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Abstract 

The distribution of the beetle Paropsisterna bimaculata was related to 33 

environmental covariates distributed across in Tasmania. This beetle is an economic 

pest in Eucalyptus plantations, episodically occurring in large aggregations that 

damage tree canopies through overgrazing. A number of hypotheses relating to beetle 

outbreaks have been proposed by various researchers. Random forest modelling, a 

powerful non-parametric statistical approach that has not been frequently applied 

before in ecology, was used to assess specific predictions of these hypotheses. The 

models were developed using landscape layers and proximity to vegetation layers that 

were created using GIS for multiple combinations of climate variables and districts. 

The climate combinations assessed included: (1) mean summer maximum 

temperature and summer rainfall for survey years, (2) 30 year average for mean 

summer maximum and summer rainfall, (3) 30 year average for climate variables, (4) 

30 year average for climate variables and mean summer maximum temperature and 

summer rainfall for survey years. The district combinations included all districts, Bass 

only, and all districts excluding Bass.  

Locations less than 10 kilometres from Poa grasslands showed highest beetle 

numbers, while increasing elevation also showed a strong positive relationship with P. 

bimaculata populations, and mean annual summer rainfall and survey year were 

important in the district of Bass. Thus, in terms of prior hypotheses, Poa appears to be 

an important overwintering site for P. bimaculata; beetle populations increase with 

elevation; beetle populations increase with age of plantation between 2 and 8 years; 

and Bass has greater variability than other districts in beetle density. Model outputs 

did not support, or only weakly supported, hypotheses that suggest beetle numbers are 

highest at highly productive sites, and are affected by the shape and size of forestry 

coupes and by plantation species. 

The random forests model with least error was based on all districts except Bass for 

thirty-year climate average data plus summer mean rainfall and summer mean 

maximum temperature data. A cost-benefit analysis nevertheless indicated that 

directing the ongoing beetle survey effort on the basis of model outputs would not 

reduce costs compared to the current broad-scale monitoring program. The model did, 
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however, generate state-level maps of value to forestry workers when assessing the 

likelihood of beetle outbreaks in their districts. 
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Chapter 1 Introduction 

1.1 Background 

The Tasmanian Eucalyptus leaf beetle, Paropsisterna bimaculata, formerly known as 

Chrysophtharta bimaculata, is a major insect pest of commercial Eucalyptus forests. 

It regularly causes chronic defoliation of new season’s growth over large areas of 

plantations, and management of P. bimaculata is of highest importance in producing 

economically viable timber in Tasmania. Paropsisterna bimaculata attacks can 

decrease the amount of annual growth by as much as fifty percent each year (Clarke 

et al. 1997). Elek (1997) also found that after eight years the volume of wood in a 

Eucalyptus regnans plantation was reduced by almost 30%, compared with a 

plantation where the beetles were excluded. Even small numbers of beetles in a 

plantation can result in a substantial reduction in growth over one season (Leon 

1989). Thus P. bimaculata has a significant detrimental effect on Eucalypt 

plantations, causing major losses in value of harvested wood due to downgrading of 

timber form and longer rotation times than normal production schedules (Leon 

1989). 

Large numbers of defoliating insect species occur in Tasmania, with the genus 

Paropsis (Coleoptera: Chrysomelidae) having over 400 species, most of which feed 

on foliage of Eucalyptus species as larvae and adults (Clarke et al. 1997; Simmul et 

al. 1999). Of these defoliants, the majority of damage is done by P. bimaculata 

(Greaves 1966). Adult Paropsisterna bimaculata beetles are dome shaped, 

approximately 9-10 mm in length and 7 mm in width, with colour ranging from 

reddish-brown (Figure 1), when they first appear after overwintering, to light green 

during summer (Greaves 1966; De Little 1983; Leon 1989; Candy 1999). The beetles 

are native to Victoria and Tasmania (Elek 1997) and their main native hosts are the 

Monocalyptus species Eucalyptus regnans, E. delegatensis, E. obliqua and the 

introduced mainland Symphyomyrtus species E. nitens. (Elliott et al. 1992).  
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Figure 1: Adult Paropsisterna bimaculata showing different colourmorphs 

In Tasmania, E. regnans was once widely used for plantation forests, however E. nitens 

is now the preferred species (Elek 1997). Eucalyptus globulus is also present in parts 

of the state, but requires a warmer climate than E. nitens (Wardlaw 2010). If the two 

species E. regnans and E. nitens are present, P. bimaculata preferentially attacks E. 

regnans, however, larval survival and growth is better on E. nitens with 1.5 times 

more foliage consumed by P. bimaculata survivors on E. nitens than on E. regnans 

(Elek 1997; Candy 1999; Baker et al. 2002). De Little et al. (2008) found no 

evidence of species preference between E. nitens and E. globulus. While Wardlaw et 

al. (2010) found that chrysomelid damage was significantly more common on E. 

globulus than E. nitens, they believed this preference for E. globulus to be an artifact 

of the difficulty in distinguishing chrysomelid damage from Gonipterus damage, 

which is a pest more commonly occurring on E. globulus than E. nitens.  
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Paropsisterna bimaculata rarely attack trees less than three years old (De Little et al. 

2008), preferring trees between 1 and 7 m height. Older trees above 7 m in height are 

also sometimes defoliated, but to a lesser degree (Greaves 1966; De Little 1983). As 

P. bimaculata preferentially attack adult foliage, trees below 3 m in height are not 

commonly attacked because of the lack of adult foliage (Candy 1999). When below 3 

m high, eucalypts are instead more likely to be attacked by browsing mammals 

(Greaves 1966).  

Leaf nitrogen and leaf toughness are the dominant factors affecting larval growth, 

with secondary plant substances found in eucalypts (such as tannins and terpenoids) 

having little effect (Clarke et al. 1997). As new-season growth or flush foliage is soft 
and high in nitrogen, its availability is a dominant influence on ovipositioning and P. 

bimaculata population dynamics, rather than the particular host species (Clarke et al. 

1997; Candy 1999). While ovipositioning usually occurs on new leaf foliage, eggs are 

sometimes found on foliage from the previous year (Greaves 1966).  

1.2 Life cycle of P. bimaculata 

Egg laying first occurs in mid-late November and continues throughout summer until 

mid-February (Figure 2), depending on patterns of temperature variation each year 

(Greaves 1966; De Little 1990; Clarke et al. 1997). Eggs are laid in discrete lines of 

10-30 eggs on either surface of the leaf (Figure 3) (Greaves 1966; Clarke et al. 1997), 
often close to the tip of the leaf (Howlett et al. 2003). Although originally thought to 
have two generations per year (bivoltine) by Greaves (1966), more recent studies 

consider the beetles to have one generation per year (univoltine) since the teneral 

adults do not reach sexual maturity until the following spring (De Little 1983). Two or 

three egg laying peaks often occur during summer and autumn (Candy 1999). Eggs 

hatch after approximately 10 days and the neonate larvae consume their chorion prior 

to feeding on the flush foliage (Greaves 1966; Candy 1999). 

 



Chapter 1 – Introduction 

 4 

 

Figure 2: Lifecycle of P. bimaculata (Forestry Tasmania) 

The grub-like larvae are dark-green to black in appearance (Figure 3) (Leon 1989) 

and gregariously feed on new season’s growth (De Little 1983; Leon 1989). Damage 

done by larval feeding is quite distinct from adult feeding damage as seen in Figure 4 

(Greaves 1966). Although both adults and larvae feed on new season’s foliage (Elek 

1997), adults feed singularly, chewing inwards from the edges of the leaves towards the 

midrib, while leaving a characteristic scalloping pattern on the leaf margins (Greaves 

1966; De Little 1983; Simmul et al. 1999). Colonies of larvae feed on the new-

growth, potentially stripping the host trees of all young leaves and shoots or leaving 

just the midribs and margins (De Little 1983; Leon 1989; Simmul et al. 1999). This 
can give the tops of badly affected trees a twiggy broom like appearance (“broom-
topping”) (Leon 1989). 
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Figure 3: Juvenile beetles of P. bimaculata showing from left to right a) rows of eggs and first 

instar larvae, and b) third instar larvae 

 

Figure 4: Damage from adult P. bimaculata beetles (scalloping) and larvae (rougher edges to the 

midrib). 

Over approximately 21 days to a month, the larvae develop through four instars and 
reach a length of 12-14 mm (Greaves 1966; Leon 1989; De Little 1990; Clarke et al. 

1997). Although all instars feed, it is estimated that the majority of damage caused by 
larvae is during the third and fourth instar when about 90% of the larvae’s food intake 
occurs (Greaves 1966; Leon 1989). Following completion of feeding, larvae become 

sluggish and drop to the ground to pupate in small prepupal cells in the soil (Greaves 

1966). The new adult Paropsisterna bimaculata beetles emerge after 12-15 days 

before commencing feeding and then overwintering nearby (Greaves 1966; Clarke et 
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al. 1998). 

Paropsisterna bimaculata are highly mobile beetles and subpopulations in central 

Tasmania have been found to have high numbers of immigrants, which are 

undistinguishable from a single interbreeding population (Clarke et al. 1997; 

Congdon et al. 1997). Large numbers of beetles move from one tree patch with 

favourable conditions to another (Clarke et al. 1997). This usually occurs on sunny 

days. During unfavourable weather, such as cool temperatures or strong winds, they 

seek shelter in leaf litter on the forest floor (Greaves 1966; Leon 1989). 

Paropsisterna bimaculata adults were found to be spatially aggregated up to a 

distance of 110 m, negatively correlated at around 250 m, and have no spatial 

correlations at a between-coupe scale (Clarke et al. 1997). As adult P. bimaculata 

beetles are highly mobile, they possibly disperse large distances to find 

overwintering sites, however, the abundance of beetles found overwintering within, 

or near the margins of, regrowth forest suggests that the beetles remain locally and 

do not travel far from their autumn feeding sites (Clarke et al. 1998). 

During overwintering, adults aggregate in small groups of less than 20 individuals 

within a range of different shelters (Clarke et al. 1998). Adults have been found 
hibernating under the bark on trunks of trees and in cracks/splits of dead trees 
(Greaves 1966; Leon 1989), while Clark et al. (1998) identified 14 overwintering 

habitat types of which Gahnia grandis had the greatest mean number of insects and 

bracken fern litter sheltered the least (
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Table 1). According to Clark et al. (1998), Gahnia grandis grasslands are by far the 

most important habitat for leaf beetle overwintering, however, Wardlaw (pers. 

comm. 2010) believes that Poa spp. (another type of grassland) is also an important 

overwintering site, although this has not been investigated.  
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Table 1: Habitats of overwintering P. bimaculata in the southern forests of Tasmania (Clarke et 

al. 1998) 

 

Predators and parasitoids together form the single most important factor affecting 

egg mortality (Figure 5), often completely controlling populations of P. bimaculata 

eggs and larvae (De Little 1990). The most common predators of P. bimaculata are 

two species of ladybird, the southern ladybird Cleobora mellyi, and the common 

spotted ladybird Harmonia conformis (Coleoptera: Coccinellidae); the plague soldier 

beetle, Chaultiognahus lugubris (Coleoptera: Cantharidae); the tachnid flies 

Anagonia rufifacies and Paropsivora sp.; and a braconid Eadya paropsidis (Greaves 

1966; Elliot et al. 1980; Elliott et al. 1992; Candy 1999). Birds are also considered 

predators of P. bimaculata (Greaves 1966), although their contribution to total 

mortality is unknown. 

 

Figure 5: Predators of P. bimaculata including Cleobora mellyi and an unknown beetle species. 
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Both larval and adult ladybirds predate on P. bimaculata eggs and larvae (Greaves 

1966) and, when combined with plague soldier beetles, can reduce populations by up 

to 80% (Elliott et al. 1992). The parasitoid flies lay small white eggs onto P. 

bimaculata that burrow into the chrysomelids’ body when hatched (Greaves 1966). 

Anagonia rufifacies mainly attacks fourth instars. Whilst Paropsivora sp. has no 

preference for any particular instar (De Little 1982), the parasitised larvae do not die 

until after the fourth instar, when in their pre-pupal cells (Greaves 1966; Leon 1989). 

Parasitation of chrysomelids can be further complicated by hyperparasitism (Greaves 

1966). The pupae and overwintering adults can also be attacked by pathogenic fungi 

of the genera Beauveria and Metarhizium (Candy 1999). 

1.3 Paropsisterna bimaculata Integrated Pest Management 

As there is no single environmentally acceptable control method, an Integrated Pest 

Management (IPM) system (termed the Leaf Beetle IMP) has been used to manage 

Paropsisterna bimaculata populations in Tasmanian plantation forests since the 

1980s (Elliott et al. 1992; Candy 1999). Monitoring of pest eggs and larvae is 

conducted prior to significant defoliation taking place because it enables best 

estimates of likely defoliation, determines whether artificial control methods are 

required, and identifies the optimal timing for conducting pest control measures 

(Leon 1989; Elliott et al. 1992). 

Temperature has a large effect on beetle natality and mortality with large populations 

occurring in years with above average summer temperatures (Greaves 1966). 

Increased temperature generally causes faster growth rates of P. bimaculata and 

growth of larger beetles, whilst larvae can be dislodged by extreme weather events 

such as high velocity winds, heavy rainfall or hail (Greaves 1966). Other 

environmental factors such as local soil type, previous foliage damage from insects, 

tree stress factors, and time since last fire can also be important in explaining 

herbivore spatial and temporal patterns (Clarke et al. 1997).  

As P. bimaculata adults occur in small mobile aggregations, pest surveys need to be 

both regular (2 weeks apart or less) and intensive (sampling points within 150 m of 

each other) to confidently monitor populations (Clarke et al. 1997). Weekly 
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monitoring of egg and larval levels around the state should commence by mid-

November and continue until February (Elliott et al. 1992; Elek 1997). Because P. 

bimaculata  populations usually develop synchronously, with the larvae in the 

second instar 2 to 2 " weeks after egg-laying, it is relatively easy to predict a 

population’s development (Leon 1989) 

Elek (1997) found that if preferred tree species of P. bimaculata were interspersed in 

E. nitens plantations, then they could be used as early warning systems for 

monitoring beetle populations, and could also attract the beetles away from the E. 

nitens crop trees. Beetle numbers near roads are also good indicators of population 

levels within the plantation as adult beetles use roads as ‘corridors’ to move from one 

area to another, and are often found in high numbers along roadsides prior to moving 

within coupes (Jordan 2010, pers. comm.) 

If monitoring is conducted and the number of P. bimaculata exceeds an economic 

threshold level of 0.3 Occupied Leaves per Shoot (OLPS), as determined by Candy 

(1999), then an appropriate management strategy is initiated (Elliott et al. 1992; Elek 

1997). This usually involves the use of a broad-spectrum pyrethroid insecticide, 

cypermethrin (Elliott et al. 1992; Elek 1997; Candy 1999); although another biotic 

insecticide Novodor has been tested in laboratory and field trials as an alternative 

(Elliott et al. 1992; Candy 1999; Elek et al. 1999).  

The active ingredient of Novodor FC® – the toxin of Bacillus thuringiensis 

subspecies tenebrionis (Candy 1999) – becomes toxic only after it is consumed 

because the insecticidal protein crystal damages the lining of the gut (Elek 1997). 

Novodor FC® does not harm beneficial insects and other non-target invertebrates as 

much as cypermethrin, but it is considerably more expensive and less effective 

(Baker et al. 2003). However the use of cypermethrin requires greater operational 

controls, such as an increase in width of stream buffers, or increased distance from 

eagle nests, to minimise environmental impacts. 

Elek (1997) found 50% of young larvae were killed within four days when sprayed 

with Novodor FC®, and a total of 90% were killed without completing their 

lifecycle. Although most young larvae were killed when sprayed with Novodor FC®, 

many older larvae survived but stopped feeding, most likely as a result of the 
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effects of sublethal doses (Elliott et al. 1992). Thus, if populations with 

asynchronous development occur then the effectiveness of Novodor FC® declines 

due to its low effectiveness against older larvae and adults (Elliott et al. 1992). 

Fortunately P. bimaculata populations mostly develop synchronously (Leon 1989). 

At low population levels of P. bimaculata in the field, the insecticide was found to 

cause similar levels of mortality over four days to natural predators (Elek 1997).  

The Leaf Beetle IPM focuses on the importance of maximizing the effects of aerial 

insecticide spraying, while minimising the damage to natural predators and other 

organisms (Elliott et al. 1992). As high natural mortality occurs between the egg and 

2nd larval instar stages, P. bimaculata levels can naturally decline by 95% prior to the 

end of the 4th instar (De Little 1990). Therefore it is important to ensure minimal 

harm befalls the natural predators of the coccinelid beetles, otherwise the use of 

insecticide could reduce the number of P. bimaculata predators, and hence increase 

their survival rate and consequent defoliation levels (De Little 1990; Elliott et al. 

1992; Clarke et al. 1997). Application of cypermethrin insecticide should take place 

after natural mortality controls such as predators have had a chance to kill most 

beetles, but prior to the start of the third and fourth instar when the majority (90%) of 

defoliation occurs (Greaves 1966; De Little 1990; Elliott et al. 1992; Clarke et al. 

1997). Following any application of insecticide, a post-spray assessment of the 

population should be conducted to evaluate the effectiveness of the operation (Elliott 

et al. 1992). 

Studies of alternative forms of control to insecticide spraying, such as the inundative 

release of coccinellid beetles and spraying of P. bimaculata eggs and early instars 

with spores of the entomopathogenic fungal genera Beauveria and Metarhizium, 

have recently been conducted but found impractical (Candy 1999). A study by Baker 

et al. (2003) found that although using augmentative releases of coccinelid beetles 

can reduce the numbers of P. bimaculata to below economically damaging levels in 

small areas, dispersal of coccinellids away from the site, and the costs associated 

with mass rearing, may make this approach unfeasible. Another potentially useful 

approach is to conserve or increase overwintering sites and food sources for 

coccinellids to build up their population numbers (Baker et al. 2003). 
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The Leaf Beetle IPM incorporates existing knowledge of P. bimaculata population 

dynamics and currently-preferred methods for controlling high numbers of beetles, 

however, this will undoubtedly change as new research and insecticide information 

becomes available (Elliott et al. 1992). Temporal and spatial patchiness also pose a 

problem to the Integrated Pest Management system, and further analysis of this needs 

to be undertaken.  

1.4 Importance of spatial analysis techniques 

Technologies such as Geographical Information Systems (GIS) and Remote Sensing 

(RS) are useful tools in managing pests as they are specifically designed to look at 

pests on a large spatial scale (Norton & Mumford, 1993). GIS and RS can be used for 

3 main purposes (Norton & Mumford, 1993): 
·      To organise and store data. 
·      To manage and monitor resources and activities. 
·      To be used as a modelling and research tool. 

GIS in pest management has been mainly used to look at large scale spatial dynamics 

such as insect migration, however, it can be used for pests with limited dispersal if 

they vary geographically due to local environmental conditions (Norton & Mumford 

1993). GIS is used for either compiling data on where the pests are currently present 

or characterising the susceptibility of habitats to pest outbreaks (Liebhold et al. 

1993). Computer modeling is also becoming increasingly important in developing 

pest management strategies. For example, GIS information can be used in predictive 

models to assess and predict species distributions and risks to biodiversity (Foody 

2008). Predictive modeling is also important in determining the likely impacts of 

global climate change on pest biodiversity (Foody 2008). 

Technologies such as GIS, remote sensing, and predictive modeling are likely to be 

increasingly used in pest management to maximize the effect but minimize the cost, 

both economically and environmentally, by providing increased knowledge of the 

pests and the environment in which they occur. These new strategies and techniques 

for pest management will hopefully lead to reductions in pest numbers, and thereby 
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increase productivity. 

1.5 Aims and Objectives 

Many environmental variables have been identified through previous studies to have 

a large impact on population numbers of P. bimaculata; however these variables are 

often highly correlated and no studies have been conducted to combine the various 

potentially-important factors together, or assess non-linear relationships. Moreover, 

little work has been done on factors affecting beetle abundances over large spatial 

scales. Further analysis of beetle distribution needs to be conducted at the large 

scales that are most relevant to management, thereby providing a better 

understanding of the beetle’s ecology to improve management of the pests. 

Wardlaw identified three important avenues of research that would provide 

information to limit economic losses in the future: 

• Identify spatial patterns of egg and larval distributions within and among 

plantations to see whether an alternative method of monitoring plantations 

should be developed. 

• Test the effectiveness of CABALA HEALTH in modelling P. bimacualta 

impacts on older plantations, and verify this using empirical data to determine 

whether financial benefits would be gained from extending monitoring into 

older coupes.  

• Determine which landscape and site variables are significantly associated 

with variation in distribution of leaf beetles, to optimise the allocation of 

monitoring effort towards high risk areas. 

Specific objectives of this study address the third of these research aims, and are to: 

1. Quantify spatial landscape parameters that are considered potentially most 

important in influencing beetle numbers (aspect, curvature, hillshade, slope, 

sunlight index, and wetness index) from a fine-scale digital elevation model 

(DEM). 
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2. Quantify biological parameters that are considered potentially most important 

in influencing beetle numbers (planted year of plantation, species of 

Eucalyptus, distance to Acacia dealbata, distance to grasslands, distance to 

Poa grasslands, distance to tall eucalypt forest, distance to short eucalypt 

forest, distance to non-eucalypt forest, and distance to no forest). 

3. Quantify climatic parameters that are considered potentially most important 

in influencing beetle numbers (average maximum summer temperature, 

average annual maximum temperature, annual rainfall, summer rainfall, 

number of days of rain, annual evaporation, average radiation) for Forestry 

Tasmania Eucalyptus plantations. 

4. Quantify plantation shape parameters (area of coupe, perimeter length of 

coupe, and area/perimeter). 

5. Develop predictive models for relationships between environmental variables 
and the distribution and abundance of Paropsisterna bimaculata in 
Eucalyptus Plantations across Tasmania (based on 2005 to 2010 data, but 
excluding the 2006/2007 season). 

6. Assess the success of the predictive model using data from the current P. 
bimaculat beetle season (2010/2011). 

7. Identify the most important variables that predict P. bimaculata distribution. 

An almost unlimited choice of climatic, geographic, geological and forest husbandry 

variables was available for investigation. In order to reduce this to a manageable set, 

and minimise the chance of overfitting data with excessive covariates, factors 

investigated here were restricted to those suggested in the literature as potential 

drivers of population numbers of P. bimaculata. Thus, statistical analyses were 

undertaken in order to test a priori hypotheses. Support for these hypotheses requires 

both significant outcomes of statistical tests and also appropriate direction of change 

(e.g. a significant response of beetle numbers to altitude would not support the 

altitude hypothesis if numbers declined with altitude). 

 



Chapter 1 – Introduction 

 15 

Hypothesis 1. Eucalypt plantations at highly productive sites have a higher 

occurrence of beetle outbreaks than in areas of lower productivity. New-season 
growth, which is soft and high in nitrogen, positively affects ovipositioning and P. 

bimaculata population dynamics (Clarke et al. 1997; Candy 1999). Consequently, 

productive sites where trees show rapid growth are predicted to have higher rates of 

beetle outbreaks than non-productive sites. I here test this prediction by assessing the 

importance on beetle outbreaks of factors that affect tree production: (i) Site Index (a 

measure of productivity used by Forestry Tasmania), (ii) mean annual rainfall over 

30 year period, (ii) mean summer rainfall over a 30 year period, (iii) summer rainfall 

in year of beetle observations, (iv) average evaporation, (v) average 

rainfall/evaporation (vi) wetness index, (vii) curvature, (viii) aspect, (ix) slope.  

Beetle numbers are predicted to be highest at sights with high levels of moisture, and 

with a north-west aspect (Smith, 2000). 

Hypothesis 2. Eucalypt plantations located close to beetle overwintering sites are 

more affected by beetle outbreaks than those further away. Grasslands are believed to 

provide the most important overwintering sites for P. bimaculata beetles, with 

Gahnia grandis Clark et al. (1998) and Poa spp. Wardlaw (2010, pers. comm.) 

suggested as particularly important. I here test the prediction that beetle outbreaks 

will be higher in close proximity to grasslands by assessing the importance on beetle 

outbreaks of (i) distance from nearest mapped grassland, and (ii) distance from 

nearest mapped Poa grassland. No broadscale data on the distribution of Gahnia 

were available, hence this potentially influential factor could not be assessed. 

Hypothesis 3. Beetle outbreaks are affected by climatic factors. Population outbreaks 

of P. bimaculata usually occur in favourable weather conditions such as sunny days 

or high temperatures, and in unfavourable conditions they seek shelter (Greaves, 

1966; Leon, 1989). Also, eggs and larvae can be dislodged from foliage by extreme 

conditions such as strong winds or hail (Greaves, 1966). I here test the prediction that 

climate factors influence P. bimaculata populations by assessing the importance of 

(i) incoming solar radiation, (ii) hillshade, (iii) mean annual maximum temperature 

over 30 year period, (iv) mean summer maximum temperature over a 30 year period, 

(v) mean summer maximum temperature in year of beetle observations, (vi) average 
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number of days with rain each year. 

Hypothesis 4. Beetle outbreaks are affected by the shape and size of forestry coupes, 

as well as the species of Eucalyptus in the plantation. Roads act as transportation 

corridors for beetles with greater numbers of beetles occurring alongside roads than 

within coupes (Wardlaw and Jordan, pers. comm. 2010). Therefore coupes with large 

perimeter size to area potentially attract large numbers of beetles as there is greater 

access to the coupe. Beetle outbreaks differ between species of Eucalyptus in a 

plantation (Elek, 1997; Candy, 1999; Baker, 2002). I here test this prediction by 

assessing the importance of: (i) coupe area, (ii) perimeter, (iii) area/perimeter ratio, 

and (iv) Eucalyptus species. 

Hypothesis 5. Beetle outbreaks vary in intensity between different Forestry districts 

and ages of plantations. Wardlaw (pers. comm. 2010) suggested that beetle outbreaks 

show greater variability in the district of Bass, compared to the rest of Tasmania, as 

Bass has a greater variability in elevation and landscape. Also, younger trees are 

preferentially attacked by P. bimaculata as the trees are still developing and have 

large amounts of flush foliage (Clarke et al. 1997; Candy 1999). I here test these 

predictions by assessing the importance of district, as well as age and planted year of 

plantations on P. bimaculata populations. 

Hypothesis 6. Surrounding vegetation can disproportionately affect P. bimaculata 

beetle populations. Surrounding vegetation type can affect beetle populations by 

being less palatable than plantations, thereby drawing beetles to plantations. 

Alternatively, when surrounding vegetation is more palatable than the plantations, 

beetles could either be attracted away from plantations, or attracted in large numbers 

to the wider area (Smith, 2000). The presence of plant species such as Acacia 

dealbata that are important to P. bimaculata predators can also be of significance as 

defoliation appears to be less severe when plantations are grown with other species 

such as Acacia dealbata (Greaves, 1966). This study tests these predictions by 

looking at the importance on P. bimaculata of proximity to the forest groups: (i) tall 

eucalypt forests, (ii) short eucalypt forests, (iii) non-eucalypt forests, (iv) no forests, 

and(v) proximity to Acacia dealbata 
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Hypothesis 7. Beetle abundances are affected by elevation. Wardlaw and Jordan 

(pers. comm. 2010) suggest that populations of P. bimaculata increase with altitude. 

This study tests this hypothesis by assessing the impact of elevation on beetle 

numbers. 

Population numbers of P. bimaculata vary greatly between years, possibly as a 

consequence of other unassessed annually-varying factors, such as defoliation 

damage from previous years. I take unassessed annual variability into account by 

looking at the importance of survey year on P. bimaculata populations. 

 

 



Chapter 2 – Methods 

 18 

Chapter 2 Data and Methods 

2.1 Study Area 

Tasmania is an island state of Australia, which covers over 64,000 km2 (Cameron 

1994). The environment varies significantly across this area with wide variation in 

altitude, water availability and soil fertility. 

Geology  

Tasmania is divided into two different general geology types. Western and North-

eastern Tasmania are composed of extremely old igneous rocks, which are intensely 

folded and highly eroded. This region usually has relatively shallow soils that are 

acidic and possess low fertility (Reid et al. 1999). Central and South-Eastern 

Tasmania, however, are formed from much younger sedimentary rock with 

intrusions of igneous magma to form dolerite. This region has many faults. Tasmania 

has a large altitudinal range, with many mountain ranges and more than 60 peaks 

extending above 915 m (Reid et al. 1999). 

Climate 

The eastern half of Tasmania is relatively dry compared to western Tasmania. This is 

because moisture-laden winds from the west are forced upwards by mountain ranges, 

where they deposit most of their water load (Cameron 1994). The precipitation in the 

West ranges from 760 to 1750 mm or higher, whilst the East rainfall ranges from 500 

mm to 800 mm (with the exception of 1200 mm in the north-eastern highlands). 

Temperature decreases with altitude, and although there is no permanent snowline, 

snow can form for several months on high peaks (Cameron 1994).  

Vegetation 

Tasmania has a high diversity of plant species. Much of Tasmania is dominated by 

Eucalyptus species, and the state is renowned worldwide for its tall eucalypt forests 

(Reid et al. 1999). Native eucalypts are generally divided into three broad categories; 

dry sclerophyll, wet sclerophyll and sub-alpine, however, these categories are not 
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discrete as they are characterised by ecotones. 

Forestry Tasmania districts 

Forestry Tasmania is responsible for 1.5 million hectares of state forest that covers 

39% of Tasmanian forests (Forestry Tasmania). Forestry Tasmania divides Tasmania 

into 5 regions or districts—Bass, Derwent, Huon, Murchison and Mersey (Figure 6). 

Bass has the greatest number of coupes with almost the same total area of coupes as 

the other districts combined. 

  

Figure 6: Forestry Tasmania districts 
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2.2 Data sets 

2.2.1 Paropsisterna bimaculata counts 

Paropsisterna bimaculata population data for monitored forestry coupes were made 

available by Forestry Tasmania for seasons between 2005/2006 and 2010/2011, 

however, the 2006 to 2007 season was not included in this analysis because large 

numbers of fires occurred during that summer, limiting monitoring and effective 

control of beetle populations (Wardlaw and Jordan, pers. comm. 2010), also, analysis 

of the most recent season’s population numbers (2010 to 2011) was limited as these 

data were only compiled after most of the statistical analyses had already been 

completed. 

Monitoring of juvenile P. bimaculata beetle numbers (eggs and larvae) is conducted 

by Forestry Tasmania on a weekly basis through the summer months, as this is when 

beetles are most active. Plantations of three to eight years of age are monitored as 

older trees are harder to monitor physically, and it is believed that older trees are 

targeted less frequently by P. bimaculata (Greaves 1966; De Little 1983). Juvenile 

beetle populations are assessed by Forestry Tasmania rather than adult beetles as 

adult aggregations can travel large distances in short time periods (Clarke et al. 

1997); hence populations may go from high to low numbers between assessment and 

insecticide spraying. Monitoring is undertaken using a leaf beetle record sheet 

(Appendix 1) to calculate the rate of Occupied Leaves per Shoot (OLPS). 

Initially a ‘quick and dirty’ visual analysis is conducted (first stage monitoring). This 

first stage assessment is based on a selection of ten roadside trees per coupe and a 

visual scan of these trees is conducted. If any evidence of larvae or eggs is present on 

a tree, even if it is only one organism, then the tree is recorded as occupied. Should 

the number of occupied trees be three or greater, a full site monitoring survey 

(second stage monitoring) is conducted, however if less than three trees are occupied, 

OLPS is recorded as zero. Roadside trees are used for the ‘quick and dirty’ analysis 

because roads act as transportation routes for beetles, with greater numbers of beetles 

present in roadside trees than within the coupe (Wardlaw and Jordan, pers. comm. 

2010). Therefore the ‘quick and dirty’ analysis can generate an overestimate of beetle 
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numbers, and a lack of beetles roadside indicates a low likelihood of beetles further 

within the coupe. 

A further 20 trees located within the coupe are randomly selected for second stage 

monitoring. Three shoots (branches) are removed from two different sides of each 

tree using pruning poles. A ‘shoot’ is defined as a terminal length of new season’s 

growth of approximately thirty centimetres; identifiable by its thinner leaves that are 

a shiny lighter-red colour. The number of leaves with eggs or larvae is then recorded. 

For example, if a shoot has a leaf with one larva, and another leaf with 20 larvae, the 

recorded number is 2 occupied leaves on the shoot. This is repeated for the other 5 

shoots from each tree. Because monitoring data show different OLPS readings 

though the season as a result of population fluctuations, the maximum OLPS rate is 

recorded for each coupe.  

If a coupe should trigger the threshold OLPS of 0.3, then management of the coupe 

consists of either spraying populations, allowing natural mortality factors to reduce 

P. bimaculata numbers to acceptable levels, or not spraying due to operational 

reasons (such as adverse weather or proximity to wedge tailed eagle nests). In 

addition, following severe weather events, which could physically dislodge beetle 

eggs and larvae, follow-up monitoring is often conducted. 

2.2.2 Forestry coupe maps 

Forestry Tasmania has over 3126 Eucalyptus forestry coupes distributed across the 

state (Figure 7). Coupes are areas of forest used by Forestry Tasmania as the basis 

for integrating operational, tactical and strategic wood production planning (Smith, 

2000). A GIS polygon layer including all the forestry coupes, each labelled with an 

identification code, such as AR022H, was provided by FT. This layer was entered 

into a GIS database, allowing calculation of the area of each coupe and perimeter 

length.  
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Figure 7: Forestry Tasmania eucalypt plantation coupes across Tasmania. 

2.2.3 Non-derived data sets from forestry 

Along with the maximum OLPS recorded for each coupe, Forestry Tasmania also 

provided other physical data for each coupe including: species of Eucalyptus (nitens 

or globulus), site index (SI), age of coupe when harvested, year of coupe plantation, 

surveyed year, district, summer maximum temperature, annual maximum 

temperature, annual rainfall, summer rainfall, number of raindays, annual 

evaporation, and average evaporation. Site index is an estimate of mean dominant 

height at 50 years of age (Elliot et al. 2003). The climate data have been calculated 

as a 30 year average for the base period 1961-1990 . 



Chapter 2 – Methods 

 23 

2.2.4 Digital Elevation Model (DEM) and derived data sets 

DEM 

A Digital Elevation Model (DEM) for Tasmania at 25 m resolution (Figure 8) was 

supplied by Forestry Tasmania and was accurate to 25 m for most of the state, except 

for the southwest where accuracy declines but no forestry coupes were present. From 

this DEM several physical parameters were derived.  

 

Figure 8: Digital Elevation Model (DEM) 
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Slope 

The slope function identifies the steepest downhill gradient for any given surface by 

identifying the rate of maximum change for each cell in the DEM using the average 

maximum technique. Slope is calculated by identifying the maximum rate of change 

between a cell and any of its eight neighbors in a 3 by 3 grid matrix. Low output 

slope value indicates a flat terrain, and as the output value increases so does the 

steepness of terrain. Cells located in a neighborhood with a no data z-value are 

allocated the z-value for the centre cell. Edge cells have three neighboring cells with 

no data, and are each assigned the same value as the centre cell. This tends to lead 

towards a flattening out of slopes around the DEM periphery. Slope is an important 

variable because of its influence on runoff, soil drainage and erosion.  

Aspect 

Aspect was determined to be an important variable for P. bimaculata populations as 

Smith (2000) found higher populations on North-West facing slopes. Aspect is 

calculated in a similar way to slope using the steepest gradient, however, for this 

metric the direction that the plane faces is the output raster for each cell. Aspect 

determines the direction that the maximum rate of change in value from one cell to 

its neighbors (greatest slope) occurs. The resulting aspect values are the same as 

compass directions, from 0 (due North) around the circle to 360 (also due North). All 

flat areas (i.e. areas with a slope of 0) are assigned an aspect of -1. Aspect was 

reclassified to discrete compass directions (Table 2). 

Table 2: Reclassification of aspect  

Angle Reclassified Direction 
-1 1 Flat 

0-22.5 2 North 
22.5-67.5 3 North-East 
67.5-112.5 4 East 
112.5-157.5 5 South-East 
157.5-202.5 6 South 
202.5-247.5 7 South-West 
247.5-292.5 8 West 
292.5-337.5 9 North-West 
337.5-360 2 North 
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Curvature 

Curvature is the second order derivative of a surface, or the slope of the slope, and 

expresses the degree of curvature of the terrain. Curvature affects the acceleration or 

deceleration of flow in the profile direction across a surface and it indicates a 

convergence or divergence of flow in the planar direction. A positive curvature 

indicates the surface is upwardly convex at that cell, a negative curvature indicates 

the surface is upwardly concave at that cell, and a value of zero indicates the surface 

is flat. The curvature derivative can provide valuable information about the local 

exposure and hydrological characteristics of a landscape. 

Hillshade 

Hillshade is calculated by determining the hypothetical illumination for any given 

location. A hypothetical light source is set and each cell’s illumination is calculated 

in relation to its neighboring cells. An azimuth and elevation angle need to be set to 

determine the direction the light comes from. The azimuth is the angular direction of 

the sun and varies from 0 (North) around the compass to 360 (North again). The 

default azimuth for hillshade is 315 (North West). The elevation angle is the angle 

above the horizon that the illumination comes from, varying between 0° (on the 

horizon) and 90° (the zenith, or the direction straight up). The default angle of 

illumination is 45°. Hillshade is displayed on maps in shades of grey associated with 

integers varying from 0-255. As the values increase the hillshade gets lighter, with 0 

being black, and 255 being white. Modelling the spatial distribution of Hillshade to 

assess its relationship to P. bimaculata is important as the beetles are found to occur 

in higher numbers and grow faster with warmer temperatures (Greaves 1966). 

Incoming solar radiation 

Topography is the major factor modifying the distribution of incoming solar 

radiation (insolation) at the local landscape scale. Variability in elevation, surface 

orientation (slope and aspect), and shadows cast by topographic features create local 

variability in insolation. This leads to high spatial and temporal heterogeneity in the 

local energy and water balance, which in turn affects soil temperature, evaporation, 

snow melt patterns, and soil moisture. It is therefore important to compare the 
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spatial distribution of solar radiation with P. bimaculata populations as the beetles 

are found to be in higher numbers on sunny days, and with warmer temperatures 

(Greaves 1966). 

In a GIS, area-based solar radiation models compute insolation from the surface 

orientation and shadow effects from a digital elevation model (DEM). Area solar 

radiation analysis was used to calculate the insolation across the entire DEM. As the 

study area is so large the calculations were repeated for smaller areas and 

amalgamated to produce an insolation map for the entire geographic area. The 

azimuth had to be set from its default setting of 134 (South East) to 314 (North West) 

as we are in the Southern Hemisphere, and an annual average was calculated. 

Wetness index 

The wetness index is calculated from a flow direction network and a slope layer, both 

derived from a DEM. The flow direction network shows the flow direction for each 

grid cell and based on this layer the upstream area for each cell can be calculated. 

The wetness index is a function of the upstream area and the slope, whereby the 

greater the upstream area and the flatter the cell the higher the wetness index. The 

wetness index only provides a hypothetical surface wetness (unitless index) without 

taking into account soil properties or geological characteristics. 

The wetness index (also known as Topographic Wetness Index is calculated using 

the following expression where a is specific catchment area (upslope contributing 

area), and S is the slope in degrees (Bohner 2006). 

W= ln(a/tan(S)) 

The specific catchment area is defined as the corresponding drainage area per unit 

contour width (m2 m -1) and is calculated using the multiple flow direction method 

(Freeman, 1991). The Topographic Wetness Index shows the likelihood of a cell 

producing runoff as areas with high moisture contents are prone to saturation. The 

greater the value of a cell, the higher the likelihood of the area being prone to 

saturation or overland flow. Wetness index is important in assessing beetle 
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populations as it has a high correlation with productivity.Data sets derived 
from TasVEG  

Vegetation community data were based on TasVEG, which was obtained from The 

LIST. TasVEG is a Tasmania-wide vegetation map, produced by the Tasmanian 

Vegetation Mapping Program (TVMP) as part of the Department of Primary 

Industries, Pollution, Water and Environment (DPIPWE). TasVEG includes 154 

different vegetation communities for across Tasmania, at a scale of 1:25,000 (TVMP, 

2011). Grasslands (Lowland grassland complex, Coastal grass and herbfield, 

Highland Poa grassland, Lowland Poa grassland, Rockplate grassland, Lowland 

sedgy grassland, Lowland Themeda grassland) were selected from TasVEG using an 

SQL query due to their potential as overwintering sites for P. bimaculata, and a 

proximity analysis was then conducted using Euclidian distance. This was repeated 

for Poa grasslands (Highland Poa grasslands and lowland Poa grasslands), also a 

potential overwintering site, and Acacia dealbata forest due to their potential to host 

P. bimaculata predators. Although TasVEG is relatively accurate, the species 

composition of the understorey vegetation is not specified in the map unit, so is only 

as accurate as the broad vegetation classes included. 

2.2.6 Data sets derived from Forest group 

ForestGroup was a GIS vector layer obtained from Forestry Tasmania that contained 

data on forests surrounding the plantations. This study focused on four different 

types of forest groups, namely tall eucalypt forests (for_tall), short eucalypt forests 

(for_low), non-eucalypt forests (including: Tasmanian Blackwood, Tasmanian Oak, 

Myrtle, Celery Top, Huon Pine, Silver Wattle, Clear and Black-Heart Sassafras, 

other pines, and rainforest) (for_non), and areas with no forest (for_less). These 

variables were chosen due to their potential to influence P. bimaculata numbers by 

attracting beetles an area, or making an area unattractive, and were analysed in the 

same way as the TasVEG variables, by using a SQL query and proximity analysis. 

2.2.7 Climate data derived from BOM 

Monthly Rainfall and temperature data for Australia were obtained from the Bureau 

of Meteorology (BOM) for November 2005 to February 2011 (excluding Nov. 2006-
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Jan. 2007). This was then converted from ASCII to Raster format, the coordinate 

system defined as GDA94 UTM zone 55, and made to fit the same extent as the 

DEM (Tasmania). The three summer months for temperature for each season were 

averaged using raster calculator, whilst for Rainfall they were summed as average 

rainfall over the season. Rainfall and climate are both important in assessing P. 

bimaculata populations as climate variables have such as strong influence on their 

lifecycle.  

2.3 GIS processing methods (Data processing) 

The data set contained several plantations that were sampled in more than one year. 

They were treated as separate plantation sample events for the purpose of the 

analysis. Variables such as OLPS, age of plantation, surveyed year, yearly summer 

rainfall and yearly summer temperature changed each season, however, the 

remainder of the variables remained constant each year.  

Summary statistics were applied once the data layers had been created from the 

DEM, TasVEG, ForestGroup, and BOM data layers, which allowed the mean result 

for each variable in each coupe to be obtained using the coupe polygons in a zonal 

mean statistic operation. These were then compiled into one data file and spatially 

joined to the GIS polygon coupe layer, along with the OLPS records and other non-

derived data. 

2.4 Statistical analyses 

The Random forests (RF) algorithm (Breiman, 2001) is a powerful non-parametric 

statistical modelling tool that has been rarely applied in ecology, however, it is 

widely used in other disciplines such as bioinformatics (Cutler et al., 2007). 

Individual regression trees are commonly used for statistical modelling in ecology 

for building explanatory or predictive classification or regression models. Random 

forests use an ‘ensemble’ approach that combines multiple regression or decision 

trees, generally at least 500, to produce a more accurate model (Pitcher et al. 2004). 

Each regression tree produces a number of splits or nodes that are increasingly 

homogenous to the class variable, as measured by the Gini index (Cutler et al. 2007; 

Pal, 2005). This splitting of the ‘tree’ continues until further subdivisions cease to 
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reduce the Gini index. This final node is called the terminal node, and the regression 

tree is said to be fully grown (Cutler et al. 2007). Individual regression trees are 

constructed by applying a random selection with replacement of observed values in 

the data set, also known as a bootstrap sample. Two-thirds of the data is used for 

training purposes and one-third is used for cross-validation and results in the out of 

bag error (OOB-error). This OOB-error metric can be used to assess the performance 

of the model. This approach is known as bootstrap aggregation or ‘bagging’. 

Variable importance scores can also be calculated using the OOB cross-validation 

data. The importance of variable v is the percent increase in the OOB mean sum-of-

squared errors when the values of v are randomly permuted. The partial effects of 

each predictor can be calculated by integrating the estimates with respect to each 

predictor individually (Haywood et al. 2007; Pitcher et al. 2004). Partial dependency 

plots are also important products of random forests and give a graphical depiction of 

the marginal effect of a variable on the class probability (classification) or response 

(regression).     

The approach used by random forests to assess important predictor variables has 

advantages compared with other statistical classifiers. These advantages include: 

o a very high classification accuracy, 

o an ability to model complex interactions between predictor variables,  

o an ability to model several types of statistical analysis including 

classification, regression, clustering, multi-dimensional scaling, survival 

analysis, and unsupervised ‘machine learning’, 

o an algorithm for imputating missing data. 

Although random forests can be used to undertake several types of statistical 

analysis, in this study the focus was on using this method as a classifier to model and 

predict OLPS classes. Additionally, the random forest technique was used for 

calculating variable importance of each input variable to the prediction of OLPS 

allowing an exploration of the importance of environmental factors to beetle 

infestation. Finally, random forests allow generation of partial dependence plots for 
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the most important variables to determine how they are correlated with beetle 

populations. Because the random forests method can accommodate collinear data, a 

total of 33 covariates were used based on the hypotheses outlined in section 1.4 (In 

this study, the random forests technique was used as a classifier rather than a 

regression tree, therefore the explanatory variable, OLPS, needed to be categorised. 

The OLPS score was binned from a continuous variable into a discrete variable on 

the basis of OLPS scores recorded as less than 0.3 (threshold level), or equal to and 

greater than 0.3.  OLPS scores above 0.3 could not be subdivided further because 

coupes above the threshold may have been sprayed, and thus might not have met 

their potential maximum in terms of beetle numbers. Therefore, mixing sprayed and 

unsprayed coupes in comparisons would have biased the results. 
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Table 3). The random forest implementation in the ‘Rattle’ data mining package for 

R1 was used to generate the results. 

In this study, the random forests technique was used as a classifier rather than a 

regression tree, therefore the explanatory variable, OLPS, needed to be categorised. 

The OLPS score was binned from a continuous variable into a discrete variable on 

the basis of OLPS scores recorded as less than 0.3 (threshold level), or equal to and 

greater than 0.3.  OLPS scores above 0.3 could not be subdivided further because 

coupes above the threshold may have been sprayed, and thus might not have met 

their potential maximum in terms of beetle numbers. Therefore, mixing sprayed and 

unsprayed coupes in comparisons would have biased the results. 

                                                

1 http://rattle.togaware.com/ 
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Table 3: Predictor covariates 

Predictor Variable Code  Source 

Elevation DEM Forestry Tasmania/theLIST 

Slope Slope Derived from the DEM 

Aspect Aspect Derived from the DEM 

Hillshade Hillshade Derived from the DEM 

Curvature Curvature Derived from the DEM 

Incoming solar radiation Sunlight Derived from the DEM 

Wetness index Wetness Derived from the DEM 

Species of eucalypt Species Forestry Tasmania 

Plantation survey year survey_year Forestry Tasmania 

Site index SI Forestry Tasmania 
Age of plantation when 
surveyed Age Forestry Tasmania 

Year of plantation Planted year Forestry Tasmania 

Forestry district District Forestry Tasmania 

Area of coupe (hectares) Area_ha Forestry Tasmania 

Perimeter of coupe perimeter Forestry Tasmania 
Area of coupe/perimeter of 
coupe Area_perim Forestry Tasmania 

Distance to acacia stands Acacia Derived from TasVEG 

Distance to poa grasslands Poa Derived from TasVEG 

Distance to grasslands Grass Derived from TasVEG 
Average distance to tall 
eucalypt forests For_tall Derived from VEGGROUP 
Average distance to short 
eucalypt forests For_low Derived from VEGGROUP 
Average distance to non-
eucalypt forests For_less Derived from VEGGROUP 
Average distance to non-
forests For_non Derived from VEGGROUP 

Average radiation Ave_rad BOM (1961-1990 average) 

Average annual rainfall Annual BOM (1961-1990 average) 

Average annual evaporation Annual_evap BOM (1961-1990 average) 
Average annual maximum 
temperature Annual_max BOM (1961-1990 average) 
Average annual 
rainfall/evaporation Rain_evap BOM (1961-1990 average) 
Average number of days 
with rain each year Raindays BOM (1961-1990 average) 

Average summer rainfall Summer BOM (1961-1990 average) 
Average summer maximum 
temperature Summer_max BOM (1961-1990 average) 

Actual summer rainfall Rainfall_2 BOM (Annual summer data) 
Actual summer maximum 
temperature Summer_max_2 BOM (Annual summer data) 
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Models were created using random forests with each of four sets of climate data for 

each of the following combinations of districts: 

o All four seasons for all districts 

o All four seasons for Bass only, and 

o All four seasons for all districts except Bass (Derwent, Huon, Murchison, and 

Mersey)  

In this study, all districts excluding Bass are classified together as a separate category 

because Wardlaw (pers. comm., 2010) believed Bass to be anomalous in terms of 

greater patchiness of beetle outbreaks than the other districts. 

The four different climate combinations were assessed because of the need to derive 

models based on long-term historical data that can be used in a predictive sense, and 

also data that relate beetle outbreaks to rainfall records compiled over the same 

period as the outbreak. Summer rainfall and maximum summer temperature during 

the weeks preceding beetle outbreaks have been suggested in the literature as 

particularly important when trying to understand which climate variables most 

strongly affect beetle outbreaks (Greaves, 1966; Clarke et al. 1997). When predicting 

outbreaks for future summers, it is clearly not possible to include data on rainfall for 

summers yet to come to derive model predictions, other than in a general sense with, 

for example, forecast trends associated with global climate change. Non-climate 

metrics (i.e. DEM-derived, habitat and forest husbandry metrics) were included in all 

models. The four climate combinations assessed using random forests were: 

1. 30 year mean (1961-1990) for all climate data plus summer rainfall and 

mean summer maximum temperature for the actual summer of beetle 

counts 

2. 30 year mean for summer rainfall and summer maximum temperature but 

no other climate data 

3. No climate data other than summer rainfall and mean maximum 

temperature in the summer of beetle counts 
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4. 30 year mean for all climate data such as raindays, average evaporation, 

summer rainfall, temperature. 

When assessing the accuracy of each random forest model combination of climate 

and district, two different methods were used. Either the model was created using 

two-thirds of the data and validated with one-third of the data, or the model was 

created using all the data and validated using a separate file with separate validation 

data. An example of this is using the data from the 2007/2008 to 2009/2011 seasons 

for RF training and validating it using a separate file containing the 2005/2006 beetle 

data. 

For each of the random forests modeled using the above parameters a variable 

importance plot was created. These plots helped to assess the hypotheses by 

determining which variables had the greatest correlation with P. bimaculata 

outbreaks. The most important variables, as determined by the variable importance 

plots were then used to create partial dependency plots. 

Different combinations of districts, climate, and seasons were used to create and 

validate the data and an error matrix for each was created (example below). An error 

matrix, also known as a confusion matrix shows the true outcomes and compares 

them against the predicted outcomes for the model. Two tables were created showing 

the count of observations and the percentage of observations for each class. The cells 

of the error matrix from left to right, top to bottom are referred to as a) True 

Positives, b) False Positives, c) False Negatives, and d) True Negatives. The error 

matrix also shows an overall error for the model (e), indicating the number of 

correctly classified samples divided by the total number of samples (between 0 and 

1). 

Error matrix for the Random Forest model [validate] (counts): 
    Actual 
    Above 0.3 below 0.3 

above 0.3 a b Predicted 
below 0.3 c d 

Error matrix for the Random Forest model [validate] (%): 
    Actual 
    Above 0.3 below 0.3 

above 0.3 a b Predicted 
below 0.3 c d 
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Overall error: e 
 

The error matrix was used in this study to determine if the model would be accurate 

at predicting P. bimacula beetle populations. The probability of having a false 

negative, i.e. predicting a beetle population to be below the OLPS threshold that was 

actually above threshold was also of importance as the costs associated with 

obtaining a false negative (a coupe that should have been sprayed but was not), is 

much higher than the amount saved by not monitoring (Table 4). For example the 

incurred loss for a false negative is -$119.95 per hectare, and the cost of monitoring 

is $10.2 per hectare. So if 11 coupes were monitor it would cost $112.20, however if 

monitoring wasn’t done payment of monitoring costs wouldn’t occur, but even only 

one outbreak would incur a loss of $119.95 per hectare.  

Table 4: Costs associated with beetle monitoring and control 

  Mean 95% CI 

Incured loss $/ha -119.95 14.11 

Monitoring $/ha 10.2 0.49 
Averted value 
$/ha 189 21.8 

spraying $/ha 44.6 1.75 

Coupe area (ha) 37.3 2.09 

Once the most effective model was determined from the accuracy assessment then 

the relative frequency scores for this model were obtained. The scores showed the 

relative frequency of validation data entries being a true positive, false positive, true 

negative or false negative. If the relative frequency is set as 0.5 then any score above 

this shows the probability of a coupe being under 0.3 as less than 50% and it is 

classed as over threshold. Increasing the relative frequency to 0.75 or 0.9 increases 

the cut-off for the probability of a coupe being under-threshold, thereby reducing the 

probability of a coupe being over threshold (reducing the false negatives), but 

increasing the true and false positives, and thus the number of sites that need 

monitoring. The scores and associated costs were assessed to determine whether 

models would be cost effective for use by Forestry Tasmania. 
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2.5 General map layers for two most important variables 

As discussed in further detail in the Results section, beetle populations decreased 

sharply after 10 km distance from Poa and below 500 m altitude (section 3.3.4); 

consequently, a 10 km buffer was created around Poa grasslands and elevations 

above 550 m were selected using conditional parameters in single map algebra. 

These outputs were then used to form a layer showing relatively high and low 

likelihoods of beetle infestations. The purpose of creating these layers was for 

generalised use for forest managers in determining where high or low populations 

were likely to occur. 
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Chapter 3 Results 

3.1 Paropsisterna bimaculata count results 

3.1.1 Coupe data and OLPS results from forestry 

The number of coupes in each district per year is recorded in Table 5 and percentage 

in Table 6, however, thirty-two records from the 2010/2011 season were ignored as 

no corresponding climatic data were available. The number of coupes surveyed for 

beetle outbreaks gradually increased over the years the study was conducted, with 

Bass having the greatest number of coupes investigated each year.  

Table 5: Number of coupes monitored per district per year 

  
All 
years 

2005/ 
2006 

2007/ 
2008 

2008/ 
2009 

2009/ 
2010 

2010/ 
2011 

all districts 2608 395 494 408 573 738 

Bass 870 163 249 199 259 334 

Derwent 197 52 42 36 67 110 

Huon 228 50 62 45 71 73 

Mersey 171 48 43 30 50 48 

Murchison 404 82 98 98 126 173 

ex_Bass 1000 232 245 209 314 404 

Table 6: Percentage of all coupes monitored in each district per year 

  
All 
years 

2005/ 
2006 

2007/ 
2008 

2008/ 
2009 

2009/ 
2010 

2010/ 
2011 

all districts 100 15 19 16 22 28 

Bass 46 6 10 8 10 13 

Derwent 12 2 2 1 3 4 

Huon 12 2 2 2 3 3 

Mersey 8 2 2 1 2 2 

Murchison 22 3 4 4 5 7 

ex_Bass 54 9 9 8 12 15 

 

The number of coupes with an OLPS of greater than 0.3 increases over time, with 

2010/2011 having the highest number with 249 coupes and 2005/2006 having the 

lowest number with 121 coupes (Table 7). However, this is also related to increasing 

number of coupes in total, so it is more accurate to look at the results as a percentage 

(Table 8). The 2008/2009 season has the highest proportion of coupes with an OLPS 

of greater than 0.3 (38%), followed by 2010/2011 (34%) and 2005/2006 (31%), 
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however, the percentage of coupes with an OLPS greater than 0.3 fluctuated 

relatively little between years. In comparison the percentage of coupes with an OLPS 

of 0 decreased markedly over time, and the number with between 0 and 0.3 increased 

by about the same amount (Figure 9). 

Table 7: OLPS scores in each category of 0, 0-0.3, and 0.3 or greater by year 

  0 0-0.3 0.3+ Total 
All years 1191 598 819 2608 
2010/2011 101 388 249 738 
2009/2010 276 136 161 573 
2008/2009 235 16 157 408 
2007/2008 317 46 131 494 
2005/2006 262 12 121 395 

Table 8: Percentage of OLPS scores in each category of 0, 0-0.3, and 0.3 or greater by year 

% 0 0-0.3 0.3+ 
2010/2011 14 52 34 
2009/2010 48 24 28 
2008/2009 58 4 38 
2007/2008 64 9 27 
2005/2006 66 3 31 

 

 

Figure 9:Percentage of coupes with OLPS of 0, 0-0.3 and 0.3+ over 5 seasons (2006 season 

excluded). 
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3.1.2 Annual OLPS rates in coupes over five years 

OLPS rates for all the coupes in the state that were monitored in 2005/2006, 

2007/2008, 2008/2009, 2009/2010 and 2010/2011 are shown in Figures 10-14, 

respectively. Visual inspection of data suggests that the 2008/2009 season was 

characterised by the greatest percentage of above average beetle populations, but was 

concentrated in the north-east; whereas the results for 2009/2010 were more 

widespread. However, as the sample size is so large, and covers such a large 

distribution it is difficult to make generalised assumptions from visual analysis of the 

results. 

3.2 Derived data sets 

Data sets derived using GIS included landscape layers (slope, aspect, curvature, 

hillshade, incoming solar radiation, and wetness index); vegetation proximity layers 

(proximity to general grasslands, proximity to Poa grasslands, proximity to Acacia 

dealbata, proximity to tall eucalypt forests, proximity to short eucalypt forests, 

proximity to non-eucalypt forests, and proximity to areas of no forest all); and annual 

climate data layers (mean maximum summer temperature and mean summer 

rainfall). They are included in Appendix 2 and were used as some of the input 

variables for the Random forests models. 



 

 

 

Figure 10: P. bimaculata beetle populations for the 2005/2006 season 

 

Figure 11: P. bimaculata beetle populations for the 2007/2008 season 



 

 

 

Figure 12: P. bimaculata beetle populations for the 2008/2009 season Figure 13: P. bimaculata beetle populations for the 2009/2010 season 



 

 

 

Figure 14: P. bimaculata beetle populations for the 2010/2011 season



 

 

 

Figure 10: P. bimaculata beetle populations for the 2005/2006 season 

 

Figure 11: P. bimaculata beetle populations for the 2007/2008 season 



 

 

 

Figure 12: P. bimaculata beetle populations for the 2008/2009 season Figure 13: P. bimaculata beetle populations for the 2009/2010 season 



 

 

 

Figure 14: P. bimaculata beetle populations for the 2010/2011 season
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3.3 Random forests analysis 

3.3.1 Error matrix results 

Error matrices were created and validated with random forests using a variety of 

district and season combinations for the four different climatic variables (Table 9). 

For these analyses OLPS rate was set at either >0.3 or <0.3. The overall error rates 

for each model were obtained (Table 9), along with the probability of a false negative 

(Table 10). The results show that the models with the lowest overall error rates were 

obtained when both 30 year averages plus actual summer rainfall and mean 

maximum temperature were included. Using the mean summer temperature and 

summer rainfall in the years of sampling generated the second-most accurate model. 

Inclusion of the 30-year mean for all climate variables ranked third in performance, 

while inclusion of the thirty-year mean for summer rainfall and summer mean 

maximum temperature generated the models with highest error rates.  

Models based on data from Bass were less accurate than when data from all districts 

were included, which was in turn were generally less accurate than when all districts 

excluding Bass were modelled. When Bass is excluded from the model, little if any 

improvement was gained by analysis of individual years compared to all years. Also 

when a model is created using data from a particular year and validated with a 

different year, the models for all the districts and also Bass only are less accurate, 

while for all districts including Bass the model error rate shows little change. 

In conclusion, the most accurate model developed pertained to all districts excluding 

Bass with all climate variables, including both 30 year averages plus actual summer 

rainfall and mean maximum temperature. However, error only decreased by 0.02 

between the model based on 30 year climate averages and this model, with the 

former not including specific annual data and hence useful as a predictive model. 

The model for all districts excluding Bass had a 10% rate of false negatives (Table 

10). This indicates that one in ten results will be predicted to be below threshold, but 

would be instead over.   



 

 

Table 9: Error rates for all models for 1) 30 year average plus actual summer rainfall and maximum temperature. 2) 30 year average for summer rainfall and 

summer maximum temperature only 3) actual summer temperature and rainfall in year of sampling. 4) 30 year mean for all climate variables 

  
Model training data all years 

(2/3rds) 
2005/2006 
(2/3rds) 

2007/2008 
(2/3rds) 

2008/2009 
(2/3rds) 

2009/2010 
(2/3rds) 

  
Model validation 
data 

all years (1/3rd) 2005/2006 
(1/3rd) 

2007/2008 
(1/3rd) 

2008/2009 
(1/3rd) 

2009/2010 
(1/3rd) 

all districts 0.26 0.23 0.21 0.24 0.26 
Bass 0.32 0.08 0.2 0.29 0.23 

1)  

ex_Bass 0.2 0.17 0.22 0.23 0.21 
all districts 0.27 0.24 0.23 0.27 0.27 
Bass 0.34 0.13 0.2 0.39 0.25 

2) 

ex_Bass 0.2 0.2 0.18 0.23 0.23 
all districts 0.24 0.2 0.2 0.3 0.25 
Bass 0.29 0.1 0.2 0.39 0.26 

3) 

ex_Bass 0.19 0.2 0.17 0.24 0.22 
all districts 0.24 0.2 0.2 0.22 0.24 
Bass 0.26 0.08 0.25 0.25 0.25 

4) 

ex_Bass 0.18 0.2 0.19 0.23 0.22 

 



 

 

Table 9 cont.: Error rates for all models for 1) 30 year average plus actual summer rainfall and maximum temperature. 2) 30 year average for summer rainfall and 

summer maximum temperature only 3) actual summer temperature and rainfall in year of sampling. 4) 30 year mean for all climate variables 

  Model training data 07/08, 08/09, 
09/10 

05/06, 08/09, 
09/10 

05/06, 07/08, 
09/10 

05/06, 07/08, 
08/09 

  Model validation 
data 

2005/2006 2007/2008 2008/2009 2009/2010 

1)  all districts 0.28 0.27 0.32 0.38 
2) all districts 0.27 0.28 0.34 0.38 
3) all districts 0.3 0.24 0.36 0.31 
4) all districts 0.3 0.25 0.36 0.31 

Table 10: Percentage of false negatives (predicted below threshold, but actually above) for 1) 30 year average plus actual summer rainfall and maximum 

temperature. 2) 30 year average for summer rainfall and summer maximum temperature only 3) actual summer temperature and rainfall in year of sampling. 4) 30 

year mean for all climate variables. 

  Model training data all years 
(2/3rds) 

2005/2006 
(2/3rds) 

2007/2008 
(2/3rds) 

2008/2009 
(2/3rds) 

2009/2010 
(2/3rds) 

  Model validation 
data 

all years (1/3rd) 2005/2006 
(1/3rd) 

2007/2008 
(1/3rd) 

2008/2009 
(1/3rd) 

2009/2010 
(1/3rd) 

all districts 16% 22% 16% 19% 23% 
Bass 16% 4% 12% 3% 19% 

1)  

ex_Bass 10% 17% 12% 18% 18% 
all districts 17% 23% 18% 21% 24% 2) 
Bass 18% 4% 15% 7% 21% 



 

 

 ex_Bass 10% 20% 14% 18% 21% 
all districts 16% 19% 17% 22% 22% 
Bass 15% 2% 12% 10% 21% 

3) 

ex_Bass 10% 20% 12% 18% 19% 
all districts 16% 19% 16% 19% 22% 
Bass 14% 4% 12% 3% 21% 

4) 

ex_Bass 9% 19% 12% 18% 20% 

Table 10 cont.: Percentage of false negatives (predicted below threshold, but actually above) for 1) 30 year average plus actual summer rainfall and maximum 

temperature. 2) 30 year average for summer rainfall and summer maximum temperature only 3) actual summer temperature and rainfall in year of sampling. 4) 30 

year mean for all climate variables 

  Model training data 07/08, 08/09, 
09/10 

05/06, 08/09, 
09/10 

05/06, 07/08, 
09/10 

05/06, 07/08, 
08/09 

  Model validation 
data 

2005/2006 2007/2008 2008/2009 2009/2010 

1)  all districts 16% 10% 22% 14% 
2) all districts 16% 11% 23% 13% 
3) all districts 18% 11% 26% 17% 
4) all districts 19% 11% 25% 16% 
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3.3.2 Predicted model and actual results 

The previous section (3.3.1) determined that the model using the thirty-year climate 

averages for Bass was one of the most accurate models, with an overall error rate of 

0.2 and a false negative of 10%. A score for the probability of the relative frequency 

of the data being a true negative, false negative, true positive, and false positive was 

obtained. When entered into GIS there appeared to be few spatial trends between 

probabilities (Figure 15). 

 

Figure 15: Relative frequency data showing true negatives, false negatives, true positives, and 
false positives (fix map) 

A spatial layer of the predicted OLPS scores was then created to compare with the 

2010/2011 data to see if predictions and observed results were consistent 
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(  

 

Figure 16). Although the actual and predicted results have some similarities, there is 
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a large number of coupes that were predicted to be under the OLPS threshold, but 

were in fact above.  
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Figure 16: Comparing a) actual OLPS rates for the seasons from 2005/2006 to 2009/2010 with b) 
RF predictions from model based on rates for the same area from 2010/2011 

3.3.3 Variable importance plots 

Figure 17, which includes all 33 predictor covariates, provides an example of a 

variable importance plot (all districts across all years using 30 year climate data plus 

actual summer temperature and rainfall in year of sampling). A variable importance 

plot was created for each of the four combinations of climate variables for: all 

districts for all years and each individual season; Bass for all years; and all districts 

except Bass for all years. The ten top-ranking predictor variables for each random 

forest model is listed in appendix 3 and summarised in Table 11. When determining 

the mean variable ranking, any column which did not rank in the top 10 was given a 

value of 11, unless they were not assessed (e.g. surveyed year, or district), in which 

case that column was excluded.   

 

Figure 17: Variable importance plot for all districts across all years using 30 year climate data 

and actual summer temperature and rainfall in year of sampling. 

Proximity to Poa was generally the most important predictor variable with regards to 

beetle distributions in all models tested closely followed by elevation 
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(DEM)(Table 11). Actual mean summer rainfall (rainfall_2) and district are also 

consistently important variables. 

Table 11: Overall variable importance as derived from mean of ranks shown in Table 9 

Variable 
Overall 
Average 

Poa 2.05 

DEM 2.28 

Rainfall_2 4.00 

District 5.52 

Summer_max_2 6.86 

Summer_max 6.86 

Raindays 7.00 

summer 7.00 

Annual_evap 7.43 

survey_year 7.59 

Annual_max 8.57 

Ave_rad 8.86 

For_low 9.09 

rain___evap 9.14 

Grass 9.38 

Acacia 9.48 

Age 9.62 

Slope 9.76 

Annual 9.86 

Species 10.00 

wetness 10.33 

curvature 10.43 

sunlight 10.57 

hillshade 10.57 

Planted year 10.67 

Area_perim 10.72 

For_tall 10.86 
 
The parameters that contribute least to optimal models and never occur in the top 

ranked ten predictors are area of coupe, perimeter of coupe, aspect, distance to non-

eucalypt forest, distance to non-forested area, and site index (
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Table 12). 
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Table 12: Variables not ranked in the top 10 for models that include four different combinations 

of climate variables. 1) 30 year average plus actual summer rainfall and maximum temperature. 

2) 30 year average for summer rainfall and summer maximum temperature o 

  1)  2) 3) 4) 

Area_ha x x x x 
aspect x x x x 
For_less x x x x 
For_non x x x x 
perimeter x x x x 
SI x x x x 
Acacia x   x  
Area_perim x   x  
curvature x   x  
For_tall x   x  
Planted year x   x  
sunlight x   x  
wetness x   x  
Rainfall_2   N/A N/A   
Summer_max_2   N/A N/A   
Ave_rad  N/A   N/A 
Annual  N/A   N/A 
Annual_evap  N/A   N/A 
Annual_max  N/A   N/A 
rain___evap  N/A   N/A 
Raindays  N/A   N/A 
Grass x      
Slope x      
Summer (rainfall)      x 
Sumer_max    x 
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Mean variable importance was determined for Bass, and for all other districts 

excluding Bass (Table 13). As in the previous table, when assessing the mean 

variable ranking, any column with rank outside the top 10 was given a value of 11 

unless they were N/A (e.g. annual mean summer rainfall, district etc.), in which case 

that column was excluded. In the district of Bass, survey year is generally the most 

important factor, followed by proximity to Poa grasslands, annual mean summer 

rainfall (rainfall_2) and elevation (DEM). Proximity to Poa grasslands and elevation 

are still important variables when Bass is excluded from the results, however, survey 

year and annual mean summer rainfall both become unimportant. Age of a plantation 

is also far more important when Bass is excluded. District is an important variable in 

all districts except Bass, but could not be included in the Bass analyses because it 

was only one district. 

Table 13: Results for average variable importance for Bass, and for when Bass is excluded (an 

empty space means variable importance ! 10.  

 Variable 
Mean variable 
importance for Bass 

Mean variable importance 
when Bass is excluded 

survey_year 1.5  
Poa 2.5 1.5 
Rainfall_2 2.5 9 
DEM 3.25 1.5 
Ave_rad 6.5  
rain___evap 6.5 8 
Annual_evap 7 6 
Summer_max 7.75 6.5 
Summer 8  
Summer_max_2 8   
Annual 8.5 5.3 
Raindays 8.5 8 
Grass 8.75   
Annual_max 9.5 6 
For_low 9.5   
curvature 9.75   
Species 9.75   
District N/A 3 
Age  5.3 
Acacia  9 
Planted year   9.5 
Area_perim   9.8 
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3.3.4 Partial dependency plots 

For variables that appeared to have the greatest influence on P. bimaculata 

distribution a partial dependency plot was created for a) all districts, b) all districts 

excluding Bass, and c) Bass only. These variables included elevation, proximity to 

Poa, summer mean rainfall for individual seasons, age of plantation and district.  

For all three district combinations, a slight decrease in beetle populations occurred at 

the lowest altitudes followed by a large increase with increasing elevation, however, 

the slope for the three combinations varied. The ‘all districts’ plot showed a 

relatively steep increase in beetle populations with altitude, converging at about 650 

m, whereas the ‘districts excluding Bass’ plot had two plateaus, the first between 

approximately 250 and 550 m, and the second at around 600 m. The partial 

dependency plot for Bass showed a rapid increase between 300 and 400 m, where it 

reached an asymptote. 

 

Figure 18: Partial dependency plot of elevation for a) all districts, b) all districts excluding Bass 
and c) Bass only 



Chapter 3 – Results 

 56 

Paropsisterna bimaculata populations show a marked decrease at 10 km distance 

from Poa grasslands for all three combinations of districts (Figure 19). As 

approximately 54% of the data is within 10 km distance from Poa grasslands, and 

this sharp decline occurs in both Bass and when Bass is excluded, this sharp decline 

is unlikely to be an anomaly in the data. 

 

 

Figure 19: Partial dependency plot of Poa for a) all districts, b) all districts excluding Bass and 

c) Bass only 

Mean summer rainfall using data from the years of beetle observation showed 

significant difference between district combinations (Figure 20). All combinations 

show a drop in beetle population numbers towards 100-200 mm, however after this 

point the graph for all districts showed beetle numbers remaining low, except for two 

peaks at about 400 mm and 600 mm. ; Districts excluding Bass showed a steady 

gradual increase after this point, and Bass showed an increase, before dropping in 
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value at 450 mm. These results compare to the prediction that numbers should 

increase with rainfall, which is associated with increased tree productivity. 

 

Figure 20: Partial dependency plot for actual mean maximum summer rainfall for a) all 

districts, b) all districts excluding Bass and c) Bass only 

Age of eucalypt plantations for all districts, and all districts except Bass, indicated 

stronger dependency with beetle populations up to approximately 8 years (Figure 

21). However when Bass was analysed separately, a rapid increase was evident 

between 2 and 4 years, followed by a decrease from 5 to 7 years, and then 

stabilisation (Figure 21). 
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Figure 21: Partial dependence plot on age for a) all districts, b) all districts excluding Bass and 
c) Bass only 

Figure 22 shows that effects of district on beetle numbers are highest in Bass, 

Derwent and Mersey when compared with Huon and Murchison. 

 

Figure 22: Partial dependence plot of district for a) all districts, and b) all districts excluding 
Bass  
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3.4 DEM and Poa 

The results for districts excluding Bass described above (section 3.6) indicated that a 

distance of less than 10 km to Poa grasslands and an elevation of over 550 m were 

most strongly related to elevated populations of P. bimaculata. Two layer files were 

created for areas of Tasmania that were less than 10 km from Poa grasslands (Figure 

23) and above 550 m altitude (Figure 24). These were combined to show areas with 

low likelihoods of beetle infestation (i.e. distance > 10 km from Poa, and elevation < 

550 m)( 

Figure 25), and areas of high likelihood of beetle infestation (i.e. distance > 10 km 

from Poa, and elevation < 550 m)( 

Figure 26).  

Out of 3126 coupes, 630 coupes intersect this area (are high risk cases) and 1511 are 

low risk cases. The rest are moderate cases being either close to Poa grasslands but at 

lower elevations, or at higher elevations, but further away from Poa grasslands. 
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Figure 23: Distance from Poa less than 10 km 

 

Figure 24: Elevation 
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Figure 25: Distance from Poa < 10 km and elevation > 550 m where 
likelihood of beetle populations is high 

 

Figure 26: Distance from Poa > 10 km and elevation < 550 m, where beetle 
likelihood is low
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Chapter 4 Discussion 

4.1 Variable importance 

Of the seven a priori hypothesis that were made at the start of this study, only 

three were proven correct. Paropsisterna bimaculata numbers were most frequently 

correlated with proximity to Poa grasslands and high elevations, with numbers of P. 

bimaculata rapidly decreasing at approximately 10 km distance from Poa 

grasslands, but increasing as elevation increased. These results are important for 

management of P. bimaculata as few studies have been conducted on these 

variables.  

The results regarding the hypothesis for importance of overwintering sites was 

complex because although the analysis of proximity to broadscale grasslands showed 

little correlation with P. bimaculata populations, proximity to Poa grasslands was 

highly correlated. This suggests that Poa tussocks are potentially an overwintering 

site for P. bimaculata and of greater importance than Gahnia grandis. As TasVEG 

only provides information for dominant vegetation classes, there were no data 

available on non-dominant vegetation including G. grandis. However, some dominant 

vegetation types such as Eucalyptus viminalis grassy forest and woodland may have 

a dense understorey of Poa grasslands, which is impossible to determine from 

TasVEG vegetation layer given its lack of detail in vegetation community structure. 

This means that it is possible that further studies on P. bimaculata and Poa species 

may show an even greater correlation between the two, as this study under -

represents the full distribution of Poa. Similarly, the relationship with G. grandis 

remains to be resolved given the frequency that G. grandis occurs in disturbed 

ground including roadside verges, at a scale too small for available habitat maps. 

District appears to also be an important variable (Hypothesis 5). Bass, Mersey and 

Derwent show a greater correlation with increased beetle populations than Huon and 

Murchison. When analysed separately from the other districts, Bass showed 
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markedly different variables of importance. Survey year and mean summer rainfall for 

individual years were of high importance for Bass, but being less significant for the 

other districts. Age appeared to be significant for the other four districts when 

analysed together, but not for Bass.  

Age was also ascertained to be a strong correlate with beetle populations in the 

districts excluding Bass, but not in the overall data or in Bass, thereby partially 

confirming hypothesis five. The models excluding Bass, and the overall models, 

both showed that beetle populations increased with age before reaching an 

asymptote at around 8 years, which supports results from previous studies by 

Greaves (1966) and De Little (1983, 2008).  

In Bass there was a sharp decrease in beetle populations with rainfall to 200 mm 

that did not support the hypothesis of increasing beetle numbers with rainfall and 

vegetation productivity (Clarke et al. 1997; Candy 1999), but from 200 mm beetle 

populations increased as predicted. However, the majority of other measures of 

productivity such as site index and aspect, as well as other climate factors such as 

incoming solar radiation, were found to have low correlations with beetle 

outbreaks. 

The hypothesis that high populations of P. bimaculata occur in favourable weather 

conditions, such as sunny days or high temperatures (Greaves, 1966; Leon, 1989), 

is not supported by this study because solar radiation and temperature contribute 

little towards the accuracy of the model. As climate factors are interpolated between 

weather stations and thus are not accurate to each specific location, further study of 

climate at specific sites, especially for rainfall, would likely lead to stronger 

modeled relationships and a greater understanding of factors influencing P. 

bimaculata beetle populations.  

Survey year was generally the most important factor in the district of Bass, 

however when Bass was excluded from the analysis survey year became 

unimportant. This indicates that in Bass P. bimaculata beetle populations fluctuate 

substantially from year to year due to untested variables, or low accuracy of tested 

variables. This makes it difficult to accurately predict where P. bimaculata 
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populations will occur in Bass each year. Consequently, population models for 

Bass should be regarded as less accurate than for other districts, where survey year 

was the least informative metric in predicting P. bimaculata populations. 

Area and perimeter showed very little relationship with P. bimaculata populations, 

which does not support hypothesis four and indicates that edge effects related to 

the size of a coupe and the size of its perimeter are relatively unimportant. 

Although beetle numbers have been found in other studies to be highest along 

plantation edges (Clarke et al. 1998), the outcome found here is not consistent given 

that many coupes are adjacent to other coupes, so effectively have a larger area of 

forest than individual coupe size. Furthermore, roads and tracks run through most 

coupes, which effectively subdivide the coupes into smaller areas. Species of 

Eucalyptus was also found to have little impact on the model, which supports the 

results by De Little et al. (2008), but not Wardlaw et al. (2010). 

Hypothesis six was not upheld as proximity to Acacia dealbata along with tall 

eucalypt forests, low eucalypt forests, non-eucalypt forests, and no forests, had 

little correlations with beetle populations. This low correlation with Acacia 

dealbata does not support Greaves (1966) that Acacia dealbata are important for 

predator species. However, once again Acacia dealbata is only a measure of 

dominant vegetation class and there may be other dominant vegetation types with 

Acacia dealbata present. The low importance of proximity to different vegetation 

types is unsurprising considering the amount of each vegetation type in close 

proximity to plantations was not assessed. If the study were to be re-conducted it 

would be of greater value to create a buffer around plantations and determine the 

percentage of each vegetation class within a distance of the coupes. 

Defoliation damage from previous years is not assessed in this study as the same 

coupes for different seasons are considered to be different input values. Further 

studies looking at differences between coupes over time would probably bring greater 

accuracy to the model, however, it is not a simple study to conduct as some variables 



Chapter 4 – Discussion 

 65 

such as plantation age change over time. 

The random forests models that included only the district Bass had a higher error rate 

than those models that included all the districts or included all the districts except 

Bass. This confirms the hypothesis that Bass has a greater variability in beetle 

populations than other districts, which is potentially due to the greater variation in 

elevation (Wardlaw, pers. Comm. 2010). When using three seasons of data for all 

districts to create the model, and one season to validate it, the error rate is greater 

than using two-thirds of the four seasons to create the model and one-third to validate 

it. This indicates that a model that includes Bass would be relatively inaccurate due 

to the variability between seasons.  

The most effective of the four different climate combinations used to create the 

random forests model was using 30 year mean (1961-1990) for all climate data plus 

summer rainfall and mean summer maximum temperature for the actual summer of 

beetle counts. The random forest technique is designed so that increasing the number 

of variables, even if they have low correlation with the predictor variable and high 

correlations with other variables, does not reduce the accuracy of the model. 

However, using the two variables, mean summer maximum temperature and mean 

summer rainfall for the individual years of beetle surveys was more accurate than 

using a higher number of variables, but for thirty year averages. Using thirty-year 

averages for mean summer rainfall and mean maximum summer temperature was the 

least effective model indicating that thirty-year averages for other climate variables 

have some importance to the predictive power of the model. Hence if other climate 

variables such as number of rain days, and annual evaporation were obtained for 

individual years, then the model would likely have a greater accuracy. 

The model with the smallest error rate overall was the model for all districts 

excluding Bass with 30 year means (1961-1990) for all climate data plus summer 

rainfall and mean summer maximum temperature for the actual summer of beetle 

counts.  However, the error only decreased by 0.02 between the model based on 30-

year climate averages and this model. As it is not possible to obtain annual averages 

for future seasons, this indicates that climate averages would have only slightly 

greater error rates than actual data. This is probably also because climate data is 
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interpolated between weather stations, and a greater accuracy of climate data would 

produce more accurate models.   

4.2 Annual beetle numbers 

The percentage of coupes with an OLPS of 0 was found to decrease over time, and 

percentage of coupes with an OLPS of 0-0.3 increased over time, regardless of 

relatively stable trends between years in frequency of high beetle counts (OLPS 

>0.3) changed. This could be attributed to human error such as incorrect data 

entry, an increase in vigilance of first-stage monitoring, or a gradual increase of 

low beetle numbers across a larger distribution. Although Forestry Tasmania 

operatives confirmed that this result was possibly because of incorrect data entry 

for Murchison-West, the fact that high 0-0.3 levels remained consistent all over 

the state in the 2010/2011 season means this is unlikely (Jordan, 2011, pers. 

comm.).  

Alternatively, through time the beetle is possibly becoming more widely distributed 

across all districts in low numbers, however, the particular combination of variables 

that facilitate beetle outbreaks at particular locations has remained stable. Another 

possibility is that people undertaking first stage monitoring are becoming more 

adept at spotting beetles and their offspring, and so more likely to continue with 

second stage monitoring. As large  amounts of OLPS recordings that were for 0.01 

or 0.02 in the 2009/2010 season (18% of total results) and even higher in the 

2010/2011 season (26% of total results), this indicates that there is a strong 

likelihood that this is the case.  

Temporal effects were not taken into account in the spatial analyses, which is a 

major gap in this study. Coupes that were measured in consecutive years were 

regarded as separate results, without comparing changes over time. As P. 

bimaculata consumes new-season foliage, and thereby limiting annual growth of 

plantations (Clarke et al. 1997), coupes with large beetle infestations one year are 

likely to have their growth stunted, and not be as attractive to beetles the following 

year. Further analysis of temporal variability of beetle populations would enable 
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forest managers to have a greater understanding of P. bimaculata and improve 

management practices. 

4.3 Benefits and costs in using random forest model output 

to guide field surveys 

The model for all districts excluding Bass using thirty-year climate averages had a 

10% rate of false negatives, indicating that one in ten results will be predicted to be 

below threshold, when in fact it is over, and this would incur a predicted $119.95 

loss per hectare if not sprayed.  

For the current sampling regime, all forestry coupes are monitored, which in this 

case is 300, so the incurred cost of monitoring is 300x$10.2 per hectare. The 

number of results above 0.3 was 61 so the averted value for coupes minus the cost 

of spraying was 61x($189-$44.6) per hectare, and there is no incurred loss as all 

coupes were monitored so effectively sprayed. Therefore the predicted net profit 

obtained would be approximately $5748 per hectare.  

Table 14: Costs associated with pest monitoring and control 

  Mean 95% CI 

Incurred loss $/ha -119.95 14.11 

Monitoring $/ha 10.2 0.49 
Averted value 
$/ha 189 21.8 

spraying $/ha 44.6 1.75 

Coupe area (ha) 37.3 2.09 

A summary of the relative frequency (RelFreq) scores for this model was obtained 

and the resulting matrix for the relative frequency set at 0.5, 0.75 and 0.9 are 

summarised in Table 15). Using the costs associated with monitoring and controlling 

beetle populations (For the current sampling regime, all forestry coupes are 

monitored, which in this case is 300, so the incurred cost of monitoring is 300x$10.2 

per hectare. The number of results above 0.3 was 61 so the averted value for coupes 

minus the cost of spraying was 61x($189-$44.6) per hectare, and there is no incurred 

loss as all coupes were monitored so effectively sprayed. Therefore the predicted net 
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profit obtained would be approximately $5748 per hectare.  

Table 14), the predicted net profit for the model with the RelFreq set at 0.5 is 

approximately -$938 per hectare, for RF of 0.75 the net profit is approximately 

$1973 per hectare and for a RF of 0.9 the net profit is $5468 per hectare. As the net 

gain per hectare is lower for the model in all instances when compared with 

monitoring all coupes using the current sampling system ($5748), this shows that the 

model has little immediate application for Forestry Tasmania. 

Table 15: error matrix for a) RelFreq = 0.5, b) RelFreq = 0.75 and c) RelFreq = 0.9 

   actual 
    above 0.3 below 0.3 

above 0.3 26 24 predicted 
below 0.3 35 215 

  
   actual 
    above 0.3 below 0.3 

above 0.3 39 61 predicted 
below 0.3 22 178 

 
   actual 
    above 0.3 below 0.3 

above 0.3 55 117 predicted 
below 0.3 6 122 

As an alternative application of the random forest output, generalised maps showing 

high risk areas and low risk areas for beetle infestations were created using Poa 

proximity and elevation. This can be used by forestry managers as a simple tool in 

assessing general infestation likelihood for a given area.
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Chapter 5 Conclusions 

The aim of this study was to determine which landscape and site variables 

significantly affect the distribution of Tasmanian Eucalyptus Leaf Beetles to 

underpin better management of Eucalyptus plantations. Random forest models were 

created in an attempt to predict P. bimaculata beetle distributions across Tasmania, 

and also to determine which of 33 environmental variables were most highly 

correlated with the beetle distributions to test a priori hypotheses. The models were 

developed using GIS for several combinations of climate variables and districts.  

The landscape variables generated using GIS included slope, aspect, curvature, 

hillshade, incoming solar radiation, and wetness index, while the vegetation variables 

included proximity to general grasslands, Poa grasslands, Acacia dealbata, tall 

eucalypt forests, short eucalypt forests, non-eucalypt forests and no forests. Climate 

combinations assessed included: (1) mean summer maximum temperature and summer 

rainfall for survey years, (2) 30 year average for mean summer maximum and summer 

rainfall, (3) 30 year average for climate variables, (4) 30 year average for climate 

variables and mean summer maximum temperature and summer rainfall for survey 

years. The district combinations included all districts, Bass only, and all districts 

excluding Bass. 

The findings of the a priori hypothesis are as follows: 

Hypothesis 1: Annual summer Rainfall (a measure of plantation productivity) has a 

strong correlation with P. bimaculata populations in the district Bass, 

however, the majority of other variables associated with plantation 

productivity showed low correlations. Beetle populations decreased with 

rainfall to 200 mm, but gradually increased in number thereafter. 

Hypothesis 2: Proximity to generalized grasslands showed little correlation with 

beetle populations, however, proximity to Poa grasslands had the highest 

correlation with beetles of all the variables. Beetle populations decreased in 

number when further than ten kilometers away from Poa grasslands. 
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Hypothesis 3: The results from this study did not support the hypothesis that 

climate variables were highly correlated with beetle distributions. 

Hypothesis 4: There was little correlation between size of coupes or eucalypt 

species with beetle populations. 

Hypothesis 5: Beetle populations were correlated with district and age of plantation 

as predicted in the hypothesis. Bass, Mersey, and Derwent had higher beetle 

numbers than Murchison or Huon, and Bass had greater variability between 

years than the combination of other districts. When Bass was excluded from 

the model, beetle populations increased with age of plantations, between two 

and eight years. 

Hypothesis 6: Surrounding vegetation types showed little correlations with beetle 

distributions, however, this is likely because the percentage of surrounding 

vegetation from each class was not assessed. 

Hypothesis 7: This hypothesis was confirmed as increasing elevation showed a 

strong correlation with increasing P. bimaculata numbers. 

Overall, distances of less than 10 kilometres to Poa grasslands and increasing 

elevation showed the strongest positive relationships with Paropsisterna 

bimaculata populations, whilst mean annual summer rainfall and survey year were 

important for Bass. When Bass was excluded from the model, age was of 

importance.  

The model that showed the least error (0.18 error) was for all districts except Bass 

for thirty-year climate average data and summer mean rainfall and summer mean 

maximum temperature. However, after a cost analysis this model was still less 

effective than current methods of beetle analysis without any model. As this is the 

case two generalised maps were created for areas showing high likelihood of beetle 

infestations and areas of low beetle infestation using proximity to Poa and elevation 

data only. These can be used by forestry managers to get a general understanding of 

the risk of beetle infestations. 

Further research looking at distance to Poa grasslands in greater detail including 
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more accurate information on Poa under other vegetation; climate variables such as 

rainfall at a site level rather than interpolations; and temporal variability of sites 

between seasons would increase our understanding of beetle infestations. This 

would increase the ability of plantation management to identify beetle populations 

and take remedial action before damage to the coupes occurs.
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Appendix 1: OLPS Survey sheet 

 



 

 

Appendix 2: DEM derivatives 

 

Figure 1: Distribution of slope and aspect for Tasmania 



 

 

 

Figure 2: Distribution of curvature  and hillshade for Tasmania 



 

 

 

Figure 3: Distribution of wetness index and incoming solar radiation for Tasmania 



 

 

  

Figure 4: Proximity to general grasslands and Poa grassland across Tasmania 



 

 

  

Figure 5: Proximity to Acacia dealbata across Tasmania 



 

 

  

Figure 6: Proximity to eucalupt forests of low height and tall height across Tasmania 



 

 

  

Figure 7: Proximity to areas with no forests and areas of non-eucalypt forests across Tasmania 



 

 

  

Figure 8: Distribution of mean summer temperature for 2005/2006 and 2007/2008 across Tasmania 



 

 

  

Figure 9: Distribution of mean summer temperature for 2008/2009 and 2009/2010 across Tasmania 



 

 

  

Figure 10: Distribution of summer rainfall for 2005/2006 and 2007/2008 across Tasmania 



 

 

  

Figure 11: Distribution of summer rainfall for 2008/2009 and 2009/2010 across Tasmania 



 

 

Appendix 3: Top 10 variable importance for each model tested 

Table 1: Ranks of covariates as derived from variable importance plots based on models that 

include four different combinations of climate variables. 1) 30 year average plus actual summer 

rainfall and maximum temperature. 2) 30 year average for summer rainfall 

1) 
all 
years 

2005/ 
2006 

2007/ 
2008 

2008/ 
2009 

2009/ 
2010 Bass 

excluding 
Bass mean 

Poa 1 1 2 6 1 2 2 2.14 
DEM 2 3 1 5 2 5 1 2.71 
Rainfall_2 4 2 3 4 5 3   4.57 
survey_year 7 N/A N/A N/A N/A 1   6.33 
District 6 7   7 3   3 6.86 
Raindays 8 4 9 1 7 9   7.00 
Summer_max       2 8 4 4 7.29 
Annual_evap 9 8 5 8 6   5 7.43 
Summer_max_
2 3 9 8 3       8.00 
Annual_max 10 6 6     10 6 8.57 
Ave_rad   5 10 9   6 10 8.86 
rain___evap     7   9 8 7 9.14 
Summer 5       4     9.14 
Annual         10 7 8 9.86 
For_low     4         10.00 
Age             9 10.71 
hillshade       10       10.86 
Species   10           10.86 

2) all 
2005/
2006 

2007/
2008 

2008/
2009 

2009/
2010 Bass 

Excluding 
Bass mean 

Poa 1 1 2 4 1 2 2 1.86 
DEM 2 2 1 3 2 3 1 2.00 
District 3 4 6 2 3   3 4.57 
Summer 4 6 4 6 4 4 6 4.86 
Summer_max 7 5 10 1 8 5 9 6.43 
Grass 9 7 8 8 6 6   7.86 
survey_year 5  N/A N/A N/A N/A 1 7 8.14 
Age 6         7 4 8.71 
For_low     3   7 10   8.83 
Slope 8   5 5       8.86 
Acacia 10 9 9 9 9   5 8.86 
Species   3       9   9.57 
wetness     7   5     9.57 
curvature   8       8   10.14 
hillshade       7       10.43 
Planted year   10         8 10.43 
Area_perim         10     10.86 
For_tall             10 10.86 
sunlight       10       10.86 

 



 

 

Table 1 (cont.): Ranks of covariates as derived from variable importance plots based on models 

that include four different combinations of climate variables. 3) actual summer temperature and 

rainfall in year of sampling. 4) 30 year mean for all climate variables. N/A = not assessed 

3) 

all 

years 

2005/

2006 

2007/

2008 

2008/

2009 

2009/

2010 Bass 

excluding 

Bass mean 

Poa 1 1 2 3 1 2 1 1.57 
DEM 2 2 1 4 3 4 2 2.57 
Raindays 7 4 5 1 8 8 5 5.43 
Annual_evap 9 10 4 9 4 3 7 6.57 
District 6   9 7 2   3 7.00 
Summer 4 7 8   5 6  

 

 

 

7.43 
rain___evap 10 9 3 10 7 5 9 7.57 
Annual_max 5 6 6     9 6 7.71 
survey_year 3  N/A  N/A  N/A  N/A 1 10 8.29 
Ave_rad   3   5   7  8.43 
Summer_max 8 8 10 2 9    8.43 
Age             4 10.00 
Species   5          10.14 
Grass         6    10.29 
hillshade       6      10.29 
Annual         10 10 8 10.29 
For_low     7        10.43 
Slope       8      10.57 

4) all 

2005/

2006 

2007/

2008 

2008/

2009 

2009/

2010 Bass 

Excluding 

Bass mean 

Poa 1 1 2 5 1 4 1 2.14 
DEM 2 3 1 4 2 1 2 2.14 
Rainfall_2 5 2 3 2 3 2 7 3.43 
District 3 5 7 3 4   3 5.14 
survey_year 6 N/A N/A N/A N/A 3 5 8.29 
Summer_max_

2 

4 6 5 1 8 5   5.71 
For_low     4   5 6   8.43 
Age 7           4 9.43 
Species   4       8   9.57 
Area_perim             6 10.29 
hillshade       7       10.43 
sunlight     6 8       9.86 
Planted year             8 10.57 
Acacia 8 7   9 6 10 9 8.57 
Slope 9   8 6 10     9.43 
Grass 10 10 9   7 7   9.29 
wetness   8 10         10.43 
curvature   9     9 9   10.14 
For_tall       10     10 10.71 


