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Abstract

Traditional extractive sampling methods, such as netting and trawling, to assess

benthic species diversity, size and abundance are unable to sample complex hard

substrates, e.g., rocky reefs. This inability led to the development of alternative

non-extractive sampling platforms, such as digital stills and video cameras mounted

onto stationary or moving platforms. This thesis examined two moving platforms,

autonomous underwater vehicle (AUV) and towed video platform and one stationary

platform, stereo baited underwater video systems (BUVS). These platforms were

used as sampling tools to assess reef fish diversity, size distribution and absolute

and relative abundance in complex deep-water (30 – 100 m) rocky reefs in temperate

Australia (Tasmania). Each platform was evaluated with respect to their efficiency

and reliability within a sustainable resource management framework. A novel feature

extraction routine, using colour, texture, patch-gap summaries and rugosity, to

semi-automatically classify AUV images into habitat classes is proposed. Here,

the randomForest classification tree algorithm was used to assign habitat classes

to images after initial training (i.e., 500 images annotated by a trained human

expert). Classifier accuracy was assessed using this human scored image set. Habitat

prediction accuracy was 84% (with a kappa statistic of 0.793).

The evaluation of stereo BUVS as a tool to inventory and monitor deep-water

temperate reef fish diversity can inform resource managers of advantages and
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disadvantages of this particular sampling platform. Species richness and relative

abundance across different survey sites over two years were investigated. In addition,

stereophotogrammetric fish length estimation of two commercially important

species, striped trumpeter (Latris lineata) and blue-throated wrasse (Notolabrus

tetricus), were utilised to set a benchmark for future reference and compared to

line-fishing (L. lineata) and trapping data (N. tetricus).

All three platforms were compared to evaluate their ability to assess reef fish diversity

and abundance. Sample variability for each tool was assessed statistically and

synergy between platforms proposed. The cost-effectiveness of each platform was

assessed qualitatively.

An assessment of the size and abundance distribution of the ocean perch

Helicolenus percoides was conducted using photographic records taken by the AUV.

Stereophotogrammetric size estimates were converted into biomass and examined

with respect to depth and habitat types. Habitat preferences of adult and juvenile

ocean perch were also investigated. The results suggest that AUV Sirius is a mature

survey platform in complex hard substratum environments. The utility of this non-

extractive sampling tool in a fisheries context is discussed.

Non-extractive imagery-yielding sampling platforms provide useful alternatives

when sampling complex environments. Data quality, derived from imagery, is

benefitting from rapidly developing technology, e.g., high-definition video and

megapixel digital cameras. Non-extractive methods provide the only means to

sample marine protected areas. Advantages and disadvantages of each platform

are now readily accessible to advise resource management agencies.
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1

Chapter

1 Introduction

1.1 In a nutshell

Continental shelves provide more than 90% per cent of the world’s fisheries landings

and for 3 billion people, fish constitutes 15% of their animal protein intake

per capita (FAO, 2010). Rocky reefs are highly productive and an ecologically

important component of continental shelves due to their high species numbers and

habitat diversity (Taylor, 1998). Sustainable management of finite resources on the

continental shelf requires efficient and preferably non-extractive methods to assess

and monitor these assets. This thesis tests and evaluates three novel non-extractive

methods to sample marine resources with respect to efficiency and applicability to

current managerial needs such as habitat mapping and fisheries and conservation

management.

1.2 Sustainable resource management – a fisheries example

Traditional single-species fisheries management has often been ineffective as it

ignores ecosystem components of the target species such as habitat, predators

and prey (Pikitch et al., 2004). Over the past decade many nations adopted an

alternative management approach that strives to sustain healthy marine ecosystems
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and the fisheries they support (Pikitch et al., 2004). This alternative is called

the Ecosytem-Based Fisheries Management (EBFM) or the ecosystem approach to

fisheries (Garcia et al., 2003). Ecosystem-based management (EBM) is not exclusive

to fisheries but finds application in contemporary ocean and living marine resource

management (Murawski, 2007). According to Pikitch et al. (2004) EBFM should

(i) avoid degradation of ecosystems, as measured by indicators of environmental

quality and system status; (ii) minimize the risk of irreversible change to natural

assemblages of species and ecosystem processes; (iii) obtain and maintain long-

term socioeconomic benefits without compromising the ecosystem; (iv) generate

knowledge of ecosystem processes sufficient to understand the likely consequences of

human actions. Where knowledge is insufficient, robust and precautionary fishery

management measures that favour the ecosystem should be adopted (Pikitch et al.,

2004). The central piece of legislation in Australia to address these four points

is the Environment Protection and Biodiversity Conservation Act 1999 (EPBC).

The EPBC Act provides a legal framework to protect and manage nationally and

internationally important flora, fauna and ecological communities (DSEWPC, 2012).

This includes measures to mitigate threats through global warming, i.e., sea-level rise

(to protect reef-forming corals) and increased occurrences of severe weather events

(cyclones and droughts) and reducing river pollution and sediment loads in rivers

(both are factors that affect mangrove forest and coral reef ecosystem health; Rogers

(1990); Fabricius et al. (2005)). Under the EPBC Act, the Australian Government

identified a network of marine reserves to halt the decline in biodiversity and

implemented marine bioregional planning. Commonwealth Marine Reserves (CMR)
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form part of this network with the following activities still allowed: recreational and

commercial fishing, marine tourism, charter boat operations (fishing), recreational

boating, mining and oil and gas activities and port development and shipping.

Protection of CMRs is provided by fishing gear restrictions, gear with no or

little impact on the benthic fauna, control over the extent of fishing activities,

environmental assessments before commencing mining and port development and

licensing for tourism and charter boat operators.

1.3 Australia’s recent EBM history

“Australia aims to realise its international commitments as a signatory to the

Convention on Biological Diversity through the significant expansion of its existing

MPA network throughout Australia’s Exclusive Economic Zone (EEZ) by 2012”

(DSEWPC, 2012). This expansion is achieved through the establishment of a

National Representative System of Marine Protected Areas (NRSMPA). “The

primary goal of the NRSMPA is to establish and manage a comprehensive, adequate

and representative system of marine protected areas to contribute to the long-term

ecological viability of marine and estuarine systems, to maintain ecological processes

and systems, and to protect Australia’s biological diversity at all levels” (DSEWPC,

2012). One of the secondary NRSMPA objectives is to provide scientific reference

sites. These reference sites provide a benchmark against which the effects of human

impacts in unprotected areas can be compared.
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1.4 Consequences of adopting EBM

Currently, ∼ 880, 000 km2 or 10% of Australia’s EEZ, excluding the Australian

Antarctic Territory are part of the NRSMPA (DSEWPC, 2012). However, only a

fraction of this area, usually areas in State coastal water and parts of the Great

Barrier Reef, has been inventoried or was subjected to baseline MPA monitoring

to capture the variability of natural processes. Actual knowledge of what the

NRSMPA comprise is so poorly known, that surveys of the Australian continental

shelf and slope typically find that 30 – 50% of the decapod species sampled are

new to science (Poore et al., 2008). Protected areas within the NRSMPA need to

contribute to the representativeness, comprehensiveness or adequacy of the national

system which, given the poor knowledge of what the areas actually comprise, is a

challenging prospect. This only highlights the difficulties encountered during the

planning phase regardless of meeting the 2012 target. Once established [NRSMPA],

the Environment Protection and Biodiversity Conservation Act requires an annual

environmental performance report. Currently, surveys of State managed marine

reserves provide the most comprehensive knowledge of continental shelf habitats and

therefore allow CAR (Comprehensive Adequate and Representative) principles to

be fully implemented. Consequently, adopting ecosystem-based management (EBM)

requires solutions to address (1) rapid resource and habitat mapping, (2) baseline

data to evaluate management strategies and (3) regular monitoring techniques.

With respect to habitat mapping in an EBM context, it is not sufficient to identify

habitat types and quantify their distribution (see EBFM management objective (iv)
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above). Rather, EBFM should generate knowledge of ecosystem processes such as

fish-habitat associations and inter-habitat relationships.

1.5 Current EBM challenges

Qualitative and quantitative data are a prerequisite for managing coastal marine

resources. This knowledge is fundamental during the planning phase (inventory)

as well as after implementation (monitoring). Underwater visual census (UVC)

techniques are the most commonly used methods for monitoring biotic change in

coastal MPAs [Marine Protected Areas] (Barrett and Buxton, 2002). UVC is a

diver-based sampling method. Despite its [UVC] popularity it is ineffective in

sampling most managed fishing grounds and reserves; UVC is restricted to water

depths, that are safe for SCUBA divers (< 30 m). To address the critical need

for efficient sampling tools without depth restrictions, the Marine Biodiversity Hub

funded by the Commonwealth Environmental Research Facilities program tested and

integrated, relatively new survey technologies such as multibeam sonar, underwater

video and autonomous underwater vehicle (AUV) imagery (Bax, 2011; Brown et al.,

2011; Kostylev et al., 2001). Desirable characteristics of these new sampling

tools include being quantitative, non-extractive and suitable for monitoring, i.e.,

cost-effective and able to return to the exact sampling location for subsequent

surveys. Marine habitat maps are fundamental prerequisites for scientific fisheries

management and monitoring environmental changes and anthropogenic impacts on

benthic habitats (Kostylev et al., 2001; Diaz et al., 2004; Halpern et al., 2008;

Hobday et al., 2011). Currently, only 12.5% of Australia’s marine territory has been
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bathymetrically mapped (Bax, 2011). This territory does not exceed 200 nautical

miles from the baseline, i.e., low water line along the coast, unless the geological

continental shelf extends beyond the 200 nm limit. Hence, the continental shelf

and slope, abyssal plains, canyons and other submarine features can occur within

this geologically arbitrary 200 nm limit. Current notable mapping coverage include

almost all MPAs in Australia, Cape Nelson, Victoria (Rattray et al., 2009) and the

Hopkins site in Victoria (Ierodiaconou et al., 2007). The aforementioned habitat

maps are based on multibeam sonar data (bathymetry and acoustic backscatter)

and fine-scale ground-truthing data using video imagery of the seafloor. Although

sonar data in isolation can provide coarse habitat maps using morphometric feature

classification (Lucieer and Pederson, 2008) they cannot provide ecologically more

meaningful maps of kelp forest, sponge garden or coral reef extent (Wilson et al.,

2007). Morphometric feature classification is based on nearest neighbour statistics

on gridded bathymetry data. For example, by examining relationships between

neighbouring grid cells and the central grid cell in a 3 × 3 window an algorithm

developed by Wood (1996) classifies each cell into one of six feature (habitat) classes:

plains, passes, ridges, peaks, channels or pits. However, the creation of ecologically

more meaningful habitat maps relies on the combination of bathymetric data and

fine-scale data obtained from grab samplers, sediment cores or imagery (ground-

truthing). In recent years multibeam sonar backscatter analysis has provided some

insight to the nature of seabed features such as hard or soft substratum (Hasan et al.,

2012). Both techniques in conjunction with ground-truthing, either extractive or

image-based, provide the foundation to develop models that predict seafloor habitats
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(Kostylev et al., 2001). Processing fine-scale (∼ 1 m2) samples is time-consuming

and resource-intensive. This processing stage is often considered the proverbial

bottleneck during map production. However, this extraction of information is

essential to acquire qualitative and quantitative data using fine-scale imagery.

1.6 Solutions – thesis objectives

As part of the Marine Biodiversity Hub this study tested and evaluated imagery-

yielding samplers that are non-extractive and quantitative. An advantageous

characteristic of imagery-yielding samplers is the permanent record and auxiliary

information contained in the imagery, e.g., the target species AND its environment.

Testing and evaluation was conducted under the following criteria: (1) cost-

effectiveness with respect to collecting an inventory of habitats and monitoring

fragile and/or protected environments, applicability to existing needs, e.g., fisheries-

independent stock assessment, MPA planning and monitoring and habitat mapping.

Three different sampling tools were tested to address several challenges with respect

to the current EBM challenges outlined above.

Advanced habitat mapping techniques – chapter 3 (Seiler et al.,

doi.10.1016/j.csr.2012.06.003)

Almost 90% of Australia’s EEZ remains to be bathymetrically mapped. However,

within this 200 nm EEZ there are several geological features, such as the continental

slope, seamounts, abyssal plains and canyons that are less well known than the
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continental shelf. Currently, multibeam echo sounders (MBES) are the only means

to efficiently fathom Australia’s continental shelves, especially areas with high

conservation value such as Australia’s MPAs. Most notable areas that were mapped

using scientific multibeam echo sounders are Jervis Bay, NSW (Anderson et al.,

2009) and the Freycinet and Huon Commonwealth Marine Reserves, TAS (Nichol

et al., 2009). However, the resolution and information provided by MBES alone

is insufficient at the habitat scale – the scale at which EBM [ecosystem-based

management] operates. At the habitat scale (area that comprises ecologically

linked multi-species assemblages, such as kelp, invertebrates and fish in a kelp

forest habitat), imagery-yielding samplers are the only means of mapping benthic

habitats on hard substrates such as sponge gardens or kelp forests on rocky reef

(Copeland et al., 2011). However, there are examples where Regional Marine

Planning is based on geomorphic features, such as continental rise, pinnacle, canyon,

terrace, trench/trough, etc, which are derived from grid-based terrain analysis

using multibeam bathymetry data (Harris et al., 2003). Two dominant methods

of producing marine habitat maps of hard substrates are currently in use (i) seafloor

images (point samples) combined with continuous interpreted MBES data and

(ii) transect or full-area photographic surveys. The former uses machine-learning

algorithms to establish relationships between topographic attributes, obtained from

terrain analysis using digital elevation models (MBES data), and distinct habitat

classes, annotated seafloor images, to predict habitat distribution outside the

photographed area (Rattray et al., 2009). The latter, photographic surveys, are

solely based on imagery collected by the sampler (Singh et al., 2004b). Both methods
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require annotation of imagery by a trained expert, which is time-consuming and

often subjective. A widely used habitat classification scheme based on substratum

type, requires classification based on a primary (> 50% coverage) and secondary

(> 20% coverage) substratum type (Greene et al., 1995). Subjectivity, or observer

bias, can cause coverage estimates to differ by 20% (personal communication Mark

Green, CSIRO). However, image annotation time can be significantly reduced and

observer bias eliminated using computer vision techniques. By combining several

computer vision techniques, such as edge and scene detection, assigning habitat

classes to images based on image content can be automated. Once the automation

routine is set up it only takes a few seconds to classify additional images thereby

increasing statistical power and precision (Purser et al., 2009). Chapter 3 describes

a method to automatically classify seafloor images into habitats based on a training

data set.

Effective sampling beyond diver’s depths – chapter 4

Underwater visual census is commonly used to monitor temperate marine protected

areas (Barrett and Buxton, 2002). However, high quality optical surveys are needed

to monitor MPAs beyond the range of safe SCUBA diving operations (Singh et al.,

2004a). For example, only 6% of the Great Barrier Reef Marine Park can be

safely monitored using SCUBA (Cappo et al., 2003). However, within depth ranges

encountered on continental shelves, remote or tethered camera platforms are free

from depth restrictions and serve as reliable samplers in deeper depths (> 30 m).

Nevertheless, these platforms need to be tested and evaluated whether they provide
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data quality as good, or better than those provided by SCUBA divers in shallow

depths. Assis et al. (2007) found that their towed video platform could assess a

larger protected area with respect to number of observed elasmobranch species and

individuals within the same time compared to UVC. However, Colton and Swearer

(2010) found that UVC recorded more individuals (fish species), higher richness at

species and family level than Baited Underwater Video Systems (BUVS). Chapter

4 tested the hypothesis whether BUVS are an equivalent to underwater visual

census in deeper waters with respect to reef-fish assemblage composition, species

richness and abundance and size structure. Further chapter objectives include a

test whether a new relative abundance index based on stereophotogrammetric fish

length measurements to identify individuals by length is superior to the current

relative abundance standard MaxN – maximum number of individuals of species

x in videoframe y and to develop a novel statistical approach to conduct power

analysis using count data, for which the common assumption of normality do not

apply.

Non-extractive fisheries-independent stock assessment – chapter 5

(Seiler et al., doi:10.1016/j.fishres.2012.06.011)

Traditional fishery resource assessment methods using extractive trawl gear are

unable to sample rocky substratum and are prone to underestimate the biomass

of species having partial or strong association with rocky reefs. The ocean

perch Helicolenus percoides, a species with strong association with rocky reefs was

sampled most frequently using trawls compared to traps and gill nets (Williams
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and Bax, 2001). Non-extractive imagery-yielding alternatives, that can sample

rocky substratum include manned submersibles (Yoklavich et al., 2000) and

autonomous underwater vehicles (Tolimieri et al., 2008). Tolimieri et al. (2008)

report rosethorn rockfish (Sebastes helvomaculatus) densities and habitat preferences

over different substrata, i.e., rock, sand and mud in depth ranging from 100 – 300

m based on digital images taken by an AUV. One major advantage of camera

platforms over trawl gear is the ability to observe species-habitat interactions.

For example, trawl gear usually samples several kilometers of seafloor, thereby

traversing several habitat types, however, the trawl catch comprises only fish and

bycatch and provides no information as to where a particular fish was caught.

In contrast, images capture fish in their natural environment and therefore allow

species-habitat investigations. Chapter 5 details the use of the stereo-camera

onboard the autonomous underwater vehicle Sirius to collect fisheries-independent

complementary data, such as abundance, size structure and habitat preferences of

the ocean perch Helicolenus percoides. More specifically, I tested the hypothesis

whether annotated, geo-referenced digital images taken by the AUV Sirius can

provide data required for ocean perch stock assessments under constraints of spatial

autocorrelation and untrawlable terrain, i.e. rocky reefs.

Efficiency testing three non-extractive samplers – chapter 6

Several non-extractive samplers are available to resource managers to inventory

and monitor protected or restricted marine areas. From a resource management

perspective these samplers should be cost-effective, easy to deploy and applicable
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to various management objectives. One management objective, to halt the decline

of biodiversity, encompasses enumeration of individuals (abundance) and species

(species richness). In order to halt or reverse biodiversity decline an understanding

of fish assemblage distribution over various spatial and temporal scales is essential.

BUVS studies in three marine parks in New South Wales, Australia by Malcolm

et al. (2007) found that total species richness of fish assemblages did not follow the

latitudinal gradient phenomenon and that the temporal component (5 yr) is small

compared to the spatial component. Other imagery-yielding platforms such as towed

video and AUVs are potentially useful to assess temporal and spatial differences

in fish assemblage composition. Chapter 6 tests three non-extractive imagery-

yielding samplers and their ability to efficiently assess abundance and diversity of

fish assemblages on temperate rocky reefs.

1.7 Thesis outcomes and future research

The schema diagram in Fig. 1.1 shows various research question presented in this

thesis to address EBM needs and requirements such as resource maps, cost-effective

monitoring methods and management regime performance measures. The results in

this thesis show that several challenges, sustainable resource management agencies

are currently facing, such as effective habitat mapping, non-extractive fisheries-

independent benthic reef fish stock and biodiversity assessments, can be solved

using the methods presented in this thesis. Automated extraction of image features

enables semi-automated habitat mapping using imagery collected by the AUV Sirius.

Given the limited knowledge of marine habitat distributions below safe SCUBA
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diving depths and Australia’s pledge to sustainable resource management, which

includes habitats, AUVs, such as Sirius, in conjunction with automation routines

can significantly curtail processing time to produce habitat maps. An assessment of

size, abundance and habitat preference that can potentially complement fisheries-

independent ocean perch H. percoides stock assessments is presented in this thesis,

which showed the value of non-extractive imagery-yielding samplers (e.g., AUV

Sirius) compared to traditional fishing techniques (e.g., bottom trawls). With

respect to benthic reef fish, AUV imagery is free from sampling gear bias (size

selectivity) and AUVs can be deployed over rugged terrain, inaccessible to trawl

gear. This positive outcome is likely to encourage resource managers to adopt

sophisticated non-extractive sampling techniques (i.e., AUVs, BUVS and towed

video). The Convention on Biological Diversity (United Nations, 1992) defines

sustainable use as; resource use without a long-term decline in biodiversity. Trends

in biodiversity can only be detected using reliable sampling platforms within a

monitoring framework. With respect to temperate reef fish biodiversity below

safe SCUBA diving depths, chapter 4 showed that BUVS are efficient and reliable

samplers to monitor assemblage composition (i.e., species richness and abundance).

Although, BUVS have been used to assess fish diversity in the tropics (Great Barrier

Reef Biodiversity Assessment), its use in temperate deep-water reef environments is

sparse. South-eastern Australia, including Tasmania, is one of the fastest warming

regions in the southern hemisphere (Ridgway, 2007; Johnson et al., 2011) and it is

anticipated that BUVS will be the preferred method of assessing flow-on effects to

reef fish communities in this area.
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Although some solutions to current sustainable resource management challenges

in Australia are presented in this thesis, other challenges remain to be solved.

The biggest problem since the inception of baited video systems, unknown sample

volume, needs more attention. Visible sampling volume can now be determined

using stereophotogrammetry (i.e., calculating the point cloud volume using x-y-

z coordinates), however, bait plume dispersal in rugged terrain remains elusive.

Major improvements have been made to model sewage outfall plumes and coral

larval dispersal using computational fluid dynamics (Wild-Allen et al., 2010) and it

is likely that the same models can be applied to model bait plume dispersal.

Although, my results showed how applying computer vision routines can expedite

the process of habitat mapping, another branch of computer vision – object

recognition – could further expedite image processing. However, object recognition

of fish, invertebrates and macroalgae in their natural environment is still in its early

stages and needs further research (Gobi, 2010).
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Chapter

2 Data acquisition

2.1 Introduction

Sampling conducted during this thesis was under the auspices of the Commonwealth

Environmental Research Facilities funded Marine Biodiversity Hub. The majority

of data were collected during three surveys using R/V Challenger. Survey one was

conducted 13 – 26 June 2008, survey two 6 – 14 October 2008 and survey three 23

February – 14 March 2009. All surveys were conducted in south-east Tasmanian

waters, Tasmanian, Australia. “The purpose of field surveys in the Surrogates

Program [program within the Marine Biodiversity Hub] is to collect high-resolution,

accurately co-located physical and biological data to enable the robust testing of

a range of physical parameters as surrogates of patterns of benthic biodiversity at

relatively fine spatial scales” (Nichol et al., 2009). This chapter describes three non-

extractive, imagery-yielding sampling platforms used during this candidature. The

three sampling platforms below surveyed the same reef complexes Fig. 2.1.

(i) Autonomous Underwater Vehicle (AUV)

(ii) towed video system

(iii) Baited Underwater Video System (BUVS)



18

AUV and the towed video system were deployed using R/V Challenger. BUVS were

deployed using small (6 m) boats. The basic design and components are described

for each platform. BUVS and the towed video system recorded digital video footage

and the AUV recorded digital still images. BUVS and AUV were equipped with a

stereo camera setup and provided photogrammetric length measurements of objects

in the imagery. BUVS deployment locations were chosen based on known habitat

types derived from annotated AUV images. Towed video transects were placed to

overlap AUV mission tracks and to cover roughly the same areal extent.

2.2 Study area

The study area stretched over some 50 km of coastline in south-eastern Tasmania

between High Yellow Bluff and the Hippolyte Rocks (Fig. 2.1). Despite being a

popular recreational SCUBA dive destination, little was known about the benthic

assemblages below diver’s depths (< 30 m). The “Peninsula Mapping Region”

(Barrett et al., 2001) has a dominantely easterly aspect, high vertical cliffs,

deepwater reefs (to 100 m depth) and medium to high wave exposure 2.1. Key

ecological features down to the 40 m depth contour were mapped during the

SEAMAP (www.seamap.imas.utas.edu.au/) project using a range of towed video

surveys Barrett et al. (2001). Geologically the coastline is composed of dolerite,

sedimentary rock and to a lesser extent granite, i.e., the Sisters, see Fig. 2.1 (Barrett

et al., 2001).
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2.3 Bathymetric mapping

A ship-borne Simrad EM3002(D) 300 kHz multibeam echo sounder (MBES) in single

transducer mode was used for bathymetric mapping from 13 – 26 June 2008 (Nichol

et al., 2009). The Applanix Position and Orientation system (Applanix Corporation)

collected motion referencing and navigation data. Geographical position during the

survey was recorded using the C-Nav GPS system (C-Nav World DGNSS). Vessel

survey speed in inshore and shallow water areas was 5 knots and 10 knots in deeper

offshore waters. Multibeam data were corrected for tides and vessel motion using

CARIS Hips and Sips v6.1 software (CARIS). The final raster digital elevation model

had a resolution of 2× 2 m.

2.4 Autonomous underwater vehicle

The Autonomous Underwater Vehicle (AUV) Sirius, operated by the Australian

Centre for Field Robotics at the University of Sydney, sampled benthic fauna by

means of digital photography. Sirius was a modified version of the SeaBED AUV

(Singh et al. 2004) built by the Woods Hole Oceanographic Institution (Fig. 2.2).

This ocean-going survey AUV was designed to be passively stable in pitch and

roll. Stability was achieved by two torpedo-like components joined by turbulence-

reducing vertical struts. The upper component consisted of flotation bodies and the

electronics housing, giving the AUV positive buoyancy and the lower component

contained the various sensors and batteries. The overall dimensions of the AUV

were 2.0 m (length) × 1.5 m (height) × 1.5 m (width). Its weight, depending
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on payload, was ∼200 kg. The vehicle was rated to 700 m depth. Yaw, forward

and backward movement was controlled by a pair of aft-facing thrusters. Vertical

(depth) movement was accomplished by one vertical thruster. Geographical vehicle

positioning on the surface was accomplished using GPS. Navigation underwater was

achieved using a Doppler velocity log, inertial measurement unit, ultra-short baseline

acoustic positioning system, pressure sensor and compass. For an exhaustive list of

all vehicle specifications and sensors see Table 2.1. The AUV’s ability to ‘hover’

facilitated a virtually constant altitude of 2 m above the seafloor which equated

to an image footprint of 1.6 × 1.3 m (∼2 m2). Average image area was 2.04 m2

(±0.09 SD). The relatively slow ‘flying’ speed of the AUV is ∼0.4 m/s. A pair of

downward-looking Pixelfly HiRes (1360 × 1024 pixels) digital cameras took images

at a one second interval. Two strobes, one situated at the front and the other at

the back of the AUV, synchronously illuminated the field of view.

2.4.1 AUV camera calibration

The stereo camera setup was calibrated to ensure precise photogrammetric

measurements. Images of an object with known dimension were recorded using

the stereo camera setup in a circular pool filled with seawater. This object was

a printed chequerboard-pattern laminated to a 80 × 80 mm stiff perspex board.

The photogrammetric bundle adjustment package CAL (Seager, 2009c) was used to

derive a set of constants specifying the coordinate system of the stereo camera unit

(datum). The resultant parameters were necessary for photogrammetric length, area

or volume estimation of objects using the PhotoMeasure software package (Seager,



22

Table 2.1: List of AUV specifications and sensors
Vehicle Specifications
Depth rating 700 m
Size 2.0 m (L) × 1.5 m (H) × 1.5 m (W)
Mass 200 kg, depending on payload
Maximum Speed 1.2 m/s
Batteries 1.5 kWh Li-ion pack
Propulsion 3 × 150 W brushless DC thrusters
Navigation
Attitude/Heading Tilt (±0.5◦), Compass (±2◦)
Depth Paroscientific pressure sensor (0.01 %)
Velocity RDI Navigator ADCP (1 - 2 mm/s)
Altitude RDI Navigator
USBL TrackLink 1500 HA (0.2 m range, 0.25◦)
GPS Ashtech A12
Optical Sensing
Camera Stereo Prosilica 12bit 1360 × 1024 CCD
Lighting 2 × 2.8 J strobe
Separation ∼1 m between camera and strobe
Acoustic Sensing
Multibeam sonar Imagenex DeltaT 837 Profiling 260 kHz
Imaging sonar Tritech Seaking (optional)
Obstacle Avoidance lmagenex 852 Echo Sounder
Other Sensors
CTD Seabird 37SBI
Fluorometers Wetlabs Ecopuck (chlorophyll a, CDOM, scattering red)
dissolved oxygen Aanderaa Optode
Communications
Radio Frequency Freewave 900kHz radio + ethernet
Acoustic Modem TrackLink 1500 HA modem
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2009a).

2.4.2 AUV sampling design

The AUV sampled rocky reefs from 6 – 14 October 2008 with the support of R/V

Challenger (Nichol et al., 2009). Total transect length was ∼60 km (16 dives).

Individual AUV dives were haphazardly placed on prominent deep-water rocky reefs

(25 – 100 m depth) emphasising on rocky reefs as well as transition zones between

reef and adjacent sandy areas. Transect placement was based on visual assessments

of sun-illuminated geoTIFF files from a previous multibeam survey (Nichol et al.,

2009). The intersecting survey pattern (Fig. 5.1) was necessary to maintain high

spatial accuracy (positional error is in the centimetre range). In a monitoring context
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it is anticipated that the AUV is sampling the same transect during each survey.

This survey pattern reduced positional error, introduced by dead-reckoning and

sensor inaccuracies, by using the simultaneous localisation and mapping (SLAM)

technique. SLAM re-navigated the estimated vehicle trajectories (Williams et al.,

2008b) based on matching images (intersections).

2.4.3 AUV image annotation

AUV images were manually annotated, recording habitat type and mobile

megafauna, e.g., fishes, echinoderms, crustaceans and molluscs. Eleven habitat

types in three subgroups, hard and soft substrate and transition zones are described

in Table 2.2. Annotation was based on the dominating (> 50%) visible feature

within the image irrespective whether it is a physical and biological structuring

component. For example, although it is a fair assumption that the macroalga

Ecklonia radiata resides on hard substrate, images containing E. radiata were

classified as ECKLONIA (provided E. radiata cover was > 50%). During habitat

scoring only changes in habitat type were recorded. For example, if image 1 – 100

depicted habitat type sand and image 101 - 120 depicted habitat type high relief

reef, there would be only two records; image 1 - sand, image 101 - high relief reef.

The remaining images, 2 – 100 and 102 – 120, were automatically labelled based

on its predecessor’s label using a MATLAB script. Species identification was based

on identification guides (Gomon et al., 2008; Edgar, 1997) and expert advice from

leading taxonomists. Each image was recorded with a unique date and time stamp.

This date and time stamp linked an image to auxiliary data such as geo-position,
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depth, salinity, temperature, etc.

Table 2.2: Habitat types scored during AUV image annotation with
brief description

habitat type description

Caulerpa macroalgae, Caulerpa spp, covering more
than 50% of the rocky seafloor

Ecklonia macroalga Ecklonia radiata covering more
than 50% of the rocky seafloor

high relief reef rocky reef, elevation change more than 20 cm
(within image)

low relief reef rocky reef, elevation change less than 20 cm
(within image)

coarse sand coarse sand with small pebbles and gravel
pebble and tuft coarse sand with small pebbles and gravel

dominated by bryozoan tuft
sand fine sand
screw shell rubble screw shells, Maoricolpus roseus, covering

more than 50% of the sandy seafloor (within
image)

screw shell rub-
ble/sand

screw shells covering less than 50% of the
sandy seafloor

patch reef patches of rocky reef within sand
reef-sand ecotone rocky reef edge, transition to/from sand

2.5 Baited underwater video system

Although, underwater photography is almost as old as photography itself (Norton,

2000), baited underwater video systems were first deployed in 1996 by Willis and

Babcock (2000). Their downward-looking (vertical) camera design was subsequently

changed to a forward-looking (horizontal) camera design, culminating in stereo

BUVS pioneered by Harvey and Shortis (1996). BUVS are primarily used to

assess fish assemblage composition. Cappo et al. (2004) found that BUVS sampled

significantly different tropical reef fish assemblages compared to prawn trawls. In

temperate waters Willis et al. (2000) detected spatial variability in relative fish
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abundance, comparing BUVS with UVC and angling. Several other studies tested

BUVS performance compared to UVC and unbaited underwater video systems

(Langlois et al., 2010; Watson et al., 2005). Watson et al. (2007) found that the

establishment of a marine reserve caused changes in assemblage composition in a

temperate-tropical transition zone. All references above are studies in shallow (< 30

m) waters and do not assess fish assemblage compositions below safe SCUBA diving

depths. This study used BUVS to describe benthic fish assemblages in temperate

deep-water (> 30 m) rocky reef environments.

2.5.1 BUVS design and components

The BUVS frame was shaped like a truncated pyramid with an oblong base. It

consisted of four galvanised steel parts, these were:

(i) the frame base, which besides forming the base of the frame acted as a

redundant safety device. In case of BUVS entanglement, vigorous pulling

detached the base from the top. The top part, consisting of the underwater

housings and cameras, can be retrieved with the minor loss of the base. 6 kg

galvanised steel bars for weighting and balancing the frame can be attached to

all four sides of the frame base.

(ii) the frame top held the camera bar and also provided an attachment point for

the rope.

(iii) the camera bar was designed as an independent unit for ease of camera

calibration in a swimming pool environment. Two tubular underwater housings
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made from pressure-pipe PVC with detachable plexiglas front dome and fixed

rear dome were attached to the bar, ∼75 cm apart and inwardly converged by

8° for optimised field of view (Harvey and Shortis, 1996).

(iv) the detachable bait arm was intended to decrease overall unit dimensions and

ease of transport. Whilst one end attached to the camera bar, the outward end

served as an attachment point for the bait basket and LED array. The array

was visible in the video footage of both cameras and the LED blinking sequence

provided a reference to synchronise video footage of the left and right camera.

Synchronisation reduces photogrammetric measurement error by overcoming

motion parallax (Harvey and Shortis, 1996).

A negatively buoyant rope (12 mm diameter) attached to the frame top allowed for

easy BUVS retrieval by hauling with assistance of an electrical winch. Two white

polystyrene surface floats (250 mm diameter) were attached to the end of the rope

to provide flotation and increase visibility from distance. A schematic of the frame

and camera housings is provided in Fig. 2.3.

Underwater camera housings

The tubular camera housings, depth rated to 150 m, were made from pressure-pipe

PVC and plexiglass domes. The detachable front dome connected to an aluminium

frame that served as a base for the video camera. An alignment pin on the front of

the PVC tube assured the same dome (camera) position after camera retrieval.
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Figure 2.3: Schematic of BUVS unit; LED array (green) on bait arm,
pins (red) for weight attachment, cameras and underwater housings
(blue outline).

Video cameras

Six JVC GZ-MS100 PAL (720×576 pixels) off-the-shelf video cameras, two for each

of the three frames, were used during this study. A Raynox wide angle conversion

lens (conversion factor 0.7) was attached to the cameras to increase the field of view.

Using the higher capacity JVC battery pack (BN-VF823U) increased recording time,

∼4 hours. Video footage was recorded on 16 GB SDHC memory cards.

2.5.2 BUVS camera calibration

Calibrating stereo camera systems ensures precise photogrammetric measurements.

Off-the-shelf cameras are rarely metric and therefore deviate from a perfect central

projection. This deviation needs to be modelled during the calibration process

(for more technical details see Harvey et al. (2003)). Calibrations were conducted

after every setup change; movement or removal of camera housings. Differences in



2.5. BAITED UNDERWATER VIDEO SYSTEMS 29

optical properties between seawater and freshwater are negligible with respect to

measurement accuracy (Harvey et al., 2003). Hence calibrations were conducted

in a public swimming pool due to ease of access. An object of known dimensions

(calibration cube) was recorded for later calibration in the video lab. Dimensions of

the precision-made calibration cube were 1 m × 1 m × 0.5 m (Fig. 2.4). The

photogrammetric bundle adjustment package CAL (Seager, 2009c) was used to

derive a set of constants specifying the coordinate system of the stereo camera unit

(datum). The resultant parameters and internal characteristics of the video cameras

such as focal length, principal points, lense distortion, orthogonality and affinity

terms as well as the relative orientation of the two cameras to one another were

necessary for photogrammetric length estimation of objects using the PhotoMeasure

software package (Seager, 2009a).

2.5.3 BUVS sampling design

Bait

BUVS are baited to attract fish to come close to the cameras. Unbaited underwater

video systems record one quarter of the number of individuals recorded by baited

systems (Watson et al., 2005). The de facto standard bait used in BUVS research

is crushed pilchard Sardinops spp. However, Wraith (2007) reports significant

differences in relative abundance and species richness recorded using three different

bait sources, pilchard, abalone and urchin. Although Wraith (2007) studied a

temperate embayment, Jervis Bay, New South Wales, Australia, published BUVS



30

Figure 2.4: Schematic of calibration cube, every white dot (target)
refers to a number in a file that contains their x, y and z coordinates;
targets within the five different symbols (each corner and center) were
usually sufficient for the CAL software package to automatically detect
the remaining targets
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results in Tasmanian waters were non-existent at the time of writing. To find

the most efficient bait source three different baits were tested, crushed pilchard,

crushed salmon and Hook’em Fish Kandy (commercial fish attractant, Hook’em

Fishing). Pilchard was the most effective bait – MaxN for target species was highest,

biodiversity (species richness and Shannon index) was greatest, time of first arrival

(fish at BUVS station) was shortest and bait plume dispersal period was longest –

and was used for all subsequent BUVS deployments. For each deployment 800 g

of Sardinops sagax was crushed to promote odour dispersal and placed in a plastic

craypot bait basket (Quin Marine Pty Ltd) suspended ∼1 m in front of the two

BUVS cameras. The bait basket was re-filled before each deployment. Replicate

BUVS locations were separated by at least 200 m to prevent overlapping bait plumes.

This would have increased the risk of recording the same individual with two different

BUVS units and therefore inflated relative abundance estimates.

BUVS deployment

BUVS deployment duration differs between temperate and tropical locations

(Watson et al., 2005; Cappo et al., 2004), which is largely attributed to higher

species richness in the latter. Investigations in the tropics require less BUVS

deployment time to record the same number of species compared to investigations in

temperate regions (Cappo et al., 2004). Watson et al. (2005) state that >36 min of

deployment time is necessary to record “the majority of fish species” in temperate

regions of Western Australia. To determine to what extent Watson et al. (2005)’s

findings are applicable to Tasmanian rocky reefs, the relationship between duration
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of deployment (soak time) and species richness S was investigated during a pilot

study. The pilot study found that at least 40 min of soak time are required to

obtain S as high as the average species richness. Subsequently, soak time at the

bottom was 45 min. BUVS were deployed between 14 May 2009 and 22 August

2010 during daylight hours (8 AM to 6 PM) depending on season using a ∼6 m

boat. Sampling depth ranged from 32 – 81 m. The study area was subdivided

into sites based on distinct reef complexes. These reef complexes were chosen using

a high-resolution bathymetric map obtained during survey leg one. This study

focused on fish assemblages on reef areas with high range values (range: local relief

measure, subtracting the minimum elevation from the maximum elevation in a local

neighbourhood of 6, 10 and 18 m kernel radius); for further details see Moore et al.

(2009). Hence, BUVS were deployed on high relief reef habitats (high range values).

From the moment the BUVS unit is dropped to the moment it reaches the seafloor,

the unit can drift and may not always land in the same geographical position or

habitat. To ascertain that the right habitat was sampled the footage was visually

inspected using the visible camera footprint. BUVS deployments in non-targeted

habitats were discarded. Sampling locations are depicted in Fig. 4.1. Three replicate

samples were taken for each site and each season.

2.5.4 BUVS video annotation

Video footage was viewed and annotated using the software package EventMeasure

(Seager 2009). MaxN, the maximum number of individuals of a given identified

species per video frame was recorded to avoid repeated counting of the same
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individual (Cappo et al., 2004).

EventMeasure

The software package EventMeasure (Seager, 2008) was used to record species

abundance and diversity as well as fish behaviour by interrogating footage from

the left or right video camera. Every species entering the field of view was recorded

by right-mouse clicking on the individual and choosing the desired attributes (species

name, stage and behaviour). Each of these events was saved to a .emObs file for

later fish length measurements in the software package PhotoMeasure.

Additional information, such as time (frame number) when the BUVS frame hit the

bottom, habitat type, first arrival of first fish and time when the frame was lifted

off the bottom were recorded. MaxN, the maximum number of species x in video

frame y for each 45 min deployment, was used throughout this study to indicate

fish abundance and derive diversity measures such as Simpson’s index (D). MaxN is

considered a relative abundance measure as opposed to a absolute density measure

such as number of individuals of species x per m2. Polymorphic species such as

the blue-throated wrasse Notolabrus tetricus, provided a male and female entered

the field of view, allowed for a different relative abundance measure than MaxN.

For example, if a male and female N. tetricus entered the field-of-view but not at

the same time (video frame y), relative abundance for this 45 min deployment was

considered 2 rather than 1 (MaxN).
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2.6 Towed video platform

Geoscience Australia developed small (30 × 50 cm [sic]), shallow-water RayTech

towed interlaced video system consisted of two steel side panels connected by several

rods and bars, that gave stability as well as attachment points for sensors (Fig. 2.5)

(Nichol et al., 2009). A wing on the back of the platform stabilised the ‘flight’ path

(pitch, yaw and roll). A stable platform provides a consistent field of view, i.e., a

consistent sample area. The umbilical cable served as tether and communications

cable to control lights and laser pointers and receive real-time PAL video footage

onboard the support vessel. The two 250 W lights could be switched on and off on

demand but remained off most of the time due to adequate ambient light conditions

and the high sensitivity of the digital video camera. Two laser pointers, 15 cm

apart, underneath the lights served as an indication of scale in the video footage. A

ultra-short baseline system tracked the precise geo-location of the platform during

deployment.

2.6.1 Towed video sampling design

Towed video platform sampling occurred from 25 - 27 February 2009 on R/V

Challenger (Nichol et al., 2009). Video transect length ranged from 200 m to

1.1 km. Transects were conducted in two directions; along depth contours and

across depth gradient. Towed video transects were placed to overlap AUV tracks

and cover roughly the same areal extent for later comparison. The platform was

towed at 0.5 – 1.5 knots approximately 2 m above the seafloor. Platform altitude
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Figure 2.5: Schematic of towed video system; high sensitivity video
camera (green), two 250 W lights (red), USBL tracking system (blue)
and umbilical (yellow)
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was controlled by a winch operator, watching the real-time video footage, onboard

the support vessel.

2.6.2 Towed video annotation

Digital video footage with overlaid geographical position was transferred from tape

to hard drive and saved as an AVI-file (Audio Video Interleaved). I used the open

source software package VARS (Video Annotation and Reference Software (Schlining

and Stout, 2006) for viewing and annotation. Mobile invertebrates and vertebrates

were identified to species level where possible based on species identification guides

(Gomon et al., 2008; Edgar, 1997).

VARS

Several data processing steps were required to extract relative abundance and species

richness from the imagery. Video footage taken with the towed video platform was

viewed on a large screen and annotated using MBARI’s open source software package

VARS (Schlining and Stout, 2006). VARS consisted of three parts:

(i) Knowledgebase

(ii) Annotation

(iii) Query

The Knowledgebase consisted of a phylogenetic tree which had to be modified to

accommodate Tasmanian (Australian) fish species. For example, in order to add
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the ocean perch, Helicolenus percoides to the Knowledgebase it was also required to

add its Family, Order, Class, Phylum and Kingdom. VARS Annotation provided

a general user interface to play, pause and stop the digital video file and label

individuals when they occurred in the footage. The resulting record stated time and

videoframe in which a particular individual occurred. Finally, the resulting VARS

Query file enabled the generation of tallies for each species by tow. The hierarchical

phylogenetic tree structure within Knowledgebase allowed for querying other levels

such as genus or family.
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Chapter

3 Image-based continental shelf habitat

mapping using novel automated data

extraction techniques

This Chapter has been accepted for publication and will be printed in Continental

Shelf Research. The manuscript (unformatted and unedited PDF) is now available

online at: http://dx.doi.org/10.1016/j.csr.2012.06.003.

3.1 Abstract

We automatically mapped the distribution of temperate continental shelf rocky

reef habitats with a high degree of confidence using colour, texture, rugosity and

patchiness features extracted from images in conjunction with machine-learning

algorithms. This demonstrated the potential of novel automation routines to

expedite the complex and time-consuming process of seabed mapping. The random

forests ensemble classifier outperformed other tree-based algorithms and also offered

some valuable built-in model performance assessment tools. Habitat prediction using

random forests performed most accurately when all 26 image-derived predictors

were included in the model. This produced an overall habitat prediction accuracy

of 84% (with a kappa statistic of 0.793) when compared to nine distinct habitat

classes assigned by a human annotator. Predictions for three habitat classes were

all within the 95% confidence intervals, indicating close agreement between observed
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and predicted habitat classes. Misclassified images were mostly unevenly, partially

or insufficiently illuminated and came mostly from rugged terrains and during the

autonomous underwater vehicle’s obstacle avoidance manoeuvres. The remaining

misclassified images were wrongly or inconsistently labelled by the human annotator.

This study demonstrates the suitability of autonomous underwater vehicles to

effectively sample benthic habitats and the ability of automated data handling

techniques to extract and reliably process large volumes of seabed image data. Our

methods for image feature extraction and classification are repeatable, cost-effective

and well suited to studies that require nonextractive and/or co-located sampling,

e.g., in marine reserves and for monitoring the recovery from physical impacts, e.g.,

from bottom fishing activities. The methods are transferable to other continental

shelf areas and to other disciplines such as seabed geology.

3.2 Introduction

Habitat mapping is an essential tool to aid managers in assessing and managing the

status of marine ecosystems. Currently mapping of marine habitats is principally

based on two data sources, which are acoustic and optical. Both sources are acquired

remotely and sampling requires no physical contact with the substrate as opposed to

grab samples. Acoustic mapping technologies include single-beam and multi-beam

echo sounder (MBES) and side scan sonar (SSS). Most of Tasmania’s shallow coastal

waters (< 40 m) have been mapped using single-beam echo sounders. Accuracies of

up to 3 m can be achieved using differential GPS, however due to the small footprint

of the single beam, essentially a point source, acoustic data collection is less efficient
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than multi-beam echo sounders. Optical mapping technologies include satellite

and aircraft remote sensing, platform-based video camera and sediment profile

camera (Rhoads and Germano, 1982). In shallow water (< 100 m), the density

of individual MBES soundings is generally several per square metre. In contrast,

extractive sediment samples with a footprint usually < 0.25 m2 are generally placed

several hundred metres apart. However, it is commonly the combination of the two

(broad and fine-scale) that culminates in habitat maps. The latter discrete fine-scale

samples are a reliable and necessary means of groundtruthing remote measurements.

Visual techniques, such as digital photography and video, are also considered to

work at fine scales (∼ 1 m) and smaller scales. Non-extractive, image-yielding

examples include investigations of Arctic habitat-forming epibenthic megabenthos

(Piepenburg and Schmid, 1997) and organism-sediment relationships (Rhoads and

Germano, 1982). Assis et al. (2007) used a towed video platform to rapidly assess

elasmobranch populations within MPAs. A recent review of underwater videometric

measurements, especially with respect to the recent introduction of high definition

video cameras can be found in Shortis et al. (2007). Autonomous Underwater

Vehicles (AUV) are increasingly used as carriers of high-resolution imaging sensors

due to their ability to manoeuvre very close to potentially rugged terrain (Williams

et al., 2010a), thereby facilitating a constant image footprint. Images taken by

an AUV provide two advantages: (1) the continuous photographic record yields

intermediate-scale data, thereby bridging the gap between MBES mapping and point

sampling and (2) the image itself is an ideal candidate for automated data extraction.

Interrogation of digital imagery is necessary to extract qualitative and quantitative
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information. This task is usually carried out by a trained annotator. Whilst image

capture takes only a fraction of a second, image annotation can take several minutes

to tens of minutes depending on the nature and detail of information required. In

fact, image interpretation and species identification is extremely time consuming

and potentially subjective. Considering the various steps to produce a habitat map,

annotating imagery, epitomises the proverbial bottleneck. This study was conducted

to expedite the lengthy and time-consuming process of image annotation by means

of automation. Other efforts to automate the annotation process include the use

of machine-learning algorithms to detect cold-water corals and sponges, as well as

coverage enumeration after initial computer system training (Purser et al., 2009).

It should be noted though, that this automation requires the computer system to

be trained with a training set of images labelled by a human expert. This way, only

a subset of the imagery is scored by a human expert and the remainder is scored

(classified) by the computer system, usually with associated quantifiable error rate.

Purser et al. (2009) report 45 min as the time taken to manually assess per cent

coverage for dominant species (sponges and cold-water corals), where each image

used 89 subsamples per image. After initial training, it took the computer system

22 s to accomplish the same task. Purser et al. (2009) used image texture features

which numerically represent optical and structural attributes of corals and sponges.

Whilst Purser et al. (2009) quantify the percentage of seabed covered by two

organisms within an image, our study applies the machine-learning algorithm

random forests (Breiman, 2001) to automate the process of assigning habitat classes

to an entire image of the seafloor. The novelty in our approach is the use of
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geo-referenced stereo imagery from AUV mounted digital cameras to generate a

centimetre-scale bathymetric reconstruction in the form of a triangulated irregular

network. This results in a rugosity value for the overlapping footprint area of

each image pair. Usually multiple features are required to describe a habitat

comprehensively. We therefore used additional descriptors such as image texture

(Local Binary Patterns, LBP), image colour (Hue- Saturation Values, HSV) and

patchiness (Patch-Gap summeries, PG) to increase the accuracy of semi-automated

habitat prediction. LBP and HSV are well-established methods in industrial

machine vision applications (Ojala et al., 2002). In order to reliably employ these

methods in an industrial setting, conditions such as lighting are constant and

machine tasks are simple, i.e., separating red and green apples. Applying the

above-mentioned methods to imagery collected in the field with variable lighting

regimes and complex machine tasks is a challenging proposition. Our study

explores this challenge by testing the applicability of machine-learning algorithms to

automate habitat classification in a practical application, using AUV derived images

acquired on Tasmanian deep-water rocky reefs. Existing maps of Tasmania’s inshore

marine habitats are based on based on single-beam echo-sounder data and manually

annotated video footage for ground-truthing and are restricted to depths < 40 m

(Barrett et al., 2001). With the exception of a multibeam sonar mapping trial in

this region (Nichol et al., 2009) in which the AUV imagery was acquired as a means

of ground-truthing, no other studies in this area exist. The study focused on highly

complex rocky reef habitats below 40 m depth, which are difficult to efficiently

sample using extractive methods, such as Agassiz trawl or grab sampler. Due to the
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geology of Tasmania’s south-east coast, our study site exemplifies deep-water rocky

reef environments in this area.

The specific aim of this paper is to develop a novel analytical method to automate

the process of assigning habitat classes to images of the seafloor, by automatically

extracting colour, texture, rugosity and patchiness values from typical field acquired

images and therefore curtail image processing time. To assess the success of this

process, we evaluate the error rate of misclassifying images and sources of error.

Two new processing techniques are developed to extract fine-scale bathymetry from

stereo image pairs to calculate a common complexity measure, rugosity and extract

fine-scale habitat distributions to calculate multivariate measures of ‘patchiness’.

We also discuss the relevance of this repeatable and cost-effective method to process

the large volumes of image data needed to document the largely unknown fine-scale

variability in habitat distributions.

3.3 Methods

3.3.1 Study area

The study area is situated immediately to the east of O’Hara Bluff, eastern Tasman

Peninsula, Tasmania, Australia (Fig 3.1). It forms part of the “Peninsula Mapping

Region” (Barrett et al., 2001) which has a dominantly easterly aspect, high vertical

cliffs, deepwater reefs (to 100 m depth) and medium to high wave exposure.

Geologically, the coastline is composed of dolerite, sedimentary rock and, to a

lesser extent, granite (Barrett et al., 2001). This study uses data from 4.6 km of
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transects over the deep-water rocky reef of O’Hara Bluff and its offshore extension

and transition zones between hard and soft substrate in 34 – 77 m depths. The

traverse took just over three hours (vehicle speed = 0.4 m/s).
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Figure 3.1: Map showing continental shelf study area off O’Hara
Bluff in south-eastern Tasmania, Australia. Star in top panel identifies
the location of sampling on the hill-shaded seabed relief map in the
bottom panel; bathymetric contour lines at 5 m intervals and cyan
line represents AUV track.

3.3.2 Data acquisition

The Autonomous Underwater Vehicle (AUV) Sirius, operated by the Australian

Centre for Field Robotics at the University of Sydney, sampled benthic habitats

using a pair of downward-looking Pixelfly HiRes (1360 × 1024 pixels) digital
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cameras. Two strobes synchronously illuminated the field of view. The AUV was

able to maintain a virtually constant altitude of 2 m above the seafloor, which

equates to an image footprint of 1.6 × 1.3 m. Image acquisition at a one second

interval with a speed over ground of ∼ 0.4 m/s provided an unbroken photographic

record.

Sirius is a modified version of the SeaBED AUV (Singh et al., 2004b) built by

the Woods Hole Oceanographic Institution designed to be passively stable in pitch

and roll. Yaw, forward and backward movement is controlled by a pair of aft-

facing thrusters. Vertical (depth) movement of the positively buoyant vehicle is

accomplished by one vertical thruster. Geographical vehicle positioning on the

surface was accomplished using GPS. Navigation underwater is achieved using

a Doppler velocity log, inertial measurement unit, ultra-short baseline acoustic

positioning system, pressure sensor and a compass. To further reduce positional

error introduced by dead-reckoning and sensor inaccuracies, the simultaneous

localisation and mapping (SLAM) technique was used to re-navigate the estimated

vehicle trajectories (Williams et al., 2008a). Consequently, the intersecting survey

pattern (Fig. 3.1 bottom panel) was necessary to maintain high spatial accuracy

using SLAM.

3.3.3 Automated feature extraction

Colour, shape and texture features were used to characterise benthic habitats in each

image. Stereophotogrammetry was used to construct micro-topography for each

stereo image pair to provide a measure of terrain complexity or ‘rugosity’ where the
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more complex surfaces had higher rugosity values. The three sets of features used

were first and second order statistics of (a) modified hue-saturation-values, (b) local

binary patterns, and (c) simple ‘patch-gap’ summaries and rugosity (Table 3.1).

Once a feature is part of the random forests data set, it is referred to as a predictor.

The random forest data set consisted of 3586 rows (images) and 26 columns

(predictors). We used an extension of the classification and regression tree (CART)

concept called ‘random forests’ (Breiman, 2001) to predict habitat classes based on

extracted image features. The reason for inconsistent approaches in the literature

to accomplish automated classification, such as the use of neural networks (Purser

et al., 2009), decision tree classifiers (Rattray et al., 2009), or combinations thereof, is

partly due to personal preference and availability of systems that are easily adjusted

to one’s task at hand.

3.3.4 Modified hue-saturation values (HSV)

One of the three basic image features used in pattern recognition is colour. Colour

histograms in the Hue Saturation Value (HSV) colour space vary between images,

and are thus able to distinguish image content. Min and Cheng (2009) introduced

the modified HSV space providing equally distributed building blocks. First and

second order statistics of the colour histograms make up five descriptors (HSV 1-5).

Underwater imagery may be poorly suited to HSV approaches due to variation in

exposure, colour and from varying distance above the seafloor, irregular illumination,
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Table 3.1: Overview of extracted image features and brief descrip-
tion used to map habitats on the continental shelf study area off
south-eastern Tasmania.

Modified hue-saturation value
HSV Hue (H), Saturation (S) and Value (V); cylindrical-coordinate

depiction of points in a RGB colour model, where Value
is the vertical distance starting at black (bottom centre of
cylinder) and ending at white (top centre of cylinder), the
radial distance from the centre corresponds to Saturation i.e.
tints and shades and Hue is the visible spectrum arranged in
a circle (from red to red).

HSV1 (modified) Standard deviation of X, S cos(2πH)
HSV2 (modified) Standard deviation of Y , S sin(2πH)
HSV3 Standard deviation of V
HSV4 Mean of S
HSV5 Mean of V
Local Binary Pattern (LBP)
LBP Local Binary Pattern; powerful element for texture

classification in computer vision
LBP 1 – 10 Combination of line, spot, edge and other texture filters of

eight sampling points covering a radius of one pixel (for
examples see Fig 3.2)

Patch-gap summaries (PG)
maximum continuous patch length
number of patches per subsample
mean patch length
standard deviation of mean patch length
variance of mean patch length
Patch-gap ratio

Rugosity
Measure of topographical complexity, usually the ratio
between real surface area and the area of its orthogonal planar
projection. In a one-dimensional example one takes the ratio
of the length of a rope that follows the contour of a reef in
a straight line and its linear distance between the endpoints
(ignoring profile).
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complex terrain and specific substrate reflectivity. The first three factors are

connected and their effects were reduced to a minimum by ensuring that the AUV

maintained a near-constant height above the seafloor during this study. Specific

substrate reflectivity was partially compensated for by bulk-processing the imagery.

This HSV approach is well suited to detect signals in the variety, strength and

contrasts in colour of benthic biota at the study site, however, HSV descriptors do

not formally take account of the ecological affinities of biota with similar colour

space.

3.3.5 Local binary pattern (LBP)

Since images with the same colour histogram may represent habitats defined by

different patterns of spatial distributions, Local Binary Patterns (LBP) was used

as a second feature that describes ‘texture’. Machines typically classify textures

by comparing an unknown sample with a known training sample. Texture analysis

is applied to industrial surface inspection, remote sensing and biomedical imaging

but are unable to detect variations in orientation, scale and grey-scale properties

(Ojala et al., 2002). LBPs fulfil invariance with respect to grey scale properties and

rotation by a joint distribution of grey scale values of a circularly symmetric set of

neighbouring pixels in a local neighbourhood (Fig. 3.2 a). Several subsections of

the images were sampled using eight sampling points at a radius of one pixel. The

sampling points are compared to the centre point. If this grey scale value is greater,

the sampling point is assigned 1. If it is smaller, it is assigned 0. This results in one of

36 unique binary patterns (Fig. 3.2 b – f). Uniform LBPs are those that exhibit zero
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to exactly two 0/1 transitions. These uniform patterns effectively detect analogues

for benthic habitat microstructures such as edges (Fig. 3.2 c), lines (Fig. 3.2 d),

spots (Fig. 3.2 e) or pits (Fig. 3.2 f), see Ojala et al. (2002) for more details. The

frequency of occurrence of these microstructures is expressed in histograms and form

predictors LBP 1-10.

a b c

d e f

Figure 3.2: Schematic illustrating the concept of Local Binary
Patterns (LBP) (a) circularly symmetric neighbour set of 8 points
1 pixel away from centre pixel superimposed on image raster, (b to f)
subset of unique rotation invariant binary pattern that can occur using
the setup seen in (a) where black and white circles correspond to
bit values of 0 and 1 in the 8-bit output of the operator, (b) flat
area detector, (c) symmetric edge detector, (d) line detector, (e) peak
detector and (f) pit detector. Modified after Ojala et al. (2002).

3.3.6 Patch-gap summaries

The novel patch-gap technique attempts to increase prediction accuracy by

increasing the number of predictors. The procedure captures additional spatial

information on patchiness that includes making contiguous areas representing

dominant taxa, e.g., kelp fronds or sponges, and retains information that may
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otherwise be lost, e.g., on the distribution of sand patches. The method uses the

composition of black (patch) and white (gap) areas in a binary (intensity value 0

(black) and 255 (white)) representation of the original image. The spatial frequency

domain of greyscale images from the right camera was transformed using the Adobe

Photoshop CS3 high pass filter (HPF) with a radius setting of 10 pixels. HPF

enhances the contrast between adjacent pixels by retaining high frequency and

reducing low frequency information. HPF is considered to be an edge sharpener

in image processing. A threshold intensity value of 128 reduced 256 shades of grey

into a binary bitmap (black and white). A routine written in MATLAB was used to

extract six features based on subsamples of 10 equally spaced, one pixel high rows

per image. These are:

(i) maximum continuous patch length,

(ii) number of patches per subsample,

(iii) mean patch length,

(iv) standard deviation of mean patch length,

(v) variance of mean patch length, and

(vi) patch-gap ratio.

K-means clustering, using the statistical package R (R-Development-Core-Team,

2009) with the number of clusters set to an arbitrary 10, utilised the six patch-gap

features and added another 10 predictors to each image.
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3.3.7 Deriving rugosity

A rugosity measure for the seafloor area covered by each stereo image pair was

derived by extracting ∼ 800 corresponding image features in each image per pair

and to photogrammetrically calculate their position in 3D space. The resulting

point cloud, converted to a Delaunay triangulated mesh, is used to calculate the

surface area of the seafloor (A). The fitted planar surface area (A′), using Principal

Component Analysis (PCA) on the 3D point cloud, forms the denominator. The

resulting ratio (A/A′) provides a measure of bathymetric complexity. For an

exhaustive description refer to Friedman (2010); Friedman et al. (2012).

The next section describes novel attributes of the process of extracting rugosity from

stereo image pairs. Rugosity estimates, based on gridded digital elevation models

in a GIS environment, are calculated from the planar surface area by multiplying

the number of grid cell in the x-direction times the number of grid cells in the y-

direction times the surface area of one grid cell. Rugosity was decoupled from slope

using PCA to determine the orthogonal projection of the data onto the principle

subspace (a lower dimensional linear space) such that the variance of the projected

data is maximised.

3.3.8 Manual image scoring

Within the survey area, the AUV collected 11, 278 overlapping colour images. To

achieve independent (non-overlapping) quadrats (images), only every third image

was scored. These 3586 images were manually scored and assigned one of the nine
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habitat classes (Table 3.2). The habitat classes used in this study can be divided

into three primary groups: hard substrate, soft substrate and transitions zones

between the former two substrates. Classes of ‘high relief reef’, ‘low relief reef’ and

‘Ecklonia’ comprised the hard substrate group; ‘coarse sand’, ‘sand’, ‘screw shell

rubble’ and ‘screw shell rubble/sand’ comprised the soft substrate group; and ‘reef-

sand ecotone’ and ‘patch reef’ the remaining transition zone group. ‘Ecklonia’ refers

to the dominant macroalga Ecklonia radiata and screw shell refers to the invasive

mollusc Maoricolpus roseus. Example images of each habitat class are shown in

Fig. 3.3. Vehicle altitudes > 3.5 m resulted in underexposed images which were

excluded from further analysis (n = 510).

3.3.9 Random forests classifier training and evaluation

We present a method of predictive habitat modelling where relationships between

the various automatically extracted image features mentioned above (quantifiable,

environmental variables) and human scored habitat classes are investigated using

the random forests classifier (Breiman, 2001). Statistical modelling techniques

that have been used to predict habitat distribution comprise Classification And

Regression Trees (CART, Holmes et al. (2008)) and Quick, Unbiased and Efficient

Statistical Trees (QUEST, Rattray et al. (2009)). A collection of recursive rules

based on predictors shape the decision tree, i.e., the position of branches and leaves.

Random forests is a classification and regression method that derives a classifier by

‘growing’ an ensemble of decision trees and letting them vote for the most popular

class. We used the random forests method for two reasons: (1) the random forests
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Table 3.2: Habitat class code, habitat class, brief habitat de-
scription and frequency of occurrence of each habitat class within
AUV transect on the continental shelf study area off south-eastern
Tasmania.

Code Habitat class Habitat description Occurrence

RSE reef-sand eco-
tone

interface between hard (reef) and soft
(sand) substrate cf patch reef (PR)

6.13%

LRR low relief reef hard substrate but low relief (<20 cm
excluding benthos)

14.22%

CS coarse sand usually shell gravel mixed with sand,
however, not screw shells

6.00%

PR patch reef patchy hard substrate (reef) covers
<50% within soft substrate (sand)

6.27%

S sand fine sand with/without sand ripples or
waves

2.89%

SSR screw shell rub-
ble

substrate with >50% covered by screw
shells (Maoricolpus roseus) cf SSRS

21.25%

SSRS screw shell rub-
ble/sand

substrate dominated by sand, screw
shell cover <50% cf SSR

2.52%

HRR high relief reef hard substrate (reef) with high relief
>20 cm

33.72%

ECK Ecklonia radiata hard substrate covered by kelp (Ecklo-
nia radiata)

6.75%
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Figure 3.3: Example images for each habitat class identified in the
continental shelf study area off Tasmania, south-eastern Australia: (a)
reef-sand ecotone, (b) low relief reef, (c) coarse sand, (d) patch reef,
(e) sand, (f) screw shell rubble, (g) screw shell rubble/sand, (h) high
relief reef, and (i) the alga Ecklonia radiata.
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approach achieved the highest prediction accuracy, albeit by a small margin, based

on comparing prediction accuracy between CART, QUEST and random forests

approaches and (2) the random forests approach gives useful internal estimates

of classification error, predictor strength, case correlation and variable importance

(Breiman, 2001). A subset of 500 randomly sampled images was used to create an

ensemble classifier using the randomForest package (Liaw and Wiener, 2002) for R

(R-Development-Core-Team, 2009). In addition, the importance of predictors was

assessed by extracting variable importance measures produced by random forests

and a proximity measure among rows was calculated to identify similarities between

habitats as predicted by random forests. Different subsets of predictors were used

to investigate the impact of fewer predictor variables on classification error rate,

i.e., only the patch-gap summaries predictor set, then adding the HSV predictor set,

then adding the local binary pattern predictors set and finally rugosity. The model

was run with combinations of the three predictor sets and rugosity culminating in a

final model including all 26. Each model run produced an error rate estimate based

on bootstrapping. The different random forests models derived from the training

data set were then applied to predict habitat classes for the remaining 3086 images.

Fleiss’ exact and habitat class-wise κ were computed to evaluate prediction accuracy

compared to observed habitat classes (Fleiss, 1971). In addition, confusion matrices,

a common visualisation tool in the machine learning realm, were used to further

clarify model strengths and weaknesses. Each matrix column represents predicted

instances and each row represents the actual observed class (habitat). This way it

is easy to assess which classes were misclassified, expressed as being on either side
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of the diagonal line of numbers (Table 3.3 numbers in bold). The random forests

algorithm estimates the importance of a variable (predictor) based on prediction

error increase when out-of-bag (randomForest intrinsic prediction error estimation)

data for that variable is permuted while the remaining variables are left unchanged.

Calculations are carried out tree by tree as the random forest is constructed. The

more the estimated error rate increases the more important is a predictor, i.e.,

leaving an important descriptor out decreases prediction accuracy. We performed a

χ2 goodness-of-fit test to assess differences between observed and predicted habitat

classes. Bootstrapping and the calculation of 95% confidence intervals helped to

visualise which habitat classes the random forests model was able to predict within

confidence boundaries. The entire vector containing all observed habitat classes was

re-shuffled with replacement 25 times. These 25 permuted habitat distributions were

used to calculate 95% confidence intervals to visually assess prediction performance

for each habitat class. Random forests provides intrinsic proximity values for each

case (image), in our case culminating in a square (500 × 500) proximity matrix with

value 1 on the diagonal and values between 0 and 1 in the off-diagonal positions.

Multi-dimensional scaling (MDS) was used to plot the scaling coordinates contained

in the proximity matrix to visualise case (image) similarities. The rationale behind

MDS is the representation of samples (images) as points in two-, sometimes three-

dimensional space so that distance (proximities) between points corresponds to

similarities in the intrinsic random forests proximity matrix. Applying this principle,

points in an MDS plot that are close together stand for samples (image classification

outcomes using random forests) that are very similar and points far apart stand for
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samples that are very different.

Observed and predicted habitat classes were superimposed on bathymetry for visual

assessment. All statistical analyses described in this section were performed using

the R base package and the MASS package (R-Development-Core-Team, 2009).

3.4 Results

3.4.1 Prediction accuracy

Habitat prediction using random forests performed most accurately when all 26

predictors (Table 3.1) were included in the model (Fig. 3.4). Increasing the number

of predictors increased the accuracy of correct habitat classification. Using only

the 10 predictors derived from the patch-gap summaries (PG) resulted in habitats

being accurately classified 31% of the time. Predictors obtained from HSV achieved

a higher correct classification rate of 62%. HSV and LBP predictors in combination

made the greatest contribution to overall classification accuracy (68%). Adding

PG to the HSV-LBP combination increased classification accuracy by only 1%

(69%). The ensemble classifier using all 26 predictors combined (HSV, LBP, PG and

rugosity) correctly classified 71% of the images. This is 5% lower than the error rate

estimate (24%) from the training set, i.e., 76% correctly classified images, showing

that bootstrapping the training data set with only 500 images is overestimating

prediction accuracy compared to predictive modelling applied to the remaining 3086

images. Sample sizes for different habitat classes were unequal (Table 3.2). This

will have an effect on prediction accuracy if a different set of 500 randomly selected
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images is used in the classifier (forest) formation process but is not assessed here.

Running the randomForests algorithm several times with the same image subset

resulted in small differences in error rate (mean = 21.064, SD = 0.553, n = 25).

20%

30%

40%

50%

60%

70%

80%

P
G

P
G

+r
ug

o

H
S

V

LB
P

predictor subsets and combinations

pe
rc

en
ta

ge
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 im
ag

es

H
S

V
+r

ug
o

LB
P

+r
ug

o

al
l c

om
bi

ne
d

Figure 3.4: Comparison of different predictors to percentage of
correctly classified images in continental shelf seabed habitats off
Tasmania, south-eastern Australia. Number of images = 3086. PG
= patch-gap summaries, HSV = Hue-Saturation Value, LBP = Local
Binary Pattern, rugo = rugosity.

3.4.2 Predictor importance

In increasing order, local binary pattern 2, hue-saturation value 4 and rugosity

were found to be the most important predictors when averaged over all habitats

(Fig. 3.5, bottom panel). However, predictor importance by habitat class differed

dramatically from the average overall predictor importance (Fig. 3.5, top nine

panels). Rugosity was the most important predictor for habitat classes of Ecklonia,

patch reef, reef-sand ecotone, screw shell rubble and screw shell rubble/sand. Hue-
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saturation values, especially HSV1, were the most important predictors for the

habitat class of sand. Texture attributes (local binary patterns) dominated high

importance values for the habitat class of coarse sand (Fig. 3.5, top panel). For the

remaining habitat classes, high relief reef and low relief reef predictor importance

was less defined and comprised a mixture of hue-saturation values, local binary

patterns, and rugosity. Patch-gap summaries out-competed hue-saturation values

with respect to importance for habitat class of ‘low relief reef’.

3.4.3 Confusion matrices

Although the patch-gap summaries predictor set appeared to have little importance

(Fig. 3.5, open circles), retaining them decreased the classification error for habitat

class ‘screw shell rubble/sand’ by 60%. This improvement was based on comparing

confusion matrices obtained from running random forests with and without the

patch-gap summaries predictor set. The confusion matrix (Table 3.3) revealed which

habitat classes had been confused and which had been classified correctly. From the

45 possible unique observed-predicted combinations, 12 combinations were never

scored incorrectly, e.g., the habitat class of Ecklonia was never mistaken for coarse

sand (Table 3.3). To acknowledge prediction error on an image-by-image basis, we

used Fleiss’ inter-rater measure κ. This measure of inter-rater agreement compares

observed and predicted habitat classification for each image. Pooling all observed

instances of a particular habitat class and comparing these to the corresponding

pooled predicted habitat class showed that prediction accuracy was highest for

‘screw shell rubble’ (99.5%) and lowest for ‘patch reef’ (77.7%). Other habitat
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classes predicted with low percentages of correct classification were sand (79.3%)

and Ecklonia (80.3%). With respect to Fleiss’ κ statistic, screw shell rubble (SSR)

scored the highest agreement (κ = 0.992, z = 55.083, p = < 0.001), whilst patch reef

(PR) scored the lowest agreement (κ = 0.583, z =32.413, p = < 0.001). In fact, both

habitat types (reef-sand ecotone and patch reef) containing a mixture of elements

of consolidated and unconsolidated habitats scored low (κ < 0.6). Landis and Koch

(1977) assigned terms such as ‘moderate’(κ values from 0.41 – 0.60), ‘substantial’

(κ values from 0.61 – 0.80) and ‘almost perfect’ (κ values from 0.81 – 1.00) to

describe strength of agreement between raters. Their clearly arbitrary divisions are

criticised by Gwet (2001). Accordingly, the overall κ statistic = 0.793 (z = 88.600,

p = < 0.001) would warrant the label of ‘substantial agreement’. Between-habitat

class confusion was highest for high and low relief reef (HRR and LRR, respectively).

Seventy-nine per cent of incorrectly classified images that were scored as low relief

reef’ were predicted to be ‘high relief reef’.

3.4.4 χ2 and permutation

A χ2 goodness-of-fit test to statistically assess agreement between observed and

predicted habitat classes led to the rejection of the null hypothesis at the 1%

level. The test confirmed that there are significant differences between observed

and predicted habitat classes (χ2 = 31.7978, df = 8, p = < 0.001). This can also be

seen in a bar-plot of observed and predicted habitat classes with superimposed error

bars (Fig 3.6), representing 95% confidence intervals calculated from 25 permuted

observed habitat class distributions. Whereas the χ2 test gave an absolute statement
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Table 3.3: Confusion matrix for habitat classification using a
random forest classifier and 26 predictors including Fleiss’ category-
wise κ (a measure of rater agreement; ranges from 0 – 1, 1 being total
agreement). Numbers in bold refer to number of correctly classified
images. * denotes classes without erroneous prediction. CS = coarse
sand, ECK = Ecklonia, HRR = high relief reef, LRR = low relief reef,
PR = patch reef, RSE = reef-sand ecotone, S = sand, SSR = screw
shell rubble, SSRS = screw shell rubble/sand.

predicted
observed CS ECK HRR LRR PR RSE S SSR SSRS κ
CS 143 0 0 0 12 4 20 0 14 0.77
ECK 0* 53 19 2 2 0 0 0 0 0.77
HRR 0* 8 1051 114 10 36 0 1 0 0.82
LRR 1 0 54 209 14 25 0 0 0 0.59
PR 4 0 2 14 89 19 1 0 0 0.58
RSE 6 0 17 19 32 137 2 0 0 0.60
S 0 0* 0* 0* 4 0 63 0 2 0.80
SSR 2 0* 0 0* 1 0* 1 796 3 0.99
SSRS 18 0* 0* 0* 2 0* 0 2 58 0.73

that predictions and observations do not correspond, the bar-plot (Fig 3.6) elucidates

prediction failures and successes for each habitat type. Predictions for habitat

classes ‘screw shell rubble’, ‘reef-sand ecotone’, and ‘screw shell rubble/sand’ were

all within the 95% confidence intervals, indicating close agreement between observed

and predicted habitat classes. At least in one instance, this compares favourably

to Fleiss’ κ statistic of 0.992 (highest) for ‘screw shell rubble’. However, the

remaining six habitat classes of ‘sand’, ‘high relief reef’, ‘low relief reef’, ‘coarse

sand’, ‘patch reef’ and ‘Ecklonia’ predictions were all outside the 95% CI boundaries,

and demonstrate a somewhat worse prediction performance.
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Figure 3.6: Frequency of occurrence of observed and predicted
habitat classes on the continental shelf study area off south-eastern
Tasmania. Error bars superimposed on white bars represent 95%
confidence intervals calculated from 25 permuted observed habitat
class distributions. CS = coarse sand, ECK = Ecklonia, HRR = high
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ecotone, S = sand, SSR = screw shell rubble, SSRS = screw shell
rubble/sand.
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3.4.5 Multi-dimensional scaling and proximity

We used multi-dimensional scaling of random Forest’s intrinsic proximity matrix to

visualise classification performance. Fig. 3.7 showed one clearly defined cluster on

the left hand side of the graph (purple ∗) representing ‘screw shell rubble’. This well-

defined cluster also corresponded well with Fleiss’ κ statistic of 0.992, i.e., virtually

no misclassification for this habitat class. The cluster of light-green + representing

‘high relief reef’ and forming an arm on the right hand side of the graph owed

its conspicuous appearance to the fact that this particular habitat dominated the

habitat distribution (∼30% of all instances, Table 3.3). Although reasonably well

defined in the upper reaches of the arm (light-green +), the lower reaches coincided

with (in decreasing order) instances of ‘low relief reef’ (green ×), ‘Ecklonia’ (orange

4), and ‘reef-sand ecotone’ (blue t). This relatively well defined cluster (’high

relief reef’, light-green +) also corresponded well with the relatively high κ statistic

of 0.821 for this habitat class (Table 3.3) but was largely due to the dominance within

the habitat distribution (∼30%, Table 2). The fact that clustering in the MDS plot

can be explained by the habitat-wise κ statistic (Table 3.3) and habitat frequency

of occurrence (Table 3.2) is exemplified in the third cluster ‘coarse sand’ (red m) in

the bottom right of Fig 3.7. Again, the lower reaches of the stubby ‘coarse sand’

arm were well defined but the upper reaches coincided with the ‘confusion zone’

where misclassification became most apparent. Although the stubby ‘coarse sand’

arm and the long ‘high relief reef’ arm were similar in appearance, their respective

κ statistics were quite different (0.765 and 0.821, respectively). Again, the lower κ
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statistic (0.765) for habitat class ‘coarse sand’ cf κ = 0.821 ‘high relief reef’ was due

to its relatively small frequency of occurrence (coarse sand = 6%, Table 2). The

‘confusion zone’ in Fig. 3.4 (bottom right corner) gave a good indication of which

habitat classes have been misclassified represented by different symbols, representing

different habitat classes, appearing close together. Conversely, the MDS plot also

showed which habitat classes have been classified correctly represented by identical

symbols appearing close together with relatively few ‘impurities’, i.e., other symbols

appearing in a given cluster. One of the unusual features of the MDS plot (Fig. 3.4)

is the depiction of three ‘arms’. This is due to the way the proximity matrix within

random forests is created. The random forests approach runs all cases (images) of

the training set down the unpruned tree. If two cases (images) end in the same

terminal node of a tree their proximity is increased by one. Finally, all proximities

are divided by twice the number of trees grown (Breiman, 2002). This increase in

proximity by 1/2ntrees, results in the generation of ‘arms’.

3.4.6 Habitat mapping

Scored and predicted habitat classes along the AUV track are presented in Fig. 3.8.

Screw shells (Maoricolpus roseus) dominated the substrate at > 72 m depth and kelp

(Ecklonia radiata) dominated in depths < 40 m. Between 40 and 72 m depth, the

remaining habitat classes were present, although dominated by high and low relief

reef. Overall, the predicted habitat map was very similar to the observed habitat

map, except for a ∼150 m stretch of coarse sand, incorrectly predicted as screw

shell rubble/sand (top right corner, Fig. 3.8). Superficially the observed (top panel)
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Figure 3.7: Multi-dimensional scaling plot of the proximity matrix
produced by random forests for habitat classes on the continental shelf
study area off south-eastern Tasmania. Each habitat is colour-coded
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and predicted (middle panel) looked identical; only after closer inspection was the

missing stretch of ‘coarse sand’ apparent as well as minor deviations in the highly

diverse shallows (< 50 m water depth).
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3.5 Discussion

The composition of benthic habitats along a 4.6 km AUV track at the O’Hara Bluff

site was predicted, with a generally high degree of confidence, using 26 automatically

extracted image features in conjunction with the random forests ensemble classifier.

With the exception of the rugosity feature, which requires stereo-imagery, all feature

extraction techniques presented in this study can be applied to any kind of imagery

data and to other (non-biological) disciplines, e.g., to classify sediment morphology

in geological studies. Using random forests to classify images according to habitat

type based on image features proved to be successful and is considerably more cost-

effective than traditional techniques, such as manually assigning habitat classes.

Cost-effectiveness is particularly important because we found that the full predictor

dataset achieved the most accurate ensemble classifier. Large datasets may rapidly

exceed the capacity of non-automated methods, for example, our 4.6 km single-site

dataset comprised 3586 images each with 26 predictors. This finding is consistent

with the view of Breiman (2002) who stated that “newer methods in machine

learning thrive on variables — the more the better. There is no need for variable

selection, . . . ”.

To understand the reasons that led to habitat misclassification, wrongly classified

images were reviewed manually. The majority of misclassified images was partly-

or underexposed, which reduced the information obtained by the feature extraction

routines. The remaining images were wrongly or inconsistently labelled by the

human annotator. Reasons for images being partly- or underexposed were two-
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fold: (i) uneven illumination and (ii) substrate reflectivity. Uneven, partial

or insufficient illumination occurred mostly over extremely rugged terrain and

during obstacle avoidance manoeuvres over highly complex reef environment with

vertical drops of several metres. Different reflectivity and absorption properties of

different substrates, e.g., sand, shell rubble, macroalgae, sponges, etc. also caused

under/over-exposure. Whereas sand has a relatively high reflectivity and images of

this habitat class might be slightly over-exposed, thick macroalgal cover has a low

reflectivity resulting in slightly under-exposed images. Although this was a minor

effect, it was evident in the imagery. With respect to the poorly performing patch-

gap summaries (PG) as a predictor, it is conceivable that adjusting the threshold

value, used in converting grey-scale images to black and white images based on

the overall brightness of the image, could improve PG predictor performance. The

current method used a constant threshold value of 128. Wrong or inconsistent

labelling of imagery by the human annotator occurred primarily for three reasons.

First, the threshold that distinguished habitat classes ‘screw shell rubble’ and ‘screw

shell rubble/sand’ was defined as > 50% and < 50% screw shell cover, respectively.

Without actually measuring the area, this estimate could be out by up to 20%

(personal communication, Mark Green, CSIRO) and will differ between different

observers. The aforementioned principle also applies to the habitat class ‘Ecklonia’,

which was scored when Ecklonia radiata cover exceeded 50% of the image. Second,

camera orientation affects perception of sloping surfaces and appeared to account for

the high misclassification rate of ‘low relief reef’ as ‘high relief reef’ and vice versa.

Inconsistent labelling by the human annotator will confuse the random forests model.
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The rule distinguishing ‘high’ and ‘low’ relief reef was > 20 cm or < 20 cm elevation

change, respectively. In some situations this might be a difficult annotation decision

and is prone to error with a downward-looking field of view. Thirdly, distinguishing

between the habitat classes ‘patch reef’ and ‘reef-sand ecotone’ might in some cases

require knowledge of neighbouring images to come to a conclusive decision, that

is, whether a small isolated reef is ‘patch reef’ or the beginning of a larger reef

and therefore ‘reef-sand ecotone’. Although this knowledge is available to a human

annotator, random forests is oblivious of this knowledge since it classifies habitats

on a case by case (image by image) basis.

Jensen (2004) advocates the use of a hybrid neural network – classification tree

system, to reduce classification error. We cannot use our data to validate this

proposal but were able to demonstrate that there are differences in prediction

accuracy between different tree-based classification methods — CART, QUEST

and random forests. Although Pal and Mather (2003) report QUEST to outperform

CART using terrestrial remotely sensed imagery, our study results show the opposite;

CART outperformed QUEST. Notably, random forests outperformed both CART

and QUEST and also offered some valuable built-in assessment tools to evaluate

model performance. The first tool offers insights into the ‘variable (predictor)

importance’ and can be useful in the exclusion of predictors that contribute little or

nothing to prediction accuracy. Using this feature, the patch-gap summaries proved

to be of little importance for overall accuracy, but were essential to increase specific

habitat classification accuracy for ‘screw shell rubble/sand’. However, an overall

increase in accuracy will also be reflected in habitat specific prediction accuracy.
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The discrepancy between estimated error rate of the bootstrapped training data set

and prediction error rate could be remedied by ‘growing’ more trees, thereby giving

random forests a better chance to learn. However, in some instances the number

of trees ‘grown’ does not warrant a lower estimated error rate due to the nature of

the data. In our case, increasing the number of trees did not change the error rate

estimation. In some cases, increasing the number of images in the training data

set, which at the same time will magnify human work load, can help decrease the

estimated error rate. However, since this paper is presenting methods to decrease

human work load, a balance must be struck between work load and accuracy.

Prediction accuracy is related to the number of habitat classes. Reducing our

habitat classes to two, i.e., rock and sand, would have resulted in virtually 100%

prediction accuracy (Friedman, 2010). Lucieer and Pederson (2008) found similar

improvements in accuracy by reducing the number of classes from 3 to 2 (72% vs

81%). It should be noted though, that misclassifications are usually random. For

example, assuming a 100 m stretch of homogenous habitat, a minimum of 5 images

out of ∼ 80 images would have been misclassified at a significance level of 5%. These

5 images would have been placed randomly along the 100 m stretch and would not

have changed the overall impression of the habitat composition. As with many

other predictions in statistical modelling, it is good standard practice to provide

an error estimate for every predicted value. The entire method, image feature

extraction and classification, described in this paper could be easily extended to

full coverage acoustic data sets, e.g., gridded bathymetry and geo-referenced visual

ground-truthing data such as digital stills and video. Our predicted habitat map
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provides a snapshot of the habitat composition that is bound to change over time.

In its current form, it already provides evidence of the extent of the invasive New

Zealand screw shell Maoricolpus roseus (Allmon et al., 1994). The use of the AUV

in conjunction with the new methods described in this study is not restricted to

Tasmanian deep-water rocky reefs. Other highly complex and vulnerable habitats

such as coral reefs can be monitored to assess storm damage to corals or the extent

of coral bleaching events. Not only do images provide a permanent record that can

be reviewed or analysed at a later date, their collection is non-extractive, leaving

habitats unchanged. In contrast to extractive sampling methods, such as dredging,

our non-invasive geo-referenced imagery-yielding technique allows us to re-visit the

same sampling area in the future. Thus, image-based methods supported by cost-

effective methods of habitat mapping with known estimates of uncertainty, will

underpin frameworks for monitoring programs to assess environmental change and

management performance. Their applications will include determining the direct

impact of bottom fishing methods and subsequent changes — particularly the

changes that occur when previously disturbed areas are protected within marine

reserves. With regard to habitat mapping, every subsequent, congruent survey

could use the initial random forests model, thereby eliminating the need for human

image annotation. In this context, we acknowledge the need for an uncertainty

measure to account for prediction inaccuracies; here it is incorporated (rather

coarsely) in the permuted habitat distributions. Future advancements in image

content recognition or more sophisticated information extraction methods than those

presented in this paper might yield better habitat maps than is currently possible.
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It is also conceivable that combining co-located acoustic backscatter data and AUV

imagery surpasses the accuracy of the map presented in this study. These parameters

could than be used to predict habitats outside the sampled area using MBES data,

e.g., Rattray et al. (2009). Currently acoustic backscatter analysis can distinguish

hard and soft substrate with high degrees of confidence but would be insufficient as

the sole source to distinguish 9 habitat classes as in this study. Backscatter data

would be another predictor in the random forest algorithm and the algorithm decides

whether the backscatter data are a strong predictor for certain habitat classes.

It should be stated that most of the above mentioned advantages are closely linked

to the design of the actual AUV itself. Geo-referenced imagery, a virtually-constant

height-above-seafloor calibrated stereo camera system, altimeters and depth sensors

are all required to implement the techniques described here. In conclusion, the AUV

served as an excellent, stable and mature platform in this study to autonomously

survey benthic habitats. While this AUV is relatively large in size, (Singh et al.,

2004b) report successful AUV deployment from a 42’ (12.8 m) vessel equipped

with an A-frame during their investigation of coral reef habitats in Puerto Rico,

indicating the high utility of AUV platforms for habitat mapping in many different

environments.
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Chapter

4 Beyond diver’s depth: evaluating

stereo baited underwater video

systems as a tool to monitor

deep-water temperate reef fish

assemblages on the continental shelf

4.1 Abstract

Diver based underwater visual census, a commonly used method to study reef fish

assemblage composition, i.e., species richness, individual species abundance and size

structure, is unsuitable below safe SCUBA diving depths. Here, baited underwater

video systems (BUVS) are used as an alternative to assess reef fish assemblage

composition on temperate deep-water rocky reefs. BUVS recorded 48 species and the

most abundant families were Labridae and Monacanthidae. Assemblage composition

was linked to habitat complexity measures (e.g., slope, fractal dimension and aspect)

but not linked to oceanographic data (e.g., salinity, chlorophyll a and optical

backscatter). Significant differences in individual species abundances between

onshore and offshore assemblages were found for Latris lineata, Notolabrus tetricus,

Pseudolabrus psittaculus and Pseudophycis bachus. Mean L. lineata length was 190

mm larger compared to line-fishing data. A new relative abundance estimate, based

on a tally of individuals, differentiated by photogrammetrical length measurements,

proved to be inferior to the current de facto standard MaxN but was informative
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when combined with MaxN. MaxN is defined as the maximum count of species

x in video frame y during each BUVS deployment. A novel statistical approach

to conduct power analysis on count data , for which the common assumption

of normality does not apply is presented. This method, using MaxN, detected

differences in abundance of > 50% between two sites for Nemadactylus macropterus

and N. tetricus. Results confirm that, in deeper water, BUVS can provide the same

information as underwater visual census in the shallows.

4.2 Introduction

This chapter is based on the premise that, in deep-water, Baited Underwater Video

Systems (BUVS) can provide the same information as Underwater Visual Census

(UVC) in the shallows. Information gained from UVC include:

• presence of reef fish assemblages

• abundance of individual reef fish species

• reef fish size structure

This chapter will demonstrate how the above-mentioned information can be obtained

using BUVS in temperate deep-water continental shelf reef environments below safe

SCUBA diving depths (> 30 m).

Underwater visual census is frequently used to assess composition, abundance

and size structure of reef fish assemblages in shallow depths (< 30 m). UVC is
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particularly well suited to monitor Marine Protected Areas (MPAs) due to its non-

intrusive nature (Barrett et al., 2007). Globally, MPAs and other discretely defined

management areas are seldom restricted to safe SCUBA diving depths. For example,

the south-east Commonwealth Marine Reserve Network covers 226,458 km2 and is

entirely below safe SCUBA diving depths. In order to assess composition, abundance

and size structure of reef fish assemblages below these depths (> 30 m), remote

sampling platforms, such as BUVS, need to be employed. This study investigates

whether deep-water BUVS can provide the same information that UVC offers in

shallow water.

Management objectives after establishing a MPA are manifold. In general, MPAs

aim at long-term ecological viability of marine systems, maintaining ecological

processes and systems, and protecting biological diversity at all levels (DPIWE,

2000). Traditionally, three levels of diversity are recognised; genetic, species

and ecosystem diversity. An example, at the species assemblage level, would

be differences in fish assemblage composition between protected and unprotected

marine areas using BUVS in a tropical-temperate transition zone Watson et al.

(2007). A management regime is usually put in place after dramatic changes in

a system have occurred. In the Tasmanian context, Ling et al. (2009) found that

large Spiny lobsters Jasus edwardsii increase kelp bed resilience through predation

on the invading long-spined sea urchin Centrostephanus rodgersii. Hence, protecting

large individuals of J. edwardsii from fishing reduces the risk of a catastrophic

shift to widespread sea urchin barrens (Ling et al., 2009). Kelp forests are an
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important habitat for a variety of reef fish such as the blue-throtaed wrasse and

banded morwong and its decline would be reflected in changing reef fish assemblage

compositions assessed using BUVS. Indeed, abundance and individual size of J.

edwardsii and other species have increased in Tasmanian MPAs (Barrett et al.,

2007). In fact, Barrett et al. (2007) observed an increase in the abundance of large

fish (> 30 cm) and a doubling of species richness (biodiversity) following 10 years of

protection through the establishment of an MPA on the east coast of Tasmania. All

examples above are currently monitored using non-extractive sampling tools. This

study examines the usefulness of BUVS in monitoring key species and biodiversity

below safe SCUBA diving depths. It also demonstrates the capability of stereo

BUVS to reliably measure fish length (measurement error < 1%, Harvey et al.

(2003)) and to potentially overcome one shortcoming of MaxN, underestimation of

relative fish abundance. MaxN is the de facto standard relative abundance measure

using BUVS; it is defined as the maximum number of individuals of species x in

video frame y.

Habitat complexity measures

Presence and absence of specific habitats limit the distribution of species. Affinities

to certain habitat components are so strong that reliable predictive models can

be developed for several fish species. For example, Chatfield et al. (2010)

combined bethic habitat features such as substratum, water depth, macroalgal

presence/absence and sessile invertebrates presence/absence to explain and predict

the structure of demersal fish distributions in shallow waters of the Recherche
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Archipelago, southern Western Australia. Habitat complexity measures quantify

physical habitat attributes such as roughness, slope, aspect and geomorphology.

Habitat complexity measures derived from Digital Elevation Models (DEM) have

been successfully used in creating habitat suitability indices and maps for five

demersal fish taxa in Discovery Bay, south-east Australia (Monk et al., 2010), four

demersal fish species in waters of the Cape Howe MNP located on the easternmost

point of the Victorian coastline in southeastern Australia (Moore et al., 2009) and

the European lobster (Galparsoro et al., 2009). Strong predictors are reef complexity

(Moore et al., 2009). The DEM of the study area of this project was derived from

multibeam sonar data (Nichol et al., 2009). Several habitat complexity measures

were computed for all BUVS sampling locations to quantify relationships with reef

fish assemblages.

Species accumulation curve

Detection error is one potential source of error when estimating biological diversity

(Yoccoz et al., 2001) and refers to the fact that most sampling methods cannot

detect all individual animals and/or all individual species in a given survey area.

An empirical Species Accumulation Curve (SAC, Magurran (2004)) was created in

this study to identify detection probabilities for fish species richness using BUVS

on deep-water rocky reefs. Sufficient sampling to detect all detectable species is

achieved when an empirical SAC intersects the Michaelis-Menten model of the same

data (Magurran, 2004) or an asymptote is reached. Cappo et al. (2004) showed that

the BUVS SAC was consistently below the prawn trawl SAC, that both curves could
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be fitted using logarithmic functions and both curves did not reach an asymptote,

i.e., insufficient sampling occurred to estimate total species richness. The Michaelis-

Menten model generates an asymptotic curve, based on the negative exponential

model, which predicts the increase in species richness for additional sampling effort

(Magurran, 2004). This chapter describes the extent that BUVS are able to capture

the ichthyofaunal composition in deep-water temperate rocky reefs.

4.2.1 Individual species abundances of reef fish assemblages

Whereas some conservation management objectives aim at stopping the decline of

biodiversity, other objectives aim at maintaining or increasing the abundance of

certain species that are either endangered or exploited. Abundance, or population

size, is an important consideration from a management perspective if there is

a positive relationship between population fitness (ability to both survive and

reproduce) and population size or density. This relationship is known as the Allee

effect (Allee, 1931; Courchamp et al., 2008). For a simplistic example, consider a

population of species x that reproduces by internal fertilisation. This population

decreases in size below a certain threshold, at which sexual encounter is insufficient to

offset natural and fishing mortality. This will inevitably result in the cessation of key

ecological processes. Determining changes in abundance is a common objective of

conservation management. Hence, being able to differentiate between different sites

(protected and unprotected) or between different points in time (before and after

a management regime was put in place) will assess whether a certain management

strategy was successful or a failure. Barrett et al. (2007) found that Latridopsis
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forsteri and large fish (> 300 mm) increased after ten years of protection. However,

Babcock et al. (2010) found that initial direct effects on target species are detectable

after more than 5 years. Hence, abundances of the five most numerous fish species

in the BUVS data set were analysed to test whether two environmentally distinct

areas, inshore and offshore sites, differed in assemblage composition.

Interestingly, line fishing data show a sharp decline in the Blue-throated wrasse

Notolabrus tetricus catches in depths > 60 m (Neville Barrett, unpublished data).

I investigated whether the same sharp decline could be observed using BUVS.

4.2.2 Size structure of two commercial species

The performance of new sampling tools such as BUVS needs to be compared to

existing sampling methods to assess their usefulness and efficacy. The performance

of BUVS was assessed by comparing BUVS-collected and existing extractive size-

frequency data for two commercially important fish species, Notolabrus tetricus and

the Striped trumpeter Latris lineata. These species were further investigated with

respect to their size-frequency distributions. The existing data referred to earlier

was obtained by extractive sampling methods, line fishing (Sean Tracey, IMAS) and

trapping and gill netting (Barrett, 1995). Line fishing data and BUVS data were

collected in the same 30 seconds fishing block, a common spatial unit of fisheries

assessments in Tasmania (Lyle and Hodgson, 2001) during the same month.
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4.2.3 Improving estimates of relative abundance

One of the three major challenges in using BUVS to estimate relative abundance

listed by Cappo et al. (2003) is: “separating repeated visits of the same fish from

new arrivals within video tapes to get a better MaxN”. MaxN, the de-facto standard

measuring unit for BUVS investigations has advantages as well as disadvantages.

It was originally designed to avoid inflated abundance estimates by considering

each fish visit of species x as a visit from a different individual. MaxN records

the maximum number of individuals of species x visible in video frame y. This

ensures that the same individual visiting multiple times is only accounted for

once. Consequently, one of the limitations of MaxN is that it underestimates true

abundance, i.e., several solitary visits by more than one individual of species x

scores MaxN = 1. In the absence of any distinguishing features to tell individuals

apart, this is a reliable approach. However, photogrammetric measurements using

stereo video footage allow the identification of individual fish by their length. Length

measurements were therefore taken for L. lineata and N. tetricus. The sum of unique

fish lengths is equivalent to a relative abundance estimate. This study describes

whether this new relative abundance estimate performs better than MaxN.

4.2.4 Power analysis

The probability of rejecting the null hypothesis, H0 when it is false, is known as

the power of a test, e.g., t-test or ANOVA (Crawley, 2007). Power analysis can

be used to calculate the sample size (number of replicates) necessary to detect
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a specified difference in the mean, i.e., using a two-sample t-test. The practical

example below illustrates the need and utility of power analysis using BUVS data.

Cappo et al. (2003) state that contrary to expectations, not only carnivorous and

scavenging functional fish groups are attracted to the bait plume, but herbivorous

and corallivorous groups are also frequently recorded using BUVS. The majority of

these species do not feed on the bait but are attracted to the commotion associated

with BUVS deployments. To what extent can fish, that are not attracted to

bait, be repeatedly and consistently recorded using BUVS depends on the species

in question. For example, in this study, the zoobenthivorous Banded morwong

Cheilodactylus spectabilis, primarily feeding on benthic amphipods and brittle stars

Russell (1983), was rarely recorded by BUVS. For over three quarters of the survey

time, C. spectabilis was not present in the video footage. Although indicative,

whether this probability of encounter is low should be tested rigorously using power

analysis. I investigated the effectiveness of BUVS to monitor five commercially

important fish species, Cheilodactylus spectabilis, Cheilodactylus macropterus, Latris

lineata, Latridopsis forsteri and Nemadactylus tetricus. Whereas C. spectabilis and

N. tetricus are desired for the life fish export market, /em L. lineata, L. forsteri

and /em C. spectabilis are sold gutted and filleted. Species destined for the life

fish export market are caught in shallow depths to avoid over-inflation of the

swim bladder and resulting mortality if retrieved from deeper depths. However,

these species are not restricted to depths < 30 m. Fisheries data are therefore

unreliable, biased and unsuitable to monitor population dynamics. Suppose that an

exhaustive pilot study was conducted to establish a reliable benchmark with respect
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to abundance of species x. Two management questions arise: (1) what is the number

of replicates necessary to detect, for example, a 50% difference in abundance between

years, habitat types or management regimes and (2) what difference of abundance

can be detected with a given sampling effort. Traditionally, statistical power analysis

is used to detect differences in the response variable between two samples, for

example, abundance of species x in survey 1 and survey 2. Currently, these power

analysis tests are confined to data that are normally distributed. Point count data

and MaxN, the de-facto standard using BUVS, even after transformation, usually

violate assumptions of normality. This is particularly true for low abundances and

zero counts. This chapter covers methods of how to conduct power analysis, despite

non-normality, based on Seavy et al. (2005) and presents results using the proposed

methods.

4.3 Material and Methods

For further information on the study area, BUVS design and deployment and general

video annotation techniques, the reader is kindly referred to chapter 2. Figure 4.1

provides a map of the study site and BUVS deployments.

Whilst visual census methods usually require the observer to move along a

predetermined track and count species of interest, BUVS are stationary and it is the

species of interest that approach the field of view (FOV) of the camera (bait basket).

The record of a sighting of a species by an annotator is from here forth referred to

as a visit. MaxN and relative abundance are used interchangeably throughout this
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Figure 4.1: Location of BUVS deployments. Different types of
dashed borders refer to different sites in overview map. Inshore sites:
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chapter. Total number of individuals refers to the sum of MaxN for each species for

each deployment or site.

4.3.1 Composition of reef fish assemblages

Multivariate analyses were performed using the software package PRIMER v6

(Clarke and Gorley, 2006). Biological data were fourth-root transformed after

removal of singleton species (species that occurred only once during the entire study)

and BUVS deployments with less than three individual sightings, thus giving less

weight to abundant species and to reduce skewness, deviation from normality, found

in the species abundance distribution (Clarke and Gorley, 2006). In addition, non-

parametric multidimensional scaling (nMDS) of the Bray-Curtis similarity matrix

of the fourth-root transformed species abundance data was performed to visualise

distinct assemblages and their distribution in two-dimensional space.

To test the a priori hypothesis, that fish assemblage composition is related

to distance from shore, a canonical analysis of principal coordinates (CAP,

Anderson and Willis (2003)) was conducted. CAP is related to canonical

correspondence analysis and performs a constrained ordination based on the Bray-

Curtis dissimilarity measure (Anderson and Willis, 2003). BUVS data were split

into an inshore and offshore component. Sites that are submerged extensions

of rocky outcrops along the main coastline are considered inshore sites (see Fig.

4.1). Conversely, offshore sites are disconnected from mainland rocky outcrops by

expanses of soft sediment (see Fig. 4.1). Distance from shore, inshore or offshore,

was considered a proxy for environmental variables such as seabed exposure to shear
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stress produced by waves, wind, tides and ocean currents (Bax, 2011). CAP was

also used to examine correlations between individual species and distance from shore

(canonical axis 1) (Anderson and Willis, 2003). A correlation value |r| > 0.3

(Anderson et al., 2008) was considered sufficiently high to indicate significant

relationships between species and distance from shore. In order to eliminate depth

as a confounding factor, BUVS deployments were conducted over the same depth

range (38 – 67 m) between inshore and offshore reefs.

Habitat complexity measures

Ship-borne multibeam sonar data were collected prior to this study using the

research vessel Challenger (Nichol et al., 2009). The gridded multibeam sonar data

were of a resolution of 2 × 2 m. Habitat complexity measures such as fractal

dimension, plan curvature, profile curvature, slope and aspect were computed from

the gridded multibeam sonar data from the study area using the freely available

software package LandSerf version 2.3 (www.landserf.org). Habitat complexity

measures of several scales, 3×3 (36 m2), 5×5 (100 m2) and 9×9 (324 m2) pixel

array, were examined and related to reef fish composition. Since all habitat

complexity measures were derived from the gridded bathymetric data, they were

not independent and were treated as paired samples (i.e., measurements were taken

from the same location). To formaly test for associations between paired samples

(e.g., depth and slope, fractal dimension and aspect, etc), Kendall’s rank correlation

coefficient τ was computed to assess dependencies between habitat complexity

measures. The BEST procedure in PRIMER v6 was used to find habitat complexity
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measures that explain species composition based on the Bray-Curtis similarity

matrix. Habitat complexity measures were normalised before analysis as suggested

by Clarke and Gorley (2006). Statistical significance of the BEST procedure results

were tested using the global BEST match permutation routine (999 permutations).

Table 4.1 gives a short definition of the habitat complexity measures used in this

study.

Table 4.1: Habitat complexity measures derived from DEM with
definition and references

Measure Definition Reference

Bathymetry Elevation relative to Australian
Height Datum (AHD)

Jenness (2004)

Slope Average change in elevation
based on a 3 × 3 pixel array in
degrees

Wilson et al. (2007)

Aspect Azimuthal bearing of steepest
slope (0− 360◦)

Wilson et al. (2007)

Profile curvature Measure of concavity/convexity
parallel to the slope (cross-
section)

Dikau (1988)

Plan curvature Measure of concavity/convexity
perpendicular to the slope (con-
tour lines)

Dikau (1988)

Fractal dimension Ratio of detail in fractal pattern
and scale at which it is measured:
index of complexity

Mandelbrot (1967)

Species accummulation curve

A species accummulation curve (SAC), cumulative number of species recorded as a

function of sampling effort (Magurran, 2004), was created to estimate the species

richness, that BUVS can detect in the study area. Once empirical SAC and

Michaelis-Menten model curve intersect, total species richness can be estimated
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using estimators such as Chao 1 (Chao, 1984) or ACE (Chazdon et al., 1998). Six

species richness estimators were calculated using the software package EstimateS,

version 8 (Colwell, 2006), setting the number of randomisations to 100.

4.3.2 Individual species abundances of reef fish assemblages

Permutational multivariate analysis of variance (PERMANOVA) was used to test

for differences between inshore and offshore locations and between sites based

on the fourth-root transformed abundance data of the five most numerous fish

species (see Table 4.3). The multi-factor design included two factors, distance

from shoreline with two levels (inshore and offshore) and sites with ten levels

(inshore: WFB=Waterfall Bay, BHL=Blowhole, SIS=Sisters, YEL=High Yellow

Bluff, OHA=O’Hara; offshore: PRN=Patch Reef North, CHRK=Chevron Rock,

HIP=Hippolyte Rock North, LHS=Hippolyte Rock South, LHIP=Little Hippolyte

Rock). The distance measure chosen was the Bray-Curtis dissimilarity. The

individual abundances of the same five species were investigated to test whether

abundance in inshore and offshore sites were different using negative binomial

Generalised Linear Models (GLMs) as described below.

Two commercially important species were also selected for further analysis. The

abundance of Latris lineata (Striped trumpeter) and Notolabrus tetricus (Blue-

throated wrasse) was investigated to test whether abundances in inshore and offshore

sites were different. The method used for the two commercially important species

L. lineata and N. tetricus was identical to the method used to test for difference

between inshore and offshore sites for the five most abundant species. MaxN counts
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for all species individually were tested for significantly different means for inshore

and offshore sites using negative binomial GLMs in the statistical programming

software R (R-Development-Core-Team, 2009). Negative binomial GLMs were used

due to non-normality and overdispersion in the MaxN count data.

The relationship between the frequency of occurrence of N. tetricus and depth was

investigated using a binary GLM to model presence/absence as outlined in Zuur

et al. (2009). My results were compared to UVC results stated in Shepherd and

Clarkson (2001).

4.3.3 Size structure of two commercial species

Latris lineata and Notolabrus tetricus were selected to investigate their size structure

using photogrammetric length estimates. Size structure data for both species were

also compared to data obtained by extractive sampling methods, e.g., line fishing,

trapping, gill netting and spear-fishing.

Photogrammetric length estimation

Photogrammetric fork length estimation of each Latris lineata and N. tetricus visit

was conducted with the software package Photomeasure (Seager, 2009c), which is

designed to analyse stereo BUVS footage. The criteria for length measurements were

(1) tail orientation of fish should be < 60◦ from optical axis, (2) take the mean of five

consecutive video frame measurements per individual, and (3) avoid measurements

where fish are excessively bent (Harvey et al., 2003). It was attempted to take
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length measurements of all individuals at video frame xMaxN (i.e., the video frame,

for each 45 min deployment, where MaxN occurred). However, for reasons outlined

in Harvey et al. (2003), estimating fork lengths of all individuals in video frame

xMaxN was not always possible. In these instances the method outlined in the next

section (Improving estimates of relative abundance) was adopted.

Some fisheries assessments use biomass (weight) in addition, or as an alternative, to

size frequency distributions. To accommodate this preference, Latris lineata length

was converted into biomass using the equation below.

W = 2× 10−5 × L3

where L = fork length in cm and W = weight in kg (Tracey and Lyle, 2005)

Records from UVC and line fishing in depths < 100 m indicate that N. tetricus

is the most abundant wrasse (Labridae) in Tasmanian waters (Edgar and Barrett,

1997). However, conversion from length to weight for N. tetricus was omitted due

to the lack of a published length-weight relationship. Due to the fact that male

and female individuals of N. tetricus can be easily told apart by the external stripe

pattern, analyses were also conducted separated by gender.

4.3.4 Improving estimates of relative abundance

MaxN underestimates true abundance (Cappo et al., 2004), so two novel methods

are proposed here to overcome this limitation. Both methods aimed to identify

individual fish and generate a list of individuals recorded during the deployment.
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The first method used gender-specific markings in N. tetricus and the second used

photogrammetrically-measured body lengths for both commercial fish species. The

details of both methods are outlined below.

Method 1

Strictly speaking, MaxN for a particular species equals 1 even when one female and

one male individual of this species were sighted, i.e, in this case n = 2. Because the

male and the female individual were not in the same video frame MaxN equals 1. In

the case of N. tetricus improved abundance estimates were obtained by generating

separate values of MaxN for male and female fish visiting the station which are

combined to make a single abundance estimate for the deployment.

Method 2

Length measurements of one individual fish in five consecutive video frames resulted

in a mean length measurement. This approach was adopted to account for tail

flex and muscle contractions which affect the total fish length, i.e., less than 1%

(Harvey et al., 2003). I measured all individudals of the species Latris lineata

and Notolabrus tetricus. Every individual entering the field of view was given an

identifier and repeatedly measured using five consecutive video frames. This was

done for the entire video footage (45 min, 67,500 video frames). Scoring the entire

footage and measuring every visiting individual bears the risk of measuring the

same individual several times and therefore overestimating total abundance – the
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reason MaxN was devised. Therefore, boxplots of all measurement sets for each

45 min deployment were inspected. Measurement sets with overlapping whiskers

(boxplot) were considered to be the same individual. In addition, Student’s t-test

was used to test whether the means for each possible combination of five consecutive

photogrammetric length measurements were different at the 5% level. A p-value

< 0.05 was taken as proof that these two measurement sets are different and

therefore comprise two individual fishes. The number of individual fish obtained

by this method was denoted with N . Note the differences between MaxN and N

(number of individuals based on unique length estimates) in Table 4.5, 4.6.

4.3.5 Power analysis

In this study abundance pattern were simulated and compared. For each comparison

two abundance pattern, labelled survey 1 and survey 2, were simulated, using

different numbers of replicates and different effect sizes (25%, 50% and 75% change

in relative abundance). I used power analysis to calculate the sample size (number of

replicates) necessary to detect a 25%, 50%, 75% change in abundance with power =

80%. Standard assumptions of α = 0.05 (significance level) and β = 0.2 (probability

of accepting the null hypothesis when it is false) gives power = 80% (Crawley, 2007).

Readily available statistical software packages (SPSS, SAS JMP, R) that offer tests

to determine statistical power require the data to be normally distributed (Thomas,

1997). However, many abundance estimates in ecology comprise of count data, which

often do not follow the normal distribution (Seavy et al., 2005). MaxN data are

rarely normally distributed and the use of traditional tests to determine statistical
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power is inappropriate. For non-normal data three alternatives exist to compare two

abundance estimates (i) non-parametric tests (Kruskal-Wallis, Mann-Whitney U),

(ii) data transformation (
√
x, log(x), log(x+ 1)) and (iii) generalised linear models

with appropriate link function (Crawley, 2007). This study used GLMs to test

for differences in two randomly generated (simulated) abundance estimates (survey

1 and survey 2) drawn from a theoretical probability distribution. The probability

distribution was fitted to empirical MaxN data for each species. Empirical and fitted

values were compared using χ2 tests. A χ2 test result with p < 0.05 was considered

indicative of a close fit between empirical data and probability distribution. Two

likely probability distributions that would fit MaxN data are Poisson and negative

binomial. If these probability distributions could not be fitted (χ2 test p > 0.05),

bootstrapping, resampling with replacement, the empirical MaxN data were used

to simulate two abundance estimates. The Poisson distribution assumes that the

variance is equal to the mean and can be described by one parameter µ (mean),

whereas the negative binomial distribution is more appropriate for overdispersed

data (where sample variance exceeds the sample mean) and requires an additional

parameter k (dispersion or aggregation parameter). The dispersion parameter k

was estimated using maximum likelihood (Crawley, 2007). Hypothetical data for

survey 1 and survey 2 were generated with different numbers of replicates; 18 – 102

in increments of 3 with different mean abundances (25%, 50%, 75% higher/lower

than survey 1). The generated data were compared using GLMs with either Poisson

or negative binomial link function and survey as a factor. The null hypothesis,

abundance of species x between survey 1 and survey 2 is not significantly different,
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was rejected when p < 0.05 for the survey parameter. Simulations for each sample

size (number of replicates) were repeated 100 times. Hence, statistical power is the

percentage of cases where p < 0.05. All simulations and analyses were performed in

R (R-Development-Core-Team, 2009).

4.4 Results

Edgar (1997) gives the depths range of Cheilodactylus spectabilis as 3 – 50 m. During

this study the same species was recorded in depths up to 67 m (sampling depth

ranged from 32 – 81 m). The discrepancy is largely attributable to the fact that

depth ranges were mostly based on visual SCUBA diver assessments. A similar

observation was made with respect to Latridopsis forsteri where the maximum depth

was given as 60 m (Edgar, 1997). This study recorded Latridopsis forsteri in depths

as deep as 67 m. Both instances indicate that both species have been sampled at

least to their maximum referenced depth.

4.4.1 Composition of reef fish assemblages

A total of 48 species belonging to 30 families were recorded during BUVS

deployments (Table 6.1 chapter 6). The most species-rich families were Labridae

(wrasses) and Monacanthidae (leatherjackets) with six species each. Labridae

(100% of samples), Cheilodactylidae (96%) and Monacanthidae (84%) occurred most

frequently.

Individual species, that characterise the inshore and offshore assemblages identified
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using CAP (all CAP |r| < 0.3) were: J. edwardsii, L. lineata and P. psittaculus

(more abundant offshore than inshore) and conversely A. vittiger, E. mosaicus, M.

australis, M. scaber, N. tetricus, P. laticlavius, P. melbournensis and T. degeni

(more abundant inshore than offshore).

Non-parametric multi-dimensional scaling of the Bray-Curtis similarity matrix

applied to the fourth-root transformed data showed two clusters, inshore and offshore

BUVS deployments (Fig. 4.2).

Habitat complexity measures

Using habitat complexity measurements to explain fish assemblage composition

based on the Bray-Curtis similarity matrix, excluding depth, resulted in a weak

but significicant relationship (BIOENV Global Test Sample statistic ρ = 0.18,

significance level of sample statistic: 0.2%, number of permutations: 999). The

strongest single variable explaining assemblage composition was slope (ρ = 0.18)

(Fig. 4.3). Offshore sites consistently scored steeper slopes than inshore site.

Kendall’s τ coefficient, testing for associations between depth and slope, was

τ = 0.118 and not significant at the 5% level. The result excludes the possibility that

the significant result (slope, ρ = 0.18) was an artefact of depth — slope values were

derived from depth using a nearest-neighbour approach. Although, strictly speaking,

not a descriptor of habitat complexity, depth was included in a second BEST analysis

to explain assemblage composition. Including depth as an environmental factor

resulted in a stronger, significant relationship (BIOENV Global Test Sample statistic

ρ = 0.347, significance level of sample statistic: 0.1%, number of permutations:
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Figure 4.2: Two-dimensional representation of nMDS scaling of the
Bray-Curtis similarity matrix applied to the fourth-root transformed
data, open triangles represent offshore deployments and filled triangles
represent inshore deployments
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999). This time, the strongest single variable explaining assemblage composition

was depth (ρ = 0.257) (Fig. 4.3). Except for slope (ρ = 0.18), the remaining

habitat complexity measures contributed little to explain assemblage composition

(see Fig. 4.3).

Species accumulation curve

The intersecting observed species accumulation and Michaelis-Menten model curves

(Fig. 4.4, bottom left panel) attest that sampling effort was sufficient to capture
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virtually the entire detectable species assemblage. This intersection can be

considered a stopping rule with respect to sampling effort (Magurran, 2004). Both

curves crossed at 87 deployments (n = 96). Total species richness estimates using

five different parametric and non-parametric methods were higher by 3 – 10 species

(Table 4.2) compared to the empirical species richness value of 48.

Table 4.2: Total species richness estimates (standard deviation)
using five different estimators. Empirical species richness = 48.

estimator estimated species richness S (SD)

Chao 2 non-parametric 52 (3.86)
ICE non-parametric 54 (0.01)
Jackknife 1 parametric 56 (2.69)
Jackknife 2 parametric 58 (1.26)
Bootstrap parametric 52 (0.34)

4.4.2 Individual species abundances of reef fish assemblages

A list of the five most abundant species and their total MaxN count recorded during

96 BUVS deployments is presented in Table 4.3.

Table 4.3: Species and common names and total MaxN count of the
five most numerous fish species in the BUVS data set

species common name count

Caesioperca lepidoptera Butterfly perch 1236
Trachurus declivis Common Jack mackerel 1059
Pseudolabrus psittaculus Rosy wrasse 669
Nemadactylus macropterus Jackass morwong 479
Pseudophycis bachus Red cod 179

The PERMANOVA results showed that abundance of the five most numerous

fish species were not significantly different between inshore and offshore sites

(F = 1.5552, df = 1, pperm = 0.2208, pMC = 0.2272) and between sites (F = 1.0577,
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df = 8, pperm = 0.4013, pMC = 0.3966). However, GLM results, testing whether each

species individually shows differences in abundance between inshore and offshore

sites, excluding factor site, showed significant differences for two species. Whereas,

T. declivis, C. lepidoptera and N. macropterus showed no differences in abundance

between inshore and offshore sites, P. psittaculus and P. bachus did (Table 4.4).

Both species were more abundant in offshore sites compared to inshore sites. With

respect to the two commercially important fish species; L. lineata abundance in

offshore sites was significantly higher than in inshore sites (Table 4.4, Fig. 4.5),

in contrast, N. tetricus abundance was significantly higher in inshore sites than in

offshore sites 4.4.

4.4.3 Size structure of two commercial species obtained by photogram-

metric length estimation

Striped trumpeter

BUVS recorded 71 individuals of Latris lineata. Out of 96 BUVS deployments

at least one individual (i.e., MaxN = 1) of L. lineata was recorded 28 times.

Sixty-four per cent of L. lineata visits recorded during BUVS deployments were

suitable for photogrammetric length measurements. Forty-seven photogrammetric

length estimates of L. lineata could be obtained using video footage from 96 BUVS

deployments. Individual trumpeter ranged in size from 300 mm to 760 mm (Fig.

4.5). The two maxima in Fig. 4.5 indicate two cohorts. The length difference

between cohorts is consistent with findings by Tracey (2007).
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Table 4.4: Negative binomial GLM results comparing fish
abundances between inshore and offshore sites. Distance from
shoreline is a two level factor (inshore, offshore). ∗ denotes the
dispersion parameter for each model. CI denotes Confidence Interval.

species Estimate 95% CI (Estimate) p value

L. lineata intercept -1.5581 -2.5892, -0.7901 < 0.01
distance from shoreline 1.9721 1.0898, 3.0650 < 0.01
dispersion ∗ 2.422

N. tetricus intercept 0.5213 0.3202, 0.7098 < 0.01
distance from shoreline -2.1054 -2.8862, -1.4652 < 0.01
dispersion ∗ 0.946

T. declivis intercept 2.4717 1.9798, 2.8942 < 0.01
distance from shoreline -0.1846 -0.9752, 0.5531 0.63
dispersion ∗ 36.31

P. psittaculus intercept 1.7621 1.5833, 1.9308 < 0.01
distance from shoreline 0.3944 0.1496, 0.6394 < 0.01
dispersion ∗ 2.604

C. lepidoptera intercept 2.5193 2.2037, 2.8050 < 0.01
distance from shoreline 0.0861 -0.3799, 0.5419 0.71
dispersion ∗ 16.579

N. macropterus intercept 1.6707 1.3662, 1.9470 < 0.01
distance from shoreline -0.1638 -0.6542, 0.3063 0.50
dispersion ∗ 6.620

P. bachus intercept 0.3758 0.0749, 0.6491 < 0.01
distance from shoreline 0.5250 0.1344, 0.9192 < 0.01
dispersion ∗ 1.773
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L. lineata line fishing catch data from the same sampling area (Fishing Block

6H3, fishing blocks of 30 minutes of longitude and latitude are a common spatial

assessment unit used in Tasmanian fisheries research) during the same time of BUVS

sampling (August, October and November 2010) indicate that BUVS are more

efficient in recording this species. Fourteen days of BUVS sampling (96 deployments)

recorded a total of 72 L. lineata individuals, whereas 5 days of line fishing resulted

in 82 individual fish. However, a formal analysis using mean observations per day

per unit time (MOPUT, Assis et al. (2007)) revealed that mean MOPUT for BUVS

is 21 times higher than mean MOPUT for line fishing, 0.744 (SD = 0.645, n = 8)

and 0.035 (SD = 0.018, n = 5), respectively but variability for BUVS MOPUT is

high. A Wilcoxon rank sum test showed that MOPAT for BUVS are significantly

different from MOPAT for line fishing (W = 1, p-value = 0.003). Mean observations

per day for line fishing data were calculated by dividing the total amount of hook

drops per day by the number of striped trumpeter caught that day. Likewise, BUVS

mean observations per day was calculated by taking the mean of striped trumpeter

MaxN for each BUVS drop per day. Line fishing data were collected by 2–3 anglers

using 3 hooks per line. The length-frequency distribution of L. lineata obtained

using BUVS and line fishing was also very different. Mean length for line fishing

data was 190 mm less compared to BUVS (µBUV S = 481 mm, µline = 291 mm).

There were obvious differences between both sampling methods. BUVS recorded

larger individuals (range: 310 – 756 mm, n = 49), whereas line fishing selected for

smaller individuals (range: 187 – 447 mm, n = 82).
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trumpeter (Latris lineata) sampled from May 2009 to August 2010.
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Blue-throated wrasse

BUVS recorded 104 individuals of Notolabrus tetricus (63 females and 41 males).

Out of 96 BUVS deployments at least one individual (i.e., MaxN = 1) of N. tetricus

was recorded 54 times. Sixty-three per cent of N. tetricus visits recorded during

BUVS deployments were suitable for photogrammetric length measurements. Thirty

photogrammetric length estimates for males and 15 length estimates for females

for N. tetricus could be obtained using video footage from 96 BUVS deployments.

Female N. tetricus ranged in size from 220 mm to 420 mm, whereas males ranged

from 300 mm to 540 mm. The overlap in size range between this hermaphroditic

species was 300 mm and 420 mm (Fig. 4.6).

Edgar (1997) gives 500 mm as the maximum recorded length for N. tetricus. In

contrast, photogrammetric length measurements of using BUVS footage recorded

a maximum size of 540 mm. Other obvious differences between another study by

Barrett (1995) were the lack of juvenile and small individuals (<220 mm) in the

BUVS footage and the lack of larger males (>400 mm) in Barrett (1995) who used

different mesh size gill nets, traps, spearing and handlining. In addition, the overlap

of males and females in this study (300 mm – 420 mm) contrasts with findings by

Barrett (1995) where transitions (from female to male) occurred between 270 and

320 mm.

A GLM with quasi-binomial link function, to adjust for overdisperion, revealed

significantly different probabilities of N. tetricus occurrence with depth (GLM

b = −0.1179, SE = 0.0203, p < 0.001).
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4.4.4 Improving estimates of relative abundance

Striped trumpeter

Underestimating true abundance is a known caveat of MaxN. Using N , the sum

of individuals, differentiated by an individual’s length, instead of MaxN showed no

difference with respect to total relative abundance (Table 4.5). Both total relative

abundance estimates, MaxN and N , were 47. However, there were differences

between MaxN and N within individual deployments. In general, relative abundance

estimates using N were greater where MaxN was small and vice versa. Combining,

N and MaxN increased total abundance by six individuals (53). This figure was

obtained by adding the larger abundance estimate, either N or MaxN, found for

each BUVS deployment. A lower N value, compared to MaxN for a particular

deployment, was due to the inability to stereophotogrammetrically obtain as many

length measurements as the MaxN value. The video frame where MaxN was highest

for L. lineata (MaxN = 9) did not provide clear views of nine individual snout and

tail pairs; a prerequisite to measure fish length using photogrammetry.

Blue-throated wrasse

N yielded 59 (57%) less individuals of N. tetricus than MaxN. Table 4.6 gives MaxN

and N (number of individual N. tetricus determined by length). Females and males

combined resulted in a relative abundance estimates of MaxN = 104 and N = 45.

The proportion of females over males for both relative abundance estimates was
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Table 4.5: Comparison of L. lineata MaxN and N for BUVS
deployments by site, replicate and date.

Site replicate Date MaxN N

Blowhole 1 19/06/2009 1 4
Chevron Rk 1 12/03/2010 1 2

1 22/08/2010 1 2
2 15/10/2009 1 1

Chevron Rk South 3 12/03/2010 9 7
Hippolyte Rk 1 22/08/2010 2 3

3 22/08/2010 2 2
Little Hippolyte Rk 3 11/03/2010 1 1
Hippolyte Rk South 1 16/12/2009 5 3

2 16/12/2009 2 2
2 22/08/2010 3 3
3 16/12/2009 4 4

Patch Reef North 1 15/12/2009 2 2
2 11/03/2010 2 2
2 29/01/2010 3 2

Sisters 3 11/03/2010 3 2
Waterfall Bay 2 29/01/2010 3 3

2 30/07/2010 2 2
Total 47 47
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F/MMaxN = 1.6, F/MN = 2.0. Combining the two relative abundance estimates

resulted in 108 individuals, i.e., 4 additional female individuals.

4.4.5 Power analysis

MaxN data of five commercially important fish species were subjected to power

analysis. Fitted probability distributions and distribution parameters for MaxN data

for species N. tetricus, L. lineata and N. macropterus are presented in Table 4.7.

MaxN data for L. lineata fitted a negative binomial distribution with parameters,

µ = 0.740 and k = 0.274 (χ2, df = 2, p = 0.538), see Fig. 4.8. Statistical power

to detect differences in L. lineata abundance was below the conventional 80%. The

results showed that BUVS are not suited to monitor changes in L. lineata abundance.

As for L. lineata, power analysis also showed that BUVS are not suited to monitor

changes in C. spectabilis and Latridopsis forsteri (results omitted). The inability of

the power analysis to detect changes in abundance is based on the low detection

rate of these three species using BUVS.

MaxN data for N. tetricus fitted a Poisson distribution with parameter, µ = 0.75

(χ2, df = 1, p = 0.258), see Fig. 4.8. Using BUVS as a sampling tool to monitor

N. tetricus abundance is feasible to a certain extent as can be seen in Fig. 4.8;

statistical power to detect 50% and 75% difference in N. tetricus abundance was

above the conventional 80%.

MaxN data for N. macropterus fitted neither a Poisson nor a negative binomial

distribution due to the extreme positive skew (γ1 = 2.78). Hence, the bootstrap
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Table 4.6: Comparison of N. tetricus MaxN and N by gender for
BUVS deployments. F = female, M = male, F + M = females and
males combined

MaxN N
Site replicate Date F M F+M F M F+M

Blowhole 2 17/12/2009 1 1 2 0 0 0
3 17/12/2009 1 1 2 1 0 1
1 12/03/2010 2 1 3 0 0 0
1 19/06/2009 2 1 3 0 0 0
1 30/07/2010 2 1 3 1 1 2
1 14/05/2009 1 0 1 0 0 0
2 12/03/2010 1 1 2 1 1 2
2 16/10/2009 1 1 2 0 0 0
2 19/06/2009 1 1 2 0 0 0
2 30/07/2010 1 0 1 1 0 1
1 17/12/2009 1 1 2 1 0 1

Chevron Rk 1 11/03/2010 1 1 2 1 1 2
1 15/10/2009 1 0 1 0 0 0
1 22/08/2010 1 1 2 0 1 1

High Yellow Bluff 1 14/10/2009 2 1 3 0 0 0
Little Hippolyte Rk 3 11/03/2010 0 1 1 0 0 0
Hippolyte Rk South 1 16/12/2009 1 1 2 1 0 1
O’Hara Bluff 1 16/12/2009 2 1 3 0 0 0

1 12/03/2010 1 1 2 0 1 1
1 16/10/2009 1 1 2 0 1 1
1 29/01/2010 1 1 2 3 1 4
1 30/07/2010 1 1 2 0 0 0
2 12/03/2010 1 1 2 0 0 0
2 16/10/2009 1 0 1 0 0 0
2 29/01/2010 1 1 2 1 0 1
2 30/07/2010 1 1 2 0 0 0
3 12/03/2010 1 1 2 1 1 2
3 29/01/2010 1 0 1 1 0 1
3 30/07/2010 2 1 3 2 1 3

Sisters 1 9/07/2010 1 1 2 1 0 1
2 9/07/2010 2 1 3 1 1 2
2 11/03/2010 1 0 1 1 0 1
2 29/01/2010 2 0 2 1 0 1
3 11/03/2010 0 1 1 0 0 0
3 9/07/2010 1 1 2 1 1 2
3 29/01/2010 2 1 3 1 1 2

Waterfall Bay 1 12/03/2010 1 1 2 0 1 1
1 16/10/2009 1 0 1 0 0 0
2 12/03/2010 1 0 1 0 0 0
1 19/06/2009 1 1 2 0 0 0
1 29/01/2010 1 0 1 1 0 1
1 30/07/2010 2 0 2 1 0 1
2 19/06/2009 1 1 2 0 0 0
2 30/07/2010 1 0 1 1 0 1
3 19/06/2009 1 1 2 0 0 0
3 29/01/2010 1 1 2 0 0 0

High Yellow Bluff 1 9/07/2010 2 1 3 0 0 0
1 11/03/2010 2 1 3 1 0 1
1 29/01/2010 1 1 2 2 1 3
2 11/03/2010 1 1 2 0 0 0
2 29/01/2010 1 1 2 2 1 3
3 9/07/2010 1 0 1 0 0 0
3 11/03/2010 1 0 1 1 0 1
3 29/01/2010 1 1 2 0 0 0

Total 64 40 104 30 15 45
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Figure 4.8: Barplots illustrating the fit of raw and generated
abundance (MaxN) distributions for L. lineata top and N. tetricus
bottom. Line plots display the relationship between statitistical power
and number of replicates per sample when comparing mean abundance
differences of 25% (red), 50% (blue) and 75% (green). Lines are
smoothed curves (lowess, non-parametric), data points are colour-
coded small dots.
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Table 4.7: Distribution and parameters µ and k used in the power
analysis for the three species. Mean is based on raw data, dispersion
parameter k was estimated using maximum likelihood.

species mean abundance distribution dispersion parameter (k)
N. tetricus 0.75 Poisson NA
L. lineata 0.74 negative binomial 0.28
N. macropterus 4.99 NA NA
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Figure 4.9: Change in statistical power with increasing number
of replicates for abundance differences of 25%, 50% and 75% for
N. macropterus. Lines are smoothed curves (lowess, non-parametric),
data points are colour-coded small dots. Dashed lines represent
estimates based on traditional power analysis assuming normality on
log(x+ 1) transformed data.
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method was used to conduct power analysis. As for N. tetricus, using BUVS as a

sampling tool to monitor N. macropterus abundance is feasible; statistical power

to detect a 50% and 75% difference in N. macropterus abundance is above the

conventional 80% (Fig. 4.9). In addition, log(x + 1) transformed MaxN data were

treated as if the normality assumption is true and subjected to power analysis based

on the t-distribution. Power was overestimated using the transformed data, i.e.,

fewer replicates, compared to bootstrapped data, were necessary to achieve the same

level of power (Fig. 4.9, dashed lines). Assuming normality in the MaxN data and

using power analysis based on the t-distribution required roughly 40% less replicates

to achieve power levels of 80%.

4.5 Discussion

This chapter has shown that, in deep water, BUVS can provide the same information

as UVC in the shallows. The following sections will discuss various aspects of using

BUVS to monitor mobile assemblages in deep-water temperate rocky reefs.

4.5.1 Composition of reef fish assemblages

Canonical analysis of principal coordinates identified Jasus edwardsii as a species

that characterises the offshore reef assemblage. Although J. edwardsii was present

in inshore sites, abundance was different by a factor of 4. The low abundance

in inshore sites is not surprising; the study area is a major commercial fishing

ground for J. edwardsii. Fishermen prefer J. edwardsii from shallower depths
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(< 30 m). This is due to a positive relationship between depth and discolouration

(“redness”). Paler coloured individuals are discounted as a live product to Asian

markets (Chandrapavan et al., 2009).

Habitat complexity data

Habitat complexity measures, such as fractal dimension, aspect, slope, plan

curvature and profile curvature explained fish assemblage composition. This weak

but significant relationship was largely attributed to the complexity measure slope.

Moore et al. (2009) found that slope was one of the eight predictors that predicted the

presence of Platycephalus caeruleopunctatus well, however, the relative contribution

was only 3.1% (range 3.1 to 24.3). Galparsoro et al. (2009) also found that slope

was a significant predictor with respect to the presence of the European lobster

(Homarus gammarus). Steep slopes were found to be associated with seafloor

depressions at rocky reef-sand ecotones. Although this study aimed to place BUVS

on rocky reefs some BUVS landed on rocky reef close to the same ecotone. It is

therefore feasible, that the same reason stated by Galparsoro et al. (2009), steep

seafloor depressions at ecotones, applies to this study. The habitat heterogeneity

(complexity) hypothesis (Simpson, 1949; MacArthur and Wilson, 1967) claims that

a greater variety of habitats provides more niches for species to exploit and inhabit,

i.e., a greater species diversity. Highly complex rocky reefs with high rugosity

values, steep slopes, large overhangs and deep channels not only affect the demersal

ichthyofaunaal diversity but also algal assemblage structure. Toohey (2007) found

that 80% of algal assemblage composition under Ecklonia radiata canopies could
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be explained by topographic complexity. Similarly, Alexander et al. (2009)) found

that macroinvertebrate species richness and abundance could be explained by reef

complexity measures such as rugosity substratum composition and refuge metrics.

Since the BEST routine in PRIMER v6 lacks the diagnostics to disentangle which

species related to which habitat complexity measure; further interpretations of the

BEST results are highly speculative. It is conceivable that using Ecological-Niche

Factor Analysis (ENFA) conducted by Galparsoro et al. (2009) is superior to the

BEST procedure. ENFA calculates the standard deviation of environmental data

values where an individual of the species in question was recorded. A low standard

deviation value indicates that the species of interest prefers this particular aspect of

the environment.

Species accummulation curve

The empirical species accummulation curve and the Michaelis-Menten model

intersected at 87 deployments showing that the sampling effort was sufficiently

large to capture the species richness in this study area. In contrast, Cappo et al.

(2004) found that the BUVS sampling conducted was not sufficient to predict total

species richness based on the asymptote of the SAC. Hence, with a sufficient amount

of replicates, BUVS can be confidently adopted to monitor fish assemblages in

temperate deep-water reefs with respect to ichthyofaunal biodiversity.
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4.5.2 Individual species abundances of reef fish assemblages

Analysing MaxN records from inshore and offshore sites using GLMs revealed

significant differences for species L. lineata, P. psittaculus, P. bachus and N. tetricus.

This result is of particular importance in the context of Marine Protected Areas

(MPAs). The performance of management regimes, such as the establishment of

an MPA is usually based on comparing a protected site with an unprotected site.

Watson et al. (2007) found that after 10 years of protection targeted and non-

targeted reef fish species inside and outside MPAs differed largely. Most importantly,

removal of targeted fish species can indirectly alter trophic structure of reef fish

assemblages. Based on management objectives the monitoring sampling tool has

to be sensitive to detect changes and to be efficient as not to strain resources.

The Comprehensive, Adequate, and Representative principle implies that MPAs

should include several habitats to protect a large number of species and different

life stages and cover the entire depth spectrum of a given species. Curley et al.

(2002) suggest that MPAs in New South Wales should be larger than 2 - 6 km

or multiple MPAs located as to include all available habitats. Given the breadth

of these management objectives and the obligation to annually monitor large and

diverse areas it is pertinent to have an efficient and sensitive sampling tool. The

results in this chapter have shown that BUVS can detect changes in abundances

of several important species and do this in an efficient manner, e.g., BUVS can be

deployed in a variety of habitat types including complex rocky reefs, BUVS can be

easily deployed by small vessels with few personnel, are sensitive to detect changes in
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species richness and abundance inside and outside MPAs, are relatively inexpensive,

provide photogrammetric length and volume estimation (stereo BUVS) and are non-

extractive and can therefore be used in MPAs where extractive sampling methods are

undesirable. However, some shortcomings of BUVS are their propensity to exclude

sedentary, cryptic, demersal specie such as flatfishes, apogonids, synodontids, triglids

and callionymids (Cappo et al., 2004), lack a defined sampling area (provide only

relative abundance) and can bias assemblage composition towards predatory and

scavenging species.

4.5.3 Size structure of two commercial species obtained by photogram-

metric length estimation

This study successfully used stereo BUVS to photogrammetrically measure fish

length of two commercially important fish species. These length measurements

culminated in species and gender specific length-frequency data. Whereas trained

divers estimate the length of individual fish, stereo BUVS use a calibrated system to

measure length with quantifiable accuracy and precision. Harvey et al. (2003) report

photogrammetric measurement error to be less than 1%. Blue-throated wrasse data

collected using BUVS in deep-water rocky reefs and UVC or extractive sampling

techniques in the shallows are very similar. This can be taken as evidence to support

the suitability of BUVS to sample this particular species in deeper depths. The

maximum depth recorded for N. tetricus visits was 66 m. The sharpest decline in

probability of N. tetricus occurrence started at 50 m depth (Fig. 4.7). In contrast,

over the depth range covered by Shepherd et al. (2010), using UVC, there was
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no significant increase in abundance of N. tetricus males with depth. Although,

GLM results suggest that at 80 m depth the probability of N. tetricus occurrence

approaches zero, this species is known to exist down to 160 m (Edgar, 1997), however,

Lyle and Jordan (1999) report that catch by depth strata data analysis indicates

that N. tetricus catches below 40 m are virtually zero. The majority of N. tetricus

habitat is beyond safe diver’s depths. However similar, comparative results were not

identical. One reason could be that Barrett (1995) used extractive sampling methods

and also targeted shallower depth (maximum depth = 20 m). There was also a

time difference of 20 years between sampling. Further reasons as to why Barrett

(1995)’s and this study’s results differ are indicated in Shepherd et al. (2010), who

found a positive relationship between average female length and distance offshore

and exposure index. Barrett (1995) sampled in locations less exposed and further

inshore compared to this study. Despite the comparatively small sample size (n=45)

of N. tetricus photogrammetric length estimates, the results are comparable to other

studies on this species (Shepherd et al., 2010; Barrett, 1995). The highest female-

to-male ratio (F:M) recorded was 3:1 and much lower than reported by Shepherd

et al. (2010) (10:1 to 20:1) using UVC in South Australia. Barrett (1995) reported

the same female-to-male ratios in Tasmanian waters. Since Shepherd et al. (2010)’s

and Barrett (1995)’s findings are consistent, despite their relatively large geographic

separation (Tasmania cf South Australia), I assumed generality with respect to

the F:M ratio. Applying Shepherd et al. (2010)’s F:M ratio to the BUVS data,

i.e., multiplying each male visit by 10 or 20 to obtain true abundance, BUVS

underestimate N. tetricus abundance by 192 – 423%, a factor of 2 – 4. Although, it



120

is conceivable that F:M ratios are different below safe SCUBA diving depths, BUVS

records do not indicate changes in F:M ratio with depth. However, BUVS records of

F:M ratios range only from 1:1 to 3:1 and should therefore be used with caution when

investigating sex ratio–depth relationships. Another reason why the F:M ratio in

this study was significantly different from Shepherd et al. (2010)’s findings could be

that the BUVS footprint does not cover the entire N. tetricus home range. Shepherd

et al. (2010) state that the home range of N. tetricus is 1000 – 2000 m2, whereas

the BUVS footprint is about 150 m2. This footprint would be sufficient for a species

that is attracted to the bait and feeds on the bait, however this is not the case for N.

tetricus. The Blue-throated wrasse was never recorded to feed on the bait regardless

of gender.

With respect to L. lineata, two important findings were reported. Firstly, BUVS

are not very efficient at capturing L. lineata and secondly, BUVS recorded

significantly different size spectra. Wrongly assuming identical performance of both,

extractive and non-extractive sampling methods can have serious consequences from

a management perspective. The L. lineata population around Tasmania “has been

almost eliminated from the shallow water during the past half-century” (Edgar,

1997). This is consistent with more recent sources: “catches fell by over 30% in

2004/2005 to the lowest level since the mid-1980s” (Ziegler et al., 2006) and “fishing

mortality is slightly higher than natural mortality and, in the absence of further

strong recruitment, a decline in the stock size is likely if fishing pressure is not

reduced.” (Tracey and Lyle, 2005). Tasmanian authorities have responded with

increasing the minimum size limit in 2004 and the introduction of a 250 kg trip limit
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Ziegler et al. (2006). Setting the size limit based on either one of the methods results

in either too low or too high a size limit. The results also exemplify, that several

sampling tools are necessary to obtain a balanced picture of the size distribution of

a population. BUVS facilitate a potential quantitative non-extractive sampling tool

for some species from a fisheries management perspective. However, which species

are suitable for BUVS sampling needs to be carefully evaluated.

4.5.4 Improving estimates of relative abundance

One big advantage of line transects using UVC is the ability to calculate the

detection probability of an individual during census (Buckland et al., 2001). This

detection probability results in more accurate density estimates when extrapolating

species abundance over areas that were not sampled, i.e., outside line transects.

The reasons why MaxN underestimates true abundance are manyfold and species

specific. In this study individual photogrammetric length measurements of two

commercial fish species were taken. These measurements served as an aid to

differentiate individuals by size. The sum of individuals, N was then compared

to the corresponding MaxN value. A larger value of N compared to MaxN would

give further evidence that the latter underestimates true abundance using the same

sampling technique but also provide a better method to obtain relative abundance

using BUVS. In contrast, a larger MaxN value would corroborate the current de

facto standard status of MaxN using BUVS. Depending on the species of interest,

similar N values compared to MaxN are likely related to species-specific dietary

preferences. L. lineata, a species that was frequently observed to feed on the bait,
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was equally often recorded regardless of method (N or MaxN). Improving MaxN was

based on the premise that individuals can be differentiated using size and/or obvious

markings. It is conceivable that stripe patterns of striped trumpeter L. linatea differ

between individuals, similar to the spot pattern in whale sharks Rhincodon typus

(Arzoumanian et al., 2005) or the grey nurse shark (Van Tienhoven et al., 2007).

However, to my knowledge, no investigations have been published that compare

stripe patterns in L. lineata. The author noted one large individual that had a

strikingly different stripe pattern compared to the majority of L. lineata observed.

Given that the individual was unusually large, the stripe pattern could also relate

to age. In contrast, N. tetricus, a species that was never observed to feed on the

bait, was far less frequently recorded using N . The discrepancy between N and

MaxN is likely due to high enhanced MaxN scores caused by combining females

and males, despite the fact that both were not recorded in the same videoframe,

xMaxN . It should be noted that in N. tetricus only one morphological male is

typically present in a given territory (see Table 4.6). This constant could be used

to derive a total abundance estimate based on published female-to-male ratios.

Photogrammetric precision deteriorates with distance from the bait bag (Shortis

et al., 2009). Hence, species that come close to the bait bag can be measured

more precisely. Differentiating individual fishes by their body length is based on

precise photogrammetric measurements and fails when the variability of repeat

(replicate) measurements is high and observed fishes have similar sizes. Fig. 4.5

(top) suggest a reasonably close fit to the bell-shaped distribution curve. This means

that the majority of fishes have similar length and the ability to differentiate them
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accordingly decreases with decreasing measurement precision, i.e., the standard

deviation becomes larger.

Although one limitation of MaxN, underestimation of true abundance, could be

improved as shown in this study the issue of unknown sampling volume remains

unresolved. Despite the fact that photogrammetric length measurements give 3D

coordinates of every fish recorded and, combined, this information defines a discrete

volume, this volume is (1) species specific and (2) does not account for bait plume

dispersal. Harvey et al. (2007) found that some fish species are not attracted to bait

but are still recorded while passing by and that bait attracts more predatory and

scavenging fish species without decreasing herbivorous and omnivorous fish species

abundance. Although BUVS data are biased towards predatory and scavenging

fish species bait provides greater similarity between replicate samples and therefore

better statistical power compared to unbaited underwater video stations. Different

species of fish have different abilities to detect prey using their sense of smell.

Species with an acute sense of smell can detect the bait plume over a greater

distance than species with a less acute sense of smell. It follows, that the more

acute the sense of smell of a given species the larger the volume BUVS sample. Bait

plume dispersal is mainly governed by tidal current strength. Current meters can be

attached to the BUVS frame and record currents strength and direction to model

bait plume dispersal. However, currently there are no specific models available

that can accurately model bait plume dispersal in habitats with highly complex

topography, such as rocky reefs. Even if bait plume dispersal in highly complex reef

environments could be accurately modelled, species specific abilities to detect the
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bait plume have to be established by experiment. Hence, currently the volume of

the bait plume is not identical to the field of view.

Only in combining N and MaxN, did the total relative abundance value increase.

However, since this increase was small (4% and 11%, N. tetricus and L. lineata,

respectively) and the effort to derive N in addition to MaxN was large, both methods

combined should only be used for key target species. It should be noted that, in

order to derive N and MaxN the annotator has to score the entire video footage.

After scoring the footage MaxN is immediately available, however, obtaining N

requires three more steps. Photogrammetrically measuring fish length is the most

time-consuming step. However, most researchers using stereo BUVS do measure fish

length, e.g., Watson et al. (2009, 2010); Harvey et al. (2001, 2002, 2003); Cappo et al.

(2006); Willis et al. (2003). Applications varied from biomass assessments inside

and outside MPAs (Willis et al., 2003) and targeted and non-targeted fish species

(Watson et al., 2009), comparisons between length fish estimates by divers and

BUVS (Harvey et al., 2002) and accuracy and precision assessments of stereo BUVS

length estimation used on tuna ranches (Harvey et al., 2003). In these cases, the

two remaining steps to derive N are trivial and easily conducted, thereby providing

valuable information about relative fish abundance. It is unlikely that, in the near

future, the process of photogrammetrically measuring fish length can be automated.

However, recent developments in pattern recognition, machine learning and artificial

intelligence have delivered some promising results and MacLeod et al. (2010) urge

taxonomists to collaborate with specialists from the above fields to achieve more

accuracy and less drudgery.
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4.5.5 Power analysis

Power analysis on N. tetricus abundance recorded by BUVS was conducted to

see how many replicates are necessary to detect a 25%, 50% and 75% change in

abundance between two samples. With the current sampling effort (n = 96) a

change in abundance of > 50% could be detected, which is consistent with findings

by Edgar and Barrett (1997) using 104 UVC samples, i.e., 4×500m2. However, Edgar

and Barrett (1997) used a different power analysis method method (“the power of

each analysis was assessed by adding a fixed log value to 1993 data obtained at

reserve sites. The size of this value was gradually increased by iteration until the

F -test of the interaction term in the associated ANOVA indicated that the null

hypothesis should be rejected at a probability level of 0.05.”) and were only able to

detect changes with 50% power (Most statisticians work with α = 0.05 and β = 0.2

and power of 0.8 (1− β) or 80% (Crawley, 2007)). Detection error is defined as the

probability that a species is not recorded using a certain sampling tool. If a certain

sampling tool is not able to effectively sample the target species, it should not be

used in a management context where resources are finite. This study showed that

three out of five species are not adequately detected using BUVS. Concurrently, it

provided a method (power analysis) to quantify detection error for species recorded

using BUVS. It is commonly criticised that the species composition of BUVS records

is biased towards piscivorous and scavenging species due to the bait used during

deployment (Willis et al., 2000; Watson et al., 2005). However, records in this study

show that BUVS can detect the zoobenthivorous N. tetricus which is not attracted
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to the bait (Shepherd and Clarkson, 2001). The overestimation of power by using

log(x+1) transformed MaxN data in conjunction with standard power analysis tools

emphasises the importance of using the right statistical tools, suitable for the data

at hand.

4.6 Conclusion

BUVS are effective in assessing reef fish assemblage attributes for some species that

are attracted to bait, to the BUVS unit and activities of other fish feeding on the

bait, such as size composition and relative abundance below safe SCUBA diving

depths. Whereas, comparative studies between different habitats or management

regimes are feasible with respect to photogrammetrically measured fish length and

species richness, comparative studies based on the relative abundance measure MaxN

are futile, except for a few species (N. tetricus and N. macropterus).
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Chapter

5 Assessing size, abundance and

habitat preferences of the ocean

perch Helicolenus percoides using a

AUV-borne stereo camera system

This Chapter has been accepted for publication and will be printed in Fisheries

Research. doi:10.1016/j.fishres.2012.06.011

5.1 Abstract

Traditional fishery resource assessment methods using trawl gear are unable to

sample rocky substratum and are prone to underestimating the biomass of species

having partial or strong association with rocky reefs. This study successfully

used an Autonomous Underwater Vehicle (AUV) and image-yielding methods to

estimate size, abundance and habitat preference of an abundant and commercially

important ‘rockfish’ – the ocean perch (Helicolenus percoides) – in rocky habitats

on the continental shelf off Tasmania, SE Australia. More than half (53%)

of the ocean perch observed were photogrammetrically measured with known

accuracy using a stereo camera system yielding length-frequency distributions.

Observations of juvenile and adult H. percoides across a depth gradient showed that

adults preferred rocky substrates over soft substrates, whereas juveniles preferred

soft substrate over hard substrate. We found a positive relationship between
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rockfish abundance and increasing depth in most habitat types. These results

demonstrate the utility of image-based methods for determining size composition

and habitat preferences of some reef-associated species. However, there is scope to

improve image-based methods using length estimation procedures that enable higher

proportions of individuals to be measured (compared to the proportion achieved

in this study) and by incorporating automated image annotation to decrease

image analysis times, particularly when examining species/habitat relationships.

The importance of analytical procedures that account for autocorrelation in non-

independent image data on habitats and associated species is discussed. We conclude

that rapidly maturing image-based observational methods have potential utility in

complementing fishery stock assessments of some reef-associated species. Image-

based methods are also well-suited to simultaneously provide additional quantitative

measures of benthic habitats, invertebrate fauna and fishery environments.

5.2 Introduction

Many commercially important fishes and other species with high conservation

significance are associated with rocky reef habitat that is difficult to survey using

conventional net-based methods. Non-extractive photographic methods are able to

survey rocky reef habitats and have the potential to assess size, abundance and

habitat preferences of associated fishes. Manned submersibles (Yoklavich et al.,

2000, 2007), remotely operated vehicles (ROV) (Brodeur, 2001; Johnson et al.,

2003), an autonomous underwater vehicle (AUV) (Tolimieri et al., 2008) and towed

camera platforms (Lauth et al., 2007; Williams et al., 2010c) have been used
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for abundance assessments and to investigate species-habitat associations. Each

platform brings particular strengths to rocky reef surveys. The manned submersible

Delta was instrumental in a fishery-independent assessment of the overfished Cowcod

(Sebastes levis) in depth from 75 – 300 m (Yoklavich et al., 2000). Delta’s

greatest strength is its ability to take two personnel onboard, a pilot and a fisheries

scientist or other relevant specialist. Several viewports and various cameras allow

observations from different angles (Yoklavich et al., 2000). The establishment of

Cowcod Conservation Areas off the Californian coast aimed at protecting cowcod

from commercial and recreational fishing, thereby excluding extractive sampling

methods as a monitoring tool (Yoklavich et al., 2000). Being non-extractive, Delta

provided valuable insights into habitat-specific rockfish distribution. This included

highly complex reef habitats where traditional sampling gear is ineffective.

AUVs follow a pre-programmed track (mission) and therefore require no on-board

personnel during sampling. Another strength is the AUV’s ability to manoeuvre

at centimetre accuracy over very complex terrain (Williams et al., 2008b) - an

important feature for monitoring purposes. They combine many of the strengths

of imagery-yielding sampling platforms, e.g., being non-extractive samplers with

extensive depth rating and large size range. Tolimieri et al. (2008) were the first to

test an AUV to investigate abundance and habitat-specific distribution of Rosethorn

Rockfish Sebastes helvomaculatus off the coast of Oregon, USA. This commercially

important, species had not been previously surveyed because it lives on rocky reef

in depths from 100 to 300 m.

Species-specific habitat preferences can be readily identified from in situ
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photography and quantified when the image footprint enables precise and accurate

size and abundance estimates to be made. This is straightforward when the camera

is parallel to a flat seabed and image footprint is a simple function of camera

altitude and when fish are also parallel to the plane of the photograph. While

this condition may be met by highly dorsoventrally flattened species such as flatfish

or scallops (Harris and Stokesbury, 2006), it is rarely the case in highly complex

rocky reef environments. Stereophotogrammetry, using calibrated stereo camera

systems (Williams et al., 2010c) is free from this constraint and therefore offers many

advantages over single camera systems. The AUV platform, with ability to hover

at fixed distance from the seabed, deploying a downward-looking digital camera,

appears to be an ideal platform for testing such applications.

In this study we use the stereo-vision AUV Sirius to assess size, abundance and

habitat preference of the ocean perch Helicolenus percoides in temperate waters of

the south-eastern Tasman Peninsula, Tasmania, Australia. The aim of this study is

to demonstrate the potential for stereo-photography on a stable AUV platform to

contribute quantitative data on size, abundance and habitat preference to assessing

population structure of deep-water reef-associated fishes. We discuss the potential

sources of error in the observational and analytical methods and the advantages

of an assessment method that is both non-extractive and feasible on any seabed

habitat type.
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5.3 Material and Methods

5.3.1 Field Sampling

Helicolenus percoides (Richardson & Solander (1842), Family: Sebastidae (Gomon

et al., 2008)) is a bottom-dwelling teleost distributed across the Southwest Pacific

(Australia and New Zealand, 26◦S – 55◦S) and is commercially important in much

of this range. It occurs on coastal rocky reefs to deeper open sandy bottom (Gomon

et al., 2008) in depths ranging from 80 – 350 m (Rowling et al., 2010) with maximum

length of 40 cm (Gomon et al., 2008). This study was conducted in adjacent waters

of the south-eastern part of the Tasman Peninsula, Tasmania, Australia and covers

∼ 200 km2 (Fig. 5.1) in 25 – 95 m water depth. The maximum depth sampled (95 m)

was also the deepest depth to which rocky reefs extended. Although, H. percoides

frequent depths below the maximum depth in this study; there was no opportunity

to sample beyond the rocky reef edge. We therefore restrict our results to the depths

sampled.

During daylight hours (8 AM – 6 PM) high resolution, geo-referenced imagery of the

target species and benthic habitats was acquired using the Autonomous Underwater

Vehicle (AUV) Sirius, operated by the Australian Centre for Field Robotics at the

University of Sydney. Sampling during daylight hours was necessary to eliminate

possible diel behavioural effects of fish abundance or habitat use. A multibeam

sonar survey was conducted prior to AUV deployment to delineate the extent of

deep-water reef systems and enable depth stratified sampling during AUV missions.
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Multibeam sonar survey data were gathered using a 200 kHz Kongsberg EM-3002

echo sounder from the 20 m research vessel Challenger. Individual AUV dives

were then randomly placed on prominent deep-water reefs within the study area

(Fig. 5.1) targeting rocky reef and transition zones between reef and adjacent sandy

areas. Geographical vehicle positioning on the surface was accomplished using

GPS. Navigation underwater was achieved using a Doppler velocity log, inertial

measurement unit and ultra-short base-line acoustic positioning system, pressure

sensor and a compass. To further reduce positional error introduced by dead-

reckoning and sensor drift, the simultaneous localisation and mapping (SLAM)

technique was used to renavigate the estimated vehicle trajectories (Williams et al.,

2008b). Consequently, the intersecting survey pattern (Fig. 5.1 inset) was necessary

to maintain high spatial accuracy using SLAM.

5.3.2 Data acquisition and processing

The AUV’s ability to hover facilitated a virtually constant altitude of 2 m above

the seafloor which equates to an image footprint of 1.6 × 1.3 m (∼ 2 m2). The

relatively slow ‘flying’ speed of the AUV is ∼ 0.4 m/s. Average image area was

2.04 m2 (±0.09 SD). A pair of downward-looking Pixelfly HiRes (1360 × 1024

pixels) digital cameras took images every second. The relatively narrow camera

separation of 78 mm accommodated the stereo camera system within a streamlined

AUV hull, keeping overall vehicle drag to a minimum. Two strobes, one situated

at the front and the other at the back of the AUV, synchronously illuminated the

field of view. Within the survey area, the AUV collected 126,723 overlapping stereo
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image pairs. To achieve independent (non-overlapping) quadrats (images) only every

fourth image was annotated. Vehicle altitudes > 3.5 m resulted in underexposed

images which were excluded from analysis (n = 501). These remaining 32,008

images were consistently assigned to one of 11 habitat classes by a single annotator.

The very infrequently recorded habitat classes “caulerpa” and “pebble/tuft” were

excluded as they occurred only at one site. Both habitats were also devoid of

H. percoides. The remaining habitat classes were; reef-sand ecotone (RSE), high

and low relief reef (HRR, LRR), patch reef (PR), sand (S), coarse sand (CS), screw

shell rubble (SSR) and screw shell rubble/sand (SSRS). One habitat class dominated

by the large macroalga Ecklonia radiata could not be confidently sampled and was

also excluded from analysis. The dominant habitat was scored in cases of transition

between two types.

The camera system was calibrated by taking 371 stereo image pairs of a

chequerboard (calibration grid, Fig. 5.2) with 32 black squares of known dimensions

in a seawater tank at an approximate distance of 2 m. The calibration software ‘Cal’

(Seager, 2009a), was used to establish an optional stereo constraint specifically for

calibrating stereo camera systems (Seager, 2009a). Within each image pair 82 unique

points on the chequerboard were manually assigned to relate to a pixel position in

the image. This was done for 25 image pairs. Based on this information the software

could solve for all parameters necessary to measure fish length.

The shortest distance between two points (snout and tail) is a straight line.

However, H. percoides was frequently recorded resting in an excessively curled/bent
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Figure 5.2: Left image of calibration grid (chequerboard) in seawater
tank loaded into the software package Cal. Numbers refer to
individual measurement points to derive camera parameters.
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position. Taking length measurements without accounting for this curvature is a

misrepresentation of the true fish size. Excessively curled/bent fish sightings were

excluded from length measurements. Fish length was measured in 937 of 1766 stereo

image pairs in the software package PhotoMeasure (Seager, 2009b). Total length (tip

of snout to tip of caudal fin) was measured by manually determining either end of the

fish in the left image; automated image matching was used to find the matching point

in the right image (Fig. 5.3). When automated image matching failed, positions

(snout or tail) were manually chosen. To assess photogrammetric measurement

error, a second subset of images, independent of the 25 image pairs used for

calibration, was taken to derive 60 random measurements of the chequerboard

ranging from 53 – 482 mm. Measurements were taken across all orientations,

i.e., horizontal, vertical and diagonal using the software package PhotoMeasure.

In addition, we used the built-in image measurement precision setting, set to the

software default of 1 pixel (at a camera altitude of 2 m above seafloor, 1 pixel equals

1.17 mm). This setting influences the precision of parameters estimated with the

bundle adjustment (Seager, 2009a). The precision estimate is also dependent on

camera resolution (rows and columns of sensor array) and camera parameters such

as focal length, camera base separation and orthogonality. Images with measurement

precision values > 40 mm were excluded. Length measurements were converted to

biomass per 2 m2 (image footprint) using the published length-weight relationship

in (Schofield and Livingston, 1996) where weight (g) = a (length)b (weight in g,

total length in cm), which applies to both male and female fish.
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Figure 5.3: Screenshot of left and right image loaded into
PhotoMeasure. Images are zoomed in by a factor of 4. The red line
across the fish is its linear length estimate.

5.3.3 Statistical analysis

Spatial autocorrelation

Determining habitat-occurrence relationships needs to account for spatial

autocorrelation (SAC) in occurrence (abundance), habitat (environmental) or both.

The geographic distribution of individuals can be spatially auto-correlated due to

movement restrictions, social organisation or aggregative reactions to signals from

other individuals of the species. Environmental variables are usually also spatially

auto-correlated and are discussed at length in Legendre (1993). To asses the extent

to which SAC was evident in our data, we applied an auto-correlation function

(ACF) to multiple linear subsections of all AUV transects (dives). The ACF

indicates at what lag (distance) SAC disappears. We assumed that observations

further apart than the lag (distance) indicated by the ACF were spatially not
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correlated. For each dive we generated several lag (distance) values one for each

linear subsection. We took the largest lag (distance) as a threshold to rule out

SAC. Distances between observations (presence of fishes per image) were calculated

using geographical easting and northing and the Pythagorean theorem. This

approach was only taken for binomial (presence/absence) analysis. To visualise

the extent of spatial auto-correlation we used correlograms (Bjørnstad and Falck,

2001), which depict spatial dependencies between locations at different lag distances

using Moran’s I. Two relationships were investigated (A) location (spatial x, y

coordinates) of H. percoides presence-absence and (B) location and extent of habitat

classes.

Linear mixed-effects models (LMEs)

We investigated relationships between continuous variables (fish length and weight)

and environmental variables (depth and habitat) using linear mixed effects models

(LMEs) in R, package nlme (Pinheiro et al., 2009). The Maximum Likelihood (ML)

method was preferred over the default Restricted Maximum Likelihood (REML)

method as we intended to compare models with different fixed effects structures.

LMEs allow for the observational units (image) to be clustered, e.g., observations

by dive. Random effects across dives were assumed to vary. Another advantage

of LMEs is their ability to incorporate several random effects that are spatially

nested, i.e., habitat classes within dives within sites. LMEs were chosen since they

can handle pseudoreplication. In our case, images fall in the category of spatial

pseudoreplication where several measurements (length) were made from the same
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vicinity (dive). Pseudoreplication violates one of the fundamental assumptions in

statistical analysis; independence of errors. Conditions within each habitat class

will affect all length measurements within this particular habitat class and therefore

violate the independence of errors assumption. The best (minimal adequate) model

was chosen by backward selection, where explanatory variables were deleted one at

a time from the full (saturated) model. The model was

FLi = α + β × depthi × habitati + ai + εi

log-transformed fish length (FL) and weight were modelled as an intercept (α) plus

the linear interaction between depth and habitat class effect, a random intercept (a)

and an error term ε. Index i refers to an image, where a length measurement was

taken. Fixed effects, depth and habitat class, influence the mean of y (fish length

and weight), whereas random effects influence only the variance of y. The reduced

model was compared to the full model utilising F -likelihood ratio tests. Restricted

Maximum Likelihood (REML) was used to compare models with different random

effects structures and Maximum Likelihood (ML) was used for models where the

fixed effects structure differed. Fish lengths and weights were log-transformed before

analysis. Sightings without length measurement were excluded from analysis.

Generalised linear mixed-effects models (GLMMs)

Binary response variables, i.e., presence/absence of H. percoides were analysed using

GLMM to investigate relationships between species occurrence and habitats. We
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used the R package lme4 (Bates and Mächler, 2010), as it provides AIC (Akaike

Information Criterion) for model selection. AIC is a measure of the fit of a model

(Crawley, 2007) and for each model is calculated as:

AIC = −2(log−likelihood) + 2(p+ 1)

where p is the number of parameters in the model (1 is added for estimating the

variance). The lower the AIC number the better the fit of a model. As with LMEs

we arrived at the ‘best’ model by backward selection. The model was:

logit(pi) = α + β × depthi + ai + εi

for each habitat class individually the probability (p) of H. percoides presence in

imagei is modelled as an intercept (α) plus the linear depth effect, a random

intercept (a) and an error term ε. The depleted model was compared to the full

model using ANOVA. A non-significant result warranted model simplification, i.e.,

deletion of explanatory variables. After initial analysis using all habitat classes and

dives in one data set we decided to model H. percoides presence/absence for each

habitat class separately. This would allow for easier presentation of our results. The

binary response variable was presence or absence of H. percoides in image i. We

investigated the probability of H. percoides occurrence per image by depth for each

habitat separately. Site, dive and habitat class were incorporated into the model as

random effects.
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Habitat preference index

To address habitat preferences of H. percoides we used a log likelihood ratio test of

goodness of fit (Tolimieri et al., 2008) recommended by Sokal and Rohlf (1995). This

method is similar to Pearson’s χ2 test, however, the test statistic is the deviance from

a log-linear model. We tabulated observed counts by habitat and calculated expected

counts assuming no habitat preference by adjusting for frequency of occurrence for

each habitat. For illustrative purposes we created a preference index (observed

proportions minus expected proportions).

Juveniles and adults

Finally, we investigated the proportion of juvenile and adult individuals by habitat,

depth, dive and site. Due to our inability to determine the sex of fishes we used

an average value based on numbers reported by (Park, 1993): males mature at 10

– 13 cm TL (approx. 2 – 5 years of age) females mature at 9 – 17 cm TL (2 –

6 years of age). Individuals >12.25 cm (24.7 g) were considered adult fish. Our

decision to take an average is based on a sex ratio close or equal to 1 and seems

to prevail in other live bearing non-targeted species of the Sebastidae family but

there are several reasons why the sex ratio can deviate from 1, e.g., fishing pressure

(Harvey et al., 2006). A classification tree model using binary recursive partitioning

was also used to investigate habitat preferences of juvenile and adult fish. Here,

individual length measurements (nlength = 937) were split along the coordinate axis

of the categorical explanatory variable habitat class (nhabitat = 8) so that the split
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maximally distinguishes the response variable (length) between the two branches

(Breiman et al., 1984).

5.4 Results

5.4.1 Measurement precision

Measurement error (error = actual length − photogrammetrically estimated length)

was assessed using images of the calibration grid (chequerboard). Repeated measures

showed that the maximum measurement error was 9.7 mm and minimum error was

0.04 mm; 63% of all measurements were within ±1 mm of the actual length (Fig.

5.4). This range of error is a relatively small proportion of the total lengths of

individual fish, e.g., typically <1%. Because the proportional error is greatest for

smaller individuals, data for juvenile fish is likely to be less reliable than for larger

fish. In fact, average measurement error was highest for short distances, although

the negative linear relationship between log-transformed measurement error and

distance measured was non-significant (GLM, t = 0.991, df = 59, p = 0.326).

5.4.2 Habitat association and spatial autocorrelation

Because spatial autocorrelation (SAC) was evident in H. percoides occurrence, as

well as habitat distribution along transects (Fig. 5.5), we created correlograms for

each of the 14 dives prior to assessing habitat associations to obtain estimates of

distances at which SAC was no longer evident. Spatial dependence is measured by

Moran’s I and the distance estimate coincides with the left-most spline intersect
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Figure 5.4: Histogram of measurement error in mm based on
measurements of the calibration grid (chequerboard), deviation from
actual length (n = 60).

of the x-axis. SAC was evident in dive06 up until 96.2 m for presence/absence of

H. percoides per image and up until 168.3 m for habitat classes. Distance estimates at

which SAC is no longer evident using correlograms were in general higher than those

obtained using the autocorrelation function (ACF). The mean distance estimate for

all 14 dives with respect to H. percoides presence/absence was 29.23 m (SD 20.99 m).

SAC with respect to habitat classes along transects had a mean value of 75.45 m

(SD 42.36 m).

5.4.3 Fish occurrence, length and biomass

H. percoides density was highest (5 individuals per 100 m2) at dive08 (Patch Reef

North) which is a comparatively small, isolated (surrounded by soft substrate), deep

(60 – 85 m) offshore rocky reef outcrop and lowest (<1 individual per 100 m2) at

dive15 (Blowhole) which is a shallow (23 – 58 m), low relief reef site closest to
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Figure 5.5: Example (dive06) spline-smoothed correlograms with
95% point-wise bootstrap confidence intervals (CI) dashed lines,
expressed as Moran similarity (Moran’s I) against distance for (A)
H. Percoides presence-absence and (B) habitat occurrence. Numbers
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and ordinate: (spline intercept with y-axis (lower CI, upper CI)).

the Pirates Bay jetty. Numbers of individuals by habitat are presented in Fig. 5.6.

In general, fish density appeared to be higher in offshore sites than inshore sites.

Sites that are a submerged extension of a mainland cliff are considered inshore i.e.

Blowhole, Sisters, High Yellow Bluff and O’Hara (Fig. 5.1). Sites that are “detached”

from mainland cliffs are considered offshore, i.e., Hippolyte Rock and Patch Reef

North (Fig. 5.1).

Generalised Linear Mixed-Effects Models (GLMMs) were used to predict the

probability of occurrence per image by depth. Each habitat class was modelled

separately; however, all dives were included. The results of log-linear relationships

between presence/absence and depth for each habitat class are presented in

Figure 5.7. All models were significant at the 5% level. Generally, there was
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a positive relationship between H. percoides probability of occurrence and depth,

except for habitat classes ‘screw shell rubble’ and ‘screw shell rubble/sand’ where it

was weakly negative. The variability between dives was also highest for the latter

two habitat classes. Only ‘screw shell rubble’ and ‘screw shell rubble/sand’ had

a significantly different slope than the remaining habitat classes (assessed using

one model that included all habitat classes). Probability of occurrence predictions

outside the depth range of the shallowest and deepest sightings should be regarded

with caution as indicated by the upper and lower confidence intervals (CI). A linear

model could be inappropriate for predictions outside the sampled depth range.

Habitat class ‘high relief reef’ exhibited a remarkably low variability between dives

cf ‘screw shell rubble/sand’.

Out of 1766 individual H. percoides sightings 937 (53%) fish could be measured.

The remainder (47%) was either excessively curved, partly obscured by benthos

or substrate or only partly within field of view. Histograms of length and weight

showed the majority of fish were between 125 mm and 175 mm long and the length

frequency distribution was skewed to the left (skewness = 0.851); 250 fish (36%)

were classified juvenile and 687 fish (64%) adult (Figure 5.8).

The total number of sightings per habitat from the total 1766 individual fish

observed are shown in Fig. 5.6. Mean biomass between habitat classes pooled over

all dives was significantly different (Table 5.1), it was highest for hard substrate

habitats (patch reef, high and low relief reef and reef-sand ecotone) and lowest

for soft substrate habitats (sand, coarse sand, screw shell rubble and screw shell
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rubble/sand) (Fig. 5.6). Habitat classes ‘high relief reef’ and ‘reef-sand ecotone’

had similarly high mean biomass values of ∼100 g whereas ‘sand’ scored lowest with

∼35 g. Variability among biomass values per image was highest for habitat class

‘reef-sand ecotone’ and ‘screw shell rubble/sand’.

Table 5.1: ANOVA results for fourth-root transformed H. percoides
biomass data in response to habitat pooled over all sites and depth.

Source df Sum of squares Mean Sq F value Pr (> F )

habitat type 7 3.053 0.436 6.677 < 0.001
Error 296 19.333 0.065
Total 303 22.386

5.4.4 Habitat preferences

Habitat distribution among dives was highly variable. Low and high relief reef were

most abundant 17% and 29%, respectively. Reef-sand ecotone (4%) and coarse

sand (5%) were the two least abundant habitat classes. Soft substratum habitat
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classes (sand, coarse sand, screw shell rubble and screw shell rubble/sand) combined

accounted for 39% whereas hard substratum habitat classes (high and low relief

reef, patch reef and reef-sand ecotone) make up 61%. There was a clear, although

non-significant, increase in frequency of occurrence with depth for habitat classes

‘screw shell rubble’ (t = 2.204, p = 0.063) and ‘screw shell rubble/sand’ (t = 2.508,

p = 0.041).

The analysis to test H. percoides habitat preferences showed significant differences

in observed numbers per habitat compared to expected numbers for each habitat

(Fig. 5.9, G-test, G = 43.4032, χ2 df = 7, p <0.001). As indicated in Fig. 5.9,

H. percoides prefers high relief reef (HRR) and dislikes screw shell rubble (SSR).

Small deviations from zero such as coarse sand (CS) and patch reef (PR) reflected a

neutral attitude towards those habitats. In general, abundance observations higher

than expected occurred in rocky habitat types (high and low relief reef and patch

reef). Lower abundance observations then expected occurred in sandy (sand) and

rubble (screw shell rubble) habitats. The linear mixed effect model with individual

fish length as response variable and habitat class and depth (interaction) as the

fixed variables and three spatially nested random effects (site/dive/habitat) to test

that mean biomass per image differed among habitat classes and depth were non-

significant for all habitat classes and depth interactions at the 5% level. The non-

significant result was equally true for the linear mixed effect model with all model

components identical except weight as the response variable.

In general, adult fish (na = 687) were more numerous than juvenile fish (nj = 250).
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Juvenile H. percoides individuals preferred habitats with soft substratum (sand,

screw shell rubble, screw shell rubble/sand) see Fig. 5.10, where the percentage

of juveniles per habitat exceeded the mean juvenile percentage (30.5%) across all

habitat classes (dashed line Fig. 5.10). The classification tree model to confirm the

visual assessment showed one split with two terminal nodes distinguishing smaller

(juvenile) and larger (adult) individuals. The split grouped the eight habitat classes

into (1) sand, coarse sand, screw shell rubble and screw shell rubble/sand and (2) low

relief reef, high relief reef, patch reef and reef-sand ecotone. Group one represents

soft substratum and group two represents hard substratum. The classification tree

results and the visual assessment are identical except for coarse sand being close to,

but not exceeding, the mean juvenile percentage across all habitat classes (Fig. 5.10

dashed line).
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Figure 5.10: Percentage of H. percoides sightings considered to be
mature (light bars) and juvenile (dark bars) by habitat for all dives,
dashed horizontal line represents mean percentage of juveniles, *
denotes soft substrate, RSE = reef-sand ecotone, LRR = low relief
reef, CS = coarse sand, PR = patch reef, S = sand, SSR = screw shell
rubble, SSRS = screw shell rubble/sand, HRR = high relief reef.

5.5 Discussion

5.5.1 Distribution and size composition of H. percoides across

habitat types

The ecological insights of interest to ocean perch assessment using image analysis

included; estimates of habitat preference, greater representation of adults, compared

to juveniles, in size data, and relationships between habitat type and fish size

and depth and fish size. We found the ocean perch H. percoides used both soft

and hard substrates, but generally preferred hard over soft substrate. This is

consistent with habitat preferences in some other species using multiple habitat

types, including rockfishes in the Sebastidae family in the NW Pacific (Tolimieri

et al., 2008). However, this pattern does not apply to all sebastid rockfishes;

Pearcy et al. (1989) found that juveniles and large adults of yellowtail rockfish



152

(Sebastes flavidus, Scorpaenidae) occurred exclusively on rocky, high-relief areas off

the coast of Oregon. Pearcy et al.’s finding is opposite to our observations of juvenile

ocean perch which preferred soft over hard substrate. Examining the relationship

between number of juveniles and distance (classes) to nearest reef would elucidate

the generality of the aforementioned finding. However, continuous reef perimeter

information cannot be obtained from the imagery. We found that off Tasmania,

ocean perch abundance increased with increasing depth in the range sampled (25 – 95

m) and that this was largely independent of habitat type, except for habitat classes

‘screw shell rubble’ and ‘screw shell rubble/sand’ where the trend was reversed.

We do not have an adequate explanation but assume that this is an artefact of

the more densely populated, deeper offshore sites and the exclusion of the shallow

habitat class Ecklonia radiata. While the kelp cover at shallow depths excluded

full interpretation of depth related patterns, diver observations in this area confirm

that this species is rarely encountered at depths of 25 m or less (Barrett, personal

observation and Denny et al. (2003)).

The majority of ocean perch observed in this study were between 125 mm and 175

mm long, a smaller size distribution than reported from commercial catch sampling

(commonly 200 – 250 mm) off New South Wales 10 degrees further north (Rowl-

ing et al., 2010). The opposite pattern would be predicted from our observation of

higher preference by small fish for sediments and the dominance of trawl-caught fish

from soft substrata in the fishery data. It remains unclear whether this difference

stems from a selective bias in the sampling tools, i.e., more larger fish taken by com-
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mercial fishing gears, or some other factor. For example, a common life-history trait

of temperate demersal fish species is the tendency to move to deeper depths when

maturing (Hyndes et al., 1999). It is conceivable that H. percoides is also moving

further offshore as it grows older. Irrespective, our finding illustrates the potential

for traditional gears to be size-selective and therefore the risk of biasing assessment

models sensitive to age/size structure in populations of target species (Willis et al.,

2000). Because of their size-selectivity, there has been a considerable amount of

research to quantify size selectivity for specific gears to mitigate bias (Millar, 1992;

Millar and Walsh, 1992).

Image-based methods have drawbacks compared to physical sampling, including

that it may be impossible to distinguish the sex of an individual unless there is

conspicuous sexual dimorphism. This is not the case for ocean perch and it was

necessary to determine sex to set a threshold for differentiating size classes, i.e.,

juveniles from adult ocean perch. Here we used averaged reported values for males

and females, an approach that assumes a sex ratio of approximately one. Park (1993)

confirms that this is a reasonable assumption in our case, but sex ratios can deviate

from one due to stock exploitation or general species-specific life-history traits such

as protandry or protogyny.

Collectively, these results illustrate the potential importance of data from rocky

seabed for stock assessments because accurate estimates of fish abundance may

require sampling of a range of habitat types, with a sampling design that considers
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species-specific patterns.

5.5.2 Improving efficiency and quality of image-based data

Individual fish are put into a geographical context because every AUV image

is geo-referenced. This requires consideration of spatial autocorrelation (SAC)

because its omission in binomial (presence/absence) analysis violates assumptions of

independence of errors. Incorporating SAC in statistical models is on the forefront

of spatial statistical research (Dormann et al., 2007), but adequate methods are

known for linear transects as well as full coverage areal census, i.e., a continuous

raster where every cell is evaluated.

Length estimation: Although more than half (53%) of all fish seen (n = 1766) could

be measured, the remainder were unmeasurable due to three primary causes: (1)

fish were cryptic, only partly visible hiding under ledges, crevices or benthos, (2)

either snout or tail were not within the overlapping image area of the left and right

camera and (3) individuals were excessively curved. Cryptic fish and fish not wholly

inside the overlap area, are likely to remain elusive to measurement unless also

viewed from a different angle. The equipment and data-processing costs associated

with an additional, e.g., forward-looking stereo camera system, appear currently

prohibitive (Stefan Williams, University of Sydney, personal communication). Sirius

has not been specifically designed to be used as a benthic sampler but as a

underwater robotic platform for robotics engineers. Adding an additional stereo

camera setup with underwater housing to the current configuration would change the
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buoyancy and balance of the AUV and jeopardise the functioning of emergency abort

manoeuvres. The current cameras are specialised cameras that are considerable

more expensive than off-the-shelf cameras, but are necessary due to the need to

operate them using a Linux computer whereas consumer cameras are designed to be

manually operated. However, the third problem of excessively curved fish may be

addressed with a software solution that can measure arc length or take several (more

than two) measurement points approximating an arc. In situations, outlined in this

study, where complete census data are not available; the paramount questions are:

(1) is the photogrammetrically measured length a true representation of the actual

length of the fish and (2) is the photogrammetrically derived sample representative

of the true size composition of the population. Question one was addressed by

calibrating the camera system using well established protocols and by assessing the

measurement error (see results and Fig. 5.4). With regard to question 2; since every

sampling method introduces biases, the true size composition may only be obtained

if several methods are used in conjunction. Watson et al. (2010) found that using two

different methods of obtaining length-frequency data for reef fish in the same location

produced significantly different results. Before using the AUV to complement fishery

assessment data, we recommend data comparison to identify possible biases in the

various data collection methods. Although length measurement error can be reduced

with higher image resolution than ours (1 Megapixel resolution), by greater camera

separation (> 70 mm) and better calibration, we believe that improved operator

accuracy is likely to be most important. Operator error is likely to decrease as image

resolution increases when using PhotoMeasure. For example, higher resolution
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images help to improve the precision with which the operator can place the cursor

at the tip of the fish’s snout or tail margin. Additional error may also result from

the slightly different angle of view of both cameras where the fish is not identically

depicted in both images. An automated target matching routine in PhotoMeasure

defines a measurement point in a subsection of the image to reduce or even eliminate

this error source by finding sharp edges and colour pattern similarities. However,

because similarities are not always present in a highly complex benthic environment

and because H. percoides is well camouflaged in its environment, the target matching

failed about half the time. Measurement error was assumed to be independent of

object length because no statistically siginificant relationship between measured

object length and measurement error size was apparent.

Habitat classification: Annotation of habitat classes for each image or even a subset

of images is time consuming. Tolimieri et al. (2008) report that for images collected

within one hour during a dive, 5 – 10 hours of lab time are required to count and

identify one fish species. Identifying habitats takes less time than identifying fish

but still requires a considerable amount of time (for 3600 images, i.e., 1 image per

second, the author needed on average 1.5 hours). Automated habitat classification

could help to substantially reduce annotation time. Seiler et al. (in press) outline an

automated habitat classification method using image features such as colour, texture

and rugosity derived from a bathymetric reconstruction of the substrate using stereo

imagery. After a small manually scored training set a decision tree classifier takes

over and annotates the remaining images (see chapter 3 for further details).
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5.5.3 Utility of AUV Sirius for fishery assessments

Our data on the size, abundance and habitat preferences of adult and juvenile

reef ocean perch provide fishery-independent data for a commercially fished species

and were collected simultaneously with environmental data. As such, the data

overcome many shortcomings of traditional fishing gear such as size selectivity

and gear avoidance behaviour (Fernandes et al., 2000) and provide information on

habitat types and distributions that are important components of ecosystem-based

fisheries management (EBFM) approaches, as for example, are rapidly developing

in Australia (Smith et al., 2007). While currently economic costs would preclude

the routine inclusion of non-extractive, imagery-yielding sampling tools in field-

based fishery assessments, they have high utility in rocky reef habitats which may

support a disproportionately high biomass of some fishery species and may provide

structural refuges for species occupying a variety of habitat types. In many instances

they are the only alternative where the use of traditional net sampling gear is

impractical or impossible. One of the greatest insights for EBFM is the permanent

photographic record of target species, their environments and co-occurring species.

Image-based data are being used increasingly in EBFM approaches to fishery, e.g.,

in habitat risk assessments (Hobday et al., 2011). The historically high overheads

associated with processing and storing image data are now rapidly decreasing due

to the wide availability and low cost of automated options for data processing and

semi-automated habitat classification (Seiler et al. in press) and efficient methods

to store and retrieve data. This study analysed only one species visible in our
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data set, but there is scope to also analyse the abundance and diversity of other

large-bodied species of fishes, echinoderms, bivalves, crustaceans as well as benthos

such as sponges, corals and ascidians, without additional data collection. We note,

however, that the utility of this method to provide fishery independent data depends

very much on the species in question. Currently, the downward-looking camera

design excludes investigations of pelagics and some reef-associated species that

can adjust their buoyancy. The five most abundant species recorded during this

study were ocean perch (1766 individuals), butterfly perch (Caesioperca lepidoptera,

1672), rosy wrasse (Pseudolabrus mortonii, 302), sandpaper fish (Paratrachichthys

macleayi, 249) and southern rocklobster (Jasus edwardsii, 77). Based on ranked

abundance it is conceivable that highly mobile species, unless extremely abundant,

are less suited for investigations using this AUV. Other commercially important reef

species in Tasmanian waters such as banded morwong (Cheilodactylidus spectabilis),

jackass morwong (Nemadactylus macropterus) and blue-throated wrasse (Notolabrus

tetricus) were recorded too infrequently to provide reliable fishery data. It is highly

likely that other image-based sampling tools such as baited underwater video systems

are better suited to observing mobile species (Watson et al., 2010). Unfortunately,

as is true for the AUV, each sampling method brings its own biases. The scope

to mine additional data from image data sets is the typical situation - and will

be facilitated as data formats become more standardised and data sharing and

integration is encouraged by national scale observing programs, e.g., the Australian

Integrated Marine Observing System (IMOS) program into which our AUV data are

contributed (IMOS, 2011). We conclude that, among the variety of camera platforms
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applied to provide quantitative measurements of fishery species and habitats, AUVs

are a mature and cost-effective survey platform well-suited to complement future

fishery-independent surveys of rocky reef species.
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Chapter

6 A continental shelf deep-water

temperate reef fish assemblage

recorded by three different

non-extractive image-yielding

platforms – a comparison

6.1 Abstract

Non-extractive imagery-yielding samplers, such as baited underwater video systems

(BUVS), autonomous underwater vehicles (AUV) and towed video platforms are

frequently used to assess reef fish assemblages below safe SCUBA diving depths.

Each platform has its strengths and weaknesses. Here, a comparative study

investigates sampling bias and performance between platforms based on species

richness, total number of individuals and species accumulation curves. Combined, 62

species and operational taxonomic units were identified using the three platforms.

Each platform sampled a distinct component of the overall reef fish assemblage.

BUVS are limited to providing a relative abundance estimate (i.e., the BUVS sample

area/volume is unknown), but recorded the highest number of species. The towed

video platform scored the highest total number of individuals but scored the lowest

number of species. BUVS and towed video systems lack a constant field of view

(sample area) and are therefore less suitable for monitoring purposes. Advantages

and disadvantages of bait are discussed, as well as platform induced escape and
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avoidance behaviour in fish.

6.2 Introduction

Fishes comprise an important component of rocky reef fauna (Kingsford and

Battershill, 1998). For example, planktivorous reef fish can alter the abundance

of zooplankton, are major consumers of larval forms leaving/approaching the reef

to settle and enhance nutrient input into reef systems (Kingsford, 1989). The

ability to reliably measure inherent attributes of reef fish assemblages, such as

species diversity and species abundance is essential to ecologists, conservationists

and resource managers alike. Numerous extractive and non-extractive methods to

assess shallow-water reef fish assemblage attributes exist; gill netting (Hickford and

Schiel, 1996), trapping (Crossland, 1976; Whitelaw et al., 1991), handline fishing

(Ralston et al., 1986), underwater visual census (UVC) (Edgar et al., 2004) and

baited underwater video systems (BUVS) (Willis et al., 2000). For the majority

of these methods there is no depth restriction. However, UVC, the most common

method to investigate reef fish assemblage structure and composition, is restricted

to depths safe for divers (< 30 m, based on standard recreational SCUBA equipment

commonly used in Australian scientific diving operations). Due to its non-intrusive

nature, non-extractive imagery-yielding platforms such as manned submersibles are

well suited to investigate vulnerable species or protected areas. Vulnerable species

such as the overfished slow-growing and reef-dwelling Cowcod (Sebastes levis) off

Southern California are now protected following the establishment of two Cowcod

Conservation Areas (Yoklavich et al., 2007). The areas, also known as marine
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protected areas (MPAs), are a well-established and widespread management tool

to protect marine resources. They have strict restrictions on the use of extractive

fishing or sampling gear. Hence, the increasing implementation of MPAs to protect

the natural environment and its fauna requires alternative survey techniques that can

reliably monitor MPA performance against management expectations. Alternative

non-extractive sampling techniques for monitoring and to inventory fish assemblages

in MPAs include BUVS (Willis et al., 2000), towed video platforms (Williams

et al., 2011) and autonomous underwater vehicles (AUV) (Tolimieri et al., 2008).

Each method has its intrinsic biases. For example, orange roughy (Hoplostethus

atlanticus) disperse rapidly when towed camera systems approach (Koslow et al.,

1995). Some other species have been observed to be either attracted or repelled

using certain sampling tools (Watson et al., 2005). This behaviour can result in

biased species composition and abundance data (Kulbicki 1998). Willis et al. (2000)

compared UVC, handline fishing and baited underwater video and found that spatial

variability and relative density of fishes were significantly different between methods,

partly attributable to intrinsic methodological biases. Their study was conducted in

depths less than 30 m and retrieving fish from such depths, by hook and line or other

extractive sampling methods, is unlikely to cause physiological damage, such as swim

bladder inflation to the fish. Notolabrus tetricus and Cheilodactylus spectabilis are

two Tasmanian reef species that are destined for the live-fish market in Asia and are

retrieved from less than 30 m to reduce mortality (Lyle 2001). However, MPAs and

other conservation areas are seldom restricted to safe SCUBA diving depths. For

example, only 6% of the Great Barrier Reef Marine Park can be safely monitored
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using SCUBA (Cappo et al., 2003). Comparative reef fish biodiversity assessments

using baited underwater video systems (BUVS) and prawn trawls are described in

(Cappo et al., 2004).

Reef-fish stock assessments encompass the investigation of age structure, growth,

reproduction, feeding habits and habitat preferences (Hilborn and Walters, 1992).

These data are notoriously difficult to obtain due to patchy reef fish distribution and

reef habitat complexity (Andrew and Mapstone, 1987). The majority of our current

knowledge is based on shallow reef surveys using SCUBA. Our inability to descend

below SCUBA depth limits, except inside a submersible, renders our knowledge of

deep-water reef fish assemblages comparatively scarce. Some notable exceptions

include Moore et al. (2009) sampling depths ranging from 26 to 110 m using BUVS

and Tolimieri et al. (2008) in depths down to 250 m using an AUV.

This study targeted reef fish assemblages in depths deeper than what is considered

safe for SCUBA divers and focused on non-extractive sampling techniques. We

investigated the usefulness of BUVS, AUV and towed video in highly sensitive

or restricted areas, such as MPAs, where extractive tools are prohibited. Each

platform was assessed in their ability to measure reef fish assemblage attributes

such as species richness and abundance. We compared each platform for their

relative contribution in non-intrusively describing the fish assemblages present on

continental shelf deep-water rocky reefs, present strengths and weaknesses of each

platform and the extent to which the platforms complement each other. To our

knowledge a comparison of different non-extractive, imagery-yielding platforms to

investigate reef fish assemblages below safe diving depths is unprecedented.
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6.3 Materials and methods

6.3.1 Study area and sites

Prior to the deployment of the three non-extractive, imagery-yielding sampling

platforms described in this section, a multibeam sonar survey was conducted in

order to delineate the extent of deep-water reefs in the survey area. The study

area contains a representative distribution of temperate coastal to mid-shelf rocky

reef systems below SCUBA diving depth ranging from 25 – 100 m. Multibeam

sonar data were gathered using the 20 m research vessel R/V Challenger with a

Simrad EM-3002 shallow water multibeam echo sounder using frequencies in the

300 kHz band. Sampling took place from 6 October 2008 to 22 August 2010 on

deep-water reefs and adjacent soft substrates of the south-eastern Tasman Peninsula,

Tasmania, Australia. Whereas the AUV survey and the towed video platform survey

were accomplished within one fortnight, BUVS deployment dates ranged from 14

May 2009 to 22 August 2010. AUV sampling took place from 6 October to 14

October 2008 on the support vessel R/V Challenger. Towed video platform sampling

occurred from 25 to 27 February 2009 on the same support vessel (Nichol et al.,

2009). Individual AUV dives were haphazardly placed on prominent deep-water

reefs focusing on rocky reef and transition zones between reef and adjacent sandy

areas. All three sampling platforms targeted the same reef complexes (sites, see

Fig. 6.1). The choice for BUVS sampling locations was based on georeferenced

annotated AUV imagery. BUVS were deployed exclusively on rocky reefs. Towed

video transects were placed to overlap AUV tracks and cover roughly the same
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areal extent. Replication of AUV and towed video samples was insufficient around

Hippolyte Rock (Fig. 6.1). Locations north and south of Hippolyte Rock were

therefore combined to form sites ‘Hippolyte Rock North’ and ‘Hippolyte Rock

South’. The ‘Peninsula Mapping Region’ (Barrett et al., 2001) has a dominantly

easterly aspect, high vertical cliffs, deepwater reefs (to 100 m depth) and medium to

high wave exposure. Geologically the coastline is composed of dolerite, sedimentary

rock and to a lesser extent granite (Barrett et al., 2001).

6.3.2 Sampling platforms

AUV-borne downward-looking digital stills cameras

The AUV Sirius operated by the Australian Centre for Field Robotics at the

University of Sydney sampled benthic fauna by means of digital photography. Sirius

is a modified version of the SeaBED AUV (Singh et al., 2004a) built by the Woods

Hole Oceanographic Institution. The overall dimensions of the AUV were 2.0 m

(length) × 1.5 m (height) × 1.5 m (width). Its weight was ∼ 200 kg (depending

on payload). The vehicle is rated to 700 m depth. We have chosen the AUV

Sirius due to its ability to (1) keep a virtually constant altitude of 2 m above the

seafloor which equated to an image footprint of 1.6 × 1.3 m (∼ 2 m2), (2) take

high resolution images (1360 × 1024 pixels) and (3) provide spatially precise image

location (to within 2 m). Precise image location was accomplished by renavigating

the estimated vehicle trajectories using the simultaneous localisation and mapping

technique (Williams et al., 2008a). Colour images of the left camera were viewed
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on a large computer screen and manually annotated. Fish species identification was

based on Gomon et al. (2008) and expert advice.

BUVS with forward-looking cameras

The BUVS frame is shaped like a truncated pyramid with an oblong base. Frame

design is identical to the design used by Harvey et al. (2002) and Watson et al.

(2005). The stereo camera setup comprised of two JVC GZ-MS100 PAL (720 × 576

pixel) off-the-shelf video cameras. Raynox wide angle conversion lenses (conversion

factor 0.7) were used to increase field-of-view.

Multibeam sonar mapping of the study region revealed several distinct rocky reef

complexes. Each reef complex comprised one sampling site. Near-simultaneous

replication (3 replicates) per site occurred over the entire depth range of a reef

complex. Sampling time at the bottom was 45 min and was conducted during

daylight hours using a ∼ 6 m boat. The plastic mesh bait basket, attached ∼ 1

m in front of the cameras, contained 800 g crushed Sardinops sagax (pilchard)

as bait to attract fish and was re-filled before each new deployment. Sampling

depth ranged from 32 – 81 m. Distance between replicates differed between sites

according to reef complex size. In general, replicate distance exceeded 200 m to

avoid overlapping bait plumes which compromises independent sampling. However,

small reef complexes around Hippolyte Rock resulted in smaller distances between

replicates. Video footage was viewed and annotated using the software package

EventMeasure (Seager, 2009b). The relative abundance measure MaxN, maximum

number of individuals of species x per video frame, was chosen to avoid repeated
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counting of the same individual (Cappo et al., 2004).

Towed video platform with oblique-looking camera

Geoscience Australia’s (GA) small (30× 50× 40 cm), shallow-water RayTech towed-

video system consists of two steel side panels connected by rods and bars to give

stability as well as attachment points for sensors (Nichol et al., 2009). A wing

on the back of the platform stabilises the ‘flight’ path (pitch, yaw and roll). The

umbilical cable serves as tether and real-time data cable to control lights and laser

pointers and receive PAL video footage and positional information. The two 250

W lights can be switched on and off on demand but remained off most of the time

due to adequate ambient light conditions and the high sensitivity of the digital

video camera. Two laser pointers 15 cm apart underneath the lights served as an

indication of scale in the video footage. An ultra-short baseline (USBL) acoustic

tracking system fed back the precise geo-location of the platform during deployment.

Video transects ranging from 200 m to 1.1 km ran along two directions; along depth

contours and across depth gradient, i.e., perpendicular to the coastline (see Fig.

6.1). The platform was towed at 0.5 - 1.5 knots approximately 2 m above seafloor.

Digital video footage was transferred from tape to hard drive and saved as an AVI-

file (Audio Video Interleaved). We used the open source software package VARS

(Video Annotation and Reference Software) (Schlining and Stout, 2006) for viewing

and annotation. Where possible, mobile invertebrates and vertebrates were scored

down to species level.
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6.3.3 Data analysis

Whilst AUV and towed video sampled all available habitats, BUVS deployments

specifically targeted hard substrate (rocky reef). For sampling platform comparison

(PERMANOVA) fishes recorded in habitats other than ‘rocky reef’ were removed

from analyses. To exclude camera orientation bias, pelagic species records, such as

Mola mola, were also removed from analysis. The camera pair mounted on the AUV

was unlikely to record pelagic fish species due to their downward-looking orientation.

Finally, singletons, species that were recorded only once during this study, were

removed from analyses. In order to establish whether the three different sampling

platforms were complementary, we investigated the percentage of species unique to

each platform. Since the BUVS sampling period spanned 16 months, which was

comparatively long with respect to AUV and towed video platform survey time, we

tested for differences in species richness (total number of species per site) and total

number of individuals between years 2009 and 2010 and seasons using analysis of

variance (ANOVA). Total number of individuals was ln(x+1) transformed to comply

with the normality assumption. Species richness and total number of individuals per

site were analysed using ANOVA with categorical explanatory variables (factors).

Factor 1 (site) was fixed with six levels (Blowhole, Waterfall Bay, O’Hara Bluff,

Patch Reef North, Hippolyte Rock North and Hippolyte Rock South) and factor 2

(platform) was fixed with 3 levels (AUV, BUVS, towed video platform). The four

most abundant and consistently scored species across platforms were individually

analysed using univariate ANOVA or generalised linear models (GLMs) with respect
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to platform and site. Prior to analysis, fish counts were tested for normality

using the Shapiro-Wilk test (p > 0.05) and transformed where appropriate using

ln(x + 1). Where data transformation was insufficient to comply with normality

assumptions, individual fish species were analysed using GLMs with quasi-Poisson

error distribution.

The distribution of relative fish abundances violated general assumptions, such as

independent errors, normality and common variance for traditional analyses such

as MANOVA. We therefore used permutational multivariate analysis of variance

(PERMANOVA), which assumes only that the observation units are exchangeable

under a true null hypothesis (Anderson, 2001). PERMANOVA was used to

determine whether the three sampling platforms recorded similar or different fish

species assemblages. The factorial design included two factors: platform (P)

with three levels; AUV, BUVS, towed video and site (S) with six levels; Blow

Hole, Waterfall Bay, O’Hara Bluff, Patch Reef North, Hippolyte Rock North

and South. Multivariate analyses were based on Bray-Curtis dissimilarities using

fourth-root transformed relative abundance data to down-weight abundant and rare

species (Clarke and Warwick, 2001). We used the stand-alone MS-DOS version of

PERMANOVA with two replicates; two averaged MaxN pools of randomly assigned

BUVS deployments per site (BUVS), two pools of towed video species abundance

data (across depth gradient and along depth contour) and replicate AUV dives per

site. Where replications within sites (AUV) were missing, AUV dive tracks were

randomly sub-sampled. Before analysis all singletons (species occurred only once)

and pelagic species were removed. Pelagic species were absent in the AUV species
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list due to the downward looking cameras.

In order to be able to compare platforms with respect to effort, i.e., the time

it took to derive at a certain number of species (species richness), for AUV

and towed video, we split total deployment time into 45 min sampling intervals.

These sampling intervals were identical to BUVS deployment times. Although,

towed video platform transects were generally shorter than 45 min, across depth

gradient transects and appropriate sub-sections of along depth contour transects

were combined and considered replicates for each site (see Fig. 6.1). We generated

species accumulation curves using EstimateS, version 8.20 (Colwell, 2006) for each

platform based on 45 min sampling intervals to compare efficacy between platforms.

Each of the three species accumulation curves was fitted using the Michaelis-Menten

equation in the EstimateS software package. Magurran (2004) states that when

the empirical species accumulation curve intersects with the one generated by the

Michaelis-Menten model, sample size was sufficient and total species richness can

now be estimated using a non-parametric method, such as Chao’s simple estimator

of the absolute number of species in an assemblage (Chao, 1984).

6.4 Results

6.4.1 Species richness and total number of individuals

A total of 62 species and operational taxonomic units (OTU) were identified in

the imagery across all platforms. For each individual platform these were: BUVS

= 49, AUV = 39 and towed video = 22 (Table 6.1), with a total of 56 species
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able to be identified to species level. Finfish, with 52 species found in 34 families,

comprised the majority of sightings. The two most species-rich families were

Labridae and Monacanthidae each containing six species, followed by Serrarindae

(4) and Cheilodactylidae (3). Species that were recorded exclusively by the

AUV were: Pavoraja nitida, Foetorepus calauropomus, Neosebastes scorpaenoides,

Solegnathus spinosissimus and Omegophora armilla (Table 6.1). Species observed

with BUVS and towed video but not with the AUV, excluding singletons, were:

Dinolestes lewini, Thyrsites atun, Dotalabrus aurantiacus, Pictilabrus laticlavius,

Latris lineata, Meuschenia venusta, Pempheris multiradiata, Parapercis allporti,

Platycephalus richardsoni, Scorpaena papillosa and Cephaloscyllium laticeps (Table

6.1). ANOVA results, testing for differences in species richness and total number of

individuals between years 2009 and 2010 and seasons were all non-significant at the

5% level.
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To ensure that all assumptions underlying analysis of variance were satisfied

residuals versus fitted values plots (heteroscedasticity), normal q-q plots (normality),

scale-location plots and residuals versus factor levels plots (influential data points)

were assessed visually. No pattern emerged in the residuals versus fitted values plot

for each analysis (transformed total number of individuals and C. lepidoptera and

P. psittaculus abundance), which attests constancy of variance. Normal q-q plots

showed a few data points off the straight line but were generally well behaved, i.e.,

no obvious patterns such as an S-shape or J-shape could be observed. The remaining

plots showed also no signs to question that any of the ANOVA assumptions have

not been met. Total number of individuals, C. lepidoptera abundance and P.

psittaculus abundance were log(x + k) transformed before analysis to remove zero

values (species not present) and to linearise the relationship between response and

explanatory variables. Different values of k were chosen to test whether it had an

effect on analysis results. Changing k to 1, 5, 10 had virtually no effect on the

p-values (small changes in the third decimal place), however, q-q plots revealed

that the degree of normality deteriorated with increasing k values. The site ×

platform interactions for species richness and total number of individuals were non-

significant and were therefore removed from the ANOVA models (Table 6.2). After

removing the interaction term, species richness in response to site was non-significant

(p = 0.075) but the transformed total number of individuals in response to site was

significant (p = 0.028). In response to platform, both species richness and total

number of individuals were highly significant (p < 0.001) (Table 6.2). Average

species richness recorded by the towed video platform was significantly lower than
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the remaining platforms (Tukey’s test, p < 0.001) (Fig. 6.2). With respect to

mean total number of individuals, all platforms differed significantly from each

other (Tukey’s test, pAUV−BUV S < 0.001, pBUV S−TV < 0.001, pAUV−TV = 0.01).

Mean total number of individuals also differed between Waterfall Bay and the

less numerous site Blowhole (Tukey’s test, p = 0.008). The towed video platform

consistently scored highest average total number of individual counts (Fig. 6.2).

Table 6.2: ANOVA results for untransformed species richness and
ln(x+ 1) transformed total number of individuals in response to site
and platform.

Source df Total number of individuals Species richness

Mean Sq F value Pr (> F ) Mean Sq F value Pr (> F )

site 5 0.556 2.619 0.028 11.322 2.064 0.075
platform 2 31.792 149.669 < 0.001 74.661 13.612 < 0.001
Residuals 115 0.212 5.485

6.4.2 Individual species abundances

The four most abundant and consistently scored species across all platforms were

Caesioperca lepidoptera, Pseudolabrus psittaculus, Nemadactylus macropterus and

Helicolenus percoides. The site × platform interaction (ANOVA and GLM) for all

four species was non-significant at the 5% level. ANOVA results for mean abundance

of P. psittaculus and C. lepidoptera with respect to sampling platform and site are

presented in Table 6.3. Mean P. psittaculus abundance was significantly different

between platforms AUV and towed video (Tukey’s test, p < 0.001). Abundances

recorded by BUVS and AUV did not differ significantly (Tukey’s test, p = 0.439).

Site Blowhole had significantly lower mean P. psittaculus counts compared to all
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bars: ±1 SE.
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other sites at the 5% level, except site Patch Reef (Tukey’s test, p = 0.278), see

Fig. 6.3. C. lepidoptera mean abundance recorded by the AUV was significantly

different from both BUVS and towed video at the 5% level (Table 6.3). C. lepidoptera

mean abundance at site Blowhole was significantly lower than site Waterfall Bay. All

other site comparisons were non-significant at the 5% level. BUVS mean abundance

records for C. lepidoptera were consistently lowest compared to the other two

sampling platforms (Fig. 6.3). GLM parameter estimates for untransformed mean

abundance of N. macropterus and H. percoides with regard to sampling platform

and site are presented in Table 6.4. Mean H. percoides abundance records from the

AUV were always exceedingly higher regardless of site (Fig. 6.3), which is reflected

in the significant p-value with regard to the other platforms (Table 6.4). All sites

had significantly higher mean H. percoides abundances at the 5% level compared

to site Blowhole (Fig. 6.3). Site Patch Reef North scored particularly high mean

abundances regardless of platform (Fig. 6.3). N. macropterus mean abundance was

lowest among all four selected species. It was also the only species that was not

scored by the AUV in sites Blowhole and Waterfall Bay (Fig. 6.3). N. macropterus

was, however, recorded in every BUVS deployment. This was also evident in the

GLM parameter estimate for BUVS (p < 0.001), i.e., mean abundances recorded by

BUVS were significantly higher than both other platforms (Table 6.4). Again, site

Patch Reef North displayed particularly high mean abundance numbers, though not

significant (Fig. 3).

We analysed whether there are differences between fish assemblages recorded by the
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Table 6.3: Univariate ANOVA results for C. lepidoptera and P.
psittaculus ln(x + 1) transformed abundance data in response to site
and platform.

Source df Caesioperca lepidoptera Pseudolabrus psittaculus

Mean Sq F value Pr (> F ) Mean Sq F value Pr (> F )

site 5 2.086 2.553 0.031 1.817 5.906 < 0.001
platform 2 101.523 124.274 < 0.001 5.245 17.048 < 0.001
Residuals 115 0.817 0.308
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Figure 6.3: Mean (±1 SE) abundance of selected species (genus
and species given above bar plot) recorded by each sampling platform
(legend top left) and each site. x denotes species not recorded using
this platform. BHL = Blowhole, HIPN = Hippolyte Rock North,
HIPS = Hippolyte Rock South, OHA = O’Hara Bluff, PRN = Patch
Reef North, WFB = Waterfall Bay. Note log scales for H. percoides
and N. macropterus abundances



182

Table 6.4: GLMs parameter estimates for untransformed Heli-
colenus percoides and Nemadactylus macropterus counts. P = plat-
form, S = site, parameter estimates are relative to platform AUV at
site Blowhole (BHL), i.e., first line.

H. percoides N. macropterus

Factor Est SE t-value p Est SE t-value p

P
AUV BHL 2.785 0.236 11.818 < 0.001 -0.061 0.51 -0.119 0.906
BUVS -3.405 0.185 -18.458 < 0.001 1.758 0.456 3.854 < 0.001
TV -2.908 0.318 -9.146 < 0.001 0.918 0.592 1.551 0.124

S
HIPN 1.373 0.254 5.403 < 0.001 -0.369 0.385 -0.958 0.340
HIPS 1.129 0.260 4.344 < 0.001 -0.218 0.404 -0.541 0.590
OHA 0.667 0.273 2.440 0.016 -0.266 0.406 -0.654 0.514
PRN 1.928 0.256 7.519 < 0.001 0.435 0.361 1.205 0.231
WFB 0.813 0.268 3.033 0.003 0.228 0.350 0.652 0.516

three sampling platforms, sites (locations) and interactions thereof; PERMANOVA

results showed significant differences at the species level using relative abundance

and presence/absence data (Table 6.5). Non-metric Multi-Dimensional Scaling

(nMDS) plots of the Bray-Curtis dissimilarity matrices indicate distinct clusters for

each platform indicating that the platforms detected distinct assemblages (Fig. 6.4,

Fig. 6.5).

Comparing each of the three platforms, AUV, BUVS and towed video, with respect

to total sampling duration, BUVS deployment durations accumulated to 72 hours

(96 drops), followed by the AUV with 35 hours (14 dives) and lastly, the towed video

platform with 11 hours (19 deployments). Sampling durations do not include travel

time between sampling sites, gear loading/unloading or rebaiting.

The three sampling platforms proved to be highly additive with respect to overall
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Table 6.5: PERMANOVA results based on Bray-Curtis dissimilarity
of fourth-root transformed relative abundance and presence/absence
data. The two factors P and S refer to platform and site, respectively.

fourth root transformed relative abundance

Source df SS MS F p(perm) p(MC)

P 2 30965.2 15482.6 66.8 0.001 0.001
S 5 8696.7 1739.4 7.5 0.001 0.001
P × S 10 7943 794.3 3.4 0.001 0.001
Residual 18 4173.9 231.9
Total 35 51778.8

presence/absence

P 2 26252.5 13126.3 38.2775 0.001 0.001
S 5 7926.9 1585.4 4.6231 0.001 0.001
P × S 10 8593.9 859.4 2.5061 0.001 0.002
Residual 18 6172.6 342.9
Total 35 48946.1
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Figure 6.4: 2-dimensional nMDS plot based on fourth-root
transformed abundance data of fish species recorded using AUV,
BUVS and towed video.
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Figure 6.5: 2-dimensional nMDS plot based on presence/absence
data of fish species recorded using AUV, BUVS and towed video.
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species composition. Only seven species (C. lepidoptera, N. macropterus, C.

spectabilis, H. percoides, P. macleayi, P. psittaculus and P. bachus) were recorded by

all sampling platforms (19%). Any combination of only two platforms scored fewer

species numbers. The percentages of species recorded by one sampling platform

and not by the remaining other two were 38% (AUV), 11% (BUVS) and 0% (towed

video). The AUV recorded the largest number of species unique to this sampling

platform.

We used Magurran (2004)’s rule of thumb to determine whether the sample

size was sufficient to confidently estimate the absolute number of species of an

assemblage using a non-parametric approach. An intersection between observed

species accumulation curve (SAC) and the one generated using the Michaelis-

Menten model is a positive indicator of the sample size being sufficiently large.

The intersection of both curves therefore can serve as a stopping rule with respect to

sampling effort. The intersection (Fig. 4.4) for the BUVS (nBUV S = 96) platform was

at 87 samples, for the AUV (nAUV = 47) platform at 34. There was no intersection

for the towed video platform suggesting that the sample size was too small to

confidently estimate the absolute number of species. The SAC for the towed video

platform showed no indication of an asymptote (Fig. 6.6). This exemplified that

the number of samples taken by the towed video platform was insufficient to capture

the species composition in our study area. However, Fig. 6.6 also shows that species

richness for the towed video platform was slightly higher (22) after 14 deployments

than for BUVS (20). Initially the AUV species accumulation curve was steeper than
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any of the other curves, indicating that this platform is superior in detecting more

species using fewer deployments. However, after about 45 deployments, the AUV

curve followed closely the BUVS curve, implying that these two platforms perform

identically. Chao’s estimate of absolute number of species for the BUVS platform

was 46 and for the AUV platform 56.
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Figure 6.6: Species accumulation curve for 45 min deployments for
each platform, i.e., increase in species richness with every additional
deployment.

6.5 Discussion

This study investigated three different non-extractive, imagery-yielding sampling

platforms as survey tools to describe deep-water rocky reef fish assemblages on

the continental shelf. Assemblage data collected by each platform were compared

with respect to total number of individuals, species richness, individual species
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abundances and species accumulation curves. All platforms possess characteristics

that are desirable for samplers used in monitoring programs in vulnerable and/or

protected marine areas; non-extractiveness, cost-effectiveness and the ability for

co-located sampling. AUV and BUVS consistently recorded several ecological key

species, such as Cheilodactylus spectabilis, Nemadactylus macropterus and Jasus

edwardsii, which emphasises their utility for monitoring MPAs in the SE Tasmanian

study area.

6.5.1 Platform strengths and weaknesses

Each sampling platform has its strengths and weaknesses. With respect to cost-

efficiency, BUVS are most affordable (set of three BUVS units cost ∼AU$15,000,

purchasing price) and the AUV is most expensive, AU$160,000. However, high prices

are related to platform sophistication and some technical features are not essential

for investigating fish assemblages, i.e., AUV multibeam echosounder. Besides initial

platform purchasing price, deployment costs are an important consideration. BUVS

can be deployed from relatively small (∼ 6 m) vessels (few hundreds of dollars a

day). In contrast, AUV and towed video were deployed from a 20 m research vessel

(AU$5,000 a day).

Platform biases

Platform design-specific bias relates to (i) altered fish behaviour, such as attraction

due to bait and/or commotion and avoidance/escape and (ii) species detectability



188

due to camera orientation and sampling mode (stationary versus mobile). We

observed platform bias with regard to species richness, total number of individuals

and individual species abundances.

Behavioural changes include, fish being attracted to bait (macrocarnivorous or

scavenging species) and concurrent commotion (curious but non-macrocarnivorous

or scavenging species), fish avoiding approaching platform (towed video, AUV) and

competing for food (bait) or territory. The consequences of using bait are complex

and therefore discussed in a separate section below. Attraction to concurrent

commotion, increased fish activity around the bait, makes BUVS a versatile sampler

able to detect a variety of species from non-macrocarnivorous feeding guilds. Watson

et al. (2010) coins this attraction to commotion the “sheep-effect”. This effect was

also frequently observed during this study. BUVS can therefore be used to monitor

abundant species such as Caesioperca lepidoptera which is not attracted to bait

directly but to the concurrent commotion.

Koslow et al. (1995) report rapid dispersal of orange roughy (Hoplostethus

atlanticus) aggregations, avoidance behaviour, when the towed camera platform was

approaching. Despite similar platform design, we did not observe any avoidance

behaviour using the towed video platform in this study. However, based on

the number of benthopelagic species recorded by the AUV compared to numbers

recorded by BUVS and towed video, it is a fair assumption that these species were

not indifferent to the presence of the AUV. This assumption was confirmed by

comparing benthopelagic species numbers, recorded with a forward-looking video

camera temporarily attached to the AUV, with those obtained from the downward-
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looking AUV camera (unpublished results). The cause for the lack of benthopelagic

species in the AUV images is related to species detectability and discussed further

below.

Competition for food or territory was observed in Helicolenus percoides; this

behaviour biased (underestimates) BUVS fish density estimates. For example, MaxN

records for H. percoides never exceeded 4. In contrast, the AUV recorded up to 0.06

individuals per m2 which is equivalent to MaxN = 9, assuming a BUVS sample area

of 150 m2 given in Watson et al. (2005).

Species detectability is determined by platform design. A downward-looking camera

(AUV) is unlikely to detect pelagics and benthopelagic fish species. In contrast,

forward-looking (BUVS) and oblique-looking (towed video) camera designs detect

benthic, benthopelagic and pelagic fish species. The AUV recorded the seafloor at

an altitude of ∼ 2 m with a downward-looking stereo camera. Hence, benthopelagic

fish have to be directly underneath the AUV in order to be recorded. However,

the detectability of benthic, negatively buoyant species, such as H. percoides

and Scorpaena papillosa, was unaffected by the downward-looking camera design

(AUV). These rockfish species seem to be indifferent to the presence of the AUV

which was evident in consecutive images of the same individual (usually in 3

overlapping images), where there was no indication of escape behaviour. Stoner

et al. (2008) report that of two rockfish species, Sebastes rubberrimus did not

show escape behaviour towards the sampling platform (submersible Alvin) whereas

Sebastes helvomaculatus showed signs of reduced detection. We attribute observed

indifferences to the AUV’s slow speed and emphasise that avoidance behaviour is
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species specific.

Whereas AUV and towed video are considered line-transect methods, BUVS remain

stationary for the entire sampling period. Being stationary excludes territorial

species such as C. spectabilis if the BUVS unit is dropped outside the home range.

Accordingly, this benthopelagic microcarnivore was most often recorded by the

mobile towed video system as it traversed several C. spectabilis territories.

BUVS

A major strength of BUVS is its ability to actively attract fishes. This way

researchers can specifically target certain species, attracted to bait. For example,

predatory species such as Cephaloscyllium laticeps, Latris lineata and Thyrsites atun

were exclusively scored by BUVS. The BUVS cluster in the nMDS plot is tightest

and most distinct, indicating that bait attracts different fish species, i.e., a different

component of the entire assemblage. Major disadvantages of BUVS are (i) the

relative abundance measure MaxN which is underestimating true density and (ii)

the unknown sampling area. Conservative estimates of the visible sampling area are

based on horizontal field of view, angle of circular section, multiplied by estimated

underwater visibility in metres (radius of circular section). However, this estimate

ignores the ability of fish to detect bait beyond the perimeter of the visible sampling

area. Olfactory detection thresholds vary with species (Kleerekoper, 1969).
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AUV

Two of the AUV’s advantages are (i) the unique ability to maintain a virtually

constant altitude, equivalent to a consistent image footprint (sampling area) and

(ii) precisely geo-referenced images. A consistent image footprint allows for precise

fish density measurements (number of individuals per m2). Precisely geo-referenced

images in conjunction with precise vehicle navigation allow for repeated sampling

of the same area of interest. Two disadvantages of the AUV are (i) its inability to

detect pelagic and benthopelagic species due to the downward-looking camera and

(ii) its relatively slow survey speed, 0.4 m/s.

Towed video

Towed video platform advantages include fast survey speed and real-time annotation

capability. The species accumulation curve for the towed video platform was slightly

steeper than the BUVS curve, indicating that the former platform detects more

species during fewer deployments. Real-time video footage onboard the support

vessel can be annotated simultaneously thereby expediting data acquisition (see

Nichol et al. (2009) for details). Two disadvantages include (i) inconsistent sampling

area (imagery footprint) due to relatively fast towing speed, hence delayed platform

response to altitude adjustments by the winch operator, trying to follow undulating

terrain and (ii) low image resolution hindering species identification.
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6.5.2 To bait, or not to bait

Using bait is an effective way to increase the number of species in a survey (Watson

et al., 2010). Willis et al. (2000) report higher abundances using non-extractive

(BUVS) and extractive (line fishing) methods compared to UVC with respect

to Pagrus auratus. Colton and Swearer (2010) found the opposite: number of

individual fish was significantly higher using UVC compared to baited underwater

video. Both, Willis et al. (2000) and Colton and Swearer (2010), investigated shallow

reef environments suitable for UVC using SCUBA techniques. Divers are known

to attract some reef fish (Shepherd et al., 2010), that are not attracted to bait.

Below safe SCUBA diving depths and without the diver attraction factor, these

species might not be consistently sampled using “remote” methods such as AUV

or BUVS. Watson et al. (2005) compared reef fish species richness and abundance

using baited and unbaited video systems and found that the latter recorded > 50%

less species. Although, bait improves efficiency of BUVS, it also introduces various

factors such as behavioural changes and unknown sampling area (bait plume) that

need to be quantified before drawing more robust inferences from BUVS data. For

example, the assumptions about bait plume size and dispersal in this study were

simplified, however, sufficiently complex for temporal and spatial comparisons. Bait

plume size after 45 min (2700 s) deployment time was calculated based on predicted

tidal current speed (50th percentile of hourly tidal current speed in m/s, Bureau

of Meteorology, National Tidal Centre, resolution: 0.08° × 0.08° ) for the study

area, i.e., 0.13 m/s * 2700 s = 351 m. A distance of 351 m between replicate
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BUVS deployments per site was considered sufficient to obtain independent samples.

Treating correlated samples as independent violates assumptions of analysis of

variance and inflates MaxN due to double counting the same individual. Except for

sites Patch Reef North, Hippolyte Rock North and Hippolyte Rock South, distances

between replicates exceeded 351 m. Due to the small reef complex sizes of the

aforementioned three sites some distances between replicates were less than 351 m.

In these instances BUVS units were deployed starting with the shallowest location

to minimise bait plume overlap between replicates. Pilchard (Sardinops sagax), the

most commonly used bait using BUVS in Australia has a high oil content that acts

as an effective fish attractant. Since the density of (fish) oil is less than the density of

seawater oil is likely to travel towards the surface rather than down to affect deeper

replicates. At the same time, the effect of deeper replicates on shallower replicates

was minimised due to the time difference between BUVS deployments of roughly 10

min (travel time between locations, BUVS preparation and duration of sinking to

seafloor, i.e., 0.13 m/s * 2100 = 273 m, 78 m less). Although assumptions of the

bait plume size after 45 min deployment time is a simplification it is a conservative

estimate. For example, adding the swimming speed of a particular species to

calculate distance of attraction reduces effective bait plume size since the fish needs

to travel to the bait plume source in order to be recorded (see Ellis and DeMartini

(1995)). There are two reasons why the fish swimming speed was not included in

this study, (1) the lack of basic knowledge (swimming speed for most of the species

encountered) and (2) the majority of species recorded are not attracted to bait but

rather the commotion caused by the BUVS unit deployment (Watson et al., 2010).
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The distance between replicates in this study was sufficient to obtain independent

samples since bait plume size after 45 min deployment time is based on laminar flow

rather than turbulent flow. Given the complex and rough topography of rocky reefs

in this study it is likely that turbulence caused slower bait plume dispersal compared

to laminar flow. There are several issues that need to be addressed before BUVS

can be used to obtain indices of absolute fish abundance as compared to relative fish

abundance (MaxN). (1) Bait plume dispersal models in complex terrain such as rocky

reefs, (2) current meters (magnitude and direction) and (3) swimming speed and/or

home range of target species. Current models that are able to predict residence time

of sewage in an estuary are capable of modelling bait plume dispersal (Herzfeld et al.,

2010). However, this particle tracking model assumes neutrally buoyant particles

(fish oil is positively buoyant), vertical resolution is several meters (some fish are

strictly benthic rendering model resolution insufficient) and “building a model is not

a trivial task” (personal communication Dr Mike Herzfeld, CSIRO). Current meters,

either attached to the BUVS unit (Aanderaa) or independent acoustic Doppler

current profiler are both possible ways of obtaining current magnitude and direction

but would increase the overheads of BUVS deployments. Finally, home ranges of

a few species are available, e.g., Notolabrus tetricus (Barrett, 1995; Shepherd and

Clarkson, 2001) and swimming speed could be estimated using stereo BUVS footage

with the aid of photogrammetry.
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6.5.3 Dissecting assemblage composition – platform-specific species

detection

Non-parametric MDS plots show clearly that each platform detects different

components of the assemblage. All platforms detected abundant species such as C.

lepidoptera, N. macropterus and P. psittaculus. The assemblage component recorded

by the AUV is defined by the lack of benthopelagic species. Benthopelagic species

are largely excluded due to the downward-looking camera design (AUV). BUVS

sample piscivorous and scavenging species such as Thyrsites atun, Cephaloscyllium

laticeps and Latris lineata that were not recorded using both unbaited platforms.

6.5.4 Future research

Successful trials with a sideward-looking camera on SeaBED (the predecessor of

AUV Sirius) are reported by Tolimieri et al. (2008). However, a forward-looking

camera would lack a defined sampling area.

Currently, the towed video platform lacks a defined sampling area. This is due

to the oblique-looking camera and variable altitude which affects image-footprint.

Barker et al. (1999) provide a mechanical solution for a positively-buoyant towed

video platform to maintain a constant altitude using a drag chain.

High definition video is now widely available. This provides researchers with higher

resolution imagery for precision photomosaics, better species identification and video

mapping (Kocak et al., 2008). All information, including full resolution HD video,

can now be viewed in real-time on the support vessel through fibre optic data cable.
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MaxN, the de facto relative abundance measure using BUVS, is underestimating

true fish abundance (Cappo et al., 2004). A more reliable abundance measure is

needed to extent the utility of BUVS with respect to measuring abundance.

6.5.5 Concluding remarks

Non-extractive imagery-yielding sampling platforms proved to be useful to

investigate deep-water reef fish assemblages. However, some platforms are better

suited to accomplish certain objectives. For simply monitoring biodiversity, all

platforms are equally suited. More advanced monitoring objectives such as relative

abundance per unit area and length estimation, AUV and BUVS are preferable

given the stereo camera setup (Williams et al., 2010b). However, Barker et al.

(1999) present a towed stereo video platform to assess benthic diversity of the

Western Australian continental shelf. During this survey some of the large sponges

were photogrammetrically measured using special software (Seager, 2009c). Another

example is the use of a stereo video platform that investigated pollock behaviour

when encountering trawl gear (Williams et al., 2010b). For the purpose of

cataloguing or inventorying fish species for a particular area, we recommend the

use of all three platforms since they are highly complementary. Where financial

constraints prohibit the use of all three platforms, a combination of AUV and BUVS

yields the best outcome with respect to a species inventory.
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Chapter

7 Discussion and conclusion

7.1 Summary of achievements

7.1.1 Introduction

This thesis set out to test and evaluate non-extractive sampling platforms to

assess deep-water rocky reef ecosystems on the continental shelf, as alternatives

to traditional sampling techniques. Alternative sampling techniques are needed

as new practises, such as marine protected areas (MPAs), are adopted to manage

marine resources sustainably. Most parts of MPAs are protected from extractive

resource exploitation methods, including scientific sampling gear. However, there

are different zones within some MPAs with different levels of protection, i.e., the

Great Barrier Reef Marine Park has a General Use Zone, Habitat Protection

Zone, Scientific Research Zone, Preservation Zone, etc. Trawling is prohibited in

all zones except the General Use Zone. Therefore, mandatory MPA monitoring

programs, to assess management strategy performance, require non-extractive

sampling platforms. It is unlikely that one sampling platform will address all

management requirements and it is anticipated, that a range of novel samplers will

be necessary to achieve management goals. These novel sampling platforms need

to meet three requirements, (i) being non-extractive to operate in vulnerable and
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protected marine areas, (ii) being free from depth constraints and (iii) providing data

quality as good or better than currently used sampling methods for some species

such as Nemadactylus macropterus and Notolabrus tetricus. Results in this thesis

reveal that largely all of those requirements are met by the platforms tested.

7.1.2 Mapping marine habitats – essential information for sustainable

resource management

Marine habitat mapping serves a variety of management objectives (Cogan et al.,

2009), ecological risk assessment (Williams et al., 2011), monitoring of key marine

ecosystems (Rees et al., 2007), MPA planning (Barrett et al., 2001; Jordan et al.,

2005), coastal development and biodiversity assessment (Great Barrier Reef Marine

Park Seabed Biodiversity Project). Continuing decline in fish stocks and degradation

of marine environments, exacerbated by anthropogenic requirements for marine

ecosystem services (Costanza et al., 1997), led to questioning existing management

strategies and the search of a more integrated, ecosystem-based management

(EBM) approach (Pitcher et al., 2009). In Australia, EBM has been instigated

through legislation, such as Ecologically Sustainable Development (1991) and the

Environmental Protection and Biodiversity Conservation Act 1999. Australia has

the third largest exclusive economic zone (EEZ), however, only 12.5% have been

bathymetrically mapped using sonar equipment (Bax, 2011). However, the EEZ

comprises several environmental regions such as the continental shelf, continental

shelf break and abyssal plains. Although interpreted bathymetry can serve as a

proxy for certain habitat types at a coarse scale with varying degree of uncertainty,
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accurate fine-scale habitat maps require the use of geo-referenced seafloor images.

Autonomous underwater vehicles (AUV) are an effective means of collecting such

images. Image processing is time-consuming and subjective when performed by a

human annotator, however, computer vision techniques can curtail processing times,

through automation and eliminate subjectivity (Purser et al., 2009). I explored

the performance of several computer vision techniques to automatically extract

image features and used these features in conjunction with a machine-learning

algorithm and a training image set to semi-automatically classify seafloor images

into habitat types. Results in chapter 3 suggest, that colour, texture, rugosity and

patchiness features automatically extracted from stereo image pairs recorded by

an AUV expedite the complex and time-consuming process of image annotation.

Classification accuracy was found to be 84% (with a kappa statistic of 0.793) in

this study. This exemplifies, that AUVs can effectively sample benthic habitats and

the ability of automated data handling techniques to extract and reliably process

large volumes of seafloor image data. Although the survey area in this study was

relatively small (4.6 km transect, 5.8 km2) and targeted a particular reef system and

its transition zones to surrounding soft substrates, all methods are flexible and can

easily be applied to other continental shelf areas (e.g., coral reefs, seagrass beds)

and used by other disciplines, such as seafloor geology. In a monitoring context it is

important to know what minimum sample size (area) is required to detect changes

in abundance (coverage). Norris et al. (1997) investigated subtidal seagrass coverage

in a small cove and required 5.6 km total transect length, 15% of the total cove area

(swathe width = 1 m), to detect a 5% change in seagrass cover. For this study
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(chapter 3) this minimum required sample area could not be computed due to the

lack of a finite survey area (i.e., the available substrate for seagrass to grow in Norris

et al. (1997) was bounded by the shoreline and seagrass depth limit).

7.1.3 Beyond diver’s depth – assessing reef-fish assemblages using baited

underwater video systems

Underwater visual census is commonly used to monitor marine protected areas

(Barrett and Buxton, 2002). However, high quality optical surveys are needed to

monitor MPAs beyond the range of safe SCUBA diving operations (Singh et al.,

2004a). For example, only 6% of the Great Barrier Reef Marine Park can be safely

monitored using SCUBA (Cappo et al., 2003). In a Tasmanian context, as of 2012

there are seven Marine Reserves (including Macquarie Island). Three out of these

seven are partially below safe SCUBA diving depth (Kent Group, Port Davey and

Macquarie Island). These three areas are also the largest reserves. Additional

Commonwealth Marine Reserves in Tasmanian waters are larger than all coastal

Tasmanian Marine Reserves combined and entirely beyond safe SCUBA diving

depths. Within depth ranges encountered on continental shelves, remote or tethered

camera platforms are free from depth restrictions. Results in chapter 4 confirm that

stereo baited underwater video systems (BUVS) are reliable and effective samplers

to assess reef-fish assemblages and some target species beyond safe SCUBA diving

depths (> 30 m) (Moore et al., 2009). Statistical power analysis of count data,

that are not suitable for traditional power analysis due to non-normality, can be

conducted by novel statistical techniques. This novel approach can be used to
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determine the required sampling effort to detect changes in relative fish abundance

in a monitoring program as well as the effect size, difference in two samples, that

can be detected (i.e., can a difference of 10% between samples be detected with the

current sampling effort).

7.1.4 Collecting fisheries-independent stock assessment data using a

stereo-vision AUV

Many commercially important fishes and other species with high conservation

significance are associated with rocky reef habitat, that is difficult to survey

using conventional net-based methods. Although traditional extractive fish stock

assessment techniques are widely used there is a trend to use non-extractive

techniques that do not remove individuals from the population and do not destruct

important habitat such as corals and sponge gardens. Extractive methods are

still necessary to obtain otolith data for aging fish, gender determination and gut-

content analysis, however, AUV-borne stereo camera systems can provide important

small-scale fisheries-independent stock assessment data, such as size frequency

distributions, abundance and habitat preferences of benthic fish species, such as

Helicolenus percoides in Tasmanian waters (chapter 5). These data can be included

in a traditional extractive stock assessment using precise densities for different

habitats, i.e., rocky reef, adjacent sand, reef edge. However, this approach is only

viable if a continuous habitat maps exist. Since trawls are deployed adjacent to reef

rather than over rocky reef, AUV derived fish densities over rocky reef can elucidate

biases associated with traditional sampling methods. H. percoides is mostly bycatch
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using trawls. Below safe diving depths there was sparse knowledge of detailed

species-habitat associations. My results show that adult H. percoides prefer rocky

substrates over soft substrates, whereas juveniles prefer soft substrates over hard

substrate. Image-based methods in general are well-suited to simultaneously provide

additional quantitative measures of benthic habitats, invertebrate fauna and fishery

environments.

7.1.5 Observing deep-water temperate rocky reef fish assemblages

on the continental shelf using three non-extractive sampling

platforms

My results showed that every platform (BUVS, AUV and towed video) sampled

a different component of the reef-fish assemblage. This platform bias highlights

the need for a broad range of techniques to comprehensively sample the entire

assemblage. Hence, a multi-species monitoring program in a marine management

context is most effective when all tested sampling platforms are combined. Measures

of platform selectivity (bias) can only be obtained by comparing samples from

different platforms, such as during this study. Extensive knowledge of platform

biases is essential to guide marine resource managers as to what sampler can provide

relevant information with respect to management objectives. For example, BUVS

are unsuitable to give density estimates of fish, which, in turn, are necessary to

compare two assemblage sizes (e.g., inside and outside an MPA). Several studies

have shown that assemblage individuals inside MPAs are significantly larger in size

and more numerous compared to adjacent unprotected areas (Barrett et al., 2007;
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Willis et al., 2000). Watson et al. (2009) report that size differences can be detected,

using stereo BUVS footage, by photogrammetrically measuring fish length, however,

assemblage size differences can only be based on relative abundance, MaxN. MaxN

is the de facto relative (due to unknown sampling area/volume) abundance measure

using BUVS and is defined as the maximum number of individuals of species x in

video frame y for each deployment. In chapter 4 I showed that detecting differences

in relative abundance (MaxN) between two hypothetical surveys was only feasible for

certain species (N. macropterus and N. tetricus), limited to large differences between

surveys (> 50%) and required a relatively high sampling effort (> 90 replicates).

7.1.6 Utilising non-extractive imagery-yielding samplers in an ecosystem-

based management context

This thesis identified the need of alternative sampling platforms, to obtain data that

indicate the success or failure of management strategies, that are non-extractive

and efficient. To address this need, three potential non-extractive imagery-yielding

samplers (BUVS, AUV and towed video) were tested and evaluated during the

course of this thesis. Currently, towed video systems are most frequently used to

provide qualitative and quantitative data to resource managers. Williams et al.

(2011) identified habitat types using underwater imagery collected by a towed video

platform to evaluate impacts of fishing on benthic habitats in Australia. This impact

assessment forms part of a hierarchical risk assessment framework — the Ecological

Risk Assessment for the Effects of Fishing (ERAEF, Williams et al. (2011)). ERAEF

is being applied to federally (Australia) managed fisheries as the primary scientific
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evaluation tool to assess the risks that bottom-contact fishing gear pose to marine

environments (Williams et al., 2011). Ecological risk assessments are mandatory for

Commonwealth Fisheries to comply with Australia’s environmental legislation (i.e.,

through the Environmental Protection and Biodiversity Conservation Act 1999).

The second example, in a sustainable resource management context, is the use

of a towed video system to collect baseline data of the Huon and Freycinet

Commonwealth Marine Reserve (CMR). Both CMRs are part of the National

Representative System of Marine Protected Areas (NRSMPA) to ensure the

conservation and sustainable use of Australia’s marine and estuarine environments

(DSEWPC, 2012). Australia aims to realise the establishment of the NRSMPAs by

2012. The towed video system was used to characterise seabed habitats and record

distribution and abundance of biological assemblages on deep reefs of south-east

Tasmania (Nichol et al. (2009) and this thesis, chapter 6). Williams et al. (2010b)

used a towed stereo camera setup to study pollock reactions to trawl gear - an

important requirement when assessing gear selectivity. Although BUVS have been

used extensively in Australia by the scientific community to investigate reef-fish

assemblages, to my knowledge, BUVS remain to be fully incorporated into fisheries

management. Compared to extractive fish surveys that have been refined and

rigorously tested over several decades, BUVS lack essential quantifiable parameters

such as sampling area/volume and bait plume size. However, deep-water BUVS

provide complementary data on the vulnerable gulper sharks (Centrophoridae), that

are bycatch in the Southern and Eastern Scalefish and Shark Fishery (Alan Williams,

CSIRO, personal communication) and were instrumental in assessing coral reef fish
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biodiversity in the Great Barrier Reef Marine Park Seabed Biodiversity Project

(Australian Institute of Marine Science, 2006).

7.2 Future research

7.2.1 AUV

Spatial autocorrelation

Spatial autocorrelation refers to the degree of dependency between observations.

Hence, spatially autocorrelated data violate one of the fundamental assumptions in

statistical analysis, independence of observations. Statistical models for line transect

sampling and continuous grid data that accommodate spatial autocorrelation are

widely available, for example, Hedley and Buckland (2004); Dormann et al. (2007).

However, the intersecting AUV mission track (see Fig. 3.1) required to increase

positional accuracy of the AUV using the simultaneous localisation and mapping

technique creates data inappropriate for both line-transect and continuous data

methods. Sirius is able to seamlessly photograph areas of up to 50 × 50 m

(personal communication Stefan Williams, University of Sydney) and sample using

line transects, however, the former is time consuming with respect to a relatively

small sampling area cf UVC and the latter would introduce 1.5% sensor drift (at the

end of an average 5 km transect the AUV could be 75 m off course). If multibeam

data are used in conjunction with AUV images to survey reef fish, positional AUV

error should be similar to the sonar data resolution. In chapter 5, I treated straight
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subsections of the AUV mission tracks as subsamples to determine the degree of

spatial dependence between fish occurrences. Due to the lack of currently available

appropriate statistical analysis techniques, I had to discard a substantial amount

of data, instances where distances between observations (fish occurrences) were

spatially dependent. Advanced statistical methods are needed to utilise the entire

data set collected by the AUV Sirius.

Automation routines to expedite imagery annotation

Extracting quantitative and qualitative data from imagery is the proverbial

bottleneck using AUVS, BUVS and towed video platforms. Although chapter 3

describes routines to automatically extract image features such as colour and texture,

that are used to classify images into habitat classes, routines that automatically

identify species and measure fish lengths are unlikely to emerge in the near future.

Variable lighting and fish orientation and background complexity are some of the

challenges that face developers of automation routines using field data. However,

given the success of automatically identifying species and measuring fish lengths in

a controlled laboratory environment (White et al., 2006), it seems feasible that at

least some tasks could be automated. How and to what extent available automation

routines can be adapted to serve researchers using BUVS, AUVs and towed video

platforms remains to be investigated.
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Real-time image classification

Currently the AUV is programmed to follow a pre-determined track and will only

abort the mission in an emergency situation such as a failed obstacle avoidance

manoeuvre. This rigid behaviour is often disadvantageous with respect to a balanced

sampling design. For example, chapter 5 describes fish-habitat relationships on

temperate rocky reefs. Habitat composition was unknown prior to AUV deployment

and the final dataset was unbalanced with respect to habitat type, i.e., unequal

sample sizes for habitat types sand, high relief reef and Ecklonia (Table 3.2). This

is particularly likely for towed video platforms given the recent upgrade to high

definition video cameras (personal communication Alan Williams, CSIRO). An

AUV with the ability to classify images into habitat types in real time and make

autonomous decisions would be able to continue sampling habitat types, insuffiently

sampled, after completion of the pre-determined track.

Strength in numbers – AUV fleets

The “flying” speed of the AUV Sirius is relative slow (0.4 m/s), in coastal waters its

operation requires 2 – 3 highly trained personnel and a relatively large support vessel

(> 12.8 m) with an A-frame or crane including crew (Singh et al., 2004b). Compared

to the less sophisticated BUVS, that can be deployed by two people from small boats

(∼ 6 m), Sirius is less efficient at sampling certain components of fish assemblages.

However, AUV efficiency could be greatly improved by deploying several smaller

AUVs simultaneously. Deploying several AUVs would increase survey speed, require
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the same amount of trained personnel and reduce expensive ship time. Currently, the

high price of the AUV ($160,000) is unlikely to promote ownership of several AUVs,

however, most of the expensive sensors are unnecessary for ecological monitoring

programs. Reducing the number of sensors allows for the design of smaller, lighter,

cheaper AUVs that are easier to deploy. However, reduction in weight and size

will affect AUV stability in pitch, roll and yaw. An unstable AUV will result in

variable image footprint size and the need to rectify images. Future research should

concentrate on developing multiple and less expensive AUVs by optimising sensor

requirements for each AUV.

7.2.2 BUVS

MaxN

MaxN, the conservative de facto relative abundance measure using BUVS is sufficient

for biodiversity assessments, e.g., species richness but insufficient to address abso-

lute fish density estimates. Several other relative abundance estimates have been

proposed; mincount (Gledhill et al., 2005), Maxsna (Willis and Babcock, 2000),

MAXNO (Ellis and DeMartini, 1995) and npeak (Priede and Merrett, 1996) using

baited imagery-yielding platforms but all are conservative and not absolute abun-

dance estimates. In 2006 Cappo et al. (2006) proposed a BUVS index of abundance

based on a combination of metrics:

BUVS index of abundance = (mean MaxN)(n/N)/mean(tarr)
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where n = number of individuals per deployment (one replicate), N = number of

individuals per station (all replicates), tarr = time of first fish arrival in field of view.

Six years later, no attempts at investigating the proposed BUVS index of abundance

were made, so this provides another area of future research.

BUVS sampling area and bait plume

Accurate density estimates are crucial parameters in managing fish populations.

Simplistically, density is the number of individuals per area or volume sampled.

The sampling area in single-camera horizontal (forward-looking) BUVS is largely

unknown. This lack of knowledge led to the widespread use of MaxN, a relative

abundance estimate. The advent of stereo-camera BUVS allowed the calculation

of the visible sampling volume by photogrammetrically derived x-y-z coordinates.

Although an improvement, this approach fails to account for the ability of a fish

to sense the bait beyond the perimeter of the visible sampling volume. The use

of bait, often criticised to attract predominantly scavenging and predatory fish

species (Willis et al., 2000; Watson et al., 2005), provides a greater number of

predatory and scavenging fish species without decreasing the number of herbivores

or omnivores (Harvey et al., 2007). Harvey et al. (2007) also found that, compared to

unbaited video stations, statistical power increases due to a more consistent species

composition. If BUVS are to be used as a sampling platform to measure absolute

abundance, it is pertinent to be able to define the sampling area or volume. A

promising solution could be the combination of acoustic and optical sensors. High-

resolution acoustic (sonar) technologies are able to record fish activity beyond the
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perimeter of the visible sampling volume (Rose et al., 2005). Another solution to the

sampling volume problem is to model bait plume dispersal. However, knowledge of

the bait plume is only practical if the olfactory sensitivity of a fish species is known

and its foraging strategy (i.e., random walk or counter current search – Vabø et al.

(2004)). Research into four areas, combining acoustic and optical sensors, modelling

bait plume dispersal in complex terrain, species-specific olfactory sensitivities and

foraging strategies would provide benefits to researchers using BUVS.

7.2.3 Size selectivity

The propensity of certain fishing gear to select for a certain size range of fishes is

known as size selectivity. Using data obtained from size-selective fishing gear to

estimate population parameters such as length at age can lead to unreliable results

due to the exclusion of fishes smaller than the mesh size. However, several studies to

quantify gear selectivity, such as using trouser trawls (Millar and Walsh, 1992) and

advanced statistics, such as selection curves using maximum likelihood estimates

(Millar, 1992) exist. Apart from mesh size, behavioural traits of certain species

can result in size selectivity in fishing gear. For example, Ihde et al. (2006) report

that smaller lobster Jasus edwardsii do not enter a lobster pot when it is already

occupied by a larger female inidividual. This can lead to overestimating recruitment

strength as average length decreases in a population (Ihde et al., 2006). In chapter

4, striking differences between size distributions, obtained by extractive (i.e., line-

fishing, trapping and spearfishing) and non-extractive (BUVS) are reported. Mean

Latris lineata length recorded by BUVS was greater by 190 mm and individuals



7.3. SUMMARY 211

smaller than 300 mm were not recorded using BUVS. Although my comparitive

study showed that extractive sampling methods are biased and this bias needs to be

quantified, a mechanical explanation for mean length differences between samplers

remains to be found.

7.3 Summary

My results show, that several challenges resource management agencies are currently

facing, such as effective habitat mapping, non-extractive fisheries-independent

benthic reef fish stock and biodiversity assessments can be solved using the methods

presented in this thesis. Given the limited detailed knowledge of marine habitat

distributions below safe SCUBA diving depths based on imagery and Australia’s

pledge to sustainable resource management, which includes the habitat level, AUVs,

such as Sirius, in conjunction with automation routines can significantly curtail

processing time to produce habitat maps. Currently, extensive areas of Australia’s

continental shelf have been mapped using sonar techniques. Bathymetry in

conjunction with backscatter analysis is able to provide coarse binomial (hard/soft)

sediment distributions (Nichol et al., 2009). Although, Sirius is able to produce fine-

scale habitat maps, its survey speed and image footprint make it a more efficient

tool for ground-truthing multibeam sonar data. These fine-scale habitat maps in

conjunction with state-of-the-art acoustic tracking devices will enable researchers

to improve our knowledge of species-habitat interactions. For example, Lucieer

and Pederson (2008) linked morphometric characterisation of rocky reef with fine-

scale movements of the southern rock lobster Jasus edwardsii. AUV Sirius and the
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towed video system described during the course of the thesis are currently used to

provide baseline data of the Huon and Freycinet Commonwealth Marine Reserves,

which form part of Australia’s Representative Network of Marine Protected Areas.

With respect to benthic reef fish, AUV imagery is free from sampling gear bias

(size selectivity) and AUVs can be deployed over rugged terrain, inaccessible to or

impermissible (i.e., inside MPAs) for trawl gear. It is likely that resource managers

adopt sophisticated non-extractive sampling techniques (i.e., AUVs, BUVS and

towed video) in the future to assess management strategy performance (e.g., whether

a catch limit resulted in population recovery). Variation on biodiversity should be

monitored using reliable, preferably non-extractive, sampling platforms within a

monitoring framework, such as MPAs in Australia. My results showed that BUVS

are efficient and reliable samplers to monitor fish biodiversity in deep-water rocky

reefs. Although, BUVS have been used to assess fish diversity in the tropics (Cappo

et al., 2004; Watson et al., 2009; Langlois et al., 2010), its use in temperate deep-

water reef environments is sparse, i.e., Moore et al. (2010). South-eastern Australia,

including Tasmania, is one of the fastest warming regions in the southern hemisphere

(Ridgway, 2007; Johnson et al., 2011) and it is anticipated that BUVS will be the

preferred method of assessing flow-on effects to reef fish communities in this area.



REFERENCES 213

References

Alexander, T., Barrett, N., Haddon, M., and G, E., 2009: Relationships between

mobile macroinvertebrates and reef structure in a temperate marine reserve.

Marine Ecology Progress Series , 389, 31 – 44.

Allee, W. C., 1931: Animal aggregations: A Study in General Sociology . University

of Chicago Press, Chicago, IL, USA.

Allmon, W. D., Jones, D., Aiello, R. L., Gowlett-Holmes, K., and Probert, P. K.,

1994: Observations on the biology of Maoricolpus roseus (Quoy and Gaimard)

(Prosobranchia: Turritellidae) from New Zealand and Tasmania. Veliger , 37(3),

267 – 279.

Anderson, M., 2001: A new method for non-parametric multivariate analysis of

variance. Austral Ecology , 26(1), 32 – 46.

Anderson, M. J., Gorley, R. N., and Clarke, K. R., 2008: PERMANOVA+ for

PRIMER: Guide to Software and Statistical Methods . PRIMER-E: Plymouth, UK.

Anderson, M. J., and Willis, T. J., 2003: Canonical analysis of principal coordinates:

a useful method of constrained ordination for ecology. Ecology , 84(2), 511 – 525.

Anderson, T., Brooke, B., Radke, L., McArthur, M., and Hughes, M., 2009:

Mapping and characterising soft sediment habitats, and evaluating physical

variables as surrogates of biodiversity in Jervis Bay, NSW. Tech. rep., Geoscience

Australia.

Andrew, N. L., and Mapstone, B. D., 1987: Sampling and the description of spatial

pattern in marine ecology. Oceanography and Marine Biology: An Annual Review ,

25, 39 – 90.

Arzoumanian, Z., Holmberg, J., and Norman, B., 2005: An astronomical pattern-

matching algorithm for computer-aided identification of whale sharks Rhincodon

typus. Journal of Applied Ecology , 42(6), 999 – 1011.



214
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