 <2 x 10−16

Null deviance: 10233.9 on 7999 df; Residual deviance: 7207.2 on 7998 df

Variance explained: 29.6%; AIC: 7211.2; BRL140+threshold5% = 588 (543 - 640) g.200m−2

f) Parameter Estimate Standard error z value P value
αRL140+ -3.1 x 10−2 1.1 x 10−3 -29.3 <2 x 10−16

βRL140+ 1.626 x 10−3 3.7 x 10−6 439.8 <2 x 10−16

Null deviance: 4671322 on 5099999 df; Residual deviance: 4236764 on 5099998 df

Variance explained: 9.3%; AIC: 5670606; BRL140+threshold75% = 695 (690 - 699) g.200m−2
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4.4.1 Identifying key thresholds in reef community dynamics

Fig. 4.1, 4.2 and 4.3, 4.4 respectively focus on identifying key thresholds for the modelled

reef community to shift forwards (from dense seaweed cover to sea urchin barrens)

and ‘backward’ s (from barren habitat to recovered seaweed bed). Tipping points are

characterised in terms of the probability of long-term barren formation (e.g. Fig. 4.1a) or,

conversely, the probability of long-term restoration of the seaweed bed (e.g. Fig. 4.3a), as

a function of the final biomass densities of sea urchins (e.g. Fig. 4.1a), lobsters (e.g. Fig.

4.2b), and large lobsters of carapace length >140 mm (e.g. Fig. 4.3c). Monitoring monthly

seaweed cover through all Monte-Carlo simulations against biomass densities of the three

groups (Fig. 4.2 and 4.1) provides an alternative view of tipping points in the dynamics.

Red sigmoid curves in Fig. 4.1, 4.2, 4.3 and 4.4 represent binomial logistic models fitted

against the biomass densities of (a) sea urchins; (b) all size classes of rock lobster; and (c)

large lobsters (carapace length >140 mm). Summary statistics (i.e. parameter estimates,

variance explained by the model, Akaike Information Criterion) for the GLM associated

with the establishment of barren habitat (Table 4.2) or the recovery of seaweeds (Table

4.4) show that sea urchin biomass density is the most reliable predictor of the shift to

urchin barrens (81.6% of the total variance explained by the GLM; Fig. 4.1a), while rock

lobster biomass density best relates to the model’s ability to return to a state of dense

seaweed (62.7% of the total variance explained by the GLM; Fig.4.3b). The estimated

thresholds clearly reveal the presence of a hysteresis in model dynamics, i.e. there are

different tipping points associated with the ‘forward’ (Fig. 4.1 and 4.2; Table 4.2) and

‘backward’ (Fig. 4.3 and 4.4 ; Table 4.4) shifts. The community path and thresholds to

restore the seaweed bed are different to the community trajectory of overgrazing driving

seaweed beds to sea urchin barrens; sea urchin populations have to build to a biomass

density of 10-40,000 g.200 m−2 for barren habitat to begin forming (Fig. 4.1a and 4.2a;

Table 4.2a-b), while recovery of seaweeds on sea urchin barrens becomes highly likely only

when there are virtually no sea urchins remaining on the reef (Fig. 4.3a and 4.4a; Table

4.4a-b). Note that, across all size classes combined, critical biomass densities of lobsters

are of the same order, i.e. between 4000 and 6000 g.200 m−2, for both the ‘forward’ (Fig.

4.1b and 4.2b; Table 4.2c-d) and the ‘backward’ shift (Fig. 4.3b and 4.4b; Table 4.4c-d).

However, when considering the biomass density of large lobster (carapace length > 140

mm) only, the threshold biomass density for the seaweed bed to recover (Fig. 4.1c and
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4.2c; Table 4.4e-f) is ∼3-4 times higher than the critical biomass density at which sea

urchin barrens can start forming (Fig. 4.3c and 4.4c; Table 4.2e-f).
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Figure 4.3: Probability of seaweed bed recovery through 8500 Monte-
Carlo simulations initialised as sea urchin barrens (urchin culling as an
extra parameter compared to ‘forward’ shift Monte-Carlo simulations).
Black crosses show the final state for each simulation. The blue line
with dots and standard error bars corresponds to data binned into 20
even intervals of biomass density (from 0 to the maximum value). Red
sigmoid curves represent binomial logistic models fitted against the biomass
densities of the different species modelled (a) sea urchins; (b) rock lobsters
(all size classes combined); and (c) large lobster individuals (carapace
length >140 mm). Threshold points at which the TRITON model shifts
from sea urchin barren habitat back to the seaweed-dominated state are
marked by green solid lines, with 95% confidence intervals shown as dashed
lines.
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Figure 4.4: Proportion of seaweed bed cover through 8500 Monte-Carlo
simulations initialised as sea urchin barrens (urchin culling as an extra
parameter compared to ‘forward’ shift Monte-Carlo simulations). The
blue line with dots and standard error bars corresponds to monthly model
outputs binned into 20 even intervals of biomass density (from 0 to the
maximum value). Red sigmoid curves represent binomial logistic models
fitted against the biomass densities of the different species modelled (a) sea
urchins; (b) rock lobsters (all size classes combined); and (c) large lobster
individuals (carapace length >140 mm). Threshold points at which the
TRITON model shifts from sea urchin barren habitat back to the seaweed-
dominated state are marked by green solid lines, with 95% confidence
intervals shown as dashed lines.
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Table 4.4: Summary statistics of different binomial logistic models of the
probability of a shift in community structure from sea urchin barren habitat
to the seaweed-dominated state. The different models consider, either the
probability of a community shift at the end of 50-year simulations (a, c, e),
or the relative seaweed bed cover (b, d, f) as metrics to define threshold
points in terms of the biomass density of sea urchin (a, b), rock lobster (c,
d) and large (carapace length superior to 140 mm) rock lobster (e, f).

a) Parameter Estimate Standard error z value P value
αCR 9.28 x 10−1 5.2 x 10−2 17.77 <2 x 10−16

βCR -1.237 x 10−4 3.5 x 10−6 -35.15 <2 x 10−16

Null deviance: 9670.1 on 8499 df; Residual deviance: 7316.6 on 8498 df

Variance explained: 24.3%; AIC: 7320.6; BCRthreshold95% = -16295 (-16381 - -16295) g.200m−2

b) Parameter Estimate Standard error z value P value
αCR -4.97 x 10−1 1.9 x 10−3 -259 <2 x 10−16

βCR -7.34 x 10−5 1.3 x 10−7 -582 <2 x 10−16

Null deviance: 4054306 on 5099999 df; Residual deviance: 3475451 on 5099998 df

Variance explained: 14.2%; AIC: 4082683; BCRthreshold75% = -21747 (-21769 - -21725) g.200m−2

c) Parameter Estimate Standard error z value P value
αRL -5.88 1.2 x 10−1 -47.27 <2 x 10−16

βRL 1.67 x 10−3 4 x 10−5 42.12 <2 x 10−16

Null deviance: 9670.1 on 8499 df; Residual deviance: 3604.9 on 8498 df

Variance explained: 62.7%; AIC: 3608.9; BRLthreshold95% = 5277 (4903 - 5687) g.200m−2

d) Parameter Estimate Standard error z value P value
αRL -4.349 3.4 x 10−3 -1263.3 <2 x 10−16

βRL 9.134 x 10−4 9.7 x 10−7 943.6 <2 x 10−16

Null deviance: 4054306 on 5099999 df; Residual deviance: 2252951 on 5099998 df

Variance explained: 44.4%; AIC: 2629804; BRLthreshold75% = 5964 (5984 - 5944) g.200m−2

e) Parameter Estimate Standard error z value P value
αRL140+ -1.54 3.1 x 10−2 -49.95 <2 x 10−16

βRL140+ 2.30 x 10−3 9 x 10−5 25.15 <2 x 10−16

Null deviance: 9670.1 on 8499 df; Residual deviance: 8307.0 on 8498 df

Variance explained: 14.0%; AIC: 8311; BRL140+threshold95% = 1954 (1788 - 2147) g.200m−2

f) Parameter Estimate Standard error z value P value
αRL140+ -1.928 1.4 x 10−3 -1386 <2 x 10−16

βRL140+ 8.17 x 10−4 1.7 x 10−6 469 <2 x 10−16

Null deviance: 4054306 on 5099999 df; Residual deviance: 3790144 on 5099998 df

Variance explained: 6.5%; AIC: 4389598; BRL140+threshold75% = 3707 (3688 - 3725) g.200m−2
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4.4.2 Effectiveness of alternative management scenarios

Here we focus on the effects of alternative management interventions on the propensity to

shift from either high seaweed cover to sea urchin barrens, or ‘backward’ to realise recovery

of seaweed cover from sea urchin barrens. In addition to recruitment rates of lobsters being

important in the overall dynamic, lobster fishing and direct sea urchin removal (by culling

or harvesting) emerge as the main drivers of these shifts (Fig. 4.5a and 4.7a). Conversely,

the initial state of the lobster population (high initial densities of lobster can represent

initial translocations of lobsters from deeper waters) and the lobster maximum legal catch

size only exert a marginal influence on the model’s ability to shift. Under a range of

lobster fishing mortality, we assessed different management interventions in terms of the

probability of the model shifting forwards (Fig. 4.5b and 4.6a-d) or ‘backward’ s (Fig.

4.7b and 4.8a-d). The risk of sea urchin barrens forming increases markedly with lobster

fishing mortality: from ∼15% with no fishing to ∼ 90% under intense harvesting of lobster

(FRL > 2 year−1; Fig. 4.5b and 4.6a-d). Considering current fishing practise (black line;

FRL ∼ 1-1.5 year−1 and minimal legal catch size), direct removal of sea urchins (culling for

harvesting) considerably mitigates the ecological effects of sea urchin destructive grazing,

either to prevent barren formation (Fig. 4.5b) or restore sea urchin barrens to dense

seaweed beds (Fig. 4.7b). Indeed, even a low intensity of sea urchin culling (FCR < 0.5

year−1) reduces the overall risk of barren formation by 15-20% and brings it to zero at low

lobster fishing mortality (Fig. 4.6a). Conversely, implementing a maximum legal catch

size significantly reduces the risk of seaweed destruction by 10-15% only if associated

with a reduced fishing pressure (FRL < 0.8 year−1; Fig. 4.6c). Solely implementing a

maximum legal size for lobster fishing, and taking no other action, does little if anything

to facilitate recovery of seaweed beds (Fig. 4.8c). Additionally, the absolute value of

the limit (between 135 - 165 mm of carapace length) of the maximum legal size has only

marginal implications in the context of mitigating the effects of sea urchin destructive

grazing of seaweed beds (Fig. 4.6b and 4.6b). Further, in combination with sea urchin

culling, the implementation of a maximum legal size for lobster fishing still has only

marginal effect in mitigating the effects of destructive grazing (Fig. 4.6c and 4.8c). It is

only when and upper legal size is imposed along with significantly reduced catches, that

risk of barren habitat formation reduces notably and the likelihood of recovery of seaweeds

on barren habitat improves significantly. The caveat is that future uncertainty in lobster
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recruitment in eastern Tasmania (Pecl et al., 2009; Johnson et al., 2011) can significantly

limit the effectiveness of these management interventions (Fig. 4.8d and 4.8d) so that

even when adopting the most efficient measures, i.e. combining sea urchin removal with

a severe reduction in lobster fishing, destructive grazing may continue apace and seaweed

recovery be unlikely if there is failure of lobster recruitment.

Fig. 4.9 only includes the proportion of the simulations that either did shift to sea urchin

barrens (Fig. 4.9a) or where a dense seaweed bed was restored from the sea urchin barren

state (Fig. 4.9b). While Fig. 4.5, 4.6, 4.7 and 4.8 describe the effects of management

levers on the probability of shift in the modelled community, the patterns in Fig. 4.9

do not relate to probability of community shift. Fig. 4.9 only indicates mean transition

times as extrapolated using R’s krig function from these simulations that shifted. Thus,

note that, regardless of the levels of sea urchin culling and rock lobster fishing, other

factors such as recruitment rates or seaweed growth rate, can facilitate community shift

and influence these mean transition times. The mean time for sea urchin barrens to

establish in TRITON from an initial condition of dense seaweed cover is of the order

of two decades, although time to barrens formation can decrease by a few years with

increasing lobster fishing mortality (time to barrens decreases from ∼23 years at FRL = 0

to ∼19 years at FRL = 2.5 year−1; Fig. 4.9a). Notably, the time to barrens formation is

far more sensitive to the level of rock lobster fishing than rate of removal of sea urchins.

Conversely, the time necessary for recovery and restoration of dense seaweed cover from

sea urchin barrens declines with intensifying sea urchin removal. With heavy culling or

harvesting of sea urchins (FCR = 2.5), seaweed recovery can be effected in as little as 15

years (particularly is fishing pressure on lobsters is low), but extends to closer to three

decades under no urchin culling and heavy fishing of lobster.

4.4.3 Lobster fishery performance under alternative management scenarios

Lobster catches dependent on fishing mortality estimated from simulations based only

the single species stock assessment model are much higher than catch estimates from

simulations using TRITON in which the potential for and consequences of sea urchin

destructive grazing of seaweed beds are accounted for (Fig. 4.10a). As fishing intensifies,

estimates based on the single species model asymptote, while catch estimates from

TRITON are not only considerably lower than these from the single species model, they
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begin to decline as fishing mortality (FRL) rises above ∼1.0 year−1. This is because as sea

urchin barrens start to form and the complex seaweed bed habitat is lost, the potential

for juvenile lobsters to recruit gets reduced in TRITON. The optimal yield is displayed

as a horizontal dashed line for each model and correspond to the 95% quantile of all

simulated annual catches. Under current management practises (minimum legal catch

size), the Ecologically Sustainable Yield (ESY) estimated with TRITON is reached at a

lower fishing pressure (FRL,ESY ∼ 0.4-0.5 year−1 associated with the green dashed line)

than the Maximum Sustainable Yield (MSY) estimated from the stock assessment model

(FRL,MSY ∼ 0.7-0.9 year−1 associated with the red dotted line).

Comparison of long-term annual lobster catches dependent on fishing mortality under

different options for management interventions indicated that the nature of the

management approach will dramatically affect catch. These results are derived from

simulations with TRITON in which the community was initialised in the seaweed bed

state. Out of all management options and across the whole range of potential fishing

pressure on lobster, direct removal of sea urchins (green line) delivers the highest catches.

Implementing a maximum legal size (set between 135-165 mm of carapace length) (red

line) enhances fishery productivity at moderate to high fishing mortality but does not

significantly affect fishery productivity at low fishing pressure (FRL < 0.4 year−1) relative

to current practises (black line) based on a minimum legal size and FRL ∼ 1-1.5 year−1.

Overall, any management intervention implemented in addition to current regulations

act to improve fishery productivity by enhancing predation control on sea urchins and

minimise the impacts of sea urchin destructive grazing on reef productivity.
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b

Figure 4.5: Effects of alternative management measures on the long-term
risk of barrens formation in the model: (a) Extended FAST sensitivity
indices showing the relative influence of all inputs on model behaviour
(based on the first axis of the PCA conducted on normalised mean biomass
densities for the last 10 years of simulations). Risk of barren formation
against lobster fishing mortality (b) under different general management
interventions (direct removal of sea urchin or imposing a maximum legal
size for lobsters, or both). Error bars correspond to the standard error
across Monte-Carlo simulations.
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c d

Figure 4.6: Risk of barren formation against lobster fishing mortality
under different management interventions (direct removal of sea urchin or
imposing a maximum legal size for lobsters, or both): (a) with different
levels of sea urchin culling, (b) with different maximum legal catch sizes
for lobster, (c) with a combination of maximum catch size for lobster and
different sea urchin culling mortalities, and (d) with sea urchin culling
under different levels of lobster recruitment. All Monte-Carlo simulations
are initiated in the seaweed bed state. Error bars correspond to the
standard error across Monte-Carlo simulations.
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4.5 Discussion

4.5.1 Thresholds in Tasmanian rocky reef dynamics

Management of marine ecosystems is increasingly moving towards a threshold approach

to diminish the risk of phase shifts to some less desirable alternative community state

(Mumby et al., 2007; Suding and Hobbs, 2009; Briske et al., 2010; Osman et al., 2010;

McClanahan et al., 2011; Melbourne-Thomas et al., 2011b). System-specific ecosystem

models provide unique tools to explore these thresholds in community dynamics (Scheffer

and Carpenter, 2003; de Young et al., 2008). Among other marine examples, several

applications have successfully described thresholds in coral reef dynamics (e.g. Mumby

et al., 2007; Fung et al., 2011; McClanahan et al., 2011). In this paper, modelling the

dynamics of a temperate reef community informs important reference points related either

to the risk of a shift from high seaweed cover to sea urchin barrens (Fig. 4.1 and 4.2; Table

4.2), or alternatively to the probability for seaweeds to recover on fully established barren

habitat (Fig. 4.3 and 4.4; Table 4.4). The differences in threshold biomass densities of sea

urchins, rock lobsters (total), and large rock lobsters (carapace length >140 mm) between

the ‘forward’ shift (from seaweed bed to sea urchin barren habitat) and the ‘backward’ shift

(recovery of seaweed cover) reflect the presence of a hysteresis in community dynamics as

suggested by field observations (Ling et al., 2009a). Importantly, model dynamics indicate

that avoiding the critical tipping point beyond which extensive sea urchin barrens establish

is achievable under sound management (Fig. 4.1 and 4.2). However, the restoration of

seaweed beds once sea urchin barrens have formed constitutes a major challenge (Ling

et al., 2009a) that requires depletion of the sea urchin population to very low levels

(virtually back to zero) (Fig. 4.3 and 4.4). Note also that, even though critical biomass

densities of lobster for both shifts are of the same order (4000-6000 g.200 m−2), reaching

this threshold density of lobster will be more challenging on poorly productive sea urchin

barren habitat than in dense seaweed beds (Johnson, unpublished data; Johnson et al.,

2005; Ling, 2008).

When considering estimates of thresholds in rocky reef community dynamics, let us keep in

mind that the precision and the accuracy of absolute predictions from complex ecological

models depend on the reliability of all input parameters. In this context, simulation

outcomes are often interpreted in relative terms (e.g. comparisons among alternative
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scenarios; Smith et al., 2011) rather than as absolute predictions (Francis and Shotton,

1997). However, absolute estimates of thresholds in community dynamics are essential to

a sound management of Tasmanian rocky reef community, and if managers do not have

access to the best absolute estimates that researchers can provide, even with all their

caveats, they will make management decisions anyway. The simulations with TRITON,

based upon the best available information about Tasmanian reef ecology, currently provide

the most reliable and conservative estimates of thresholds in reef community dynamics.

Binomial logistic GLMs relate the probability of community shifts to the biomass density

of the different model groups. Goodness-of-fit criteria can be assessed in terms of the

amount of variance in model behaviour explained, and help to identify the model groups

that best relate to changes in community state, as defined in terms of the presence or

absence of a dense macroalgal canopy. For example, of the three groups considered (i.e.

sea urchins, rock lobsters and large rock lobster), sea urchin biomass density is the best

predictor of the ‘forward’ shift (with 63.9 - 81.6% of the total variance captured by the

GLMs), while the ‘backward’ shift most closely relates to rock lobster standing density

(with 44.4 - 62.7% of the total variance captured by the GLMs). The GLM fits provide

a robust tool to determine threshold points for management depending on acceptable

risk levels. Here, we considered tipping points associated with a 5% probability of barrens

formation, a 95% chance of seaweed bed restoration, or 75% of seaweed cover (above which

sea urchin destructive grazing has marginal effects on macroalgal cover). Note that these

arbitrary thresholds are more conservative than the inflection point of the fitted logistic

GLM (associated with 50% of seaweed cover), where the slope is maximal and where small

changes in standing biomass densities can induce large shifts in community structure (van

Nes and Scheffer, 2004). It is important to recognise that the thresholds used in the

fitted binomial models can easily be revised depending on the level of risk averseness that

management and/or industry wish to adopt. Thus, logistic binomial models provide a

convenient and objective approach to describe the risk of ecosystem shift as a function

of the densities of the different model groups. However, changing these risk levels within

reasonable bounds is unlikely to have any effect on the qualitative results and associated

conclusions.

In field experiments, large lobsters (carapace length >140 mm) physically able to prey

on all size classes of emergent C. rodgersii, were identified as the only efficient predator
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on emergent sea urchins on Tasmanian east coast reefs and thus as key ecosystem players

to control sea urchin populations and limit the risk of destructive grazing (Ling et al.,

2009a). In TRITON, all medium to large sizes of lobster (carapace length = 115-140 mm)

contribute to predation control on the sea urchin population (Fig. 4.1b, 4.2b, 4.3b, 4.4b;

Tables 4.2c-d and 4.4c-d) and the biomass density of large rock lobsters alone does not

provide the best predictor of phase shift (Fig. 4.1c, 4.2c, 4.3c, 4.4c; Tables 4.2e-f and 4.4e-

f). This apparent discrepancy between field experiments and model simulations reflects

that in TRITON we allow intermediate sizes of lobsters (carapace length = 115-140 mm) to

prey on smaller sizes of emergent sea urchins (test diameter = 70 - 90 mm) as observed in

tank experiment (Ling et al., 2009a). Therefore, intermediate sizes of lobster contribute

to controlling the whole urchin population and can prevent emergent urchins reaching

adult size in the model. However, this behaviour in TRITON does not necessarily occur

in reality, where habitat complexity can reduce predatory interactions between lobsters

and sea urchins (Ling et al., 2009a). Thus, predatory interactions between smaller size

classes of lobsters (110-140 mm of carapace length) and sea urchins are potentially over-

represented in the model. Alternatively, the discontinuous recovery of seaweed cover from

the barren state as the biomass density of large lobster increases (Fig. 4.4c) may also relate

to the hysteresis in model dynamics, with three more or less distinct phases of recovery

from the barren state: 1) the first phase of recovery (biomass density of large lobster <

4000 g. 200 m2) corresponds to initial rebuilding of the seaweed bed (mean seaweed cover<

50%) as grazing pressure is progressively reduced and macroalgal recruitment and regrowth

resume on urchin barrens. On this part of the graph, sea urchin grazing mitigates complete

regrowth of the seaweed bed and only a marginal proportion of simulations shift back to a

dense seaweed state; 2) Then, in the second phase of the graph (biomass density of large

lobster > 4000 g. 200 m2), mean seaweed cover gets greater than 50% as urchin population

numbers are further depleted, with a dominant proportion of simulations indicate a shift

back to full seaweed cover. Note that seaweed logistic growth reaches a maximum at 50%

cover (the inflection point of the logistic model), so once the seaweed bed recovers to 50%

cover, seaweed growth rate is the most likely to overwhelm any effects of grazing by the

remaining sea urchins); 3) Once the biomass density of large lobster exceeds 6000 g. 200

m2, recovery of dense seaweed bed cover is almost certain (sea urchins are then present at

marginal densities with such high densities of predation-capable lobster).
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Figure 4.7: Effects of alternative management measures on the long-term
probability of recovery of seaweeds on sea urchin barrens. (a) Extended
FAST sensitivity indices showing the relative influence of all inputs on
model behaviour (based on first axis of the PCA on normalised mean
biomass densities for the last 10 years of simulations). Probability of
seaweed bed recovery against lobster fishing mortality (b) under different
general management interventions (direct removal of sea urchins, or
imposing a maximum legal size for lobsters, or both). Error bars correspond
to the standard error across Monte-Carlo simulations.
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Figure 4.8: Probability of seaweed bed recovery against lobster fishing
mortality under different specific management interventions (direct removal
of sea urchins, or imposing a maximum legal size for lobsters, or both): (a)
with different levels of sea urchin culling, (b) with different maximum legal
catch sizes for lobster, (c) with a combination of establishing a maximum
catch size for lobster (carapace length = 135-165 mm) and direct culling
of sea urchins, and (d) with sea urchin culling under different levels of
lobster recruitment. All Monte-Carlo simulations are initiated in the sea
urchin barren state. Error bars correspond to the standard error across
Monte-Carlo simulations.
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4.5.2 Alternative management options against sea urchin destructive grazing

of seaweed beds

Of all the parameters related to management intervention, fishing of rock lobster and sea

urchins demonstrate the highest influence on the model’s ability to demonstrate ‘forward’

(Fig. 4.5a) or ‘backward’ (Fig. 4.7a) phase shifts. In addition to current management

practises for the lobster fishery (i.e. regional quotas and minimum legal size), culling

of sea urchins constitutes the most effective management response to minimise effects of

destructive grazing in TRITON, and this is particularly effective when combined with

a marked reduction in lobster fishing. We acknowledge however that in reality extensive

culling or harvesting of sea urchins is unlikely to occur at a sufficient scale to be effective in

mitigating risk of barrens formation at a whole-of-coast scale. Despite repeated examples

of large scale depletion, and sometimes collapse, of sea urchin populations elsewhere in the

world through overfishing (Andrew et al., 2002), C. rodgersii does not have high market

value given features of its taste, colour, texture and preservability, and so at this stage

opportunity to develop a large fishery on the sea urchin is limited. Moreover, the greatest

extent of C. rodgersii barrens is in waters 15-30 m depth (Johnson et al., 2011), which

greatly limits accessibility of divers to the resource.

On their own, interventions to rebuild rock lobster populations as natural predators of

sea urchins (e.g. by imposing a maximum legal catch size, and reducing lobster fishing)

only marginally reduce the risk of sea urchin barren formation (from ∼60% to ∼50%),

and have no effect in improving the likelihood of restoring dense productive seaweed beds

(which is effectively 0%), unless lobster fishing is reduced considerably from current levels.

Implementation of a maximum legal catch size, currently a focus of discussion between

managers and the Tasmanian rock lobster fishing industry, can only effectively mitigate the

effects of sea urchin destructive grazing if associated with low to moderate lobster fishing

mortality. Specifically, implementing a maximum catch size can reduce the probability of

barren formation by 10-20%, but only when FRL is less than 0.7 year−1 (Fig. 4.5 and 4.6).

The effects of implementing a maximum legal catch size may arise in part because size-

structured predation in TRITON allows for interactions between medium sizes of lobsters

and small emergent urchins. Thus, sea urchin population control through predation in

the model relies on the whole spectrum of medium (110-140 mm of carapace length)

to large (carapace length >140 mm) size classes of lobster rather than solely on large
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lobsters predating emergent sea urchins (Ling et al., 2009a). Thus, while empirical data

indicate clearly that only large lobsters (carapace length>140 mm) are able to predate

emergent sea urchins (70-130+ mm test diameter; Ling et al., 2009a), in developing the

model we assumed that medium sized lobsters have access to medium sized (<70 mm test

diameter) sea urchins, which are largely cryptic within the interstices of the reef matrix

(while this assumption is in need of empirical validation, it is an exceedingly difficult task).

Additionally, TRITON’s low sensitivity to initial abundances of lobster (Fig. 4.5a or 4.7a)

suggests that single events translocating large lobsters (usually fished in deep water) onto

shallow exposed reefs have virtually no influence on the long-term mitigation of sea urchin

destructive grazing of seaweed beds. Note, however, that regular artificial enhancement of

lobster populations through translocation (see Gardner and Van Putten, 2008), captured

in Fig. 4.5d and 4.7d as high lobster recruitment scenarios, can considerably improve

management interventions against sea urchin destructive grazing.

All our results depict the presence of a hysteresis in community dynamics, which has strong

implications for management. Preventing the further establishment of sea urchin barrens

in eastern Tasmania arguably remains a realistic possibility (Fig. 4.5 and 4.6), however

once extensive barren habitat has formed, restoration efforts palatable to the lobster fishing

industry are likely to be highly ineffective at facilitating recovery of seaweed cover (Fig. 4.7

and 4.8). In particular, even total cessation of lobster fishing on barren habitat (Fig. 4.7b)

is unlikely to facilitate the recovery of seaweeds due to the low productivity of the barren

habitat (Johnson et al., 2005; Ling, 2008). Note also that, when a shift occurs, transition

time from one state to the other takes from two to three decades (Fig. 4.9). However,

lobster fishing diminishes the duration of the ‘forward’ shift and increases the time for

seaweed bed recovery, while sea urchin culling has the opposite effect. Under controlled

experimental conditions where all grazers are totally excluded from small barren patches,

full recovery of dense seaweed beds takes about two years (Ling, 2008). The recovery

in two years applies only to the early stages in the formation of incipient barrens. In

similar circumstances, the recovery of the seaweed bed in the absence of grazers also takes

two years in TRITON (cf. Appendix A and the definition of the logistic growth model

for the seaweed bed). However, under persistent sea urchin recruitment and sufficient

habitat complexity (e.g. shelter crevices), permanent eradication of sea urchins on barren

grounds is unachievable at wider scales over a few years (Johnson et al., unpublished

data). In marked contrast with the prompt recovery on incipient barren, even when
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grazers are depleted to quite low densities, the simulations suggest that the recovery of the

seaweed beds on extensive barrens typically takes over two to three decades when relying

on a combination of direct urchin culling and natural control through lobster predation.

Thus, while preventing the establishment of sea urchin barrens in the first place can be

accommodated practicably under current management schemes, implementing 30+-year

management plans to restore seaweed beds is less realistic.
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Figure 4.9: Time (months) for the modelled community to shift (a)
‘forward’ from dense seaweed cover to sea urchin barrens, or (b) ‘backward’
from sea urchin barrens to recovery of dense seaweeds as a function of
rock lobster and sea urchin fishing mortalities. The surface plot was
produced from final results from 8500 Monte-Carlo simulations using the
krig function from Rs field package.
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Figure 4.10: (a) Yield curves or annual equilibrium catches (g per
200 m2 patch of reef) of rock lobster from simulations with a single
species lobster population model (blue) and with the TRITON model
(black) that accounts for the risk and consequences of sea urchin barren
formation and the consequences of this shift in community and habitat
structure for lobster productivity. The red and green dashed lines show
optimal yields estimated from Monte-Carlo simulations based on the single
species (Maximum Sutainable Yield) and the TRITON model (Ecologically
Sustainable Yield) respectively. (b) Annual lobster catches estimated using
TRITON under alternative management interventions (either removal of
sea urchins, or imposing a maximum legal size for lobsters (carapace length
= 135-165 mm) or both). Current fishery practice is shown by the black
line. Error bars correspond to the standard error across Monte-Carlo
simulations.
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While model simulations provide valuable information about the effectiveness of different

management levers to mitigate sea urchin destructive grazing, we keep in mind that

TRITON is a model, i.e. a simplified representation of reality. The responses of real

Tasmanian rocky reef communities to management intervention may prove more complex

and variable than the mean patterns observed through simulations. An important result

is that the modelled community is nearly as sensitive to mean recruitment rates of both

lobsters and sea urchins, and to the intrinsic growth rate of the seaweed assemblage,

as to practical management levers as associated with lobster fishing mortality or sea

urchin culling mortality (Fig. 4.5a and 4.7a). Thus, it is possible that environmental

factors can significantly counter the impact of management intervention, e.g. different

scenarios in terms of future levels of regional lobster recruitment (see Johnson et al., 2011)

can considerably influence the outcome of management intervention. Spatial variability

in lobster and sea urchin recruitment rates, and in seaweed growth rates, often reflects

heterogeneity of habitat (e.g. suitable substratum for recruiting larvae, exposure to storms,

depth and light exposure, nutrient levels to drive primary production). While our results

through Monte-Carlo simulations capture the mean dynamics across the spatial variability

of Tasmanian reef communities, patchy heterogenous reef habitat will display a gradient

of responses to particular management interventions.

While this study addresses the effectiveness of alternative management interventions, it

is beyond the scope of the work to fully assess the practical considerations related to

their implementation. Nonetheless, a brief analysis of the management environment is

appropriate. In recent years, lobster fishing mortality in eastern Tasmania has varied

around 1-1.4 year−1 over the last few years (K. Hartmann, unpublished data). While a

moderate reduction in lobster fishing pressure is possible for the east coast of Tasmania

(down to ∼ 0.8 year−1), a sharp decrease (below 0.5 year−1) is highly unlikely in the

current management environment. We have already raised practical considerations related

to direct harvesting of sea urchins. Even if the focus of culling is only at a local scale,

for example in targeting patches particularly productive for abalone, we have shown that

abalone divers engaged in culling sea urchins while they are fishing for abalone has limited

effectiveness (Johnson, unpublished data). Moreover, effective culling of sea urchins by

divers is particularly challenging given the complexity of reef habitat, nocturnal activity

of the sea urchins, the depth limitation of diving operations, and the cryptic nature of

small and medium-sized individuals. A small-scale fishing and processing industry for
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C. rodgersii was recently launched in St. Helens in the northeast of Tasmania, but the

possible extent and intensity of harvesting is yet to be assessed. For practical reasons,

commercial harvesting by divers is restricted to shallow reefs (depth < 25 m). Note

also that developing a commercial dive-based fishery for C. rodgersii is likely to favour

sustainable harvesting of urchin rather than restoration of dense seaweed beds. The

implementation of a maximum legal catch size for lobsters has been considered seriously

by both managers and the fishing industry for the regions where C. rodgersii occurs. The

underlying logic is to afford protection to lobsters large enough to be capable of predating

emergent C. rodgersii. However, results from the simulation model indicate that this

measure can only usefully mitigate barren formation in combination with a reduction

in lobster fishing to below F=0.8 year−1. The simulations indicated that simultaneous

implementation of a combination of these measures is most likely to mitigate sea urchin

barren formation at a local scale. Reducing fishing mortality is fundamental, and will

see greatest effect when conducted in conjunction with targeted culling and, to a lesser

extent, imposition of an upper size limit in the lobster fishery. Further assessment of

the practicability and cost-effectiveness of each potential management lever in a formal

cost-benefit analysis would be a useful next-step to complement the ecological assessment

presented here.

4.5.3 Ecosystem-based fishery management and the importance of accounting

for the ecological role of target species

The Tasmanian southern rock lobster fishery serves as a useful example to emphasise

both 1) the importance of accounting for the broader ecological role of commercially

fished species when defining reference points for fishery management, and 2) the value of

implementing management measures to optimise long-term performance and sustainability

of the fishery (Fig. 4.10).

Our analyses provide a powerful argument for management of the Tasmanian rock lobster

fishery to move away from decisions based on single species assessment, towards ecosystem-

based reference points; more formally, to transition from a focus on maximum sustainable

yield (MSY) towards an ecologically sustainable yield (ESY) (Mace, 2001; Zabel et al.,

2003; Hall and Mainprize, 2004; Walters et al., 2005). Our analysis indicates that large rock

lobster individuals contribute an important ecological service in maintaining functioning
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of dense productive seaweed beds by controlling sea urchins responsible for destructive

grazing (Ling et al., 2009a), and that FRL,MSY , the fishing mortality associated with the

maximum sustainable yield estimated using the single species Tasmanian rock lobster

fishery assessment model, corresponds to a level of fishing pressure that constitutes

ecosystem-based overfishing (Murawski, 2000; Mace, 2001). Indeed, the single-species

approach does not account for the depensation effect in lobster population dynamics, i.e.

the decrease in juvenile recruitment due to increased risk of habitat loss at low density

of legal size lobsters. Under current management practise, FRL,MSY should be seen as a

limit with high associated risk, rather than an ecologically desirable target point for reef

communities. The reference point for optimal sustained fishery performance, or fishing

mortality associated with the ecologically sustainable yield (FRL,ESY ), needs to account

for the ecosystem services delivered by rock lobster to rocky reef communities, and this

level is notably more conservative than the FRL,MSY coming out of the single species

population model (Hall and Mainprize, 2004). As a direct consequence of barren habitat

affecting lobster recruitment potential, simulations with TRITON provide estimates of

fishery productivity that are almost twofold lower than those from the single species model.

The barren habitat is well recognised as an undesirable reef state with reduced productivity

for both abalone and lobster fisheries in eastern Tasmania (Johnson, unpublished data;

Johnson et al., 2005; Ling, 2008), but we acknowledge that the actual magnitude of this

loss of fishery productivity is coarsely represented (unpublished data, CR Johnson or Ling

et al., in preparation) in TRITON and requires cautious interpretation.

In the context of Tasmanian reef communities exposed to the invasive C. rodgersii, any

management intervention implemented specifically to mitigate sea urchin destructive

grazing of seaweed habitat additional to current regulations (which are based on

transferable quota, a defined fishing season, and a minimum legal catch size) is likely

to improve fishery productivity, even if only marginally (as is the case, for example,

when implementing a maximum legal size). Additional management interventions against

destructive grazing of seaweed beds, such as direct culling of sea urchins, can modify the

lobster fishery yield curve and displace the ecologically sustainable yield towards higher

lobster fishing mortality relative to status quo. For example, culling of sea urchins together

with a moderate reduction in lobster fishing (FRL ∼ 0.7-0.8 year−1) can deliver both

better performance in the lobster fishery (Fig. 4.10b) while reducing the risk of barrens

formation to ∼ 30% (Fig. 4.6a). We add the caveat that representing fishing as a simple
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instantaneous mortality term does not fully capture the complex interactions between

the fishery and the target species (e.g. catchability). To this extent both lobster fishing

and urchin culling are expressed rather theoretically in TRITON and the model does not

realistically capture current quota management defined in terms of Total Allowable Catch.

Overall, we however contend that the different sets of Monte-Carlo simulations reveal the

effectiveness of alternative management interventions on both long-term ecological state

of rocky reef communities and productivity of the lobster fishery.

4.6 Conclusions

Using Monte-Carlo simulations with a model that captures the potential for alternative

community states in lobster-sea urchin-seaweed dynamics, we provide estimates of key

thresholds in Tasmanian rocky reef communities. These tipping points, which define

important reference points to mitigate the effects of sea urchin destructive grazing through

predation control, indicate the presence of a hysteresis in community dynamics that is also

reflected in the model. For management, the hysteresis emphasises the need to focus on

preventing the formation of sea urchin barrens rather than on the far more challenging

task of restoring seaweed beds after extensive barren habitats has established. Where it

can be practically implemented, direct culling or harvesting of sea urchins together with

a reduction in lobster fishing is the most ecologically effective intervention to minimise

the impact of the sea urchin grazing on Tasmanian reefs. This approach is likely to be

more effective in both the short and longer term than intervention aimed exclusively at

building the lobster population (e.g. by only reducing lobster fishing or implementing a

maximum legal catch size). Our model simulations highlight the need for management of

the Tasmanian lobster fishery to better account for the pivotal ecological role of lobsters in

this system, and to revise key target points accordingly, and provide a valuable assessment

of some of the tradeoffs in terms of both long-term ecological outcomes and fishery

productivity associated with alternative management interventions. The important next

step in this process is to implement a detailed cost-benefit analysis across the various

management alternatives we have identified.
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Chapter

5 Synthesis: Models to assist

ecosystem-based management of

rocky reef communities and the rock

lobster fishery in eastern Tasmania

This thesis presents a suite of ‘minimum-realistic’ models (sensu Fulton et al., 2003a)

developed to inform an ecosystem-based approach to management of rocky reef

communities and the associated rock lobster fishery in eastern Tasmania. The modelling

approaches build on available information about Tasmanian reef ecology (e.g. empirical

observations, field experiments or existing models) to provide improved understanding

and prediction of the dynamics of rocky reef communities in eastern Tasmania. From

qualitative modelling of community feedback (Marzloff et al., 2011a; Chapter 2) to

simulations with a parsimonious mean field model of the local dynamics of Tasmanian

rocky reefs, key results highlight the need for the Tasmanian rock lobster fishery to

move towards an ecosystem-based management that accounts for the important ecological

service provided by lobsters in mitigating the effects of sea urchin destructive grazing of

seaweed beds. Here the findings of this work are discussed in four sections.

(i) The first considers the value of each modelling approach in improving understanding

and prediction of shifts between alternative community states in ecological dynamics.

(ii) In the second section we argue that, when considered together, the spectrum

of different models we used, from qualitative to quantitative simulation models,

demonstrate valuable complementarity to test model assumptions (structure,

formulation, parameterisation) and provides a predictive framework that accounts

for both model uncertainty and the variability of ecological dynamics.

(iii) In the third section we highlight the important results that can contribute to sound

ecosystem-based management of Tasmanian reefs and the associated rock lobster

fishery,
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(iv) and in the final section we discuss the ecological impacts of the climate-driven

incursion of Centrostephanus rodgersii into Tasmanian waters in the broader context

of future climate-related changes that might be anticipated in the rapidly-changing

marine environment around Tasmania.

5.1 A suite of tools to understand and predict shifts

between alternative community states in ecological

dynamics

The common focus across the different chapters of the thesis is the development and use of

models to better comprehend the dynamics of alternative community states in ecosystems

in general, and in eastern Tasmanian rocky reef communities in particular. Identifying and

predicting phase shifts in ecological dynamics is a major challenge for ecologists, and the

models applied here inform some important aspects of the presence of alternative states

in ecosystems. The complementary approaches successively (i) inform the potential for

alternative states and their persistence in Tasmanian rocky reef dynamics, (ii) identify

the key drivers of community dynamics and decompose the different factors facilitating

both the ‘forward’ shift (from dense and productive seaweed beds to sea urchin barrens

habitat) and the ‘backward’ shift, (iii) characterise important threshold points and the

presence of hysteresis in community dynamics, and finally (iv) enable assessment of the

effects of alternative management approaches on the long-term state of reef communities

and performance of the lobster fishery.

5.1.1 Qualitative modelling, positive feedback and alternative community

states

Based only on qualitative knowledge of key variables and interactions, qualitative

modelling provides a mechanistic understanding of how each variable’s response will be

influenced by the feedback properties of a perturbed system. While positive feedback is

commonly associated with the concept of alternative community states in the ecological

literature, other than simple conceptual diagrams, a causal explanatory framework to

formally track the effects of positive feedback on the dynamics of ecological dynamics

is often lacking (Scheffer and Carpenter, 2003; Suding et al., 2004). In systems with
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strong positive feedback, predictions from qualitative modelling can reveal correlations in

community responses to sustained perturbations that are consistent with alternative states.

In our qualitative models of Tasmanian rocky reefs, patterns in sign responses driven by

the presence of positive feedback emerge in the adjoint matrices that are consistent with

the alternative community states observed empirically. In considering the broad scale

dynamics of Tasmanian shallow reef systems the qualitative approach identified alternative

community states as dense seaweed beds supporting high abundance of lobsters or, a

sea-urchin-dominated system with greatly reduced seaweed cover and lobster populations

at low levels (Johnson et al., 2005; Ling et al., 2009a). In focussing on the dynamics

of understorey communities beneath the macroalgal canopy, perturbations facilitate the

establishment of either a brown- or a pink-benthos state, where abalone are typically

lacking from the brown-state, and abundant in the pink-state (Strain and Johnson, 2010).

As exemplified by abalone in the broadscale models of canopy dynamics, model groups

that are indirectly influenced by the positive feedback can manifest ambiguous responses,

not necessarily in phase with the alternative states. Nonetheless, a thorough analysis

of the qualitative adjoint matrix of a system can help detect regular correlations in

variable responses, either across a subset of long-term perturbations or a subset of

modelled variables. The sets of variables or species that react in phase with alternative

community states are of particular interest for ecosystem monitoring and intervention.

Thus, qualitative modelling helped to identify the most appropriate variables to reliably

track the state of rocky reef communities with regards to sea urchin destructive grazing

and on which to focus further quantitative modelling, i.e. they were the three key groups

(seaweed assemblage, rock lobster and the sea urchins) involved in the positive feedback

driving either the shift from high seaweed cover to sea urchin barrens habitat, or the

reverse shift. While demonstration of dominant positive feedback in system dynamics

does not constitute absolute proof of alternative persistent states (Scheffer et al., 2001) it

nonetheless identifies a strong potential for it. Given the particular difficulties of managing

a system in which there exists potential for alternative persistent states and hysteresis,

and the heady consequences of phase shift, qualitative modelling is helpful in that it

can quickly inform managers of the need for a precautionary approach without the need

to develop more complex fully quantitative models which usually require many person-

years of expensive empirical effort to parameterise. The qualitative modelling is also

useful in identifying the need for dedicated manipulative experiments and/or quantitative
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modelling to more thoroughly investigate the presence of alternative community states.

The approach can also inform about the relative balance between positive and negative

feedback necessary for a system to display alternative states.

However, qualitative modelling is limited in what it can show about phase shifts between

alternative states, and should be seen as complementary to field experiments or specific

quantitative models (Scheffer et al., 2001; Scheffer and Carpenter, 2003). Field experiments

or quantitative models are required to characterise the nature of the shift, confirm the

existence of alternative states, and identify key thresholds in system dynamics (Scheffer

et al., 2001). Nonetheless, the important points are that qualitative modelling (1) can be

meaningfully undertaken with basic information about links in a system and before detailed

and expensive parameterisation is pursued, and (2) can detect the potential for alternative

states in ecosystem dynamics and thus flag the need for a precautionary approach in

managing human activities in a system until community dynamics are more specifically

and thoroughly investigated.

5.1.2 Calibration and sensitivity analysis of a model with alternative states

While they may be seen as useful, even essential, to support informed decision-making

in management, robust simulation models of ecosystems with alternative states are

challenging to build and validate. When there are alternative states in model dynamics,

if follows that no trivial criteria can provide reliable metrics to assess the goodness-of-fit

of such models. Chapter 3 presents a simulation-based validation and analysis of model

sensitivity to input parameters of TRITON, the quantitative simulation model developed

specifically to study phase shifts between alternative community states in lobster-sea

urchin-seaweed dynamics. Pattern-oriented modelling, i.e. comparing patterns emerging

from Monte-Carlo simulations of model dynamics with large-scale empirical observations

provides a useful approach to calibration (Grimm et al., 2005) and, to a large extent can

be accepted as validating the broad-scale dynamics of TRITON.

Using the computationally efficient, model-independent extended Fourier amplitude

sensitivity test (Saltelli et al., 1999), we were able to rank the influence of key parameters

on model behaviour. Through a set of independent sensitivity tests, the approach to

first focus on the model’s overall dynamics, and then decompose total model behaviour
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into the individual features that characterised the ‘forward’ and reverse shifts (van Nes

and Scheffer, 2003) was powerful and informative. Rather than using one single global

sensitivity test, the set of sensitivity tests provides a comprehensive analysis of the shift

between alternative community states in the model. The simulations underlying the

sensitivity tests also inform parameter influence on transition times in the model for shifts

from one state to the other.

5.1.3 Simulation-based exploration of phase shift in modelled community

dynamics, indicating thresholds and management interventions

Monte-Carlo simulation using TRITON helps tackle key questions for managing rocky

reef communities in Tasmania by characterising key thresholds. These tipping points

define important reference points (e.g. ∼6200 g of lobster. 200m−2 as the biomass

density associated with a 5% chance of barren forming) to mitigate the risk of sea urchin

destructive grazing. They also reflect a hysteresis in modelled community dynamics as

evidenced by different thresholds associated with the ‘forward’ and the ‘backward’ shifts.

Note, however, that because of spatial heterogeneity in ecological dynamics, captured in

TRITON through Monte-Carlo simulations, no definite and precise threshold values can

define the tipping points in the dynamics of a given ecosystem. If thresholds in ecological

dynamics are challenging (Briske et al., 2010; Samhouri et al., 2010; McClanahan et al.,

2011), but not impossible (Carpenter et al., 2011), to identify empirically, Chapter 4

suggests that tipping points are not that trivial to apprehend using simulation models.

Generalised linear models can identify model groups that best relate to the likelihood of

model shift and provide a robust framework to determine threshold points associated

with a given level of risk that managers or industry are willing to take. However,

community thresholds identified in terms of biomass densities on a local reef (∼100 m2 to

10 ha) are not straightforward to transpose at the regional scale of fishery management in

Tasmania (∼100 km). While estimates of community thresholds cannot directly informed

definite target points for current lobster fishery management, Chapter 4 highlights the

need for management objectives to minimise the risk of sea urchin grazing. The same

Monte-Carlo simulation provides a valuable assessment of the tradeoffs between long-term

ecological outcomes and fishery productivity under alternative management interventions.

The discrepancies between simulations with TRITON and with the single-species stock

assessment model for the rock lobster fishery reveal the need for fishery management to
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move towards an ecosystem-based approach to account for the key ecological role of rock

lobster on Tasmanian rocky reefs.

This thesis illustrates the crucial role that modelling (i.e. qualitative, quantitative

or simulation-based assessment of model sensitivity to parameter) can play in better

appreciating and understanding alternative community states in ecological dynamics.

The models are fundamentally useful to (i) detect the potential for alternative persistent

states in reef dynamics from ecosystem feedback properties (providing critical information

for managers), (ii) identify the existence of different ecologies and drivers of community

dynamics in both the barrens and seaweed-dominated states, (iii) estimate of thresholds

in reef dynamics, and (iv) assess the effects of management measures on ecosystem state.

The results show clearly that qualitative modelling, the sensitivity analyses of TRITON

to input parameters, and results from Monte-Carlo simulations, each contributes original

and critical information about alternative states and hysteresis in community dynamics.

The modelling is useful in complementing existing knowledge from field observations and

empirical experiments. It is an important result that the modelling approaches show

complementarity and help to both develop a more comprehensive picture of the potential

for alternative states on Tasmanian rocky reef dynamics and to inform management about

choices in management responses.

5.2 Assessing model robustness and enveloping uncertainty

in model predictions

To provide reliable information and support natural resource management, an ecological

model requires both comprehensive testing of in-built assumptions and validation against

available information on observed dynamics.

5.2.1 Qualitative Modelling to assess structural uncertainty

Testing for uncertainty in ecological models often focuses on sensitivity analysis of

parameter values (Saltelli et al., 2000) while the question of uncertainty in model

structure usually remains underestimated at best, or is unaddressed entirely (Laskey, 1996;

Dambacher and Ramos-Jiliberto, 2007; Hosack et al., 2008). Chapter 2 emphasises the

importance of assessing structural uncertainty in models of complex systems, especially in
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ecological models where the understanding of system interactions is typically incomplete.

In the same sense that testing model sensitivity to parameter values is essential (Saltelli

et al., 2000), questioning the qualitative information (e.g. about ecological interactions)

used to build models is essential in testing assumptions about the model structure itself

(Hosack et al., 2008). Qualitative modelling of feedback properties is well suited to assess

structural uncertainty in models of complex systems (Hosack et al., 2008; Metcalf et al.,

2008; Hosack et al., 2009). This approach enabled identifying the most parsimonious

model structure to address the ecological effects of sea urchin destructive grazing (i.e. the

need to include the minimum components of seaweeds, sea urchins and lobsters), and to

assess options for management intervention.

5.2.2 Uncertainty in model formulation and parameterisation

Robust model parameterisation is key to any useful simulation framework and represents a

major effort behind the development of the TRITON model (Appendix 3B). Even for the

best-studied ecosystems, where observational or experimental data can support detailed

model parameterisation, quantification of ecological processes is uncertain (Novak and

Wootton, 2008), and so testing for model sensitivity to parameter values constitutes

an essential ingredient of ecological modelling (Saltelli et al., 2000). Through a set of

independent sensitivity tests (Saltelli et al., 1999), model dynamics can be analysed as

a whole and decomposed to develop a comprehensive understanding of the key drivers,

and assess. While sensitivity analyses based upon each model group can be informative,

considering the overall community structure described by the first axis of the PCA

on normalised outputs of the different model groups provide a reliable one-dimensional

summary to assess sensitivity of model behaviour without having to screen each and every

model group.

Pattern-oriented modelling (Grimm et al., 2005) offers a valuable approach to assess

and calibrate the dynamics of a model with alternative states in circumstances where

no objective quantitative validation criteria can easily be defined. Comparing patterns

emerging from Monte-Carlo simulations with large-scale observations of Tasmanian reef

communities helped to restrict values of sea urchin recruitment rates to a realistic range

so that TRITON behaves as observed on rocky reefs in the ‘real-world’.
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Comprehensively testing model assumptions, whether related to model structure,

formulation or parameterisation, contributed to both:

(i) a better understanding of the key drivers of modelled community dynamics. Both

lobster and sea urchin recruitment, and the level of lobster fishing and removal of sea

urchins all emerged as important factors controlling the model’s propensity to shift

to sea urchin barrens. It is noteworthy that recruitment of both groups is highly

dependent on large-scale oceanographic features in eastern Tasmania (Pecl et al.,

2009; Johnson et al., 2011) and thus not able to be directly manipulated by human

behaviour, while extraction of sea urchins and lobsters from the system is directly

under human control;

(ii) and assessment of model limitations due to incomplete understanding of Tasmanian

rocky-reef dynamics. Several ecological processes, which are unlikely to highly

influence the broad dynamics of phase shifts, are coarsely or not explicitly captured

in TRITON. In particular, the dynamics of other guilds and size groups within

the seaweed bed community, the effects of storms and wave action on algal cover

(Wernberg, 2005; Reed et al., 2011), and greater detail on the effect of sea urchin

grazing on macroalgae (described after Hill et al. (2003) in TRITON) and of lobster

predation rates on sea urchins across a range of densities of both predator and prey,

would require further field observations and experiments to be finely captured in the

model.

5.2.3 Accounting for space-time variability and assessing prediction

uncertainty through Monte-Carlo simulations

Variability in space and time is a key feature of real ecological dynamics, and needs to be

adequately captured in any realistic ecosystem model (Annan, 2001). However, seasonality

and the frequency and magnitude of extreme events (i.e. storm surges) (Reed et al., 2011),

which potentially play a role in sea urchin barrens formation, are not captured in TRITON

because they are difficult to quantify and largely irrelevant to the long-term ecological

dynamics of sea urchin destructive grazing. Due to the scarcity of information about

temporal variability in most modelled process, the only source of stochasticity through
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simulations in TRITON comes from interannual variability in rock lobster and sea urchin

recruitment rates.

In TRITON the distribution of each model parameter was estimated using data,

mostly from Tasmanian-based empirical observations and experiments. Exploration of

the 90% confidence interval of each parameter estimate through hierarchical Monte-

Carlo simulations (Saltelli et al., 1999) account for uncertainty both, in individual

processes captured in the model, and in the overall dynamics that emerge out of the

complex interactions between these processes (Laskey, 1996; Melbourne-Thomas et al.,

2011a; Polasky et al., 2011). Indeed, each set of Monte-Carlo simulations samples

any combinations of input parameters, including the most extreme ones. Thus, while

environmental variability through space (from reef to reef) is not easy to characterise,

these simulations are likely to capture some of this heterogeneity in the environmental

conditions found on Tasmanian rocky reef (e.g. in habitat, depth, exposure to urchin

larvae, etc.). Assessing uncertainty in model predictions allows us to advise about the

expected general consequences of alternative management options rather than prescribe

definite recommendations for management (Francis and Shotton, 1997).

Both the qualitative and quantitative simulation modelling reveal the importance of non-

trivial indirect effects (e.g. high level feedback or interactions between modelled processes)

to the modelled community dynamics. Indeed, while qualitative modelling can track the

influence of indirect effects and the contribution of high-level feedback to community

dynamics (Marzloff et al., 2011a), simulation-based sensitivity analysis suggests that the

quantitative model TRITON is mostly sensitive to interactions between modelled processes

rather than to direct effects of changes in input parameters. Thus, both the qualitative

and quantitative modelling approaches presented in this thesis provide valuable tools to

capture and emphasise the importance of indirect responses of the reef community to

perturbations, and also to test the non-trivial indirect effects of management interventions

and environmental changes on ecosystem state. In keeping with previous work, the

dominant influence of interactions between input parameters on model dynamics that

we observed is common in models of complex dynamics (Saltelli et al., 1999, 2009). More

generally, this thesis highlights the value of ecological modelling to adequately assess

complex non-trivial responses of ecosystems to perturbations.
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5.3 Towards an ecosystem-based management for Tasma-

nian rocky reef fisheries

The suite of models built and tested to realistically capture alternative states in seaweed-

based reef community dynamics provides valuable information towards a more integrated

ecosystem-based management of Tasmanian rocky reef communities and associated

fisheries. Overall, these models help detect the potential for alternative community states

and identify the key mechanisms driving these shifts. More specifically, they provide a

framework to apprehend threshold points in reef community dynamics and test the effects

of different management strategies on long-term ecosystem state and fishery productivity.

5.3.1 Qualitative modelling and general information for an Ecosystem-Based

Fishery Management

Qualitative modelling can provide valuable insight into the indirect effects of human

activities on ecosystem state, and qualitative predictions can help distinguish the most

useful variables for both ecosystem monitoring and management intervention (Dambacher

et al., 2009; Marzloff et al., 2011a; Metcalf et al., 2011). In the thesis, qualitative modelling

helped understand the general dynamics of Tasmanian rocky reefs and in particular

the potential for alternative community states both, in lobster-sea urchin-seaweed bed

dynamics, and in the dynamics of epilithic algal assemblages under the macroalgal canopy:

1) under sustained changes in environmental conditions (e.g. climate-driven increase in

sea urchin recruitment) or human impacts (e.g. harvesting of rock lobster), seaweed-based

reef communities are predicted to respond towards either a dense seaweed bed supporting

a high abundance of lobster or, alternatively, a sea-urchin-dominated barren with reduced

seaweed cover and where lobster populations decline (Johnson et al., 2005; Ling et al.,

2009a); 2) in the dynamics of understorey algal communities, the qualitative predictions

suggest that removal of abalone by fishing will locally facilitate the establishment of the

brown-benthos state where abalone density virtually collapses (Strain and Johnson, In

press). The brown-benthos state, characterised by a matrix of filamentous and foliose

algae, semi-consolidated sediment and sessile invertebrates, can overgrow the pink-benthos

state dominated by crustose red algae where abalone are abundant (Strain and Johnson,

2010).
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These examples show the capacity of qualitative modelling to indicate the general

ecosystem effects of fishing rock lobster and blacklip abalone and the climate-driven

increase in sea urchin recruitment on the state and well-functioning of Tasmanian

rocky reef communities. While useful in generally describing the community effects of

fishing (Dambacher et al., 2009), qualitative modelling does not provide any specific

recommendations directly relevant to fishery management.

5.3.2 Development of a parsimonious simulation model and scenario testing

The quantitative modelling extends the consideration of broad dynamics illuminated by

the qualitative approach to provide more specific recommendations for the lobster fishery.

First, the set of global sensitivity analysis tests reveal high contributions to variance

in simulation outcomes of parameters associated with lobster fishing, and culling of sea

urchins. Along with lobster and sea urchin recruitment rates, harvesting of lobsters and

sea urchins highly influences the model’s ability to shift from dense seaweed cover to sea

urchin barrens habitat, or the capacity for seaweeds to recover on sea urchin barrens,

and so harvesting rates emerge as more effective management levers than implementation

of a maximum legal size alone. The time for the model to shift from one state to the

other is of the order of two to three decades, so it is therefore prudent that management

focuses on the prevention of barrens formation rather than on restoration strategies that

are unrealistic to implement over lengthy time frames (i.e. decades rather than a few

years, which is the time scale of most management plans).

Finally, Chapter 4 provides information for current managers to better account for

the important ecological role or ‘service’ that lobsters provide to Tasmanian rocky reef

communities. Estimates of key thresholds in Tasmanian reef communities, which can

constitute important reference points to mitigate the effects of sea urchin destructive

grazing (e.g. ∼6200 g of lobster. 200m−2 as the biomass density associated with a 5%

chance of barren forming), clearly identify a hysteresis in modelled community dynamics.

This hysteresis highlights the need for management to focus on preventing the formation

of sea urchin barren rather than on the far more challenging restoration of seaweed beds

once extensive barren habitat has established.

When examining thresholds in modelled community dynamics, let us keep in mind that

absolute model predictions always need to be considered with caution. It is well-accepted
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that due to model uncertainty, quantitative model predictions should advise about the

expected general consequences of alternative management options rather than prescribe

definite absolute recommendations for management (Francis and Shotton, 1997): the

precision and the accuracy of absolute predictions from complex ecological models depend

on the reliability of all input parameters, hence simulation outcomes are often interpreted

in relative terms (e.g. comparisons among alternative scenarios; Smith et al., 2011) rather

than as absolute predictions. However, absolute estimates of thresholds in community

dynamics are essential to a sound management of Tasmanian rocky reef community,

and if managers do not have access to the best absolute estimates that researchers can

provide, even with all their caveats, they will make management decisions anyway. The

simulations with TRITON, based upon the best available information about Tasmanian

reef ecology, currently provide the most reliable and conservative estimates of thresholds

in reef community dynamics: indeed, all model parameters were estimated using the

latest and most comprehensive sources about Tasmanian rocky reef ecology, so estimates

from simulations with TRITON summarise the best currently available knowledge to

inform management. Note also that to tackle uncertainty in model prediction, parameter

uncertainty has been addressed in both chapters 3 and 4: model sensitivity to input

parameters was investigated comprehensively in Chapter 3, while the results presented in

chapter 4 are from thousands of Monte-Carlo simulations to fully sample parameter space

and account for parameter uncertainty in model predictions. Nonetheless there remains,

of course, uncertainty in some assumptions and processes behind the TRITON model.

However, decisions while developing the model were always made conservatively. As a

consequence, absolute model predictions (and simulation-based estimates of threshold

in community dynamics) are conservative in terms of estimating the risk of sea urchin

destructive grazing of Tasmanian seaweed beds.

Direct culling of sea urchins together with a reduced harvest of lobsters is the most effective

ecological intervention to minimise the impact of C. rodgersii grazing on Tasmanian reefs.

The dual actions of reducing removal of lobsters and increasing removal of sea urchins

is notably more effective than measures aimed solely at building lobster populations

(e.g. reduction in lobster fishing or implementation of a maximum legal catch size). An

important result of the modelling is that a maximum sustainable yield estimated from

the single species stock assessment model does not account for the ecosystem service

delivered by larger lobsters. Current management overlooks the potential for some form
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of depensation effect in lobster population dynamics, i.e. the decrease in recruitment due

to the loss of seaweed habitat following sea urchin destructive grazing at low density of

large rock lobsters. In this context, this thesis emphasises the need for an ecosystem-

based management approach for the Tasmanian rock lobster fishery. While highlighting

the need for fishery management to better account for the ecological role of lobster in

Tasmanian rocky reef communities and revise key target points accordingly, the range of

model simulations provide a valuable assessment of the tradeoffs in terms of both long-

term ecological outcomes and fishery productivity associated with alternative management

interventions.

5.3.3 Mismatch between the scale of rocky reef dynamics and fishery

management

Simulation models constitute useful support tools to manage natural resources, especially

as the consequences of alternative regulations or management scenarios are difficult if

not impossible to assess experimentally at the spatial and temporal scales of ecological

dynamics (e.g. Melbourne-Thomas et al., 2010, 2011b). However, in eastern Tasmania

commercial fisheries are managed at the scale of regional ‘blocks’ (scale of 103 m), while

sea urchins can deplete seaweed beds, create and maintain extensive ‘barren’ areas at the

scale of individual reefs (scales of 102 - 103 m). While it is clear that C. rodgersii represents

one of the major threats for Tasmania’s subtidal rocky-communities and coastal fisheries

(Johnson et al., 2005), a decision-support tool that adequately addresses both the spatial

dynamics of sea urchin barrens formation and the effects of lobster fishing and fisheries

regulations on the state of reef communities, is currently lacking. Such a tool, structured

as a connected network of local models in which each represents the dynamics of individual

reefs, is under development to support the management of rocky-reef communities at the

scale of the entire east coast of Tasmania (Marzloff et al., 2011b). The regional dynamics

in the model emerge from the combination of these local dynamics and dispersal of larvae

between reef patches. Regional connectivity between reefs is derived from a particle-

tracking model based upon patterns of surface circulation (Condie et al., 2005). This

framework will to some extent bridge the current gap between the findings presented in

this thesis about the dynamics of sea urchin destructive grazing at the scale of individual

patches of reef (e.g. threshold points expressed a biomass density of rock lobster, defined

in g.200m−2), and actual regional management of the Tasmanian rock lobster fishery
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(under regional catch quotas, defined in Kt for management blocks covering large stretch of

coastline). This mismatch between the scale of ecological dynamics and the scale of fishery

management currently constitutes a major challenge for the implementation of sound

ecologically sustainable management decisions for Tasmanian rocky reef communities.

5.4 Challenges to adapt to climate-driven changes in

Tasmanian marine ecosystems around Tasmania

Under climate-driven large-scale changes in global ocean circulation, southeastern

Australia, including eastern Tasmania, has been identified as a regional ‘hotspot’ with

the ocean warming about three to four times faster than the global average (Holbrook

and Bindoff, 1997; Ridgway, 2007a). In particular, the warm nutrient-poor tropical

East Australian Current, which sweeps southwards along the East coast of Australia, is

intensifying as part of large scale changes to the South Pacific Gyre (Ridgway, 2007b). The

list of known and potential changes to the Tasmanian marine environment associated with

these changes in larger-scale oceanographic features is long and expanding (Johnson et al.,

2011). Notably, sea urchin and southern rock lobster recruitment processes in eastern

Tasmania, both highly influential parameters underpinning the dynamics of TRITON,

are largely determined by large-scale climate-driven oceanographic features (Banks et al.,

2007; Bruce et al., 2007; Ling et al., 2009b; Johnson et al., 2011). Like many other species

migrating poleward from Australia’s mainland coast to Tasmanian waters (Redmap, 2010;

Johnson et al., 2011), the long-spined sea urchin is now fully established, viable and, in

some areas of northeast Tasmania, the dominant species on shallow reefs (Johnson et al.,

2005, 2011). Populations of the sea urchin are constantly expanding, both in abundance

and in space along the east coast of Tasmania (Ling, 2008; Ling et al., 2009b). Conversely,

in eastern Tasmania there is some evidence that southern rock lobster larvae, ostensibly

supplied from Victorian and possibly South Australian populations (Bruce et al., 2007),

and lobster recruitment have declined over the last five to six years with the intensification

of the East Australian Current (Johnson et al., 2011), although the trend is far from

established. Accordingly, most long-term projections for southern rock lobster assumed

more frequent failures in annual recruitment and predict a decline in populations in eastern

Tasmania (Pecl et al., 2009; Johnson et al., 2011). While in the coming decades Tasmanian

reef communities may see a partial substitution of southern rock lobster with their more

northern counterpart, the eastern rock lobster (Sagmariasus verreauxi), precise predictions
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of shifts in species distribution and abundance are lacking and these climate-driven changes

can only be described in broad qualitative terms.

C. rodgersii barrens currently constitute a pressing concern for managers of reef

communities and fisheries in Tasmania (Johnson et al., 2005; Pecl et al., 2009; Johnson

et al., 2011). However, C. rodgersii is just one species among many others expanding

their range to establish populations in Tasmania (Redmap, 2010), but whose ecosystem

impacts are unknown. In the coming decades, climate-driven changes are likely to bring

more surprises to Tasmanian rocky reefs, and challenging surprises for associated fisheries

and their managers. The expected changes to come have the capacity to affect virtually

every physical attribute of marine ecosystems in the Tasman Sea from nutrient load,

temperature, salinity and pH, to biological components including plankton, seaweeds,

other components of benthic communities, and ecosystems supporting pelagic fishes

(Johnson et al., 2011).
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Appendix

A Derivation of parameter estimates

for the local TRITON (Temperate

Rocky reef communities In Tasmania

with lObsters and urchiNs) model

A.1 Introduction

A.1.1 Context of the model: units, temporal and spatial scales

The variables in this local model of Temperate Rocky reef communities In Tasmania

with lObsters and urchiNs (TRITON) are expressed in biomass density (g.200 m-2). The

default parameterisation corresponds to a 200 m2 reef area, as both a coherent spatial

scale on which to capture reef community dynamics and the most common scale used

for underwater surveys and experiments available to inform model dynamics. Biomass is

given as wet weight, which is often directly available from experiments or technical reports

and represents an ecologically sound unit for trophic interactions (e.g. Christensen and

Walters (2004)). Rates of change, defining population dynamics and trophic interactions,

are given as annual.

For each parameter, we define a mean estimate as well as a probability distribution (e.g.

uniform with a minimum and maximum bounds or normal with mean and standard error)

to account for parameter uncertainty through Monte-Carlo simulations (e.g. Saltelli et al.

(1999)).

A.1.2 Functional groups

The number of groups and/or species in the model is kept to a minimum (seaweed

assemblage, sea urchin, rock lobster; see chapter 3) so as to focus on the impact of grazing

by the invasive long-spined sea urchin Centrostephanus rodgersii on Tasmanian subtidal

reef communities (Marzloff et al., 2011a). The model explicitly includes southern rock

lobster, the main predator of the sea urchin in Tasmanian waters, to assess the community

effects of alternative management strategies for this key Tasmanian fishery.
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A.1.3 Appendix structure

This appendix details the parameterisation of all the processes explicitly modelled in

TRITON and is organised in four main sections: (A.2) population dynamics of each of

the three groups; (A.3) trophic interactions; (A.4) model closure and factors implicitly

accounted for in TRITON; (A.5) Limitations and guidance for future research.
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A.2 Population dynamics

A.2.1 Logistic population dynamics

Population dynamics following a logistic growth function can be expressed as:

dB

dt
= αB

[
K −B

K

]
, (A.1)

with B, biomass density (g. 200 m-2); K, carrying capacity (g. 200 m-2); α, intrinsic

growth rate (year-1); t, time expressed in year.

Defining logistic population dynamics

The following equation defines an analytical solution to Eq. A.1 (Kot, 2001):

B(t) =
K

1 + β exp(−α t)
, (A.2)

with β = K−B0
B0

, where B0 is the initial biomass density at time t=0.

Using observations of population biomass density through time (e.g. Fig.A.2 for the

seaweed bed) standardised to a 200 m2 area, the intrinsic growth rate α, the carrying

capacity K and the constant β from Eq. A.2 were estimated using the non-linear

least square function nls of the R language for statistical computing, version 2.12 (R

Development Core Team, 2010).

Seaweed bed logistic growth

Data Seaweed bed dynamics was defined based on data of seaweed bed recovery following

the removal of grazers (Ling, 2008). The first step involved translating these data reported

in percentage cover into wet biomass density of the seaweed bed (see Fig.A.1).

Parameter estimates Note that in one of the 3 experimental sites the seaweed bed did

not significantly recover for various reasons (shade and unsuitable reef properties; S.D.

Ling, personal communication). This site was ignored when fitting the logistic growth

function (Fig.A.2). Parameter estimates for seaweed bed logistic dynamics (Eq.A.2) are

given in Table A.1.
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a)

b)

Figure A.1: a) Conversion from percentage cover (%) to biomass
density (g.m-2) for Tasmanian seaweed beds (Ecklonia radiata, Phyllospora
comosa; Ling, unpublished data). b) Seaweed bed recovery data from Ling
et al (2008), aggregated across quadrats for 3 experimental sites. The data
originally in percentage cover (in %; black dots) were converted to biomass
density (in g.m-2; red squares).
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Table A.1: Parameter estimates for the seaweed bed logistic growth function (Eq.A.2).

Estimate Standard error t value Pr(> |t|)
αSW 4.43 1.65 2.690 0.0168
βSW 1.35e+02 2.18e+02 0.621 0.5439
KSW 3.4e+05 3.6e+04 9.488 9.94e-08

Figure A.2: Logistic growth model (with 50 and 95% confidence intervals)
fitted to data of seaweed bed recovery following urchin removal (Ling,
2008). Light conditions and marginal habitat features did not allow the
seaweed bed to recover at one of the three sites, which was excluded from
this analysis. Depth: 9-15 m.

Limitations and other references Intrinsic growth rate for various temperate seaweed

species are reported to vary from c. 4 to 7 year-1 under optimal conditions (Mohn and

Miller, 1987; Lobban and Harrison, 1996).

Carrying capacity of temperate seaweed beds, i.e. maximum biomass density, can

vary significantly depending on light (depth), exposure to swell, temperature and algal

composition. Our estimate of maximum biomass density (wet weight) falls within the low

range of reported values for carrying capacity of temperate seaweed beds: 4 kg kelp.m-2 in
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Nova Scotia (Lauzon-Guay et al., 2009); 6-18 kg.m-2 for Ecklonia radiata beds in Western

Australia (Kirkman, 1984).

In Tasmanian waters, E. radiata beds are the most at risk of destructive grazing by

C. rodgersii. Several studies have measured individual E. radiata plant growth and

productivity (Kirkman, 1984, 1989; Sanderson, 1990). E. radiata plant growth is often

compared to a conveyor belt of tissue moving from the meristematic region near the stipe

of the plant towards the extremity of the blades where it erodes (Sanderson, 1990). If

both tissue production and erosion can be measured for E. radiata seaweed beds, the

effects of urchin grazing on individual macroalgae is poorly known so this information

available about the dynamics of individual macroalgae was not directly usable in TRITON.

Additionally, other processes (e.g. wave action especially during storms) are not accounted

for explicitly in the model. These processes can potentially erode macroalgal plants as

much as sea urchin grazing (Reed et al., 2011). Seaweed bed dynamics and sea urchin

grazing on macroalgae in particular would require some dedicated field experiments in the

future to better represent sea urchin destructive grazing in the model.

Urchin logistic growth

Data The long-spined sea urchin has progressively extended its natural range southwards

along the east coast of Tasmania over the last decades. C. rodgersii has progressively

settled through time in Tasmania along a north-south gradient. From large-scale surveys

of C. rodgersii population size-structure along the East coast of Tasmania (Johnson et al.,

2005; Ling and Johnson, 2009), information about sea urchin population age and biomass

density could be derived at different sample sites to describe population growth (Fig.A.3).

Substituting space for time, this data provides information about urchin population

dynamics (biomass building following first settlement). The 90% quantile of population

age distribution is used as an estimate of the elapsed time since first settlement of C.

rodgersii at a given site.
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Figure A.3: Logistic growth model (with 50% and 95% confidence
intervals) fitted to data from large-scale survey of C. rodgersii population
on the east coast of Tasmania (Johnson et al., 2005; Ling and Johnson,
2009). The 90% quantile of population age distribution is used as a proxy
for the time elapsed since first settlement of the urchin.

Rock lobster logistic growth

Data The Maria Island and Tinderbox marine reserves were implemented in 1991 and

reef communities within the reserve have been monitored regularly following protection

from fishing (Barrett et al., 2007; Edgar et al., 2009). Biomass density of lobster through

time in these two reserves (Fig.A.4) is derived from size-structured survey of invertebrate

abundance using the following length-weight relationship for southern rock lobster (Jasus

edwardsii): B = 0.000271L3.135 (Punt and Kennedy, 1997) relating individual lobster

biomass (B) in grams to carapace length (L) in mm.
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Figure A.4: Logistic growth model (with 95% confidence intervals) fitted
to data from surveys of rock lobster mean biomass density in Maria Island
and Tinderbox marine reserves following protection in 1991 (Barrett et al.,
2007; Edgar et al., 2009)

A.2.2 Size-structured population dynamics

Both sea urchin and rock lobster dynamics are size-structured in TRITON. Thus, while

figures A.3 and A.4 present the data used to fit sea urchin and rock lobster population

dynamics, the following section provides the estimates of the parameters defining sea

urchin and rock lobster population dynamics in the model. Size-structured population

dynamics are defined for rock lobster and sea urchin populations based upon information

about individual growth function (size-dependent mean and standard deviation of growth

increment) and natural mortality rates (e.g. Punt and Kennedy, 1997). Length-weight

relationships were required to convert from abundance to biomass to accomodate our

biomass-based modelling approach.
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Defining size-structured population dynamics

A size-structured population model with n size classes can be written for any class s as:

Bs,t+1 = Bs,t × exp(−β) +
s∑

j=0

[
δ′s,jBj,t

]
−

n∑

i=s+1

[δi,s]Bs,t (+rt, if: s = 1) (A.3)

with Bs,t, biomass density of size class s at time t (g.200 m-2); δ′i,j, biomass-based

transition probability from size class j to i, (element of the i-th row, j-th column of the

transition probability matrix; in year-1); δi,j, abundance-based transition probability from

size class j to i (year-1); β, natural mortality (year-1); rt, recruitment rate into the first

size class at time t (g.200 m-2.year-1). The size-structured population model relies on

a transition probability matrix representing biomass fluxes between size classes. Size-

structured population dynamics is defined following a stepwise process: 1) definition of

recruitment variability (parameterisation of a stochastic function); 2) definition of the

growth transition probability matrix; and 3) estimating mean recruitment rate and natural

mortality by fitting simulated size-structured dynamics to available data.

Recruitment stochastic function Recruitment to the first size class is expressed as an

additive stochastic term. Interannual variability in the magnitude of recruitment can be

adequately represented using a lognormal stochastic function (M. Haddon, pers. comm.;

see Eq.A.4). Lognormal stochastic recruitment rate at time t can be written as:

rt = µ exp(γ + σ × ε) (A.4)

with µ, mean recruitment rate (g.200 m-2.year-1); γ and σ, mean and standard deviation

of the lognormal stochastic function defining the magnitude of interannual recruitment

variability; ε, a random term following a normal distribution of mean 0 and standard

deviation of 1; γ and σ can be derived from the mean m and the variance v of the observed

lognormally-distributed variable as: γ = log(m2)/
√
v +m2 and σ =

√
log(v/(m2 + 1)).

First, the standard deviation
√
v of the observed lognormal distribution describing

recruitment variability is informed using available time series, literature or expert opinion

so as to derive γ and σ. We assume a mean m of 1 to centre the stochastic function on

the statistically-estimated value of µ. Then, the mean annual recruitment rate µ and the

natural mortality rate β are statistically estimated to optimise the fit of size-structured

dynamics model against observations (Fig. A.3 and A.4).
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Growth transition probability matrix Transition probability matrices are derived

from individual growth functions describing size-specific growth increments (Punt and

Kennedy, 1997). By definition, the matrices are abundance-based, i.e. apply to number

of individuals present in each size class. Individual elements of the transition probability

matrix (δi,j from Eq.A.3) are defined as:

δi,j =






0 if: i < j

Pr

(
Lj +∆j ∈

]
Li − c

2 ;Li +
c
2

])
if: i¿= j

(A.5)

with δi,j, abundance-based transition probability from size class j to i (year-1); Li, mean

individual length in size class i (mm); ∆Li, annual growth increment in size class i follows a

normal distribution with mean and standard deviation derived from the individual growth

function (mm.year-1); c, width of each model size class (mm). To account for individual

body growth in biomass, we represent incoming biomass from size class j to size class i

using a biomass-based transition probability defined as δ′i,j = δi,j × bi
bj

with δ′i,j, biomass-

based transition probability from size class j to i (year-1); δi,j, abundance-based transition

probability from size class j to i (year-1); bi and bj, mean individual biomasses in size

classes i and j, respectively.

Mean recruitment and natural mortality rates The size-structured population

dynamics model (Eq.A.3) is finally fitted to time series of species biomass density in order

to estimate the most likely set of recruitment and natural mortality rates. The range of

values explored is derived from literature for the natural mortality rate and from parameter

estimates of fitted logistic model for the mean recruitment rate. The natural mortality

rate β essentially influences the transfer efficiency of biomass from small into large size

classes, while the mean recruitment rate µ regulates biomass influx into the first size class,

hence restricting the maximum biomass density of the population (i.e. carrying capacity).

Model residuals can be computed against each observation of biomass density at a given

time t. A sum of squares of these residuals is estimated for each Monte-Carlo simulation

and used as a measure of model likelihood.

Urchin size-structured dynamics

Variability in C. rodgersii annual recruitment on the East coast of Tasmania

The early stages of C. rodgersii larvae can only develop if water temperature is above
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12◦C (Ling et al., 2008). Therefore, mean sea surface temperature in late winter (when

sea urchin larvae disperse and settle) provides a good proxy for the likelihood of good

recruitment. Time series (1970-2007) of sea surface temperature in Maria Island were used

to characterise the frequency of annual recruitment events on the east coast of Tasmania for

the recent decades (Fig.A.5). A binomial function brings stochasticity to sea urchin annual

recruitment with a 0.4 probability of successful recruitment any given year (proportion of

winters with sea surface temperature above 12◦C; see Fig.A.5).

Figure A.5: Time line of mean sea surface temperature at Maria Island
during winter months (August-September, i.e. time of spawning for C.
rodgersii). The red line represents the 12◦C threshold for urchin larvae to
develop.

A lognormal stochastic function (γCR = −0.15; σCR= 0.5) is applied to scale the

magnitude of annual recruitment rate in successful years. It captures the remaining inter-
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annual variability in recruitment to the first size class in the model (which depends on

both larval settlement and juvenile survival). No specific records of variability in sea

urchin annual recruitment exists in Tasmania, so the lognormal stochastic recruitment

function was defined to mimic the frequency of good recruitment years indicated from field

observations (about 1 or 2 good recruitment events per decade; Andrew and Underwood,

1989; CR Johnson and SD Ling, pers. comm.) and information for other urchin species

(Hernandez et al., 2010).

Growth transition probability matrix The transition probability matrix is derived

from a generalised inverse logistic growth model for C. rodgersii in fringe macroalgal

habitat (Ling and Johnson, 2009). Ling and Johnson (2009) fitted a generalised growth

function to describe C. rodgersii growth increment in jaw length ∆L as a function of jaw

length Lt at time t, as follows:

∆Lt =
∆Lmax ×∆t

1 + exp
[
log(19)

Lt−Lm
50

Lm
95−Lm

50

] + εLt (A.6)

with ∆Lmax = 2.599, maximum annual growth increment; Lt, initial length at time t; ∆t,

elapsed time; Lm
50 = 17.994, Lm

95 = 27.290, parameters defining the shape of the inverse

logistic model; εLt , additive and normal error term of mean 0 and standard deviation σLt

defined as:

σLt =
σmax ×∆t

1 + exp
[
log(19)

Lt−Lm
50

Lm
95−Lm

50

] (A.7)

with σmax= 0.244.

Estimating mean recruitment and natural mortality Monte-Carlo simulations

with the population dynamics model were completed with sets of mortality and mean

recruitment rates covering the range of possible values (natural mortality rate βCR in

0.05-0.22 year-1, after Lauzon-Guay et al. (2009); mean recruitment rate µCR in 1000-

20000 g.200m-2.year-1). The goodness of fit of the size-structured population dynamics

model was assessed against available data of population biomass density since time of first

settlement of the urchin (see Fig.A.3; data from Ling et al., 2009b). Table A.2 provides the

10% most likely sets of mean recruitment and natural mortality parameters for sea urchin

size-structured dynamics model. Fig.A.6 compares the distribution of sea urchin biomass
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density across all size classes in simulation with observations in northeastern Tasmania on

long-established barrens grounds (Ling et al., 2009b). Table A.2 gives the mean estimates

of natural mortality and recruitment rates on which the simulated distribution is based.

Table A.2: Parameter estimates for sea urchin (C. rodgersii) size-
structured population dynamics model (cf. Eq.A.3 and Eq.A.4).

Unit Mean Range
Natural mortality βCR year-1 0.11 0.1-0.15
Mean recruitment rate µCR g.200m-2.year-1 4100 2500-10000

Figure A.6: Distribution of sea urchin biomass density across all modelled
size classes for a fully-established urchin population (barrens state).
Biomass densities (in g.200 m-2) are from simulations using mean parameter
estimates from Table A.2 (in grey), and from surveys at St Helens,
northeastern Tasmania (in black; after Ling et al., 2009b).

Length-weight and allometric relationships Jaw length (JL in mm) can be

converted to test diameter (TD in mm) as follows: TD = 4.12× JL (Ling et al., 2009b).
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The following length-weight relationship relates urchin biomass (B) in g to test diameter

(TD) in mm: B = α × TDβ with α = 0.00267 (± 0.00042 standard deviation) and β =

2.534 (± 0.034 standard deviation) (data from Ling et al., 2009b).

Rock lobster size-structured dynamics

Variability of rock lobster annual recruitment on the East coast of Tasmania

Lobster recruitment variability is assumed to follow a lognormal stochastic function (M.

Haddon, pers. comm.; see Eq.A.4). Estimates of lobster recruitment are available from

puerulus collectors on the east and southeast coast of Tasmania (Fig.A.7a and b) and

from the southern rock lobster stock assessment model for the central east coast of

Tasmania (Fig.A.7c). A lognormal stochastic function with standard deviation σRL of

0.6 (mean of the different estimates from Table A.3) defines inter-annual variability in

lobster recruitment.

Table A.3: Estimates of the standard deviation of the lognormal
distribution describing lobster recruitment inter-annual variability.
Assuming a standard deviation of 0.593 coefficients for lobster stochastic
recruitment function are γRL = −0.15 and σRL = 0.55 (Eq.A.4).

Site (recruitment data) Standard Deviation
Bicheno puerulus collectors 0.52
Southeast puerulus collectors 0.53
Stock assessment for block 2 0.73

Growth transition probability matrix Lobster individual growth (mean growth

increment and standard deviation) is described by third degree polynomials in the

Tasmanian southern rock lobster stock assessment model (McGarvey and Feenstra,

2001). These growth functions are sex-specific and vary seasonally and spatially for each

management block. Growth transition probability matrices Ms,z,t can thus be computed

for each sex s, zone z and period t of the year following Eq.A.5. We averaged these matrices

to produce annual transition probability matrices for each management zone across both

sexes and all 4 periods of the year (because this level of details was unnecessary in our

ecological model of Tasmanian reef dynamics) as follows:

Mz =
2∑

s=1

[ t=1∏

t=4

Ms,z,t

]
×1

2
(A.8)
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a) b)

c)

Figure A.7: Estimates of mean annual lobster recruitment on the east
coast of Tasmania from puerulus collectors (Frusher, unpublished data) in
a) Bicheno and b) in southeastern Tasmania from 1991 to 2007 and b) from
the lobster stock assessment for management block 2, central east coast of
Tasmania (Gardner, unpublished data).

For all simulation results presented in this thesis, the rock lobster size-structured model

is based on the polynomial growth function for management block 2 (central east coast)

in the Tasmanian rock lobster assessment model (K. Hartmann, pers. comm.; McGarvey

and Feenstra, 2001).

Estimating mean recruitment and natural mortality Monte-Carlo simulations

with the size-structured population dynamics model were completed with sets of mortality

and mean recruitment rates covering the anticipated range of values (natural mortality
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rate βRL in 0.1-0.3 year-1, after Frusher et al. (2008) and Frusher and Hoenig (2003);

mean recruitment rate µRL in 50-2000 g.200m-2.year-1). The goodness of fit of the lobster

size-structured population dynamics model was assessed against data of lobster population

biomass recovery from underwater surveys following the establishment of the Maria Island

marine reserve (see Fig. A.4; data from Barrett et al., 2009; Edgar et al., 2009). Table A.4

provides statistics of the 10% most likely sets of mean recruitment and natural mortality

parameters for the lobster size-structured dynamics model. Fig. A.8 shows the distribution

of rock lobster biomass density across all size classes i) in simulations based on mean

estimates of natural mortality and recruitment rates and ii) as observed in Maria Island

marine reserve 10-15 years after protection from fishing (2000-2007) (Barrett et al., 2009).

Note that due to the low sample size in the surveys, aggregation of data in 5 mm bins of

carapace length results in an uneven distribution of biomass density across all sizes (Fig.

A.8). The distribution of the biomass density from simulations (in grey) is discontinuous

across the small size classes because of the stochasticity of annual recruitment rate µRL

to the first size class.

Table A.4: Parameter estimates for southern rock lobster size-structured
population dynamics model (cf. Eq.A.3 and Eq.A.4).

Unit Mean Range
Natural mortality βRL year-1 0.23 0.20-0.26
Mean recruitment rate µRL g.200m-2.year-1 350 200-800
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Figure A.8: Distribution of rock lobster biomass density across all
modelled size classes. Biomass density (in g.200 m-2) are from simulation
based on mean parameter estimates from Table A.4 (in grey) and from
visual surveys in Maria Island in 2000-2007 (in black; after Barrett et al.,
2009).
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A.2.3 Lobster dependency on the state of the seaweed bed

The rationale behind scaling lobster population dynamics by the local extent of barrens

habitat relies on expert opinion and empirical evidence (e.g. Guest et al., 2009) suggesting

that dense seaweed beds provide an essential habitat and source of food to rock lobster

(directly and indirectly in hosting a range of small invertebrates species). Recruitment

of juveniles is possibly facilitated by the presence of a seaweed canopy that provides a

three-dimensional structure for the pelagic larvae to settle. Therefore, barrens formation is

likely to induce a significant loss of productivity and/or recruitment for lobster population

(Johnson et al., 2005; Ling, 2008).

Figure A.9: Sea urchin barrens percentage cover against rock lobster
density. These data from large-scale surveys of C. rodgersii barrens on the
east coast of Tasmania are aggregated by subsite (Johnson et al., 2005).
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Correlative data from large-scale survey A large-scale survey of sea urchin barrens

was conducted in 2000 along the east coast of Tasmania from the Kent group (Bass

Strait) to Recherche Bay (southeastern Tasmania) (Johnson et al., 2005). Sampling

was hierarchically structured with 16 primary sites (13 on Tasmanian mainland; three

in the Furneaux Islands group) approximately equidistant every 25-30 km along the linear

coastline, which were each sub-sampled at 3 sub-sites ca. 0.3-0.5 km apart. For each sub-

site, divers surveyed i) seaweed cover and composition, ii) barrens area, and densities of

iii) sea urchins, iv) rock lobsters and v) abalone to 1 m on each side of four 100 m transect

lines. Data were aggregated at the sub-site level (mean across all 4 transects) to quantify

rock lobster population reliance on the state of the seaweed bed. The original survey data

used to quantify lobster dynamics on the state of the seaweed bed is presented in Fig.A.9.

To match the scaling coefficient that defines lobster population dynamics dependency

to seaweed bed in the model, barrens cover was translated into seaweed bed biomass

density using the conversion factor presented in Fig.A.1a. Size was not reported for lobster

individuals, so abundance density was assumed to be linearly related to biomass density

(unit of model state variable). To obtain an estimate between 0 and 1, both lobster and

seaweed bed densities were expressed as relative densities standardised by the maximum

observed density.

The relationship between extent of barrens (we used seaweed cover as biomass density

for consistency with explicit model groups) and lobster abundance is characteristic of a

factor-ceiling distribution. Therefore, analysis techniques for triangular distributions were

applied to quantify the relationships between extent of barrens and lobster abundance

(Thomson et al., 1996; Koenker and Park, 1996). We used the non linear quantile

regression function nlrq (Koenker and Park, 1996) from R’s quantreg package (R

Development Core Team, 2010) to estimate the three parameters of a n-th power function

defined as: BRL = α+ β(BSW )γ with BRL rock lobster relative density and BSW seaweed

bed relative biomass density.

Comparing catch data in barrens and kelp habitat An alternative and more

conservative approach to scale lobster dynamics to the state of the seaweed bed relies

on fisheries-independent estimates of lobster abundance (size-specific catch per unit of

effort) in both kelp and barrens habitats. Large lobsters were translocated onto extensive
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sea urchin barrens areas off the coast of Tasmania. The experimental site at Elephant

Rock was closed to fishing for the past three years to gauge the efficiency of translocating

deep sea lobsters (carapace length (CL) superior to 140 mm) as a management option to

restore seaweed habitat from fully-established urchin barren (Johnson, unpublished data).

Both translocated and resident lobster populations were sampled bi-annually using fishing

traps. Note, that the extensive sea urchin barrens at Elephant Rock has adjacent kelp

habitat in the shallow (depth inferior to 12 m), which is typical of extensive C. rodgersii

barrens on the east coast of Tasmania.

Catchability estimates vary between the two habitats (barrens versus seaweed beds) with

lobster being more catchable on barrens grounds (more mobile and possibly foraging

more actively). Capture-mark-recapture modelling of tagged animals in the Elephant

Rock experimental site provides habitat-specific estimates of catchability coefficients (as

percentage of the population sampled through potting) across all size classes of lobster.

Depending on the assumptions of the fitted model (independent population on barrens

and seaweed bed habitat; single population with individuals migrating between the two

habitats), the estimated percentage of the population sampled by pot-fishing vary between

1.4 (+/- 1.7) - 9.9 (+/- 10.0) % in the kelp bed or 7.5 (+/- 2.3) - 11.6 (+/- 2.8) % (+/-

standard error) on barrens habitat. Ratio in catchability between the two habitats (kelp

bed versus barrens ground) estimates to be 0.18 to 0.85. Similar work on habitat (barrens

versus kelp bed)-specific catchability for American rock lobster in Nova Scotia suggests a

ratio of 0.766 of catchability in kelp bed relative to barrens habitat (Miller, 1989) .

Figure A.10 shows the size-structured distribution of catch per unit of effort in both

habitats. To interpret these data in terms of effects of barrens habitat on lobster population

abundance and dynamics, we excluded the lower (carapace length < 90 mm) and upper

(carapace length > 180 mm) tails of the size distribution because of the low sample size

(less than 0.02 individuals per potlift). Additionally, only the abundance of smaller size

classes of lobster (carapace length inferior to 140mm) is lower on barrens ground than in

adjacent kelp beds (see Fig. A.10). The abundance of large lobsters (carapace length >

140 mm) looks similar in both habitats. This suggests that large lobsters do equally well

in both habitats. Therefore, only lobster recruitment is scaled by the state of the seaweed

bed in the model.

To account for the effects of clustering the catch data across individual sizes, we used
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different levels of aggregation (size classes of 10 or 20 mm, or 4 size classes defined as:

50 - 90 mm; 90 - 140 mm; 140 - 180 mm; 180 - 210 mm; cf. Table A.5) to compare

the abundance of lobster on barrens ground compared to adjacent seaweed beds. The

abundance of small size classes of lobster (carapace length between 90 - 140 mm) on

barrens is 0.76 (+/- 0.13 standard deviation; βRL,SW parameter in TRITON) times the

abundance of similar sizes in the adjacent seaweed beds.

a)

b)

Figure A.10: Size-structured catch per unit of effort (individuals per
potlift) in the Elephant Rock experimental area following protection from
fishing in both seaweed (black) and barrens (grey) habitats.
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Table A.5: Size-Structured catch per unit of effort (CPUE; the unit
is individuals per potlift) in the St Helens experimental site following
protection from fishing for resident lobsters onlye (translocated animals
are excluded). We use different levels of aggregation across size classes for
both seaweed bed and sea urchin barrens habitat. The ratio of CPUEbarren

to CPUEkelp provides a proxy for the effects of extent of barrens on lobster
abundance. The ratios of CPUE account for differences in catchability
in the two habitats; indeed, catchability estimates from Elephant Rock
suggest that 9.9 % of the resident population was sampled through potting
in the kelp bed against 11.6% on barrens ground.

Lobster CL (mm)
50-90 90-140 140-180 180-210

CPUEkelp 0.01 0.42 0.113 0.01
CPUEbarren 0.02 0.33 0.146 0.004
CPUEbarren/CPUEkelp 1.52 0.67 1.10 0.32
(corrected for catchability)

Lobster CL Width of size classes Mean of CPUEbarren/CPUEkelp

(+/- Standard deviation)

Raw catch data
90-130 mm 20 mm 0.753 (+/- 0.145)
130-190 mm 20 mm 0.999 (+/- 0.353)

90-140 mm 10 mm 0.766 (+/- 0.117)
40-180 mm 10 mm 1.187 (+/- 0.423)

Catch data corrected for habitat-specific catchability
90-130 mm 20 mm 0.64 (+/- 0.12)
130-190 mm 20 mm 0.85 (+/- 0.30)

90-140 mm 10 mm 0.65 (+/- 0.10)
40-180 mm 10 mm 1.01 (+/- 0.36)
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A.3 Trophic interactions

A.3.1 Sea urchin grazing on seaweed

Data The estimate of Centrostephanus rodgersii grazing rate on seaweed was derived

from a feeding experiment completed in situ in New-South-Wales (Hill et al., 2003). For 4-

5 days, individual sea urchins were fed a range of algal species similar to those encountered

on Tasmanian rocky-reefs.

Parameter estimate Overall, daily consumption of seaweed per individual sea urchin

(of test diameter between 80 and 90 mm) was 3.23 g (Hill et al., 2003). Using the

length weight relationship for C. rodgersii in Tasmania (B = 0.00267 × TD2.53 with B

individual biomass in g; TD test diameter ranging from 75 to 95 mm to conservatively

envelop uncertainty), the biomass-based sea urchin grazing rate on seaweed, βSW,CR, was

5.94 (± 1.10 standard deviation) year-1 (i.e. g of seaweed. g of urchin-1 .year-1).

Comparison with other estimates of grazing rates In a model of urchin feeding

fronts in Nova Scotia, Canada (Lauzon-Guay et al., 2009), grazing rate is a constant and

takes values of either zero, or a positive constant once sufficient individuals gather to form

a feeding front. The assumption that sea urchins have to aggregate to a threshold density

for efficient grazing does not apply to C. rodgersii grazing on Tasmania rocky-reefs, as C.

rodgersii does not form feeding aggregations. Destructive grazing of seaweed beds appears

to occur as the sum of independent grazing by individual urchins.

Our estimate of urchin grazing rate from Hill et al. (2003) is of the same order as other

studies of temperate sea urchin species, even though the mean value is almost twice half

that on feeding fronts in Nova Scotia (rate of 10.9 g of seaweed. g of urchin-1 .year-1)

(Lauzon-Guay et al., 2009). This reflects a difference in the per capita intensity of

urchin grazing in Tasmania compared to destructive grazing in feeding fronts consuming

northwestern Atlantic seaweed beds.

Functional response The effects of grazing rate formulation can have significant effects

on the behaviour of marine ecosystem models (Fulton et al., 2003b). Experiments have

identified consequences of grazing by temperate sea urchin to be density-dependent (Hill
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et al., 2003; Wright et al., 2005). In models of plant-grazer dynamics, a range of density-

dependent functional responses have been used to represent the grazing terms, including

both Holling type III (e.g. Scheffer et al., 2008) and Holling type II (e.g. Sommer, 1999)

functional responses. However, quantitative observations or experimental evidence are

lacking to guide the choice of the most appropriate functional response for grazing by C.

rodgersii in Tasmania. In particular, knowledge of the effects of both seaweed and urchin

biomass density on C. rodgersii grazing rate is lacking. However, our sensitivity analysis

indicates that the influence of grazing rate and its formulation on model dynamics is minor

relative to other parameters such as lobster predation rates on urchin, recruitment rates

or fishing mortality.

For the purpose of simplicity and in the absence of supporting data, the intensity of urchin

grazing in TRITON is simply assumed to be linearly proportional to sea urchin biomass

density. The use of this simple representation of urchin grazing on seaweed is justified

because our model focuses on the top-down effect of urchin grazing as a destructive process

depleting Tasmanian seaweed beds. The actual intake of food through grazing does not

affect sea urchin population dynamics in the model since sea urchin populations are able

to feed on drift materials and sustain high biomass density on barrens in the absence of

standing macroalgae (Ling and Johnson, 2009).

Limitations and future improvements The contribution of storm events to the

depletion of kelp beds is not explicitly addressed in our model. It is possible however that

storm events may significantly facilitate barrens formation with swell action physically

removing large macroalgal individuals (Reed et al., 2011), which supply propagules to the

environment as well as shelter for juvenile plants. However, this phenomenon is currently

little documented and quantified around Tasmania.

Kelp blades can have a whip lashing effect on sea urchin in exposed reefs (Clemente and

Hernandez, 2008). However, C. rodgersii has been observed to climb up individual plants,

so that adult macroalgae do not attain a size refuge. C. rodgersii also graze on the holdfast

binding the plant to the reef, which can cause loss of biomass. In term of long-term biomass

loss, the effects of urchin grazing on adult plants may well be as important as on juvenile

ones, although further observations are required to represent the effects of urchin grazing

on individual macroalgae with finer details. In summary, we assume that the whole pool
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of seaweed is grazed upon by sea urchins, as size-specific availability of seaweed to urchins

is not currently quantified.

A.3.2 Lobster predation on sea urchins

Lobster predation rates on sea urchins

Data from in situ predation experiments Survivability estimates of sea urchins

were available from a tagging experiment within and outside two marine reserves on the

East coast of Tasmania, where rock lobsters are the only effective predator of C. rodgersii

(Ling et al., 2009a). Urchin biomass density was relatively even across all sites (48 tagged

urchins were released in each site). Despite some contrasts in lobster density between

sites (especially between fished and unfished areas), fitting predator-dependent functional

responses (Skalski and Gilliam, 2001; Kratina et al., 2009) of sea urchin mortality due to

lobster predation was not meaningful . Note that 1) the density of sea urchins is very low

in this manipulative experiment (about 20 times sparser than observed density in barrens

habitat), and that 2) sea urchin survival in fished areas, where predation-capable lobster

abundance is very low, does not provide information about lobster predation but rather

about other sources of mortality. Some estimates of lobster predation on urchin can be

derived from this data (Table A.7) but it is essential to keep in mind that the density of

urchin was very low in this experiment.

Data from DNA analysis of lobster faeces at two experimental sites Data

from DNA analysis of prey items in lobster faecal pellets provided an alternative source

of information about the frequency of lobster predation events on urchin (Redd et al.,

2008). Samples of lobster faecal pellets were collected from two experimental sites (Redd,

unpublished data) at Elephant Rock near St Helens (594 samples) and North Bay on the

Forestier Peninsula (692 samples), where extensive and incipient sea urchin barrens occur

respectively.

However, these data require cautious interpretation as rock lobster faeces can be positive

to DNA of the sea urchin through scavenging of sea urchin remains, or ingestion of C.

rodgersii faecal pellets from the sediment. Thus, presence of urchin DNA in the sediment

constitutes a possible source of false positives.

Potential false positives in the DNA signal was accounted for in several ways.
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(i) Weak positive signals are excluded as likely artefacts by using a threshold number of

polymerase chain reaction (PCR) cycles (Kevin Redd, pers. comm.). A threshold of

40 cycles was chosen to exclude these weak positive signals. Comparison of predation

estimates based upon DNA analysis against estimates calculated from the observed

decline in urchin density at the North Bay experimental site supports the choice of

this threshold.

(ii) To minimise the risk of false positives due to scavenging activity on urchin decaying

carcasses, we exclusively considered DNA information for large lobster individuals

capable of preying on any size of C. rodgersii individuals (Carapace length >= 140

mm). On average in recorded encounters of lobsters and sea urchins in the field,

S.D. Ling observed 5 scavenging events for 4 predation events for small size classes of

lobster, while larger size classes (carapace length >= 140 mm) did not demonstrate

scavenging behaviour (data from video monitoring of predation events in Maria Island

reserve; see Ling et al. (2009a)).

All these filters for false positive were applied to faecal pellets positive to C. rodgersii DNA

for large lobster individuals. Thus, despite the potential for false positives, the DNA-based

estimates of predation presented here (see Table A.7) are conservative.

DNA from C. rodgersii is detectable in rock lobster faecal samples within seven hours

and up to 60 hours after ingestion (Redd et al., 2008). The proportion of lobsters feeding

on the urchin (30.4 - 50.2 % of large lobster individuals eat a sea urchin every 60 hours)

indicates that a large rock lobster eats 44 - 73 urchins per year. This corresponds to an

overall biomass-based estimate of lobster predation rate on C. rodgersii of 7.5 (+/- 2.6;

standard deviation) year-1 (i.e. g of urchin/ g of lobster/ year) across all DNA samples.

Please refer to Table A.7 for site-specific estimates of predation from DNA assays of lobster

faecal pellets.

Estimates of predation rates Overall, the different estimates of lobster predation

from predation experiments, DNA analysis and declines in sea urchin abundance at

experimental sites with known densities of predation-capable lobsters are in agreement

(i.e. of the same order with values ranging from 0.3 to 9.4 g of urchin per g of lobster

per year; cf. Table A.7). For the DNA-based estimates, data are only presented for large

lobster (carapace length > 140mm).
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Table A.7: Estimates of lobster predation rates (g of sea urchin / g of
lobster / year) on sea urchins based from different data sources. Large
lobsters correspond to individuals with a carapace length >=140mm.

Data source Mean Std. Dev.
Tagging experiment
All lobster 0.29 0.14
Large lobsters 0.64 0.3

DNA analysis of faecal pellets (Large lobsters)
Elephant Rock site 9.40 3.00
North Bay site 5.71 1.82

Functional response A range of alternative functional responses dependent on lobster

and urchin biomass density (Holling type I, II or III) were fitted to urchin mortality

estimates using the nls function of the R language for statistical computing, version 2.12

(R Development Core Team, 2010). Shape of the functional response was estimated

using biomass density estimates of lobster and sea urchin across all sizes (as opposed

to size-specific functional responses). The most likely functional responses were selected

using both Akaike and Bayesian Information Criteria. Currently available data were not

sufficient to objectively inform the most adequate functional response for lobster predation.

Therefore, the most common functional responses used to describe decapod predation

were reviewed from published literature (cf. Table A.8). Dependency of predation

rate on lobster density (i.e. allowing for interactions among lobsters in their access to

prey as described by the Beddington-De Angelis functional response; van der Meer and

Smallegange, 2009) was ignored due to low contrast in lobster density in the data. Only

Holling Type I, II and III functional responses were fitted to available estimates of lobster

predation rate on C. rodgersii (cf. Table A.7).
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Figure A.11: Estimates of lobster predation rate on C. rodgersii and
fitted Holling Type I (orange curve), II (green curve) and III (blue curve)
functional responses to urchin density. Data from predation experiments
(Ling et al., 2009a) in marine reserves are shown in black and data from
DNA analysis of lobster faecal pellets in grey. The dotted lines represent
the 50% confidence interval of the fitted functional responses.
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Parameter estimates Table A.9 presents parameter estimates for the Holling type I,

II and III functional responses of lobster predation on urchin.

Table A.9: Parameter estimates for the Holling Type I, II and III
functional responses of lobster predation on sea urchins, βCR,RL, (g of CR.
g of RL−1. year−1) defined with N sea urchin biomass density (g.200m-2)
and where β and β′ are scalars defining the shape of the functional response.
Data from the in situ predation experiment (Ling et al., 2009a; Ling
and Johnson, In press) and DNA analysis of lobster faecal pellets (Redd,
unpublished data).

Estimate Standard error t value Pr(> |t|)

Holling Type I as βCR,RL = min(βN,β′)

β 6.68 ×10−4 2.27 ×10−5 29.4 1.35 ×10−8

β′ 9.40 3.00

Holling Type II as βCR,RL = βN
1+β′ N

β 11.09×10−4 1.68 ×10−4 6.62 0.0003
β′ 1.10×10−4 0.20 ×10−4 5.61 0.0008

Holling Type III as βCR,RL = βN2

1+β′ N2

β 2.35 ×10−7 0.55 ×10−7 4.32 0.0035
β′ 2.50 ×10−8 0.60 ×10−8 3.92 0.0058

Size-structured predation of lobster on sea urchin

Predation of rock lobsters on sea urchins is size-structured reflecting that the size of

a lobsters’ first pair of walking legs limits its ability to handle sea urchin (Ling et al.,

2009a). To capture this physical threshold restricting predation, the minimum rock lobster

carapace length (CLmin, in mm) required to predate upon sea urchin individuals of a given

test diameter (TD, in mm) was defined after Ling et al. (2009a) as CLmin = α log(TD)−β

with α = 43.48 and β ∈ [48.91; 71.01] (mean of 59.96; standard deviation of 15.63).
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Table A.10: Summary of all parameter estimates and confidence intervals for TRITON.

Parameter Units Estimate Standard error Confidence interval

Seaweed bed logistic growth

αSW year−1 4.43 1.65 1.72− 7.14
KSW g SW.200 m−2 3.4×105 3.6×104 2.8× 105 − 4× 105

µSW g SW.200 m−2.year−1 5000 2500− 10000

with α, intrinsic growth rate; K, carrying capacity; µ, mean annual recruitment rate.

Sea urchin size-structured population growth
Growth transition matrix derived from Ling and Johnson, 2009.
β is the annual natural mortality; µ, the mean annual recruitment rate.

βCR year−1 0.11 0.1− 0.15
µCR g CR.200 m−2.year−1 4100 2500− 10000

The annual stochastic recruitment function follows a binomial with a 0.4 probability
of success, which is combined with a lognormal with a standard deviation σCR of 0.5.

Lobster size-structured population growth
Growth transition matrix derived from McGarvey and Feenstra, 2001.
β is the annual natural mortality; µ, the mean annual recruitment rate.

βRL year−1 0.23 0.20− 0.26
µRL g RL.200 m−2.year−1 350 200− 800

The annual stochastic recruitment function follows a lognormal with a standard deviation
σRL of 0.6.

Lobster dependency on the state of the seaweed bed
Lobster recruitment is scaled by: (1− β)× (1− BSW

KSW
)

with BSW, seaweed bed biomass density; KSW, seaweed bed carrying capacity.

βSW,CR constant 0.64 0.11 0.46− 0.83
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Parameter Units Estimate Standard error Confidence interval

Urchin grazing rate
βSW,CR g SW.g CR−1.year−1 5.94 1.10 4.13− 7.75

Functional responses of lobster predation on urchin

With BCR, urchin biomass density (g. 200m-2):
Holling Type I as βCR,RL = min(βBCR,β′)

β g RL−1.year−1 6.68 ×10−4 2.27 ×10−5 6.31 ×10−4 - 7.05 ×10−4

β′ g CR.g RL−1.year−1 9.40 3.00 4.46 - 14.33

Holling Type II as βCR,RL = βBCR
1+β′BCR

β g RL−1.year−1 11.09×10−4 1.68 ×10−4 8.34 ×10−4 - 13.85 ×10−4

β′ g CR−1 1.10×10−4 0.20 ×10−4 7.76 ×10−5 - 14.19 ×10−5

Holling Type III as βCR,RL = β(BCR)2

1+β′(BCR)2

β g CR−1.g RL−1.year−1 2.35 ×10−7 0.55 ×10−7 1.46 ×10−7 - 3.25 ×10−7

β′ g CR−1.g CR−1 2.50 ×10−8 0.60 ×10−8 1.47 ×10−8 - 3.60 ×10−8

Allometric and other size-based relationships

Length-weight relationship for the long-spined sea urchin
B = 0.00267× TD2.534,
with B, urchin individual weight (g); TD, urchin test diameter (mm).

Length-weight relationship for the southern rock lobster
B = 0.000271× CL3.135,
with B, lobster individual weight (g); CL, lobster carapace length (mm).

Size-Structured predation of lobster on urchin
CLmin = 43.5× log(TD)− β, with β ∈ [48.91 : 71.01]
with CL, lobster carapace length (mm); TD, urchin test diameter (mm).
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A.4 Implicitly accounting for other factors in the model

A.4.1 Other biotic factors: model closure

The number of functional groups explicitly described is minimal to capture the gross

dynamics and focus on the effects of overgrazing of seaweed beds by the invasive long-

spined sea urchin. Natural mortality accounts for other sources of mortality affecting

modelled groups or species, such as predation (e.g. octopus predation on lobster) or

intraspecific competition.

A.4.2 Abiotic factors: temperature, seasonality, habitat and depth

Seasonality

Several model parameters are likely to change seasonally, viz. growth, recruitment

(spawning and settlement of pelagic larvae) and trophic interactions (catchability of

southern rock lobster varies throughout the year and directly relates to lobster foraging

activity). Autoregressive functions (Annan, 2001) can be implemented to capture

stochasticity due to temporal variability of parameter values: rt+dt = µ + (rt − µ) ×

ARcoef + ε, with rt, parameter value at time t; µ, the mean parameter value; ARcoef

constant autoregressive parameter (lag 1 autocorrelation coefficient); ε a random variable

taken from a Gaussian distribution with mean 0 and standard deviation so. The variance

sr of the resulting time series is given by the equation: sr 2 = so 2/(1−ARcoef )2 (Annan,

2001).

The current version of the model does not incorporate seasonality because implementing

autoregressive stochastic functions considerably increases model complexity in terms of

parameterisation, and specific information about the seasonality of the different model

processes is lacking.

Temperature

Sea surface temperature essentially controls two processes in the model, urchin recruitment

and lobster growth (see the section about size-structured population dynamics).
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Sea urchin recruitment Sea urchin early larval stages can only develop successfully if

the ambient temperature is above 12◦C (Fig.A.5; Ling et al., 2008).

Discrepancies in lobster growth Lobster growth rates increases significantly with

temperature on the east coast of Tasmania, and in eastern Bass Strait lobsters moult twice

a year compared with a single annual moult in southern Tasmania (Punt and Kennedy,

1997). For simplicity, growth rate for the central east coast of Tasmania (i.e. region of

main focus for management of sea urchin barrens in Tasmania) is used in TRITON.

Effects of habitat and depth: patchiness of reef communities

Abiotic factors that are not explicitly captured in TRITON can influence modelled

processes. Model dynamics can mostly be affected by: i) depth, which correlates with

declines in both swell action and light levels, which influences seaweed growth; ii) habitat

structure, which can significantly influence sea urchin survival (Ling and Johnson, In

press). These processes essentially affect seaweed mortality (abrasion by wave action) and

growth rate (exposure to light), urchin natural mortality (exposure to predators) and the

strength of lobster predation on urchin. Thus, changing the mean values of these rates

through Monte-Carlo simulations with TRITON constitutes a rigorous representation of

spatial patchiness in reef dynamics.
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A.5 Limitations and guidance for future research

Building an ecological model provides a good opportunity to synthesise the current state

of knowledge about the dynamics of a given ecosystem. Emphasising the limitations of

the model due to lack of information about ecosystem processes is important to both i)

recognise limitations and sources of uncertainty in model predictions, and ii) prioritise

future research in addressing knowledge gaps. Limitations in current understanding of

Tasmanian rocky-reef community dynamics are outlined following. Some of the data

available could not be fully-exploited because the experimental context (e.g. spatial scales)

was not always clearly reported, which highlights the value of sharing and reporting data

from field experiments and observations in a transparent format for future re-uses.

A.5.1 Seaweed bed dynamics

Our definition of seaweed bed dynamics is based upon a single experiment, where recovery

of seaweed communities from a barrens state was monitored off the coast of Bicheno,

eastern Tasmania. Inclusion of additional experiments across different sites with different

features in terms of depth, habitat, latitude and temperature would allow refinements of

the current estimates. Additionally, it would be useful to represent guilds of seaweeds

rather than represent them as a single variable.

Conversion from percentage cover to wet weight Most experiments and

observations report seaweed cover in percentage cover, and only few measurements of

both percentage cover and standing biomass were available to define a conversion factor

from percentage cover to biomass.

Effects of depth Studies (e.g. Kirkman (1989) in Western Australia) have investigated

the effect of depth on seaweed bed productivity, but this information was not readily

included into TRITON, which does not account for depth explicitly.

A.5.2 Dependency of lobster dynamics to the state of the seaweed bed

Current data from large-scale surveys of the extent of sea urchin barrens and lobster

density provides the best information to quantify the effect of barrens habitat on lobster
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population dynamics (recruitment rates in particular). However, the effect of barrens on

the lobster life cycle (e.g. puerulus settlement or growth) may not be responsible for

these large-scale patterns (Johnson et al., 2005). Other causal mechanisms such as local

depletion of lobster abundance by fishing could drive correlations observed between lobster

abundance and seaweed bed cover.

A.5.3 Urchin grazing rate on seaweed

In the model, all of the seaweed standing biomass is assumed to be available to sea

urchins for consumption. A more realistic representation of these processes would require

further studies on the effects of urchin grazing on seaweed holdfasts and the temporal

dynamics of individual macroalgal abrasion of the substratum following sea urchin grazing.

Additionally, no data are currently available to quantify density dependence of the grazing

rate on either the seaweed bed cover or sea urchin density.

A.5.4 Predation rate

While predation estimates from DNA analysis may be skewed by false positive signals

(under current investigation), in situ predation experiments were completed at very low

urchin density (an order of magnitude sparser than on urchin barren). Thus, our current

estimate of predation rate could be refined based on further analysis of DNA sample

and further field experiments with higher densities of sea urchin. More sophisticated

functional responses (e.g. Beddington-De Angelis accounting for dependency to lobster

biomass density) would also require further manipulative experiments.
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