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Preface

Abstract

This thesis presents the development of a new and separate market for trading Demand

Response (DR) in a deregulated power system. This market is termed Demand Response

eXchange (DRX), in which DR in the form of hourly load reduction is considered a product

to be negotiated between two groups of market participants, namely buyers and sellers. DR

buyers, including all transmission companies (Transcos), distribution companies (Discos),

and retail companies (Recos) need DR for their risk management benefits related to, for

instance, transmission and distribution network security, and electricity market volatility.

Sellers, including all Energy Service Companies (ESCos), are capable of significantly mod-

ifying electricity customers demand to supply DR on request. The trading between these

sellers and buyers is settled by a new system operator termed DRX operator (DRXO).

Two alternative market clearing schemes, namely pool–based and agent–based, are de-

veloped as the ground technical mechanism of a DRX. In the former scheme, all sellers and

buyers are required to submit offers and bids reflecting their marginal costs and benefits,

respectively, derived from a set of DR quantities. Based on this collected information, the

DRXO will clear the market by centrally maximizing the total benefit for all participants

under some economic constraints, i.e., demand–supply balance. In the other hand, in an

agent–based scheme the participants are viewed as economic agents that behaves in a self–

interested manner. The scheme will be designed to constrain each agent to ensure optimal

global efficiency, while also allowing agents to maximize their own profits locally.

In order to evaluate these DRX schemes, we develop a comprehensive assessment frame-

work using certain economic valuation methodologies such as cost–benefit analysis and ex-

ternalities treatment. Firstly, DR cost and benefit for each pariticipant in the market (i.e.,

buyers and sellers) are analysed in detail. Based on this local analysis, a global evaluation

is performed to determine whether the optimized DR can give a positive social surplus. If

so, the DR will be dispatched during the hour under consideration. Using this newly de-

veloped assessment framework, we demonstrate the advantages of DRX over conventional

DR trading/scheduling schemes.
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Throughout the thesis, both analytical proofs and numerical examples are provided to

substantiate the advantages of the proposed DRX schemes. Our formulations rely on a wide

range of theories: demand–supply modeling with a competitive market equilibrium, cost–

benefit analysis, spot pricing of electricity, and network reliability assessment. Numerical

simulations are performed on various test systems, including the Roy Billinton Test System

(RBTS), to illustrate the effectiveness of DRX in analysing and optimizating DR benefits.

Thesis outline

With reference to the DRX topics given above, the thesis is organized into six chapters.

The following is a brief description of each chapter.

• Chapter 1 presents an introduction into the general research area of DR and overviews

a range of challenges associated with scheduling the DR capacity. First, we discuss

some unusual characteristics of electricity demand that entails a careful development

of an electric power supply system. The status of this development to date is exam-

ined with a particular focus on issues related to power industry restructuring and

deregulation. Then DR as a potential solution to these problems is introduced and

its actual financial benefit estimated for the Australian national market. Finally, the

proposed investigation into the crucial task of scheduling DR is outlined with a list

of research topics to be presented in subsequent chapters.

• Chapter 2 introduces the novel concept of DRX and demonstrates its necessity as a

new and separate market for trading DR. Here all the existing approaches to DR are

classified and reviewed according to which electricity players (either Transcos, Discos,

or Recos) are central to the analysis. The common limitations of these approaches

motivates the development of a new and comprehensive scheme for scheduling DR. It

is very interesting that such a scheme which considers DR benefits for all stakeholers

turns out to be a new DR trading market—the DRX.

• Chapter 3 presents the design of a pool–based market clearing mechanism for DRX.

First, we discuss the notions of economic pool and then pool–based market clearing,

with illustrations based on examples relating to the wholesale electricity market.

We then utilizes these concepts to develop a centralized optimization model used to

clear the DRX market. This model has an objective function (i.e., maximizing total

DR benefit for all players) and several economic constraints including: 1) demand–

supply balance; and 2) the pricing of DR as a market product. Numerical simulation

on a small power system are also performed to demonstrate the effectiveness of the

proposed pool–based clearing mechanism.
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• Chapter 4 designs and evaluates an agent–based clearing mechanism as an alternative

of the pool–based. As similar to Chapter 3, here we firstly introduces the concepts of

economic agent followed by agent–based market clearing. We also explain the major

advantages and drawbacks of an agent–based versus a pool–based schemes. Then a

formal development, with the objective of achieving Pareto efficiency outcome given

by a competitive market equilibrium point, is presented with numerous analytical

proofs aiming to check the robustness of the proposed clearing approach. Case study

is also given to substantiate this analysis.

• Chapter 5 proposes a comprehensive assessment framework to rigorously analyse the

costs and benefits derived from DR under either DRX or conventional DR scheduling

and trading schemes. Several standard economic assessment methodologies are con-

sidered in this chapter to develop the proposed framework. Two sets of case studies,

one on a small power system and the other on the well–known Roy Billinton Test

System (RBTS), are then presented to illustrate the combined use of these methods

for DR cost–benefit analysis and to demontsrate the advantage of DRX over existing

DR schemes.

• Chapter 6 finally summarises the major contributions of the thesis and suggests some

directions for future studies aiming to extend the research work reported here.

To be concise, we do not present a single methodological chapter reviewing all concepts,

theories, and techniques applied to our subsequent DRX analysis. Those methods will be

distributed through the four main chapters where they actually employed.

The work outlined above was conducted from March 2009 to January 2012 at the School

of Engineering, Univerity of Tasmania (UTAS). The candidate’s research supervision was

jointly provided by Prof. Michael Negnevistky from UTAS and Dr. Martin de Groot from

Commonwealth Scientific and Industrial Research Organisation (CSIRO). It is hoped that

the thesis will be of interest and value to the potential readers whose task involves trading

and/or scheduling DR capacity in deregulated power systems.
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Chapter 1

Introduction

1.1 Electricity demand

Electricity is a particular form of energy that can be produced from various sources such

as hydro, thermal, nuclear and renewable energy. Bulk electricity is often delivered over a

very long distance for being consumed by the end–use customers in their daily activities.

The electricity consumption is given by a real–time physical process in which the customers

convert the electrical energy into other forms of energy used to run domestic appliances

(i.e., hot water, air conditioner) or industrial loads (such as electric motors). This energy

conversion process is simple to such an extent that it can be adapted by almost everybody

for their own consuming purposes. Indeed, this convenience makes electricity the major

energy resource utilized by end users during the course of their life [1].

Being an important resource, electricity can be treated as a “commodity” to be traded

between the customers and a utility company who is going to produce it [2]. In this trading

context, the utility provides the customers with a right amount of electricity they require in

each time period (i.e., hour–ahead). This amount, which can be easily measured via meter

reading, is referred in microeconomics as electricity demand. In this sense, consumers of

electricity, like consumers of all other commodities, tend to increase their demand up to

the point where the benefit they derive from electricity consumption is equal to the cost

they have to pay [1,3–5]. In particular, a manufacturer will not produce widgets if the cost

of electricity required to produce these widgets undermines their selling profit. Similarly,

a small business (i.e., restaurants, shopping centers) will never increase the lighting level

beyond the point where the additional electricity consumption cost is still compatible with

the additional benefit associated with attracting more clients [1].

Specific characteristics of electricity demand

Despite having many similar properties with other types of commodities, the electricity

itself possesses some unusual characteristics, making it hard to deliver from the utility to
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end–use customers following their demand [6]. First, electricity is difficult to store in bulk,

which can be explained by the inherent limitations of the current storage technologies (for

instance, requiring high capital cost but offering low operational efficiency). This physical

characteristic is further demonstrated by the fact that the global storage capacity (all over

the world) makes up only 3% of electricity production capacity, and such a situation will

certainly not change in the near future [7]. Low storage capacity implicates that electricity

must be consumed as it is generated. Additionally, the electricity delivery from a utility to

its customers must be a real-time process functioning much faster than any other delivery

system (i.e., for gas, oil, and other types of energy).

Second, electricity demand is relatively inelastic with the market price, meaning that

the customers would not alter their consumption significantly in response to a short–term

variation in the price they have to pay. The inelasticity of electricity demand can be

explained by two economic and social reasons [6]. From an economic perspective, the cost

of using electrical energy accounts for only a small portion of the total production cost for

most industrial goods. It also represents only a minor fraction of the living cost spent by

households. At the same time, the electricity benefit is indispensable in any manufacturing

process and is considered to be vital for most individuals in an industrialized society.

Therefore, most industrial customers will preferably not reduce their production to avoid

only a small increase in their electricity payments (as the savings in short term may be

more than offset by the loss of production profit). Similarly, households will probably not

reduce their comfort to cut their electricity bill by only a few percents. The second reason

for demand inelasticity is historical. Since the beginning days of commercial electricity

generation (i.e., over a century ago), electricity has been marketed as a commodity that

is easy–to–use and always available. This convenience has resulted in a custom that very

few people perform an economic analysis each time they turn on the appliances [1].

Due to its unusual characteristics, short–term electricity demand is hard to change and

therfore must be served instantly by the utility under any condition. This delivery task is

discussed in the next section via the development of an electricity supply system.

1.2 Power supply systems

1.2.1 Restructuring and deregulation

In traditional sense, an electric power supply system (or simply called power system) is a

physical network of electrical components (i.e., generating units, transformers, transmis-

sion lines, circuit breakers, and relays) which are used to produce and delivery electricity

to end–use customers. When the power systems were established, they included the elec-

tricity generation, transmission, and distribution monopolized by local utilities. However,
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Figure 1.1: Power system structures: (a) Integrated; (b) Competition; (c) Competition with ESCos. Note:
a Transco is sometimes called transmission system operator (TSO), a Reco called retailer, a Disco called
distributor, and an ESCo called aggregator.

for the last two decades, power system restructuring and deregulation has been underway

in many countries around the world. The main driver for this change is, as similar to other

industries, the perceived need for introducing competition in generation and retailing, and

thereby, reducing inefficiencies, lowering operational costs, and increasing customer choice

in electricity supply [3–5,8–12].

As a result of restructuring and deregulation, local utilities have been broken up into a

number of independent stakeholers, which includes generation companies (Gencos), trans-

mission companies (Transcos), distribution companies (Discos), retail companies (Recos),

and energy service companies (ESCos). The operations of these power companies are un-

der a supervision of some government delegates such as the regulator, the market operator

(MO), and the independent system operator (ISO).

Fig. 1.1 shows three consecutive structures of a power system involving the above

electricity sector players. These are integrated structure, competition structure, and the

competition structure with ESCos, which correspond to three major steps of restructuring
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from the beginning to the current state. Before describing these structures, we should make

it clear as follows. First, the restructuring is underway in many developed countries such

as Australia, U.S. and U.K. The consideration for power systems situation in developing

countries is beyond the scope of this thesis. Second, the structures as will be described

reflect the operations of power systems on day–ahead and real–time timescales only.

The integrated structure shown in Fig. 1.1–(a) refers to the electricity generation,

transmission, and distribution monopolized by a local utility within a well-bounded ge-

ographical area (i.e., states, provinces). Sometimes, such an utility is called a vertically

integrated utility. As one can be see, the utility is constituted of three operational depart-

ments, namely generation department, transmission department and distribution depart-

ment. Their functionalities are given as follows. The generation department is responsi-

ble for operating all utility owned generators and submitting the amounts of generation

outputs to transmission department. The transmission department is responsible for op-

erating the transmission network, maintaining the network security and reporting outages

to other departments. The distribution department is responsible for operating distribu-

tion networks and selling electricity to consumers. One of the main characteristics of the

integrated structure is that there is no trading/negotiation between these internal depart-

ments. Additionally, the utility plays the role of being a monopoly electricity supplier for

consumers within the given geographical area.

The competition structure shown in Fig. 1.1–(b) refers to the partition of a vertically

integrated utility into various independent players including Gencos, Transcos, Discos and

Recos, whose operations are under the supervision of a MO and a ISO. There are two

major operational domains in this structure, namely market domain and network domain.

Within the wholesale market, Gencos make bids to supply electricity at chosen prices.

The MO receives the Genco bids, ranks them according to bid price and accepts enough

bids to satisfy the forecasted demand plus a safety margin. Recos buy bulk electricity

from the wholesale market at spot prices and sell retail electricity to their customers at

generally fixed prices. Under retail competition, consumers are allowed to change Recos

when they are offered a lower retail price. In the network domain, Transcos are primarily

responsible for operating, and also maintaining the security of, transmission network. The

Transcos are not involved in the clearing of electricity market and its role in generation

scheduling is limited to ensuring that the submitted schedules are within a transmission

network security margin. Besides the Transcos, players involved in network operations are

Discos. They are responsible for managing their own distribution networks consisting of

radial feeders connected through substations to the transmission network.

One of the main characteristics of the competition structure of a power system is that

consumers are always treated as ‘dumb loads’ to be forecasted and served under all system

conditions. Balancing generation and load is done almost entirely through actions taken by
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the MO and Transcos. As a result, consumers have very limited opportunity to participate

in the electricity market. This has been seen as one of the prime reasons for causing both

spot price spikes in wholesale markets and supply outages in transmission and distribution

networks [13].

The final structure shown in Fig. 1.1–(c) is generally similar to the competition struc-

ture except for the ESCos participation. ESCo is an independent agent providing its cus-

tomers with a wide range of innovative services including bill management, home man-

agement, home electricity generation, and other services [14]. Based on these service pro-

visions, the ESCo aggregates its customers into a single purchasing unit to negotiate

the purchase of electricity from Recos. EScos also negotiates demand response (DR) and

home generation, on behalf of their customers, with Recos, Discos, and Transcos. Many

economists believe that the participation of ESCos with innovative services and consumer

aggregations can offers potential solutions for small–scale consumers to effectively man-

age their consumption, and thereby becoming active participants in the electricity mar-

ket [12–14].

1.2.2 Power supply challenges

The restructuring through deregulation has introduced competition to the power system

via the creation of wholesale and retail electricity markets. Unfortunately, this competition

results in a new set of challenging problems associated with maintaining a reliable and

economical power supply [12]. These problems can be categorized as network based and

market based, both related to the rapid growth in electricity peak demand (See Table 1.1).

Table 1.1: Problems in a restructured power system

Catergories Problems

Network security

Blackouts

Generation–load imbalances, transmission line overloads

Voltage and frequencies instability

Market volatility

Crisis

Volatile spot prices, flat retail prices

Limited demand–side participation, market power

Externalities

Rapid demand growth Outstrip the growth in supply capacity

Network security

The network security problems arise as the electricity is inextricably linked with a

physical power network that functions much faster than any other market. In this physical

system, supply and demand—generation and load—must be balanced on a second-by-

second basis. If this balance is not maintained, the system will collapse with catastrophic
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Figure 1.2: Blackout frequencies in the United State [15]. Note: during each year, blackouts are classified
based on their size that is the number of customers being disconnected. Each size is assigned with a color.
For example, the color for the size over 4,000,000 customers is black.

consequences. Such a system blackout is intolerable as it is not only the trading system

that stops working but also an entire region or country that may be without power for

many hours. Restoring a power system to normal operation following a wide blackout is a

very complex process that may take 24 hours or more in a large region [6]. This problem

incurs significant economic and social losses to customers.

Fig. 1.2 shows the frequency (measured in times per year) of blackouts in the United

States during the period 1994–2005. As can be seen from the chart, the frequency in-

creased significantly from year 1999 to year 2005, and peaked during year 2004. While

this case is very complex, one of the main reasons for this increasing trend is the lack of

network investments under restructuring during the same time period [16]. This problem

is explained by the following.

In the old days, investments in network infrastructures were determined by consensus

between the vertical utility and its regulator, and the approved investments were then

funded by the government. This is, however, not the case under restructuring. Since the

power system has been unbundled, each network in it (i.e., transmission, distribution) is

operated by an independent company such as Transcos and Discos. These players would

automatically make the needed investments in hopes of profiting from them by charging

those electricity traders (i.e., Gencos, Recos) who use the networks. Unfortunately, network

usage charges during the 1990s had still been under government control, and thus, they

were not attractive enough to the network companies. In order words, the charging fees

give the companies very little incentive for updating their own networks.
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Figure 1.3: Spot price volatility in NEM during the period from 1-Jan-2009 to 31-Jan-2009 [18]. Note:
unit of the left vertical axis is MWh, while unit of the right axis is $/MWh.

As a consequence, investments in transmission and distribution facilities have mostly

been falling since the 1990s [16]. Lack of investments limits network capacity, and thereby,

imposing significant constraints on network power flows. Together with the rapid growth

in electricity peak demand, this problem causes substantial stresses to the power system,

sometimes to the point of cascading failures as occurred in the 2003 Northwest blackout

in the United States [17]. Therefore, limited network investments during power system

restructuring has contributed to the increasing frequency of blackouts.

Market volatility

While power networks are suffering an increasing blackout frequency, electricity mar-

kets experience spot price volatility. As can be seen from the real market data in Fig.

1.3, spot price was stable around 35$/MWh during most of the time, but jumped to over

10,000$/MWh in some particular on-peak hours when the demands for electricity are ex-

tremely high. One of the main reasons for these price spikes is the exercise of market power

by the Gencos. This problem can be explained by the following.

In the Australian National Electricity Market (NEM), Gencos make bids to supply

certain amounts of power at corresponding preferred prices. The MO receives these bids,

ranks them according to prices, and accepts enough bids to satisfy the forecasted demand

plus a security margin. More importantly, the highest accepted bid price will be decided

as the common spot price, which each Genco receives for the power they supply regardless

of their own bidding prices. During the time of extremely high demand (such as those in
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Fig. 1.3), Gencos may exercise bidding prices by raising them above the competitive level,

if these players discovers that these bids must be accepted by the MO in anyway to have

enough power satisfying such a high demand. As a consequence of those strategies, spot

price that is equal to the most expensive bidding price increases dramatically. Neverthe-

less, during some other periods with the same extreme level of demand (such as those in

day 27-Jan-2009 and day 30-Jan-2009 in Fig. 1.3), somehow the Gencos cannot strategi-

cally exercise their bidding (the MO must have detected the source of market power, and

thus, eliminating it by rejecting the strategic bids). Consequently, spot prices during these

periods were low.

Spot price volatility caused by market power has been seen as the main reason for

the recent California electricity market crisis [19]. During the period from May-2000 to

September-2001, the city had a significant shortage of power supply due to a rapid growth

in peak demand and the lack of investment of new generating plants. This shortage sit-

uation was unexpectedly exploited by some major Gencos—mainly Enron—who still had

capacity available for power supply. In particular, Enron raised its bidding prices to a

premium level, sometimes up to 20 times of the normal peak price, because it knew that

such expensive bids must be accepted in anyway to compensate for the current shortage.

This problem caused around 800% increase in wholesale spot prices from April 2000 to

December 2000.

As a consequence, many Recos, who bought bulk electricity at spot prices and resell it

to customers at regulated retail prices, lost significant money. Among those, Pacific Gas

and Electric Company (PG& E) declared bankruptcy, while Southern California Edison

(SCE) nearly ran out of business. According to the final report, this electricity market

crisis costed around $40 billion—most of which is incurred by the Recos [20].

The crisis is a very clear justification for the price manipulation problem in wholesale

electricity markets. It also demonstrates a drawback of restructuring at the current stage.

That is the still-strict regulation in retail markets, where prices paid by small customers

are fixed as per retail contracts. Such prices do not follow the hourly variation of electricity

spot prices, and consequently, do not reflect the “true cost” of power supply.

Peak demand

Fig. 1.4 compares the growth in electricity peak demand and that of generating ca-

pacity in the United States during the period 1996–2000. As can be seen, the demand

increased rapidly. Such a situation can be explained because personal incomes of resi-

dential customers were improved by 9.3% in California and 8.9% in the entire WSCC

region. Such increased incomes resulted in more consumption of goods and services by the

customers. As producing these goods and services is largely based on the utilization of

electricity, an increased production entails increased demand for electricity.
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Figure 1.4: Comparison between the growth in peak demand and the growth in generation capacity
during the period 1996-2000 within the California state and within the entire Western States Coordinating
Council (WSCC) region [21].

Unfortunately, the rapid growth in electricity demand has been such a big problem for

the supply side. According to market data shown in Fig. 1.4, investments of generating

capacity were even below a quarter of the demand growth. Limited investments, as men-

tioned above, imposed significant constraints on the production and delivery of electricity.

This problem has caused network blackouts and market crisis such as those happening in

many large and industrialized countries during the beginning days of deregulation.

In summary, Section 1.2.2 presented some general problems associated network security

and market volatility, as a direct consequence of power system deregulation. Next section

introduces demand response (DR) as a potential solution to these problems.

1.3 Demand response

1.3.1 On the DR concept

Although electricity DR is not a new concept, its exact definition may be slightly different

among nations, depending on their own economic contexts. In some countries where the

power systems have still been under operation of a monopolized utility company, DR is

often treated as an integrated planning resources to be used for the purposes of cost saving

and energy efficiency over a long-term planning horizon (year-ahead) [22]. Such resources

can be provided via fix-termed contracts being signed by both a utility and its customers.

Determining the best contract options offering optimal benefits for both these parties,

under regulation, is a complex problem that is however beyond the scope of this thesis.
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In a competitive and deregulated environment, DR is defined as“adjustments in electric

usage by end-use customers from their normal consumption patterns in response to changes

in electricity price over time, or to incentive payments designed to induce lower electricity

uses at times of high spot market prices or when network reliability is jeopardized.” [22].

This definition has been widely accepted as a benchmark for understanding and charac-

terizing DR benefits under deregulation. From the definition, two key points are revealed.

First, DR performed by customers can support both markets and networks in a restruc-

tured power system. Second, DR is not for “free”, meaning that player requesting a DR

must compensate customer who provides it. Such a compensation could be either a change

of electricity tariffs or an amount of reward unrelated to these tariffs.

Despite details provided by the above DR definition, there is one unclear point. That

is, the definition does not specify how customers should be engaged in their DR activities.

In particular, the phrase“changes in electric usage by end-use customers from their normal

consumption pattern”does not indicate whether the customers must reduce, or just simply

delay, their loads to perform a requested DR. While some customers can move their time-

flexible loads (clothes washers) to another period just to reduce their consumption at the

moment, other customers have to curtail loads (air conditioners) without being recovered,

and thus, completely losing conveniences. Equal compensation to every customer will be

consequently unfair to those who curtail loads. This problem is currently under debate [23].

It will be discussed further in the next chapter.

Should DR be understood as a resource supplied by customers or just another action

taken by them in response to the market signals? This philosophical question also remains

open at the moment. Some economists suggest that DR, by definition, refers to cases where

the demand-side (customers) directly participates in a wholesale market in competition

with the supply-side (Gencos). This means DR is viewed as an action of the demand-side.

This action is certainly desirable, because it mitigates the consequence of market power

exerted by the supply-side. During the California electricity market crisis, if the customers

had responded to market price when it was extremely high, the Gencos (i.e., Enron) would

not have such an opportunity to manipulate the market, causing substantial losses to the

Recos [24].

Unfortunately, DR understood as market action does not reflect its benefits actually

delivered to physical power networks. Such benefits are also desirable because they relieve

network constraints during times of peak demand, and thus reduces the chance of compo-

nent failures that may lead to a system blackout. No doubt, omiting the necessity of DR

for network operations would lead to underestimating the actual DR benefits [25].

For this reason, this thesis views DR as a resource provided by customers to those

players who use and pay for it. Such players include both market participants (Recos) and

network companies (Transcos and Discos).
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1.3.2 Estimating DR capacity and its financial benefit

In addition to the above definition of DR, here we gives another concept—DR capacity—to

help understanding the potential of DR as a market resource. DR capacity refers to “the

maximum portion of consumption, measured in percentage, which a customer can curtail

(or shift) without losing its convenience in a given time period”. Mathematically,

DRCt =
CCt

TCt
.100% (1.1)

where DRCt, CCt, and TCt denote DR capacity, curtailable (or shiftable) consumption,

and total consumption, respectively, during period t. Note that DRCt given by (1.1) is

individual capacity provided by one customer only. Aggregated capacity, which is supplied

by a group of customers as a whole, can be calculated as the percentage of curtailable (or

shiftable) consumption over the total amount, both are aggregated from all customers.

DR capacity has significant practical implications as it represents the ability of a cus-

tomer to adjust its consumption for supplying DR. Since this measure is dimensionless, it

allows a fair comparison between various customers having different living circumstances

and thus different demands for electricity. Using this comparison, DR users (i.e., Recos,

Transcos, Discos) can identify the best customers who flexibly perform DR without losing

significant conveniences, and thereby, requiring less compensations than other customers.

This competitive aspect will be discussed further in chapter 3 of this thesis.

DR capacity also helps regulators to understand the “true” potential of DR in their

countries, and thereby, proposing appropriate market policies which promotes full utiliza-

tion of such a resource. To demonstrate this potential, Table 1.2 gives a list of aggregated

DR capacities for some large countries. These capacities are calculated using (1.1) with

actual curtailable and total consumption data obtained from [26,27,30].

Table 1.2: DR capacities in some countries

Country Maximum capacity Current utilization

U.S.A [26] 35% 5%

Australia [27] 50% 3%–5%

U.K. [30] 40% 2%

As can be seen, the current DR capacity utilizations are far less then the corresponding

maximum capacities in those countries. The utilization in U.K. (around 2%) is even lower

then those in U.S. and Australia (5% and 3%–5%). These statistics can be explained by

several economic and technical reasons, including high compensations required by cus-

tomers for supplying their DR, lack of coordination in scheduling DR across all customers,

and also lack of innovative technologies to be used for controlling customer appliances.

Chapter 1: Introduction 11



Demand response

These statistics also suggest that there are potential areas for improving DR capacity

utilization. This improvement is highly desirable, because it would bring out significant

additional market benefits. To illustrate such benefits, Table 1.3 shows a simple and yet

realistic financial valuation of the DR capacity in Australia. Results are extracted from an

empirical study conducted by the Energy User Association of Australia (EUAA) during

the horizon 2003-2005 [27].

Table 1.3: Annual estimate of financial DR benefits in NEM

Scenarios
Gross Compen- Net benefit

benefit($) sation($) ($) (% of TMR)

Current utilization (<5%) 76 mil 15.2 mil 60.8 mil 0.5%

Improved utilization (5%–15%) 420 mil 60 mil 360 mil 3.1%

Full utilization (50%) 2 bil 270 mil 1.73 bil 14.4%

As can be seen, the current market scenario with lowest capacity utilization offers

very little compensations for DR–providing customers. The collective net benefit to the

market (as a whole) is $60.8 millions that accounts for only 0.5% of Total Market Revenue

(TMR) (currently around 12 billions). If the DR capacity is fully utilized (i.e., up to 50%),

substantial benefits will be obtained including $270 millions for all customers and $1.73

billion (14.4% of TMR) for the whole market. These estimates demonstrate the potential

of DR in Australia, motivating the capacity utilization improvement.

1.3.3 Major challenges in scheduling DR

The utilization of DR capacity can be significantly improved by introducing an appropriate

scheme for scheduling DR. This essential idea, which was originally proposed by Schweppe

[29], has become a topic of interest to the power engineering community in the last twenty

years. In general, DR scheduling aims at determining optimally which customers should

adjust consumption and to what degree they need to do so.

Scheduling DR for a local group of customers may not be difficult, but the scheduling

for all customers across the whole power system is a challenging task. It entails considering

not only the compensation for customers adjusting their consumption but also the benefits

for any stakeholder involved in a deregulated power supply system. Such players generally

include Transcos and Discos who claim network reliability benefits, as well as the Recos

who gain the benefit of mitigating spot price volatility in a wholesale electricity market.

All these benefits are derived from a common DR capacity in the form of load reduction

during peak demand.

Another issue of DR scheduling relates to load recovery—the process by which elec-

tricity customers restore their consumption following load reduction [23]. This process can
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have a significant impact on power system operations as it increases the cost of electricity

supply during recovery hours when the Recos have to buy additional electricity from a

volatile wholesale spot market and the network operators (i.e., Transcos and Discos) must

deliver additional power using their already–constrained networks. Lack of the recovery

effect consideration in DR scheduling may lead to underestimating the electricity cost and

then overestimating the DR benefit along the scheduling horizon [23].

From the above discussion, one can see that scheduling the DR entails considering two

fundamental elements—space and time. The former refers to a number of business sectors

(i.e., transmission, distribution, and retail) at different locations in a power system. As

these sectors are operated independently by a range of players (Transcos, Discos, Recos)

via deregulation, scheduling DR over the space requires assessing benefit for each of them.

The time–based criteria, on the other hand, entail profit optimization across a given time

horizon (i.e., a day, a week, a month), considering the intertemporal effects of load recovery

on the electricity supply chain.

1.4 Overview of the research

With reference to the above general criteria, this thesis presents a new development towards

a comprehensive solution for scheduling DR. This development involves both market design

and evaluation stages. In the former several new concepts and mechanisms are proposed as

a basis for scheduling the DR in a systematic manner. These proposals are then evaluated

in terms of economic efficiency, using standard cost–benefit analysis methods. To our

knowlegde, no published work offers a similar development with this thesis. In fact, the

contribution here should be regarded as “interestingly unusual” to the extent that it is

almost independent of any DR research published over the last five year.

For clarity, our DR scheduling work is divided into three closely–related topics to be

presented in different chapters of the thesis.

1.4.1 The concept of demand response exchange

The first and most important concept proposed in this thesis is Demand Response eX-

change (DRX), in which DR is treated as a market product to be negotiated between two

groups of participants—buyers and sellers. Buyers (i.e., Transcos, Discos, and Recos) need

DR for their risk management benefits (i.e, associated with network reliability and market

volatility), while sellers (i.e., ESCos in behalf of electricity customers) have the capacity

to significantly modify electricity demand on request of the buyers. The concept of DRX

represents a new and separate market for trading DR in a liberalised power system. In-

deed, it reflects a novel view into the problem of efficient DR scheduling from an economic

perspective.
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The DRX concept is explored as a result of substaintial literature review in Chapter

2. Most existing works in the research area of DR scheduling can be classified into three

broad categories based in which player is central to the development. These are Transco-

based, Reco-based, and Disco-based. These categories unfortunately represent only partial

scheduling approaches as they consider DR benefits for only a subset of market players,

either Transcos, Discos or Recos. This limitation indicates lack of scheduling coordination

across the players, and this could be seen as the main reason for inefficient DR scheduling

followed by low capacity utilizations, as has been demonstrated by the real data given in

Table 1.2. This problem essentially motivates the development of a DRX, which is viewed

as a comprehensive DR scheduling scheme considering benefits across all players.

1.4.2 Market clearing mechanisms

As with all other open markets, DRX requires a market clearing mechanism1. By “market

clearing”, we mean that DR is to be scheduled in terms of a set of quantities (in MWh)

and prices (in $/MWh), with the major aim of optimizing overall market efficiency across

all DR buyers and sellers. There are two market clearing mechanisms to be proposed in

this thesis, namely pool–based and agent–based. They represents different paradigms (i.e.,

centralized versus decentralized) in operating an open market. We should emphasize that

these DRX schemes are considered to be independent of the existing wholesale and retail

electricity markets, as will be discussed throughout this thesis.

In a pool–based DRX market developed in Chapter 3, DR sellers (ESCos) and buyers

(Transcos, Discos, and Recos) are required to submit offers and bids reflecting their own

marginal costs and benefits derived from DR. Using this collected information, the market

operator centrally maximizes the total market benefit under economic constraints such as

the demand–supply balance, and the contribution of each buyer for DR as a public good.

Such a pool–based clearing scheme, following a standard market design, is a formalization

of the concept DRX.

Under an agent–based market clearing scheme developed in Chapter 4, each partici-

pant (DR buyers and sellers) is treated as an economic agent behaving in an self–interested

manner. This means the agents only attempt to maximize their own benefits based on the

available information about actions taken by other agents participating in the same mar-

ket. The scheme will be designed according to this assumption. The main design objective

is to constrain each self–interested agent to ensure optimal global market efficiency, while

also enabling agents to maximize their own (local) benefits. The key ingredient of such a

decentralized operating paradigm is the notion of competitive market equilibrium at the

point where 1) all market agents (DR buyers and sellers) maximize their benefits simulta-

1Throughout this thesis, the two terms “mechanism” and “scheme” are used interchangeably
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neously subject to the given prices; and 2) there is a balance between supply and demand

for DR product. Both the existance and uniqueness of this market equilibrium in a DRX

market are proven to satisfy under a few justifiable assumptions (i.e., preference convexity)

that is commonly used in economic analysis.

In general, it is hard to compare the pool–based and the agent–based schemes, each has

their own advantages. The major strength of the former lies in its centralized optimization,

in which all DR resources are aggregated and valued simultaneously, in the effort of making

a fair resource allocation across all market players. The agent–based clearing mechanism

with local optimization, on the other hand, is flexible as it can deal with a range of varying

system conditions.

1.4.3 Cost–benefit assessment framework

Although DR schedulued via DRX schemes can improve network reliability and mitigate

electricity market volatility in a deregulated power supply system, estimating its financial

value actually delivered to the system is not simple. This entails assessing all relevant costs

and benefits derived from the DR. Without a rigorous assessment tool, justification of the

system improvements using DR is almost impossible [22]. Over the years, there has been

substantial research on this DR cost–benefit analysis2 topic. Most of this research focuses

on only a few actors in a deregulated power system [28]. For example, some works analyse

the benefits for customers, Recos and Gencos in isolation to the Transco and Discos, while

other works consider the Discos and the Transco only.

Unfortunately very little attention has been paid to developing a comprehensive frame-

work for assessing DR costs and benefits across all players. This framework, considering a

global viewpoint, is important because without it, DR may never be fully evaluated and

thus cannot reach its potential. For example, a plan to optimize DR benefit for one player

could result in a conflict with another when both players rely on DR capacity supplied by

the same set of consumers. Due to this conflicted plan, the total market benefit could be

significantly diminished or even negative, eliminating the overall efficiency of DR. Thus, a

realistic DR framework will allow us to analyse the plan of one player in relation to other

players, and then to optimize the total benefit for all of them.

With reference to the above literature review, in Chapter 5 we develop a comprehen-

sive framework for assessing financial costs and benefits of DR for all actors in an electricity

supply chain. We then use this framework to study the relative economic efficiencies of var-

ious DR scheduling schemes including the proposed DRX and the existing partial schemes.

This study, which is based on a rigorous analysis with justifiable assumptions and realistic

data, will substantiate the advantages of our DRX proposal.

2Throughout this thesis, the terms “assessment”, “evaluation”, and “analysis” are used interchangeably
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In addition to being able to assess various DR scheduling schemes, the proposed frame-

work is necessary to analyse the potential effects of DR-related regulations, risk manage-

ment, or other strategic interventions. In this case, the framework becomes a useful off-line

tool for comparing various market designs, by assessing their relative impact on network

utility, and thereby guiding selection of the best option for future power system manage-

ment.
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Chapter 2

Literature Review and Demand

Response eXchange

2.1 Overview

This chapter discusses the necessity and feasibility of demand response exchange (DRX)

as a new and separate market for trading DR in restructured power systems. The former

arises due to the fact that most existing works in this area constitute only partial solutions

for scheduling DR, and therefore they are not efficient from a global point of view. In this

regard, one should develop a comprehensive approach following the general DR scheduling

requirements.

The feasibility of DRX relies on power system restructuring. As the power environment

has been deregulated, the vertical utility company is broken into a number of independent

players including Gencos, Transco, Discos, and Recos. Since most of them are interested

in purchasing DR as a market product from electricity customers, they can be considered

DR buyers and the customers DR sellers. Introducing competition between these buyers

and sellers is a promising way of achieving efficient DR schedules. Such a competition can

be motivated by setting up a unified market, DRX, where all players gather to exchange

their DR products.

The chapter is structured as follows. Section 2.2 reviews the existing approaches for

scheduling DR. Section 2.3 introduces the proposed DRX approach and explains its fea-

siblity via deregulation. Section 2.4 discusses practical implications of DRX, i.e., how it

interacts with other markets within the restructured power system. The implementation

of DRX as part of smart grid development campaign is briefly mentioned. Concluding

remarks are finally given in Section 2.6.
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2.2 Existing approaches to DR

Although the benefits of DR are well-understood, developing a comprehensive DR schedul-

ing program capturing all these benefits together is not a simple task—it entails substantial

research. This section reviews published works in this area.

To handle a very large amount of literature on scheduling DR, classifying it into differ-

ent categories is necessary. Traditionally, DR research has been categorized as “pricing” or

“rewarding” based on which financial incentives are offered to customers for their DR [22].

This classification approach, however, may be ineffective because it does not reflect the DR

benefits for each individual player. That is, which independent players among Transcos,

Recos, and Discos are managing DR and how much benefits they individually gain from

it. This aspect is important because it would represents the interactions between different

players regarding how the common DR is scheduled and compensated under deregulation.

Following this aspect, here we alternatively classifies the literature into three broad cat-

egories, based on which independent players are central to the analysis [25], as given in

Table 2.1.

Table 2.1: Summary of existing DR research

Classes Participants Types of DR Particular research topics

Reco-based
Recos Pricing Risk hedging

Customers Rewarding Demand-side bidding

Transco-based
Transcos

Rewarding
Demand-side reserves

Customers Negative generation

Disco-based
Discos

Rewarding
Feeder’s load scheduling

Customers Distributed resources

2.2.1 Reco–based scheduling

This research category relates to cases where DR performed by a group of customers is

scheduled and paid by the corresponding Reco having pre–contracts for retailing electricity

at given prices to those customers. Typical examples of Reco–based scheduling could be

found in [33–47].

A Reco often benefits from DR by using it to cover risks caused by spot price volatility

in the wholesale spot markets. In economic theory, such a strategy is referred as a financial

hedge, in which the Recos offset investment (i.e., the demand to be met from spot markets)

in order to minimize unwanted exposure to volatility risks. This is done by using DR to

reduce the amount of power the Recos need to buy during periods of high spot prices.

In this strategy, the gross benefit derived from DR is equivalent to the benefit from risk

reduction that can be calculated using a hedge analysis.
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Figure 2.1: A sample of hourly generation bidding prices in NEM, showing the potential impact of relative
small demand reduction on spot price [27]

The above DR benefit for Recos is illustrated using actual market data shown in Fig.

2.1. In this example, reducing 1.2% of total electricity demand would have reduced the spot

price from $7, 500/MWh to $4, 500/MWh. Similarly curtailing 2.4% of the total demand

would have brought the price down to $1000/MWh. Supposed that retail price to every

customer, as per retail contract with the corresponding Recos, is fixed at $200/MWh,

those dispatched DRs (1.2% and 2.4%) would save around $25 million and $54 million,

respectively, for all Recos buying bulk electricity at extremely high and volatile spot prices

and reselling this amount to customers at low and fixed retail prices. This business case

facilitates understanding DR financial benefits given to the Recos.

To motivate customers performing DR for supporting risk hedging, either price-based

time-varying tariffs or reward-based options can be offered by Recos. The design of time-

varying tariffs is largely influenced by pioneering works of electricity spot pricing generally

[33] and peak-demand pricing in particular [34]. The concept of spot pricing was expanded

in [35] by incorporating it with the estimation of day-ahead marginal cost of serving given

peak demand. A hierarchical framework was developed in [36] to maximize Reco benefits

while controlling marginal-cost-based tariffs. Additionally a theory of inverse pricing based

on the fact that energy consumption is inversely proportional to price has been applied

in [37].

On the other hand, designing appropriate rates for reward-based DR options, such as

direct load control, can be performed using statistical survey in the form of questionnaire

[38] or quantifying interruption costs to market participants [39]. Since this cost cannot
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be estimated accurately, determining how much reward offered to the customer for its

demand reduction is not simple. In [40], the authors used game theory to design optimal

load curtailment programs without requiring knowledge of customer outage costs. In [41],

the authors developed a load valuation model for both Recos and their customers to select

optimal rewards for interruptible loads.

In addition to risk hedging using DR, Recos may consider demand bidding into the

wholesale markets, in competition with the supply-side (Gencos) [42–45]. In this strategy,

each Reco submits a price-responsive bid to the market operator, specifying how much

electricity to purchase at different spot price levels in a given hour or a given day. Demand

bidding has been proposed as an effective way of mitigating market power exercised by

Gencos in pool-based electricity markets [46], but it has not been widely implemented [47].

Note also that DR and demand bidding are different activities. The former is performed

by a customer to augment the latter for the contractual Reco.

2.2.2 Transco–based scheduling

This category refers to present whenever DR from customers is managed by a single Tranco

operating an interconnected transmission network where bulk electricity is delivered from

large generators to customers at different substations. Examples of Transco–based DR

scheduling are given in [48–55].

These stakeholer utilize DR for managing security of their transmission networks. Tra-

ditionally, the network security is maintained through preventive measures—the network

is prepared in advance to withstand credible outages with no need for any immediate

corrective actions, such as involuntary load shedding, generation redispatch, to be taken

following an outage. The advantage of such an operating philosophy is simplicity of secu-

rity management. Unfortunately it has an important drawback that it increases operating

costs and lowers network capacity utilization [31]. In this regard, an additional operational

requirement would be to operate the transmission network at a lower cost and higher net-

work utilization. This requirement can be met by using DR in the form of load reductions

at appropriate network locations.

Fig. 2.2 illustrates using DR for managing network security and enhancing network

utilization within a given capacity limit. In this example, the network maximum capacity

is around 10 MW that is far above the actual loading level during most of the day, except

for some hours in the early morning and then in the early evening. To maintain the

security during these on-peak hours, either network capacity need to be upgraded via

infrastructure investments, or some loads must be curtailed. Although a higher capacity

can better withstand contingencies during peak demand, its utilization in off-peak hours

drops significantly because a low network loading level during these hours would not require

such a high capacity (See Fig. 2.2). Consequently, using DR in the form of load reduction
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Figure 2.2: Using DR to reduce electricity demand following transmission capacity limit

is preferable, in the sense that it improves the overall network utilization, and thereby,

reducing the need for new investments while still maintaning the network security. These

DR benefits are given to Transcos and will be financially quantified in Chapter 5.

Transco–based DR scheduling research often focuses on two main topics, demand-side

reserves and negative generation. Using DR as demand-side reserve supporting transmis-

sion network reliability has long been of interest to the power engineering community.

Improved network reliability results from reducing the probability of forced outages when

system reserves provided by the supply-side (i.e., synchronized generators) fall below a

desired level. By reducing electricity demand at critical times when a generator or a trans-

mission line is unexpectedly lost, DR as demand-side reserve scheduled by the Transco

can help to return the overall system reserve to the pre-contingency level, and thereby, en-

hancing the network reliability [22]. In [48] the authors suggested that both demand- and

supply-side reserves can be procured through a separate market that is secondary to the

energy spot market. In the former, a Transco on behalf of its network users buys reserves

from sellers such as Gencos and customers. Using this context, a stochastic model for the

Transco to calculate the optimal reserve level considering both credibility and severity of

network contingencies, as well as payments to the sellers, was proposed in [49].

DR as demand-side reserve can also be purchased through a joint energy/reserve mar-

ket [50–54]. In this context, electrical energy and system reserve aggregated from both

demand and supply sides are scheduled simultaneously, with the aim of optimizing the to-

tal benefit of using all these resources. As was proposed in [50], consumers can participate
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in the market by submitting offers to provide up-spinning and standing reserves. Using

the same idea, a market model, where reserve providers are paid an option fee to com-

pensate for their opportunity cost and an exercise fee if they are actually called during

a contingency event, was presented in [51]. This work introduces the cost of exercising

reserve option as an important factor in the co-optimization problem.

In the above works on joint energy/reserve scheduling, DR in the form of load reduc-

tion was implicitly considered “negative generation” competing with the actual generation

resources in the same wholesale market [52]. Such an operating philosophy is currently un-

der debate. In [53], the authors argued that the competition between negative and actual

generators would be “artificially” inflated, in the sense that it causes price spikes if the

effect of load recovery in off-peak hours following load reduction during peak-demand is

not taken into account in the scheduling optimization problem. Following this argument,

some researchers have incorporated the load recovery effect as an important parameter in

scheduling DR. In [54], the authors presented a study on controlling aggregated load of a

group of small customers, with the purpose of participating in an energy balancing market.

Here the marginal value of DR is calculated considering both benefit of load reduction and

cost of serving subsequent load recovery.

2.2.3 Disco–based scheduling

This class of DR research represents situations where DR made by customers is scheduled

by the corresponding Disco operating a local distribution network consisted of many radial

feeders where end-use customers are directly connected with. Examples of Disco–based

scheduling are provided in [55–62].

As with Transcos, Discos use DR to manage network constraints at distribution level.

In general, DR brings out an array of potential benefits that can even be more diverse

than those at the transmission level. These benefits include: 1) deferring new network in-

vestments; 2) relieving voltage-constrained power transfer problems; 3) simplifying outage

management; and 4) enhancing the quality of power supply to end-use consumers [32].

There is a particular emerging issue associated with the increased loading of existing

distribution substations in urban areas, driven by significant increases in air-conditioning

loads [32]. DR therefore can be utilized to manage such increases, and thereby, enhanc-

ing the loading capability of existing substation transformers. These network reliability

benefits derived from DR are all given to the corresponding Discos and will be financially

quantified in Chapter 5.

Disco–based DR scheduling research often focuses on two main topics, feeder’s load

scheduling and distributed resources. Research into suitable algorithms for load schedul-

ing within a local distribution feeder has long been of interest. In [55], a relaxed dynamic
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programming was used to generate daily optimal control strategies for a group of resi-

dential air-conditioning loads. In the same context, [56] and [57] considered a multiple

objective evolutionary approach utilizing genetic algorithm (GA) for designing and select-

ing optimal load control actions. A least enthalpy estimation (LEE) method was developed

in [58] to minimize the amount of load interruption under several customer-driven con-

straints such as outdoor temperature, thermal comfort level and payback load effect. A

binary particle swarm optimization (BPSO) was proposed in [59] to schedule a significant

number of interruptible loads with the aim of meeting a given system requirement for

the total hourly and daily load curtailments while ensuring enough compensation for the

curtailing customers. A game theory approach is provided in [60] for autonomous demand

management where several neighbouring households share a common energy source.

Distributed energy resources (DER) recently receive much attention from researchers.

Although DER includes both small-scale power generation and demand management by

individual customers, the former is not explicitly addressed in this thesis. DER supports a

local electric system (i.e., microgrids) by alleviating the need for using centralized gener-

ation plants whose power must be delivered to customers over long-distance transmission

lines. In [61] a multi-agent approach is developed to schedule DER within a medium-scale

microgrid comprising up to 500 loads, each treated as an agent. Here non-market algo-

rithms such as GA for agent local optimization were investigated. In [62], the authors

proposed a decision-support tool for residential customers to manage their acquisition

of energy services, by enabling these customers to assign values to desired services and

then to schedule their available DER, with the aim of maximizing their service benefits.

To schedule DER, here BPSO algorithm was used because of its demonstrated ability to

obtain optimal DER schedules within a reasonable computational time.

2.2.4 Common limitations

All three DR categories (Reco-based, Transco-based and Disco-based) constitutes only

partial solutions to the general requirement of an effective DR scheduling program, because

they focus on optimizing DR benefits for only a subset of stakeholders in a restructured

power system (see Fig. 2.3). For example, the Reco-based approach described above focus

on benefits for Recos acting independently who may, as a consequence of their unilateral

DR activities, have an adverse impact on Transcos or Discos. It is important to understand

that all players rely on DR capacity provided by the same set of customers located within

a single geographical area. In light of the shared underlying resource, any partial DR

scheduling approach could be significantly sub-optimal technically, financially and socially

[25,63,64].

From a technical point of view, optimizing DR benefits for individual players can result

in conflicts over how the same DR capacity (i.e., customer load) is scheduled. For example,
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Figure 2.3: Circling different types of DR scheduling approaches

a Disco can produce a plan specifying optimal DR scheduling to fix reliability problems in

the distribution network while, at the same time, the Transco might produce another plan

to address a contingency within the transmission network. Since these two contingencies

appear to be independent events within different networks, the plans produced by the

Disco and the Transco would be developed separately [65]. Should there be some overlap

in the scheduled DR capacity serious grid management problems can arise.

Additional resource scheduling conflicts arise from Recos using DR to mitigate the

impact of spot market price volatility. Such volatility originates from Gencos responding

to supply shortages and the increased cost of running peaking power plants [66]. Conse-

quently, generation costs are decoupled from those of network contingency management,

which results in another source of DR scheduling conflict. In this instance, an optimal DR

plan produced by a Reco to deal with the spot price volatility could conflict with a plan

produced by the Transco and Discos to deal with network contingencies.

From the economic perspective, any partial approach is inefficient. Since DR benefits

for each player are determined unilaterally, it is difficult to calculate the social benefit

(i.e., the sum of benefits for all individual players). The social benefit is probably more

important than individual benefits since it indicates the usefulness of DR for all stake-

holders. Due to conflicts between individual benefits, the social benefit of DR can be

significantly reduced or even become negative.

Finally, any partial approach results in lower returns for customers who provide DR

capacity, because this approach assumes that customers are rewarded by a single player
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requesting DR. In reality, customers should be able to offer their capacity to all players, and

thereby increasing the value of that capacity. Limiting the range of DR-involved players

reduces the reward to customers, and thus reducing the supply of DR capacity, as has

already been seen in both U.S. and Australia energy markets (see again Table 1.3).

2.2.5 Comprehensive DR scheduling requirements

Because of the above issues with partial DR schemes, there is a great interest in finding a

comprehensive approach to DR scheduling considering benefits across all players including

Recos, Transcos, and Discos (see again Fig. 2.3). This approach would be both more

reliable and efficient than any partial approach, since it aims to optimize the overall DR

benefit for all players while solving the scheduling conflicts between them. Similarly, it

would reward the customers better by allowing them to deal with multiple DR-involved

players.

It is important to understand that developing a new comprehensive approach would

not necessarily contradict with the existing partial schemes. Rather it should be viewed as

a“framework” incorporating advantages of these schemes and overcoming their limitations.

The main advantage is that each independent player under deregulation has considered

using certain “self-motivated” techniques for utilizing DR more efficiently. For example,

the Recos have augmented self-imposed risk hedging and self-imposed demand bidding

using DR, to compete well with the Gencos in wholesale electricity markets. On the other

hand, the main limitation of partial schemes is, as discussed above, lack of coordination

across all independent players regarding how the common DR provided by customers is

optimally scheduled.

To overcome the coordination problem while inheriting the self-motivated advantage

from existing partial schemes, this thesis introduces a novel comprehensive DR scheduling

concept—Demand Response eXchange (DRX)—which is a well-organized and competitive

market for trading DR across all involved players.

2.3 Proposed DRX approach

2.3.1 Scope of the proposal

Until now, our discussion has focused intensively on DR benefits for the supply-side (i.e.,

Recos, Transcos, Discos). Here we considers some important aspects from a demand-side

perspective. They also clarify the scope of our proposal.

Pricing vs rewarding

Which incentive should be given to customers for providing DR? As discussed above,

it can be either a price or a reward. Under dynamic retail pricing, customers reduce their

Chapter 2: Literature Review and Demand Response eXchange 25



Proposed DRX approach

consumption in response to high price during on-peak hours, and then, recovering this

consumption when the price goes down (i.e., at nights). By doing so, the customers could

reduce their electricity payments while not loosing their conveniences [65]. However, there

are some practical concerns about dynamic pricing.

First, if all customers pay the same rate (i.e., uniform price), those who adjust con-

sumption will be disadvantaged comparing with those customers doing nothing but at the

same time enjoying the common pricing benefit. Such a ‘free-riding’ issue has long been

discussed by economists in the context of electricity markets [42].

Second, if each customer pays an individual price depending on their own consumption,

it would again be unfair to those customers having special living circumstances. As pointed

out in [37], individualized pricing works according to the fact that electricity price is

inversely proportional to demand. That is, customers with high demand elasticity face

only a small price ‘markup’ by the retailer. By contrast, inelastic customers (for instance,

the disabled or old) who are unable to adjust their demand suffer a relatively high markup.

Politically, such customers should also be viewed as those for whom electricity consumption

is vital [37]. Then charging them a higher price markup than others will be challenged as

unfair. This situation is commonly known in economics as the ‘Ramsey’ problem that

eventually distorts the overall efficiency of dynamic pricing. Such a distortion can be

justified empirically, for instance, by consumer advocacy groups (e.g. [67]).

For these two reasons, this thesis employs reward as an alternative type of financial

incentives given to customers by an array of players (Transcos, Discos and Recos) who

benefit from DR capacity provided by them. Such rewards are considered to be unrelated

to the retail prices that are offered by the Recos only.

Load shifting vs load curtailment

How customers should be engaged in their DR activities? This engagement can be

either load curtailment or load shifting. Intuitively, the latter is more suitable to customers,

because if they reduce their consumption during on-peak periods without catching up at

other times, the value they put on electricity is not consistent [23]. This simply implies

that customers always prefer shifting some of their loads to a future time in response to

incentives offered at the current hour. While load shifting is beneficial to the demand-side,

it causes several problems to the supply-side (i.e., Recos, Transcos, Discos).

If all customers together reduce and then recover their loads, the resultant total de-

mand during a catch-up period would become just another peak. Serving this peak demand,

again, requires a considerable effort of the supply-side [34]. The network operators have to

pay more attention to system security due to heavy constraints imposed on the networks

under high loading conditions. What is worse, the wholesale market may in that catch-up

period experience sharp and unwarranted increase in electricity spot prices. As explained
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in [53], this problem is due to the lack of load recovery consideration within the market

scheduling. Lack of attention by the market operator will be vulnerable to price manipu-

lations by some large Gencos, who still has capacity available for serving the unforeseen

demand recovered by customers.

Despite its important impact, load recovery complicates the calculation of DR bene-

fits across the entire scheduling horizon. As was suggested in [54], the marginal value of

DR should be calculated by taking into account both benefit of load reduction and cost

associated with load recovery. While the former relates to only one period when a DR

is requested, the latter would occur whenever customers restore their consumption. From

the supply–side perspective, identifying the exact recovery periods which are solely, and

maybe arbitrarily, decided by the customers is not an easy task.

No doubt, to make load shifting work, all above recovery issues must be addressed

properly. These issues are, however, beyond the scope of this thesis. Rather this research

considers the case of load reduction requested during the current period only. In this sense

customers may, or may not, recover consumption in a future time. If they do, they would

require just a little compensation due to some minor inconveniences caused by temporary

consumption delay at the moment. Otherwise, much higher incentives have to be provided

for the without–recovery load curtailments (i.e., air conditioners, refrigerators). As will be

shown, such incentives will be rigorously determined by the proposed DR market.

Energy Service Companies (ESCos)

What is the particular role of an ESCo in scheduling DR? In many real markets in

Australia and the U.S, ESCos have developed dedicated systems for their customers to

register, aggregate, schedule, dispatch and settle the DRs requested by those players on the

supply-side [68]. Examples of ESCos engaged in DR business, are given in Table 2-7 [72].

Table 2.2: Some large ESCOs

Company Country Day-ahead Day-of Curtailment window

Energy Response Australia No Yes 7 a.m.—10 p.m.

EnerNOC U.S.A No Yes 11 a.m.—7 p.m.

Energy Connect U.S.A Yes No 10 a.m.—5 p.m.

CPower U.S.A Yes Yes 11 a.m.—7 p.m.

NA Power Partners U.S.A Yes Yes 10 a.m.—6 p.m.

Note that all ESCos listed in Table 2.2 offer reward-based load curtailments during

each agreed period termed ‘window’. Until now, they have not considered 1) using price

to motivate their customers providing DR and 2) analyzing effect of any possible load

recovery following a load reduction.
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It is also important to clarify that the functionalities of an ESCo are different from

those of a Reco, although they both deal with customers [68]. In fact, ESCos never buy

bulk electricity from wholesale markets at spot prices and resell the electricity to small

customers at retail prices. In this regard, ESCos have no control over such prices. This is

desirable because if an ESCo has the right of adjusting retail prices paid by its customers,

it may, as similar to some existing strategic Gencos and Recos, manipulate such prices for

its own benefit. The objective of an ESCo should be to help the customers in their demand

management, not to control or command them.

This thesis, for practicality, considers ESCos who, on behalf of their customers, nego-

tiate DR with all players on the supply-side.

2.3.2 On the DRX concept

Considering the case of ESCo-supported reward-based DR either in the form of load cur-

tailment or load shifting, this thesis proposes a novel scheduling concept—Demand Re-

sponse eXchange (DRX)—“where DR is treated as market resource to be exchanged between

buyers and sellers. Buyers (Transcos, Discos and Recos) need DR to improve the reliability

of their electricity dependent businesses and systems. Sellers (ESCos) have the capacity to

significantly modify electricity demand on request.”

The proposed DRX concept is illustrated by Fig. 2.4. Here the core idea is to consider

DR a market product (or resource) that can be supplied by ESCos and is demanded by

Transcos, Discos, Recos. The supply of DR is a “virtual” procedure by which customers

reduce their consumptions during peak demand, as is requested by those on the demand-

side of a DRX. The negotiation between supply-side and demand-side is performed via

the so-called market transactions that determine both optimal quantity and price of a DR

being scheduled. Multiplying DR price by quantity gives a payment to be made by the

buyers (Transcos, Discos, Recos) for the sellers (ESCos) who supply DR.

In a DRX, each market participant has a specific role according to their pre-existing

functionalities. In addition to the DR buyers and sellers who are the main actors in the

market, there are DR producers (i.e., electricity customers). They generate DR resources by

curtailing loads during peak demand following the outcome of DRX market negotiations,

and then are compensated by the corresponding ESCos using DR payment collected from

the buyers. Such an arrangement between customers and their ESCos is somewhat similar

to those in an electricity wholesale market where generating units produce electricity to

be sold by the corresponding Gencos.

The most important advantage of a DRX over conventional partial approaches de-

scribed in Section 2.2 is that all players (Transcos, Discos, Recos, ESCos, and customers)

are “integrated” into a common framework for scheduling management and analysis. More
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Figure 2.4: Demand Response eXchange

specifically, this framework considers multiple DR buyers who may together use common

DR resources supplied by the same set of customers via their ESCOs. By contrast an

conventional partial approach (i.e., Reco-based) focuses on the analysis of only one buyer

and omit others.

In the DRX framework, both competition and coordination in scheduling DR across

all market participants is introduced as a mean of achieving global market efficiency.

Competition implicates that if any seller requires a payment far above the true cost

of producing DR, it may lose the selling opportunity to other players who require less

payment. Similarly, if any buyer prefers a DR price much lower than actual benefit, it

could not purchase this DR that is better owned by other buyers who can afford a higher

price. In order words, competition can improve price-based allocation of the underlining

resource (DR) across all market participants.

In addition, competition motivates sellers to develop new technologies for producing

DR more efficiently, reducing cost, and thus, enhancing the competitiveness of the product.

Buyers, on the other hand, has to consider using innovative methods for utilizing DR

better, in the sense that the benefit derived from the DR is improved. As such, the buyers

are willing to pay a higher price, consequently becoming more competitive in purchasing

DR.

Coordination refers to cases where all DR resources are evaluated and scheduled together

for a common goal of optimizing total benefit for all market participants, who either

produce or use these resources. The optimization process is supervised by the DRXO who

may, or may not, intervene directly in the negotiation between sellers and buyers.
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Coordination helps solve possible conflicts among individual players who have “per-

sonal” interests in scheduling DR. As will be illustrated in Chapter 6, without a scheduling

coordination across all players, the total DR benefit for them may become significantly

suboptimal, sometimes to a negative value due to unsolved personal conflicts.

2.3.3 DRX models

The above conceptual discussion has raised the need for developing a market model for

DRX. This model not only formalizes the exact description of what DRX will do, but also

specifies which infrastructure is required for DRX operations. It is necessary that either

such infrastructure has already been implemented, or the technologies required to im-

plement the infrastructure are well-developed and ready-to-use [68]. This implementation

issue will be discussed later in this chapter.

This research introduces two fundamental market models for DRX, namely bilateral

and pool-based, as shown by Fig. 2.5. In the former, seller and buyers independently ar-

range DR exchange, setting by themselves the amount of DR and its payment without

third-party interventions, for instance, by the DRXO. Nevertheless, this regulatory body

should still supervise the DRX market by determining whether participants obey given

market policies. The pool-based model, on the other hand, refers to central market coor-

dination and settlement by the DRXO. The term “pool” implicates that all DR capacity is

aggregated into a virtual pool managed by the DRXO, and all sellers have to access this

pool to purchase needed DR.

These two market models represent different levels of competition and coordination

among participants. The bilateral model generally promotes “free” market competition by

allowing independent negotiation between every two parties (a buyer and a seller). In this

situation players become highly motivated to strengthen their production and utilization of

DR resource. The “weak” player may be easily dominated by the stronger, and this would

improve the overall market performance. However, free competition could be vulnerable

to market manipulations by those dominant players, in the sense that they attempt to

exercise market power by creating artificial, false or misleading appearances of the market

price. A similar case had been experienced by California electricity market during the 2001

crisis, where some large Gencos (i.e., Euron) raised the spot price up to 800% of the normal

peak value. To mitigate such manipulation problems in a DRX market, coordination is

required which can be offered by the pool-based model.

Under a pool-based operating paradigm, sellers and buyers also seek profits while the

DRXO ensures that no market manipulation can occur. By examining all data aggregated

from participants, the DRXO could detect the source, and to analyze the consequence, of

market power, i.e., who initiates it and who suffers from it [12]. Despite this advantage,

a centralized pool-based model has a principle drawback related to the fairness across
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Figure 2.5: Fundamental models for DRX: (a) Bilateral; (b) Pool-based

all players. That is, the model sometimes cannot find the best trading option for each

individual player within a reasonable computational time, due to huge amount of market

data to be analysed centrally. Lack of fairness among market participants may undermine

their motivation for self improvement to compete well each other in the same market. In

order words, the pool-based model does not promote free market competition.

This section, for simplicity, only provides a fundamental view of those market models.

Technical details will be investigated in subsequent chapters.

2.4 Practical implications of the DRX

Here we determines whether the proposed DRX approach represents a new and separate

market for trading DR, and if yes then what is its relationship with the existing markets

within a restructured power system? Our discussion is still at a theoritical level while the

actual implementation of DRX is beyond the scope of this thesis.

2.4.1 DR versus electricity

Creating a DRX means that DR as market resource is conceptually separated from electric-

ity. Such a separation has already been demonstrated to be feasible [64]. While electricity

is the major resource to be managed within the physical networks and electricity markets,

DR is an additional (minor) resource which is integrated to improve reliability of both net-
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Figure 2.6: Modified power system structure with: (a) pool-based DRX model; (b) Bilateral DRX model

works and markets. In the next chapter, we will show that DR can be treated as a public

good which refers to a special type of resources with each single unit jointly consumed by

multiple independent players.

An integration of a DRX into the power system structure in Fig. 1.1 of the previous

chapter will yield a two market domain system shown by Fig. 2.6. Here there are two

market domains, electricity and DR. Within the former domain, electricity is managed as

both a physical resource delivered by networks and a financial resource exchanged in the

markets. Within the latter domain, DR provided by sellers (ECSos) is supplied to buyers

(Transcos, Discos and Recos).

2.4.2 DRX versus existing electricity markets

This section discusses relationship between the proposed DRX market and those which

have been well-established in the restructured power system. As shown in Table 2.3, such

existing markets include [12], [6]: 1) those for trading electricity as primary resource on

various timescales (i.e., hour-ahead, month-ahead, etc); 2) those for trading (secondary)
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flexibility resources (i.e., generation reserve) on top of the electricity markets; 3) those

for trading the right of using transmission, and/or distribution, networks; and 4) those

for trading “greenness” derived from renewable power generation, i.e., Renewable Energy

Certificates (REC). Together these existing markets constitute an exchange economy in a

deregulated environment.

Table 2.3: List of markets within a restructured power system

Markets Products Sellers Buyers Timescales

Wholesale
Electricity Gencos

Recos and Year-ahead or

forward market Large customers Month-ahead

Retail
Electricity Recos

Small businesses and Year-ahead or

forward market Households Month-ahead

Wholesale
Electricity Gencos

Recos and Day-ahead or

spot market Large customers Hour-ahead

Reserve market Generation reserves Gencos
Transcos Minute-ahead or

Second-ahead

DRX market
DR resources ESCos

Recos, Transcos, Hour-ahead

(proposed) Discos (intended)

Transmission
Network usages Transcos

Gencos, Recos,
Any timescale

right market Large customers

REC market RE certificates
RE-based Investors

Any timescale
Gencos Customers

As an addition to this economy, DRX as another type of flexibility trades can be placed

at the same business level with the reserve markets [64]. While reserve refers to output

adjustment of fast-responding generators on top of nominal power supply, DR is load

adjustment on top of electricity consumption by end-users. This similarity means that

both markets for DR and reserve are secondary to the electricity markets. The former

aims at improving the reliability and efficiency of the latter, and are independent of other

secondary markets such as the markets for greenness or network usages.

Within the exchange economy, players have different roles for different markets. For

example, electricity customers buy electricity from the retail market and sell DR to the

DRX market; Transcos and Discos provide network services and buy DR for their network

reliability management. None of these entities plays a central role of managing the whole

economy that is rather supervised by government delegates, i.e., the regulator, the energy

MO, the ISO, and the DRXO. These bodies act for public interest which generally ensures

fairness across all market participants by eliminating sources of market manipulation and

enhancing market efficiency.
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2.4.3 Timescale

An important operational issue for any DRX market relates to scheduling timing. Since

the DRX is to be synchronized with the existing markets in a power system, the time

frame of DRX must coincide with that of the system. Although both time frames could be

divided into different time scales such as day ahead, hour ahead, real time, etc [64], this

thesis addresses only the hour ahead timescale that is just before a “gate closure” (i.e.,

the time interval in which both electrical energy trading and DRX must halt for the ISO

and Transcos to balance the whole power system using available generation reserves [64]).

Operating the DRX on this time scale also provides Recos with increased flexibility to

adjust the electricity demand of their customers by buying DR before the trading gate

is closed. In summary, the DRX is considered to operate synchronously with the existing

hour-ahead electricity markets in a power system.

2.4.4 Interactions between DRX and other markets

The interaction between various markets including the DRX is a complex issue. It occurs

whenever prices of different products in different markets relate to each other due to “real-

locating” these products. For example, if the Transco has enough reserve for maintaining

network security, it would not purchase DR to be used for the same security purpose. In

this case, the reserve market goes up by which reserve price increases due to the increased

reserve demand, while the DRX market goes down with DR price decreased because less

people are going to buy DR.

Study of the interaction between DRX and other electricity markets entails analyzing

all economic, social and political aspects of the exchange economy. From an economic

point of view, one should evaluate the relative potentials of various markets, in the sense

that those markets which are more important than others are allowed to go up to enhance

the overall benefit for the economy. The potentials evaluation for each market is generally

based on a pricing consideration under demand-supply balancing, transaction costs, and

other important economic conditions.

From a social perspective, one should determine welfares for different groups of cus-

tomers having different levels of consumption flexibility. In general, those inflexible cus-

tomers (i.e. disable or old) for whom electricity consumption is vital should be subsided

by which they are offered less expensive electricity and do not have to curtail loads for

providing DR. Such subsidies, however, will be likely to down all relevant markets where

the inflexible customers are involved in.

From a political perspective, one may have to consider interventions exerted on different

markets by the government. Such interventions are to serve certain complex political goals

that is, however, beyond the scope of this thesis. In general, any market experiencing more

Chapter 2: Literature Review and Demand Response eXchange 34



Implementation

Figure 2.7: A conceptual illustration of smart grid [69]

government interventions than other markets becomes less competitive and consequently

goes down.

Ideally, achieving an optimal outcome of DRX-based markets interaction requires an

optimal balance between these three essential dimensions of the economy (i.e., economic,

social, and political).

2.5 Implementation

Here we discuss the implementation aspect of DRX, with a specific focus on IT infrastruc-

ture development required for load control and communication between end–use customers

and each electricity stakeholder including ESCos, Recos, Transcos and Discos. This infras-

tructure should also be able to promote the interoperability among those players and then

to support the operation of a comprehensive DR scheduling/trading scheme like the DRX

markets. Such a global communication system will expectedly be fully implemented soon

in many countries as part of the so–called “smart grid” development campaign.

In general, the smart grid concept can be viewed as a modernization of the existing

electricity grids (see Fig. 2.7). It is developed by integrating advanced communication and

control technologies with power system operation on various timescales ranging from day–

ahead, through hour–ahead down to real–time [68]. In this vision, a smart grid has the

following functionalities (from the electricity supply view):

1. Enhancement of reliability

2. Reduce peak demand,
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3. Shift usage to off-peak hours,

4. Lower total energy consumption,

5. Actively manage electric vehicle charging,

6. Actively manage other usage to respond to solar, wind, and other renewable re-

sources, and

7. Buy more efficient appliances and equipment over time based on a better under-

standing of how energy is used by each appliance or item of equipment.

From a demand–side view, smart grid provides the following features:

1. Smart meters,

2. Dynamic pricing,

3. Smart thermostats and smart appliances,

4. Real-time and next day energy information feedback to electricity users,

5. Usage by appliance data, and

6. Scheduling and control of loads such as electric vehicle chargers, home area networks

(HANs), and others.

Smart grids are currently promoted by many governments around the world. It reflects

the need for digitally upgrading existing electricity networks which have been “cursed” by

the public as a high-carbon, high-cost, low-efficiency, and low-tech delivery system. While

these issues will remain controversial in the power engineering community, there is a sure

argument that a well–implemented smart grid will strongly link a power utility company

with its electricity consumers, helping them participate actively in the market and network

operations of a power system. In this regard, we believe that the smart grids, if they are

successfully implemented, will support the operation of our DRX schemes which is viewed

as part of demand–side participation. The assessment of such grids are, however, beyond

the scope of this thesis.

2.6 Summary

This chapter explained the need for DRX as a new and separate market for trading DR

in restructured power systems. In our opinion, creating such a market is somewhat con-

troversial and thus entails substantial discussion regarding its feasiblity. The way we took

to examine such necessity and feasibility is summarised as follows.

In Section 2.2 we reviewed the existing works for scheduling DR, including those im-

plemented and those currently under consideration. Here we surprisingly observed that

most of the works constitute only partial scheduling solutions considering DR benefits

for only a subset of market participants, either Transcos, Discos or Recos. This problem

indicates lack of coordination across all DR-involved parties, and this could be seen as
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the main reason for inefficient DR scheduling followed by low capacity utilizations, as has

been seen in the real markets. This motivates the development of a comprehensive and

fair DR scheme considering benefits across all stakeholders.

The most interesting observation in Section 2.3 is that, when we considered all players

together including those who need DR and those capable of supplying it, we saw the

possibility of setting up a new market. Then we proposed the DRX concept, where DR is

treated as market resource to be exchanged between buyers and sellers. Buyers, including

Transcos, Discos, and Recos, request DR and pay for it. Sellers, including ESCos on behalf

of their electricity customers, supply DR as a source of income.

In section 2.4, we explained why we believe DRX can be a separate market in reality.

That is, since DR is separated conceptually from electricity, a market for trading DR can be

considered to be independent of the existing electricity markets within a restructured power

system. Despite this resonable argument, we would not oppose a possible reconciliation of

the DRX and other markets if this is actually necessary. Such a reconciliation could be in

the form of a co–optimization model maximizing the total benefit of utilizing all resources

supplied by multiple markets including those for electricity, DRX, generation reserves, etc.
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Pool–based Market Clearing

3.1 Overview

This chapter develops a particular type of market clearing model for DRX, namely pool-

based, where all DR resources supplied by sellers are aggregated into a virtual pool handled

by the DRXO, and all buyers have to access this pool to purchase needed DR. The mo-

tivation behind developing this model is to formalize the proposed DRX concept and to

demonstrate its advantages over existing partial DR scheduling approaches. Numerical

simulations are provided to support key arguments.

Microeconomic theory is applied to formulate the proposed pool-based market clearing

model, with the aim of calculating both optimal price and quantity of a DR to be scheduled

during the period under consideration. Particularly the calculation maximizes total mar-

ket benefit for all participants under certain economic constrains such as demand-supply

balance and contribution of each individual buyer to the total DR payment.

Throughout the market development, all mathematical notations of variables included

in a DRX model are explained carefully. Most of them will be used again for the modeling

and analysis in subsequent chapters.

The chapter is organized as follows. Section 3.2 defines the concepts of economic pool

and market clearing, and explains their implications for a DRX. Section 3.3 formulates a

pool-based optimization model to clear the DRX market. Section 3.4 presents a numerical

study followed by some concluding remarks in Section 3.5.

3.2 Pool-based market concepts

3.2.1 Economic pool

“Pool” is an important concept in economics, accounting and finance [5, 9]. Generally it

refers to aggregation and valuation of all market resources (assets, equipment, personnel,
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Figure 3.1: Electricity pool

services, etc) having a common point of interest to market participants, with the main

aim of maximizing total benefit and/or minimizing total risk associated with resources

provision and utilization.

Wholesale electricity markets represent a good example of the pool concept [6,12]. As

shown in Fig. 3.1, bulk electricity produced by Gencos at certain locations of a transmis-

sion network is aggregated and delivered throughout the network to large customers and

Recos serving small customers via retail contracts. This centrally operating paradigm aims

at maximizing total benefit of trading electricity while maintaining transmission network

security by accepting only feasible trades, for instance, without violating physical network

constraints. If the security is threatened, cascading failures followed by a system blackout

may occur, causing electricity trades to be delayed and an entire region to be unsupplied

for many hours. Such intolerable security risks make pooling a dominant approach for op-

erating the wholesale electricity markets. As an alternative approach, bilateral transaction

where electricity is traded independently between every two market players (a Genco and

a Reco) has been considered, but is not yet implemented due to its limitation associated

with lack of network security consideration [52].

In addition to electricity markets, pooling techniques have been used extensively in

finance [9, 73], where individual (underlying) assets such as credit cards, auto loans or

mortgage loans are aggregated using a (common) financial mechanism called “securitiza-

tion”, with the aim of evaluating total risk associated with investing in all assets. As an

outcome of pool-based securitization, new financial products termed “security” represent-
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ing different portions of the total risk are created and then sold to investors who want to

make profits by raising funds. In this case, pooling assets helps diversify their collective

risk, and thereby, making an efficient cash flow across the whole financial security market.

This chapter utilizes the pool concept to develop a DRX in which DR is considered a

market resource traded between sellers (including ESCos on behalf of their customers) and

buyers (including Transcos, Discos and Recos). Here pool plays the role of being a virtual

marketplace where all DR resources produced by electricity customers are aggregated and

valued together and where all buyers can easily seeks needed DR.

Pooling has significant implications particularly for the DRX operation as it represents

a trading interface between small customers and DR buyers. In fact, individual DR pro-

duced by a single customer is not tradable, because it cannot match buyer requirements

that are at aggregated levels. For example, the Transco generally requires DR from cus-

tomers in groups (corresponding to different load points at transmission level), but do not

need to know exactly which customers are the providers [54]. In which case, aggregating

individual DR resources into larger units following buyer requirements will improve the

tradability of the products. This aggregation can be performed via resources pooling.

Since DR is separated conceptually from electricity, a pool of DR can be considered to

be independent of the existing electricity pool in a wholesale market given above. Indeed,

they are very different business procedures—the former provides a grouping together of in-

dividual DR resources (provided by small customers) while the latter packaging electricity

(produced by Gencos) for centralized trades constrained by network security management.

Nevertheless, these pools could be combined together into a joint market, for the purpose

of co-optimizing benefits and/or minimizing risks associated with providing all resources

including electricity and DR. A similar situation has been observed within the electricity

market itself, where individual markets including those for trading electrical energy and

those for trading generation reserve on top of this energy can be co-optimized, in the sense

that the overall cost of supplying these resources minimized [51].

In general, pooling promotes efficient resource allocation by selecting the best resource

units which offer more benefit and/or less risk than other units from the same pool.

For example, the electricity pooling described in Fig. 3.1 can always extract those power

sources offering lowest generation cost under given network security constraints. Similarly

in a pool-based DRX, all DR units from customers are valued together, with the aim

of choosing the best units providing significant benefits for the buyers (Transcos, Discos

and Recos) while requiring relatively low payments from them. This advantage essentially

improves the competitiveness of the proposed DRX approach compared with conventional

partial approaches described in previous chapter.

The drawback of pooling is that it incur transaction cost that is the cost of aggregating

and valuing all resources. In an electricity market, such a cost also include the monetary
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amount spent on maintaining transmission network security. Allocating transaction cost

fairly among market participants is a challenging task entailing significant efforts of the

market operators [12].

3.2.2 Market clearing mechanisms

While pooling aggregates all individual products for the evaluation purpose, market clear-

ing guides the buyers to purchase needed products at competitive prices. Formally market

clearing is the process of getting all supplied products meet buyer demands via price ad-

justment [8]. The term “demand” here refers to requirement for both quality and price of

a product, for instance, low quality products should not be expensive. With the quality

pre-determined via resources pooling and valuation, the price can be adjusted accordingly

during the market clearing process.

Table 3.1: Examples of market clearing

Types Examples

Physical/ Supermarkets,

Geographical shopping malls.

Electronic/ eBay (http://www.ebay.com/),

Internet-based Amazon (http://www.amazon.com/).

Automatic/ Electricity markets,

Computerised Ancillary service markets,

Demand Response eXchange.

In traditional sense, market clearing is taken place in a geographical area where buyers

and sellers gather to negotiate products. Prices are frequently revised so that the entire

supply (at given product quality) can be sold to the buyers. Supermarkets providing food

and household merchandise are examples of physical market clearing, as given in Table

3.1. With the advent of computers and Internet, many markets have been moved to virtual

environments where information circulates electronically and trades are cleared with only

a click of mouse. eBay and Amazon are examples of electronic markets. Despite these

technological changes, human still plays the main role of decision making in a market

clearing process. For many commercial systems working in real time, needed resources must

be supplied instantly from relevant markets. This entails online clearing tasks that could

be beyond human capability and therefore are undertaken automatically by computers.

Wholesale electricity markets give a good example of automatic market clearing, where

electricity demand and suppy–generation and load–must be balanced on a second-by-second

basis, as given by Fig. 3.2 [12]. A significant mismatch can lead to such consequences as

market failure followed by a system blackout. Unfortunately electricity price alone, unlike
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Figure 3.2: (a) Real time fluctations of generation and load; (b) Imbalances resulting from these fluctu-
ations

those in other markets, is not enough to secure short term demand–supply balance. This

problem can be explained because most customers are unable to adjust their consump-

tion following real-time price signals, similarly many generating units cannot boost their

outputs quickly in response to unexpected shortfalls of power supply. To compensate for

this limitation of electricity market clearing, ancillary services (AS) has been used which

refers to quick adjustments by some flexible generating units (for instance, gas turbines)

using their available supply capacity [6]. In addition to AS, DR by flexible customers can

also be utilized by the Transco for the same balancing purpose.

The market clearing concept is central to developing a pool-based DRX model. Here

automatic approach with DR to be traded online is applied. Specifically all DRX trans-

actions are cleared centrally by a dedicated computer playing the role of being a market

operator (DRXO). This market clearing model uses input (demand and supply) data au-

tomatically collected from DR buyers (Transcos, Discos, and Recos) and sellers (ESCos

on behalf of their customers) via an Internet-based communication system. In this regard,

there is no need for creating a physical marketplace for the proposed DRX, which reduces

its implementation cost and thus enhances its economic viability.
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As with other markets, DRX market clearing aims at matching buyers demand with

sellers supply. Here “demand” represents requirement for both quality and price of a DR,

while “supply” giving the product availablility. Balancing demand and supply in general

is not difficult, but balancing optimally could be a challenging task. It entails maximizing

the total benefit created from trading DR across all market particpants. In order words,

the market clearing task should be represented by a profit optimization problem subject

to demand-supply-balance constraint. This problem will be given later in this chapter.

As similar to the pools, clearing DRX market can be independent of the electricity mar-

ket to the extent that they represent unsynchronized processes working in parallel. While

the later delivers electricity from Gencos through Transcos and Discos to customers, the

former supplying DR from the customers back to those players for their risk management

benefits associated with the electricity delivery.

Parallel market clearing for multiple resources represents the current trend in operat-

ing power systems from an economic perspective. Its advantage is to enhance competition

across all market participants. Specifically each player needs to be more responsive to pro-

ducing or utilizing market resources, by monitoring production costs more closely and/or

purchasing resources on the basis of competitive prices. Another advantage of introducing

parallel markets is innovation where participants have to develop new methods or tech-

nologies for problem solving which promises them—the innovators a competitivie edge [12].

Additionally markets parallelism effectively delivers a wide range of services ranging from

electrical energy through ancillary services (or generation reserves) down to DR resources,

which together increase the flexibility and reliability in power systems operation.

Despite these advantages, parallel market clearing incur high transaction costs associ-

ated with running each market separately. It may also lead to some undesirable situations

including “price reversal” problem observed in the California electricity market [24, 26].

This problem refers to cases where wholesale electricity price is forced back to the “nom-

inal” value during peak demand but automatically increases again in other periods, as

a result of clearing other markets, for instance, the market for ancillary services. Never-

theless, we keep the issues of high transaction cost and electricity price reversal as open

questions for future research.

3.3 Market clearing optimization model

3.3.1 Overall description

With reference to the above economic concepts, the whole procedure for pool-based DRX

market clearing is described in Fig. 3.3. It includes several operational stages reflecting

different requirements for scheduling DR from a practical point of view. These stages are
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Figure 3.3: Flowchart for clearing a DRX market

coordinated centrally by the DRXO using data collected from market participants, who

either request or supply DR resources. The proposed market clearing procedure operates

on an hourly basis, to synchronize with the common timeframe of economic dispatch in

the power system.

Stage 1 is rather simple waiting for any market participant among the Transco, Discos

and Recos to request DR from electricity customers during a given hour. Such a request

is made as the participant needs a certain amount of load reduction to deal with its peak

demand problems relating to electricity market volatility or power network reliability. For

example, when the Transco and Discos foresee network outages, they could impose load

curtailment to mitigate the outage consequences. Similarly a Recos may anticipate some

upcoming spikes of the wholesale electricity market price and thus have to reduce customer

demand by requesting DR. Note that not (necessarily) all participants wants DR in a given
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on-peak hour, but if none of them requesting, all subsequent tasks of the DRX market

clearing (see Fig. 3.3) would not be undetaken for that hour.

Following buyer requests, those electricity customers capable of curtailing loads register

to sell DR on the market. This registration is voluntary as it is decided by the customers

on their own free wills. In the case that no customer register, no DR is available for supply

and consequently the market would not be cleared. This case, however, is rare since there

are always customers interested in selling DR as a source of income [27]. Then the market

clearing can be preceded by matching this supply availability with buyer demands.

For those customers registering for selling DR, their “baseline” electricity consumption

will be estimated by the DRXO (see Fig. 3.3, stage 3). This consumption refers to the

amount a customer would normally use, and is considered for calculating DR in the form

of load curtailment during peak demand. Generally estimating the baseline consumption

entails considering both load forecasting and baseline manipulation issues.

Electricity load forecasting

Forecasting is vital part of business planning in today’s competitive electricity markets.

Many operating decisions are essentially based on load forecasts, i.e., dispatch scheduling

of generating capacity, reliability assessment, and maintenance planning for the generators,

as well as DRX market clearing. While much work has been done for forecasting aggregated

loads coming from customers in groups, less attention being paid to individual customers

[68]. Without an accurate individualized prediction model, not only DRX but also other

scheduling programs involving small customers will not work realistically.

Forecasting individual loads are generally more difficult than at aggregated levels [72].

This can be explained by abnormal electricity consumption (such as when the consumer

is on vacation), which bias analysis of historical consumption behavior, and thus signifi-

cantly decrease the prediction accuracy (note that at aggregated levels, such abnormality

effects are dominated by the large number and the geographical dispersion of customers,

as per central limit theorem in probability theory.) To deal with this forecasting problem,

anomaly detection has been developed using statistical techniques such as regression-based,

entropy-based, and clustering-based [74]. These anomaly detection methods could be incor-

porated within conventional load forecasting models, to deal with the inherent uncertainty

in individual consumption behaviour.

Baseline manipulation

The above load forecasting techniques are typically used by an electric utility company

having insufficient consumption data from private customers [74]. To be more realistic in

forecasting while preserving privacy, each customer can estimate their own consumption

and send this information back to the utility. In this scenario, load prediction will definitely

be improved, but it could be vulnerable to baseline manipulation where the customers “lie
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Figure 3.4: Verifying DR dispatch by a customer

on purpose” by declaring overestimated baseline consumption, with the aim of claiming

more load curtailment than the actual amount and thus illegitimately increasing the mon-

etary compensation. No doubt, this baseline issue has to be addressed properly for reliable

and accurate load forecasting, but is beyond the scope of this thesis.

Following baseline estimation for electricity customers registering in DR supply, the

market can be cleared centrally by the DRXO using an optimization model (to be devel-

oped in next subsections.) Then DR will be dispatched virtually by which the customers

switch off their loads.

The final step in Fig. 3.3 is measurement and verification to ensure that customers

have supplied right amounts of DR following above market clearing results. These tasks

are illustrated in Fig. 3.4, where the load curtailment amount representing DR is measured

as the difference between baseline (estimated above) and actual consumption which can

be metered using a telemetry system called “Advanced Metering Infrastructure” or simply

AMI installed on the customer site and communicating with the host utility company [22].

There are many AMI standards developed by different hardware manufacturers over the

world. These are characterized in terms of core functionalities and implementation costs

as of Table 3.2 (see [68] for a comprehensive review). Since these AMI technologies have

been successfully tested by many utilities in North America, Europe, and Australia, they

can be utilized for DRX operation generally, and dispatch measurement and verification

in particular.

In the following we use microeconomic theory defined in [5,6,75,77–79] to develop the

core optimization model for DRX market clearing given by step 4 in Fig. 3.3. For the

sake of simplicity, we defer discussion of the background theory until required during the

analysis.
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Table 3.2: Some well-developed AMI standards

Name Countries

open Automated Demand U.S.A

Response (openADR) (i.e., California.)

Google PowerMeter U.S.A, Australia,

Europe.

ZigBee/HomePlug Australia,

Smart Energy Profile Europe.

3.3.2 DR quantity and price as decision variables

Here we formalize the notion of DR resource in terms of quantity and price as core market

parameters. They will be considered decision variables, that is, the variables to be jointly

controlled by decision makers such as DRXO, buyers and sellers for the purpose of op-

timizing the resulting market benefit derived from pool-based DRX clearing followed by

DR dispatch. Since DR is measured as the difference between the baseline (Cbaseline) and

actual consumption (Cactual) of a customer, a DR quantity (x) is given by

x , Cbaseline − Cactual (3.1)

Unlike many other markets using a single price across all market participants (for

instance, the uniform price in wholesale electricity markets [6]), the DRX consider multiple

prices for trading different DR quantities—each associated with certain buyers or sellers.

Together these quantities represent the whole set of DR resources need to be cleared within

a DRX market corresponding to a restructured power system.

For clarity, we define DR quantities and prices for each type of DR sellers and buyers,

and then aggregate all these decision variables into a common pool for optimization-based

market clearing. Let I denote the set of DR sellers (i.e., ESCos on behalf of their electricity

customers), where I , |I| denotes the number of these sellers. (Note that the symbol ,

means “defined as” or “equal to”). For each seller i ∈ I, let Li denote the set of customers

represented by the seller, with Li , |Li|. Then, we define an individualized supply quantity

vector as follows:

xi , [xi,1 xi,2 ... xi,Li ] (3.2)

where each positive scalar xi,l denotes a quantity (in MWh) of DR in the form of load

curtailment provided by an individual customer l ∈ Li. In this case, we can define an

individual marginal cost vector as follows:

ci , [ci,1 ci,2 ... ci,Li ] (3.3)
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where each positive scalar ci,l denotes a marginal cost (in $/MWh) of DR provided by

customer l ∈ Li, corresponding to individual quantity xi,l. Clearly, the cost vector ci is

a function of the quantity vector xi (i.e., ci = Ci(xi)). Such a function refers to a supply

curve to be submitted by seller i to the DRX market. Intuitively, as supply represents the

capability of providing DR by a seller, supply curve gives the provision cost at various DR

levels (quantities). This cost is incurred by the electricity customers due to inconvenience

resulting from load curtailment.

Defining individual DR quantity has the advantage of characterizing specific economic

circumstance of each customer in a DRX. Such characterization would give both individ-

ualized costs of supplying DR and resulting monetary compensations for the providers.

Specifically those incurring higher DR costs deserve a larger share of the compensations.

This advantage improves fairness across all DR customers, as will be analysed in Section

3.4 via numerical simulation.

To define the other side of the market, let J denote the set of DR buyers (i.e., Recos,

Transcos, Discos), where J , |J | denotes the number of these buyers.

Unlike sellers, DR buyers are only interested in aggregated quantities. Buyers demand

an amount of DR from a group of customers but might not want to know exactly which

customers were the providers [80]. To illustrate this aggregation idea, we consider a small

but comprehensive power system as in Fig. 3.5.

Figure 3.5: Small power system for demonstrating customers aggregation. Here each feeder load point
(1, 2,...,14) supplies power for a small geographical area such as suburbs

This power system includes both transmission and distribution levels corresponding to

a wholesale and a retail electricity markets, respectively. The 2-bus transmission network

is operated by a Transco, while the distribution (comprised of 2 feeders connecting to

these buses) by a Disco. There are also a Reco and an ESco, each deals with all electricity

customers. These arrangements reflect the current practice of restructured power systems

[6,12]. Formally I = {ESCo}—the set of DR sellers and J = {Transco,Disco,Reco}—the

set of DR buyers.
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In this small system the Transco purchases aggregated DR quantities from two different

groups of customers—one includes customers within bus I and the other within bus II of

the transmission network. Each aggregated quantity is given by the sum of individual

quantities from corresponding customers within a group. This aggregation is practically

essential as it simplifies customer managenent task. Rather than considering all individual

customers (millions of them in practice), the Transco only needs to map them into a limited

number of load points (i.e., I and II in Fig. 3.5) at the transmission level. Similarly the

Disco can group the customers based on their geopraphical positions within a distribution

feeder. In which case, there would be one group of customers connecting with load point

1, one with load point 2, ..., and the last one with load point 14 of the distribution

networks in Fig. 3.5. Different from the Transco and Discos, Recos may have their own

way of grouping the customers according to the underlying structures of retail electricity

contracts. For example, customers holding the same type of contracts with a Reco can be

arranged in one group. Such types are generally given by specific terms and conditions of

the contracts, i.e., forward electricity price and volume to be supplied to the customers in

a given future date.

Consequently, each DR buyer involves a set of customer groups. However different

groups associated with different buyers may overlap as they may have mutual customers.

This is because each customer considered at the transmission level, must also be considered

at the distribution level, and furthermore has a supply contract (as has been illustrated

in Fig. 3.5). Therefore, this customer is included in three different groups associated with

three corresponding buyers (i.e., a Transco, a Disco, a Reco), creating an overlap between

these groups.

For each buyer j ∈ J , let Nj denote a set of customer groups being associated with

the buyer, where Nj , |Nj |. As an example, the Transco in Fig. 3.5 has NTransco = {I, II},
while NDisco = {1, 2, 3, ..., 14}. Then we define an aggregated demand quantity vector as

follows:

yj , [yj,1 yj,2 ... yj,Nj ] (3.4)

where each positive scalar yj,n denotes an aggregated quantity of DR that buyer j wants

to buy from a customer group n as a whole. In this case, we can define an aggregated price

vector as follows:

pj , [pj,1 pj,2 ... pj,Nj ] (3.5)

where each positive scalar pj,n denotes a marginal price (in $/MWh) of DR, at which

buyer j is willing to buy from customer group n at corresponding aggregated quantity yj,n.

Clearly, the price vector pj is a function of the quantity vector yj (i.e., pj = Pj(yj)). This

function refers to a demand curve submitted by buyer j to the DRX market. Intuitively,
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while demand represents buyer desire for using DR, demand curve gives preferred prices

for the product to be purchased at different quantities. These prices usually correlate with

risk management benefits for buyers (Transco, Disco and Reco) using DR. That is, those

products giving higher benefits should be more expensive.

The formalisation of DR quantities, prices, and demand and supply curves is novel part

of this thesis over the existing market literature within power engineering. Nevertheless,

it follows the notion of market clearing defined by microeconomic theory [75], and further

realises the pool concept by aggregating DR quantities for each buyer in the market but

keeping such quantities individualized for the sellers.

3.3.3 Objective function

In a DRX market, the DRXO collects both aggregated demand and individualized supply

curves from DR buyers and sellers, respectively. It then balances the overall supply given

by x , [x1, ...,xI ] with overall demand given by y , [y1, ...,yJ ] at overall market price

p , [p1, ...,pJ ], through a centralized calculation. Such a balancing procedure is market

clearing [6,75] for which the objective value (that is the value to be optimized) is identified

in this section from a practical point of view.

Fig. 3.6 illustrates the market clearing process. For simplicity we consider the simplest

case with only one DR quantity followed by one price in a small DRX market containing

a buyer and a seller, while other cases with multiple quantities and multiple prices will

be discussed later. As in Fig. 3.6 the demand curve from buyer is given by function P(x).

According to the law of demand, P(x) is downward sloping as the buyer is willing to

pay higher price for additional quantity of a product (DR) when it has only a small

amount of this product. Turning this around, the buyer will increase the total quantity

to be purchased if the market price decreases [6]. The supply curve from seller, on the

other hand, is given by function C(x) having upward slope which can be explained by the

increasing marginal cost associated with increasing DR quantity to be produced. These

demand and supply characteristics will be investigated further in Chapter 6.

In theory, the market clearing objective is to determine an equilibrium point which is

in Fig. 3.6 the intersection of demand and supply curves, (x∗,p∗), where not only supply

meets demand but also marginal production cost is matched by price coming from the

buyer. This equilibrium results in Pareto efficiency for the market, at which point the

benefit for the buyer cannot be improved without reducing seller benefit [6]. In this case,

the total market benefit, as depicted by the area (A + B + C + D + E + F ) in Fig. 3.6,

reaches the global maximum. If the market is cleared at a non-equilibrium point (x,p),

the resulting total benefit becomes (A+B + C +D) which is sub-optimal.

In reality, clearing the market at its equilibrium point must rely on a number of eco-

nomic conditions [75]. First, market participants (a buyer and a seller) are “price takers”
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Figure 3.6: Market clearing model

in the sense that each of them involves trading a relatively small quantity compared to

the total quantity being traded in the market. In this case their individual transactions

have no influence on the market price. Such an idealized condition is only a standard for

the market evaluation. In fact, real markets usually contains certain participants holding

“dominant” market shares (compared with those for other participants) and therefore hav-

ing the opportunity to influence the market price. This is the case of the 2002 Carlifornia’s

electricity market crisis, where some large Gencos including Enron took advantage of the

unexpected supply shortages during peak demand to sell electricity at premium prices,

sometimes up to a factor of 20 times its normal value [19].

The second equilibrium condition is market freedom, that is, the market is free from

intervention, for instance, by the government. It is opposite to a controlled market where

the government directly regulates how the product might be used, priced or allocated,

rather than relying on the market clearing mechanism with demand–supply balancing.

Electricity retail is a good example of controlled market, where the retail prices paid by

small electricity customers is regulated by the government. As a consequence, the product

allocation involving quantity and price is no longer at the market equilibrium.

There could be a conflict of interest between price taking and free market conditions

towards competitive equilibrium. That is, the market freedom may be vulnerable to the

price manipulation by those participants holding a dominant market share. For example,

the pre-2002 California wholesale electricity market had been loosely regulated by the

government, and as a result, the market crisis with “artificial” price increases occured.

Due to these practical difficulties in finding competitive equilibrium, here we clear the

DRX market using an alternative method—optimizing the total market benefit subject
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to certain constraints, including the demand–supply balance and some other constraints

related to individual participants. As a result, the constrained market benefit, as depicted

by the area (A+B+C+D) in Fig. 3.6, should be slightly smaller than would be the case

under market equilibrium [25]. This adverse effect of optimization-based market clearing

will be investigated further in Section 3.4 via numerical study.

Mathematically, optimizing the total market benefit is given by:

max

∑
j∈J

Bj −
∑
i∈I

Ci

 (3.6)

where Bj and Ci are the gross benefit for buyer j and the cost of producing DR by seller i,

respectively. The difference between the total benefit (
∑

j Bj) and the total cost (
∑

iCi) is

equal to the total market net benefit—the value to be maximized. This calculation again

can be illustrated by Fig. 3.6 for the simplest case of one buyer and one seller in a DRX

market. Here the gross buyer benefit derived from DR is represented by the area under

the demand curve P(x), while the DR production cost by the area under the supply curve

C(x). For simplicity, we obmit formal proof for this representation, but will consider it

again in Chapter 6 via cost/benefit quantification.

Mathematically, both Bj and Ci can be calculated by integrating respective demand

and supply curves:

Bj =
∑
n∈Nj

∫ yj,n

0
pj,n(yj,n)dyj,n ∀j ∈ J (3.7)

Ci =
∑
l∈Li

∫ xi,l

0
ci,l(xi,l)dxi,l ∀i ∈ I (3.8)

From a practical perspective, this calculation is performed during the market clearing

process and by the market operator using demand and supply data collected from buyers

and sellers, respectively. Hence we assume that both sellers and buyers always submit their

correct data reflecting their true costs and benefits given by (3.7) and (3.8). Otherwise,

the objective value given by (3.6) would not be the true market net benefit but only

a “perceived” value [42]. In Section 3.4, we will illustrate how this assumption could be

reasonably satisfied under the DRX market clearing model developed here.

From the objective function (3.6) followed by (3.7) and (3.8), one can correctly de-

duce that clearing a DRX market via benefit optimization is independent of the existing

electricity markets including wholesale and retail. Specifically the DRX market clearing

objective value,
∑

j Bj −
∑

iCi, has no parameter associated with the electricity trades in

those markets. Such parameters may be either cost of producing electricity by Gencos or
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benefit of retailing electricity by Recos, or benefit of electricity consumption by end-use

customers. A comprehensive description of all electricity market parameters can be found

in [6].

In fact, it is possible to combine the DRX clearing with electricity market clearing via

co-optimization where all DRX paramaters (such as demand/supply curves or cost/benefit

data) and those of the electricity wholesale/retail markets are incorporated within a com-

mon objective function that is the value to be maximized for all markets together. Such a

combined optimization model has the advantage of realising the implicitly strong connec-

tion between electricity and DR as two important market resources in the power system.

However it entails significant computational effort due to very large number of parame-

ters included. A similar computational problem has been observed within the electricity

market itself [51, 76], where the simultaneous scheduling for reserve and electrical energy

could result in a combinatorial “explosion”.

3.3.4 Constraints

Constraints need to be defined in the proposed market clearing optimization model. The

most important constraint is demand–supply balance given by:

yj,n =
∑
i∈I

∑
l∈Li

uj,ni,l xi,l ∀j ∈ J ;n ∈ Nj (3.9)

The left hand side of (3.9) represents aggregated quantity yj,n which is the demand

of buyer j over customer group n. On the right hand side, all individual quantities xi,l of

customers included in the group are added together to form an aggregated supply matching

the demand. Binary coefficient uj,ni,l represents relational status of each customer l to the

group n. uj,ni,l is 1 if the customer is included in the group, and 0 otherwise.

To illustrate this balancing equation, we consider again the power system in Fig. 3.5.

For simplicity we assume that each load point at a distribution feeder level represents a

single customer, therefore there are totally 14 customers in the system. We also assume

that the Reco offers two different types of electricity retail contracts—type A for customers

1, 2, ..., 10 and type B for customers 11, ..., 14. Consequently we have NReco = {A,B},
NTransco = {I, II}, NDisco = {1, 2, ..., 14}, as well as J = {Reco,Transco,Disco}. Note also

that I = {ESCo} and LESCo = {1, 2, ..., 14}. According to (3.9):

yReco,A = xESCo,1 + xESCo,2 + ...+ xESCo,10

yReco,B = xESCo,11 + ...+ xESCo,14

yTransco,I = xESCo,1 + xESCo,2 + ...+ xESCo,6

yTransco,II = xESCo,7 + ...+ xESCo,14
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yDisco,1 = xESCo,1

yDisco,2 = xESCo,2

...

yDisco,14 = xESCo,14

Since customer l supplies a common DR to one Reco, one Disco, and the Transco, the

customer is included in three different groups associated with these three DR buyers, re-

spectively. Therefore, its quantity xi,l appears in three corresponding balancing equations,

as illustrated by the above example. This repetition shows that DR from a customer can

be considered public good, which is a special type of resource with each single quantity

jointly used by multiple players. Indeed, treating DR as a public good is central to the

analysis of a DRX, not only in this chapter but also others within this thesis.

The next constraint is related to the contribution of each player in overall payment

for the public good. These contributions can be specified in an assurance contract that

is signed between involved players [77–80]. This contract refers to a financial mechanism

for guaranteeing an efficient provision of the public good in the face of the free riding

problem. In general, such a problem occurs whenever there is an action (i.e., scheduling

DR as a public good) that would benefit several players (i.e., a Transco, a Disco, a Reco),

but once the action is taken, there is no way to exclude those who did not pay for the

action from the benefits. This non–excludability leads to free riding opportunity—some

self-interested players may make a decision to let other players pay for the action, then

to enjoy the benefits for free. This situation is unfair to the voluntary payers and reduces

the overall benefit of taking the action. In the worst case where no player pays, the action

would not be taken.

Assurance contract is considered a powerful mechanism to avoid the free-riding prob-

lem, that is, to encourage every beneficiary contribute to the overall payment of a public

good. The core idea is to let the beneficiaries voluntarily pledge to contribute paying for the

good. If the total payment is enough, the good will be supplied; otherwise, the pledges are

refunded in such a way that benefits the contributors more than others. Such a refunding

policy was proven to motivate all beneficiaries making pledges for payments [77,78].

Here we formulate the use of assurance contract which imposes the second constraint

of the DRX market clearing optimization model. Our analysis focuses on practical issues

particularly relevant for the DRX, with numerical study given in Section 3.4. It is not our

purpose to re-examnie the theoretical aspects already described elsewhere in the economic

literature.

Let us consider three arbitrary DR buyers: j (e.g., Reco), j′ (e.g., Disco), and j′′ (e.g.,

Transco), who together intend to purchase a common quantity xi,l at a marginal cost ci,l

from customer l as a DR seller. As per assurance contract, the payment allocation among

these buyers for that quantity must satisfy [77]:
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P i,lk ≥ δ
i,l
k .(ci,lxi,l) ∀k ∈ {j, j

′, j′′} (3.10)

The left hand side of (3.10) represents an actual payment, denoted by P i,lk , made by

only one buyer for the common DR just after the market is cleared. This payment must be

at least equal to a threshold amount according to the assurance contract. This amount is

referred to as an“obligatory contribution”. It is determined by multiplying the DR revenue

ci,lxi,l of the customer l by the so-called contribution rate δi,lk —a fixed parameter specified

in the assurance contract.

Without obligatory contributions from buyers, one buyer may pay less than the others,

regardless of how much benefit it gains from DR. Some buyers may avoid paying anything

at all but at the same time enjoy the benefits of DR. Non-paying beneficiaries are referred to

as “free riders”, and they can cause substantial distortions of a market [78]. Consequently,

an assurance contract specifying the contribution rate of each buyer in the market is

necessary to avoid this free-rider problem, and thus ensure market efficiency.

For a given DR quantity xi,l to be supplied, the total obligatory contributions
∑

k δ
i,l
k

.(ci,lxi,l) must match the customer revenue [77]:

δi,lj + δi,lj′ + δi,lj′′ = 1 (3.11)

For this constraint, we can easily deduce that:
∑

k P
i,l
k ≥ ci,lxi,l. This means all buyers

collectively may have to pay an amount that is greater than the payment made to the

customer. In economic theory, this discrepancy is commonly known as “payment excess”,

which represents an imbalance between the buyer’s payment and the seller’s revenue.

Fig. 3.6 shows that as the quantity x deviates from the equilibrium point x∗ payment

excess occurs (as depicted by the area (B + C)). There are two common ways to deal

with this excess [6]. First, if the excess is small, it may be kept by the DRXO to recover

the cost of running the market. Second, if the excess is relatively high, part of it will be

refunded back to the buyers using certain refunding policies (i.e., proportional to their

own contributions). These two payment excess scenarios are also considered part of the

assurance contract arrangement [79].

Now, without the loss of generality, we consider only the buyer j. It buys DR not only

from the customer l, but also many others—each included in a group n ∈ Nj associated

with buyer j. Following the condition in (3.10), the buyer total payment to all these

customers must satisfy:

P total
j =

∑
i,l

P i,lj ≥
∑
i∈I

∑
l∈Li

uj,ni,l .δ
i,l
j .(ci,lxi,l) (3.12)
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However P total
j =

∑
n∈Nj

pj,nyj,n, then we imply:

∑
n∈Nj

pj,nyj,n ≥
∑
i∈I

∑
l∈Li

uj,ni,l .δ
i,l
j .(ci,lxi,l) (3.13)

A practical issue stemming from this condition is that the buyer j purchases the DR

from a large number of customers. This results in a large number of corresponding pa-

rameters δi,lj being considered in the contract. In this paper, for illustrative purposes, we

assume that these parameters are all equal to a common value δj . This assumption does

not affect the comparison between the DRX and partial DR approaches. The assumption

implies the following variation on the previous constraint:

∑
n∈Nj

pj,nyj,n ≥ δj

∑
i∈I

∑
l∈Li

uj,ni,l .(ci,lxi,l)

 ∀j ∈ J (3.14)

For further simplification, we assume that the value of δj is: 1) commonly δR for every

buyer j who is a Reco; 2) commonly δD for every buyer j who is a Disco; 3) δT for the

Transco only. Following the condition in (3.11), we imply:

δR + δT + δD = 1 (3.15)

We call the vector δ = [δR δT δD] the “contribution rates” vector, which is a core,

pre-determined parameter of the DRX model. Since the value of δ is decided by agreement

between the buyers via an assurance contract prior to market clearing, it plays the role of

being pledges mentioned above. Specifically if no buyer pledges to contribute then no DR

as a public good will be scheduled. The more amount of pledges is made in the contract,

the more DR quantity is to be supplied. Such an impact of the pre-determined parameter

δ on DRX market clearing outcome will be analysed via numerical study in Section 3.4.

Overall, the developed DRX optimization model has xi,l and yj,n as the decision vari-

ables, (3.6) as the objective function, (3.9) and (3.14) as the constraints, as well as (3.8)

and (3.15) as the supporting calculations.

3.4 Numerical example

This section provides a simple case study to demonstrate the applicability of the proposed

pool-based market clearing model for DRX. Specifically we aim to examine the following

aspects which arise from the above discussion.

1. The advantage of DRX (as a comprehensive approach for scheduling DR) over the

existing partial approaches.

2. The fairness across all electricity customer in DR provision.
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Figure 3.7: The test system

3. The relationship between market clearing prices and purchased quantities.

4. The impact of assurance contract (i.e., contribution rate vector) on DRX market

clearing outcome.

5. The truthfulness of DR buyers and sellers when submitting bidding data for market

clearing.

3.4.1 Test system

Fig. 3.7 given the power system used for this case study. This system is comprehensive in

the sense that it includes both transmission and distribution networks which are operated

by a Transco and a Disco, respectively. There is also a Reco and an ESCo–each deal with

all customers in the power system. For simplicity we assume that each customer represents

a single load point connecting with the corresponding distribution feeder, and then there

are 20 customers in total. In practice, each load point may include several small customers

(i.e., households, small businesses), but by aggregation these customers can be combined

into a larger electricity consuming unit suitable for our study here.

Table 3.3: Grouping customers under each DR buyer

Buyer j Nj Description

Transco {{1, 2, ..., 12}, Each group n ∈ NTransco

{other customers}} connects to a trans. load point.

Disco {{1}, {2}, ... Each group n ∈ NDisco

..., {19}, {20}} connects to a feeder load point.

Reco {{1, 3, 4, 5, 9, 15, 19}, Each group n ∈ NReco

{other customers}} is with a single contract type.
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Table 3.3 shows the grouping of the customers under each DR buyer for the purpose of

DRX market clearing. Here the Transco buys aggregated DR from two customer groups—

one includes customers connecting to bus II and the other to bus III of the transmission

network. The Disco associates with the same customers but at the distribition level, where

these customers are arranged in 20 small groups corresponding to 20 feeder load points.

Unlike the Transco and the Disco, the Reco as another DR buyer groups the customers

according to the electricity retail contracts offered. That is, customers with the same type

of contracts are arranged in one group.

According to the power system structure and the customer grouping, the DRX market

clearing system is given by: I = {ESCo}—the set of DR sellers; LESCo = {1, 2, ..., 20}—
the set of customer providing DR; J = {Transco,Disco,Reco}—the set of DR buyers;

NTransco = {I, II}—the set of customer groups associated with the Transco; NDisco =

{1, 2, 3, 4, ..., 20}—the set of customer groups associated with the Disco; NReco = {A,B}—
the set of customer groups associated with the Reco.

3.4.2 Assumptions on the supply and demand curves

To clear the DRX market using the above global optimization model, the DRXO collects

data representing the demand and supply curves from buyer and sellers. For simplicity,

such input data for market clearing is to be assumed here (It will be investigated in Chapter

6 using a local cost/benefit analysis.)

For the ESCo and its customers, we assume a linearly increasing supply curve and

corresponding quadratic cost of producing DR, as follows [40,81]:

ci,l = 2aixi,l + bi(1− θi,l) (3.16)

Ci =
∑
l∈Li

(aix
2
i,l + bi(1− θi,l)xi,l) (3.17)

where i ∈ I = {ESCo}, and l ∈ Li = {1, 2, ..., 19, 20}. The coefficient θi,l is called the

“customer type” and takes a value between 0 to 1. θi,l represents a customer’s willingness

to curtail load to provide DR. As θi,l increases, the cost of DR decreases because the

customer is more willing to participate. (Values for this parameter are given in Table 3.4.)

Besides θi,l, ai and bi are common coefficients applied to all customers, ai = 10$/MW2h,

bi = 120$/MWh.

The reason behind using (3.16)—(3.17) for modeling the supply curves is, to compare

the relative DR scheduling outcomes among various customers based on their own cur-

tailment willingness. In order words, we intends to analyse the impact of θi,l on xi,l and

other relavent market clearing parameters at the individual customer level. This analysis

reveals the fairness across all customers in DR provisions.
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Table 3.4: Customer types

Cons l θi,l Cons l θi,l Cons l θi,l Cons l θi,l
1 0.75 6 0.8 11 0.85 16 0.9

2 0.76 7 0.81 12 0.86 17 0.91

3 0.77 8 0.82 13 0.87 18 0.92

4 0.78 9 0.83 14 0.88 19 0.93

5 0.79 10 0.84 15 0.89 20 0.94

For each DR buyer in the market, we assume a linearly decreasing demand curve and

corresponding quadratic gross benefit [49,81]:

pj,n = −2αj,nyj,n + βj,n (3.18)

Bj =
∑
n∈Nj

(−αj,ny2j,n + βj,nyj,n) (3.19)

where j ∈ J = {Reco,Transco,Disco}, and n ∈ Nj = NReco || NTransco || NDisco (see

Table 3.3 for details). The coefficients αj,n and βj,n are valuation coefficients assigned to

each customer group n under buyer j. These coefficients reflect how much DR provided

by the group is “worth” for the buyer in each given time period. For example, during the

time of peak demand, it may be costly to maintain network security using conventional

means. In stead, the network operator can utilize DR to reduce demand, and thus improve

network security, resulting in significant cost savings [82]. In terms of our formalisation,

the savings are the operator’s gross benefit as defined in (3.19). Savings can be calculated

using a cost/benefit analysis incorporated with a reliability assessment [83].

The Reco, on the other hand, can use DR to cover most financial risk caused by

electricity spot price volatility. In economic theory, such a strategy is referred to as a

financial hedge, in which the Reco offsets investment (i.e. the demand to be met from spot

markets) in order to minimize unwanted exposure to risk. This is done by using DR to

reduce the amount of power the Reco needs to buy during periods of high spot market

prices. In this strategy the gross benefit derived from DR is equivalent to the benefit from

risk reduction which can be calculated using a hedge analysis [84].

Both the reliability assessment and hedge analysis for individual buyers are beyond

the scope of this chapter which is focused on demonstrating the feasibility of a DRX.

Consequently, some simple data related to this assessment and analysis are employed as

input to the DRX model. The input data is contained in the values of coefficients αj,n and

βj,n which are listed in Table 3.5.
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Table 3.5: Valuation coefficients

DR buyer j Group n ∈ Nj αj,n($/MW2h) βj,n($/MWh)

Reco 1 to 2 1 50

Transco 1 to 2 1 50

Disco 1 to 20 10 50

3.4.3 Modeling of partial DR approaches

To evaluate the performance of a DRX, comparing it with existing partial approaches for

scheduling DR is necessary. As were indicated in the previous chapter, these approaches

include Reco-based, Transco-based and Disco-based programs. In the following we review

such DR scheduling programs from a market clearing perspective:

Transco-based model

This class of DR-scheduling schemes is operated by Transcos that are primarily re-

sponsible for managing the security of transmission networks [85]. Within a Transco-based

scheme, customers provide DR as a resource in the form of load curtailments to balance

the active power generation and demand on a given timescale (e.g., hour-ahead), conse-

quently ensuring transmission network security. Examples of the Transco-based scheme

can be found in [40,49,80,85,87,88].

Traditionally DR has been provided under strict conditions such that the Transco is

allowed to curtail loads of any customer (given that these curtailments improve network

security) and then compensate these customers with a fixed fee [88]. Many competitive

approaches for DR procurement have been proposed during the last twenty years. Com-

petition in supplying DR could be introduced by using either interruptibility contracts

between the Transco and customers, or some type of organized market-based scheme [87].

Under contract arrangements, each customer negotiates DR with the Transco on a monthly

or yearly basis. Under a market-based scheme, all customers independently offer their own

capacity in a spot market on a daily or hourly basis, where the Transco clears these offers

based on the benefits for all involved parties (including the Transco itself). The market-

clearing approach has been given more attention than the contract approach in recent

years. In fact, some power utilities in Australia, the U.S., and Europe have implemented

dedicated spot markets for trading DR [88]. These markets could achieve economic effi-

ciency as competitive prices are taken into account in the selection of customers supplying

DR.

Disco-based model

This category of DR schemes is related to Discos operating a local distribution network

consisted of many radial feeders connecting directly with the customer loads. As similar to
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the Transco, Discos benefit from DR by using it to enhance distribution network security.

Examples of a Disco-based scheme can be found in [80,86–88].

In this scheme, Discos directly schedule and pay for the load curtailments offered by

their customers. The payment calculation is based on both Disco and customer benefits.

The latter can be estimated by either surveying customers or using historical data obtained

from the same DR program [86].

Reco-based model

The final category focuses on Recos, who provide contracts for selling electricity at

given prices to small customers. Examples of Reco-based DR-scheduling scheme can be

found in [80,87–90].

Within this scheme, customers submit offers specifying financial incentives at which

they are willing to reduce loads for providing DR. The Reco then clears these offers con-

sidering the benefits for customers and the Reco itself [90]. Profit for the customers is

a compensation for the load curtailment, while profit for the Reco is a reduction of risk

caused by spot price volatility. The curtailment compensation is either change of retail

price or an amount of reward that is unrelated to that price. The former is considered to

be beyond the scope this paper.

Common aspects

In all above scheduling categories, DR in the form of load curtailment is treated as

a market product being negotiated between two involved parties. For example, within a

Reco-based scheme, DR from customers are offered to the Reco for mitigating spot price

volatility.

Under this operating paradigm, a market clearing approach was developed for each

category of DR scheduling [85, 86]. As such, demand for the DR product is matched by

its supply. For simplicity we assume that the main objective of all such market clearing

approaches is to maximize the total benefit for all participants, as was suggested in [86].

Under this assumption, each approach is equivalent to a special case of the DRX, in which

only one buyer pays for DR, while the others are considered free riders who pay nothing

at all but gain some DR benefits. Market clearing optimization models for these partial

approaches are given in Table 3.6. In each partial model, free riders are removed from the

market-clearing process, simply because they do not pay. Their free benefits are, however,

still taken into account for the comparison. Additionally, no assurance contract is used in

these models, and therefore constraint (3.14) is removed as well.

The aim of using these market clearing models for describing the partial DR approaches

is, to provide a “fair” comparision with the proposed DRX approach. Specifically with the

same data inputs and similar optimization objectives, the advantage of each approach

over others can be easily observed. In reality, modeling the partial approaches may entail
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Table 3.6: Partial DR models

Models Ipartial J partial Equations

Reco-based {ESCo} {Reco} (3.6)—(3.9), (3.16)—(3.19)

Transco-based {ESCo} {Transco} (3.6)—(3.9), (3.16)—(3.19)

Disco-based {ESCo} {Disco} (3.6)—(3.9), (3.16)—(3.19)

further practical considerations that are, for simplicity, omited here. We believe that lack

of such considerations will not affect the comparative outcome.

3.4.4 Analysis of the main results

All market clearing optimization models, including DRX and partial, are simulated using

the non-linear programming solver called General Algebraic Modeling System (GAMS),

with the same data inputs applied. The simulation here is assumed to be within a single-

hour period. The results are given in Tables 3.7 and 3.8. Table 3.7 shows the net benefits

(that is gross benefit less the cost) for each individual player and for all players together

(total market benefit). Table 3.7 presents total DR quantity, payment made by each buyer,

and the total revenue of all customers combined. In the simulation, the contribution rates

vector [δR δT δD] of the DRX model is set at approximately [13
1
3

1
3 ].

Table 3.7: Comparative net benefit ($)

Model
Total market Reco Transco Disco Customers

benefit benefit benefit benefit benefit

Reco based 1521.5 121.3 641.3 621.6 137.3

Transco based 1562.3 644.5 126.2 649.1 142.5

Disco based 1565.3 645.2 661.7 129.2 129.2

DRX 2124.1 544.8 520.6 529.4 529.3

Table 3.8: Comparative DR quantities (MW) and payments($)

Model
DR Reco Transco Disco Cons

quantity payment payment payment revenue

Reco based 15.2 516.4 0 0 516.4

Transco based 15.8 0 539.2 0 539.2

Disco based 15.7 0 0 526.5 526.5

DRX 32.2 517.6 566.1 548.7 1632.4

As can be seen from the simulation output, results of the DRX are significantly better

than those of partial DR approaches. The total market benefit is improved by more than
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Figure 3.8: Load curtailment (in MWh on the right axis) versus customer willingness (on left axis with
no unit). Note: the horizontal axis represents customer index

35%. At the same time, the customer benefit is improved by approximately 300%; total DR

quantity, increased by more than 100%; and the corresponding customer revenue increased

by nearly 220%.

In partial approaches, there are some players who do not pay for DR. However, their

free benefits are only about 15% (Reco), 20% (Transco), and 18% (Disco) higher than

would be the case in the DRX. This is because when all players contribute, both the total

payment and the resultant DR quantity are improved. Consequently, the gross benefit for

each player significantly increases, which compensates for the player’s payment.

With these results, we can argue that a DRX is more efficient than partial approaches.

This argument is consistent with the microeconomic theory. As indicated in [75, p. 362],

“private provision leads to an inefficient level of a desirable public good”. In the context of

DR scheduling, a private provision refers to partial approaches since DR, as a public good,

is sold to only one buyer. The term “inefficient” here means that the total market benefit

cannot reach the global maximum value due to insufficient good being provided. The above

results support the claim that partial approaches lead to inefficient DR markets.

Fig. 3.8 examines the relationship between the individual curtailment amount (xi,l)

and the curtailment willingness (θi,l) of various customers. Here xi,l generally increases

following the increasing value of θi,l, which implies that customers would curtail more load

for supplying DR as they are more willing to do so. However, there are certain customers

(i.e., 3, 4, 5) having relatively low willingness but curtailing more load than some others.
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Figure 3.9: Net benefit (on the right axis) versus load curtailment (on the left axis). Here the horizontal
axis represents customer index

This result can be explained by the effect of DRX market clearing, where the curtailment

amount (or rather DR supply) is jointly decided by the customers and the DR buyers. In

this situation, if the DRs from some customers are more valuable for the buyers than those

from other customers, the former would be purchased at higher quantities and, of course,

higher prices than the latter regardless of the curtailment willingness of each customer.

For example, the Transco will be likely to buy more DR quantities of those customers at

“critical” locations of the transmission network (that is, the locations significantly affecting

the network security) than DR quantities of other customers. These results demonstrate

the advantage of using market clearing for scheduling DR, where the outcome is given by an

optimal balance of the curtailment willingness (or DR supply capability of the customers)

and the buyer demand.

Fig. 3.9 shows the net benefit for each individual customer according to their DR

quantities supplied. Since such benefits are the difference between DR payments and DR

provision costs, they give the “ultimate” incentives for load curtailments. As can be seen

from the graph, there is a near-perfect correlation between the curtailments and the net

benefits across all customers, that is, those customers curtailing more load than others

enjoy higher monetary gains. What is surprising, this correlation is independent of other

market clearing parameters such as the curtailment willingness of customers (θi,l) and

the buyer demand for DR. This result demonstrate the very fairness across all types of

customers when supplying DR, that is, regardless of which condition the power system is

in (normal or contingencies, or with electricity market volatility) and regardless of how

much the customers are willing to curtail loads, the more they do the more they gain.
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Figure 3.10: The relationship of DR market clearing prices, quantities purchased, gross benefit for the
Disco (the results here are normalized by the corresponding peak values.)

In addition to the customers as DR providers, here we examine the market clearing

outcome from a DR buyer perspective. For illustrative purposes, we choose the Disco as

it deals with all customers at the individual level and consequently gives more diversified

results than other buyers including the Reco and the Transco, who deals with only a

limited number of aggregated customers (i.e., 2 as of Table 3.3). Fig. 3.10 presents the

correlation between DR quantities and their market clearing prices paid by the Disco. It

is observed that the former is inversely proportional to the latter, which can be explained

by the law of demand in microeconomics. That is, people tend to buy more of the cheaper

products and avoid purchasing the expensive unless necessary.

Fig. 3.10 also gives the relationship between the purchased quantities and the gross

benefit derived from each quantity. As can be seen, those DRs giving more benefits than

other DRs will be purchased by the Disco at higher quantities. In order words, higher DR

quantities must bring out more gross benefits, otherwise they would not be cleared in the

market. Such an argument can be referred as “rationality” in DRX market clearing.

3.4.5 Discussion of other results

Further simulations are performed to examine the impact of the contribution rates vector

[δR δT δD] on the DRX market outcome. As can be seen in Table 3.9, the total market net
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benefit deviates from the global optimum as [δR δT δD] deviates from [13
1
3

1
3 ]. This is due

to the inconsistencies of payment contributions among buyers with respect to the benefits

they get from trading DR. For example, as [δR δT δD] is [14
1
2

1
4 ], both the Reco and Disco

benefit more but contribute less, while the Transco benefits less but has to contribute

more. Although this unfair situation is not a serious free-rider problem, it can still distort

market efficiency [75]. An additional consequence is that an excess of payment (554.5$)

occurs, meaning the buyers together have to pay more than the customers receive.

Table 3.9: The impact of contribution rates vector on DRX outcome

(δR, δT , δD)
Total market Reco Transco Disco Payment

benefit benefit benefit benefit excess

( 1
3
, 1
3
, 1
3
) 2124.1 544.8 520.6 529.4 ≈ 0

( 1
4
, 1
2
, 1
4
) 2042.1 391.5 340.1 378.5 554.5

Although this contributions issue is not a major problem for DRX market-clearing,

it demands that each DR buyer has to pay attention when signing onto the assurance

contract. There is a requirement for choosing appropriate values for contribution rates,

which should be proportional to the predicted benefits in the future DR trading [77].

The contributions issue also leads to an interesting observation that each buyer has

a reasonable incentive to truthfully declare their own benefits when negotiating contracts

with other buyers. If a buyer attempts to game the market by “lying” about its benefit, the

[δR δT δD] that is determined using this false benefit will unfortunately become inconsistent

(i.e., deviating from the optimal value). As a consequence, the actual benefit the buyer

eventually receives after the DRX is cleared will be lower than the benefit the buyer could

receive if its claim has been more “honest”. Seeing Table 3.9 as an example, where [13
1
3

1
3 ]

corresponds to “no buyer lied”, and [14
1
2

1
4 ] corresponds to “both the Reco and Disco lied

but the Transco did not”.

In this example, the Transco who did not lie must also suffer from a benefit reduction

caused by “dishonest” buyers. This unfair situation can be resolved introducing a mech-

anism to refund the payment excess as an additional incentive for buyers not to lie. As

indicated in Section 1.2.4, refunding the payment excess back to buyers is proportional

to their own contributions. For example, in Table 3.9, the Transco, Reco, and Disco, who

contribute at rates 1
2 , 1

4 , and 1
4 , will receive 277.4$, 138.7$, and 138.7$, respectively (as-

suming that the payment excess 554.5$ is fully refunded). Consequently, the total benefit

for the Transco will be 617.5$ which is higher than the total benefits to the lying Reco and

Disco (i.e. 530.2$ and 517.2$). In comparison to the [13
1
3

1
3 ] case, the Transco is rewarded

while the lying buyers are penalized.

This result is also consistent with microeconomic theory. As shown in [79], a refund-

ing mechanism under the assurance contract motivates any buyer to play a “dominant
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strategy”, in which regardless of how much other buyers contribute to the public good,

the buyer is better off contributing more based on its own true benefit. Such a strategy

rewards the buyer with not only a better refund, but also a higher net benefit due to an

improvement in the overall market efficiency. If every buyer plays the dominant strategy

the market will reach an optimally efficient level with appropriate values for contribution

rates (i.e., [13
1
3

1
3 ] in the above example). Playing the dominant strategies, each buyer

will furthermore submit DR bids reflecting true benefits [79]. This, in turn, satisfies the

marginal assumption made in Section 1.2.3.

On the other side of the DRX market, electricity customers, as the DR suppliers, have

even more incentive to offer DR at marginal rates that reflect true costs. If a supplier

attempts to raise the offering price above the marginal rate, it might simply lose the op-

portunity to sell DR to other suppliers who offer a cheaper price. Under a DRX market

with several million DR suppliers (electricity customers) no one can hold significant “mar-

ket power”, so the loss of a DR sales opportunity from one supplier to another due to price

competition is likely to happen [75]. Consequently, any supplier is better off offering the

DR at a minimal price (that is equal to the marginal rate [75]) to compete well with the

other suppliers in the DRX market. If every supplier offers the marginal rate, the market

will achieve near-perfect competition in DR supply.

The above observations are mainly based on the general microeconomic theory. The

issues related to individual buyer contributions and true-benefit gaming in the particular

context of a DRX market obviously need further investigation. In our opinion, the proposed

DRX market-clearing scheme under an assurance contract provides a good starting point

as it offers clear advantages compared with conventional DR approaches.

A DRX market under the assurance contract can be cleared on an hourly basis. During

each hour, buyers receiving a greater benefit contribute more than other buyers, and buyers

receiving no benefit are not required to contribute. This hourly arrangement is included

in the assurance contract. Note that the contributions among buyers in different hours of

the day can differ, depending on their own time-varying benefits. Furthermore, there may

exist some off-peak hours when no player benefits from DR. In these hours, no payment

is made, and thus no DR is supplied. Such special cases, however, still fall well within the

assurance contract arrangement.

3.5 Summary

This chapter developed a pool-based market clearing model for DRX in the restructured

power system. Here the DRXO collects bids and offers from DR buyers and sellers, respec-

tively. It then clears the market by maximizing the total market benefit for all participants.

The theory behind the pool-based DRX is based on a well-known demand-supply model
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incorporated with an assurance contract used for solving the free-riding problems associ-

ated with public good contributions. Most importantly, such a theory brings together DR

buyers (i.e., Transco, Recos, Discos, each with their own reasons to demand some DR from

time to time) and sellers (i.e., ESCos on behalf of electricity customers) under a common

DRX umbrella.

The DRX market clearing model has an additional advantage in that it rewards cus-

tomers better by allowing them to deal with multiple buyers in a competitive way. This

reward and competition based model can motivate customers to participate in DR pro-

grams more actively than in the past.

Numerical simulations have been performed to examine the “core” properties of a pool-

based DRX. It was observed that the proposed approach is significantly better than the

conventional partial approaches, in the sense that it increases the total market benefit for

all participants. In addition, many critical aspects of the DRX were shown to be consistent

with microeconomic theory. These are fairness across all customers as DR providers, price-

quantity relationship, and truthfulness in submitting demand and supply data for market

clearing.
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Agent–based Market Clearing

4.1 Overview

This chapter presents the design and evaluation of an agent-based market clearing mecha-

nism for DRX, in which each market participant (i.e., buyers and selers) is represented by

an economic agent behaving in a self-interested manner. This means that the agent always

attemps to maximize its local benefit based on the available information about actions

taken by other agents participating in the same DRX market. The proposed market clear-

ing mechanism uses Walrasian auctions, where the agents update their locally optimal bids

for DR quantities in response to prices adjusted by the DRXO. This auction is repeated

iteratively until market equilibrium is obtained at the point where the market outcome is

Pareto efficient from a global perspective. Both analytical proof and numerical simulation

are provided to support key arguments.

Convex optimization theory is used as the mathematical background to formulate the

market clearing problem with the aim of maximizing total market benefit for all partic-

ipating agents. This problem is then converted into a set of equivalent conditions using

Karush–Kuhn–Tucker (KKT) theorems. Such conditions which constitute a market equi-

librium point are solved iteratively using Walrasian auction design.

This chapter is structured as following. Section 4.2 describes the concept of economic

agent and its implications for a DRX. Section 4.3 formulates the market clearing problem

from an agent-based perpective. With this formulation Section 4.4 designs the Walrasian

auction mechanism, which will then be theoritically evaluated in terms of optimality and

convergence in Section 4.5. Numerical studies of the proposed mechanism are given in 4.6

and concluding remarks due in Section 4.7.
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Figure 4.1: Agent with a local view into the world

4.2 Agent-based market concepts

4.2.1 Economic agents

Agent is an important concept in different fields such as economics, engineering, computer

science, and social science. Generally, it refers to an individual entity capable of making

decisions based on a set of rules and the available information about environment where the

agent is involved in [91]. The term “rule” here is formally given by conditional statements

(i.e., if–then–else) with input data leading to output decisions.

The agent concept is illustrated by Fig. 4.1, where each agent is assumed to have only a

local view of the world where they are in. Such a localization means that the agent cannot

know exactly the actual state of the entire world, regardless of how much information

it can gather from the outside environment. Such information includes decisions made by

other agents and the coordination between them. As shown in Fig. 4.1, first the agent tries

to analyse the collected information to see how the world would look like. Then the agent

determines which optimal decisions to be made in accordance with some pre-determined

rules of thumb. These decisions lead to some actions taken by the agent when interacting

with the environment, for instance, collaborating with other agents for a mutual benefit.

Table 4.1 gives different types of agents to be discussed here.

Human world is a typical exampe of agent-based environment where each person in it

is considered an agent. Here people could either make individual decisions for themselves
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Table 4.1: Types of agents

Types Characteristics

Human agents Local view, self interest, autonomous

Intelligent agents Local view, computerised, autonomous

Economic agents Local view, computerised, self interest

or joint decisions with other people. The former, for example, can relate to the tomorrow’s

electricity consumption, while the latter may be an election where people together vote for

president. These decisions generally rely on how people understand the surrounding issues,

for instance, how the electricity price would be evolving for tomorrow, or whether someone

deserves the president position. Such undestandings are often subjective as varying from

people to people depending on their own observations of the issues. In this regard, different

observations can lead to biased decisions among people. These examples show that each

person as an agent only have a local view of the world [3, 8].

In many systems working in real time (i.e., power systems), operational decisions have

to be made fast, minutes rather than hours. This task which may be beyond human

capabilities consequently entails using computers as a decision-support tool. This is the

case during emergency and abnormal power system conditions, where the human operator

has to deal with a very large amount of data and apply most appropriate remedial actions

[92]. But due to emotional and psychological stress, the operator may not be able to make

correct decisions for such conditions. Hence, there is a need for computer-aided tools to

improve the computational speed and assist the operator in decision making. Such tools

are referred to as software agents. If these softwares are capable of undertaking some

autonomous tasks without human support, they are called intelligent agents. On the other

hand, those softwares doing market negotiation on behalf of people are “economic agents”

which are the focus of this chapter [75].

The need for economic agents is fairly similar to the case of intelligent agents, which

is to supply and/or acquire resources instantly from relevant markets. This entails online

trading tasks that, again, could be beyond the human capabilities and thus are performed

automatically by computer softwares as economic agents. This is the case in an electricity

wholesale market, where electricity demand and suppy—generation and load—must be

balanced on a second–by–second basis so as to maintain system security [6]. To deal with

this trading issue, each Genco participating in the market employs a dedicated software

agent that can automatically offer power supply following the time-varying demand.

An important characteristic of economic agents is that they commonly behave in a“self-

interested” manner as inheriting from human. Specifically, the agents always attempts to

maximize their own benefits (that is, in fact, the benefits for those people participating in
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the market via agents), taking into account the available information about actions taken

by other agents. For example, the objective of a Genco when dealing with the electricity

market is to optimize its trading profit considering both market prices and strategies of

neighboring Gencos [93].

This chapter utilizes the concept of economic agent to develop a DRX in which DR is

considered a market product traded between two groups of participating agents, namely

buyers and sellers. The former, on behalf of the corresponding electricity utility companies

including Transcos, Discos and Recos, purchases DR quantities at optimal market prices.

Sellers, on behalf of ESCos and their electricity customers, supply DR as a source of finan-

cial income. From a practical perspective, these buying and selling agents are represented

by dedicated computer programs involving online market transactions.

Since DR as virtual resource is separated conceptually from electricity, an economic

agent for negotiating DR can be considered to be separated from the existing agents for

trading electricity in a wholesale market mentioned above. In fact, they are very different

business entities—the former maximizes benefits derived from DR resources (supplied by

small customers), while the latter deals with bilateral trades of electricity (produced by

Gencos) under network security constraints. Practically, these agents are represented by

different computer softwares having different business functionalities within a given power

company (Gencos, Transcos, Discos, Recos) [68]. Nevertheless, these softwares could be

integrated within a “joint” economic agent for the purpose of co-optimizing the company’s

total profit derived from providing all relevant resources including DR and electricity.

As a complement of pooling given in previous chapter, agents provide a new perspective

for operating DRX since they rely on decision making at the individual (buyer and seller)

levels, rather than at an aggregated level (i.e., a pool) where all DR resources are valued

and scheduled together. Generally, this agent-based perspective has an advantage of being

able to deal with a complex scheduling problem by broking it into a number of smaller

problems—each is to be solved locally by a self-interested agent via its profit optimization.

Such a decentralized approach can reduce the computational cost associated with resource

scheduling, and thus enhance the overall system scalability in which the system, without

losing its performance, is capable of handling a growing number of agents and an increasing

amount of resource to be scheduled [94]. These decentralized advantages of using economic

agents over a centralized pool will be discussed further in the following subsection.

4.2.2 Agent-based market clearing mechanisms

As agents operates locally for their own profits, there is a need for a scheduling mechanism

that coordinates all agents towards achieving a global optimal outcome. In the case of a

market, such a mechanism is in the form of market clearing which balances the demand
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Figure 4.2: Structures of an agent-based market clearing system. Here the lines represent links

of buyers and the supply from sellers [80], with the fundamental aim of constraining each

of these self-interested agents in such a way that ensures optimal global market efficiency,

while also enabling agents to maximize their local profits [95].

The agent-based market clearing mechanism is illustrated by Fig. 4.2, where there are

two main structures of the system, namely inteconnected and radial [94]. The former refers

to the case where [communication] links are established directly between every two agents

without the involvement of a third party. An electrical power transmission network is a

good example of interconnected system, where each node is viewed as an agent [96] and

the electricity is delivered from one node to another where loads are connected with. In

terms of market clearing, interconnected mechanism implies that trades are made indepen-

dently between every two market agents (a buyer and a seller), such that they arrange by

themselves both optimal product quantity and price without any third party intervention,

for instance, by the market operator. Such a market arrangement is also called bilateral

transactions.

By constrast, links in a radial structure must go through a central node that is some-

times given by an agent (i.e., Agent 0 in Fig. 4.2–b). Power distribution network gives a

good example of such structures, in which electricity is delivered from a substation to every

individual load through a common feeder. In case of a market, radial structure implicates

that all buying and selling agents have to send their demand and supply data to a central

office designated as the market operator. This entity then sends the updated information

back to the corresponding agents, to coordinate them in performing their local profit op-

timization with respect to the current market status. This type of market coordination is

sometimes called multilateral transactions which are the focus of this chapter.
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Although both agent-based multilateral transactions and a pool-based model (given

in previous chapter) are comonly coordinated by a market operator, they are different to

such a extent that the former considers actions of self-interested agents with the view of

assessing their local effects on market outcome as a whole, while the latter tries to aggregate

all demand and supply data from market participants (who may or may not employ agents

to deal with the trades), for the purpose of centralized profit optimization over the pool. In

order to explain the advantages of using agent-based multilateral transactions for market

clearing, first we discuss specific issues associated with a pool-based model with a particular

focus on the DRX.

Limitations of pool-based market clearing

In a pool-based DRX market, sellers and buyers are required to submit supply offers

and demand bids reflecting their true marginal costs and benefits derived from DR. Using

this collected information, the DRXO centrally maximizes the total market benefit under

several economic constraints such as the demand–supply balance, and the contribution of

each buyer for DR as a public good. This pool-based model, following a standard market

design, is a formalization of the concept DRX. Unfortunately there are two major technical

concerns about pool-based market clearing, given as follows.

First, market clearing requires buyers to submit their demand bidding curves indepen-

dently from electricity market conditions. It is not sufficiently clear how this can be done.

We pointed out that the demand curves can be derived using a cost and benefit analysis

of DR. However, taking into account that both DR costs and benefits always depend on

electricity market conditions (i.e., generation dispatch, loading level) it will be difficult to

derive a separate DR demand curve.

Second, the core parameter of a pool-based DRX model is contribution rates that reflect

the contribution allocation among different buyers who jointly use a common DR. It is

not clear how this parameter can be predetermined. We pointed out that the contribution

rate assigned to each buyer must be proportional to the predicted benefit that the buyer

will gain from future DR trading. This, however, raises concerns about benefit prediction.

As power systems are always subject to uncertain factors such as the network instability

and market volatility, predicting future DR benefits that heavily depend on these factors

is not easy. Without an accurate benefit prediction, the calculated contribution rates may

become inappropriate, making the market clearing suboptimal [95].

Advantages of agent-based market clearing

In general, it is difficult to determine which market clearing mechanism between agent-

based and pool-based is completely better. Each mechanism here has their own advantages

and limitations (see Table 4.2). The advantages of a pool-based model rely solely on its
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centralized evaluation where all DR resources are aggregated and valued simultaneous by

a common entity—the DRXO, in the effort of making a fair resource allocation across all

market agents. On the other hand, one of the major advantages of using an agent–based

mechanism is to deal with the above mentioned limitations of the pool-based DRX model.

Table 4.2: Pool-based versus agent-based market clearing models

Pool-based DRX Agent-based DRX

Advantages
Resource aggregation, Reliable and flexible with

and centralized evaluation. time-varying system conditions

Limitations
Separate demand curves,

Untrusted agents
core parameters selection.

First, since the agent-based market clearing relies mainly on local profit optimizations

by self-interested agents, it does not requires the agents to submit separate supply and

demand curves reflecting their own DR-related costs and benefits. This implies that all DR

buying agents including Transcos, Discos, and Recos can incorporate relevant electricity

market conditions (such as generation scheduling, network loading level) within their own

optimization problem. Such an inclusion ultimately results in a more realistic DRX market

clearing, where all necessary information associated with a DRX is considered locally by

the corresponding agents and is coordinated by the DRXO. Then the global optimal benefit

for all agents together, if it can be obtained, would be a reliable market outcome.

Second, the agent-based model does not include such optimization parameters as “con-

tribution rates”that must be pre-determined from predicted benefits associated with future

DR trading. This exclusion minimizes the risk of not predicting such future benefits ac-

curately due to uncertainties in the power system. In order words, the agent-based DRX

model is more flexible than the pool-based one, as it can adapt to a range of time-varying

system conditions. This flexibility generally is the common advantage of any decentralized

scheme over the centralized one, from both economic and technical view points [97].

However, both an agent-based DRX and other decentralized schemes can have a com-

mon drawback associated with agent’s manipulation when trading in the market. Specifi-

cally some “dominant” agents (that are the agents holding a large share of the total market

outcome) may take advantage of their local profit optimizations to drive the market in such

a way that benefits the agents more than others. For instance, during the 2002 California

electricity market crisis, Enron as the major Genco manipulated the market by raising the

optimal bidding prices above the competitive level, consequently causing serious market

distortions. This example suggested that each agent in a decentralized market cannot be

entirely trusted. Therefore, incentive mechanisms for the agents not to manipulate the

market should be designed and embedded within a common market clearing framework
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(i.e., DRX). This type of mechanism is central to agent-based DRX development given in

the following sections.

4.3 Formulation of the market clearing problem

This section formulates the DRX market clearing problem serving as a technical ground

for subsequent agent-based mechanism design and analysis. Firstly, the notion of Pareto

efficiency is introduced as an analytically optimal outcome to be achived by a DRX market

as a whole. Such an outcome is then converted into a set of equations which constitute a

market equilibrium point and can be solved using practical algorithms.

4.3.1 Pareto efficiency

Pareto efficiency, sometimes called Pareto optimality, is an important concept in welfare

economics with applications in engineering (for instance, resource scheduling problems)

and computer science (i.e., file sharing tasks). By definition, scheduling a resource such as

DR, for a number of agents, is Pareto efficient if no change from this schedule can increase

benefit for one agent without reducing benefits for some other agents [75]. This apparently

simple outcome plays a central role in the development of the mainstream microeconomic

theory to date.

Pareto efficiency has significant implications for real-world markets. It guarantees that

the market outcome associated with product scheduling cannot be improved further such

that no agent would be disadvantaged from the revised schedule. As there is no further

improvement across all market agents, the Pareto schedule is said to be globally optimal.

This implication explains the reason why economic optimizations often rely on the Pareto

efficient concept.

This important concept is illustrated by Fig. 4.3 where, for simplicity, there are only

two agents—a buyer and a seller—who trade a product (i.e., DR) in the market. Trading

benefits for the agents is given by U1 and U2 which vary according to the trading outcome.

Following microeconomic theory, values of U1 and U2 are bounded within a feasible region,

R, defined by two axes and the bold curve having a concave form in general [75]. These

boundaries could be explained by certain technical and economic factors associated with

the resource production and scheduling. As can be seen from the graph, Pareto efficient

outcome is obtained at the point P where the boundary curve “just touches” its tangent

line U1 + U2 = b (i.e., the middle line in Fig. 4.3). If the pair (U1,U2) moves away from

this critical point but still within the feasible region (R), either U1 or U2 will be reduced.

This property which can be easily proven by geometry demonstrates the notion of Pareto

efficiency given above.
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Figure 4.3: Pareto efficiency for a two–agent market

Although Pareto efficient schedule has been well-understood, finding it from a large

population of available alternatives, for instance, over the feasible region R, is a challenging

task. In fact, it is impractical to use the graphical representation given by Fig. 4.3 to

identify the Pareto point, because the boundary curve cannot be determined accurately by

the market operator due to lack of benefit data that must be collected from all local agents

[5]. Additionally in a market with multiple agents (i.e., more than 3) to be represented in

a multi-dimensional Euclidean space, finding Pareto efficient point using graphical tools is

impossible. Thus, algebraic methods based on symbolic manipulations must be applied.

To derive an algebraic approach for solving the Pareto scheduling problem, we consider

again the graph in Fig. 4.3. Supposed that we shift a line [originally given by U1 +U2 = 0]

as far as possible from left to right until it “just touches” the boundary curve at only one

point, this point will be P which represents Pareto efficiency and is given by U1 + U2 = b.

If we continue shifting, all corresponding values of U1 and U2 [on the line] will go beyond

the feasible region R and consequently are not accepted. In order words, b is the maximum

horizontal (or vertical) distance for the line to be shifted from the origin 0, within the region

R. This observation results in the following optimization that algebraically represents the

process of finding Pareto efficient point.
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max (U1 + U2) , subject to U1,U2 ∈ R (4.1)

This statement can be extended to the generic case with an economic system comprised

of K agents, by using a similar illustration with Fig. 4.3.

max
K∑
k=1

Uk subject to Uk ∈ R ∀k (4.2)

Now we determine how the problem (4.2) can be applied to the particular context of

a DRX market comprised of multiple buying agents (i.e., Transcos, Discos, Recos) and

selling agents (EScos on behalf of electricity customers). Here we recall all mathematical

notations introduced in previous chapter. For each buyer j ∈ J—the set of all buyers in

the market, its trading net benefit (Uj) is given by the difference between a gross benefit

(Bj) derived from using a DR and the payment Pj for this DR. In the case of a seller

i ∈ I—the set of all sellers in the market, its trading net benefit (Ui) is represented by

a difference between the received DR payment (Pi) and the actual cost (Ci) of producing

DR by curtailing some of the electric loads. With these net benefits of buying and selling

agents, the first part of (4.2) can be re-written as follows:

max

∑
j∈J

(Bj − Pj) +
∑
i∈I

(Pi − Ci)

 (4.3)

By assuming that all payments collected from the buyers are given to the sellers [5,8,9],

we have
∑

j Pj =
∑

i Pi. Then (4.3) becomes

max

∑
j∈J

Bj −
∑
i∈I

Ci

 (4.4)

Equation (4.4) states that a DR schedule is Pareto efficient if the total market“surplus”

derived from this schedule for all agents together is maximal. This surplus is measured as

the difference between total gross benefit (
∑

j Bj) for DR buyers and total cost (
∑

iCi)

of producing DR by sellers. The surplus optimization here is consistent with our demand–

supply analysis in previous chapter. It is considered the objective of an agent–based market

clearing mechanism.

The constraint of this optimization problem has been illustrated by the feasible region

R in Fig. 4.3. In a DRX market, it is the matching between DR quantities demanded

by buyers and those supplied by sellers. This constraint is called demand-supply balance

given by
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yj,n =
∑
i∈I

∑
l∈Li

uj,ni,l xi,l ∀j ∈ J ; n ∈ Nj (4.5)

The left hand side of (4.5) is an aggregated quantity requested by a buyer j from a

consumer group n ∈ Nj . Groups are composed from consumers having a common attribute

of interest to the buyer. For example, in the case of a TSO, each group includes customers

connected to a common load point at the transmission level of a power system. In the

case of a distributor, one group contains customers connected to a common load point of

a feeder at the distribution level. For a retailer, a group is comprised of customers holding

the same type of supply contracts. Consequently, each buyer j involves a corresponding set

of customer groups (i.e., Nj). Buyers, in general, require aggregated DR quantities from

these groups and do not need to know exactly which customers are the providers.

On the right hand side of (4.5), all individual quantities xi,l of those customers included

in group n associated with buyer j are added together to form an aggregated supply cor-

responding to the demand yj,n. Note also that l ∈ Li is the index of customers represented

by the seller/aggregator i. Binary coefficient uj,ni,l is a relational status of each customer

l to group n. uj,ni,l is 1 if the customer is included in the group, and 0 otherwise. A more

detailed description of these variables and their notations is included in previous chapter.

In summary, Pareto efficiency in a DRX market can be obtained by solving the surplus

optimization problem given by (4.4)–(4.5). Next subsection discusses how this problem

can be solved.

4.3.2 Equivalent conditions

From a practical point of view, the Pareto optimization problem (4.4)–(4.5) could be

centrally solved by the DRXO, using data reflecting benefit Bj and cost Ci collected from

buyers and sellers, respectively. This is the case of a pool-based DRX developed in previous

chapter. Such a centralized optimization, however, faces a major difficulty—participating

agents may not be willing to provide the market operator with their own true information.

For example, while a seller may “lie” by declaring an over-estimated cost for supplying DR,

a buyer could declare an under-estimated benefit gained from DR trading. The aim here is

to“game”the DRX market in a way that benefits a particular agent more than others. Such

gaming behaviour would make market clearing difficult because the calculation of total

surplus using (4.4) is no longer realistic due to incorrect cost and benefit data collected

from the agents [98].

In a pool-based DRX market, the above information gaming issue can be mitigated

using an assurance contract signed between buyers and sellers prior to the point of market

clearing. Under this contract, agents will hurt themself [in that their benefits are automat-

ically reduced] if they untruthfully declare cost and benefit data [78–80]. This interesting
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point signifies that the agents are better off not lie on purpose when sending information

for market clearing. This “truth-revealing” advantage of an assurance contract, however,

is only applicable to the case of pool-based market clearing where all relevant information

are to be aggregated for a centralized profit optimization. In an agent-based DRX market

where most private data is kept confidential by each agent and only used for their local

optimizations, assurance contract approach is difficult to apply.

For this reason, rather than using an assurance contract and then directly solving the

market clearing problem (4.4)–(4.5), we should convert it into an equivalent condition,

and then solve this condition using a realistic mechanism considering the agent’s gaming

behaviour. This conversion is based on the following proposition.

Proposition 4.3.1 Assuming that the cost function Ci is convex over xi,l and the benefit

function Bj is concave over yj,n, the problem (4.4)–(4.5) is equivalent to the following

conditions:

∂Ci
∂xi,l

=
∑
j∈J

∑
n∈Nj

uj,ni,l
∂Bj
∂yj,n

∀i ∈ I; l ∈ Li (4.6)

yj,n =
∑
i∈I

∑
l∈Li

uj,ni,l xi,l ∀j ∈ J ; n ∈ Nj (4.7)

Proof With the convexity of Ci and the concavity of Bj , the problem given by (4.4)–(4.5)

belongs to a well-known class of convex optimization with affine (linear) equality con-

straints [99]. By Karush-Kuhn-Tucker (KKT) theorem, necessary and sufficient conditions

for this optimality are

(a) ∂L/∂yj,n = 0 ∀j ∈ J ; n ∈ Nj

(b) ∂L/∂xi,l = 0 ∀i ∈ I; l ∈ Li

(c) ∂L/λj,n = 0 ∀j ∈ J ; n ∈ Nj

where L , (
∑

j Bj −
∑

iCi) +
∑

j

∑
n[λj,n(yj,n −

∑
i

∑
l u

j,n
i,l xi,l)] is called a Lagrange

function and λj,n are called KKT multipliers. By taking partial derivatives of L in (a),

(b), and (c), we imply the following:

(d) −λj,n = ∂Bj/∂yj,n

(e) ∂Ci/∂xi,l = −
∑

j

∑
n u

j,n
i,l λj,n

(f) yj,n =
∑

i

∑
l u

j,n
i,l xi,l

Combining (d) and (e) results in (4.6), while (f) is the same as (4.7).
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Figure 4.4: Assumptions on cost and benefit functions

Remark Equation (4.6) entails the marginal cost (measured by ∂Ci/∂xi,l) associated

with producing an individual quantity xi,l by consumer l, must be equal to the sum of

marginal benefits (measured by ∂Bj/∂yj,n) gained by those buyers who jointly use this

individual quantity. This equation is consistent with the well known Samuelson rule which

is an alternative formalization of Pareto efficiency for optimal resource scheduling [100].

The mathematical derivation of (4.6)–(4.7) relies on two major assumptions—the con-

vexity of Ci over xi,l and the concavity of Bj over yj,n. That is, for any t1, t2 ∈ [0, 1]

(a) Ci(t1x
′
i,l + (1− t1)x′′i,l) ≤ t1Ci(x′i,l) + (1− t1)Ci(x′′i,l) ∀x′i,l, x′′i,l

(b) Bj(t2y
′
j,n + (1− t2)y′′j,n) ≥ t2Bj(y′j,n) + (1− t2)Bj(y′′j,n) ∀y′j,n, y′′j,n

These mathematical assumptions are illustrated by Fig. 4.4 where both Ci and Bj

generally are increasing functions, but their exact trends are different. The former raises

exponentially, meaning that the cost associated with producing an additional DR quantity

increases at a higher rate than before. Benefit Bj , on the other hand, tends to be“saturate”

with the increasing DR quantity.

In fact, the assumptions of cost convexity and benefit concavity are common in eco-

nomic literature. For example, the generation cost in an electricity market is often modelled

as a convex and quandratic curve to be used for the market design and analysis [101]. These

assumptions will be discussed further in Section 4.5, for the DRX context.

4.3.3 Market equilibrium

Now, the market clearing objective becomes solving two equations (4.6) and (4.7) together.

Solution to these equations is defined as a “market equilibrium” point where not only

demand is balanced with supply, but also the marginal cost is matched by corresponding

total marginal benefits. This equilibrium in a public goods market such as a DRX can be

considered a generalization of those in a private goods market. (Private goods including
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Figure 4.5: Equilibriums in different types of market

electricity are the usual kind of resource where each unit is consumed by only one agent,

while public goods such as DR are special resources with each instant to be jointly used

by multiple agents)

Fig. 4.5 illustrates the equilibrium concept in different types of markets. In a private

good market, the equilibrium point (E) can be obtained by simply matching a demand

curve [representing marginal benefit (MB)] with a supply curve [representing marginal

cost (MC)], in which both a quantity and a price for the private good are balanced. In

a public good market, the equilibrium concept is rather complex with multiple demand

curves from different buyers who jointly purchase the good from a seller. As can be seen

from Fig. 4.5, the demand curve of the first buyer is given by MB1. When combining

the demand curves of the first and second buyers, we have MB1+2, and so on. Supposing

that there are three buyers (i.e., a Transco, a Disco, a Reco in a DRX), then the globally

efficient market equilibrium [where all buyers together pay for the public good] is E1+2+3,

given by the intersection of the aggregated demand and individual supply curves. This

equilibrium outcome is also described by our developed Pareto-efficient conditions, (4.6)

and (4.7), where the DR marginal cost ( ∂Ci
∂xi,l

) is matched by the sum of all relevant DR

marginal benefits (
∂Bj

∂yj,n
). If only one buyer pay while the others “ride” the public good for

free, the resulting equilibrium point is, for instance, E1 which is not an efficient market

outcome [75].

The most important properties of an equilibrium point are its “existence” and “unique-

ness” in the market. If such an equilibrium does not exist, the DRX market cannot be

cleared using conditions (4.6) and (4.7). On the other hand, the absence of the uniqueness

property leads to a situation of “multiple equilibria”. In which case, one will have to select

the best among multiple equilibrium solutions [95,98]. Such a selection, however, is beyond

the scope of this thesis.
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Proposition 4.3.2 Assuming that the cost function Ci is “stricly” convex over xi,l and the

benefit function Bj is “strictly” concave over yj,n, the DRX market equilibrium described

by (4.6)—(4.7) exists and is unique.

Proof Proving the existance of market equilibrium is not difficult from a mathematical

point of view. According to the KKT theorem [99], since the problem (4.4)–(4.5) is a

convex optimization with affine constraints, it must have at least one solution that is also

a solution to the equilibrium equations (4.6)—(4.7). In other words, an equilibrium point

always exists in a DRX market.

A more detailed proof for this existence using “fixed-point theorems” [that is fun-

damental to algebraic topology such as Fig. 4.5 can be found in a well-known paper on

microeconomics [102]. Note also that in standard convex optimization, any local solution is

necessarily a global solution [99]. This proposition implies that all solutions to (4.6)—(4.7)

achieve the same level of optimality.

Now we prove the uniqueness of the DRX market equilibrium by contradiction. By

assuming there are at least two equilibrium points q∗ and q? (q , [..., yj,n, ..., xi,l, ...])

satisfying conditions (4.6)—(4.7) and thus achieving Pareto optimality given by (4.4)–

(4.5), we assert that

(a) S(q∗) = S(q?) = max {S(q)}q∈Q

where S ,
∑

j Bj −
∑

iCi is the total market surplus—the objective value, Q is the set

of all q satisfying condition (4.5). Since (4.5) has an affine form, Q is a convex set [99].

(Which can be easily proven using convexity definition).

On the other hand, since S(q) is a strictly concave function over q, tS(q∗) + (1 −
t)S(q?) < S(tq∗ + (1− t)q?) for any t ∈ (0, 1), by concavity definition. However S(q∗) =

S(q?), then

(b) S(q∗) < S(tq∗ + (1− t)q?)
(c) S(q?) < S(tq∗ + (1− t)q?)

Since (tq∗ + (1 − t)q?) is another point belonging to the convex set Q, conditions

(b)—(c) contradicts with conditions (a) where both q∗ and q? are globally optimal in Q.

Consequently, there cannot be more than one equilibrium point in the market. Combining

this property with the existence proposition given above, we conclude the uniqueness of

DRX market equilibrium.

Remark The proof of equilibrium uniqueness relies the assumed strict concavity of the

total market surplus, S(q). If S(q) is only a non-strictly concave function (by virtue of Ci

being non-strictly convex and Bj non-strictly concave), the ‘<’ sign in conditions (b)–(c)
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is replaced by ‘≤’. In this case, these conditions do not necessarily contradict condition

(a). This means the DRX market may have multiple equilibria.

These mathematical assumptions are not as strict as their names suggest. In fact, they

were commonly adopted for many economic studies found in the literature, for instance,

the analysis of electricity markets [6,98,101]. Generally concavity and strict concavity [or

convexity and strict convexity] are closely related conditions. If a function is both concave

and increasing over its variable, it becomes strictly concave. This is the case of a benefit

function, (Bj), shown in Fig. 4.4–b.

4.4 Walrasian auction design

With a solid mathematical background [for the DRX market clearing problem] developed

in the above section, here we design an effective auction mechanism that coordinate agents

[with their local profit optimizations] towards achieving market equilibrium with Pareto

efficiency. First we present overall description of the mechanism, and then we will focus

on technical details.

4.4.1 Overall design scheme

The proposed market clearing mechanism is shown in Fig. 4.6, following a radial agent-

based structure in market degisn. Particularly the DRXO plays the role of being a central

node to communicate information with all [self-interested] economic agents, including buy-

ers (the Transco, Recos, and Discos) and sellers (ESCos on behalf of electricity customers).

Here direct information exchange between any two agents is not allowed.

The overall idea of the proposed mechanism is to employ Walrasian auctions in the

form of multi–round demand–supply balancing price adjustments [75]. That is, the DRX

adjusts DR prices to “drive” both buyer demand and seller supply in a prescribed way that

converges to the market equilibrium at the point where demand is balanced with supply.

As shown in Fig. 4.6, the multi-round auctions are based on an iterative procedure where

buying and selling agents update their demand quantity bids and supply quantity offers,

in response to DR prices issued from the DRXO at every round. Such auctions allow the

agents to maximize their own (local) benefits to derive appropriate bids and offers under

given prices.

4.4.2 Price adjustment methods

Using DR quantity bids and offers collected from agents, the DRXO adjusts prices for the

next round. Here the price adjustment is based on a pre-specified market clearing rule,

with the aim of matching the demand with the supply [75]. Particularly if the quantities
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Figure 4.6: The proposed multi-round market clearing mechanism

demanded by buying agents are higher than those offered by selling agents, prices will be

increased by the DRXO. According to the law of demand and supply, when faced with

higher prices, buyers reduce their high demand bids while sellers increase their low supply

offers [98]. These actions reduce the gap between demand and supply. Alternatively when

demand quantities are lower than supply quantities, the DRXO will reduce the prices to

increase demand and decrease supply.

Price adjustment, under the above market clearing rule for demand-supply balancing,

can be performed using either classical or Newton tâtonnement methods.

Classical tâtonnement

Tâtonnement is a form of hill-climbing algorithm proposed by Leon Walras [16] which

is the most popular price adjustment method in market design. Mathematically, it can be

defined as follows:

pt+1
j,n = ptj,n + Kztj,n ∀j ∈ J ; n ∈ Nj (4.8)
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ztj,n = ytj,n −
∑
i∈I

∑
l∈Li

uj,ni,l x
t
i,l (4.9)

pt+1
i,l =

∑
j∈J

∑
n∈Nj

uj,ni,l p
t+1
j,n ∀i ∈ I; l ∈ Li (4.10)

In (4.8), pj,n is the price to be paid by agent j for buying aggregated quantity yj,n. zj,n

is the aggregated excess demand that represents an imbalance between the corresponding

demand and supply, as described by (4.9). The price adjustment in (4.8) is considered

proportional to the excess demand by the factor K > 0. In (4.10), pi,l is the price received

by seller i for supplying individual quantity xi,l. This price is the sum of prices paid by

those buyers jointly using this quantity. Note that in all equations above, t and t+1 index

the bidding round.

The major advantage of using these equations for price adjustment is that no data

associated with the cost and benefit for agents is required. Rather, the adjustment

relies solely on the parameter K which can be chosen by the DRXO. This property avoids

the gaming opportunities mentioned above.

Classical tâtonnement is generally simple, but has the drawback that it might not work

in some special cases [103]. As will be analyzed in the next section, if the value of K is not

chosen correctly, the adjusted price will not converge to an equilibrium point where supply

meets demand. For this reason, besides choosing carefully the parameter K, there should

be a backup method for price adjustment in the case that K is too difficult to determine.

Newton tâtonnement

The Newton method is similar to classical tâtonnement, except that the price updating

rule (4.8) is replaced, while (4.9) and (4.10) remain unchanged. The rule (4.8) is based on

the Newton numerical method for solving nonlinear algebraic equations [104]:

pt+1 = pt − (Jt)−1.z(pt) (4.11)

where z is a vector comprised of all aggregated excess demand zj,n, and p is a vector

comprised of all buyer prices pj,n, ∀j ∈ J and ∀n ∈ Nj). J is a Jacobian matrix comprised

of all first-order partial derivatives of z with respect to p. J has dimensions of N × N
where N =

∑
j |Nj |.

Mathematically, (4.11) attempts to iteratively solve the nonlinear equation z = 0,

where z is considered a function of price variable p (i.e., z = z(p)). Solution to this equation

is the point where supply meets demand, which is the objective of price adjustment.

To illustrate the Newton tâtonnement method with a Jacobian matrix, we consider

a very small power system given by Fig. 4.7. The system is comprehensive to the extent

that it includes both transmission and distribution networks corresponding to a wholesale
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Figure 4.7: Small power system for demonstrating the Newton pricing method. Here each feeder load
point (1, 2,...,5) supplies power for a small geographical area such as suburbs

and a retail electricity markets, respectively. The transmission network is operated by a

Transco, while the distribution run by a Disco. There are also a Reco and an ESCo—each

deals with all electricity customers. Under these structural arrangements, we define the

DRX as follows: J = {Transco,Disco,Reco}—the set of DR buyers; NTransco = {I, II}
NDisco = {1, 2, 3}, and NReco = {A} where A is the only type of retail contracts offered

to all customers. On the other side of the DRX market, I = {ESCo}—the set of all DR

sellers and LESCo = {1, 2, 3}. In this case, the price and aggregated excess demand vector

is given by:

p = [pTransco,I, pTransco,II, pDisco,1, pDisco,2, pDisco,3, pReco,A]

z = [zTransco,I, zTransco,II, zDisco,1, zDisco,2, zDisco,3, zReco,A]

Then, the Jacobian matrix of z over p [in Newton price tâtonnement] is given by

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂zTransco,I
∂pTransco,I

∂zTransco,I
∂pTransco,II

∂zTransco,I
∂pDisco,1

∂zTransco,I
∂pDisco,2

∂zTransco,I
∂pDisco,3

∂zTransco,I
∂pReco,A

∂zTransco,II
∂pTransco,I

∂zTransco,II
∂pTransco,II

∂zTransco,II
∂pDisco,1

∂zTransco,II
∂pDisco,2

∂zTransco,II
∂pDisco,3

∂zTransco,II
∂pReco,A

∂zDisco,1

∂pTransco,I

∂zDisco,1

∂pTransco,II

∂zDisco,1

∂pDisco,1

∂zDisco,1

∂pDisco,2

∂zDisco,1

∂pDisco,3

∂zDisco,1

∂pReco,A

∂zDisco,2

∂pTransco,I

∂zDisco,2

∂pTransco,II

∂zDisco,2

∂pDisco,1

∂zDisco,2

∂pDisco,2

∂zDisco,2

∂pDisco,3

∂zDisco,2

∂pReco,A

∂zDisco,3

∂pTransco,I

∂zDisco,3

∂pTransco,II

∂zDisco,3

∂pDisco,1

∂zDisco,3

∂pDisco,2

∂zDisco,3

∂pDisco,3

∂zDisco,3

∂pReco,A

∂zReco,A

∂pTransco,I

∂zReco,A

∂pTransco,II

∂zReco,A

∂pDisco,1

∂zReco,A

∂pDisco,2

∂zReco,A

∂pDisco,3

∂zReco,A

∂pReco,A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From p, z, and J, one can construct the iterative equation for Newton tâtonnement,

as given by (4.11).

The main advantage of using the Newton method is that it guarantees fast convergence

in most cases [104]. This advantage compensates for the limitation of classical tâtonnement
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as discussed above. However, the Newton method requires knowledge about the Jacobian

matrix J, which must be based on private data collected from participating agents [95].

This, again, raises concerns about gaming behavior as the agents may ‘lie’ about their data.

For this reason, rather than collecting data from agents, the DRXO should use its own

observations from agents’ past responses to given prices to estimate the Jacobian matrix.

For example, by regressing historical data for quantity bids with respect to different prices,

the DRXO can produce an estimated quantity-price curve. From such synthesised curves,

the Jacobian matrix J can be derived [98]. This aspect will analysed further via numerical

study.

The Newton method with an estimated Jacobian matrix is an inexact method. The

next section shows that this method, under some conditions, will converge to the same

point as the exact Newton method.

4.5 Robustness evaluation

To prove that the proposed agent-based market clearing mechanism using either classical

or Newton price tâtonnements is robust in the sense that it always converges to a unique

Pareto–efficient market equilibrium, we must show that both conditions (4.6) and (4.7)

are satisfied when the market is settled. First, we examine condition (4.6) which is related

to a local optimization performed by each agent in the market. We also discuss how self-

interested agents optimally response a price signal under given market clearing rules. Then,

the convergence of tâtonnement methods towards condition (4.7) is analysed.

4.5.1 Agent local optimization

Myopic situation

In the proposed mechanism with a radial structure, all communications must go through

the DRXO as a central node. Therefore, agents cannot collect private information directly

from each other. The only information available to each agent and issued by the DRXO,

is the price of DR quantities they intend to buy or sell. Under this market arrangement,

it would be certainly very hard for any agent to anticipate actions taken by other agents

to increase their local benefits [105]. Such a situation is referred in economic literature as

“myopia”, in that a local agent cannot see what happens outside.

There are two common approaches [for an agent to deal with myopic situation when

optimizing its local profit] including statistical and guidence-based [106]. The former aims

at modeling the actions taken by other [competing] agents, using stochastic methods due to

lack of relevant information. For example, the myopic trading in financial markets, under

multiple sources of uncertainties (i.e., volatilities) over time and across all agents, often

relies heavily on statistical modeling [5,8,9,73,105]. Despite its advantages, the statistical
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approach cannot be completely realistic, consequently causing some risks incurred by those

agents who use such an approach. For instance, many financial crises over the world can be

explained by the underestimated market volatilities [9,73]. Due to these uncertainties, any

agent is better off using an alternative [myopic] approach, that is, to follow the guidence

of a designated market operator who has some information of other agents [105]. In the

context of a DRX, both buying and selling agents can myopically follows the market price

issued from the DRXO as an agent guider. In other words, each agent under the proposed

mechanism is considered as a price-taker.

Optimization convexifying

Accepting prices issued by the DRXO, each buying agent j performs local profit opti-

mization at every market clearing round t, as follows:

max

Bt
j −

∑
n∈Nj

ptj,ny
t
j,n

 ∀j ∈ J (4.12)

Similarly, each price-taking selling agent i performs local optimization according to:

max

∑
l∈Li

pti,lx
t
i,l − Cti

 ∀i ∈ I (4.13)

In (4.12) and (4.13), pti,l and ptj,n are constants, while xti,l and ytj,n are treated as

optimization variables under the corresponding agent. Cti and Bt
j are the DR cost and

benefit that are functions of those variables, respectively. Note that these functions must

be kept private by agents. In a DRX market with radial communication structure, agents

are not allowed to exchange information directly with each other.

Generally, the problems given by (4.12) and (4.13) may be non-convex, and thereby,

having either multiple solutions, one solution, or even no solution at all [99]. These cases

together unnecessarily complicate the agent local optimizations and then the whole market

clearing mechanism. Hence, there is a need for proposing a “convexifying rule” as given

by Fig. 4.8, where all agents are required to approximate their DR costs [or DR benefits]

as strictly convex [or concave] functions to be embedded within the local optimizations.

If such a rule can be successfully applied, it is not only the problems (4.13) and (4.12)

that have unique solutions but also the whole DRX market that have a unique equilibrium

point as was proven above.

Convexification is not a theoritical limitation of the proposed agent-based mechanism

but a practical necessity for achieving a derised market outcome with unique equilibrium

solution. From local agents perspective, the convexifying rule keeps their optimizing task

simple. In fact, such rules have long been discussed in electricity markets as an important

tool to deal with the non-convexity issues in generating unit commitment [107].

Chapter 4: Agent–based Market Clearing 91



Robustness evaluation

Figure 4.8: Convexification as an approximation tool

Under convexification, rational agents choose the optimal DR quantities to buy or sell

following (4.12) or (4.13), as given by:

ptj,n =
∂Bt

j

∂ytj,n
∀j ∈ J ; n ∈ Nj (4.14)

pti,l =
∂Cti
∂xti,l

∀i ∈ I; l ∈ Li (4.15)

Equation (4.14) implies that rational buyers will increase their demand up to the point

at which the marginal benefits they gain from DR are equal to the corresponding prices

they have to pay. Equation (4.15), on the other hand, implies that rational sellers will

increase their DR provisions up to the point at which the marginal costs of producing

these DRs are equal to the corresponding prices they receive. These observed buying and

selling behavious are consistent with microeconomic theory [75].

By substituting both (4.14) and (4.15) into (4.10) we obtain:

∂Cti
∂xti,l

=
∑
j∈J

∑
n∈Nj

uj,ni,l
∂Bt

j

∂ytj,n
∀i ∈ I; l ∈ Li (4.16)

Equation (4.16) implies that market clearing at every round t satisfies (4.6)—one of

the two conditions of Pareto efficiency. With this condition satisfied, the remaining issue

of the mechanism evaluation is to demonstrate that market clearing always converges to

a unique equilibrium point satisfying a demand supply balance given by (4.7)—the other

condition of Pareto optimality.

4.5.2 Convergence analysis

Classical tâtonnement
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Here we determine values of the price adjustment factor K at which market clearing

using (4.8)–(4.10) will converge. Let et = pt − p∗ be the price error at iteration t with

reference to the equilibrium price p∗. Then,

Proposition 4.5.1 The convergence rate of classical price tâtonnement is given by

||et+1|| ≤ ||I + KJ∗||.||et|| (4.17)

where J∗ is [like (4.11)] the Jacobian matrix of z with respect to the price variable p,

evaluated at p∗. I is the unit matrix of the same size as J∗. Also ||.|| denotes the Euclidean

norm of a vector or matrix.

Proof We sketch a proof for the convergence rate (4.17) of classical tâtonnement. Rewrit-

ing the price updating rule (4.8) in a vector form we obtain pt+1 = pt + K.z(pt). Then,

(a) et+1 = et + K.z(pt)

By a geometric theorem on tangent representation [104], the differentiable function

z(p) is given as follows:

(b) z(p) = z(p∗) + J∗(p− p∗) + R

where J∗ is a first-derivative Jacobian matrix evaluated at p∗, R is a residual term repre-

senting the difference between the surface z(p) and its tangent plane z(p∗)+J∗(p−p∗) at

any point p within the N -dimension Euclidean space. Such a difference becomes smaller

when p approaches p∗.

Since, in a DRX market, the price pt oscillates around its equilibrium point p∗, the

corresponding residual term R can be assumed small. Then z(pt) ≈ J∗(pt − p∗). (Note

that z(p∗) = 0.) Substituting this equation into (a), we obtain ||et+1|| = || (I + KJ∗) .et||.
Consequently we assert (4.17).

Remark Equation (4.17) suggests that the price adjustment error changes linearly after

each iteration. This linear trend implies that ||et|| ≤ ||I + KJ∗||t.||e0|| for any t > 0. Then

a sufficient condition for price convergence (i.e., ||et|| → 0 as t→ +∞) is given as follows,

||I + KJ∗|| < 1 (4.18)

Condition (4.18) can be satisfied by choosing appropriate values for the price adjust-

ment factor K. However, as similar to the Newton method, the main issue here is that

the DRXO cannot determine the exact Jacobian matrix J∗ due to the lack of private cost

and benefit data from participating agents. Therefore, the DRXO uses historical data to

estimate J∗ such that K is determined appropriately. Note also that rather than finding
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the exact values of K, the DRXO only needs to know the feasible range to satisfy condition

(4.18). This simplifies the task of parameter estimation.

However, as suggested by economists, there are some special cases where price adjust-

ment using classical tâtonnement cannot converge [103]. This issue arises when ||I+KJ∗|| ≥
1 for any chosen/estimated value of K, causing prices to diverge. In such cases, the Newton

method must be used instead.

Newton tâtonnement

Here we examine the conditions under which price adjustment using the inexact New-

ton method converges. Let 4t be the error in estimating the inverse Jacobian matrix

(Jt)−1 in the price updating rule (4.11). (Note that 4t also has size N ×N .) Then,

Proposition 4.5.2 The convergence rate of the proposed Newton pricing method is

||et+1|| ≤ (L||4t||+ M||et||).||et|| (4.19)

where L = ||J||U (this denotes the upper bound of ||J||); M = 1
2 ||J

−1||U||H||U with H being

a Hessian matrix comprised of all second-order partial derivatives of z(p).

Proof Here we derive condition (4.19) that represents the convergence rate of the proposed

inexact Newton method. By adding the error4t of estimating J−1 to the price adjustment

equation (4.11), we obtain pt+1 = pt −
[
(Jt)−1 +4t

]
.z(pt). Then,

(a) et+1 = et −
[
(Jt)−1 +4t

]
.z(pt)

Assuming that z(p) is twice differentiable, then its value at the equilibrium point p∗

can be expressed in terms of a second-order Taylor series expansion around any arbitrary

point p [104]. In particular,

(b) z(p∗) = z(pt) + Jt(p∗ − pt) + 1
2(p∗ − pt)THξ(p∗ − pt)

where (p∗ − pt)T is the transpose of (p∗ − pt). Hξ is the Hessian matrix evaluated at

some pξ between p and p∗. Since z(p∗) = 0, z(pt) = Jtet− 1
2(et)THξet. Substituting this

equation into (a), we obtain

||et+1|| = ||4tJtet − 1
2(et)T

[
(Jt)−1 +4t

]
Hξet||

≤ ||4tJtet||+ ||12(et)T
[
(Jt)−1 +4t

]
Hξet||

≤ ||4t||.||Jt||.||et||+ 1
2 ||(J

t)−1 +4t||.||Hξ||.||(et)||2

∴ ||et+1|| ≤ (L||4t||+ M||et||).||et||

where L , ||Jt||U = ||J||U, M , 1
2 ||(J

t)−1 + 4t||U.||Hξ||U = 1
2 ||J

−1||U.||H||U, assuming

that ||J||, ||J−1||, and ||H|| are all upper bounded.
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Remark Equation (4.19) implies that the price adjustment error et changes quadratically

in each iteration. This quadratic trend, in the case that 4t = 0 for every t, corresponds

to an exact Newton method that converges rapidly to the equilibrium solution [104].

Now we consider the case of 4t 6= 0. A sufficient condition for convergence is that

the first factor on the right hand side of (4.19), (L||4t|| + M||et||), is less then 1 for any

t. This condition ensures that the error ||et|| decreases after each iteration, consequently

approaching zero as t→ +∞ [104].

For (L||4t||+M||et||) < 1, ||4t|| and ||et|| should be limited as both L and M are fixed

constants. While ||4t|| can be reduced by estimating more accurately the Jacobian matrix

Jt using current market data, ||et|| depends on ||e0|| and the price p0 that is initiated

by the DRXO. In general, if the initiation is sufficiently close to the equilibrium point,

price adjustment in subsequent iterations will converge quickly to this point. Otherwise,

the price adjustment may either not converge or converge at a slower rate.

We formalize the term “sufficiently close” as the following particular condition to be

used for price initiation:

L.||4t||U + M.||e0|| < 1 (4.20)

or ||e0|| < 1− L.||4t||U

M
(4.21)

This condition alone is sufficient for the method to converge. If the condition holds,

then ||e1|| < ||e0|| by (4.19). This implies ||e1|| also satisfies (4.21), then ||e2|| < ||e1||, etc.

Therefore, ||et|| is a decreasing sequence, which approaches zero. In fact, condition (4.20)

is a stricter version of the above mentioned condition, (L||4t||+M||et||) < 1, as the former

can imply the latter.

Although (4.20) is a strict condition, it is easy to implement. Specifically, by using

historical data, the DRXO can determine the upper bounds L, M, and ||4t||U offline.

From these pre-determined parameters, p0 can be initiated satisfying condition (4.21).

Besides price initiation, care must be taken estimating the Jacobian matrix J. If the

error 4t is larger, the initial value e0 must be smaller for the method to converge by

condition (4.21). Achieving such a initiation closer to the equilibrium is obviously more

difficult, as the DRXO does not know exactly the position of such an equilibrium point.

Hence, a reasonable estimation of the Jacobian matrix, resulting in a relatively small error

4t for every t, is also necessary.
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Figure 4.9: The test system

4.6 Numerical simulation

This section provides a simple case study to demonstrate the effectiveness of the proposed

agent-based DRX market clearing mechanism. Specifically we aim to examine the following

aspects which arise from the above analysis.

1. The optimality of agent-based market clearing.

2. The convergence of classical and Newton price tâtonnement methods.

3. The effects of core market parameters on the price convergence.

4.6.1 Test system

For simplicity, we consider the test system introduced in previous chapter. It consists of

both transmission and distribution networks operated by a Transco and a Disco, respec-

tively. There is also one Reco and one ESCo—each deals with all customers. For clarity,

the system is shown again by Fig. 4.9.

For the ESCo and its customers we assume a strictly convex cost of producing DR

given as follows:

Ci =
∑
l∈Li

(aix
2
i,l + bi(1− θi,l)xi,l) (4.22)

where i = ESCo, and l = 1, 2, ..., 20. The coefficient θi,l is called the “customer type” and

takes a value between 0 and 1. θi,l represents a customer’s willingness to curtail load to

provide DR. As θi,l increases, DR cost decreases because the customer is more willing to
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participate. In addition to θi,l, ai and bi are common coefficients applied to all customers.

Values for these parameters are all given in [80, Table VII] [and also in previous chapter].

For each buyer j ∈ {Reco,Transco,Disco} we assume a strictly concave gross benefit

derived from DR, given as follows:

Bj =
∑
n∈Nj

(−αj,ny2j,n + βj,nyj,n) (4.23)

where Nj is the set of customer groups associated with buyer j. For example, in the case of

the Transco, NTransco include two groups—one contains customers l = 1, 2, ..., 12 while the

other contains l = 13, 14, ..., 20. Customer groupings for other buyers, such as the Disco

and the Reco, are all given in [80, Table II] [and also in previous chapter].

Both αj,n and βj,n are valuation coefficients assigned to customer group n under buyer

j. These coefficients reflect how much DR provided by the group as a whole is worth for

the buyer. Detailed explanations of these coefficients and their assumed data values are

given in previous chapter.

4.6.2 Analysis of the market clearing results

This subsection presents a numerical study to substantiate the claim that the proposed

DRX market clearing mechanism reaches Pareto optimality. The study compares the out-

come of the proposed mechanism with the outcome obtained by directly solving the the-

oretical Pareto-optimal model (4.4)—(4.5), assuming the availability of cost and benefit

data collected from agents. Note that the Pareto model cannot be implemented as the

agents may be unwilling to share their private information.

Table 4.3: Comparative results

Market clearing
Total market Total quantity Average price
surplus ($) (MWh) ($/MWh)

Theoretical model
2124.1 32.2 17.9

(Pareto optimality)

Proposed scheme with
2124.1 32.2 17.9

Classical tâtonnements

Proposed scheme with
2124.1 32.2 17.9

Newton tâtonnements

The Pareto model is solved using the nonlinear programming tool GAMS/MINOS,

while the proposed mechanism is simulated using MATLAB with the algorithm shown in

Fig. 4.6. Both simulations employ the same data inputs and are assumed to be within

a single hour. Comparative results are given in Table 4.3. For simplicity, only the total
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Figure 4.10: The convergence rate ||I + KJ∗|| versus the adjustment factor K

Figure 4.11: Classical tâtonnement for different K.

market surplus (calculated by (4.4)), the total DR quantity, and the DR price averaged

over all buyers ((
∑

j

∑
n pj,n)/(

∑
j Nj)) are shown in Table 4.3.

As can be seen, results for the proposed mechanism using either classical or Newton

tâtonnements are identical to those of the theoretical model. The total market surplus is

$2124.1 which is also the global optimal value. At the same time, the total quantity and

the average price are 32.2MWh and 17.9$/MWh, respectively. These outcomes constitute

a competitive market equilibrium. The results confirm that the proposed mechanism has

reached the point of Pareto optimality.

4.6.3 Convergence assessment

This subsection illustrates the developed conditions (4.18) and (4.20) that are required for

price convergence using classical and Newton methods.
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Figure 4.12: Convergence of the classical tâtonnement with different starting points

Figure 4.13: Illustrating the online estimation of inverse Jacobian matrix

For classical tâtonnement, the convergence rate is given by ||I + KJ∗|| which depends

on the price adjustment factor K. As can be seen from Fig. 4.10, when K is either less

than 0 or greater than 1.2, ||I+KJ∗|| is greater than 1. This consequently causes the price

to diverge from its equilibrium point, as illustrated by Fig. 4.11. For illustrative purposes,

only 15 iterations are shown here. In fact, the convergence to the same equilibrium point

for K = 0.1 occurs at iteration 30.

It can also be observed that as K is larger within its feasible range (i.e., (0, 1.2]),

||I + KJ∗|| becomes smaller, thus making the price converge more quickly. However, when

K is near to 1.2, ||I + KJ∗|| increases significantly, which reduces the convergence speed.

Therefore, K = 1.17 appears to be the best choice in this example.

Fig. 4.12 shows the impact of selecting initial price p0 on the convergence of classical

tâtonnement (K = 1). As can be seen, different values of p0 lead to the same equilibrium

solution that is unique in the DRX market. However, the cases with p0 = 40$/MWh or

p0 = 5$/MWh that are relatively far from the equilibrium point (17.9$/MWh) use over
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15 iterations to converge, which is slower than cases that require only around 10 iterations

for the convergence.

For the Newton tâtonnement, the convergence rate is given by (L.max
{
||4t||

}
+

M.||e0||) that depends on error 4t in estimating the inverse Jacobian matrix (Jt)−1 un-

der a given price initiation. This online estimation is described in Fig. 4.13, where each

individual element (given by •) of (Jt)−1 forms a “time series” along successive iterations

t. Estimating (Jt)−1 entails determining all time-series elements in parallel.

Fig. 4.14 presents the impact of inaccurate online estimation on the convergence of the

proposed Newton method. Impact is simulated by assuming different ranges of estimation

error in percentage, (||4t||/||(Jt)−1||).100%. (Within a given range the error is selected at

random for each iteration t, and then added to the time series given above). The graph

shows that when the percentage error is relatively small (i.e., less than 10%), the price

converges quickly to its equilibrium solution. However when the error is as large as 90%-

120%, the price fluctuates. In this case, there is a very high chance the Newton method will

not converge. This result underlines the importance of estimating reasonably the Jacobian

matrix online to achieve a robust solution convergence.

Here we illustrate a simple and practical method for the online estimation. This method

computes each element of Jt (i.e., ∂ztj,n/∂p
t
j′,n′) using the principle of “finite difference”

in time series [108]. That is, ∂ztj,n/∂p
t
j′,n′ ≈ (ztj,n − z

t−1
j,n )/(ptj′,n′ − p

t−1
j′,n′), where all exact

values of ztj,n, zt−1j,n , ptj′,n′ , and pt−1j′,n′ are known to the market operator via the clearing

process given above. Consequently, no private cost and benefit information from an agent

is required.

Fig. 4.15 shows simulation results using the finite-difference method. As can be seen,

the Newton tâtonnement converges quickly to the same (unique) equilibrium solution for

different starting points. This performance can be explained by the relatively low error in

Jt estimation (i.e., less than 10% for any t > 1). It is also observed that the maximum

number of iterations required for the convergence is only 6 which is faster than most

classical tâtonnement cases shown in Fig. 4.12.

4.6.4 Discussion

The proposed DRX market clearing mechanism follows the notion of a competitive market

as was defined by general equilibrium theory in microeconomics. In particular, it seeks to

explain the competitive behavior of buying and selling agents in a DRX market, and then

proving that equilibrium prices for all DR quantities can be achieved via a tâtonnement

process under such agent behavior.

The theoretical work developed in this paper should be regarded as an extension of

those presented in microeconomics. In fact, general equilibrium theory [75] focuses inten-
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Figure 4.14: Newton tâtonnement with various ranges of estimation error

Figure 4.15: Newton tâtonnement via finite-difference online estimation of Jt

sively on the treatment of markets for private goods. To the best of our knowledge, very

little attention has been paid to developing a similar (complete) theory for competitive

trading of public goods (such as national defense, fresh air, common lands, rivers, etc).

This lack of attention is explained by the fact that provision of most of these goods are usu-

ally under a government control through the use of taxation. Consequently, a competitive

negotiation scheme for rights to use these goods does not appear to be practical.

However, DR as a form of public goods is different. The provision of DR is not subject

to government intervention. In fact, DR can be produced by any customer whenever they

are paid to do so. Also, DR can be supplied to any buying agents (Recos, Transcos, Discos)
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whenever they need it and are willing to pay. In this sense, developing a competitive market

for the trading of DR as public goods is both feasible and necessary.

Based on this review of general equilibrium theory, we suggest that our DRX proposal

for a public good market clearing mechanism, using either classical or Newton price tâ-

tonnement methods, makes a sound contribution to the field of microeconomics. We also

believe that the theoretical framework developed in this paper for competitive trading

of DR can also be applied to trading other public goods, as long as they are not under

government control. In fact, the framework is generic in the sense that it involves multiple

buyers, multiple sellers, and multiple products or quantities (i.e., an “exchange economy”).

Note also that the framework did not make any assumptions beyond those common in

microeconomics, such as the “preference convexity” made for proving the existence and

the uniqueness of market equilibrium.

4.7 Summary

This chapter presented the design and evaluation of an agent-based market clearing scheme

for the eXchange of Demand Response. The proposed scheme uses Walrasian auctions,

where participating agents update their quantity bids in response to prices adjusted by

the market operator. This auction is repeated iteratively until the market equilibrium is

obtained at a point where the market outcome is Pareto optimal. Both the existence and

the uniqueness of this equilibrium are proven under the condition that agent preferences

are strictly convex.

The price adjustment is performed using either classical or Newton tâtonnements. Both

methods have advantages and limitations. Although classical tâtonnement is easy to im-

plement, it may not converge to an equilibrium solution if the value of price adjustment

factor K is not suitably chosen (i.e., within its feasible range). On the other hand, the

Newton method offers robust convergence, although in return it requires greater computa-

tional effort in estimating the Jacobian matrix online. This estimation is performed using

the finite-difference principle.
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Chapter 5

Cost–Benefit Analysis and

Treatment of Externalities

5.1 Overview

This chapter proposes a comprehensive framework for assessing short–term financial costs

and benefits derived from scheduling DR using various market-clearing schemes, including

the conventional partial schemes and the DRX introduced in previous chapters. Through-

out the framework development, we analyse DR cost and benefit for each participant in

a DR(X) market, as well as for Gencos and Recos in the wholesale electricity market.

Based on these local analyses, a global evaluation is performed to determine whether the

optimised DR can give a positive social surplus. If so, the DR will be dispatched during

the time period (i.e., an hour) under consideration. The proposed cost–benefit assessment

framework is illustrated on a small power system, and its usefulness reported through the

demonstration of externalities across all involved parties. Case studies on the Roy Billinton

Test System (RBTS) are given to examine the scalability of the proposed framework.

One of the main motivations for developing this framework is to establish a rigorous

evaluation of DRX as the key innovation proposed this thesis. Here the evaluation relies

on only a few justifiable and, in fact, justified assumptions which demonstrate the validity

of the market outcome including DR costs and benefits derived from a DRX clearing

scheme. In addition to this, the framework can be used to evaluate certain classes of

conventional DR schemes such as the Transco–based, the Reco–based, and the Disco–

based. This substantiates the applicability of the proposed assessment framework.

The chapter is structured as follows. Section 5.2 introduces methodologies commonly

used for an economic assessment. Based in these standard methods, the overall structure

of the proposed framework for evaluating DR costs and benefits are described in Section

5.3, with the details given in subsequent sections, 5.4 and 5.5. The developed framework

is illustrated via a small-scale study in Section 5.6, and then its scalability is examined in

Section 5.7 using the RBTS. Conclusing remarks are finally given in Section 5.8.
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5.2 Common economic assessment methodologies

5.2.1 Cost–benefit analysis

Cost–benefit analysis, sometimes called benefit–cost analysis, is an important approach to

evaluate the economic efficiency of decision making by a rational business firm. Formally

it refers to the process of estimating both costs and benefits derived from various decision

alternatives, and then the best alternative offering highest “net value” (i.e., equal to the

benefit less the cost) will be chosen by the firm as the final decision [109]. There are several

classes of cost–benefit analysis, based on which time scale of the economic decision to be

made (see Table 5.1).

Table 5.1: Examples of cost–benefit analysis

Time scales Examples

Long term
Investment raking, proposal examination,

and policy evaluation, etc

Medium term
Project management, engineering design,

and resource planning, etc

Short term
Resource scheduling, bidding strategies,

and market clearing, etc

Long–term (several years) cost–benefit analysis is often used for assessing the economic

efficiency of an investment in term of its invested money and the expected return. If the

latter can sufficiently offset the former, the investment is said to be profitable and will

certainly be chosen by the firm. Electricity network reinforcement is a good example of

invesment via cost–benefit analysis, in which the cost is an amount to be spent on buying

new equipment (such as generating units, transmission lines, transformers) to upgrade the

existing networks, and the benefit is an improvement in network reliability and security as

a result of new capacity installed. In addition to the investments, long term cost–benefit

analysis can be applied toward examining business proposal that is a written offer from

a supplier to a prospective user. Here the user need to determine whether the long–term

value of the underlying product being offered can be higher than its price paid to the

supplier. Besides the proposals, the task of evaluating new government policies also entails

using a cost–benefit analysis which empirically estimates the long-term (social) outcomes

derived from these policies, as well as their implementation costs. For example, to establish

the Renewable Energy Target (RET) policy that 20% of Australia’s electricity must be

produced from renewable energy sources by 2020 [110], the government carefully analysed

the trade-off between environmental benefits (i.e., via reduction in carbon emission) and

the costs of replacing conventional sources (such as coal and nuclear) by the renewable.
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In the medium term (i.e., several months up to one year), cost–benefit analysis can be

used for project management involving planning, organizing, and securing the utilization of

resources to achieve specific goals. Assessing the project’s effectiveness entails determining

whether such goals can be obtained under certain constraints, including available resources

(i.e., labor, budget), time required to complete, and the project’s scope (for instance, what

must be done to produce the end results). If all constraints are met, the project is said to

be sustainable [111]. A similar situation is applied to the context of engineering design that

is the formulation of a workable scheme to assist with the engineers in creating a product.

Besides the underlying scientific and technological details, an engineering design should

account for several important economic factors including the implementation costs as well

as the commercialization benefits. In fact, trade-off between these factors determines the

design outcome [112].

Short–term cost–benefit analysis, which is the main focus of this chapter, refers to

a process of assessing the economic impact of making a decision relating to a relatively

short period of time, ranging from days through hours down to minutes. Such an evaluation

methodology is often used, for instance, in the resource management by a firm, in which the

underlying resources (such as money, human labor) is scheduled in terms of location (i.e.,

where to be allocated?) and quantity (i.e., how much to be allocated?), for the purpose

of maximing the net value resulting from the resources utilization as a whole. This value

can be calculated by taking into account both the total cost of purchasing these resources

and the total benefit derived from them.

This chapter utilizes the short term cost–benefit approach to develop a comprehensive

framework for evaluating DR as an important resource provided by ESCos (on behalf of

electricity customers) and used by Transcos, Recos, and Discos. For the ESCos as a firm,

DR cost is the compensation to customers for their load curtailments, while the benefit

includes revenues collected from DR users. For each of these users, DR cost is the payment

to ESCos who provide DR resource, and the benefit is associated with the risk management

(i.e., to improve network reliability by the Transco and Discos, or to mitigate spot price

spikes by the Recos) using DR. Note that the cost–benefit analysis here is performed at the

individual level (i.e., for each DR provider and user as a firm) rather than at an aggregated

level (i.e., for the whole power system).

5.2.2 Externality evaluation with public goods

As a cost–benefit analysis deals with the decision making by an individual firm only, there

should be another method for assessing the overall economic efficiency. Such a method is

important because it reveals a practical issue associated with the fairness across all firms,

the externality. Formally externality refers to a present whenever decisions made by some
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firms directly affect the well being (either costs or benefits) of others [75]. A cost in this

case is called external cost, while a benefit termed external benefit. For example, the air

pollution resulting from burning fossil fuels to produce electrical energy is an external cost,

because it causes damages to non–energy businesses such as crops or public health care.

Similarly a nation’s use of military has an external benefit as it favor every citizen including

those who do not participant in the military force. Additional examples of externality are

given in Table 5.2.

Table 5.2: Examples of externality

Types Examples

Negative externality Air pollution, anthropogenic climate change,

(with external costs) nuclear waste from nuclear plants, etc

Positive externality National defense, education,

(with external benefits) knowledge spillover, etc

The externality issue is often associated with the scheduling of a public good. As was

defined in Chapters III and IV, public good is a special type of resources with each single

resource unit consumed by multiple firms. For example, national defense given by Table

5.2 is clearly a public good since it is utilized by every citizen living within the country.

Due to this utilization, whenever a firm produces a public good, others can automatically

benefit from it. This external benefit can make the public good production and allocation

unfair among firms, if there is no proper scheduling mechanism [79]. Table 5.3 shows the

difference between public goods and private goods (the latter is generally the goods not

to be jointly consumed.)

Table 5.3: Private goods versus public goods

Types Examples Properties

Public goods national defense, fresh air Non-excludable,

free-to-air television, etc non-rivalrous.

Private goods food, clothes, cars, Excludable,

personal electronics, etc rivalrous.

As can be seen, the underlying properties of a public good, making it different from

private goods, are non–excludability and non–rivalry. The former means that it is impos-

sible by nature to prevent people from having access to the good. For example, excluding

any citizen living within a country from the benefit of national defense is insuperably dif-

ficult, because the fundamental purpose of such a defense is to protect all citizens from

being attacked. Non–rivalry, on the other hand, means that each firm’s consumption of a
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public good leads to no subtractions from any other firm’s consumption of the good [113].

National defense can also be considered here as an example of the non–rival property.

The public good’s non-excludability and non-rivalry often lead to a free–riding problem

in which some people take advantage of the good without contributing anything towards its

production. For example, some people may avoid participating in the army but still enjoy

the common benefit of national defense [113]. Such a free–riding issue can be explained by

the human nature, that is, regardless of how much others contribute for the public good,

a “self-interested” person is better off not contributing [75, 79]. In the worst case where

nobody contributes, the good would not be supplied and the market is said to fail.

The notion of externality followed by public good with a free–riding problem constitute

a common methodology for assessing the economic efficiency of market mechanisms and

government policies that involves the allocation of a public good among firms. For example,

the government often uses such a method for evaluating the taxation policy that facilitates

the development of a national defense system. The evaluation aims to determine whether

every citizen pays appropriate tax according to the benefits they gain from that system.

If there is evidence of the free–riding problem where certain people have an opportunity

to evade taxes, the policy needs to be revised [113].

This chapter utilizes the concepts of externality, public good and free rider to develop a

comprehensive framework for assessing the economic efficiency of the existing DR schedul-

ing schemes. The underlying principle behind this development is that DR is considered a

public good in the sense that multiple beneficiaries (a Transco, a Reco, and a Disco) can

jointly “consume” a given DR quantity (i.e., a load reduction) provided an ESCo on behalf

of an electricity customer. This arrangement can be explained by the customer’s involve-

ment with all these beneficiaries, as discussed in previous chapters. In fact, it can be easily

shown that DR has both non–exludable and non–rival properties mentioned above [80].

Figure 5.1: The whole assessment procedure
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We conclude this methodological section by showing the whole assessment procedure

on Fig. 5.1. Here the global externality evaluation across all players relies on the localized

cost–benefit analysis for each firm (i.e., Transcos, Recos, and Discos). Such a “bottom-up”

approach is central to developing a comprehensive assessment framework in the subsequent

sections.

5.3 A novel framework for assessing financial DR benefits

A prerequisite for the development of a comprehensive framework to assess the financial DR

costs and benefits across all stakeholders is that, the framework must be incorporated with

the existing operational schemes that have been implemented, or is currently considered,

for scheduling DR in real markets. Such existing schemes can be classified into three broad

categories [64, 80], whose trends are quickly reviewed in the following subsection and are

then used as a basis for developing the cost—benefit assessment framework.

5.3.1 Trends in developing DR scheduling schemes

Transco-based models

This class of DR-scheduling schemes is operated by Transcos which are primarily re-

sponsible for managing power system security at a transmission level [85]. Such Transcos

are not involved directly in energy supply markets and their roles in generation scheduling

will be limited to ensuring that the submitted schedules are feasible [12]. At the other

end of the scale, an Independent System Operator (ISO) has (i.e., in the U.S. context) a

wide range of responsibilities, for instance, day-ahead security-constrained energy supply

market clearing. For simplicity, this chapter only considers the role of a Transco.

Within a Transco-based scheme, customers provide DR as a resource in the form of

load reductions to balance the active power generation and demand on a given timescale

(e.g. hour-ahead), consequently ensuring transmission network security. Examples of the

Transco-based scheme can be found in [40, 49, 80, 85, 87, 88]. Traditionally DR has been

provided under strict conditions such that the Transco is allowed to curtail loads of any

customer (given that these curtailments improve network security) and then compensate

these customers with a fixed fee [88]. Many competitive approaches for DR procurement

have been proposed during the last twenty years. Competition in supplying DR can be

introduced by using either interruptibility contracts between the Transco and customers,

or some type of organized market-based scheme [87]. Under contract arrangements, each

customer negotiates DR with the Transco on a monthly or yearly basis. In a market-based

scheme, all customers independently offer their own DR as a physical capacity (MWh)

to a spot market on a daily or hourly basis, in which the Transco clears these offers by
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optimizing the total benefit for all involved parties. The offered capacity can be “called”

by the Transco requesting customers to curtail their load during peak demands.

The market-clearing approach has been given more attention than the contract ap-

proach in recent years. In fact, some power utilities in Australia, the U.S., and Europe

have implemented dedicated spot markets for trading DR capacity [87,88]. These markets

can achieve economic efficiency as competitive prices are taken into account when selecting

customers to supply DR.

Some recent studies have proposed a small extension of the Transco–based market–

clearing scheme [40, 49, 80]. In these studies, a price–quantity demand curve is used to

represent prices at which the Transco is willing to buy DR of the corresponding quantities.

This demand curve is derived from the valuation of DR (how much the DR is worth for

the Transco and how much the Transco has to pay for it). Under this arrangement the

demand curve is matched with the corresponding supply curves offered by the customers.

The clearing of this market will result in both a quantity and a price of DR to be scheduled

in the power system for a given hour. From a theoretical viewpoint, this approach, which is

based on a well-known demand-supply model in microeconomics, inherits many advantages

of the model compared to conventional DR approaches [75]. For example, the economic

efficiency of DR scheduling is improved via demand-supply matching, while the network

security criteria is fulfilled under the valuation of DR capacity leading to a demand curve.

Disco-based models

This category of DR schemes is related to Discos operating a local distribution network

consisted of many radial feeders connecting directly with the customer loads. As with the

Transco, Discos benefit from DR by using it to enhance distribution network security.

Examples of a Disco-based scheme can be found in [80, 86–88]. In this scheme, Discos

directly schedule and pay for the load curtailments as a callable capacity physically offered

by their customers. The payment calculation is based on both Disco and customer benefits.

The latter can be estimated by either surveying customers or using historical data [86].

Reco-based models

The final category focuses on Recos, who provide contracts for selling electricity at

given prices to small customers. Examples of Reco-based DR-scheduling scheme can be

found in [80, 87–90]. Within this scheme, customers submit DR capacity offers specifying

the financial incentives at which they are willing to reduce loads for providing DR. The

Reco then clears these offers, aiming to maximize profits for both customers and the

Reco itself [90]. Profit for customers is a compensation for load curtailment, while profit

for the Reco is a possible reduction of risk caused by spot price spikes. The curtailment

compensation could be either change of retail price or an amount of reward that is unrelated

to that price. The former is considered to be beyond the scope this chapter.
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DRX models

DRX is the most important proposal given by this thesis and is quickly explained here

for clarify. Informally speaking, DRX is considered a generalization of the above–mention

Reco–based, Transco–based and Disco–based models, in which the former incorporates

DR benefits for all players within a comprehensive DR scheduling scheme, while the latter

(models) considers only a subset of these benefits. Formally DRX is a new and separate

market where DR in the form of hourly load reduction is treated as a public good to be

exchanged between buyers and sellers. Buyers including Transco, Disco and Reco want DR

for their risk management benefits (i.e., relating to network reliability or market volatility).

DR sellers including the ESCos on behalf of electricity customers supply DR as a source

of income.

In previous chapters we developed two different DRX market clearing schemes, namely

agent–based and pool–based. These schemes, which are based on on microeconomic and

optimization theory, are formalizations of the DRX concept from different market perspec-

tives. While a pool-based market clearing scheme refers to centrally operating paradigm

with resources pooling, the agent-based scheme relies mainly on agent local optimization

in a decentralized manner. Definitely, each scheme has their own advantage and limitation

which have been extensively discussed in previous chapters.

Common trends

In these four scheduling categories, DR capacity in the form of (callable) load curtail-

ment is treated as a market product traded between several involved parties. For instance,

within a Reco–based scheme, DR from customers are offered to the Reco for mitigating

spot price spikes. In this operating paradigm, a market clearing approach was developed

for each category of DR capacity scheduling. Particularly, in a DRX, demand for the DR

product is matched by its supply, with the aim to optimize the total market benefit.

The major difference between these scheduling categories is that, they consider various

set of participants in the liberalized system [64]. For example, the Transco–based scheme

involves only the Transco and electricity customers, while the Reco–based scheme deals

with DR trading between the Reco and the customers. Such “partial” approaches could be

inefficient because they do not incorporate the benefits and losses of other involved parties

within the DR scheduling process. In the light of microeconomic theory, this inefficiency is

characterised by the externality and free–riding issues as a direct consequence of scheduling

DR as a public good. These issues are given in Table 5.4.

As can be seen, the externality issue occurs in all schemes but is fairly weak for the DRX

due to the absence of free riders [80]. Here Gencos always suffer revenue loss resuting from

the scheduled DR, i.e., reducing the electricity demand that the Gencos would otherwise

sell to the Recos. This loss is the major source of externality in any DR scheduling schemes
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Table 5.4: Characteristics of DR scheduling schemes

Scheduling schemes Involved parties Free riders Sufferer Externality

Transco–based Transcos and customers Discos, Recos Gencos Strong

Disco–based Discos and customers Transcos, Recos Gencos Strong

Reco–based Recos and customers Transcos, Disco Gencos Strong

DRX
Transcos, Discos,

None Gencos Fairly weak
Recos and customers

including the DRX. In this regard, this chapter develops a comprehensive assessment

framework, which critically analyses the externality limitation of each scheduling scheme

and then suggests directions for future improvements. For the externality analysis, we will

incorporate the following aspects within the proposed framework:

1. We assume that DR is (in any scheme) scheduled using an approriate market clearing

approach. This assumption is, in fact, realistic considering the current trends in DR

scheduling given in the above categories (i.e., Transco–based, Disco-based, Reco–

based). Note also that the proposed framework can be extended to account for a

non–market–clearing approach to schedule DR.

2. We assess short-term DR benefits only (i.e., hour-ahead). Consideration of the long-

term DR benefits including deferrals in both generation and network capacities is

not considered here.

3. The assessment focuses on DR in the form of load reductions within a single period

of time (i.e., one hour), which is still rich for the externality demonstration. The load

recovery effect following a reduction is considered as future work.

4. The framework is to be developed in a rigorous manner with a limited set of jus-

tifiable assumptions. Although some important ideas for this development first ap-

peared in previous chapters, they are not yet verified and consequently need to be

re-considered here.

5.3.2 Proposed framework

It is difficult to develop a common framework to be used for assessing benefits under all

above categories of DR schemes. Thus, each category should be adapted by a suitable

framework that is slightly different from those for other categories.

The assessment framework for a Transco-based market-clearing scheme described above

is given in Fig. 5.2. As can be seen, the framework analyses a given time period T which

coincides with the generation dispatch interval (i.e., hour-ahead) in the electricity trading

market—making the framework synchronized with the pre-existing economic operation of a
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Figure 5.2: Flow chart of the framework for assessing DR costs and benefits

power system. Within period T , the framework performs two major assessment steps which

are both based on a standard cost/benefit analysis technique [109]. These steps are called

in-market and out-of-market, respectively. The former deals with parties participating in

the DR market (such as the Transco and customers), while the latter deals with parties who

are not directly involved in the market (such as Recos, Gencos and Discos). The benefit for

each market participant is considered as in-market as it results from negotiating DR within

the market. There are some additional benefits to Recos, Gencos, and Discos created from

reducing the spot price spikes and improving the distribution network reliability, which

are not taken into account in an ISO-based market-clearing process. Consequently, these

benefits are considered to be free, as the out-of-market parties do not have to pay for them.

Only the Transco, on behalf of transmission network users, buys DR for improving the

transmission network reliability under the given scheme, while non-paying beneficiaries

are referred as free riders.
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This framework can be modified to assess the benefits under other classes of DR-

scheduling schemes. For example, by exchanging the roles between Transco and Disco in

managing DR, the former becomes an out-of-market player which is put into block II

of the framework given by Fig. 5.2, while the latter is now an in–market player put into

block I. Such a modified framework can then be used to evaluate Disco–based DR benefits.

Similarly, putting the Reco into block I and moving the Transco to block II results in a

Reco–based assessment method. In the case of a DRX, block I includes customers, Transco,

Reco, and Disco, while block II contains Gencos only. If all players were to participate in

the process of DR scheduling (i.e., via market clearing), block II would be removed. This

case is, however, rare and thus beyond the scope of this chapter.

The proposed framework utilizes both cost–benefit analysis and externality evaluation

methodologies described above (i.e., see Fig. 5.1). The former, which is performed at a

local level (i.e., for each firm), resides within blocks I and II of the proposed assessment

framework. Externality, on the other hand, is examined at the global level considering the

scheduling impact on the social surplus derived from DR.

Once the framework has been defined, a cost–benefit analysis for each involved party

can be given. Sections 5.4 and 5.5, for illustrative purposes, consider the case of Transco–

based DR scheduling. The other cases (i.e., Disco–based, Reco–based, and DRX) will be

analysed in Sections 5.6 and 5.7.

5.4 In–market DR costs and benefits

5.4.1 Customers

Let us consider a customer l = 1, 2, ..., L (where L the total number of customers). Its

total benefit from both consuming electricity and supplying DR is given as follows:

Bl(xl) = Ul(D
int
l − xl) + clxl − πintl .(Dint

l − xl) (5.1)

where xl is the quantity of DR to be supplied; cl is the cost per MWh (that is marginal

cost) to be paid to the customer for this quantity; Ul denotes customer’s utility that is, by

definition, a monetary measure of relative satisfaction over various electricity consumption

levels [75]. This means Ul is a function of (Dint
l − xl) where Dint

l is the electricity demand

that the consumer intends to consume without curtailing load for DR; πintl is the retail

electricity price.

Equation (5.1) states that the benefit Bl is equal to the sum of utility Ul and DR

revenue clxl, less the cost paid for electricity consumption. This equation follows a benefit-

based approach to the cost-benefit analysis, in which the benefit has a priority over the

cost [109]. There are two reasons for using this approach: 1) the electricity cost represents

a minor fraction of total living cost for most consumers; 2) the electricity benefit is indis-
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Figure 5.3: Benefits for consumer

pensible in their life [1]. Consequently, many consumers value the benefit much higher than

the cost. Their consuming objective would be to maximize the former [114]. There may be

some customers being more concerned about their electricity bills than the consumption

benefits. In this case, their objective is to minimize the payment πintl .(Dint
l − xl)− clxl for

a certain level of utility Ul. Such customers, however, are not considered in this paper.

Now we examine the shape of the total benefit function Bl at given values of DR

marginal cost cl. At cl = 0, Bl resembles a Walrasian function, which is commonly used

for demand studies [75]. As shown in Fig. 5.3, this function is: maximum at xl = 0;

monotonically decreasing and concave for xl ∈ (0, Dint
l ); zero at xl = Dint

l . At cl > 0, Bl

is the sum of Walrasian function and DR revenue. It slightly increases at small xl because

the rate of change in Walrasian function is near to zero which is outweighed by that of

DR revenue. At relatively large xl the concave shape of the Walrasian function indicates

a rapid decline, causing the total benefit to decrease. Due to both the increases at small

xl and decreases at large xl, Bl must have a global maximum satisfying the following

condition:

dBl(xl)

dxl
= 0 (5.2)

To solve this condition, we determine the customer’s utility Ul using the following.

Proposition 5.4.1 The utility at an arbitrary value xl is calculated from a pre-specified

initial level according to:

Ul(D
int
l − xl) = Ul(D

int
l )− πintl xl.(1−

xl
2Dint

l εl
) (5.3)

Proof Here we derive the utility function (5.3) that represents the normal consumption

of customer l without being offered any DR incentive. By the definition of elasticity εl,

Chapter 5: Cost–Benefit Analysis and Treatment of Externalities 115



In–market DR costs and benefits

εl =
4Dl/D

int
l

4πl/πintl
=
Dl −Dint

l

Dint
l

×
πintl

πl − πintl
⇒ πl =

πintl
Dint
l εl

(Dl −Dint
l ) + πintl

(a) ∴
∫ Dl

Dint
l
πldDl =

∫ Dl

Dint
l

(
πintl
Dint
l εl

(Dl −Dint
l ) + πintl )dDl

On the other hand, assuming that customer l is a price-taker, then its consuming

objective is given by

(b) max {Ul(Dl)− πlDl} ⇒ πl = dUl
dDl

We note that, in this particular optimization problem, the retail price πl is treated as

a constant because the consumption Dl by customer l (who is a price-taker) cannot alter

such a price. Substituting (b) into (a), we obtain

(c) Ul(Dl)− Ul(Dint
l ) =

πintl
2Dint

l εl
(Dl −Dint

l )2 + πintl (Dl −Dint
l )

Replacing Dl −Dint
l by −xl, we complete the proof of (5.3).

Equation (5.3) states that Ul at any Dint
l − xl where xl > 0 is equal to that at Dint

l

minus a loss. The “loss” refers to consumer dissatisfaction due to load curtailments for

providing DR. The utility loss can be calculated from consumer elasticity εl as shown in

(5.3). The “elasticity” refers to a measure describing the sensitivity of consumer demand

(i.e., how much the demand deviates from its initial value) to a change in price. Such a

measure implicitly reflects the normal consumption behaviour of a customer on a given

timescale (i.e., hour-ahead) without any special incentive such as a DR reward.

By combining (5.1), (5.2), and (5.3), we imply (5.4) as a solution to total benefit

maximization corresponding to a given marginal cost cl:

xl = −
Dint
l εl

πintl
cl (5.4)

By rewriting this equation, we obtain a supply curve to be submitted by consumer l

to the DR market:

cl(xl) =
πintl

Dint
l .(−εl)

xl (5.5)

We investigate this DR supply curve further using Fig. 5.4. First, since εl < 0, this

curve increases for any xl > 0. This property implies that the customer will sell more DR

if price increases. This selling behaviour is consistent with microeconomics [75]. Second,

as given by formula (5.5), the supply curve is simple to the extent that it includes only

a few input parameters (i.e., elasticity, retail price, and initial demand), for which the

data can be easily obtained from real markets. With this modeling simplicity, however,
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Figure 5.4: DR supply curve

one may wonder whether the formula (5.5) can realistically (or accurately) represent the

actual value. We tackle this issue via the following

Proposition 5.4.2 The DR supply curve given by (5.5) represents true cost and net ben-

efit of DR for the corresponding customer.

Proof Tracing back to the original cost–benefit graph given by Fig. 5.3, the segment LP

at the optimal point xl represents a satisfaction loss due to load curtailment, while PQ

represents a difference between optimal (total) benefit and the benefit obtained without

load reduction (corresponding to xl = 0). This difference refers to a surplus (or net benefit)

for the consumer who curtails load. The supply curve (5.5), on the other hand, is char-

acterised by areas A and B (see Fig. 5.4). These areas are supposed (in microeconomic

theory [75]) to represent DR cost and surplus associated with DR. To rigorously prove this

representation that is also the content of Proposition 5.4.2, we need to show that A = LP

and B = PQ. This task can be easily undertaken via some algerbric manipulation which

is skipped here for simplicity.

Remark Proposition 5.4.2 indeed demonstrates the validity of the supply curve (5.5).

Combining this proposition with the modeling simplicity given above, we see the “beauty”

of (5.5) in terms of DR cost–benefit representation for a customer.

5.4.2 The Transco

The Transco could significantly benefit from DR by using it to improve transmission

network security including such factors as network congestion, and voltage and frequency

stability during outages, most of which are difficult to value in financial terms. Then, an

alternative valuation can be derived from cost savings due to improvements in each of

these factors. Consequently we use a cost–based approach, rather than benefit-based, to

analyse the DR cost–benefit for the Transco. This approach is illustrated in Fig. 5.5, in

which the total cost is the sum of security costs plus the DR payment.
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Figure 5.5: Costs to the Transco

For simplicity, here we consider only the interruption cost, which is incurred by elec-

tricity consumers due to involuntary load shedding during sudden outages and is usually

taken into account by the Transco as part of its security cost. As shown in [82], other

minor costs cannot affect the total (security) cost to a significant degree.

Now we analyse the cost graph shown in Fig. 5.5. As the DR quantity increases, elec-

tricity demand is reduced. Such a reduction can improve network security, as the network

does not need to handle such a high level of power demand. This improvement reduces

the cost of maintaining security within a pre-specified margin [82]. Thus, by maximizing

the DR quantity, the security cost (or rather the interruption cost) will be minimized

under a given set of other security actions (i.e., generation rescheduling, transformer tap

changing, etc). However, DR incurs its own cost, which ideally should be kept at its min-

imum. Somewhere between these two local extremes, there must be a global optimum.

Mathematically,

min

{
VoLL.EENS +

N∑
n=1

pnyn

}
(5.6)

where each quantity yn is aggregated load reduction using DR at bus n of the transmission

network, pn is price to be paid by the Transco for this quantity. VoLL (Value of Lost Load)

is cost per MWh incurred by consumers due to involuntary load shedding. It is often used

by the Transco as a proxy for measuring the negative security impact on consumers. For

simplicity, we assume an average VoLL value for all consumers. Obviously, in reality,

different consumers have different values of VoLL, which can be taken into account if

required. EENS (Expected Energy Not Served) is the total amount of electricity demand

to be interrupted as a direct consequence of sudden outages. Since these outages are treated

as random events, EENS must be calculated using a stochastic transmission reliability

assessment given as follows [83]:

Chapter 5: Cost–Benefit Analysis and Treatment of Externalities 118



In–market DR costs and benefits

EENS = T
∑
k∈K

PkL
total
k (5.7)

Pk =
∏
e∈Fk

λe.
∏
e∈Sk

(1− λe) (5.8)

where K is the set of credible outages occurring in a given time period T . For each outage

k ∈ K, Pk is the probability of occurrence, while Ltotal
k denotes the total load to be shed

during the outage. In practice, Ltotal
k is determined according to operational criteria defined

by a Transco [49]. In this paper, it is given by the outcome of load shedding minimization

under network security contraints (i.e., that is to avoid line overloading) [116, page 137].

Since each outage k includes faults of some equipment in the network (e.g., lines,

transformers, generators, etc), and successful operations of other equipment, the outage

probability Pk is the joint probability of all these failures and successes. This calculation

is given by (5.8) [85], where Fk and Sk denote the set of faulted equipment and the set

of correctly operating equipment, respectively. Additionally, λe denotes the failure rate of

each piece of equipment e. Note also that Fk ∩Sk = {φ}, Fk ∪Sk = {all equipment in the

network}.
In these EENS calculations, failure rates λe are assumed as constants and can be

obtained by averaging historical failure data collected from the same network [115]. In

reality, such failure rates depend on time–varying network conditions such as load demand.

However, their exact values for every loading condition are cannot be determined [116].

Hence, the failure rates used in this paper are estimates based on historical data.

There is no direct means of incorporating the EENS calculations using (5.7)–(5.8)

within the cost optimization problem (5.6) [76]. Therefore, an EENS estimating curve

with respect to each variable DR quantity yn, within time period T , must be derived using

those calculations and then included in the objective function.

The experience of calculating EENS shows that the estimation curve would be mono-

tonically decreasing and convex with respect to each quantity yn [117] (see again Fig.

5.5a, where the EENS is considered to be proportional to the security cost by the factor

1/VoLL). In this case, we assume a quadratic EENS estimating curve

EENS =

N∑
n=1

(αny
2
n + βnyn) + γ (5.9)

where αn, βn, and γ are locational coefficients to be determined from the set of calculated

data points. Since EENS is convex, αn > 0. Also, since EENS decreases for positive yn,

its minimal vertex −βn/(2αn) is positive, βn < 0. In Sections 5.6 and 5.7, we will examine

the accuracy of this estimation.

These coefficients reflect the sensitivity of EENS to a change of load at any bus. In

other words, they attribute the benefit of load reduction at each location in the network.
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Figure 5.6: DR demand curve

Reducing loads at critical buses (that strongly affect the EENS) is likely more valuable

than reducing loads at other buses.

With the estimated EENS, minimizing the cost function (5.6) yields a solution which

represents a DR price–quantity demand curve to be used by the Transco for DR market

clearing:

pn = −VoLL.(2αnyn + βn) ∀n = 1, 2, ..., N (5.10)

Now we examine the DR demand curve via Fig. 5.6. Since αn > 0 and βn < 0, the

curve (5.10) is positive at yn = 0 and decreases for any yn > 0. This property implies that

the Transco will buy less DR if price increases. As with those for DR–selling customers,

this buying behaviour of the Transco is consistent with microeconomic theory [75]. To

further validate the demand curve, we present the following

Proposition 5.4.3 The DR demand curve given by (5.10) represents true cost and net

benefit of DR for the Transco.

Proof Tracing back to the cost graph given by Fig. 5.5, the segment KM at the optimal

point yn represents a DR payment made by the Transco to DR–providing customers, while

MN represents a difference between minimal (total) security cost and the cost incurred

without load reduction (corresponding to yn = 0). This difference is a surplus (or net

benefit) for the Transco who is using DR for network security management. The demand

curve (5.10), on the other hand, is defined by areas C and D (see Fig. 5.6). These areas

are supposed (in microeconomic theory [75]) to represent DR payment and surplus derived

from DR. To rigorously prove this representation which is also the content of Proposition

5.4.3, we would have to show that C = KM and D = MN . This task which can be easily

undertaken via some algerbric manipulation is, again, skipped here for simplicity.

Remark Proposition 5.4.3 does not necessarily entirely demonstrate the validity of DR

demand curve (5.10). In fact, this validity also depends on the accuracy of EENS es-
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timation using (5.9) (to be examined later), and more importantly, on the analysis of

security costs incurred by the Transco. Since such an analysis takes into account interrup-

tion cost only, it cannot be fully realistic (i.e., excluding other minor security costs such as

those for generation rescheduling during outages). Unfortunately considering all possible

costs would result in the very compexity of the analysis, which ideally should be avoided.

Hence, to make the cost analysis simple (i.e., for illustrative purposes), we do not mention

all security aspects here. These can be considered in practice if required.

5.4.3 Market–clearing

With the demand curve calculated using a reliability assessment and supply curves col-

lected from customers, the Transco would clear the DR market. As described above, this

market clearing mechanism optimizes the economic efficiency created from the trading of

DR subject to the demand-supply matching [75]. In particular,

max

{
N∑
n=1

∫ yn

0
pn(yn)dyn −

L∑
l=1

∫ xl

0
cl(xl)dxl

}
(5.11)

s.t. yn =
L∑
l=1

unl xl ∀n = 1, 2, ..., N (5.12)

The objective function (5.11) represents an in-market total surplus, which is equal to

the gross benefit for the Transco less costs of producing DR by customers [75]. The former

(which is depicted by area C + D in Fig. 5.5) is calculated by integrating the demand

curve (5.10), while the latter (as it is depicted by the area A in Fig. 5.3) is calculated

by integrating the corresponding supply curve, (5.5). These calculations are based on

the above proofs of cost–benefit representations (i.e., Propositions 5.4.2 and 5.4.3). Note

also that if the demand and supply curves do not reflect true costs and benefits for the

corresponding market participants (the Transco and customers), the total surplus given

by (5.11) would not be a true surplus but only a perceived one [75,89].

The constraint (5.12) of this market clearing is the matching of demand and supply. In

particular, each quantity yn, which is demanded by the Transco at bus n of the transmission

network, must be equal to the total quantity supplied by all customers located at that bus.

Binary coefficient unl represents the locational status of customer l to bus n (unl is 1 of the

customer is located at this bus, and 0 otherwise.) Note also that unl remains a constant

because the customer does not change its geographical location over a short time period

(i.e., T ). A more detailed description of unl and its illustration can be found in previous

chapters.

Clearing the market based on (5.11) and (5.12) will result in both a quantity and a

price of DR to be dispatched. However, as indicated in Fig. 5.2, before the cleared DR is
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dispatched, it is determined whether it will produce a positive social surplus. Under this

assesssment, out–of–market surplus is calculated and added to the in-market total surplus.

This calculation is given below.

5.5 Out–of–market surpluses

5.5.1 Discos

The benefit of DR for a Disco is similar to the benefit for the Transco—an improvement

in distribution network security resulting in a significant cost saving. The only difference

between the two stakeholders is that, under the Transco–based scheme, the Disco is a free

rider who gains the benefit of cost saving derived from DR without paying anything for

it. Consequently DR surplus for the Disco is equal to this cost saving.

For simplicity, only the cost of power interruption caused by involuntary load shedding

is considered here for the security cost analysis (in practice, other costs can be added if

required). A reduction in this interruption cost can be calculated by assessing the distri-

bution network security with and without DR provided by the corresponding electricity

customers. In each case, the EENS is determined using a stochastic reliability assessment

method applied at the distribution level of a power system [83,116]. The cost saving (CS)

is then defined as follows:

CS = (EENS1 − EENS0).VoLL (5.13)

5.5.2 Recos and Gencos

The DR benefit for a Reco is the mitigation of spot price spikes during peak electricity

demands [22]. Considering a Reco who offers supply contracts to each electricity consumer

group g ∈ G (consumers within each group have the same type of contract with a common

retail price), the total profit PR the Reco makes by buying bulk electricity on a spot market

and selling this electricity to its customers is given as follows:

PR =
∑

g∈G(πintg − ρ).Dg (5.14)

where πintg is a common retail electricity price offered to every customer within group g;

ρ is the electricity spot price (that is, for simplicity, assumed to be uniform among all

customers); Dg is the aggregated electricity demand which group n (as a whole) purchases

from the Reco. Then, the gross benefit derived from DR is∑
g(π

int
g − ρ1).(Dint

g − yg)−
∑

g(π
int
g − ρ0).Dint

g (5.15)

Here ρ0 is the spot price corresponding to the initial demand Dint
g without load reduc-

tion; ρ1 is the spot price at which DR has been dispatched; and yg is the aggregated load
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reduction from n (as a whole). Since the Reco in a Transco-based scheme does not pay

anything, its surplus from DR is equal to the gross benefit given by (5.15).

Unlike the Disco and Reco who always enjoy benefits derived from DR, Gencos always

suffer a financial loss caused by the same DR. This is due to the reduction in electricity

demand that the Gencos would otherwise sell to Recos during the DR dispatch interval.

In power system economics, this loss is referred as “lost scarcity rent”, given by [42]:[
ρ0D

int
total −

∫ Dint
total

0
ρ(Dtotal)dDtotal

]
−

[
ρ1(D

int
total − ytotal)−

∫ Dint
total−ytotal

0
ρ(Dtotal)dDtotal

]
(5.16)

where Dint
total, Dtotal and ytotal is total initial demand, total actual demand, and total

amount of load reduction, respectively, from all electricity customers together.

5.6 Numerical example

This section presents a simple study to illustrate how DR costs and benefits are evaluated

using the proposed assessment framework under the Transco–based DR scheduling scheme

and then under others such as Reco–based and Disco–based. Our particular focus is to

demonstrate the existance of externalities among DR–involved parties, as a consequence

of the free riding problem associated with DR as a public good.

5.6.1 Test system

Fig. 5.7 shows a small power system used for this case study. The system is comprehensive

to the extent that it consists of both transmission and distribution networks which are

operated by a Transco and a Disco, respectively. There is also one Reco and one ESco,

each dealing with all customers. For simplicity, we assume that each customer represents a

load point connected to the corresponding distribution feeder. Therefore, there are totally

30 customers in the system.

In the transmission network, all lines are assumed with a maximum power carrying

capacity of 10MW, and failure rate (λ) of 0.001/h. The two generating plants (i.e., G1

and G2) have maximum output capacities of 30MW and 10MW, and overall failure rates

of 0.003/h and 0.002/h, respectively. Bus I is chosen to be the slack bus. The aggregated

base loads connected to bus II, III, and IV are 5MW, 9MW, and 16MW, respectively.

In the distribution network, failure rate is assumed to be 0.001/h for each section, and

all sections are of the same length. Also, all individual customer loads have the same value

of 1MW. For simplicity, we also assume that all circuit breakers in the two networks are

100% reliable. That is, the breakers are opened immediately to isolate the faulty section

from the network.
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Figure 5.7: The 4-bus test system

The electricity spot price is calculated for different levels of total demand using the

economic dispatch of generating units within the plants. From these individual spot prices,

one can construct an aggregated price curve with respect to demand. In reality, such curves

are in the form of a stepwise increasing function with each step reflecting the dispatch of

an additional (and more expensive) unit to meet an additional demand. This paper, for

simplicity, assumes a continuous estimation curve for spot price [84]:

ρ = a.(Dtotal/Ctotal)
b + c (5.17)

where Dtotal and Ctotal are total electricity demand and total generation capacity, respec-

tively; a, b, c, are estimation coefficients determined from the given price data points. Us-

ing actual market data collected from the Australian National Electricity Market (NEM)

(see [88] p. 99), a spot price estimation curve is derived, which is shown in Fig. 5.8, where

a = 400, b = 7, c = 35, and Ctotal = 40.

The transmission network EENS is also estimated using (5.9). This estimation for

the base load case is shown in Fig. 5.9, in that the analytical curve fits well with the

corresponding data points calculated using the transmission reliability assessment proce-

dure (as described above). This base–case EENS estimation results in the following (DR)

demand curve to be used by the Transco in the market-clearing process:

p2 = −7y2 + 78 (5.18)

p3 = −9.4y3 + 120 (5.19)

p4 = −8.5y4 + 152 (5.20)
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Figure 5.8: Spot price estimation curve

Figure 5.9: EENS estimation in the transmission network (Note: To simplify the illustration, each curve
represents load reduction for providing DR at the corresponding bus subject to unchanged load at the
other bus).

The customer-related data includes retail prices, electricity demand, and price elas-

ticity. They are substituted in the (DR) supply curve (5.5). The electricity demand of

individual customers is indicated above (through the feeder loads). The retail prices (in

$/MWh) and elasticity (no unit) are given in Tables 5.5 and 5.6, respectively. For simplic-

ity, these prices are assumed to be fixed along the day and are (in short term) independent

of the hourly levels of system loads. This is the case of the current Australian context.

It is also assumed that retail prices among different customers in the same distribution

network can be different (See Table 5.5). This assumption is based on the fact that, due to
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the “full retail contestability” that has been implemented in the real markets, customers

are no longer “tied” to their physical locations in the network; they have a choice of supply

contracts offered by different (competitive) Recos.

Table 5.5: Retail prices

Cons l πint
l Cons l πint

l Cons l πint
l Cons l πint

l Cons l πint
l Cons l πint

l

1 200 6 200 11 170 16 170 21 150 26 130

2 200 7 200 12 170 17 150 22 150 27 130

3 200 8 200 13 170 18 150 23 150 28 130

4 200 9 170 14 170 19 150 24 130 29 130

5 200 10 170 15 170 20 150 25 130 30 130

Table 5.6: Customer elasticity

Cons l εl Cons l εl Cons l εl Cons l εl Cons l εl Cons l εl

1 -0.11 6 -0.16 11 -0.21 16 -0.26 21 -0.31 26 -0.36

2 -0.12 7 -0.17 12 -0.22 17 -0.27 22 -0.32 27 -0.37

3 -0.13 8 -0.18 13 -0.23 18 -0.28 23 -0.33 28 -0.38

4 -0.14 9 -0.19 14 -0.24 19 -0.29 24 -0.34 29 -0.39

5 -0.15 10 -0.2 15 -0.25 20 -0.3 25 -0.35 30 -0.40

5.6.2 Evaluation results of the partial schemes

The Transco–based scheme

With the given demand and supply data, the market clearing model (5.11)-(5.12) is

simulated using the non–linear programming tool GAMS/MINOS. The resultant DR quan-

tities are then used for the next-step simulation—to calculate the out-of-market surpluses

for Reco, Disco and Genco, respectively, by using (5.13)–(5.16).

The simulation here considers four different cases. Each corresponds to a certain level

of the system load. Under these different loading levels, results of the market clearing and

out–of–market calculation are given in Tables 5.7 and 5.8, respectively.

As expected, the social surplus is negative at 0.8 p.u. and 0.6 p.u. system loads. This is

because the corresponding in-market total surpluses (45.8$ and 17.2$) are all outweighed

by the out–of–market surpluses that are negative (−114.2$ and −73.4$). These results

indicate that trading DR within the market, while benefiting every market participant

(the Transco and customers), can be conflicted with some out-of-market parties as it

causes financial losses incurred by them (e.g., Gencos).

It is interesting to observe that besides the Gencos, the Reco also suffers losses (−33.7$

and −85.5$) during these periods. This is because the spot prices at 0.8 p.u. and 0.6 p.u.
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Table 5.7: Market clearing under the Transco-based scheme

System DR DR Customer Transco Total IM

loading quantity payment surplus surplus surplus

1.2 p.u 2.4 166.8 83.4 14.4 97.8

1 p.u. 1.8 114.3 57.2 8.5 65.7

0.8 p.u. 1.34 74.8 37.4 7.6 45.8

0.6 p.u. 0.77 30.8 15.4 1.8 17.2

Table 5.8: Out-of-market surpluses under the Transco-based scheme

System Disco Reco Genco Total OOM Social

loading surplus surplus loss surplus surplus

1.2 p.u 89.6 2298.3 2294.1 93.8 191.6

1 p.u. 68.7 453.8 513.9 8.6 74.3

0.8 p.u. 50.6 -33.7 130.5 -114.2 -69.2

0.6 p.u. 28.9 -85.5 16.8 -73.4 -56.2

are as low as 65$/MWh (see Fig. 5.8), which is far less than the retail prices (see Table 5.5).

Therefore, the scheduled DR, which reduces electricity demand, also reduces the profit for

the Reco from buying bulk electricity at a low spot price and reselling it to the customers

at higher prices.

During the other periods (corresponding to 1 p.u. and 1.2 p.u. system loads), the spot

price is spiky, meaning that only a small reduction in the electricity demand results in a

large reduction in the price. Unlike those causing losses in the 0.6 p.u. and 0.8 p.u. periods,

DR in the form of load curtailments under spiky spot prices eventually brings extra profits

to the Reco. Such profits are as much as 453.8$ and 2298.3$ in Table 5.8, respectively.

However, while the Reco gains higher profits, Gencos experience higher losses. This is

because when DR is scheduled, the Genco profits are automatically redistributed to the

Reco through the reduction of spot prices. For example, during the 1.2 p.u. period, as the

electricity demand reduces from 36MWh to 33.6MWh, the spot price reduces significantly.

As a result, DR surplus to the Reco is 2298.3$, which mostly comes from the Genco (who

are losing 2294.1$).

The above observations are commonly called in microeconomics externalities, in which

actions (DR scheduling) taken by some players (Transco and customers) directly affect

the well-being of other players [75]. Due to these externalities, costs and benefits derived

from DR are allocated unfairly among players, in which some players pay nothing but

gain more benefit than others who has to pay. There may even be some players who suffer

losses caused by conflicted capacity that is scheduled by other players. These issues related

to externalities are substantiated by the above results.
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Table 5.9: Market clearing under the Reco–based scheme

System DR DR Customer Reco Total IM

loading quantity payment surplus surplus surplus

1.2 p.u 5.7 966.2 483.1 2779.2 3262.9

1 p.u. 2.6 243.6 121.8 319.6 441.4

0.8 p.u. 0.142 2.6 1.3 0.5 2.8

0.6 p.u. 0 0 0 0 0

Table 5.10: Out-of-market surpluses under the Reco–based scheme

System Disco Transco Gencos Total OOM Social

loading surplus surplus loss surplus surplus

1.2 p.u 210.5 400.8 3790.3 -3179.2 83.7

1 p.u. 95.6 168.4 792.3 -528.3 -86.9

0.8 p.u. 5.6 8.5 17.1 -3 -0.2

0.6 p.u. 0 0 0 0 0

The Reco–based scheme

To further illustrate the issues resulting from externalities, alternative DR-scheduling

schemes including the Reco–based and the Disco-based are evaluated. However, since a

Disco-based scheme is in general similar to the Transco–based, the study here focuses on

assessing the Reco-based scheme only.

Under this scheme, the Reco has to pay for DR while both the Transco and Disco

do not, rather they gain some reliability benefits for free. Since the Reco clears the DR

market, it can derive the demand curve to be used for this market clearing. Such a curve

would reflect a valuation in terms of how much this DR worth to the Reco. Mathematically,

this curve is derived by taking partial derivatives of the DR benefit function (5.15), with

respect to each quantity yg. The obtained demand curve then is substituted to (5.11)-

(5.12), to form a Reco–based market–clearing model. The evaluation results are shown in

Tables 5.9 and 5.10, in comparision to the Transco–based scheme.

As can be seen, during periods of the 1.2 p.u. and 1 p.u. system loads, the Reco

gains significant DR gross benefits (2779.2$+966.2$=3754.4$ and 319.6$+243.6$=563.2$,

respectively). This is because when the Reco manages DR, it tends to increase this DR up

to points (5.7MWh and 2.6MWh) where its gross benefits are optimal, which are higher

than the benefits it gets (only 2298.3$ and 453.8$) when DR is managed by the Transco

instead. However, Gencos at the same time suffer substantial losses since their profits are

redistributed to the Reco through the spot price reduction. As a consequence, the Reco–

based social surpluses during these hours are lower than those under the Transco scheme.

Even the surplus at the 1 p.u. system load is negative (−86.9$).
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During other periods, as electricity demand is relatively low (0.8 p.u. and 0.6 p.u.), the

resultant spot price is relatively low (see Fig. 5.8). As discussed above, DR under this low

price is not required because it will not bring any extra benefit to the Reco. Consequently,

the Reco schedules very little or even no DR during the 0.6 p.u. and 0.8 p.u. loading

periods. Although such scheduling causes no major loss to Gencos, it is conflicted with

network operators as it reduces the reliability benefits compared with those under the

Transco scheme given above.

Although the Transco-based scheme shows some advantages against the Reco-based,

both schemes in our opinion are not efficient due to the common issue of externalities as

observed in all the above results. Such externalities always lead to unfair situations where

some players have to pay for DR that is freely used by other players, or where some players

gain significant benefits while others lose money due to conflicted plans.

5.6.3 Evaluation results of the DRX scheme

Here we simulate the DRX market clearing scheme to see whether it can compensate for

the above limitation of partial schemes (Transco–based and Reco–based). In general, this

DRX scheme can be viewed as a generalization of the partial approach, in that the former

incorporates costs and benefits of all involved parties (Discos, Recos, Transcos, electricity

customers, but not Gencos) within the market clearing formulation [80].

A DRX can be either in the form of a pool–based model (developed in Chapter 3) or an

agent–based model (i.e., in Chapter 4), depending on the underlying mechanism used to

clear the market. These DRX models, however, have a common market clearing objective

that is to maximize the total surplus derived from DR for all parties. For simplicity, only

that objective is considered here to develop an assessment methodology applied to a DRX

(in either type, pool–based or agent–based). This assessment can be defined as a best–case

analysis, that is, analysing the outcome of a DRX in its best form. How to achieve such

an outcome (i.e., using an appropriate market clearing mechanism) has been investigated

extensively in previous chapters. Note also that the above evaluations of partial schemes

are also based on their best–case scenarios.

The DRX market clearing objective is given by the following optimization [80]:

max

∑
j∈J

Bj −
∑
i∈I

Ci

 (5.21)

yj,n =
∑
i∈I

∑
l∈Li

uj,ni,l xi,l ∀j ∈ J ; n ∈ Nj (5.22)

where Bj is the gross benefit for each DR buyer j ∈ J (the set of all buyers including

Transco, Disco, Reco); Ci is the cost of load curtailment for producing DR by each seller
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Table 5.11: In–market surpluses ($) in the DRX

System Reco Transco Disco Cus In–market Gen Social
loading surplus surplus suplus surplus surplus loss surplus

1.2 p.u. 2438.8 193.7 143.2 595 3370.7 2976.5 394.2

1 p.u. 546.6 62.4 68.9 261.3 938.9 790.1 148.8

0.8 p.u. 25.5 9.15 3.45 51 89.1 50.1 39

0.6 p.u. 0 0 0 0 0 0 0

Table 5.12: In–market payments ($) and DR quantities (MWh) in the DRX

System DR Reco Transco Disco Cus
loading quantity payment payment payment revenue

1.2 p.u. 3.5 369.5 276.5 543.4 1190

1 p.u. 2.1 109.1 261.5 152.1 522.7

0.8 p.u. 0.8 -70.6 99.6 72.9 102

0.6 p.u. 0 0 0 0 0

i ∈ I (the set of DR sellers, i.e., ESCos on behalf of electricity customers). While Ci can

be calculated by using (5.5), Bj relies on (5.10), (5.13)–(5.15). The difference between the

gross benefit and the total cost is a market surplus, the value to be maximized. Constraint

(5.22), on the other hand, refers to a balance between the demand for DR and its supply

(Detail of this constraint can be found in previous chapters). In fact, the DRX model given

by (5.21)–(5.22) is an mathematical extension of the above Transco–based market clearing

model, (5.11)–(5.12).

The given DRX model has been simulated on GAMS/MINOS using the same input

data with the Transco–based and Reco–based DR scheduling models. Results are given in

Tables 5.11—5.12, in comparision with Tables 5.7—5.8 and Tables 5.9—5.10. As expected,

these DRX results are significantly better than those of the Transco–based and Reco–based.

The social surpluses (i.e., at most levels of system loading) are relatively high which clearly

indicates the overall economic efficiency of DRX market clearing. Such an efficiency can

be explained because there is no free rider (i.e., who pays nothing but still gains some DR

benefit) in the DRX market. When all sellers (Transco, Reco, Disco) together pay for DR

as a public good, the total payment (column 6 of Table 5.12) for load curtailing customers

is much higher than would be the case of partial DR schemes given by Table 5.7 (i.e., in

column 3) and Table 5.9 (i.e., in column 3). Such an increased compensation will be likely

to motivate the customers to participate more actively in DR scheduling program than in

the current practice [75,80].

It is also observed from Table 5.11 that the social DR surpluses are non–negative in all

cases (i.e., the smallest value of surplus are 0 for the case of 0.6 p.u. system load, when DR
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is not scheduled due to its very low benefits). Such an no–negative outcome implies that

there no conflict of interest among Transco, Disco, Reco and electricity customers, which

can be explained because their benefits are all considered in a DRX market. By contrast,

not all costs and benefits of DR are incorporated within a partial market clearing scheme,

i.e., Transco–based and Disco–based. This problem inevitably leads to a scheduling conflict

among the involved parties and then a negative value of the social surplus, as has been

demonstrated in Tables 5.8 and 5.10.

In all cases of system load, surpluses for the Reco are significantly higher than those of

the Transco, Disco, and customers (see Table 5.11). This result could be explained by the

externality in that scheduling DR in a DRX market affects the Gencos as an outsider. Here

much of the Reco’s benefit is transfered from the Gencos, via a reduction in electricity

spot price. This externality resulting in a surplus transfer is not necessarily a limitation

of the DRX proposal. It is, rather, considered a natural consequence of the competition

between Recos and Gencos in an electricity trading market (i.e., in which ones win and the

others lose). Unlike those in the Transco–based and Reco–based DR scheduling schemes,

this competition is “healthy” in the sense that it keeps the value of DR positive, as has

been demonstrated by Table 5.11, final column.

It is interesting to observe that DR payment made by the Reco during 0.8 p.u. period

is negative (−70.6$ in Table 5.12), meaning that instead of paying an actual amount of

money, the Reco gets compensated. This result can be explained by a loss incurred by the

Reco due to DR schedulued in this period. In particular, the spot price at 0.8 p.u. system

load is as low as 65$/MWh (see Fig. 5.8) that is far less than the retail price (see Table

5.5). Then the schedulued DR, which reduces electricity demand, also reduces the profit

for the Reco from buying bulk electricity at low spot price and reselling it to the customers

at higher retail prices. Due to this accidential loss, the Reco is compensated, for instance,

by those DR beneficiaries (Transco and Disco). This compensation essentially resolves the

conflict among players in DR scheduling. Indeed, it is a unique feature of DRX over the

existing partial schemes.

Although these observations need further investigations, our numerical study has demon-

strated the usefulness of the proposed framework for DR benefits evaluation. In particular,

the framework considered a social view by taking into account cost and benefit for every

stakeholder (i.e., Transcos, Discos, Recos, and electricity customers). In the light of com-

prehensive assessment, externality has been clearly observed. Additionally, the framework

can analyse the benefits derived from different DR scheduling schemes such as Transco–

based, Reco–based, and DRX. In this sense it can become a generalized tool for testing

and comparing the effectiveness of various schemes to choose the best option (i.e., DRX

in our study) for a liberalised power system.
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Figure 5.10: Transmission level of the RBTS [118]

Figure 5.11: Full diagram of the RBTS [119]
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5.7 RBTS case study

5.7.1 The RBTS

This section gives another case study to examine the scalability of the proposed assessment

framework. This study also extends some problems identified above and thus provides a

useful insight to DR costs and benefits. The study is performed on the Roy Billinton Test

System (RBTS) [118].

As shown in Figs. 5.10 and 5.11, the system includes a 6-bus transmission network.

Each bus is connected to a separate distribution network consisted of a substation and

many radial feeders. The total base load of the RBTS is 185MW, and its power factor is

assumed to be unity. The total generation capacity is 240MW. There are 170 load points

(corresponding to 170 customers) at the distribution level. Further details of the RBTS

(i.e., load flow data, reliability data) can be found in [118].

5.7.2 Estimating EENS

First we examine the EENS estimation using (5.9) that is central to the calculation of

DR demand curves (5.10) and is based on a sensitivity analysis (SA). This estimation for

the base case of 6–bus transmission network is shown in Fig. 5.12. Here each analytical

function reflects the sensitivity of EENS to a load reduction at only one bus while loads

at the other buses remain unchanged. As can be seen from the graph, these functions fit

well the corresponding data points that are obtained via the network reliability assessment

using a commercial software, DIgSILENT PowerFactory (http://www.digsilent.com.au/).

Figure 5.12: Sensitivity–based EENS estimation at the RBTS’s transmission level

However, if loads at different buses are reduced simultaneously, the EENS estimation

using the sensitivity function (5.9) will generally be inaccurate. This issue is expained
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because, in a large-scale interconnected network, the impact on EENS of load reduction

at one bus is closely coupled with the actual levels of loads at other neighbouring buses.

For instance, EENS would be automaticaly lower if there are load reductions at other

buses. Such a coupling effect however is not included in (5.9) and consequently becomes

the main source of errors in EENS estimation.

To overcome the coupling issue in an interconnected power network, the sensitivity

function (5.9) is extended as follows:

EENS =
N∑
n=1

(αny
2
n + βnyn) +

N∑
m,n=1

θm,nymyn + γ (5.23)

where θm,n is called mutual coefficient as a compensation of the self, locational coefficients

αn and βn. That is, θm,n represents the coupling effect on EENS of the load reductions

at every two buses (m and n) in the network (Note that θm,n and θn,m are the same coeffi-

cient). Such a method is referred in this paper as ‘coupling sensitivity analysis (CSA)’—an

extension of the above SA.

Both CSA and SA methods for EENS estimation are tested on the RBTS. Compara-

tive results are included in Tables 5.13 and 5.14—each corresponding to a certain feasible

range of load reductions (i.e., 0− 0.1 p.u. and 0− 0.5 p.u.). These results show the mean

absolute percentage errors (MAPE) that is an average of absolute errors across all possible

combinations of load reductions at different buses.

Table 5.13: MAPE of EENS estimation with 0− 0.1 p.u. load reductions

Estimation Roy Billinton Test System (RBTS)

methods Transmission level Distribution level

SA 4.3% 2.4%

CSA 2.2% 1.9%

Table 5.14: MAPE of EENS estimation with 0− 0.5 p.u. load reductions

Estimation Roy Billinton Test System (RBTS)

methods Transmission level Distribution level

SA 22.8% 6.5%

CSA 8.1% 6.2%

As expected, results for the CSA at transmission level are better than those of the SA.

However, at the distribution level even the SA method can achieve very low MAPEs (i.e.,

2.4% in Table 5.13 and 6.5% in Table 5.14). These good results are explained because of

the radial structure of distribution networks (See those in Fig. 5.11). In particular, loads

at different locations in the network are not interconnected, but instead are supported by
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a common feeder having high power–transfer capability. In this sense, these distribution

loads are mostly independent of each other and thus do not impose any significant coupling

effects on the overall network performance (i.e., EENS). Without such effects, the SA

method is equivalent to the CSA (See results in Tables 5.13 and 5.14).

The above results also suggest that some of the dimensional issues, associated with

EENS estimation, come from the range of load reductions. For example, when these

reductions are within a relatively small interval (such as 0 − 0.1 p.u. in Table 5.13), the

coupling effect is still weak and therefore a simple SA method with a resonable MAPE

(4.3%) would be enough for the estimation. This is the case of the above small–scale study

where the largest load reduction is only 2.4MWh/36MWh ' 0.067 p.u. (See again Table

5.7). Note also that, in many real markets in Australia and the U.S., the maximum levels

of load reductions currently do not exceed 5% (or 0.05 p.u.) [88]. On the other hand, if the

reduction range is expanded (such as 0− 0.5 p.u. in Table 5.14), the CSA method that is

more complex than SA has to be used instead, particularly at the transmission level.

5.7.3 Spot price analysis

Although electricity spot price can be estimated using (5.17) which is a deterministic

function, this estimation is not fully realistic due to the random nature of power supply.

For example, during the operation of a power system, some generating units may fail to

syncronize, consequently resulting in the redispatch of other units to meet the given power

demand. Similarly, some parts in the network may be unexpectedly disconnected, which

impose significant constraints on the other parts. In this case, generation must also be

redispatched following another power flow “routine” that releases the constraints. This

redispatching activity is undertaken using a certain amount of reserve that is the still–

available, syncronized generation capacity. The use of this resource certainly alters the

total generation cost and resultant spot price.

To incorporate these random factors of power supply within the spot price estimation,

the deterministic function (5.17) can be extended as follows:

ρ = a.(Dtotal/Ctotal)
b + c+ s̄(Dtotal) (5.24)

where s̄ is a stochastic premium which is an amount added to the (original) price and

given by the cost of generation redispatch during unforeseen outages, while the first two

components of (5.24) represents the cost of economic dispatch without considering any

technical, probabilistic constraints of the network [119]. Note also that the above small–

scale study, for simplicity, utilized the actual price data that was collected from the real

market (NEM), and more importantly, is comprised of both costs for economic dispatch

(every 60 minutes) and redispatch (every 5 minutes) of the units [88]. The study here, on

the other hand, will provide a useful insight into the behaviour of such prices.
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Figure 5.13: Effect of the outages on spot price

Figure 5.14: Illustration of the price estimation

The stochastic premium s̄ can be calculated together with EENS using a common

network reliability assessment described above. That is, for each selected outage, all online

generating units are redispatched to meet the given demand. If no feasible dispatching

solution is found (or the solution is too expensive to be purchased), part of the demand will

have to be curtailed [82]. The probability–weighted average of curtaiments across all these

outages is EENS, while that of the cost incurred by generation redispatch is considered s̄.

By regressing the s̄ values over different levels of demand, we obtain an analytical function

s̄(Dtotal). In this calculation, we assume that the level of reserve being used for generation

redispatch has been pre-determined using a fixed criterion (i.e., capacity of the largest

online unit in NEM [88]).

To perform spot price estimation using the network reliability analysis for a given

reserve level, we develop a simple computer program embedded in the DigSILENT Pow-
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erFactory software. This program employs the cost data of 11 generating units (7 hydro, 2

lignite, and 2 gas) of the RBTS [119]. Note that, in addition to the spot price estimation,

this program calculates the EENS as mentioned above.

Fig. 5.13 presents simulation results for spot price with and without the consideration

for outages. As can be seen from the graph, there are three pricing phases at different levels

of electricity demand—low, transitional, and spiky. Within the first phase, the outage–free

and outage–driven prices are the same. This is explained because the cost of generating

units (i.e., hydro) being redispatched during outages is equal to the cost of other hydro

units that have been used for dispatching before the outages.

Within the transitional phase, since more expensive units such as lignite and gas have

to be scheduled, the resultant spot price become higher after the outages (See Fig. 5.13).

However, price for the demand level between 130MWh and 170MWh remains unchanged

because only the hydro and lignite units are used both before and after outages, while the

expensive gas units still are not required here. Within the spiky pricing phase where the

demand is reaching the generation limit (240MWh), there is not much capacity left for

redispatching the units. Without a significant redispatch, the spot price does not change

a lot after outages (see Fig. 5.13), but in turn, the demand is shed substantially to avoid

a subsequent system blackout.

Fig. 5.14 gives approximation results for the above simulated spot price. MAPEs of

this estimation are 16.8% for the outage–free curve and 12.4% for the outage-driven curve,

respectively. This rather poor performance can be explained because the RBTS has only

a few generating units which operate at significantly different ranges of costs (See Fig.

5.13). Such a discrete property makes the resulting spot price difficult for being fitted by a

continuous mathematical function (for instance, (5.24)). This is, however, not the case in

practice. For example, the real power system in NEM includes several hundred generating

units whose costs represent a relatively continuous trend (See data given in [88]). Thus,

estimating the resultant spot price in NEM using (5.24) will certainly be better than in

the RBTS, as was examined by the previous case study.

5.7.4 Clearing the DRX market

Here we examine the outcome of the DRX scheme given by (5.21)–(5.22), with DR cost

and benefit calculations using (5.5), (5.10), and (5.13)–(5.16). In addition to the given

reliability and generation data of the RBTS, customer data such as retail prices (πintl ) and

elasticity (εl) must be specified. For simplicity, we assume that all customers are offered

the same retail price (200$/MWh) and have the same elasticity (−0.3). Additionally, the

spot price given in Fig. 5.14 is scaled up by 10 times, to be more constent with the current

prices in NEM [88].
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Figure 5.15: DR surpluses under the DRX market-clearing scheme

With these data, the DRX market clearing scheme is simulated and its results are shown

in Fig. 5.15. As with the above small–scale study, externality is observed clearly here. The

Gencos experience a substantial loss ($8212) caused by the conficted DR scheduled by

other parties within the market. At the same time, the Reco gains a significant benefit ($

6510), most of which comes from the Gencos. Despite this externality, the social surplus

is $560 which is still compatible with the individual surpluses for Transco, Disco and the

customers. This result shows the effectiveness of the proposed DRX scheme.

5.7.5 Computational issues

Despite the relatively small size of the RBTS, this case study is time–consuming because

it entails using multiple softwares for different stages of the evaluation. First, the estimates

of EENS (i.e., (5.23)) and spot price (i.e., (5.24)) were both carried out via DigSILENT

PowerFactory. Monte Carlo simulation was used extensively for sampling and testing these

estimates across all possible combinations of loads at different buses. Here each simulation

performed a minimum of 500 trials and required on average a computation time of 30 min.

The total time for all simulations, including those of the 6–bus transmission network and

those of the 170–node distribution network in the RBTS, is around 100 min. However, in

reality, these simulations are not done by a single body but by different responsible players

such as the market operator, the Transco, and Discos in parallel. Consequently the actual

computation time required here would be reduced down to 30 min only.
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In this paper, no particular effort was made to reduce the above computing times—

even the reliability assessment included in those simulations employed the full AC load–flow

calculation (Newton–Raphson) rather than just the simplified DC method mentioned in

the literature [116].

On the other hand, the time required for solving the Transco–based market–clearing

model (5.11)—(5.12) using the programming tool GAMS is negligible (i.e., less than 1s),

because of the simplicity of the model. In particular, this model is based on only the

integration of the linear DR demand and supply curves (5.5) and (5.10), and therefore

has a convex form that can be solved quickly using commercial tools. Note also that, even

through the EENS estimation employed the CSA method (i.e., (5.23)) as an extension

of the conventional SA (i.e., (5.9)), the resultant model (5.11)—(5.12) that is still convex

consequently did not incur additional computation time.

All the simulations were performed in a Window–based PC with a 1.6–GHz chip and

a 512–MB RAM.

5.8 Conclusion

This chapter developed a novel framework for assessing the financial surpluses of DR in a

power system. Firstly, the framework analyses DR cost and benefit for each participant in

a DR market, as well as those for the Gencos and Recos in an electricity trading market.

Based on this local analysis, a global evaluation is performed, aiming to determine whether

the optimized DR can produce a positive social surplus. If so, DR is dispatched into the

system during the period under consideration.

The framework has been developed in a rigorous manner with a few justifiable assump-

tions. It employs only a limited number of input data easily obtained from real markets.

For example, the retail prices can be collected from supply contracts offered by retailers

to customers; the generation costs and equipment failure rates can be determined by the

market and network operators. This advantage makes the framework readily applicable.

Regarding its applicability, the framework is a useful offline tool to analyse the economic

plans of various categories of DR–involved players. It is also necessary for testing the effect

of various issues associated with regulation and risk management in DR scheduling.

We performed extensive simulations to test the effectiveness of the proposed assessment

framework. First, it was studied on a small system illustrating several interesting features

of DR costs and benefits. The most notable feature is externality that causes substain-

tial market distortions (i.e., leading to negative social surpluses in partial DR schemes).

Another case study using the RBTS was given to examine the scalability of the proposed

framework when dealing with larger power systems.
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The major implication of our finding from the case studies is that the DRX market

clearing scheme offers significant advantages over the conventional partial schemes. These

advantages, which have been rigorously evaluated, include a mitigation of externality, a

fair cost–benefit allocation (i.e., with the absence of free riders), and an improvement in

social surplus derived from DR for all stakeholers.
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Conclusion and Future Studies

6.1 Thesis summary

In general, this thesis presented the development of a new and separate market for trading

electricity demand response (DR) in a deregulated power system. This trade is comprehen-

sive to the extent that it involves all consumers (through ESCos) as well as all electricity

sector players including Transcos, Recos, and Discos. In our opinion, creating such a market

is somewhat controversial and therefore entails significant discussion on its necessity and

feasibility. Then the path we took throughout the thesis to analyse these critical aspects

is summarised as follows.

In Chapter 1 we provided an introduction to the general research area of DR as well

as its major scheduling challenges. In this direction, first we discussed some fundamental

characteristics of electricity and its demand, including the storage difficulty and the de-

mand inelasticity over time–varying prices. These characteristics entails a careful delivery

of electricity from the power utilities to their customers, leading to the magnificent devel-

opment of electric power supply systems. We reviewed the status of this development to

date, with a particular focus on restructuring and deregulation issues. This restructuring,

which introduces competition to the power system via the creation of wholesale and retail

electricity markets, consequently results in the whole set of challenging problems associ-

ated with the task of maintaining a reliable and economial power supply. These challenges,

namely network security management, market volatility and peak demand, can be over-

come by introducing DR as a potential approach. In this regard, we estimated the financial

benefit derived from DR capacity for the case of Australian national market under various

resource utilization scenarios. It has been found that the current market scenario (i.e.,

with low DR utilization) offers very low incentives for DR–providing customers and that

significant market benefits would be obtained if DR capacity is fully utilized. This essen-

tially motivates the development of an effective DR scheduling scheme, forming the main
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theme for the research carried out in this thesis. Finally, we overviewed our DR scheduling

work by listing a number of research topics to be considered in subsequent chapters.

Chapter 2 was devoted to explain the necessity and the feasibility of demand response

exchange (or shortly DRX) as a new and separate market in the restructured power sys-

tem and as a comprehensive approach for scheduling/trading DR resource. The necessity

can be explained by the fact that most existing works in this area, being classified as

either Reco–based DR, Transco–based DR or Disco–based DR, constitutes only partial

scheduling solutions because they consider the benefits for only a subset of participants in

the power supply chain. From a technical point of view, this limitation may result in con-

flicts over how the same pool of DR capacity (i.e., customer load) is scheduled optimally

while each player (Recos, Transco, and Discos) has their own plans for DR. From an eco-

nomic perspective, partial DR scheduling approaches are inefficient because they cannot

distribute cost and benefit fairly and flexibly among those participants. This situtation is

referred in microeconomics as “market failure” (i.e., fail to make an efficient allocation of

the underlying resource). This problem raises the need for developing a comprehensive and

fair DR scheduling scheme considering benefits across all players. A potential candidate

for this development is DRX, where DR is treated as market product to be exchanged be-

tween two groups of market participants—buyers and sellers. Buyers, including Transcos,

Discos, and Recos, request DR and pay for it. Sellers, including ESCos on behalf of their

electricity customers, supply DR as a source of income. The proposed DRX concept was

found be feasible as an informal generalization of those partial scheduling approaches. It

is also considered in this thesis as an independent market for trading DR. However, in

reality, DRX can be reconciled with other energy–related markets if required (i.e., for the

purpose of co–optimizing the profit of delivering and utilizing all resources.)

In Chapter 3 we developed a pool–based market clearing model as a technical ground

mechanism for DRX operation. In this model, buyers ands sellers are required to submit

demand and supply curves, respectively, reflecting their own marginal costs and benefits

derived from a set of DR quantities. Based on this collected information, the DRXO (the

market operator) clear the market by centrally maximizing the total benefit for all par-

ticipants under several economic constraints aiming to ensure an effective market clearing

outcome. These constraints include demand–supply balance and the obligaroty payment

of each DR buyer (Recos, Transcos and Recos). One of the central ideas in formulating this

clearing model is to consider DR as public good—a special type of resource with each sin-

gle unit utilized by multiple players. Due to this joint utilization, an assurance contract is

developed as an effective tool to avoid the free–riding problem, that is, to encourage every

DR beneficiary contribute voluntarily to the payment for the public good. This contract

is embedded as an optimization constraint in the DRX clearing model. This developed

model is then studied on a relatively small test system, revealing several interesting re-
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sults for DRX. First, it was shown to be significantly better than conventional partial DR

approaches including Reco–based, Transco–based, and Disco–based. Second, the fairness

across all customers was observed, in which those curtailing more loads than others are

compensated at a higher rate. Third, buyers are better off submiting bids reflecting their

true benefits derived from DR. These results which are all consistent with microeconomic

theory consequently substantiate the DRX pool–based clearing outcome.

In the next chapter we designed an agent–based mechanism, as an alternative of the

pool–based, for clearing the DRX. The concept of economic agent was first introduced, re-

sulting in a set of decentralized scheduling criteria. The Pareto efficiency concept was also

presented, forming a ground in formulating the market clearing problem. This problem is

then realised by a Walrasian auction scheme, in which participating agents (DR buyers and

sellers) update their quantity bids in response to market prices adjusted by the DRXO.

This process is repeated interatively until the market equilibrium is adequately obtained

at the point where the market outcome is Pareto optimal. One of the main results in this

chapter was to prove both the existence and the uniqueness of this competitive equilibrium

under some economic conditions (i.e., preference convexity) that are commonly adopted in

economic modeling. Other results were to demonstrate the convergence of interative price

adjustment methods used by the DRXO in the Walrasian scheme. These are classical and

Newton tâtonnements—both have advantages and limitations. Although the former is easy

to implement, it may not converge to an equilibrium solution if the value of price adjust-

ment factor (K) is not suitably chosen (i.e., within its feasible range). On the other hand,

the Newton tâtonnement method offers robust convergence, although in return it requires

greater computational effort in estimating the Jacobian matrix online. This estimation can

be performed using the finite–difference principle.

Last but not least, we proposed in Chapter 5 a comprehensive framework for assessing

short–term financial costs and benefits derived from scheduling/trading DR. This frame-

work has a hierarchical structure ranging from local cost–benefit up to global externality

analyses. First, the financial value of DR for each market participant (customers, Recos,

Discos, and Transcos) was quantified rigorously using certain valuation techniques such as

customer utility characterization and electricity spot pricing, and also network reliability

assessment. These quantified values were then fitted by appropriate analytical functions

to be adopted for later evaluation stages. Once all local analyses have been done, a global

evaluation is performed, aiming to examine the impact of externalities among participants,

under market clearing conditions. The developed assessment framework was illustrated on

both a small test system and the RBTS, showing its effectiveness with a resonable accuracy

in cost–benefit estimation. The proposed framework was also used to study the relative

economic efficiencies of various DR scheduling/trading schemes including the DRX pro-

posal and conventional partial approaches (Reco-based, Transco-based, and Reco-based).
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Numerical results essentially demonstrated the significant advantages of the DRX, includ-

ing a mitigation of externalities, a fair and flexible cost–benefit allocation due to an absence

of free riders in the market, and a non-negligible improvement in social surplus derived

from DR for all involved parties. These results are extremely important as they verify the

public good scheduling analyses given in the previous chapters.

Overall, the objective of the research project reported in this thesis has been achieved.

We did reviewed the existing works on investigating efficient DR scheduling schemes. Based

on this review, we proposed a new DRX concept as an informal generalization of all those

works. Then we designed and evaluated different market clearing mechanisms for DRX,

using both analytical and numerical methods. We finally conclude that our DRX proposal,

which represents a new and feasible approach for scheduling/trading DR, offers significant

advantages over the conventional partial approaches.

6.2 Major contributions

The distinct contribution of this thesis to the main body of knowledge can be summarised

as to propose a new market for trading DR and to develop methodologies for designing and

analysing such a market. This innovation comprises the following points.

6.2.1 Constructing a public view of DR

The research project reported in this thesis was initiated from a simple but very intersting

idea that DR can be viewed as a type of public good, in the sense that a given DR quantity

is jointly utilized by multiple players. In microeconomics, public good is formally defined

as good being non–rival and non–excludable. Non–rivalry means that consumption of the

good by one individual does not reduce availability of the good for consumption by others;

and non–excludability means that no one can be effectively excluded from using the good.

Both of these properties are found to be approximately met by DR. For example, when a

Transco buys a DR quantity from an individual customer, there are always a Disco and a

Reco freely benefiting this quantity because their businesses still involve the customer, i.e.,

via network connection and retail contract. In addition to this non–rivalry, it is physically

impossible to reject those third parties from utilizing the quantity, implicating the non–

excludable property of DR.

The theory of public good often relates to the theory of market failure, and in this sense

DR is not an exception. One can easily see the evidence of market failure in any existing

DR scheduling/trading schemes as they fail to correctly value DR quantities provided by

individual customers, leading to an inefficient allocation of this resource. Such a discovery

was central to the preliminary analysis in our research project. In fact, we are not aware

of any published work presenting this interesting idea.
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6.2.2 The DRX concept

This concept is the first and most important proposal given in this thesis. It is considered

an abstract solution to the problem of market failure associated with DR as a public good.

In particular, those players providing DR (i.e., customers via ESCos) are placed on one

side of the market and those demanding DR (i.e., Transcos, Discos, and Recos) are put on

the other side. This arrangement facilitates significant market design and analysis to deal

with the public good issue. In proposing this concept, we expected that a well–organized

and competitive market for trading DR can thoroughly eliminate all relevant inefficiencies.

Again, no such concept was found in the literature.

We should point out that the DRX concept itself is a natural implication following

the market failure found in the existing DR schemes, and thus it should not be viewed as

being controversial. While one may argue that implementing a new market which requires

significant invesment is not a readily feasible task, we believe that the long–term benefit

created from that market would be sufficient to offset the invesment cost. In this regard,

our concept is not merely of academic interest but also a good solution to the problem of

DR scheduling from a practical point of view.

6.2.3 Market clearing mechanisms

Since much has been written throughout this thesis about the development of these DRX

mechanisms, here we discuss only their innovative aspects from an analytical pespective.

The most interesting, and perhaps surprising, thing is that we were able to design a market

with the presence of public good. To our knowledge, there is no such market well–developed

for the competitive trading of such good (other than DR) in the current practice. What

people often do is purchase those public goods (i.e., national defense, fresh air, common

lands, rivers, etc.) under government control through the use of taxation.

The challenge in developing a competitive market for public good lies in its fundamental

non–rivary and non–excludibility that are also called non–linearity in engineering language.

Due to these inherent characteristics, it is difficult to separate the allocation of public good

between participants and then to correctly determine payment for/by each of them. This

issue has been implicitly resolved in our DRX work using different approaches resulting in

different types of market clearing mechanisms, namely pool–based and agent–based.

Based on this discussion, we suggest that our DRX proposal for a public goods market

clearing scheme makes a good contribution to the field of microeconomics.We also believe

that the analytical models developed in this thesis for competitive trading of DR can also

be applied to trading other public goods, as long as they are not under government control.

In fact, these models are generic in the sense that they involve multiple buyers, multiple

sellers, and multiple products or quantities (i.e., an “exchange economy”). Note also that
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such DRX models did not make any assumptions beyond those common in microeconomics,

such as the preference convexity made in Chapter 4 for proving both the existence and

the uniqueness of Walrasian market equilibrium.

6.2.4 Comprehensive cost–benefit assessment

The assessment work presented in Chapter 5 has significant implication as it establishes a

good connection between the conventional power system analysis methods (i.e., reliability

assessment, electricity spot pricing, etc.) and the DRX and other DR scheduling models.

This explicit connection makes our proposal easily accessable for general power engineers,

who might have only a little economic background and are not always convinced by theo-

ritical economic arguments. In fact, the proposed cost–benefit assessment framework have

brought our concept and models “down to earth” in the sense that it validates assumptions

and approximations resulting from the DRX development.

In addition to supporting DRX, the framework is a useful offline tool to analyse eco-

nomic benefits for various categories of DR–involved players. It is also necessary for testing

the impact, on the DR scheduling outcome, of various market–related issues such as reg-

ulation, policy development, and risk management. The main advantage of the proposed

framework is that the economic effects of DR on all market participants are considered

together so a comprehensive estimate of the DR benefits can be obtained. We are not

aware of any similar approach with ours, in the literature.

6.3 Suggestion for future research

DRX is indeed a new research area with great opportunities for doing market design and

analysis. Although most fundamental aspects have been adequately developed during this

project, there remains some ideas yet to be considered due to time limit. Here we outline

those ideas that may be worth studying as future research and development.

6.3.1 Modeling of dynamic load recovery

A dynamic feature of DR scheduling is the load recovery, the process by which electricity

customers restore their consumption following load reduction [23]. This process is impor-

tant as it can increase the cost of electricity supply during recovery hours when the retailers

have to buy additional electricity from a volatile wholesale (spot) market and the network

operators (i.e., Transcos and Discos) must deliver additional power using their stressed

networks. Ideally, the value of DR capacity provided by customers should be calculated

by taking into account both the benefits of load reductions and the costs associated with

subsequent load recovery.
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A comprehensive study of the load recovery effect on every participant (Recos, Transcos,

Discos, and customers) in DRX markets should be the subject of further work in this area.

We should point out that such a study can utilize our assessment framework given by Fig.

5.2. In particular, the players directly involved in the process of DR scheduling (i.e., via

market clearing) are put in box I, while other participants that are not (but still either

gain some free DR benefits or incur some losses) are put in box II. If all players were to

participate in the DR scheduling process, box II would be removed. This case, however, is

rare in current practice.

To account for the load recovery pattern across all participants, the assessment method-

ologies included in the proposed framework should be extended with: 1) details on the type

of loads to be curtailed (i.e., HVAC application) and their recovery characteristics; and

2) inter-temporal stochastic effects of load recovery on both network reliability and spot

price volatility along the scheduling horizon (i.e., one day).

6.3.2 DR price volatility

Price volatility is an inherent characteristic of DR product being traded in a DRX. Once

there is a perception in the market that there are sufficient DR supply to meet the demand,

DR price will most likely drop quite dramatically—as similar to the electricity spot prices.

There is also significant uncertainty in such DRXs because market participants never have

perfect access to reliable information regarding current and future supply and demand for

DR. This uncertainty essesntially results in the price volatility.

Price volatility should also be the subject for future study in this area. Particular focus

may be to mitigate this volatility by creating effectively on-going demand and having good

market clearing strategies that continues to increase towards efficient market equilibirum.

In this way, the conditions of demand and supply are kept relatively stable from time to

time, resulting in non-volatile prices for DR.

Another solution to reduce price volatility is to augment the elasticity of demand and

the elasticity of supply. For example, when demand is highly elastic, shifts in supply would

have only little effect on market equilibrium price, although the market quantities change.

When supply is highly elastic, shifts in demand will again have little impact on the market

equilibirum price. This implicates the price stability (or non-volatility.)

6.3.3 Non–convexities

The market design and analysis carried in this thesis, particularly Chapters 3 and 4, were

largely based on convex optimization theory under the preference convexity assumptions

(including cost convexity and benefit concavity). Although such mathematical assumptions

are commonly used in economic modeling, it would be necessary to examine their validity

by looking at the real market conditions. Experience in electricity markets suggests that
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cost functions are not entirely convex and benefit curves not completely concave, which

can be explained by the physical characteristics attached to these functions. For example,

due to the ON–OFF operation of power generating units and electricity loads, the shapes

of cost and benefit curves can be elbow or discontinuous at certain points, consequently

resulting in their non–convexities in mathematical sense.

Study of the impact of non–convexities on DRX market clearing optimization outcome

should be another topic for future work. This study may be presented in several directions.

First, a proper convexification method can be utilized to “smoothen” the cost and benefit

curves by which they are approximated by truly convex and concave functions, respectively.

In this direction, data sensitivity analysis should be carried out to examine the effect of

estimation errors on market outcome. Second, advanced optimization theory can be applied

to solve the DRX market clearing problem in its original non–convex form. In particular,

certain duality–based decomposition techniques should be able to convert that problem

into an equivalent model (i.e., giving the same optimal results) which is convex and thus

can be solved using commercial programming tools (i.e., GAMS) in polynomial time. This

approach is promising since it has been (more or less successfully) applied for the case of

wholesale electricity markets.

6.3.4 Game–theoritic analysis

Our DRX market equilibrium analysis was performed in Chapter 4 under the competitive

conditions such that: 1) each participant is a price–taker (i.e., accepting the market price

as it is); and 2) participants do not have private information of each other and thus cannot

anticipate their bidding strategies. Again, experiences in electricity and other markets show

that such conditions are not always satisfied, because there are certain players being able

to exert market power and thus alter prices (for example, the 2002 Carlifornia electricity

market crisis); additionally some players can find ways to collect bidding information from

others. Although these strategic behaviors can be alleviated introducing certain market

policies and regulation (i.e., strong penalties to those strategic players), it is interesting to

analyse their impact on DRX market outcome as a whole.

A major approach to this strategy analysis is game theory that explains the causes and

consequences of conflict and cooperation between intelligent rational decision–makers (i.e.,

agents). As with microeconomics, game theory utilizes the notion of equilibria to model the

outcome of the“game”. Among these, Nash equilibrium is the most widely–used concept, in

which each player is assumed to know strategies of the others, and no player has anything

to gain by changing his own strategy unilaterally. This Nash concept will be likely suitable

for modeling the DRX market under strategic (rather than competitive) behavious of the

market agents (buyers and sellers.)
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6.3.5 Long term impact assessment

The work given in this thesis focused on short–term scheduling problems (i.e., hour-ahead).

While this is important as being related to the daily operation of power systems, it would

not be complete without considering the long–term impact of DR traded in a DRX. Such

impact generally includes reducing the need of otherwise upgrading the physical power

networks and the generation systems via significant investment. Such reductions can be

quantified in financial terms, resulting in another monetary benefit of DR in addition to

the short–term network reliability and market volatility mitigation benefits.
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