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SUMMARY 

I. A transect survey of the tidal flat mollusc community in the coastal Pipe Clay 

Lagoon, south-eastern Tasmania, was conducted over four WlSOns. The survey was 

conducted along a 700 m transect running down the tidal gradient from EHWS to MLW. In 

each season a 'distribution' transect was conducted with single quadrat (0.25 m x 0.25 m) 

samp les being taken down to the anoxic layer every 20 m. At the same time a 'dispersion' 

transect was taken; every 100 m a grid (0.5 m x 0.5 m) consisting 8 x 8 cells was 

sampled down to the anoxic layer. A number of physical variables were also measured. 

2. All molluscs and anemones that were retained by 0.5 mm mesh were defined to 

make up the community. The community comprised: 

i. three suspension feeding bivalves - Anape/la cyc/Mea, Ka/elys;l; 

scalarina and Wallllcinaassimi/is, 

ii. one deposit feeding bivalVe - Soletellina biradiata, 

iii. two deposit feeding gastropods - HydrococclIs brazier; and Sa/ina/or 

rragi/is, 

iv. six algivorous gastropods - ZeaclImantlls diemenensis, Rissopsis 

consobrina, l1icrodiscllla charopa, Bembicillm allra/lIm, AlIstrococ/JIe6 

constricta and Notoacmea alta, 

v, two carnivorous gastropods - Cylichnina pygmaea and Nassarills 

pallperatlls, 

vi. one parasitiC gastropod - Agatha metca/fei 

and vii. one carnivorous anemone - Anthop/ellra allreoradiat8. 

3. Statistical analysis of the survey data, followed by caging manipulation 

experiments, was used in an attempt to identify the principal factors responsible for 

controlling the structure of the community. 

4. The survey provided information on the habitat and on the spatial and demographic 

patterns of the species. The habitat proved to be very stable. The beach profile showed 

little change throughout the sampling period and there were no obvious sediment sorting 

gradients over the transects. 

5. The habitat stability was reflected in the relative stability of the populations. 

making up the commun1\y. Species did not exhib1\ mar~ed changes in e1\her d1stribution 

or abundance from WlSOn to WlSOn, apart from those associated with recruitment. 

6. The tidal gradient was the overriding environmental parameter and it appeared to 

exert 1\s stron~t influence on the spec1es during their recru1\ment. Reproductive 
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patterns varied both between and within species according to the position on the beach. In 

most species, recruitment appeared to be virtually continuous although considerable 

temporal variations occurred. Generally, bivalve recruitment was greatest over the 

cooler months of the year and reproductive success, as measured by settled juveniles, 

tended to increase in high beach areas during the cooler months. The gastropo.:ls appeared 

to be less sensitive to desiccatory stress and their principal period of recruitment was 

over spring and summer. 

7. The spatial and temporal variations in the structure of the community allowed a 

working hypothesis to be proposed. The structure of the community could be explained by 

a linking of the trophic group amensalism hypothesis of Rhoads and Young ( 1970) and 

Huston·s (1979) dynamic equflibrium hypothesis for the maintainance. of species 

diversity. I t appeared that trophic group amensalism, acting on juvenile animals, was the 

major factor controll ing the observed changes in community structure along the transects. 

Apart from Anthop/euro, predators did not play a major role in determining the 

community structure. 

8. A systemat1c analysis of the survey data, using serial and planar correlation 

analysis, followed by caging manipulation experiments, was used inan attempt to test the 

working hypothesis in three stayes, each stage having successively greater fidelity. 

9. The factors that appear to be responsible for the maintenance of the community 

structure can be outlined as follows: 

i. The deposit feeding gastropods, /fydrococcusand So/inotor, can tolerate 

a wide range of conditions, are distributed over most of the beach and compete for trophic 

resources. The two species show competitive exclusion in areas of high densities. Their 

feeding activities rework the substrate, making the sediment-water interface unstab Ie. 

ii. larvae of the suspension feeding bivalves, Anope//o and Kote/ysio, 

settle indiscriminantly on the substrate but are unable to survive in areas of highly 

reworked sediment. In areas where there are relatively low densities of deposit feeders, 

the bivalves are able to survive to maturity. Competition for resources (space and/or 
food) between edults of one bivalve species and juveniles of the other leeds to a segregation 

of the two species along the tidal gradient. Kote/ysio, being less tolerant of desiccation, 

becomes confined to the lower sections of the beach. 

iii. The other suspension feeding bivalve, Woiiucino, is able to take 

edvantege of low numbers of Anopeiio and Kote/ysio near a major beach ridge and 

Woiiucino densities are highest there. 

iv. The anemone, Anthop/euro, uses large bivalves as a substrate and is 
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most abundant in the middle sections of the beach. Passive predation by An/hop/ellra 

Bets to keep the numbers of deposit feeding gastropods low, thus minimising the effects of 

trophic amensalism in those regions. I n the absence of An/hop /ellra at either end of the 

transect, relatively high numbers of deposit feeding gastropods lead to an exclusion of 

suspension feeding bivalves and hence to a reduction in community diversity. 

v. The upper half of the beach appears to be most suitable for gastropods 

feeding on microalgae. Although the distributions of the algivorous gastropods suggested a 

degree of local competitive exclusion, this Was not statistically significant. 

vi. Interference competition between the algivorous gastropods and both the 

suspension feeding bivalves and the deposit feeding gastropods may be sufficient to 

influence the local distributions of those species. 

vii. The gastropod Nassarillsobtains its main food supply by scavenging 

dead, and preying on living, Anapel/aand Ka/e/ysio. The other carnivorous gastropocl, 

Cy/ichnina, probably feeds on juvenile bivalves, and also on juvenile lIydrococclIs 

and Sa/ina/or. Typically, the distribution of the predators is determined by the 

distribution of the prey and not vice verso. Apart from Anthop/ellra, therefore, 

predation appears to playa minor role in the maintenance of the community structure. 

To summarise, the principal determining factor of the tidal flat community's 

structure appears to be trophic group amensalism, reinforced by the predation of 

Anthop/ellN on juvenile deposit feeders. The community structure, as described by 

diversity indices, can be explained in terms of Huston's ( 1979) dynamic equilibrium 

hypothesis, mediated by the trophic amensalism. 


