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GENERAL ABSTRACT 

 

The increasing demand for aquaculture products globally is leading to greater demand 

for coastal marine farm space, intensification within existing aquaculture areas, and 

conversion of production to high value species, especially finfish.  Among the many 

environmental interactions that arise with finfish aquaculture development, one of the most 

dramatic impacts is local-scale organic enrichment of the benthic ecosystem due to deposition 

of fish faeces and uneaten feed.  A benthic impact is typically evident as severe organic 

enrichment beneath finfish cages (e.g. species-poor, near-azoic conditions), with a gradient of 

decreasing enrichment extending to background conditions across scales of tens to hundreds 

of metres distant from cages.   

The overall hypothesis of this thesis was that seabed organic enrichment (degradation 

and recovery) can be accurately and quantitatively determined using biological and physico-

chemical variables that can be applied across geographic regions and contrasting 

environments.  This was accompanied by an objective to refine knowledge of processes 

underpinning benthic enrichment, and to develop or refine tools for the prediction, monitoring 

and management of enrichment effects associated with fish aquaculture. The thesis comprises 

six sequential, related chapters that address: site- and region-specific ecological 

characterisation of benthic communities and the development on a new environmental 

indicator variable; comparisons of existing biological indicators and indices in different 

hydrodynamic regimes; application and validation of a depositional model for predicting 

effects under very different  environmental conditions; and a detailed analysis of long-term 

and medium-term recovery from highly enriched states, and consideration of re-impact rates 

and implications for farm management strategies.  The analyses are based on both targeted 

recent studies as well as longer-term monitoring undertaken at six salmon farms situated in 

the Marlborough Sounds, New Zealand; four of which are situated in low flow environments, 

and two are situated in high flow (dispersive) environments.  Characterising the differences 

associated with the sites’ dispersive properties is a theme that runs throughout this study.    

Chapter 2 used best professional judgement methods to develop a quantitative benthic 

enrichment index termed ‘enrichment stage’, which unifies information from biological and 
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physico-chemical variables.  The resulting seven stage bounded continuous variable was used 

to assign enrichment tolerance groups to benthic taxa using quantile regression splines.  A 

number of key indicator taxa were discriminated along the enrichment gradient, including 

several that were responsive to low-level changes in enrichment stage (ES), but not necessarily 

organic matter (%OM), and 10 taxa for which ecological understanding was previously limited.  

In Chapter 3, the gradient was also used to evaluate the performance of five benthic indicators 

and ten biotic indices for defining organic enrichment under different flow regimes.  A subset 

of variables was recommended comprising: two biotic indices, total abundance, and a 

geochemical variable.  A subsequent but related study in Chapter 4 revealed pronounced flow-

related differences in the magnitude and spatial extent of benthic enrichment.  Total 

macrofaunal abundances at high-flow sites were nearly an order of magnitude greater than at 

comparable low flow sites, representing a significant benthic biomass, and occurred in 

conjunction with moderate-to-high species richness and the absence of appreciable organic 

accumulation.  The atypical ecological conditions associated with high-flow sites were 

attributed to i) minimal accumulation of  fine sediments, ii) maintenance of aerobic conditions 

in near-surface sediments, and iii) an abundant food supply.   

Chapter 5 explored the relationship between predicted depositional flux (using 

DEPOMOD) and enrichment stage, calculated using the methods developed in the previous 

chapters (1 to 3).  Observed impacts at farms with contrasting flow regimes were examined to 

evaluate the role of modelled resuspension dynamics in determining impacts.  When 

resuspension was included in the model, net particle export was predicted at the most 

dispersive sites.  However, significant seabed effects were observed, suggesting that although 

the model outputs were theoretically plausible they were inconsistent with the observational 

data.  When the model was run without resuspension the results were consistent with the 

field survey data.  This retrospective validation suggested that approximately twice the flux 

was needed to induce an effect level at the dispersive sites equivalent to that at the non-

dispersive sites. Flux estimates are provided for detectable enrichment and highly enriched 

states.  This study shows that the association between current flow, sediment resuspension 

and ecological impacts is more complex than presently encapsulated within DEPOMOD and 

emphasises the need for validation of such models, particularly at dispersive sites. 

The final two data chapters (Chapters 6 and 7) examine the spatial and temporal 

recovery processes that take place following a highly enriched state.  Chapter 6 provides a 
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comprehensive analysis of a long-term (8 year) dataset in relation to a variety of proposed 

recovery and remediation definitions.  Many challenges associated with quantifying the 

endpoint of ‘recovery’ were identified.  The concept of dynamic and spatial equilibria proved 

to be valid in this situation, and alternate state theories may apply.  In combination with 

visualisation of plotted data, statistical tests for parallelism in temporal trajectories of cage and 

reference sites proved to be an effective method for characterising recovery, but the method 

was highly sensitive to window time-length.  Simple, univariate indicators of enrichment 

tended to be less sensitive, and indicate recovery earlier, than more complex multivariate 

indicators.  Recovery was assessed to be complete after approximately five years, but there 

was some evidence of on-going instability in the composition of the macrofauna, which was 

partly attributed to spatial and temporal processes and patterning in the macrobenthos.  The 

last data chapter (Chapter 7) examined shorter-term recovery and re-impact patterns and 

revealed some interesting successional patterns in time and space, especially between %OM, 

TFS and abundances of opportunistic taxa. The discussion brings together findings from the 

targeted and long-term studies to reveal alternate oscillations between sediment chemistry 

and biological response, which have temporally distinct signals.  It is proposed that the large 

oscillations that occur in the early stages of recovery represent the extreme end of the 

environmental instability that occurs as a result of a severe perturbation (in this case, 

cessation of extreme enrichment) that abates through time as recovery ensues.   

This integrated study has a number of important implications for the management of 

organic enrichment in general but is especially pertinent for fish farming.  In particular, 

recommendations are made regarding the i) adequacy of chemical and biological benthic 

indicators and their performance in typical non-dispersive and atypical dispersive sites; ii) use 

and applicability of depositional models in the same environments with emphasis on the role 

of resuspension, and iii) timing and approach for reintroduction of impacts, with respect to 

monitoring and management of rotational fallowing strategies to ensure on-going 

sustainability.   
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CHAPTER 1  

 
GENERAL INTRODUCTION, OVERVIEW AND THESIS 
STRUCTURE 

 

1.1 Background 

Human-induced pollution of aquatic ecosystems is a major global environmental issue.  

The primary human-mediated pathways that lead to polluted water-bodies include agriculture 

and horticultural discharges of fertilizers and stock effluent (Howarth et al. 2002, Smith et al. 

2006), and point-source inputs of human and industrial wastes (Taylor et al. 1998, Bothner et 

al. 2002).  The primary receiving environment is often the freshwater system (Foley et al. 

2005); however, the ultimate receiving environment is invariably the ocean, where catchment-

derived inputs and direct discharges can strongly influence the physical, chemical and 

biological properties of the near-shore coastal environment (Pagola-Carte & Saiz-Salinas 2001, 

Galope-Bacaltos & San Diego-McGlone 2002, Steckbauer et al. 2011).  In addition to these 

various land-derived sources of pollution, additional threats to the coastal environment arise 

from processes that are linked to human perturbations on a global scale (e.g. ocean 

acidification), direct discharges from ocean outfalls (Taylor et al. 1998, Bothner et al. 2002), as 

well as human activities that occur within the marine environment, such as seabed mining, 

fishing and aquaculture (Jones 1992, Jennings et al. 2001, Brooks et al. 2002, Bolam et al. 2005, 

Borja et al. 2006, Somerfield et al. 2006).  Collectively, these human-induced forms of 

disturbance have the potential to result in large-scale impacts (e.g.  coastal hypoxia or ‘dead 

zones’) that represent a major threat to coastal ecosystems and associated biota (Steckbauer 

et al. 2011).  Protecting the integrity of aquatic ecosystems is therefore of great importance 

and managing the effects is a global challenge (Foley et al. 2005, 

http://www.unesco.org/new/en/natural-sciences/ioc-oceans/high-level-

objectives/ecosystem-health/#c110213).  
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The need to effectively manage and mitigate effects from marine pollution is also rapidly 

increasing in accordance with an expanding human population and the associated production 

of wastes and demands for natural resources.  Demand for sea-based food products 

exemplifies this problem; there is an increasing demand for seafood driven by population 

growth, which is compounded by increasing awareness of the benefits of eating seafood and 

improved socio-economic conditions in developing countries (Jensen et al. 2001, Corbin 2007, 

Dey et al. 2008, Lindkvist et al. 2008, Pitcher 2008).  This increasing demand is occurring in the 

face of static or globally declining fish stocks (Pauly et al. 2002, Pauly 2004, Jiang 2009) and as 

a result there is mounting pressure on aquaculture to bridge the gap between supply and 

demand.  World aquaculture production reached approximately 62.7 million tonnes, and had a 

net worth of US$130 billion, in 2012 after three decades of expansion, and further growth is 

anticipated (FAO 2013).  The increasing demand for aquaculture products will ultimately be 

met by expansion into new areas (e.g. offshore) and modification of existing operations; i.e. 

allocation of new areas for farming, intensification within existing allocated areas and, in some 

cases, conversion of production to higher value species such as finfish.   

The situation in New Zealand reflects the global scene; the aquaculture industry has 

significant expansion targets in place to be met by 20251, and the Environmental Protection 

Agency recently convened a Board of Inquiry to consider a large application for increased 

salmon farming space2.  Likewise, in Australia, major aquaculture expansions are planned, 

especially in Tasmania3, where a 362 ha fish farm expansion in Macquarie Harbour has recently 

been approved4.  However, aquaculture production, and the environment that sustains it, are 

both vulnerable to adverse impacts from degrading conditions (FAO 2012), with the potential 

for significant negative environmental consequences to arise as production exceeds the 

carrying capacity of the environment (Inglis et al. 2000, Stigebrandt et al. 2004, Gyllenhammar 

& Hakanson 2005; Forrest et al. 2007; Keeley et al. 2009, Buschmann et al. 2006, Kalantzi & 

Karakassis 2006).  As a result, and because of uncertainty with respect to the magnitude and 

significance of the adverse effects of aquaculture development, consent applications to 

expand aquaculture operations have proven highly controversial and can polarize 

                                                        
1 http://aquaculture.org.nz/industry/overview/ 
2 http://www.epa.govt.nz/Resource-management/King-Salmon/Pages/default.aspx 
3 http://www.dpiw.tas.gov.au/inter.nsf/WebPages/ALIR-4YS3VE?open 
4 http://www.salmonfarming.org/news/tasmanian-atlantic-salmon-industry-expansion-approved/ 
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communities5.  There is clearly a need to better understand and predict the likely impacts of 

existing activities and of proposed expansions, in order to ensure the natural virtues of the 

regions are not compromised and are sustainable (Gibbs 2009).   

 

1.2 Impacts of aquaculture  

The need to understand the effects of aquaculture on the environment tends to be even 

more important in New Zealand and other developed countries where marine farms are often 

situated in areas of relatively high ecological quality, in part because the culture organisms 

themselves (e.g. fish, shellfish) intrinsically demand high levels of water quality.  For example, 

salmon require cool, clear, well oxygenated water with a narrow pH band to sustain good 

growth and health (Groot & Margolis 1991, Staurnes et al. 1995), and shellfish growth can be 

impaired by toxic algae blooms (Chauvaud et al. 1998) which are often linked to river plumes 

and other nutrient rich discharges (Anderson et al. 2008).  High water quality is also 

necessitated by the food and health regulations that are associated with growing food for 

human consumption (e.g. Australia New Zealand Food Standards Code, ANZFSC 2002).  Poor 

environmental conditions can prevent harvesting and sales of product if contaminants or toxic 

compounds are present (e.g. toxic algae in Greenshell mussels, James et al. 2010). 

Due to increased recognition of the importance of understanding aquaculture effects, a 

number of recent studies have provided a synthesis of environmental interactions (Forrest et 

al. 2007, Forrest et al. 2009, MPI 2013).  In terms of broad categories of impact, recognised 

environmental interactions (see Figure 1-1) can include wider ecosystem effects that arise as a 

result of factors such as nutrient release and impacts on water column production (e.g. 

elevated nutrients leading to algal blooms: Brooks et al. 2002, Buschmann et al. 2007), pest or 

disease transmission (Forrest et al. 2007), interactions with wild fish populations (Dempster 

2005, Dempster et al. 2006), and with wildlife such as seabirds (e.g. Roycroft et al. 2004, Kirk et 

al. 2007) and marine mammals (Kemper et al. 2003, Markowitz et al. 2004).  Whereas many of 

these broader interactions can be difficult to quantify (but may nonetheless be important), it is 

at a more localised scale that impacts are most pronounced and more readily quantifiable.  In 

particular, changes to the seabed environment in the vicinity of culture areas tend to be one of 
                                                        

5 http://www.stuff.co.nz/marlborough-express/news/7539693/Salmon-farms-reel-in-conflict, 
https://www.et.org.au/world-heritage-under-threat-and-no-real-science-available 
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the most obvious and measurable effects of aquaculture on natural ecosystems (e.g. Hargrave 

et al. 1997, Janowicz & Ross 2001, Karakassis et al. 2002, Thetmeyer et al. 2003, Buschmann et 

al. 2006).  Benthic impacts can provide a time-integrated picture of recent events, and as such 

lend themselves to routine monitoring for environmental compliance purposes (e.g. Wilson et 

al. 2009).   

Benthic effects arise in a range of ways, and can differ for different types of aquaculture 

(MPI 2013); however, it is widely recognised that the most significant benthic impacts in 

coastal environments arise as a result of sea-cage (also called net pen) fish farming (e.g. 

Karakassis et al. 2000, Crawford et al. 2003, Edgar et al. 2005), or from comparable forms of 

aquaculture (e.g. shrimp farming) where substantial quantities of protein rich feed are added 

on a daily basis.  For example, a salmon farm that produces 1000 tonnes of fish annually will 

use approximately 3 tonnes of feed per day (assuming an FCR of 1.1, Buschmann et al. 2007).  

Up to 10 % of the feed remains uneaten and falls to the seabed (Chamberlain & Stucchi 2007, 

Cairney & Morrisey 2011), and approximately 13 % of the feed is processed by fish and re-

enters the water column as faecal particles, which also gets deposited on the seabed in the 

immediate vicinity of the farm (Cromey et al. 2002a).  Collectively these organic-rich particles 

are referred to as biodeposits.  Although trace contaminants can be present in biodeposits 

(e.g. copper and zinc, Brooks & Mahnken 2003b), the most well-recognised changes to the 

benthos in the vicinity of feed-added aquaculture installations are associated with organic 

enrichment of the seabed.  

The focus of this thesis is the increased understanding and prediction of the spatial and 

temporal responses of the benthic environment to enrichment, and the associated 

development of indicators and evaluation of mitigation techniques.  Fish farms provide a 

particularly useful model system for studying organic enrichment effects, and for testing 

potential environmental monitoring and assessment tools, for a number of reasons.  First, the 

magnitude of benthic impacts can be extreme, and typically more pronounced than most 

other coastal activities where organic enrichment occurs (e.g. raw or treated sewage 

discharges; Roper et al. 1989, Taylor et al. 1998).  These extreme impacts can abate to 

background levels over spatial scales of tens to hundreds of metres, providing a strong 

gradient of impact for scientific investigation (Brown et al. 1987, Karakassis et al. 2000, Brooks 

& Mahnken 2003a).  It is also relevant that environmental changes along the gradient can be 

readily linked to fish farm activities, as the isolated nature of aquaculture sites tends to 
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geographically isolate them from the confounding effects of other human activities.  Finally, 

the expansion of aquaculture means that multiple fish farm sites occur at a regional scale 

across contrasting environments, which enables enrichment effects and management tools to 

be evaluated in a robust manner. 

 

1.3 Benthic enrichment from sea-cage fish farms and state of current knowledge 

1.3.1 The enrichment process 

Benthic enrichment refers to the physico-chemical processes and ecological responses 

that occur as a result of deposition to the seabed of the organic-rich farm-derived biodeposits.  

As the excess volatile organic matter degrades, oxygen demand increases, and the underlying 

sediments become deoxygenated, with sulphate reducing bacteria converting sulphate to 

sulphides (Hargrave et al. 2008).  These processes result in a lowered redox (oxidation-

reduction) potential and increased sediment sulphide concentrations.  The sulphides produced 

are toxic to most animals, which display a range of tolerances (Hargrave et al. 2008).  Once the 

sulphate is depleted, methanogenesis becomes the dominant metabolic process, often 

producing methane gas.  As a result, benthic communities can become highly modified and 

‘enriched’, infaunal diversity will be significantly reduced and extreme abundances of 

opportunistic, sulphide-tolerant taxa may occur.  In extreme cases sediments can become 

anoxic (without oxygen) resulting in zones that can be azoic, meaning that they are devoid of 

life other than certain micro-organisms (e.g. the bacterium Beggiatoa spp.) that thrive in such 

environments (Gowen & Bradbury 1987).   

1.3.2 Limitations of present approaches to measuring and predicting benthic 

enrichment 

There remain some significant knowledge gaps that impact our ability to reliably predict 

and assess benthic effects of finfish aquaculture, which are the focus of this thesis.  One of the 

main short-comings of benthic monitoring of fish farms is that the choice of indicators has 

been inconsistent between individual assessments, organisations, regions and countries (e.g. 

Wilson et al. 2009).  In some cases qualitative and subjective parameters have been used, or 

quantitative physico-chemicals metrics are adopted as simple monitoring indicators without 
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necessarily correlating well with ecological responses in different farm environments.  There 

are numerous existing biotic indices (Pinto et al. 2009) that have been established for assessing 

benthic impacts for other purposes (Pinto et al. 2009), however, there uptake for aquaculture 

purposes has been slow.  Most of these utilise the established successional response (Pearson 

& Rosenberg 1978, Gray et al. 1979) that is strongly expressed in full beneath fish farms, and 

therefore have potential for discerning those effects (Borja et al. 2009b).  There are also 

aquaculture regions that tend to place more emphasis on geochemical, rather than biological, 

variables as the primary indicators of effects (Wildish et al. 2004, Hargrave et al. 2008).  As a 

result, the ability to make comparisons with, and learn from, the experiences of other regions 

or countries has been impaired.  Simultaneously, there remains a need for improved 

enrichment indicators that integrate physico-chemical and ecological responses, and have 

general applicability across the range of environments in which fish farms are situated.  Hence 

for this thesis, there exists a valuable basis for comparison and evaluation of potential benthic 

environmental indicators and methods, as well as for their further development and extension 

for use with predictive tools. 

The size, shape and intensity of the “footprint” of benthic effects is often used as a basis 

for managing in relation to acceptable zones of effects, or AZE (e.g. Wilson et al. 2009, Figure 

1-2, ASC 2012).  The footprint is strongly influenced by the bathymetry and hydrodynamic 

properties of the farm site, as strong currents will promote waste dispersion (Cromey et al. 

2002b) and oxygen delivery to the sediments (Findlay & Watling 1997).  Strongly-flushed or 

“high flow” sites are generally thought to be more resilient to benthic enrichment (Frid & 

Mercer 1989, Borja et al. 2009b); however, the relationships between current speed, 

deposition flux rates and the benthic response remain poorly defined.  Accordingly, predictive 

approaches to environmental management (i.e. modelling) are still largely in the 

developmental stage and vary greatly in terms of methods employed, ease of application 

effectiveness and importantly, reliability.  These are important considerations that are 

addressed in this thesis, as both the spatial extent and magnitude of effects are key decision 

criteria for assessment of overall impact with respect to resource management (see below).  

Also critical to any assessment of effects, and of approaches to mitigation, is the concept 

of benthic recovery, as it concerns the longevity and reversibility of any effects, should the 

farm be removed.  To date “recovery” has been defined in different ways, with no consensus 

on appropriate assessment methods.  Estimates of putative “recovery” vary greatly, from less 
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than six months (Ritz et al. 1989, Brooks et al. 2003) to more than 5 years (Brooks et al. 2004), 

with many studies not being of sufficient duration to identify “complete” recovery; i.e. to pre-

impact condition or to conditions consistent with those of selected control sites  (e.g. 

Karakassis et al. 1999, Macleod et al. 2004c).  An understanding of recovery rate is critical from 

a farm management perspective, as sites are regularly fallowed (temporarily destocked) to 

allow the sediments to return to a less enriched and impacted state.  The relevance and 

sustainability of fallowing as a management practice from a benthic perspective remains a 

contentious issue (Brooks et al. 2003, Hall-Spencer & Bamber 2007) because it requires more 

space and impacts a greater area of seabed (i.e. because the stock from the fallowed site is 

moved to a new site).  Relative rates of recovery versus rates of impact (or re-impact) at new 

sites have important implications for the overall farm space required and the sustainability of 

fallowing cycles, but have not yet been considered in any detail.   

 

 

Figure 1-1:  Stylistic summary diagram of the potential types of ecological effects associated with 
enrichment from salmon farm aquaculture. 
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Figure 1-2: Generic representation of a ‘benthic footprint’ beneath a salmon farm indicating potential 
deformation in response to flow and arrangement of ‘impact zones’ and sampling stations for 
monitoring and management purposes in New Zealand.  At most farms, the footprint or AZE is 
constrained by three zones each with an associated tolerable level of effect and/or specified 
‘environmental quality standards’ (EQS).  Zone 1 - Directly beneath the cages; impacts can be quite 
severe although excessive enrichment resulting in anoxia and azoic conditions is prohibited. Zone 2 – 
allows for moderate to high levels of enrichment out to a distance of approximately 50 m at low/ 
moderate flow sites (greater for high flow sites).  Zone 3 -effects are expected to be negligible (i.e. 
approximate natural conditions) at a set distance away from the farm cages (usually 150 m for low flow 
sites).  Monitoring is generally undertaken at the boundaries for each of the zones (Figure 1-2). 
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1.4 Primary aims and structure of this thesis 

The overall hypothesis of this thesis was that seabed organic enrichment (degradation 

and recovery) can be accurately and quantitatively determined using biological and physico-

chemical variables that can be applied across geographic regions and differing environments.  

This hypothesis was accompanied by an objective to refine knowledge of processes 

underpinning benthic enrichment, and develop or refine tools for the prediction, monitoring 

and management of enrichment effects associated with fish aquaculture.  This was based on a 

scientifically robust analysis of selected quantitative methods for environmental monitoring 

and management worldwide, and an assessment of the relative performance of these 

approaches under New Zealand conditions (e.g. a poorly described benthic ecology).  A key 

component of this study was not just an assessment of environmental degradation processes 

associated with aquaculture operations, but also consideration of the recovery potential, such 

that the full cycle of environmental impacts under a broad range of different environmental 

conditions can be considered, and the most effective management strategies implemented.  In 

order to achieve these aims, I derived a complex and extensive dataset, combining targeted 

short-term studies with a large long-term dataset covering 10 years of environmental 

monitoring beneath six established commercial salmon farms (representing 75 % of New 

Zealand’s sea-cage salmon farms).  This end result is a balanced prognostic/diagnostic 

management approach that has global applicability. 

The overarching hypothesis has been addressed through a series of six sequential and 

related studies, presented as chapters, each with their own specific goals, but which together 

contribute to the broader purpose.  The final chapter (Chapter 8, General Discussion) 

summarises the main findings and presents the key environmental management 

recommendations that arose from the work.  The aims and general content of the individual 

chapters are as follows: 

Chapter 2 presents a means of evaluating enrichment sensitivities for poorly described 

taxa, and for assigning new, or validating existing, enrichment tolerance classifications, to 

increase the relevance and application of existing biotic indices to new regions.  This was 

necessary because although biotic indices have been developed and readily applied in the 

northern hemisphere, their application assumes a reasonable level of knowledge of, and 

agreement upon, endemic macrofauna in terms of their enrichment tolerance, which did not 
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exist in the study region.  There is also evidence to suggest that the transferability of biotic 

indices and the underpinning enrichment tolerance classifications between regions may be 

problematic.  To address this, I developed a novel means of unifying biological and physico-

chemical variables to produce a single variable (Enrichment stage, ES) that represented the key 

stages of enrichment-related degradation.  The development of this ES variable provided an 

alternative, quantitative method to the traditionally subjective approach to classifying new 

taxa.   

The motivation for Chapter 3 was to identify which variables, or suite of variables, best 

characterise enrichments effects across the full spectrum of enrichment, with emphasis on 

versatility and their ability to provide relevant impact classifications in different flow 

environments.  The need for versatility with respect to different flow environments was 

considered important, as preliminary observations suggested that the way in which the 

benthic ecology responded to enrichment was different to that commonly described for “low 

flow” sites where most fish farming takes place globally, and where most studies to date have 

been conducted.  Furthermore, there appears to be a present shift in the fish farm industry 

toward high flow sites, and the gap in understanding around how high flow sites respond to 

enrichment needed to be addressed.  Using the ES variable, I was able to empirically describe 

the relationships between common infaunal and physico-chemical variables as they respond to 

enrichment.  Identifying the most reliable indicator variables was an important step in being 

able to predict effects from depositional models that are examined in Chapter 5.   

In Chapter 4 I more closely examine the relationships among and between biological and 

physico-chemical indicators (e.g. total free sulphide), and compare species richness (S), 

abundance (N) biomass (B) and trends under different flow regimes against the responses that 

characterise a classic conceptual model for organic enrichment developed by Pearson & 

Rosenberg model (1979).  I then reviewed these findings and their relevance to current 

understanding of successional responses, identifying the strengths and limitations of different 

environmental indicators for monitoring.  Chapter 4 is therefore a logical extension of Chapters 

2 and 3. 

Chapter 5 utilises an existing model that was designed to predict depositional flux rates 

and organic accumulation beneath salmon farms in Scotland.  The motivation to apply and 

further test this model at the study sites arose because: i) confident model application is 
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contingent upon regional validation, which is especially important where the hydrodynamic 

properties are relatively unique, and ii) the links between depositional flux rates and observed 

ecological effects are poorly described.  So in this chapter I evaluate the strength of the link 

between model predictions and observed ecological responses by validating the model at the 

six study sites.  I also develop empirical models to convert between predicted flux and 

observed effects for dispersive (high flow) and non-dispersive (low flow) sites, and in doing so 

provide a novel insight to scientific understanding of the role of seabed particle re-suspension.   

Chapters 6 and 7 provide a detailed analysis of recovery and re-impact in the sediments 

beneath fish farms.  Chapter 6 utilises a 10 year dataset detailing recovery from a highly 

impacted state at a low flow site.  It also provides a good framework for evaluating different 

definitions and metrics of recovery, as well as some fundamental ecological concepts (e.g. the 

role of key taxa in remediation, and ecological succession end-points).  Chapter 7 examines 

recovery rates more intensively over a shorter period (2 years) and contrasts these with re-

impact rates at an adjacent site.  These findings have important implications for fallowing and 

mitigation strategies that are often employed to manage seabed effects, and therefore the 

sustainability finfish farming in some locations.  

The final Chapter (8) provides a synthesis of the main findings of Chapters 2 – 7 and 

considers the implications for fish farm management both in New Zealand and internationally.  

Recommendations are made about how enrichment effects can be most reliably quantified 

with particular regard to contrasting flow environments.  A summary is provided regarding our 

ability to predict effects, and the discussion is extended to consider the relative merits of low 

and high flow sites in consideration of potential for wider ecosystem effects.  The concept of 

recovery from such effects is then discussed in light of what was learnt, along with implications 

for farm fallowing and management.  The Chapter concludes with some recommendations 

about where future efforts might be best placed in order to further advance our understanding 

of enrichment related effects. 
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CHAPTER 2  

 
COMBINING BEST PROFESSIONAL JUDGEMENT 
AND QUANTILE REGRESSION SPLINES TO 
IMPROVE CHARACTERISATION OF 
MACROFAUNAL RESPONSES TO ENRICHMENT 

 

 

Preface: 

One of the first objectives of this research was to “evaluate existing approaches for 
assessment and prediction of ecosystem impacts”.  In order to do this, it was necessary 
to identify key distinguishing macrofauna species and the ecological significance/ 
function of those taxa.  The aim was to then use that information to calculate a range a 
biotic indices, and alongside other more common or established indicators, to test their 
local relevance and applicability.  

This Chapter therefore addresses the first stage of this objective and is a precursor to 
Chapter 3, which contrasts the resulting indices.  It also introduces the Enrichment Stage 
gradient, which was developed specifically for this task and became an important 
underpinning framework for quantifying, defining and delineating enrichment 
throughout the thesis.  

 

This work has been published in a refereed journal and has been adjusted to a standard 
format for the thesis, and as such there may be minor differences in the text, figures and 
tables compared with the published version. The citation for the original publication is:  

 

Keeley N, MacLeod C, and Forrest B. 2012. Combining best professional judgement and 
quantile regression splines to improve characterisation of macrofaunal 
responses to enrichment. Ecological Indicators 12, 154-166. 
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2.1 Abstract 

Many benthic quality indices rely on categorising impacts by assigning species to 
ecological-groups (EGs) that reflect their tolerance to pollution.  This is usually based on 
best professional judgement (BPJ) by experts with access to relevant ecological and 
taxonomic information.  However, international applicability of such indices is restricted 
in areas where the species taxonomy, biology and response to pollution are poorly 
understood.  In this study we describe an approach that enables objective allocation of 
EGs in situations where species information is limited.  This approach utilised BPJ to 
categorise the environmental condition of benthic habitats around fish farms in New 
Zealand in relation to defined enrichment stages (ESs).  Quantile regression was then 
used to model distributions of select taxa.  The experts assigned ES scores from 1-7, for 
stations that ranged from relatively natural to excessively enriched (i.e. azoic), 
respectively, with judgements based on a suite of quantitative and qualitative indicators 
of enrichment, but without reference to detailed species information.  The individual 
BPJ estimates were highly correlated, with minimal bias, indicating good agreement 
among the experts.  Forty key indicator taxa were identified and quantile regression 
models based on ES (derived as a continuous explanatory variable) were fitted for 34.  
Abundances of the same taxa were also modelled in response to a more traditional 
enrichment indicator (organic content, %OM) for comparison with the BPJ technique.  
The regression approach characterised enrichment responses and objectively identified 
both the upper and lower tolerance limits of a range of taxa according to their ES and 
%OM.  The models discriminated a number of key indicator taxa, including several that 
were responsive to low-level changes in ES, but not necessarily %OM.  There was 
reasonable agreement (59%) between EGs derived using the regression approach and 
those defined using the AMBI database (one of the most commonly applied benthic 
quality indices).  Moreover, the regression method allowed the classification of 10 
additional taxa for which our ecological understanding was limited.  A key outcome of 
this study was the acknowledgement that EG characterisations for species need to be 
regionally validated, no matter how well defined they might appear to be.  The 
combined BPJ/ regression analysis approach described provides a valid means of both 
assigning and validating EG classifications, which will be particularly useful in situations 
where the taxa are poorly defined, and will enable existing biotic indices to be more 
broadly applied and interpreted. 
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2.2 Introduction 

Physical and chemical changes to sediments beneath finfish farms can result in profound 

ecological effects (e.g. Brooks et al. 2002, Buschmann et al. 2006, Kalantzi & Karakassis 2006).  

Accordingly, in many countries environmental monitoring and assessment is undertaken to 

evaluate benthic conditions against environmental quality criteria.  However, these quality 

criteria vary widely between locations and applications (Carroll et al. 2003, Kalantzi & Karakassis 

2006), often relying on subjective expert opinion, also referred to as best professional 

judgement (BPJ, Weisberg 2008).  Having a validated suite of standard metrics, cross-referenced 

with BPJ that can reliably define environmental quality would greatly improve our ability to 

compare both environmental effects, and management and regulatory responses across broad 

geographic regions. 

Many ecological indices have been developed with a view to better informing BPJ; with 

several tested specifically for aquaculture-related benthic effects (Infaunal Trophic Index, Word 

1978, e.g.: AZTI's Marine Biotic Index (AMBI), Borja et al. 2000, BENTIX, Simboura & Zenetos 

2002, Multivariate-AMBI, Muxika et al. 2007).  Of these, the AMBI was recently proposed as a 

primary indicator of biological health beneath finfish farms internationally (DSRSA, 2010).  The 

AMBI (and related indices i.e. M-AMBI; BENTIX; MEDOCC, Pinedo & Jordana 2008) classifies 

benthic communities according to five ecological groups (EGs), based on their sensitivity to 

organic enrichment as defined by expert consensus (Borja 2004).  Expert consensus, although 

critical, is a subjective step in the process, which can be time-consuming and requires an in-

depth knowledge of responses of individual taxa to enrichment (or other forms of disturbance).  

Furthermore, incorrect assignment of species to Eco-groups (EGs) may result in misclassification 

of impacts (Simboura 2003, Borja 2004, Borja & Muxika 2005), and without site-specific 

validation, even closely related indices can imply a different quality status for the same site 

(Aguado-Gimenez et al. 2007).  In a preliminary appraisal of the AMBI with data from 

aquaculture operations in New Zealand, we found only 29% of the 200 taxa identified were 

specifically listed in the AMBI database (AMBI v4.0, February 2010); the recommended minimum 

requirement is 80% for robust application (Borja & Muxika 2005).  This highlights a major 

problem associated with the currently available suite of indices, which is how to deal with fauna 

that have a high degree of endemism and/ or which are poorly described.  In many areas of the 

world the marine benthic fauna is still largely undescribed and as a result new locations will 

almost inevitably yield species whose response to enrichment is poorly understood.   
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In addition, macrofaunal responses to enrichment are generally complex, resulting from 

multiple biogeochemical and ecological interactions, and patterns are rarely adequately 

explained by a single continuous environmental variable (Borja et al. 2009b).  Consequently, 

current statistical modelling approaches cannot readily incorporate the full suite of indicators 

used by experts to assess environmental quality in the BPJ process.  Often relevant variables may 

be either deterministically qualitative or have responses where the outcomes cannot be 

interpreted independently of other variables.  For example, although the mat-forming bacteria 

Beggiatoa spp. (Beggiatoa) can be a clear indicator of enrichment (Crawford et al. 2001, Macleod 

et al. 2004c, Hargrave et al. 2008), absence of Beggiatoa may reflect either a lack of enrichment, 

or conditions where enrichment is so severe as to limit this species (i.e. bottom-water is anoxic 

or Beggiatoa is disturbed by out-gassing).  BPJ offsets these contradictions by taking into account 

all available information and interpreting indicators in the context of other measures of impact 

(e.g. Muxika et al. 2007, Weisberg 2008, Teixeira et al. 2010).   

However, the challenge of quantifying the responses of individual taxa to the specified 

enrichment gradient remains.  The basic premise behind this involves identifying the conditions 

(and the point along the gradient) at which the taxa is most prolific, i.e. its ‘preferred’ conditions.  

To do this, we adopted an approach successfully employed by Anderson (2008a), who modelled 

species distribution patterns in relation to sediment grain size using quantile regression splines, 

and derived preferences numerically.  In this study we evaluated the effectiveness of BPJ 

combined with quantile regression (Cade & Noon 2003, Koenker 2005, Anderson 2008a) to 

define enrichment gradients using data from fish farms in New Zealand as a model.  This dataset 

provided a full spectrum of enrichment (from natural to near-azoic) enabling identification of 

both the upper and lower tolerance limits of a range of taxa.  By deriving BPJ as a continuous 

explanatory variable, the distribution of individual taxa was modelled across the enrichment 

gradient, enabling objective derivation of species into EGs.  The aim of this study was therefore 

to test these methods as a means of evaluating enrichment sensitivities for poorly described 

taxa, and for assigning new, or validating existing EG classifications, thereby increasing the 

relevance and application of existing biotic indices to new regions.  
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2.3 Methods 

2.3.1 Study sites, sampling and data selection 

The data for this study were obtained as part of a regular compliance monitoring program 

for four Pacific salmon (Oncorhynchus tshawytscha) farms in the Marlborough Sounds, New 

Zealand (Figure 2-1).  Sampling at each farm was undertaken annually in early summer (October-

November) from 2001 - 2009.  Although flow regimes varied slightly between farms, background 

environmental and operational conditions were comparable (Table 2-1).  The analyses presented 

here were based on a subset of the full dataset, which deliberately encompassed a wide cross-

section of annual feed inputs and associated levels of impact, and data that were consistent in 

sample size and distribution (i.e. no missing values for explanatory or derived biological 

variables; Table 2-1).  The final dataset included all four farms (1 - 4 sampling occasions per 

farm), spanned nine years and resulted in 74 sampling stations consisting of 24 observations 

beneath cages, 38 along enrichment gradients adjacent to cages, and 12 at reference sites (Table 

2-1).  

Sediment samples were collected from directly beneath cages, and at stations along an 

enrichment gradient running away from the cages (25 – 250 m), as well as at references sites.  

Macrofauna were sampled using replicate (n = 3) perspex sediment corers (13 cm diameter, 

0.0132 m2) deployed to a depth of 10 cm.  Core contents were sieved to 0.5 mm, and the 

retained fauna identified and enumerated enabling calculation of a variety of community 

composition statistics (total abundance, number of taxa, Shannon-Weiner diversity (H’) and 

Pielou’s evenness). 

The surface 3 cm of smaller composite sediment cores (7 cm diameter) was also collected 

for analysis of grain size and total organic matter (OM).  Sediments were oven-dried to constant 

weight at 105ºC, and size class fractions from silt-clay through to gravel were analysed 

gravimetrically.  OM was selected as a primary explanatory physico-chemical variable on the 

basis that large increases in OM can occur beneath salmon farms (e.g. Mazzola et al. 2000, Pohle 

et al. 2001) and that OM strongly influences benthic chemistry, metabolism and the associated 

macrofauna (e.g. Sampou & Oviatt 1991, Holmer & Kristensen 1992) . Percent OM was 

calculated as the % weight loss of dried samples after ashing at 550ºC for 2 h (modified after 

Luczak et al. 1997). 
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In addition observations were made of three qualitative indicators of enrichment from 

both sample cores and video footage of the seabed: (i) the presence of hydrogen sulphide odour 

- classified into one of five categories (none, mild, moderate, strong, very strong), (ii) coverage of 

Beggiatoa on the seabed - classified as none; patchy, up to 50%; extensive, > 50%, and (iii) 

presence and extent of out-gassing – classified as none, out-gassing on disturbance, freely out-

gassing.  

 

Figure 2-1:  Map showing the position of the four salmon farms that comprised the study sites within the 
Marlborough Sounds, New Zealand. 
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Table 2-1:  Summary of farm and environmental characteristics at the four study sites. OM = organic 
matter. 

Site attributes Values Units Farm-1 Farm-2 Farm-3 Farm-4 
Year of surveys 20- ‘01 ‘03,‘05,‘08,‘09 ‘04,‘06,‘07 03,‘05,‘07,‘09 
Farm age at surveys Years 7 14,16,19,20 19,21,22 14,16,18,20 
Site depth  (range, m) 34-35 37-39 34-35 28-30 
Current speed* Mean(Max) cm/s 3.1 (10.7) 6.0 (34.6) 3.7 (17.5) 8.4 (33.7) 
Feed inputs  tonnes/yr 100-2264 1640-2239 2510-3289 2171-3918 

Sampling stations 
 

m from 
cages 

0(×2), 25, 50, 
75, 150, 
250,Ref 

0(×2), 50, 
150, 250, Ref 

0(×2), 50, 
150, 250, Ctl 

0(×2), 50×2, 
100, Ref 

Reference stations       
Sediment mud 
content  Mean(range) % 84 (83-85) 55 (34-73) 80 (69-84) 78 (69-85) 

%OM  Mean(range) % w/w 4.9 (4.6-5.3) 5.0 (2.8-7) 5.2 (4.8-5.8) 4.9 (4.5-5.8) 
All stations (incl. Reference)      
%OM Range % w/w 3.8-18 2.8-27 4.7-23 2.4-32 
No. taxa Range  No./core 1.6-32 2-30 1.5-26 1-36 
Macrofauna 
abundance Range No./core 31-1012 3-2466 6.5-4230 1-4384 

C. capitata 
abundance Range No./core 0-1010 0-1958 0-4209 0-2345 

*Calculated for 20m water depth from 30-35 day deployments of Sontek ADCP positioned within c. 30 m 
of each farm. 

 

2.3.2 Best professional judgement of enrichment status 

Eight scientists with experience in the assessment of aquaculture impacts used BPJ to 

assign the 74 sampling events (station/farm/year) to one of seven enrichment stages (ES), based 

on narrative criteria (Table 2-2) adapted from previous studies (Pearson & Rosenberg 1978, Gray 

et al. 1979, Macleod & Forbes 2004).  The seven ES’s described are specific for enrichment 

(rather than pollution or disturbance in general) and, importantly, take into account the full 

complement of indicator variables described above.   

The experience of the BPJ group in assessment of aquaculture enrichment ranged from 2 - 

35 years (mean = 13.5 years).  Although seven of the experts were from the same institution 

(Cawthron Institute, New Zealand), significant bias was not expected, as high consistency in BPJ 

among international experts assessing benthic macrofaunal condition has been demonstrated by 

Texeira (2010).  The eighth expert was from a comparable research institute (Tasmanian 

Aquaculture & Fisheries Institute) situated in Tasmania Australia.  Furthermore, to minimise bias, 

agreement was sought among the experts on their understanding and interpretation of the 
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seven enrichment stages, in order to reduce the linguistic uncertainty inherent in the use of 

narrative criteria (Regan et al. 2002, Burgman 2005).   

Each expert was provided with station-averaged physico-chemical data (depth, mean 

current speed, sediment grain size, %OM), the quantitative macrofaunal statistics and qualitative 

descriptors for each of the individual sampling events as described above), as well as the ranges 

(i.e. minimum, maximum) for each of the variables.  The only species information provided was 

abundance of the globally ubiquitous, opportunistic polychaete, Capitella capitata, whose well-

described response to organic enrichment was used to help define the enrichment gradient.  

Other taxonomic data was withheld to avoid confounding the results for later analyses, where 

individual species distributions were plotted against the enrichment gradient.   

The BPJ assessment was blind with respect to site location and survey year, and the 

stations were listed randomly, so that experts did not bias results by anchoring on expected 

outcomes (e.g. the expectation of declining enrichment with distance from cage sites, Burgman 

2005).  The experts were asked to select the ES that ‘best matched’ the conditions for each 

station, but were also provided with a ‘second best’ option, for when conditions were deemed 

to fall between two ES stages.  ‘Second best options’ were accounted for by adding or 

subtracting a nominal value of 0.3 (i.e. 30% of an ES) to the first choice scores, depending on 

whether the second choice was higher or lower than the first choice (respectively).  Individuals’ 

scores were collated and averaged; providing a continuous ES variable (between 1 and 7).  The 

scores from each expert were plotted against the ranked averaged score and calculation made 

of the Spearman rank correlation coefficient (rho, ρ) of individual versus mean score 

(representing overall agreement), and the total deviation from the mean (td = ∑( x -x), 

representing overall bias). 
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Table 2-2: Narrative criteria describing seven enrichment stages, used by experts for best professional 
judgement (BPJ) assessments Modified from Macleod and Forbes (2004) and Pearson and Rosenberg 
(1978).  Dominant ecological group refers to the AMBI Eco-group that was associated with the 
corresponding stage of enrichment for ES allocation. 

ES General description Environmental characteristics 
Dominant 
Ecological 

Group 
1 Natural/pristine conditions Environmental variables comparable to 

unpolluted/ un-enriched pristine reference 
site. 

I 

2 Minor enrichment: Low 
level enrichment. Can occur 
naturally or from other 
diffuse anthropogenic 
sources. 'Enhanced zone' 

Richness usually greater than for reference 
conditions.  Zone of 'enhancement' – minor 
increases in abundance possible. Mainly 
compositional change.  Sediment chemistry 
unaffected or with only very minor effects. 

(II) 

3 Moderate enrichment: 
Clearly enriched and 
impacted. Significant 
community change has 
occurred. 

Notable abundance increase, richness and 
diversity usually lower than reference. 
Opportunistic species (i.e. capitellids) begin to 
dominate.   

III 

4 Major enrichment 
1:Transitional stage 
between moderate effects 
and peak macrofauna 
abundance. Major 
community change. 

Diversity further reduced, abundances usually 
quite high, but clearly sub-peak.  
Opportunistic species begin to dominate, but 
other taxa may still persist. Major sediment 
chemistry changes. 

IV 

5 Major enrichment 2: Highly 
enriched. State of peak 
macrofauna abundance.  

Very high numbers of one of two 
opportunistic species (i.e. capitellids, 
Nematoda).  Richness very low.  Major 
sediment chemistry changes.  Bacteria mat 
(Beggiatoa) usually evident.  H2S out-gassing 
on disturbance. 

V 

6 Major enrichment 3: 
Transitional stage between 
peak and azoic.  

Transitional stage between peak and azoic. 
Richness & diversity very low. Abundances of 
opportunistic species severely reduced from 
peak, but not azoic. Total abundance low but 
can be comparable to reference. %OM can be 
very high (3-6 times Ref). 

V* 

7 Severe enrichment: 
Azoic/abiotic; sediments no 
longer capable of 
supporting macrofauna. 
Organics accumulating. 

None, or only trace numbers of macrofauna 
remain. Some samples with no taxa. 
Spontaneous out-gassing; Beggiatoa usually 
present but can be suppressed. %OM can be 
very high (3-6 times Ref). 

Azoic 

*Note: EG V still dominant taxa, but conditions deteriorated beyond peak abundance. 
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2.3.3 Identifying key indicator taxa  

A subset of taxa were selected (from a total of 139 taxa) for the application of quantile 

regression splines based on their dominance and power to discriminate effects.  Reduction in the 

number of taxa focused efforts on those having the most influence on ecological index 

calculations, reduced the influence of uncommon species sampled by chance, and was necessary 

to make quantile regression analyses tractable.  Dominance was evaluated based on total 

abundance and frequency of occurrence (i.e. sample count > 0) across the whole dataset.  A 

multivariate canonical analysis of principal coordinates (CAP, Anderson & Robinson, 2003; 

Anderson & Willis, 2003) was used to model changes in community structure in relation to 

enrichment status as assessed by BPJ, to check for any taxa that were not otherwise notable in 

terms of abundance or frequency of occurrence.  The CAP analysis was based on Bray-Curtis 

dissimilarities calculated from log-transformed abundances, using the PERMANOVA+ add-on for 

PRIMER v6 (Clarke 2006, Anderson 2008b).  A check for over-parameterisation was conducted by 

choosing the number of PCO axes that minimised the leave-one-out residual sum of squares.  A 

vector plot was overlaid onto the CAP to identify those taxa most strongly associated with the 

different stages of enrichment (Spearman correlation > 0.4).  

 

2.3.4 Characterising the distribution of taxa along the enrichment gradient  

Changes in distribution of each taxon among the 74 stations were characterised in 

response to the derived ES variable and compared to the more traditional measure of %OM. 

Using a method proposed by Anderson (2008a), abundances of each the indicator taxa were 

plotted against %OM or ES and quantile regression spline models constructed for the 95th 

percentile (Koenker et al. 1994, Koenker 2005), which represents the value below which 95% of 

the abundances are expected to fall (also called the τ = 0.95 quantile).  For five models (Nucula 

gallinacean, Prionospio sp., Cumacea, Melitidae and Boccardia sp. versus ES) the 90th percentile 

was used to reduce the influence of single outliers.  In accordance with Anderson (2008a), all 

models were fitted using the function rq() combined with function bs() in R (R Development Core 

Team 2007).  Polynomials of degree 2, 3, 4 and 5 were created for each taxon, with the best-fit 

model having the lowest value of the small-sample-correction version of Akaike’s information 

criterion (AICc) (Cade et al. 2005, Anderson 2008a).  If the next best AICc value was within 2 units 

of the chosen model but had a better visual fitted shape to the scatterplot of the data, then it 
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was chosen in preference (Burnham & Anderson 2002).  The models were constructed on 

natural log-transformed abundances to minimise the tendency of the method to ‘over-fit’ the 

data (resulting in illogical curves), and converted back to raw abundances for plotting.  Two 

exceptions to this were Ophiuroidea and Cossura consimilis, for which the raw data produced a 

more meaningful fit. 

From each best-fit model, the value at which the predicted density achieved a maximum 

along the enrichment gradient identified the optimum ES or %OM for that taxon (X-optimum).  

Similarly, the peak abundance (Y-max) for each model was taken as the estimate of the 

maximum achievable density given optimum conditions.  Y-max’s were therefore estimated 

independently for both ES and %OM, and compared to test for consistency between the 

approaches and to provide confidence in the model outputs.  Ninety-five percent bootstrap 

confidence intervals (e.g. Manly 2006) were obtained for both X-optimum and Y-max using bias-

corrected percentiles from re-applications of the chosen model to each of 1,000 bootstrapped 

sample pairs. 

 

2.3.5 Assigning Eco-groups 

Eco-Groups (as per Grall & Glémarec 1997, Borja et al. 2000) were assigned for each taxon 

based on the abundance distributions and best-fit quantile regression splines in relation to ES.  

This was conducted on the basis that the dominant Ecological Groups (EG’s) defined by Borja et 

al. (2000) correspond approximately to the first five Enrichment Stages (ES’s), as they both 

reflect a progression from un-impacted conditions (ES 1 ≡ EG I) to highly impacted condi�ons 

where first order opportunists dominate (ES 5 ≡ EG V).  Transi�onal stages were also similar, 

with the exception that EG II taxa are typically ‘indifferent to enrichment’ and may therefore 

also be present at higher levels of impact.  Thus, for the purpose of this study we defined the 

correspondence between ES and EG as follows: ES 1-1.5 ≡ EG I, ES >1.5 – 2.5 ≈ EG II, ES >2.5 – 3.5 

≡ EG III, ES >3.5 – 4.5 ≡ EG IV, ES >4.5 ≡ EG V (Table 2-2).  EG II therefore included taxa that were 

either most prevalent at ~ES 2, or proved indifferent to ES (i.e. occurred throughout ES 1-5 and 

showed no particular peak, making spline fitting difficult) and had low abundances.  ES 6 and 7 

are specific to organic enrichment; ES 6 represents a state beyond the ‘peak of opportunists’ 

defined by Gray (1979) and Pearson & Rosenberg (1978) but which is not yet ‘azoic’ (defined as 

ES 7). 
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2.4 Results 

2.4.1 Best professional judgement 

BPJ estimates from all eight experts were highly correlated with the mean (ρ = 0.917-

0.975), indicating good agreement among individuals in assignment of each station to one of the 

seven stages of enrichment (Figure 2-2).  The sum of the average deviations from the means (td 

values in Figure 2-2) was < 0.3 suggesting that overall the estimates were reasonably unbiased.  

Individual BPJ3 had the strongest bias of the experts, over-estimating ES by approximately one 

third of an enrichment stage (td = 0.29), whereas, BPJ2 tended to underestimate ES by 0.21 

stages.  Expert BPJ8 did not consider any sites to be clearly at ES = 1 (pristine) and hence scored 

all un-enriched sites as ES = 2, otherwise results were similar among individuals (inclusive of the 

Australian expert).  Deviation from the mean was greatest in the mid-range of the ES gradient (3-

5), peaking around ES 4. 

 

 

Figure 2-2:  Results of best professional judgment assessment with individual responses (BPJ1-8, denoted 
by ○ compared to overall mean (denoted by ●).  X-axis order by overall mean rank.  Spearman rank 
correlation (ρ), total deviation from the mean (td) and sample number (n) indicated on top left of each 
plot.  Grey dashed lines indicate 95th percentile for mean values.   
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2.4.2 Key discriminatory taxa 

Forty one (41) potential indicator taxa were identified for further analysis, of which 35 

were selected based on numerical dominance.  Three taxa were selected on the basis that they 

occurred frequently but were not so abundant (Cossura consimillus, Polynoidae, Flabelligeridae), 

and two additional taxa (Cadulus teliger & Flabelligeridae) were identified from the CAP analysis 

(Figure 2-3).  The taxa shortlist therefore included abundant opportunists, such as the 

polychaete Capitella capitata, less numerous, but commonly occurring taxa like Hesionidae, as 

well as any taxa that the CAP analysis suggested were associated with a particular ES (but were 

otherwise uncommon).  Although not strictly macrofauna, Nematodes were included as they 

were frequently present, and often highly abundant in organically enriched sediments.  Likewise, 

other taxa such as three amphipod families (Phoxocephalidae, Melitidae and Haustoriidae), a 

decapod (Macrophthalmus hirtipes) and the small arthropod, Nebalia sp., were considered 

potential indicators due to their prevalence, despite being relatively mobile surface dwellers.   

CAP analysis (Figure 2-3) indicated C. capitata as the species most tolerant to enrichment, 

being associated with an ES of 5 to 6 (i.e. major enrichment) as determined by BPJ.  Also 

tolerant, but more typical of ES 4, were Nematoda, followed by a mix of polychaetes, 

crustaceans and bivalves (Figure 2-3).  Taxa associated with mildly enriched samples (c. ES 2) 

included the small bivalve Theora lubrica, and various polychaetes (Hesionidae, Sphaerosyllis sp. 

and Prionospio sp).  Un-enriched sites (c. ES 1) were characterised by a range of polychaetes, 

ophiuroids, cumaceans and small molluscs (Figure 2-3).   
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Figure 2-3:  Canonical analysis of principle coordinates (CAP) of macrofauna data displaying maximum 
differences according to factor ES.  For genus names see Table 3.  The analysis was based on Bray-Curtis 
analysis of log-transformed mean abundances, using m=20 principal coordinates.  Vector plot of 
correlated taxa (Spearman ρ >0.4) overlaid. 
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2.4.3 Quantile regression models of faunal responses 

Best-fit 95th percentile regression splines revealed that the distribution of total 

macrofaunal abundance in relation to ES was unimodal and left skewed (Figure 2-4a).  The 

modelled abundance peak occurred at ES 5.1, beyond which it declined sharply.  The distribution 

of total macrofaunal abundance against %OM was also unimodal but in this case right skewed, 

with a modelled optimum peak abundance of 3,525 individuals per core at 9.1% OM (Figure 2-

4b, Table 2-3).  The number of taxa peaked between ES 2 and ES 3, coincident with relatively low 

values of %OM (2.4-5%), and declined with increasing ES (Figure 2-4c) as %OM increased (Figure 

2-4d).  

Valid (biologically meaningful) regression models were able to be fitted for 34 of the 41 

indicator taxa (Table 2-3, Appendix 2-A and 2-B).  The method failed to fit meaningful splines for 

four taxa (Oligochaeta, Polydora sp., Munna schauinslandii, Onuphis aucklandensis) whose 

abundance and/or frequency of occurrence were too low, in which case enrichment sensitivity 

could not be evaluated and the taxa were omitted from the results.  Similarly, meaningful 

models could not be fitted for Heteromastus filiformis, Terebellidae, Glyceridae and Tanaidacea.  

These taxa displayed no clear peak in relation to either ES or %OM, but such responses were 

biologically interpretable as indifference to enrichment, and the results have been included 

accordingly.  For some distributions, the spline peaked at the X-minimum due to occasional high 

abundances occurring at or near the lowest X-values (e.g. %OM for Sphaerosyllis sp., Table 2-3).  

This latter pattern tended to have an adverse effect on the confidence intervals (bootstrapped 

estimates always equivalent to X-min) and the resulting X-optimum did not always fairly reflect 

the distribution of the data. 

Estimated peak abundances (or Y-max) for each taxon spanned four orders of magnitude, 

from <10 (e.g. Nebalia sp. & Aglaophamus sp.) to 1000’s (e.g. Capitella capitata & Nematodes).  

However, peak-abundance estimates derived independently in response to each of the 

explanatory variables (i.e. ES and %OM) were very comparable (raw abundance Spearman 

ρ=0.996, ln(abundance) Spearman ρ=0.976).   

Models between taxon abundance and ES had a relatively wide distribution of data points 

across the explanatory axis (Appendix 2-A).  Of the 34 taxa where the models were relevant, X-

optimum and Y-max values identified four that could be considered indicative of highly enriched 

conditions (in order of reducing optimum-ES): Nebalia sp. (ES 4.8), C. capitata (ES 4.6), 

Nematoda (ES 4.1) and Dorvilleidae (ES 4.0) (Table 2-3, Figure 2-5a).  However, the estimated 
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peak abundance for Nebalia sp. was 3 - 4 orders of magnitude lower than for the other three 

taxa.  Taxa associated with moderate-high ES values were: Hesionidae and Theora lubrica (both 

ES 3.7), Glyceridae, Nemertea and Boccardia sp. (all ES 3.4) and Armandia maculata (ES 3.0).  

Several taxa were most abundant at an ES that corresponded to low to moderate levels of 

enrichment, including: Sphaerosyllis sp. and Phyllodocidae (both ES 2.9), two amphipod families 

(Phoxocephalidae, ES 2.9 and Melitidae, ES 2.8), Arthritica bifurcata (ES 2.8), Syllidae, Prionospio 

sp., Leptomya retiaria retiaria (all ES 2.5) and Paraonidae (ES 2.1).   

Models between taxon abundance and %OM had a narrower distribution of data points 

across the explanatory axis than for ES (Figure 2-5b, Appendix 2-B).  Of the 34 taxa with valid 

models, X-optimum and Y-max values identified those which were associated with a high organic 

content (Figure 2-5b, Table 2-3); many of which were also associated with higher ES values 

(Figure 2-6).  These included: Nebalia sp. (14 % OM), Capitella capitata (12% OM), Nematoda 

(8.4%), Boccardia (8.4%), Theora lubrica (6.7%), Phoxocephalidae (5.9%), Ennucula strangei 

(5.4%), Arthritica bifurcata (5.4%) and Dorvilleidae (5.2%).  The remaining taxa were generally 

associated with lower organic matter levels from 2.5% - 5% OM (Table 2-3, Figure 2-5b).   

 

2.4.4 Comparison of ES and %OM, and definition of Eco-groups by regression 

The level of rank correlation between ES and %OM was relatively low, although still 

significant (Spearman rank ρ = 0.493, P<0.01).  The relationship was weakest at the early stages 

of enrichment, up to ES 3 (moderately-enriched) (Figure 2-6).  Across these early stages, 

increasing ES values (indicated by the full suite of variables used by BPJ) were associated with 

faunal changes, without clear changes in %OM (%OM remained similar to background levels 

over this range of ES; Figure 2-6).  Specifically, Hesionidae, Glyceridae, Nemertea, Phyllodocidae, 

Syllidae and Sphaerosyllis sp. were present when %OM was low, but where other environmental 

variables indicated moderate enrichment (e.g. changes in abundance and diversity).  Thus, rank 

orders of Optimum-%OM and -ES over the mid-range of the scale were not well preserved.  

Beyond ES 3, %OM deviates markedly from background, opportunistic taxa begin to dominate, 

and others decline or disappear, as evident from both the CAP (see Figure 2-3) and regression 

model results.  Hence, although models with ES and %OM defined a similar suite of faunal 

indicators at strong enrichment levels, ES was a more sensitive indicator than %OM alone. 



Chapter 2 
 

Characterising macrofauna responses to enrichment

 

 

31 

Agreement between the EG classifications that were made based on estimated optimum-

ES, and the 27 taxa that were also specified in the AMBI data base, was 59% (Table 2-3).  Most of 

the taxa correspondence occurred at the genus or family levels (36% and 28%, respectively - 

many of which encompassed a range of species-specific EG’s), and 28% were the same species.  

There were small disparities between the AMBI database and our classification in six taxa that 

differed by one EG (Glyceridae, Nematoda, Terebellidae and Sphaerosyllis sp., Polynoidae and 

Sigalionidae).  More significant disparities existed between classifications for five taxa (i.e. 

Armandia maculata, Hesionidae, Cirratulidae, Heteromastus filiformis and Cossura consimilis), 

which differed by at least two EG’s.  In the present study A. maculata was found to occur under 

normal conditions, but was also tolerant of elevated sediment organic contents and ES 3, 

therefore this species was allocated an EG III, whereas in the AMBI data base it was classified as 

EG I.  Cirratulidae were abundant under natural to moderately enriched conditions (ES 2 and low 

%OM) in the present study and were accordingly allocated an EG of II, compared with EG IV in 

the AMBI system.  In the case of Nematoda, the AMBI data base suggests this group has an EG of 

III, whereas in this study Nematoda were absent below ES 3 and were believed to be more 

appropriately classified as EG IV based on an observed peak abundance at ES 4.1 and high OM 

(8.4%).   

The regression spline method enabled us to identify enrichment stage preferences, and 

accordingly, EGs for 10 new taxa for which we had limited prior knowledge of sensitivity to 

enrichment (Table 2-3).  These were Arthritica bifurcata, Cumacea, Dorvilleidae, Haustoriidae, 

Leptomya retiaria retiaria, Maldanidae, Melitidae, Ostracoda, Phoxocephalidae, and Paraonidae; 

most of which occurred in the early to mid-stages of enrichment (ES 1-3).   
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Figure 2-4:  Relationships between total abundance with %OM and ES (a and b, respectively), and number 
of taxa with %OM and ES (c and d, respectively).  Each point is an average of replicate cores from 
individual sampling stations.  The regression spline for the 95th percentile, indicating the estimated 
optimum for the best-fit model, is shown by a vertical line. 

 

 

Figure 2-5: Plot of ln(estimated maximum likely abundance during optimum conditions) against estimated 
A) optimum ES and B) optimum %OM based on BPJ and regression spline analysis for 34 indicator taxa.  
Codes and names for taxa provided in Table 3.  
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Figure 2-6: Plot of Optimum ES versus Optimum %OM based on BPJ and regression spline analysis for 34 
indicator taxa.  Spearman rank correlation (ρ) = 0.493 (P=0.002).   
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Table 2-3: The 37 indicator taxa along with taxonomic names and abbreviations used in text.  Included are overall ranks in terms of abundance and frequency of 
occurrence, and a summary of results from quantile regression spline models indicating optimum-ES and -%OM, and peak abundance (Y-max) with 95 % CI (using 
indicated degree and d.f.).  EG  classifications assigned by regression using the ES variable are compared to the previously established AMBI EG’s (AMBI v4 Feb 2010). 
Taxa groups: A, amphipod; B, bivalve; P, polychaete; O, ostracod; E, echinoderm; C, crustacean; N, nemertean.  “Taxa level” defines the taxonomic level at which the 
comparison was made with the AMBI database (O, order, F, famiy, G, genus, s, species).  Questionmarks (?) donote where the upper CI could not be reliably 
determined (see text). 

   Rank: Optimum-%OM Opti-Y: max 
abund.   Optimum- ES Opti-Y: max abund. Classifications  

Taxa Code 
Taxa 
group Abund. Freq. Deg df Peak 95CI Ymax 95CI Deg df Peak 95CI Ymax 95CI 

EG this 
study 

EG AMBI 
database 

Taxa  
Level 

Total Abundance TA - - - 2 3 9.1 4.4-14 3525 2315-5203 2 4 5.1 3.6-5.8 4235 2850-1805 -  - 
No Taxa NT - - - 2 3 2.4 2.4-2.4 40 37-91 4 3 2.5 1.0-4.6 36 26-48 -  - 
Aglaophamus sp. Agl P 22 28 4 3 3.4 2.4-17 2.9 2.5-9 5 3 1.9 1.0-3.0 4.0 2.5-5 II II G 
Armandia maculata  Arm P 16 14 2 3 4.4 2.4-4.4 22 16-21 3 3 3.0 2.2-4.9 24 15-29 III I S 
Arthritica bifurcata Art B 28 33 5 3 5.4 2.4-11 4.9 3.6-? 3 3 2.8 2.2-5.2 3.1 1.0-7.3 III na - 
Boccardia sp. Boc P 42 8 2 3 8.4 5.2-10 17 17-48 5 3 3.4 1.6-5.4 42.5 12-? III I,II,IV G 
Cadulus teliger Cad Sc 60 63 4 3 3.9 3.0-6.1 2.5 - 4 3 1.8 1.0-3.8 2.4 - II II G 
Capitella capitata Cap P 2 1 2 3 12 12-22 2519 1205-4561 3 3 4.6 3.2-5.5 2527 1958-8989 V V S 
Cirratulidae Cir P 14 19 3 3 3.9 2.4-10 9.4 5- 4 3 1.5 1.0-4.2 14.6 14-15 II IV F 
Cossura consimilis Cos P 33 43 2 4 4.4 2.4-12 2 1.0-3.2 4 3 1.1 1.0-2.5 3.3 1.0-9.0 I IV S 
Cumacea Cum - 10 9 5 3 4.9 3.3-5.7 35 34-? 3 3 1.7 1.0-3.6 97 11-175 II na - 
Dorvilleidae Dor P 1 3 3 3 5.2 2.4-12 294 152-1371 5 3 4.0 3.8-5.2 474 140-2235 IV na - 
Ennucula strangei Enn B 24 21 5 3 5.4 4.6-5.9 9 10-20 3 3 1.0 - 10 10-15 II II S 
Flabelligeridae Fla P 36 50 4 3 2.4 - 2.1 - 5 3 1.6 1.0-3.2 - - II I-II G 
Glyceridae Gly P 15 23 3 3 2.4 2.4-6.0 4.5 2.7-14 4 3 3.4 2.8-5.0 5.0 2.8-9.9 III II F 
Haustoriidae  Hau A 17 11 3 3 2.8 2.4-9.1 34 10.2- 2 3 1.9 1.0-4.6 13 3.0-43 II na - 
Hesionidae Hes P 11 25 5 3 3.2 2.2-11 11 2.5-20 2 3 3.7 2.0-5.2 6.7 3.5-10 IV II F 
Heteromastus filiformis Het P 18 13 - - - - - - - - Indif. - - - II* IV S 
Leptomya retiaria retiaria Lep B 31 36 5 3 4.9 2.4-15 4.0 2.0-? 3 3 2.5 2.0-4.8 3.2 1.1-5.6 II na - 
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Table 2-3: Continued… 

  

 

Rank: Optimum-%OM Opti-Y: max 
abund. Optimum- ES Opti-Y: max 

abund. Classifications 

Taxa Code 
Taxa 
group Abund. Freq. Deg df Peak 95CI Ymax 95CI Deg df Peak 95CI Ymax 95CI 

EG 
This 
study 

EG AMBI 
database 

Taxa  
Level 

Lumbrineridae Lum P 7 18 3 3 3.8 2.6-6.5 9.2 7-20 2 3 1.8 1.0-3.8 6.0 5.0-9.0 II II G 
Maldanidae Mal P 25 29 4 3 3.8 2.4-5.7 5.5 3.5-8.8 5 3 1.7 1.0-2.8 4.3 3.6-6.4 I na - 
Melitidae Mel A 4 7 3 3 5.2 2.4-15 45 40-161 3 4 2.8 1.6-3.8 119 22-529 III na - 
Nebalia sp. Neb C 30 26 3 3 14 2.4-17 8 2.0-? 5 3 4.8 1.6-5.8 7.3 2.3-33 V V G 
Nematoda Nema - 3 2 3 3 8.4 4.4-14 1093 509-2169 3 3 4.1 3.2-5.6 1262 480-9742 IV III P 
Nemertea Neme N 26 30 2 3 3.4 2.4-15 1.0 3.0-10 2 3 3.4 2.0-4.7 1.5 1.0-4.0 III III P 
Nucula gallinacea Nuc B 20 16 3 3 4.4 2.4-17 14 3.0-29 2 3 1.0 - 15 10-17 I I S 
Ophiuroidea Oph E 19 17 2 4 4.4 2.4-14 11 - 5 3 1.5 1.2-4.0 20 7-41 II II C 
Ostracoda  Ost O 12 6 4 3 4.9 2.4-14 27 20-219 3 3 1.6 1.0-4.2 39 34-75 II na - 
Paraonidae Par P 13 12 3 3 4.8 2-12 25 - 2 3 2.1 1.0-4.6 17 10-119 II na - 
Phoxocephalidae Pho A 6 5 2 3 5.9 5.9-13 69 33-99 2 4 2.9 2.0-4.6 115 45-550 III na - 
Phyllodocidae Phy P 27 32 2 3 2.4 2.4-18 2.0 1.0-10 2 3 2.9 1.6-4.6 1.6 0.8-8.5 III II-IV F 
Polynoidae Pol P 32 41 4 3 3.5 2.4-3.8 3.5 3-6.5 5 3 1.4 1.0-3.0 2.0 1.4-6.6 I II F 
Prionospio sp. Pri P 5 4 3 3 4.9 2.4-13 64 18-1015 4 3 2.5 1.0-4.6 120 30-200 II II-IV G 
Sigalionidae Sig P 21 27 4 3 4.6 2.5-10 4.7 3.0-8.0 3 3 1.1 1.0-3.0 6.0 4.3-8.0 I II F 
Sphaerosyllis sp. Sph P 9 15 2 3 2.4 2.4-2.4 21 21-72 4 3 2.9 1.6-5.0 23 7.0-54 III I-II G 
Syllidae Syl P 38 35 3 3 2.4 2.4-17 5.0 - 4 3 2.5 1.6-5.0 4.1 0.5-7.0 II II F 
Tanaidacea Tan C 29 34 2 3 3.9 2.4-7.5 3.0 - - - Indif. - - - II* II O 
Terebellidae Ter P 23 37 3 3 3.8 - 2.5 - - - Indif. - - - II* I G 
Theora lubrica  The B 8 10 2 3 6.7 2.4-13 27 13-34 4 3 3.7 2.2-5.0 26 17-87 III III S 

*Splines not able to be fitted to data, but visual interpretation of plots suggest indifference (= ‘Indif.’) to ES and OM and therefore EG = II. 
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2.5 Discussion 

2.5.1 Best professional judgement 

The strong correlations between individual best professional judgement (BPJ) 

assessments indicate that this is a reliable approach for evaluating enrichment status.  Few 

analogous evaluations of BPJ have been undertaken to date, but this finding is consistent with 

a similar study undertaken by Weisberg (2008), in which experts ranked the environmental 

condition (from best to worst) for a wide range of marine sites.  A more comprehensive 

assessment of BPJ consensus among regions also found good agreement among experts, 

regardless of country of origin (USA & Europe - Teixeira et al. 2010).  Hence, in the present 

study average BPJ was considered a useful means of combining quantitative and qualitative 

information into a single continuous explanatory variable, enrichment stage (ES).   

However, difficulties in categorising stages were noted on a few occasions, i.e. when 

abundance and number of taxa were depleted and in combination with low (near background) 

%OM and moderate Shannon-Weiner diversity (H’).  In these instances confusion can arise 

because of the potential for mixed response signals: low %OM frequently indicates low organic 

flux and un-enriched conditions (e.g. Cromey et al. 2002a, Callier et al. 2008), whereas very 

low abundances and number of taxa can be indicative of either early (pristine/natural) or late 

(near-azoic) stages of enrichment (Table 2-2).  Teixeira et al. (2010) describe a similar situation 

with sites that had an unusually low number of taxa, and in that instance it was attributed to 

natural stresses associated with a higher energy environment.  In our study some experts 

found that reviewing the broader suite of environmental parameters often clarified the 

situation, but that the H’ index in particular was useful in distinguishing between conflicting 

conditions, especially when combined with specific signs of enrichment (e.g. H2S odour or 

presence of Beggiatoa). 

2.5.2 Biological patterns in relation to the explanatory variables 

The observation that macrofaunal communities changed with increasing ES in the 

absence of a clear change in sediment OM, highlighted the greater sensitivity of ES as an 

explanatory variable.  However, this is not entirely surprising given that ES integrates several 

quantitative and qualitative indicators.  The absence of measureable changes in OM at early 

enrichment stages is consistent with a number of other studies that have also suggested OM is 
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a poor indicator of benthic condition, particularly at low levels (Hargrave et al. 1997, Mazzola 

et al. 2000, Macleod et al. 2004c).  Such findings probably reflect the systems’ capacity to 

assimilate and process OM at low influx levels.  Nonetheless, degradation of organic matter in 

the early stages of enrichment can result in slight reduction of the sediments, which is better 

measured by alternative variables such as redox potential and sulphide concentration. 

The relationships between total abundance and number of taxa with ES, and to a lesser 

extent %OM (see Fig 5), were consistent with ecological succession models for soft-sediments 

(Pearson & Rosenberg 1978, Gray et al. 1979, Glémarec & Hily 1981), and associated 

approaches to ecological classifications (Gray & Pearson 1982, Grall & Glémarec 1997, Borja et 

al. 2000, Rosenberg et al. 2004).  There are also numerous case studies in the literature that 

support such models, in relation to organic inputs: (e.g. Nickell et al. 2003, Borja et al. 2009b); 

mussel farm enrichment, (e.g. Smith & Shackley 2004, Callier et al. 2007) and municipal 

discharges, (e.g. Taylor et al. 1998, Cardell et al. 1999). 

Total abundance patterns and resulting optimum-ES assessments were strongly driven by 

densities of Capitella capitata.  This species, as well as other taxa associated with high ES 

values (Nematoda, Dorvilleidae, Nebalia sp.), have all previously been identified as 

opportunists that are tolerant of salmon farm-related enrichment (Brooks et al. 2003, Edgar et 

al. 2005, Macleod et al. 2007, Tomassetti et al. 2009).  The relatively small confidence intervals 

around abundance peaks for C. capitata, Nematoda and Dorvilleidae (see Table 2-3), suggest 

that these taxa are highly reliable indicators of the later stages of enrichment; although in the 

case of C. capitata, this result was anticipated due to its inclusion in the BPJ process.  In 

contrast, Nebalia sp. was less abundant and had relatively wide confidence bands around its 

optimum ES.  This suggests that while Nebalia sp. is tolerant of highly enriched conditions, it is 

not a true opportunist, as it does not necessarily proliferate under these conditions, and 

therefore is not as useful as an indicator species.  The observed distribution pattern also 

explains why it was not discriminated by CAP analysis.  Regression spline analysis appropriately 

identified taxa more commonly associated with mild to low enrichment, such as Theora lubrica 

and Armandia sp. (Edgar et al. 2005, Forrest & Creese 2006, Forrest et al. 2007) and indicators 

of un-enriched conditions such as Ennucula strangei and Maldanidae.  This is consistent with 

the findings of Edgar et al. (2005) who described a strong negative association between 

Ennucula sp. and enriched sites, but is in contrast with Macleod et al. (2007) who suggested 

that Maldanidae were associated with moderate levels of organic enrichment.  However, the 
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latter authors noted a proliferation of maldanids with organic enrichment only at a more 

exposed (higher flow) site, and the absence of maldanids under low enrichment conditions.  

They hypothesised that is was more strongly associated with resource limitation and the need 

for a reasonable supply of organic material, than with deteriorating environmental conditions 

per se.  Finally, in the present study, Ophiuroids were identified as a good indicator of 

reasonably low (but sometimes mildly elevated) enrichment levels (ES 2); a finding that is 

consistent with other studies globally (Tasmania - Macleod et al. 2007, USA and Europe - 

Teixeira et al. 2010).  

2.5.3 Quantile regression as a method to model faunal responses 

Regression spline analyses effectively modelled the distribution of frequently-occurring 

taxa across the enrichment gradient, irrespective of abundance.  A key advantage of this 

method is that it deals with the intrinsic asymmetry and non-linearity in the relationships 

between species distributions and environmental drivers, and also aligns directly with the 

ecological concept of limiting factors (e.g. excessive enrichment) acting as constraints on 

organism distribution (Thomson et al. 1996, Cade et al. 1999, Lancaster & Belyea 2006).  These 

attributes were successfully exploited by Anderson, (2008a) to describe the responses of select 

benthic macrofauna to changes in sediment grain-size characteristics in a large estuarine data 

set.  The present study further demonstrates the value of this approach, in this case for 

identifying and classifying macrofauna responses to an organic enrichment gradient.   

Regression splines were particularly useful in distinguishing the response of taxa whose 

tolerance to enrichment was unknown or poorly understood by experts; in the present study, 

almost one third (10) of the taxa for which regression spline models were developed, and ES 

classifications determined, had no organic enrichment tolerance previously defined.  

Consequently, the approach appears well-suited to defining and validating key taxa for biotic 

indices; enabling inferences to be made regarding environmental tolerance and ecological 

succession stage, that could not have been readily achieved otherwise.  The regression spline 

approach reliably defined enrichment associations of better known (and more dominant) taxa, 

thereby providing confidence in the classifications for these lesser known organisms.  This 

enables classification of a subset of key taxa, that are important to the site(s) in question (and 

possibly lesser known), whilst still maintaining confidence in the index calculations as 

indicative of enrichment state.  The method was less robust when applied to taxa with very 
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low abundance and frequency of occurrence, or whose distributions were poorly correlated 

with the explanatory variables, but, since uncommon species are not considered reliable 

indicators of environmental condition (Green & Young 1993), this should not be a major 

impediment to the application of this approach.  Furthermore, it is especially valid when 

defining indicators of fish farm enrichment because in highly enriched situations, a small 

number of taxa can account for a high proportion of total individuals; in this study, 5% of the 

taxa accounted for just over 90% of the total abundance.   

2.5.4 Comparison of quantile regression and Eco-group classifications 

There was 59% agreement between the regression method and AMBI ecological group 

(EG) classifications and a further 22% only disagreed by one EG, which suggests that the 

BPJ/regression approach is a reliable means of determining EG’s in situations where the fauna/ 

function is poorly known.  However, it is important to note that several taxa deviated by two 

or more EGs between the BPJ/regression approach and the AMBI.  For example, Cirratulidae 

EGs as determined by regression were classified two EG’s lower than the stage indicated by 

the AMBI database (Grall & Glémarec 1997) and northern hemisphere experts (Teixera et al. 

2010), who list Cirratulidae as equivalent to EG IV.  In this instance, the disparity may be a 

function of endemic differences within the family grouping as disparities between locations at 

international scales are entirely plausible, especially were broad taxonomic groups are 

considered.  For instance a single species within a group may be quite plastic, filling different 

ecological roles in different environments or modifying its role according to changing 

environmental conditions or resource availability (Jacobs & Podolsky 2010).  Hence, grouping 

unclassified taxa to the next highest taxonomic level (e.g., Borja et al. 2008a) has the potential 

to be misleading; for example, in the AMBI database different species in the polychaete genus 

Boccardia span four of the five Eco-groups.   

However, the inconsistency with overseas classification was also observed at a species 

level for three taxa.  In the case of Cossura consimilis, this study identified it as being 

predominant under pristine conditions (classified as EG I) compared with a relatively high 

enrichment tollerace specified elsewhere (EG IV).  The opposite was true for Armandia 

maculata, which occurred under moderately enriched conditions here, but is listed as EG I in 

the AMBI database.  Finally, although the regression approach was not appropriate for taxa 

that appeared indifferent to enrichment (e.g. Heteromastus filiformis), such observations were 
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still meaningful with respect to the EG allocations, as EG II is partly defined by those taxa that 

are “indifferent to enrichment” (Borja et al. 2000).  H. filiformis has been classified elsewhere 

as a second order opportunistic (EG IV; AMBI data base), which in New Zealand is consistent 

with the observation that it responds to disturbance generally rather than enrichment alone 

(Forrest & Creese 2006, Forrest et al, 2007).  In our salmon farm case-study enrichment is 

considered the primary driver, which, based on the example of H. filiformis, may in part explain 

discrepancies with existing EG classifications. 

 

 

2.6 Conclusions 

The ability to apply and interpret ecological indices globally among locations requires a 

robust means of assigning Ecological Group (EG) classifications for poorly described taxa, as 

well as a means to validate previously defined taxa for different locations and environmental 

conditions.  In this study, we combined best professional judgement (BPJ) and statistical 

modelling (quantile regression analysis) to objectively describe enrichment responses and test 

EG classifications on an organic enrichment dataset from New Zealand, which contained a 

number of poorly described taxa.  The results confirmed 59% of the existing EG classifications, 

were similar on a further 22%, and provided a basis for assigning EGs for 10 new taxa.  The 

work further highlights the importance of validating EG classifications when transferring and 

applying them internationally (Borja & Muxika 2005, Aguado-Gimenez et al. 2007).  Accounting 

for and understanding the reasons for differences among locations will ultimately serve to 

improve the power and relevance of AMBI and other indices that use EG classifications.  The 

evaluation approach (BPJ and statistical regression) proposed here can contribute to this goal 

in countries / regions where taxonomic and functional understanding of the fauna is 

incomplete.  
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2.8 Appendix 

Appendix 2-A:  Relationship between 20 individual taxa (as indicated) and ES as assessed by BPJ.  Each 
point is an average of replicate cores from individual sampling stations.  The regression spline for the 
95th percentile indicating the estimated optimum for the best-fit model for each taxon, is shown by a 
vertical line. 
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Appendix 2-B:  Relationship between 20 individual taxa (as indicated) and %OM in sediments.  Each 
point is an average of 2-3 cores from individual sampling stations.  The regression spline for the 95th 
percentile indicating the estimated optimum for the best-fit model for each taxon, is shown by a vertical 
line. 
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CHAPTER 3  

 
EXPLOITING SALMON FARM BENTHIC 
ENRICHMENT GRADIENTS TO EVALUATE THE 
REGIONAL PERFORMANCE OF BIOTIC INDICES 
AND ENVIRONMENTAL INDICATORS 

 

Preface: 

The motivation for Chapter 3 was to identify which variables, or suite of variables, best 
characterise enrichments effects across the full spectrum of enrichment, with emphasis 
on versatility and their ability to provide relevant impact classifications in different flow 
environments.  The need for versatility with respect to different flow environments was 
considered important, as preliminary observations suggested that the way in which the 
benthic ecology responded to enrichment was different to that commonly described for 
the more traditional and well-studied “low flow”.  This Chapter therefore contributes to 
the gap in understanding that exists around how high flow sites by empirically describing 
the relationships between common infaunal and physico-chemical variables and 
contrasting how they respond to enrichment.  This provided a quantitative means of 
determining overall Enrichment Stage and identified the most reliable variables are 
identifying for use in later chapters; for example, when predicting effects from 
depositional models in Chapter 5 and describing recovery patterns in Chapters 6 and 7. 

 

This work has been published in a refereed journal and has been adjusted to a standard 
format for the thesis, and as such there may be minor differences in the text, figures and 
tables compared with the published version. The citation for the original publication is:  

 

Keeley N, Forrest B, Crawford C, and Macleod C. 2012. Exploiting salmon farm benthic 
enrichment gradients to evaluate the regional performance of biotic indices and 
environmental indicators. Ecological Indicators 23: 453-466. 
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3.1 Abstract 

This study evaluates five benthic indicators (total abundance, number of taxa, redox potential, 
total free sulfides, total organic matter) and ten biotic indices (Margalef’s d, Peilou’s J’, 
Shannon H’, AMBI, M-AMBI, MEDOCC, BENTIX, BOPA, ITI, BQI), to identify those that best 
define organic enrichment gradients under different flow regimes.  Performance was 
measured against Enrichment Stage (ES), a continuous variable characterising the full range of 
sediment conditions (natural to azoic).   None of the 15 metrics were able to consistently 
discriminate over the full enrichment gradient for both flow environments.  The most versatile 
indices were BQI > M-AMBI > AMBI > Log(N) > BENTIX.  Of these, M-AMBI best catered for 
different flow environments, while the BQI was the most effective under highly enriched 
conditions.  Under strong enrichment, i.e. when macrofauna abundance is in decline, changes 
in redox, sulfides, number of taxa and abundance were reasonably clear.  However, the more 
complex biotic indices were relatively insensitive at this level, highlighting a limited 
applicability beyond the ‘peak of opportunists’ (PO).  Conversely, in high flow regimes, some of 
the biological indicators were relatively sensitive to low-to-moderate levels of enrichment that 
were not well discerned by the physico-chemical variables.  A useful subset of variables for 
assessing enrichment status is recommended, comprising two of the best performing biotic 
indices that are based on alternative/ independent classification schemes (i.e. EG’s and 
ES500.05), total abundance, to aid in discerning PO, and a geochemical variable (redox or S2-).  
Inconsistencies between metrics were found to be more significant than the variability 
surrounding the predictive capacity of individual indicators, and as a result there is a risk of ES 
misclassification where only a single index is used.  Whilst there is a recognised need to use 
combinations of indicators, this study also stresses the importance of focusing on a few 
regionally validated measures and down-weighting the importance placed on any that are not.  
Additionally, although using a combination of different indicators may produce a ‘safe’ average 
result, it may be inefficient, and the averaging effect has the potential to mask extreme 
conditions.  Hence, there remains a need for expert judgement to select and appropriately 
weight indicator variables, to identify any erroneous results, and to reliably assess ecological 
quality status.    

 

 





Chapter 3 
 

Evaluating biotic indices and environmental indicators 

 

 

 

 

49 

3.2 Introduction 

Many biological indicators have been proposed for characterising anthropogenic impacts 

on soft-sediment benthos; most of which have as an ecological foundation the Pearson & 

Rosenberg paradigm that depicts community response to gradients of organic pollution or 

disturbance (Pearson & Rosenberg 1978, Glémarec & Hily 1981).  These range from relatively 

simple, long-standing diversity or dominance measures such as species richness, Pielou’s 

evenness and Shannon-Weiner diversity;  to more complex multi-metric indices such as the 

benthic quality index (Rosenberg et al. 2004), and the multivariate-AZITES Marine Biotic Index 

(M-AMBI, Muxika et al. 2007).  The proliferation of different indices has arisen because of a 

natural inclination to develop site and situation specific measures, using endemic taxa, locally 

favoured variables and local knowledge.  As it would be highly beneficial to have more widely 

applicable indicators, it is important that we evaluate the suitability of those that already exist, 

before developing new ones (Peet 1975, Diaz et al. 2004, Borja & Dauer 2008).   

A variety of indicators have been tested for their utility in assessing the benthic effects of 

shellfish and finfish aquaculture (Salas et al. 2006, Bouchet & Sayriau 2008, Callier et al. 2008, 

Borja et al. 2009b, Edgar et al. 2010), with much effort being put into testing ecological quality 

statuses (EcoQS) inferred by select indices (e.g. the European Water Directive Framework, 

Borja et al. 2003, Rosenberg et al. 2004, Borja et al. 2008b).  Several of the main indices have 

been summarised and compared to facilitate their use (Salas et al. 2006, Pinto et al. 2009, 

Ranasinghe et al. 2009); however, there are also acknowledged limitations regarding their 

transferability across different spatial or temporal scales, water depths, and habitat or 

substratum types (Reiss & Kroncke 2005, Aguado-Gimenez et al. 2007, Borja & Dauer 2008).  

Therefore, the need to identify measures that are universally applicable and able to integrate 

across different ecosystem types (Borja et al. 2009a) still exists, and needs to be expanded to 

include comparisons of the performance and comparability of different indices.   

Marine aquaculture installations provide useful model systems in which the effectiveness 

of benthic ecological indicators can be evaluated under very defined conditions.  Seacage 

finfish farming is typically conducted in environments where other anthropogenic stressors 

(e.g. pollution) are minimal, and there are typically multiple farms within a region; thus 

providing the conditions for a robust comparison of different metrics at a regional-scale.  
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Moreover, the benthic enrichment gradient that arises in the vicinity of finfish cages is 

generally strongly-defined across small spatial scales (tens of metres), often with a full 

spectrum of conditions from anoxic/azoic to natural.  Along the enrichment gradient, the 

“peak of opportunists” (PO) is a defined point (Pearson & Rosenberg 1978) that has explicit 

indicators and index values.  However, the ecological characteristics underpinning the 

progression from PO to azoic conditions associated with extreme enrichment are less clear, 

can create computational difficulties for indices, and as a result, are often simply represented 

by a categorical shift (e.g., Majeed 1987, Simboura & Zenetos 2002, Dauvin & Ruellet 2007).  

Nonetheless, the transition from PO to azoic (i.e. where densities of opportunists start to 

decline) is a threshold commonly used in assessing and managing effects of seacage fish farms 

worldwide (Wilson et al. 2009).  Increasingly, the ecological effects of finfish farms are also 

managed by imposition of maximum limits on the spatial extent of measurable effects, which 

requires the ability to detect the point at which benthic conditions differ from background.  

Hence, to be widely applicable and useful in this context, it is important for indicators to be 

able to quantitatively characterise conditions at both ends of the enrichment spectrum.  

Moreover, the indicator response to a given level of enrichment should ideally be consistent 

across a range of environmental conditions. 

In addition to biological measures (Pinto et al. 2009, Edgar et al. 2010), the many 

indicators that have been used to define seabed enrichment include geochemical measures 

(Hargrave et al. 2008, Hargrave 2010) and even visual condition of sediments (Crawford et al. 

2001, Macleod et al. 2004a).  However, only a limited number of studies have attempted to 

integrate such measures (Macleod et al. 2004a, Hargrave et al. 2008, Keeley et al. 2012b) and 

it is evident that benthic assemblages are seldom readily correlated with a single explanatory 

environmental variable for enrichment (Borja et al. 2009b, Keeley et al. 2012b).  Furthermore, 

there is a need to quantitatively synthesise conflicting interpretations, such as when different 

measures give different impressions of benthic quality status (Aguado-Gimenez et al. 2007), or 

show site-specific variation in their responses to enrichment (Pohle et al. 2001, Macleod et al. 

2007).  One way of addressing these issues is to incorporate inferences from multiple 

indicators (both qualitative and quantitative) using best professional judgement (Weisberg 

2008, Teixeira et al. 2010).  This approach was employed recently for salmon farms in New 

Zealand by Keeley et al. (2012b) to derive a bounded, continuous explanatory variable 
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“enrichment stage” (ES, on a gradient from ES1: natural to ES7: anoxic/azoic) that reliably 

predicted the enrichment responses of soft-sediment infauna. 

In this study, we evaluate the performance of different indicators and indices against the 

ES variable, to identify those that best define the full spectrum of enrichment that occurs 

beneath salmon farms in our study region.  Indicator performance is also compared across two 

contrasting water current flow regimes (low and high flow as defined below), as previous 

research has shown that the environmental impacts (both biological and chemical) will vary 

according to the prevailing hydrodynamic conditions (Maurer et al. 1993, Macleod et al. 2007).  

The relationships between infaunal response and the associated physico-chemical reaction to 

enrichment were evaluated, with respect to these regionally relevant criteria, for a suite of 

environmental indicators and commonly reported biotic indices.  This provides a 

comprehensive assessment of the versatility of the respective indices and an evaluation of 

their ability to provide an ecologically relevant classification of both enrichment level and 

ambient environmental conditions. 

 

3.3 Methods 

3.3.1 Study sites and datasets 

The study uses subsets of data from a 12 year (1998 – 2010) dataset of annual 

monitoring at five salmon farms (27 – 40 m depth) aged between 1 and 22 years (Table 3-1), 

located within the Marlborough Sounds, New Zealand (Figure 3-1).  Three of these farms (A – 

C) had mean current velocities of < 9 cm·s-1 at 20 m water depth (approximately mid-water) 

and are hereafter referred to as ‘low flow’ sites, whereas the other two (D and E) had 

velocities of > 15 cm·s-1, and are referred to as ‘high flow’ sites.  All of the sites are situated 

over soft sediments, but the low flow sites tended to be sandy-mud (55 – 80 % mud), whereas 

the sediments at the high flow sites comprised muddy-sand (28 – 32 % mud; Table 3-1). 

As not all measured response variables were recorded at all times, subsets of the data 

were extracted for analysis.  The first dataset spanned seven years (2003 to 2009) and included 

data from 16 different surveys (year-farm combinations) representing a broad cross-section of 

feed/ production levels (1640-4120 t·yr-1) and therefore, presumably, of benthic effects (Table 
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3-1).  Farm-specific information was collected for each sampling site and included: recent feed 

usage (‘Feed’, total tonnes for 6 months prior to sampling), farm age at sampling (‘Age’, years), 

average current speed (‘Current’, cm·s-1; measured at ~20 m water depth from 30 – 35 day 

current meter deployments); and sampling station properties: depth (‘Depth’, m), distance 

from farm (‘Distance’, m), sediment grain size distribution (utilising % mud content), percent 

organic matter (% ash free dry weight, Luczak et al. 1997), and infauna composition and 

abundance.  Also included were qualitative measures of sediment odour (‘Odour’), bacterial 

mat coverage (Beggiatoa) and sediment out-gassing, these were evaluated in the field using 

pre-determined categories described in Keeley et al. (2012b).  A second dataset contained data 

from the same five farms, but only covered the period 2009 –2010, as in these years total free 

sulfides (S2-, µM) and redox potential (Redox, EhNHE) were also measured.  For both subsets of 

data, analyses were conducted on station-averaged values, generally derived from triplicate 

samples.   

The sampling sites at each farm were originally positioned to evaluate the spatial extent 

of effects (relative to the cages) and typically included two beneath-cage sites, two or three 

sites at increasing distances away (up to 250 m) and reference sites at least 1 km from cages 

(Table 3-1).  The sites were located in the field using GIS and an on-board mapping system.  

The seabed was sampled with a Van-Veen grab and the macrofauna and sediment physico-

chemical properties were subsampled following the methods of Keeley et al. (2012b).  

Macrofaunal (organisms retained on a 500 µm mesh) abundances were based on counts from 

core samples (13 cm deep × 10 cm diameter, 0.0132 m2). 
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Figure 3-1:  Location of study sites, Marlborough Sounds, New Zealand.  

  



Chapter 3 
 
 

Evaluating biotic indices and environmental indicators 

 

 

54 

Table 3-1: Summary of farm and environmental characteristics at the five study sites.  OM=organic 
matter. 

Site Attributes Values Units Farm-A Farm-B Farm-C Farm-D Farm-E 
Year of survey  20- ‘04,‘06, 

‘07 
‘03,‘05, 
‘08,‘09 

03,‘05, 
‘07,‘09 

‘03,‘05, 
‘08 

‘08,‘09 

Farm age at survey  Years 19,21,22 14,16, 
19,20 

14,16, 
18,20 

11,13,16 1,2 

Site depth Range m 34-35 37-39 28-30m 27-31 30-40 
Current speed* Mean(max) cm·s-1 3.7(17.5) 6(34.6) 8.4(33.7) 15(55.9) 19.6(109) 
Feed inputs Range mt·yr-1 2510-3289 1640-2239 2171-3918 2104-4120 2631-3526 
Sampling stations 
 

Distance 
from cages 

 
m 

0(×2),50, 
150,250, 

Ref 

0(×2),50, 
150,250, 

Ref 

0(×2), 
50(×2), 
100, Ref 

0(×2),50, 
100, Ref 

0(×2), 50(×2), 
100(×2), 
150(×2), 
200(×2), 

250(×2), Ref 
Reference stations       
Sediment mud 
content  

Mean(range) % 80  
(69-84) 

55  
(34-73) 

78  
(69-85) 

28  
(21-38) 

32  
(29-37) 

%Organic matter  Mean(range) % w/w 5.2  
(4.8-5.8) 

5.0  
(2.8-7) 

4.9  
(4.5-5.8) 

3.1  
(2.5-3.7) 

3.3  
(2.5-4.2) 

No. taxa Mean(range) No./core 22  
(18-28) 

18  
(17-19) 

20  
(16-23) 

35  
(27-48) 

39  
(31-42) 

Macrofauna 
abundance 

Mean(range) No./core 107 
(76-147) 

72  
(52-92) 

78  
(37-128) 

218  
(152-285) 

231  
(102-278) 

Near-farm stations       
%Organic matter Range % w/w 4.7-23 3.3-27 2.4-32 1.6-5.8 2.3-9.1 
No. taxa Range  No./core 1.5-26 2-30 1-36 8.5-36 8-54 
Macrofauna 
abundance 

Range No./core 6.5-4230 3-2466 1-4384 210-6,900 81-20,000 

C. capitata 
abundance 

Range No./core 0-4209 0-1958 0-2345 1-2870 0-15,100 

 

 

3.3.2 Best professional judgement (BPJ) of enrichment stage  

For both datasets, which comprised 117 sampling events (year-farm-sampling site 

combinations; 70 low flow, 47 high flow), six scientists experienced (mean 13.6 years) in the 

assessment of aquaculture impacts used BPJ to assign each sampling station (based on station-

averaged data) to one of seven enrichment stages (ES) according to methods in Keeley et al. 

(2012b).  The seven ES’s are specific for organic enrichment and integrate a suite of indicator 

variables.  The first five ES’s correspond to the Eco-Group’s (EG’s) defined by (Grall & Glémarec 

1997) and (Borja et al. 2000), in that they reflect a progression from unimpacted conditions (ES 

1/ EG I) to highly impacted conditions where first order opportunists dominate (ES 5/ EG V).  ES 

6 and 7 are specific to organic enrichment beyond that catered for by EG classifications; ES 6 
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represents a state beyond the ‘peak of opportunists’ (Pearson & Rosenberg 1978, Gray et al. 

1979) but which is not yet ‘azoic’, (the latter is defined as ES 7).  The station-averaged dataset 

provided to each expert consisted of physico-chemical data, species composition data and 

associated macrofaunal statistics (total abundance, N; number of taxa, S), and qualitative 

descriptors of enrichment as described by Keeley et al. (2012b).  The experts’ scores were 

averaged to produce a bounded continuous variable across ES 1 – 7. 

 

3.3.3 Selection and calculation of biotic indices  

Of the many indicators available, ten biotic indices and four other variables (Table 3-2) 

were selected based on the following criteria (in reducing order of importance): i) suitability 

for organic enrichment (as opposed to pollution or disturbance more generally) in marine 

systems (i.e. with constant salinity), ii) generality of use and demonstrated applicability to 

effects from aquaculture, and iii) calculation simplicity and track record of use.  Margalef 

Index, Pielou’s J’ and Shannon H’ were calculated using the DIVERSE function in PRIMER v6; the 

remaining indices were calculating according to the established methods outlined in the 

relevant references (Table 3-2).  Reference conditions used to calculate M-AMBI were 

determined separately for high flow and low flow sites using a historical data-based method 

(Borja et al. 2012) due to the availability of a robust, regionally and temporally relevant 

dataset.  This involved compiling information from appropriate reference sites (i.e. similar 

depths, substrates and sampled during the previous 12 years) situated within the Marlborough 

Sounds (n = 99 and 50, low and high flow sites respectively), and ranking them according to 

their ecological quality status inferred from values of: i) S, ii) H’ and iii) AMBI (Borja 2004), and 

then according to the sum of those ranks.  Reference conditions for M-AMBI were then 

determined by taking the average of the top five (i.e. least impacted) samples for each 

variable, when ordered according to the sum of the ranks.  Using this approach, the following 

reference conditions were derived; low flow: S = 26.2, H’ = 2.59, AMBI = 1.09; high flow: S = 

45.2, H’ = 3.04, AMBI = 1.83. 

The AMBI, M-AMBI, MEDOCC (MEDiterranean OCCidental index) and BENTIX (Benthic 

Index) all utilise species classification according to the five EG’s (Table 3-2).  Although there is 

an EG database that classifies a broad range of taxa (http://ambi.azti.es), many of the taxa in 
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this study were yet to be classified.  In these instances EG’s were assigned based on a 

combination of local observations (following the methods of Keeley et al., 2012), and 

relationship to “nearest neighbour” classifications.  The Infaunal Trophic Index (ITI) was 

calculated by assigning taxa to functional feeding groups, based on published information and 

expert advice from local taxonomists.  The Benthic Quality Index (BQI) allocates a 

sensitivity/tolerance score for taxa: ES500.05, which is the expected number of species (ES) 

among 50 individuals according to Hurlbert’s (1971) formula (Table 3-2).  The subscript 

denotes that the 5th percentile is selected to indicate the species tolerance value (see 

Rosenberg et al., 2004).  ES500.05 values were calculated for 743 taxa from the region, 

comprising 4,426 infaunal samples collected from a variety of impacted and reference sites 

over the 12 year period.  The values that were determined for the 50 most frequently 

occurring taxa are provided in Appendix 3-A.  

 

 

 

 

Table 3-2 (overleaf): Equations used to derive environmental indicators and biotic indices with summary 
of established (published) classification schemes and associated category boundary values for each of 
the environmental indicators/indices that have been utilised in Figure 5. na = not applicable.    

Source references: 1: Hargrave et al. (2008); 2: Brooks et al. (2003); 3: Margalef Margalef (1958); 4: 
Pielou (1966); 5: Schaanning and Hansen (2005); 6: Hansen et al. (2001); 7: Borja et al. (2000);  8: (Borja, 
2004); 9: Muxika et al. (2007);  10: Simboura and Argyrou (2010); 11: Pinedo & Jordana (2008); 12: Word 
(1978); 13: Rosenberg et al. (2004); 14: Simboura and Zenetos (2002); 15: Dauvin and Ruellet (2007); 16: 
Cromey et al. (2002); 17: Chamberlain and Stucchi (2007); 18:Hurlbert (1971); and 19 Leonardsson et al. 
2009. 
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Classification
Variable  type Source
Redox

Enrichment zones: Oxic-A Oxic-B Hypoxic-A Hypoxic-B Bad 1
> 100 -50 -100 -150 <

Sulphides
Enrichment zones: Oxic-A Oxic-B Hypoxic-A Hypoxic-B Bad 1

< 750 1500 3000 6000 >  
Total abunance (N)  = average number of individuals per 13 cm diameter core na
No Taxa (S)  = average number of taxa per 13 cm diameter core

Biodiversity indicator: High Moderate Reduced Very low 1(2)
(% reduction) <25% 45% 59% 85% 98%

Margalef’s richness (d )  = (S-1) / log N
Limitless scale based on S and N - index usually between 0 (low) and 10 (high). 3

Pielou’s evenness (J')  = H’ / log S
Nominal linear scale: High Bad 4

1 0.8 0.6 0.4 0.2 0

Shannon Diversity  (H')  = - ∑i  p i  log(p i )
where p is the proportion of the total count arising from the i th species

Biodiversity indicator: High Moderate Reduced A Reduced B Very low 1(5,6)
> 4 3 2 2 0

Equivalent EcoQS: High Good Moderate Poor Bad 14
> 5 4 3 1.5 0

AMBI = [(0 × %GI + 1.5 × %GII + 3 × %GIII + 4.5 × % GIV + 6 × %GV)]/100
where GI, GII, GIII, GIV and GV are ecological groups (see Section 2.3).

Pollution classification: Unpolluted Slightly Meanly Heavily Extremely 7
0 1.2 3.3 5 6 7

EcoQS: High Good Moderate Poor Bad 8
0 1.2 3.3 4.3 5.5 7

M-AMBI
EcoQS: High Good Moderate Poor Bad 9

1 0.82 0.61 0.4 0.2 0
BENTIX = (6 × %GS + 2 × %GT)/100

where GS = GI + GII, GT = GIII + GIV + GV
EcoQS: High Good Moderate Poor Bad 14

Pollution classification: Normal/pristine Slightly Moderately Heavily Azoic 14
6 4.5 3.5 2.5 2 0

MEDOCC = [(0 × %GI + 2 × %GII + 4 × %GIII + 6 × %GIV)]/100
where GIV = GIV + GV

EcoQS: High Good Moderate Poor Bad 10
0 1.6 3.2 4.77 5.5 6

BOPA = log (f P  / (f A  + 1) +1)

EcoQS: High Good Moderate Poor Bad 15
0 0.09 0.16 0.25 0.3 -

ITI = 100 – 33.33 × ((0 × n1 + 1 × n2 + 2 × n3 + 3 × n4) / (n1 + n2 + n3 + n4))

EcoQS: Reference Normal Intermediate Degraded 12
100 80 60 30 0

Biodiversity indicator: High Moderate Reduced Very low 16,17
100 50 25 5 0

BQI  = (∑i  (Ai/totA × ES500.05i )) × 10 log(S + 1)

18
Environmental status: High Good Moderate Poor Bad 13

16 12 8 4 0

Formulae & established clasification schemes & boundary values

where n1, n2, n3 and n4 are the number of individuals in suspension detritus, interface 
detritus, surface deposit and subsurface deposit feeding groups, respectively.

where f P  is the opportunistic polychaete frequency (defined here as GIV + GV 
polychaetes); f A  is the Amphipoda frequency. ‘Frequency’ = ratio of total number of 
specified individuals out of total number of individuals in sample.

Where ES500.05 is the species tolerance value, given here as the 5th percentile of the 
ES50 (expected number of species as per Hurlbert (1971)), scores for the given taxa. 
A i / totA  is the mean relative abundance of species i and S is the number of species for 

Uses AMBI, S and H’, combined with factor analysis and discriminant analysis.
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3.4 Evaluating index performance against ES 

Relationships between environmental indicators and ES (as the explanatory variable) 

were described using polynomials of order 1, 2 and 3, to accommodate linear (i.e. order 1) and 

non-linear responses.  The Akaike Information Criterion (AIC) statistic was used to determine 

the optimum model for both high and low flow data.  The model with the lowest AIC was 

selected unless the difference was less than 2 (and therefore deemed essentially equivalent, 

Burnham & Anderson 2002), in which case the lowest order model with the best visual fitted 

shape was selected.  If both high and low flow models were linear, they were compared using 

ANOVA with flow as a fixed factor, and using the ‘slope.com()’ function (test for common 

slope) in the ‘smatr’ library in R (R Development Core Team 2011). 

The hypothesis that no significant difference existed between second and third order 

models (high versus low flow) was tested using a bootstrap procedure (Efron & Tibshirani 

1993).  Low flow and high flow datasets were combined assuming that they were from the 

same distribution, and then a bootstrap sample was drawn with replacement.  Models were 

fitted to the bootstrap data and the difference of the coefficients (difBoot) was calculated and 

compared with the observed difference (difObs). This procedure was repeated 2000 times and 

the proportion of cases where difBoot was greater than difObs was used to estimate the level 

of significance (Efron and Tibshirani, 1993). 

As ES values at high flow sites never exceeded 6, low flow data with ES scores greater 

than 6 were omitted from the comparative tests to ensure comparability in data ranges.  If 

neither result was significant (P<0.05) then the data were combined and the model selection 

process was repeated.  Where high and low flow models for a given response variable were 

best described using different order polynomials, then comparisons were made based only on 

the residual sum of squares, as the functional responses were considered to be different.  The 

best fitting polynomials are displayed along with 95 % point wise confidence intervals. 
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3.4.1 Inter-relationships among variables 

PCA (PRIMER v6) was use to examine inter-correlations among variables.  Pearson 

correlations between the indicator variables and other farm-related variables, such as Depth, 

Current, Age, Distance and Feed, were illustrated with a vector plot overlaid on the two 

primary PCA axes (PCA1 and PCA2).  Prior to PCA, individual variables were log transformed 

where appropriate (Distance, Feed, N and S2-), missing values were replaced using the 

expected maximum likelihood algorithms (using the ‘Missing’ function in PRIMER v6) and all 

data were normalised.   

3.4.2 Comparison of indicator classifications 

Relationships between the different indicators, and assessment of their inferred EcoQS 

classifications (from Table 3-2) in relation to the stages along the enrichment gradient (as 

assessed by average BPJ), were examined with the aid of a nomogram.  For the nomogram, 

boundary conditions between ES 1 – 7 were obtained for each of the indicator variables using 

the optimum models with ES as the explanatory (predictor) variable.  The classifications in 

Table 3-2 represent previously established ranges for each indicator that were sourced from 

relevant literature.  The various classifications were shaded consistently, with the darkest tone 

indicating the most impacted (e.g. enriched, worst, most anoxic) end of the spectrum.   

 

3.5 Results 

3.5.1 Versatility of benthic indicators in high and low flow environments 

Two indicator variables exhibited statistically similar relationships with changes in ES for 

both high and low flow datasets combined; Redox (Figure 3-2) and the M-AMBI (Figure 3-3).  

Both of these involved first order polynomials, however, the relationship for the combined 

high and low flow regression was considerably more robust for the M-AMBI (R2 = 0.819) than 

for redox (R2 = 0.609, Table 3-3).  Despite the reasonably good combined linear relationship 

with M-AMBI, there was still some undesirable variability, and therefore limited discriminatory 

power, at the upper end of the enrichment scale (ES 6 – 7).  Hence, no one indicator 

performed well and comparably for both high and low flow datasets across the full enrichment 
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spectrum.  Indicator variables AMBI, BENTIX, MEDOCC and BQI all had the same (second) order 

polynomials for the high and low flow data, and showed a similar response to enrichment up 

to ES 6.  However, in each case one or more of their model coefficients was significantly 

different, hence the data could not be pooled (Appendix 3-B).   

For low flow sites alone, ES was most strongly related to the BQI, with an adjusted R2 of 

0.909, followed by M-AMBI >> log(N) > d (Margalef’s Richness) AMBI (Table 3-3).  The BOPA 

and J’ did a relatively poor job of describing ES at the low flow sites, with R2 < 0.6.  The 

usefulness of the relationships between log(N) and to a lesser degree, MEDOCC, were 

compromised by the fact that the data exhibited a parabolic (horseshoe-shaped) pattern, 

meaning one value of Y can have two possible values of X but at contrasting ends of the ES 

spectrum, Figures 3-2 and 3-3).  The ITI, BENTIX and MEDOCC showed good responses up until 

ES4, as indicated by a strong slope and limited scatter about the mean, but the relationships in 

the range of ES4 to ES6 were less well defined, and beyond ES6 the responses were extremely 

variable.  The AMBI also had a large amount of scatter in the data at ES > 5.5, which adversely 

influenced the regression by reducing (pulling down) the upper part of the curve/line.  Better 

fits (where R2 increased by >0.1) were obtained for %OM, J’, AMBI, BENTIX, and MEDOCC 

when the data were restricted to only include results from ES1 – ES6.  Indicators d, H’, BQI and 

the M-AMBI appropriately indicated a highly impacted state beyond ES 5, but their change in 

slope (hence sensitivity) between ES5 and ES 7 was low. 

For high flow sites alone, the measures that showed the greatest correspondence with 

ES were the indices MEDOCC, AMBI, M-AMBI, BENTIX, and BQI (in that order), with similar 

adjusted R2 values of between 0.881 and 0.831 (Table 3-3 and Appendix 3-B).  In all cases 

except the M-AMBI, the best-fit model was a second order polynomial; the M-AMBI was best 

described by a first order polynomial. The relationships between %OM and S, BOPA and Redox, 

and ES were relatively weak (R2 <0.5).  Both %OM and S showed minimal response to 

increasing ES up until ES ≈ 4, whereas log(N) increased progressively through all stages of 

enrichment up until ES5.5 (the limit of the data, Figure 3-2).   
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Figure 3-2:  Scatter plots displaying optimum models (thick lines) with 95% confidence intervals (thin 
dashed lines) for each of the physico-chemical and biological indicators in response to Enrichment Stage 
(ES, as assessed by average BPJ).  Thick solid and dashed lines indicate the best-fit models for high and 
low flow data, respectively, except for M-AMBI for which high and low flow data were pooled.  
Corresponding polynomials and model fit statistics provided in Appendix 3-B. 
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Figure 3-3: Scatter plots displaying optimum models (thick lines) with 95% confidence intervals (thin 
dashed lines) for the ten biological indicators, in response to Enrichment Stage (ES).  Thick solid and 
dashed lines indicate the best-fit models for high and low flow data, respectively, except for M-AMBI for 
which high and low flow data were pooled.  Corresponding polynomials and model fit statistics provided 
in Appendix 3-B. 
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Table 3-3: Rank orders for biotic indices according to associated adjusted R2 values, ordered according 
to the low flow R2 values.  Overall rank determined from ordering low and high flow regressions in same 
series (inclusive of low regressions truncated to ES<6).  Adjusted R2 values also given for low flow data 
truncated to ES<6 for comparison.  Top five ranks in each column shaded black, ranks 6-10 shaded grey, 
and 11-15 un-shaded.  Dash (-) indicates that either the order of the polynomials were different for the 
HF and LF models, and/or that the models were of the same order, but were not significantly different. 
Refer to Appendix 3-B for full model statistics. 

  Low Flow     Low Flow ES<6 High Flow     Combined 
  Poly. Adj. Overall Flow Poly. Adj. Poly. Adj. Overall Flow Poly. Adj. 
Variable order R2 rank rank order R2 order R2 rank rank order R2 
BQI 2 0.9097 1 1 2 0.8602 2 0.8307 7 5 - - 
M-AMBI 3 0.8325 6 2 1 0.8058 1 0.8501 4 3 1 0.8195 
Log(N) 3 0.744 11 3 1 0.413 1 0.824 10 8 - - 
d 2 0.7371 12 4 1 0.6824 1 0.6261 24 11 - - 
AMBI 3 0.732 13 5 2 0.8322 2 0.8774 3 2 - - 
H' 2 0.7212 14 6 1 0.6793 3 0.8292 8 6 - - 
BENTIX 2 0.7199 15 7 2 0.8408 2 0.8469 5 4 - - 
S 1 0.6937 17 8 1 0.5457 2 0.4386 28 14 - - 
ITI 2 0.6868 18 9 2 0.7368 2 0.7093 16 9 - - 
log(S2-) 1 0.6807 19 10 1 0.6218 1 0.6803 20 10 - - 
%OM 3 0.6712 21 11 2 0.7754 3 0.3518 30 15 - - 
MEDOCC 2 0.6492 22 12 2 0.8002 2 0.8818 2 1 - - 
Redox 1 0.6453 23 13 1 0.5648 1 0.4956 26 12 1 0.6098 
BOPA 3 0.5479 25 14 1 0.5937 1 0.4433 27 13 - - 
J' 2 0.43 29 15 1 0.5623 2 0.8265 9 7 - - 

 

3.5.2 Relationships between indicators and comparison of ecological classifications  

Results of the PCA largely reflected the findings of the univariate response models in 

Figures 3-2 & 3-3.  The ES variable acted in a direction consistent with PC1 (horizontal on x-

axis), hence any indicators oriented on that axis were both correlated to ES and not greatly 

influenced by high or low flow characteristics (Figure 3-4-A).  Thus, BOPA, AMBI and to a lesser 

extent MEDOCC, were positively correlated with ES, whereas H’, BQI and M-AMBI were 

strongly negative correlated with ES, along with Distance from Cages (Figure 3-4-A).  MEDOCC 

and AMBI were also strongly negatively correlated with BENTIX, J’ and ITI.  S, log(N), d, and 

MEDOCC, were moderately influenced by flow characteristics; tending to be higher at high 

flow sites.  %OM and to a lesser degree, ITI and J’ were also influenced by currents speed, but 

tended to be higher at low flow sites.  Very similar relationships were evident between these 

variables in the 2009 and 2010 dataset (Figure 3-4-B); M-AMBI was strongly negatively 

correlated with ES, whilst AMBI, BOPA and to a lesser degree MEDOCC, were positively related 
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to ES.  S2- and redox were strongly negatively related to each other and also reasonably well 

aligned with the ES axis.  High flow samples were best distinguished from low flow samples by 

N and S, as well as by mud content (Mud) and %OM (both being typically higher at low flow 

sites). 

The nomogram of classification schemes for each variable demonstrates inconsistencies 

among some of the indicators (Figure 3-5).  Sediment chemistry indicators were largely 

unresponsive over the early stages of enrichment, with sediments classified as Oxic-A or 

‘natural’ up to ~ES4 (Figure 3-5). Likewise, the percentage reduction in S and the BOPA index 

classified sediments as being of ‘High’ biodiversity and EcoQS (respectively) throughout the 

same early stages of enrichment, particularly at the high flow sites.  In contrast, some of the 

diversity and biotic indices suggested that even the ‘natural’ (reference site) conditions 

observed in this study, were of moderate, reduced, or poor ecological quality (e.g. H’, ITI and 

BQI) or generally less than pristine (d).  Similarly, at the upper end of the enrichment spectrum 

(i.e. ES 5-7) a wide variety of environmental qualities were indicated.  H’, M-AMBI, BENTIX, ITI, 

BQI and MEDOCC all indicated that the lowest/ worst biodiversity or most degraded EcoQS had 

been achieved, while the BOPA, redox, and to a lesser extent, S2-, indicated only moderately 

enriched conditions at ~ES6.   

Irrespective of the scaling, several of the diversity measures and biotic indices (most 

notably, J’, M-AMBI, BENTIX and MEDOCC), provided a response that suggested a predictable 

progression through the degenerative categories, in a manner consistent with the ES gradient 

(Figure 3-5).  Classifications at the upper end of the enrichment spectrum were 

underestimated for several of the indicators, including J’, AMBI, BENTIX, MEDOOC and the 

BOPA, due to the spurious EcoQS values that were produced when the macrofauna community 

was severely compromised, and S and N were accordingly very low. 

The indicators showed quite individual response patterns to the two different flow 

environments. %OM, S and d were less responsive at the high flow sites than at the low flow 

sites (Figures 3-2 & 3-3).  %OM doubled from ~3.3 % to ~6.6 % (i.e. ~100% increase) under 

highly enriched conditions at high flow sites whereas a five-fold increase (from ~4.2% to 19.3 

%, or a 400% increase) was typical of the low flow sites under at the same stages of ES.  

However, once S was compromised at the high flow sites, it tended to reduce abruptly, and 

indicate highly impacted conditions earlier than for the low flow sites (Figure 3-5).  S2-, J’, H’, 
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BENTIX and ITI also tended to achieve the most impacted category for each at earlier stages on 

the ES scale at high flow sites.  By contrast, AMBI, M-AMBI, BOPA and BQI all indicated slightly 

worse ecological statuses for low flow sites compared with high flow sites at equivalent 

enrichment levels greater than ES4.   

 

 

Figure 3-4:  2-dimensional PCA ordinations (based on Euclidean distances) of normalised farm and 
environmental indicator values (high and low flow data combined), overlaid with associated vector plots 
of Pearson correlations between variables.  Plot A: primary dataset (i.e. all farms 2003-2009, excludes 
S2- and redox data); Plot B: secondary dataset (i.e. 2009 and 2010 inclusive of S2- and redox data).  
Cumulative variation explained by PC1 and PC2 = 69.0% (Plot A) and 79.7% (Plot B). 
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Figure 3-5 (overleaf): Nomogram comparing the classifications given by the results of the best-fit 
models in relation to published ecological classifications and quality standards. Refer to Table 3-2 for 
classifications schemes, boundary conditions and relevant reference sources.  ‘*’ and black vertical lines 
indicates estimates where the model has been used to extrapolate beyond the data and may be 
unreliable.  Classifications are shaded consistently, with the darkest tone indicating the most impacted 
(e.g. enriched, worst, most anoxic) end of the spectrum.  Shading with black horizontal lines indicates 
areas where the results are outside of the relevant scale.   



Chapter 3 
 
 

Evaluating biotic indices and environmental indicators 

 

 
67 

 

ES
%OM LF

HF

Redox HF/LF
Enrichment zones: Oxic A H-B

Sulfides LF
Enrichment zones: Oxic A Hypoxic A Hypoxic B

HF
Enrichment zones: Oxic A Hypoxic B

No. Taxa (S) LF

Biodiversity: High Reduced Very low Azoic

HF

Biodiversity: High

Abundance (N) LF

HF

Margalef's d LF

HF

Pielou's J' LF
Nominal scale: >0.8 0.6-0.8 0.4-0.6

HF
Nominal scale: >0.8 0.6-0.8 0.4-0.6 0.2-0.5 0-0.2

Shannon H' LF
Biodiversity: Reduced A Reduced B Very low

EcoQS: Poor Bad

HF
Biodiversity: Reduced A Very low

EcoQS: Poor Bad

AMBI LF
EcoQS: High Good Poor

Pollution classification: Slightly Heavily

HF  
EcoQS: High Good Poor

Pollution classification: Slightly Meanly Heavily

M-AMBI LF
EcoQS: High Good Bad Azoic

HF
EcoQS: High Good Moderate Poor Bad

BENTIX LF
EcoQS: High Moderate Poor Moderate

HF
EcoQS: High Moderate Poor

MEDOCC LF
EcoQS: High Good Moderate Bad Poor Moderate

HF
EcoQS: Good Moderate Bad

BOPA LF
EcoQS: High Moderate Good

HF
EcoQS: High Good

ITI LF
Biodiversity: High Very low

EcoQS: Normal Intermediate Degraded

HF  
Biodiversity: Moderate Reduced Very low

EcoQS: Intermediate Degraded

BQI LF
Environmental status: Moderate Poor Bad

HF
Environmental status: Moderate Poor Bad

ES
Extrapolating beyond data set Off scale *Extrapolated values

Good

7
2.8 4.8 4.6 7.5 12 16.4 19.1

1 2 3 4 5 6

Anoxic

7 263 770 2,251

14.9*0.7 3.1 3.8 3.4 3.9 7.1

-58
Oxic B

212 158 104 50 -4
Hypoxic A

212

19 15 10 6 2

Moderate

51 107 216 434 872 1,753 3,523

-6% -8% 4%
Very low

Oxic B Hypoxic A

8% 25% 41%

Oxic B

6,582*31 90

2.5 2.5 1.9 1.3 0.9 0.7 0.5

0.79 0.55 0.37 0.250.85

0%

0%

8.1 6.4 4.7 3.1

22 23

-

2.5 2.9 2.2 1.2 0.6 0.8
Reduced B

57% 74%

71 167 492 1,449 4,271

16 91 143 400 733

Moderate

28 37 38

Moderate

1.2 2.2 3.3 4.2 4.9

0.83

Moderate

0 1.5 2.9 4.3 5.2

0.90 0.73 0.52 0.33

5.8 5.3 3.7 2.7 2.1 2.1 2.6

0.9 0.90 0.73 0.56 0.40 0.23

4

4.7 4.4 3.4 2.6 2.1

Good

1.8 2.9 4.2 5.2 5.9

0 0 0.03 0.112 0.191 0.148

51 33 15 4 0 3

-0.1

-0.1 1.9 4 5.2 5.6 5.2

65 56 28 9 1 3
ReducedReducedModerate

0.22

9.5 9 6.5 4.6 3.1 2.1

8.7 5.9 3.7 2.1 1.29.7

0.44

0.198

1 2 3 4 5 6

0.8

Poor

0.21 0.24

5.4 4.5

0.4-0.6

MeanlyUnpolluted

Moderate

Good

Good

0 0.039

7

12,590 37,112*

15

5.3

2.5*

0.6

0*

1.6*

13*

6.1 6.1*

1.8 1.8*

0.06*

5.5*

1.4

0.19 0.19*
0.2-0.4

Moderate

Reduced

Poor

0.158

Reduced

323 13

90%

33 24 10 -9
31% 71%

4.6 3.4 2.4 1.6

8.2

4.7

0.82 0.38

1

0.8 0.62 0.47 0.4

0.079 0.119

Poor



Chapter 3 
 
 

Evaluating biotic indices and environmental indicators 

 

 

68 

3.6 Discussion 

The objective of this study was to evaluate how well currently available indicators 

provided an ecologically relevant classification of both enrichment level and ambient 

environmental conditions, with a view to identifying metrics that could be widely applied. 

Ideally such indicators would need to show good discriminatory power across a full spectrum 

of benthic enrichment conditions, and under a range of regional environmental conditions (i.e. 

varying current flow regimes).  Unfortunately, none of the metrics evaluated met these 

criteria.  One of the main challenges appears to be the ability of the indices to reliably discern 

differences in the later stages of enrichment.  In particular, distinguishing the situations where 

the macrofauna is still dominated by opportunists (and therefore still relatively abundant), but 

tending towards azoic.  In the current study this part of the enrichment spectrum (ES values 

>5.5) was only apparent in the low flow dataset.  Enrichment stages greater than 5.5 produced 

spurious responses for several indices (ITI, BOPA, MEDOCC, AMBI, BENTIX and J’), and 

relatively poor model fits.  Regressions for most of these indices were substantially improved 

when ES > 6 data were excluded, with good predictive confidence being achieved between ES 

1 – 6 (i.e. between un-enriched and post-peak abundance).    

Low total abundance can adversely affect the performance of several indices (e.g., Borja 

& Muxika 2005, Dauvin & Ruellet 2007), and may underpin some of the issues with assessment 

above ES5 in the case of the low flow analyses, as abundance greatly declined in a manner 

consistent with the Pearson and Rosenberg (1978) enrichment model.  However, ES 6 is an 

important stage on the enrichment spectrum and implicit in the environmental monitoring of 

finfish farms (Wilson et al. 2009), and consequently deficiencies in index performance in this 

region of the enrichment spectrum warrant further consideration.  In some cases the problems 

can be associated with the particular way in which the index is characterised, for example in 

the case of BOPA the lack of fit at ES>5.5 was largely due to the presence of low numbers of 

amphipods (more specifically Melitidae and Haustoriidae) when opportunistic polychaetes 

were substantially diminished or absent.  This caused a zero, or near zero, result indicative of 

an undisturbed environment, which is clearly erroneous as the conditions were assessed to be 

near-azoic, with only trace numbers (N = 1 – 14) of scavenging, and probably transient, surface 

dwelling macrofauna.  It also has implications regarding regional endemism and the underlying 

assumption with this index that amphipods typify undisturbed environments, which is not 
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necessarily the case in our study region (Keeley et al. 2012b).  Interestingly, when the BOPA 

was calculated using all opportunistic taxa (i.e. all EG IV and V), as opposed to just polychaetes, 

the relationship to ES for high flow sites was very good (R2 = 0.926).  This was mainly due to 

the inclusion of nematodes, which are a dominant part of the benthic fauna at the high flow 

sites; and appear to be important indicator taxa in this instance.  Thus, indices that are based 

on a limited number of taxa are more prone to biases from endemism and are therefore 

unlikely to be suitable for broad geographical comparisons.  Similarly, poor fits between ES and 

AMBI, BENTIX and MEDOCC were usually due to occasional individuals from EG’s I - III 

influencing the result when overall abundances were very low.  Although this problem has 

been acknowledged for the AMBI, the suggested criteria for the application of this index (>3 

taxa and/ or >3 individuals, Borja & Muxika 2005) did not encompass all of the situations 

identified here.  For example, some slightly more numerous samples from ES 6 type sediments 

were assessed to have an AMBI of 2-3, which indicates a ‘Good’ ecological quality standard.   

Enrichment gradients at low flow sites were best described by BQI.  This was largely 

attributable to the ability to obtain ES500.05 values for a high proportion of the taxa, and the 

fact that those values were derived from a larger, regionally specific database.  BQI scores are 

also a function of S and moderated by an abundance factor (and half constant; Leonardsson et 

al. 2009), and as such index values tend to be appropriately suppressed when S and/ or N are 

low (i.e. ES>5.5).  Fleischer et al. (2007) recommended replacing S with ES50 to overcome 

sampling effort biases, but this was not tested in the current study, because in aquaculture 

monitoring sampling effort does not generally vary, and this is unlikely to change in the near 

future.  Similarly, the M-AMBI is a function of AMBI, H’ and S, consequently the multivariate 

factor analysis approach had a positive influence on its ability to differentiate the highly 

enriched conditions that were encountered at the low flow sites.  Incorporating species 

richness (S) into the calculations and being able to set site specific reference conditions also 

improved the versatility of the BQI and the M-AMBI, which performed well, with minimal 

spurious results for both high and low flow sites.  However, between ES 5-7 the slopes of the 

regressions for these indices were negligible, revealing that they have a limited ability to 

clearly discriminate changes in ES within that range.  The reason for this is that these stages 

are characterised by declining abundances of the same few resilient taxa, and therefore any 

change in the index score is almost entirely dependent on the influence of N and S in the 

calculation. 
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Despite having a reasonably tight relationship with ES, log(N) was deemed unsuitable for 

predictions at low flow sites because the parabolic shape of the polynomial means that a single 

N value can have two possible ES values – often at opposing ends of the enrichment gradient 

(Figures 3-3 & 3-5).  However, N is still a valuable indicator because it is a simple intuitive 

measure that helps to identify the point of ‘peak abundance’ and post-peak declines (as 

alluded to above), and has meaning in the context of the Pearson Rosenberg model.  Similarly, 

the number of taxa (S) at high flow sites displayed a parabolic response to ES, whereby an 

initial increase was followed by a pronounced decline at ES > 4. As a result, quantitative 

predictions of ES based on N and/ or S should always be validated by some other means.   

The ability of the biotic indices to accommodate the extreme abundances that occurred 

under high flow conditions was evaluated by comparing the high flow model fits to the better-

understood low flow enrichment responses.  In general, index fits were better for high flow 

sites than for low flow sites, largely because the conditions associated with breakdowns in 

abundance/ diversity relationships found at ES > 6 were not encountered.  When conditions > 

6 were excluded from the low flow analysis, the fits for AMBI, BENTIX, MEDOCC and ITI were 

improved, and more comparable between high and low flow.  The MEDOCC > AMBI > M-AMBI 

> BENTIX > BQI all did a good job of predicting enrichment stage at high flow sites, explaining 

83 – 88 % of the overall variation, and were all strongly either positively or negatively 

correlated with ES.  With the exception of the BQI, all of these indices are derived from the 

same base taxa classifications (EG’s I-V).  Therefore, contrary to the recommendations of Salas 

et al. (2006), classifying and accounting for opportunistic taxa (i.e. EG V) in this manner does 

appear to be a useful foundation for discerning organic enrichment. The comparable 

performance of these three indices also indicates that the level of EG differentiation used by 

the AMBI is unnecessary or partially redundant for this purpose.  This finding is consistent with 

that of Simboura and Argyrou (2010) who also found good agreement between the BENTIX 

and MEDOCC, but proposed that the BENTIX was the more sensitive index due to the equal 

roles played by tolerant (EG III) and opportunistic (EG IV & V) taxa.  In the present study, it is 

worth noting that the relatively limited response of S at the high flow sites is likely to have 

adversely influenced the discriminatory power of both the M-AMBI and BQI.   

While many of the relationships between the indicators and ES were strong in terms of 

the residual sum of squares, there were significant inconsistencies between the indicators in 
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terms of the ecological quality or biodiversity statuses that were inferred.  This was apparent 

throughout the enrichment spectrum, and depends on indicator type.  Moderately impacted 

sediments (i.e., ES3-4) were recorded as healthy/ unimpacted according to chemical indicators, 

%OM, S (for high flow sites) and BOPA, while conversely, some diversity measures (d, H’, BQI, 

ITI) indicated moderate impacts for sediments that were determined by average BPJ as being 

natural/ unimpacted.  Abnormally low scores of d and H’ are likely a result of small sample 

sizes (Sofia 2010) and the associated potential for under-sampling of rare species (MacArthur 

& Wilson 1967, in Hill 1973).  However, the classification inconsistencies that were observed 

with some of the other indicators (especially BQI, BOPA, ITI, S2- and redox) warrants further 

investigation, and reinforces the need for regional validation.   At the upper end of the 

enrichment gradient, some indicators gave erroneously optimistic responses post-peak of 

opportunistic taxa.  One such example was the BENTIX, which is known to have a tendency 

towards extreme values because it only recognises sensitive species (i.e., EG I) and 

opportunistic species of the first and second order (i.e., EG IV and V, Salas et al., 2006). 

A final point is that contrasting responses at high and low flow sites were observed for 

some variables.  In particular, the physico-chemical indicators and S, proved to be generally 

less sensitive over the early stages of enrichment at high flow sites (ES 1 – 4) compared with 

most infauna based indices.  Hence, although some physico-chemical measures showed little 

or no response at high flow sites in the early stages of enrichment, significant macrofaunal 

changes occurred that were readily detected by indices such as the BQI, AMBI, M-AMBI and J’.  

Such results highlight the importance of including biological measures when assessing 

environmental quality. 

 

3.7 Conclusion 

An ideal benthic enrichment indicator would consistently discriminate the full 

enrichment gradient under a wide range of environmental conditions.  None of the individual 

indicators that were evaluated in the contrasting flow environments described in this study 

fully met these criteria.  However, the BQI > M-AMBI > AMBI > Log(N) > BENTIX all performed 

well, especially across ranges of moderate to high levels of enrichment.  Of these, M-AMBI 

best catered for the different flow environments, while the BQI gave the least spurious 
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responses under highly enriched conditions.  Most of the biological indicators showed limited 

ability to distinguish late stages of enrichment, when the macrofaunal population was on the 

decline.  On the other hand, while physico-chemical measures provided a good level of 

discrimination over the later stages of enrichment, they were less sensitive than macrofauna 

for lower enrichment levels at high flow sites.  Therefore, a useful subset for assessing 

enrichment status would comprise two of the best performing biotic indices that are based on 

alternative/ independent classification schemes (i.e. EG’s and ES500.05), total abundance to aid 

in discerning PO, and a cheap and an easy-to-measure geochemical variable which responded 

consistently in the later stages of enrichment.  Hence, the ultimate combination of variables 

for discerning enrichment gradients according to this study, would be: BQI + (M-AMBI / AMBI / 

BENTIX) + log(N) + Redox/S2-.   

In terms of identifying a single, universally applicable indicator, between-indicator 

inconsistency with respect to the inferred ecological status was a more significant issue than 

the was the ability of a single indicator to reliably discern conditions.   Different indicators can 

have different biases with regard to site and/or region-specific characteristics.  Consequently 

there is a very real risk of ecological status misclassification where a single index is used, 

particularly in the absence of regional validation.  This has important ramifications for resource 

managers when attempting to identify environmental standards for broad regions or industry-

wide applications.  Although using a combination of indicators, as suggested above,  is widely 

recommended (Borja & Muxika 2005, Muniz et al. 2005, Salas et al. 2006, Ranasinghe et al. 

2009), the current study therefore also stresses the importance of selecting indicators that are 

regionally validated, and/or down-weighting the importance of any that are not.  While using a 

combination of different indicators may be perceived to produce a ‘safer’ average result, 

where the calculations are based on poorly understood indicators the outcome may be 

misleading and the averaging effect has the potential to mask extreme conditions.  Hence, 

there remains a clear need for expert judgement to select and appropriately weight indicator 

variables, to identify any spurious results, and to provide an integrated assessment of 

macrofaunal community condition - in particular to clarify when the community is “post-peak” 

abundance.   This last point is particularly important given that most of the commonly-used 

indices we examined showed a tendency to error in the highest enrichment categories.    

 



Chapter 3 
 
 

Evaluating biotic indices and environmental indicators 

 

 
73 

3.8 Acknowledgements 

This research was supported by the Cawthron Institute (Nelson, New Zealand) through 

internal investment funding (IIF), with additional support from Institute of Marine and 

Antarctic Sciences (IMAS), University of Tasmania.  We would also like to acknowledge the 

support of New Zealand King Salmon Company Ltd., who kindly made available much of the 

source data.  Assessment of best professional judgement was provided by Dr B. Forrest, Dr P. 

Gillespie, Dr G. Hopkins, R. Forrest, Dr R. Dunmore and Dr D. Taylor of Cawthron Institute and 

Dr C. Macleod from the University of Tasmania, Australia.  Taxonomic advice was provided by 

R. Asher and F. Gower and statistical advice from Dr W. Jiang (also from the Cawthron 

Institute).   

 

  



Chapter 3 
 
 

Evaluating biotic indices and environmental indicators 

 

 

74 
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Appendix 3-A: ES500.05 scores and associated ‘N’ values that were determined for the 50 most abundant 
taxa and used to calculate BQI.  

Taxa General Group Family ES500.05 N Rank 
Cirratulidae Polychaeta Cirratulidae 6.62 1968 1 
Heteromastus filiformis Polychaeta Capitellidae 6.00 1904 2 
Nematoda Nematoda  2.45 1845 3 
Lumbrineridae Polychaeta Lumbrineridae 7.86 1840 4 
Paraonidae Polychaeta Paraonidae 7.20 1787 5 
Theora lubrica Bivalvia Semelidae 6.74 1757 6 
Ostracoda Ostracoda  7.62 1748 7 
Cumacea Cumacea  8.92 1729 8 
Prionospio sp. Polychaeta Spionidae 5.45 1682 9 
Arthritica bifurca Bivalvia Erycinidae 5.34 1460 10 
Nemertea Nemertea  6.31 1419 11 
Cossura consimilis Polychaeta Cossuridae 8.65 1413 12 
Sphaerosyllis sp. Polychaeta Syllidae 5.13 1333 13 
Dorvilleidae Polychaeta Dorvilleidae 2.35 1316 14 
Glyceridae Polychaeta Glyceridae 5.53 1283 15 
Maldanidae Polychaeta Maldanidae 8.76 1255 16 
Amphipoda Amphipoda  4.16 1225 17 
Armandia maculata Polychaeta Opheliidae 3.64 1108 18 
Ophiuroidea Ophiuroidea Terrebellid 9.55 1101 19 
Sigalionidae Polychaeta Sigalionidae 10.47 1101 20 
Phoxocephalidae Amphipoda  5.20 1086 21 
Hesionidae Polychaeta Hesionidae 4.28 1075 22 
Melitidae Amphipoda  4.23 1074 23 
Terebellidae Polychaeta Terebellidae 4.13 982 24 
Capitella capitata Polychaeta Capitellidae 1.75 969 25 
Tanaid sp. Tanaidacea Tanaidae 3.25 853 26 
Syllidae Polychaeta Syllidae 3.93 822 27 
Aglaophamus sp. Polychaeta Nephtyidae 8.96 752 28 
Ennucula strangei Bivalvia Nuculidae 11.97 729 29 
Nereidae Polychaeta Nereidae 3.64 699 30 
Austrovenus stutchburyi Bivalvia Veneridae 4.63 695 31 
Nucula gallinacea Bivalvia Nuculidae 4.40 639 32 
Macrophthalmus hirtipes Decapoda Ocypodidae 5.00 639 33 
Haustoriidae Amphipoda  3.58 635 34 
Spionidae Polychaeta Spionidae 4.06 630 35 
Flabelligeridae Polychaeta Flabelligeridae 10.94 593 36 
Polynoidae Polychaeta Polynoidae 5.46 561 37 
Oligochaeta Oligochaeta  4.46 534 38 
Leptomya retiaria retiaria Bivalvia Semelidae 3.34 481 39 
Phyllodocidae Polychaeta Phyllodocidae 3.61 477 40 
Nucula hartvigiana Bivalvia Nuculidae 6.92 436 41 
Notoacmea helmsi Gastropoda Lottiidae 4.65 418 42 
Sipuncula Sipuncula  7.15 406 43 
Sabellidae Polychaeta Sabellidae 4.03 400 44 
Prionospio multicristata Polychaeta Spionidae 3.79 391 45 
Anthuridea Isopoda Anthuridea 9.99 371 46 
Macomona liliana Bivalvia Tellinidae 6.62 367 47 
Terebellides stroemi Polychaeta Trichobranchidae 11.08 363 48 
Asellota Isopoda  6.04 360 49 
Nemocardium pulchellum Bivalvia Cardiidae 10.97 350 50 
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Appendix 3-B:  Optimum models and associated fit statistics for the biological variables and indices as predicted by each Enrichment Stage (ES). Diff. Sig. = the 
significance of the difference between the high and low flow polynomials, where: • <0.1, * <0.05, ** <0.01, ** <0.001.  ‘Int.’ = intercept.  First order polynomials are 
tested using a single factor ANOVA (Pr(>F)) and the Bartlett-corrected likelihood ratio stat testing for common slope (P-value given). Second and third order 
polynomials are compared using a non-parametric bootstrapping procedure which provides probabilities for the difference between each of the factors. High and 
low flow data with different order polynomials were considered to have different X-Y relationships and therefore no tests were applied. If no significant differences 
were observed the high and low flow data were combined to produce a single polynomial. 

Variable Flow Cat. Order 
poly. ES3 ES2 ES Int. RSE df Mult. R2 Adj. R2 p-value 

%OM LF 3 -0.271 3.625 -11.408 14.6775 3.926 61 0.6867 0.6712 2.239e-15 
 HF 3 0.309 -2.817 8.103 -3.737 0.9435 52 0.3872 0.3518 1.104e-05 
 Diff. Sig.  P-value 0.060· 0.095· 0.090· 0.095·      
Redox LF 1   -54.960 263.546 74.14 52 0.6519 0.6453 1.634e-13 
 HF 1   -52.262 270.221 67.35 28 0.513 0.4956 8.54e-06 
 Diff. Sig.  P-value   0.657 0.3677      
 Combined(ES<6) 1   –54.15 266.49 71.34 82 0.6145 0.6098 <2.2e-16 
S2- LF 3 124.5 -989.3 2551.5 -1668.8 1390 50 0.6536 0.6328 1.448e-11 
 HF 3 327.0 -2658.9 68.152 -5197.2 928.1 21 76556 0.7321 8.13e-07 
 Diff. Sig.  P-value 0.1540 0.1965 0.1615 0.0925·      
log(S2-) LF 1   0.698 3.977 0.8746 52 0.6868 0.6807 1.029e-14 
 HF 1   1.072 2.354 1.021 23 0.6936 0.6803 2.402e-07 
 Diff. Sig.  P-value   0.0401* 0.0036**      
S LF 1   –4.037 28.616 4.913 63 0.6985 0.6937 2.2e-16 
 HF 2  –2.478 10.606 26.560 8.271 53 0.459 0.4386 8.505e-08 
log(N) LF 3 -0.072 0.670 –1.598 3.095 0.3988 61 0.756 0.744 <2.2e-16 
 HF 1   0.469 1.517 0.2698 54 0.828 0.824 <2.2e-16 
d LF 2  0.105 –1.638 6.855 0.8844 57 0.746 0.7371 <2.2e-16 
 HF 1   –1.690 10.666 1.624 54 0.6329 0.6261 2.395e-13 
J’ LF 2  0.032 –0.341 1.262 0.1992 56 0.4496 0.43 5.475e-08 
 HF 2  0.030 –0.367 1.274 0.0974 53 0.8328 0.8265 <2.2e-16 
 Diff. Sig. P-value  0.1185 0.0810· 0.125      
H’ LF  2  0.060 –0.885 3.685 0.4708 62 0.73 0.7212 <2.2e-16 
 HF 3 0.090 –0.795 1.375 2.278 0.394 52 0.8386 0.8292 <2.2e-16 
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Appendix 3-B continued. 

Variable Flow Cat. Order 
poly. ES3 ES2 ES Int. RSE df Mult. R2 Adj. R2 p-value 

AMBI LF 3 -0.058 0.413 0.450 0.099 0.8976 61 0.7446 0.732 <2.2e-16 
 LF(<ES6) 2  –0.177 2.274 -1.539 0.7192 50 0.8387 0.8322 <2.2e-16 
 HF 2  –0.119 1.615 0.055 0.3976 53 0.8819 0.8774 <2.2e-16 
 Diff. Sig. P value  0.5395 0.298 0.058·      
M-AMBI LF 3 0.010 -0.097 0.100 0.937 0.122 61 0.8403 0.8325 <2.2e-16 
 LF(<ES6) 1   -0.181 1.171 0.1291 51 0.8095 0.8058 <2.2e-16 
 HF 1   -0.167 1.149 0.0852 54 0.8529 0.8501 <2.2e-16 
 Diff. Sig. P value   0.3308 0.1979      
 Combined(ES<6) 1   –0.174 1.155 0.109 114 0.821 0.8195 <2.2e-16 
BENTIX LF 2  0.258 –2.617 8.643 0.7872 62 0.7287 0.7199 < 2.2e-16 
 LF<ES6 2  0.270 –2.694 8.746 0.5909 50 0.847 0.8408 < 2.2e-16 
 HF 2  0.119 –1.480 6.352 0.3804 53 0.8525 0.8469 < 2.2e-16 
 Diff. Sig. P-value  0.068· 0.022* 0.001**      
MEDOCC LF 2  –0.407 3.668 -2.657 1.016 62 0.6602 0.6492 2.943e-15 
 LF<ES6 2  –0.271 2.832 -1.609 0.7676 50 0.8079 0.8002 <2.2e-16 
 HF 2  –0.171 2.010 0.286 0.4193 53 0.8861 0.8818 <2.2e-16 
 Diff. Sig. P-value  0.3005 0.197 0.041*      
ITI LF 2  5.066 –48.810 117.939 14.29 62 0.6966 0.6868 <2.2e-16 
 LF<ES6 2  4.779 –46.904 115.426 13.7 50 0.7469 0.7368 1.204e-15 
 HF 2  3.495 –31.897 72.705 7.955 53 0.7199 0.7093 2.258e-15 
 Diff. Sig. P-value  0.3675 0.135 0.0115*      
BOPA LF 3 -0.008 0.085 -0.207 0.143 0.069 58 0.5701 0.5479 1.096e-10 
 LF<ES6 1   0.060 -0.099 0.072 51 0.6015 0.5937 9.15e-12 
 HF 1   0.039 -0.060 0.054 54 0.4534 0.4433 1.298e-08 
 Diff. Sig. P-value   0.018* 0.120      
BQI LF 2  0.309 -4.059 14.119 0.970 62 0.9125 0.9097 <2.2e-16 
 HF 2  0.230 -3.355 13.513 1.052 53 0.8381 0.832 <2.2e-16 
 Diff. Sig. P-value  <0.078· 0.0065** 0.0025**      
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CHAPTER 4  

 
NOVEL OBSERVATIONS OF BENTHIC ENRICHMENT IN 
CONTRASTING FLOW REGIMES WITH IMPLICATIONS FOR 

MARINE FARM MONITORING AND MANAGEMENT 

 

Preface: 

This chapter builds on the chapters 2 and 3 by more closely examining the relationships among 
and between biological and physico-chemical indicators (e.g. total free sulphide), and compare 
species richness (S), abundance (N) biomass (B) and trends under different flow regimes against 
the responses that characterise a classic conceptual model for organic enrichment developed 
by Pearson & Rosenberg model (1979).  The findings and their relevance to current 
understanding of successional responses are reviewed, and some strengths and limitations of 
different environmental indicators for monitoring are identified.   

 

This work has been published in a refereed journal and has been adjusted to a standard format 
for the thesis, and as such there may be minor differences in the text, figures and tables 
compared with the published version. The citation for the original publication is:   

 

Keeley N, Forrest B, MacLeod C 2013. Novel observations of benthic enrichment in contrasting 
flow regimes with implications marine farm management. Mar. Pollut. Bull. 66, 105-
116. 
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4.1 Abstract 

We examine macrofaunal and physico-chemical responses to organic enrichment beneath 
salmon farms in contrasting flow environments, and reveal pronounced flow-related 
differences in the magnitude and spatial extent of effects.  Total macrofaunal abundances at 
high flow sites were nearly an order of magnitude greater than at comparable low flow sites, 
representing a significant benthic biomass.  These very high abundances occurred in 
conjunction with moderate-to-high species richness, and were evident in the absence of 
appreciable organic matter accumulation.  Biological responses to increasing sulfide were 
variable; however a significant biological threshold was evident at 1500 µM.  Macrofaunal 
responses at high flow sites differed substantially from the Pearson-Rosenberg model.  The 
atypical ecological conditions were attributed to i) minimal accumulation of  fine sediments, ii) 
maintenance of aerobic conditions in near-surface sediments, and iii) an abundant food 
supply.  Thus, enhanced resilience to organic waste at well-flushed sites appears related to 
both biological and physical processes. 
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4.2 Introduction 

Numerous studies have used environmental indicators to characterise benthic soft-

sediment enrichment and disturbance gradients associated with marine point source 

discharges, such as ocean outfalls (e.g., Cardell et al. 1999), terrestrial inputs via rivers (e.g., 

Hermand et al. 2008, Labrune et al. 2012), oil fields (e.g., Olsgard et al. 1997) and aquaculture 

(e.g., Kalantzi & Karakassis 2006).  An understanding of how environmental indicators relate to 

each other, change in response to increasing enrichment, and compare in different soft-

sediment habitats is critical to interpreting these assessments (Keeley et al. 2012a).  Biotic 

indices, in-particular, are increasingly used to guide assessments of environmental quality 

status (Llanso & Dauer 2002, Ranasinghe et al. 2007, Borja et al. 2009b, Dauvin et al. 2012); 

but the performance of such indices assumes comparable biological responses across different 

environments.   

Pearson and Rosenberg (1978) provided a comprehensive assessment of benthic 

enrichment responses for soft-sediment macrofauna, which has become the foundation for 

many biotic indices, and the paradigm against which subsequent studies have been compared.  

An important contribution of the Pearson and Rosenberg study was the definition of species/ 

abundance/ biomass (hereafter referred to as ‘SNB’) curves characterising macrofaunal 

responses to organic inputs (often termed the Pearson-Rosenberg Model, or ‘PRM’).  Although 

the PRM has been shown to be widely applicable (Heip 1995), significant deviations have been 

identified under certain conditions.  For example, Maurer et al. (1993) identified major 

departures from the model in terms of how SNB curves responded in high energy/ erosional 

habitats.  In that instance, unusually sharp declines in SNB were observed toward azoic 

conditions and a proliferation of opportunistic species did not necessarily preclude rare 

species.  Deviations from the model were also identified by Brooks et al. (2004), who described 

a site that appeared to lack the typical proliferation of opportunists under highly enriched 

conditions. 

Sea-cage fish farms provide excellent case study systems for further evaluating 

enrichment effects and the general applicability of the PRM, as deposition of particulate 

organic matter in the form of faeces and waste feed can lead to pronounced gradients in 

benthic responses across small spatial scales.  Typically, near-azoic conditions beneath fish 

farms progressively decrease in impact with distance from the cages, and natural conditions 
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are usually achieved within 100-200 meters (Brooks et al. 2002, Forrest et al. 2007, Giles 

2008).  The severity and spatial extent of effects is thought to be strongly influenced by current 

speed, whereby stronger currents aid dispersal, limit settlement of organic rich biodeposits 

(Cromey et al. 2002a, Giles et al. 2009) and promote oxygen flux to the sediments (Findlay & 

Watling 1997).  Current speed also strongly influences abiotic properties, such as sediment 

grain size and compaction, which in turn, can also influence benthic biodiversity (McArthur et 

al. 2010). 

Deep sites with strong water current flows are generally perceived to be relatively 

resilient to organic discharges (Frid & Mercer 1989, Hartstein & Rowden 2004, Borja et al. 

2009b), although given sufficient organic inputs, the macrofauna beneath fish cages in high 

energy environments can nonetheless become highly modified (e.g., Keeley (e.g., Macleod et 

al. 2007, Keeley et al. 2012a).  However, in some instances effects on the macrofauna at high 

flow sites may be poorly reflected by commonly used physico-chemical indicators, such as 

total organic matter (Aguado-Gimenez & Garcia-Garcia 2004, Aguado-Gimenez et al. 2007, 

Keeley et al. 2012a).  Hence, water flow may not only influence macrofaunal SNB responses, 

but also the relative enrichment responses of macrofaunal versus physico-chemical indicators.  

Such possibilities have important ramifications for the application of established 

environmental indicators and biotic indices, and the extent to which they can be used to make 

inferences regarding ecological quality status (Aguado-Gimenez et al. 2007, Keeley et al. 

2012a).  For example, some biogeochemical parameters (total free sulfides and redox) are 

increasingly being promoted as key indicators to classify benthic enrichment gradients 

associated with fin-fish farms; most recently as a component of the World Wildlife Fund’s 

global aquaculture standards (WWF 2012).  While such approaches are relatively inexpensive 

and have appeal for their simplicity, it is important that these and other physico-chemical 

indicators accurately reflect biological responses.  Unfortunately, this is difficult to gauge from 

the existing literature, as very few studies have compared the responses of a common suite of 

indicators across different flow regimes. 

In this paper we extend the work of Keeley et al. (2012a), which identified some flow-

specific and regional inconsistencies with a range of benthic environmental indicators, by more 

closely examining macrofaunal responses to enrichment.  In particular, we examine the 

relationships among and between biological and physico-chemical indicators (e.g. total free 

sulfide), and compare SNB trends under different flow regimes against the classical responses 
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that characterise the PRM.  We then review these findings and their relevance to our current 

understanding of successional responses along enrichment gradients in different flow 

environments, identifying the strengths and limitations of different environmental indicators 

for monitoring.  Finally, we consider the implications of our findings for site selection in the 

context of sea-cage fish farming, and for subsequent assessment and monitoring of benthic 

effects.  

 

4.3 Methods 

4.3.1 The study sites and dataset 

The data used in this assessment were extracted from a 14 year annual monitoring data 

set from six study sites, comprising salmon farms aged between 1 and 26 years (Farms A-F, 

Table 4-1), located within the Marlborough Sounds, New Zealand (Figure 4-1).  All of the farms 

were fixed in position (with only minor adjustments) and operated relatively consistently 

throughout, with the exception of Farm-D, which was retired in 2001 and reinstated to full 

capacity in late 2008.  The farms were situated in water depths of 27 - 40 m, and grouped 

according to their hydrodynamic properties; two of the farms (Farms E and F) had considerably 

greater current velocities (>15 cm·s-1, average at ~20 m depth) than the other four (<9 cm·s-1), 

and were designated as “high flow” and “low flow” groups, respectively.  This a-priori grouping 

is based on the critical resuspension velocity threshold for farm-derived organic particulates of 

9.5 cm·s-1 recommended by Cromey et al. (2002b) for use in depositional models.  This 

threshold might therefore be expected to have an important bearing on the severity and 

spatial scale of benthic enrichment effects.  The water current data defining the high and low 

flow regimes were obtained from 28-40 day current meter deployments at each site (SonTek™ 

1 MHz Acoustic Doppler Profiler), which recorded current speeds averaged over 3 minutes at 

intervals of 15, 30 or 45 minutes.  Stations for sampling sediment macrofauna and physico-

chemical properties at each site included two beneath cage stations, two or three stations at 

increasing distances away from the cages (out to 250 m) and a reference station (>1 km away, 

Table 4-1).  All of the sampling stations were situated over unconsolidated sediments, with low 

flow sites tending to sandy-mud, and high flow sites tending to muddy-sand according to the 

standard sediment textural classifications of Folk (1954) (Table 4-1).  
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Analyses were conducted on three subsets of the data, as not all parameters were 

measured consistently throughout the entire sampling period.  The first dataset (Dataset 1) 

combined the information from all the sites over 17 different surveys spanning nine years 

(2001-2009).  Dataset 1 included feed usage (Feed, total metric tonnes for 6 months prior to 

sampling) and covered a range of feed input levels (1640-4120 tonnes yr-1) to represent 

potential extremes in enrichment levels.  The farm information also included farm age at 

sampling (Age, years), and average current speed at ~20 m water depth (Current, cm s-1).  The 

information specific to each sample station included: water depth (Depth, m), site distance 

from farm (Distance, m), sediment grain size distribution (presented as %Mud), percent 

organic matter  (%OM, measured as % ash free dry weight w/w; Luczak et al. 1997), and a 

detailed breakdown of the infaunal community structure.  All sediment sampling was 

conducted using a boat-operated Van-Veen grab, with macrofauna collected by sub-sampling 

with a 13 cm diameter core (sample size: 0.0132 m2, by 10 cm deep) and sieving to 0.5 mm.  

Macrofauna were sorted and enumerated to the lowest practicable level and their abundances 

(hereafter denoted N) recorded.  We use ‘N*’ in places to denote total abundance exclusive of 

opportunistic taxa; defined in this instance as those species previously classified as first-order 

opportunists (i.e. Eco-Group V) according to Borja et al. (2000).  Sediment grain size and %OM 

measures were based on sub-samples taken from the grab with a 5.5 cm diameter Perspex 

core, from which the surface 30 mm was retained for later analysis.  Qualitative information 

was also obtained in the field at each sampling site of sediment odour (H2S, Odour), bacteria 

mat coverage (Beggiatoa) and sediment out-gassing using pre-specified categories (Keeley et 

al. 2012b).  Results from Dataset 1 were analysed using average values from duplicate or 

triplicate samples.  

The second data set (Dataset 2) comprised environmental information from the same 

sites over the years 2009 - 2011 and included the same variables as in Dataset 1, with the 

addition of total free sulfide (TFS, µM) and redox potential (EhNEH, mV) (Table 4-1), and was 

analysed at the replicate level.  Redox was measured directly from the grab (at 1 cm depth) 

using a Thermo Scientific combination Redox/ORP electrode.  TFS was sampled with a cut-off 

5-cc plastic syringe driven vertically into the surface sediments (0-4.5 cm depth interval), and 

the TFS contents were extracted and quantified following the methods of (Wildish et al. 1999).  

The third dataset comprised a detailed gravimetric analysis of macrofauna collected in May 

and November 2011 from all sample sites (cage through to reference) at each of the six farms 

(Table 4-1).  In this instance, after taxonomic analysis, the dry weight of the whole macrofaunal 
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sample from each site was obtained by drying the samples on pre-weighed GFC filters (60 °C 

for 24 hrs), and then re-weighing on a digital balance (to 4 d.p.).  For samples that had 

exceptionally high densities of nematode and capitellid worms, total dry weight estimates 

were made from sub-samples.  Individual nematodes and capitellids were also separated, 

counted and weighed from a cross-section of samples, to obtain estimates of their average 

biomasses. 

 

 

Figure 4-1: Location of the six salmon farm study sites, Marlborough Sounds, New Zealand. 
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Table 4-1:  Summary of farm attributes for the six study sites.  

  ‘Low flow’ farms ‘High flow’ farms 
Farm attributes Units Farm-A Farm-B Farm-C Farm-D Farm-E Farm-F 
Farm established: Year 1985 1989 1989 1994 1988 2007 
Year of surveys:        
         Dataset 1 20- ‘04,‘06,‘07 ‘03,‘05,‘08,‘09 ‘03,‘05,‘07,‘09 ‘01 ‘03,‘05,‘08 ‘08,‘09 
         Dataset 2 20- ‘09,’10,‘11 ‘09,’10,‘11 ‘09,‘10 ‘09,‘10,‘11 ‘09,‘10,‘11 ‘09,‘10,‘11 
         Dataset 3 20- ‘11 ‘11 ‘11 ‘11 ‘11 ‘11 
Site depths m 34-35 37-39 28-30m 34-35 27-31 30-40 
Sediment mud 
content %(range) 80 (69-84) 55 (34-73) 78 (69-85) 84 (82-86) 28 (21-38) 32 (29-37) 

Mean current speed        
         Mid-water cm s-1 3.7 (17.5) 6 (34.6) 8.2 (29.9) 3.0 (10.1) 14.4 (53.8) 19.9(117) 
         Near-bottom cm s-1 3.5 3.5 8.1 3.2 15.4 19.0 
Range of feed inputs mt yr-1 2510-3289 1640-2239 2171-3918 100-2264 2104-4120 2631-3526 

Sampling stations 
(Dist. from cages) 

 
m 

0(×2),50, 
150,250,Ref 

0(×2),50, 
150,250,Ref 

0(×2),50(×2), 
100,150,Ref 

0(×2),25, 
50,75,100, 

150,Ref 

0(×2),50, 
200, Ref 

0(×2),50(×2), 
100(×2),150(×2), 
200(×2),250(×2), 

Ref 
 

 

4.3.2 Data analysis & characterisation 

Overall trends in biological and physico-chemical parameters are shown graphically for 

high and low flow sites in relation to distance from fish farm cages.  Shannon diversity (H’) and 

the AMBI (AZTI's Marine Biotic Index, Borja et al. 2000) were calculated from the biological 

dataset.  An additional continuous variable, “Enrichment Stage” (ES), was derived from the 

combined biological and physico-chemical parameters by a best professional judgement 

method described in Keeley et al. (2012b).  This approach enabled each sampling station to be 

classified into one of seven ES categories ranging from unimpacted natural conditions (ES 1) to 

extremely enriched azoic conditions (ES 7), with ES 5 representing the classical abundance 

“peak of opportunists” described by the PRM (Table 4-2). 

To assess compositional changes in the benthic assemblages, macrofaunal data were 4th 

root transformed and a resemblance matrix was created using S17 Bray-Curtis dissimilarities, 

with a dummy variable of 1 added to avoid over-dispersion from samples with zero, or near-

zero, abundance.  Differences were displayed using 2-dimensional multidimensional scaling 

(MDS, PRIMER v6 Clarke 2006) plots.  Samples were coded according to ES (1-7) and flow 

regime (low/high), and a second MDS bubble plot produced to graphically illustrate site 

distances from fish farm cages.  The taxa that best characterised the high and low flow 
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samples under natural conditions (ES 1) and highly enriched (peak abundance) conditions (ES 

5) were obtained using SIMPER analysis, with a 60% cut off for low contributing taxa. 

A resemblance matrix of the environmental data was created using D1 Euclidean 

distance.  The physical variables included: ‘Distance’, ‘Feed’, ‘Age’, ‘Current’, ‘Depth’ and 

‘%Mud’.  The physical attributes that best explained the differences between macrofaunal 

samples were compared by Spearman rank correlation using the BIOENV method in the BEST 

procedure (PRIMER v6).  Sample variables were specific to each sampling event (Year × Farm × 

Sample site), with the exception of current speed, which was farm-specific, i.e. the same 

current velocities were used for all sites at a given farm.  The assumption was made that 

hydrodynamic variation among stations within ‘farms’ was negligible (i.e. significantly less than 

differences between farms).   

Inter-relationships among variables were assessed, including specific evaluation of 

correlations with TFS values from Dataset 2.  This aspect included graphical comparison with 

established TFS relationships derived for northern hemisphere sites and described by Hargrave 

et al. (2008, 2010).  Changes in total macrofaunal abundance (N), number of taxa (S) and total 

biomass (B) were characterised in response to the ES variable using quantile regression splines 

(Koenker et al. 1994, Koenker 2007).  The 50th and 95th percentiles are displayed, which 

represent the value below which 50% and 95% of the data fall (respectively).  Optimum models 

were selected, fitted and displayed using the methods proposed by Anderson (2008a) and 

later adapted by Keeley et al. (2012b) for characterising enrichment gradients.  The ES score at 

which each of the variables peaked (i.e. achieved a maximum, or ‘X-optimum’) and the 

corresponding size of that peak (‘Y-max’) were similarly determined.  For each of the three 

macrofaunal variables, the ES response curves were graphically compared with the stylised 

response to increasing organic enrichment described by the PRM.  
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Table 4-2: Narrative criteria describing seven enrichment stages, used by experts for best professional 
judgement (BPJ) assessments. Modified from Macleod and Forbes (2004) and Pearson and Rosenberg 
(1978).   

ES General description Environmental characteristics 
1 Natural/pristine conditions Environmental variables comparable to unpolluted/ un-

enriched pristine reference site. 

2 Minor enrichment: Low level 
enrichment. Can occur naturally or 
from other diffuse anthropogenic 
sources. 'Enhanced zone' 

Richness usually greater than for reference conditions.  
Zone of 'enhancement' – minor increases in abundance 
possible. Mainly compositional change.  Sediment 
chemistry unaffected or with only very minor effects. 

3 Moderate enrichment: Clearly 
enriched and impacted. Significant 
community change has occurred. 

Notable abundance increase, richness and diversity 
usually lower than reference. Opportunistic species (i.e. 
capitellids) begin to dominate.   

4 Major enrichment 1: Transitional 
stage between moderate effects 
and peak macrofauna abundance. 
Major community change. 

Diversity further reduced, abundances usually quite 
high, but clearly sub-peak.  Opportunistic species begin 
to dominate, but other taxa may still persist. Major 
sediment chemistry changes. 

5 Major enrichment 2: Highly 
enriched. State of peak 
macrofauna abundance.  

Very high numbers of one of two opportunistic species 
(i.e. capitellids, nematodes).  Richness very low.  Major 
sediment chemistry changes.  Bacteria mat (Beggiatoa) 
usually evident.  H2S out-gassing on disturbance. 

6 Major enrichment 3: Transitional 
stage between peak and azoic.  

Transitional stage between peak and azoic. Richness & 
diversity very low. Abundances of opportunistic species 
severely reduced from peak, but not azoic. Total 
abundance low but can be comparable to reference. 
%OM can be very high. 

7 Severe enrichment: Azoic/abiotic; 
sediments no longer capable of 
supporting macrofauna. Organics 
accumulating. 

None, or only trace numbers of macrofauna remain. 
Some samples with no taxa. Spontaneous out-gassing; 
Beggiatoa usually present but can be suppressed. %OM 
can be very high. 

 

 

4.4 Results  

4.4.1 Flow-specific responses to enrichment 

From the long-term study (Dataset 1 & 2), un-enriched reference sediments (>1km from 

fish cages) from the two high flow sites (i.e. >15 cm s-1, Farm-D and -E) had a coarser grain size 

(less mud and more sand, Table 4-1) and a lower sediment organic content (mean 3.2 %, range 

2.5-4.2 %OM) than the low flow sites (typically ~5 %OM, Figure 4-2).  Macrofaunal 

communities at reference stations were more diverse and abundant at the high flow stations, 

with approximately twice the number of taxa (S) and 2-3 times the total infaunal abundance 

(Figure 4-3).   
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Beneath the cages at the high flow farms (E & F), %OM was only slightly elevated (~1 - 4 

%), whereas the low flow sites often had %OM levels of 10 – 20% (e.g. Figure 4-2).  Average 

total abundances (N) beneath the cages at the high flow sites peaked at 39,877 (SE=11,259, 

n=3) individuals per core (Farm E, 2011), compared to ~4,398 (SE=1,286, n=3) individuals per 

core (Farm-A, 2011) for the low flow farms.  The macrofaunal community found directly 

beneath the low flows sites was generally impoverished (near azoic), with S (1-3 taxa) reduced 

by >90 % compared with corresponding reference sites (Figure 4-3).  By contrast, S at the high 

flow cage and Gradient stations was typically high, and was only substantially compromised 

(i.e., by >50 % compared with reference conditions) when total abundances were extreme (i.e. 

>10,000 per core), at which point low-moderate richness was still maintained (S=15-20, Farm-

E, Figure 4-3).   

Diversity (H’) and AMBI measures were both influenced by the presence of high numbers 

of opportunists, and consequently provided a more sensitive measure of the enrichment 

gradient (50-200 m away) than did S or the geochemical measures.  Effects to N, H’ and AMBI 

were readily detected out to 200m from the cages, at a point where S, %OM, redox and TFS 

were comparable to reference site values (Figures 2 & 3, Farms E and F).  By contrast, at the 

low flow sites, all of the variables appeared largely unimpacted beyond 50-100 m from the 

cages.  Similar trends were evident in overall enrichment stage (ES, Figure 4-3), where Farm E 

and to a lesser extent, Farm F were generally enriched 100-200 m away from the cages relative 

to the reference sites.  Hence, low flow sites were characterised by a benthic footprint that 

was highly localised but severe in magnitude, whereas high flow sites were less enriched 

beneath cages, but the overall footprint size was greater. 

Natural / un-enriched sediments at the high flow sites were associated with (in reducing 

order of importance) greater densities of nematodes, Sabellidae, tanaids, Amphipoda, 

Spiophanes kroyeri, Nucinella maoriana, Nemertea, Nucinella maoriana, Goniada sp., 

Maorithyas marama, Melitidae and Heteromastus filliformis (Table 4-3).  Several of these taxa 

were absent from the low flow sites under un-enriched conditions.  On the other hand, under 

natural conditions, the low flow sites were characterised by greater abundances of Nucula 

gallinacean, Ennucula strangei and Theora lubrica; in fact, the latter two species were only 

recorded at low flow sites.   

Macrofaunal composition changed markedly with increased enrichment (i.e. increased ES 

values), with both high and low flow groups reflecting the enrichment associated with 
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increased proximity to fish cages (Figure 4-4a, b).  At comparable high enrichment stages (i.e. 

ES≈5) the differences between the high and low flow sites were mainly due to proportional 

abundances of nematodes and Capitella capitata, with both taxa being more numerous at the 

high flow cage sites (Table 4-3).  Abundances of Prionospio sp. Phyllochaetopterus socialis, 

Sphaerosyllis sp., Armandia maculata and Neanthes cricognatha were also higher at the high 

flow than at the low flow sites.  At ES 5, nematodes tended to dominate high flow sites, 

whereas C. capitata was the dominant species at the low flow sites.  There was no evidence of 

the high flow sites progressing beyond ES 5 towards an azoic state (ES 6-7), despite feed usage 

levels being as high (see Table 4-1), and in some cases, higher than at low flow sites where ES 

6-7 was clearly evident.  In contrast, as the seabed condition beneath cages at low flow sites 

tended towards azoic the abundance of opportunistic taxa decreased (Figure 4-4a). The 

relatively low within-group similarity for the low-flow ES 5 samples (40.4%, Table 4-3) primarily 

reflects the large differences in the relative abundances (i.e. 100’s to 1000’s) of the two 

opportunistic taxa that dominated these samples, as opposed to differences in species 

composition per se.   

The single physical variable that best explained the observed macrofaunal groupings at 

these sites (Figure 4-4b) was ‘Current’ (ρw = 0.23), followed by ‘%Mud’ (ρw = 0.19) and 

‘Distance’ (ρw = 0.17), with the best combination of variables being current speed and %Mud 

(ρw = 0.28).  Overall, Figure 4-4a,b suggests two main gradients: (i) increasing current and 

decreasing mud content from bottom left to top right, and (ii) increasing enrichment and 

reducing distance from cages from bottom right to top left. 
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Figure 4-2: Mean values (±SE) obtained for %OM, redox potential and total free sulfides (TFS) from 
Dataset 2 (for redox and TFS) and Dataset 1 (combined for %OM) averaged across years, plotted in 
relation to distance from the cages for each farm (A-F). 

 

Figure 4-3: Mean values (±SE) obtained for %OM, number of taxa (S), total abundance (N), ‘Non-Op’ 
(fraction of non-opportunistic taxa in sample, i.e. excluding C. capitata and nematodes), H’, AMBI and 
overall Enrichment Stage (ES) from Datasets 1 and 2 combined (i.e., average across years), plotted in 
relation to distance from the cages for each farm (A-F). 
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Table 4-3: Individual taxa that best characterise the groups comprising ES 1 and ES 5, high and low flow 
data listed along with average abundances, based on SIMPER analysis of 4th-root transformed data.   

 Low flow   High flow   
ES 1 Average similarity: 60.94  Average similarity: 48.48  
 Species Av.Abund Cum.% Species Av.Abund Cum.% 
 Ostracoda 1.99 10.97 Paraonidae 2.06 6.70 
 Cumacea 1.58 19.78 Heteromastus filiformis 1.61 11.72 
 Ennucula strangei 1.51 28.16 Prionospio sp. 1.37 16.71 
 Cirratulidae 1.48 36.45 Cirratulidae 1.45 21.68 
 Lumbrineridae 1.40 44.25 Cumacea 1.48 26.52 
 Paraonidae 1.27 51.07 Nematoda 1.62 31.16 
 Nucula gallinacea 1.55 57.75 Sphaerosyllis sp. 1.24 35.32 
 Ophiuroidea 1.25 64.42 Maldanidae 1.20 39.37 
    Tanaid sp. 1.19 42.61 
    Nemertea 0.97 45.84 
    Ostracoda 1.20 49.05 
    Sabellidae 1.19 52.24 
    Spiophanes kroyeri 0.99 54.97 
    Nucinella maoriana 0.95 57.46 
    Goniada sp. 0.89 59.81 
    Ophiuroidea 0.90 62.09 
ES 5 Average similarity: 40.42  Average similarity: 54.18  
 Species Av.Abund Cum.% Species Av.Abund Cum.% 
 Capitella capitata 4.89 54.52 Nematoda 8.06 30.11 
 Nematoda 2.82 71.09 Capitella capitata 6.82 55.05 
    Prionospio sp. 1.51 60.25 
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Figure 4-4: Multidimensional scaling (MDS) ordination of benthic macrofaunal assemblages, contrasting 
those from 3 low flow (Farm A-C) and 2 high flow farms (Farms D & E), based on Bray-Curtis similarities 
of 4th root transformed abundances: a) MDS ordination with symbols codes according to ES, b) Bubble 
overlay on same MDS indicating distance of sample from cages, overlaid with Pearson correlation vector 
showing relationship to associated environmental variables. 
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4.4.2 Relationship between environmental variables and TFS 

Figure 4-5 summarises the relationships between three macrofauna indicators (S, N and 

H’), ES and redox, with TFS from Dataset 2, and is overlaid with the corresponding 

relationships identified in Hargrave et al. (2008, 2010).  The geochemical relationship between 

redox and TFS compared favourably between the studies (Figure 4-5e), and was also consistent 

for low and high flow sites within our study.  There was generally a good fit between ES and 

TFS (Figure 4-5d), with the best models being 2nd and 3rd order polynomials.  Values of S and H’ 

at low flow sites were generally not as high in this study as might have been predicted from 

established models (Figure 4-5a & c), and decreased with increasing TFS, in a manner similar to 

that described by Hargrave et al. (2010).  However, S at the high flow sites remained largely 

unaffected by TFS until levels approached 2000 µM, at which point there was a clear reduction 

in number of taxa.  As a result, it was not possible to fit a meaningful/ reliable model to the 

data.  Consequently, only categorical criteria can be applied to the relationship between TFS 

and S, with a 50 % reduction in taxa being associated with levels of approximately 1000 µM 

TFS, at low flow sites, and 2000 µM at high flow sites.  This is broadly consistent with the 

threshold for reduction in S of 1025 µM proposed by Hargrave (2010).   

Total abundance (N) increased in an exponential manner with increasing TFS 

concentrations (Figure 4-5b).  This was particularly evident at the high flow sites, where 

abundance increased dramatically at TFS concentrations between 500-2000 µM, peaking at 

>20,000 individuals per core at concentrations >6,000 µM, with no signs of a decline.  The 

relationship provided by Hargrave et al. (2008 and references therein), utilised N values 

exclusive of first-order opportunistic taxa, and these were similarly removed from our dataset 

for comparative purposes (denoted N*, Figure 4-5c).  In contrast to Hargrave et al., the N* 

response at the low and high flow sites showed no signs of reduction up until TFS 

concentrations of 1000 µM; conversely, at the high flow sites N* actually increased slight over 

this TFS range.  At TFS values >1500 µM a sharp decline in N* was evident at the low flow sites, 

but the same decline was not apparent in the high flow data.   
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Figure 4-5: Results for: a) No. taxa (S), b) total abundance (N, note the logarithmic scale), c) Abundance 
of non-opportunistic taxa (N*), d) Shannon Diversity (H’), e) enrichment stage (ES) and f) redox potential 
plotted against TFS on a logarithmic scale.  Utilises Dataset 2, open circles denote low-flow data, closed 
circles denote high flow data. Black solid lines represent the empirical relationships given by Hargrave et 
al. (2008, 2010) and Brooks & Mahnken (2003), dashed and dotted lines indicate best-fit least squared 
regression for high and low flow data, respectively. 

 

 

4.4.3 Effect of flow regime on abundance, species richness and biomass (SNB): 

comparison with Enrichment Stage (ES) and the Pearson-Rosenberg Model (PRM) 

At the low flow sites, abundance (N) increased gradually with increasing enrichment 

stage, through ES1-4 before peaking at 7,488 individuals per core (ES 4.6, based on the 95th 

percentile regression splines; Figure 4-6).  A similar pattern was evident at the high flow sites, 

although abundances were generally much greater, with densities peaking at 81,108 

individuals per core.  However, the decline observed in N (post-peak, towards ES 6 and 7) at 

the low flow sites was not evident under high flow conditions, with the pattern following that 
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shown by the macrofaunal composition changes previously described (see Figure 4-4a).  The 

response of S was comparable at low and high flow sites, with a small initial increase at around 

ES 2 followed by a progressive decline towards ES 7 (azoic).  However, as previously identified, 

S was generally greater at the high flow sites (peak = 53 taxa as opposed to 37 taxa for low 

flow sites).  

At the low flow sites there were two biomass (B) peaks evident along the enrichment 

gradient (Figure 4-6); the initial peak at around ES 2 reflected a naturally diverse community, 

containing a few larger bodied species (e.g. bivalves, ophiuroids, nereid polychaetes).  The 

second, slightly larger peak of 1.64 g core-1 corresponded to the peak observed in N (ES 4.7) 

and was predominantly comprised of opportunistic species (i.e. capitellids and nematodes).  

Between these peaks B was suppressed, reflecting the absence of the larger bodied 

individuals.  In contrast, B at the high flow sites increased progressively (to >5 g core-1 ) as the 

overall enrichment level increased, up until ES 5, and was tightly coupled with the near-

exponential increase in N (Figure 4-6, Table 4-3).  At peak densities, the total macrofaunal 

biomass at the low and high flow sites was 124 and 378 g m-2, respectively, most of which 

comprised nematodes and capitellids.  The average weights that were determined for 

individual nematodes and capitellids were 0.05 mg (SE=0.01) and 0.87 mg (SE=0.28), 

respectively.   
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Figure 4-6: Relationships of total abundance (N), number of taxa (S) and total biomass (B), with ES for 
low flow (left column) and high flow sites (central column) and for the traditional PRM model (right 
column).  Number of taxa and abundance results from Datasets 1 & 2 combined, and biomass results 
from Dataset 3.  Regression splines for the 50th (thin dashed lines) and 95th (thicker solid lines) 
percentiles with associated estimated optimum (numerically derive peak) indicate by vertical lines. 

 

 

4.5 Discussion 

This study clearly shows substantial differences in successional response along spatial 

enrichment gradients due to current speed and the associated physico-chemical conditions.  

Macrofaunal abundances (N) beneath salmon farm cages at high flow sites were nearly an 

order of magnitude higher than at low flow sites, and to our knowledge are the highest 

reported in published literature.  In a recent study of (10) northern European marine farming 

sites Borja et al. (2009b) described maximum faunal densities of only 70,000 m-2, whilst a 
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meta-analysis of benthic enrichment effects comprising 41 independent studies by Kalantzi 

and Karakassis (2006) reported abundances of up to 500,000 m-2.  The maximum densities of 

20,000 individuals’ per core observed in this study (Figure 3) equate to approximately 1.5 

million individuals per m2.  Nematodes comprised a significant component of the taxa 

recorded, but even with nematodes removed, densities still occasionally exceeded 1 million 

individuals per m2, principally due to C. capitata.  Different populations of capitellids can vary 

in body size and tolerance of TFS (Gamenick et al. 1998), with the populations encountered in 

this study appearing to be of the larger TFS tolerant variety.  Based on average dry weights of 

~0.9 mg per individual (as measured), capitellid worms can represent a significant component 

of the benthic biomass.   Nematodes were less important component as their average 

individual biomasses were an order of magnitude less than for capitellids.  

Extreme abundances of one, or a few, opportunistic taxa is a useful feature for 

elucidating enrichment effects, as the strong peak provides an important reference point along 

the enrichment gradient (Pearson & Rosenberg 1978, Glémarec & Hily 1981, Keeley et al. 

2012a) and is used as a characterising feature by most diversity measures (e.g. H’) and biotic 

indices (e.g. AMBI and BQI, Benthic Quality Index; Rosenberg et al. 2004).  However, at high 

flow sites, very high abundances often occurred in conjunction with moderate-to-high species 

richness.  A similar macrofaunal response has been described for a high energy open-ocean 

environment, where an elevated supply of organic material was considered to have a 

stimulatory effect, as opposed to the adverse eutrophic effect that is commonly associated 

with poorly flushed systems (Maurer et al. 1993).  Under these conditions, the opportunistic 

taxa have the potential to ‘overwhelm’ the less-dominant taxa in biotic index calculations, and 

therefore, the environmental indicators need to be interpreted with caution, particularly with 

respect to consideration of S.  

The observation that %OM was naturally low at the high flow sites, and remained low in 

the presence of relatively high levels of farm production was not unexpected, as high current 

velocities are associated with lower carbon sedimentation rates (Findlay & Watling 1997, 

Cromey et al. 2002b, Giles et al. 2009).  Variations in the extent to which %OM accumulates 

have also been associated with other factors related to near-bottom hydrodynamic conditions, 

such as sediment composition (Kalantzi & Karakassis 2006, Papageorgiou et al. 2010) and site 

exposure (Aguado-Gimenez et al. 2007, Macleod et al. 2007, Nickell et al. 2009).  Consistent 

with Nickell et al. (2009), our study clearly shows that community composition can be 
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markedly influenced (in this case to levels not previously considered), even when there is little 

or no direct evidence of organic matter accumulation (i.e. evident as %OM).  Such findings 

reinforce previous suggestions that macrofaunal responses are a more sensitive indicator of 

the overall impact of enrichment than %OM or sediment chemistry variables (e.g., Carroll et al. 

2003, Maldonado et al. 2005), and are especially important for reliable monitoring and 

assessment in well-flushed environments.   

The Findlay and Watling (1997) oxygen supply model partly explains these biological 

conditions, demonstrating how impact, as a result of organic enrichment, can be intrinsically 

linked to carbon flux and oxygen delivery rates.  The model shows how a strong oxygen supply 

prevents anoxia and associated build-up of H2S in surface sediments, and in doing so permits 

greater benthic degradation of the waste stream (Findlay & Watling 1997).  In the high flow 

sites in this study, the benthic community responded to the relatively unlimited supply of 

organic particulates.  However, as a result of the strong hydrodynamics there is effectively no 

net accumulation, and the physical process of smothering and the subsequent chemical effects 

on the sediment matrix, which are commonly associated with low-flow muddy sites (Lumb 

1989), are kept to a minimum.  The same hydrodynamic processes maintain relatively coarse 

sediments, which have greater oxygen penetration and can support higher benthic diversity 

than finer silty sediments (Apostolaki et al. 2007, Papageorgiou et al. 2010).  We propose that 

the seemingly anomalous densities of opportunistic taxa observed at high flow sites in the 

present study are a product of three key environmental factors: i) minimal accumulation of 

and smothering by fine sediments, enabling naturally coarser sediments to be maintained, ii) 

maintenance of aerobic conditions in near-surface sediments as a result of water movement 

and the coarse sediment particle size, and iii) an abundant food supply enabling the 

proliferation of opportunistic taxa.  The combined effect of these factors explains why some 

commonly applied measures of organic enrichment such as total free sulfides (TFS), redox, S, 

and d (Margalef’s richness) are less sensitive indicators in high flow environments (Keeley et al. 

2012a). 

More detailed analysis of the relationships between biological and geochemical 

indicators of enrichment and comparisons with other studies further highlights the mismatch 

in the responses at high flow sites.  The relatively strong relationship between TFS and ES 

generally supports the inference that TFS is a good proxy for overall enrichment stage 

(Hargrave, 2010); however, the 18-29 % of unexplained variation in the models for our data 

(R2=0.82 and 0.71, Figure 4-5d) probably reflects the influence of the other variables that are 
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used in determining ES (Keeley et al., 2012a).  Hargrave et al. (2008, 2010 and references 

therein) describe the enrichment gradient according to the oxic state and TFS concentrations 

in the sediments.  The main features described were for a normal range of diversity at <300 

µM and a transition from oxic to hypoxic conditions (‘sub-hypoxic conditions’) between 1300 

to 1500 µM TFS, at which point Beggiatoa mats and opportunistic species appear.  

Concentrations of 2500 and 3000 µM TFS were regarded as the point at which TFS intolerant 

species disappeared and tolerant species began to dominate, and then continued to increase 

up until 5000 µM, beyond which all species decreased in abundance and were depauperate 

beyond 6000 µM (Brooks & Mahnken 2003a, Hargrave et al. 2008).  Although many of these 

features were evident in the present study in a general sense, there were some notable 

deviations.  At the high flow sites, opportunistic species became dominant at much lower TFS 

concentrations (700-1000 µM) and continued to increase, seemingly unabated, peaking at 

6000 to 7000 µM.  The abundance and richness of non-opportunistic taxa at high flow sites 

were largely unaffected until approximately 1500 µM TFS, at which point a reasonably abrupt 

decline occurred in both respects.  The relationships with TFS at low flow sites were broadly 

comparable to those described by (Brooks & Mahnken 2003a), however, rather than 

increasing between 3000 and 5000 µM TFS, abundances of non-opportunists were generally 

lower and highly variable (0-100 individuals/core).   

Some of the discrepancies observed in our study could be attributed to a specific 

methodological difference.  The comparable TFS values provided in Hargrave et al. (2008, 

2010) were derived following the methods of Wildish et al. (2004), in which the top 2 cm of the 

sediment profile is targeted by driving the 5-cc syringe into the sediments on a 45 degree 

angle.  In our study, TFS was determined from the surface 4.5 cm of the sediment, thereby 

incorporating deeper sediments, which are presumably more highly reduced and have greater 

TFS levels than the shallower sediments sampled by Hargrave et al.  As such, our study may 

overestimate TFS levels by comparison.  The fact that N declines abruptly at relatively high TFS 

levels at our low flow sites compared to that proposed by Hargrave et al. would tend to 

support this assertion (Figure 4-5b).  That said, irrespective of the potential methodological 

differences, it is still important to note that total N was positively correlated with increasing 

TFS at high flow sites up to ~2000 µM, and that abundances of non-opportunistic taxa either 

remained unchanged (at low flow sites) or increased only slightly (at high flow sites) until TFS 

reached ~1500 µM.  Collectively, these findings highlight that TFS is not necessarily a reliable 

means to infer biological condition, and as such, concur with earlier findings of Henderson and 
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Ross (1995).  The findings also emphasize the importance of understanding fine-scale depth 

variations in both biological activity and physico-chemical conditions.   

Comparing the observed trends in abundance (N), species richness (S) and biomass (B) at 

high and low flow sites to the accepted ecological responses to enrichment described by the 

PRM further highlights flow-specific differences.  Aspects of the organic enrichment response 

gradient defined in the PRM are evident in both the high and low flow data sets, but there are 

significant deviations under each scenario.  Abundance and richness data for low flow sites 

were, on the whole, consistent with the expectations associated with the enrichment gradient 

of the PRM.  However, the dominant peak in the B curve corresponded to the peak in N, as 

opposed to the peak in S, as described by Pearson and Rosenberg (1978).  Some relatively high 

B values were recorded in the early stages of enrichment (i.e. ES 2-2.5) due to the presence of 

a few larger bodied organisms as the PRM would propose and which is typical of a more 

diverse, healthy fauna. 

At the high flow sites, deviations from the PRM were more pronounced, with 

abundances increasing exponentially with ES but few signs of a subsequent decline, despite 

comparatively high farm production levels and evidence of degraded biogeochemical 

properties in the sediments (i.e. TFS and redox).  It may be that the sites are yet to be exposed 

to sufficient flux of carbon; however, it is also conceivable that the physical and biological 

conditions described above result in increased resilience within the natural communities to the 

macrofauna ‘collapse’ which would normally typify ES 6-7.  At the high flow sites, B increased 

dramatically in response to exponential increases in N, and the associated changes in 

community composition.  Although biomass patterns can be influenced by chance sampling of 

sparsely-distributed large bodied species (Warwick & Clarke 1994), we believe the patterns in 

our data are reliable, as the samples reflect the integrated results from replicated samples 

across three surveys and two (high flow) or four (low flow) sites.  Consequently, it appears that 

the assimilation capacity of the benthos at high flow sites may be considerably greater than at 

low flow sites, and that the maximum capacity may be related to macrofaunal community 

abundance.  This finding is again in contrast to Macleod et al. (2006, 2007) and Mayor and 

Solan (2011) who found exposed or high flow sites to have a lower assimilation capacity due to 

deficiencies in the functional traits of the resident organisms.  However, in our study the 

communities at the high flow sites often naturally contained low to moderate abundances of 

naturally occurring opportunistic taxa, such that the functional benefits of these species (i.e. 
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their ability to breakdown organic material) may be a key factor underpinning the observed 

resilience.   

 

4.6 Conclusions and implications 

Significantly different organic enrichment effects occur in environments with differing 

water flow regimes, and in high flow locations, lead to macrofaunal responses that deviate 

from established conceptual models such as the PRM.  Macrofaunal assemblages in high flow 

environments appear relatively resilient to enrichment, being able to support extreme 

abundances of opportunistic taxa while simultaneously maintaining moderate species richness.  

The dispersive nature of high flow environments is clearly an important determinant of 

ecological responses to enrichment, and will strongly influence the ecological quality status 

that can be inferred from different environmental indicators.   

Percentage OM is a particularly poor indicator of enrichment at high flow sites, and 

geochemical variables such as redox and TFS can also be poor predictors of biological 

condition, and therefore such variables should be routinely validated against a full suite of 

environmental variables inclusive of macrofaunal analysis.  Despite flow-related differences in 

some biological responses at high TFS, abrupt changes in taxa richness and abundance were 

evident at >1500 µM TFS, which corresponds well to an established threshold for the transition 

between oxic and hypoxic conditions (Hargrave et al. 2008)et al. 2008).  Further work needs to 

be conducted into how TFS and macrofauna are distributed throughout the surface sediments 

in high flow environments, as this will further inform decisions regarding the most appropriate 

sampling methods.  Although relatively expensive and time consuming, this study has shown 

that evaluation of macrofaunal composition and the application of related diversity measures 

clearly remain the most reliable means of identifying enrichment effects.  This appears to be 

especially true at high flow sites, and when attempting to ascertain the spatial extent of 

impacts where discriminating between natural and impacted conditions is particularly 

important. 

A key characteristic of the flow regime is that it influences both the per unit area severity 

of the enrichment effect, and the spatial scale across which effects are discernible.  Fish farm 

biodeposits, or any organic-rich waste for that matter, may have a severe impact at a low flow 
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site (e.g. lead to azoic conditions), but the impact is typically contained to within tens of 

metres of the source.  By contrast, at a high flow site, the same organic input will lead to a 

benthic effect that is locally less severe, but may be measureable across scales of hundreds of 

metres.  Moreover, at highly dispersive sites there is increased potential for far-field effects 

(e.g. deposition in quiescent areas outside of the immediate benthic footprint), and this is an 

issue that needs more attention.  Additionally, high flow sites have been associated with 

relatively unique communities that can take longer to recover with cessation of farming 

compared with more conventional low flow sites (e.g., Hall-Spencer & Bamber 2007).  

Therefore, from an environmental management perspective, the relative merits of the 

different management strategies must invariably be assessed on a case by case basis.  From an 

aquaculture production perspective, the results suggest that high flow locations may be more 

resilient to impact for a number of reasons, with this study showing that greater waste loads 

can be assimilated by the benthos at such locations, potentially enabling production to be 

increased while maintaining acceptable levels of environmental quality.   
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CHAPTER 5  

 
PREDICTIVE DEPOSITIONAL MODELLING (DEPOMOD) 
OF THE INTERACTIVE EFFECT OF CURRENT FLOW 
AND RESUSPENSION ON ECOLOGICAL IMPACTS 
BENEATH SALMON FARMS 

 

 

Preface: 

This chapter focusses on our ability to predict enrichment effects by testing, and subsequently, 
building on the utility of an existing depositional model (DEPOMOD).  The motivation to 
undertake this work arose because: i) confident model application is contingent upon regional 
validation, which is especially important where the hydrodynamic properties are relatively 
unique, and ii) the links between depositional flux rates and observed ecological effects are 
poorly described.  So in this chapter I evaluate the strength of the link between model 
predictions and observed ecological responses by validating the model at the six study sites.  I 
also develop empirical models to convert between predicted flux and observed effects for 
dispersive (high flow) and non-dispersive (low flow) sites, and in doing so provide a novel 
insight to scientific understanding of the role of seabed particle re-suspension. 

 

This work has been published in a refereed journal and has been adjusted to a standard format 
for the thesis, and as such there may be minor differences in the text, figures and tables 
compared with the published version. The citation for the original publication is: 

 

Keeley NB, Cromey CJ, Goodwin EO, Gibbs MT, Macleod CM 2013. Predictive depositional 
modelling (DEPOMOD) of the interactive effect of current flow and resuspension on 
ecological impacts beneath salmon farms. Aquaculture Environment Interactions 3, 
275-291. 
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5.1 Abstract 

Sediment resuspension is an important factor in controlling the impact of any localised point 
source impacts such as salmon farms; at high flow (dispersive) sites resuspension can 
significantly reduce potential effects.  DEPOMOD is widely used to predict localised seabed 
impacts and includes an optional flow-related resuspension module. This study examined the 
observed impacts at five farms with contrasting flow regimes to evaluate the role of modelled 
resuspension dynamics in determining impacts. When resuspension was included in the 
model, net particle export (i.e. no significant net downward flux of organic material) was 
predicted at the most dispersive sites.  However, significant seabed effects were observed 
suggesting that although the model outputs were theoretically plausible they were 
inconsistent with the observational data.  When the model was run without resuspension the 
results were consistent with the field survey data.  This retrospective validation allows a more 
realistic estimation of the depositional flux required, suggesting approximately twice the flux 
was needed to induce an effect level at the dispersive sites equivalent to that at the non-
dispersive sites.  Moderate enrichment was associated with a flux of ~0.4 and ~1 kg m-2 yr-1, 
whilst highly enriched conditions occurred in response to 6 and 13 kg m-2 yr-1, for low and 
dispersive sites respectively.  This study shows that the association between current flow, 
sediment resuspension and ecological impacts is more complex than presently encapsulated 
within DEPOMOD. Consequently, where depositional models are employed at dispersive sites 
validation data should be obtained to ensure that the impacts are accurately predicted.  
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5.2 Introduction 

Aquaculture, and in particular, sea-cage fish farming, is a significant primary industry that 

is undergoing rapid expansion worldwide.  The immediate and obvious environmental impacts 

associated with finfish farming are well documented (e.g., Gowen & Bradbury 1987, Brooks et 

al. 2002, Brooks & Mahnken 2003a, Kalantzi & Karakassis 2006).  Seabed effects tend to be 

localised and are typically routinely monitored with the results used to regulate the intensity 

of the aquaculture activity (Wilson et al. 2009).  Depositional models have been proven to be a 

useful tool for both predicting and managing seabed effects, as they combine physical and 

behavioural properties of water and particles with farm configuration and production 

parameters to predict the distribution and intensity of waste products (Cromey et al. 2002a).  

In New Zealand, as in many other Southern Hemisphere countries, caged fish-farming is a 

developing industry and accurately predicting impacts and ensuring that farms are properly 

situated are critical steps in the planning and permitting process.  

The numerical algorithms that describe the physical processes underpinning the 

advection, dispersion and accretion of particles in most deposition models are valid across a 

wide range of environments, provided the model boundary conditions are adequately 

described.  DEPOMOD (Cromey et al. 2002a) is probably the most established and widely used 

depositional model for the purposes of predicting salmon farm effects, largely because it has 

been proven in a wide range of environments and is considered to be robust and credible 

(SEPA 2005, ASC 2012).  Some of the key input parameters that are required, such as 

observations of current dynamics, bathymetry and basic farming practice information (e.g. 

cage layout and feed characteristics and input rates) are relatively easy to obtain, whilst others 

can be more difficult to quantify (e.g. feed wastage, critical erosion thresholds).  In these latter 

cases, default data can be employed as long as the model is not overly sensitive to these 

parameters.  As a result it is possible to transfer a depositional model that has been developed 

in one environment to another region, often with only minor alterations.  For example, 

although DEPOMOD was developed for salmon farming in cool temperate systems, it has been 

applied successfully to cod farming (CODMOD, Cromey et al. 2009), and to both warm-

temperate culture of sea bream and bass (i.e. MERAMOD, Cromey et al. 2012) and more 

recently tropical fish-culture (i.e. TROPOMOD).  The validation process for these new 

applications was relatively straightforward and only required site specific data and the 
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inclusion of a few new processes (e.g. wild fish feeding) - indicating that the physical 

components were on the whole comparable and transferable. 

Although the primary components of the models are generally transferable, the 

relationship between depositional flux and ecological response can be strongly influenced by 

physical environmental properties, and is therefore site-specific.  Sediment type (i.e. sand 

versus mud, (Kalantzi & Karakassis 2006, Papageorgiou et al. 2010) and flow regime (Macleod 

et al. 2007, Mayor & Solan 2011, Keeley et al. 2013a) will each influence ecological responses.  

Dispersive sites (i.e. with strong currents) will respond characteristically differently to organic 

enrichment and are potentially more resilient to benthic effects (Frid & Mercer 1989, Borja et 

al. 2009b, Keeley et al. 2013a), with the total seabed area measurably affected by farming, 

hereafter termed the ‘footprint’, often being noticeably larger and more diffuse (Keeley et al. 

2013a).  Nevertheless, strong biological responses can and do occur at dispersive sites 

(Chamberlain & Stucchi 2007), as evidenced by very high macrofaunal abundances and 

biomass in the immediate vicinity of the cages (Keeley et al. 2012a). These differences can 

largely be attributed to the stronger currents, which increase initial particle dispersal (Cromey 

et al. 2002b), and provide an increased oxygen supply buffering against near-bottom anoxia 

(Findlay & Watling 1997). Presumably, greater resuspension also plays an important role, re-

entraining and re-distributing particles post-settlement and thereby limiting excessive organic 

accumulation and related ecological effects (Keeley et al. 2013a).  However, the validity of 

including resuspension in depositional models remains in question, as its’ inclusion can 

strongly influence the results and the optimum critical velocity threshold (vr) to use is 

debatable (Chamberlain & Stucchi 2007). 

The ability to clearly and quantitatively link predictions of depositional flux to predictions 

of ecological effects would greatly increase the usefulness of depositional models.  Connecting 

the mathematical theory and the ecology is essential if the models are to be used for 

managing farms in relation to benthic effects, i.e. setting maximal and optimal feed levels and/ 

or fine scale positioning of cages.  Studies have been conducted with respect to relatively 

unique and sensitive communities such as Maerl beds (Sanz-Lazaro et al. 2011) and seagrass 

habitats (Apostolaki et al. 2007, Holmer et al. 2008), or assessing lower tolerance thresholds, 

where impacts are initially observed (Hargrave 1994, Findlay & Watling 1997, Chamberlain & 

Stucchi 2007, Cromey et al. 2012).  These studies suggest ecological effects can be observed 

across a broad range of depositional flux levels spanning two orders of magnitude (i.e. 
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between 0.1 and 10 kg solids m2 yr-1), and the results are difficult to compare due to 

differences in the enrichment criteria or ecological thresholds that have been adopted.  

Additionally, efforts to relate deposition to benthic responses empirically, have focussed on a 

relatively limited suite of biological indictors, e.g. total macrofaunal abundance, the infaunal 

trophic index (ITI) (Cromey et al. 2002a), and biomass, Shannon-Weiner diversity (H’) and the 

biological fraction index (BFI) (Cromey et al. 2012).  However, relationships with other biotic 

indices that can be more effective for discerning benthic enrichment status are yet to be 

established (e.g. AMBI, Multivariate-AMBI and BQI; Borja et al. 2009b, Keeley et al. 2012a).  

Hence, the main aim of this study was to utilise a long-term benthic monitoring dataset 

to develop empirical models that can be used to convert between predicted flux and observed 

effects for dispersive and non-dispersive sites, and in doing so contribute to our understanding 

of the role of resuspension.  As a component of this study, it was also necessary to evaluate 

the strength of the link between model predictions and observed responses by examining the 

fine-scale differences between the overall size, shape and intensity in the predicted and 

observed depositional footprints.   

 

5.3 Methods 

5.3.1 Study sites and environmental data 

The study uses data obtained from annual compliance monitoring program over 12 years 

(1998 – 2010) at six salmon farms located within the Marlborough Sounds, New Zealand 

(Figure 5-1).  The farms were situated in comparable depths (27 – 40 m) and spanned a range 

of ages (1 and 25 years of operation, Table 5-1).  Four of these farms (A – D) had mean current 

velocities below 9 cm s-1 at 20 m water depth (approximately mid-water), and these are 

hereafter referred to as ‘non-dispersive’ sites, whereas the other two (E and F) had mean 

current velocities in excess of 15 cm s-1, and are referred to as ‘dispersive’ sites.  All of the sites 

are situated over unconsolidated sediments; the non-dispersive sites tending to be sandy-mud 

(55 – 91 % mud), and the dispersive sites muddy-sand (28 – 32 % mud; Table 5-1).  All of the 

sites had, at some point, displayed strong enrichment gradients with proximity to the farms 

(Keeley et al. 2012a, Keeley et al. 2013a).  The analyses presented here were conducted on a 
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deliberately broad range of scenarios, whereby the years that were used for each farm were 

selected to span a wide cross-section of total annual feed inputs and therefore presumably, 

associated levels of impact (Table 5-1).   

Sediment samples were collected from directly beneath cages, and at stations along an 

enrichment gradient extending away from the cages (25 – 250 m), as well as at references 

stations.  Macrofauna were sampled using replicate (n = 2, 3 or 5, depending on year of survey) 

Perspex sediment corers (13 cm diameter, 0.013 m2) deployed to a depth of 10 cm.  Core 

contents were sieved to 0.5 mm, and the retained fauna identified to the lowest practical 

taxonomic level and enumerated, enabling calculation of a variety of community composition 

statistics and biotic indices: N (total abundance), S (number of taxa), H’ (Shannon-Weiner 

diversity), AMBI (Borja et al. 2000) and BQI (Rosenberg et al. 2004).  The surface 3 cm of 

smaller sediment cores (7 cm diameter) was collected for analysis of grain size and total 

organic matter (OM).  Sediments were oven-dried to constant weight at 105ºC, and size class 

fractions from silt-clay through to gravel were analysed gravimetrically.  Percentage OM 

(%OM) was calculated as the % weight loss of dried samples after ashing at 550ºC for 2 h 

(modified after Luczak et al. 1997).  Redox potential (EhNEH, mV) and total free sulfide (TFS, µM) 

were also routinely measured post-2008.  Redox was measured directly from the grab (at 1 cm 

depth) using a Thermo Scientific combination Redox/ORP electrode.  Total free sulfide (TFS, 

µM) was sampled with a cut-off 5-cc plastic syringe driven vertically into the surface sediments 

(0-4.5 cm depth interval), and the TFS contents were extracted and quantified following the 

methods of (Wildish et al. 1999). 
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Figure 5-1: Location of study sites in Marlborough Sounds, New Zealand. 
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Table 5-1: Summary of farm configurations, historical use and physical attributes used in models, and of natural (Reference site) sediment characteristics for each. 

Site attributes Units Farm-A Farm-B Farm-C Farm-D Farm-E Farm-F 
Year of survey 20- ‘04,‘06,’09,10 ‘05,‘08,‘10 ‘03,‘05,‘09 10 ‘05,08,‘09,‘10 ‘08, ‘09, ‘10 
Farm age  Year 19,21,24,25 16, 19, 21 14, 16, 20 1† 13,16,17,18 1,2,3 
Corresponding feed levels kt·yr-1 1.9,3.3,2.2,2.0 2.2,2.0,1.9 2.1,2.6,3.1 3.3 2.3,4.1,3.9,4.7 2.8, 3.1, 3.5 
Site depth range m 34-35 37-39 28-30m 32-35 27-31 30-40 
Mean current speed        
   Depth 1 (near-surface) m: cm s-1* 1: 3.6(30.0) 1: 8.6(35.9) 1: 11.9(59.1) 1: 3.4(16.1) 1: 18.7(62.8) 2: 20.4(87) 
   Depth 2  7: 4.0(21.6) 9: 3.7(46.1) 7: 8.2(34.3) 8: 3.0(9.3) 7: 16.7(59.2) 10: 20.2(85) 
   Depth 3 (mid-water)  15: 3.7(17.5) 16: 6.0(34.6) 14: 8.2(29.9) 16: 3.0(10.1) 14: 14.4(53.8) 18: 19.9(117) 
   Depth 4  22: 3.1(12.9) 26: 9.7(30.4) 21: 8.5(30) 24: 3.2(11) 21: 13.9(42.4) 28: 19.7(129) 
   Depth 5 (near-bottom)  30: 3.5(14.2) 34: 3.6(13.5) 28: 9.1(29.1) 32: 3.2(10.9) 26: 15.9(49.8) 36: 19.5(79) 
ADCP sample bin size m 4 4 1 1 1 2 
ADCP sampling interval min 45 45 30 30 30 15 
Deployment season Month January March July February August October 
Flow category  Low Low Low-Mod Low High High 

Sampling stations 
(Distance from cages) m 0(×2)‡,50, 

150,250,Ref 
0(×2),50, 

150,250,Ref 
0(×2),50(×2), 

100,Ref 

0(×2),25,50, 
75,100,150, 

200,Ref 

0(×2), 50, 
100, Ref 

0(×2),50(×2), 
100(×2),150(×2), 

200(×2),250(×2),Ref 
Natural sediment properties+       
Sediment mud content % 80 (69-84) 55 (34-73) 78 (69-85) 91(84-95) 28 (21-38) 32 (29-37) 
%OM % w/w 5.2 (4.8-5.8) 5.0 (2.8-7) 4.9 (4.5-5.8) 5.5(4.4-6.5) 3.1 (2.5-3.7) 3.3 (2.5-4.2) 
No. taxa No./core 22 (18-28) 18 (17-19) 20 (16-23) 21(11-26) 35 (27-48) 39 (31-42) 
Macrofauna abundance No./core 107 (76-147) 72 (52-92) 78 (37-128) 54(18-72) 218 (152-285) 231 (102-278) 

† Farm had been reinstated for one year at time of monitoring after 8 years of recovering since being fallowed in 2001. 
* Depths are relative to surface, current speeds are means with maximum speed in brackets. 
+ Mean values and ranges (min-max) from the reference sites that were sampled during the selected surveys for each farm. 
‡‘×2’ denotes two separate sampling stations for the give position. 
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5.3.2 Bathymetry and hydrography 

Bathymetry was established for each site and the xyz data was gridded to the desired 

size and resolution using Surfer v9 for incorporation into DEPOMOD.  Model grid sizes were set 

such that they would comfortably encompass the whole initial depositional footprint (grid 

areas ranged from 0.23 km2 for Farm-C to 1.1 km2 for Farm-A).  Water currents were measured 

using Acoustic Doppler Current Profilers (ADCP, Sontek, 500 kHz) every 15, 30 or 45 minute 

intervals over 25-42 days.  ADCPs were bottom-mounted within approximately 30 m from the 

cage edge and sampled the water column in 2 or 3 m depth bins (with a 1 m blanking 

distance).  Current data was converted to hourly-averaged bins, and the five depth bins that 

evenly spanned the full water column at each site (i.e. from near-surface, to near bottom) 

were selected for use in the models (Table 5-1).   

5.3.3 Model parameters 

DEPOMOD was selected because it is widely used and published, and designed 

specifically for managing fish farm wastes (Cromey et al. 1998, Thetmeyer et al. 2003, Cromey 

& Black 2005, Cook et al. 2006, Magill et al. 2006) and a number of the processes in DEPOMOD 

have already been validated against field measurements (Cromey et al. 2002a, Chamberlain & 

Stucchi 2007).  It is also used as a regulatory tool in Scotland for discharge discharge of in-feed 

chemotherapeutants, and in setting biomass limits (SEPA 2005) and is the model that is 

recommended for predicting seabed effects by the Aquaculture Stewardship Council (ASC 

2012).   

Standard feed wastage (Fwasted) of 3 % was used for all sites and all years in the absence 

of any reliable historical estimations.  This level was selected because it represents a 

compromise between the level of 5 % shown to support predictions in other studies (e.g., 

Cromey et al. 2009, Cromey et al. 2012), and the level most recently determined in local 

studies (<1%, Cairney & Morrisey 2011). Three percent is also the level currently 

recommended by the Scottish Environmental Protection Agency for regulatory modelling of 

fish farms in Scotland (Annex H, SEPA 2005).  Feed digestibility (Fdig) and water content (Fw) 

were set at 85 % and 9 %, respectively, which are the DEPOMOD defaults based on technical 

data provided by feed manufacturers (Cromey et al. 2012) and were used in the absence of 

farm and time-specific estimates.  All other model parameters were consistent with existing 
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salmon farm waste modelling methodologies (Cromey et al. 2002a, Cromey et al. 2002b) and 

the SEPA Annex H regulatory farm modelling standards (SEPA 2005) and remained constant in 

the tested model scenarios (Table 5-2).  As the model does not allow the settling velocity of 

particles to change through the growing cycle, the values used for feed and faeces represented 

those that would be encountered during the period of highest waste output from the farm 

(maximum standing biomass), which is when the fish are at pre-harvest size.  

 

Table 5-2: Default model settings that were applied consistently throughout the modelling. Kx, ky and kz 
are horizontal and vertical dispersion coefficients. 

Input variable: Setting 
Feed wastage: 3 % 
Water content of feed pellet: 9 % 
Digestibility: 85 % 
Settling velocity of feed pellet: 0.095 m s-1 
Settling velocity of faecal pellet: 0.032 m s-1 
Random walk model:  
                           kx, ky:  0.10 m2 s-1 
                                  kz: 0.001 m2 s-1 

 

Feed input data was based on total feed used per farm per month and was spread evenly 

across all cages.  In practice, one or two cages may be empty for short periods of time as a 

result of operational requirements, however this resolution of spatial and temporal 

information was not available and would in any case be impractical to include in the model.  

However, this represents a potential source of variability in the outputs, which was accounted 

for by taking the average result from multiple scenarios.  The farm management conditions for 

each scenario (i.e. number of cages, net depths, overall size and position of farm and 

monitoring stations) were determined from information collected during annual monitoring 

surveys (e.g. GPS fixes of farm corners), historical aerial and satellite images, and discussions 

with farm operators.  The standard farm configurations involved square cages with a net depth 

of 20 m arranged in adjoining clusters, either one or two cages wide and four to eight cages 

long.   

Depositional flux was predicted for 110 benthic sampling locations, representing 18 

different historical farming arrangements, encompassing all six study farms (Farms A-F) over 

eight years (2003 to 2010, Table 5-1).  Results were obtained for four different feed levels 
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based on the average reported feed use for the 1, 3, 6 and 12 months immediately prior to the 

environmental data being collected.  Four critical resuspension velocities were contrasted 

within each average feed use period: i) without resuspension, and with resuspension based on 

critical velocity thresholds (vr) of: ii) 9.5 cm·s-1 (model default), iii) 12 cm·s-1 and iv) 15 cm·s-1.  

Thus, 16 model runs were conducted for each of the 18 different farming scenarios, giving a 

total of 288 runs.  Matlab™ code was developed to enable batch processing of model runs.   

5.3.4 Relating predicted flux to observed Enrichment Stage 

Environmental condition was determined using established ecological indicators: N, S, H’, 

AMBI and BQI in combination with physico-chemical variables (%OM, redox, TFS).  All variables 

were also unified following the methods of Keeley et al. (2012a, 2012b) to obtain an indication 

of overall Enrichment Stage (ES); a bounded continuous variable that places the results on a 

scale between ES1 = ‘pristine’ to ES7 = azoic/ anoxic.  Generalised additive modelling was then 

used to establish the relationship between predicted flux and observed ecological responses, 

as shown by ES and each the individual indicator variables.   

Prior to analysis, both predicted flux and ES values were log transformed to improve data 

normality and reduce heteroscedasticity.  The necessity to construct flow-specific models was 

checked by testing the significance of ‘flow’ as a fixed factor (High / Low) using linear models in 

R (R Development Core Team 2011).  In all cases factor ‘flow’ was highly significant (p < 

0.0001).  The optimum linear model for each was then identified by fitting four different 

polynomials (of order 1 to 4) and then selecting the model with the smallest AIC (Akaike’s 

Information Criterion) value.  If the AIC values of two models were within 2 units (and could 

therefore be considered equivalent, Burnham & Anderson 2002), then the simplest model was 

chosen in preference.  The best-fit polynomials were solved for x (or ES) to obtain estimates of 

the average flux associated with ES3 (i.e. ES=3) and ES5 (i.e. ES=5), and the standard errors of 

the coefficients were used to calculate the associated 95% pointwise confidence bounds 

(hereafter referred to as confidence intervals, or ‘CI’).  ES3 was selected to represent the outer 

boundary of effects because this level is considered indicative of the point at which 

enrichment becomes clearly discernible, whilst ES5 indicates the point of peak infauna 

abundance, and characterises a highly enriched state (Keeley et al. 2012a).   
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5.3.5 Model validation: spatial comparison of predicted and observed footprints 

The footprints of the two high-flow, dispersive farms (Farms E & F) and one low flow, 

non-dispersive farm (Farm A) were mapped from 79, 65 and 96 grab sampling stations 

(respectively) collected across a grid pattern spanning the sediments within 1.5 km of the 

cages.  In all cases the density of the sampling grid decreased with distance from the farm in a 

stratified manner to ensure that sampling effort was greatest where changes in the footprint 

were expected to be most pronounced (Figure 5-2). These farms were selected because i) they 

had similar farm layouts, and ii) had consistent usage patterns (cage deployment and feed 

input) in recent years.  They also share similar physical attributes (i.e. depths & exposure), but 

vary significantly in their typical range of current speeds (Table 5-1).  Only three farms were 

able to be surveyed because of logistical and financial constraints. 

Enrichment was assessed at all sampling stations using three proxy variables: i) sediment 

redox (EhNHE, mV), ii) sulfide (S2-, µM) levels, and iii) odour.  Odour was assessed consistently by 

the same person using five categories: 1=none, 2=mild, 3=moderate, 4=strong, 5=very strong.  

Approximately twenty stations at each farm, representing the full range of conditions (i.e. from 

alongside cages to the most distant reference site) were selected for more comprehensive 

condition assessments, comprising: macrofauna evaluation, sediment grain size 

characterisation and %OM content following the methods described above (Section 2.1).  The 

three proxy variables were combined multivariately using principle component analysis (PCA, 

in PRIMER v5, Clarke 2006) based on Euclidean distances.  Sulfide and redox data were log-

transformed and all variables were normalised prior to analysis.  The Eigenvalues of the 

dominant PCA axis were used to quantitatively differentiate the sampling stations.  ES was also 

determined for each of the comprehensively sampled stations using a combination of the 

empirical relationships derived by (Keeley et al. 2012a) and best professional judgement.   

The linear regression that best described the relationship (based on highest residual R2 

values) between the Eigenvalues (based on redox, sulfides and odour) and the ES score was 

determined for each farm survey.  These regressions were then used to estimate ES for all 

stations based on the Eigenvalues, and the results interpolated using the Kriging method 

(Isaaks & Srivastava 1989) before being spatially depicted in Surfer™ (v9).  Finally, the 

measured footprint was compared to the predicted footprint by converting the predicted flux 

for the corresponding farm scenario to ES using the best-fit relationships that were identified 
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from modelling the historical farming scenarios.  ES3 was selected to indicate the outer 

boundary of effects for the reasons given in the previous section.    

 
Figure 5-2a-c: Sampling grids that were used to map the enrichment footprints at the two high-flow 
study sites, Farms A (a), E (b) and F (c).  ‘×’ denotes where the three proxy variables (redox, S2-, odour) 
were sampled and ‘⊗’ indicates those stations at which more comprehensive sampling was conducted 
(i.e. including macrofauna, sediment grain size and %OM). Grey box denotes position of net pens.  Axis 
units are in meters – East and North along conventional New Zealand Map Grid (NZMG). 
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5.4 Results  

5.4.1 Relating predicted fluxes to observed ecological responses  

The central tendency of the relationships between observed ecological responses (as 

indicated by ES) and the predicted depositional flux (as the explanatory variable), without 

resuspension, was best described by first and second order polynomials on log transformed 

data (Figure 5-3, Table 5-3).  The best model fit for the non-dispersive sites was obtained with 

the feed levels applied over the 6 months preceding the respective sampling events (R2 = 

0.898).  However, the differences between the three four time series scenarios (i.e. 1, 3, 6 and 

12 months prior), were small, with R2 values of between 0.869 and 0.890 (Figure 5-3A-D, Table 

5-3).  A moderate / detectable level of enrichment (i.e. ES3) was associated with an average 

predicted flux of between 0.33 (CI: 0.27, 0.4) and 0.35 (CI: 0.3, 0.44) kg solids m-2 yr-1.  Very 

highly enriched conditions, indicative of peak macrofauna abundance (i.e. ES5), were 

associated with modelled depositional fluxes of between 5.6 (CI: 3.7, 9.2) and 6.3 (CI 4.2, 10.6) 

kg solids m-2 yr-1 (Table 5-3).   

The model fits for the dispersive sites without resuspension had slightly lower R2 values 

than for the non-dispersive sites, with results for the four feed levels ranging between 0.73 

and 0.78 (Table 5-3, Figure 5-3A-D).  The modelled fluxes associated with ES3-type conditions 

at the dispersive sites were higher than at the non-dispersive sites, with fluxes ranging 

between 0.75 (CI: 0.44, 1.64) and 1.15 (CI 0.67, 2.65) kg solids m-2 yr-1 (Table 5-3).  Similarly, 

the average predicted flux associated with ES5-type conditions was approximately two-fold 

higher for dispersive sites than for the non-dispersive sites, with estimates of between 12.1 

(CI: 5.9, 81.1) and 15.6 (CI: 6.9, 231) kg solids m-2 yr-1.  However, the upper confidence intervals 

for these estimates were very high due to increased variation at the upper end of the 

enrichment gradient and the log-relationship between Flux and ES. 

Where resuspension was taken into account (Figure 5-3E-G) the model outputs were 

comparable with the no-resuspension results for non-dispersive sites.  Although the overall fit 

with the observed data was worse, this improved from R2 = 0.65 to R2 = 0.88 as the critical 

resuspension velocity increased from 9.5 cm s-1 (model default) to 15 cm s-1.  The poorer fit 

where resuspension was included in the scenario was primarily due to the predicted fluxes for 

some of the moderately enriched stations (i.e. ES3-5) at Farm-C (which has the highest current 
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speed of the two non-dispersive sites) being zero.  At the dispersive sites, the net depositional 

flux was predicted to be zero for all three critical resuspension velocities, even at stations that 

were directly beneath the cages.  As a result, no meaningful relationship could be derived 

between flux and effects for those scenarios.   

The relationships between predicted depositional flux and individual response variables 

were generally not as strong as the relationships with the multi-variable derived ES (Figure 5-

4).  However, H’ and AMBI were both reasonably well predicted by the models at both 

dispersive and non-dispersive sites (R2 = 0.56 - 0.76, Table 5-4). Number of Taxa (S) and BQI 

were poorly predicted by depositional flux at the dispersive sites (R2 = 0.27 and 0.31 

respectively), but well predicted at the non-dispersive sites (R2 = 0.78 and 0.56 respectively).  

Conversely, log(N) was related to predicted flux at the dispersive sites (R2 = 0.65), but not at 

the non-dispersive sites (R2 = 0.07); the former being best described by a more complex 

fourth-order polynomial.  
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Figure 5-3: Log-log relationships for predicted depositional flux and observed enrichment responses (as 
the response variable) at sampling stations associated with 4 low-flow (Farms A-D) and 2 high-flow 
farms (Farms E and F).  Equations and model fits parameters are provided in Table 5-3. Thin dashed lines 
show 95% pointwise confidence bounds for the fitted curves.  ‘NR’ – no resuspension, ‘vr’ – critical 
resuspension threshold used, and ‘mo.’ – temporal scale of integrated feed input data. 
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Table 5-3: Summary of polynomial coefficients and fits for relationships between predicted depositional flux and observed ES (as the response variable).  Average 
flux (kg solids m-v2 yr-1) required to induce ES3 (moderate, detectable enrichment) and ES5 (very high enrichment defined by peak of opportunists) provided along 
with upper and lower confidence interval (in brackets).  ‘Feed’ = period preceding field sampling over which feed use was averaged, ‘vr’ = critical velocity for 
resuspension, cm s-1, NR = no resuspension, ‘Deg.’ = degree polynomial, RSE: residua standard error, Note: no meaningful relationship could be derived between flux 
and effects for results from dispersive sites with resuspension taken into account (see Figure 5-3). 

 

Feed vr Deg. Int. ln(x+0.01) ln(x+0.01)2 RSE df R2 P-value ES3 (CI's) ES5 (CI's) 
Non-dispersive:          
1 NR 1 1.3 0.18  0.2126 56 0.869 <0.001 0.33 (0.28, 0.42) 5.72 (3.68, 9.81) 
3 NR 1 1.3 0.18  0.1949 56 0.89 <0.001 0.33 (0.27, 0.4) 5.65 (3.77, 9.2) 
6 NR 1 1.28 0.18  0.187 56 0.898 <0.001 0.35 (0.3, 0.44) 6.36 (4.26, 10.26) 
12 NR 1 1.29 0.18  0.1968 56 0.888 <0.001 0.34 (0.28, 0.42) 6.15 (4.05, 10.19) 
6 9.5 1 1.37 0.15  0.3468 56 0.651 <0.001 0.2 (0.12, 0.23) 5.2 (2.33, 17.25) 
6 12 1 1.44 0.15  0.2101 55 0.872 <0.001 0.1 (0.08, 0.15) 3 (1.49, 7.72) 
6 15 1 1.36 0.17  0.197 55 0.887 <0.001 0.2 (0.16, 0.31) 4.4 (2.23, 11.18) 
Dispersive:          
1 NR 2 1.09 0.152 0.01 0.207 48 0.723 <0.001 0.91 (0.57, 2.17) 15.65 (6.97, 231.9) 
3 NR 2 1.08 0.163 0.014 0.2127 48 0.707 <0.001 0.93 (0.59, 2.05) 12.1 (5.98, 81.07) 
6 NR 2 1.12 0.154 0.011 0.2196 48 0.688 <0.001 0.75 (0.44, 1.64) 12.2 (5.54, 198.5) 
12 NR 2 1.06 0.155 0.014 0.2096 48 0.716 <0.001 1.15 (0.67, 2.65) 14.72 (6.99, 103.5) 
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Figure 5-4: Relationships between predicted (log) depositional flux and five enrichment indicating 
biological variables.  Equations and model fits are provided in Table 5-4. 

 

Table 5-4: Summary of polynomial coefficients and model fits (R2) for relationships between predicted 
depositional flux and five biological enrichment indicators.  Deg. = degree of best-fit polynomial,  Int. = 
intercept, RSE = residual standard error, df = degrees of freedom. 

 Variable Deg. Int. x x2 x3 x4 RSE df R2 P-value 
Dispersive log(N) 4 6.86 8.06 1.91 -0.32 -2.1 0.861 46 0.654 <0.001 
 S 2 30.72 -42.51 -15.06   9.824 48 0.276 <0.001 
 H' 1 1.69 -4.94    0.613 49 0.561 <0.001 
 AMBI 1 3.82 6.14    0.600 49 0.674 <0.001 
 BQI 1 4.69 -10.28    2.113 49 0.311 <0.001 
Non- log(N) 2 5.41 1.1 -3.99   1.642 55 0.071 4.9E-02 
dispersive S 1 14.65 -63.96    4.478 56 0.780 <0.001 
 H' 1 1.35 -6.05    0.418 56 0.762 <0.001 
 AMBI 2 3.97 10.06 -1.93   0.924 55 0.679 <0.001 
 BQI 2 3.59 -14.81 4.8   1.789 55 0.564 <0.001 
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5.4.2 Model validation: spatial comparison of predicted and observed footprints 

The primary axis of the PCA analysis (i.e., PC1), integrating the three proxy variables 

(redox, S2- and odour) was a good indicator of the overall variation between stations at Farms E 

and F (N = 64 and 84, %Variation described by PC1 = 84 and 85%, respectively).   The resulting 

PC1 values also correlated well with the ES scores determined from the 18-19 samples for 

which infauna and %OM information was also collected (R2 = 0.58 to 0.81, Table 5-5).  PC1 for 

Farm-A (N = 90) captured slightly less of the overall variability (61%) than for Farms E and F, 

but still correlated well with ES (R2 = 0.808).  Hence, the relationships were considered 

adequate for converting the PC1 scores from the wider survey into an estimated ES value for 

each farm site.  The predicted depositional flux for each of the farms was also converted into 

the same ES variable to enable direct comparisons, using the best relationships identified in 

Table 5-3. 

The predicted area of enrichment at ES3 or greater was comparable to the observed 

footprints.  The size of the predicted footprint at ES3 was 11.3 and 9.4 ha for Farms E and F, 

which compares favourably with the observed footprint 9.6 and 13.2 ha (respectively).  The 

average total distance to the outer extent of ES3 conditions was also comparable, 102 m 

(predicted) and 95 m (observed) for Farm E, and 111 m (predicted) and 155 m (observed) for 

Farm F (Table 5-6).  Both the modelled and the predicted scenarios for the dispersive farms 

show a generally lower and more diffuse level of enrichment. Farm-F had the widest footprint 

but did not exceed ES ~4.5 anywhere.  These patterns are summarised in Figure 5-5a-c, which 

illustrates how the spatial extent increases and the impact decreases from Farm-F > Farm-E > 

Farm-A.   

The shape and intensity of the footprints at the dispersive sites were also reasonably well 

predicted by the model (Figures 6 & 7).  Both the model and observational data show an 

impacted region (ES>5) to the north-east of Farm-E (Figure 5-6); the extension of the footprint 

to the north-east and north-west was also evident in the model output.  However, the degree 

of impact was slightly under-predicted by the model and the associated ES score.  The 

predicted footprint for Farm-E was also slightly wider than the actual footprint through the 

centre.   

The observed footprint for Farm-F was larger and more diffuse than predicted, with low 

level effects extending further to the south (toward the main channel) and west (Figure 5-7).  
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Notably the model predicted very intense effects directly beneath Farm-F which were not 

observed.  However, overall the agreement between the observed and predicted footprints for 

Farm-F was good. 

The agreement between the overall size of the observed and predicted footprints for the 

non-dispersive Farm-A was also good (Figure 5-8).  Differences were on the whole were minor 

and mostly related to slight changes in the footprint outline.  The predicted scenario had a 

slightly larger highly-impacted area (ES>5) directly beneath the cages, and the southern 

(seaward) end of the observed footprint was slightly less impacted than predicted.   

 

Table 5-5: Best-fit linear models of PC1 in relation to ES derived from the subset of stations that were 
more comprehensively sampled (ES determined from empirical relationships with S2-, redox, %OM, total 
abundance, No. Taxa, AMBI and BQI, PC1 determined from redox, S2-, odour).   

 

Farm Equation R2 N 
Farm-A Y = exp(0.348x) * 2.14 0.808 17 
Farm-E Y = 0.625x + 3.125 0.720 19 
Farm-F Y = 0.651x + 2.899 0.581 18 

 

 

Table 5-6: Dimensions of predicted (Pred.) and observed (Obsv.) footprints associated with two high-
flow (refer Figures 6 and 7) and one low-flow (Figure 5-8) farms.  Predicted footprints are based on 2010 
site configurations and farming intensities. 

Footprint 
boundary 

  Farm-E 
(Figure 5-6) 

Farm-F 
(Figure 5-7) 

Farm-A 
(Figure 5-8) 

   Pred. Obsv. Pred. Obsv. Pred. Obsv. 
≥ ES 3 Area (ha) Total 11.3 9.6 9.4 13.2 7.4 6.8 
 Distance (m) Ave.  102 95 111 155 82 81 
  Max.  149 194 291 344 130 145 
  Min.  31 38 40 62 20 15 
≥ ES 5 Area Total 1.0 1.2 0.5 0 2.1 0.5 
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Figure 5-5a-c: Measured ES in relaton to distance from farm from the subset of stations that were more 
comprehensively sampled: a) Farm-A, b) Farm-E, c) Farm-F.  Lines are 50th percentile quantile regression 
splines, where degrees of freedom (df) = 3 and degree = 2, except for Farm-A where degree = 4.  
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Figure 5-6: Predicted (top) and observed (bottom) benthic environmental footprints beneath the high-
flow Farm-E (grey box indicates position of net pens and black dashed lines indicate ES3 and ES5 
boundaries).  Axes are in a national grid (NZMG), indicating distance in meters north and east of an 
arbitrary point south west of New Zealand.  Observed ES was determined using the equations in Table 5-
5.  Predicted ES was determined using the regressions that were derived from the 6-month time series 
relationship based on depositional flux without resuspension (Table 5-3). 
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Figure 5-7: As in Figure 5-6, but for high-flow Farm-F. 
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Figure 5-8: As in Figure 5-6, but for low-flow Farm-A. 
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5.5 Discussion 

5.5.1 Predicting effects at dispersive sites 

The log relationship identified between predicted flux and ES is due to large increases in 

enrichment in response to small increases in depositional flux over the first part of the 

enrichment gradient (ES1-3).  Over the latter part of the enrichment gradient (ES5-7), large flux 

increases were associated with relatively small changes in ES.  This reflects both the sensitivity 

to, and scope for, ecological change with the addition of organic biodeposits; this suggests that 

“natural” sediments will respond noticeably to small (persistent) additions of organic material, 

but that when sediments are already impacted, significant additions may be necessary to 

affect a relatively small change in enrichment stage.  There are a number of possible 

explanations for this result.  Firstly, it may be an artefact of the overall scale of change over the 

respective parts of the enrichment gradient (e.g., ES6 and ES7 versus ES2 and ES3) and /or, 

may highlight a relative insensitivity to changes in the higher enrichment stages.  Alternatively, 

it may reflect the fact that the impact gradient is bounded and that conditions cannot get 

appreciably worse than those indicated by ~ES6.5, and therefore there is limited scope for 

further degradation with any additional feed inputs.  The mostly likely scenario is a 

combination of these two mechanisms, whereby the degree of change indicated by the 

macrofauna-related variables at that end of the spectrum is limited (Keeley et al. 2012a) and 

bounds our present understanding as to the limits of effects.  The additional capacity is 

presumably facilitated by the seabed progressing from an assimilative phase, where the 

macrofauna are prolific, to a state of organic accumulation, dominated by microbial processes 

and where changes may be better defined by other physico-chemical type variables. 

When the process of resuspension was modelled at the two dispersive sites predictions 

indicated that all particles would be exported, irrespective of the critical resuspension velocity 

used (i.e., vr = 9.5, 12 or 15 cm s-1).  According to the conventionally held view that benthic 

effects are proportional to depositional flux (Cromey et al. 2002a), the resultant effects would 

be negligible - but this was not the case.  There was minimal evidence of organic accumulation 

(indicated by %OM), however, pronounced ecological effects were identified at both dispersive 

sites.  A similar observation was made by (Chamberlain & Stucchi 2007) at a moderately 

dispersive site in Canada, where DEPOMOD predicted that virtually all of the material would 

be exported from the site, yet localized seabed enrichment was evident.  This suggests that 
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either the resuspension component of the model is over predicting how much material is being 

exported, or the model is correct and the popular understanding of how ecological effects are 

induced at dispersive sites is incomplete.   

Over-prediction of particle advection by the model may occur where the critical 

resuspension velocity (vr) is set too low, or where the numerical algorithms describing 

resuspension do not consistently represent the key dynamical processes.  Chamberlain and 

Stucchi (2007) suggested that the default vr in DEPOMOD (9.5 cm s-1, previously ‘hard-coded’ 

into the model) may indeed be too low, but also that using a single value was probably too 

simplistic, given the difference between the vr’s required to suspend feed pellets compared 

with fish faeces.  The current study showed that observed effects occurred in conjunction with 

a predicted flux of zero when a vr of 9.5 cm s-1 was used, but that this disparity decreased as vr 

was increased toward 15 cm s-1 – thereby decreasing predictions of total advection. By 

experimenting with even higher vr values at the two dispersive sites (model outputs not 

shown), it was determined that vr values in excess of 35 cm s-1 would be required in order for 

significant accumulation to occur.  Waste feed pellets are known to roll and saltate (bounce) at 

current speeds of 16 - 20 and 32 - 40 cm s-1, respectively (Sutherland et al. 2006), consequently 

it is likely that the resuspension of those particles was over-predicted by the model.  However, 

at the sites in this study, waste feed was recently estimated to be < 1 % (Cairney & Morrisey 

2011), and therefore the deposition would have comprised mostly faecal particles, which 

resuspend at much lower current speeds - in the order of 7 to 15 cm s-1 (Cromey et al. 2002b).  

Given that the physical properties of the main biodeposits (i.e. feed pellets or faeces) would be 

broadly comparable irrespective of region and/ or site characteristics, the vr values that would 

be required to achieve particle accumulation at the dispersive sites seem unrealistically high.  

Hence, it seems more likely that the model predictions using the default vr setting are 

reasonably accurate and that the observed impacts are occurring in the absence of significant 

organic accumulation.  This effect has been described in these dispersive systems (Keeley et al. 

2013a) and is characterised by proliferation of opportunistic taxa in the presence of an 

elevated carbon flux and a strong oxygen supply, but in the absence of significant organic 

accumulation and the associated sediment anoxia, which would normally limit biological 

production (Findlay & Watling 1997, Hargrave et al. 2008).  

Although the model outputs incorporating resuspension may be faithfully reproducing 

the physical processes, the results are not very useful for the purposes of predicting either the 
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spatial extent or magnitude of seabed effects at higher flow sites. Using the no-resuspension 

scenarios to predict flow-specific effects, in a similar manner to that adopted by Chamberlain 

and Stucchi (2007), we established separate relationships between predicted flux and overall 

enrichment effects (ES) for non-dispersive and dispersive sites; the main difference being that 

a greater discharge was required to induce an equivalent level of effects at the dispersive sites.  

According to these relationships, moderate, detectable levels of enrichment (i.e. ES3) occur 

with the addition of approximately 0.4 kg solids m-2 yr-1 for non-dispersive sites and ~1 kg 

solids m-2 yr-1 for dispersive sites.  ES5-type impacts, indicative of peak abundance beyond 

which the macrofauna is at increased risk of a collapse (ES6-7, Keeley et al. 2012a), are induced 

by the addition of ~6 kg m-2 yr-1 for non-dispersive sites and approximately double that amount 

for dispersive sites (i.e. ~13 kg m-2 yr-1).  The difference between these two thresholds (i.e. ~5 

kg m-2 yr-1 or ~50%), which compare favourably with previous attempts to link depositional flux 

to enrichment response (Table 5-7), may be related to the amount of material that is being 

exported from the immediate vicinity, over and above what is either settling (and being 

buried) or being biologically assimilated locally.  

A flux rate, over and above natural background sedimentation, of around 1 - 1.5 kg m-2 

yr-1 has been identified in several previous studies as the point at which clear changes in the 

macrofauna community and/ or the oxic status of soft sediments may be observed (Hargrave 

1994, Findlay & Watling 1997, Cromey et al. 2002a, Chamberlain & Stucchi 2007, Cromey et al. 

2012).  These estimates are slightly higher than those identified for ES3 at non-dispersive sites 

in the present study (i.e. ~0.4 kg m-2 yr-1). However, it is difficult to determine the exact level of 

enrichment referred to in each case due to the differing suites of individual indicators and 

threshold descriptions that are employed.  Accordingly, it is possible that the enrichment level 

(ES3) used in the present study, based on multiple indictors, represent a more sensitive 

threshold.  The particular ecosystem effect to be assessed may also influence the required 

sensitivity of the measured response. For instance, Holmer et al. (2008) identified a similar flux 

(0.5 kg m-2 yr-1) as the point beyond which seagrass shoot mortality was accelerated, whilst the 

suggested threshold for effects to more sensitive Maerl bed communities would appear to be 

appreciably lower at 0.1 kg m-2 yr-1 (Sanz-Lazaro et al. 2011).  Cromey et al. (2002a) associated 

the peak in opportunistic taxa, which equates to ES5-type conditions, with a depositional flux 

of 10 kg m-2 yr-1 for non-dispersive sites, which is double that proposed for comparable flow 

regimes in this study (4-5 kg solids m-2 yr-1) and still less than the estimate for dispersive sites.  

In addition, some of the minor variances between studies may be due to regional 
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environmental specificity and differences in the quality of the particles being deposited (i.e. 

feed waste presumably has higher enrichment potential than faecal waste, Chamberlain & 

Stucchi 2007).   

For the purposes of this study, sites were categorised as being either dispersive or non-

dispersive based on their current speeds and how these relate to the vr of 9.5 cm s-1.  Sites 

with near-bottom speeds above vr greater than 50% of time were treated as ‘dispersive’; this 

categorisation was both conceptually logical  and consistent with observations of how the 

seabed effects manifested at the sites over the previous 10 years.  Sites with ‘intermediate’ 

physical properties (central to this threshold), or with notably higher current speeds, may 

require special consideration (e.g. use of an alternative flux – ES relationship). 

Relationships between predicted flux and individual indicator variables were generally 

weaker than those with ES, which integrates multiple biotic and abiotic variables.  Of the 

individual indicators AMBI appeared most versatile, relating to flux at both non-dispersive and 

dispersive sites. This result is not surprising given that the AMBI is considered to be a good 

predictor of overall enrichment state (Keeley et al. 2012a).  Macrofauna abundance (N) was 

particularly poorly predicted by flux at non-dispersive sites, being highly variable when flux 

was elevated. However, there was a notable spike in N at both the dispersive and non-

dispersive sites at around 10 kg m-2 yr-1, which aligns reasonably well with both the position of 

the abundance and biomass peaks identified by Cromey et al. (2012), and ES5 conditions, as 

described above.  Species richness (S) was strongly negatively correlated with flux at the non-

dispersive sites, which was consistent with Cromey et al. (2012), who observed a relatively 

consistent decline below ~0.1 kg m-2 yr-1. Whereas S showed a relatively poor relationship with 

flux at the dispersive sites, presumably because high flow environments tend to be more 

resilient to deposition (Keeley et al. 2013a).  This observation is symptomatic of the processes 

discussed above, whereby the seabed encounters high levels of depositional flux, but as much 

of it is exported, accumulation and the associated physico-chemical effects are limited. 

What we appear to be observing is a an effect that may be relatively unique in nature but 

common in fish farming, associated with the continual rain of organic material, which results in 

a situation where the sediment is enriched even though there is no net accumulation because 

material is constantly being advected away. Therefore, using non-resuspension scenarios to 

predict effects for such high flow sites is appropriate on the basis that it represents the 
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‘primary footprint’, defined as where the particles may fall on initial settlement and where 

effects are most pronounced.  Subsequently, particles from resuspension and horizontal 

transportation that may result in alterations to the overall size or shape of the footprint, but 

that this would only result if the loss from erosion at the outer margin of effects, and from 

particles going into solution and being assimilated by the environment, is less than the load 

that is being redistributed.  However, this process was encompassed to some extent in this 

study, as most of the sites have been consistently utilised for many (>5) years and therefore 

should be in a relatively stable state.   

Using the primary footprint to gauge the extent of the ‘main effects’ for new or proposed 

sites can provide useful guidance for setting initial farm management objectives (e.g., 

allowable zone of effect’s, AZE).  On this issue, it is important to recognise that the present ASC 

standards (ASC 2012) for the AZE for salmon farming permit a relatively modified state, whilst 

the discussion provided above considers less obvious potential effects beyond that zone.  

Effects in the outer regions will be inherently subtle and difficult to definitively distinguish 

from ‘natural’ change.  Consequently, delineating a more accurate ‘impacts’ boundary will 

always be challenging and fraught with subjectivity.   
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Table 5-7:  Summary of proposed depositional flux thresholds and the associated benthic enrichment 
effects. 

 Depositional flux  
Source: gC m-2 d-1 kg solids m-2 yr-1 Associated ecological threshold/conditions 
This study: 0.28 0.35 Non-dispersive sites ES3 (Moderate/ 

detectable enrichment)   (average values) 0.76 0.93 Dispersive sites                                            
 4.9 5.9 Non-dispersive sites 

ES5 (Highly enriched) 
 11.2 13.6 Dispersive sites                                            
Dahlbäck and Gunnarsson 
(1981) 

1.7 2.1 Enriched seabed beneath blue mussel farms. 

Hargrave (1994) 1 1.2 Formation of hypoxic sediments around salmon 
farms. 

Findlay and Watling (1997) 1 to 5 1.2 to 6.1 Threshold at which macrofauna biodiversity 
reduced by salmon biodeposits. 

Cromey et al. (2002a) 0.01 0.01 Macrofauna change begins based on ITI. 
 0.82 1 Significant change in composition. 
 8.22 10 Corresponds to peak in opportunists. 
Chamberlain and Stucchi 
(2007) 

1 to 5 1.2 to 6.1 Significant change in macrofauna community 
(also transition between oxic/ healthy and 
anoxic/ degraded benthic zonation status). 

(Weise et al. 2009) >4.5 >5.5 Significant alterations to the benthic community 
beneath mussel farms 

Sanz-Lazaro et al. (2011) 0.087 0.1 To maintain diversity of Maerl beds. 
Cromey et al. (2012) 1.23 1.50 Boundary beyond which clear pollution indicative 

changes occur in macrofauna. 
 

Using shorter feed time-series made very little difference to the robustness of the 

relationships between predicted and observed effects, suggesting that there is little to be 

gained in terms of resolving temporal dynamics in enrichment effects from using higher 

temporal resolution feed information, especially if it is in the absence of finer resolution, cage-

scale stocking/ feed use information.  Therefore, using the average feed consumption 

information for the medium-term (c. 3 or 6 month) period preceding the required benthic 

evaluation appears to be adequate for predicting effects. 

In both the dispersive and non-dispersive examples, there was some scatter about the 

data.  This may in part be related to minor inaccuracies with recreating the spatial 

arrangements in the models (i.e. positioning the sample stations in relation to the farms), and/ 

or the inability to accurately recreate historical farming conditions.  For example, it was not 

possible to include within-farm stocking variations (i.e. temporarily empty nets and fish 

rotation).  Additionally, the application of a constant waste feed value (which has a strong 

influence on flux estimates, Chamberlain & Stucchi 2007) was probably overly simplistic as 
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improvements in feeding techniques are likely to have reduced wastage over the study period.  

Finally, some of the scatter may also be due to natural spatial and temporal variability in the 

benthos (e.g., Thrush 1991), which in-turn may be more pronounced under highly enriched 

conditions.  Nevertheless, the errors presumably operated in both directions (over and under 

estimation) the measures of central tendency described should remain valid. 

5.5.2 Spatial comparison of predicted and observed footprints 

Overall, the predicted footprints using the no-resuspension scenarios corresponded well 

to the observed footprint in terms of size, shape and overall intensity.  Hence, the use of non-

resuspension scenarios to predict the effects at dispersive sites appears valid, particularly 

when ES3, indicative of moderate/ detectable enrichment, is used to delineate the outer 

extent of effects.  The ES3 threshold was selected because it clearly indicates anthropogenic 

enrichment; ES levels < 3 can occur naturally (Keeley et al. 2012a).  Using thresholds <ES3 

increases the risk of including areas that are not necessarily enriched as a result of farm 

activities in the footprint.   ES≥3.0 is therefore recommended as a useful limit for delineating 

farm effects boundaries unless there are good grounds to justify a lower threshold, i.e. 

comprehensive baseline information.   

Agreement between the predicted and observed footprints declined in the more 

severely impacted regions (i.e. directly beneath the cages).  This may be due to the lack of 

observational data from directly beneath the cages and / or to an overestimation of feed 

wastage.  Although severe impacts might be expected at non-dispersive sites, this would be 

less likely at dispersive sites where strong currents can diffuse the intensity of impact.  A 

recent study conducted at Farm-F showed that feed wastage was < 1 % (Cairney & Morrisey 

2011).  The modelling in the present study was conducted with a feed waste of 3% for the 

reasons outlined in the methods.  Chamberlain and Stucchi (2007) suggest that waste feed is 

responsible for the majority (i.e. 70% at 5% waste) of the carbon flux beneath the cages and as 

far as 60 m away, but beyond that the contribution is dominated by the smaller and more 

slowly settling faecal particles.  Therefore, if the farms can achieve near-zero feed wastage, 

then the impacts under and near to the cages may be reduced.  The effect of using a 1 % waste 

feed level was tested for Farm-F, with the results indicating that the footprint (ES>3) was a 

similar shape and size (0.2 % smaller), but that the area of seabed predicted to be impacted to 

ES>5 was slightly smaller (by 0.26 ha, or 2.3 % of the footprint).  As such, the effect of adjusting 

the waste parameter by 2 % for the given scenarios was assessed to be minor.  In addition, 
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some of the shape aberrations may reflect fine-scale farm use practices (e.g. periodically 

empty nets within farms and/ or any temporary extensions or contractions of farms) or 

hydrodynamic conditions (e.g. storm events) that were not captured by the models.   

 

5.6 Conclusion 

Localised benthic impacts may still be observed even where depositional models suggest 

otherwise, as significant benthic effects can occur in the perceived absence of organic 

‘accumulation’. A useful indication of the spatial extent of such effects can be obtained when 

the model is parameterised without resuspension: this suggests that approximately twice the 

amount of deposition flux is required to induce effects at dispersive sites compared to non-

dispersive sites.  Specifically, moderately enriched conditions (ES3) were associated with 

approximately ~0.4 kg m-2 yr-1 for non-dispersive sites and ~1 kg m-2 yr-1 for dispersive sites and 

highly enriched conditions, (peak infauna abundance - ES5), with approximately 6 kg m-2 yr-1 

and 13 kg m-2 yr-1 for non-dispersive and dispersive sites, respectively.   

Three main interactive ecosystem process components underpin the ultimate 

enrichment response (Figure 5-9). At non-dispersive sites, total deposition (A) almost entirely 

equates to net deposition (B), which comprises B1 (settlement, consolidation and ultimately 

burial) and B2 (assimilation by benthic biota), with little or no influence from C (resuspension).  

In contrast, at dispersive sites, B1 is minimal and the impact is characterised by processes B2 

and C1 (water column dilution and assimilation by biota) with the additional influence of far 

field deposition and subsequent assimilation and burial (C2); these processes together 

comprise the resuspension and advection process (C).  

Where there is a large footprint (i.e. dispersive sites), in combination with significant 

sediment resuspension and advection (process C) and abundant opportunistic taxa (i.e. a 

larger B2 component) then the overall load to the ecosystem (A) can be much larger: in this 

study the seabed at the dispersive sites sustained twice as much particulate flux as the non-

dispersive sites.  Whilst the ratio between B and C was not quantified in this study, the 

differences between the flux required to induce equivalent levels of effects at the disspersive 

and non-dispersive sites provides some indication of this response, i.e. ~ 7 kg m2 yr-1 at ES5, or 

~50% of A.  Understanding the empirical relationship between C1 and C2 is particularly 
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important for characterising impacts at dispersive sites and would be a worthwhile area for 

further research. 

 

Figure 5-9: Summary of major pathways for salmon farm feed-derived biodeposition, A. Total 
biodeposition = all waste particulates produced from farm (feed and faeces - ignoring dissolved organic 
component), B. Net biodeposition is the particulates that settle, accumulate and / or are used 
(assimilated) in the near-field or ‘primary footprint’, C. Resuspension and advection includes the fraction 
of A that is exported from the immediate vicinity by currents. 

 



  
 

 
 



  
 

 
145 

CHAPTER 6  

 
SPATIAL AND TEMPORAL DYNAMICS IN 
MACROBENTHOS DURING RECOVERY FROM 
SALMON FARM INDUCED ORGANIC ENRICHMENT: 
WHEN IS RECOVERY COMPLETE? 

 

 

Preface: 

This chapter utilises a 10 year dataset detailing recovery from a highly impacted state at a low 
flow site.  The dataset enabled spatial and temporal patterns to be explored and a potential 
recovery ‘end-point’ to be identified.  In doing so, it also provides a framework for evaluating 
different definitions and metrics of recovery, as well as some fundamental ecological concepts 
(e.g. the role of key taxa in remediation, and ecological succession end-points).   

 

At the time of thesis submission, this work had been accepted for publication in a peer-
reviewed journal subject to minor revisions.  The manuscript has been adjusted to a standard 
format for the thesis, and as such there may be minor differences in the text, figures and tables 
compared with the published version. The citation for the original publication is:   

 

Keeley NB, Macleod CK, Hopkins GA, Forrest BM. In Review. Spatial and temporal dynamics in 
macrobenthos during recovery from salmon farm induced organic enrichment: when is 
recovery complete?  Submitted on MPB on 07/08/13 and accepted subject to minor 
revisions on 02/09/13. 
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6.1 Abstract 

This study analyses a temporal dataset documenting 8 years of benthic recovery at a highly 
impacted salmon farm.  Quantifying the endpoint of ‘recovery’ proved challenging due to: lack 
of a widely accepted definition, dynamic spatial and temporal equilibria, inherent variability in 
recovering sediments, differing trajectories of impact and reference sites, and statistical 
challenges.  More complex biotic indices and metrics incorporating multiple variables were 
most robust.  Tests for ‘parallelism’ proved useful, but results were contingent upon how they 
were applied and should therefore be used in conjunction with data-visualisation methods.  
Substantial recovery occurred in the first 2 years, and was assessed to be complete after ~5 
years. However, minor differences were still evident along with some on-going benthic 
instability, attributable to medium-scale spatial movements and successional patterns of 
macrobenthos.  The study highlights the importance of having a predetermined recovery 
endpoint, and using multiple indicators and a weight-of-evidence assessment approach. 
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6.2 Introduction 

In marine benthic systems, impacts associated with organic enrichment are common and 

widespread, due to the prevalence of diffuse (e.g. land runoff, Diaz & Rosenberg 2011) and 

point source (e.g. outfalls, Taylor et al. 1998, Cardell et al. 1999) discharges of anthropogenic 

wastes.  Two considerations that are critical to evaluating the degree of impact on the 

environment are spatial scale and ‘reversibility’ of effects.  Strong gradients of ecological 

succession are common, and the fundamental biological and chemical changes are generally 

well described (Pearson & Rosenberg 1978, Gray et al. 1979, Kalantzi & Karakassis 2006).  

However, there is less certainty associated with delineating the outer extent of enrichment 

effects, mainly due to natural variability (in both time and space) in environmental condition 

(e.g. Thrush 1991, Hewitt et al. 1997, Hewit & Thrush 2007) and often a lack of understanding 

around what constitutes ‘natural’ conditions.   

Finfish aquaculture is a significant point source of organic matter (via waste feed and fish 

faeces) to the marine environment, and provides a good case study for understanding benthic 

enrichment processes (Keeley et al. 2012a).  The primary discharges of waste feed and faeces 

normally results in highly enriched conditions in the immediate vicinity of the farm (Karakassis 

et al. 2000, Brooks et al. 2002).  In extreme cases, conditions immediately beneath the stocked 

cages can become anoxic, and virtually azoic (no animal life present), in which case the 

pathway to recovery will be maximised in terms of the enrichment/ disturbance gradient 

(Pearson & Rosenberg 1978, Keeley et al. 2012a).  However, a wide range of farming 

conditions can be encountered in aquaculture (i.e. farm type, intensity and age) providing a 

variety of impact start points (e.g. Borja et al. 2009).  The practice of site fallowing (temporarily 

retiring a site) that is often used for management purposes also provides commercial incentive 

for understanding the recovery process. 

Estimates of benthic recovery times vary greatly, ranging from weeks (Ritz et al. 1989) to 

>11 years (Wan Hussin et al. 2012).  Several studies, especially those undertaken around 

smaller fish farms, have suggested that complete recovery (biological and chemical) can occur 

within 6 months of fallowing (Brooks et al. 2003), and in some cases within periods as short as 

7 to 14 weeks (Ritz et al. 1989, Brooks, 2003, cited in Brooks et al. 2004).  The general 

consensus from studies conducted over the medium-term (i.e. up to 3 years), is that marked 

improvement occurs in the first 6 to 12 months, but that recovery generally remained 
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incomplete (Karakassis et al. 1999, Pereira et al. 2004, Lin & Bailey-Brock 2008, Macleod et al. 

2008, Villnas et al. 2011).  Long-term (i.e. > 3 years) studies of recovery are scarce; one that 

was conducted over 7 years estimated full chemical remediation would take 5.3 years and that 

biological remediation may take much longer (Brooks et al. 2004).  

While the spread of these estimates may be partly attributable to the levels of impact at 

the point of fallowing and varying underlying environmental conditions, there are also multiple 

definitions of recovery that may be contributing to the variances.  Brooks et al. (2003) 

distinguished biological and chemical remediation; highlighting characteristically different 

pathways, and providing specific criteria for ‘recovery’ in each case.  Other studies have 

emphasised differences between species-based, community recovery and ‘functional recovery’ 

(Macleod et al. 2008); i.e. the point at which ecosystem function is re-established, but not 

necessarily with the same communities that were present pre-impact.  It is generally assumed, 

that once functional recovery is achieved, an “equilibrium state” will ensue (Young et al. 2001, 

Macleod et al. 2008).  The concept of ‘sustainable ecological succession’, indicated by 

consistent presence and abundances of a limited number of species, has also been proposed 

as a good measure of recovery (Ellis 2003).   

The difficulties associated with determining the point of ‘recovery’ are further 

exacerbated by problems that arise when attempting to evaluate the question statistically.  

Many impact studies lack an appropriately defined assessment of pre-impact conditions, 

against which recovery can be quantitatively compared.  Consequently, recovery is assessed by 

comparison of conditions against selected spatial reference sites, that may in fact be naturally 

different, and the opportunity to evaluate the degree of change at a particular site is lost.  

Another problem with using spatial comparison as the reference point for recovery is that it 

may not always be appropriate to assume a strict equilibrium (or a single ‘stable state’) in 

biological systems (Beisner et al. 2003, Parker & Wiens 2005).  There may instead be a 

‘dynamic equilibrium’ (Parker & Wiens 2005, Macleod et al. 2008) and / or several possible 

alternative stable states (Beisner et al. 2003). Hence recovery should be assessed against a 

backdrop of both temporal and spatial variation.   

Conventional beyond-BACI designs (e.g., Underwood 1991, 1992) go some way to 

achieving this.  However, they tend to be resource intensive, requiring both multiple reference 

sites, and multiple randomly timed samplings within each specified time window.  Few multi-
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year monitoring programs are initiated with this level of sampling effort in place, and 

maintaining such a design over a long timeframe is unlikely as the cost can be prohibitive.  In 

addition, although beyond-BACI designs clearly partition the multiple sources of variation, the 

design is premised upon there being two fixed periods, ‘before’ and ‘after’ (e.g., Aguado-

Giménez et al. 2012), whereas in most long-term datasets time is often a continuous variable 

that may reveal a non-linear response.  Therefore, with a beyond-BACI approach it can be 

difficult to directly address the questions “was recovery complete?” and if so, “when did it 

occur?”  

Recovery can be conceptually defined as occurring when the impacted (injured) resource 

reaches the level which it would have been, had it not been impacted in the first place.  At 

which point, the influence of impact-related factors will have diminished to the point where 

levels of the resource vary temporally in a natural way (Parker & Wiens 2005 and U.S. Code of 

Federal Regulation, 2001).  The concept of ‘varying temporally in a natural’ way implies an 

assumption of ‘parallelism’, whereby impact and reference sites will begin to respond similarly 

to, for example, wider climatic influences.   This is useful statistically, and methods (based on 

the BACI approach) have been developed accordingly, and used to assess recovery from the 

Exxon Valdez oil spill (Skalski et al. 2001).  These methods appear to have broader applications. 

Here we provide an analysis of a 10 year annual monitoring program documenting 

recovery over the last 8 years from a highly impacted state.  A variety of existing and novel 

methods are used to evaluate the remediation process and explore the concept of recovery 

‘end points’. In doing, so we identify key stages and ecological indicators of the recovery 

process.  

 

6.3 Methods 

6.3.1 Study sites and sampling procedures 

This study was conducted at a commercial Chinook salmon (Oncorhynchus tshawytscha) 

farm site located in the outer reaches of the Marlborough Sounds, New Zealand (Figure 6-1). 

The farm was situated in a sheltered embayment over muddy-sand sediments (average mud 
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content = 78 to 84%), in water depths ranging between 28 and 35 m, with relatively low 

current speeds (mid-water mean current speed ≈ 3 cm s-1).   

The farm was fallowed in 2001 after approximately seven years of consistent and 

relatively intensive use (average feed usage of ~180 mt month-1).  Benthic sampling was 

undertaken in the Austral spring (October/November) as follows: two years prior to fallowing 

(T-2), immediately after the farm was fallowed in 2001 (T0) up until 2009 (T8).  No sampling 

was undertaken in 2000 and 2008.  Seabed samples were collected at 25 m intervals along a 

north-western transect (Gradient stations) running away from the farm (‘Cage stations’), and 

at fixed Reference stations (Figure 6-1).  Not all sampling stations were sampled in every year; 

most notably, two further reference sites were added at ~400 m and ~5800 m in 2003 and 

2009 respectively (sampling events denoted by ‘×’ on subplots in Figure 6-2).   

At each station, sediment samples were collected using a van-Veen grab, with water 

depth (Depth, m) and distance from farm (Distance, m) recorded.  All samples were collected 

in triplicate (i.e. n=3), except in 2006 (n=2) and 2009 (n=5).  Sediments were retained from 

each sample for the determination of grain size distribution (dried and analysed gravimetrically 

for size class fractions from silt-clay through to gravel), organic matter content (%OM  

measured as % ash free dry weight; Luczak et al. 1997) and macrofaunal community 

composition.  Sediment grain size and %OM measures were determined from sub-samples 

collected using a 5.5 cm diameter Perspex core, with the surface 30 mm kept for analysis. 

Macrofauna sub-samples were collected using a 130 mm diameter (0.0132 m2) core (100 mm 

sediment depth).  Macrofauna were sorted and enumerated to the lowest practicable level 

and their abundances recorded.  Macrofauna count data were used to calculate total 

abundance (N), number of taxa (S), Pielou’s (J’), Shannon (H’) and the AZTI’s Marine Biotic 

Index (AMBI, Borja et al. 2000), Benthic Quality Index (BQI, Rosenberg et al. 2004) and 

Multivariate-AMBI (M-AMBI, Muxika et al. 2007).  Qualitative assessments of sediment odour, 

Beggiatoa (bacterial mat) coverage and sediment out-gassing using pre-specified categories (as 

described in Keeley et al. 2012b) were also made at each station.   
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Figure 6-1:  Location of study site and sampling stations in relation to the farm 
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6.4 Data analyses 

6.4.1 Indicators of recovery 

Pearson correlation coefficients between variables were determined from replicate-level 

data, with a log10 transformation applied to strongly right-skewed variables (i.e., N).  Several of 

the environmental indicators were highly correlated in space and time.  A subset of variables 

was selected for further analysis: based on their potential to provide complementary 

information, due to weak correlations, representing different components of the benthos and 

/ or different levels of analytical complexities (e.g. biotic indices).  These included: %OM, 

log10(N), S, AMBI, and BQI, as well as overall enrichment stage (ES).  ES is a numerical 

derivative of all of the physico-chemical and biological variables combined, and therefore 

provides a robust indication of overall impact status (Keeley et al. 2012a).  Although BQI and 

AMBI were highly correlated, both were retained because they have previously been found to 

be particularly good indicators of enrichment (Keeley et al. 2012a and references therein)and 

are computationally quite different and utilise different taxa pollution tolerance classification 

schemes (Borja et al. 2000, Rosenberg et al. 2004).  Furthermore, there are defined values for 

BQI and AMBI which specifically relate to levels of benthic quality and pollution status (Borja et 

al. 2000, Rosenberg et al. 2004); these classifications are shown in Figure 6-2.   

Spatial and temporal relationships for individual parameters were interpolated into a 

grid using the Kriging method in Surfer 9, and displayed in 2-dimensional plots.  The x-axis 

represents ‘Time’ in years relative to fallowing (T0) and the y-axis represents ‘Space’ as 

distance from cages (m).   
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Figure 6-2:  2-dimensional plot of changes in %OM and log(N+1), S, AMBI, BQI and ES with space and 
time at for the study site. Time is given in years relative to year of fallowing (= T0) and space represents 
distance (m) from the cages. AMBI index – high values indicate a more polluted status (Borja, 2000); BQI 
index - high values indicate the high benthic quality (Rosenberg, 2004); ES - lower values reflect lower 
levels of enrichment (Keeley et al., 2012a). Crosses denote sampling events. 
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6.4.2 Multivariate analysis 

Macrofaunal community data were analysed using PRIMER 6 (Clarke 2006).  Data were 

square-root transformed to reduce the influence of the highly abundant taxa and then 

averaged at the station-level.  Multi-dimensional scaling (MDS) was used to display the Bray-

Curtis similarities (zero adjusted with dummy variable due to some samples containing very 

few individuals, Clarke et al. 2006) between Cage, 25 m, 75 m and Reference stations over 

time (all years: T-2 to T8).  One-way, single factor ANOSIM (Clarke 2006) was also conducted 

on replicate-level data to obtain a pair-wise assessment of statistical differences at each point 

of survey (i.e. T-2 to T8).   

Species succession was described by using the SIMPER procedure to identify those taxa 

which contributed most to Bray-Curtis similarities within sample groups for each survey; 

groups consisted of sample replicates pooled within Cage or References stations.  Bubble plots 

were generated to display temporal patterns in specific taxa using the ggplot() function in the 

ggplot2 library in R, where the x-axis represents time (in years or months) and the y-axis 

represents individual species.  The colour gradient of the symbols indicates the average (%) 

contribution to the groups’ similarity (from SIMPER analysis), and bubble size indicates 

abundance (square-root transformed) at the given time.  Taxa shown are restricted to those 

which contributed to the top 90% of the dissimilarity. The y-axis (i.e. taxa) was sorted (from 

top to bottom) according to the sequential contribution of those taxa to the groups’ similarity, 

starting with T0 and progressing to T8.  This creates a gradient of species succession; with 

those species that played an important role early in each study (i.e. either immediately post-

fallowing or post farm re-introduction) placed at the top of the plot and those that contributed 

in the later stages (e.g. recolonization) toward the bottom.  Taxa-specific ‘Eco-Groups’ (EG) are 

displayed where available, which are established classifications for species sensitivity to 

organic enrichment that are used to calculate AMBI; these groups range from ‘I’ (very 

sensitive) to ‘V’ (first order opportunistic taxa) (refer Borja et al. 2000, Keeley et al. 2012b and 

http://ambi.azti.es/). 

Macrofauna data were also analysed according to functional feeding groups (‘FFG’; 

deposit feeders, filter feeders, suspension feeders, scavengers, carnivores, omnivores and 

grazers), and higher level taxonomic groups (‘HLT’; e.g. higher level Order, Class or Phyla, with 
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the exception of polychaetes which were separated into two –groups based on mobility: 

sedentary and errant). 

6.4.3 Assessment of recovery 

Recovery level was determined by comparing the environmental parameters from the 

Cage and Reference stations using six different approaches, with varying levels of complexity 

(Table 6-1).  Methods 1 and 2 involved plotting and visually comparing point in time estimates 

against background conditions.  The mean values (with standard error) for all stations and 

times were overlaid with point-in-time 95 % confidence intervals for Reference stations as well 

as the natural range of conditions that was encountered over the course of the study, based 

on the 5th and 95th percentiles for all Reference station data.   

Method 3 involved simple point-in-time statistical comparisons using nested models to 

assess differences between the Cage and Reference stations (factor: ‘Treatment’), where 

Station was a random factor nested within Treatment.  Equivalent models were constructed 

for univariate and multivariate analyses, the former using the ‘aov()’ function in R  and the 

latter using the ANOSIM procedure.    

Methods 4 and 5 used a test for ‘parallelism’ (forward and backward stepping) following 

the methods of Wiens and Parker (1995) and more recently Skalski et al. (2001) - also known 

as a level-by-time interaction.  Parallelism assumes that after impact (in this case organic 

enrichment), control and impact profiles converge over time and eventually track (or parallel) 

each other as impacted sites begin to respond solely to the same regional climatic changes or 

oceanographic conditions as the reference sites.  Hence, parallelism between mean profiles for 

(in this case) the impacted and Reference stations provides inferential evidence of recovery 

(Skalski 1995, Skalski et al. 2001). Population or community level differences between control 

and impacted sites are not considered in assessing recovery in this manner, only the relative 

patterns of the temporal trends (Skalski et al., 2001).   

Parallelism analysis requires data to be analysed on a scale where natural differences 

between sites and temporal effects have an additive effect on population levels (Skalski et al., 

2001).  Where the strength of the response varies greatly, such as in population data, a 

transformation will be required to reduce any differences in amplitude; this also emphasises 

the trends such that tests for parallelism can be applied.  Animal abundance (N) was the only 
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variable log-transformed; all other variables responded normally and/or the scale for change 

was constrained.  A nested linear mixed effects model permitting random slope and intercept 

was constructed using the lmer() function in the nlme library in R (Zuur et al. 2009), where year 

(‘Ye’) was treated as a continuous variable, treatment (‘Tr’, Cages versus Refs) as a fixed factor, 

and station (‘St’) as a random factor.  As such, the ‘Ye× St (Tr)’ interaction became the test for 

parallelism.  The test was applied to a reduced time series, for example three consecutive 

surveys out of the 10 year dataset, starting with the first or last year sampled.  If the 

interaction term was non-significant then the window was moved forward (if forward 

stepping), or back (if backward stepping) one year, and the test repeated (Table 6-1).  The 

resulting P-value was overlaid on scatterplots of the environmental variables, using horizontal 

bars to display the windows over which the tests apply, and to assist with visualisation of the 

results. 

A comparable multivariate model was also constructed using Permutational analysis of 

variance (PERMANOVA+ for PRIMER, Anderson 2008), this approach tested for recovery in 

square-root transformed macrofauna composition data (MCD), FFG, HLT count data, and also 

the collective influence of all the univariate environmental variables combined (‘All Vars’).  All 

Vars analysis was undertaken using Euclidean distances, with data first normalised ((x – 

SD)/SD) to account for differing scales and arbitrary origins (Clarke 2006).  Differences 

between Cage and Reference stations through time were tested using a three-factor nested 

repeated measures design: factor 1 = Year (‘Ye’, 8 levels, fixed), factor 2 = Treatment (‘Tr’, 2 

levels, fixed), factor 3 = Station(Treatment) (‘St(Tr)’, 4 levels, random).  Significant terms were 

further investigated where required using a posteriori pairwise comparisons with 9999 

permutations.  Type I SS (sequential) were used, as some of the subsets were unbalanced.   

Further analysis of the components of variation for terms of interest was undertaken by 

calculating the distance among centroids in PERMANOVA and plotting the resulting matrix 

using principle coordinates (PCO, Anderson 2008). 
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Table 6-1: Definitions of the six different approaches used to evaluate recovery. 

Method Definition 
1. Long-term background 
range: 

The point in time that the mean value for the Cage stations first falls within the 
overall background range of conditions at the Reference stations and remains 
there for the remainder of the study. 
 

2. Point-in-time 
background range: 

The point in time that the standard error bars for the Cage stations first 
overlaps with the point-in-time percentiles for the Reference stations and 
remains there for two or more consecutive years. 
 

3. Point-in-time ANOVA/ 
PERMANOVA 

The first point at which the Cage stations are considered statistically 
comparable (P<0.05) to the Reference stations using nested ANOVA or 
PERMANOVA (Factors: Treatment, Station(Treatment)). 
 

4. Parallelism- forward 
stepping: 

The mid-point of the first time window for which a non-significant (P>0.05) 
interaction term is obtained, moving forward in time (from T0 to T8). 
Conducted for different length time windows. 
 

5. Parallelism- backward 
stepping: 

The mid-point of the last time window for which a non-significant (P>0.05) 
interaction term is obtained, moving backward in time (from T8 to T0). 
Conducted for different length time windows. 
 

6. Biological and chemical 
remediation 
(from Brooks et al., 2003) 

Chemical:  “the reduction of accumulated organic matter with a concomitant 
decrease in free sediment sulphide and an increase in sediment redox 
potential under and adjacent to salmon farms to levels at which more than half 
the reference area taxa can recruit and survive”  
 
Biological: “the restructuring of the infaunal community to include those taxa 
whose individual abundance equals or exceeds 1% of the total abundance at a 
local reference station.  Recruitment of rare species representing <1% of the 
reference abundance is not considered necessary for complete biological 
remediation.” 

 

 

6.5 Results  

6.5.1 Spatial and temporal patterns in indicator variables 

Prior to fallowing (i.e. T-2 to T0), the seabed beneath the cages was highly impacted 

(Figure 6-2). Organic matter content was markedly elevated (%OM 15 to 20%, Figure 6-2a) and 

the macrofaunal community was impoverished with few enrichment tolerant taxa remaining 

(predominantly Capitella capitata) (Figure 6-2c).  The BQI was low (0.5 to 1.5), and the AMBI 

was relatively high (3.4 to 5.8), indicative of “bad benthic quality” and “poor ecological” quality 

statuses respectively (Figure 6-2d,e).  Total abundance (N) was reduced with an average of 5 
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individuals at T-2 and 31 to 40 individuals at T0, compared with a range of 40 to 120 individuals 

at the Reference sites (Figure 6-2b).  Average ES at T0 was 5.6 indicating highly enriched 

overall conditions (Keeley et al. 2012a).  Seabed impacts were highly localised, with a marked 

reduction in %OM to near-background levels (4 to 7 %) within ~25 m of the cages (Figure 6-2a).  

Macrofauna composition improved markedly within the first 25 m, continuing to improve with 

increasing distance from the Cage stations.  Nonetheless, an effect was still clearly evident 

(low S, H’ and BQI) ≥ 100 m from the cages.   

One year after fallowing, %OM at the fallowed Cage stations was approximately 20% 

lower (%OM = 12%) than that observed at T-2.  Over the same time period, there was 

considerable improvement in the biological indicators: S increased from approximately 3 to 16 

taxa per core, and the AMBI and BQI biotic indices indicated an improvement to an 

‘unbalanced’ or ‘meanly’ polluted state and to poor benthic quality, respectively (Figure 6-

2d,e).  According to the main biological indicators (i.e. log(N), S, AMBI, BQI) recovery over the 

next two years (T2 and T3) was negligible, although %OM continued to decrease to around 

10%.  In the fourth year of recovery, most of the indicators (%OM, S, AMBI, M-AMBI) showed 

further substantial improvement at the fallowed Cage stations, achieving levels comparable to 

those found at the Reference stations.  An exception was the BQI, which although improved 

(to BQI ≈ 8), was not yet comparable to background levels (BQI 9 to 10).  At T5 a slight 

deterioration was evident, particularly in S and BQI. However, between surveys T6 and T8, all 

results (except BQI) suggested that conditions were similar to the Reference stations.  BQI 

scores continued to indicate an impacted state; an average of ~7 at the Fallowed-Cage stations 

compared with 8 to 11 at the Reference stations (Figure 6-2e). 

Unexpectedly, there was an apparent increase in enrichment at the Gradient stations 

(especially 25 m) midway through the study, mainly associated with the distribution of %OM.  

Initially the peak in %OM was at the Cage stations, but after 3 years (T3) this peak had shifted 

outwards to the 25 m station, where it remained for the following 4 years (Figure 6-2).  An 

increase in %OM was also evident at the 50 m station at T5, but to a lesser degree.  The 

biology appeared to follow a similar temporal and spatial response pattern; at T4 there was a 

peak in N at the 25m station and a general increase in N and S at the 75 m and 100 m stations.  

Notably, S also peaked temporarily at both the 100 m and Fallowed-Cage stations at T4.  The 

biotic indices responded similarly with an initial increase in AMBI, decreased M-AMBI and BQI 

at ~50 m from the cages.  AMBI and M-AMBI improved to levels comparable to the Reference 
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stations at T4, but once again BQI remained elevated, suggesting that macrofaunal 

composition was still impacted.   

 

6.5.2 Patterns in macrofaunal composition 

Multivariate analysis of the macrofaunal count data for all stations and times suggests a 

progressive convergence with time (T0 to T8, moving from right to left on Figure 6-3), as the 

fallowed Cage and near-cage (25 m) samples became increasingly similar to the Reference 

samples.  Differences between years at the Reference stations were comparatively small.  

Recovery in the macrofauna composition at the Cage stations was greatest in the first year 

after fallowing (T0 - T1 R Statistic = 0.49, P<0.01, Figure 6-3), with S reaching approximately 

50% of that observed at T8 (Figure 6-2b). The magnitude of recovery diminished in each 

subsequent year until T4, after which changes in community composition were relatively 

minor.   

Considerable recovery was also evident at the 25 m station between T0 and T1 (Figure 6-

3). However, the changes in the community observed at T3 and T4 did not follow the expected 

recovery trajectory, as the community became more dissimilar to the Reference stations than 

that observed at T1.  Substantial recovery occurred between T4 and T5, with the 25 m stations 

becoming comparable to Reference stations (T5, 25 m – Reference, R Statistic = 0.43, P=0.13).  

Macrofaunal composition at the 75 m station was initially significantly different from both the 

Cage and Reference stations (i.e. at T-2, R Statistics > 0.91, P=0.1), but comparable to the 25 m 

station (R Statistic = 0.14, P = 0.8).  There was substantial recovery at the 75 m station in the 

first year (T0 to T1), but minimal change thereafter (Figure 6-3), as the community was 

comparable to the Reference stations from T1 onwards (R Statistic < 0.6, P>0.1).   

The difference between T0 and T1 at the fallowed Cage stations was mostly due to a shift 

from a community dominated by Capitella capitata (a first-order opportunist, Eco-Group V) to 

one dominated by Eco-Group IV (second-order opportunists: dorvilleid polychaetes, 

nematodes) and enrichment tolerant taxa (Theora lubrica, amphipods, and Arthritica bifurca; 

EcoGroup III, Figure 6-4).  Abundances of C. capitata decreased to the point of not being a 

significant component of the assemblage at T2 and then disappeared altogether at T4.  

Nematodes decreased in abundance at T2, but increased at T3, before again declining 
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markedly and disappearing at T6.  Second-order opportunists and enrichment tolerant taxa (T. 

lubrica, dorvilleid polychaetes, Prionospio sp. and amphipods) all continued to increase in 

abundance at T2 and T3.  T. lubrica and Prionospio sp. remained dominant taxa through to the 

conclusion of the study (T8), whereas the importance of dorvilleid polychaetes diminished at 

T5 (Figure 6-4).  Several Eco-Group II and III taxa, including polychaetes (belonging to the 

Families Glyceridae, Lumbrineridae, Hesionidae, Flabelligeridae and Trichobranchidae) and 

cumaceans, were important at T2.  The numerical importance of most of these taxa was short 

lived, with the exception of lumbrinerid polychaetes, which were important contributors to the 

similarity of the assemblages throughout.  

While the abundance of many early colonizers decreased at T3, cirratulid polychaetes, 

Sphaerosyllis sp., maldanid polychaetes and Heteromastus filliformis became important 

contributors for the first time (Figure 6-4).  Cirratulids , Sphaerosyllis sp. and maldanids (an 

EcoGroup I taxa) continued to increase in abundance at T4, at which point paraonid 

polychaetes, Tanaid sp., sigalionid polychaetes and Nucula gallinacea (an EcoGroup I bivalve) 

became notable components of the assemblage for the first time in the recovery phase, with 

cirratulids and paraonids being dominant taxa for the remainder of the study.  Cossura 

consimilis, brittle stars (Ophiuroidea) and terebellid polychaetes all featured prominently late 

in the recovery process (T5 and T6), and are taxa which are either considered sensitive, or 

indifferent to enrichment.  Myriochele sp. (an EcoGroup III taxa) and isopods (Asselota) 

became prevalent for the first time at T8.  

A relatively small shift in background or ‘natural’ conditions was observed in the 

macrofauna count data between T0 and T8 (Figure 6-3), principally due (in reducing order of 

importance) to reduced abundances of: ophiuroids,  Nucula nitidula, T. lubrica, Spionidae, 

Cadulus teliger, Echinocardium cordatum and Neilo australis, and increased abundances of 

paraonids and C. consimilis. 

Multivariate analysis of FFG data showed substantial recovery in the first year, followed 

by a high degree of temporal (inter-annual) variability, due to fluctuations in the relative 

abundances of scavengers, omnivores and carnivores (Figure 6-5a).  The temporal changes in 

HLT groups were largest in the first 2 years, as the community shifted from being highly 

dominated by sedentary polychaetes and nematodes, to one with a more balanced 

assemblage of errant polychaetes, crustaceans, bivalves and amphipods (Figure 6-5b).  At the 
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conclusion of the study (T8), the HLT composition of macrofauna at the fallowed Cage and 

Reference stations was very similar.  Although the composition of the Reference station taxa 

also changed through time, the direction was different to that of the main recovery pathway, 

and was mainly associated with a reduction in numbers of echinoderms, gastropods, 

scaphopods and bivalves between T0 and T8 (Figure 6-5b).  At a taxa level, the differences at 

T8 were mostly due to higher abundances of Myriochele sp. Tanaid sp., T. lubrica, Prionospio 

aucklandica and H. filiformis, and lower numbers of maldanids, Ennucula strangei, flabelligerid 

and Prialula polychaetes at the fallowed Cage stations (Figure 6-4).  Of the 30 dominant taxa 

identified by the SIMPER analysis (Figure 6-4), only 6 were not common between the Cages 

and reference stations at T8, interestingly, 2 of which were first order opportunists that were 

present only at the References stations. 

 

 

Figure 6-3:  MDS ordination of FOR long-term time-series data (T-1 to T8, T0 = year of fallowing) for 
‘Cage’, 25 m, 75 m and ‘Reference’ stations, based on Bray-Curtis similarities of station-averaged, 
square-root transformed macrofauna count data. 

 



Chapter 6 
 

Long-term recovery from enrichment 
 

 

 
164 

 

Figure 6-4:  MDS ordination of FOR long-term time-series data (T-1 to T8, T0 = year of fallowing) for 
‘Cage’, 25 m, 75 m and ‘Reference’ stations, based on Bray-Curtis similarities of station-averaged, 
square-root transformed macrofauna count data. 
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Figure 6-5:  PCO ordination of Distance among Centroids for Cage and Reference stations from T0 to T8, 
based on Bray-Curtis similarities (+d) of square-root transformed macrofauna count data grouped 
according to a) functional feeding groups, and b) higher-level taxonomic groups. Overlaid with Pearson 
correlation vectors to indicate main drivers of differences in 2-Dimensional space.. 
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6.5.3 Assessment against recovery criteria 

The variables which most consistently depicted recovery were S, BQI, ES and All Vars (all 

variables assessed using multivariate analyses, Table 6-2).  Recovery according to these 

variables was generally shown to have been achieved after 4 years; however, the range 

greater for S and ES (2 to 6 years) and for All Vars (2 to 4.5 years).  AMBI and MCD also 

indicated time lengths between 4 and 5.5 years, but also that recovery had not been achieved 

in some instances (i.e. >5.5 years).  The most commonly occurring time estimate (indicated by 

the mode) across all variables was 4 to 5.5 years.  Note that because the midpoint of the time 

window was used as the ‘recovery point’ for the parallelism method, the maximum recovery 

timeline was effectively 5.5, 6 and 6.5 years for the 3, 4 and 5 year windows, respectively. 

In terms of method-specific differences, the background range methods and the point in 

time ANOVA/ PERMANOVA tests were reasonably consistent in indicating that recovery had 

occurred after 4 years (Table 6-2).  The most common recovery time estimates for the forward 

stepping parallelism method was 2, 4.5 and 5.5 years for the 3-, 4- and 5-year windows 

respectively.  It was also apparent that the 2 year estimate from the 3-year time windows 

usually indicated an early, temporary stage of parallelism (Figures 6 - 8).  Although the 

temporal responses were similar over this period, the indicator levels remained substantially 

different, and the subsequent time window (T2 – T5) indicated further significant change at 

the fallowed Cage stations.  When the slightly longer 4-year window was used to test for 

parallelism, the recovery that had been apparent during T1-T3 using the 3-year window was no 

longer evident (Table 6-2, Figures 6 - 8).   

The most common time estimates using the backward stepping method was >5.5 years, 

suggesting recovery had not occurred during the study period.  However, periods of 

parallelism were evident earlier in the dataset, highlighting a possible issue with the backward 

stepping approach.  In the case of the AMBI and BQI indices, this was due to a small divergence 

and reduced sample variability, increasing statistical power.  This divergence was mainly due to 

improving conditions at the control stations (decreasing AMBI and increasing BQI), while the 

conditions at the fallowed Cage stations remained relatively static (Figures 7b and 8a).   

Similarly, although changes were still sometimes evident in the last time window for %OM, the 

significant difference was due to levels being lower at the Cage stations than at the Reference 

stations, consistent with a less enriched state at the farm site. 
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In several instances, the main term (either ‘Tr’, in the case of the point-in-time analyses, 

or the ‘Ye×Tr’ interaction for parallelism) was not significant early on, but the term involving 

Station nested within Treatment (i.e. ‘St(Tr)’, or ‘Ye×St(Tr)’) was highly significant (e.g. 

Appendix Table 6-A and 6-C).  This was usually due to a large amount of variation in the factor 

Station(Treatment) masking differences in the main term. Further analysis of the components 

of variation for that term showed that the Cage Stations still changed substantially more than 

the reference Stations, but that the rate at which the Cage stations were changing was often 

different (e.g. Appendix Figure 6-A to 6-C). Unfortunately, recovery was greater at one station 

and as a consequence the main interaction term was not significant.  In these instances 

discretion was used to select the point most indicative of recovery. 

Total abundance (log transformed) generally indicated recovery early on in the study 

(mode = 2 years) suggesting that the fallowed Cage stations were comparable to the Reference 

stations at T0, despite obvious differences in many other variables.  FFG also appears to 

suggest a relatively rapid recovery (only 1 year), but was inconsistent with later assessments 

suggesting recovery was not complete at the conclusion of the study.   

In terms of biological remediation (Brooks et al., 2003, Method 6), a total of 19 dominant 

Reference station taxa, defined as those whose individual abundance equals or exceeds 1% of 

the total abundance were identified: amphipods, polychaete worms (Cossura consimilis, 

Prionospio sp., Sphaerosyllis sp., dorvilleids, cirratulids, hesionids, lumbrinerids, maldanids, 

paraonids, sigalionids,), nematodes, cumaceans, ophiuroids, ostracods, priapulid worms and 

small bivalves (Theora lubrica, Nucula gallinacean and Ennucula strangei).  At T-2 and T0, only 

2.6% and 4.4% of these taxa (respectively) were present at the Cage stations.  Substantial 

recruitment occurred at T1 and T2 (26% and 41%, respectively) and then again at T4, at which 

point the level of colonization peaked, with 69% of the dominant Reference station taxa being 

present.   This declined back to 48% at T5 and remained around 50% (±5%) through until the 

conclusion of the study. At T1, an average of 8.1 reference station taxa (i.e. found at the 

reference stations over the course of the study) were present at the Cage stations, which 

corresponded to 54 % of the reference station S at T1. 
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Table 6-2:  Summary of recovery estimates for selected indicator variables and the multivariate analyses 
based on five different methods. *‘Ye×Tr’ non-significant at an earlier time, but ‘Ye×St(Tr)’ remained 
significant due to large between-cage Station differences (Appendix Tables 6-A to 6-C). Temporal 
difference at fallowed-Cage stations still considerably larger than for Reference stations until specified 
time (see Appendix). 

 Univariate tests Multivariate tests 

M
O

DE:Method 

%
O

M

log(N
) S

AM
BI

BQ
I

ES

All Vars

M
CD

FFG

HLTG

1. Background range: 6-8 0 1 4 4 4 - - - - 4 
2. Point-in-time background: 6-8 2 4 >8 4 4 - - - - 4 
3. Point-in-time ANOVA/ 
PERMANOVA   4 0 4 5 4 4 4* 4* 1 4* 4 

4. Parallelism - forward 
stepping:            

3-year windows: 2 3 2 5 2 2 3* 5* 1 1 2 
4-year windows: 4.5 1.5 3.5 >6 >6 6 4.5* 4.5* 1 4.5* 4.5 
5-year windows: >5.5 2 4 5.5 5.5 >5.5 4* >5.5 4* >5.5 5.5 

5. Parallelism - backward 
stepping:            

3-year windows: >6.5 2 4 >6.5 >6.5 5 4* 5* >6.5 5* >6.5 
4-year windows: 4.5 1.5 >6 >6 >6 6 3* 4.5* >6 4.5* >6 
5-year windows: >5.5 2 4 5.5 5.5 >5.5 2* >5.5 >5.5 >5.5 >5.5 

MODE: 4.5 2 4 5-6 4 4 4 4-5.5 1 4.5-
>5.5  
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Figure 6-6:  Comparison of temporal profiles of Cage and Reference stations for average: a) %OM and b) 
N (note, analyses conducted on log transformed data), with corresponding p-values indicating results of 
test for parallelism (i.e. Year×Treatment term) for 3, 4 and 5 year time windows (indicated by horizontal 
bars on bottom three y-axes).  Y-axes correspond to specified p-value.  Vertical error bars on main plots 
represent SE.  Grey shaded area represents point-in-time 95% CI for Ref stations, and horizontal dashed 
lines indicate the range of background conditions over the entire study (5th and 95th percentiles for Ref 
Stations). 
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Figure 6-7: As in Figure 6-6, but for: A) S and B) AMBI. 
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Figure 6-8: As in Figure 6-6, but for: A) BQI and B) ES. 
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6.6 Discussion 

6.6.1 Recovery timeframes  

The duration of this study (8 years) allowed for an evaluation of longer-term recovery 

processes and interactions that are not possible with shorter-term assessments where 

recovery has not been realised (Karakassis et al. 1999, Lin & Bailey-Brock 2008, Macleod et al. 

2008, Villnas et al. 2011).  Substantial improvement in seabed health beneath the farm site 

was observed in the first 2 years, followed by more gradual and variable-dependant 

improvements over the following 2 to 3 years.  A weight-of-evidence assessment suggested 

that ‘recovery’ had ostensibly been achieved after 4 to 5.5 years.  At this point sediment 

conditions were, in many respects, comparable to the Reference stations however, significant 

differences were still evident in some environmental indicators.  The fact that recovery 

occurred in years rather than decades is significant and reinforces previous assertions that 

salmon farming is unlikely to have long-term adverse benthic impacts (e.g. Lu & Wu 1998).   

Chemical remediation, as defined by Brooks et al. (2003), requires significant 

improvements in %OM and sediment chemistry (sulphides and redox) such that more than half 

the reference taxa can recruit and survive, and this consistently occurs earlier in the process 

than biological remediation.  Although no chemical data was available in our study, %OM had 

clearly declined and the underpinning biological requirement was achieved after one year.  

This is a relatively long recovery period compared with some previous studies (Ritz et al. 1989, 

Brooks et al. 2003), which reported similar levels of remediation within a few weeks to 6 

months, but was much shorter than the 5.4 years estimated for a biologically a-typical site 

where the macrofauna was dominated by bivalves (Brooks et al. 2004).  Bivalves are typically 

suspension or deposit feeders and generally considered sensitive to enrichment (Pearson & 

Rosenberg 1978, Borja et al. 2000). However, it is important to note that this “a-typical” 

community also lacked opportunistic polychaetes, which are critical to the recovery process 

(Macleod et al. 2007).   

One definition of biological remediation requires the complete re-establishment of the 

dominant taxa (>1% by abundance) at reference sites (Brooks et al. 2004).  In the present 

study only 68% of the dominant Reference taxa had re-established after four years, and the 

level subsequently reduced with only ~50% re-establishment at the end of the study.  Hence, 
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alternate definitions of recovery proposed by Brooks et al. (2003, 2004) can be applied at 

differing timescales and comparisons with the current data clearly shows that estimates of the 

timeframe for recovery not only vary markedly based on these definitions, but can also differ 

according to the local ecology. 

 

6.6.2 Indicators of recovery  

In terms of notable responses of individual taxa, the approximate point of ‘recovery’ (i.e. 

~5 years) identified here coincided with large reductions in the abundance of nematodes and 

dorvilleid polychaetes. These enrichment tolerant taxa are prevalent under moderate-to-high 

levels of enrichment (ES 3 to 5, Keeley et al. 2012b) and therefore their substantive decline 

may be a useful indicator of biological remediation.  At the same time, several other taxa 

became established as important components of the macrofauna (ophiuriods, the polychaete 

Cossura consimilus, members of the polychaete family Terebellidae, ostracods and the bivalve 

Ennucula strangei). Four of these are listed on the AMBI database (http://ambi.azti.es/) as EG I 

or II taxa and hence appear to be good “universal” indicators of unimpacted conditions (Borja 

et al., 2000) and recovery.  There were also other taxa that were central components of the 

macrofauna in the initial phases, but then remained dominant throughout the recovery 

process and hence would not be useful indicators of recovery stage (e.g. the bivalve mollusc 

Theora lubrica, the polychaete Prionospio sp. and members of the polychaete family 

Lumbrineridae).   

Unsurprisingly, the analyses highlighted the important role of Capitella capitata during 

moderate to severe enrichment (ES4 to 6) in the early stages of recovery (i.e. the first two 

years).  However, it was interesting that despite being the dominant species in these early 

stages, there was not a strong peak in total abundance (N) as has been so frequently reported 

in association with benthic impacts (Pearson & Rosenberg 1978, Rosenberg et al. 2004, Hale & 

Heltshe 2008).  Instead, N at the fallowed Cage stations remained statistically similar to the 

Reference stations throughout the study.  Distinct differences in the proliferation of 

opportunists during recovery at site level have been observed elsewhere, but the reasons for 

this remain unclear (Brooks et al., 2004). In the current study this is possibly an artefact of 

sampling timing and frequency, which was annual, whereas the peak (PO) can occur over the 

first few months of recovery (e.g. Pereira et al., 2004).  Nevertheless, the ‘peak of 
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opportunists’, and accordingly N, appears to be an unreliable indicator of ecological succession 

during recovery. 

Consequently, although ecological differences are critical to defining change in response 

to organic enrichment it is risky to depend upon a few specific indicator species or more 

simplistic measures of ecological condition, particularly in the later stages of recovery. Beyond 

3 years, impacts were less obvious and were mainly evident as compositional differences in 

the macrofauna and as a result, variables such as N and S tended to suggest recovery earlier 

on. The variables that were most consistent in their estimate of recovery tended to the more 

complex biotic indices, which take into account some aspect of the species identity or 

functional role (BQI and AMBI) and ES (which integrates across all variables - biotic and abiotic, 

Keeley et al., 2012a). The multivariate approach, which also integrated all variables, was 

similarly robust.  This reinforces previous findings that Eco-Group based indices, the BQI and 

ES are most useful for discerning enrichment effects associated with finfish aquaculture (Borja 

et al., 2009; Keeley et al., 2012a) and medium-term recovery states (Borja et al., 2006).  The 

simplistic individual variables tended to be more susceptible to variable-specific and non-

intuitive responses.   

The detailed assessment of recovery here is based primarily on the state of the seabed at 

the fallowed Cage stations and it is conceivable that some of the variability observed may be 

an artefact of sampling and spatial variability rather than temporal changes per se.  Field 

observations during the last survey indicated some residual small-scale patchiness at the Cage 

stations, with small pockets of blackened (anoxic) sediments amongst natural sediments.  

Although this may have contributed to individual sample variability, the triplicate samples 

collected on most occasions should have accounted for the small-scale patchiness, and 

provided a reasonable estimate of overall condition.  However, the spatial analyses did suggest 

a larger-scale patchiness and ‘shifting’ of the enrichment peak that may explain some of the 

inter-annual variability.  The peak in %OM shifted to outside of the historical Cage footprint 

(25 to 50 m away) after 3 to 4 years, where there was a corresponding biological response, 

resulting in a higher overall enrichment stage (ES).  Interestingly, at the same time the total 

number of taxa increased at both the Cage station, and further away at the 100 m position.  

This observation is somewhat perplexing, as there was no known new source of external 

organic matter at the Gradient stations, and considerable care was taken to accurately 

relocate sampling stations. One possible explanation is that the predominant current flow in 
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the direction of the Gradient stations gradually transported organic material in that direction, 

the result being a slowly migrating enrichment peak.  Simultaneously, the elevated densities of 

opportunists, especially at the 25 m station, may have themselves contributed to the apparent 

increase in organic content of the sediment samples.  Regardless of the cause, these 

reasonably large-scale spatial and temporal patterns in the benthos could be responsible for 

both the variability observed in some indicators at the Cage stations (e.g. functional feeding 

groups), and potentially some of the significant Ye×Tr interactions that occurred later in the 

study.   

 

6.6.3 End-points and methods for assessing recovery  

Compositional disparity between fallowed Cage and Reference station communities can 

be interpreted as a failure of the simplest criteria for recovery. However, this assumes both 

steady state and spatial equilibrium, and the related successional theory that there is only one 

‘climax’ state, to which impacted communities will return - which is generally considered to be 

an overly simplistic view (Beisner et al., 2003; McCook, 1994; Parker and Wiens, 2005; Young 

et al., 2001).  In this study, failure to converge on a similar endpoint was most evident in the 

AMBI, BQI and the multivariate analyses of the macrofauna assemblage.  Such compositional 

differences in the latter stages of recovery are often attributable to the absence of late 

successional ‘equilibrium’ (or climax) species that tend to have slower re-colonisation rates 

(Whitlach et al., 2001), or may be excluded by early colonisers (Connel and Slatyer, 1977).  

However, in this case the differences observed at the conclusion of the study were mainly due 

to differences in the relative abundances of similar taxa, most of which had comparable 

ecological functions.  Furthermore, the assumption of steady state equilibrium was clearly not 

valid in this instance as there was a shift in reference conditions over the course of the study, 

which is evident in both the macrofauna count data and the high-level taxonomic grouping 

analysis.  Therefore, the concepts of a dynamic equilibrium (Skalski et al., 2001) and alternative 

stable states (Beisner et al., 2003) appear to be applicable in this particular assessment of 

‘recovery’.   

The point at which communities have a broadly equivalent faunal composition with 

similar functional roles (e.g. bioturbation, feeding and reproduction strategies) has been 

proposed as a useful reference point for recovery (Macleod et al., 2008).  The critical aspect in 
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this context being that the biological and ecological characteristics achieve a state from which 

the system has “the capacity” to fully recover (Macleod et al., 2008).  Multivariate analysis and 

tests for parallelism of the functional feeding groups in this study revealed some on-going 

differences between Cage and Reference stations.  Closer analysis of the data revealed that 

although the functional composition of the macrofauna was reasonably similar to the 

reference communities after two years, there were significant interactions observed in the 

parallelism tests due to alternations in the relative dominance of two or three of the main 

feeding groups.  Such compositional ‘instability’ can occur post-disturbance if the habitat is 

modified such that it favours recolonisation by species other than those which previously 

existed (Connel and Slatyer, 1977).  Thus ecosystem function appears to have been restored 

relatively quickly, but on-going compositional instability suggested a stable state had not yet 

been achieved (Connel and Slatyer, 1977).  In some situations this may be indicative of 

impacted sediments (Karakassis et al., 1999; Mendez and Linke-Gamenick, 2001).  

Parallelism is one approach that can be used to assess recovery over the longer-term, 

and is particularly appropriate where communities may be subject to natural changes. The 

basic premise of the test for parallelism is that impact and control sites will begin to track, or 

“parallel”, each other when the influence of the impact is no longer important and they are 

both responding, solely to wider environmental stimuli (Parker and Wiens, 2005; Skalski et al., 

2001).  Most of the individual indicator variables met this criterion over the 4 to 5.5 year 

range.  However, several of the biotic indices failed the test (i.e. the null hypothesis was 

rejected) when the last survey was included in the assessment window - particularly when the 

backward stepping method was applied.  In the context of the greater recovery trajectory, this 

divergence in the last time window was usually relatively small, due to deterioration at the 

Reference stations (as opposed to on-going improvements at the Cage Stations), and statistical 

significance was aided by the fact that variability among the Cage samples was generally 

reduced in the final year.  Hence, it was not always consistent with incomplete recovery.  This 

highlights a weakness that exists in both the forward and backward stepping approaches. 

When the backward stepping approach is applied, parallelism is assumed to have never 

occurred, when in fact a period of similar responses may have occurred earlier in the study.  

Conversely, with the forward stepping procedure parallelism can be concluded prematurely.     

Window size is an important consideration when applying the parallelism test as it 

represents a compromise between power (longer time windows have higher degrees of 
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freedom for the error term) and temporal resolution (longer windows being less sensitive to 

localized deviations from parallelism) (Skalski et al., 2001).  Indeed, using longer (5 year) time 

windows here increased the ability to reject the null hypothesis at the conclusion of the study 

(i.e. including years 6 and 8), i.e. indicating that parallelism had not been achieved.  Similarly, 

the shortest 3-year window identified parallelism at an early stage for most variables, between 

years 1 and 3, but this was rejected as evidence of recovery because subsequent windows did 

not demonstrate parallelism and the full range of temporal plots indicated that such a finding 

was premature.  Thus, longer time windows are less prone to falsely identifying parallelism.  

However, a disadvantage to using longer time windows is that it is more difficult to nominate a 

single year as being the point of ‘recovery’ and requires monitoring to be conducted for a 

longer period.    The recommended solution is to combine parallelism and visual assessment 

methods by identify all stages of parallelism and then selecting the first period during which all 

points within the window remained within the range of natural background variability.   This 

approach is most reliable when applied to more complex biotic indices and metrics that unify 

multiple variables. 

The above highlights the numerous unresolved challenges to reliably determining 

recovery.  A fundamental issue is the lack of clarity and consensus around what constitutes 

‘recovery’, and hence this subject requires further attention by scientists and environment 

managers.  Even if a definition or end-point for recovery is agreed upon, determining whether 

recovery has been achieved is complex and requires expert judgement.  Therefore, for the 

foreseeable future, multiple indicators of seabed recovery should be monitored and a weight-

of-evidence approach applied. 
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6.8 Appendix 

Appendix Table 6-A: Main results of point-in-time ANOVA and PERMANOVA tests between Cage and 
Reference stations for univariate and multivariate variables (respectively).  ‘MCD’ = fourth-root 
transformed macrofauna count data. ‘FFG’ and ‘HLTG’ are from square-root transformed counts based 
on ‘functional feeding groups’, and ‘higher level taxonomic groups’ (respectively).  Significance for 
factors Treatment (Cage, Reference) and Station(Treatment) at each point in time, indicated by ‘·’ = 
P<0.1, ‘*’ = P<0.05, ‘**’ = P<0.01, ‘***’ = P< 0.001. 

  ANOVA PERMANOVA 
Year Factor %OM N S AMBI M-AMBI BQI ES All Vars MCD FFG HLTG 
T0 Tr *** 

 
*** *** *** *** *** * * * * 

 
St(Tr) 

    
 

      T1 Tr *** * * *** *** *** *** 
    

 
St(Tr) *** 

 
** *** *** *** ** *** *** ** * 

T2 Tr *** 
 

* *** *** *** *** * * 
 

* 

 
St(Tr) ** 

   
 

 
* 

 
* 

 
* 

T3 Tr *** 
 

** ** *** *** *** . . 
  

 
St(Tr) *** 

  
*  

 
* 

 
** 

 
. 

T4 Tr 
   

***  
      

 
St(Tr) * 

 
. **  * 

 
. * * * 

T5 Tr ** * 
  

 
      

 
St(Tr) 

 
** 

 
*  . 

 
** * * . 

T6 Tr 
   

**  
      

 
St(Tr) 

   
**  

      T8 Tr *** 
  

*** * *** 
  

* * 
 

 
St(Tr) ** 

  
**  ** * . 

  
. 
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Appendix Table 6-B: Main results of tests for parallelism between Cage and Reference stations using 
random slope and intercept nested linear mixed effects models for 3, 4 and 5 year time windows.  
Significance of Year×Treatment interaction term indicated by: P < 0.1 = ‘·’, P <0.05 = ‘*’, P <0.01 = ‘**’ 
and P < 0.001 = ‘***’.   

 Time 
window %OM log(N) S H' AMBI M-AMBI BQI ES 

3-yr T0-T2 * * *** *** *** *** ** *** 
 T1-T3  *  . *     T2-T4 ***  * *** ** ** ** *** 
 T3-T5    * ** * ** * 
 T4-T6 ***         T5-T8 ***   * ***  **  4-yr T0-T3 *  ** *** *** *** ** *** 
 T1-T4 **  * *** *** *** ** *** 
 T2-T5 *   ** *** ** *** *** 
 T3-T6     *  * * 
 T4-T8   * . * * *  5-yr T0-T4 ***  *** *** *** *** *** *** 
 T1-T5 **  . *** *** *** *** *** 
 T2-T6 *   ** *** * *** *** 
 T3-T8 ***       * 
All years  *  * ** ** ** * ** 
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Appendix Table 6-C: Main results of tests for parallelism between Cage and Reference stations using 
multivariate data analysed using 3-factor nested models in PERMANOVA for 3, 4 and 5 year time 
windows. ‘All’ = all indicator variables (%OM, N, S, H’, AMBI, M-AMBI and BQI), normalised and 
combined using Euclidian distance. ‘MCD’ = fourth-root transformed macrofauna count data, ‘FFG’ and 
‘HLTG’ are  square-root transformed counts based on ‘functional feeding groups’, and ‘higher level 
taxonomic groups’ (respectively).  Significance of interaction terms indicated by: P < 0.1 = ‘·’, P <0.05 = 
‘*’, P <0.01 = ‘**’ and P < 0.001 = ‘***’.   

 Test 
period Term All MCD FFG HLTG 

3-Year T0-T2 Ye×Tr    . 
windows  Ye×St(Tr) *** *** * . 
 T1-T3 Ye×Tr     
  Ye×St(Tr) ** *** * *** 
 T2-T4 Ye×Tr     
  Ye×St(Tr) * *** . ** 
 T3-T5 Ye×Tr   .  
  Ye×St(Tr) ** *** . ** 
 T4-T6 Ye×Tr     
  Ye×St(Tr)     
 T5-T8 Ye×Tr   *  
  Ye×St(Tr)  .   
4-Year T0-T3 Ye×Tr .  . . 
windows  Ye×St(Tr) *** *** . * 
 T1-T4 Ye×Tr     
  Ye×St(Tr) *** *** *** *** 
 T2-T5 Ye×Tr   .  
  Ye×St(Tr) ** *** . ** 
 T3-T6 Ye×Tr   .  
  Ye×St(Tr)  **   
 T4-T8 Ye×Tr  . *  
  Ye×St(Tr)  *   
5-Year T0-T4 Ye×Tr * * * * 
windows  Ye×St(Tr) *** *** * ** 
 T1-T5 Ye×Tr     
  Ye×St(Tr) *** *** *** *** 
 T2-T6 Ye×Tr  . .  
  Ye×St(Tr)  ***  * 
 T3-T8 Ye×Tr  * ** . 
  Ye×St(Tr) . **  * 
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Appendix Figure 6-A: PCO ordinations of distance among centroids for macrofauna count data (MCD) 
from cage stations and reference stations: representing 4 year windows for periods: a) T0 – T3, and b) 
T1 – T4 (correspond to same windows for MCD in Appendix Table 6-C).  Showing substantial but 
differing change at Cage stations compared with minimal change at Reference sites.   
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Appendix Figure 6-B: As for Figure 6-1, but representing 3 year windows for periods: a) T1 – T3, b) T2 – 
T4 and c) T3 – T5 (correspond to same windows for MCD in Appendix Table 6-C).   
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Appendix Figure 6-C: As for Figure 6-A, but representing differences according to HLTG and 4 year 
windows for periods: a) T2 – T5, b) T3 – T6 and c) T4 – T8 (correspond to same windows for MCD in 
Appendix Table 6-C). 
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CHAPTER 7  

 
BENTHIC RECOVERY AND RE-IMPACT RESPONSES 
FROM SALMON FARM ENRICHMENT: IMPLICATIONS 
FOR FARM MANAGEMENT 

 

 

 

Preface: 

This chapter is an extension of the long-term recovery analysis provided in Chapter 6.  It 
examines recovery rates at a comparable site, but more intensively and over a shorter period (2 
years), and contrasts this with re-impact rates at an adjacent site that had been fallowed for 
eight years (described in Chapter 6).  These findings have important implications for fallowing 
and mitigation strategies that are often employed to manage seabed effects, and therefore the 
sustainability finfish farming in some locations 

 

At the time of thesis submission, this work was due to be submitted to a refereed journal and is 
presented below in pre-submission form. The proposed citation for the publication is:  

 

Keeley N, Forrest B, MacLeod C. Benthic recovery and re-impact responses from salmon farm 
enrichment: implications for farm management.  
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7.1 Abstract 

This paper describes a two-year study of spatial and temporal patterns and processes in the 
benthos in response to the removal (i.e. fallowing) of salmon cages from a sheltered coastal 
embayment, coupled with the simultaneous reintroduction of cages at an adjacent location.  
Significant recovery was evident at the fallowed site in the first six months; however, the 
macrofaunal assemblage remained impacted at the conclusion of the study.  By comparison, 
the reintroduction of a fully operational farm overwhelmed the macrobenthic community 
within three months, with anoxic and near-azoic conditions developing.  Both removal and 
reintroduction of the farms triggered alternating oscillations of geochemical and biological 
variables, which were attributed to effects on sediment chemistry from organic loading, ‘boom 
and bust’ cycles of opportunistic taxa in response to food supply, and the associated variations 
in metabolic potential.  The study also revealed interesting spatial dynamics in the benthos and 
some useful indicators of different stages of recovery and re-impact.  It is concluded that farm 
reintroductions should aim to gradually increase production; allowing time for the benthos to 
adapt to the additional organic flux, and be maintained at a level that avoids macrofaunal 
collapse.  The sediments ability to cope with organic inputs from fish farming, and hence the 
duration of the recovery period, is contingent on the organic load in each farming cycle and 
the extent to which the sediment community is allowed to recover.  Understanding the 
influence of each of these on sediment processes is important for sustainable long-term 
management of farming operations. 
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7.2 Introduction 

Sea-cage aquaculture can result in high levels of localised benthic enrichment due to 

fluxes of organically rich biodeposits in the form of fish feed and faeces.  As a result, 

mandatory seabed monitoring is common (Wilson et al. 2009) and the effects of operational 

farms are well described (e.g., Gowen & Bradbury 1987, Carter 2001, Buschmann et al. 2006).  

In most instances, these effects consist of extreme seabed enrichment characterised by 

sediment anoxia and a severely impoverished macrofauna community.  Understanding the 

ability of the benthos to recover from effects of this magnitude is critical to determining the 

wider sustainability of marine farming activities.  Estimates of recovery rates vary considerably, 

from 6 months (Ritz et al. 1989, Brooks et al. 2003) to five years or more (Brooks et al. 2004, 

Keeley et al. In Press.), and are highly environment and situation specific (Borja et al. 2010).  

Although complete recovery may take many years, a significant degree of biological and 

chemical remediation can occur in the first 6 to 24 months.  A better understanding of 

recovery processes in these early stages is particularly important for farm management.  In 

particular, a clear understanding of the recovery process is essential for evaluating the 

effectiveness of fallowing (periodic destocking) strategies that are often implemented to 

manage effects (Brooks et al. 2003, Macleod et al. 2006, Lin & Bailey-Brock 2008).   

Fallowing (i.e. the temporary retirement of farmed areas) has two main purposes: i) to 

avoid significant environmental deterioration for the purposes of environmental compliance 

and to prevent conditions that may adversely affect fish health, and ii) to break the life cycle of 

parasites (e.g. sealice, Bron et al. 1993, Morton et al. 2005), especially in northern hemisphere 

countries.  When implemented effectively, a fallowing strategy has the potential to increase 

long-term farm productivity and sustainability.  However, the practice of fallowing requires 

that there be sufficient area for stock to be rotated, which in turn implies that a larger area of 

seabed may be impacted.  This can be an important constraint, for example in areas where 

farms are situated close to habitats containing long-lived organisms that are more sensitive to 

enrichment (Hall-Spencer & Bamber 2007).  The effectiveness and sustainability of fallowing 

practices is an important question for management, particularly where multiple fallowing 

cycles are employed and there may be potential for cumulative impact (Macleod et al. 2007) 

or where the system resilience may be compromised (Borja et al. 2010).  One of the few 

studies undertaken in this area (Brooks et al. 2003) suggested that cumulative impacts may not 

be a problem.  However, this finding needs to be considered in the context of site-specific 
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factors; for example: farming intensity, the level of impacts at the point of fallowing, the 

duration of the farming versus fallowed cycles, hydrodynamics and the endemic macrofauna 

composition can all influence recovery (Macleod et al. 2006, Macleod et al. 2007, Lin & Bailey-

Brock 2008).  

An improved understanding of sediment remediation processes will also contribute to 

our understanding of the benthic ecosystem’s resilience to anthropogenic disturbance.  

Resilience can be defined as the properties that mediate the transition between different 

states (Gunderson 2000), and hence the changes that take place in the early stages of impact 

or recovery are particularly relevant.  Although the fundamentals of successional response to 

disturbance, and in particular organic enrichment, have been well described (Pearson & 

Rosenberg 1978), there are a number of recognised exceptions to the Pearson and Rosenberg 

model (Maurer et al. 1993, Brooks et al. 2004, Keeley et al. 2013a).  Of particular relevance is 

the fact that temporal succession during recovery does not necessarily mimic traditional 

patterns of spatial succession (Karakassis et al. 1999).  Additionally, succession during recovery 

is seldom a mirror image of the temporal response to impact (Macleod et al. 2004a), and there 

is often a lag between the impact and recovery trajectories, termed ‘hysteresis’ (Borja et al. 

2010, Verdonschot et al. 2013).  The degree of hysteresis is therefore inversely related to level 

of resilience in the recovering system, which can be viewed as a type of ‘memory’ (Elliot et al, 

2007, Verdonschot et al. 2013).  It is therefore important to identify the general features and 

indicators for impact, recovery, and re-impact pathways independently.   

In this study we compare two concurrent, relatively high frequency, medium-term (i.e. 2 

year) studies at comparable sites to specifically identify key spatial and temporal patterns in 

the benthos in response to recovery and re-impact, and the rates at which they occur.  The 

results are used to consider how initial levels of impact, or repeated impacts, might influence 

recovery, and what this means for fallowing and other management strategies , both in the 

medium-term and strategically looking to the future. 
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7.3 Methods 

7.3.1 Study sites and sampling procedures 

This study was conducted at two commercial Chinook salmon (Oncorhynchus 

tshawytscha) farms (Forsyth Bay = ‘FOR’ and Waihinau Bay = ‘WAI’, Figure 7-1) situated in 

sheltered embayment’s in the outer reaches of the Marlborough Sounds, New Zealand. The 

sites had comparable sediments (average mud content = 78 to 91%), depth (28 to 35 m) and 

flow dynamics (mid-water mean current speed = 3 to 8 cm s-1).  Farm FOR was fallowed in 2001 

after seven years of consistent and relatively intensive use, and remained unfarmed for the 

following eight years.  Therefore, at the commencement of this study, the seabed at FOR was 

almost completely chemically and biologically remediated (Keeley et al. In Review).  In 

December 2009, farming operations were relocated to the FOR site from the nearby WAI farm, 

which had been actively farmed for approximately 20 years.  This provided the opportunity to 

conduct a concurrent study of the effects of fallowing (at WAI) and re-impact (at FOR).  

Average feed use at WAI over the 12 months preceding the shift was ~268 metric tonnes per 

month (mt month-1), and feed inputs at FOR during the re-impact period equated to ~262 mt 

month-1.   

Both FOR and WAI were sampled immediately prior to cage relocation, then concurrently 

at 3-month intervals for the first 12 months after relocation, and then 6-monthly for the 

following year (i.e. at 0, 3, 6, 9, 12, 18 and 24 months).  Sampling events are identified by the 

number of months (‘M’) post-fallowing at WAI or after re-instating at FOR, e.g. M0, M3, … M24 

and are denoted by ‘×’ on subplots in Figure 7-3.  At FOR, samples were collected from: three 

cages stations (Cage1,2,3), five ‘Gradient stations’ at increasing distances from the farm along 

a north-western transect (i.e. 25 m, 50 m, 75 m, 100 m and 150 m, Figure 7-1), and two near-

farm reference stations (Ref1 = 200 m, Ref2 = 400 m) with comparable depth and substrates.  

Sampling at WAI was conducted at two Cage stations (Cage1,2), three Gradient stations (50m, 

100m and 150m), and at a reference station (Ref4) situated ~430 m away (Figure 7-1).  A 

fourth reference station (Ref3) situated >4 km from both farms served as an additional ‘far-

field’ reference for each.   

Triplicate samples were collected at all stations using a Van-Veen grab, with water depth 

(Depth, m) and distance from farm (Distance, m) recorded.  Each sample was analysed for 

grain size distribution (dried and analysed gravimetrically for size class fractions from silt-clay 
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through to gravel), organic matter content (%OM measured as % ash free dry weight; Luczak et 

al. 1997), total free sulphide (TFS, µM) and macrofaunal community composition.  Sediment 

grain size and %OM measures were determined from sub-samples collected using a 5.5 cm 

diameter Perspex core, with the surface 30 mm kept for analysis.  Total free sulphide was 

measured in the surface sediments (0-4.5 cm depth interval), with samples collected using a 

cut-off 5-cc plastic syringe, and analysed following the methods of Wildish et al. (1999). 

Macrofauna sub-samples were collected using a 130 mm diameter (0.0132 m2) core (100 mm 

sediment depth).  Macrofauna were sorted and enumerated to the lowest practicable level 

and their abundances recorded.  Macrofauna count data were used to calculate total 

abundance (N), number of taxa (S), Pielou’s evenness (J’), Shannon diversity (H’) and the AZTI’s 

Marine Biotic Index (AMBI, Borja et al. 2000), Benthic Quality Index (BQI, Rosenberg et al. 

2004) and Multivariate AMBI (M-AMBI, Muxika et al. 2007).  The M-AMBI calculations utilised 

the references conditions that were established for low flow sites in the Marlborough Sounds 

(refer Section 3.3.3).  Qualitative assessments of sediment odour, Beggiatoa (bacterial mat) 

coverage and sediment out-gassing using pre-specified categories (as described in Keeley et al. 

2012a) were also made at each station.   

 

 

Figure 7-1:  Location of study sites and sampling stations in relation to farms FOR (left) and WAI (right), 
Marlborough Sounds, New Zealand. 
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7.3.2 Data analysis and variable selection 

Pearson correlation coefficients between variables were determined from replicate-level 

data with any strongly right-skewed variables (N and TFS) log10 transformed.  Results are 

displayed using the ‘ellipse’ library (Murdoch & Chow 1996) in R (Figure 7-2).  Several of the 

environmental indicators were highly correlated in both the recovery and re-impact datasets, 

which allowed selection of a sub-set of variables.  Most of the diversity measures and biotic 

indices were positively correlated with each other (H’, AMBI, BQI and M-AMBI) and negatively 

correlated with AMBI, with r-squared values >0.83.  Log(N) was the most weakly correlated 

with other variables (R2 < 0.42), and therefore may provide ‘complementary’ information.  The 

set of variables that were selected for more detailed analysis was constrained to: %OM, 

log(TFS), log(N), S, and BQI, as well as overall enrichment stage (ES) which is a derivative of all 

of the physico-chemical and biological variables combined (see Keeley et al. 2012a).  The 

results for the other variables (i.e. H’, AMBI and M-AMBI) are presented in Appendix 7-A and 7-

B. 

Spatial and temporal patterns for individual parameters were interpolated into a grid 

using the Kriging method in Surfer 9, and displayed in 2-dimensional plots.  The x-axis 

represents ‘Time’ in years relative to fallowing or re-impact (T0) and the y-axis represents 

‘Space’ as distance from cages (m). Distances to Ref2, 3 and 4 were reduced for plotting to 

emphasise the changes that occurred over the first 200 m from the farm (changes beyond 200 

m were negligible). 
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Figure 7-2:  Pearson correlations between environmental variables.  Ellipses indicate correlation 
strength (by degree of elongation and graduated colour from red = strongly negative to blue = strongly 
positive), numbers indicate coefficient rounded to 2 d.p. 

 

 

7.3.3 Multivariate analysis of Cage and Reference stations 

Species succession was described by using the SIMPER procedure to identify those taxa 

which contributed most to Bray-Curtis  similarities within sample groups for each survey; 

groups consisted of sample replicates pooled within Cage or References stations.  Bubble plots 

were generated to display temporal patterns in specific taxa using the ggplot() function in the 

ggplot2 library in R (R Development Core Team 2011), where the x-axis represents time (in 

months) and the y-axis represents individual species.  The colour gradient of the symbols 

indicates the average (%) contribution to the groups’ similarity (based on SIMPER analysis of 

fourth-root transformed data) and the bubble size indicates abundance for the given time.  

Taxa shown are restricted to those which contributed to the top 90% of the dissimilarity, and 
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the y-axis (i.e. taxa) was sorted (from top to bottom) according to their contribution to the 

groups’ similarity, sequentially starting with M0 and progressing to M24.  This creates a 

gradient of species succession; with those species that played an important role early in each 

study (i.e. either immediately post-fallowing or post farm re-introduction) placed at the top-

left of the plot and those that contributed in the later stages (e.g. recolonization) toward the 

bottom-right.  Taxa-specific ‘Eco-Groups’ (EG) are displayed where available, which are 

established classifications for species’ sensitivity to organic enrichment that are used to 

calculate AMBI; these groups range from ‘I’ (very sensitive) to ‘V’ (first order opportunistic 

taxa) (refer Borja et al., 2000; Keeley et al., 2012b and http://ambi.azti.es/). 

The temporal changes that occurred at both WAI and FOR were then compared using 

Multi-dimensional scaling (MDS, Kruskal & Wish 1978, Clarke 2006) in PRIMER v6. All 

macrofauna count data were square-root transformed to reduce the influence of highly 

abundant taxa and the station-averaged Bray-Curtis similarities of Cage and Reference stations 

over time (all months) were displayed in 2-dimensions.  Additionally, the environmental data 

(%OM, log(TFS), log(N), S, H’, AMBI and BQI) were normalised and MDS was used to display the 

similarities according to Euclidean Distances for Cage and Reference station through time.   
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7.4 Results  

7.4.1 WAI site recovery 

At the point of fallowing (M0), WAI was highly impacted immediately beneath the cages 

(i.e. the former cage site), with elevated TFS (average = 4335 µM), high %OM (average = 20%), 

low N (2 – 60, except one replicate which had 576 individuals), and, only a few (2 – 4) taxa 

(primarily Capitella capitata and nematodes, Figure 7-3a-d, 4).   

Three months after fallowing the conditions at the Cage stations had deteriorated 

further; N and S were at near zero levels, TFS had increased and the biotic indices indicated 

extremely impacted conditions (Figure 7-3b-d & 7-4).  Interestingly, %OM increased between 

M0 and M3 at one of the two cages stations, despite the fallowed status, before decreasing.  

Accordingly, overall Enrichment Stage (ES) indicated near-azoic conditions at M3 (average ES = 

6.3).  N increased sharply in the following two surveys, achieving a peak of >1700 individuals 

per core 9 months after fallowing.  Over the same period, TFS reduced dramatically, but S 

remained very low (average S ≈ 6).  The period when S was consistently low (M6 to M9), and 

total abundances were high, corresponded to consistently low BQI values indicating a ‘bad’ 

environmental status, according to the criteria of Rosenberg et al. (2004).  Average overall ES 

reduced to 5.1 at M9 as the opportunistic taxa proliferated (Figure 7-3f).   

Beyond 9 months, S progressively increased, achieving levels comparable to the 

Reference stations (S ≈ 18) by M24 (Figure 7-3d & 7-4).  Average %OM remained elevated at 

the Cage stations until M12, and to a lesser extent M18, but decreased markedly between 

M18 and M24, at which point it was only slightly elevated (~6.5%, Figure 7-3a).  After 12 

months, N consistently decreased, but remained moderately elevated (average N = 397 

individuals / core) at M24 (Figure 7-3d & 7-4).  Marked improvements were evident in all other 

diversity measures and biotic indices between 12 and 24 months; however, only H’ achieved 

levels indicative of Reference conditions by the conclusion of the study (Appendix 7-A).  S, 

AMBI and M-AMBI all still indicated a moderately impacted state after 12 months, while the 

BQI indicated ‘poor’ benthic habitat quality (Appendix 7-A, Figure 7-3d,e).  ES indicated 

progressive improvement in conditions from M3, achieving ES~3 at M24 (Figure 7-3f, 4) 

The gradient sampling stations beyond the cage showed a similar temporal response 

pattern during recovery, but with an approximate 3 month lag.  At 50 m, N was initially 
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elevated, but reduced during the first 6 months of recovery before peaking again at 12 to 18 

months.  Thus, both the dip in N (evident as a collapse beneath the Cages at M3) and the 

subsequent peak occurred 3 to 6 months later than beneath the cages (Figure 7-3c).  S, AMBI 

and M-AMBI also all indicated a temporary deterioration in conditions at the near-farm (50 m) 

stations at 6 and 9 months before improving steadily between M12 and M24.  ES indicated 

consistent moderate levels of enrichment (ES ≈ 3) 50 m away for the first 12 months before 

reducing to near-background levels at M24 (average ES = 2.5).  Further way from the cages at 

the 100 m and 150 m stations most of the biotic indices (e.g. H’, AMBI) returned to near 

background by M12 to M18.  Overall ES was very slightly elevated (ES ~0.3 > Reference) at 100 

m until M24.  The levels of enrichment encountered at 50 m distance at M0 were 

approximately equivalent to those that were observed at the Cage stations after 24 months of 

fallowing. 

The initial reduction in total N at M3 at Cage stations was primarily due to a reduction in 

the abundance of the opportunistic polychaete Capitella capitata (EG V), and to a lesser 

extent, nematodes and amphipods (Figure 7-5).  The subsequent abrupt increase in N at 6 

months was due to large increases in C. capitata abundances and small increases in nematode 

worms, dorvilleid polychaetes (both EG II second order opportunists) and the polychaete 

Neanthes circognatha (EG III).  C. capitata densities continued to increase at 9 months, while 

the other three species reduced in abundance.   

After M9, C. capitata abundances strongly decreased whilst three second-order 

opportunists (nematodes and dorvilleid polychaetes) increased and remained dominant until 

M24. Several other less impact-tolerant taxa became important components of the 

assemblage at M12 (the small bivalve Theora lubrica, amphipods and some EG II and III 

polychaetes: Prionospio multicristata, Boccardia acus, and representatives of the families 

Glyceridae and Nereidae).  Many of these taxa had declined in abundance three months later; 

the exceptions being T. lubrica and P. multicristata, which remained numerically important at 

M24.  The main changes between 18 months and the final survey (at 24 months) were due to 

the third consecutive large decrease in C. capitata abundance, and relatively minor changes in 

abundances of several taxa known to be sensitive and / or indifferent to enrichment (i.e. EG I 

or II), e.g. the polychaetes Boccardia sp., Heteromastus filiformis, and the families Maldanidae, 

Paraonidae, Lumbrineridae, and cumacea (Figure 7-5). 
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Figure 7-3:  Changes in %OM, log(TFS), log(N), S, and BQI with space and time during recovery at WAI. 
Time is given in months relative to when the cages were removed (M0) and space is the square of 
distance (m) from the cages. Crosses (‘×’) denote sampling events. 
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Figure 7-4: Scatterplots of average %OM, TFS, N S, BQI and ES at WAI recovery at Cage stations 1 and 2 
(black dots).  Open circles indicate mean values for Reference stations. Error bars represent 1SE. 
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Figure 7-5:  Bubble plot of WAI short-term recovery at Cage stations (combined) based on SIMPER 
analysis of macrofauna count data.  Species shown are those that contributed to the top 90 % of the 
groups’ similarity and are sorted (from top to bottom) according to their relative contribution (% 
similarity indicated by colour gradient).  Bubble size indicates (fourth-root scaled) average total 
abundance (N). Ref = reference stations at M24.  Bracketed values indicate previously established Eco-
Group (Borja et al., 2000) values for each taxon. Small blue dots indicate taxa that were present, but did 
not contribute significantly to the similarity. 
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7.4.2 FOR site re-impact 

The benthic response beneath the cages during re-impact at FOR was characterised by a 

rapid deterioration in all indicator variables (Figure 7-6a-f).  Three months after reinstatement 

the seabed had changed from a near-natural state (average N = 54, average S = 19.4, ES ≈ 2) to 

a severely impoverished macrofauna (average N = 16, S = 3, ES ≈ 6; Figure 7-6c,d,f and 7), with 

some replicates containing no macrofauna.  Over the same period, there was a small increase 

in TFS, which continued to increase over the following 6 months, peaking at 4000 – 5000 µM 9 

months after the farm was reinstated (Figure 7-6b and 7-7).   

N remained low for the first 6 months before a substantial peak, driven predominantly by 

C. capitata, which occurred 12 months after reinstatement at all three Cage stations (average 

N = 2,380, Figure 7-6c and 7-7).  This peak was still evident after 18 months.  At the conclusion 

of the study (i.e. after 24 months) the peak of opportunists had diminished (average N = 276), 

with three of the nine samples containing only 5 to 10 individuals per core.  After the initial 

decline at M3, S continued to decline at M3 and M6 and remained very low (average of 3 to 4 

taxa / core) for the remainder of the study (Figure 7-6d and 7-7).  BQI and AMBI also indicated 

a highly impacted state (1 – 1.5 and > 5.8, respectively) from 12 - 24 months post-

reinstatement.  TFS peaked again, strongly in the last survey (M24), after N had diminished 

(Figure 7-6b).  %OM was positively correlated with TFS, peaking initially at M9 to M12 and 

again at 24 months (~20% w/w, Figure 7-6a).  Elevated levels of %OM were highly localised, 

not extending much beyond 25 m from the farm.  ES reduced slightly after 12 to 18 months in 

accordance with the temporary re-establishment of opportunistic taxa, but increased to >ES 6 

again at M24 when the macrofauna collapsed. 

A peak in N was also evident at the Gradient stations, but diminished with increasing 

distance (from 25 m to 100 m stations) and occurred 3 months earlier than beneath the Cages 

(i.e. after 9 months Figure 7-6c).  This small peak in N was observed as far out as the 150 m 

station.  At 25 m, the peak in abundance was still evident at the conclusion of the study, but 

further away (i.e. at 50 m and 75 m) abundances subsided and were comparable to 

background levels at M18.  S was reduced by approximately 50 % when N peaked at the 25 m 

station (at M9), but had returned to reference levels by M12 (Figure 7-6d).  At the 50 m and 75 

m stations, S remained moderately supressed (~15 taxa / core) at 18 and 24 months.  Similar 

patterns were evident in the biotic indices (e.g. AMBI and BQI, Appendix 7-B and Figure 7-6e,f) 
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at the 25 m to 75 m stations – all of which indicated significant, progressive deterioration over 

the first 9 months followed by a low level of improvement. 

The abrupt deterioration in conditions beneath the Cages in the first 3 months after 

restocking was associated with the disappearance of virtually all of the taxa that were present 

at M0 (Figure 7-8).  The most notable reductions were (in reducing order of importance 

according to SIMPER analysis):  amphipods, Prionospio aucklandica, cumaceans, Tanaid sp., 

Paraonidae, Cirratulidae, Lumbrineridae, Myriochele sp., Theora lubrica, ostracods, Asellota, 

Cossura consimilis, and Heteromastus filiformis (Figure 7-8).  At M3, small increases were 

observed in dorvilleid, Prionospio yuriel, and C. capitata polychaetes appeared for the first 

time.  Beyond 3 months, differences between surveys beneath the cages were strongly 

dominated by large fluctuations in abundances of C. capitata – increasing initially from M3 to 

M6 and peaking in abundance after M12, before undergoing large declines M18 and M24.  

After the initial increase at M3, P. yuriel no longer featured in the Cage communities, and 

abundances of dorvilleid polychaetes remained relatively low and fluctuated between surveys.  

Nematodes became numerically important temporarily at M18, when C. capitata were 

declining (post-peak abundance), but still abundant. 
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Figure 7-6:  Changes in %OM, log(TFS), log(N), S, and BQI with space and time in response to farm 
reinstatement at FOR. Time is given in months relative to when the cages were reinstated (M0) and 
space is represented as the square of distance (m) from the cages. 
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Figure 7-7:  Scatterplots of average %OM, TFS, N S, BQI and ES at FOR re-impact at Cage stations 1 and 2 
(black dots).  Open circles indicate mean values for Reference stations. Error bars represent 1SE. 
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Figure 7-8:  As for Figure 7-5, but using FOR re-impact Cage station data (M0-M24); Ref = Ref1 and 2 
combined at M0. 

 

 

7.4.3 Comparison of recovery and re-impact trajectories in benthic assemblages 

The macrofaunal assemblages at the Cage stations after the first 3 months of recovery 

and re-impact were surprisingly similar; in both situations their biogeochemical and ecological 

conditions indicated a highly impacted state (Figure 7-9a,b).  However, progression to this 

state from M0 was far more dramatic under the re-impact scenario, where the start point was 
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near-natural conditions, whereas the deterioration under the recovery scenario was a 

relatively small shift due to the highly impacted initial state.  The recovery and re-impact 

stations also behaved similarly between M3 and M6, where the levels of TFS and %OM were 

similarly high, opportunistic taxa proliferated, and the benthos was otherwise impoverished.  

After 6 months, conditions at the re-impact stations remained highly impacted and generally 

comparable to conditions at the recovery site prior to fallowing.  Conditions at the recovering 

site progressively improved from 9 months onwards, increasing in similarity to the Reference 

stations, but still remaining distinct (and impacted) at 24 months.   

There was very good agreement between the Bray-Curtis similarities of macrofauna 

count data and the Euclidean Distances based on the suite of environmental indicators (Figure 

7-9a,b).  Variation within the Reference stations between surveys was small in comparison to 

the changes through time at the Cage stations.  Differences between the two reference 

stations (i.e., Ref1 near to FOR and Ref4 nearer to WAI) were also consistently relatively small. 
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Figure 7-9:  MDS ordinations of FOR and WAI medium-term time-series data for Cage and Reference 
sites (FOR = Ref1, WAI = Ref4), based on A. Bray-Curtis similarities of site-averaged, square-root 
transformed macrofauna count data; and B. Euclidean distances of site-averaged normalised 
environmental data (variables include: %OM, log(TFS), log(N), S, H’, AMBI and BQI). 
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7.5 Discussion 

7.5.1 Recovery processes 

Medium-term recovery processes can be defined by a series of key responses.  Recovery 

at WAI was most significant in the first six months, with an initial increase followed by a rapid 

decline in TFS concentrations over this period.  In the ensuing three months there were 

marked increases in the abundance of opportunistic taxa.  The number of taxa (S) remained 

suppressed for the first six months but then steadily increased as the opportunists declined.  S 

returned to levels close to that of the reference stations after 2 years, however, the 

community was still clearly impacted, with second-order opportunists and enrichment tolerant 

taxa dominating, and lacking several taxa that were numerically important at the reference 

station.  The resulting overall enrichment stage (ES) remained clearly higher than for the 

reference areas (ES 2.8 compared with ES 1.7 for the reference site).  This is consistent with a 

number of other studies which have shown short-medium-term recovery in some variables 

(particularly geochemical) but distinct differences in ecological composition after similar 

timeframes (Karakassis et al. 1999, Macleod et al. 2004c, Villnas et al. 2011).  Such large shifts 

in S, N and in taxa composition were well captured by the diversity measures and biotic 

indices, which all indicated highly impacted conditions for the first year and moderately 

impacted conditions thereafter.   

The finding that full biological remediation at WAI was still not achieved after two years 

was not unexpected, as significant compositional differences can exist in the macrofauna for 5 

or more years following a highly impacted state in similar low flow environments (Keeley et al. 

In Review).  For this reason, formal criteria for the assessment of the recovery end-point 

described in Chapter 6, were not applied in this study.  Brooks et al. (2004) define biological 

recovery as occurring when the dominant taxa (i.e. those taxa which comprise > 1 % by 

number) found at a reference site are present.  Whereas here, only 39 % (s.e. = 2 %) of the 

dominant reference station taxa were present at the conclusion of the study.  In contrast, the 

criteria for chemical remediation (Brooks et al. 2004) were met after approximately 18 

months; at which point TFS was decreasing, redox levels were increasing and more than half 

the reference area taxa had been established.  Hence, this study revealed early chemical 

remediation relative to biological remediation, as has been observed elsewhere (Macleod et 

al. 2004c, Macleod et al. 2006, Keeley et al. In Review).   
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7.5.2 Temporal dynamics during recovery and re-impact 

Dynamic relationships between the biological and geochemical measures of recovery and 

re-impact were most evident as alternate oscillations between TFS and N - or more specifically, 

abundances of first-order opportunistic taxa, especially Capitella capitata and nematodes.  In 

both the re-impact and recovery datasets, an initial peak in TFS was followed by a subsequent 

peak in N (3 to 6 months later), which in turn corresponded to a trough in TFS, and as N 

declined, a second peak in TFS was observed (a stylised representation of these general 

patterns is shown in Figure 7-10).  In the case of the re-impact scenario, the first peak in TFS is 

presumably the initial response to farm reinstatement and organic inputs causing a rapid 

increase in %OM, which alters sediment chemistry and elevates TFS.  When this occurs in 

relatively unimpacted sediments, the natural benthos may be poorly equipped to respond 

(Macleod et al. 2007) and sulphide-sensitive taxa (which may comprise the majority) will be 

eliminated, whilst enrichment tolerant taxa (characteristically smaller and with a shorter-life 

cycle) proliferate (Hargrave et al. 2008).   

If sulphide tolerant taxa, such as C. capitata and nematodes, are not a pre-existing 

component of the macrofauna, then there may be a lag in their response (Gremare et al. 

1989), during which time the sediment can be effectively devoid of macrofauna, such as was 

observed here.  The establishment and subsequent proliferation of C. capitata in response to 

enrichment is not dependent on their presence at the time of the farm reintroduction because 

elevated TFS is a known settlement cue for the species (Cuomo 1985).  However, rapid 

recolonisation would be facilitated by an established reservoir of the species allowing 

immediate, local reproduction.   

The peaks and collapses of the opportunistic taxa illustrate characteristic ‘boom and 

bust’ cycles typical of r-strategy species, exacerbated by excess organic accumulation resulting 

in extreme hypoxia / anoxia.  The state of the macrofaunal assemblage has previously been 

linked to the rate of supply of organic matter, and associated TFS concentrations (Tenore & 

Chesney 1985, Brooks & Mahnken 2003a, Hargrave et al. 2008).  Being a first-order 

opportunist, C. capitata, responds rapidly to increased food availability and subsequent 

diminution of food can cause a collapse in the population, often on 8 to 10 week cycles 

(Chesney & Tenore 1985, Gremare et al. 1989).  Such an ‘overshoot of their carrying capacity’ 

is thought to result from i) changes in physical factors, ii) reduction in availability of resources, 

or iii) competition for food (Gremare et al. 1989).  These factors may explain the fluctuations 
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post-fallowing at WAI, as the pool of organic matter is consumed, at which point, competition 

from second-order opportunists may also become important.    

However, the same factors do not explain the re-impact situation at FOR where there 

was a substantial and consistent organic flux.  The reduction in TFS at 12-18 months may be 

explained by fauna-mediated oxygenation of the sediments and organic matter decomposition 

(Heilskov & Holmer 2001, Braeckman et al. 2010).  Although C. capitata was described by 

Heilskov et al. (2006) as a relatively poor irrigator, and therefore mineralizer, of sediments, 

that finding was based on relatively low densities, and therefore, low metabolic potential.  The 

metabolic rate of Capitella has been estimated at 12 mmol Total CO2 m-2 day-1 for 10,000 

individuals, whereas, a much larger Nereid polycheate species can have a metabolic rate 

almost an order of magnitude grater (Heilskov & Holmer 2001).  However, capitellid densities 

in this study (1000 to 2500 per core) were approximately 2-3 orders of magnitude higher than 

is typical for large errant polychaetes (<10 per core), and can be as much as four orders of 

magnitude higher (Keeley et al. 2012b, Keeley et al. 2013a).  Additionally, Heilskov’s study 

considered the ability of capitellids to actively irrigate the sediments, but it did not account for 

a number of other factors that can promote mineralization of organic matter when densities 

are very high.  For example, there is likely to be significant passive transfer of overlying waters 

and microbial communities through the intensive burrow networks, and the mobilisation of 

sediments through ingestion.  It is therefore reasonable to conclude that opportunistic 

macrofauna when at very high densities can play a significant role in waste metabolisation and 

associated chemical remediation.  Nonetheless, with an ongoing flux of organic matter at FOR, 

sediment anoxia and collapse of the macrofauna eventually occurred (i.e. after 24 months).  

These conditions may supress future colonization events, leading to prolonged anoxia and 

organic accumulation.  In the absence of a functioning and prolific macrofauna, benthic 

metabolism would be restricted to bacterial and anaerobic processes (Hargrave et al. 2008), 

which may explain the sharp increase in TFS at FOR from 18-24 months.   

It was interesting to note that the abrupt removal of the WAI farm also set up an 

analogous set of oscillations in key biological and physico-chemical variables.  Such oscillations 

between TFS and total abundance may go some way to explaining the frequently poor 

negative linear relationship between the two variables (Figure 7-2, Hargrave et al. 2008, Keeley 

et al. 2013a); as there can also be periods when both N and TFS are increasing.  A better 

understanding of the role of the dynamic and complex bacterial communities that are an 
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important but poorly understood component of the benthic ecology (Bissett et al. 2007) may 

help explain these anomalies in the temporal cycles.  It is likely that temperature / season also 

played a role by influencing metabolic rates (including that of the bacterial communities) and 

near-bottom oxygen levels.  However, the patterns observed (summarised in Figure 7.10) are 

clearly dominated by the large post-disturbance response that would like override any 

seasonal pattern in the early stages at least, and did not seem to support a clear seasonal 

cycle.  

Compared to recovery, the re-impact trajectory was steep, achieving a highly impacted 

state (near-azoic, ES 6 – 7) from near-natural conditions within three months (Figure 7-10).  

Whereas, the same level of recovery (i.e. from ES6 to natural) did not occur within the two 

year timeframe of the study, and a long-term study conducted at the same FOR site indicated 

that recovery was achieved after ~ 5 years (Keeley et al. In Review).  Such hysteresis has been 

described for a range of environments, including rivers, lakes, estuaries and coasts (Borja et al. 

2010, Verdonschot et al. 2013).  However, the temporal model described for present study 

differs markedly from that proposed by Borja et al. (2010), which describes hysteresis (and 

resilience) in relation to a gradient of on-going pressure (i.e. where the pressure is ramped up 

or down), whereas in the case of salmon farm fallowing, the pressure changes abruptly (i.e. it 

is either constantly on (when the farm is present) or off (when the farm is removed).  

Interestingly, the level of organic enrichment (as assessed by ES) decreased periodically as 

opportunistic taxa became established and proliferated, before deteriorating again at the 

conclusion of the two year study, when the opportunistic taxa collapsed. It is conceivable that 

N may have peaked again after the conclusion of the study, but it seems unlikely in the 

presence of sustained high levels of organic flux.  This suggests that the rate of organic flux 

(and accordingly feed use and farming intensity) was more than the assimilative capacity of the 

sediments.  The average feed use over the period of occupation equated to a depositional flux 

of approximately 7 – 8 kg solids m-2 year-1 beneath the cage (determined from depositional 

modelling (DEPOMOD), Cromey et al. 2002a, Keeley et al. 2013b).  This assessment is 

consistent with the recently proposed threshold for the maintenance of ES5 conditions at low 

flow sites of ~ 6 kg solids m-2 year-1 (Keeley et al. 2013b) and would suggest that the level of 

farming was unsustainable.   
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Figure 7-10:  Stylized depiction of main features observed during impact and recovery from extreme 
enrichment.  Integrates the general trends evident in the recovery and impact datasets (summarised 
from Figures 4 & 7) and from the long-term recovery patterns described in Chapter 6.  S = No. taxa, N = 
total abundance, TFS = total free sulphides and ES = overall Enrichment Stage. 

 

7.5.3 Spatial dynamics during recovery and re-impact 

It was also apparent from this study that the peak in opportunists can shift in space as 

well as time in response to significant organic inputs, on a scale of 10’s of meters.  When the 

farm was operational at WAI, the zone of peak abundance occurred beyond the perimeter of 

the cages (25 to 50 m away), but shifted in to the centre of the farm when the inputs ceased 

and enrichment levels subsided.  As recovery progressed (in this case, after 18 months), %OM 

reduced beneath where the cages were situated and the peak in total abundance shifted 

outward again to the perimeter of the site (25 – 50 m away).  A comparable pattern was 

evident in a study of long-term recovery at FOR, where the peak in %OM shifted out to 25 m 

after two years and the peak in total abundance also occurred at the same distance two years 

later (four years after fallowing, Keeley et al. In Review).  A similar situation was observed 

during re-impact, where the proliferation of opportunistic species initially occurred on the 

periphery of the cage site, before migrating in to the most impacted region approximately 

three months later.  Such shifts in the high-density zone of opportunists close to the farm 

emphasises the spatially and temporally dynamic nature of the benthos and highlights the 

need for coupled at-source (e.g. beneath cage) and near-source (e.g. 50 m) sampling.  This has 

implications for monitoring strategies that target sampling at a single distance from the farm 

(e.g. AZE, ASC 2012).    
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This study also revealed some interesting wider spatial patterns, whereby taxa richness, 

peaked both away from the farm in the outer reaches of obvious enrichment (i.e. 75 m to 100 

m), and later in time, as the overall enrichment level subsided.  A similar pattern was observed 

in the long-term analysis of the FOR site, where taxa richness became elevated approximately 

100 m away from the farm, but in that case after 3 – 4 years (Keeley et al. In Review).  Such 

observations are consistent with the established ‘intermediate disturbance hypothesis’, which 

predicts that the highest diversity will be found at intermediate levels of disturbance (Petraitis 

et al. 1989), analogous to the ‘transition zone’ described for organic enrichment gradients 

(Pearson & Rosenberg 1978).  In this case, the outer region of the benthic footprint was 

characterised by ES2.5-3 conditions, which represents a zone of mild enrichment or 

‘enhancement’ where taxa richness can be elevated, while sediment chemistry is not 

necessarily affected (Keeley et al. 2012b, Keeley et al. 2013a).  This benthic state may be 

subjectively viewed as being either a positive or a negative effect, and given that the affected 

area is potentially larger than the area of ‘severe enrichment’, it should be a consideration in 

any broader environmental impact assessment (EIA). 

 

7.5.4 Biological indicators 

Comparisons of the prevalence of individual taxa during different stages of recovery as 

compared to re-impact were made difficult by the macrofaunal collapse that occurred at the 

re-impact site within the first 3 months.  Two taxa were able to withstand the reintroduction 

of the farm (dorvilleids and C. capitata) both of which are first or second-order opportunistic 

polychaetes, and obviously hardy and indicative of high levels of enrichment.  Prionospio yuriel 

proved to be moderately tolerant of organic enrichment, but it disappeared with the onset of 

sediment anoxia.  Nematodes appeared to replace C. capitata towards the end of the 24 

month cycle and as such featured at the most impacted end of the successional gradient.  

Succession among these taxa under degenerating conditions appears to be: dorvilleids → 

capitellids → nematodes → azoic.  In the case of recovery the same taxa dominated from 6 

months onwards, however C. capitata was the earliest to colonise and to subsequently die 

back.  In the case of nematodes at least, the slightly delayed response in both degrading and 

recovery sediments may be related to their small size (meiofauna) and ability to occupy 

interstitial spaces (Sutherland et al. 2007); i.e. high densities of capitellids may in fact be 
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conditioning sediments and providing direct habitat, and as such there may be some degree of 

co-facilitation. 

Diversity improved considerably after 12 months as several enrichment-tolerant and 

second order opportunistic taxa (EG III and IV, Borja et al. 2000) became established.  These 

are all good indicators of the early stages of recovery.  The presence of Maldanidae at the late 

stages of recovery when conditions were still moderately impacted raises questions over its 

present classification as being ‘sensitive to enrichment’ (Keeley et al. 2012b), suggesting it may 

be more appropriately classified as EG II (i.e., indifferent to enrichment, Borja et al. 2000).  

However, this decrease may also be a function of endemic and / or species-specific differences 

existing within what is a relatively high-level taxonomic grouping. 

 

7.5.5 Implications for monitoring and management strategies 

The fact that the impact/ re-impact pathway is considerably shorter than the recovery 

pathway (i.e. system hysteresis) has implications for management and sustainability of 

rotational fallowing strategies.  Clearly, it may be impractical to move cages every three 

months to avoid sediment anoxia.  Moreover, many alternate sites would be needed to move 

cages onto while the original sites were recovering, leading to a more extensive overall effects 

‘footprint’ and creating conflict with other resource users.  The sustainability of the level of 

farming may also be influenced by the way a farm is introduced to a site.  In the present case, 

the farm was reintroduced in a fully operational state (i.e. fully stocked with large fish), as 

opposed to progressively with a relatively low initial biomass of smolts.  This is likely to have 

contributed to the abrupt deterioration in conditions, as there was no lead-in time to allow the 

macrofauna to adapt and respond to the additional inputs.  A different impact trajectory may 

have resulted if the farming intensity was progressively introduced over a period of ca. 6 to 12 

months.  Equally, the need for ‘preconditioning’ could be used as an argument for 

reintroducing farms to fallowed sites before recovery is complete, when the macrofauna 

assemblage still contains opportunistic taxa.  However, this would only be true if there were 

no other residual effects in the sediments that predisposed it to becoming quickly re-impacted, 

for example, pockets of recalcitrant material or a shallow redox potential discontinuity (RPD) 

layer. 
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Where it can be assumed that residual effects are unimportant (i.e. system resilience has 

not been compromised) and the impact pathway (as indicated by ES, Figure 7-10) remains 

unchanged upon subsequent reinstatements, then the level of impact at reinstatement would 

likely increase initially, but remain relatively constant for subsequent fallowing/farming cycles 

(Figure 7-11-A).  Conceivably, this situation would enable farms to consistently operate within 

benthic environmental quality standards (EQS), which is a common requirement for fish farms 

internationally (Wilson et al. 2009).  However, if the system has compromised resilience at the 

point of reintroduction and the rate of re-impact increases, then a degenerative profile may 

develop (Figure 7-11-B).  Once the population of opportunist’s collapses, the potential for 

benthic metabolism (and therefore assimilation) also diminishes, and organic matter will tend 

to accumulate.  Under these conditions, the recovery rate may be adversely affected (due to 

the time taken to metabolise the excess organic matter).  Additionally, the time spent 

exceeding a given EQS may increase with successive occupations, as would the level of 

enrichment at the start of each new occupation, ultimately leading to the potential for 

“souring” of the site (Figure 7-11-B).  In such a situation, either the organic flux (i.e. farming 

intensity) would need to be reduced, or the fallow period would need to be increased to 

achieve a sustainable cycle.  Therefore, the influence that time spent in an ‘accumulative’ state 

has on recovery trajectories may be critical to the sustainability of fallowing strategies. 

As such, when management goals are set around a maximum EQS, farm reintroductions 

should ideally gradually increase production (within practical constraints); allowing time for 

the benthos to adapt and deal with the additional flux of organic material, and then be 

maintained at a level that avoids the collapse of the macrofauna population.  The sediment’s 

ability to cope with organic inputs from fish farming, and hence the duration of the recovery 

period for a given location, is contingent on two key factors: the organic load in each farming 

cycle and the extent to which the sediment community is allowed to recover.  Understanding 

the influence of each of these on sediment processes is important for sustainable long-term 

management of farming operations.  If the overall recovery in any cycle is reduced then there 

is potential for the assimilative capacity of the sediments to be detrimentally affected, and a 

degenerative, and shortening, recovery cycle will likely ensue.  Similarly, if the level of organic 

enrichment increases either in quantity or rate of input then the assimilative capacity of the 

sediments may be adversely affected.  Under either of these situations management 

intervention may be required to bring sediment recovery back into line with the operational 

timeline.   
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Figure 7-11:  Theoretical recovery – re-impact profiles for a successive two year fallowing strategy.  A. 
Semi-stable cycle - assumes the impact-recovery profile (and associated biological and chemical 
responses) is unaffected by residual effects at the point of farm reintroduction. B. Potential 
degenerative cycle - starts with the same recovery pathway, but assumes that the subsequent pathways 
are affected by the presence of a residual population of opportunistic taxa (and hence able to 
proliferate more rapidly) and that the recovery trajectory is negatively affected by more time spent in an 
accumulative state. 
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7.7 Appendix 

 

 

Appendix 7-A:  Changes in H’, AMBI and M-AMBI with space and time during recovery at WAI. Time is 
given in months relative to when the cages were reinstated (M0) and space is represented as the square 
of distance (m) from the cages. 

 

 

 

Appendix 7-B:  Changes in H’, AMBI and M-AMBI with space and time in response to farm reinstatement 
at FOR. Time is given in months relative to when the cages were reinstated (M0) and space is 
represented as the square of distance (m) from the cages. 
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CHAPTER 8  

 
GENERAL DISCUSSION AND CONCLUSIONS 

 

8.1 Quantifying benthic enrichment and the application of biotic indices 

Prior to the commencement of the research described in this thesis, environmental 

monitoring of salmon farms was invariably conducted using a basic suite of indicators, which 

often differed among countries, regions and individuals. Assessments of farm compliance 

were, in many instances, reliant upon a subjective evaluation and a narrative description of 

overall benthic condition.  Some countries have focussed on particular variables in an attempt 

to better quantify effects.  For example Canadian scientists have been strong advocates of 

using total free sulphides (TFS) and redox as the primary indicators of benthic enrichment, on 

the basis that sediment chemistry drives the ecological response (Wildish et al. 2004, Hargrave 

et al. 2008, Hargrave 2010).  But uncertainties surrounding the relationships with biological 

condition (Macleod et al. 2006), raised important questions about versatility and international 

applicability.  Numerous biotic indices have been developed over the past 10 to 15 years, 

predominantly for the northern hemisphere (Pinto et al. 2009), with the purpose of evaluating 

benthic quality status, based on invertebrate ecology (or the biological response) but their 

implementation for salmon farm monitoring, in the Southern Hemisphere at least, was 

extremely limited. One of the primary aims of this thesis, was to develop a robust approach for 

accurately discerning levels of benthic enrichment, and hence involved testing the validity of 

these and other indicators.  

Central to this process was the development of a common, unifying framework that 

could be used to compare and contrast both biotic and abiotic (physico-chemical) variables.  

This was achieved early in the research timeline using a process of average best professional 

judgement (Teixeira et al. 2010), as outlined in Chapter 2.  The output was a bounded 

continuous variable, called Enrichment Stage (ES) that encapsulates all conceivable enrichment 

levels and places them on a scale from one (being pristine/ natural) to seven (being azoic / 

anoxic).  This scale, conceptually represented in Figure 8-1, is to a large extent, anchored 
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around the point of peak abundance (ES = 5).  This feature is essential to the applicability of 

the ES scale, as the proliferation of opportunistic taxa that drives the peak in total abundance 

is a key feature of the ecological succession gradient (Pearson & Rosenberg 1978, Glémarec & 

Hily 1981), underpins most biotic indices (e.g. Borja et al. 2000), and is a condition commonly 

associated with strong point-source discharges such as salmon farms (e.g. Buschmann et al. 

2006).  At the conclusion of this study, the ES framework had proven useful for a number of 

unforeseen purposes; most notably, it has provided a meaningful conceptual scale 

(represented in Figure 8-1) to which ‘non-scientists’ could relate, and has facilitated debate 

about what levels of enrichment should be considered appropriate in legislative / resource 

management arenas. 

 

 

Figure 8-1.  Conceptual diagram of Enrichment Stages (1 to 7) 
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In addition to development of ES as a new integrative variable, this thesis has also 

further evaluated the general applicability of existing biotic indices that are in common use 

internationally. One of the major factors limiting the broad applicability of these indices relates 

to the endemism of the species involved, and the extent of local knowledge surrounding the 

biology and pollution tolerances of macrofauna.  For example, some of the potentially most 

useful biotic indices (e.g. BENTIX, MEDDOCC, AMBI and the related M-AMBI), require taxa to 

be assigned ‘Eco-Group’ (EG) classifications for use in the underlying calculations and formulae 

(e.g. Borja et al. 2000).  Although viewing taxa in this way is not new to science (Glémarec & 

Hily 1981), the process of classifying the taxa can be highly subjective and usually requires 

consensus among experts (Borja & Muxika 2005), which can be a protracted process.   The 

process of average best professional judgement adopted in Chapter 2 assigns an overall 

enrichment stage for a broad cross-section of samples, and therefore it is a relatively easy task 

to plot the abundance of individual taxa against this ES scale, and by fitting quantile regression 

splines, it is in turn possible to numerically determine enrichment tolerances.  This regression 

method enabled the enrichment tolerances of 34 important indicator taxa to be quantitatively 

determined, and importantly, facilitated the assignment of EG classifications for 10 additional 

key taxa, for which our ecological understanding was previously limited.  An analogous process 

was undertaken in Chapter 3 to allocate sensitivity/ tolerance scores used in the calculation of 

the BQI (ES500.05 for Benthic Quality Index based on Hurlbert 1971, Rosenberg et al. 2004) for 

743 taxa by utilising a large existing macrofauna database.  The outcome being that the BQI 

and other EG based indices (e.g. BENTIX, MEDDOCC, AMBI, M-AMBI) can now be reliably 

calculated for this region, and the systematic approach developed here is applicable to other 

locations and other forms of disturbance.  

As noted in the preceding paragraph, assigning EG’s to taxa has historically been 

undertaken by obtaining consensus among experts, which is important as it allows comparison 

of the results between regions (Borja & Muxika 2005).  While this is valid in essence, the 

approach is premised upon a single species responding to enrichment in the same manner 

regardless of environment / region.  The findings in Chapter 2 showed good agreement 

between the assignments resulting from the regression approach and the existing AMBI 

classifications (giving validity to the approach) for most of the shared taxa, however, there 

were also some significant differences observed.  Part of this problem was attributed to 

taxonomic resolution; i.e. where higher level taxonomic groups are used there is significant 

scope for lower taxonomic-level specificity.  However, some of the differences were at the 
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species level (i.e. the polychaetes Cossura consimilis and Armandia maculata), which implies 

that regionally-relevant classifications are needed.  This is where the expert consensus 

approach fails, as different experts may have justifiably different experiences with the same 

species, and incorporating those experiences into a single EG is fraught with conflict.  

Therefore, it is apparent that any regional investigations into taxa-specific enrichment 

tolerances should provide improved performance of, and confidence in, the associated biotic 

indices.  Given the common-place use of benthic invertebrates to assess impacts, this level of 

information should be viewed as fundamental to the effective management of marine 

ecosystems, rather than a luxury.  However, there will inevitably be a point in the future where 

the effort required to obtain species-level biological information outweighs any potential 

benefits in terms of index performance; for example where rarer, numerically unimportant 

taxa are concerned.  It is difficult to discern how far away this point is, as there is little known 

about the scale over which endemism can be important (it may be smaller than presently 

perceived), and the increasing use of molecular-based tools means that taxonomic resolution 

is a rapidly evolving concept (e.g. Huys et al. 2012, Martinez et al. 2013). 

Despite the potential for future gains through obtaining a better understanding of 

macrofauna ecology, many existing biotic indices can be readily applied, and were able to be 

evaluated, along with other commonly utilised environmental indicators, under a variety of 

conditions in the Marlborough Sounds, New Zealand (Chapter 3).  In total, 15 different metrics 

capable of indicating enrichment were contrasted using the enrichment stage framework, 

ranging from simple community statistics (e.g. total abundance) and sediment chemistry 

variables, to more complex biotic indices.  This comparison led to two fundamental 

conclusions; i) several biotic indices performed well and were sensitive to changes lower on 

the enrichment scale (ES 2 to 3) - especially in comparison geochemical variables (redox and 

TFS), and ii) that most biotic indices do not perform well at very high levels of enrichment, i.e. 

beyond the peak in opportunistic species (PO, ES > 5).  The second finding is significant 

because highly enriched conditions (i.e. ES5 – 7) often occur beneath salmon farms, and 

environmental compliance thresholds for locations at, or close to, the cages may require the 

ability to discriminate within this range.  This ‘ES6 conundrum’ arises under quite specific 

circumstances - when diversity (or taxa richness) is very low, and abundance is diminishing 

substantively (post-peak) but the community remains dominated by the same one or two 

opportunistic taxa that occurred at ES5.  This problem is more pronounced at low flow sites, 

where there is greater propensity for organic accumulation and sediment anoxia.  At lower 
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levels of enrichment, the value of biotic indices over traditional geochemical measures is 

clearly evident, such as where it is necessary to detect the outermost spatial extent of impacts.  

To ensure that the full enrichment spectrum is reliably characterised, the solution proposed in 

Chapter 3 is to use a combination of variables that reflect complementary aspects of benthic 

condition, and as such, will work in combination to provide added power with regard to the 

detection of any enrichment gradient. 

 

8.2 Which suite of variables best characterise enrichment?  

Throughout these studies, reference has consistently been made to %OM, sulphides (and 

/or redox), species richness (S), total abundance (N), two or more biotic indices (i.e. AMBI and 

BQI) and ES as the key measures for determination of enrichment condition.  These are viewed 

as the optimal suite of variables, as they provide measures of recent organic (carbon) loading, 

the oxic state of the sediments, and the time-integrated biological state with reference to peak 

abundance.  This suite of variables can then be integrated to give an overall assessment of 

enrichment stage, as was demonstrated with the use of the ES variable throughout this thesis.  

ES puts the results on to a standard scale, thus enabling both scientists and non-scientist to 

relate to the condition assessment.  As outlined above, there are recognised problems with 

relying on these variables in isolation, with the exception of ES, which integrates all available 

variables. 

There is always pressure on regulators and scientists to reduce costs of compliance 

monitoring by developing new cost-effective methods, and / or rationalising expensive 

variables (e.g. macrofauna) in favour of cheaper indicator variables such as redox potential.  An 

important over-arching conclusion from Chapters 2, 3 and 4 was that assessment of 

macrofaunal community composition is still the most reliable means of identifying enrichment 

effects, and is especially important at high flow sites where the response of %OM can be 

negligible and the relationships between geochemical and biological variables is more 

complicated.  Unfortunately, macrofaunal composition is also the most labour intensive and 

expensive variable to assess.  It may be justifiable in some instances to rely on a subset of 

indicator variables, however, this is only appropriate once the relationships between variables 

and, in particular ES, are understood for the site in question. From the variables that were 

used in this work, a suggested order of preference would be as follows: macrofauna count data 
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> TFS > redox > %OM.  Although most expensive, an advantage to obtaining macrofauna count 

data is that it allows multiple biological indicators to be derived, which are individually 

relatively robust and can be combined to produce an overall biological assessment of 

enrichment stage.  

Irrespective of the pros and cons of different variables, reliance on either biological 

indicators or sediment chemistry alone runs the risk of misinterpreting the overall benthic 

condition.  For example, some of the inconsistencies that were observed between physico-

chemical variables (%OM, redox, TFS) and the biology are likely due to both temporal 

processes and spatial dynamics.  High %OM and TFS in combination with moderate diversity 

may be an indication that diversity is due to deteriorate.  Conversely, a highly impacted 

macrofauna in the presence of near-natural sediment physico-chemistry may indicate a 

recovering state, as chemical remediation tends to be more rapid than biological remediation 

(Chapters 6 and 7).  Or, in the case of a high flow site, the dispersive properties promote 

flushing and prevent organic accumulation and buffer against alterations to the sediment 

chemistry.  Experience from these sites indicates that, given sufficient organic flux, the 

sediment chemistry can eventually become significantly altered – and this may occur relatively 

abruptly.  Anticipating such biogeochemical changes would be very difficult in the absence of 

the more sensitive biological information, and hence both should be routinely monitored.   

As a final note, it is worth reiterating that the methods used in these studies for 

quantifying TFS differed slight from those proposed by Wildish et al. (2004) in that a deeper 

profile was sampled (discussed in detail in Chapter 4).  This may result in increased TFS values 

relative to those published elsewhere, and any future comparisons with this study should 

consider this influence. 

 

8.3 Benthic enrichment in contrasting flow regimes   

Another important theme throughout this study was the way that enrichment 

manifested at high flow sites compared to low flow sites.  Of particular interest, was the 

observation that the relationships between biological and chemical variables proved to be 

characteristically different, with varying current speeds, and these differences were poorly 

described in the literature.  This is a current and pertinent issue because there is an increasing 
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tendency (both nationally and internationally) to undertake finfish aquaculture at more 

exposed sites with stronger current speeds, and therefore, greater dispersive properties and 

oxygen delivery rates.  This appeals to aquaculturalists for reasons of fish health and 

production (Kutty & Saunders 1973, Johansson et al. 2007) and greater environmental 

resilience (Frid & Mercer 1989, Findlay & Watling 1997, Borja et al. 2009a), and therefore it is 

assumed that the result will be greater farm capacity and sustainability.  The analysis outlined 

in Chapter 4 showed that, contrary to popular assumptions, the macrofauna and geochemical 

variables at these high flow sites can become significantly impacted in what might appear to 

be the absence of organic accumulation, which has major implications for future industry 

development.  The high flow sites examined in this study were able to support extreme 

abundances of opportunistic taxa, while simultaneously maintaining moderate species 

richness.  The highest average total abundances recorded, in the order of 1.5 million m-2, were 

also the highest known values reported in the literature to date.  These extreme abundances 

of nematodes and unusually large capitellids were responsible for some significant deviations 

from the classical Pearson Rosenberg model (PRM), which was most evident in the biomass 

curve.  The traditional PRM indicates a biomass peak at the early stages of enrichment in 

accordance with the peak in taxa richness (and the presence of more large-bodied animals); 

however, biomass at the high flow sites (and to a lesser extent, the low flow sites) clearly 

peaked in accordance with the peak of opportunists (PO), which occurs later in the enrichment 

gradient (or ES≈5).   

Distinct flow-specific differences were also identified in the performance of the various 

environmental indicators (Chapter 3).  None of the 15 metrics assessed were able to 

consistently discriminate over the full enrichment gradient for both flow environments.  

Number of taxa (S) and %OM were particularly poor indicators of environmental impact at 

high flow sites.  S tended to remain high despite deteriorating geochemical conditions up until 

moderate to high levels of enrichment (ES≈4), at which point it declined abruptly.  The most 

versatile indicators with regard to the contrasting flow environments were BQI > M-AMBI > 

AMBI > Log(N) > BENTIX; while AMBI best catered for different flow environments and the BQI 

was the least prone to erroneous responses under highly enriched conditions.  Further analysis 

of the relationships between variables in Chapter 4, indicated that the decline in S coincided 

with the transition from oxic to hypoxic conditions according to TFS (1500 µM, Hargrave et al. 

2008), suggesting that this may be a useful geochemical threshold for the avoidance of 

substantive declines in species richness at high-flow sites.  The fact that %OM performed 
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poorly as an indicator of enrichment at high flow sites was most likely due to the strong 

currents that promote resuspension and prevents settlement and accumulation of organic 

particulates (Chapter 5 & Cromey et al. 2002b).  Consequently, the results of Chapter 5 support 

the conclusion made in Chapter 4, that the greater resilience to organic waste at well-flushed 

sites was a function of both biological and physical processes.  Collectively, these findings have 

important implications for the local benthic assimilation capacity, especially when considering 

the generally larger affected area (or ‘footprint’) associated with high flow sites that were 

identified in Chapter 5.   

 

8.4 Predicting benthic enrichment and the potential for non-local effects 

As a product of increased biodeposition (of fish feed and faeces), the effects of benthic 

enrichment that have been discussed to date should be predictable with the use of 

depositional models.  One model in particular (DEPOMOD, Cromey et al. 2000) has been 

developed specifically for this purpose, but prior to commencing this research, remained 

largely untested in Southern Hemisphere systems.  Confident application of such models 

requires local validation, and in this case, the hydrodynamic properties associated with two of 

the study sites provided a relatively novel testing environment due to their well flushed and 

highly dispersive nature.  During some preliminary model runs, it was apparent that when the 

resuspension module is engaged (a feature used to predict the secondary entrainment and 

advection of particles post-settlement) the predicted net flux to the seabed was negligible, yet 

experience and real data at these sites indicated significant benthic impacts.  A previous study 

had also identified that the resuspension module, and in particular the critical velocity 

threshold (vr, the velocity at which particles are resuspended), was an area that needed 

further validation (Chamberlain & Stucchi 2007).  The emphasis of Chapter 5 was therefore to 

explore the applicability of DEPOMOD to high flow sites and extend the work of Chapters 2, 3 

and 4 by establishing a link, or relationship, between predicted flux and observed effects.  The 

ES variable once again proved useful, by providing a means of integrating and summarising the 

observed effects. 

After extensive testing using known historical farm configurations it was concluded that 

localised benthic impacts may indeed be observed even where depositional models might 
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suggest otherwise, as significant benthic effects can occur in the perceived absence of organic 

‘accumulation’ (Chapter 5).  This finding was not entirely surprising as it is clearly consistent 

with findings of Chapters 3 and 4 regarding the characteristically different benthic effects 

found at dispersive sites.  Three different velocity thresholds (9.5 (default), 12 and 15 cm s-1) 

were tested to see whether it was simply a matter of the model over-predicting how much is 

being exported.  However, the effect of raising the threshold to these levels was negligible, 

and raising it any higher was considered illogical.  Instead, it was concluded that the model 

predictions using the default vr setting are reasonably accurate and that the observed impacts 

are truly occurring in the absence of any significant “net” organic accumulation.  That being 

true, there remained a problem with predicting the effects at high flow sites; the predicted 

’net‘ downward flux from the model was effectively zero and so cannot be used to give any 

indication as to either the magnitude or spatial extent of effects.  This was overcome by 

effectively ignoring subsequent resuspension when generating the predicted flux, which is 

viewed here as the ‘primary depositional footprint’.  Using this approach the resemblance 

between the predicted primary footprint and the measured footprint was reasonably good, 

but clearly not perfect; the footprints at the high flow sites tended to be slightly larger and 

more diffuse than predicted, some of which is likely to be due to the resuspension processes. 

The disparity between dispersive and non-dispersive sites was dealt with by deriving 

flow-specific regressions between predicted flux and observed enrichment stage.  This 

revealed that approximately twice the amount of deposition flux is required to induce the 

same level of local benthic effects at dispersive sites compared to non-dispersive sites.  While 

some of the additional flux at high flow sites may be accounted for by the greater benthic 

assimilation (Chapter 4), resuspension and advection processes clearly play an important role 

at high flow sites, which has implications for wider (non-local or far-field) ecosystem effects.  

Once advected, farm-derived organic particles will continue to decompose and be assimilated 

by a variety of organisms in the water column and / or situated on neighbouring structures.  A 

portion will also settle out in neighbouring low flow areas where it may contribute to far-field 

benthic enrichment.  These wider ecosystem effects are recognised but poorly understood and 

difficult to quantify (Sowles & Churchill 2004, Grant 2010).  This is largely because the effects 

are likely to be relatively subtle and difficult to discern from that of other potential stressors 

such as sedimentation (from land-use practices,  Chou et al. 2004), nonpoint source 

enrichment (Duda 1993), fishing (especially trawl and dredge fisheries, e.g. Jennings et al. 
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2001), global warming and ocean acidification and other large scale ecosystem anomalies (e.g. 

El Nino / La Nina). 

There are sensitive approaches such as isotopic signatures (Sarà et al. 2006) or molecular 

methods (e.g. Maki et al. 2006) that are able to trace organic particulates in the far-field to 

determine the area of ‘influence’, but these are complex, relatively expensive, and the 

implications of the findings are limited.  Although understanding the dispersion potential of 

wastes has some research value, the fact that conventional enrichment indicators are not 

useful at the same distances is significant, as it means the more sensitive ‘forensic’ results are 

not necessarily consistent with ‘impact’ or biological consequence as we know it today (Sarà et 

al. 2006).  This raises the question, at what point does far-field enrichment become an 

important issue?  The answer is a subjective one, but from an environmental perspective, it 

could be argued that ecological impacts would need to be realised for it to be considered 

problematic.  Documented accounts of effects from far-field enrichment are scarce (probably 

for the reasons mentioned above), however there remains the underlying concern that effects 

may be cumulative, and by the time obvious effects are realised, there may already be large 

scale ecosystem changes.  This is the rationale for adopting a precautionary approach, 

maintaining vigilance and continuing to explore potential areas of far-field enrichment and to 

develop methods for quantitatively measuring them. 

This line of thinking also leads to the question – where is the ideal location for salmon 

farms, from the perspective of minimising environmental effects?  Is it better to place a farm in 

a low flow environment where effects are extreme but highly localised, or in a high-flow 

environment where effects are less severe but more widespread?  As is often the case, the 

answer will depend on site- and situation-specific circumstances.  While physico-chemical 

impacts may be reduced in fast-flow environments, they are often associated with harder 

substrates (e.g. cobbles and reefs) and therefore benthic communities that are less well 

studied with respect to benthic enrichment and may be perceived to have relatively high 

ecological value.  If these habitats contain sensitive or long-lived organisms, then the ability to 

recover may also be adversely affected (Hall-Spencer & Bamber 2007).  In the Marlborough 

Sounds (New Zealand), for example, the shoreline adjacent to high-flow areas invariably 

include rocky outcrops which provide substrate for current-loving organisms such as hydroids, 

sponges, ascidians and macroalgae, which are often perceived to be sensitive to 

sedimentation.  However, while there is a general paucity of studies describing enrichment 
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effects on reef-type assemblages, initial indications are that they are not readily impacted by 

enrichment (Dunmore & Keeley 2013).  Additionally, if salmon farming ceased in fast-flow 

environments, or the cages were moved, recovery from impacts within the more conventional 

soft-sediment habitats may be considerably quicker due to the greater oxygen supply (Findlay 

& Watling 1997, Morrisey et al. 2000).  Importantly, these arguments and comparisons only 

hold where farms are operated at similar production levels; if the intensity of feed use is 

increased at a high flow site such that the level of effects immediately beneath the Cages 

approaches those associated with a low flow farm, then the footprint would be larger, and the 

scope for far-field effects would be greater.  

There are also potential disadvantages associated with low flow settings, the first relates 

to the possibility that the seabed is impacted to the point where it becomes “self-polluting”.  

Highly anoxic sediments can deoxygenate overlying waters and produce methane and sulphide 

gasses, the latter being toxic to fish and indeed most animals (Hargrave et al. 2008).  If systems 

are allowed to degenerate to this extent then the macrobenthos may become completely 

decimated, and the sites’ ability to recover, should the farm be removed, will be further 

impaired relative to a high-flow setting.  These disadvantages need to be offset against the 

recognised advantages of having a very localised footprint, and a macrobenthos that will likely 

be predisposed to dealing with additional organic matter (due to being situated in naturally 

depositional areas, e.g. Macleod et al. 2007).  However, the findings of Chapters 4 and 5 

further complicate this picture, suggesting that once impacted, the grater abundances and 

generally larger footprint typical of high flow sites may correspond to a greater ultimate 

assimilation capacity.   

 

8.5 Benthic recovery and re-impact 

The discussion thus far has dealt principally with static assessments of benthic condition.  

Chapters 6 and 7 extend this to consider spatial and temporal dynamics, particularly with 

regard to recovery pathways and related ecological succession.  As noted earlier, recovery is a 

critical aspect of any environmental impact assessments (EIA) as it concerns the reversibility of 

the impacts and the associated temporal timeframes.  Understanding recovery can also lead to 

conclusions about the potential for long-term cumulative effects (e.g. Lu & Wu 1998).   
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Chapter 6 examined recovery in space and time over an eight year period from a highly 

impacted state (ES6 – 7) at a low flow site, during which time recovery was assessed to have 

been ostensibly achieved after 5 years based on a weight-of-evidence approach.  The only 

other study to consider recovery over a similarly long-term was conducted at a relatively 

unique (‘worse case’) site where chemical remediation was predicted to take 5 to 6 years and 

biological remediation much longer (Brooks et al. 2004).  Others have identified substantially 

shorter timeframes for recovery (e.g. six months, Ritz et al. 1989), so clearly there are a 

number of factors that contribute to a system’s ability to recover.  Both Chapters 6 and 7 

identified substantial recovery at the particular study areas in the first two years, by which 

time the Brooks et al. (2004) criteria for chemical remediation had been met and 

approximately half of the taxa had been reinstated.  However, recovery was clearly not 

“complete” at the two year mark in either study, as evidenced by residual biological and 

geochemical impacts.  These findings were generally consistent with the majority of studies 

that described substantive recovery in the first 6 to 24 months (Karakassis et al. 1999, Lin & 

Bailey-Brock 2008, Macleod et al. 2008, Villnas et al. 2011), but also concluded that recovery 

was not incomplete in the study timeframe (typically < 3 years).  It was therefore significant 

that i) the dataset was sufficiently long that a potential end-point to recovery could be 

identified, and ii) the overall assessment is in the range of years, not months or decades, as 

this provides some additional confidence to evaluate potential effects in future fish farm 

developments.   

The reasons underpinning the range of recovery estimates to date are also explored in 

Chapter 6, and were related to the degree of impact (or level of site use and intensity) at the 

point of fallowing, unusual environmental characteristics (e.g. Brooks et al. 2004, Macleod et 

al. 2007), and difficulties with defining a recovery end-point.  Problems with defining the 

recovery endpoint were considered particularly pertinent and were attributed to: i) a high 

level of subjectivity regarding how recovery should be defined, ii) a dynamic environment, with 

changing reference conditions, and inherent instability in recovering sediments, iii) the relative 

change in the difference between impacted and reference sediments becomes increasingly 

small as the point of recovery approaches, with the result that there may be no obvious ‘end-

point’, iv) different variables have different recovery responses, and v) no single test can 

encompass all of these aspects.  Notably, Chapter 6 indicated the presence of a ‘sliding 

background’ (i.e. changing conditions at the reference station/s), and there was some evidence 

that alternate state theory (Beisner et al. 2003) may apply. However, the absence of an 
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accurate pre-impact baseline meant that the establishment of an alternate state could not be 

confirmed.  Such considerations are likely to be applicable to many long-term studies of 

recovery and need to be considered in the analytical approaches.  

Although the weight-of-evidence approach applied in Chapter 6 suggested recovery had 

occurred within the study timeframe, some differences and temporal instability in the 

composition of the macrofauna was still evident at the fallowed cage stations toward the end 

of the study, consistent with residual benthic impacts (Karakassis et al. 1999, Mendez & Linke-

Gamenick 2001).  There was also evidence to suggest that these temporal oscillations were 

partly due to farm-scale (10’s of meters) spatial patchiness and migrations in sediments, as the 

peak in %OM and subsequently the biota shifted from directly under the fallowed cage 

stations to the gradient stations, 25 m to 50 m away.  In Chapter 7 the concept of temporal 

and spatial instability was examined in more detail and a similar temporal shift was evident 

after 2 years, suggesting the observed oscillations were more than coincidental.  The medium-

term study (Chapter 7) also revealed oscillations between the oxic state of the sediments (via 

TFS) and biota, which may either be symptomatic of, or causal to, these spatial shifts in the 

sediments.  Another interesting finding of the medium-term study was that similar oscillations 

were observed after the reintroduction of a farm in the presence of a consistently high load of 

additional organic flux.  Thus abrupt change constitutes the disturbance that initiates 

environmental instability and this can be either the introduction or removal of an enrichment 

source. 

The variables that were most consistent in their estimate of recovery were the more 

complex biotic indices, ES and multivariate methods that integrate across multiple variables.  

The use of more simplistic individual indicator variables such as total abundance, TFS or redox, 

runs the risk of identifying recovery prematurely.  In contrast, using the more sensitive biotic 

indices in isolation are likely to indicate a longer recovery period, but would not necessarily 

acknowledge the fact that chemical remediation may have been complete for some time.  

Hence, there is clearly a need to predetermine the desired end-point criteria for recovery.  By 

incorporating biotic and abiotic variables, the ES variable proved to be a reasonably stable and 

intuitive approach for evaluating the overall conditions during seabed remediation.  However, 

this by no means eliminates the need to also examine the chemical and biological statuses 

individually.  Six different approaches were evaluated in Chapter 6, one of which was a 

relatively novel test for ‘parallelism’ that was adapted from recovery assessments of the Exon 
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Valdez oil spill (Skalski et al. 2001).  The overall conclusion was that no one method could be 

relied upon in isolation to accurately assess recovery.   

This study has clearly shown that there is scope for developing better tools for evaluating 

recovery, not the least being more sophisticated statistical approaches to accommodate the 

many analytical challenges.  In the meantime, the recommended methods involve a 

combination of visualisation of the plotted data with reference to estimates of background 

variability and tests for ‘parallelism’.  Future assessments of recovery would also benefit from 

some constructive discussion among scientists with a view to developing a universal definition 

for recovery, or at least an agreed range of definitions appropriate to specific circumstances.   

 

8.6 Implications for fallowing and alternative mitigation practices 

The parallel recovery and re-impact studies described in Chapter 7 suggest that fallowing 

strategies may be unsustainable unless multiple alternative sites are available and / or farming 

intensity, and therefore, the degree to which the seabed is impacted at the point of fallowing, 

is kept relatively low.  However, the efficacy of fallowing strategies may be improved in the 

future with the implementation of alternative mitigation practices.   Other sediment 

remediation techniques fall into three main groups: i) physical (e.g. waste collection and 

ploughing / harrowing O'Connor et al. 1993), ii) biological ( and multi-trophic level aquaculture 

Vezzulli et al. 2004, bioaugmentation / biostimulation Kang et al. 2008) and iii) chemical (e.g. 

chemical injection, Hupfer & Hilt 2009, and activated carbon, Kupryianchyk et al. 2012).  Of the 

many potential  methods, a recent report by Eriksen et al. (2012) identified two as being most 

suitable for aquaculture and worthy of further investigation.  These were:  

1. Harrowing of sediments to increase oxygen penetration and carbon assimilation rates, 

and  

2. “Soaker hoses” to increase oxygen penetration using oxygenated surface seawater 

pumped in to a network of hoses in or on the seabed.   

These methods appear very much in the research stage; however, if they prove effective 

for accelerating the recovery process, then the practice of fallowing to manage benthic 

impacts could become generally more viable.  



Chapter 8 
 

General Discussion 

 

 
233 

In Chapter 7 it was also identified that sediment condition might benefit from farms 

having the ability to progressively ‘ramp up’ farming intensity (or gradually introduce stock) to 

avoid ‘overwhelming’ the benthos.  While introducing fish in small batches may not currently 

be feasible from a stock management and business perspective, there are other management 

practices that could be considered such as whether it may be possible to avoid introducing a 

fully functioning farm to a new site.   

Interestingly, the potential for local and far-field enrichment effects is already being 

considered as part of integrated multi-trophic level aquaculture research, which considers the 

potentially beneficial utilisation of aquaculture waste products (e.g. Ren et al. 2012).  Although 

current assessments of these practices suggest that they are not yet economic or practical, and 

/ or limited in their effectiveness to significantly remediate local benthic effects (Bisset et al. 

2009), the installation of artificial reefs has been shown to ameliorate benthic enrichment to 

some degree (Angel & Spanier 2002, Gao et al. 2008), and therefore may play a role in future 

management strategies.  On the wider ecosystem-scale, it is conceivable that that some multi-

species industries have evolved with a degree of co-dependency and mutual benefits in terms 

of productivity and nutrient management.  For example, in the Marlborough Sounds, New 

Zealand there has been substantial concurrent development of extractive forms of bivalve 

aquaculture (predominantly mussels) and feed (and nutrient) additive finfish farms and it is 

likely that there is some trophic exchange and interaction that might benefit both operations.  

 

8.7 Conclusions and recommendations  

In conclusion, this research provides the basis for more confident evaluation of benthic 

enrichment effects (both from fish farming and other point sources).  It has advanced our 

understanding of the fundamental ecology of several important macrofauna species and 

demonstrates how proven biotic indices and a suite of indicator variables can be combined 

and used collectively, in a quantitative (and largely non-subjective) manner, to evaluate overall 

enrichment stage.  The work has also led to a generally expanded knowledge of the physico-

chemical and biological processes associated with enrichment, particularly with regard to 

contrasting flow environments.  In doing so it has highlighted a number of shortcomings and 

inconsistencies in the existing approaches to evaluating benthic enrichment effects.   
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Testing and validation of an established depositional model in a range of environments 

both highlighted some problems with the utilisation of the model in high flow areas due to the 

process of resuspension, but also provided a potential (interim) solution for predicting effects.  

Developing a better understanding of the role of resuspension for modelling purposes, and of 

the relationships between gross depositional flux and observed effects, was identified as a key 

area for further research.  This work also extended the utility of the model by describing 

relationships between predicted depositional flux and observed ecological effects, and in doing 

so provided a means of gauging the likely capacity of sites in relation to any pre-determined 

benthic enrichment thresholds.   

The third part of the research provided a detailed analysis of benthic recovery, and in 

doing so considered the fundamental but elusive concept of what constitutes recovery, and 

evaluated some relatively novel analytical methods for determining such an endpoint.  Both 

the long- and medium-term studies of recovery incorporated a spatial dimension that helped 

explain the fluctuations that occur in time.  The higher temporal sampling frequency of the 

medium-term study revealed a reciprocal, oscillating relationship between geochemical and 

biological variables that is likely to be part of the process responsible for the temporal 

variability that is associated with impacted / recovering benthos.  By bringing together spatial 

scale, permanence (i.e. reversibility) and intensity concepts, the findings have contributed 

significantly to our ability to undertake Ecological Risk Assessments, which utilise these aspects 

(e.g. Forrest et al. 2009).  It also brought together impact and recovery understanding to 

provide a more holistic evaluation of fish farm management approaches, with particular 

relevance for fallowing strategies. 

Therefore, our overarching hypothesis was partially proven, and partially disproven - 

seabed enrichment can be accurately and quantitatively determined using biological and 

physico-chemical variables, both during degradation and recovery.  But in order for the results 

to be robust the performance of individual indicators needs to be understood in the context of 

the given region and hydrodynamic conditions, and multiple indicators need to be combined 

to give an integrated result.   
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8.7.1 Recommendations for monitoring  

This study has greatly enhanced our understanding of organic enrichment related 

processes both in general and in relation to finfish farming specifically. It has also highlighted 

some critical issues associated with farm location (geographic region and hydrodynamic 

condition), the implications of which are that “one size does not fit all” with respect to 

environmental monitoring and regulation.  Hence, the emphasis on the importance of 

understanding local conditions in order to establish effective management practices, whether 

they be for regulatory or production purposes. 

With respect to the original objective to develop or refine tools for the prediction, 

monitoring and management of enrichment effects associated with fish aquaculture, the 

following general recommendations can be made: 

• In terms of a single assessment factor - benthic enrichment is most accurately 

quantified by assessing macrofaunal community structure and in particular 

Enrichment Stage (ES) 

• Other sediment biogeochemical variables can help to clarify the picture. 

However, whilst sediment chemistry variables are cost effective, they can at 

times lack direct relevance to the ecological state and so are not to be 

recommended in isolation. 

• The optimum suite of variables for accurate status assessment is: %OM, 

sulphides, species richness (S), total abundance (N), and two or more biotic 

indices (i.e. AMBI and BQI), but also including ES 

• At dispersive sites %OM is of limited use – under these conditions it does not 

accumulate and is a relatively non-responsive indicator. 

• Where natural conditions are well characterised, levels of acceptable change and 

BACI-type statistical tests (as described in Chapter 6) may be applied and may be 

more appropriate for detecting impacts. 

• ES3 was a useful threshold level for classifying obvious / measurable effects in 

the local environment. 

• Detection of subtle changes requires a multi-variable (weight of evidence) 

approach (e.g. multivariate analysis or ES) in order to reliably discern effects. 
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8.7.2 Recommendations for management 

• To maintain ecological function and resilience of seabed sediment and biota, 

impacts should be managed so that ES5 (or point of peak abundance) is not 

exceeded.  However, I would also note that this may be difficult to consistently 

achieve at low flow (accumulative) sites and as such should be considered an 

industry goal rather than a strict environmental quality standard. 

• The following biogeochemical indicator levels are considered equivalent to an 

ES5 threshold and as such may be useful for general management: 

o Sulphide concentrations ~1500-2000 µM (this is also the point at which 

substantial reductions in species richness occur) 

o Up to a ~70% reduction in taxa richness 

o AMBI values >5 and M-AMBI values >0.2 

o Total abundance at the source (i.e. beneath the cages) should remain 

higher than at nearby, gradient stations. 

• Depositional flux – ES relationships were developed that can be used to predict 

effects for new farms, and to optimise feed levels for new and existing sites.  The 

key thresholds were: 

o Moderately / measurably enriched conditions (ES3) are induced with an 

additional depositional flux of ~0.4 kg m-2 yr-1 for non-dispersive sites and 

~1 kg m-2 yr-1 for dispersive sites. 

o Highly enriched conditions (peak infauna abundance - ES5), are induced 

with an additional depositional flux of ~6 kg m-2 yr-1 and ~13 kg m-2 yr-1 

for non-dispersive and dispersive sites, respectively.   

 

8.8 Future directions 

Throughout this research a number of areas have been identified where future efforts 

may be focussed in order to meaningfully advance the field of study.  Many of these are 

discussed in the respective chapters and reiterated in the relevant section in the conclusions 

above, and as such will not be repeated here.  However, there are some other potential 

extensions of this work that are worthy of mention.  In particular, the ES framework that has 
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been used throughout this thesis is likely to have other applications beyond of the salmon 

farm context.  Having a bounded continuous scale should prove useful for evaluating levels of 

enrichment from other sources, such as costal outfalls, river deltas and mussel farms that tend 

to be associated with lower levels of enrichment.  This may require some further validation, 

particularly if applied to new areas with novel macrobenthic communities, however, the 

principle of the ES variable will provide a valuable context for considering the size and 

magnitude of any effects (providing a useful means for conceptualising the scales over which 

various levels of effects are acceptable / ecologically sustainable).   

The ES framework will also provide a means of validating and testing new variables as 

they become available.  There are a number of new and evolving technologies that have the 

potential to contribute to if not replace conventional benthic monitoring variables.  Most 

notably, the techniques for DNA sequencing are rapidly evolving in capability and potential 

versatility.  For example QPCR DNA sequencing of macrofauna is being used to monitor effects 

of the South Australia tuna farms (Loo et al. 2006), and next generation sequencing of 

macrofauna (Ranasinghe et al. 2012), foraminifera (Vidovic et al. 2009, Bouchet et al. 2012) 

and bacterial and archaeal ammonia oxidizers (Abell et al. 2010, Abell et al. 2011) show 

potential for discerning benthic enrichment gradients.  But in order for these variables to be 

accepted as valid indicators the results will first need to be viewed in the context of the 

commonly accepted enrichment gradient to comprehend the relevance and to understand 

relationships to other aspects of ecology. 
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