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Abstract ______________________________________________________ 
 
Comminution or feed size reduction is typically the first stage of ore processing at mines. 

Comminution tests are commonly conducted to assess the processing behavior of ore and 

to aid in process design and equipment selection. Testing for Bond mill work index 

(BMWi), a measure of the ore grindability, and A*b, a measure of the ore crushability, is 

common in this regard. These destructive tests are expensive and time consuming and, 

hence, are conducted on a limited number of large volume samples which in most cases 

are not representative of the entire orebody. Therefore alternative means are desirable for 

efficiently characterizing comminution behavior.  

 

Petrophysical properties have the potential for effective characterization of ore 

comminution behavior for a truly representative suite of samples. Petrophysical 

measurements are quick, non-destructive, and relatively cheap. Petrophysical data can be 

recorded either downhole or on core. If calibrated against measures of ore crushability 

and grindability, petrophysically-based models could provide virtually continuous 

downhole prediction of comminution attributes in intervals of drill holes where these 

parameters are not available. This thesis presents a new approach for characterization of 

ore comminution behavior based on petrophysical measurements.  

 

As an alternative to downhole geophysical logging, a Geotek multi-sensor core logger 

(MSCL) was evaluated. Density, P-wave velocity, P-wave amplitude and magnetic 

susceptibility, as well as core imagery, were measured on drill cores from two Australian 

copper-gold deposits, namely Cadia-East, NSW, and Ernest Henry, QLD. The Geotek 

system had never previously been used at metalliferous mines. It provides data with 

acceptable accuracy if carefully and systematically calibrated but the data quality is 

adversely affected by the small size and condition of the core. The accuracy achieved in 

production logging was approximately ±1.35% for density, ±6.5% for P-wave velocity, 

and ±1% for magnetic susceptibility.  

 

The relationships between petrophysical properties and comminution attributes (A*b and 

BMWi) was directly investigated, since small-scale comminution tests had been 

performed on selected 2m intervals of the same drill core. At Cadia East, the ore is hard 

in terms of both crushing and grinding. At Ernest Henry the ore is more variable but 

generally softer.  
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In most cases the relationship between petrophysical properties and comminution 

parameters is dependent on ore type. Hence class-based approaches for comminution 

modeling were devised and implemented. Crushability (A*b) can be related to 

petrophysical properties more reliably than grindability (BMWi). This is consistent with 

the fact that petrophysical properties and crushability are measured on whole rock while 

BMWi is measured on crushed composite samples. Prediction of high BMWi materials 

(>10 kWh/t) proved difficult, perhaps because particles are more competent at crushed 

size.  

 

An important outcome is that magnetic susceptibility is a good indicator of A*b at both 

sites and can be used to define different comminution domains. At Ernest Henry, as 

susceptibility increases A*b increases (samples are easier to crush) because magnetite 

acts as crack initiator. At Cadia East, ore becomes harder to crush as susceptibility 

increases; the association of feldspar with magnetite was most probably the reason for the 

low values of A*b in this case. 

 

At Ernest Henry, models were developed for prediction of A*b and BMWi values in 

depth intervals where petrophysical measurements are available but comminution test 

data are not. Four petrophysical classes were defined based on P-wave velocity, P-wave 

amplitude, density and susceptibility using cluster analysis. Regression models were 

developed for A*b and BMWi using petrophysical properties for each class. The overall 

root mean square (RMS) error of prediction for BMWi and A*b are 1.39 kWh/t and 27.3 

respectively.  

Comminution modeling at Cadia East was difficult due to the limited variability of 

comminution parameters. Four classes were defined based on variability of A*b and 

BMWi around their respective mean values. A*b and BMWi were then linked to 

petrophysical properties and assays using a neural network approach. The performance of 

neural networks for prediction of comminution classes was tested by successively treating 

each hole as an independent hole. The prediction accuracy ranged from 51% to 77%.  

A novel approach for prediction of petrophysical properties and comminution attributes 

from core images was also investigated at Ernest Henry. Estimates of mineral abundance 

from classified core images were first adjusted to achieve compatibility with assay data. 

Bulk density was then predicted from mineral volumes and densities with a relative error 

of prediction of 3.5%. Regression coefficients for A*b and BMWi were estimated for 

each mineral phase via least squares optimization. This method provides a means for 
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prediction of A*b and BMWi in depth intervals where classified imagery is available but 

comminution test data are not. The RMS errors of prediction for A*b and BMWi are 33.3 

and 1.68 kWh/t respectively.  

 

The two case studies from different geological environments show that petrophysical data 

can provide useful information for characterization of comminution behavior and hence 

prediction of mill throughput. Petrophysics-based comminution models have limitations 

but they are adequate for use during process planning. The accuracy of such models can 

be improved by reducing uncertainties in petrophysical and comminution measurements, 

refining data classification techniques, by increasing the number of petrophysical 

properties recorded, and by incorporating other data including assays in the analysis. 
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CHAPTER 1__________________________________________________ 
 

Introduction 
 
 

1.1.  Background and Motivation 
 
During the last decade there has been a growing recognition of different factors (e.g. ore 

hardness) that have an impact on the efficiency of mineral processing operations. Ore 

variability is a significant factor controlling mill performance and throughput in almost 

every processing plant.  Petrophysical measurements have the potential to characterize 

ore variability and its processing behavior in detail. Such measurements could enable 

effective metallurgical domaining of ore deposits for process planning and optimization.  

 
Conventional metallurgical tests (e.g. Bond mill work index) are commonly conducted to 

characterize ore processing behavior. The ore crushing and grinding behavior as a result 

of such tests are considered during mill design and processing equipment selection 

(Napier-Munn et al., 1996). Cost, time and sampling (i.e. size and representivity) are 

common issues in metallurgical characterization. A large amount of material (~50 kg) is 

required for a single metallurgical test with the result that metallurgical tests are both 

expensive and time consuming. Thus these tests are usually limited in number. The 

samples selected from a few zones of the orebody for metallurgical tests are composited, 

as per industry sampling practices to represent the feed materials of a mill. However a 

sampling strategy such as this is not representative of a given ore-body as compositing 

and blending can change the actual metallurgical variability of the ore.  

 
Geological variability has been recognized as a critical issue in cases where metallurgical 

test work has failed to truly characterize the processing behaviour (Bulatovic et al, 1997; 

McNulty, 1998; David, 2007). For this reason a strong incentive exists for efficiently 

characterizing metallurgical behavior for a truly representative suit of samples. 

“Representative” here means typical geological and metallurgical characteristics of run of 

mine (ROM) material. 

 
Ore variability and its impact on downstream processing have attracted the attention of 

process engineers to a new field of research known as “geometallurgy”. Geometallurgy is 

a cross disciplinary approach to define the relationship between geology and processing 

characteristics of mineral deposits. In particular, a major AMIRA (Australian Mineral 



Chapter 1. Introduction 2 

Industry Research Association) Project, P843, entitled Geometallurgical Mapping and 

Mine Modelling (GeMIII), was initiated in 2005 “to develop fundamental new approaches 

to the quantification and integration of geological characterization with mineral 

processing performance and mine optimization”. P843 is a mining industry-sponsored 

collaborative research project undertaken at CODES (Centre of Excellence in Ore 

Deposits) at the University of Tasmania, JKMRC (Julius Kruttschnitt Mineral Research 

Centre) and BRC (Bryan Research Centre) from the University of Queensland, and 

CSIRO Division of Exploration and Mining. 

 
The GeMIII project was focused primarily on development of a suite of new 

measurements at diamond drill core scale for geometallurgical modeling. A new approach 

for comminution test program, namely small scale physical testing (Walters and Kojovic, 

2006) was developed within the GeMIII that could be used on highly constrained and 

relatively smaller volumes of rock than conventional metallurgical sampling and testing.  

 
The GeMIII project was divided into six modules: Automated core logging, Mineral 

identification and mapping of core images, Textural classification, Small-scale physical 

testing, Ore-body modeling, and Education and training. Within the “Automated core 

logging” module, three streams of direct core-based information have been acquired: 

short wavelength infrared reflectance (SWIR) spectra from the HyLoggerTM automated 

system (Huntington et al, 2006); petrophysical properties recorded using a Geotek 

automated multi sensor petrophysical core logger (Vatandoost et al., 2008a); and high 

resolution core imagery also recorded by the Geotek system for image analysis e.g. ore 

textural characterization. The research described in this thesis is part of “Automated core 

logging” module of AMIRA P843 and is devoted to characterization of comminution 

behavior on the basis of petrophysical properties of drill core.  

 
Investigation of physical rock properties and their relation to processing attributes is the 

focus of this thesis. P-wave velocity and its amplitude, density and magnetic 

susceptibility are petrophysical properties that are considered in this thesis. Petrophysical 

properties and measures of rock strength are both affected by mineralogy, texture, 

porosity/permeability and degree of fracturing (Schön, 1996; Raghu and Ghose, 2006). 

The effect of rock strength parameters (e.g. point load index) on processing performance 

has been investigated by Bearman et al (1997). They have established a relationship 

between rock strength parameters and comminution attributes so that the required energy 

in crushing circuit can be estimated from rock strength data.  
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The basic premise of this research is that since petrophysical properties (e.g. sonic 

velocity) can be related to rock mass strength, they could provide a means for prediction 

of comminution behavior as well.  In addition to P-wave velocity, density and magnetic 

susceptibility have the potential for characterization of ore processing behavior. A 

program of small-scale physical testing at JKMRC (University of Queensland) within the 

P843 project provided an opportunity to conduct comminution tests on exactly the same 

drill core samples in which petrophysical properties were acquired. This program 

facilitated direct comparison of petrophysical properties with results of comminution 

tests. 

 
Geological observations that are routinely recorded during exploration phase also have 

the potential to be used for characterization of processing performances. Such 

observations could be calibrated against processing indices. However little attention is 

paid to prediction of comminution behavior purely based on visual geological logging. 

There are many reasons for the limited utilization of geological observations in 

downstream processing. For example visual logging is highly subjective and experience-

based and is not quantitative. However, by combining visual logging with measurements 

of conventional physical properties, such as acoustic velocity, it may be possible to 

predict comminution parameters reliably in different rock types. In this manner the 

combination of geological and geophysical logging could characterize processing 

performance in detail, thereby enabling metallurgists to exercise a greater degree of 

control in downstream processing.  

 
Ideally geophysical wireline logging would be used to acquire petrophysical data. 

Downhole logging is cheap, fast, and provides a continuous record of a wide range of 

parameters even in zones of poor or no core recovery. Although such techniques are 

commonly used at coal, iron ore and uranium mines but they are rarely used at precious 

and base metal mines, notwithstanding the large number of possible applications 

(Fullagar, 2000). There are a number of reasons for this lack of uptake (Mutton, 1994). In 

particular, issues of borehole access can arise, related both to equipment/crew logistics 

and to borehole integrity. 

 
At case study sites described in this thesis, the boreholes were not accessible and 

downhole logging was not possible. Moreover the GeM geometallurgical mapping and 

modeling approach was focused primarily on drill core information. A Geotek multi 

sensor core logger (MSCL) system was commissioned, modified and used for 

measurement of petrophysical properties and capturing core images along the sections of 
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drill cores. The use of MSCL system within P843 project provided an opportunity to 

assess suitability of such system for production petrophysical core logging.  

 
The use of petrophysical data for predicting metallurgical performance indices is a new 

field which presents a number of challenges. These include accurate and precise semi-

automated measurement of physical properties on drill cores, and development of 

methodologies for relating petrophysical data to metallurgical attributes. This thesis 

attempts to address these issues as presented in Chapter 3 and Chapter 4. 

 
The anticipated benefit of detailed petrophysical measurements is that petrophysical 

properties will provide a more complete understanding of the physical characteristics of 

ore being fed to the mill in a processing circuit. Such valuable information enables 

metallurgists to reduce the effect of ore variability on recoveries during mine planning 

and process optimization. 

  

1.2.  Research Aims and Objectives 
 
The ultimate goal of this research is to develop a capability for prediction of comminution 

attributes based on petrophysical characterisation of drill cores. This is a new approach 

for characterization of ore metallurgical behavior. Petrophysical measurements are cost 

effective, quick and non-destructive. Such measurements provide a means to characterize 

physical properties of material. If petrophysical properties can be linked to processing 

indices then they will be valuable source of information for both mine design and ore 

processing operations.  

 

The specific objectives for this research can be summarized as follows: 

 
1. Evaluation of the Geotek automated petrophysical core logging system for routine 

petrophysical core logging in metalliferous mines, 

2. Petrophysical characterization of drill cores from case study sites, 

3. Development of geometallurgical modeling approaches to predict comminution 

attributes based on petrophysical properties from case study sites,  

4. Prediction of petrophysical parameters from core imagery as an alternative means for 

obtaining petrophysical property data and also predicting comminution attributes. 
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This research focused on two mine sites in Australia that were investigated as part of the 

GeMIII project, namely the Cadia East Au-Cu porphyry deposit (New South Wales) and 

the Ernest Henry iron oxide copper-gold (IOCG) mine (Queensland). 

 

1.3.  Methodology 
 
The MSCL system was used for measurement of petrophysical properties and for 

capturing core imagery of diamond drill cores. Drill cores from five boreholes from 

Cadia-East and from six boreholes from Ernest Henry were used in this research.  

 
The MSCL system had never previously been used in metalliferous mines; therefore 

comprehensive evaluation of the MSCL system was required. This work consisted of 

sensor modification, evaluation and refinement of sensor calibration procedures, and 

precision and accuracy tests, together with documentation of suitable data acquisition 

procedures and processing sequences. 

 
Once the petrophysical properties and core imagery had been recorded on drill cores, then 

a suite of small-scale metallurgical tests were conducted at JKMRC on a subset of 

samples over selected assay intervals that petrophysical properties were recorded. 

Methodologies for geometallurgical class definition and comminution modeling based on 

petrophysical properties were then devised and implemented for each case study. 

 
An alternative approach to obtain petrophysical properties was investigated using the high 

resolution core images. The approach provides an additional means for estimation of 

comminution attributes from analysis of core imagery. 

 

1.4.  Previous Petrophysical Work in Mining 
 
Geometallurgical studies are not new and a number of papers have been published in this 

regard (e.g. Williams and Richardson, 2004) but to the best of the author’s knowledge 

there has been no research published for comminution modeling based on petrophysical 

properties.  

 
The objective of this section is to describe the use of petrophysical properties in the 

mining and petroleum industries for a variety of applications such as rock engineering, 

resource exploration, grade estimation and reservoir characterization, as a prelude to a 
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more complete discussion of the link between petrophysical properties and metallurgy in 

Chapter 2. 

Petrophysical properties have extensive applications from early stages of exploration 

through to feasibility and mine design. Physical properties (e.g. density) measured from 

downhole logging are widely used in the petroleum industry for reservoir characterization 

and have been successfully used in coal and iron ore deposits for lithology identification 

(mineralogy, depth and thickness), hole to hole correlation, grade estimation and resource 

evaluation (e.g. Hearst et al, 2000; Lipton, 1997; Borsaru, 1993).  

 
Considerable research in the coal industry has been devoted to prediction of coal quality 

parameters from petrophysical properties (Edwards and Banks, 1978; Borsaru et al, 1991; 

Campbell, 1994; Borsaru, 1993; Borsaru et al, 2000; Nichols, 2000). 

 
Many authors have also documented that geophysical logging can also be effectively 

applied for characterization of metalliferous deposits as well (Nelson, 1994; Killeen et al, 

1995; Killeen, 1997; Killeen et al,1997; Morris and Walker, 1997; Mueller et al, 1997; 

Pflug et al, 1997; Selfe, 1997; Fullagar, 2000; Salisbury et al, 2000; Basford et al, 2001). 

However these studies do not attempt to use the petrophysical properties to predict 

metallurgical performance. 

 
Although petrophysical contrasts between ore and host rock may not be enough for direct 

geophysical detection of the economic mineral phases in gold and some base metal 

exploration, an association may exist between ore and an associated mineral (e.g. 

presence of pyrrhotite as a magnetic mineral in sulfide nickel deposits) which renders the 

ore detectable by geophysical methods. Correlation between uranium content and gold 

grade in South African mines has led to prediction of gold grade using natural gamma 

logging (Campbell, 1994). Conductivity has also proved to be a good indicator of grade 

for some base metal sulphide ores, e.g. at the Enonkoski nickel deposit in Finland 

(Hattula and Rekola, 2000). 

 
Grade control during mine production is of great importance. Petrophysical properties can 

also be applied for grade estimation (Fallon et al, 2000). Natural gamma radiation has 

proved effective for estimation of the mean grades of iron ore in dry blast holes and 

exploration boreholes traversing layered mixtures of hematite and shale (Aymler et al, 

1976). At the Rosebery deposit, Tasmania, the ratio of density to natural gamma 

correlates well with zinc-equivalent grade (Fallon and Fullagar, 1997).  
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From mining and subsequent mineral processing point of view, simple discrimination 

between ore and waste is critical. Petrophysical contrasts can be helpful in this case. 

Discrimination of ore from waste between mine and mill, e.g. using contrasts in natural 

gamma (Bohme, 1983) or conductivity (Balint, 1975), eliminates the costs of grinding 

and processing waste, and reduces the volume of tailings.  

 
There are numerous studies in petroleum (e.g. Chang et al. 2006) and coal (e.g. Hatherly 

et al, 2005) environments for rock mass geotechnical characterization using petrophysical 

properties.  

 
Petrophysical measurement can enhance geological observations in terms of consistency 

by providing additional information about different rock types.  The studies cited above 

illustrate the wide range of application of petrophysical attributes in different technical 

domains. These studies encourage implementation of petrophysical measurement in 

metalliferous mines in general. Moreover interaction of mineral processing attributes with 

mineral grades and the possibility of prediction of mineral grade from petrophysical 

properties provide encouragement for investigation of potential relationship between 

petrophysical properties and metallurgical attributes in particular. 

 

1.5.  Research Innovation  
 
The research presented in this thesis investigates the potential use of petrophysical 

properties for comparative comminution and throughput modeling. This is the first time 

that petrophysical properties have been used for such purposes.  

 
A novel approach for petrophysical measurements on representative intervals of drill 

cores section from an orebody are considered here. The Geotek MSCL system used in 

this research had never been applied before in metalliferous mines. This is a novel 

approach for continuous semi-automated measurement of petrophysical properties and for 

capturing core imagery of diamond drill cores. Petrophysical characterization of drill 

cores can be an alternative approach to traditional visual core logging techniques that are 

subjective and qualitative. Vatandoost et al (2008a) have documented initial evaluation 

and refinement of sensor calibration procedures, and precision and accuracy tests. 

 
Petrophysical properties used in this research are density, P-wave velocity and its 

amplitude and magnetic susceptibility. Density and P-wave velocity can provide an 

estimate of dynamic Young’s modulus (Vatandoost and Fullagar, 2007). The estimated 



Chapter 1. Introduction 8 

Young’s modulus has the potential for prediction of comminution behavior (Vatandoost 

and Fullagar, 2009). 

  
Novel approaches for geometallurgical class definition and comminution modeling are 

devised and implemented in this research. The approaches are based on petrophysical 

properties; however they are robust enough to be applied using other available data (e.g. 

assays) in absence of petrophysical properties. Application of class-based 

geometallurgical class definition for mill throughput modeling at Ernest Henry using 

petrophysical properties has been documented by the author in a publication (Vatandoost 

et al, 2009). 

 
Prediction of petrophysical properties from core images have been reported in petroleum 

industry (e.g. Oyno et al, 1998). However predicted properties are limited to porosity, 

resistivity and permeability. A novel approach for prediction of density from core images 

is illustrated in this thesis. Prediction of density from core images has never been 

investigated by any researcher. Moreover such approach has never been investigated 

before in metalliferous mines. 

 

1.6.  Outline of the Thesis 
 
The remainder of this thesis consists of seven Chapters. In Chapter 2, a review of 

metallurgical testing and potential application of petrophysical properties for prediction 

of comminution parameters will be presented. Review of the published literature provides 

encouragement that petrophysical properties can be related to comminution parameters. 

 
Chapter 3 introduces the methodology for measurement of petrophysical properties on 

drill core sections. The Geotek multi sensor core logger (MSCL) is described in detail. 

The MSCL operation procedures, sensor issues (e.g. calibration), accuracy and data 

quality are presented in this chapter.  

 
The strategy adopted for comminution modeling in this project is described in Chapter 4. 

The methodologies for geometallurgical class definition and comminution modeling, 

primarily based on petrophysical parameters, will be explained. A review of statistical 

techniques such as cluster analysis for class definition is presented. Regression analysis, a 

minimum distance method and an artificial neural networks approach for comminution 

modeling will be introduced.  
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In Chapter 5, petrophysical data acquisition, processing and interpretation will be 

presented for the first case study site, Ernest Henry mine. The correlation between 

petrophysical properties and corresponding small scale comminution test results was 

investigated using regression analysis. At Ernest Henry A*b and BMWi vary from 36 to 

267 and from 6 to 14 kWh/t respectively. This large variability in comminution behavior 

results in a large variability of mill throughput from 1100 t/h to 2700 t/h. Class-based 

comminution modeling approaches discussed in Chapter 4 yield predictive models of A*b 

and BMWi via multiple regression of petrophysical properties. Petrophysical based 

comminution models provided a means for characterisation of mill throughput at Ernest 

Henry. 

 
Chapter 6 will describe the second case study at Cadia East. This chapter will cover 

petrophysical data acquisition and processing from five drill holes. At Cadia East the ore 

is harder in terms of both crushing and grinding; A*b and BMWi vary from 22 to 77 and 

from 13 to 20 kWh/t respectively. Although the comminution variability is relatively 

smaller than at Ernest Henry, however this range of variability results in mill throughput 

variability from 1460 t/h to 2070 t/h. Petrophysical characterization of comminution at 

Cadia East is difficult due to limited variability of comminution parameters. However, 

magnetic susceptibility and P-wave velocity are related to ore crushability (A*b). 

 
The aim of Chapter 7 is to demonstrate an alternative approach for obtaining 

petrophysical properties and prediction of comminution attributes from classified core 

images. Core images from Ernest Henry drill holes recorded using the MSCL system. 

Bulk density is predicted from estimates of volume abundance and density of individual 

mineral phases. An algorithm was employed to adjust the volume fraction of mineral 

phases for consistency with assays. The approach presented in this chapter also provides 

an additional means for estimation of comminution attributes from core images.  

 
Finally in Chapter 8 a synthesis and discussion of the outcomes of this research will be 

presented.  
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CHAPTER 2 ________________________________________________ 

Relating Petrophysical Properties to Comminution Parameters 

 

2.1. Introduction 
 
The objective of mineral processing is to extract valuable minerals from ores.  

Comminution is the process of size reduction to give sufficient liberation of the valuable 

mineral for optimal economic recovery.  Size reduction steps (crushing and grinding) in 

any plant consume large amounts of energy (more than 50% of a plant's energy) in 

comparison to other stages (e.g. flotation) in the concentrator (Weiss, 1985; Wills, 1997).  

Therefore, design and selection of appropriate size reduction equipment is crucial. Size 

reduction equipment is selected mainly on the basis of comminution test results e.g. A*b 

for crushing and Bond mill work index for grinding.  

 
As discussed in Chapter 1, metallurgical tests are usually conducted off site on a very 

limited number of large samples, owing to the high costs and long lead times involved. 

Hence there is a strong incentive to find alternative means for efficiently characterizing 

comminution behaviour for a truly representative suite of samples. The objective of this 

chapter is to review published literature in order to investigate the potential link between 

petrophysical properties and comminution attributes. 

 
One of the main factors that control the selection of hard-rock comminution equipments 

and the design of a processing circuit is the hardness (e.g. Bond mill work index) of the 

ore(s). Much research has been undertaken in an attempt to relate comminution behaviour 

to standard rock strength tests such as uniaxial compressive strength (e.g. Bearman et al, 

1997). It has been demonstrated that the data required for comminution plant design can 

be obtained from mechanical tests on drill core samples. 

 
Previous research in the petroleum, coal and metalliferous industries has shown that rock 

strength (uniaxial compressive strength) can be predicted from petrophysical properties 

(e.g. McNally, 1990; Chang et al., 2006; Barton, 2007). Given the relationship between 

rock strength parameters and comminution attributes and similarly between rock strength 

parameters and petrophysical properties, it is envisaged that a link between petrophysical 

properties and comminution attributes can also be established.  

 



Chapter 2. Relating Petrophysical Properties to Comminution Parameters 

 
12 

This chapter is divided into six sections. Sections two and three briefly review the 

comminution attributes and destructive rock strength parameters respectively. A 

discussion on petrophysical parameters derived from non-destructive tests and their 

potential as proxies for comminution attributes is presented in section four. The 

relationship between comminution attributes and rock strength parameters (derived from 

destructive tests) is presented in section five. Given the relationship between static and 

dynamic Young’s modulus, investigation of the relationship between comminution 

parameters and dynamic Young’s modulus is highly desirable. Dynamic measurements 

are non-destructive, easier and quicker than static measurements. Concluding remarks for 

the whole chapter are presented in section six. The review of the published literature 

provides encouragement that comminution attributes can be predicted from petrophysical 

properties. 

 

  

2.2. Comminution Parameters 
 
The aim of comminution or size reduction is to maximize the liberation of valuable 

minerals from the host rock for subsequent processing such as flotation and leaching. The 

two most commonly used devices for comminution are crushers and grinding mills. 

Design and implementation of crushing and grinding equipment at mine sites requires 

specific tests. 

 
There are a wide array of commonly used comminution tests such as Bond ball mill work 

index (BMWi); rod mill work index (RMWi); semi-autogenous grinding (SAG); Bond 

Abrasion; JK Ore Abrasion; Bond crushing work index (CWi); Drop Weight test (DWT); 

SAG mill comminution (SMC) and A*b (from JKMRC rotary breakage test). Details on 

most of these tests can be found in Napier-Munn et al. (1996).  

 
The objective of the small-scale physical testing within the P843 project was to develop 

comminution tests that could be used on smaller volumes of rock than traditional 

sampling for large scale tests. The sample size could then match the assay interval and 

provides a means to conduct comminution tests on exactly the same samples in which 

petrophysical properties were acquired. Hence the emphasis here is on those tests that 

have been employed within this research i.e. BMWi for grinding and A*b for crushing.  
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2.2.1.  Bond Mill Work Index (BMWi) 
 
The Bond equation (Bond, 1952) is almost universally used in mineral processing for 

design of size reduction equipment. The BMWi estimates the required energy to grind an 

ore sample using a specific lab-scale mill (Bond, 1960). The Bond equation is given by: 

)
F

1

P

1
(W10W i −=           (2.1)               

 

where W is the required energy of breakage in kWh/t and Wi is the work index (BMWi) 

in kWh/t. P and F are the sizes of screens in microns through which 80% of product and 

feed pass respectively. Numerically Wi is the energy in kilowatt hours per tonne required 

to reduce the material from notional infinite feed size to 80% passing 100 µm. In practice 

Wi has to be determined from plant data or by conducting laboratory grinding tests in 

which W, P and F are measured. 

 
The BMWi is a measure of ore grindability. A typical classification of BMWi for ore 

grinding behaviour is documented by Napier-Munn et al. (1996). Based on their 

classification, an ore with BMWi value of less than 9kWh/t is regarded as soft for 

grinding and a BMWi value of more than 14kWh/t is hard. The BMWi values between 9 

and 14 kWh/t are considered as medium for grinding 

  
Measurement of Bond ball mill work index requires a large amount of material (~30Kg) for 

sample preparation. This large sample mass requirement was an issue for the purpose of 

P843 project, especially given that only half drill cores were available at most sites. For this 

reason small scale physical testing (Walters and Kojovic, 2006) was developed at JKMRC to 

estimate Bond ball mill work index from batch grind tests and JKMRC crushing index tests 

(Michaux and Kojovic, 2008). The sample requirement based on small scale protocols, for 

estimation of BMWi is 5Kg of -3.35mm (i.e. not larger than 3.35mm) material which is 

equivalent to approximately 2m of half NQ drill core. These protocols within the P843 

project provided an opportunity to conduct comminution tests on exactly the same drill core 

samples for which petrophysical properties were acquired. 

 
Overall estimated BMWi carries uncertainty due to crushing index and batch grinding test 

results.  The softer ores are more variable in practice, hence the uncertainty in estimated 

BMWi is greater (±10%) for the softer ore samples (i.e. BMWi<10kWh/t) and relatively 

smaller (±5%) for harder ore samples, e.g. BMWi of 15 kWh/t (Kojovic, 2008a).  
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2.2.2.  JKMRC Rotary Breakage Test (JKRBT) 

 

The JKRBT provides a rapid means for characterising ore crushability and is suitable for 

testing drill cores in a geometallurgical context. The JKRBT device (Figure 2.2) was 

designed and developed at JKMRC in an attempt to overcome some of the limitations of pre-

existing impact tests (e.g. drop weight test), including the precision of the energy input, the 

time required to run the test, and the smallest particle size that can be readily tested (Kojovic, 

2008b). Comparative breakage tests using the JKRBT and the traditional JKMRC Drop 

Weight tester have shown that the two devices generate a nearly identical breakage–energy 

relationship for the same ore of the same size (Kojovic et al, 2008). A summary of the 

JKRBT system operation and the resulting A*b measurement is given below. 

 
The operating system consists of a vibrating feeder, a rotor-stator impacting device plus 

drive system, and an operation control unit (Figure 2.1). Like a conventional drop weight 

test, the particles need to be pre-sized into narrow fractions. Particles of the selected size are 

then fed into the rotor-stator impacting system.  After impact breakage, the product is 

collected and the t10 values (breakage index) are determined using the same techniques used 

for a drop weight test. The t10 value is the percent of breakage product that passes 1/10 of the 

initial particle size. The t10 value is normally related to the specific breakage energy, Ecs, 

according to 

 

)e1(At csEb

10

×−−×=           (2.2) 

 

where A and b are ore specific parameters, and where Ecs is specified in kWh/t.   
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Figure 2.1. Schematic of the JKMRC Rotary Breakage Testing device (Kojovic, 2008a). 

 

Parameter A is the maximum value of t10, i.e. the highest possible level of size reduction 

from a single impact event. Figure 2.2 illustrates the results from a test on one size fraction,                 

-16+13.2mm (i.e. there is no particle larger than 16mm and less than 13.2mm). The slope of 

this plot at the origin is defined by the product of the ore specific parameters, A*b and is 

related to the rock crushing behaviour. A small value of A*b is an indication of rocks that 

are hard to crush while a high A*b indicates rocks that are easy to crush. For the tests 

illustrated in Figure 2.2, the initial average size of feed was 14.5mm. At the lowest energy 

level (0.25 kWh/t), 5.4% of the product was finer than 1.45mm. The sample broken at 

2.5kWh/t yielded 43.2% of fines (smaller than 1.45mm). The A*b value determined for such 

sample was 23, indicating a very high resistance to impact breakage (Kojovic et al, 2008). 

Thus low values of A*b imply low crushability. 
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Figure 2.2. The relationship between fines produced and specific breakage energy for a single particle size , 
hard ore, (Kojovic et al, 2008). 

 
Comparison of A*b measurement between DWT and JKRBT test results for a hard-to-crush 

ore (e.g. A*b < 30) suggests an uncertainty of about 7.5% for the JKRBT results (Kojovic, 

2008a). For softer ore samples (e.g. A*b > 100) there would be more variability, therefore 

the uncertainty in A*b values would likely be even greater than 7.5%.  

 

2.3. Destructive Rock Strength Parameters 
 

Intact rock materials may exhibit a wide variety of strength properties. Rock strength is 

affected by the presence of discontinuities such as bedding planes, fractures or cracks and 

joints, often oriented in different directions (Schön, 1996). 

 
Rock strength in the context of comminution can be defined as resistance of materials to 

breakage. In this case measures of rock strength are based on destructive tests such as 

uniaxial compressive strength and Point load index defined below. It has been a common 

practice in the mineral industry to relate such tests to comminution attributes (Bearman et 

al, 1997). 

 
There are many mechanical tests available to measure the strength of the rock mass. In 

the following sub-sections common rock strength parameters such as uniaxial 

compressive strength (UCS), point load index (PLI), and Young’s modulus will be briefly 

explained. Detailed procedures of such tests are documented by International Society of 

Rock Mechanics (ISRM, 1985). 
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Another definition of rock strength is the resistance of materials against deformation, 

which can be measured in non-destructive tests. Thus P-wave velocity and Young’s 

Modulus can be regarded as measures of rock strength. Due to their ease of 

measurements, they are normally related to measures of breaking strength (e.g. UCS). 

However, much less effort has been made to relate deformational (non-destructive) 

measurements to comminution attributes.   

 

 

2.3.1. Uniaxial Compressive Strength (UCS) 

 

Uniaxial compressive strength (UCS) normally referred to intact rock is a widely used 

rock strength parameter in geomechanical engineering. The values of this parameter can 

be obtained in rock mechanics laboratories on core samples. This involves an accurately 

trimmed, right-cylindrical rock sample, with a length:width ratio of 2.5-3.0, being 

compressed, parallel to its long axis, to the point of failure (Goodman, 1980). Thus the 

test is destructive. UCS is the failure stress, usually expressed in MPa. 

 
Values of UCS range from in excess of 250MPa in extremely strong rocks such as fresh 

basalt, quartzite and granite to values of 5 to 25MPa for weak rocks such as chalk and 

potash (Hoek et al, 1995).  Figure 2.3 shows the range of unconfined compressive 

strength for a variety of rock types (Lama and Vutukuri, 1978).  

 

Figure 2.3. Unconfined compressive strength for a variety of rock types after Lama and Vutukuri (1978). 
Each box presents  ±25% of the data about the median value (vertical line)  
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2.3.2.  Point Load Index (PLI) 

 

The point load test has often been utilised as an indirect measure of the compressive or 

tensile strength of rock (D’Andrea et al, 1964; Bieniawski, 1975). The point load test is 

simpler and faster than UCS test. It is normally used where UCS test equipment is not 

available, or a large number of tests are required to cover a wide range of rock properties. 

 

The PLI test is destructive, and involves positioning a ~50 mm length of drill core in a 

hydraulic press, with two hardened steel points diametrically opposed.  The point load 

index (Is) is calculated from the peak pressure (P) at which the core breaks, divided by the 

diameter of the core (D) squared: 

Is = P / D2           (2.3) 

PLI data are typically scattered, and a large number of tests (>100) may be required to get 

a reliable estimate of rock strength.  Nevertheless, it is widely used.  Although the rock 

fractures by induced tension, the averaged point load test results are roughly correlated to 

UCS data (Brady and Brown, 1985).   

 

2.3.3.  Young’s Modulus (E) 

 
Elastic modulus also known as Young’s modulus is the parameter that relates stress to 

strain for elastic deformation. In most rocks, the uniaxial stress-strain curve in the elastic 

regime before failure is approximately linear as expressed in equation 2.4 (Jaeger and 

Cook, 1976). 

σ = Eε          (2.4) 

where σ is the stress, ε is the strain induced in the direction of the applied stress and E is 

the constant is called Young’s modulus. E has the units of stress and is typically reported 

in GPa. A material is elastic if the above relation holds accurately. 

 

Young’s modulus describes the capacity of a rock to resist deformation, and can be 

considered as the “stiffness” of a rock. A rock with high Young’s modulus resists 

deformation while a low Young’s modulus rock, is more deformable.   

 

Young’s modulus or elastic modulus measurement of rocks can be carried out in two 

ways, static or dynamic. Static Young’s modulus (Es) measurements can be obtained 
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through either uniaxial or triaxial compressive experiments on cores. Thus Es is usually 

determined via destructive testing. The dynamic Young’s modulus (Ed) is a non-

destructive indicator of strength, calculated from elastic wave velocities (Vp and Vs) and 

density (ρ).  

 

In general, the dynamic Young’s modulus is greater than the static Young’s modulus. 

Studies by researchers (e.g. Howarth, 1984; McCann and Entwisle, 1992) showed that 

this discrepancy was greater for soft rocks (e.g. sandstone) than hard rocks (e.g. granite). 

The differences between the dynamic and static Young’s modulus in soft rocks have been 

widely attributed to micro-cracks and pores in the rocks (Peng and Zhang, 2007). 

McCann and Entwisle (1992) showed that Es and Ed are in close agreement for hard rocks 

(i.e. granite). Given the low porosity of rock samples from Cadia East and Ernest Henry, 

it is therefore expected that Ed measurements would be in good agreement with 

measurements of Es.  

 

As dynamic measurement of Young’s modulus is easier than static measurement, 

therefore determination of dynamic Young’s modulus for prediction of comminution 

behaviour is more desirable.  

 
 
2.4.  Non-Destructive Rock Strength Parameters 
 
The ultimate aim of this research is to investigate the relationship between the 

petrophysical properties of ore to comminution attributes. It is a common practice in the 

oil and gas industry to develop empirical models between rock strength and geophysical 

well log data (Peng and Zhang, 2007). Most proposed models for determination of rock 

strength from geophysical data use P-wave velocity (or its reciprocal, the travel time) 

alone or estimates of elastic moduli such as Young’s modulus. 

 

The following subsections present the potential use of petrophysical properties (P-wave 

velocity, density, P-wave modulus, acoustic impedance, magnetic susceptibility and 

electrical resistivity) as non-destructive measures of rock strength. Given the existence of 

relationships between strength and comminution attributes (Section 2.5), these 

petrophysical measures of rock strength could serve as proxies for comminution 

attributes. 
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2.4.1. P-Wave Velocity (Vp) 

 

Seismic techniques are widely used in applications such as petroleum exploration, 

geotechnical assessment and geomechanical engineering. One of the main advantages of 

seismic methods is their non-destructive nature compared with conventional mechanical 

tests (e.g. UCS) and the ability to apply them both in the field and in the laboratory (i.e. 

velocity measurements). 

 
Sonic velocity is the principal geophysical parameter that has been utilised for rock mass 

characterisation, since seismic velocity and attenuation are sensitive to rock stress, 

strength, degree of fracturing, porosity and the nature of the material occupying the voids 

(Fullagar and Fallon, 1997). Sonic velocity measurements are employed in the laboratory 

for the determination of the dynamic elastic properties of rocks. Attempts have been 

made to use seismic velocity for quality assessment of grouting (Knill, 1970; Turk and 

Dearman, 1987), rock bolt reinforcement (Price et al, 1970), blasting efficiencies in the 

rock mass (Young et al, 1985) and rock mass characterization (Turk and Dearman, 1986). 

The prediction of rock mass deformation and stress (Onodera, 1963; Gladwin, 1982), 

digging resistance measurement of overburden rocks (Davies and McManus, 1990), the 

estimation of the extent of fracture zones developed around underground openings 

(Hudson et al, 1980), the determination of degree of weathering (Karpuz and 

Pasamehmetoglu, 1997), and fractured rock mass characterization (Boadu, 1997) are 

some other applications of the seismic velocity measurements. 

 
According to elastic wave theory, the P and S wave velocities (Vp, Vs) are a function of a 

medium’s elastic parameters and density (Schön, 1996) 

 

ρ

µ+Κ
= 3

4

Vp            (2.5) 

ρ

µ
=sV                        (2.6) 

where K and µ are the effective bulk and shear moduli of the medium respectively and 

where ρ is the density. From measurements of Vp and Vs together with density, it is 

therefore possible to calculate bulk and shear modulus (equation 2.5 and 2.6). The 

modulus calculated in this way is termed the dynamic modulus. 
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These formulae (i.e. equation 2.5 and 2.6) suggest that the firmer or more inflexible a 

material is (higher K and µ), the higher its velocity. They also imply an inverse 

relationship between density and velocity. However, empirical evidence indicates that Vp 

normally increases with increasing density for sedimentary rocks since elastic moduli 

typically increase with increasing density. Some sulphide minerals provide exceptions to 

this rule, e.g. galena has a high density of 7.4g/cc but a low P-wave velocity of 3750m/s. 

 
Overall the most important effect on Vp for typical rocks is due to variation in elastic 

properties rather than density. This is mainly due to the wide variation in Young’s 

modulus (40-160 GPa) between minerals that corresponds to very small variations in 

densities (2.4-3.2g/cc).  

 
There are a large number of empirical models for prediction of UCS from P-wave 

velocity using either linear or nonlinear regression models.  McCann et al (1990) suggest 

a relationship between UCS and P-wave velocity of general form  

b

paVUCS =              (2.7) 

 
where a and b are empirical constants.  

In the Australian coal mining industry, a relationship proposed by McNally (1990) is 

widely used for estimation of uniaxial compressive strength   

0.038t1450eUCS −=       (2.8)    

where the transit time, t, is measured in µs/ft and the UCS is measured in MPa (Figure 

2.4).  
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Figure 2.4. Uniaxial compressive strength versus sonic transit time, for sandstones and siltstones of the 
German Creek Formation, Bowen Basin, Queensland (McNally, 1990) 

 

Within specific formations and at particular locations, different coefficients have been 

derived. For example, Ward (1998) suggests an alternative expression for the German 

Creek Mine in Central Queensland. Lawrence (1999) has also illustrated how lithological 

variations can affect the UCS/sonic transit time correlation.   

 
Chang et al. (2006) have compiled models to illustrate the dependence of uniaxial 

compressive strength (UCS) on P-wave velocity, porosity and Young’s modulus for 

sedimentary rocks (i.e. sandstone, shales, limestone and dolomite). The correlation was 

positive between UCS and P-wave velocity and Young’s modulus, and negative between 

UCS and porosity.  

 
Recently Kilic and Teymen (2008) studied the relationship between P-wave velocity and 

UCS for range of rock types (sedimentary, igneous and metamorphic). Although they 

have proposed a nonlinear model for UCS with strong correlation (R2=0.94), their model 

was based on a small number of samples (i.e. 19 samples in total). A similar study has 

also been conducted by Sharma and Singh (2008) but on limited number of samples.  

 
All cited studies above indicated that P-wave velocity has a positive relationship with 

UCS in almost all rock types. The mathematical form of the relationship is either linear or 

nonlinear. Such observations could potentially suggest a relationship between P-wave 

velocity and comminution attributes as well. 

 
To assess the relationship between P-wave velocity and point load index, a total of 40 

point load index tests and the corresponding P-wave velocity measurements were 
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compiled from literature for a series of sedimentary, metamorphic and igneous rocks 

(Kahraman and Alber, 2006; Hecht et al., 2005; Karakus and Tutmez, 2006; Kilic and 

Teymen, 2008). Figure 2.5 shows a moderate positive correlation between point load 

index (tensile breakage strength) and P-wave velocity (deformational strength).   
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Figure 2.5. The relationship between P-wave velocity and Point load index. The red line is the best regression 
fit to the data. Data compiled from literature (Kahraman and Alber, 2006; Hecht et al., 2005; Karakus and 
Tutmez, 2006; Kilic and Teymen, 2008). 

 

Figure 2.6 shows the relationship between compressional velocity and Bond work index 

based on the dataset extracted from Deniz and Ozdag (2003) for a suite of sedimentary 

and volcanic rocks. There is a strong correlation between P-wave velocity and Bond mill 

work index which shows that P-wave velocity alone can be a good parameter for 

prediction of Bond mill work index. Although the correlation is specific to sedimentary 

and volcanic rock types, such correlation encourages investigation of relationships 

between these attributes for other rock types.   
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Figure 2.6. The relationship between P-wave velocity and Bond work index for sedimentary and volcanic 
rocks.  The relationship established after extracting data from dataset of Deniz and Ozdag (2003). 

 

2.4.2. Density (ρρρρ) 

 
Density is fundamentally important in ore reserve estimation. Ore density also has a 

significant impact on power draw of auto-geneous (AG) and semi auto-geneous (SAG) 

mills (Napier-Munn et al, 1996). Density determination is a standard test in all 

geomechanical programs and has been routinely applied in industry. Density is required 

together with acoustic velocities in order to calculate elastic moduli (e.g. dynamic 

Young’s modulus). The relationships between density and rock strength have been 

studied by many researchers (e.g. Preston, 1976). Raghu and Ghose (2006) showed that in 

general the denser the rock, the higher its compressive strength (Figure 2.7). However, 

they have not stated any information in regard to source and nature of the rock type. 

There is considerable scatter in the data (Figure 2.7) that precludes application of a simple 

universal relationship. In fact in the higher density range (i.e. above 2.5g/cc) there is no 

correlation with compressive strength. This can be explained by the fact that density is 

dependent on mineral grade, while rock strength parameters additionally depend on 

interaction between grains, and their stiffness (Hecht et al, 2005). 

 
Gupta and Yan (2006) have compiled Bond mill work index and specific gravity data for 

a series of minerals and ore types from the literature. A scatter plot of specific gravity and 

Bond mill work index for a range of ore types shows a moderate negative correlation 

(Figure 2.8). This relationship suggest that the denser the ore the less energy is required 

for grinding. Thus ore density can provide useful information in regard to selection of 

comminution equipment. Such relationship may exist at some ore deposits (e.g. Ernest 

Henry). 
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Figure 2.7. Relationship between compressive strength and density (Raghu and Ghose, 2006). 

y = -4.1058x + 26.858
R2 = 0.572

5.0

7.5

10.0

12.5

15.0

17.5

20.0

2.5 3 3.5 4 4.5

Specific Gravity

B
o

n
d

 w
o

rk
 i

n
d

e
x
 (

k
W

h
/t

)

 

Figure 2.8. Scatter plot of specific gravity and Bond work index for seventeen different ore types. Data 
compiled by Gupta and Yan (2006). 

 

2.4.3. P-wave Modulus (M) 

 

The P-wave modulus, M, is calculated from compressional velocity (Vp) and density (ρ): 

 

2

pVM ρ=            (2.9) 
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P-wave modulus is also known as stiffness modulus (Serra, 1986), plane-wave modulus 

(after White, 1983) and the modulus of one-sided compression (Rzhevsky and Novik, 

1971). 

 
The dynamic elastic moduli can be derived from the compressional and shear wave 

velocities (Vp and Vs), and the density (ρ). Vp and Vs can be determined from a full 

waveform sonic log. However, with conventional sonic tools, often only Vp is measured. 

Therefore there is frequently a need to predict elastic moduli from Vp and ρ alone.  

 
Many techniques have been developed for prediction of shear wave velocity from 

compressional velocity in sedimentary environments, e.g. Castagna et al. (1985), Entwisle 

and McCann (1990), Lee (2006). However, there is little published research on prediction 

of shear wave velocity in hard rock environments. One approach for prediction of shear 

wave velocity is using Christensen’s equation (Entwisle and McCann, 1990; Firth, 1999).  

The equation has the following form: 
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          (2.10) 

Where Vp and Vs are compressional and shear wave velocities respectively and ρ is the 

density. 

 
The origin of this formula (equation 2.10) is somewhat obscure, but it is believed to be 

based on empirical results from sediment samples. Consequently, Christensen’s equation 

should be applied with caution. 

 
Vatandoost and Fullagar (2007) have shown that measured M has a strong correlation 

(R2=0.98) with measured dynamic Young’s modulus for a series of minerals and rocks. 

Calculation of M facilitates prediction of dynamic Young’s modulus when Vs is not 

available.  

 
Given the relationship between Young’s modulus and A*b presented in section 2.5.1 

(Figure 2.12) it is possible that M can be used as a potential parameter for prediction of 

A*b. Studies by Vatandoost and Fullagar (2009) reinforce the relationship between M 

and A*b. They have found a negative correlation between M and A*b measured on drill 

core samples from Cadia East deposit.  
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2.4.4. Acoustic Impedance (Z) 

 

The P-wave acoustic impedance (Z) is defined as the product of compressional velocity 

and bulk density: 

Z= ρ.Vp (Kg/m2s)         (2.11) 

The contrast in acoustic impedance governs the strength of seismic reflections at 

geological boundaries. Petrosyan (1994) has defined “Z” as a measure of resistance to 

breakage (i.e. strength) and Scott (1996) has adopted “Z” as a measure of rock 

blastability.  

 
Lu (2006) showed that there is a positive correlation between acoustic impedance and 

Young’s modulus on a series of volcanic and sediment samples. This is not surprising 

given that dynamic Young’s modulus correlates with M (Vatandoost and Fullagar, 2007).  

 

2.4.5. Magnetic Susceptibility (k) 

 
Magnetic susceptibility is a measure of the ability of a substance to become temporarily 

magnetized in a magnetic field. The susceptibility is a reliable indicator of the presence of 

ferromagnetic minerals in a rock such as magnetite and pyrrhotite.  

 
Magnetic susceptibility is a function of not only to the volume amount of magnetic 

minerals (usually magnetite) but also grain size. For a given magnetite content, 

susceptibility decreases with decreasing grain size of magnetite (Schön, 1996). 

 
Given the influence of rock compositional variations and grain size (i.e. a texture term) 

on ore breakage and recovery (Bojcevski et al, 1998; Petruk, 2000), variation in 

susceptibility may play an important role in ore breakage characterisation provided that 

magnetic mineralogy (e.g. magnetite or pyrrhotite) is present. At Ernest Henry mine, the 

hardness of the rock types is inversely proportional to magnetite content (Strohmayr et 

al., 1998). Therefore it is expected that magnetic susceptibility should correlate 

negatively with Bond ball mill work index (BMWi).   

 
Numerical modelling conducted by Djorjevic (2008) on classified core images from 

Ernest Henry mine suggest that magnetite acts as a crack initiator; hence it makes the 

rocks softer in terms of crushing. He interpreted this behaviour of magnetite based on its 

crystal structure and contrast in elastic properties of adjacent mineral phases. Cubic 

minerals (e.g. magnetite, pyrite) have the best crack initiating function. Magnetite and 



Chapter 2. Relating Petrophysical Properties to Comminution Parameters 

 
28 

pyrite have higher Young’s modulus than other minerals present in Ernest Henry ore. 

However magnetite has higher Possion ratio (0.25) than pyrite (0.19) that makes 

magnetite more deformable than pyrite and hence increases its tendancy to act as a crack 

initiator (Djorjevic, 2008).  

 
Susceptibility measurements have been used for lithological interpretation, estimation of 

degree of homogeneity and alteration (Ellwood, 1980; Schonharting and Hall, 1983) and 

grade prediction (e.g. Wanstedt, 1993). In some cases susceptibility measurements have 

proven to be correlated to rock quality (i.e. degree of fractures). For example, in the Lac 

du Bonnet granite batholith (Manitoba, Canada) magnetic susceptibility was used to 

differentiate between various rock qualities (Lapointe et al, 1984). Low values of 

magnetic susceptibility (<0.05 SI) corresponded to altered zones with many fractures 

while high magnetic susceptibility (>0.1 SI) was related to unaltered and non-fractured 

zones. Given that first breakage of an ore happens along fractures (Petruk, 2000), the high 

and low susceptibilities could be regarded as a proxy to comminution properties in some 

cases. Similar observations apply at Cadia East (Chapter 6), where high susceptibility is 

regarded as indicative of materials that are hard in terms of crushing.  

 
Thus magnetic susceptibility could either directly be related to comminution behaviour 

(e.g. Ernest Henry) or acts as a proxy to comminution behaviour (e.g. Cadia East). 

 

2.4.6. Electrical Conductivity  

 

A limited number of studies have been conducted on the relationship between electrical 

conductivity of rock samples and corresponding rock strength (Donaldson and Keller, 

1974; Kate and Sthapak, 1995; Kahraman and Alber, 2006). These researchers have 

found a negative correlation between electrical conductivity and rock strength. The 

reason for such relationship is mainly due to sensitivity of both measures of rock strength 

(e.g. UCS) and electrical conductivity to porosity and micro-cracks. 

 
Electrical conductivity is also sensitive to ore texture (Emerson and Yang, 1994).  Given 

the sensitivity of electrical conductivity to ore texture and the impact of texture on 

comminution and recovery (Bojcevski et al, 1998), electrical conductivity could also be a 

useful proxy for ore comminution and liberation attributes.  

 
Ferrara et al (1989) used textural models similar to those used by Yang and Emerson 

(1997) and showed that for a given particle size resulting from a size reduction, a 
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spherical model will liberate more of the mineral of  interest in an ore than a rodded-

texture model which in turn will liberate more than a banded texture model (Figure 2.9). 

Laboratory tests conducted by Bojcevski et al (1998) on George Fisher ore samples 

showed that ores with large proportion of banded pyrite texture are complex to process 

and have poor liberation.  

 

 

Figure 2.9. Degree of liberation versus particle size for three types of ore texture: banded (a), rod (b), and 
spherical (c) texture models (after Ferrara et al 1989). St is the size of inclusion in the rock model as defined 
by Ferrara et al (1989). 

 
 
 
 
2.5. Relationship Between Rock Strength and Comminution  
 

Both measures of rock strength and comminution involve breakage process. The breakage 

process during strength measurement continues till the rock sample breaks apart while 

comminution process continues untill desired product size is achieved. Moreover the 

scale of samples in which rock strength parameter (e.g. UCS) are measured is relatively 

larger than for comminution tests. Therefore establishing a relationship between these 

properties is rather difficult. Nevertheless many researchers have attempted to establish a 

relationship between measures of strength and comminution attributes. 
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2.5.1. Rock Strength and Crushability  

 

Everell et al. (1972) investigated the physio-mechanical properties of a series of 

carbonate rocks and their relationship with grinding selection function (breakage rate). 

The relationship defined made it possible to predict energy demands in the comminution 

circuits from rock strength data (i.e. UCS) determined on drill core. Bearman (1991) has 

also shown that a significant correlation exists between the measures of strength (i.e. 

Point load index) for twelve rock types used in quarrying with crusher performance. 

  
Extensive data from the AMIRA P483 Mine-to-Mill project has shown that A*b can be 

correlated quite well with the point load index (Kojovic, 2008b), as illustrated in Figure 

2.10. However Kojovic (2008a) believes that at the lower range of point load index there 

is significant variability in terms of A*b and therefore the PLI provides a relatively 

imprecise measure of comminution behaviour for soft ores (high values of A*b). 

  
A large number of A*b and point load index tests were conducted on drill cores from 

sponsor sites during the AMIRA P843 project. These data were compiled in order to 

assess the relationships between these two parameters further. As represented in Figure 

2.11 the correlation between A*b and point load index appears to be site dependent.  

 
The point load index is a geomechanical parameter which is highly affected by the 

presence of fractures and weakness planes in the sample. Therefore the correlation 

between point load index and A*b can be local and dependent on rock type and the 

fracture frequency within the rock. 
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Figure 2.10. Relationship between A*b and PLI for Mine to Mill project (MTM) dataset with the P843 Ernest 
Henry EH512 (EHM) sample results shown in pink (Kojovic, 2008b). The black line is the best fitted 
regression line (Power). 



Chapter 2. Relating Petrophysical Properties to Comminution Parameters 31 

0

50

100

150

200

250

300

0 3 6 9 12 15

Point Load Index (PLI)

A
*

b

Aqqaluk

Boddington

Cadia East

Ernest Henry

 

Figure 2.11. Relationship between A*b and PLI for P843 project dataset. There is no correlation between PLI 
and A*b at Cadia East and Boddington sites but a moderate correlation in the other two sites is evident. 

 

Scott et al (1998) completed a geometallurgical study at Cerro Colorado copper porphyry 

mine in Chile. They conducted a series of geomechanical tests and also A*b 

measurements on six different ore types in an attempt to characterize the ore breakage. 

However they have not studied the relationship between measured parameters (UCS, 

Tensile strength, Young’s modulus, density, Poisson ratio and A*b) for defined ore types. 

Compiling measurements of A*b and static Young’s modulus (Scott et al, 1998) for 

identified ore types a strong negative correlation was found (Figure 2.12). These data 

confirm the intuitive relationship that with an increase of Young’s modulus, the value of 

A*b reduces and hence the ore becomes more competent in terms of crushing. 
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Figure 2.12. Correlation between A*b and Young’s modulus for six ore types at Cerro Colorado copper mine, 
Chile. Data compiled from  Scott et al (1998).   
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Given the correlation between dynamic and static Young’s modulus, a similar correlation 

between A*b and dynamic Young’s modulus is not unexpected and hence could provide a 

quicker and more cost effective way for estimation of comminution attributes. 

 

2.5.2. Rock Strength and Grindability  

 

Gupta and Yan (2006) studied the correlation between Bond mill work index and strength 

parameters. As quoted in Gupta and Yan (2006), Briggs (1991) measured the tensile 

strength, using the Brazilian tensile test, and the point load strength of four rock types of 

different grindabilities. These results were compared to the Bond Work Index of the ores 

as measured by the Magdalinovic (1989) method. The results in Figure 2.13 show that 

there is a good correlation between the Bond Work Index, the tensile strength and the 

uniaxial compressive strength (UCS). However studies by Doll et al (2003) suggest that 

there is no correlation between UCS and Bond ball mill work index (Figure 2.14). They 

concluded that UCS may only be related to Work Indices in rock types that have minimal 

fractures and where the UCS test measures the energy to break grain boundaries rather 

than the energy to break fractures. 

Gupta and Yan (2006) stated that the poor correlation between UCS and Bond mill work 

index is because the grinding tests are normally carried out at relatively small particle 

sizes in which the planes of weakness are no longer present and the ore appears to be 

more competent. These studies show that measures of rock strength (e.g. UCS) are scale 

dependent i.e. strength is sample size related, it increases as the sample size decreases. 

 

 

Figure 2.13. Correlation between Bond Work Index and tensile strength (left) and correlation between Bond 
Work Index and UCS (right). Closed squares are data compiled from Briggs (1991) and open squares are 
data compiled from Yan (1993) as quoted in Gupta and Yan (2006). Note that the two graphs refer to the 
same rock samples.  
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Figure 2.14.Cross plot of UCS and Bond ball mill work index for a data set from 11 different mine (after Doll 
et al, 2003). 

 
 
Deniz and Ozdag (2003) investigated the correlation between dynamic elastic modulus 

and Bond work index for unmineralized rocks. They have found a good positive 

correlation between dynamic bulk modulus and Bond ball mill work index (Figure 2.15) 

but their work was limited to 13 samples (from different locations), five of which were 

volcanic rocks and the rest sedimentary. In their study they related dynamic elastic 

parameters to Bond work index. Calculation of elastic parameters was based on shear 

wave and compressional wave velocities and density.  
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Figure 2.15. The relationship between dynamic bulk modulus and Bond work index for sedimentary and 
volcanic rocks. Data extracted from dataset of  Deniz and Ozdag (2003). 
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2.6. Concluding Remarks  
 
Review of the published literature provides encouragement that comminution parameters 

can be related to deformational strength (e.g. P-wave velocity). Grindability parameters 

(e.g. BMWi) and deformational strength can both be related to measures of breaking 

strength (e.g. UCS).  

 
Based on a limited number of samples compiled from published data, it was shown that 

Bond mill work index increases with an increase of P-wave velocity.  The results suggest 

the potential use of P-wave velocity for characterisation of ore grindability. P-wave 

velocity alone, or in combination with density (P-wave modulus, M, and acoustic 

impedance, Z) can provide a basis for estimation of crushability attributes if they are 

calibrated against direct measures of crushability (e.g. A*b). 

 
Results presented here demonstrate that comminution behavior can be related to 

destructive and non-destructive rock strength parameters (e.g. Young’s modulus). 

However non-destructive measurements are quicker and easier than destructive 

measurements.  The most efficient and convenient way to measure dynamic Young’s 

modulus is via downhole logging.  

 
Strictly speaking, calculation of dynamic Young’s modulus requires measurements of 

density, compressional and shear wave velocity. However, when shear wave velocity 

measurement is not possible, P-wave modulus has proven to be a good estimator of 

dynamic Young’s modulus and hence other dynamic elastic parameters (e.g. dynamic 

bulk modulus). Acoustic impedance is also a potentially useful parameter that can be used 

as an alternative to dynamic Young’s modulus in rock mass strength estimation and ore 

breakage characterisation.  

 
Correlations exist between petrophysical properties and a measure of ore crushability and 

grindability (i.e. A*b and BMWi) however, such correlations are not necessarily strong 

for every ore deposit. The main reason is that the particles used for JKRBT tests are 

survivors at a specific small size range after conventional crushing. At smaller size there 

are fewer defects and samples become harder in terms of comminution. More importantly 

though it should be noted that the petrophysical properties are measured on intact rock 

samples while BMWi is measured on composite ground samples from 2m of core. 

Therefore establishing a relationship between comminution attributes and petrophysical 

properties can be difficult. 
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Petrophysical measurements have potential to provide rapid, cheap and more detailed 

(continuous) characterisation of rock mass which could be used at early stage of 

investigation during mine design to assess rock mass condition and ore breakage 

behavior. 
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CHAPTER 3 _______________________________________________  

Automated Multi-Sensor Core Logger 
 
 
3.1. Introduction 

 
Geophysical borehole logging is routinely applied for formation evaluation at oil fields 

and coal mines (Hearst et al, 2000).  It is rarely performed at metalliferous mines. There 

are many reasons for the low utilisation of downhole logging in metalliferous deposits. 

Density and nuclear logging are often restricted owing to concern over use of probes with 

radioactive sources. Moreover borehole access, both in terms of equipment/crew logistics 

and in terms of borehole integrity, is another issue which limits the use of wireline 

logging in these environments.  

 
Given the generally low historical utilisation of down-hole geophysical logging at 

metalliferous mines, there are a number of reasons why automated logging of drill core 

has merit in the context of mineral exploration and geometallurgical research. Measuring 

the properties of drill core samples removes the logistical problems noted above, while 

assaying and detailed metallurgical testing performed on the same core samples permits 

direct correlation of data sets. Most fundamentally, in many cases the archived core 

represents the only material available from mined portions of ore bodies. Core logging is 

the only option for petrophysical characterisation in these cases. Nevertheless, whenever 

practicable, downhole logging offers major advantages in terms of efficiency and, often, 

in terms of data quality (Fullagar, 2005). Core logger data quality is of course poor over 

intervals of broken core. This is a fundamental limitation of core logging, and another 

potential advantage of downhole geophysical logging. 

 
Non-destructive measurement of petrophysical properties of drill cores has become 

routine in soft sediment studies or ocean drilling programs.  Logging of soft sediment 

cores commenced in the 1960s, with measurement of bulk density using gamma ray 

attenuation (Evans, 1965; Preiss, 1968). Continuous compressional wave velocity logging 

(PWL) of soft sediments within cylindrical plastic core tubes was introduced in the mid-

1980s (Schultheiss and McPhail, 1989).  This provided data which were useful for 

seismic and stratigraphic correlation in ODP (Ocean Drilling Program) and other 

sedimentological research. 
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The first fully automated and integrated multi sensor core logging system (MSCL) 

included sensors for P wave velocity, gamma attenuation density and magnetic 

susceptibility (Schultheiss and Weaver, 1992). Automated core logging enables a number 

of parameters to be recorded simultaneously along each core section.  The merging of 

data from successive core sections then provides the user with a virtually continuous 

petrophysical log.  

 
It has been a common practice in mineral industry to interpolate and extrapolate ore 

density measured on discrete intervals of drill cores. However, the development of 

automated logging systems permits rapid collection of high-resolution petrophysical 

measurements. However in order to record meaningful data with such systems, systematic 

calibration of the sensors is required (Gerland and Villinger, 1995; Weber et al. 1997).  

 
The GEOTEK Multi-Sensor Core Logger (MSCL) is one of the commercially available 

“instrumented bench” systems for multi-parameter core measurements. It allows 

simultaneous measurements of several petrophysical parameters on soft-sediment and 

rock cores.  It is a portable bench-scale system, which is commercially available in a 

variety of configurations for work in the field, at sea, or in the laboratory.  

 
Prior to its use in the AMIRA P843 project (as described here), the GEOTEK MSCL 

system had not been used for petrophysical characterisation of metalliferous deposits. 

One of the key aims of the P843 project was to ‘map’ geometallurgical attributes 

throughout an orebody. In order to achieve this goal, development of drill core scale 

proxies that can be linked to physical testing was required. This entailed direct 

comparison of petrophysical properties recorded along drill core section using MSCL 

system with processing indices conducted on the same drill cores.   

 
This chapter presents protocols that have been developed for acquisition and processing 

of petrophysical data using a GEOTEK MSCL system on diamond drill cores from 

metalliferous mines. The GEOTEK system described in this chapter is installed in a 20ft 

(~6m) mobile containerized laboratory for use on mine sites. To accommodate the change 

from soft sediment to hard rock cores, significant modifications to a number of the 

sensors were required.  The configuration of the logging system, its capabilities and 

issues of data precision, accuracy and repeatability are described in following sections. 
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3.2.  Geotek System 

 
The system is comprised of four main elements: a sensor array, an automatic motorized 

track which carries core sections past the sensors, an electronic interface, and a computer 

to control the sensors and record the data. A schematic diagram of a Geotek multi-sensor 

core logger system and sensors is illustrated in Figure 3.1. 

 

 

 

Figure 3.1.  Schematic diagram of a Geotek Multi-Sensor Core Logger (MSCL).  

 
 
Plastic core boats (normally cut into one meter length) are used during core logging. Core 

pieces are loaded in the plastic core boat and the automatic core pusher pushes the plastic 

core boat past the sensors at user defined intervals. 

 

 
3.3. Geotek Sensors 
 
A range of petrophysical properties can be recorded using a Geotek MSCL system. These 

properties include gamma attenuation density, compressional wave velocity and its 

amplitude, electrical resistivity, magnetic susceptibility and natural gamma. However, the 

Geotek system used in this research does not include a natural gamma sensor. High 

resolution core imagery can also be captured simultaneously with petrophysical 

measurements. 

 
In addition the system records core thickness (which is required for sonic velocity, 

density and susceptibility calculations) and ambient temperature. The imaging system and 

petrophysical sensors are described in turn below.  
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3.3.1. Digital Imaging System 
 
The Geotek imaging system was originally designed as a single camera system. The 

University of Tasmania MSCL system is equipped with three 4Mega pixel CCD cameras 

for capturing core imagery. A camera is positioned vertically above the track for half-core 

imagery (Figure 3.2) while the other cameras at 45o use for imaging whole core. All cores 

from the Cadia East and Ernest Henry study sites described in this thesis were split half 

cores. 

 
Rock texture was clearly visible when the flat surface of the core was wet, but direct 

illumination with the ring flash units resulted in specular reflection. To avoid this 

problem the core was initially illuminated with one light at an inclination of 45o, resulting 

in reasonable imagery but slightly variable illumination across the cut surface. All core 

imagery at first case study site (Cadia-East) were captured with this setting (i.e. one 

camera and one light at an inclination of 45o), however the quality of images were not 

good enough for quantitative textural analysis. Therefore an additional light source was 

installed in order to achieve more uniform illumination. Imagery of second case study site 

(Ernest Henry) was captured with dual lights on either side of the track, at 45º inclination 

and upgraded software. When logging whole core, two cameras at 45º inclination, with 

lights, capture images of the core that are stitched in software to cover up to 220 degrees 

of the core surface.  

 

The imaging camera produces high resolution (40 µm pixel) RGB colour imagery. Core 

imagery is being utilized in the AMIRA P843 project for automated classification of 

modal mineralogy (Figure 3.3) and for assessment of ore textural types (Leigh, 2009; 

Bonnici et al, 2008).  Classified core images (Berry, 2009) can also be used for prediction 

of petrophysical properties (Chapter 7). 
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Figure 3.2.  Geotek MSCL camera system for capturing half core imagery.  

 
 
Structural orientations can be interpreted from images of (oriented) whole core. Images of 

core recorded at 9cm interval as part of the protocol (see section 3.4.4) which produced a 

generous overlap as each single image covered about 13cm. Individual images are 

stitched together into 1m intervals by Geotek software. Each stitched image occupies 

about 40 MB of digital storage. 

 

 

 
Figure 3.3.  Geotek RGB raw image and classified image (Berry, 2008a) 

 

Modal Mineral Groups  

• Chalcopyrite  0.8% 

• Pyrite 0.9% 

• Quartz 20.6% 

• Felsic green 57.6% 

• Red feldspar 13.9% 

• Chlorite 6.2% 

Classified image GEOTEK RGB image 

Camera 

Light 
Light 
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3.3.2. Core Thickness Sensor 
 
Knowing the correct thickness of the drill core is crucial for density and velocity 

calculation. It is also important for volume correction of magnetic susceptibility. The 

MSCL can measure thickness to 0.01mm precision using a laser range finder.  Drill core 

that has been sawn in half is measured with a single vertical laser. The thickness of 

whole-core is measured by two horizontal lasers. In each case the thickness is measured 

relative to a reference thickness. The reference value is determined by placing a NQ/HQ 

test piece with known thickness directly in the path of the laser(s).  

 
In many cases when logging half core, the core was not evenly split and there was 

significant variability (up to 0.5cm) in the thickness of each core stick. The accuracy of 

the thickness measurement can be affected by core rotation (when the P-wave transducer 

piston is applied). There is also a significant difference between the footprint of the laser 

(approximately 1mm diameter) and the footprint of the transducer piston (approximately 

2cm diameter) and the footprint of gamma density (i.e. 10mm). Thicknesses are also 

subject to small random errors. The error produced with thickness measurement 

propagates through calculation of P-velocity, density and magnetic susceptibility.  

 
In order to assess the accuracy of core thickness measured by the MSCL system, the 

thickness of a meter length of half NQ cores was measured by the logger and compared 

with the measurements using a digital calliper with 0.01mm precision. As represented in 

Figure 3.4 the Geotek logger thickness agrees closely with the calliper measurements. 

The root mean square error of measurements is 0.15mm.  

   
Given that the NQ half-cores are about 2.2cm in radius, so an error of ±0.15mm equates 

to a relative error of ±0.7%. Error in core thickness accounts for the bulk of the 

uncertainty in density and susceptibility, and is one of the two main sources of error in P-

wave velocity (the other being the delay time, discussed in section 3.3.5.1). Therefore, 

when accuracy in core thickness deteriorates, the quality of all the Geotek logging data is 

adversely affected. 

  
In some cases when NQ half was positioned on the logger below the level of horizontal 

laser beam, observed spikes in the thickness log were found to be due to interference 

between the two lasers (horizontal and vertical). 
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Figure 3.4.  Comparison of core thickness measurement with Geotek thickness sensor and a digital hand held 
calliper.   

 

 
3.3.3. Ambient Temperature 

 
Temperature inside the containerized laboratory is measured with a standard platinum 

resistance thermometer probe with 0.01ºC precision. As far as possible, the temperature 

was maintained between 20 and 21ºC during core logging by an air conditioner installed 

inside the container. 

 
3.3.4. Gamma Ray Attenuation Density  
 
On the MSCL a low activity gamma ray source (10 milli-curie Cs-137) and a sodium 

iodide detector are used to measure the attenuation of gamma rays passing through the 

core.  Density can be inferred from the count rate, given the core thickness.  The 

radioactive source is enclosed in lead shielding. Operator dose rates are only marginally 

above background and well below OH&S allowable limits (ARPNSA, 2005). The system 

works by passing a collimated beam of gamma rays through the drill core (Figure 3.5).   
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Figure 3.5.  Schematic diagram of gamma density operating system.  
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3.3.4.1. Basic principle of measurement 
 
The attenuation of a gamma ray passing through a material is governed by two 

phenomenons, Compton scattering and the photoelectric effect. A caesium source emits 

gamma rays with energy of 0.662 MeV and at this energy the Compton scattering 

dominates (Ellis, 1987). 

 
The gamma ray photons are scattered by the electrons in the core. The attenuation is 

related to the concentration of electrons in the rock. The density of the core can be 

determined by measuring the number of unattenuated gamma photons that pass through 

the core. Gamma ray attenuation is exponential with distance, i.e. 

 
d

0eII µρ−=            (3.1) 

 
where I0 represents the incident intensity of gamma rays (counts per second), I is the 

intensity after passing through the sample, d is the thickness of the sample (centimetres), 

µ is the mass absorption coefficient (square centimeters per gram) of the material, and p 

(grams per cubic centimeter) is the electron density. Rewriting the equation (1), density 

can be calculated by equation (2) if all parameters on the right-hand side of are known. 

 

0I

I
ln

d

1

µ−
=ρ        (3.2) 

 
The mass attenuation coefficient of a specific material depends on the ratio of the atomic 

number Z to the mass number of an atom A. For most minerals this ratio is close to 0.5 

with a value of µ = 0.0774 cm2g-l (Gerland and Villinger, 1995). However for hydrogen 

the Z/A is about 1, resulting in a value of µ = 0.085 cm2g-l (Grasty, 1979) hence allowing 

the porosity to be estimated from density measurements. 

 
 
3.3.4.2. Gamma Density Precision 
 
There is a statistical fluctuation in count rate at the gamma detector, so precision 

increases with increasing count time. Gunn and Best (1998) reported that detector count 

times of 2 or 5 seconds proved to be the best compromise between logging time and 

count rate stability for a MSCL system used for sediment core logging.   

 
In the current research, in order to assess precision and optimum count time, a half core 

sample was positioned in the path of the beam and 100 density determinations were 



Chapter 3. Automated Multi-Sensor Core Logger 

 
45 

conducted at each of several integration times between 1 and 32 seconds (Roach, 2006).  

The density precision is measured by the standard deviation of the data which decreases 

rapidly as integration time increases.   

 
The best compromise between precision and productivity is achieved for integration times 

of 8 to 10 seconds (Figures 3.6 and 3.7).  For an 8 second integration time and a 5mm 

collimated beam the precision of the system is 0.01 t/m3. This precision was deemed to be 

adequate for the purpose of this project. 
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Figure 3.6. Gamma density histogram for a 5mm diameter collimated beam, illustrating the improvement in 
precision afforded by longer integration times. 
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Figure 3.7. Gamma density precision versus integration time for a 5mm diameter collimated beam. An 8 
second integration time provides the best compromise between data precision and system productivity. 
 

 

The aperture for the collimated beam was originally 5mm in diameter, but in an effort to 

reduce the measurement time and hence increase throughput, the collimator size was 

increased to 10mm.  This change was effected after the Cadia East core logging but 

before the Ernest Henry core logging. The larger beam size results in a slight loss of 
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spatial resolution but this is not significant for the current research.  The increase in the 

beam size produced a modest improvement in integration time from 8 seconds to 6 

seconds for 0.01 t/m3 precision. 

 

 
3.3.4.3. Gamma Density Calibration 
 
A cylindrical aluminium test piece (Figure 3.8), machined to different thicknesses, was 

used initially for calibration of both half and full core samples. The diameter of the 

aluminium cylinder ranges from 10 mm to 60 mm in 5 mm increments. Gamma count 

rates are measured twice on the 55, 45, 35, 25 and 15 mm diameter sections and then 

averaged. One reason for using aluminium cylinder for calibration is because the 

aluminium density is 2.7 (typical rock density) and it has Z/A of 0.482 i.e. close 0.5 value 

for most minerals. 

 

 
Figure 3.8. An aluminium cylinder used for gamma density calibration 

 
The gamma count rate, I, is related to the electron density, eρ , and thickness, x, 

according to  

xeeI
αρ−

β=                (3.3) 

 

where α and β are constants and where background gamma radiation is assumed 

negligible. Taking the natural logarithm of both sides,  

 

xBx)ln()Iln( ee αρ−=αρ−β=         (3.4) 

 

Given the thickness and density of the aluminium, the constants α and B can be 

determined via linear regression of ln(I) against xeρ , as shown in Figure 3.9.  The linear 

regression coefficients and sample thicknesses are then used to transform raw count rates 

to electron density.  Small variations in the slope and intercept of the calibration line can 

result in significant differences in calculated density. In production logging, the gamma 

count rate is converted to density using  

 

x

)Iln(B
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α

−
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where eρ denotes the average electron density along the path of the beam.  Bulk density, 

bρ , is related to electron density as follows, 

e

1

b A

Z
5.0 ρ








=ρ

−

 (3.6) 

 
where Z is atomic number and A is atomic weight. The regression line in Figure 3.9 

relates bulk density for aluminium (2.70 t/m3 as measured by water immersion) to gamma 

counts. In fact the regression is against pe (electron density) times thickness. The core 

density inferred from gamma counts using this line of best fit is a bulk density provided 

the (average) Z/A of the rock sample is 0.482, i.e. equal to Z/A for aluminium.  Therefore 

the inferred density as reported in this thesis should more correctly be reported as a bulk 

density referenced to aluminium.  
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Figure 3.9. Gamma density calibration regression line for a cylindrical aluminium calibrator, relating count 
rate to aluminium bulk density.  

 
 

For relatively high density (i.e. more than 3 g/cc) core samples, it would be better that 

gamma calibration to be carried out with a calibrator that has a density close to the 

density of the cores. A brass calibrator was also tested in this research however the 

density of the brass is quite high (8.36 g/cc) and this causes an over estimation of the 

density of the core samples. 

 
The geometry of the calibrator should ideally represent the core geometry in order to 

record accurate core density. In this research for both whole core and half core logging a 

full cylindrical aluminium calibrator was used (Figure 3.8). However it was found that the 

increase in collimator aperture from 5 to 10mm diameter affected the density 

measurement through errors due to calibration using the cylindrical aluminium calibrator 
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(Figure 3.11). This was mainly due to differences in the beam path for small diameters.  

For this reason a stepped aluminium calibrator was fabricated (Figure 3.10). The steps 

were cut into an aluminium cylinder to represent HQ half core with different thicknesses. 

The thickness of this calibrator varies from 20 to 55mm in 5mm increments. 

 

 
Figure 3.10. An aluminium cylinder machined into steps for gamma density calibration of half cores. 

 

Comparing the calibration graph for the two calibrators (Figure 3.12), the slope of 

regression line for the half calibrator is less than that for the full cylinder calibrator 

resulting in a decrease in calculated density for identical gamma count rate and thickness. 

Conversely calibration using the cylindrical calibrator tends to increase the inferred 

density for half cores by about 5%.  
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Figure 3.11. Variation of gamma count differences for each calibrator thickness. Note that at small 
thicknesses (close to the size of most archival half cores) the variation is larger. 
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Figure 3.12. Gamma density calibration regression line for two aluminium calibrators 

 

3.3.4.4. Gamma Density versus Temperature 
 
Daily variations between readings on the aluminium calibration piece revealed an inverse 

correlation between gamma count rate and ambient temperature. Variation in measured 

gamma count rate is attributed to temperature sensitivity of the gamma ray detector 

system. To assess the effect of temperature on gamma counts, the half aluminium 

calibrator with 5cm thickness was placed between the source and the detector and gamma 

counts were logged with 60seconds integration time. When all measurements for this 

thickness of aluminium were plotted against temperature, it was evident that count rate 

generally decreases as temperature increases (Figure 3.13a). Consequently the calculated 

density increases (Figure 3.13b).  This is consistent with the expected behaviour of 

NaI(Tl) crystal (Hearst et al., 2000).  

 
Prolonged exposure of the sensor to high count rates may also contribute to drift (Geotek, 

2000).  To account for these effects the containerised laboratory is maintained within a 

narrow temperature range (~ 1 degree if possible) and density calibration is performed 

each day prior to commencement of logging.  
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Figure 3.13. Gamma-density temperature sensitivity curve for 60 second integrations through 50mm of 
aluminum (a) and gamma density variation with temperature for a 50mm diameter aluminium calibration 
piece (b). Variation is attributed to temperature sensitivity of the gamma ray detector system. 

 
 
 
3.3.4.5. Gamma Density Accuracy 
 
The accuracy of gamma ray attenuation density compared to standard water immersion 

density measurement (bulk density) was reported as 0.01 g/cc (Vatandoost et al, 2008a). 

However the accuracy of gamma density in this study was tested at the time where the 

gamma source collimator aperture size was 5mm. 

 
As mentioned in section 3.3.4.3 the increase in collimator aperture from 5 to 10mm 

diameter affected the density calibration using the cylindrical aluminium calibrator. 

Figure 3.14a and Figure 3.14b illustrate comparison of gamma density measurement 

versus water immersion density for series of core pieces from Ernest Henry using the 

cylindrical and half core aluminium calibrators respectively. Gamma attenuation density 

was measured by MSCL along the two sections of half NQ size drill core at an interval of 

1 cm. The cores pieces were selected from different drill holes at Ernest Henry and 

included mafic and felsic volocanic rocks mineralized with chalcopyrite, pyrite and 

magnetite. The average gamma density over each length of core piece was computed and 

compared with the standard water immersion density. 

  
Calibration of gamma densities with the cylindrical calibrator resulted in a bias in density 

calculation when compared with relative water immersion densities. However as 

represented in Figure 3.14b there is a much better agreement between gamma densities 

calibrated with the half core calibration piece and the immersion densities.  

 

a) 

 
b) 
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Figure 3.14. Comparison of average gamma density measured by the Geotek MSCL versus water 
immersion density. Gamma densities are calibrated with the cylindrical calibration (Figure 3.8) piece (a) 
and the half core calibration (Figure 3.10) piece (b).  

 
 

 
3.3.5. Acoustic Velocity 
 
Ultrasonic transducers (250 kHz) are used to measure the velocity of compressional 

waves in the core.  P-waves are generated at one transducer, travel across the core 

sample, and are received at the other transducer.  The quantities measured are travel time, 

in µs, and signal strength. Travel time is measured with a precision of 0.01µs. The 

configuration for measurement of half core is illustrated in Figure 3.15. The upper piston 

transducer is automatically brought to the surface of the core while the lower rolling 

transducer remains in constant contact with the core boat beneath the core. This enables 

the core to move freely past the lower transducer before the next measurement is made.  

 

 

a) 

 
b) 
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Figure 3.15. Schematic diagram of P-wave velocity transducers in half core mode of acquisition 

 
For whole core measurement two piston transducers are mounted horizontally opposed 

across the core axis (Figure 3.16). A full measurement cycle takes approximately 5-6 

seconds. The velocity through the core can be determined from core thickness and travel 

time. An automated system is used to detect and measure the travel time of the zero 

crossing after the first negative excursion of the received waveform that falls within 

preset amplitude thresholds.  The travel time through the rock then is derived from the 

measured total travel time after correction for transducer delay and for the travel time 

through the plastic core boat and sonic gel used to improve sensor coupling.  

 

 

Figure 3.16. Schematic diagram of horizontally opposed P-wave velocity transducers in whole core mode of 
acquisition 

 
During a measurement the motorised transducers clamp the core. In whole-core mode, the 

horizontal opposing pistons directly contact the core and there are few problems with 

coupling.  For half-core measurements the coupling between rolling transducer and 

plastic core boat is less reliable.  Moreover, signal is lost at the core-boat interfaces. 
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When logging half core, total travel time is largely insensitive to the pressure applied by 

the upper transducer. However, the P-wave amplitude is somewhat sensitive to the 

applied pressure. For consistency the piston is adjusted so that it travels a standard 30mm 

from a known rest position. As a result, the pressure applied to the core is expected to be 

invariant. However in logging operation, the variation in pressure is somewhat dependent 

on the variation in core thickness. 

  
The amplitude of the signal is sensitive to coupling. Coupling is one of the important 

factors influencing the transmissibility of P-waves from the sensor into the sample and 

viscous liquids are normally used during P-wave measurement in laboratory. However 

water could also be an alternative if samples are saturated fairly well with water. The 

signal strength and repeatability improved when the flat surface of the half core was 

thoroughly wetted and when acoustic gel was smeared between the core and core boat 

(Figures 3.17a and 3.17b). It should be noted that just a sheen of gel is needed in order to 

couple the core to the core boat and hence to achieve adequate signal strength. 

 

 

 

      
 

Figure 3.17. P-wave signal recorded on a half NQ size core sample. (a) without acoustic gel between 
the core and core boat. Signal amplitude is significantly attenuated. (b) with acoustic gel between core 
and core boat. Note the significant improvement in amplitude when compared to (a) and also the 
subtle differences in the waveform. 
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3.3.5.1. Sonic System Delay Time 
 
The intrinsic delay of the P-wave system has been established by comparing Geotek 

travel times with times recorded independently with a model 6 Pundit (Portable 

Ultrasonic Non-destructive Digital Indicating Tester) using transducers with the highest 

available frequency (80kHz). The Geotek travel times are recorded in transverse 

propagation (across core) whereas the Pundit travel times are normally measured in axial 

propagation (along core). However, the Pundit travel time on the test sample was 

measured for transverse propagation in order to be comparable with the Geotek travel 

time.  

 
The intrinsic GEOTEK transducer delay in half-core mode was determined to be 

15.10±0.25 µs with additional delays due to sonic gel (±0.2µs) and of 0.6±0.1 µs and 

0.8± 0.1µs due to NQ and HQ core boats respectively. Nevertheless the intrinsic delay 

time is variable during operation. The large intrinsic delay is due to the control software 

triggers on the positive-trending zero crossing rather than the first break (Figure 3.17).  

 

3.3.5.2.  Accuracy of Sonic Velocity 
 
A plexiglass sample (half core shape, with a radius of 2.1cm) was used to assess the 

accuracy of P-wave velocity.  The plexiglass has a stated velocity of 2650 m/s (Hung and 

Goldstein 1983).  However the P-wave velocity that was measured for the plexiglass 

sample using the Pundit was 2750 m/s.  The accuracy of the MSCL P-wave velocity for a 

homogeneous plexiglass sample was determined to be about ±150 m/s when compared 

with the velocity measured by Pundit. However in production mode, the accuracy of 

velocity measured by MSCL P-wave transducers may decrease mainly due to coupling 

issues. 

 
To compare the Geotek P-wave velocity measurements in operational logging with Pundit 

measurements, four sections of half NQ size drill cores selected from Ernest Henry drill 

hole EH446. P-wave velocity was recorded with the Geotek logger across the core 

samples at 1cm intervals and then the average of the 1cm velocity measurements along 

the length of each sample was compared with average of two measurements across the 

same cores using the Pundit with 80 kHz transducers. Great care was required during 

measurement of P-velocity both with Geotek and with Pundit as coupling of Pundit 

transducers with half core is problematic. Sonic gel was also used during P-velocity 
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measurement with Pundit. As represented in Figure 3.18a, the Geotek and Pundit average 

velocities are in good agreement, with an RMS difference of 155 m/s (~3%). 

  
The sonic velocity accuracy experiment was also conducted for whole core samples. The 

mode of measurement by Geotek was kept the same (i.e. vertical transducer motion 

instead of horizontal) to compare the velocity of Geotek for whole core with that of 

Pundit. Four sections of NQ size whole cores were logged at 1cm intervals with the 

Geotek. The average of velocity along the length of each sample was compared with 

average of two measurements across the same cores using the Pundit with 80 kHz 

transducers. Figure 3.18b shows that both measurements have a good correlation, 

however Geotek P-velocity for most of the samples are lower than the P-velocity 

measured by Pundit. One reason for the low Geotek P-velocity calculation may have been 

errors in core thickness measurements.  

 
It should be noted that a perfect match between P-velocity measurement with Geotek and 

Pundit is not necessarily desirable due to different factors that affects the measurements. 

Pundit travel times are normally measured in axial propagation (along core). Moreover 

sample size, frequency of transducers and the instrumental precision are also critical 

factors. ISRM (1981) recommends the minimum lateral dimension should not be less than 

ten times the wave length while ASTM (1978) stipulates five times the wave length. Thus 

considering an average velocity of 5000m/s for most hard rocks, the minimum frequency 

of Geotek transducers should be 1MHz for HQ core size to meet the requirement of 

ASTM (1978). This criteria is clearly not met by the current Geotek system with 250kHz 

transducers. 
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Figure 3.18. Comparison of average Geotek P-velocity versus average Pundit P-velocity for a series of 
half cores (a) and for a series of whole cores (b). Note that the vertical mode of measurement was 
conducted by Geotek MSCL. 

 

a) 

 
b) 
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3.3.5.3. Sonic Full Waveform 
 
The Picoscope virtual oscilloscope software allows visual quality control on velocity 

measurement during core logging. The P-wave waveform can be recorded only manually 

but is not routinely acquired by the system. An example of a full waveform P-wave 

measurement is shown in Figure 3.17. The digitally recorded data from a full waveform 

P-wave measurement needs to be processed. Waveform analysis can be much more 

detailed than that inferred from a simple transit time but some effort is required to 

produce the results. Spectral analysis (Fourier domain) can provide useful information 

such as attenuation.  

 
 
3.3.5.4. P-wave Amplitude 
 
Measurements of P-wave amplitude were unreliable until the core surface was wetted 

thoroughly and acoustic gel was smeared between core and core boat. It is also essential 

to maintain a good acoustic coupling between the lower transducer roller and the core 

boat. This is achieved by putting a few drops of water (or gel) onto the top of the roller, 

where it makes contact with the core boat. 

 
At this stage the GEOTEK MSCL system only records a relative measure of signal level, 

and does not digitise the full acoustic waveform.  However, the amplitude appears in 

many cases to be a useful indicator of fracture density in rock masses as also suggested 

by Barton (2007).  The acoustic waveform is currently displayed during data collection 

for quality control purposes and there are clear variations in sonic waveforms between 

different materials. However this observation has not been followed up in detail in this 

research since the logger cannot currently automatically capture this information. 

Implementation of full waveform recording in the MSCL could provide additional 

information on rock strength.  Full waveform sonic recording would permit spectral 

analysis and hence better assessment of attenuation. 

 

 
3.3.5.5.  Redesign of the Acoustic Velocity System 
 
Coupling issues associated with the lower rolling P-wave transducer in half core mode 

were a major issue affecting accuracy and precision of P-wave velocity and amplitude 

measurement in the original Geotek configuration. The system was reconfigured to 

enable P-wave measurements to be made in a vertical orientation using the piston 

transducers in a reciprocating mode in the same way as can be achieved in the horizontal 
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mode. This mechanical arrangement of transducers (Figure 3.19) was believed to improve 

the transducer coupling and enables more consistent measurements. However the 

presence of the core boat and sonic gel still introduces uncertainties in accurate travel 

time and amplitude measurement. 

 
In order to determine the intrinsic delay of the transducers, a reference cylindrical sample 

piece of aluminium with known travel time of 26µs commonly used for calibration of the 

Pundit sonic tester used in this experiment. The travel time recorded by Geotek MSCL 

when the cylindrical sample placed between transducers in vertical position was 

37.10±0.1µs. This means that the Geotek transducers in this mode have a delay of 11.1± 

0.1µs.  However when transducers were opposed face each other the travel time was 

12.25 ± 0.1 µs. This may mean that the actual travel time of Pundit reference sample is 

37.1-12.25= 24.85 (i.e. 1.15µs lower than the stated value).  

 
In another experiment a cylindrical sample of plexigalss with a length of 10cm was tested 

for travel time. The total measured travel time with Geotek was 48.35µs ± 0.1 µs. The 

travel time through plexiglass after correcting the Geotek intrinsic delay was 48.35-12.25 

= 36.1 µs. The travel time of the same sample measured by Pundit was 36.7µs. This 

means that recorded travel time by Geotek based on intrinsic delays of transducers 

(12.25µs) will be underestimated by 0.6µs when compared with Pundit measurement. 

Therefore a delay of 12.25µs was assumed for this setting of transducers. However to 

assure repeatability it is recommended that this delay is measured daily prior to core 

logging. 

 

 
Figure 3.19. Geotek P-velocity transducers in vertical mode for both half and whole core acquisition.  
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3.3.6. Non Contact Resistivity (NCR) 
 
The standard non-contact resistivity (NCR) system on the MSCL employs small 

horizontal coplanar coils in a slingram configuration. It has a dynamic range of 0.1-100 

Ωm. The NCR sensor was originally designed to measure the resistivity of relatively 

homogenous water-saturated sediment cores in which resistivity is moderate and varies 

comparatively slowly with depth (Figure 3.20a). 

 
Electrical conductivity in rocks occurs by one of two mechanisms: ionic conductivity 

electronic conductivity.  The connectivity of pore spaces (i.e. permeability) is critical in 

determining ionic conductivity. However tests conducted in ODP research on dry and 

saturated cores of olivine-bearing gabbro, which were very conductive showed that there 

was little variation in conductivity measurement suggesting that ionic conductivity was 

not the dominant mechanism (Searle, 2008). 

 
For a heterogeneous zone of conductive material with large conductivity contrast (e.g. 

thin sulphide veins and aggregates), the response of the standard Geotek NCR system is 

affected by the geometrical distribution of the minerals in addition to their conductivity. 

The secondary electric currents that are induced in a single vein can produce both positive 

and negative responses. Consequently the overall response from mineralised cores can be 

very complicated and confusing (Figure 3.20b).  For this reason a different conductivity 

sensor with a co-axial loop configuration and with a larger dynamic range was interfaced 

to the MSCL. 

 

  
Figure 3.20. Non-contact resistivity response schematic. (a) for a thick zone of homogenous conductive 
material. (b) for a heterogeneous zone of conductive material. 
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3.3.7. Loop Conductivity Meter 
 
A hand-held GCM-2 inductive coil conductivity meter designed by Geo Instruments was 

incorporated into the Geotek MSCL (Figure 3.21). Incorporation of GCM-2 into the 

logger was carried out after Ernest Henry core logging. The GCM-2 measures the 

inductive conductivity of drill-core inserted into the coil. The GCM-2 nominally has a 

wide dynamic range, from 10-1 to 105 S/m although experience shows that its sensitivity 

at low conductivity is quite poor. There are sensor coils available with different internal 

loop diameters such as AQ (27mm), BQ (36.5mm), NQ (47.6mm), HQ (63.5mm) and PQ 

(85mm).The sensor operating frequency ranges from 15kHz to 2 MHz. An automatic 

frequency option in GCM-2 automatically assigns the appropriate frequency for the 

selected loop sensor. The sensor should be zeroed in free air before operation. Geo 

Instruments suggest a fluctuation of ±2 S/M after zeroing. However zeroing of the system 

inside the Geotek container was problematic (i.e. ±10 S/M). An attempt was made to 

cover the loop sensor with aluminium foil in an effort to shield the system, but the 

readings were still high (5-10 S/M). 

  
In order to assess the precision of measurement with different frequencies, the 

conductivity of a BQ size massive sulphide core sample was measured with a loop of 

63.5mm diameter using four different frequency range (62, 125, 250 and 500kHz). 100 

conductivity measurements were conducted (one every second) while the sample was 

placed fixed in the loop sensor. As the frequency increases the conductivity decreases 

(Figure 3.22).  

 
The variability of conductivity at 500 kHz is ±0.25 S/M. However the system showed 

quite strong fluctuation at 250 kHz. This phenomenon is not yet understood.  This 

experiment was repeated in the same manner but using a smaller loop size (i.e. 47.6mm). 

The measurement with 250 kHz was more stable (±20 S/M) compared with 62.5mm loop 

size (±90 S/M), but this variability is still very high. Again at high frequencies, the 

precision of conductivity was relatively higher. However at 500 kHz the variability of 

conductivity measurement was ±5 S/M.  These tests show that the operation of the GCM-

2 conductivity sensor is problematic.  
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Figure 3.21. Loop Conductivity meter incorporated into the Geotek logger. 
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Figure 3.22. Conductivity of a core sample recorded using a 63.5mm diameter loop with different 
frequencies. Note that the vertical bar indicates the calculated standard deviation. 
 
 

3.3.7.1.  Loop Conductivity Meter Calibration 
 
The half cylinder aluminium calibrator (used for gamma density calibration) was used for 

calibration of conductivity. Ideally it would be best to assess the conductivity 

measurement on individual pieces of aluminium with different thicknesses. A 63.5mm 

coil sensor was used in order to accommodate measurement on all thicknesses of 

aluminium calibrator. A frequency of 125 kHz selected in this experiment as the 

conductivity readings at this frequency were more repeatable.  Averages of 10 

conductivity measurements in each thickness (step) of aluminium calibrator were 

computed. However readings that were affected due to adjacent steps were eliminated 

before averaging. Figure 3.23a shows that the measured conductivity of aluminium 

calibrator increases as the calibrator thickness increases. The variability of conductivity 

GCM-2 Susceptibility 
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as calculated by standard deviation of measurements also increases slightly with increase 

of aluminium thickness. 

 
In another experiment and in order to assess the effect of temperature on conductivity 

logging, the massive sulphide core sample was placed fixed within the conductivity loop 

sensor (47.6mm) with 500 kHz frequency and 1000 conductivity measurement 

conducted. Figure 3.23b shows that with an increase of temperature the conductivity 

increases as well. This is a large variation of conductivity with small change in 

temperature. The variation in conductivity is most likely due to sensitivity of the sensor to 

temperature and also sensor’s temporal drift. The tests on the GCM-2 conductivity sensor 

indicate that a number of factors potentially affect the measured response and that this 

instrument is not ideally suited for routine logging.  
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Figure 3.23. Conductivity of aluminium calibrator versus its thickness for 125kHz frequency and 63.5mm 
loop sensor (a). The vertical bars on data indicate the standard deviation for each thickness. Conductivity 
versus temperature for a sample fixed in place (b). 

 
 
3.3.8. Magnetic Susceptibility 
 
The MS2C Bartington meter incorporated into the logger measures magnetic 

susceptibility by recording the variation in inductance of the sensor coil when core is 

placed within it. Magnetic susceptibility is widely used in MSCL systems for studies of 

sedimentology, paleoclimate, bottom-water flow conditions and regional stratigraphy. 

 
Two types of susceptibility sensors can be installed on the logger: a point-sensor which 

provides high spatial resolution, and a loop sensor which has poorer spatial resolution but 

a higher signal to noise ratio and so is better for measuring sediments with low magnetic 

a) 

 
b) 
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susceptibility (Gunn and Best 1998; Ortiz and Rack 1999). For heterogeneous volcanic 

rocks with high magnetic susceptibility (i.e. Ernest Henry drill cores), the sensitivity and 

smaller depth of investigation of the point sensor compared with loop sensors makes loop 

sensors more suitable. Moreover point sensors are more sensitive to temperature 

fluctuation (Geotek, 2000). For these reasons the loop sensor was used within this 

research. 

 
The loop sensor was installed on the GEOTEK logger in such a way that no magnetic or 

metallic components are close to it.   The MSCL software automatically zeros the sensor 

prior to the first measurement. However in order to remove sensor drift during acquisition 

it is recommended to zero the sensor after about 10 meters of core logging.   As originally 

installed, the meter had a high sensitivity (1 x 10-6 SI) but limited upper range (maximum 

0.1 SI).  The upper range of the system was often exceeded during initial logging trials so 

the sensor was modified by Bartington Ltd to accommodate susceptibilities up to 1 SI.  

Using a larger loop diameter than recommended for a particular core diameter enables 

measurement of susceptibility up to approximately 3 SI.  This upgrade was carried out 

after Cadia East core logging but prior to Ernest Henry core logging. 

 
Three test pieces were provided by Bartington Ltd with true susceptibilities of        

249x10-4SI, 54x10-4SI and 6x10-4 SI for loop diameters of 60, 72 and 150mm 

respectively. The test pieces have a diameter of 41.1, 55.6 and 56.1mm. Two of these test 

pieces (41.1mm and 55.6mm in diameter) were used for recording susceptibility with 

different loop sizes. As represented in Figure 3.24 as the ratio of loop sensor diameter to 

sample diameter increases the measured susceptibility decreases. This observation 

suggests the need to correct the measured susceptibility measurement for sample volume.  
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Figure 3.24. The relationship between apparent  susceptibility and ratio of  loop sensor diameter to sample 
diameter. 
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3.3.8.1. Sample Volume Effect 
 
Because measured susceptibility depends on sample volume, measurements on pieces 

shorter than the loop diameter will be underestimated. Such samples (less than loop 

diameter) need to be tested carefully. However in production logging where core pieces 

are placed end to end this should not be an issue unless a considerable gap between core 

pieces is present.  

 
 
3.3.8.2.  Loop Size Correction 
 
The maximum susceptibility that can be recorded increases with sensor coil diameter, so 

with appropriate volume correction higher magnetic susceptibility measurement can be 

achieved by using a bigger loop size. Susceptibility tests were conducted on three 

sections of half cores from Ernest Henry (drill hole EH635) with loop diameters of 60, 72 

and 150mm. Each section was one meter long and all cores were altered mafic volcanic 

breccia and were mineralized with chalcopyrite and pyrite. The core pieces were 

positioned end to end in the core boats. Magnetic susceptibility was recorded in 1cm 

intervals with each loop sensor. As shown in Figure 3.25a, there is a linear relationship 

between measurements with 60 and 72mm loop sizes. The slope is 1.45 close to the ratio 

of the areas of the two coils (i.e. 1.44). 

 
The readings with 60mm and 150mm diameter coils are compared in Figure 3.25b. 15 

point (15cm) moving averages were computed for the 60mm coil data in an attempt to 

“resolution match” the profiles: the 60mm coil will resolve finer details than the 150mm 

coil. The susceptibility for the 150mm coil shows a good correlation with 15 point 

moving averages of readings with the 60mm loop size (Figure 3.25b). The ratio of coil 

areas (150/60)2 is 6.25 which is comparable with 6.57, the slope of the regression line. 

The comparison between magnetic susceptibilities recorded with the 72mm and 150mm 

diameter coils also revealed a good correlation (Figure 3.25c). A 15 point moving average 

has been applied to the 72mm coil data. The readings with 72mm and 150mm diameter 

coils are compared in Figure 3.25c. The ratio of coil areas is 4.34 in this case, which is 

comparable to the 4.58 slope of the regression line.  
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Figure 3.25. Correlation between apparent magnetic susceptibility as measured using  60mm and 72 
mm (a) 60mm and 150mm (b) 70mm and 150mm (c) loop sensors. A 15 point moving average has 
been applied to the 60mm (b) and 70mm (c) loop data to account for the difference in spatial 
resolution of the two sensor.  
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3.3.8.3.  Susceptibility Volume Correction 
 
The MS2C coil sensors were developed for whole core measurements. Empirically, it has 

been established that the measured susceptibility value decreases by approximately a 

factor of two when a whole core is split in half. In this experiment eight sections of whole 

core from Cadia East was selected in which half of the sections were HQ size and the rest 

were NQ size. The core samples were volcaniclastic rocks with potassic and propylitic 

alteration. The susceptibility of these samples was checked with a hand held susceptibility 

meter to ensure that they were mineralized with magnetite.  Each section was one meter 

long and was logged with Geotek MSCL at 1cm intervals with loop sensors of 60mm and 

72mm for NQ and HQ cores respectively. Then the whole cores were split in half and the 

above measurements were repeated. As represented in Figure 3.26 there is a good 

correlation between measured susceptibility of whole (NQ/HQ) size core and measured 

susceptibility of half (NQ/HQ) size core derive from it. However the measured 

susceptibility value of whole (NQ/HQ) size core is higher by approximately a factor of 

two when compared with measured susceptibility of half (NQ/HQ) size core derived from 

it. Therefore half-core readings need to be corrected according to sample cross-sectional 

area.  
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Figure 3.26. Magnetic susceptibility of whole core versus magnetic susceptibility of half cores derived from 
it. 

 
 
For imperfectly split half-core, with thickness differing from the notional core radius, R, 

by an amount ∆, the cross-sectional area of the remaining core (shaded section in Figure 

3.27) controls the sample volume (Fullagar, 2006).  The area of the blue zone is given by 
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where ∆ is positive for thin half-core and negative for thick half-core.  The volumetric 

correction factor then becomes 
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Therefore Krel ranges from 1 for a complete core, to 2 for a perfect half-core, to larger 

values for thin sections of split core. 

 
Figure 3.27. Schematic section through (half) core. 

 

 

 

3.3.8.4.  Temperature Effect 
 
Although Geotek Ltd suggests that magnetic susceptibility measurements are temperature 

sensitive, in practice temperature variation in the container did not affect the 

susceptibility measurements significantly. As illustrated in Figure 3.28, for a five degree 

increase in temperature, the susceptibility only increased by 5x10-4 SI which for the 

mineralized samples measured in this study is not a significant variation. The 

susceptibility sensor is not really affected by temperature variations but the sensor is 

subject to occasional random fluctuations. The experiment presented in Figure 3.28 was 

conducted on a piece of core with high magnetic susceptibility placed in a fixed position 

within between the loop, then susceptibility and temperature recorded by Geotek MSCL 

every minute. Using the same procedure, the experiment was repeated for a sample with 

low magnetic susceptibility. As represented in Figure 3.29 the susceptibility recordings 

are not significantly affected by temperature variations but the sensor is subject to random 

fluctuations that are usually readily identified in the data.   



Chapter 3. Automated Multi-Sensor Core Logger 

 
67 

 
Figure 3.28. Magnetic susceptibility versus temperature recording for a sample with high susceptibility fixed 
placed within a loop sensor for about 24hours. The recording has not affected by temperature variations but 
sensor subject to random fluctuations. 
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Figure 3.29. Magnetic susceptibility versus temperature recording for a sample with low susceptibility placed 
within a loop sensor for about 24hours. There is no evidence of temperature sensitivity but random negative 
spikes in the data are apparent. 

 
 

3.3.8.5. Comparison of Measurements 
 
Magnetic susceptibility measurement with the Geotek MSCL loop sensors  were 

compared with a hand held KT-9 kappameter which is the most common instrument used 

in the mineral industry for magnetic susceptibility measurement. This test was conducted 

prior to upgrade to the MSCL susceptibility sensor. Both KT-9 and Geotek susceptibility 

sensor can record up to 0.1 SI however the nominal sensitivity of the loop sensor is 10-6 

SI while KT-9 has a sensitivity of 10-5 SI. 

 
In this experiment magnetic susceptibility was recorded at 1cm intervals using MSCL on 

about 4.5m half NQ size drill cores from Cadia East (CE098). The 60mm loop diameter 

was used for susceptibility measurement with MSCL. Then susceptibility was recorded 
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using a KT-9 every 10cm for the same drill cores. Two readings were recorded on 

kappameter and the averages of readings were used for comparison with the measured 

values of the MSCL. As represented in Figure 3.30, both dataset are in a good agreement. 

It should be noted that the drill cores selected in this experiment were low in 

susceptibility to allow comparison of measurement on loop sensor with KT-9.  
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Figure 3.30. Comparison of Magnetic susceptibility recorded by Geotek and KT-9 Kappameter. 

 
 
 

3.4.  Core Logging 
 
Prior to commencement of core logging procedures for core preparation need to be 

considered. This will be presented in following section.   

 
 
3.4.1. Core Preparation 

 
Core preparation for logging is a key aspect of data acquisition. Drill core should be 

cleaned and completely wet on the surface. By wetting the surface of the core, the core 

imagery is improved, and the P-wave amplitude is also enhanced. Ultrasonic gel is 

smeared on the plastic core boat in order to achieve good acoustic coupling between the 

core and core boat. In order to log core in a continuous fashion, plastic clips are used to 

join the core boats together. If the core boats are not joined in this fashion, they may ride 

over one another as the core is pushed through the logger.  

 
In general, measurement of drill core petrophysical properties involves the following 

steps: 
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1. Core trays are moved into the shipping container and stored on shelves for at 

least 2-3 hours prior to logging in order to attain temperature equilibration. 

2. A core tray is lifted from shelf to bench and the core top section depth is checked  

3. Wet sponges are placed on top of the core in the core tray to hydrate the surface 

of the sample.  

4. Acoustic gel is smeared on the core boat  

5. Core pieces are cleaned before being transferred to the core boat 

6. Core pieces from the core tray are transferred to the core boats – severely broken 

core can not be logged 

7. The top section depth is entered into the Geotek software.  

8. After the core boat with the core is positioned on the track, plastic clips are used 

to join the core boat to the preceding one.  

 
During measurement, the flat surface of half core is kept wet for imaging and sonic 

coupling. It is important that the core is kept wet in order to obtain good quality images 

but not too wet as this makes the surface too reflective and results in poor quality images.  

 
When logging of a section of core is finished, the core pieces are transferred from the 

core boat back to the core trays and steps 4 to 9 are repeated until a tray of core is 

completed.  Core trays in which logging is finished are shifted from the bench back to a 

shelf.  

 
 
3.4.2. Data Acquisition and Processing 
 
During acquisition, the GEOTEK software displays raw data (core thickness deviation, P-

wave travel time, P-wave amplitude, attenuated gamma counts, magnetic susceptibility, 

temperature and electrical resistivity) as illustrated in Figure 3.31 and imagery is 

displayed in real time. The spikes in some logs (Figure 3.31) are due to the broken core or 

a gap. There is also a processing window available which permits basic processing of data 

in real time.   However the large amounts of data produced by MSCL require efficient 

software processing tools.  The MSCL software is very limited in terms of processing and 

interpretation options, but some suitable commercial software is available. LogTrans 

software, developed by CMTE for multi-parameter log interpretation (Fullagar et al, 

1999), has been used for data processing and interpretation in the current research. 

Although developed in the context of geophysical logs, LogTrans can be applied to any 

type of multi-parameter data.  
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Figure 3.31. Geotek raw data displayed by MSCL software during core logging 

 

 
3.4.3. Repeatability and Reproducibility 

 
There are different ways to evaluate performance of a system. Accuracy and precision are 

important consideration in this context. Accuracy of a measurement involves comparison 

with a standard. While precision refers to the repeatability of measurements. 

 
Repeatability refers to the variability of measurements conducted with the same device by 

the same person in a single experiment. Reproducibility on the other hand normally refers 

to measurements recorded in separate experiments with different machines (sometimes 

different method) and by different operators (Fullagar et al, 2005). Figure 3.32 shows 

reproducibility of Geotek gamma density when compared with water immersion densities 

conducted on the same cores by a different operator at JKMRC (University of 

Queensland). Geotek gamma densities were recorded on Ernest Henry cores at 9cm 

intervals and were averaged over 2m intervals to be comparable with JKMRC 

measurements. Water immersion densities were conducted only on a few pieces of core 

samples from each 2m intervals. Given the condition of experiments, both measurements 

are in good correlation.  
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Figure 3.32. Reproducibility of Geotek MSCL Gamma density  

 
In order to test operational repeatability of MSCL system, 5 repeat runs were conducted 

on four pieces of NQ half core (~1m total length) selected from Ernest Henry (EH633).  

There were three breaks in core over 1m. The core pieces were altered mafic volcanic 

rocks that contained variable proportions of magnetite, chalcopyrite and pyrite 

mineralisation. This testing involved setting up the logger for each run and repositioning 

the core boat in the logger. Petrophysical properties were recorded with 9cm sampling 

interval for each run. 

 
Variation in position is the single most important factor affecting repeatability of the 

MSCL results, not only because rock properties can vary over short distances, but more 

especially because core breaks and changes in core thickness can influence the 

measurements. 

 
The P-wave velocity was generally repeatable within about ±7% (Figure 3.33a) if the 

coupling between core and core boat, and between core boat and the lower transducer, 

was maintained constant during all runs. P-wave amplitude was repeatable within about 

±10% (Figure 3.33b) but it is very sensitive to coupling. Gamma density exhibited good 

repeatability within about ±2% (Figure 3.33c) and magnetic susceptibility was repeatable 

within about ±2% (Figure 3.33d). 
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Figure 3.33. Repeatability of Geotek P-wave velocity (a) P-wave amplitude (b), gamma density (c) and 
magnetic susceptibility (d) on NQ half-core test pieces.   

 

 
 
3.4.4. Sampling Intervals 
 
In addition to the time taken for each sensor to acquire data, another factor that affects the 

productivity of the logger is the relative sensor spacing along the track.  Each sensor has 

to take measurements at the same locations on the core and the process is fastest if 

multiple sensors can take measurements simultaneously.  This can only happen if the 

sampling interval is a factor of the sensor spacing.   

 
On the University of Tasmania MSCL system, if the imaging camera is at position zero, 

the core thickness laser is 6 cm along the track, the gamma density beam is at 22 cm, the 

P-wave sensor at 40 cm, the inductive resistivity at 56 cm, and susceptibility coil at 86 

cm. Density, P-velocity and imaging are the slowest measurements, and density and sonic 

velocity are separated by 18 cm.  Therefore, considering time optimization, factors of 18 

cm are the most efficient.  An 18 cm interval would of course be fastest, but some 

resolution would be lost and, more importantly, given the 13cm width of field for the 

a) 

 
b) 

 

c) 

 
d) 
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photography, the imagery would not be continuous.  Another consideration is under-

sampling (aliasing).  Inherent variability of some cores over short distances demands a 

dense spatial sampling. In practice, it is accepted that in some cases the logs will 

sometimes be aliased. Mineralised samples are inherently and variously heterogeneous.  

 
In order to assess the variability of petrophysical measurement based on sampling 

intervals, about 20m of typical core from the Cadia East drill hole CE098 was logged in 

1cm intervals and then one dimensional semi-variograms of gamma density, P-velocity 

and magnetic susceptibility were analysed. The range in semi-variogram represents the 

maximum distance for which there is a degree of spatial correlation. As represented in 

Figures 3.34 the range of the semivariogram in each case was 10-15cm. As a rule of 

thumb the sampling interval should not exceed 2/3 of the range. A 9cm sampling interval 

was chosen for petrophysical measurement at Cadia East and Ernest Henry as a 

compromise between spatial resolution and logger throughput.  
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Figure 3.34. Semivariogram of gamma density (a), P-Velocity (b) and magnetic susceptibility (c) for 20m of 
cores from Cadia East. Note that the range for density and susceptibility is about 15cm and for P-velocity is 
about 12cm. 
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3.4.5. Geotek Core Logging Throughput 
 
The logging production rate is a function of sampling interval and times taken for   

measurements of a set of sensors. Figure 3.35 shows logging throughput as a function of 

sampling intervals when only petrophysical measurements are recorded. Core imaging 

adds approximately another minute per meter of core for capturing imagery at 9cm 

sampling interval.  

 
The logging rate depends on a range of different factors, including operator skill (setup 

and control of the logger), core preparation, time required for core section depth checking 

and system pauses e.g., time required to zero magnetic susceptibility or conductivity to 

avoid sensor drift. Data quality is affected by all of these factors. Production is also 

affected by the need to identify and remedy any problems and by the need to maintain a 

stable temperature inside the container. 

 
Core imagery and petrophysical logging of 1m of half core takes about 5 minutes with a 

measurement spacing of 9 cm and an 8 seconds gamma density integration time.  Logging 

time for 1m of whole core with the current configuration is about 6 minutes owing to the 

additional time required to acquire and process the images from the two cameras. 
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Figure 3.35. Geotek logging production rate without core imagery. Note that throughput is a user defined 
function of sampling interval and time required to take a set of measurements.  
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3.5.  Concluding Remarks 
 
The Geotek MSCL system can provide good quality and quasi-continuous petrophysical 

data on archival drill cores, both whole core and half core. The system can be deployed at 

a mine site or off site in a laboratory.  

 
Core logging is the only alternative for petrophysical characterisation at established mine 

sites, if the boreholes through key sections of the ore body are not accessible or no longer 

exists. However, when practicable, downhole geophysical logging is a much more 

efficient option for acquisition of petrophysical data.   

 
The University of Tasmania MSCL system is configured to record high resolution digital 

imagery of the core, and to measure density, P-wave velocity, P-wave amplitude, 

magnetic susceptibility, and conductivity. It delivers data with acceptable accuracy and 

precision if care is taken in system operation and calibration. One important factor 

affecting data quality is the size of the core and core condition.  

 
Although a new conductivity meter with higher dynamic range compared with original 

sensor was incorporated to the logger, however the sensor is very sensitive to 

temperature. Also zeroing of conductivity sensor inside the container is problematic. The 

conductivity sensor thus is not reliable for quantitative interpretation of drill core 

samples. 
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CHAPTER 4 _________________________________________________ 

                     Geometallurgical Modeling Methodology 
 

 
4.1. Introduction 
 
Methodologies for assessing relationships between the petrophysical and processing 

characteristics of ores are introduced in this chapter. The automated MSCL system 

described in Chapter 3 provided petrophysical data and optical imagery for core samples 

from Cadia East and Ernest Henry. Magnetic susceptibility, density, P-wave velocity and 

P-wave amplitude were measured directly.  A subset of 2m core samples from Cadia East 

and Ernest Henry were selected for small scale physical testing within the AMIRA P843 

project. These tests provided values for “crushability” (A*b) and “grindability” 

(estimated Bond mill work index, BMWi) as explained in Chapter 2. The BMWi and A*b 

are comminution attributes. The challenge in this chapter is to develop effective 

methodologies and models for prediction of comminution attributes on the basis of 

petrophysical properties.  

 
Geometallurgical modeling is a cross-disciplinary approach incorporating geological, 

petrophysical, and metallurgical information to simulate processing behaviour of ore 

deposits mathematically. A geometallurgical model can be developed and used in two 

different ways. Model development is based on establishment of a statistical relationship 

between petrophysical and comminution attributes. The model can then be used either to 

estimate a value for a comminution attribute or predict a class that has certain 

comminution behavior.  

 
In order to effectively characterize ore processability, alternative measurements which 

can act as proxies for processing indices are required. The major advantage of proxies is 

the increase in volume of data when compared to sparse large scale metallurgical 

sampling which then allows spatial modeling of processing indices throughout an ore 

deposit.  

  
During mine development, decisions need to be taken in regard to design and operation of 

the ore processing plant (i.e. process planning). Design of a processing plant is optimal if 

processing behavior of ore can be characterized by a sufficient number of comminution 

tests on representative samples. Thus an effective geometallurgical modeling approach at 

the feasibility stage can provide a basis for a long term process planning. A 



Chapter 4. Geometallurgical Modeling Methodology 

 

78 

geometallurgical approach can also be implemented at later stages during the life of an 

operating mine to optimize current ore processing performance. Process optimization 

normally is required when issues such as ore variability and changes in metal prices arise. 

This chapter attempts to address these issues and to describe a number of effective 

geometallurgical approaches for process planning and optimization.  

 
It is a common practice in the petroleum industry to establish an empirical model relating 

a quality parameter such as permeability, i.e. processing attribute, to an independent 

property like porosity (e.g. Balan et al, 1995). In the metalliferous mining industry there 

are cases such as the Red Dog mine, Alaska, where empirical geometallurgical models 

have been developed for both throughput and recovery (Kojovic, 2008a). The success of 

such empirical models is generally a result of long term practice during mine operation.  

 
However, due to heterogeneity and variability of rock types in most mineral deposits, 

establishment of a reliable “universal” geometallurgical model is usually problematic. A 

universal model here refers to a statistical model developed empirically so that it could be 

applied reliably within an entire deposit.  For this reason it is highly desirable to divide 

the deposit into domains and identify groups of rocks that have similar properties. The 

identified groups should reflect the ore processing behavior. Thus “class” definition is 

usually the first step towards geometallurgical modeling. A geometallurgical class can 

broadly be defined as a group of rock samples that have similar geological, petrophysical, 

geochemical, geotechnical and metallurgical characteristics.  

 
If after creation of geometallurgical classes, a reliable statistical model can be established 

between comminution attributes and petrophysical properties, then the model(s) can be 

used for prediction of comminution behaviour in intervals of core where no comminution 

data are available.  

 
This chapter presents four approaches for definition of geometallurgical classes for 

development of predictive comminution models. There are many different statistical 

techniques for data classification and it is beyond the scope of this thesis to investigate 

the efficiency of each. More details on a range of statistical approaches, including the 

advantages and disadvantages of each method, can be found in the literature (e.g. Tan et 

al, 2006; Witten and Frank, 2005). In this thesis a cluster analysis approach has been used 

to create geometallurgical classes.   
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Neural networks and conventional statistical techniques for model building will be 

reviewed. The application of these approaches is illustrated in the context of comminution 

modeling in Chapters 5 and 6, but the methodologies could be applied for prediction of 

other processing performances such as recovery. 

 

 

4.2. Classification Schemes 
 

The ultimate aim in geometallurgical modeling within this research is to relate 

petrophysical properties to comminution attributes. In this section, data classification 

schemes are explained and in the following section, statistical methods for performing 

such classifications are described. 

 
In this thesis “data classification” refers to classification of geological, petrophysical and 

comminution attributes for geometallurgical modeling purposes. A total of four 

classification strategies have been devised primarily for two geometallurgical purposes 

within two different stages of mining: “process planning” and “process optimization”. 

The choice of each classification strategy for any of the two applications depends on ore 

comminution variability (Section 4.5). 

 
Process planning here refers to practices during mine development for processing plant 

design and equipment selection while process optimization refers to refinements made 

during mining operation to optimize the processing plant performance.  

 
A reliable classification can only be achieved when there are a representative number of 

samples for an orebody. The quality of data is also of great importance. Each 

classification approach has its own pros and cons which are discussed in the following 

subsections.  The focus here is primarily on prediction of comminution parameters for 

each class on the basis of petrophysical properties. However, in the absence of 

petrophysical properties, the classification and model building could be based on other 

available data, e.g. assays.  

 
In order to assess the distinctiveness of determined classes, statistical characterisation of 

each class is required. This normally involves determination of statistical parameters (e.g. 

mean and standard deviation) within each class for every variable that is used in the class 

definition. For example there might be cases where the mean value of a variable within 

two different classes is similar however they could be characterized by different standard 
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deviations. Other statistical tests (e.g. t-test) could also be used to statistically identify the 

similarity of two classes.   

 

4.2.1. Geological Classes (GC) 

 
Geological observations can provide substantial information. At mine sites it is logical to 

test the geological classification approach before applying statistical algorithms. 

Geological classes (e.g. lithology, alteration) which are defined via visual logging of drill 

cores may provide a convenient means for separating samples according to their 

metallurgical behaviour. However, although geological logs are categorical rather than 

quantitative, they often record a wide range of attributes, and include detailed descriptive 

text, that makes a classification approach very difficult. Moreover visual core logging is 

subjective; experience based and often suffers from inconsistency due to high turnover of 

personnel.  

  
Potential geometallurgical classes are defined from existing geological information (e.g. 

lithological classes or determined “ore type”). The statistical variability of metallurgical 

attributes within each class is then assessed in order to gauge the suitability of the 

geological class as a geometallurgical class. Geometallurgical class definition similar to 

GC approach has been practiced in most Chilean copper mines (Cardenas, 2009). 

Examples of such approaches from Chile are documented by some researchers (Scott et 

al, 1998; Alruiz et al, 2009). A similar approach for geometallurgical modeling has also 

applied to Highland Valley Copper, Canada (Simkus and Dance, 1998).  

 
One advantage of this method is the availability of geological logs for virtually all drill 

holes. In some cases “ore types” at mines are determined based on a number of composite 

factors such as rock type, mineralogy and grade.  Ore types if available could also provide 

a basis for geometallurgical investigations. However, classification based on geological 

observations may be imperfect (i.e. uncertainty in visual logging) and geological classes 

might not fully explain the metallurgical behaviour of orebody. For example differences 

in lithology may not capture the differences in comminution behavior. Nevertheless, a 

convenient starting point for geometallurgical modeling is to explore the link between 

existing geological units and boundary definitions with processing performance 

 
Finally, formulae relating petrophysical properties to comminution attributes are derived. 

For this purpose, first the intervals that are assigned to similar geological classes on the 

basis of the visual logs are grouped to make a potential geometallurgical class; then 
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petrophysical-based comminution models are developed within each geometallurgical 

class using the regression analysis technique (Section 4.4.1). This is a novel modeling 

approach compared with the approach used by researchers (e.g. Scott et al, 1998; Alruiz 

et al, 2009) in the way that regression comminution models are developed in each class. 

The developed models can then be used in each geometallurgical class for prediction of 

comminution attributes in intervals of core where petrophysical properties have been 

measured but no comminution tests were conducted. This approach is illustrated at Cadia 

East, as presented in Chapter 6. 

 

 

4.2.2. Petrophysical Classes (PC) 
 
Potential geometallurgical classes can be created using petrophysical properties if such 

data are available at mine sites. The statistical variability of comminution attributes 

within each class is then assessed in order to gauge the suitability of the petrophysical 

class as a geometallurgical class. The approach is novel in a way that has not previously 

reported by any researcher. 

 
Creation of petrophysical classes requires a sufficient amount of data to be representative 

of an orebody. An advantage of using petrophysical properties in creation of 

geometallurgical classes is that petrophysical properties are quantitative and objective. 

One approach for “objective” classification of petrophysical properties is cluster analysis 

(Section 4.3.2). The underlying hypothesis here is that each cluster should correspond to a 

certain rock type with a different physical response. Validation of defined classes is also a 

required task. This means the petrophysical classes should explain the comminution 

behaviour of orebody. Distinctiveness of created classes can be explored using statistical 

techniques (e.g. radar diagram). Geological information (e.g. lithological logs) can also 

help in assessing the validity of created classes. For example certain rock types may 

belong to a petrophysical class. 

  
Once the classes are created, then petrophysical based comminution models are 

developed within each petrophysical class using the regression analysis technique 

(Section 4.4.1). The aim of regression modeling is to develop a formula for prediction of 

comminution attributes based on petrophysical properties in each class. 

 
The developed models are based on the number of comminution tests that are available 

within each class. When accurate models are built, then models from each class can be 
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used only at the same class for prediction of comminution attributes in intervals of core   

where petrophysical properties have been measured but no metallurgical tests were 

conducted. 

 
If the correlation between attributes is poor for a particular class, then this might suggest 

that either there is no clear relationship or that the classification should be revised. It is 

important to recognize that correlations will also be affected by the uncertainties involved 

in both measurements of petrophysical properties and comminution parameters. 

 
A disadvantage of this approach in common with the GC method is that for each 

comminution attribute a separate model should be built for each individual class. For 

example, given three geometallurgical classes and two comminution attributes, six 

models need to be developed and considered. However, greater accuracy normally can be 

achieved when compared to global models if formulae are developed separately for each 

class. The petrophysical class approach (PC) has been applied to Ernest Henry data, as 

presented in Chapter 5. 

 
 
4.2.3.  Comminution Classes (CC) 

 
One approach for definition of geometallurgical classes could be on the basis of 

comminution parameters, namely A*b and BMWi. David (2007) has also recommended 

analyzing the metallurgical data set for determination of patterns or clusters as part of a 

geometallurgical investigation. However he has not explained the procedure for class 

definition and subsequent modeling. 

 
The attraction of such a classification method is due to the fact that mill behaviour is 

mainly governed by ore comminution characteristics. Therefore creation of 

geometallurgical classes based on comminution parameters is a direct approach for 

geometallurgical modeling of an orebody.  

  
Statistical techniques such as cluster analysis (Section 4.3.2) can be used for creation of 

classes. The variation of comminution attributes should be statistically characterized in 

order to assess the reliability and distinctiveness of the created classes. Statistical 

characterization of classes can be carried out using measures such as the mean and 

standard deviation of comminution variables within each class while class distinctiveness 

can be assessed visually using methods such as radar diagrams.  
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The created classes might not be consistent with geological data (e.g. lithology). 

However, a metallurgist needs to know mainly about the processing behavior of feed 

materials to a mill for comminution purposes rather than the lithology of the feed.  An 

advantage of this method compared with GC and PC is that comminution parameters are 

considered in class definition i.e. expected variability of comminution behavior is 

identified with created classes. The real limitation of the CC approach is that for effective 

prediction of comminution classes in a practical case, a sufficient number of comminution 

tests is required to represents the processing behavior of the orebody. 

 
This approach has been illustrated at both case study sites, Ernest Henry (Chapter 5) and 

Cadia East (Chapter 6).  

 

4.2.4.  Comminution and Petrophysical Classes (CPC) 
 
On the basis of limited number of small-scale comminution data it may not be possible to 

achieve statistically distinctive geometallurgical classes; in such cases potential 

geometallurgical classes are determined through integration of petrophysical and 

comminution attributes. Cluster analysis (Section 4.3.2) can be conducted on a 

combination of petrophysical and comminution data for objective creation of the classes. 

The approach has the same advantages of the CC method. This approach is illustrated at 

Ernest Henry, as presented in Chapter 5. 

 

 

4.3. Classification Methods 
 
Data classification can be carried out in subjective or objective fashion. Visual definition 

of classes from cross-plots of variables using methods such as data point density 

distribution is an example of subjective class definition. Clustering data based on intrinsic 

statistical similarity can be regarded as an objective method. There are numerous 

classification methods, some of which involve advanced statistical techniques (e.g. 

Kohonen, 1982). 

 

4.3.1. Geological Classification 
 
Potential geometallurgical classes can be defined from existing geological information. 

For example lithology, alteration or combination of lithology and alteration can be 

regarded as a potential geometallurgical class.  For this purpose, the intervals that are 
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assigned to similar geological classes on the basis of the visual logs are grouped to make 

a potential geometallurgical class. This is a very simple approach for definition of 

potential geometallurgical classes. A more complex approach for definition of potential 

geometallurgical classes from geological information is explained by Williams and 

Richardson (2004). 

 

 
4.3.2. Cluster Analysis 
 
Cluster analysis is an objective multivariate statistical method for data classification, well 

established for definition of petrophysical classes (Moss, 1997). Cluster analysis seeks to 

subdivide the multivariate data into a number of groups that are similar to each other. 

Dissimilar data are assigned to different clusters. There are a large number of clustering 

algorithms to choose from, but the K-Mean (McQueen, 1967) and Hierarchical (Ward, 

1963) clustering techniques are probably the most commonly applied.  

 
In K-Mean clustering the number of clusters, K, must be specified at the outset. The data 

are divided into K clusters such that some metric relative to the centroids of the clusters is 

minimized. Therefore K-Mean is regarded as a supervised clustering approach, although 

the only real user input is the number of classes. Hierarchical clustering can be considered 

as a tree, in which the branches of the tree are combinations of clusters. The trunk of the 

tree contains all clusters. The Hierarchical clustering method begins by grouping the most 

similar clusters together, then proceeds by grouping the next most similar clusters until all 

clusters are assigned to one of two groups. Ultimately all the clusters are linked as a 

hierarchy (i.e. dendrogram). There is no completely satisfactory method for determining 

the number of clusters for any type of cluster analysis (Hartigan, 1985; Bock, 1985). 

However, descriptive statistics can be used in order to characterize the groups defined by 

cluster analysis. Statistical analysis such as t-test and graphical techniques such as radar 

diagrams can then provide some confidence regarding the number of clusters. There are 

different algorithms for Hierarchical clustering that differ on the basis of the method for 

defining proximity between clusters. In this thesis Ward’s Hierarchical clustering method 

(Ward, 1963) is used.  

 
Cluster analysis does not guarantee the best data classification. In cases where cluster 

analysis does not yield a meaningful classification, alternative methods (e.g. difference 

relative to data mean) can be tested and applied. This approach is presented in Chapter 6.   
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4.3.3. Relative Average Approach 
 
The relative average approach is a simple method to data classification. The data are 

classified primarily based on variability of the parameters of interest around their 

respective mean values for the entire population. The data for each parameter is 

subtracted from total mean value. Those higher than the total mean value will be positive 

and vica versa. The transformed data are then classified based on their negative and 

positive signs. This approach is illustrated in Chapter 6. 

 

 

4.4. Modeling and Prediction 
 

Once the geometallurgical classes have been created, then comminution models 

need to be developed within each class. There are different statistical methods for model 

building. Details on a range of model building statistical techniques can be found in Davis 

(1986). In the following sub-sections, regression analysis, minimum distance algorithms 

and artificial neural network techniques that can be used for building geometallurgical 

models are briefly reviewed.  

 

It should be noted that both petrophysical properties and comminution attributes are 

subject to errors. The uncertainties in the measurements of these attributes will affect 

development of an accurate model. Moreover petrophysical properties alone may not 

have a strong correlation with comminution attributes; however their combination with 

other data (e.g. assays) can present satisfactory outcomes. Such issues are addressed in 

Chapter 5 and 6 where integrated modeling has been applied to data from Ernest Henry 

and Cadia East respectively.  

 

4.4.1. Regression  
 
The most widely used statistical methods for numerical modeling are single or multiple 

linear (or nonlinear) regressions. This method is regarded in this thesis as one way of 

prediction of comminution parameter values. In simple linear regression the variations in 

the dependent variable are attributed to changes in only a single independent variable. 

However in some cases several factors simultaneously affect a dependent variable. 

Multiple regression analysis is a method for combining the effects of several factors 

concurrently. In this thesis the dependent variables are comminution attributes (i.e. A*b 
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and BMWi) and independent variables are petrophysical properties (density, magnetic 

susceptibility, P-wave velocity and P-wave amplitude).  

 
When relating petrophysical properties to comminution attributes, a linear model can 

provide a good benchmark against which to judge more complex techniques. When 

several petrophysical variables must be combined to estimate the comminution parameter, 

it may become necessary to extend the regression model to account for nonlinear effects.  

 
The coefficient of determination (R2) is a parameter in regression analysis that reflects the 

degree of variability and correlation between two parameters. It varies from 0 to 1 

depending upon the degree of correlation between variables. The closer the value to 1 the 

higher the correlation. The coefficient of determination (R2) is simply the square of the 

correlation coefficient and it is incorrectly interpreted by many researchers as a reliable 

parameter in statistical modeling. There are cases where R2 between a dependent and an 

independent attribute based on a nonlinear function is higher than a linear one, but the 

nonlinear regression formula is not necessarily more accurate function than a linear one in 

terms of prediction. The root mean square (RMS) error a commonly used measure of 

error can be applied as a guide in selection of appropriate regression function. The RMS 

error is a measure of difference between values that are known and the values that have 

been predicted by regression equation. Figure 4.1 shows correlation between two 

attributes (X and Y) using a nonlinear and linear regression fit. Although a nonlinear 

regression fit (a power function) has a higher coefficient of determination (R2=0.67) than 

the linear regression fit (R2=0.45), however the root mean square error of the linear 

regression fit is 4% less than nonlinear one. It is therefore desirable to calculate the root 

mean square error as a supplementary parameter for judging the accuracy of a model.  

 
In model building using regression analysis it is highly desirable to simplify a multiple 

regression equation where possible for better understanding and ease of use. 

Simplification of a regression equation is normally conducted by reducing the number of 

parameters in the model.  However, selection of the most important attributes for a model 

is an issue. Stepwise regression analysis (Tan et al, 2006) which takes into account 

statistical criteria for attribute selection can be used for such purposes. The stepwise 

process can be carried out in two ways namely Backward and Forward regression.  

 
In the Backward method, all of the input parameters (i.e. predictors) are included in the 

model initially. The variable that is least significant based on p-value (Brownlee, 1960) is 

then removed and the model is refitted. Normally a p-value less than 0.05 would be 
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significant and a p-value more than 0.05 is considered insignificant during regression 

analysis. This parameter is authomatically calculated by most statistical software e.g. 

Statistica. Forward regression starts with an empty model.  The variable that has the most 

significance based on p-value when it is the only predictor in the regression equation is 

placed in the model. Then each subsequent step adds the variable that has statistically 

relatively greater significance in comparison with the remaining variables. 
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Figure 4.1. Correlation between X and Y dataset showing a nonlinear (a) and linear (b) regression fit. Note 
that although the correlation coefficient between the dataset (a) is higher than the dataset (b) but the 
accuracy of regression model for the dataset (b) is better than (a). RMS error value for dataset a and b is 
25.11 and 24.15  respectively. 

 

For the geometallurgical class definition methods described in this chapter, the stepwise 

regression has been applied for both GC and PC approach (Chapter 5 and 6). Firstly all 

petrophysical properties (including parameter averages and their standard deviations) are 

included in standard multiple regression analysis. R2 and RMS error are considered when 

all parameters are included. Then Stepwise regression (using the forward and backward 

approach) is conducted to assess the most significant parameters in the regression. The 

selection of significant parameters is based on p-value. For each approach (forward and 

backward), R2 and RMS error are considered and compared with standard multiple 

regression analysis including all variables. Finally the ‘best’ model is selected on the 

combined basis of smallest number of parameters and lowest RMS error value. It should 

be noted that in some cases two models may have only very small differences in RMS 

value. In such cases the preferred model is the one with smaller number of parameters in 

the regression model.  

 

a) b) 
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4.4.2. Minimum Distance Algorithm 
 
The minimum distance algorithm is embedded in LogTrans program. LogTrans is an 

automatic interpretation program originally developed for predicting lithological units 

based on geophysical logs and other downhole data. However, the program can be used 

for other applications such as geotechnical characterization (Zhou et al, 2001). A 

comprehensive explanation of the LogTrans algorithm is given by Fullagar et al. (1999) 

and a summary is given here. 

  
The LogTrans procedure entails two major steps, known as statistical characterisation and 

discrimination. A rock type classification is presumed to exist at the outset. During the 

statistical characterization step the program computes representative statistics for each 

parameter in each class, specifically the means and standard deviations or medians and 

“spreads”. The lower and upper spreads are defined as the differences between the 

median and the 16th and 84th percentile values respectively. During discrimination, data 

points are assigned to the ‘nearest’ class in multi-parameter space. As the name suggests, 

the “discrimination” step is analogous to discriminant analysis. 

  
Basically LogTrans assumes that various rock types have different petrophysical 

signatures so that they can be discriminated from each other as illustrated in Figure 4.2. 

LogTrans can operate on any number of petrophysical parameters simultaneously, but the 

concept is most easily explained in two dimensions. Figure 4.2 is a cross-plot of training 

data for two parameters, density and gamma ray, measured in five rock types. Different 

colours identify the data points for the different rock types.  The training data for each 

rock type are clustered in a certain area or domain. The parameter mean or median value 

in each domain is adopted as the representative value while the standard deviation or 

spread is an indicator of the statistical dispersion (hence size of the domain).  

 
During discrimination, new measurements are in effect compared with the training data in 

order to identify the class to which they belong. For example the point A will be 

unambiguously classified as quartz rhyolite (purple), while the measurement point B 

could be either Turbidite (green) or rhyolite porphyry (light blue). The measurement point 

C is too far away from any of the classes encountered in the training data. This point 

belongs to an unclassified new class.  
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Figure 4.2. Scatterplot of density and gamma ray (after Emilsson, 1993) to illustrate operation of LogTrans 
algorithm (Fullagar et al., 1999). Coloured dots represent data from control holes. Points A, B, and C 
represent measurements to be interpreted. Classes are assigned to these points according to their normalised 
distance from the centre of each lithological “domain”. 
 
 

The LogTrans program (Fullagar et al., 1999) has been used in this study for both 

processing of the petrophysical data collected using the Geotek MSCL and for automatic 

interpretation of alteration classes at Cadia East (Vatandoost et al, 2008b). LogTrans can 

also be used for automatic characterization of comminution behaviour. Geometallurgical 

classes that are determined via either CC or CPC can be characterized in terms of 

petrophysical properties using the LogTrans algorithm. As with any supervised 

classification technique, the success or failure of the LogTrans interpretation depends on 

the extent to which the training set can truly distinguish one class from all the others. 

Application of the minimum distance algorithm using the LogTrans program for 

prediction of comminution classes at Ernest Henry and Cadia East is presented in Chapter 

5 and Chapter 6.  

 

 
4.4.3. Neural Networks 
 
An artificial neural network (ANN) is a processing unit with a design inspired by the 

neural structure of human brain (Huang and Wanstedt, 1998). Neural networks have been 

applied in a wide range of geoscience applications (e.g. Baan and Jutten, 2000). The 

major reason for the popularity of neural networks is their good performance in non-

linear multivariate problems.  A complete description of neural networks algorithms has 
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already been prepared by many researchers (e.g. Hassoun, 1995). A summary is given 

here. 

 
A neural network is comprised of three different layers, namely input, output and the 

middle (hidden) layer (Figure 4.3). Each layer consists of neurons (nodes) and the 

neurons are connected by weighted links which pass signals from one neuron to another. 

The weights in the network structure are determined by back-propagating the errors 

between the inputs and the outputs. Neural networks trained with the back propagation 

method have been applied successfully as prediction tools in a wide range of engineering 

fields (Garrett, 1994; Baudu, 1995; Annandale et al., 1996; Huang and Wanstedt, 1998; 

Sonmez et al, 2006).  

 
An artificial neural network can be used for both supervised and unsupervised learning. 

In the supervised learning approach, the network learns from existing examples. This 

requires the existence of sufficient number of examples for optimum performance 

(Hassoun, 1995). These examples form a set of known “input-output pairs”, usually 

called a training set, and the task is to learn the input-output rules from these examples.  

Once the network has learned the relationship between the input and output for the 

training dataset, then this relationship can be applied to predict output values for other 

data sets.   

 
In an unsupervised learning approach, only the inputs are known and there is no 

information of corresponding outputs. In this case the network seeks for specific features 

of the data, such as clusters. The unsupervised neural network approach has not been 

investigated in this research. 

 
 

Figure 4.3. Structure of an artificial neural network showing three layers. Note that there is no connection 
between nodes of a given layer. 

 

Input layer                     Hidden layer                       Output Layer 
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In a typical neural network training procedure, the data set is divided into three separate 

portions called training, validation and test sets. The training set is used to develop the 

desired network while the validation set is allocated for the purpose of controlling the 

network training. The validation set sometimes referred as testing set, is not included in 

the training set during training of the network. The validation set only enables the user to 

adjust the network training process for the best outcome. The test dataset which is not 

involved in network design and training is then used to test the performance of the trained 

network.  

 
A number of factors such as training time, training error and network structure should be 

considered during design and training of neural networks.  The training time for the 

network is an important factor. Basheer and Hajmeer (2000) proposed the optimum time 

to stop training a network would be the time that the prediction error for the testing 

dataset (here validation set) starts to increase (Figure 4.4). The training error (root mean 

square error) typically decreases with increase in training time at first, but over-training 

usually degrades the network performance. In other words the network has memorized 

the examples and patterns rather than learning. A network that has memorized the 

examples could only be able to respond to the same examples and will not be able to 

perform well with examples outside those used in the training stage.  

 
The complexity of the multi layered neural network structure increases by the addition of 

either extra hidden layers or an increase in the number of nodes in the hidden layer. The 

hidden layers are normally likened to a “black box” within the network system. However 

the invisibility of a hidden layer does not mean that the function of this layer can not be 

evaluated (Mohaghegh et al., 1995).  In fact based on mathematical functions within each 

node in every layer the performance of network can be evaluated (Yang and Zhang, 

1997).  
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Figure 4.4. Criteria for selection of optimum network and training cycle (Basheer and Hajmeer, 2000). As the 
training cycles increases the prediction error reduces, however the prediction error for validation data 
(Testing) will start to increase after a certain training cycle known as optimum training point. This point that 
defines the optimum number of training cycles is regarded as the sufficient number of cycles for best 
performance of the network.  

 

 

It is possible to assess the relative importance of each input variable in a neural net using 

the Yang and Zhang (1997) method. This approach enables the user to identify the most 

significant input variables that have an impact on output based on calculation of the 

derivative of output with respect to each input parameter. However, assessment becomes 

very complex when the number of nodes in a hidden layer (and number of hidden layers) 

increases. An alternative approach is to use the sum of the weights that can provide a 

quick way to evaluate the importance of each input parameter in a neural net. The sum of 

the weights is the sum of the absolute weights of the connections from the input node to 

all the nodes in the hidden layer. 

 
A supervised learning approach has been used and implemented for prediction of 

comminution classes of Ernest Henry (Chapter 5) and Cadia East (Chapter 6) data. 

Comparison of neural network approach with minimum distance algorithm (LogTrans) 

for prediction of comminution classes has also presented in Chapters 5 and 6.  

 

 

4.5. Geometallurgical Modeling Applications 
 
The geometallurgical models developed based on classification schemes (Section 4.2) can 

be applied during process planning or process optimization stage. These two process 

stages are briefly explained in the following subsections. However the choice of 
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classification scheme for geometallurgical modeling purposes (i.e. planning or 

optimization) depends primarily on ore processing variability. This can be identified by 

statistical analysis of comminution data and using statistical techniques (e.g. Histogram 

charts). Judgment on comminution variability is valid when a representative number of 

small-scale comminution tests are available.   

 
A large processing variability explained by comminution attributes, suggests potential ore 

variability and hence a need for effective geometallurgical characterisation of orebody. In 

this case, the GC or PC method could be more appropriate than the CC or CPC for 

geometallurgical class definition and comminution modeling. This is because normally 

more geological and petrophysical data are available than comminution information that 

could provide a means for effective characterisation of ore variability. The GC approach 

should be exercised with great caution due to issues discussed in Section 4.2.1. 

  
If there is only limited comminution variability defined based on statistical analysis it 

may suggest that it is highly unlikely that ore geological variability in a deposit can have 

a significant impact on comminution response. Thus it is highly likely that created classes 

based on GC or PC approach will reflect similar comminution behavior. Hence definition 

of geometallurgical classes based on the CC or CPC approach could better characterize 

ore comminution behavior and are more appropriate in this case.  

 

 

4.5.1.  Process Planning  
 
The aim of process planning during mine development in general is to characterize 

processing behavior of an orebody prior to construction of a processing plant. 

Characterisation normally is carried out using a limited number of large scale 

metallurgical tests due to its high costs. There are cases where design of a Semi-

Autogeneous (SAG) mill for a circuit was based on only two SAG tests (David, 2007), 

but these tests are often not representative of an entire orebody and never guarantee the 

lifetime success of the operation. Studies by many researchers (e.g. Bulled and McInnes, 

2005) indicate that ore variability has caused serious daily challenges for process 

engineers in many processing operations. Hence effective characterisation of an orebody 

through application of a geometallurgical approach is beneficial. 

 
Given the availability of petrophysical properties from exploration drilling, development 

of processing models based on petrophysical properties could provide an effective 



Chapter 4. Geometallurgical Modeling Methodology 

 

94 

approach for characterization of ore metallurgical behavior. Development of a universal 

geometallurgical model for process planning purpose would be ideal in terms of its 

simplicity. Thus it is worthwhile to assess the existence of a universal geometallurgical 

model during process planning stage. When such models do not exist or have poor 

accuracy then a class-based approach needs to be considered.  

 
The potential advantage of a geometallurgical approach during process planning stage 

could lead to optimal selection of processing equipment that could be more cost effective 

than building a separate crushing plant after start-up (Starkey, 1997). 

 

 

4.5.2.  Process Optimization  
 
Process optimization here refers specifically to optimization of a comminution circuit. It 

is a common practice in the mining industry to establish trends from metallurgical 

database information to forecast future mill performance. Identification of the quality of 

the mill feed material and its variation is vital. Since ore variability translates to mill 

throughput variability. Class-based geometallurgical approaches (Sections 4.2) can 

provide a “selective” treatment approach during ore processing. This means mining of ore 

blocks representing geometallurgical classes can be scheduled and consequently treated 

selectively in downstream processing operation. The potential benefit of this selective 

approach is that feed material variation will be reduced and subsequently the 

comminution process will be stable. Development of geometallurgical models can help to 

achieve optimal condition for ore processing. 

 

 

4.6. Concluding Remarks 
 
The ultimate aim of geometallurgical modeling is to provide constrained processing 

performance indices that could be used for spatial modeling of an orebody. Such indices 

are achieved either through direct measurements or prediction using proxy parameters. 

Prediction of processing attributes can provide an order of magnitude more data points 

than direct measurement, so that mining blocks could be populated more effectively with 

these attributes.  

 
Investigation of a universal geometallurgical model needs to be considered as a first 

attempt in model development. However universal geometallurgical models generally 

have low accuracy since they do not account for geological variability. For this reason 
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predictive models of processing indices are developed and applied within 

geometallurgical classes. Four different approaches for geometallurgical class definition 

for development of predictive comminution modeling that can be used during process 

planning and optimization have been described in this chapter. The choice of 

classification scheme depends on ore processing variability explained by comminution 

attributes.  

 
Cluster analysis is a useful and simple statistical technique for data classification suitable 

for use in the PC, CC and CPC approaches. The time required for cluster analysis varies 

depending upon the algorithm, number of variables and number of data. The K-mean 

method is faster than the Hierarchical algorithm, but it requires a prior knowledge of the 

number of classes to be effective.   

 
Regression modeling is easy and simple in comparison to an artificial neural network. 

However a neural network is inherently a nonlinear algorithm and in comparison with 

linear regression, it normally enhances the modeling result. The predicted values from a 

regression model that are outside the range (maximum and minimum) of observed values 

should be treated with caution. The minimum distance classification (LogTrans) 

algorithm is more simple, intuitive and easy to apply to a data set than an artificial neural 

network. However, neural networks can outperform minimum distance classification 

technique. Although design and implementation of a neural network is a time consuming 

process, once they are designed then can be applied for future prediction quite easily.  

 
Overall the choice of the most appropriate statistical technique for modeling purposes is a 

matter of simplicity, time, and accuracy. It is not possible to utilize a simple recipe for 

numerical modeling in all cases and the choice of the most appropriate method involves 

subjective choices. Moreover in many cases modeling may be considered as an art rather 

than a science.  
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CHAPTER 5 _________________________________________________ 

 

Characterization of Comminution Behaviour at Ernest Henry 

Iron-Oxide Cu-Au Mine 

 
 

5.1. Introduction 
 
The Ernest Henry mine is located approximately 40 km north of Cloncurry in the Mount 

Isa district, Queensland, Australia. The orebody is a member of the diverse iron-oxide-

copper-gold (IOCG) class of deposit. It is the largest IOCG deposit within the Cloncurry 

district and the second largest within Australia behind Olympic Dam (Mark et al., 2006). 

 
Ernest Henry was discovered in 1991 and identified as a mineral resource in July 1997. 

Mining commenced in May 1998. It is currently owned and operated by Xstrata Limited. 

The orebody is mined on 16m benches by conventional load and haul methods using 

large-scale mining equipment (Collier and Bryant, 2003). The July 2002 ore reserve as 

reported by Collier and Bryant (2003) was 88.7 Mt @ 1.0 percent Cu and 0.5 g/t Au. 

Ernest Henry currently produces 100,000 tonnes of Cu and 125,000 ounces of Au 

annually (Xstrata, 2008). Planning for an underground extension in order to extend the 

life of the mine is currently under investigation. 

 
Metallurgical test works were carried out at Ernest Henry during feasibility studies. These 

tests were conducted on a large number of drill core samples mainly for the design of the 

concentrator (Strohmayr and Valery, 2001). The concentrator design at Ernest Henry 

primarily focused on the processing characteristics of the primary ore zone which was 

regarded as fairly homogeneous and resulting in a very few processing issues. However, 

the oxidized supergene ore zone, which provided a major component of the feed material 

for the first three years of the operation, created serious processing problems due to 

variable feed composition and physical characteristics hence poor recovery (Strohmayr 

and Valery, 2001). 

  
The perceived relatively uniform comminution response of primary ore with very few 

processing issues in plant operation resulted in a limited metallurgical testing within the 

primary zone and the development of empirical models for mill performance. Rock type 

and alteration have an impact on comminution and mill throughput, with unbrecciated K-
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feldspathic rich volcanic rocks proving harder to crush than the magnetite rich volcanic 

rocks (Strohmayr et. al., 1998).  

 
Cu grade was recognised as the main proxy for mill performance (Tew et al, 2003). 

Higher grade Cu mineralisation (>1%) tends to be more brecciated and more magnetite 

rich. Such characteristics make the rocks soft for crushing and subsequently resulting in 

higher mill throughput. However the main issue at Ernest Henry is mill throughput 

prediction for low grade materials (<0.6%) which are much harder than high grade zones 

in terms of crushing and grinding. This issue will be more significant when mining is 

extended to underground operations. Thus the challenge in this research is to effectively 

characterize mill performance and to determine if more detailed class-based 

geometallurgical modeling can improve the mill throughput prediction for the primary ore 

zone. 

 
The Geotek Multi Sensor Core Logger (MSCL) system was used to measure 

petrophysical properties on six drill cores from the primary ore zone of Ernest Henry 

mine in an attempt to characterise the rock type, alteration style and ultimately the ore 

crushing and grinding behavior. Gamma density, magnetic susceptibility, compressional 

wave velocity and its amplitude were measured along each length of half core. High 

resolution core imagery was also captured simultaneously. The merging of petrophysical 

data from successive core sections then provided a continuous log of core properties. The 

core logs provide a basis for research into the relationships between petrophysical and 

comminution parameters. 

  
Small scale comminution tests (A*b and estimated BMWi) were performed on a subset of 

2m-long drill core samples at JKMRC (Julius Kruttschnitt Mineral Research Centre, 

University of Queensland) after petrophysical data acquisition. These tests provided an 

opportunity to investigate directly the correlation between petrophysical properties and 

comminution attributes on the same core sections (Chapter 4).  

 
This chapter is divided into ten sections. Section two presents briefly a review of geology 

of the Ernest Henry mine. It is followed by a summary of data collection from the six 

selected drill holes from Ernest Henry mine. Petrophysical data processing and discussion 

on quality of data are presented in sections four and five respectively. Petrophysical data 

interpretation in terms of lithology and alteration for each drill hole is presented in section 

six. The petrophysical signature for Ernest Henry based on combination of petrophysical 

data from six drill holes is given at section seven.  
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The relationship between petrophysical properties and corresponding small-scale 

comminution test results is investigated in section eight by applying different 

geometallurgical modeling methodologies as described in Chapter 4. Finally mill 

throughput modelling at Ernest Henry is presented in section nine followed by summary 

and conclusion for this chapter.  

 

5.2.  Geology of Ernest Henry Mine 
 
Ernest Henry mine has been recognised as an IOCG deposit. A comprehensive overview 

of the geology and mineralogy of Ernest Henry deposit can be found in Ryan (1998) and 

Mark et al. (2006). However a summary is given herein. 

 
The mineralised zone at Ernest Henry is a pipe-like body with plan dimensions of 

approximately 250m x 300m, and is open at depth to at least 1000m (Ryan, 1998). The 

location of the ore-body is structurally controlled. Mineralisation occurs within felsic 

volcanic rocks that were brecciated during reverse fault movement along bounding shear 

zones (Mark et al., 2000). Breccia infill is made up predominantly of a magnetite-

carbonate-chalcopyrite-pyrite assemblage, but also contains biotite, K-feldspar, hematite, 

garnet, barite, fluorite and quartz (Ryan, 1998; Mark et al., 2000). 

 
The ore-body itself lies within a SE plunging breccia system within a sequence of 

porphyritic, intermediate volcanic rocks. The economic mineralisation is hosted by the 

breccia body which lies between a hanging wall sequence of altered volcanic rocks and a 

footwall sequence of carbonate-altered volcanic rocks and siltstones (Mark, et al., 2006).  

The major rock type is highly altered felsic volcanic (FV) with potassic, magnetite and 

carbonate alteration. Figure 5.1 shows representative digital images of the major 

alteration styles from Ernest Henry captured using the MSCL system. 
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Figure 5.1. Photographs of drill cores from Ernest Henry captured using MSCL system. Felsic Volcanic 
(FV2) with carbonate (Calcite) alteration from drill hole EH446 - depth 430m (a), Felsic volcanic (FV3) 
with potassic (Kf) alteration  from drill hole EH635 depth 1019m (b), Altered mafic volcanic rock (AMV2) 
with potassic (kf) alteration from drill hole EH635 depth 888m (c), and felsic volcanic rock (FV2) with 
magnetite (mt) alteration from drill hole EH635 depth  922m (d).  

 

   
5.3.  Data Collection Summary   
 
Six drill holes (EH432, EH446, EH556, EH574, EH633 and EH635) were selected from 

the Ernest Henry deposit. Figure 5.2 shows the location of these drill holes.  Drill holes 

and the respective depth ranges for detailed logging and analysis were chosen by GeM 

team members with the assistance of Ernest Henry site personnel to provide a cross-

section through all parts of the known ore body. This included mineralisation in the open 

pit and potential underground areas of the deposit. EH512 was a PQ-size drill hole. Core 

from this hole was used in small scale comminution development test works at JKMRC. 

Core from the remaining six drill holes was subjected to detailed petrophysical 

measurement and other testing procedures within the GeM project. A total of 1800m of 

half-NQ size core was logged from the six drill holes. The petrophysical measurements 

were recorded at 9 cm intervals using the Geotek MSCL. Continuous core images (40µm 

pixel size) were also captured by the system for all the logged core.  

 

a) b) 

c) d) 
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Figure 5.2. Perspective view of Ernest Henry showing the pit outline, the plunging pipe-like orebody and 
location of the six drill holes selected for this study (Walters, 2009).  

 
 

A total of 142 Small scale comminution tests were conducted on a subset of the drill 

cores on which petrophysical measurements had already been recorded. The tests were 

performed on 2m assay intervals and yielded values for the comminution index (JKCi), 

impact hardness (A*b) which is derived from JKRBT (JKMRC Rotary Breakage Tester) 

and batch ball mill operating work index (WI-5). The selected target grind size (P80) was 

212µm. The batch operating work index measurements and comminution index test 

results were used to estimate the Bond Ball mill work index (BMWi) for each 2m 

interval. These tests described in Chapter 2. 

 
 
5.4. Petrophysical Data Processing 
 
In order to identify relationships between petrophysical data collected by the Geotek 

logger and comminution attributes, median values of petrophysical data over intervals for 

which comminution test data exist needed to be calculated. 

  
The large amounts of data produced by the Geotek logger require efficient software 

processing tools. The Geotek software is limited in terms of processing and interpretation 

options, but some suitable commercial software is available. The LogTrans program (as 

EH633  

EH635 
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described in Chapter 4) was used for Geotek data processing and interpretation. Batch 

processing of raw data using LogTrans rendered the processing both faster and more 

consistent. Attaining the apparently simple objective of creating a single file with all 

petrophysical parameters sampled at common depths involved a large number of 

processing steps.  

 
During processing of petrophysical parameters, new petrophysical attributes (Shear wave 

velocity, P-wave acoustic impedance i.e. product of density and P-velocity (ρVp) and P-

wave modulus) were also calculated. Shear wave velocity was estimated from P-wave 

velocity and density using Christensen’s Equation (Entwisle and McCann, 1990). P-wave 

modulus and acoustic impedance are described in Chapter 2. 

 

5.5. Quality of Petrophysical Data  
 
As explained in Chapter 3 there are uncertainties involved with measurements of 

petrophysical properties. For instance factors such as core thickness, travel time 

measurement, delays due to sonic gel, delay of the transducer and delay due to core boat 

all add to uncertainties in P-velocity measurement. For gamma density, core thickness, 

calibrator and gamma fluctuation and temperature are influencing factors. For 

susceptibility the only factor that impacts the measurement is core thickness. Temperature 

had no effect on magnetic susceptibility measurement as shown in Chapter 3.  

 
The intrinsic sensitivity of the Geotek density, velocity, and susceptibility sensors is quite 

high (Chapter 3). The precision and accuracy achievable in production logging are 

reduced by many factors. However the main factor contributing to the uncertainty in 

petrophysical measurement with the MSCL system is the core thickness. As it decreases, 

small errors in absolute thickness can be responsible for large relative errors in the 

measured parameter. Thus accurate measurement of petrophysical data on “NQ size” 

half-core becomes very difficult. 

  
The Geotek laser can measure thickness with a precision of 0.01mm, but in production 

mode core logging of half-core the achievable accuracy in thickness is about ±0.2mm. 

The Ernest Henry NQ half-cores are about 2.2cm thick, so an error of ±0.2mm translates 

to a relative error of about ±1%. Error in the core thickness propagates to density, 

susceptibility and P-wave velocity measurements. Therefore, when the accuracy in core 

thickness is affected, the quality of all the Geotek logging data is also being affected. 
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The intrinsic sensitivity of the Geotek gamma density system is approximately ±0.01 

g/cc, or ±0.31% for Ernest Henry densities of 3.25 g/cc. When errors in thickness are also 

taken into account, the best-practice achievable accuracy for half NQ core is about 

±1.31%, i.e. ±0.04 g/cc for Ernest Henry half-core.  

 
P-wave velocity is determined by dividing core thickness by compressional wave travel 

time. The required time is the transit time across the core; however, the measured time is 

increased by a system delay and by the travel time through the silicon gel and plastic core 

boat (Chapter 3). Therefore a net delay of 16 µs is subtracted from the measured times. 

Given the small radius of the NQ size half core (~2.2cm) and the high velocities at Ernest 

Henry (average of ~5000m/s), the net delay is much larger than the actual transit time of 

interest (~4.4 µs). The intrinsic sensitivity of the Geotek transducer system is 

approximately ±0.1 µs, or ±2% for Ernest Henry velocities. When error in thickness is 

also taken into account, the achievable accuracy for half NQ core is about ±3%, i.e. 

approximately ±165 m/s for Ernest Henry half-core. When, in addition, the uncertainty in 

the net delay (±0.25 µs) is considered, P-wave velocity accuracy in production logging on 

NQ half-core is ±6.5%.  

 
The magnetic susceptibility system was zeroed at regular intervals to avoid drift. Some 

intervals of drill core were relogged with a larger diameter of sensor coil to accommodate 

the high susceptibility of the cores, so loop size correction was applied. Volume 

correction, based on thickness has also been applied to the susceptibility data (Chapter 3). 

Increase in loop size slightly decreases the resolution of measurements. 

 
Immersion densities measured on comminution samples at JKMRC provided an 

independent check on the Geotek densities. During quality control of Ernest Henry data it 

was recognised that gamma density data were biased by about 0.2g/cc when compared 

with water immersion densities of core samples. It was later determined that the bias was 

introduced to gamma density measurement mainly as a result of the increase in gamma 

source aperture size and the full-core geometry of the aluminium calibrator during core 

logging (Chapter 3). Therefore an attempt was made to correct the measured densities 

using a new half-core aluminium calibrator as described in Chapter 3. To correct the 

densities, initially gamma calibration was conducted for five continuous days using both 

aluminium calibrators (Chapter 3). The calibration model derived based on two 

aluminium calibrators enabled conversion of previously recorded gamma readings with 

full cylinder aluminium for the period of Ernest Henry core logging to equivalent gamma 

readings on a new half-core aluminium calibrator.   
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The comparison of corrected gamma densities (averages over 2m assay intervals) with 

water immersion densities is represented in Figure 5.3 for all six holes. The correlation 

between Geotek densities and water immersion densities is moderate. The root mean 

square difference between gamma density and water immersion density is 0.16g/cc. The 

discrepancy between densities is a product of many factors including uncertainty in core 

thickness measurement by Geotek logger and the effect of Z/A (Chapter 3). Another very 

significant factor is random selection of pieces of cores from a combined sample of 2m 

intervals by JKMRC personnel for water immersion density. 
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Figure 5.3. Comparison of gamma density and water immersion density measured on drill cores from five 
holes from Ernest Henry. The blue line represents a 1:1 line and the red line is the best regression fit. 

 
 
Geotek P-wave velocity measurements (2m averages) on drill cores were compared with 

independent P-wave velocity measurements on small slabs derived from Ernest Henry 

drill cores using high frequency transducers (i.e.1MHz). High frequency P-wave velocity 

measurements were conducted at rock physics laboratory of Curtin University. A total of 

35 slabs (3cm x 3cm x 1cm) derived from EH633, EH574, EH432 and EH446 drill holes. 

A minimum of five slabs derived from one meter interval of each drill hole. P-wave 

velocity measurements on slabs were conducted on two different directions; the smallest 

and longest length.  ASTM (1978) recommends the minimum lateral dimension should 

not be less than five times the wave length, hence the measurements on the longest length 

were considered. Figure 5.4 illustrates the Geotek P-wave velocity and averages of P-

wave velocity measurements on slabs. This comparison suggests that the high frequency 

P-wave velocity measurements are comparable to the Geotek P-wave velocities. 
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Figure 5.4. Comparison of  the Geotek P-wave velocity measurements (2m averages) on drill cores from six 
holes from Ernest Henry with high frequency P-wave velocity measurements on slabs derived from drill 
cores. The samples originating from each drill holes are in depth order. 

 
 
 
5.6.  Petrophysical Data Interpretation 
 
This section aims at exploring the relationship between petrophysical and comminution 

attributes for each drill hole at Ernest Henry. In order to identify relationships, the 

processed petrophysical logs for each drill hole have been plotted against geological, 

geochemical and metallurgical data using Logview software (Geological Survey of 

Canada). All variables have been plotted at the same scale in all drill holes for ease of 

comparison between drill holes. Petrophysical and comminution parameters, and 

geological and alteration codes appearing in the composite strip plots are defined in 

Tables 5.1 and 5.2 respectively. This section is divided into six subsections, one for each 

hole.  
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            Table 5.1. Abbreviations for petrophysical and metallurgical parameters. 

Measured Parameter Description 

Thick Core Thickness (cm) 

Density Density (g/cc) 

Vp P- wave Velocity (m/s) 

Vp-amplitude P wave amplitude 

MSUS Magnetic susceptibility (10-4 SI) 

Log(MSUS) Logarithm of Magnetic susceptibility (10-4 SI) 

PLI Point Load Index (MPa) 

Axb Ore ranking hardness, a measure of  ore crushability 

BMWi Bond mill work index (kWh/t) 

Derived Parameter Description 

Vs Estimated S-wave Velocity (m/s) 

Young Estimated Young’s Modulus (GPa) =0.8ρVp
2  

Impedance P-wave acoustic Impedance (Kg/m2s) 

                
             Table 5.2. Key for lithology and alteration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 

Lithology Code Rock description 

FV Felsic Volcanics - not fractured, veined or brecciated 

FV1 
Fractured Felsic Volcanics - brittle fracturing, clast supported, can be an 
overprinting alteration 

FV2 
Mosaic Felsic Volcanics - matrix supported breccia with moderate to 
strong digestion of clasts 

FV3 Felsic Volcanics - generally matrix supported with aligned clasts 

MMB 
Marble Matrix Breccias - Massive carbonate rock.  Generally reserved 
for the footwall of mineralised zone, contains ‘swirly’ textures. 

IV Intermediate volcanics-massive to banded rock 

IV1 Intermediate volcanics-brittle fracturing, clast supported 

IV2 Intermediate volcanics-matrix supported breccia 

SCH3 Weakly to moderate foliated schist 

MV 
Mafic Volcanics, generally phenocryst poor, very fine to fine grained, 
variably amygdaloidal, massive to banded volcanic rock. 

AMV2 
Altered Mosaic Mafic Volcanics - matrix supported breccia with 
moderate to strong digestion of clasts 

AMV 
Altered Mafic Volcanics, generally phenocryst poor, very fine to fine 
grained, variably amygdaloidal, massive to banded volcanic rock 

AMV1 
Altered Fractured Mafic Volcanics - brittle fracturing, clast supported, 
can be an overprinting alteration 

Alteration Code Alteration code description 

ca Calcite 

kf K-Feldspar 

mt Magnetite 

dr Dark rock 

bt Biotite 

cb Carbonate 

hm Hematite 

py Pyrite 
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5.6.1. Petrophysical Data from Borehole EH635  

 

Petrophysical data were recorded on NQ-size half-core from drill hole EH635, for the 

depth range 800m to 1120m, using the Geotek MSCL. Two meter medians of 

petrophysical data were computed over assay intervals in order to facilitate direct 

comparison with metallurgical attributes and also assay data. Figure 5.5 shows strip logs 

of geological, geochemical, petrophysical and metallurgical parameters. There is no 

petrophysical data in some intervals (e.g. 850-865m) owing to core condition (i.e. quarter 

size core, fault zones). In addition, scatter in thickness readings was large (±5mm) in 

some intervals (e.g. 944-946m). The source of the scatter is not known and the problem 

was not recognised immediately. These intervals of noisy thickness have been excluded 

from the composite plot and subsequent analyses. 

 
Density and susceptibility measurements could assist both in visual core logging and 

definition of high grade ore zones. For example in the interval 916-920m where pyrite 

alteration is indicated, the density attains a peak value of about 4.1 g/cc and susceptibility 

is relatively low; both sulphur and iron content are high, as would be expected in the 

presence of pyrite. High grades of Cu and Au also correlates with high density and 

susceptibility. No strong correlation was found between susceptibility and P-wave 

velocity in this hole however in some intervals (e.g. 968-974m) a negative correlation 

was evident.  

 
A positive linear correlation is evident between magnetic susceptibility and A*b. This 

means with increase of magnetic susceptibility, the samples become softer in terms of 

crushing because magnetite acts as a crack initiator.  
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5.6.2. Petrophysical Data from Borehole EH633 
 
NQ-size half-cores from EH633 were logged from 900m to 1165m depth. Two meter 

medians of petrophysical data were computed over assay intervals in order to facilitate 

direct comparison with metallurgical attributes and also assay data. Figure 5.6 shows strip 

logs of geological, geochemical, petrophysical and metallurgical data for this hole. There 

is no petrophysical data in some intervals owing either to core condition (i.e. quarter size 

core, fault zones).  

 
High magnetic susceptibility clearly differentiates magnetite alteration intervals from 

potassic (kf) and “dark” (dr) alteration. A gradual decrease of susceptibility is evident 

from a maximum of 1.8 SI at 924m to 0.5 SI where dark alteration is present. Beyond this 

depth a gradual increase in susceptibility is apparent from 954m which continues until 

susceptibility reaches to maximum value where magnetite alteration is present.   

 
As evident from strip logs in Figure 5.6, there is a positive correlation between 

susceptibility and A*b. Also a positive correlation between density and A*b is evident 

while the correlation between density and BMWi is negative. Estimated Young’s 

modulus and acoustic impedance both show a positive correlation with A*b in EH633. 
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5.6.3. Petrophysical Data from Borehole EH574 
 
NQ-size half-cores from EH574 were logged from 543m to 810m depth. Two meter 

medians of petrophysical data were computed over assay intervals in order to facilitate 

direct comparison with metallurgical attributes and also assay data. Figure 5.7 shows strip 

logs of geological, geochemical, petrophysical and metallurgical composites. There is no 

petrophysical data in some intervals (e.g. 622-636m) due to core condition (i.e. quarter 

size core, fault zones). There is a positive correlation between density and Fe% and 

between susceptibility and Fe% (Figure 5.7). There is no obvious strong correlation 

between petrophysical and comminution parameters in this hole. 
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5.6.4. Petrophysical Data from Borehole EH556 
 
Petrophysical properties were recorded at 9cm intervals on drill cores of EH556 from a 

depth of 450m to 795m. Two meter medians of petrophysical data were computed over 

assay intervals in order to facilitate direct comparison with metallurgical attributes and 

also assay data. Figure 5.8 shows strip logs of geological, geochemical, petrophysical and 

metallurgical composites for this hole. There is no petrophysical data in some intervals 

owing either to core condition (i.e. quarter size core, fault zones).  

 
Susceptibility data were recorded using the biggest loop size (150mm loop diameter) for 

depths below 690m to accommodate high susceptibility values. There is relatively low 

magnetic susceptibility (less than 0.5 SI) in the interval 450-548m, even though it is 

logged as magnetite altered. Normally a susceptibility of 0.5 SI is considered high, but in 

this case there is a possibility that either the alteration has been mis-logged or this interval 

is characterised by only very low intensity magnetite alteration. Susceptibility is higher 

from 548-564m where magnetite alteration is indicated in lithology “FV”.  

 
Density decreases significantly below the depth of 730m. This change in density 

corresponds to changes in Fe, Cu and S content. Magnetic susceptibility also decreases 

below this depth.  

  
In the interval 569-731m, where high susceptibility is evident, the alteration appears to be 

incorrectly logged as K-feldspar. From 731m to 755m there are zones of hematite and K-

feldspar alteration where susceptibility is very low, as expected.  

 
Density decreases significantly below the depth of 730m. This change in density 

corresponds to changes in Fe, Cu and S content. Magnetic susceptibility also decreases 

below this depth and consequently A*b decreases while BMWi and PLI increase. Density 

exhibit a positive correlation with A*b while P-wave velocity has a weak negative 

correlation with A*b.  
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5.6.5. Petrophysical Data from Borehole EH446 
 
Half NQ-size core from EH446 was logged from 299 to 633m. Two meter medians of 

petrophysical data were computed over assay intervals in order to facilitate direct 

comparison with metallurgical attributes and also assay data. Figure 5.9 shows the 

geological, geochemical and petrophysical logs for this hole. All susceptibility data were 

recorded using the biggest loop size (150mm loop diameter) to accommodate the high 

susceptibility of the cores.  

  
The dominant rock type in this hole is felsic volcanic material (FV2) with magnetite 

alteration. Susceptibility is well correlated with the alteration log, since high 

susceptibility corresponds to magnetite alteration and low susceptibility to K-feldspar (kf) 

or dark (dr) rock alteration. There is a step change at 351m, at the transition from “kf” to 

“mt” alteration, where susceptibility increases (Figure 5.9). Susceptibility remains 

generally high until 604m, except between 427m and 449m where the dominant alteration 

is carbonate (ca). Below 604m the alteration style is k-feldspar and dark rock.  

 
A*b shows significant variability within magnetite alteration intervals. This high 

variability is attributed to the effect of alteration intensity. Magnetic susceptibility shows 

a moderate positive correlation with A*b for all comminution tests samples at this hole. 

There is also a positive correlation between density and A*b. P-wave velocity gradually 

decreases from 302m to 340m in “kf” alteration class where A*b is relatively low. 
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5.6.6. Petrophysical Data from Borehole EH432 
 
NQ-size half-cores from EH432 were logged from 139m to 399m depth. Two meter 

medians of petrophysical data were computed over assay intervals in order to facilitate 

direct comparison with metallurgical attributes and also assay data. Figure 5.10 shows the 

geological, geochemical, petrophysical and metallurgical composites for this hole. There 

is no petrophysical data in some intervals (e.g. 180-182m) owing to core condition (i.e. 

quarter size core, fault zones). All susceptibility data were recorded using the biggest loop 

size of susceptibility sensor (150mm loop diameter) to accommodate the high 

susceptibility of the cores.  

 
The susceptibility log in most intervals shows high susceptibility which does not 

correspond well with alteration logging. For example from 214-240m there is a peak of 

susceptibility (~2.5 SI) within a zone of carbonate alteration. There is only 10m within 

this hole (300-310m) where alteration logging (mt) matches with high susceptibility 

measurements. Therefore it appears likely that most of the visual core logging is 

incorrectly recorded.  

 
A gradual decrease in P-wave velocity from 190m to 240m suggests a decrease in 

strength of rocks that conforms to the BMWi variation. There is also a step change 

increase in P-wave velocity at 240m where K-feldspar alteration is apparent. The increase 

in P-wave velocity conforms to decrease in A*b and an increase in point load index and 

BMWi in this interval. A moderate positive correlation also exists between P-velocity and 

BMWi (Figure 5.10). The density log shows a decrease in density form 3.6g/cc to 3.2g/cc 

in the interval from 244-262m where “FV1” rock type with k-feldspar alteration exists. 

This unit represents a very hard rock in terms of comminution as is evident by A*b, PLI 

and BMWi values.  
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5.7. Petrophysical Signature of Ernest Henry 
 
The relationship between petrophysical properties, assays, geological and metallurgical 

attributes has been considered in the combined data set for all six drill holes from Ernest 

Henry.  

 
Overall there is a moderate positive correlation (R2=0.57) between density and magnetic 

susceptibility in all holes (Figure 5.11). While density follows a Normal distribution 

magnetic susceptibility follows a log Normal distribution (Figure 5.12). The density of 

the majority of samples varies from 2.75 to 4.1 g/cc, while variation in magnetic 

susceptibility is from 0.1SI to ~ 4SI. Anomalous high values of magnetic susceptibility 

(i.e. 4.0 SI) are mainly due to the magnetite-enriched samples. P-wave velocity has a 

normal distribution while P-wave amplitude measurements are skewed (Figure 5.12). P-

velocity of the samples varies from 3000m/s to a maximum of 7000m/s.  
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Figure 5.11. Scatter plot of gamma density versus magnetic susceptibility from all the six drill holes of Ernest 
Henry. 

 
 

 



Chapter 5. Characterization of Comminution Behavior at Ernest Henry 

 

120 

 

 

 
Figure 5.12. Histograms of (a) density, (b) P-wave velocity, (c) magnetic susceptibility (d) logarithm of magnetic 
susceptibility and (e) P-wave amplitude from drill holes EH633, EH635, EH574, EH432, EH556 and EH446. 
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Medians and spreads of density, P-wave velocity, P-wave amplitude and magnetic 

susceptibility in 2m intervals from drill holes EH633, EH635, EH574, EH432, EH556, 

and EH446 are calculated for each visually logged litho-alteration class (Figure 5.13). For 

any one parameter there is considerable overlap of property ranges between litho-

alteration classes. Many litho types with “kf”, “ca” and “cb” alteration are highly 

magnetic (Figure 5.13b).  This suggests that alteration in some samples have been either 

classified incorrectly by mine geologists or “kf” alteration class is a compound of two 

population (i.e. with low and high proportion of magnetite). Further investigation of 

relationships between petrophysical properties and geology is difficult given concerns 

about the veracity of the visually logged litho-alteration classes. It may be possible to 

refine and redefine the alteration classification using magnetic susceptibility as a proxy 

but this case has not investigated in this research. 
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Figure 5.13. Medians and spreads of (a) density, (b) magnetic susceptibility (c) P-wave velocity and (d) P-wave 
amplitude in 2m intervals from drill holes EH633, EH635, EH574, EH432, EH556, and EH446, classified by litho-
alteration classes. Pink square = median, black bar = range (16th – 84th percentile), gery histogram = number of samples 
for each litho-alteration class. Abbreviations as defined in Table 5.2. 
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The relationship between susceptibility and grade and between density and grade was 

examined in all drill holes. It is possible to estimate grade reasonably well from these 

physical properties. Zones of high Fe, Cu and Au grades are generally coincident (Figure 

5.14). Density and susceptibility correlate well with Fe (Figure 5.15). Therefore high 

density and susceptibility translates to high Au and Cu grades. Density appears to have a 

linear correlation with Fe grade while susceptibility is related to Fe in nonlinear form. A 

simple density model based on Fe grade has been developed and used at Ernest Henry 

mine (Collier and Bryant, 2003). The model is a linear regression of Fe versus water 

immersion density using 2m composite drill hole data from Ernest Henry. The model has 

the form: 

Density=0.0287*Fe +2.5764                           (5.1) 
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Figure 5.14. Correlation of Fe with Au and Cu in all six holes of Ernest Henry. 
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Figure 5.15. Cross plot of Fe with density and susceptibility in all six holes of Ernest Henry. Note that the 
relationship between Fe and density is effectively linear while the relationship between Fe and susceptibility 
is nonlinear. 
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5.8.  Comminution Modelling  
 
Comminution behaviour for Ernest Henry is depicted in Figure 5.16.  There is a negative 

correlation between A*b and BMWi that suggests samples that are hard to crush (low 

A*b) are also hard to grind (high BMWi) as well. Therefore the harder the materials are 

for crushing and grinding, the lower is the mill throughput. Figure 5.16 shows a large 

dynamic range for A*b and BMWi values. The large variation in comminution behaviour 

translates to high mill throughput variability (Section 5.9). A high throughput of ~2700 

t/h can be predicted for soft materials in terms of crushing and grinding, whereas a low 

throughput (~1100 t/h) is expected for hard materials (Figure 5.16). This shows that the 

ore comminution behaviour at Ernest Henry is not uniform as claimed by Strohmayer et 

al (1998).  
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Figure 5.16. Cross plot of A*b and JKMRC estimated Bond mill work index for all comminution test samples 
of Ernest Henry.  

 

The relationship between petrophysical properties and A*b and BMWi are investigated 

for all comminution test samples (Figures 5.17 and 5.18). Averages of petrophysical 

properties (2m assay intervals) were calculated for comparison to comminution attributes. 

Overall the correlations between petrophysical properties and comminution attributes are 

weak. Linear regression was only applied to the data as nonlinear regression did not result 

in significant improvement in prediction. Magnetic susceptibility shows a weak positive 

correlation with A*b and a negative correlation with BMWi. Density shows similar 

correlations with A*b and BMWi. Higher susceptibility and density are both general 

indications of high concentration of magnetite. The higher magnetite content makes the 

rocks softer in terms of crush and grind, hence high A*b and low BMWi.  
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Figure 5.17. Cross-plots of A*b versus 2m averages of (a) density, (b) logarithm of magnetic susceptibility, (c) 
P-wave amplitude, and (d) P-wave velocity for all comminution test samples from all drill holes.  The red line in 
each case is the linear regression fit to the data which has been shown for comparative purposes even when 
correlations are very poor.   
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Figure 5.18. Cross-plots of JKMRC estimated BMWi versus 2m averages of (a) density, (b) logarithm of 
magnetic susceptibility, (c) P-wave amplitude, and (d) P-wave velocity for all comminution test samples from all 
drill holes.  The red line is the linear regression fit to the data.  

 

 

The results of multiple regression of four petrophysical properties (P-velocity, P-

amplitude, gamma density and magnetic susceptibility) against all 142 available A*b and 

BMWi determinations are represented in Figure 5.19a and Figure 5.19b respectively. The 

relative error of prediction (REP) for A*b and BMWi is 26.3% and 14.5% respectively. 

As evident from Figure 5.19a soft materials for crushing were poorly predicted. Hard 

materials for grinding were poorly predicted (Figure 5.19b).  

 
Stepwise regression analysis (Chapter 4) suggests that the most important input variable 

for prediction of A*b and BMWi is magnetic susceptibility (Figure 5.17b and Figure 

5.18b). The relative error of prediction for A*b and BMWi using magnetic susceptibility 

alone is 28.4% and 18.7% respectively. Such models are not accurate enough to be used 

as a universal model for future prediction of comminution parameters. Prediction of A*b 

a) 

 

c) 

 

b) 

 

d) 
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from the JKMRC developed “destructive” test (crushing index; JKCi) only marginally 

improved the prediction (relative error of 22%).  
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Figure 5.19. Measured versus predicted A*b (a) and JKMRC estimated versus predicted BMWi (b) for all 142 
test samples using multiple regression of four petrophysical parameters (P-velocity, P-amplitude, gamma 
density and magnetic susceptibility). R2 is regression correlation coefficient and REP is relative error of 
prediction. The RMS error values for A*b and BMWi universal models are 34.3 and 1.61kWh/t respectively.   

 

It was envisaged that classification of data could improve the accuracy of the 

comminution models. As stated in Chapter 4, the choice of appropriate data classification 

for geometallurgical purpose depends on ore comminution variability. Given the 

significant variability of comminution parameters at Ernest Henry (Figure 5.16), 

definition of geometallurgical classes based on the petrophysical (PC) or geological (GC) 

approaches was postulated as effective methods for development of models as discussed 

in Chapter 4. In the following subsections this idea is further investigated. The application 

of other approaches (CC and CPC) for geometallurgical data classification and 

comminution modelling (Chapter 4) are also illustrated in the following subsections.  

 

 

5.8.1. Comminution Modelling : GC Approach  
 
The aim of “GC” approach as discussed in Section 4.2.1 is to investigate the relationship 

between petrophysical properties and comminution attributes within geological classes 

(e.g. litho types). A database of visual alteration and lithology logs compiled by site 

geologists was available from Ernest Henry. The combination of lithology and alteration 

could potentially provide effective geometallurgical classes for subsequent   

geometallurgical model development. However, using this information resulted in more 

than 30 different classes thus making investigation of the relationship between 

petrophysical and comminution parameters rather difficult. This was mainly due to the 

a) 

 
b) 
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fact that in some classes there were no comminution tests or the number of tests was so 

small to develop a model.  

 
Investigation of relationships between petrophysical properties and comminution 

attributes within the brecciated felsic volcanic classes (FV2) which are the host rocks of 

mineralization and respective alteration styles was undertaken. Figure 5.20 is a box and 

whisker plot showing mean values of A*b and BMWi together with standard deviation 

for each litho-alteration class. The comminution properties overlap in all classes. 

Moreover visually logged alteration classes at Ernest Henry are inconsistent in some drill 

holes (Section 5.7) hence geometallurgical class definition based on GC approach is not  

effective at Ernest Henry.  
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Figure 5.20. Scatter plot of mean A*b and Bond mill work index for litho-alteration classes at Ernest Henry. 
The red squares and the blue bars indicate the mean and standard deviations of comminution attributes 
respectively. 
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5.8.2. Comminution Modelling : PC Approach  
 

The geometallurgical modelling based on the PC approach (section 4.2.2 of Chapter 4) 

has been documented by Vatandoost et al (2009). Petrophysical data were grouped into 

four classes using cluster analysis techniques and then predictive comminution models for 

A*b and BMWi were developed within each cluster for the subset of samples for which 

comminution parameters existed. The performance of the PC based models was better 

than universal models (Vatandoost et al., 2009). Thus they were used to estimate A*b and 

BMWi for intervals of drill cores where comminution tests were not available. However, 

such models were verified only against samples used for analysis. In order to ensure that 

the regression models adequately represent the general population of the dataset and 

whether they are appropriate enough to be applied for future prediction, the models 

should be validated using samples drawn from the general population to ensure 

representativeness. 

 
In this section a review of the approach conducted by Vatandoost et al (2009) is presented 

and the comminution models are rebuilt using petrophysical properties based on samples 

from five drill hole (EH635, EH633, EH556, EH432 and EH446). The developed models 

then are tested for samples from EH574 (randomly selected drill hole) to predict 

comminution attributes and to assess the validity of the comminution models. 

 
As presented in section 5.8 the universal models of A*b and BMWi are not very accurate. 

In order to better predict the comminution behavior using petrophysical properties it is 

advantageous to divide the core samples into groups or classes. The underlying 

hypothesis here is that each petrophysical cluster should correspond to certain 

comminution behaviour. Four clusters were defined as a result of cluster analysis using 

four petrophysical properties (i.e. density, susceptibility, P-velocity and P-amplitude). 

The statistical distance was used to select the number of clusters (Section 4.3.1 of Chapter 

4). Moreover the petrophysical properties of the classes were statistically analysed to 

establish whether they are well discriminated. Principal component analysis provides a 

useful framework for visualizing clusters. In Figure 5.21 the Ernest Henry data, coloured 

according to cluster, are projected onto the plane defined by the first two principal 

components. As can be seen the clusters are fairly well separated in this representation.  
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Figure 5.21. Cross-plot in principal component space, with data points differentiated according to 
petrophysical cluster.   

 

A radar chart offers another way to assess the individuality of the selected classes (Figure 

5.22). Each parameter on the radar chart was normalized based on the minimum and 

maximum of each parameter using equation 5.2 so that all four petrophysical properties to 

be in the same scale.   

minMax

Min

XX

XX
Z

−

−
=     (5.2) 

 

where Z is the normalized value, X is the value to be normalized, XMin and XMax are 

minimum and maximum value of X in a given dataset respectively. If the quadrilaterals 

representing the different clusters differ in shape and size, the clusters are distinctive. 

Conversely, if the quadrilaterals are similar in shape and size, the existence of separate 

clusters is questionable.  

 
As can be inferred from Figure 5.22, Cluster 1 is well separated from others by virtue of 

higher density and susceptibility and lower velocity. Qualitative assessment suggests that 

Cluster 1 material should be soft to crush and easy to grind, given its greater magnetite 

content. Cluster 2 is characterized by low magnetic susceptibility and low density but 

high velocity. Therefore, Cluster 2 may likely represent rocks that are more competent or 

harder to crush. Cluster 3 is separated from other clusters mainly due to low P-wave 

amplitude.  Cluster 4 is fairly similar to Cluster 2 but has lower P-velocity.  
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Figure 5.22. A radar diagram of petrophysical parameters for four-cluster solution  

 

 

 
Table 5.3 shows the mean and standard deviation of comminution test results within each 

cluster. There is a clear difference between comminution response in Clusters 1 and 3 

when compared with Clusters 2 and 4: the samples in Cluster 1 and 3 are soft to crush and 

relatively easy to grind while samples in Cluster 2 and 4 are relatively hard to crush and 

hard to grind. Although Clusters 2 and 4 are both hard to crush it appears that the samples 

in Cluster 2 may be harder to grind (a difference of 1.3 kWh/t) and relatively harder to 

crush when compared to samples in Cluster 4.  

 

 
Table 5.3. Mean and standard deviation of comminution parameters (A*b and BMWi) in each 
cluster for test samples from all holes. 

 

 

In order to geologically characterise the created clusters, the distribution of visually 

logged litho-alteration classes was constructed for each cluster. The histogram of litho-

alteration classes for each cluster (Figure 5.23) reveal that the majority of samples with 

magnetite alteration (FV2-mt) report to clusters 1 and 3 while the majority of samples 

which have K-feldspar alteration are found in clusters 2 and 4. This breakdown is 

consistent with the observation that unbrecciated K-feldspar rich volcanics are harder to 

crush or more competent than the magnetite rich rocks (Strohmayr et al, 1998).  

Comminution 

Parameter 

Cluster 1 

(31 samples) 
Cluster 2  

(41 samples) 
Cluster 3 

(30 samples) 
Cluster 4 

(40 samples) 
A*b 112 (44) 64 (20) 120 (56) 83 (32) 

BMWi 7.8 (1.09) 10.3 (1.86) 8.1 (1.69) 9.0 (2.00) 
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Figure 5.23. Cluster proportions for litho-alteration classes. 

 

 
In order to investigate the correlation between petrophysical parameters and comminution 

attributes, multiple regression was applied to the 2m samples for which comminution test 

data existed. Comminution parameters (A*b and BMWi) were modeled separately for the 

four clusters. Averages and standard deviations of the four petrophysical properties over 

2m assay intervals were considered during the multiple regression analysis. The optimal 

number of input parameters was selected based on stepwise regression technique (Chapter 

4). The maximum number of parameters in each regression model was one fifth of the 

number of data after stepwise regression.  

 
Figure 5.24a and Figure 5.24b show the predicted versus actual A*b and estimated 

BMWi for each cluster. The regression model for BMWi in Cluster 1 is better than those 

for the other clusters. The accuracy of the model is judged according to average relative 

error of prediction. Table 5.4 summarizes the results of regression in each cluster. If the 

root mean square error is interpreted as the predictive error of the computed relationships, 

it can be deduced that it is possible to calculate BMWi from petrophysical properties with 

an accuracy of about 0.57kWh/t and 1.74kWh/t in Cluster 1 and Cluster 2 respectively. 

The overall R2 and RMS error values between predicted and measured A*b are 0.63 and 

27.3 respectively. The overall R2 and RMS error between predicted and measured BMWi 

are 0.51 and 1.39 kWh/t respectively.  
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Figure 5.24. Measured versus predicted A*b (a) and Estimated versus predicted BMWi (b) in four 
petrophysical clusters. Predicted values are derived from petrophysical parameters. 

 

 

Comparison of A*b between DWT and JKRBT test results for a hard ore (A*b < 35) 

suggests an uncertainty of about 7.5% for the JKRBT results (Kojovic, 2008). For softer 

ore samples there would be more variability, therefore the uncertainty in A*b values 

would likely be even greater. Given that most of the samples from Ernest Henry are soft 

(A*b > 30), a 10% error of prediction for A*b could reasonably be expected. Estimated 

BMWi carries uncertainty due to crushing index and batch grinding test results. As for 

A*b, the uncertainty in estimated BMWi is greater for the softer ore samples. An 

uncertainty of 10% for softer ore samples (less than 10kWh/t) and 5% for harder ore 

samples (e.g. 15kWh/t) in estimated BMWi is assumed. Considering the uncertainty in 

BMWi, it is evident that the prediction accuracy of the models in Cluster 1 and Cluster 3 

is better than the prediction accuracy of BMWi in other clusters.  

 

     Table 5.4. Results of multiple regression of A*b and BMWi vrs petrophysical properties for each 
cluster. Quality of fit indicated by average relative error of prediction (REP) in percent and root mean 
square error (RMSE).  

Comminution 

Parameter 

Cluster1 Cluster2 Cluster3 Cluster4 

A*b  (REP,RMSE) 16.71, 21.90 16.97, 14.73 30.10, 47.58 22.25, 21.89 

BMWi (REP,RMSE) 6.12, 0.57 13.66, 1.74 10.79, 1.29 12.43, 1.52 

 

Invoking the regression models for prediction of comminution attributes of all available 

2m samples is justifiable if the comminution test samples are representative of the entire 

set of core samples. Figure 5.25 shows the comminution test samples, colored by cluster, 

projected onto the plane defined by the first two principal components. Comparing with 

Figure 5.21, it is evident that each cluster has approximately the same number of 

a) 

 
b) 
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comminution test samples with a minimum of 30 samples. Therefore, the test samples can 

be considered representative of the population as a whole.  
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Figure 5.25. Comminution test samples (EH556, EH574, EH635, EH633, EH432 and EH446) for each cluster 
projected onto principal component space, c.f. Figure 5.21.  

 

 

When the representivity criterion is met, the models (Figures 5.24a and 5.24b) can be 

applied to the entire dataset for prediction of comminution behaviour with a higher level 

of confidence. However in order to assess the predictability of each regression model 

developed within each cluster, the regression was tested for the samples of EH574 which 

was not initially used in model building. The overall RMS error for A*b and BMWi are 

35.2 and 1.87 kWh/t respectively. As represented in Figure 5.26 predicted values of 

BMWi for most samples of EH574 (except sample with BMWi> 10 kWh/t) are within the 

range of BMWi variability while prediction of A*b is not very accurate.  Although the 

A*b and BMWi models (Figure 5.24a and 5.24b) are not very accurate, however they can 

still characterise ore comminution variability by prediction of comminution attributes in 

intervals were no tests are available.  
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Figure 5.26. Predicted A*b and measured A*b (a) versus depth in four clusters for test samples of EH574 
using regression model presented in Figure 5.24a  and predicted Bond mill work index and JKMRC 
estimated Bond mill work index versus depth in four clusters for test samples of EH574 using regression 
model presented in Figure 5.24b. 

 

 

 

Predicted and measured A*b and Bond mill work index for all 2m core samples are 

presented in Figure 5.27a and Figure 5.27b respectively. The predictions are based on the 

models in Figures 5.24a and 5.24b. The predicted values lie within the range of measured 

values, and there is good qualitative agreement in terms of trends with depth. This 

suggests that the petrophysically-based prediction of comminution performance may have 

potential for delineating geometallurgical domains. Although the derived models appear 

promising for the drill holes involved, analysis of a much larger data set would be 

necessary in order to develop predictive models for the entire orebody. 

 

b) 

 

a) 

 



Chapter 5. Characterization of Comminution Behavior at Ernest Henry 

 

136 

0

50

100

150

200

250

300

EH635 EH633 EH574 EH556 EH446 EH432

Ernest Henry drill hole

A
*b

Meas ured A*b

P redic ted A*b

15 per. Mo v. Avg. (P redic ted A*b)

 
 

3

5

7

9

11

13

15

EH635 EH633 EH574 EH556 EH446 EH432

Ernest Henry drill hole

B
M

W
i (

k
W

h
/t
)

J K Es timared BMWi

P redic ted BMWi

15 per. Mo v. Avg. (P redic ted BMWi)

 
Figure 5.27. Predicted A*b (a) and predicted BMWi (b) for the entire dataset (~800 2m intervals). The 
measured A*b and JKMRC estimated BMWi are also plotted for comparison. The samples originating from 
each drill hole are plotted in depth order. 

 

 

Given that these comminution attributes (A*b and BMWi) can be derived from 

petrophyscial measurements, then the mill throughput may be estimated through an 

alternative characterisation approach based on petrophysics. This idea has further 

investigated in Section 5.9.   

 

5.8.3. Comminution Modelling : CC Approach  
 
The aim of this section is to create geometallurgical classes purely based on comminution 

test results at Ernest Henry and then investigate the relationship between petrophysical 

properties and created classes. Cluster analysis techniques were used in order to create the 

b) 

 

a) 
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comminution classes objectively. Three classes based on A*b and BMWi were defined 

(Figure 5.28).  

 
Class 1 is low in A*b and high in BMWi, i.e. both hard to crush and hard to grind, while 

Class 2 is comparatively easy to crush and grind. Class 3 is located between these two 

clusters and can be regarded as medium to crush and medium to grind. The variability of 

A*b in Class 2 is approximately five times greater than the variability of A*b in Class 1; 

conversely, the variability of BMWi is far greater in Class 1 than in Class 2. 

 

4

7

10

13

16

0 100 200 300

A*b 

E
st

im
a
te

d
 B

M
W

i 
(k

W
h

/t
)

Cluster 1

Cluster 2

Cluster 3

 

Figure 5.28. Crossplot between A*b and Bond mill work index (BMWi) for all 142 comminution test samples 
determined by cluster analysis.  

 

 

Once the classes of comminution have been identified, then such classes can be 

characterised using petrophysical properties. The LogTrans program (Fullagar et al., 

1999) was used for this purpose. Statistics (medians and spreads) for petrophysical 

parameters (P-wave velocity, density and susceptibility) and assay data (Cu, Fe, S, Au) in 

comminution classes were computed by LogTrans. All input attributes (petrophysical and 

assay) were used during training and testing in each individual hole. However the 

optimum number of input variables was selected based on the prediction performance of 

groups of variables in a trial and error fashion. The best suite of input parameters that 

predict comminution classes in control holes (EH633, EH635, EH556, EH432, and 

EH446) are susceptibility, P-wave velocity and Cu grade.  The performance of the 

prediction was judged based on the number of correct test sample class assignments by 

LogTrans. The LogTrans result for EH633 is presented in Figure 5.29. Comminution 

class has been predicted continuously down the hole. As can be seen, LogTrans 

successfully predicted the comminution test sample classes with an overall performance 
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of 76% for EH633.In order to assess the prediction in a blind hole, drill hole EH574 was 

treated as an independent hole and training was conducted on the other five holes. Figure 

5.30 shows the predicted comminution classes for the test samples from EH574 as an 

independent hole, using statistics based on EH633, EH635, EH556, EH432 and EH446. 

The performance of prediction in EH574 is reasonably poor at only 60%. The effect of 

errors both in Geotek data and comminution measurements could be reasons for this poor 

performance in addition to geological differences between drill holes. Availability of a 

larger dataset for training would likely further improve the performance of the prediction.  

 

 

Figure 5.29. Prediction of comminution classes in control drill hole EH633 using LogTrans. First column 
shows the comminution classes. The second column is predicted comminution classes based on magnetic 
susceptibility (MagSus), P-wave velocity (Vp) and Cu grade. LogTrans window length during fluster analysis 
was 0.25m. 
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Figure 5.30. Prediction of comminution classes in independent drill hole EH574 using LogTrans. First 
column shows the actual comminution classes. The second column is predicted comminution classes based on 
magnetic susceptibility (MagSus), P-wave velocity (Vp) and Cu grade. LogTrans window length during 
fluster analysis was 0.25m. 

 
 
 

A neural network structure of with three nodes in hidden layer, three input parameters (P-

wave velocity, magnetic susceptibility and Cu%) and three outputs for three clusters was 

designed and trained. Statistica neural network software was used here in order to train, 

verify and test petrophysical properties for prediction of defined clusters. Neural network 

modelling is described in Chapter 4.  The same input as used for LogTrans interpretation 

was used here. The number of nodes in hidden layer was defined based on performance 

of network when compared with other structures. Training of the network was based on 
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data from EH633, EH635, EH556, EH432 and EH446. The samples from EH574 were 

then used to assess network performance for data that was not used during training. Table 

5.5 summaries the results. The “Total” number represents the number of clusters that 

belong to a certain cluster.  The “Correct” number is the number of clusters that the 

network has predicted correctly and similarly the “Wrong” number is the number of 

incorrect predictions. The overall performance of network for testing set (EH574) can be 

judged based on total number of correct predictions. The prediction performance of 

network is 72% (18/25*100).  Neural network prediction is thus relatively better than 

minimum distance algorithm employed in LogTrans.   

 

 
Table 5.5. Statistics of prediction performance of neural network for  training data (EH635,   EH633, 
EH432, EH446, EH556)  and testing (EH574) data. 

Training Testing  
Cluster 1   Cluster 2   Cluster 3 Cluster 1  Cluster 2 Cluster 3 

Total 34 28 59 8 6 11 
Correct 28 22 30 5 3 10 
Wrong 6 6 29 3 3 1 

Unknown 0 0 0 0 0 0 
Cluster 1 28 1 15 5 0 1 
Cluster 2 1 22 14 0 3 0 
Cluster 3 5 5 30 3 3 10 

 
 

 

5.8.4. Comminution Modelling : CPC Approach  
 
In this approach the classes here are defined based on petrophysical properties and 

comminution attributes. The rationale for this approach is that creation of classes based 

on combined properties may better explain the geometallurgical behaviour. In fact from a 

practical perspective classes that have distinctive behaviour both in terms of petrophysics 

and metallurgy are of interest. 

 
An attempt was made to classify objectively all comminution test samples according to 

their A*b and BMWi values and their associated petrophysical properties (density, 

susceptibility and velocity) using cluster analysis. A hierarchical clustering approach was 

used to classify the data automatically. This analysis resulted in three clusters. A radar 

diagram of comminution and petrophysical properties shows the composition of the 

clusters (Figure 5.31). Cluster 1 is high in P-wave velocity, but low in susceptibility and 

density. This characteristic generally corresponds with rocks that are hard in terms of 

crushing and grinding. Average values of A*b (low) and BMWi (high) for Cluster 1 

conform to such characteristics.  
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Figure 5.31. Normalized data means for clusters, three-cluster solution. 

 

The created classes are only known for intervals of drill core where both comminution 

and petrophysical properties are available. It would be advantageous if such classes could 

be predicted for other intervals of drill cores using petrophysical properties. For this 

purpose a neural network was trained for the created clusters using the petrophysical 

properties in such a way that it could be used for prediction. The selection of the neural 

network technique for this purpose was due to its better performance than minimum 

distance algorithm presented in the previous section.  

 
Petrophysical properties (P-velocity, density and susceptibility) and the created clusters 

for five drill holes (EH635, EH633, EH446, EH432 and EH556) were used for design and 

training of the neural network. Petrophysical properties were used as input and three 

created clusters as output of the network. After training and testing of the neural network, 

the data from EH574 were used to assess the network prediction performance.During 

network design data from five drill holes were randomly assigned by the software into 

training and verification datasets. Ten different neural network structures were tested. A 

network structure with 14 nodes in the hidden layer performed better than other 

structures. The performance of the neural network for each dataset is represented in Table 

5.6. The performance of the network in prediction of clusters for the training and 

verification datasets are 86% and of 93% respectively. Test data for EH574 shows 

prediction performance of 76%.  This was not a significant improvement compared with 

MC approach (Section 5.8.3).  
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Table 5.6 Statistics of prediction performance of neural network for three sets of data, training set (black), 
validation (blue) and testing (red).    

Training Verification Testing

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Total 45 22 40 5 5 5 10 7 8

Correct 36 21 35 5 4 5 8 4 7

Wrong 9 1 5 0 1 0 2 3 1

Unknown 0 0 0 0 0 0 0 0 0

Cluster 1 36 0 4 5 0 0 8 0 1

Cluster 2 1 21 1 0 4 0 0 4 0

Cluster 3 8 1 35 0 1 5 2 3 7  

 

 
5.9. Mill Throughput Modelling 
 
Cu head grade at Ernest Henry Mine is regarded as a good indicator of expected mill 

throughput (Tew et al, 2003). Comminution attributes can be used for prediction of mill 

performance (Bearman et al, 1996). However, for the 142 small scale test samples a 

polynomial regression of Cu with an order of four against both A*b and BMWi showed a 

very poor correlation. The use of four terms in the regression was only for comparison 

with models based on four petrophysical properties (Figures 5.19a and 5.19b). The 

predicted versus measured A*b and estimated BMWi using Cu is represented in Figure 

5.32a and Figure 5.32b respectively. The relative error of prediction (REP) values for 

A*b and BMWi after regression against Cu% are 34% and 16% respectively. Comparison 

of models (Figure 5.32a with Figure 5.19a and Figure 5.32b with Figure 5.19b) suggest 

that petrophysical properties are more sensitive to underlying rock properties than Cu% 

alone. Thus development of comminution models based on petrophysical properties could 

be more reliable at Ernest Henry than models based on assays alone (Vatandoost et al, 

2009).   
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Figure 5.32. Measured versus predicted A*b (a) and Estimated versus predicted BMWi (b) for all 142 test 
samples derived from a 4th order polynomial regression of  Cu%.  
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The Ernest Henry mill throughput can be estimated using a set of engineering equations 

(GeM model) developed by Kojovic (2008) from 28 operating mills (closed and open 

circuit), covering a range of diameters, lengths, speeds, ball loads, grate designs, ore 

characteristics and feed size distributions. These models are similar to the models 

developed by Morrell (2004) for scale-up, design and optimisation. The equations have 

the form: 

 
                                                                                                                      (5.3) 

                                                                                                                          (5.4) 

 
where 
 SP = AG/SAG specific power required for given set of operating conditions 
 F80 = SAG mill feed 80% passing size 
 P80 = SAG Mill product 80% passing size (or transfer size) 
 SG = ore specific gravity 

DWSP = Drop Weight specific power required to break feed to transfer size, 
which  is dependent on ore A and b parameters, feed size distribution and transfer 
size. 

 BMWi = Bond ball mill grindability index 
BL = ball charge (%) 

 CS = mill speed (% of critical) 
 D = mill diameter 
 D/L = aspect ratio = mill diameter/mill length (EGL) 

 
In comparison, the mill throughput model currently used by Ernest Henry is based solely 

on Cu headgrade developed using historical data on shift assays and actual throughput. 

Figure 5.33, compares the mill throughput prediction for the 142 GeM 2m core intervals 

using the mine site (EH) model based on Cu% head grade and GeM model based on A*b, 

estimated BMWi and ore density (measured by the Geotek MSCL).  
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Figure 5.33. Comparison of throughput predictions for 142 GeM 2m samples. The current mine site (EH) 
model is based on Cu-grade; the GeM model is based on actual A*b, estimated BMWi and gamma density. 
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The GeM estimated throughput is based on the existing Ernest Henry circuit (Figure 

5.34), consisting of an open circuit Semi Autogeneous (SAG) mill (34 ft x 16.5 ft, 11MW 

installed power) followed by a closed-circuit Ball mill (20 ft x 27.5 ft, 5.5MW installed 

power). The GeM throughput estimates were based on a fixed target grind size (P80) of 

220 microns and fixed feed size (F80) of 93mm.  

 

 

Figure 5.34. Schematic diagram of Ernest Henry comminution circuit (Kojovic, 2008) 

 

 

As can be seen (Figure 5.33), there is a clear difference in throughput estimation between 

the EH and GeM models. The GeM model is more sensitive than the current Ernest 

Henry throughput model, which is limited to a maximum of approximately 1575 tons per 

hour (t/h). This limit is consistent with the physical capacity of the cyclone feed pumps in 

the ball mill circuit (Peaty, 2008). As the assay range used in the EH model development 

was 0.6 to 1.5% Cu, the accuracy of the EH model for lower grade samples included in 

the GeM study is questionable. To provide a more realistic comparison of the two 

models, the GeM intervals were filtered to only include the samples which conform to the 

typical assay range and ore hardness measured in previous studies.  The comparison using 

the remaining 12 intervals, shown in Figure 5.35, suggests the two models are broadly 

consistent (relative error of ~7%), and indicates the GeM model based on the 

comminution parameters is valid. If the comminution attributes (i.e. A*b and BMWi) or 

comminution classes can be derived from petrophyscial measurements, then the mill 

throughput can be estimated through an alternative characterisation approach based on 

petrophysics.   
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Figure 5.35. Comparison of throughput predictions for subset of GeM 2m samples. The current EH model is 
based on Cu-grade; the GeM model is based on actual A*b, estimated BMWi and gamma density. Only 
samples which conform to the typical assay range and ore hardness have been included. 

 
 

In order to visualise throughput variability with depth in the drill holes, predicted 

throughput for all 2m core samples are plotted in depth order in each drill hole in Figure 

5.36. Throughput predictions were generated in the same fashion, based on the existing 

Ernest Henry SAB (SAG and Ball mill) circuit. Mill throughput was predicted from A*b, 

estimated Bond mill work index, and ore density (measured by the Geotek logger). The 

estimates were based on an assumed fixed target grind size (P80) of 220 microns and fixed 

feed size (F80) of 93mm. 

 
From examination of the figure, low throughput is expected in the upper part of EH556, 

but throughput increases with depth most probably due to magnetite mineralization which 

renders the samples soft to crush and easy to grind. The same trend is evident in EH446. 

The throughput in EH432 is expected to decrease in deeper parts of the borehole. 

Predicted throughput is almost constant in EH633 and EH574. 
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Figure 5.36. Predicted mill throughput for a larger dataset. The blocks of samples originating from each drill 
hole are plotted in increasing depth order.  

 

 

In practice the materials transported to the processing plant are from ore blocks extracted 

after blasting, not from the individual drill holes. This means that a mixture of materials 

as a result of blasting should be treated in the processing plant. Thus the throughput 

prediction presented in Figure 5.36 is an illustration of how petrophysics can predict mill 

throughput behaviour but actual mill performance will be affected by material mixing.  

 
An effective approach for optimization of grinding circuit of Collahuasi Cu-Mo porphyry 

mine, Chile is documented by Alruiz et al (2009). Their approach for representation of 

mill throughput variability within geometallurgical classes is adopted here. Separate 

throughput predictions for the each drill hole were generated. The results are summarized 

in Figure 5.37. The drill holes here are assumed as a proxy to mineable volumes (mining 

blocks) and the four petrophysical clusters (Section 5.8.2) representing different ore types 

with certain comminution (A*b, BMWi, and TPH) characteristics. As represented in 

Figure 5.37, throughput for almost all holes (except EH432) varies over a small range 

from 1860t/h to 1950 t/h. The EH432 composite is associated with a low throughput 

mainly because Cluster 2 (which is very hard in terms of crushing and grinding) accounts 

for the highest proportion. In order to reduce the mill throughput variability it might be 

useful to blend materials of clusters appropriately before processing. For example a small 

proportion of materials from Cluster 2 from drill hole EH432 should be mixed with high 

proportion of materials from Cluster 1. This illustration, although based on drill holes 

could be used as an effective approach for plant optimization.  
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Figure 5.37. Mill throughput estimate for clusters defined using PC approach (section 5.8.2). The drill holes 
are sorted according to proportion of Cluster 2 (C2) which is relatively hard material. As the proportion of C2 
increases, the estimated mill throughput decreases. 

 

 

 
5.10. Concluding Remarks 
 
A Geotek multi-sensor core logger has been used to measure density, susceptibility, P-

wave velocity, and P-wave amplitude of drill core from six Ernest Henry holes. A total of 

1800m of petrophysical data at 9cm intervals and high resolution imagery were recorded 

using the procedures described in Chapter 3. After processing, the petrophysical data 

were averaged over 2m assay intervals in order to correlate with comminution attributes 

measured on a subset of assay intervals.  

 
The quality of the Geotek logger data from Ernest Henry with respect to both accuracy 

and repeatability was satisfactory.  The main determinant of data quality is the size of the 

core. Variability in the “feed material” for the logger translates into greater uncertainty in 

the petrophysical data. All of the material presented to the logger from Ernest Henry was 

NQ-size half-core; this size is marginal for obtaining reliable velocity, density and 

susceptibility determinations. In addition, the cutting of the core was imperfect over many 

intervals, with the result that the logger was commonly measuring wedges of core, rather 

than half-core of consistent size.  

 
Magnetite alteration is associated with high susceptibility and density due to abundance 

of magnetite. As copper enrichment is spatially related to magnetite alteration, elevated 

susceptibility can be a good indicator of high grade Cu zones.  Overall the susceptibility 

ranges from less than 0.1 SI to more than 4 SI (massive magnetite). Density also 

exhibited a wide range, varying from 2.7 to 4.3 g/cc. Density and susceptibility showed a 
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good correlation with copper and gold assays in all holes. However the relationship is not 

sufficiently accurate to be used for routine prediction of copper and gold grades.  

 
The relationship between petrophysical properties and comminution attributes at Ernest 

Henry has been investigated. Generally a positive correlation exists between 

susceptibility and A*b, while a negative correlation between susceptibility and BMWi is 

evident. The magnetite acts as crack initiator and renders the rocks soft in terms of crush 

and grind. Therefore the higher the magnetite content, the higher the susceptibility and 

the softer the rock for crushing i.e. high A*b. Density is also positively correlated with 

A*b and negatively correlated with BMWi. The correlations between P-wave velocity 

and comminution attributes (A*b and BMWi) were weak except in some localized 

intervals of drill holes.   

 
Although the global models for comminution attributes (A*b and BMWi) based on 

multiple regression of  petrophysical properties (i.e. density, susceptibility, P-velocity and 

P-amplitude) are not very accurate, they are potentially better than the models based 

purely on Cu grade alone. Comparison of these models provided a degree of confidence 

in estimation of mill throughput from petrophysical properties.  

 
Comminution modeling based on the petrophysical classification (PC) approach provided 

a means for “quantitative” prediction of comminution attributes and subsequently 

characterisation of mill throughput performance. Comminution modeling based on 

comminution classes (CC) or integration of petrophysical and comminution classes 

(CPC) provides a “qualitative” prediction of comminution behaviour and can be used as 

an alternative approach to petrophysical classification (PC). 

 
The Ernest Henry mill throughput was estimated using a set of engineering equations 

developed from 28 operating mills (closed and open circuit), covering a range of 

diameters, lengths, speeds, ball loads, grate designs, ore characteristics and feed size 

distributions. The validity of GeM throughput model was assessed based on subset of 

samples available in GeM database which represented the typical ore hardness and Cu 

assay range at Ernest Henry. Comparison of Ernest Henry throughput model with GeM 

throughput model for a wide range of data showed that GeM throughput model is more 

sensitive to comminution properties (i.e. A*b and BMWi). This showed that GeM 

throughput model can be useful for better prediction of mill performance at Ernest Henry. 

Throughput prediction based on petrophysical properties showed a clear variation in 

terms of trend with depth. Therefore, mill throughput can also be estimated from 
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petrophysical properties. Moreover petrophysical classes represent a potential application 

for mill throughput optimization based on selective treatment of petrophysical clusters. 

 
Automated prediction of comminution behaviour at Ernest Henry derived using minimum 

distance classification approach (LogTrans) and neural networks technique was also 

presented. The results suggest that neural network has better performance (72%) in 

prediction of comminution behaviour than the minimum distance algorithm (60%). An 

integrated approach for comminution class definition and model development also tested. 

In order to improve the prediction performance of comminution behaviour in independent 

holes using either technique, more control holes would be advantageous in the training 

set.  

 
Geological logging for the selected Ernest Henry drill holes is not entirely consistent 

particularly for alteration assemblages. This uncertainty has retarded investigation of the 

relationship between petrophysical properties and geological observations. Measurement 

of magnetic susceptibility along the sections of drill core could significantly assist 

geologists during visual core logging. Availability of petrophysical parameters could 

significantly enhance the reliability of geological classification and hence 

geometallurgical characterisation.  

 
Only four petrophysical parameters were recorded at Ernest Henry. Additional 

parameters, e.g. natural gamma activity, could be very useful for discrimination of 

alteration style (e.g. potassic alteration). Hence natural gamma has the potential to be 

used as a proxy for characterisation of comminution behaviour at Ernest Henry.  
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CHAPTER 6 _________________________________________________ 

 

Characterization of Comminution Behavior at Cadia East   

Au-Cu Porphyry Deposit 

 
6.1. Introduction 
 
The Cadia East deposit is a porphyry Au-Cu system characterized by large tonnage and 

low grade of ore. The Cadia district is located near Orange, New South Wales, Australia 

and is a host of many Au-Cu porphyry systems (e.g. Ridgeway, Cadia East). The Cadia 

East deposit is one of the world's largest gold deposits and has a resource of 2,347Mt 

containing 33.2Moz of Au and 6.59Mt of Cu (Newcrest, 2010). The mineralized system 

is about 600m wide and extends 1900m below surface. The mining operation at Cadia 

East was initially planned as a large open pit but the decision has recently been made to 

mine the resource as an underground panel caving operation with an expected mine life of 

at least 30 years (Newcrest, 2010). The mining lease is currently owned and operated by 

Newcrest Mining Ltd. 

 
The ore characteristics (e.g. hardness and copper grade) of Cadia East are different from 

the currently mined Cadia Hill deposit (Clement, 2004) and this introduces a challenge 

for processing of ores at Cadia Hill processing plant. Cadia East ore is clearly recognized 

as hard material in terms of both crushing and grinding and is harder than Cadia Hill ore 

(Clement, 2004). Newcrest Mining has investigated the possibilities for Cadia East ore 

treatment and has planned to process Cadia East ore at the Cadia Hill processing plant. 

Clearly introduction of new feed material may necessitate optimization of the current 

plant configuration at Cadia Hill. Hence the existing Cadia Hill processing plant will be 

upgraded and the ore processing rate will be increased from the existing 24Mtpa rate to 

approximately 26Mtpa (Newcrest, 2010). 

  
Comparison of ore comminution behavior (Figure 6.1) indicates that ore grindability at 

Cadia East is much harder (BMWi > 14 kWh//t) than Ernest Henry. Ore grinding 

behavior at Ernest Henry is regarded as soft to medium hard (Chapter 5) whereas Cadia 

East material is very hard to grind. Moreover A*b values at Cadia East indicate a very 

hard ore in terms of crushing with a small dynamic range of variability. Thus design of 

processing plant and effective selection of comminution equipment at Cadia East is a real 

challenge. Given that in the underground operation it is planned to process of ~26Mtpa of 
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ore at Cadia Hill processing facilities, effective characterization of comminution behavior 

at Cadia East is highly desirable.  
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Figure 6.1. Scatter plot of A*b versus BMWi for Cadia East and Ernest Henry data.  

 

 

It is not the intent of this thesis to investigate the characteristics and configuration of the 

processing circuit but rather to characterize the ore processing behaviour effectively using 

petrophysical properties. In particular, the challenge for this research is to investigate 

whether petrophysical properties can serve as proxies for comminution attributes and 

hence assist in improved modelling of comminution variables. Cadia East was the first 

study site in the AMIRA P843 Project. As such it played a key role in method 

development and establishing protocols for petrophysical core logging and petrophysical 

characterization within the context of this research.  

 
The Geotek MSCL system was used to measure petrophysical properties on five drill 

cores from the Cadia East deposit in an attempt to characterise the rock type, alteration 

style and ultimately the ore processing performance. Gamma density, magnetic 

susceptibility, P-wave velocity and its amplitude were measured along each length of 

(both NQ and HQ) half core. High resolution core imagery was also recorded 

simultaneously with petrophysical measurements. The merging of petrophysical data 

from successive core sections then provided virtually continuous logs of core properties. 

The core logs provide a basis for research into the relationships between petrophysical 

and metallurgical parameters.  

 



Chapter 6. Characterization of Comminution Behavior at Cadia East 

 

 

153 

Small scale comminution tests (A*b and estimated BMWi) were performed on selected 

2m Cadia East drill core intervals at JKMRC (Julius Kruttschnitt Mineral Research 

Centre, University of Queensland) after petrophysical data acquisition. These tests 

provided an opportunity to investigate directly the correlation between petrophysical 

properties and comminution attributes on the same core sections.  

 
This chapter is divided into ten sections. Section two presents briefly the geology of 

Cadia East deposit. It is followed by a summary of data collection from the five selected 

drill holes selected at Cadia East for the AMIRA P843 project. Petrophysical data 

processing and discussion on quality of data are discussed in sections four and five 

respectively. Petrophysical data interpretations for each drill hole and combined drill 

holes are presented in section six and seven respectively. The relationship between 

petrophysical properties and corresponding small-scale comminution test results is 

investigated in section eight. A neural network approach for prediction of A*b from 

petrophysical properties is presented in this section. Then four different methods for 

geometallurgical class definition for comminution modeling are tested. Mill throughput 

modeling at Cadia East is presented in section nine. Also a strategy for approaching 

optimization of mill throughput is illustrated in this section followed by a summary and 

conclusion for this case study in section ten.  

 

 

 

6.2. Geology of Cadia East Deposit 
 

Detailed geological descriptions of the Cadia East ore-body have been documented by 

many researchers (Wilson, 2003; Kitto, 2005; Finn, 2006). The Cadia East ore is mainly 

developed within a sequence of volcaniclastic conglomerates and sandstones interspersed 

with massive volcanic flows. Monzonite porphyries are only developed towards the base 

of the system. The volcaniclastics are a very distinctive rock type with highly variable 

textures. Gold mineralisation is localized around a core of steeply-dipping sheeted quartz-

calcite veins within an envelope of disseminated chalcopyrite, bornite, and pyrite 

(Holliday et al., 2002).  

 
Porphyry deposits of the Cadia district are characterised by well developed potassic and 

propylitic alteration assemblages (Newcrest, 1998). Potassic alteration is associated with 

high grade porphyry gold copper mineralization (Wilson, 2003). Propylitic alteration 

overprints the core potassic alteration and the mineralization in all porphyry deposits in 

the Cadia district. The dominant gangue mineralogy at Cadia East is controlled by various 
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alteration stages and assemblages (Wilson, 2003). The main alteration stages are sodic 

(albite), potassic (magnetite-orthoclase-biotite), inner and outer propylitic (albite-

actinolite-chlorite/biotite) and phyllic (Illite-muscovite-feldspar-pyrite). The dominant 

sulphide minerals are chalcopyrite, bornite, and molybdenite. Gold occurs as electrum or 

pure gold (Wilson, 2003).  

 
The two major rock types recognized within the five selected holes at Cadia East are 

volcaniclastics (logging codes: G, B, V, Vc and U) and porphyry (logging codes: E, F, Pf, 

M and P).  The diversity of lithological codes for these rock units suggests that visual 

core logging is often highly subjective. Volcaniclastics at Cadia East are characterised by 

rocks ranging from coarse conglomerate (G) to bedded sediments (B). The porphyry units 

comprise a range of intrusive rocks (e.g. dykes and stocks) including monzonite that 

appear in the lower part of the ore system. A phenocrystic texture is distinctive of the 

porphyritic rocks. The six alteration classes, as logged by Cadia East geologists, are inner 

propylitic (Pi), skarn peripheral (Sp), phyllic cap (Pc), albite pyrite/sodic (Ap), 

transitional sodic-propylitic alteration (Tr) and pervasive potassic alteration (Kp).  Figure 

6.2 represents a selection of MSCL drill core images that illustrate the different alteration 

styles at Cadia East.  
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Figure 6.2.Images of drill cores from Cadia East captured using MSCL system. Volcaniclastic with 
phylic alteration from drill hole CE082 - depth 150m (a), Volcaniclastic with propylitic alteration from 
drill hole CE082 at depth 195m (b), volcanicalstic with transitional sodic propylitic alteration  from drill 
hole CE098 depth 245m (c), Monzonite porphyry with intense potassic alteration CE143 depth 1420m 
(d), Volcaniclastic with  albite pyrite alteration from CE109 depth 338 (e) and volcaniclastic with skarn 
porphyry alteration fom CE098 depth 368m (f).  

 
 

6.3. Data Collection Summary 
 

Due to the size and geometry of the Cadia East system no single drill hole penetrates the 

entire mineralised system or all of the alteration types. Cadia East site personnel 

identified five drill holes that intersect the range of associations and lithologies 

considered to be important. Four drill holes were from the upper section of Cadia East 

(CE082, CE098, CE109 and CE110) and one drill hole (CE143) was from the lower 

portion of the deposit. The location of the selected holes relative to the main 

mineralisation zones is indicated in Figure 6.3.  

 

a) b) 

c) d) 

e) f) 
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The Geotek MSCL system was deployed at the Cadia East site. Petrophysical data were 

collected with the MSCL system at 9cm intervals along selected mineralized intervals of 

drill core from the five boreholes. Core images were also captured along these sections. 

Altogether 1442m of core (half-NQ or half-HQ size) from these boreholes were logged at 

Cadia East. 

 

 
 

Figure 6.3. Isometric view of Cadia East showing the previously proposed open pit (blue), selected drill holes 
and their relationship to upper disseminated Cu zone and the lower veined Cu zone. Modified after Walters 
(2008).  

 

 

In order to calibrate petrophysical properties directly against crushability and grindability, 

small scale comminution tests were conducted on a subset of the Cadia East drill cores at 

JKMRC. Selection of samples for physical testing was conducted based on integration of 

core logging and existing geological data within the GeM project. There were no 

processing attributes available to help in sample selection, therefore a spatially and 

geologically representative spread of samples was selected. In each drill hole a series of 

2m assay intervals at a nominal spacing of 10-15m downhole was selected. 

 
A total of 148 small scale tests were performed on 2m core intervals of half NQ or HQ 

core, corresponding to assay splits. In some cases, depending on sample mass, two 

adjacent assay intervals were sampled.  The comminution index (JKCi), batch grind ball 

mill operating work index (WI-5), and impact hardness (A*b) derived from the JKRBT 

were measured. These quantities have been described in Chapter 2. The batch operating 

work index measurements and comminution index test results were used to estimate the 

Bond Ball Mill work index (BMWi) for each 2m interval. The selected target grind size 
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(P80) was 150µm. The large number of small-scale comminution tests conducted on drill 

cores from Cadia East during the P843 project provided a means for comminution 

characterization of the orebody. 

 

 

6.4. Quality of Petrophysical Data  
 
As discussed in Chapter 3, the Geotek laser can measure thickness with a precision of 

0.01mm, but in production mode core logging of half-core the achievable accuracy in 

thickness is about ±0.2mm. The Cadia East NQ half-cores are about 2.2cm thick, so an 

error of ±0.2mm translates to a relative error of about ±1%.  The Cadia East HQ half-

cores are about 3cm thick, so an error of ±0.2mm translates to a relative error of about 

±0.6%. Error in the core thickness propagates to density, susceptibility and P-wave 

velocity measurements. Therefore, when the accuracy in core thickness is affected, the 

quality of all the Geotek logging data is also affected. 

 
The intrinsic sensitivity of the Geotek gamma density system is approximately ±0.01 

g/cc, or ±0.35% for Cadia East densities of 2.80 g/cc. When errors in thickness for half 

NQ size core are also taken into account, the best-practice achievable accuracy for half 

NQ core is about ±1.35%, i.e. ±0.04 g/cc for Cadia East half NQ size core.  

 
For P-wave velocity measurements of half-core with the Geotek MSCL, the signal must 

travel through the plastic core boat and silicon gel as well as the rock itself. In addition, 

the Geotek transducer system introduces a delay. The intrinsic delay of the P-wave 

system has been established by comparing Geotek travel times with times recorded 

independently by a Portable Ultrasonic Non-destructive Digital Indicating Tester (Pundit) 

model 6 (Chapter 3).  

 
Different plastic core boats were used for HQ and NQ core. The net delay for HQ half-

core (radius approximately 3.0cm) and NQ half-core (radius approximately 2.2cm) 

measurements was 16.2 µs and 16.0 µs respectively.  

 
In production logging, P-wave travel times for NQ half-core are inherently unreliable for 

several reasons: 

(i) the short path, hence small travel time, through the rock means that small 
absolute errors represent large relative errors; 

(ii) the core boats are narrow and do not always track truly along the rails of the 
Geotek system;  

(iii) the variation in thickness of lubricant (sonic gel) introduces an added 
uncertainty 
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(iv) the sonic gel increases the likelihood of relative movement of core with 
respect to core boat, at right angles to the rails, i.e., the core boat can slide 
around the core as pressure is applied by the ram. 

 
 
Given the small radius of the NQ size half core (~2.2cm) and the high velocities at Cadia 

East (average of ~5000m/s), the net delay is much larger than the actual transit time of 

interest (~4.4 µs). The intrinsic sensitivity of the Geotek transducers system is 

approximately ±0.1 µs, or ±2% for Cadia East velocities. When error in thickness is also 

taken into account, the achievable velocity accuracy for half NQ core is about ±3%, i.e. 

±165 m/s for Cadia East NQ half-core.  Therefore, achieving high P-wave velocity 

accuracy in production logging on NQ half-core is problematic.   

 

 

6.5. Petrophysical Data Processing 
 
In order to identify relationships between petrophysical data collected by the Geotek 

logger and comminution attributes, median values of petrophysical data over 

comminution test intervals were calculated in the same manner as described in Section 

5.4.  

 
After data reduction and processing, the petrophysical data were integrated with 

geological (lithology and alteration), geotechnical (RQD, fracture frequency) and assay 

(Au, Cu, S and Fe) data. Composite plots were generated, as discussed in Section 6.6 

below. Shear wave velocity was estimated from P-wave velocity and density using 

Christensen’s Equation (Entwisle and McCann, 1990). Dynamic Young’s modulus is 

estimated from P-wave modulus, as presented in Chapter 2.  
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6.6. Petrophysical Data Interpretation 
 
To investigate the relationships between petrophysical properties and metallurgical 

attributes, two meter medians of petrophysical properties for each drill hole at Cadia East 

were computed over assay intervals. Geological, geochemical, petrophysical, 

geotechnical and comminution data in each drill hole have been plotted as strip logs using 

Logview (Geological Survey of Canada) software. All variables in the strip logs for all 

drill holes have been plotted at the same scale for ease of comparison of variables 

between drill holes.  

 
This section is divided into five subsections. Each subsection aims at exploring the 

relationship between petrophysical and comminution attributes for a specific drill hole at 

Cadia East. Geological and alteration codes appearing in the composite strip logs are 

defined in Table 6.1; petrophysical and comminution parameters are defined in Table 6.2.   

 

 

      Table 6.1. Listing of definitions for key geological parameters 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Lithology Code Rock description 

E Porphyry  pyroxene feldspar 

F Porphyry feldspar 

Pf Porphyry  

M Porphyry monzonite 

P Porphyry pyroxene 

G Volcaniclastics - conglomerate 

B Volcaniclastics - bedded 

V Volcaniclastics - massive 

Vc Volcaniclastics 

U Volcaniclastics - angular 

Fb Fault breccia 

Fc Fault cataclasite 

Ft Fault - structure 

Fv Fault vein 

Bx Breccia 

A Altered not identifiable 

K Skarn 

Alteration Code Alteration code description 

Pr Regional propylitic 

Pc Phyllic cap 

Ap Albite-pyrite 

Tr Transitional sodic-propylitic 

Pi Inner propylitic 

Kp Potassic pervasive 

Sp Skarn peripheral 

NC/? Not coded 
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                Table 6.2. Listing of abbreviations for petrophysical and other parameters. 

Measured parameter Description 

Thick Core Thickness (cm) 

Density Density (g/cc) 

Vp P-wave Velocity (m/s) 

Log(SUSC) Logarithm of magnetic susceptibility 10-5SI 

Vp amplitude P-wave amplitude 

PLI Point Load index (MPa) 

Axb Ore ranking hardness 

BMWi Bond mill work index (kWh/t) 

Derived parameter Description 

YOUNG Estimated Young’s Modulus (GPa) = 0.8ρVp
2 

Vs S-wave Velocity (m/s) 

Other parameter Description 

RQD Rock quality designation 

FFREQ Fracture frequency (f/m) 

 
 
 
6.6.1. Petrophysical Data from Borehole CE082 

 
Petrophysical data were recorded on NQ size half cores (from 218m to 309m) and HQ 

size half cores (from 114m to 218m) from CE082 using the Geotek MSCL. Figure 6.4 

shows strip logs of geological, geochemical, petrophysical, geotechnical and 

comminution parameters. 2m medians of petrophysical parameters over assay intervals 

are plotted  

 
P-wave amplitude values are low and erratic from 114m to 218m in CE082 These 

measurements were taken from HQ half core and are affected by poor coupling between 

core and transducers due to dry cores and not using sonic gel between the core and the 

coreboat. P-wave amplitude measurements from 218m to 309m on NQ half core are 

higher and more consistent. The higher values are attributed to improved coupling and 

not to a change in lithology. Coupling was improved due to wetting of the core, and use 

of acoustic gel between the core and core boat and between the core boat and lower 

transducer.  

 
It should be noted that the logging procedures were still being developed during Cadia 

East petrophysical core logging hence the improvement in coupling was achieved by 

means of wetting of the core and application of sonic gel. The effect of coupling on P-

wave amplitude (Figure 3.17) was presented in Chapter 3. Unfortunately operational 

pressures dictated by comminution testing deadlines did not allow relogging of intervals 

for which petrophysical data are considered substandard.  
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There is a step change in S content starting at the depth of 172m which corresponds to the 

change fom phyllic to propylitic alteration. Magnetic susceptibility increases sharply at 

180m although there is no change in logged lithology. This increase corresponds with the 

change from phyllic alteration dominated by feldspar-pyrite to propylitic alteration that is 

characterised by the presence of magnetite and chlorite. 

 
Susceptibility values at Cadia are relatively low, even below 180m the magnetic 

susceptibility is modest in absolute terms; approximately 1900x10-5 SI (Figure 6.4), 

corresponding to less than 1% magnetite equivalent.  

 
Fe content also increases near 180m depth, albeit less markedly than the magnetic 

susceptibility values. A general correlation is evident between the logarithm of magnetic 

susceptibility and Fe grade (Figure 6.4). 

 
There is no specific correlation between petrophysical properties and comminution 

attributes in this hole. 
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The magnetic susceptibility histogram is bimodal (Figure 6.5), with high (approximately 

4200x10-5 SI) and low (approximately 25x10-5 SI) magnetic susceptibility peaks.  The 

low and high magnetic susceptibilities are characteristics of phyllic and propylitic 

alteration styles.  

 

 

Figure 6. 5. Histogram of Logarithm of magnetic susceptibility for drill hole CE082 

 

 
 
6.6.2. Petrophysical Data from Borehole CE098 

 
Petrophysical data were collected from depth of 143 to 400m for drill hole CE098. All 

logged cores were HQ-size. Figure 6.6 shows strip logs of geological, geochemical, 

petrophysical, geotechnical and comminution data for this hole.  

 
As in CE082, magnetic susceptibility is very low in the shallow phyllic zone, above 

240m. Magnetic susceptibility is generally high in propylitically-altered zones, but the 

major transitions in magnetic susceptibility do not always coincide with the visually-

logged locations of the changes in alteration style. For example, the magnetic 

susceptibility jumps at 275m, 20m below the logged transition to propylitic alteration. On 

the other hand, the interval 335-350m is logged as propylitic, but its magnetic 

susceptibility is relatively low.  

 
Phyllic and transitional alteration classes can be characterised by low density and 

susceptibility while prophylitic and skarn alteration have high density and susceptibility 

(Figure 6.6). 
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The histogram of magnetic susceptibility for drill cores from CE098 is bimodal, with high 

and low magnetic susceptibility peaks: from 143 to 275m values are about 25x10-5 SI and 

below 275m they are about 2000x10-5 SI (Figure 6.7).   

 
Fe content is somewhat elevated between 270 and 330m, coinciding with an interval of 

high magnetic susceptibility. There is a step change in S content at 318m and S 

concentration is very low at greater depths.  

 

 

Figure 6.7. Histogram of Logarithm of magnetic susceptibility for drill hole CE098 

 

A*b varies in a small range from a value of 27.5 to 52 suggesting that these rocks are 

very hard materials for crushing. P-wave velocity and logarithm of magnetic 

susceptibility show a moderate negative correlation with A*b.  

 
 
6.6.3. Petrophysical Data from Borehole CE109 

 
CE109 is a central hole covering all alteration, lithology and mineralization styles. 

Petrophysical data were collected from a depth of 117m to 498m. All drill cores were 

HQ-size. Figure 6.8 shows strip logs of geological, geochemical, petrophysical and 

geotechnical logs for this hole. There is no petrophysical data in some intervals (e.g. 146-

168m) owing to core condition (i.e. quarter size core, fault zones). During the logging of 

this hole (289-307m and 405-453.7m) an incorrect setting of the magnetic susceptibility 

sensor (point sensor instead of loop sensor) unfortunately resulted in the recording of 

many negative values which can not be interpreted. Operational pressures unfortunately 

meant that these intervals could not be relogged and for this reason there are gaps for 

magnetic susceptibility measurements in the mentioned intervals. 
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The histogram of magnetic susceptibility is again bimodal in CE109, with high and low 

magnetic susceptibility peaks (Figure 6.9). High values of approximately 4000x10-5 SI 

occur from 118-146m and below 453m. The remainder of the hole has magnetic 

susceptibility values of about 20x10-5 SI. Although no magnetic susceptibility 

measurements were recorded between 146-170m, based on the increasing iron content 

and the logged prophylitic alteration, the magnetic susceptibility values are likely to still 

be high up to 170m. 

 

Figure 6. 9. Histogram of Logarithm of magnetic susceptibility for drill hole CE109 

 

 

Bond mill work index generally does not vary in the entire drill hole. A*b is relatively 

low in propylitic (Pi) and skarn porphyry (Sp) alteration zones suggesting hard materials 

for crushing in these intervals. The logarithm of magnetic susceptibility shows a moderate 

negative correlation with A*b. 

 

 

6.6.4. Petrophysical Data from Borehole CE110 
 
Petrophysical data were collected from a depth of 214 to 454m. Drill cores were HQ-size 

above 252m and NQ-size below 252m. P-wave amplitude is more reliable in this hole as 

better coupling was achieved during logging. Figure 6.10 shows geological, geochemical, 

petrophysical, geotechnical and comminution composite logs for this hole.  
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Density is slightly elevated between 250 and 360m with an average value of 2.91g/cc 

versus an average value of 2.78g/cc from 360 to 454m. This increase may be related in 

part to sulphide mineralisation in this interval, though sulphide mineralisation also occurs 

at depths greater than 360m. The same lithology, volcaniclastic conglomerate (G) is 

encountered between 370 and 437m, but its density is lower. The alteration style is 

different for these two intervals of G with albite-pyrite (Ap) for the shallower interval 

versus mainly transitional sodic-propylitic (Tr) for the deeper zone.  

 

Magnetic susceptibility is characterized by a bimodal distribution (Figure 6.11). However 

propylitic alteration occurs only the lower portion of drill hole and in consequence the 

high magnetic susceptibility  peak has only a low amplitude. Magnetic susceptibility 

values in this hole are only slightly elevated just below 445m, which is the depth at which 

propylitic alteration is first encountered.  

 

Figure 6. 11. Histogram of Logarithm of magnetic susceptibility for drill hole CE110 

 

There is an increase in P-wave velocity from 390-425m. This increase corresponds with 

an increase in Point load index and a decrease in A*b. Although P-velocity decreases 

below 425m but A*b remains relatively invariant. Overall P-wave velocity shows a 

negative correlation with A*b. The logarithm of magnetic susceptibility also shows a 

weak negative correlation with A*b. 

 

 

 

 

Albitic and 

Transitional 

alteration 

Propylitic 

alteration 

Log (Magnetic Susceptibility) 10
-5

 SI 

 

D
a

ta
 C

o
u

n
ts

 



Chapter 6. Characterization of Comminution Behavior at Cadia East 

 

 

170 

6.6.5. Petrophysical Data from Borehole CE143 
 
This hole has a deep intersection of high grade Cu-Au mineralization associated with 

veining of monzonite and porphyry. CE143 represents a different mineralisation style 

from that intersected in the other four holes. The predominant alteration classes are 

propylitic and potassic. Petrophysical data were collected from 1103 to 1475m, 

transecting the high grade quartz vein Au mineralization. All logged core sections were 

NQ-size. Figure 6.12 shows the geological, geochemical, petrophysical and geotechnical 

logs for this hole.   

 
Petrophysical properties are unreliable across the intensely fractured interval from 1140-

1155m, where the core is badly broken. Therefore these sections of data are removed. 

During the logging of this hole, an incorrect setting of the magnetic susceptibility sensor 

(point sensor instead of loop sensor) resulted in the recording of many negative values 

which cannot be used. Thus, sections of this hole were re-logged for magnetic 

susceptibility. Magnetic susceptibility data is missing over two intervals: 1140-1165m 

and 1430-1465m. 

Both Au and Cu grade increase in potassic alteration at 1313m. S is anomalous between 

1324m and 1332m but the alteration style in this interval is not known, but is inferred to 

be potassic alteration. 

 
Magnetic susceptibility is generally high in this drill hole, and reaches a maximum within 

the interval logged as volcaniclastics (V; 1260-1310m); the alteration type is not specified 

over most of this depth range but is logged as propylitic between 1260 and 1270m. 

However within these intervals magnetite mineralization was observed by the site 

geologist. Susceptibility has a moderate positive correlation with Fe% in this hole. 

Overall susceptibility in zones of propylitic and potassic alteration in this hole shows a 

wider range of variability (i.e. changes from 0.0001 SI to 0.1 SI) as represented in Figure 

6.13. 

 
Bond mill work index is generally high and invariant in entire hole and has no correlation 

with petrophysical parameters. P-velocity and density only show a weak negative 

correlation with A*b 
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Figure 6.13. Histogram of Logarithm of magnetic susceptibility for drill hole CE143 

 

 

 
6.7. Petrophysical Signatures of Cadia East 
 
Given its geological characteristics (disseminated sulphide mineralization in Ordovician 

volcaniclastics), the Cadia East ore system is unlikely to produce consistent strong 

physical property contrasts.  For any one parameter there is considerable overlap of 

property ranges between lithologies. Figure 6.14 shows medians and spreads for density, 

P-wave velocity and the logarithm of magnetic susceptibility within each litho-alteration 

classes from all five drill holes. The individual lithologies cannot be uniquely identified 

based on a single parameter.  

 
However as presented in Section 6.6, magnetic susceptibility exhibited a bi-modal 

distribution in holes CE082, CE098, CE109, and CE110. The high and low susceptibility 

litho-alteration classes can be identified in Figure 6.14c, which shows the medians and 

spreads for the logarithm of susceptibility within each class. Elevated susceptibility at 

Cadia East is associated with inner propylitic alteration (Pi) and with skarn peripheral 

alteration (Sp). It should be noted that rocks with potassic alteration have shown both 

high and low susceptibility, but most of the samples with high susceptibilities were 

present in CE143 only. 
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Figure 6. 14. Medians and spreads in average (a) P-wave velocity, (b) density and (c)  magnetic susceptibility 
(log scale, 10-5 SI) over 2m assays splits from drill holes CE082, CE098, CE109, CE110 and CE143, 
classified by litho-alteration type. Pink square = median, black bar = range (16th – 84th percentile), grey 
histogram = number of samples for each litho-alteration type. 

 

 

There is a weak positive correlation between magnetic susceptibility and P-wave velocity 

in all holes. Likewise, a weak positive correlation exists between magnetic susceptibility 
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density of 5.18 g/cc (Schön, 1996) hence a high P-wave modulus of 284GPa. However 

due to low concentrations of magnetite in Cadia East drill core (at most 3%), the increase 

in P-wave modulus cannot be attributed to presence of magnetite only. 

 
The increase in P-wave modulus is more likely due to minerals associated with magnetite 

such as calcite, chlorite and feldspar.  Although the relationship between susceptibility 

and P-wave modulus is not strong a general trend is evident. Thus magnetic susceptibility 

might be useful both as an indicator of alteration style and as an indicator of elastic 

properties.  
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Figure 6. 15. Cross-plot of P-wave modulus and logarithm of magnetic susceptibility, grouped according to 
alteration styles in all five boreholes  

 
 
 

6.8. Comminution Modeling 
 
Different geometallurgical modeling approaches (as described in Chapter 4) are 

investigated in this section. As discussed in Chapter 4, it is worthwhile to investigate 

“universal” models as a starting point to determine is a simplistic approach has merit. 

Correlations between petrophysical properties and comminution attributes for 148 test 

samples from all drill holes were investigated. It should be noted that in some 

comminution intervals petrophysical measurements were not available due to issues 

explained in previous section (Section 6.6).   
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Figure 6.16 shows the scatter plots of petrophysical properties (P-wave velocity, density 

and susceptibility) against comminution attributes (A*b and BMWi) when all 

comminution dataset are considered. There is no clear relationship between any of 

petrophysical properties and BMWi. However, a general negative trend is evident 

between P-wave velocity and A*b (Figure 6.16f). There is a tendency for an increase in 

P-wave velocity to correspond with a reduction in A*b value and consequently for the 

rock to become harder to crush. 

 
Figure 6.16e shows a weak negative correlation between magnetic susceptibility and A*b 

for all comminution test samples. It should be noted that some susceptibility 

measurements in comminution intervals are absent as explained in Section 6.6. Magnetite 

content at Cadia is generally low in absolute terms, and certainly low in comparison to 

Ernest Henry. 

  
Magnetite is normally associated with propylitic alteration and high susceptibility rock 

samples which are propylitically altered have low A*b (i.e. hard to crush). This trend is 

the reverse of that observed at Ernest Henry (Chapter 5). 
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Figure 6.16. Scatter plot of JKMRC estimated BMWi versus medians of (a) density, (b) logarithm of magnetic 
susceptibility and (c) P-wave velocity for all comminution test samples. Also scatter plot of A*b versus 
medians of (d) density (e) logarithm of magnetic susceptibility and (f) P-wave velocity for all comminution test 
samples. The red line in each panel is a linear regression fit to data which has been shown even when 
correlation coefficients are poor.  
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A nonlinear regression fit slightly increases the correlation between P-wave velocity and 

A*b (Figure 6.17a). Correlation between P-wave modulus (as described in Chapter 2) and 

A*b also investigated here. There is a weak negative nonlinear relationship between P-

wave modulus and A*b (Figure 6.17b). A reciprocal transformation of P-wave modulus 

slightly increases its correlation with A*b (Figure 6.17c). The root mean square error 

(RMSE) between reciprocal of P-wave modulus and A*b is 6.60, while the RMSE value 

between P-wave velocity and A*b is 7.25. 
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Figure 6. 17. Scatter plot of A*b versus (a) P-wave velocity (b) P-wave modulus and (c) reciprocal of P-wave 
modulus for all comminution test samples. The red line is a regression fit to data 
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Detailed analysis of Figure 6.17a shows that although P-wave velocity in propylitic 

altered samples varies greatly (from 4000m/s to 6000m/s), A*b is almost constant (30±5).  

One explanation for small dynamic range of A*b values at Cadia East is the fact that A*b 

measurements are based on “survivor” particles after crushing the rock samples and that 

these materials are more competent at the crushed size.  

 
The large variation of P-wave velocity can to some degree be attributed to factors such as 

variations in the elastic properties of the rock. Figure 6.18 explains the variability of P-

wave velocity theoretically to some extent. For a given stress, the P-wave velocity will 

change according to the value of Poisson’s ratio (equation 6.1). Density can be assumed 

as invariant because even large variation of density does not greatly affect the velocity 

according to equation 6.1.  

 

)21)(1(

)1(E
Vp

σ−σ+ρ

σ−
=         (6.1) 

 

where Vp is the P-wave velocity, ρ is density, E and σ are Young’s modulus and Poisson 

ratio respectively. 
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Figure 6.18. P-velocity versus the ratio of stress to strain (i.e. Young’s modulus) for different values of 
Poisson ratio (modified after Hatherly et al., 2003) 

 

As presented in Figure 6.18 the materials with Young’s modulus of 60GPa, represent a 

wide range of P-wave velocity i.e. from 4000m/s to approximately 6000m/s. This large 

variation is attributed to variation of Poisson ratio from 0.1 to 0.35.  
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Medians and spreads of P-wave velocity, density, and susceptibility for 2m intervals of 

drill cores corresponding to comminution intervals were investigated. It is evident that 

petrophysical properties recorded at 9cm intervals have a high degree of variability within 

individual 2m section of drill cores (Figure 6.19). P-wave velocity in most 2m intervals 

varies by approximately 1000m/s (Figure 6.19a) which is a high level of variability for P-

wave velocity and beyond the degree of variability that can be explained by issues 

associated with data acquisition. Density has also shows a high level of variability and in 

some intervals there is ±0.3g/cc variability (Figure 6.19b). Local variability of 

susceptibility is only significant within high susceptibility intervals (Figure 6.19c). The 

significant variability of petrophysical properties is representative of real small-scale 

interval variability within each comminution interval and could in fact be responsible for 

the poor correlation between petrophysical properties and comminution attributes. 
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Figure 6.19. Medians and spreads of P-wave velocity (a), density (b) and logarithm of magnetic 
susceptibility (c) over comminution intervals for each drill hole from Cadia East. Note that 
susceptibility measurements were not recorded on some intervals.  

 

In Figure 6.16 the general correlations between P-wave velocity, magnetic susceptibility 

and A*b for all Cadia East comminution test samples were presented. The correlation 

between A*b and P-wave modulus (or estimated Young’s modulus) is relatively stronger 

than the correlation between A*b and P-wave velocity (Figure 6.17). The following 

a) 

 

b) 

 

c) 
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formula (equation 6.2) for A*b in terms of susceptibility and P-wave modulus was 

derived via multiple regression. The relative error of prediction is 13.2%. 

 

A*b=23.96-2.14 log(susceptibility)+1017.68(P-wave modulus) -1     (6.2) 

 

In order to assess the relative performance of neural network modeling  for A*b 

prediction, a neural network (as described in Chapter 4) was designed and trained for 

prediction using susceptibility and P-wave modulus. A network structure with two nodes 

in the hidden layer was found as the best structure in terms of performance when 

compared with ten different structures using Statistica Neural Network software. The 

relative error of prediction reduced by 1.4% in comparison to A*b values estimated via 

multiple regression. Measured and predicted A*b are compared in Figure 6.20. Although 

there are some large discrepancies on a point by point basis, the overall trends in the 

predicted and measured A*b values are very similar for both predictions. A perfect match 

between measured and predicted attribute should not be necessarily expected, given the 

inherent uncertainty in the A*b determinations and in the petrophysical measurements.  
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Figure 6.20. Comparison between measured A*b and the A*b values predicted using multiple regression 
(MR) of P-wave modulus and logarithm of magnetic susceptibility (equation 6.2) and A*b predicted using 
neural network (NN). The samples originating from each drill hole are plotted in depth order.  

 

Figure 6.20 indicates that A*b can be predicted fairly well based on petrophysical 

properties. However similar global modeling of BMWi using petrophysical properties 

produced an unsatisfactory result. A multiple regression of magnetic susceptibility, 

density, P-wave velocity and P-wave modulus against BMWi produced a very poor 

correlation (R2=0.03).  
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Data classification schemes presented in Chapter 4 can be used to assess whether data 

classification can improve prediction of both BMWi and A*b. As stated in Chapter 4, the 

choice of appropriate data classification for geometallurgical purpose depends on ore 

metallurgical variability. Given the small range in variability of comminution parameters 

at Cadia East (Figure 6.1), definition of geometallurgical classes based on the 

petrophysical (PC) or geological (GC) approach were not anticipated be effective 

methods for development of models. Nevertheless all four approaches for 

geometallurgical data classification and modeling presented in Chapter 4 are tested in 

turn in the following subsections.  

 

 

6.8.1. Comminution Modeling: GC Approach  

 

The relationship between petrophysical properties and metallurgical attributes of Cadia- 

East based on geological classes is presented here. There are too many litho-alteration 

classes defined by site geologists (Table 6.1) to enable effective litho-alteration 

classification using the available comminution sampling. Although amalgamation of 

lithological classes (i.e. all volaniclastics in one class) may simplify the number of classes 

but does it not necessarily help in characterizing comminution behavior. For this reason 

alteration classes alone were tested here. The comminution test samples were grouped 

into alteration classes.  

 
Table 6.3 records the mean and standard deviation of A*b and BMWi within each 

alteration class. Overall there is little variability of A*b and BMWi between the alteration 

classes. Figure 6.21 is a box and whisker plot showing mean values of A*b and BMWi 

together with standard deviation for each alteration class. The comminution properties 

overlap in all alteration classes.  This immediately suggests that there is no clear 

relationship between alteration classes and comminution attributes. Moreover Figure 6.24 

reinforces the fact that a change in ore geological characteristics at Cadia East does not 

have a significant impact on metallurgical variability.  If only mean values of properties 

for each class are considered then it might be possible to broadly characterize alteration 

classes based on comminution properties. However, the observed differences between 

class average for A*b and BMWi are still very small and only marginally greater than the 

inherent uncertainties in the measured values.  

 
The relationships between petrophysical properties and comminution attributes were 

investigated within each alteration class using regression analysis. A moderate negative 
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correlation (R2=0.55) between P-wave velocity and A*b was found for samples of “Pc” 

alteration class (Figure 6.22a). Similarly a good negative correlation (R2=0.79) was also 

established between P-wave velocity and A*b for samples of “Ap” alteration class after 

rejecting outliers (Figure 6.22b). Multiple regression analysis of P-wave modulus and the 

logarithm of magnetic susceptibility against A*b for the remainder of alteration classes 

was not superior to the universal model (equation 6.2). BMWi showed no good 

correlation with petrophysical properties within any alteration class. 

 

Table 6.3 Mean and standard deviation of comminution parameters (A*b and BMWi) in each alteration class 
for test samples from all five drill holes of Cadia East. 

Comminution 

Parameter 

Pi Class 
(51 samples) 

Ap Class  
(16 samples) 

Sp Class 
 (8 samples) 

Tr Class 
(9 samples) 

Pc Class  
(22 samples) 

Kp Class 
(19 samples) 

A*b 29.8 (5.1) 38.6 (7.4) 31.6 (4.3) 39.2 (8.5) 39.4 (7.5) 34.5 (8.3) 

BMWi 16.7 (1.6) 15.4 (0.8) 17.4 (1.8) 16.7 (0.6) 16.4 (1.1) 17.2 (1.3) 
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Figure 6.21. Scatter plot of mean A*b and Bond mill work index for six different alteration classes at Cadia 
East. The blue bars indicate the standard deviation of comminution attributes. 
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Figure 6.22. Scatter plot of P-wave velocity versus A*b for phyllic cap (a) and albite-pyrite (b) alteration 
classes.  The red line is a linear regression fit to data. The blue lines are 95% confidence intervals and the 
dashed lines are regression prediction limits. Outliers rejected during model development for the albite-pyrite 
alteration class are specifically highlighted in (b).   

 

 

 

6.8.2. Comminution Modeling : PC Approach 
 
In order to better predict A*b and BMWi using petrophysical properties the samples were 

divided into groups or classes based on petrophysical properties. Three clusters were 

retained as a result of cluster analysis (described in Chapter 4) using three petrophysical 

properties (i.e. density, susceptibility and P-velocity).  

 
A bar chart offers a way to assess the individuality of the selected clusters. The 

normalized mean values of each parameter within each cluster are presented in Figure 

6.23. Each parameter was normalized based on its minimum and maximum using 

equation (5.2) so that all three normalized petrophysical properties range between zero 

and one.   

 
As can be inferred from Figure 6.23, Cluster 1 is well separated from others by virtue of 

higher P-wave velocity and susceptibility and medium density. Therefore, Cluster 1 

material is likely to be relatively hard to crush. Cluster 2 is characterized by high density 

and low P-wave velocity and medium susceptibility. Therefore, Cluster 2 should 

represent rocks that might be relatively softer to crush. Cluster 3 is separated from other 

clusters by low density and low susceptibility and medium P-wave velocity.  

 

a) 

 
b) 
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Figure 6. 23. Bar chart of  normalized petrophysical property means for three petrophysical clusters  

 

 

Table 6.4 shows the mean and standard deviation of comminution test results within each 

petrophysical cluster. The comminution parameters have little variability within each 

cluster. Mean BMWi in all classes is almost identical. Mean A*b value for Cluster 1 is 

only slightly lower than the mean A*b for the other two clusters. Multiple regressions of 

petrophysical properties against comminution parameters (A*b and BMWi) within each 

cluster did not yield an improved prediction when compared with global models (Section 

6.8). Multiple regression of the logarithm of magnetic susceptibility and P-wave modulus 

against A*b within each class did not significantly improve the relative error of prediction 

of the A*b model when compared with equation 6.2 except in Cluster 1 (relative error of 

9.3% c.f. 13.2% for the global model). 

 

Table 6.4 Mean and standard deviation of comminution parameters (A*b and 
BMWi)  for comminution test samples in each petrophyscal cluster. 

Comminution 

Parameter 

Cluster 1 

(38 samples) 
Cluster 2  

(22 samples) 
Cluster 3 

(62 samples) 
A*b 29.8 (3.8) 36.8 (8.6) 35.5 (7.5) 

BMWi 16.7 (1.3) 16.5 (1.5) 16.5 (1.1) 

 

 

6.8.3. Comminution Modeling : CC Approach 
 
At Cadia East, modelings based on GC (Section 6.8.1) and PC (Section 6.8.2) approaches 

were ineffective since they did not adequately discriminate distinctive comminution 

populations. The ineffectiveness of such approaches is mainly attributed to the small 

variability of ore comminution behavior. In this section comminution classes are created 

purely based on comminution test results (i.e. A*b and BMWi) and then the relationships 

between petrophysical properties and created comminution classes are examined. Ideally 
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each comminution class represents a specific processing behaviour based on variability of 

ore crushing and grinding.   

 
If a reliable relationship can be established between petrophysical properties and 

comminution classes, then petrophysical properties could be used for prediction of 

comminution behavior (classes) in intervals were no comminution tests were conducted.  

 
A*b itself is an ore ranking parameter, the higher the value the softer the rock would be 

for crushing. Bond mill work index (BMWi) is a quantitative measure of ore grindability. 

A variation of 0.5kWh/t in BMWi could be significant for an operating mill. The mean 

values of A*b and BMWi for Cadia East comminution test samples are 34.4 and 16.7 

kWh/t respectively. When compared with many other mining operations (e.g. Ernest 

Henry) these values indicate that the ore at Cadia East is comparatively hard both in terms 

of crushing and grinding. Nonetheless for the purpose of this study, materials are 

classified on the basis of A*b and BMWi as “hard” or (relatively) “soft”. 

 
A scatter plot of A*b versus BMWi for Cadia East samples shows no specific relationship 

between these two attributes and no obvious visual groupings of data points (Figure 

6.24a). A cluster analysis approach based on A*b and BMWi did not produce distinctive 

comminution classes due to the limited variability of BMWi and A*b. In other words, 

automatic classification based on A*b and BMWi is problematic at Cadia East. As an 

alternative a simple approach for data classification was adopted (Chapter 4). The data 

were classified based on variability of A*b and BMWi around the respective mean values 

for the entire population. 

 
Four classes were defined based on A*b and BMWi (Figure 6.24b). These classes can be 

broadly interpreted as “hard to crush and hard to grind” (G2), “Soft to crush but hard to 

grind” (G3), “hard to crush but soft to grind” (G1) and “Soft to crush and soft to grind” 

(G4). “Soft” in the Cadia context should be interpreted as “relatively soft”.  Table 6.5 

represents the mean and standard deviation of comminution attributes (A*b and BMWi) 

in each class.  
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Figure 6.24. Cross-plots of A*b  versus Bond mill work index (BMWi) for all comminution samples from 
Cadia East (a) and a scatter plot of comminution data grouped by colors representing comminution classes (b) 
as defined in the text (G1 to G4). G1,G2,G3 and G4 are colored by red, green, blue and pink respectively 

 

 

From Table 6.5, it is also evident that G1 and G2 classes are harder to crush (mean A*b 

value of 29.2 and standard deviation of ~2.75) than G3 and G4 classes (mean A*b value 

of 42.6 and standard deviation of 8.2). Likewise G2 and G3 classes are harder to grind 

(mean BMWi value 17.75 kWh/t and standard deviation of 0.95) than G1 and G4 classes 

(mean BMWi value of 15.7 kWh/t and standard deviation of 0.65). 

 

 

        Table 6.5 Mean and standard deviation of comminution parameters (A*b and BMWi) in each class for 
test samples from all five drill holes of Cadia East. 

Comminution 

Parameter 

G1 

(38 samples) 
G2  

(41 samples) 
G3 

(20 samples) 
G4 

(31 samples) 
A*b 29.8 (2.9) 28.6 (2.6) 43.4 (8.1) 41.8 (8.3) 

BMWi (kWh/t) 15.7 (0.6) 17.8 (0.9) 17.7 (1.0) 15.7 (0.7) 

 

 

Means and standard deviations for petrophysical properties and geochemical assays were 

computed for the comminution classes using LogTrans software followed by prediction 

of classes for samples without comminution data.  Selection of properties was based on 

trial and error during training to achieve the best suite of properties in terms of accuracy 

of prediction in individual control holes. Initially in each individual hole at Cadia, the 

prediction of classes was assessed based on training using data from the same hole to 

check whether parameters can be used for prediction. The population of each 

comminution class within each hole is something that needs to be carefully considered in 

each case as training classes with few members may significantly distort the prediction 

results.  

b) a) 
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Means and standard deviations of petrophysical parameters (P-wave Velocity, P-wave 

modulus, density and susceptibility) and geochemical attributes (Fe, S, Cu and Au) were 

calculated for comminution classes. There is considerable overlap of the spreads from one 

class to another, for all petrophysical and geochemical parameters. Therefore the 

individual class cannot reliably be uniquely identified on the basis of a single parameter 

but combination of parameters can increase the chance of correct prediction of the 

comminution classes. Although there is considerable overlap for P-velocity for all four 

classes, discrimination of two broad comminution classes (G1/G2 versus G3/G4) based 

on P-velocity is possible if the average in each class is considered (Figure 6.25a). This 

indicates potential for prediction of A*b from P-wave velocity, as per Figure 6.16f. 

Classes G1 and G2 are characterized as hard to crush and have correspondingly higher P-

wave velocity. 

 
Statistics for density (Figure 6.25b) shows that the G4 class is relatively denser than other 

classes, this could be due to higher proportions of sulphide mineralization for G4 samples 

which is supported by the high sulphur content for these samples as well (Figure 6.25c). 

Geological information based on visual observations from drill cores supports the fact 

that G4 samples are mineralized with pyrite, hence higher density and sulphur content. 

Density separates G1/G4 from G2/G3, so density offers some potential for predicting 

BMWi. 
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Figure 6.25. Averages and standard deviation of  (a) P-wave velocity,  (b) density and (c)  sulphur content in 
comminution classes in five holes of Cadia East (CE082, CE098, CE109, CE110 and CE143). Black square 
= Average, black bar = standard deviation, grey histogram = number of samples for each comminution 
class. 

 

 

The minimum distance algorithm (Chapter 4) was applied to petrophysical (P-wave 

velocity, P-wave modulus, density and susceptibility) and assay (Fe and S) data in order 

to predict the comminution classes using the LogTrans program (Fullagar et al, 1999).   

 
In order to test the performance of the minimum distance classification technique in a 

“blind” hole, one hole was treated as an independent hole and interpreted based on a 

training set derived from the remaining holes.  

 
The accuracy, based on the number of correct class predictions in each drill hole (CE082, 

CE098, CE109, CE110 and CE143) was greater than 60%.  The classification results for 

CE082 and CE110 are presented in Figures 6.26 and 6.27 respectively. The comminution 

classes were predicted with an overall performance of 68% and 94% respectively. In 

addition to providing a prediction for the comminution test intervals, the algorithm 

predicts comminution classes in intervals between test samples. Thus comminution class 

is predicted continuously over depth ranges where petrophysical data and assays are 

available. 
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Figure 6.26. Prediction of comminution classes in drill hole CE082 (control hole) using LogTrans. The first 
column shows that comminution classes determined for training set. The second column is the predicted 
comminution classes based on petrophysical and assay data shown in the remaining logs. Note that P-
modulus is denoted with M.  LogTrans window length during fluster analysis was 0.25m.  
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Figure 6.27. Prediction of comminution classes in drill hole CE110 (control hole) using LogTrans. The first 
column shows that comminution classes determined for training set. The second column is the predicted 
comminution classes based on petrophysical and assay data shown in the remaining logs. Note that P-
modulus is denoted with M.  LogTrans window length during fluster analysis was 0.25m. 

 

 

In order to test the performance of minimum distance classification technique in a “blind” 

hole, one hole was tested as an independent hole and was interpreted based on a training 

set derived from the remaining holes. Each hole was treated as an independent hole in 

turn, and training was conducted on the other four holes. Table 6.6 shows the 

performance of prediction in each case. The performance of prediction for drill hole 

CE098 was poor. The main reason for this poor prediction is the fact that data from 

CE098 is very important in defining an effective training set.  
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    Table 6.6. LogTrans performance in prediction of metallurgical classes in independent drill holes 

Training Holes Prediction Hole Performance (%) 
CE098, CE082, CE109, CE110 CE143 56 

CE098, CE082, CE109, CE143 CE110 55 

CE098, CE082, CE143, CE110 CE109 62 

CE098, CE143, CE109, CE110 CE082 68 

CE143, CE082, CE109, CE110 CE098 44 

 

In order to assess the performance of the neural network technique for prediction of 

comminution classes, a similar approach to the minimum distance algorithm presented 

above was carried out.  

 
Table 6.7 summaries the results of prediction of comminution classes in independent 

holes using neural network technique. The network in each case was developed based on 

data from training holes. In each case the best network structure was found when 

compared with ten different structures. A network structure of 6x2x4 indicates that 6 

parameters are used as input to predict 4 comminution classes (output) based on 2 nodes 

in the hidden layer.  

 
The number of node in hidden layer, although may improve the prediction performance 

of training set, however it does not necessarily have a better prediction performance for 

the test set. For example in prediction of CE143, a network structure of 6x3x4 showed a 

prediction performance of 74% for  training set but a poor prediction for test set (24%). 

  
Comparison of Tables 6.7 and 6.6 suggest that neural network performance for three 

holes (CE143, CE110 and CE098) is better than minimum distance algorithm. However 

given the time required for design and training of a network, application of minimum 

distance algorithm is significantly faster and less complicated than the neural networks 

approach. Neural networks can still be used as an alternative modeling approach for 

prediction of comminution classes. This comparison illustrates the trade-off that exists 

between the time available for data processing and the accuracy required in prediction of 

comminution behavior. 

 

 

Table 6.7. Neural networks performance in prediction of metallurgical classes in independent drill  holes 

Training Holes Prediction Hole NN-Structure Performance (%) 
CE098, CE082, CE109, CE110 CE143 6x2x4 66 

CE098, CE082, CE109, CE143 CE110 6x13x4 77 

CE098, CE082, CE143, CE110 CE109 6x12x4 59 

CE098, CE143, CE109, CE110 CE082 6x8x4 63 

CE143, CE082, CE109, CE110 CE098 6x13x4 51 
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6.8.4. Comminution Modeling : CPC Approach 
 
Integration of comminution parameters and petrophysical attributes and subsequent 

classification based on cluster analysis approach did not improve the classification 

conducted in section 6.8.3. This was mainly due to small variability of BMWi and A*b.  

 

 

6.9.  Mill Throughput prediction 
 
Estimates of A*b and Bond mill work index enable prediction of mill throughput. An 

accurate universal prediction of BMWi was not possible for Cadia East samples. 

However comminution behaviour both in terms of crushing and grinding is characterized 

in section 6.8.3. Modeling based on comminution classes (Section 6.8.3) could therefore 

provide prediction of mill throughput for a given processing circuit.  

 
The mill throughput model was developed by Kojovic (2009) using a set of engineering 

equations (similar to equations in Section 5.9). The equations for Cadia East is based on 

the existing Cadia Hill processing circuit (Figure 6.28), consisting of open circuit Semi 

Autogeneous Grinding (40 ft x 22 ft, 20MW installed power) followed by two closed-

circuit ball mill (22 ft x 34 ft, 9MW installed power). The throughput model assumes a 

fixed target grind size (P80) of 150 microns and fixed feed size (F80) of 105mm. Studies 

by Kojovic (2009) indicated that mill throughput estimates based on engineering 

equations are consistent with actual throughput for Cadia Hill samples.    

 

 

 

Figure 6. 28. Schematic diagram of Cadia Hill processing circuit (Kojovic, 2009) 
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Mill throughput was estimated for the comminution classes created in Section 6.8.3. The 

“G4” and “G1” classes have high throughput of 1884 t/h and 1828 t/h respectively. The 

samples of both “G1” and “G4” classes require relatively low energy for grinding (Table 

6.5) and although “G1” samples are harder than “G4” in terms of crushing, the 

throughput estimation is not significantly affected. Also “G1” and “G2” samples both are 

hard in term of crushing whereas “G1” is easier for grinding than “G2”. “G2” and “G3” 

have lower throughput of 1626 t/h and 1696 t/h respectively because these classes require 

more energy for grinding (Table 6.5). Thus throughput is mainly governed by ore 

grindability, and little affected by crushability.  

 
Given that the ores at Cadia East are hard both in terms of crushing and grinding, 

increasing the processing plant capacity to ~26Mtpa at Cadia Hill may be difficult. The 

relatively “soft” samples in terms of crushing and grinding are “G4” samples with 

average A*b and BMWi values of 41.8 and 15.7 kWh/t respectively. Expected mill 

throughput for these samples is 1884 t/h and even if the processing plant operates 

continuously throughout the year, the ore processing rate will be ~16Mtpa. Estimated 

throughput is based on the existing Cadia Hill processing circuit (Figure 6.28). In reality 

not all Cadia East material will behave like “G4” samples and there are harder 

components (e.g. G2) as well. Moreover shutdown hours for maintenance of processing 

plant also need to be considered. Therefore in order to achieve the required capacity 

(26Mtpa), there will be a need for a major upgrade to current Cadia Hill processing plant 

to meet predicted throughput projections. Figure 6.29 represents predicted comminution 

classes in CE098 as an independent hole with statistics derived from other four holes (i.e. 

CE082, CE109, CE110 and CE143). Mill throughput (TPH) is predicted for CE098 for 

each inferred class using the class measured A*b and BMWi presented in Table 6.5. 
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Figure 6.29. Prediction of comminution classes in independent drill hole CE098 using LogTrans. The first 
column shows the comminution classes. The second column is predicted comminution classes based on 
petrophysical and assay data.  Note that P-modulus is denoted with M and estimated mill throughput is 
denoted with TPH. 
 

 

In Chapter 5 mill throughput optimization using Alruiz et al (2009) approach was 

presented for Ernest Henry. Their approach for representation of mill throughput 

variability within comminution classes (Section 6.8.3) is applied here for Cadia East. 

Figure 6.30 shows the predicted mill throughput in all five drill holes of Cadia East. The 

drill holes here are assumed as proxy to mineable volumes and four comminution classes 

representing different ore types. The proportion of each comminution class that is 

assumed to be fed to the plant is shown for each analyzed drill hole. As can be seen from 

Figure 6.30, the predicted throughput at drill hole CE143 is lower compared to other 
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holes. At CE143 there is a high proportion of “G2” class which is hard to grind and crush 

(Table 6.5). One approach to reduce the mill throughput variability can be appropriate 

blending (Alruiz et al, 2009) of “clusters” before processing. As stated in Chapter 5, 

although this illustration is based on drill holes however it could provide a basis for 

effective plant optimization at mine sites.  
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Figure 6.30. Proportions of comminution classes and predicted mill throughput. The drill holes are sorted 
according to proportion of G2 which is hard in terms of crushing and grinding.  

 
 
 
 
 

6.10. Concluding Remarks 
 

A Geotek multi-sensor core logger has been successfully deployed at Cadia East. After 

establishment of procedures and protocols, 1442m of high resolution core imagery and 

detailed petrophysical data were recorded over selected intervals from five drill holes.  

The Cadia East ore is very hard both in terms of crushing and grinding also with very 

small dynamic range in A*b and BMWi values. Given the nature of the geological 

environment, and the relatively low sulphide contents at Cadia East, strong petrophysical 

contrasts were not expected. Therefore Cadia East is a challenging site for 

geometallurgical investigation and development of comminution models. 

 
The single most important determinant of data quality is the size of the core. At Cadia 

East the bulk of the material presented to the logger was NQ half-core; this is marginal 

for reliable velocity and density determinations. In addition, the splitting of the core was 

poor over many intervals, with the result that the logger was often measuring wedges of 
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core, not half-core of consistent size. Variability in the “feed” for the logger translates 

into greater uncertainty in the petrophysical data. 

 
Fundamentally, NQ half-core should be avoided if at all possible. If NQ half-core is the 

only material available, then the core boats should be re-designed, to prevent rotational 

sliding of the core, and preferably to permit direct contact between the fluid-filled roller 

and the underside of the core. The errors in production measurements across HQ half-

core will probably be no larger than NQ half core, since the HQ core boat is wider and the 

core is heavier so there is less likelihood of significant rotation of one with respect to the 

other.  

 
A number of interesting observations have been made on the basis of the Geotek data. For 

example a bimodal distribution of magnetic susceptibility is evident in holes CE082, 

CE098, CE109, and CE110. Magnetic susceptibility showed a negative correlation with 

ore crushability (A*b), this was the reverse of the trend observed at Ernest Henry. The 

high magnetic susceptibility samples at Cadia East are associated with propylitic or skarn 

alteration that have low A*b (i.e. hard to crush).  Magnetic susceptibility can be useful as 

a tool for geometallurgical domaining at Cadia East. Magnetic susceptibility 

measurement is cheap, fast, quantitative and non-destructive. 

 
BMWi can not be modeled accurately based on petrophysical properties using multiple 

regression or neural networks. Although both petrophysical properties and BMWi are 

controlled to some extent by mineralogy, the lack of a clear relationship between BMWi 

and petrophysical properties may be explained by the way that these properties are 

measured. The petrophysical properties are measured on intact rock samples while BMWi 

is measured on composite ground samples from 2m of core  Errors in estimation of 

BMWi and petrophysical properties are factors which may be contribute in poor 

correlation between these properties.  

 
Several different comminution modeling approaches were investigated. First a universal 

model was sought, for all the data. A global correlation has been recognized between P-

wave velocity and A*b, a measure of crushability. Similarly, a weak global correlation 

has been observed between susceptibility and A*b.  A multiple regression of P-wave 

modulus and magnetic susceptibility based on all comminution test samples can be used 

for prediction of A*b with a relative prediction error of 13.2%. A neural network 

technique for prediction of A*b using the same parameters achieved a relative prediction 

error of 11.8%.  
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Geometallurgical class definition based on geological (GC) or petrophysical properties 

(PC) did not show a significant comminution contrast between the classes in terms of ore 

crushability and grindability. This was mainly attributed to small dynamic range of both 

A*b and BMWi. To characterize comminution behavior more effectively, comminution 

classes were created based on A*b and BMWi (CC approach).  Four comminution classes 

were defined based on variability of A*b and BMWi around the respective mean values 

for the entire population. Created classes were linked to petrophysical (P-wave velocity, 

density, P-wave modulus, magnetic susceptibility) and geochemical attributes (Fe and S). 

  
The performance of the minimum distance algorithm and neural network approach for 

prediction of comminution classes were assessed. Neural network showed better 

performance (~10%) than minimum distance algorithm in prediction of comminution 

classes in three holes (CE143, CE110 and CE098). Given the time required for design 

and training of a network, application of the minimum distance algorithm is probably 

more productive than the neural networks approach.  Nevertheless neural network 

technique can be used as an alternative to conventional approaches such as minimum 

distance algorithm. 

 
Given that the ores at Cadia East are almost uniformly hard in terms of comminution, 

increase of processing plant capacity to ~26Mtpa at Cadia Hill can be difficult. Estimated 

mill throughput for “relatively” soft samples is 1884 t/h which translates to ~16Mtpa if 

shutdown hours for maintenance of equipments are not considered. Hence increasing the 

processing plant capacity to 26Mtpa as planned by Newcrest Mining, will certainly need 

an upgrade to current Cadia Hill processing plant.  

 



 

 

CHAPTER 7__________________________________________________ 

 
Prediction of Petrophysical Properties from Core Imagery 

 
 
7.1. Introduction 
 
Photographs and digital images of hand samples, core slabs and drill cores are often 

captured by geologists as a record of rock to which their observations of lithology, 

mineralogy, texture and alteration refer. Capturing and archiving core photographs have 

been adopted as an essential step during core material handling at most Chilean mines 

(Cardenas, 2009). This is especially helpful in cases where whole cores need to be 

destroyed for mechanical testing or assaying. The technology to acquire high quality 

digital core images is now available. The cost and logistics for deployment of core image 

acquisition systems at mine sites are very small compared with other costs in a mining 

operation (e.g. exploration drilling).  

 
There are many applications for core image analysis, ranging from mineralogical to 

geomechanical studies. Lemy et al, (2001) have investigated the potential applications of 

digital core images for geomechanical purposes and have presented an image processing 

algorithm for determination of core recovery, and detection of breaks on drill cores, hence 

determination of RQD. 

 
Core images can also be used for automatic classification of the volumetric proportions of 

minerals and rock texture using sophisticated image processing software e.g. Definiens 

(http://www.definiens.com). Automated estimates of mineral abundances and texture can 

be used to characterize ore processing behavior (Berry, 2009). 

 
Within the AMIRA P843 project, core images from Cadia East and Ernest Henry were 

captured using the Geotek MSCL system (Chapter 3). The core images from Cadia East 

were not of sufficient quality for image analysis and classification, as discussed in 

Chapter 3. However, an upgrade to the MSCL camera system prior to the start of Ernest 

Henry core logging made it possible to acquire high quality images for image analysis 

and processing.  

 
The Ernest Henry core images were analyzed and then classified via an object oriented 

approach (Berry, 2008a) to map occurrences of the key mineral phases. The classified 
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core images from Ernest Henry have been used extensively during the P843 project for 

textural analysis in an attempt to relate textural information to ore processing 

performances (Bonnici et al, 2009; Hunt et al, 2009; Leigh, 2009). Such information 

provides estimate of minerals grain size and their size distribution. Analysis of grain size 

distribution for the mineral of interest provides an estimate of the “target” grind size for 

mineral liberation. This enables effective planning and selection of comminution 

equipment.   

 
Classified core images can also potentially be used to predict petrophysical properties 

continuously along the entire drill hole. Prediction of petrophysical properties from core 

images can be carried out in different ways. Oyno et al (1998) have applied a partial least 

square regression to calibrate ten different textural features derived from image analysis 

against measured petrophysical properties (porosity and gas permeability).  

 
Prediction of petrophysical properties from core images can be conducted using the Voigt 

and Reuss bound models (Section 7.3) if volume estimates of minerals and their intrinsic 

property values (petrophysical properties) are known. In general the relationships 

between the intrinsic properties of the minerals, their volume fractions and the bulk 

properties of the rock are more complex than this simple assumption implies. The 

physical properties of minerals are not fixed but rather are bounded within certain limits.  

There is significant uncertainty owing mainly to the variability of chemical composition 

of mineral species. The Voigt and Reuss models are very simple and do not account for 

geometric distribution of the constituents of rock samples. If the uncertainties in mineral 

composition and associated physical properties can be recognized, then an upper and 

lower limit can be defined for prediction of petrophysical properties from core images.  

 
Given that bulk density is mainly dependent on rock mineralogy, classified core images 

have good potential for prediction of density if accurate estimates of the volume fraction 

of each mineral and its density are available. Porosity is treated as a single mineral phase 

in this context.  

 
Density is an important physical parameter due to its influence on ore resource and 

reserve estimation. Density is also an important parameter for mill throughput estimation. 

Nevertheless, it is surprising how little attention is paid to density variations at some mine 

sites. The most efficient form of density measurement is gamma-gamma logging.  

However, downhole density logging is rarely conducted in metalliferous mines. There are 

many reasons for low utilization of downhole density logging (Mutton, 1994), including 
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concerns over use of probes with radioactive sources at mine sites. Accurate prediction of 

density from core images could provide an alternative means for continuous density 

estimation. Prediction of density from core imagery would represent an important new 

method for density determination at some mines. In highly porous rocks, density 

prediction from core imagery can be difficult, however porosity can also be estimated 

from core imagery.  

 
Core images are 2D representations of what is fundamentally a 3D system. This means 

that both estimates of mineral grade and prediction of petrophysical properties from 

images could suffer from a lack of three-dimensional information. The errors introduced 

in this way would be greatest when core materials are not isotropic. Given the generally 

non-directional character of the brecciated felsic volcaniclastics at Ernest Henry, such 

errors are unlikely to be significant (Leigh, 2009) and are regarded as a minor issue in 

prediction of physical properties. The main error in prediction of mineral grades is 

attributed to inaccuracy in mineral identification and the fact that mineral grains are often 

smaller than the effective resolution of the images (Berry, 2008b). 

 
The core images are likely to be more representative of rock sample than local Geotek 

density and P-wave velocity measurements. This is because cores are imaged 

continuously whereas the Geotek gamma density and P-wave velocity measurements are 

conducted every 9cm along the core (Chapter 5) and are representative of only a 5 – 

10mm column through the core. 

 
Accurate prediction of bulk properties is difficult given the uncertainties in the underlying 

bound models, intrinsic properties of minerals and estimated volume fraction of minerals. 

In order to generate accurate bulk property prediction using simple bound models, either 

the intrinsic properties or volume fraction of mineral phases may need to be adjusted.  

 
This Chapter describes prediction of density, P-wave velocity and susceptibility from 

classified core images from Ernest Henry. The mineral grade estimated from core images 

for prediction of comminution attributes (A*b and BMWi) is also illustrated. The work 

presented in this chapter is an initial exploration of potential for prediction of 

petrophysical properties from core images.   

 
The challenge is to assess the validity of mineral grades estimated from core images.  If 

the volume estimates of mineral phases are sufficiently accurate then they can potentially 

be used for prediction of physical properties. Unfortunately the optical estimates of 

mineral phase abundance were not comparable with assay data at Ernest Henry. As a 
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result the predicted density values based solely on the classified images were not directly 

comparable with measured values (average relative error of 8.9%).  

  
A linear programming algorithm developed by Fullagar (2009) has been used to improve 

the volume estimates of mineral phases. The correlation between the volume fraction of 

mineral phases and geochemical assays improved after applying the linear algorithm. 

This approach improved the density prediction (average relative error of 3.5%) and 

encouraged attempts to predict magnetic susceptibility and P-wave velocity. However 

prediction of P-wave velocity is more difficult than susceptibility as will be discussed in 

Section 7.5.5.  

 
The improved estimates of mineral phase volumes also provided an additional means for 

estimation of A*b and BMWi from the classified images (Section 7.6) and enabled these 

parameters to be estimated in intervals of core where these measurements are not 

available. Continuous estimates of mill throughput can then be predicted from the 

comminution attributes.  

 

7.2. Core Image Processing 
 
Petrophysical properties (density, P-velocity, magnetic susceptibility) and core imagery 

were collected on drill cores from six selected drill holes from Ernest Henry as described 

in Chapter 5. Drill core images were captured continuously at 9cm intervals (optimum 

sampling interval) and then were stitched together by Geotek MSCL software into ~1m 

length (i.e. core section length). The imaging camera produces high resolution (40 µm 

pixel) RGB colour imagery.  

 
Core images were classified using Definiens Developer software in order to produce a 

classified mineral image (Figure 3.3). Details of image analysis and classification are 

described by Berry (2008b). The output data from image analysis of a one meter section 

of core is the area of identified mineral phases, ignoring gaps between core pieces, and 

writing or marks on core pieces (e.g. depth). The number of pixels for each mineral 

species is divided by the total number of pixels assigned to all mineral phases, to yield a 

fractional volume for each phase for each 1m intervals. Averages of these estimates over 

adjacent 1m intervals were then calculated for 2m assay intervals, in order to facilitate 

combined analysis of mineral grades with assay data. The predominant individual mineral 

phases identified for Ernest Henry drill cores are quartz, pyrite, chalcopyrite, magnetite, 

chlorite and K-feldspar. In addition, four mixed mineral phases were defined. Fine-
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grained aggregates comprised predominantly of feldspar, magnetite and chlorite were 

present in drill cores. The grain size of the minerals in these aggregates was too small to 

be resolved by the Geotek logger cameras. Therefore two mixture classes, 

“magnetite/chlorite” and “magnetite/feldspar”, were defined during image analysis. 

Reliable separation of carbonate and quartz was difficult from core images as these two 

minerals are both light in colour. Therefore the two other mixture classes were “felsic” 

(consisting of quartz, feldspar and carbonate) and “quartz/carbonate”. Table 7.1 

summarizes the identified mineral phases and mixtures from Ernest Henry drill core 

images.  

 

 

                        Table 7.1. Summary of mineral phases and mixtures identified at Ernest Henry 

Individual Mineral Phase Mixture Phase 
Quartz felsic (Quartz, K-feldspar, carbonate) 

K-Feldspar magnetite/chlorite 
Pyrite magnetite/k-feldspar 
Chalcopyrite quartz-carbonate 

Chlorite  
Magnetite  

 

 

7.3. Bound Models 
 
Many models have been published, attempting to describe theoretically the effective 

physical properties and elastic moduli of rocks and sediments (Mavko et al., 1998). The 

simplest models are those proposed by Voigt (1910) and Reuss (1926) who developed 

averaging schemes to estimate the elastic constants (e.g. bulk modulus) of a mixture of 

material phases (Schön, 1996). Equations 7.1 and 7.2 define the Voigt and Reuss models 

respectively. The models are based on the physical property of rock phases and their 

corresponding volume fractions. In the Voigt estimate, KV, for a mixture of n phases is 

defined by 

  

∑=
=

n

1i
iiV VKK                              (7.1) 

and the corresponding Reuss estimate, KR, is defined by 

∑=
=

n

1i
i

iR

V
K

1

K

1
                          (7.2) 

 
 
where Vi is the volume fraction of the ith component and where the total volume is 1. K 

can be any elastic constant or desired geophysical attribute. For density and, arguably, for 
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low values of susceptibility, the Voigt average is the bulk property. For other properties, 

the Voigt average represents an upper bound (maximum bulk property) and the Reuss 

average a lower bound (minimum bulk property). However such interpretation is not 

always true. For example, a small volume fraction of pyrrhotite can dramatically increase 

the conductivity of a sample because it tends to create pervasive networks. The Voigt 

estimate is not a maximum in such cases; the true maximum is close to the conductivity 

of pyrrhotite. The Voigt model does not account for the natural tendency of pyrrhotite to 

establish networks, i.e. its texture. “Percolation threshold” models attempt to capture this 

type of behaviour (Fallon, 2003). These simple models (Voigt and Reuss) do not consider 

the geometric distribution of the constituents of rock samples (i.e. texture). Hill (1952) 

introduced the arithmetic mean of the two estimates from Voigt and Reuss models as a 

best estimate for elastic properties.  

 
Hashin and Shtrikman (1963) proposed an alternative model that has been widely used in 

petroleum research for elastic moduli estimation. The Hashin and Shtrikman (HS) model 

provides upper and lower bounds of bulk and shear modulus that are generally narrower 

than the Voigt (upper bound) and Reuss (lower bound) models. Upper and lower bounds 

derived from the HS model are discussed in detail by Mavko et al (1998). Estimates of 

bulk and shear modulus derived from the HS model and predicted bulk density from the 

Voigt model enable calculation of P-wave velocity. At Ernest Henry, the predicted upper 

and lower bounds for P-wave velocity using the HS model were generally very similar 

and close to the bounds predicted using the Voigt and Reuss models (within the range of 

experimental error). The Voigt and Reuss mixing models have been utilised for 

petrophysical parameter estimation throughout this study due to their simplicity and the 

fact that they provide values that agree closely with the more complex HS model 

predictions.  

 

 

7.4. Intrinsic Properties of Minerals 
 
Each mineral has a set of physical and chemical properties known as intrinsic properties. 

Intrinsic properties are usually not well defined discrete values, but are often irregularly 

distributed. There are three main reasons for the dispersion of intrinsic properties. Firstly, 

many minerals exhibit a range of compositions.  For example “chlorite” does not have a 

unique chemical composition: chlorite composition depends upon relative abundance of 

Mg, Fe, Al, and F. Secondly, physical properties of chemically pure minerals provide a 

benchmark in most geophysical studies but they are not necessarily relevant to the natural 
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world since naturally occurring mineral samples are impure in almost all cases. Thirdly, 

direct measurement of naturally occurring mineral properties usually involves multiple 

mineral grains and hence is affected by mineral boundaries and texture. 

 
The petrophysical properties of the minerals identified from classified core images of 

Ernest Henry were compiled from the published literature (Table 7.2). There is a wide 

range for physical properties of some minerals e.g. P-wave velocity of magnetite which 

varies from 4180-7400m/s or density of chlorite which varies from 2.6-3.3g/cc (Klein and 

Hurlbut, 1985). A common problem with published data is that the researchers have not 

fully documented the experimental procedures nor fully described the samples. In some 

cases the averages of measurements are reported (Rzevsky and Novik, 1971) but there is 

no indication of the number of measurements or their variability. Even the anomalously 

low P-wave velocity of 4180m/s and low density of 4.81 g/cc for magnetite (Mavko et al, 

1998) has not been clarified.  

 

Table 7.2. Physical properties of key Ernest Henry minerals as compiled from published 
literature.  

Mineral Density 

 (g/cc) 

Vp 

 (m/s) 

Vs 

 (m/s) 

Reference 

Quartz 2.65 
2.65 
2.65 

6050 
6060 
6050 

4030 
4106 
4090 

(Rzevsky and Novik, 1971) 
(Fallon,2003) 

(Mavko et al, 1998; Schön, 1996) 

Calcite 2.71 
2.70 
2.71 
2.71 
2.71 

6320 
6260 
6640 
6540 
6607 

3500 
3420 
3440 
3430 
3415 

(Rzevsky and Novik,1971) 
(Mavko et al, 1998) 
(Mavko et al, 1998) 

(Schön, 1996 ) 
(Fallon, 2003) 

K-Feldspar 2.54 
2.57 
2.63 
2.55 

5680 
5690 
6460 
5590 

3090 
3260 
3120 
3060 

(Rzevsky and Novik, 1971) 
(Schön, 1996) 

(Mavko et al, 1998) 
(Fallon,2003) 

Pyrite 5.03 
4.81 
4.93 
5.01 
5.01 

7300 
7700 
8100 
8043 
7920 

4980 
4780 
5180 
4972 
5060 

(Rzevsky and Novik, 1971 ) 
(Mavko et al, 1998) 
(Mavko et al, 1998)  

(Fallon, 2003) 
( Schön, 1996) 

Chalcopyrite 4.23 
4.20 

- 

4530 
- 

5500 

2720 
- 
- 

(Fallon, 2003) 
(Schön, 1996) 

(Salisbury et al, 1998) 
Chlorite 2.80 

3.07 
2.6-3.3 

- 
4916 

- 

- 
2700 

- 

(Schön, 1996) 
(Fallon, 2003) 

(Klein and Hurlbut, 1985) 
Magnetite 5.17 

5.18 
5.18 
4.81 
5.20 

6820 
7390 
7400 
4180 
7380 

4220 
4200 
4190 
1970 
4190 

(Rzevsky and Novik, 1971)  
(Schön, 1996) 
(Fallon, 2003) 

(Mavko et al, 1998) 
(Mavko et al, 1998) 

 
 
Given the uncertainties in intrinsic properties of minerals and in estimates of mineral 

grades, accurate prediction of bulk properties from core imagery is difficult.  However if 
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estimated mineral grades correlate well with assays, then greater confidence in prediction 

of petrophysical properties is justified. Otherwise the uncertainty in mineral grades can be 

reduced by adjustment of volume fraction of phases (Section 7.5.2) using geochemical 

assays and the information in Table 7.3. To adjust mineral grades using geochemical 

assays, the weight percent (wt %) of major elements is required (Section 7.5.2). Fe, S and 

Cu are the major elements at Ernest Henry. The mineral densities in Table 7.3 were used 

to predict density of Ernest Henry drill cores from classified core images using equations 

(7.1) and (7.2). 

 
Determination of the weight percent of Fe and Mg in chlorite is not easy due to the 

variable substitution of these of these elements in the chlorite lattice. The chemical 

composition for chlorite is not universally agreed. The chlorite formula of Whitten and 

Brooks (1972) was adopted in this study for determination of its wt% Fe (Table 7.3). The 

weight percent of Fe in chlorite was calculated based on assumed two chlorite end 

members (Fe free and Mg free). The Mg free and Fe free members are considered to 

represent the highest and lowest chlorite density (i.e. 3.3g/cc and 2.6g/cc) respectively.  

The weight percent of Fe calculated for Mg-free chlorite (3.3g/cc density) was 38.77%. 

The weight percent of Fe for chlorite with a density of 2.95g/cc was then estimated as 

half of the wt% for Mg-free chlorite.  

 
 
         Table 7.3. Elemental wt% and densities assumed for key Ernest Henry minerals 

Mineral Composition Density 

(g/cc) 

Fe 

(Wt%) 

Cu 

(Wt%) 

S 

(Wt%) 
Quartz SiO2 2.65 0 0 0 
Calcite CaCO3 2.71 0 0 0 

K-Feldspar KAlSi3O8 2.63 0 0 0 
Pyrite FeS2 5.03 46.7 0 53.3 
Chalcopyrite CuFeS 4.2 30.5 34.6 34.9 

Chlorite (Mg,Fe)10Al2(Si,Al)8O20(OH,F)16 2.95 19.38 0 0 

Magnetite Fe3O4 5.17 72.4 0 0 

 

 

Whitten and Brooks (1972) have stated an approximate density of 3.0g/cc for chlorite. 

This corresponds well to 2.95 g/cc, the midpoint of the density range quoted by Klein and 

Hurlbut (1985). The published density values for quartz and calcite are constant at 2.65 

and 2.71 g/cc respectively. Densities of other minerals in Table 7.3 were selected from 

Table 7.2 on a somewhat subjective basis due to the ranges and inherent uncertainties in 

published values.  
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7.5. Prediction of Petrophysical Properties 
 
The following subsections illustrate prediction of petrophysical properties from core 

images. First density is predicted from the original classified optical mineral grade 

estimates from core images. The predicted values do not compare well with measured 

density. Then in order to improve the prediction accuracy of density, an algorithm is 

presented to adjust the volume fraction of mineral phases to accord with assay data.  After 

assay-based volume adjustment, a good agreement between measured and predicted 

density is achieved. Prediction of magnetic susceptibility and P-wave velocity is then 

considered, using the adjusted mineral grade model. Finally, direct prediction of 

comminution attributes from mineral grade is illustrated.  

 

 

7.5.1. Prediction of Density from Visual Mineral Grade Estimates 
 
As stated in Section 7.2, six main individual mineral phases and four mineral mixtures 

were identified from image analysis of Ernest Henry drill core samples (Table 7.1). 

Initially, constituents of mixtures were assumed to be present in equal proportion (i.e. 

50:50 for magnetite/chlorite, magnetite/feldspar, and quartz/carbonate and 33:33:33 for 

quartz/feldspar/carbonate in felsic). Under this assumption, and using the “best 

information” density estimates (Table 7.3), bulk density was computed from the original 

visually estimated fractional volumes using equation 7.1.   

 
Medians of measured Geotek densities over 2m assay interval were computed in each 

drill hole from Ernest Henry for comparison with predicted densities. Measured densities 

have a Normal distribution (Chapter 5); hence medians or averages of density over 2m 

intervals were similar. The comparison of these initial calculated densities with measured 

densities (i.e. medians over 2m assay intervals) from all six drill holes is illustrated in 

Figure 7.1. The average relative error of prediction is 8.9%. In each drill hole the 

predicted densities were higher than measured densities and the correspondence was 

poor.  

 



Chapter 7. Prediction of Petrophysical Properties from Core Imagery 

 

 

208 

2.5

3

3.5

4

4.5

2.5 3 3.5 4 4.5

Predicted density (g/cc)

M
e

a
su

re
d

 d
e

n
si

ty
 (

g
/c

c
)

 

Figure 7.1. Predicted density from classified core images, based on original volume estimates, versus 
measured density (i.e. medians of 2m assay intervals) for samples from six Ernest Henry drill holes.  

 

 

The large discrepancy between measured and predicted density might be caused by the 

assumption of uniform distribution of minerals in the mixed classes. Comparison of 

magnetic susceptibility with total volume fraction of magnetite estimated assuming 50:50 

distributions for magnetite/chlorite and magnetite/feldspar showed a poor correlation 

(Figure 7.2a). Similarly, the total estimated volume fraction of magnetite showed no 

correlation with Fe grade (Figure 7.2b). Likewise, Figure 7.2c shows that there is no 

obvious correlation between estimated volumes of chalcopyrite and magnetite. This is in 

conflict with the observation (presented in Chapter 5) that Fe and Cu grade correlate well 

at Ernest Henry, assuming that volume fraction of magnetite correlates Fe grade. Finally, 

and perhaps the most compelling observation is that the volume fraction of chalcopyrite 

showed no correlation with Cu grade (Figure 7.2d). These observations reveal that the 

original estimated fractional volumes are inconsistent with assays and with measured 

density and susceptibility. 
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Figure 7.2. Correlation between total volume fraction of magnetite based on original image classification and 
(a) magnetic susceptibility and (b) Fe grade at Ernest Henry. Correlation between original image-based 
estimate of volume fraction of chalcopyrite versus and (c) total volume fraction of magnetite and (d) Cu 
grade. All samples are 2m assay intervals from all six drill holes. 

 
 

 

7.5.2. Assay-based Volume Correction of Mineral Phases 

 
In order to improve the accuracy of density prediction from Ernest Henry core imagery, 

the volume fraction of each mineral phase was adjusted in order to ensure that the 

calculated elemental compositions match the assay data.  

 
Assay data are always available within ore zones. If a sufficient number of elements are 

assayed, assays alone can provide an estimate of modal mineralogy for simple mixing 

models (Zhang and Whiten, 2001). At Ernest Henry the assays can be used to check the 

consistency of the fractional volumes estimated from core images. The major assay 

elements used here are Cu, S, and Fe.  

 

a) 

 
b) 

 

c) 

 

d) 
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A linear programming algorithm developed by Fullagar (2009) based on the SIMPLEX 

algorithm (Morris, 1993) was used to adjust the volume fraction of mineral phases and 

their proportion in mixed phases. The program determines the extreme point of an 

objective function (i.e. minimum or maximum) while taking into account a series of 

constraints. The Cu, S, and Fe assay constraints applied to the Ernest Henry volumes are 

prescribed below:  

 
Vcpyx Cucpyx ρcpy= ρSamplexCu(%)                   (7.3) 

 
 

Vcpyx Scpyx ρcpy +Vpyx Spyx ρpy= ρSamplexS(%)                     (7.4) 
 

 
Vcpyx Fecpyx ρcpy +Vpyx Fepyx ρpy+ Vmtx Femtx ρmt +Vchlx Fechlx ρchl = ρSamplexFe(%)  (7.5) 

 
 
where Vmineral and ρmineral  are the total volume fraction of each mineral phase and the 

corresponding mineral density respectively. Cumineral, Smineral, and Femineral are the weight 

percent of copper, sulphur, and iron in that mineral, as per Table 7.3. Chalcopyrite, pyrite, 

magnetite and chlorite are abbreviated as “cpy”, “py”, “mt” and “chl” respectively. For 

example Cucpy is the weight percent of copper in chalcopyrite, i.e. 34.6%. Cu(%), S(%) 

and Fe(%) are chemical assays, i.e. weight percent of copper, sulphur and iron 

respectively in total sample.  The bulk density, ρSample, is an unknown parameter and has 

the following form: 

 

∑ρ=ρ
=

n

1i
iiSample V              (7.6) 

 
where ρi is the density of the ith mineral and where Vi  is the corresponding fractional 

volume of that mineral.  

 
The physical properties assigned to the minerals in equations (7.3), (7.4) and (7.5) are 

compiled in Table 7.3. The program maximizes or minimizes the density for each sample 

subject to assays for Fe, S and Cu and subject to the volume balance condition (i.e. total 

volume equal to 100%).  

 
The overall magnitude of the changes to the fractional volumes is restricted according to 

the estimated accuracy of the initial mineral volume estimates. The sum of absolute errors 

for the ten mineral classes is bounded. These errors are visualized as realizations of ten 

independent Normal random variables with mean zero. The error condition imposed on 

the volumes is 
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π
≤∑

ε

δ

=

2
10

v10

1j

j
      (7.7) 

 

where jδν  denotes the change in fractional volume for the jth class (the mixtures being 

classes, as well as the individual minerals), and where ε is an estimate of the uncertainty 

in the fractional volume estimates. The RHS of (7.7) is the expected value for the sum of 

absolute values (Parker and McNutt, 1980). In other words, if an error with standard 

deviation 0.01 is attributed to the initial fractional volume estimates, then ε=0.01, and the 

total change to the original class volumes is restricted by the condition that 

 

 08.0v
10

1j
j ≤∑ δ

=

      (7.8) 

 
 
The program has no solution in cases when the assay conditions (Eqns 7.3 to 7.5) and the 

volume balance condition can not be met for volume changes small enough to satisfy the 

error condition (Eqn 7.7). The higher the error (ε) considered, the less likely the program 

is to fail as more degrees of freedom are allowed to change in volume fractions. The level 

of error in original volumes for all six drill holes was considered to be about 3% (i.e. 

ε=0.03). Adopting this value for ε resulted in failure of the program for only a few 

samples from each drill hole. 

 
There is uncertainty attached to the mineral properties and, in some case, to the mineral 

composition, as well as to the estimated mineral grades from core images. However, for 

simplicity, only errors in volumes are included explicitly here.  

 
Minimum and maximum densities were predicted from core images and assays during 

adjustment of volumes. Predicted minimum and maximum densities for samples of all six 

drill holes are in strong correlation (R2=0.99) but predicted maximum densities are higher 

than minimum densities by about 1%. This small difference between maximum and 

minimum densities is due to an increase in adjusted volume fraction of magnetite when 

density for each sample is maximized.  

 
The volume adjustment approach produced volumetric estimates of mineral phases which 

satisfy the assays and which achieve improved correlations between volume fraction of 

magnetite and magnetic susceptibility and Fe grade in all drill holes (Figures 7.3a and 

7.3b). Also the correlation between the volume fraction of chalcopyrite and volume 
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fraction of magnetite and Cu assay is significantly improved, as expected (compare 

Figures 7.3c and 7.3d with Figures 7.2c and 7.2d respectively).  
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Figure 7.3. Correlation of adjusted volume fraction of magnetite with (a) magnetic susceptibility and (b) Fe 
grade. Correlation of adjusted volume fraction of chalcopyrite with (c) volume fraction of magnetite and (d) 
Cu grade. All samples are 2m assay intervals from all six drill holes. 

 

 
 
7.5.3. Prediction of Density from Core Imagery and Assays 

 
Measured densities for the entire sample set, derived from all six drill holes of Ernest 

Henry (EH432, EH446, EH556, EH574, EH633, and EH635), are compared with 

maximum densities predicted from imagery (after volume adjustment) in Figure 7.4.  

Predicted densities are in good correlation with measured densities (both Geotek and 

JKMRC immersion densities). Predicted minimum densities showed the same agreement 

with measured densities. The relative average error of predicted minimum and maximum 

densities when compared with measured Geotek densities was 3.9% and 3.5% 

a) 

 
b) 

 

c) 

 

d) 
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respectively. Although the difference in relative error of prediction of maximum and 

minimum density is not particularly significant, due to smaller relative error of prediction 

for predicted maximum densities they are considered here. Comparison of Figure 7.4 with 

Figure 7.1 highlights the improvement in density prediction from core images after 

adjustment of volume fractions of mineral phases to match assay data.  
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Figure 7.4. Predicted density from classified core imagery (after volume adjustment) versus measured density 
(Geotek and JKMRC) for 2m assay samples from all drill holes at Ernest Henry.  

 
 
 

Comparison of predicted density with the in-house Ernest Henry Mine empirical density 

model (Chapter 5) shows a strong correlation (Figure 7.5). This engenders confidence in 

the densities predicted from core imagery. Ernest Henry’s empirical model, which is 

purely based on Fe(%), is much easier for density determination than the approach 

through core imagery described here. However, the mineral volume fraction model 

underlying the new density prediction has value in its own right, e.g. for subsequent 

prediction of other physical and metallurgical properties. Moreover a reliable simple 

density estimation method based on a single assay parameter is not a situation that exists 

in all mine sites. Hence the proven ability to predict density simply from core imagery 

may have the potential to be widely adopted especially in view of resistance to downhole 

gamma-gamma logging. 
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Figure 7.5. Predicted maximum and minimum densities from classified core images (after adjustment of 
volume fraction of mineral phases) versus measured densities for 2m assay samples from all six drill holes. 

 

 

7.5.4. Prediction of Magnetic Susceptibility 
 
A wide range of petrophysical properties could be predicted using the mineral volumes, 

given mineral properties and appropriate numerical models. Here prediction of magnetic 

susceptibility and P-wave velocity are examined. 

 
The relationship between magnetic susceptibility and magnetite content of rocks has been 

previously established by many researchers (e.g. Schön, 1996). A positive correlation 

exists between volume fraction of magnetite and magnetic susceptibility in general. At 

Ernest Henry there is a positive correlation (R2=0.68) between adjusted total volume 

fraction of magnetite estimated from classified core images and magnetic susceptibility 

recorded by the Geotek MSCL system (Figure 7.6). This is a marked improvement over 

the correlation before volume adjustment (Figure 7.2a).The slope of the regression line 

suggests a high magnetic susceptibility of approximately 6.5 SI for 100% magnetite. The 

high susceptibility of 6.5 SI compares closely with a published susceptibility value of 6 

SI for magnetite (Schön, 1996). However a wide range of magnetic susceptibility (3 – 10 

SI) for magnetite is reported (Dobrin, 1976). The wide range of susceptibility reported for 

pure magnetite depends on details of the magnetite volume content in the rock and its 

grain size; the higher the magnetite content and the coarser its grain size, the higher the 

susceptibility.  

 
The reasonable correlation between magnetite content estimated from core images and 

magnetic susceptibility suggests that the estimated volume fraction of magnetite can be 
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used as a mean for prediction of magnetic susceptibility when such measurements are not 

available. Moreover if the susceptibility of magnetite is known, then the measured 

magnetic susceptibility data can be imposed as additional constraints during the volume 

adjustment, hence improving the mineral grade model.  
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Figure 7.6. Total volume fraction of magnetite determined from classified core images (after adjustment) 
versus medians of magnetic susceptibility for 2m assay intervals from all drill holes from Ernest Henry. The 
red line is the linear regression line and as evident from regression equation the slope of regression suggests a 
high susceptibility of  ~6.5 SI for magnetite. 

 

 
   
7.5.5. Prediction of  P-wave Velocity 

 
P-wave velocity upper and lower bounds can also be estimated from classified core 

images of Ernest Henry using the the Voigt and Reuss formulae and the reported P-wave 

velocities of minerals (Table 7.2). In this study P-wave velocities of mineral phases as 

shown in Table 7.4 were used. There is a large variation in reported P-wave velocity of 

some minerals (e.g. magnetite) as indicated by the differences between maximum and 

minimum reported P-wave velocities in Table 7.2. The range in Table 7.4 indicates this 

difference. The selection of P-wave velocities in Table 7.4 was on the basis of subjective 

assessments of the reported values from Table 7.2. Given the low concentration of pyrite 

at Ernest Henry, use of even highest P-wave velocity (8100m/s) does not have a 

significant impact on total P-wave velocity estimation.  
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Table 7.4. Published P-velocity values for mineral phases used for prediction of P-velocity from core images 
using Reuss and Voigt models 

Mineral Quartz K-Feldspar Magnetite Pyrite Chalcopyrite Chlorite Calcite 
 Vp (m/s) 6050 5680 6820 7300 4530 4916 6320 
 Range 
(m/s) 

10 870 3220 743 970 - 380 

 

Predicted P-wave velocities based on equations (7.1) and (7.2) using adjusted mineral 

volumes from core imagery and the mineral velocities from Table 7.4 are shown in Figure 

7.7. Predicted values for each 2m interval are plotted in depth order for each drill hole. 

The reported P-wave velocity of most mineral constituents is quite high (more than 

5500m/s; Table 7.2) resulting in estimation of a high P-wave velocity. Chlorite and 

chalcopyrite have relatively low P-wave velocity. The relatively low predicted P-wave 

velocity for EH574 is attributed to high chlorite content in that hole (Figure 7.8). 
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Figure 7.7. Predicted Reuss and Voigt P-wave velocity from classified core images (after adjustment to 
mineral volumes) compared with measured Geotek P-velocity for 2m assay samples from all drill holes of 
Ernest Henry. The samples originating from each hole are plotted in depth order. The triangles denote high 
frequency P-wave velocity measurements on small slabs derived from drill cores 
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Figure 7.8. Volume fraction of chlorite estimated from classified core images plotted according to drill hole 
in depth order. 

 
 

The comparison between predicted P-wave velocities and the P-wave velocity measured 

on core with the Geotek MSCL is illustrated in Figure 7.7. The image-based predicted P-

wave velocities are not comparable with measured Geotek P-wave velocities. The Geotek 

values (median ~5000 m/s) are significantly lower than the predicted values (median 

~6000 m/s). This 20% discrepancy is in part explained by uncertainties both in P-wave 

velocity measurements (Chapter 3) and predicted P-wave velocity. The best achievable 

accuracy of P-wave velocity measurements for half NQ size core of Ernest Henry is about 

±3%, i.e. approximately ±165 m/s (Chapter 5).  

 
Independent P-wave velocity measurements (as described in Chapter 5) were carried out 

on small slabs derived from Ernest Henry drill cores. High frequency transducers 

(i.e.1MHz) were used for the P-wave velocity measurements. These independent P-wave 

velocity measurements range from 4600-5300m/s and are comparable to the Geotek P-

wave velocities as illustrated in Figure 7.7. 

 
In prediction of P-wave velocity from classified core imagery it was assumed that the 

only factors controlling bulk velocity are mineral abundances and intrinsic velocities. 

Other factors such as micro-cracks, P-wave velocity anisotropy, mineral textures and 

sample porosity could have an influence in P-wave velocity prediction. It should also be 

noted that the Voigt and Reuss models used for P-wave velocity prediction are simplistic 

since they presume isotropic samples. As mentioned earlier, there is a large variation in 

reported P-wave velocity of minerals (Table 7.2). One way to reconcile the predicted and 

measured P-wave velocities is to adjust the intrinsic P-wave velocities of mineral phases 



Chapter 7. Prediction of Petrophysical Properties from Core Imagery 

 

 

218 

in order to minimize a misfit measure such as the sum of squared differences between 

measured P-wave velocity and predicted Voigt P-wave velocity.  

 
Initially intrinsic P-wave velocities for all mineral phases were allowed to vary in an 

inversion to minimize the misfit. Although this minimization improved the agreement 

between predicted and measured P-wave velocity however, the optimized P-wave 

velocity for quartz, carbonate and pyrite were much lower than the reported values.  Due 

to this large discrepancy, intrinsic P-wave velocities for quartz, carbonate and pyrite were 

then fixed during inversion (Table 7.4) due to the limited range of values reported in the 

literature. Pyrite has a relatively large velocity range (Table 7.4), however due to small 

concentration of pyrite at Ernest Henry samples this large variation (743m/s) does not 

have a significant impact on P-wave velocity prediction. 

 
This minimization improved the agreement between predicted and measured P-wave 

velocity at Ernest Henry (compare Figures 7.9 and Figure 7.7). The positive bias in 

predicted P-wave velocities has been removed. The root mean square (RMS) error of 

prediction is 454m/s. The adjusted intrinsic P-wave velocity of mineral phases is 

summarized in Table 7.5. The optimized P-wave velocity for magnetite (3604m/s) 

significantly changed when compared with the initial P-wave velocity estimate 

(6820m/s). However this optimized P-wave velocity is comparable with the velocity 

reported by Mavko et al (1998). The P-wave velocity of other mineral phases only 

marginally changed.  
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Figure 7.9. Predicted Reuss and Voigt P-wave velocity from classified core images (after adjustment to 
mineral volumes) using derived P-velocity from Table 7.4 compared with measured Geotek P-velocity for 2m 
assay samples from all drill holes of Ernest Henry. The samples originating from each hole are plotted in 
depth order. 
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Table 7.5. Derived P-wave velocity for mineral phases based on minimizing sum square error of  measured P-
wave velocity and predicted Voigt P-wave velocity. 

Mineral Quartz K-Feldspar Magnetite Pyrite Chalcopyrite Chlorite Calcite 
Initial   

Vp (m/s) 
6050 5680 6820 7300 4530 4916 6320 

Optimized 
Vp (m/s) 

6050 4911 3604 7300 5021 4808 6320 

 
 
 

7.6. Relating Mineral Grades to Comminution Attributes 
 
Physical properties can be predicted from core images provided that mineral volumes and 

their intrinsic properties are known. A similar approach was trialled for prediction of 

comminution attributes as well. Given that mineral volumes and comminution attributes 

(A*b and BMWi) are available for selected intervals a least squares regression approach 

was adopted to predict “intrinsic comminution properties” for each mineral phase using 

the Voigt formula.  Estimation of “intrinsic comminution properties” enables prediction 

of A*b and BMWi in intervals of core where these measurements are not available. 

  
Table 7.6 shows the coefficients (“intrinsic comminution properties”) derived for each 

mineral phase after least square regression. The correlation coefficient (R2) between 

measured and predicted A*b is 0.43. The R2 value between measured and predicted 

BMWi is 0.33. The root mean square error of prediction for A*b and BMWi are 33.3 and 

1.68 kWh/t respectively. It should be noted that mineral grade estimates were not 

available for all comminution test samples and from a total of 142 comminution tests, 

only 106 tests were used here. Image-based prediction accuracies of A*b and BMWi are 

comparable with the universal models based on petrophysical properties (Figure 5.19). 

However the least square approach for prediction of comminution attributes are based on 

7 predictors (i.e. mineral grade). 

 
Stepwise regression (Chapter 4) analysis of A*b versus volume fraction of mineral 

phases, indicates that the most important phases that have an impact on A*b are quartz, 

magnetite and pyrite. The coefficients of A*b for these mineral phases were all positive 

i.e. an increase in volume fraction of any of these three phases will increase A*b and 

consequently the rock becomes softer in terms of crushing. This interpretation is based on 

statistical analysis of regression result. Magnetite and quartz have a positive coefficient in 

the regression term for A*b model suggesting an increase in their abundance will increase 

A*b and as a results the material become softer for crushing. However given the low 

proportion of quartz in Ernest Henry drill core sample (average 5%), its effect on A*b 

compared to magnetite will be minor.   
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Similarly stepwise regression analysis of BMWi, indicated that the significant phases are 

quartz and magnetite. The coefficients of BMWi for these two phases were both negative 

i.e. an increase in volume fraction of any of phases will decrease the BMWi value, and 

hence the rock sample will become easier to grind. These conclusions are consistent with 

observations by Strohmayer et al (1998) that an increase in quartz or magnetite content 

increases the mill throughput at Ernest Henry. 

 

  Table 7.6. Derived coefficients for mineral phases for prediction of A*b and BMWi.  

Mineral Quartz K-

Feldspar 

Magnetite Pyrite Chalcopyrite Chlorite Calcite 

A*b 
Coefficient 

263.5 -12.4 431.4 443.7 -418.2 48.9 58.0 

BMWi  
Coefficient 

-6.0 12.7 -0.8 2.7 3.2 11.0 11.9 

 

 

Predicted and measured A*b and Bond mill work index for all 2m core samples from 

Ernest Henry are presented in Figure 7.10 and Figure 7.11 respectively. The predictions 

are based on the mineral grades estimated from core images and derived coefficients 

(Table 7.6) substituted into the Voigt formula. Although there are some outliers, the 

predicted values mostly lie within the range of measured values, and there is a moderate 

qualitative agreement in terms of the observed trends with depth in each drill hole. 

However prediction of the high values of BMWi is not accurate. Although these models 

(Figures 7.10 and 7.11) are not very accurate, they do have potential for general 

prediction of comminution attributes during the mine planning stage.  
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Figure 7.10. A*b predicted from core imagery for the entire Ernest Henry dataset. The measured A*b values 
are plotted for comparison. The samples originating from each drill hole are plotted in depth order. 
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Figure 7.11. BMWi predicted from core imagery for the entire Ernest Henry dataset. The estimated BMWi is 
also plotted for comparison. The samples originating from each drill hole are plotted in depth order. 

 
 

Mill throughput can be predicted if A*b, BMWi and ore density are available (Chapter 5). 

Here mill throughput is predicted from image-based predictions of A*b (Figure 7.10), 

BMWi (Figure 7.11) and density (Figure 7.4). In order to visualize throughput variability 

with depth in the drill holes, predicted throughput for all 2m core samples are plotted in 

depth order in each drill hole in Figure 7.12. 
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Figure 7.12. Predicted mill throughput. The samples originating from each drill hole are plotted in depth 
order. 

 
 
Figure 7.12 shows that low throughput is expected in the upper part of EH556, but 

throughput increases with depth mainly due to a gradual increase in the proportion of 

magnetite which renders the samples soft to crush and easy to grind.  The trend in EH574 

indicates that the throughput is expected to decrease in deeper part of the drill hole. 
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7.7. Concluding Remarks 
 
A novel approach for prediction of physical properties and comminution attributes based 

on classified core images was presented. High resolution continuous core images were 

captured using the Geotek MSCL system. Capturing core images is not new, however the 

MSCL system can provide high spatial resolution imagery with consistent illumination 

that is suitable for automated classification and analysis. To the best of the author’s 

knowledge, prediction of density, P-wave velocity, magnetic susceptibility and 

comminution attributes (A*b and BMWi) from core images has never previously been 

investigated.  

 
Reliable prediction of bulk density from classified core imagery could represent an 

important new technique for onsite density determination. Prediction of density from core 

imagery could provide an alternative approach to conventional sample or downhole 

measurements.  

 
Prediction of petrophysical properties from core images is affected by factors such as 

difficulty in identification of mineral phases, limitations of the mixing models, and 

uncertainty in intrinsic properties of minerals. Discrepancies in the published intrinsic 

properties are likely due to variations in mineral composition and microstructure together 

with the diverse range of protocols used for measurement.  

 
The optical estimates of mineral phases at Ernest Henry were not comparable with assay 

data. Hence predicted density values were not accurate when compared with measured 

values (average relative error of 8.9%).  A linear programming algorithm was used in 

order to improve the volume estimates of mineral phases. This approach improved the 

density prediction (average relative error of 3.5%) and provided a degree of confidence in 

prediction of other physical properties. Measured magnetic susceptibility correlated well 

with estimated magnetite content. The magnetic susceptibility of pure magnetite used in 

the mixing models at Ernest Henry was estimated to be 6.5 SI.  

  
Predicted P-wave velocity from classified core images, after volume adjustment, was also 

compared with the Geotek measured value. Given the uncertainties involved in both 

measured and predicted P-wave velocity, close agreement between such values was not 

necessarily expected. However the significant discrepancy (~20%) was well beyond what 

was expected for statistical and experimental errors and indicated issues with the intrinsic 

values used in the mixing models. Least squares optimization of P-wave velocity values 

for mineral phases significantly improved the agreement between measured and predicted 
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velocity. The optimization process suggested that magnetite at Ernest Henry has a very 

low P-wave velocity, comparable with the lowest values reported in the literature.  

Adjustment of the magnetite velocity in the mixing model had the most significant impact 

on P-wave velocity prediction.  

 
Finally a novel approach for prediction of A*b and BMWi values from mineral volume 

percentages was presented. The “intrinsic comminution properties” estimated from least 

square regression provided a means for prediction of A*b and BMWi in intervals of core 

where these measurements are not available. Although the comminution models are not 

very accurate, however they have the potential for use during mine planning.  

 
Stepwise regression analysis showed that magnetite, quartz and pyrite are the important 

mineral phases that have an impact on A*b measurements. An increase in the volume 

fraction of these mineral phases makes the rocks softer for crushing. Quartz and 

magnetite are the most important mineral phases controlling the grinding behavior with 

an increase in volume fraction of quartz or magnetite makes the rocks softer for grinding. 
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CHAPTER 8 _________________________________________________ 

Conclusions 

 

 

8.1.  Summary of Main Results 
 

Conventional comminution tests are a vital component in every mine plant design 

because comminution behaviour governs both the cost of equipment and its operating 

efficiency. Comminution tests are usually conducted on a limited number of large 

samples, owing to the high costs and long lead times involved. Therefore a strong 

incentive exists to find alternative means for efficiently characterizing comminution 

behavior for a truly representative suite of ore samples. Comminution is affected by 

factors such as ore physical characteristics (e.g. hardness). Measurement of petrophysical 

properties is quicker and cheaper than comminution testing. Therefore, petrophysics 

could represent an important new source of data for development of comminution 

models. Prediction of comminution attributes could then enable characterisation of mill 

throughput performance. The relationships between petrophysical parameters and 

comminution attributes have not been systematically investigated previously.  

 
The potential for inferring comminution behavior from petrophysical properties of drill 

core has been investigated in this thesis. Magnetic susceptibility, gamma attenuation 

density, P-wave velocity, P-wave amplitude and digital core imagery were recorded on 

representative drill core from two case study sites (Ernest Henry IOCG mine and Cadia 

East Au-Cu Porphyry deposit) using an automated petrophysical core logging system. 

This thesis was a component of a large AMIRA “geometallurgy” research project (P843). 

Small-scale comminution tests for crushability (A*b) and grindability (Bond mill work 

index, BMWi) were performed on selected 2m intervals of the same drill core under the 

auspices of the wider project. The availability of these small-scale physical test data 

provided a unique opportunity to explore the relationship between the petrophysical 

properties and comminution behaviour of precisely the same rock samples. 

 
The main issue at Ernest Henry is mill throughput prediction for low grade materials 

(<0.6% Cu) which are much harder than high grade zones in terms of crushing and 

grinding. Thus effective characterization of mill performance was a high priority. At 

Cadia East effective selection of comminution equipment is a challenge. Cadia East ores 
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are hard (with small dynamic range) in terms of both crushing and grinding. Therefore 

effective characterisation of comminution behavior was critical. 

 
Universal and class-based modeling approaches were investigated. Modeling of A*b 

generally has better accuracy than BMWi using petrophysical properties. This may be due 

to the fact that petrophysical properties and crushability are measured on whole rock 

while BMWi is measured on crushed composite samples. Prediction of high BMWi (>10 

kWh/t) is difficult, most probably because particles become more competent at crushed 

size.  

 
Due to variability of rock types in most mineral deposits, establishment of a reliable 

universal model is usually problematic. In order to improve the accuracy of prediction, 

novel class-based geometallurgical modeling approaches were devised and implemented 

at Cadia East and Ernest Henry. The objective was to divide the deposit into ore classes 

and to subsequently develop comminution models within each class. Comminution class 

definition based on petrophysical (or comminution) properties has not previously been 

investigated in mineral industry. Development of predictive models within classes 

enables characterization of comminution behaviour on samples where crushability and 

grindability measurements are not available. Thus, given petrophysical data, mining 

blocks can be populated with comminution classes and predicted comminution properties.  

These blocks can then be mined and treated in a selective manner to reduce the mill 

variability and hence optimize the processing.  

 
At Ernest Henry, petrophysical classification (PC approach) resulted in better modeling 

of comminution parameters compared to universal models. At Cadia East the problem 

posed by the hard ore was compounded by the muted petrophysical contrasts typical of 

porphyry deposits. Nonetheless, a classification based on comminution parameters (A*b 

and BMWi) provided a means for prediction of comminution classes from petrophysical 

and geochemical data. The results suggest that petrophysical measurements could be 

useful for prediction of comminution attributes (A*b and BMWi) and ultimately, mill 

throughput, at both sites. “Useful” in this context means that the models could be used in 

practice during mine feasibility stage for process planning purposes.  

 
Magnetic susceptibility is related to A*b at both case study sites. At Ernest Henry, as 

susceptibility increases A*b increases (samples are easier to crush) because magnetite 

acts as crack initiator. At Cadia East, A*b decreases as susceptibility increases. Magnetite 

mineralization at Cadia East is smaller in concentration than at Ernest Henry. The mineral 
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association of feldspar with magnetite (i.e. texture) is most probably the reason why low 

values of A*b are generally associated with elevated susceptibility. Susceptibility and 

density showed a negative nonlinear relationship with BMWi at Ernest Henry. However 

no clear relationship was found between BMWi and magnetic susceptibility at Cadia 

East.  

 
P-wave velocity and density also showed no clear correlation with BMWi. As mentioned 

earlier, this could be due to the fact that particles become more competent at crushed size. 

At Cadia East P-wave velocity showed a negative correlation with A*b but there was no 

clear relationship between density and A*b.  

 
Magnetic susceptibility proved to be effective for characterization of alteration styles at 

both case study sites. Propylitic and skarn alteration types at Cadia East were 

characterized by relative high susceptibility. At Ernest Henry, potassic and carbonate 

alteration classes were characterized by relatively low magnetic susceptibility. 

 
The potential of classified core images for prediction of petrophysical and comminution 

parameters at Ernest Henry also investigated. Classified core images have the potential 

for prediction of density. They can also be used to estimate comminution attributes. 

 
This chapter summarizes the results of the present research in the following subsections. 

 

8.2.  Relationship Between Petrophysics and Comminution 
 
Published literature suggests that comminution behaviour can be related to both 

destructive and non-destructive rock strength parameters. Non-destructive measurements 

(e.g. Young’s modulus) are more desirable as they are quicker and easier than destructive 

tests.  Calculation of dynamic Young’s modulus requires measurements of density, P-

wave and S-wave velocities. However, S-wave velocity measurement is normally not 

available, in which case P-wave modulus is a good estimator of dynamic Young’s 

modulus.  

 
P-wave velocity has been used in many geotechnical applications for rock strength 

characterisation. Therefore it was expected that comminution parameters (A*b and 

BMWi) would be related to P-wave velocity more effectively than other petrophysical 

properties. However, at Ernest Henry magnetic susceptibility showed better correlation 

with comminution parameters than P-wave velocity (Section 8.4). 
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8.3.  GEOTEK Multi-Sensor Core Logger (MSCL) System 
 
The geometallurgical mapping and mine modeling project (P843) was focused primarily 

on drill cores.  Boreholes could not be accessed at case study sites for downhole 

geophysical logging. A Geotek MSCL system for semi-automatic measurement of 

petrophysical properties and for capturing core images was evaluated. The use of MSCL 

system within the P843 project provided an opportunity to assess suitability of such 

system for production petrophysical core logging of archival drill core.  

 
The Geotek system can provide virtually continuous petrophysical data on drill core, both 

full core and split half core. Within this research the MSCL system has been successfully 

used to record the petrophysical properties and digital images of drill cores from the 

Cadia East deposit and the Ernest Henry mine. The system had never been previously 

used on drill core from metalliferous mines, therefore system evaluation and modification 

to the sensors was required to adopt the system for diamond drill core logging. Sensors 

installed on the logger can deliver data with adequate accuracy and precision for 

geometallurgical purposes if care is taken in system operation and calibration.  

 
The intrinsic sensitivity of the MSCL density, P-wave velocity, and magnetic 

susceptibility sensors is quite high. The precision and accuracy achievable in production 

logging are reduced by many factors. However, the main factor contributing to the 

uncertainty in petrophysical measurement with the MSCL system is the core thickness. 

As it decreases, small errors in absolute thickness can be responsible for large relative 

errors in the measured parameter. Thus accurate measurement of petrophysical data on 

“NQ size” half-core (~2.2cm radius) becomes difficult. In addition, the splitting of the 

core was poor over many intervals in core from the two case study sites and variability in 

the “feed” for the logger also translates into greater uncertainty in the petrophysical data. 

 
The accuracy of petrophysical measurements was assessed on a series of NQ size core 

samples. The average relative error of gamma ray attenuation density compared to 

standard water immersion density measurement (bulk density) was ±0.51% for Cadia 

East cores. For Ernest Henry materials the average relative error between immersion and 

gamma densities is ±1.12%. The decrease in accuracy was attributed to an increase in 

gamma source collimator aperture size. The accuracy of Geotek P-wave velocity 

compared to Pundit P-wave velocities was ±2.3%. Comparison of Geotek susceptibilities 

with a hand held KT-9 kappameter showed an excellent agreement between 

measurements.  
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In production logging the accuracy of petrophysical properties is affected by uncertainties 

due to core thickness. P-wave velocity is affected not only by uncertainties due to core 

thickness but also by uncertainty in the intrinsic delay time of the transducers and by the 

travel time through the core boat and sonic gel. The accuracy achieved in production 

logging was approximately ±1.35% for density, ±6.5% for P-wave velocity, and ±1% for 

magnetic susceptibility. P-wave amplitude is mainly affected by acoustic coupling.   

 
For future petrophysical measurements using the MSCL, NQ half-core should be avoided 

if at all possible. If NQ half-core is the only material available, then the core boats should 

be re-designed, to prevent rotational sliding of the core in the core boat and preferably to 

permit direct contact between the fluid-filled roller and the underside of the core.  The 

rotation of the core results in incorrect thickness and P-wave velocity and amplitude 

recording. One modification to existing core boat is making holes in the core boat through 

which the P-wave velocity measurements are taken. The holes could help coupling issues 

and would eliminate the need for application of sonic gel. The errors in production 

measurements across HQ half-core will probably be no larger than NQ half core, since 

the HQ core boat is wider and the core is heavier so there is less likelihood of significant 

rotation of one with respect to the other. 

 
Significant effort was devoted to improving the quality of MSCL petrophysical data by 

modification and replacement of petrophysical sensors, and by refinement of procedures, 

including calibration.  Both half and whole core aluminum calibrators were fabricated for 

density measurement. To enable magnetic susceptibility measurements on drill cores 

from Ernest Henry, the system was modified to accommodate susceptibilities up to 1 SI. 

Also a formula was developed to correct susceptibility measurements on half cores.  The 

P-wave velocity system was reconfigured towards the end of data acquisition to improve 

coupling by installation of opposing reciprocating transducers. An inductive coil 

conductivity meter with higher dynamic range compared with original sensor was also 

incorporated to the MSCL (after core logging of the two case study sites). However, the 

sensor coil sensor proved very sensitive to temperature. 

 
Overall the “standard” Geotek MSCL system needs significant modification so that it can 

provide rapid high quality collecting of petrophysical data on archival core material. For 

future work it would be advantageous to investigate replacement of the existing P-wave 

velocity system with high frequency ultrasonic devices of “fixed transducers distance” 

applied to core surface. This change would remove the uncertainty in core thickness 

measurements and eliminate the transit delays through core boat and sonic gel. Addition 
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of a natural gamma sensor to the MSCL could potentially provide useful information for 

ore and alteration characterisation. Recording of a full-wave form sonic log as part of 

velocity measurement would also likely provide additional detailed information for 

material characterisation. With additional modifications, the MSCL logging system has 

the potential to be used for petrophysical data acquisition for mineral exploration 

programs or environmental studies in addition to geometallurgical applications.  

 

 

8.4.  Geometallurgical Modeling : Universal Approach  
 
Universal models were investigated for both case study sites by regression and neural 

network methods. At Ernest Henry a positive correlation (R2=0.37, RMS error=37.6) was 

established between susceptibility and A*b for 142 samples. This means that the higher 

the susceptibility (the higher the magnetite content), the softer the rocks are for crushing 

at Ernest Henry, because magnetite acts as a crack initiator.  

  
Multiple regression of four petrophysical properties (P-velocity, P-amplitude, gamma 

density and magnetic susceptibility) against all available A*b and BMWI data was also 

investigated at Ernest Henry. The RMS error of prediction for A*b and BMWi is 34.3 and 

1.61 kWh/t respectively. These models are not very accurate.  

 
Magnetic susceptibility acts as a proxy for prediction of A*b at Cadia East, where an 

increase in susceptibility suggests that the rocks becomes “very hard” in terms of 

crushing, i.e. a negative correlation between susceptibility and A*b (R2=0.23) for 122 

samples. Although prediction of A*b based purely on susceptibility is not very accurate, 

the empirical model has merit in terms of its simplicity. 

 
A universal model for prediction of A*b from magnetic susceptibility and P-wave 

modulus using neural network approach was developed for Cadia East. The root mean 

square error of prediction is 5.31. The neural network approach has a slightly better 

performance (~1.4% improvement in relative error) than the conventional regression 

technique. However this difference in prediction accuracy via the two methods is not 

significant. Therefore it is appropriate to initially assess the simpler conventional 

statistical techniques as a first step, before applying the more complex neural network 

approach.  

 
A perfect match between measured and predicted A*b is not expected given the 

uncertainties in determination of A*b and petrophysical measurements. The achieved 
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accuracy of 11.8% for A*b model could be useful for general characterisation of ore 

crushability at Cadia East during the mine feasibility stage.  

 

8.5.  Geometallurgical Modeling : Class-based Approach 
 
In most cases universal models suffer from ore variability. For this reason, a class-based 

approach could provide a better prediction of processing behavior.  Four different 

approaches for geometallurgical class definition for development of predictive 

comminution modeling were devised and implemented at the two case study sites.  

 
Geometallurgical class definition based on geological information (GC approach) is 

regarded with great caution in the mineral industry. This is mainly because geological 

observations are subjective, qualitative and often suffer from poor quality control. An 

advantage of using petrophysical classes (PC approach) in geometallurgical class 

definition is that petrophysical properties are quantitative and objective. Creation of 

geometallurgical classes based on comminution parameters (CC approach) is a direct 

approach for comminution modeling of an orebody. The CC approach requires a 

sufficient number of comminution tests to represent the processing behavior of the 

orebody; in such cases potential geometallurgical classes can be determined through 

integration of petrophysical and comminution attributes (CPC approach). 

 

8.5.1. Ernest Henry Comminution Modeling 
 
Developing comminution models using classes based on combination of lithology and 

alteration logs was not successful at Ernest Henry because visual logging was 

inconsistent. Development of predictive comminution models of A*b and BMWi within 

petrophysical classes provided an effective characterization of ore comminution behavior 

and throughput prediction. Four classes were created (PC approach) based on density, 

magnetic susceptibility, P-wave velocity and P-wave amplitude using a cluster analysis 

method. Ore crushability (A*b) and grindability (BMWi) of samples in each class can be 

predicted from petrophysical properties using multiple regression models.  

 
The models developed for these classes were significantly better than universal models. 

The overall R2 and RMS error values between predicted and measured A*b are 0.63 and 

27.3 respectively. The overall R2 and RMS error between predicted and measured BMWi 

are 0.51 and 1.39 kWh/t respectively. The predicted values provided a basis for 
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continuous downhole prediction of mill throughput. Comparison of the pre-existing 

Ernest Henry throughput model with a class-based throughput model for a wide range of 

data showed that the class-based models can provide better prediction of mill 

performance at Ernest Henry. An accuracy of approximately ±20% in prediction of 

comminution attributes is adequate in practice for process planning purposes. Therefore 

petrophysical-based comminution models could be useful for such purposes.  

 
Automated prediction of comminution classes was also assessed using the neural network 

technique and minimum distance classification approach. The neural network predicted 

the comminution classes in an independent hole with an accuracy of 72% while the 

accuracy of the minimum distance algorithm was 60%. The use of neural network 

methods for prediction of comminution classes is an alternative approach to comminution 

modeling using petrophysical classes (PC approach). This approach does not require 

development of separate comminution models for A*b and BMWi as in the PC approach.  

 

 

8.5.2. Cadia East Comminution Modeling 
 
Classes based on alteration data were tested as potential geometallurgical classes at Cadia 

East. Classification based on petrophysical properties (PC approach) was also evaluated. 

However for each classification approach comminution attributes in all classes displayed 

little variability. For this reason an attempt was made to characterize comminution 

behavior at Cadia East using comminution classes approach (CC approach).  

 
Four classes were created based on variability of A*b and BMWi around the respective 

mean values for the entire population. Therefore each class represents a specific 

comminution behavior as characterized by A*b and BMWi values. Created classes were 

then linked to petrophysical properties and geochemical assays in a “training” set. To 

assess the performance of different algorithms, comminution classes were predicted in a 

hole that had not been included in training set. The performance of a minimum distance 

algorithm and a neural network approach were compared. 

 
In the majority of cases the performance of both approaches in predicting comminution 

classes was more than 50% accurate. The performance of neural network approach in 

prediction of comminution behavior in three independent holes was better (by ~10%) 

than the minimum distance algorithm. The prediction accuracy of neural network 

approach ranged from 51% to 77%.  Accurate prediction of comminution classes using 
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petrophysical data was difficult at Cadia East. However, comminution classes approach 

(CC) has the potential to be useful for characterisation of mill performance.  

 

 

8.6.  Image Based Prediction of Comminution Behavior 
 
A novel approach for prediction of density and comminution attributes from classified 

core images from Ernest Henry was illustrated in this thesis. To the best of the author’s 

knowledge, prediction of comminution properties from core images has not been 

investigated previously.  

 
Classified core images provided volume estimate of mineral phases. Given density values 

for individual minerals, bulk density can be predicted as a volume weighted sum of those 

densities.  

 
The classified estimates of mineral abundance were not compatible with assay data at 

Ernest Henry. Nor were predicted density values accurate when compared with measured 

values (average relative error of 8.9%).  As a result the volume estimates were adjusted 

using intrinsic densities and chemical formulae of minerals via a linear programming 

algorithm in order to satisfy the assay data. The adjusted volumes significantly enhanced 

the density prediction (average relative error of 3.5%). Prediction of density from 

classified core images can be regarded as an important outcome since it could provide an 

alternative approach to downhole measurement. 

  
In addition, a novel approach for prediction of A*b and BMWi values from mineral 

grades was presented. The coefficients estimated for mineral phases from least square 

regression provided a means for prediction in intervals of core where test measurements 

are not available. The predicted values provide a basis for prediction of mill throughput as 

well. The comminution models, however, are not particularly accurate with RMS errors 

of 33.3 and 1.68 kWh/t for A*b and BMWi respectively. 

   
Use of core images for prediction of petrophysical properties and comminution attributes 

carries uncertainties. Reliable separation of mineral phases from optical core images is 

generally difficult. Moreover there is additional uncertainty owing to the variability of 

chemical composition of mineral species.  Also the bound models used in this research 

are very simple. However, the disadvantages of this approach are compensated by its 

advantages. Capturing images of drill cores is quick, safe, relatively cheap and 

logistically simple.   
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8.7.  Concluding Remarks 
 
This thesis was motivated by the potential for prediction of comminution attributes from 

petrophysical data. The AMIRA P843 project provided a golden opportunity to compare 

petrophysical data directly with small-scale comminution tests conducted on the same 

core samples. Data from two mine sites (Ernest Henry IOCG and Cadia East porphyry 

Au-Cu) were acquired and analyzed.  

 
The two case studies from different geological environments, different mineralization 

styles and different scale of operation showed that petrophysical data can provide useful 

information for characterization of comminution behavior. Predictive comminution 

models based on petrophysical properties enabled an alternative prediction of mill 

throughput performance. The developed comminution models were affected by 

uncertainties in determination of comminution attributes and measurements of 

petrophysical properties. Nevertheless the models could be useful for mine planning 

purposes during mine feasibility assessment. Improved incorporation of spatial variability 

is the major advantage of the approaches described in this study. The comminution 

modeling approaches outlined are robust, can be applied to other deposits and can be 

extended to incorporate other information such as assays or geotechnical data. 

 
A major challenge during this research was recording petrophysical properties using the 

Geotek system during production core logging while evaluating, modifying and preparing 

logging protocols. The accuracy achieved in production logging was approximately 

±1.35% for density, ±6.5% for P-wave velocity, and ±1% for magnetic susceptibility. 

Further modification to the current Geotek system is required to make it more suitable for 

future geometallurgical research. However downhole geophysical logging provides a 

more efficient option for collecting petrophysical properties when drill holes are 

accessible. 

 
The performance of petrophysical-based models can be improved by reducing 

uncertainties in petrophysical and comminution measurements, refining data 

classification techniques, and probably by increasing the number of petrophysical 

properties and incorporating other data, including assays, in the analysis.  

 

The new approach for continuous prediction of petrophysical properties and comminution 

attributes from core imagery is cost-efficient and rapid. The initial work conducted in this 

field suggests that this approach has significant potential particularly if additional 

improvements can be made by applying more sophisticated mixing models, better 
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identification of mineral phases and integration with other data such as Hylogger and 

assays. 

 
Future work on the link between petrophysical properties and comminution attributes 

depends primarily on the availability and quality of petrophysical data at mine sites.  In 

addition, characterisation of comminution parameters is most effective when a number of 

petrophysical properties are recorded on the same samples. Downhole logging is the 

preferred method for petrophysical data collection due to rapid data acquisition of 

consistent data. Development of accurate comminution models also requires an adequate 

number of accurate comminution tests on carefully chosen intervals. It would be best to 

carry out comminution sampling after analysis of petrophysical, geological and 

geochemical data in order to ensure that the likely range of ore variability has been 

effectively sampled. With quality petrophysical data, and well-chosen comminution 

samples the data classification schemes and modeling techniques presented in this study 

could be widely applied for definition of geometallurgical domains and for comminution 

modeling.  
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