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Abstract 
Vegetation mapping is increasingly used for detecting changes in plant distributions at landscape 

scales. This is aided by the development of sophisticated machine learning tools and very high 

resolution satellite imagery, which together allow for the detection of changes at finer spatial and 

attribute resolutions. Even with these new tools, the sub-Antarctic poses particular challenges for 

mapping. The remoteness demands particular efficiency in field sampling and regular cloud-cover 

hampers satellite image acquisition and the tundra vegetation is small-statured and dominated by 

ecologically generalist species. Additionally, High accuracy mapping is of particular interest on sub-

Antarctic Macquarie Island, where the vegetation is changing rapidly. Reliable maps of current 

species distributions would provide valuable baselines for monitoring future change. 

This thesis develops and tests methods for all steps of the mapping process, including field methods, 

sampling design, examining whether plant communities are an appropriate mapping unit for change 

detection, and testing the best methods of image classification. A new photographic field sampling 

method is demonstrated to collect equivalent data to an existing field quadrat method but with less 

field time needed. Next, a geographically-stratified random sampling design is developed, applied 

and tested for its capacity to capture the variation in terrain variables that are thought to drive plant 

species distributions.  

Previous descriptions of the vegetation of Macquarie Island are based on the idea that the 

vegetation can be more or less grouped into discrete communities. I test this hypothesis and find 

that floristic classification is unable to identify any stable communities on this highly disturbed 

island.  

I therefore finally focus on single-species mapping, determining the best combination of very high 

resolution satellite imagery, terrain modelling and random forest classification to map the extent of 

the endemic, critically-endangered cushion plant, Azorella macquariensis, with very high accuracy. 

The successful mapping of A. macquariensis, a small-statured and patchily distributed species, 
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demonstrates the utility of this mapping technique. I describe initial results for applying this 

technique to other species, highlighting the ecological and spectral characteristics that distinguish 

those tundra species that are amenable to mapping from VHR satellite imagery and terrain 

modelling.  

In summation, in this thesis, I develop and test tools for all stages of mapping the distribution of 

plant species on sub-Antarctic Macquarie Island at a resolution suitable for monitoring rapid 

distributional changes.  
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1.  Introduction 
Mapping of vegetation is a common scientific or conservation action to record ecosystems within 

both spatial and temporal frameworks. In particular, serial or sequential mapping is one of the first 

tools used to detect environmental change. In any environment that is experiencing rapid change, it 

is crucial however that vegetation mapping and spatial monitoring tools are able to accurately 

describe that change. The ability to perceive environmental problems and to assess effectiveness of 

management responses or actions to them is contingent on the sensitivity and accuracy of the 

monitoring tools (Harris 2003) .  As landscape-scale management intervention is generally costly and 

resources are limited, there are pragmatic as well as scientific reasons for wanting to accurately 

monitor environmental changes (Field et al. 2007). To be effective, monitoring programs must 

choose suitable variables to monitor and specify the degree of change that would trigger a 

management response (Field et al. 2007). In recent years, it has become apparent that the data from 

many ecological monitoring datasets are inadequate to detect changes induced through 

management programs (Harris and Heathwaite 2012).  

This thesis sets out to examine methods employed at each stage of the mapping process to 

determine if a suite of tools can be developed to detect change in a rapidly changing ecosystem, 

sub- Antarctic Macquarie Island. 

1.1. The sub-Antarctic islands 

High latitude ecosystems are of considerable scientific interest, largely due to a combination of 

their relatively simple trophic structures, the rapid rate of observed climatic changes, and the 

opportunities they provide to understand the interactions between native and alien species 

(Bergstrom and Chown 1999). The low species richness and relatively simple trophic structures of 

terrestrial ecosystems in this region simplify analysis of ecological processes (Smith and Steenkamp 

1990).  Sub-Antarctic islands are also of significant conservation interest due to their rarity, small 
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spatial extent, importance as habitat for endangered species, high levels of endemism, and the 

concern that their paucity of taxa leaves them vulnerable to invasions of alien species (Chown et al. 

2001; Frenot et al. 2005; Convey 2007). Primary production on many of the islands is high, and 

native macroherbivores are generally absent (Smith and Steenkamp 1990). The vegetation of sub-

Antarctic islands is also significantly affected by the region’s geographical isolation and harsh 

climate. Herbs, grasses, bryophytes and lichens dominate the flora, while woody plants are 

generally absent (Selkirk et al. 1990). This is in stark contrast to the flora at similar latitudes in the 

northern hemisphere, where shrubs and trees dominate the vegetation (Selkirk 2007). The islands 

provide valuable breeding habitat for pelagic birds and marine mammals, which in turn affect the 

vegetation through burrowing, trampling, grazing and nitrification (Selkirk et al. 1990).  

One example of the impact of introduced macroherbivores comes from the tall coastal vegetation 

common to many sub-Antarctic islands, where it is thought that the absence of native vertebrate 

herbivores from sub-Antarctic islands encouraged the evolution of megaherbs and large tussock 

grass species, such as Stillbocarpa polaris and Poa foliosa (Mitchell et al. 1999). The introduction of 

herbivorous vertebrates in the past two hundred years has resulted in significant negative impacts 

on the tussock grasses and megaherbs (Frenot et al. 2005; Convey 2007). 

Researchers have warned that specific management is needed to mitigate the effects of invasive 

species, especially in light of additional ecological effects of climate change and increased visits to 

the region by tourists and scientists (Kriwoken and Holmes 2007). Better understanding of the 

spatial patterns of the distributions of plant communities and of the changes in these distributions is 

likely to lead to better understanding of the relative ecological effects of management interventions, 

invasive species and climate. 

1.1.1. Monitoring change 

On sub-Antarctic islands, vegetation patterns and dynamics have traditionally been quantified 

through monitoring of quadrats or through mapping homogeneous patches of vegetation. 
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Generally, monitoring plots have had very small spatial extents (e.g. Chown & Smith 1993; 

Bergstrom et al. 2002; Scott & Kirkpatrick 2008). While such studies provided highly detailed 

information about the changes occurring within a small area, they are of limited value in 

quantifying changes at the landscape scale, and have tended to not explicitly account for the spatial 

distribution of plants, plant communities and their environments. 

1.1.2. Macquarie Island 

Macquarie Island is one of Australia’s two sub-Antarctic territories and is located approximately 

halfway between Tasmania and Antarctica (158°55’E, 54°30’S). Covering an area of 12,390 ha, it is 

protected as a Nature Reserve and World Heritage Area. The Macquarie Island flora includes up to 

46 vascular plant species, including five alien plant species (ABRS 1993) of which three are still 

reported (Poa annua, Cerastium fontanum and Stellaria media). Traditionally, five major plant 

communities have been recognised on the island – wet tussock grassland, herbfield, fen, bog and 

feldmark (Taylor 1955a). More recently, the grasslands have been divided into tall and short 

grasslands, fernbrake communities have been identified and the bog and fen communities have 

been combined into a single mire community (Selkirk et al. 1990). Recently, a new category of 

“grazed vegetation” has been recognised by Bergstrom et al. (2009a).  

Historically, efforts to monitor the effects of herbivory on Macquarie Island have been conducted at 

very fine spatial scales. These include the monitoring of species composition in 1 m² quadrats 

within 25 m2 plots (Bergstrom et al. 2009a); of changes in dominant species at fixed photo points 

(Shaw et al. 2005) and along transects, which could be analysed at multiple scales (Kirkpatrick & 

Scott 2002; Scott & Kirkpatrick 2008). These studies have produced detailed evidence of regime 

shifts within sites that have been subjected to landslips or intensive grazing. Recently, very high 

resolution QuickBird satellite images have been used to investigate changes in the Normalised 

Difference Vegetation Index (NDVI) and these have indicated the replacement of vegetation by bare 

ground at many sites (Bergstrom et al. 2009a).  Data from the satellite images and fine-scale plots 
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have demonstrated a trophic cascade on Macquarie Island. To date, however, it has been difficult 

to monitor successional changes in vegetation communities across the entire island. 

Vegetation patterns on Macquarie Island are changing rapidly, making accurate monitoring at all 

spatial scales crucial. Firstly, the coastal vegetation of Macquarie Island is undergoing rapid change 

due to a rabbit and rodent eradication program being funded by the Tasmanian and Australian 

governments. One of the goals of the eradication project is the recovery of vegetation, and the 

eradication plan calls for ongoing monitoring of changes in the distributions of individual vascular 

plant species (Parks and Wildlife Service 2007). Indeed, early signs of recovery have already been 

observed (Shaw et al. 2011). To assess whether this goal has been met, baseline maps must be 

produced of current vegetation patterns. Secondly, the discovery of widespread die-off in the 

endemic cushion plant, Azorella macquariensis, during fieldwork for this thesis provided added 

incentive for producing baseline maps of vegetation patterns. 

Macquarie Island is also a useful environment for testing the applicability of field and remote sensing 

methods to sub-Antarctic tundra environments. It is relatively accessible, compared to Australia’s 

other sub-Antarctic territory. This simplifies the testing of sampling regimes and field techniques 

compared to many other sub-Antarctic islands (e.g. Heard Island). High resolution terrain data and 

satellite imagery is available for the island. The small stature of sub-Antarctic vegetation has limited 

the usefulness of satellite imagery for mapping anything but very broad vegetation classes (e.g. 

Selkirk et al. 2000), but the advent of very high resolution satellite sensors (pixel size of 5 m or less) 

provides the potential for finer categories to be identified. The highly disturbed nature of the 

vegetation and the dominance of a few ecological generalist species pose particular challenges for 

robustly identifying communities.  
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1.2. Theoretical Framework 

The technical and ecological challenges of producing repeatable, accurate vegetation maps have led 

to the development of a wide variety of both simple and sophisticated tools by researchers in the 

disparate fields of ecology, remote sensing, and machine learning. There are three major approaches 

to mapping vegetation, each of which has limitations: field mapping, interpretation of remotely 

sensed imagery, and species distribution modelling (SDM). Field-based mapping requires extensive 

field time and expert knowledge to identify vegetation types and to locate boundaries between 

them (Hearn et al. 2011). Secondly, mapping from remotely sensed data has typically either involved 

digitising of large relatively homogeneous stands of vegetation or classification of pixels according to 

their spectral signatures (Nagendra 2001). Classification of satellite images has historically relied on 

sensors with medium or coarse spatial resolutions, with pixel resolutions ranging from 30 m to 100 

m (e.g. Aspinall & Veitch 1993; Debinski et al.1999; Townsend & Walsh 2001). Such coarse 

resolutions have limited value for detecting fine-scale changes in vegetation patterns, such as those 

caused by the spread of an invasive species or grazing damage. Now however, the ready availability 

of satellite sensors with very high spatial resolutions, such as DigitalGlobe's QuickBird and 

WorldView-2 satellites, is providing scientists with the capacity to map spatial patterns in vegetation 

at resolutions less than 3 m. The third approach, SDM, uses spatial data of environmental variables, 

such as terrain and geology, to predict the distribution of species or communities, on the basis of 

known distributions (Guisan and Zimmermann 2000).  

Each of these approaches has strengths and limitations. Field mapping is time-intensive, and hence 

impractical for large areas.  Additionally, this approach involves an assumption that hard classes with 

relatively clear boundaries can be reliably identified, and requires surveyors to make subjective 

decisions about the location of boundaries between vegetation types. This can result in low 

repeatability (Hearn et al. 2011), which in turn limits the utility of such maps for change detection. 

Access to remote islands is also often limited, further reducing the practicability of this approach in 
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the sub-Antarctic, though it has been successfully implemented on some very small islands (Chapuis 

et al. 2004). Satellite image interpretation has been successfully used to classify vegetation based on 

spectral information (Lu and Weng 2007) . However, in alpine regions, it has been found that many 

plant communities exhibit similar spectral responses (Dirnböck et al. 2003). This can considerably 

reduce the accuracy of a classification based purely on satellite imagery. Terrain analysis has been 

widely used to predict the distributions of individual species of both plant and animal, and it is 

known that topography has a significant impact on the distribution of plant communities. For 

example, on Macquarie Island, feldmark only occurs at high altitudes and tall tussock grasslands 

tend to occur on steep coastal slopes (Selkirk et al. 1990). However, purely topographic models of 

the distribution of plant and animal species tend to have significant residual errors, suggesting that 

terrain is not the only determinant of distribution (Dirnböck et al. 2003).  Hybrid approaches that 

combine the benefits of species distribution modelling and image classification methods are 

beginning to be used for vegetation mapping (e.g. Dirnböck et al. 2003; Dobrowski et al. 2008). 

The availability of very high resolution satellite imagery, and the rapid development over the past 

decade of sophisticated machine learning tools for classifying such imagery, has resulted in a 

plethora of mapping approaches, many combinations of which have not been widely tested. In 

particular, there has been comparatively little testing of these approaches in high latitude tundra 

environments (Stow et al. 2004; Murray et al. 2010). Given that tundra vegetation tends to be small 

in stature and not structurally diverse, such environments pose particular problems for mapping 

based on image classification. The rapid changes observed in Macquarie Island vegetation require 

accurate and repeatable maps if we are to better understand the patterns in those changes. There is 

thus a need to test whether these newly emerging tools can be used to produce accurate, very high 

resolution maps of vegetation patterns on Macquarie Island. 

Very high resolution mapping for change detection requires the definition of mapping units that can 

be robustly and repeatably defined. To date, landscape-scale descriptions and maps of vegetation on 
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Macquarie Island have focussed plant communities rather than individual species (Taylor 1955; 

Selkirk et al. 1990, 2000). Recent research, however, has raised renewed questions about the 

repeatability of community mapping (e.g. Cushman et al. 2010; Hearn et al. 2011) and multiple 

attempts to define communities on Macquarie Island have produced little consensus on those 

definitions (e.g. Taylor 1955; Selkirk et al. 1990; Bergstrom et al. 2009). Given this lack of consensus 

and the aim of this study to produce maps for change detection, it is uncertain whether the mapping 

units should describe communities or individual species. Several numerical classification tools have 

been developed to identify groups in floristic data and there is little guidance on which are most 

appropriate for any given application. There is thus a need to investigate both whether stable groups 

can be found in floristic data and, if so, which combination of tools would best generate such groups.  

Training the definitions of communities and the image classifications in turn requires a large, 

representative sample of vegetation abundance across the island. There are two key aspects to this: 

sampling design and field sampling methods. Sampling design for environmentally-explicit mapping, 

such as species distribution modelling, further requires that the sample is representative of the true 

distribution of both vegetation and environmental variables. Environmentally-explicit sampling 

designs have been developed (e.g. Goedickemeier et al. 1997; Franklin et al. 2001) but new terrain 

morphometry and classification methods (Burrough et al. 2000; 2001) may improve their efficiency.  

Collecting field data on sub-Antarctic islands places particular demands on the efficiency of field 

sampling methods. The limited field access means field work must be rapid, and photo-sampling, 

long used in marine ecology, has potential to replace quadrat-based assessments of vegetation 

cover, but must be tested for reliability.   
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1.3. Research Aims: 

The aim of this thesis is to develop techniques for field sampling and spatial analysis that will enable 

plant communities to be mapped in great detail and high accuracy for the whole of Macquarie 

Island. These techniques must be practicable in the harsh climate and remote locations of the sub-

Antarctic. 

The primary research question of this thesis is:  

How can field data, satellite imagery, and terrain analysis be used to 

improve the mapping of sub-Antarctic plant communities?  

The research objectives of this thesis are: 

1. to establish a reliable and efficient field sampling method to capture species 

abundance data for vascular plants at the required scale of image analysis; 

2. to establish a geographically stratified random sampling method to capture the full 

variation of both the terrain and vegetation patterns; 

3. to establish a robust statistical method for identifying plant communities that can then 

be translated into mapping units; 

4. to produce accurate high resolution maps of the plant communities, and to use these 

maps to describe the spatial ecology of the vegetation of Macquarie Island. These maps 

should be sufficiently accurate to be used as baselines for future change detection. 

1.4. Thesis Structure 

Chapter 2: Close-range photo-sampling as a rapid and effective replacement for field-based 

vegetation sampling in sub-Antarctic tundra landscapes for up-scaling to satellite imagery  

Training of satellite image classifications generally requires large sample sizes. Sub-Antarctic islands 

are difficult to access and it is therefore important to develop field sampling methods that are 
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efficient and provide robust, repeatable data. This chapter describes PoleCam, a photo-sampling 

method for gathering species cover data in tundra vegetation. Photographic sampling has potential 

as a replacement for field quadrat sampling methods in areas that are difficult to access, because it 

is quicker than manual sampling. This chapter demonstrates that point-intercept interpretation of 

photographs collected with PoleCam enables the rapid collection of vegetation cover classes that is 

comparable to traditional field methods in the tundra vegetation of Macquarie Island. The point 

intercept analysis does tend to overlook very rare species, and so should be coupled with the 

collection of a species list in the field to ensure a comprehensive dataset for each site. The main 

advantages of PoleCam are its field efficiency and digital data record.  

Chapter 3: Geographically-stratified random sampling design for vegetation survey: its 

implementation on sub-Antarctic Macquarie Island 

This chapter describes GeoStrat, a geographically-stratified proportional random sampling design 

that aims to capture the variation in both terrain parameters and vegetation patterns. The PoleCam 

method of field sampling is carried out at the sites chosen through GeoStrat, as well as 54 

purposively-sampled sites. The effectiveness of GeoStrat in sampling the terrain is assessed by 

comparing it to other simulated randomised sampling designs. One of the challenges of applying 

randomised sampling in remote environments is that access may be limited by safety or 

environmental concerns, both of which are applicable on Macquarie Island. Since access limitations 

to GeoStrat sites are not uniform across the strata, all the simulated randomised samples are down-

weighted by the same proportions as the GeoStrat strata for the purposes of comparison. This 

comparison shows that GeoStrat functions as a compromise between true random sampling and 

purposive sampling, which is biased towards areas that are perceived to contain interesting or 

complex vegetation patterns.  
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Chapter 4: Are plant communities discrete mappable entities or fluid groupings? A test case using 

sub-Antarctic tundra vegetation  

The traditional approach to understanding vegetation patterns on Macquarie Island has been to 

divide the vegetation into plant communities, and examine the distributions of those communities. 

An examination of previous attempts to define communities shows little agreement between 

authors on where boundaries should be drawn. This chapter explores whether stable and reliably 

identifiable groups exist in the floristic dataset collected using the methods described in the previous 

two chapters. Given the lack of agreement on the number and identity of communities for the 

island, unsupervised classification provides the opportunity for a data-driven test of whether stable 

groupings can be found. The effects of sampling design, included taxa, data transformations, number 

of clusters, and clustering algorithms on the stability of groupings is tested. No combination of these 

variables produces stable groupings in the data, and the least unstable groups of sites are those 

dominated by a single species. This indicates that there is little clustering structure in the floristic 

data, making it difficult to identify clear communities that could be used as mapping units. 

Chapter 5: Mapping sub-Antarctic cushion plants: using the random forests to classify very high 

resolution satellite imagery and terrain modelling 

Given the failure to define stable plant communities that can be used as mapping units, this chapter 

explores methods to map a single species, the endemic cushion plant Azorella macquariensis. 

Random forest classification is used to explore the utility of three image training methods and the 

relative importance of terrain variables and spectral reflectance for predicting the presence or 

absence of Azorella.  

Object-based image analysis has gained popularity in recent years because it incorporates contextual 

information in classifications (Blaschke 2010), but there has been limited investigation of whether 

object- or pixel-based classification is most accurate for small-statured vegetation (Addink et al. 
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2007). This chapter tests the impact of object-based and two pixel-based training methods on the 

accuracy of the image classification. 

There are two key data-driven approaches to mapping vegetation. Terrain data is used for species 

distribution modelling, to determine potential habitat rather than actual distribution (Guisan and 

Zimmermann 2000). Satellite imagery, in contrast, is used to identify structure and disturbance 

patterns but has limited capacity to distinguish spectrally similar species. Recent hybrid approaches 

have exploited the strengths of both approaches (e.g. Dirnböck et al. 2003; Dobrowski et al. 2008) 

and this chapter examines the relative effects of spectral and terrain data in improving the accuracy 

of the image classification. Finally, this chapter examines whether the classification can differentiate 

sparse and moderate cover of Azorella. 

Chapter 6: Preliminary results of application of random forest classification for other dominant 

plant species on Macquarie Island. 

Here, preliminary results for applying the techniques developed in chapter 5 to other species on 

Macquarie Island are presented. Classifying an image into multiple classes is computationally more 

difficult than the binary classification presented in the previous chapter. Mapping for individual 

species also introduces complexity into standard image classifications because species ranges may 

overlap, but random forest classification calculates the probability of membership for each class that 

may be used to produce overlapping classes that optimise the accuracy of the predicted distribution 

of each species. This chapter explores methods to optimise a multi-class classification of species with 

intergraded distributions and ends by suggesting directions for investigations to refine species 

distribution maps. 

Chapter 7: Conclusions 

This thesis describes and tests the effectiveness of a range of approaches to mapping vegetation at 

very high resolution and in remote tundra environments. It demonstrates that the plant community 
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paradigm is inappropriate for change detection mapping on Macquarie Island, but that a 

combination of comparatively new techniques can be used to map individual species with high 

accuracy.   
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2.  Close-range photo-sampling as a rapid and 
effective replacement for field-based 
vegetation sampling in sub-Antarctic tundra 
landscapes for up-scaling to satellite imagery  

2.1. Abstract 

There is a growing need to monitor changes in the vegetation of many tundra areas, driven by 

factors including climate change and herbivory by non-indigenous vertebrate species. Evidence-

based management policies are dependent on accurate quantitative data on community structure at 

multiple spatial scales. At landscape scales, there is a need for large samples, and in remote areas, 

access is often limited. These two factors drive demand for rapid field sampling techniques. We use 

a case study on sub-Antarctic Macquarie Island to test whether close-range photo-sampling can 

acquire species composition data that is equivalent to that collected by field quadrat sampling. We 

compare the efficiency of two photographic cover estimation techniques (photographic visual 

estimation (PVE) and photographic point intercept (PPI)) with field-based visual estimation (FVE).  

While FVE had the greatest capacity to detect small and rare species, photo-sampling took less field-

time (sometimes less than half the field time) and plots could still be reliably differentiated using 

multivariate clustering. Furthermore, photo-sampling allowed for greater surface areas to be 

sampled.  Close–range photo-sampling coupled with an in situ species list with either of the cover 

estimation methods tested here proved to be robust tools for rapidly collecting vegetation data, 

comparable to FVE in remote tundra environments. These methods aim to provide substantive and 

efficiently acquired training and validation data sets for satellite image analyses.  
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2.2. Introduction 

Monitoring vegetation change in high latitude tundra requires robust and efficient field sampling 

methods. Recent rapid changes in these environments, due to factors including climate change and 

grazing by non-native herbivores (Serreze et al. 2000; Smith 2002; Cairns and Moen 2004; Chapuis et 

al. 2004; Walther et al. 2005), increases the importance of accurate and efficient monitoring 

methods. Increasingly, evidence-based conservation policies in these regions require high quality 

data at multiple spatial scales (Chown et al. 2009) that can be used to monitor significant changes 

(Archaux et al.2007). New remote sensing and geographic information systems (GIS) tools allow 

researchers to scale-up studies of vegetation dynamics from plots to landscapes, but are dependent 

on large ground referencing samples to train and validate the image analysis (Wilson et al. 2011), 

which in turn require robust and rapid field sampling techniques. 

There are two key aspects to creating a ground-referencing system to maximise biological 

information extraction from satellite imagery. Firstly, the validation sampling plots must be 

representative of the vegetation and terrain and secondly, floristic survey methods must adequately 

describe the vegetation at those plots. This paper focuses on the latter of these aspects as part of a 

broader research program aimed at optimising satellite image interpretation for mapping vegetation 

distribution.  

Scientists and land managers need field sampling methods that balance repeatability, 

exhaustiveness and efficiency (Archaux et al. 2007), especially when working in remote 

environments. The focus of this study is remote sub-Antarctic Macquarie Island, 1200 km SE of 

Australia, which has recently undergone significant change due to grazing pressure from a 

population explosion of  non-indigenous rabbits (Scott & Kirkpatrick 2008; Bergstrom 2009a). 

Traditional plant ecology methods used in previous vegetation studies on the island (e.g. Copson and 

Whinam 1998; Kirkpatrick and Scott 2002; Bergstrom et al. 2009a) were considered too time 

consuming to be suitable for landscape-scale analyses requiring large data sets.  Close-range photo-
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sampling potentially offers a number of advantages over other field methods including speed, 

simplicity and the capacity to archive the photographs for future research (Laliberte et al. 2007).   

Perhaps because of the specific demands on sampling efficiency in marine environments, the use of 

photo-sampling to collect quantitative data on community structure is more common there than in 

terrestrial environments, but there are some conflicting conclusions in the marine ecology literature 

about which techniques are most accurate, repeatable and time-efficient  (see Foster et al. 1991; 

Tkachenko 2005; Drummond and Connell 2005; Alquezar and Boyd 2007; Leujak and Ormond 2007) 

In general, photographic methods have been considered most useful in communities with simple 

vertical structures and where field access is difficult.   

In terrestrial ecology, close-range photo-sampling has been used to estimate biomass (Paruelo et al. 

2000); quantify total canopy coverage (Northup et al. 1999; Laliberte et al. 2007); identify broad 

taxonomic classes (Zhou and Robson 1998; Luscier et al. 2006); and for phenological research, in 

which repeated sampling is required (Sparks et al. 2006; Crimmins & Crimmins 2008; Liang et al. 

2011).  A few studies have used close-range photo-sampling to quantify the coverage of individual 

species in low-statured vegetation. These studies have thus far focussed on environments with 

extremely sparse vegetation (Gilbert and Butt 2009) or focussed on a few, easily identifiable species 

(Bennett et al. 2000; Vanha-Majamaa et al. 2000; Booth et al. 2008). We are unaware, however, of 

any studies testing the use of close-range photo-sampling to quantify the coverage of all species in 

dense communities in tundra or other cool temperate environments characterised by low-statured 

plants. There is therefore a need to test whether close-range photo-sampling can acquire species 

composition and cover data that is sufficiently accurate and comparable to field quadrat sampling 

data.  

This study presents a technique for rapid sampling of vegetation plots using photo-sampling and 

tests whether two photographic cover estimation methods (photographic point intercept and 

photographic visual estimation) can capture sufficient data on species composition and cover to 
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identify field plots established using field-based visual estimations of vegetation cover in an ongoing 

vegetation study (see Bergstrom et al. 2009a). There is a body of literature exploring the precision 

and repeatability of individual field data collection techniques (Sykes et al. 1983; Nilsson and Nilsson 

1985; Klimeš et al. 2001; Gray and Azuma 2005; Archaux et al. 2006; Vittoz and Guisan 2007; Vittoz 

et al. 2010) and comparing different field-based methods for assessing vegetation cover (e.g. 

Archaux et al. 2007; Bråkenhielm and Qinghong 1995). We use similar analyses to assess the 

capacity of rapid photo-sampling methods to quantify the coverage of plant species in a plot and to 

distinguish plots from each other.  

2.3. Methods 

2.3.1. Study Site 

Macquarie Island (54°30’S, 158°57’E) is a World Heritage-listed oceanic island located approximately 

halfway between Australia and Antarctica (Fig. 1). The 12,390 ha island is low-lying and dominated 

by a plateau bounded by steep coastal slopes. Its vegetation is dominated by grasses, herbs and 

bryophytes (Selkirk et al. 1990). In the coastal regions where this study was conducted, the 

vegetation is dominated by the grasses Agrostis magellanica, Poa foliosa and P. annua; the sedge 

Luzula crinita; the mat-forming herb Acaena magellanica; and the megaherbs Stilbocarpa polaris and 

Pleurophyllum hookeri. The vegetation has a relatively simple vertical structure with rarely more 

than two strata in any vegetation type (e.g. a vascular plant canopy layer and underlying bryophyte 

layer). With the exception of three species (P. foliosa, S. polaris and Polystichum vestitum) the 

vegetation is generally less than 50 cm in height.  The coastal vegetation has been extensively 

modified by rabbit grazing since rabbits were introduced in the 19th century, and the grazing severity 

has increased in the past decade (Bergstrom 2009a). 

The island’s vegetation has been studied since its discovery in 1810 (Copson 1984), with most 

research examining small plots with high attribute resolution, relatively small sample sizes and 
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purposive sampling strategies (e.g. Copson and Whinam 1998; Kirkpatrick and Scott 2002; Scott and 

Kirkpatrick 2008; Bergstrom et al. 2009). Recently, satellite image interpretation has been used to 

investigate landscape-scale processes, but currently with very low attribute resolution (Lucieer 2008; 

Bergstrom et al. 2009). More detailed analyses have not been possible at the landscape scale 

because of the relatively small sizes of the field samples.  Such study designs reflect the challenges of 

working in a remote, physically challenging environment, in which field time and access can be 

limited.  

 
Figure 1: Macquarie Island is located in the Southern Ocean, equidistant between Australia, New 

Zealand and Antarctica. (Data source: Center for Applied Geoinformatics TerraSpace, 

www.terraspace.ru) 
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2.3.2. Site Descriptions 

In March 2008, 15 sites were visited over a 7 day period to assess plant species composition and 

cover (Fig. 1). Study plots had been established at 11 of these sites either in 2001 (10 sites) or 2007 

(one site) (Bergstrom et al. 2009). The previously established sites were chosen in advance of the 

field season as being feasible to visit in a short trip, as well as having the potential to have exhibited 

significant changes in vegetation cover from rabbit grazing since the previous visit.  These sites 

encompass a range of low-altitude vegetation types, ranging from almost bare, severely grazed sites 

through relatively species-rich short grasslands to S. polaris dominated herbfields. 

2.3.3. Plot photography 

At each site, a 5 x 5 m plot was defined with a tape measure, with intersecting measuring poles 

dividing the plot into quarters. The location of the south-east corner of each plot was recorded with 

a Trimble ProXH single-frequency differential GPS. A Canon EOS 400D SLR camera with an 18 mm 

lens mounted on a 2 m carbon fibre pole was used to take a single photograph of each quarter of the 

plot from approximately 2.5 m above the ground (i.e. four photographs per plot). Each photograph 

covered an area of approximately 6.5 m2. Guy lines were used to stabilise the camera. Five randomly 

located 1 m2 quadrats were placed within the 5 m x 5 m area.  

2.3.4. Data Collection and Vegetation Cover Estimates 

2.3.4.1. In situ fractional cover 

For each plot, field-based visual estimates (FVE) of percentage cover were made for all ground cover 

classes within the five quadrats, following the methods of Bergstrom et al. (2009a). The cover 

estimates were made by two botanists in consultation, using decimetre markings on the edges of 

the quadrat to assist the cover estimation. For each cover class, the canopy coverage was estimated 

without regard for any overlap with other cover classes, so total percentages for a quadrat exceeded 

100% in plots with overlapping strata. For each plot, mean class coverage for all quadrats was 

calculated and normalised to 100% for comparison with the results of the photographic 



Chapter 2: Photo-sampling 
 

39 
 

interpretation. A species list was recorded for each plot based on the species identified in the five 

quadrats, and supplemented with any species observed in the plot and outside the quadrats. 

The cover classes included vascular plant species identified to species level, with other taxa 

identified to broader taxonomic levels (e.g. algae or fungi). Bryophytes were separated into 

Marchantia berteroana and other bryophytes, as M. berteroana is the only bryophyte species that 

we were able to reliably identify in the photographs and it is structurally very different to the other, 

mostly leafy, bryophytes on the island. Vascular plant species that could not be reliably identified to 

species level in photographs (Deschampsia spp., Acaena spp. and two species of Colobanthus, C. 

apetalus and C. affinis) were identified to genus level.  The final two ground cover classes were 

water and bare ground/dead vegetation. 

2.3.4.2. Fractional cover and point-intercept counts on digital photographs 

 Two photographic cover estimation methods were assessed. The canopy coverage of each ground 

cover class was first visually estimated (Photographic Visual Estimates - PVE) for the entire plot. To 

aid this, each photograph was georeferenced to a 10 cm grid using an affine transformation in 

ArcGIS 9.3. This approach has been found to be time consuming but accurate (Zhou et al. 1998; 

Roush et al. 2007; Michel et al. 2010). Next, a point intercept method (Photographic Point Intercept - 

PPI) was used to estimate percentage area of each cover class. One hundred randomly located 

points were positioned over each of the four photographs, and the cover class under each point 

recorded using Coral Point Count software (Kohler and Gill 2006).  The PVE and PPI assessments 

were conducted by the same researcher on different days to minimise the potential for biasing the 

results. The species list acquired in the field was used to aid identification. For each photographic 

cover estimation method, the results for the four photographs in a plot were converted into a mean 

percentage for that plot. 

In the photographs, only those cover classes forming the upper canopy could be observed. 

Vegetation that could not be confidently identified due to shadowing (a small proportion of total 



Chapter 2: Photo-sampling 
 

40 
 

cover: mean = 0.83%, SD=0.98%) was excluded from the analysis. This mean was inflated by a single 

plot that was photographed in misty, dim conditions (unidentified vegetation at this plot covered 

3.5%). Canopy cover for each ground cover class was calculated as a percentage of the canopy in the 

plot that was identifiable and not obscured by field equipment (mean=1.55%, SD = 0.71%), with 

covers summing to 100%. Thus, FVE measured the percentage of the total vegetation cover, whereas 

the two photographic methods represented percentages of the visible canopy cover. Before analysis, 

the photographs were cropped to exclude areas outside the plot boundaries and overlaps among 

photographs.  

2.3.5. Statistical analysis 

Statistical tools for analysing dissimilarity among ecological data are generally limited in their 

capacity to test hypotheses or to capture multiple aspects of that dissimilarity (Økland 2007). We 

therefore used multiple statistical analyses to explore both the differences in total numbers of cover 

classes detected and their abundance by each observation method.   

For each plot, the total number of cover classes was defined as the number of classes found using at 

least one cover estimation method (FVE, PVE or PPI), and the proportion of classes found using each 

observation method was compared with this total. We assumed no species were misidentified. Since 

the photographic interpretation was conducted after the end of the field season, there was no 

opportunity to revisit plots to reconcile the species lists from the various cover estimation methods. 

Previous studies have shown that misidentifications affected the reliability of some vegetation 

surveys (Klimeš et al. 2001) though other studies have shown it to be less of a problem than 

overlooking taxa (Scott and Hallam 2002; Archaux et al. 2006). Since the flora on Macquarie Island is 

small (44 vascular plant species), we considered that the risk of misidentifications was small.  

Errors of overlooking of classes were assessed by comparing pseudoturnover rates between paired 

lists of the three sampling methods, following the formula of Nilsson and Nilsson (1985). 
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where A and B are the species found with each sampling method. Pseudoturnover is the inverse of 

the Sørensen Index, or Bray-Curtis similarity coefficient based on presence-absence data (Archaux et 

al. 2009) and hence does not take account of the relative abundance of different species (Clarke 

1993).   

Linear regression was used to explore the relationship between pseudoturnover and taxon-richness 

at a given plot (R Core Development Team 2010). The taxa were then grouped according to their 

typical morphology (megaherbs, medium graminoids, mat-forming herbs, interstitial species and 

non-vegetated ground) and the rate of overlooking was plotted for each morphological group. 

To compare the reliability of the cover estimates, we used two approaches. First, one-way ANOVA 

was used to test whether the three cover estimation methods produced significantly different cover 

estimates for each morphological group. We then examined the effect of the differing cover 

estimates on the ability of multivariate clustering to group all observations from each plot. For the 

multivariate analyses, we followed a common approach in community ecology of using Bray-Curtis 

distance matrices, non-metric multidimensional scaling (nMDS) and clustering to explore whether 

the three different observation methods for each plot were more similar to each other than 

observations from other plots (Bray & Curtis 1957; Field et al. 1982; Clarke 1993).  

Bray-Curtis similarity matrices were calculated with four increasing levels of transformation: 

untransformed data, square-root, fourth-root and presence/absence transformations (Clarke 1993; 

Quinn & Keough 2002), to explore the relative importance of abundant, mid-range and rare species. 

The nMDS ordination and all classification methods were repeated for all four transformations.  

To ensure that the clusters were not artefacts of a single clustering algorithm, we applied three 

different clustering methods: Partitioning Around Medoids (PAM), which is a form of fuzzy 

clustering; and two hierarchical clustering tools (one divisive (diana) and one agglomerative (hclust)) 
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were used with an average weighted linkage method (Maechler et al. 2005; R Core Development 

Team 2010). 

Three tools were used to test the validity of the clusters. Firstly, silhouette plots were used to test 

how well each observation fitted its assigned cluster for all clustering techniques. These plots show 

the average dissimilarity of each observation to all other observations in the cluster, compared to its 

average dissimilarity to members of the closest neighbouring cluster (Rousseeuw 1987; Kaufman 

and Rousseeuw 2005). Secondly, permutational similarity profile (SIMPROF) tests were applied to 

the agglomerative hierarchical clustering dendrograms to determine which of the apparent clusters 

were significant (Clarke et al. 2008). SIMPROF could not be applied to the diana and PAM clusters 

using available tools. ANOSIM was used to test the null hypothesis that observations within each 

plot were no more similar than observations from different plots (Clarke et al. 2006). 

2.4. Results 

2.4.1. Field results 

2.4.1.1. Timing of measurements 

Photo-sampling took approximately 20 to 25 minutes per plot. This compared with 25 to 50 minutes 

per plot for field-based visual estimation (FVE) (incorporating 5 quadrats per plot) (Table 1). FVE 

sampling times were influenced by the complexity of the vegetation, with species-rich short 

grasslands taking the longest.  

In the laboratory, Photographic Point Intercept (PPI) estimates took approximately 5 minutes per 

photograph (i.e. 20 minutes per plot). Photographic Visual Estimation (PVE) of taxa cover required 5 

– 30 minutes per photograph (i.e. 20 – 120 minutes per plot), with the variation determined by the 

complexity of the vegetation (Table 2). As with FVE, species-rich short grassland plots took the 

greatest amount of time.  
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Table 1: The three observation methods tested here, field visual estimates (FVE), photographic visual 

estimates (PVE), and photographic point intercept (PPI), all compromised between time investment 

and sampling comprehensiveness. 

Method Equipment 
Costs 

Field Time 
(per plot) 

Lab Time 
(per plot) 

Mean 
Percentage of 
Total Species 

FVE Nil 25-50 
mins 

2 mins 83% 

PVE Low 20-25 
mins 

20-120 
mins 

76% 

PPI Low 20-25 
mins 

20 mins 55% 

 

2.4.1.2. Species presence and absence 

The three cover estimation techniques varied significantly in their capacity to detect cover classes 

within the study plots (p < 0.001).  FVE identified 83% ± 9.1% of the total number of cover classes 

per plot, compared with 76% ± 8.6% for PVE and 55% ± 12.6% for PPI (Fig. 2). 

 

Taxa that were detected at a given plot using only one of the three cover estimation techniques had 

very low coverage. The mean maximum coverage for a taxon found at a plot by only one observation 

method was 0.14% ± 0.26 for PPI, 0.19% ± 0.23 for PVE, and 0.8% ± 0.7 for FVE. Of the taxa that were 

only detected by a single observation method, 46% were interstitial species (most commonly 

Cardamine corymbosa, a rosette herb that is typically <2 cm in diameter); 25% were medium 

Figure 2: The total number of species per plot 

was calculated as the number of species 

identified in the plot using any one of the 

three observation methods. The percentage 

of total species found using each method 

demonstrates the comparatively poor 

performance of PPI. The bars represent the 

5th and 95th percentiles.  
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graminoids (most commonly Agrostis magellanica, a morphologically variable species); and 18% 

were mat-forming herbs. Of these, the fine-leafed grass Deschampsia spp. had the greatest extent, 

covering 3.1% of the field quadrats (FVE) at one plot. This grass can be difficult to distinguish from 

Agrostis magellanica, especially in photographs, and is likely to have been misidentified in the two 

photographic observation methods. This is the only obvious example of a likely misidentification in 

our dataset. 

2.4.1.3. Pseudoturnover 

The mean pseudoturnover in this study was 24.6% ± 10.5 and was smallest between FVE and PVE, 

and largest between FVE and PPI (Fig. 3). Plotting mean pseudoturnover against taxon richness 

revealed two groups in the data. For the majority of plots, mean pseudoturnover increased with the 

total number of species in a plot. Three plots with very low species richness, however, exhibited high 

levels of pseudoturnover. These plots (MI0801, MI0802 and MI0804) had been recently denuded by 

rabbits, and at least 96% of the cover at these three plots was provided by bare ground and one 

taxon. Plants in these plots were only just becoming established, and consisted of very small, 

sparsely located individuals. There was a significant linear relationship ( = 1.36, t = 2.36, p = 0.04)  

between taxon richness and pseudoturnover for plots where the rabbit browsing damage appeared 

older or where there were no signs of rabbit damage (all other plots) (Fig. 4). One outlier (MI009) 

had strong leverage on the regression but there was no obvious biological difference that would 

account for this outlier. 
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Figure 4: Relationship between pseudoturnover rates (%) and species richness.  The three plots in the 

top left of the corner have been recently heavily grazed. The line shows the regression through all 

plots other than the three recently heavily grazed plots (slope = 1.36, p = 0.04).  

2.4.1.4. ANOVA comparisons 

One-way ANOVA was used to test for differences between the three cover estimates for the total 

cover estimates for each morphological group. Box-Cox transformation analysis indicated that 

fourth-root transformation was appropriate for all groups. The cover estimation methods did not 

differ significantly for any morphological group (Table 2). 

Figure 3: Relationship between 

pseudoturnover (%) and 

observation method (FVE=Field 

visual estimation, PVE = 

photographic visual estimation, 

and PPI = photographic point 

intercept estimation). The bars 

represent the 5th and 95th 

percentiles. 
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Table 2: Results of one-way ANOVA tests for differences among the three cover estimation methods 

for each morphological group. For all analyses, there were two degrees of freedom between groups 

and 42 degrees of freedom within groups. 

Morphological Group  F P 

Bare 0.003 0.997 

Graminoids 0.002 0.998 

Interstitial Herbs 0.623 0.541 

Megaherbs 0.052 0.949 

Mat Herbs 0.295 0.746 

 

2.4.1.5. nMDS plots 

Non-metric multi-dimensional scaling (nMDS) showed that the variation between methods (FVE, PPI, 

PVE) was sufficiently small that intra-plot observations were exclusively grouped together and that 

there was good separation among plots when based on raw (linear R2 = 0.766; non-metric R2 = 

0.956) or square-root transformed (linear R2 = 0.842; non-metric R2 = 0.968) data (Fig. 5). Separation 

among plots decreased as the strength of the transformation increased and the impact of 

abundance measures were lost in the analysis. The ordination exhibited the least separation for 

plots with very similar vegetation (complex short grassland communities dominated by a mix of 

Agrostis magellanica and Luzula crinita, e.g. MI0704, MI040, MI053 and MI009).  
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(a)  

(b)  

Figure 5: 2-dimensional non-metric multi-dimensional ordination of observations, based on (a) raw 

and (b) square-root transformed data, with 68% confidence limit ellipses to demonstrate the study 

plots. These show that the differences among the observation methods within each plot tended to be 

much smaller than the differences between the plots. 

2.4.2. Cluster analysis 
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The hierarchical clustering algorithms based on untransformed, square-root transformed and fourth-

root transformed data produced similar clustering results (Table 3). For the untransformed data, the 

two hierarchical clustering algorithms produced similar dendrograms (not presented here) and an 

MSW of 0.66, indicating a strong cluster structure. Neither hierarchical clustering algorithm, 

however, could separate plots MI004, MI009 and MI053, which contain very similar species-rich 

short grassland vegetation. Rates of misidentification and cover estimate errors were likely to be 

highest at these plots due to the species richness and the small size of the graminoid leaves, as 

found in other grasslands (Klimeš et al. 2001). Square-root transformed data could be used to 

correctly assign each cover estimate to its correct plot, regardless of which clustering algorithm was 

applied (Table 3 and Fig. 6), with a mean silhouette width (MSW) of 0.59, which indicates a 

reasonable cluster structure. When the data were subjected to a fourth-root transformation, the 

observations from most plots could be exclusively clustered, but the cluster structure was weak 

(MSW = 0.36 – 0.4) and there were no consistent patterns in the errors of the two hierarchical 

clustering techniques. Presence-absence transformed data could not be reliably clustered using 

hierarchical clustering algorithms (MSW = 0.27-0.28). 

Table 3: The number of correctly clustered plots (all three observation techniques for a plot assigned 

to an exclusive cluster) organised by data transformation and clustering method. Maximum = 15. 

  Validation* 

 Raw Data Square-

Root Data 

4th Root 

Data 

Presence-

Absence 

Divisive Clustering (diana) 12 15 13 6 

Agglomerative Clustering 

(hclust)** 
12 (9) 15 (12) 13 (10) 6 (2) 

PAM 15 15 15 2 

* Validation is a count of the number of clusters that contain all the observations for 

an individual plot and no other observations.  

**Numbers in parentheses indicate SIMPROF statistically significant clusters. 
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(a)  

(b)  

Figure 6: Dendrograms of (a) agglomerative hierarchical clustering and (b) divisive hierarchical 

clustering based on square-root transformed data. In (a) statistically significant differences are 

shown with solid lines. The statistical significance could not be calculated for (b). In both cluster 

analyses, the three observations within each plot were more similar to each other than to any 

observation in any other plot. 
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Partitioning around medoids (PAM) successfully assigned all observations to their individual plots 

when based on any transformation other than presence-absence. The silhouette plots (Fig. 7) show 

how well each observation fits its assigned cluster. While the mean silhouette width was largest for 

PAM based on raw data (0.64), the minimum silhouette width of -0.05 showed that the observations 

for plot MI004 could equally be assigned to other clusters. The slightly lower mean silhouette width 

(0.59) for PAM based on square-root transformed data was accompanied by a minimum silhouette 

width of 0.18. These plots showed that a reasonable partition structure was found (Rousseeuw 

1987). As all clustering algorithms based on square-root transformed data produced identical 

groupings and were based on the same distance matrix, their silhouette plots were identical. 

The mean silhouette width for PAM based on fourth-root transformed data was 0.46. PAM was 

unable to uniquely assign the presence-absence transformed cover estimates to their individual 

plots.  

2.4.1. ANOSIM 

Global analysis of similarities (ANOSIM) showed that grouping the cover estimates into their plots 

produced statistically significant clusters regardless of which data transformation was applied (R = 

0.848 – 0.9993, P=0.0001).  
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a)  

b)  

Figure 7: Silhouette plots for Partitioning Around Medoids (PAM) based on (a) raw data and (b) 

square-root transformed data. A mean silhouette width greater than 0.5 indicates that a reasonable 

clustering structure has been found. A negative silhouette width indicates that an observation would 

have fitted better in the nearest neighbouring cluster. This occurred for a single observation (PPI) in 



Chapter 2: Photo-sampling 
 

52 
 

plot MI004, when the clustering was based on raw data (a). Overall, the mean silhouette plots show 

that the clusters were well separated. 

2.5. Discussion 

Pseudoturnover rates among the three cover estimation methods tested here were similar to those 

found in inter-observer calibration studies elsewhere (Archaux et al. 2009). Multivariate clustering 

was generally able to group observations into their correct plots when species abundance was 

accounted for in the distance metric. 

This study has shown that although close-range photo-sampling is less successful at identifying small 

and interstitial species than field visual estimates, it can be used successfully to collect quantitative 

data on individual species cover in low-growing dense vegetation with a relatively simple vertical 

structure.  This is the first study that systematically tested the use of close-range photo-sampling for 

cover estimates of all species in a terrestrial environment with dense vegetation. Other researchers 

have shown that it can be used to quantify the cover of individual species in very sparse low-growing 

vegetation (Gilbert and Butt 2009) or to quantify the cover of selected, visually distinct species 

(Bennett et al. 2000; Vanha-Majamaa et al. 2000; Booth et al. 2008). Photo-sampling has been more 

extensively used in marine environments, where it has been most successfully used in benthic 

communities with simple vertical structure, and in deep water where few cover estimation methods 

are practicable (Foster et al. 1991; Drummond &Connell 2005; Tkachenko 2005; Alquezar & Boyd 

2007). In benthic environments, PPI has been shown to underestimate species richness (Foster et al. 

1991). This study extends the range of environments in which photo-sampling has been successfully 

used to quantify the coverage of individual species.  

In general, pseudoturnover increased with species richness for plots that had not recently been 

denuded by rabbits. This, however, did not predict the ease with which ordination and clustering 

tools could exclusively group the cover estimates for each plot.  Where the vegetation had recently 

been severely grazed (a combination of bare ground and a single taxon making >96% of the cover) 
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the rest of the vegetation consisted of small, sparse, newly established individuals that were easily 

missed due to the locations of quadrats or intercept points. The small size of the plants and the very 

low species richness at these plots inflated the pseudoturnover rate.  These plots were easily 

separable using the clustering analyses. 

Pseudoturnover and the proportion of total taxa found using each technique were affected by the 

difficulty in identifying interstitial species, especially in photographs. The differing proportions of the 

plots covered by each observation method (400 points, 20% and 100% of the plot area respectively) 

may also have contributed to pseudoturnover, but given that each of these cover estimation 

methods is supposed to characterise the vegetation of the entire 25 m2 plot, we consider it valid to 

compare them directly. The mean pseudoturnover rates of 21.5 to 26.9% were higher than the best-

case scenarios for studies examining inter-observer variability using a single cover estimation 

method (Nilsson & Nilsson 1985; Lepš & Hadincová 1992), but well within the range reviewed by 

Archaux et al. (2009). Given that the studies cited by Archaux et al. (2009) were comparing inter-

observer differences using identical field protocols in a range of different vegetation types, including 

grasslands, it is encouraging to obtain similar levels of accuracy using different observation methods. 

In those studies, the mean Sørensen Index ranged from 66.6% to 89.1%, equivalent to a 

pseudoturnover rate of 10.9% - 33.3%. Of most immediate relevance, it is within the range of the 

Sørensen Index reported by Klimeš et al. (2001) in European grasslands (SI = 60-88%; PT = 12–40%). 

Pseudoturnover is limited in its capacity to compare different observation methods because it does 

not account for the relative abundance of each species, as it is based on a presence-absence Bray-

Curtis distance metric. ANOVA comparisons of the total cover for each morphological group showed 

no significant differences among each cover estimate, and this lack of difference was also reflected 

in the multivariate analyses. Wherever abundance measures were taken into account (i.e. all data 

transformations other than presence-absence) multivariate clustering tools were generally able to 

exclusively group observations to their individual plots, despite several plots containing apparently 
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similar vegetation. Macquarie Island’s flora is small and distinguished by a small number of species 

that occur in all vegetation types at varying abundance levels. For example, the grass Agrostis 

magellanica occurs sparingly in almost every habitat from beaches to dry fell field, but dominates 

the canopy in some short dense grasslands.  A small number of interstitial species occur sparsely in 

all vegetation types on Macquarie Island, and are responsible for much of the pseudoturnover. The 

presence-absence clustering attempts use pseudoturnover as a distance metric, and their failure to 

group observations to their correct plots highlights the limitations of pseudoturnover as a measure 

of the repeatability of vegetation surveys. 

There is some evidence that multivariate analyses of vegetation data are more robust to sampling 

errors than univariate analyses like pseudoturnover (Carlsson et al. 2005). Lepš and Hadincová 

(1992) showed that in multivariate analyses, pseudoturnover had a negligible influence on the result 

compared with the choice of ordination method. Here, despite relatively high pseudoturnover rates, 

all clustering techniques and all but the strongest data transformation were generally able to 

exclusively group the various cover estimates from individual plots. 

Choosing an appropriate cover estimation method involves balancing time limitations in the field 

and for data processing, as well as the accuracy of the results (Table 1).  Photo-sampling is suitable 

for applications focussed on the dominant canopy species, and where field access is limited, 

compared with applications in which detailed information on the distribution of small, rare or cryptic 

species is required or field access is uncomplicated. Photo-sampling has a further advantage in that 

photographs are data rich and can be easily archived for use in future research (Benedetti-Cecchi et 

al. 1996; Laliberte et al. 2007). 

A major incentive for this study was to generate a reliable method for gathering vegetation cover 

information from field plots to train a semi-automated vegetation classification of the whole island 

using very high resolution satellite imagery. The scale of the field samples has to match the scale of 

the satellite imagery for representative classification results. The field sampling technique proposed 
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in this study provides very detailed vegetation information for sufficiently large areas (i.e. 

corresponding to 4 multispectral pixels in a QuickBird satellite image) to rigorously ground-reference 

a range of image classification techniques, as recommended by Wilson et al (2011). The main 

disadvantage of the photographic sampling technique is that small and low growing species might be 

overlooked, especially if they make up a very small proportion of the plot. For remote sensing 

applications, such as mapping of plant communities or structurally dominant species, these types of 

errors are likely to have less impact than errors in species that dominate the canopy, and sampling 

efficiency is likely to be a more important consideration. 

2.6. Conclusions 

This study was designed to test whether photo-sampling could be used as a replacement for field-

based visual estimates of species cover on sub-Antarctic Macquarie Island. The results suggest that 

photo-sampling is a reasonable alternative to field quadrats in situations where field access is limited 

and where the vertical structure of the vegetation is relatively simple. Photo-sampling is faster in the 

field than field-based visual estimates (FVE), especially in complex vegetation, where FVE may take 

twice as long. This advantage is counter-balanced by increased data processing time, and the relative 

importance of these two time costs will depend on the difficulty of field access. 

Two photo-interpretation methods (PVE and PPI) were compared to FVE. Both photo-interpretation 

methods underestimated species richness compared with FVE, with PPI performing worst. On 

average, PPI recorded just over half the taxa found in a plot using any method (55%), compared with 

83% for FVE. The lower species detection rate did not affect the ability of the clustering algorithms 

to successfully allocate PPI estimates to their correct plot, and ANOVA showed no significant 

differences in cover scores.  

Of the three clustering methods tested, PAM produced the most stable results – correctly classifying 

all observations with any transformation except presence-absence. Of all the data transformations 
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tested, square-root transformation allowed the correct clustering of all observations, using any of 

the clustering algorithms. This is likely due to the nature of the vegetation on Macquarie Island. 

Several species have an island-wide distribution, but their abundance is extremely variable. This 

variability is ignored by the strongest transformations. In contrast, the analyses based on 

untransformed data allowed the clustering to be largely determined by one or a few dominant 

species.  Such classifications would be limited in their capacity to distinguish sites that share those 

few dominant species. It is therefore likely that future analyses on similar samples will be most 

robust if square-root data transformation is combined with PAM clustering.  

Coupled with a species presence list collected in situ, photo-sampling may be an effective rapid form 

of data capture in tundra or other structurally simple vegetation types where large samples are 

required for tasks such as satellite image interpretation and where field access is expensive or 

difficult. 
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3.  Geographically stratified random sampling 
design for vegetation survey: its 
implementation on sub-Antarctic Macquarie 
Island 

 

3.1. Abstract 

Training vegetation classifications and maps requires a field sampling design that captures the full 

range of both the vegetation types and the environmental variables likely to affect vegetation 

distributions. The sampling design must also be sufficiently flexible to allow for access limitations in 

remote environments. GeoStrat is a geographically stratified proportional random sample design 

that uses fuzzy c-means classification of very high resolution terrain variables and a vegetation index 

to define eight landscape strata. The proportions of field sites in each stratum are set according to 

three criteria: area, variance of the NDVI, and a combined subjective assessment of vegetation 

complexity and access limitations. GeoStrat was implemented on sub-Antarctic Macquarie Island 

over two summers. To test its effectiveness, it was compared to an existing purposive sample and 

three simulated random samples: unrestricted, equal stratified, and area-proportional stratified 

random samples. All samples were down-weighted to simulate the effect of differential access 

limitations across strata, and compared against a very large unrestricted random sample to examine 

their capacity to capture variation in the terrain and vegetation. GeoStrat performed as a 

compromise between the other randomised designs and the purposive sample, which was strongly 

biased towards the vegetationally complex coastal areas.  

GeoStrat allows researchers to use their knowledge of the study area to account for likely field 

difficulties and hotspots of biological diversity.  The flexibility in the design stage allows for flexibility 

in the field, and the use of fuzzy c-means clustering of environmental variables overcomes the 

limitations of existing landscape stratification methods for vegetation survey.  
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3.1. Introduction 

Mapping the distributions of plant species and communities requires a robust field sampling design 

that captures information on the full range of environmental variables likely to affect vegetation 

patterns. The sampling design must balance statistical representativeness (e.g. independence, 

randomness) against ecological representativeness, and needs to capture both diversity of the 

environment (i.e. a full range of landscape variables) as well as the distributions of plant species. 

Additionally, the field design must be flexible enough to cope with the practical realities of ecological 

fieldwork, where randomly located sites are often inaccessible. 

Vegetation sampling designs generally fit within the following categories: unrestricted random 

sampling), stratified random sampling, regular or grid sampling, or purposive sampling.  There are 

few clear guidelines available to help researchers choose the most appropriate sampling method. 

Unrestricted random sampling is sometimes highlighted as an ideal for a statistical sampling design, 

but is rarely applied in vegetation surveys, probably because it is inefficient in time usage and 

requires large samples to adequately capture rare vegetation and environmental types 

(Goedickemeier et al. 1997; Pillar 1998; Hirzel and Guisan 2002). Although it may adequately capture 

geographic space, this does not guarantee that the sample will not be biased in environmental space 

(Aspinall & Lees, 1994; Roleček et al. 2007). 

A number of studies have explored whether various forms of stratified random sampling can 

improve the efficiency of surveys,  increasing their capacity to adequately sample rare vegetation 

types and combinations of environmental variables,  without sacrificing statistical validity (Guisan 

and Zimmermann 2000; Austin 2002; Chiarucci 2007). The aim is to locate samples so that they are 

randomly distributed in environmental space rather than geographic space (Goedickemeier et al. 

1997; Pillar 1998). Sampling to identify communities or vegetation types is most efficient if each 

community is represented by an equal number of samples (Franklin et al. 2001). If community 

definitions do not already exist, then efficiency is tested by classifying the collected floristic data, 
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which risks circular reasoning. It has been argued that efficiency is highest when both the number of 

strata and number of vegetation types are high (Goedickemeier et al. 1997). To maximise efficiency, 

Fortin et al. (1989) recommend stratifying the study area into geographic zones in which the 

variances are approximately equal, and then concentrating the sampling in those zones with the 

highest variance.  

The best-known stratified random sampling system is probably Gradsect, in which the study area is 

stratified according to environmental variables that are believed to be major drivers of vegetation 

patterns (Austin and Heyligers 1989). In this approach, the chosen environmental variables are 

converted from continuous values to discrete classes, and these classes are then combined to 

generate large numbers of relatively small strata, representing the various combinations of all 

classes of each variable. A decision is then made as to how much effort to direct to sampling 

relatively rare strata compared with common strata. This approach has been implemented in a 

range of Australian, European and North American environments (Franklin et al. 2001; Hirzel and 

Guisan 2002; Grabherr et al. 2003). For example, such an approach was shown to improve the 

efficiency of sampling in a Swiss alpine forest  (Goedickemeier et al. 1997) and to represent the 

range of climatic, topographic and geologic variation and efficiently captured the range of plant 

species and vegetation alliances in the Mojave desert (Franklin et al. 2001).  

Due to the way GRADSECT sampling designs categorise each variable before intersecting them, the 

landscape is divided into large numbers of small strata, with the number of strata increasing 

exponentially as additional environmental variables are included or the number of classes increases.  

A very simple stratification with two environmental variables and four classes in each would 

potentially produce 16 strata, but a more complex design with 5 environmental variables, each 

divided into four classes, could produce 1024 strata. If those five variables were divided into five 

classes, then 3125 strata could result. Given that poor stratification (typically one that creates large 

numbers of very small strata with unequal areas and a small sample in each) can make this approach  
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inefficient (de Gruijter 1999), the number of environmental variables and the number of classes in 

each must be limited for the stratification to remain practical. A further disadvantage of this system 

is that strata with rare attribute combinations may be artefacts rather than representing true 

environmental extremes and do not necessarily contain rare vegetation types (Goedickemeier et al. 

1997). Thus, a stratification system that allows the incorporation of multiple variables, avoids 

arbitrary classification of continuous variables and does not produce large numbers of very small 

strata would be an improvement on this system. 

Much vegetation classification and mapping is still conducted on the basis of purposive or other 

subjective sampling (Bergstrom et al. 2002; Faber-Langendoen et al. 2007).  Purposive sampling  is 

common because it is a convenient way to capture samples of apparent vegetation communities, 

and ensure that rare vegetation types are captured (Roleček et al. 2007). Such designs, however, 

have long been criticised because of the risk that the resulting datasets will be biased towards sites 

that are easily accessible, species-rich, spatially clustered, or contain species of particular interest to 

a given researcher and will hence violate the assumptions of many statistical tests making them 

unsuitable for predicting distributions (Ashby 1935; Chytrý 2001; Chiarucci 2007). Despite these 

warnings, purposive sampling is still popular in the community ecology literature (Chytrý 2001). It 

may be that the lack of consensus in the literature about the best sampling design, and a belief that 

truly random designs are impossible to implement in many environments due to accessibility and 

practicality concerns, are discouraging researchers from adopting randomised sampling designs. 

A key problem in designing vegetation sampling regimes is that geographic space, environmental (or 

resource) space and taxonomic space (i.e. how species are distributed) are often different (Aspinall 

and Lees 1994).  Thus, a sample that is representative of the full range of geographic coordinates 

may not be randomly distributed in environmental space. Testing how well a sample represents 

environmental space is comparatively straightforward, where spatial datasets of the key 

environmental variables are available. The distribution of the observations for each environmental 
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variable within the sampling sites can be directly compared to the distribution of that variable across 

the entire study area. In contrast, researchers rarely know the ‘true’ distribution of the species being 

studied, so it is not obvious how to test the ability of various sampling designs to represent species 

distributions (Hirzel and Guisan 2002). 

This study is part of a broader research program to map vegetation patterns on sub-Antarctic 

Macquarie Island, using topographic variables and very high resolution (VHR) satellite imagery. Here, 

we describe GeoStrat, a topographically and spectrally-explicit proportional stratified random 

sampling design to collect field calibration data. The stratification is designed to avoid the creation of 

large numbers of small strata, and the proportions of points per stratum take account of likely access 

difficulties and variation in the vegetation, as well as the area covered by each stratum. We 

demonstrate its implementation in a remote, physically challenging environment, and test its 

capacity to capture the range of environmental variables on the island. To assess the ability of 

GeoStrat to represent environmental variation and to capture vegetation patterns, we compare it to 

simulated unrestricted, equal-stratified and area-proportional stratified random sampling designs 

and the purposive sampling design used in a long-term vegetation monitoring program on the island. 

3.2. Methods 

3.2.1. Study site 

Macquarie Island (54°30’S, 158°57’E) is located in the Southern Ocean, approximately 1500 km south 

of Australia’s mainland (Fig. 1). The island is dominated by a plateau between 200 and 400 m MSL, 

with steep escarpments leading down to beaches and, on the north-west coast, a raised coastal 

terrace. The vegetation consists of 44 vascular plant species and approximately 135 bryophyte 

species, along with lichens, algae and fungi (Selkirk et al. 1990). The most exposed parts of the 

plateau are characterised by open feldmark, which consists of an extremely variable mixture of 

gravel, cushion plants and bryophytes interspersed with lesser amounts of other vascular plant 
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species. Less exposed sites are characterised by short grasslands that are dominated by several grass 

species individually or in combination. Areas where the water table is close to the surface contain 

bryophyte- and sedge-dominated mires. The coastal slopes are host to a complex array of short 

grasslands, heavily disturbed or grazed sites and the tall tussock and megaherb-fields for which 

Macquarie Island is known (Selkirk et al. 1990).  
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Fig. 1: Macquarie Island (54°30’S, 158°57’E) is 

located in the Southern Ocean, equidistant between 

Australia, New Zealand, and Antarctica. 
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3.2.2. Digital datasets 

Elevation values were taken from the Australian Antarctic Division Digital Elevation Model (DEM) of 

Macquarie Island, a 5 m resolution raster, with heights accurate to 5 m, derived from Airborne 

Synthetic Aperture RADAR images acquired in 2000 by the NASA PACRIM Mission 2 (Tapley et al. 

2004; Brolsma 2008). 

A cloud-free QuickBird image of Macquarie Island was acquired on 15 March 2005. The QuickBird 

satellite sensor captures four multispectral bands (blue, green, red and near-infrared (NIR)) at 2.4 m 

resolution. 

Vegetation distribution data were taken from a vegetation map that was digitised from 20 m 

resolution SPOT satellite imagery (Selkirk et al. 2000). This map shows the structure of the 

vegetation, rather than species composition, though the small number of vascular plant species on 

Macquarie Island makes it possible to link dominant canopy species to the structural groups 

identified in this map. 

3.2.3. Fuzzy c-means landscape stratification 

Vegetation distribution is known to be affected by the shape of terrain and its resulting impact on 

microclimate and soil moisture (Franklin 1995; Goedickemeier et al. 1997). Therefore, an efficient 

sampling strategy should be stratified according to those gradients believed to be major drivers of 

species distributions (Hirzel and Guisan 2002). Gradsect-style stratified random sampling designs are 

limited by the simple way in which the variables are combined to generate the strata. Converting 

continuous variables, such as elevation, slope, and solar radiation into discrete classes creates 

arbitrary divisions in the data. Furthermore it produces exponentially larger numbers of strata as the 

number of environmental variables or their classes increase.  To avoid these problems, we looked to 

the field of morphometric classification to improve the stratification of the landscape into 
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homogeneous units (Pike 2000; Fisher et al. 2004). Terrain data and a satellite image-derived 

vegetation index were used to stratify the island in an attempt to capture the full range of habitats. 

Traditionally, clustering algorithms group samples into distinct classes with hard or discrete 

boundaries. Terrain and vegetation characteristics often vary gradually over space, however, and a 

fuzzy approach towards identification of strata might be more appropriate (Burrough and Frank 

1996). The fuzzy c-means (FCM) clustering algorithm identifies groups of samples sharing similar 

characteristics in a multivariate feature space (Bezdek et al. 1984). FCM produces overlapping fuzzy 

clusters with transition zones. Mapping fuzzy membership values for each grid cell results in a 

membership layer for each class; the higher the membership of a grid cell, the greater the likelihood 

that the grid cell belongs to a certain class. Finally, the FCM output is ‘defuzzified’ by assigning hard 

class labels to each of the grid cells, based on the maximum membership value.  

Following Burrough et al. (2000, 2001) we used an unsupervised fuzzy c-means clustering algorithm 

to divide Macquarie Island into relatively homogeneous landscape strata. The classification was 

based on six terrain parameters (elevation, slope, surface curvature, wetness index, solar radiation 

and topographically deflected wind speed) derived from the DEM and a normalised difference 

vegetation index (NDVI) layer derived from the QuickBird imagery. Table 1 provides a summary of 

the derivation of each layer.  

The wetness index is sensitive to errors in the DEM as a small error in height can significantly change 

a cell’s flow direction, slope and flow accumulation (van Niel et al. 2004). To account for this, we 

used the mean value from a Monte Carlo simulation with 100 realisations, where the error term was 

based on a Gaussian error model with a mean of 0.0 and a standard deviation of 5 m, set from the 

estimated root mean square error of the DEM (Tapley et al. 2004; Oksanen and Sarjakoski 2005; 

Brolsma 2008; Januchowski et al. 2010). The topographically deflected wind speed layer was primed 

using long-term averages for the mean wind speed (35.1 km/h) and direction (WNW) (Bureau of 

Meterorology 2011).  
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All GIS analyses were conducted in PCRaster and ArcGIS 9.3 (ESRI 2008; PCRaster 2011). The remote 

sensing software ENVI 4.7 was used to calculate the normalised difference vegetation index (NDVI) 

and the fuzzy c-means algorithm was implemented in IDL (ENVI 4.7). 

Table 1: The derivation of the spatial attribute layers used for fuzzy c-means classification of the 

landscape into homogeneous strata. 

Input Layer Description Calculation Reference 

Elevation Values extracted from the DEM  N/A (Tapley et al. 2004; 

Brolsma 2008) 

Slope Average maximum rate of change in 

a 3 x 3 neighbourhood of the DEM 

slope° = ATAN(√([Δz/Δx]
2
 + 

[Δz/Δy]
2
))*57.29578 

(Horn 1981; Gallant 

and Wilson 2000) 

Surface 

Curvature 

A second-order derivative of the 

DEM, surface curvature of the DEM is 

a composite of planar and profile 

curvature. 

A fourth-order polynomial is fitted to 

the surface of a 3 x 3 cell 

neighbourhood 

(Zevenbergen and 

Thorne 1987; Moore 

et al. 1991) 

Wetness 

Index 

A measure of the relative position of 

a cell within a catchment, wetness 

index is a function of the upstream 

area and the slope of the target cell. 

It is used as proxy for variability in 

soil wetness and assumes a uniform 

substrate and ground cover. 

WI = ln(A/tanß), where A = upstream 

area and ß = Slope in degrees 

(Beven & Kirkby 1979; 

Wilson & Gallant 

2000; Burrough et al. 

2001; van Niel et al. 

2004; Sørensen et al. 

2006) 

Solar 

Radiation 

Modelled solar radiation, accounting 

for latitude, topography and 

atmospheric conditions over a year. 

Sky conditions in the model were set 

assuming a generally cloudy sky, as 

Macquarie Island experiences an 

average 289 cloudy days each year. 

For each cell, an upward-looking 

hemispherical viewshed is calculated 

based on topography; a direct sun map 

and diffuse sky map are overlaid on 

this for each time interval (here, for 

every 30 minutes in a year) to calculate 

a composite insolation value in Wh/m2. 

(Fu & Rich 2000; 

2002; Huang et al. 

2008; Bureau of 

Meteorology 2010) 

Wind Speed Topography has a significant effect 

on wind direction and speed. An 

input wind speed is weighted by a 

function of surface slope and 

curvature. The sign of the weight for 

any given cell is determined by 

whether that cell is on a windward or 

lee slope, as determined by a 

topographically deflected wind 

direction. 

The mean prevailing wind is weighted 

by the factor R, where R = 1.0 + 0.6*μs 

+ 0.4*μc, where μs = slope scaled to -

0.5<μ<0.5;                                                                                   

and μc = curvature scaled to  -

0.5<μ<0.5                                               

The weighting is positive for windward 

and convex slopes and negative for lee 

and concave slopes, as determined by 

the topographically deflected wind 

direction D, where                                                                   

D = -0.255Ssin(2(A-θ)),                                                            

where S = slope (%); A = Aspect (°); and 

θ = initial wind direct (°) 

(Liston and Sturm 

1998; Wallace 2006) 

Normalised 

Difference 

Vegetation 

Index (NDVI) 

NDVI calculates the relative 

proportions of red and near-infra red 

reflections as a proxy for the amount 

of live vegetation in a pixel of a 

satellite image. 

NDVI = (NIR - RED) / (NIR + RED) (Sellers 1985) 
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3.2.4. Setting the proportions 

Generally, a proportional stratified random sampling scheme assigns the number of sites per 

stratum to match the proportion of the study area covered by each stratum (Hirzel and Guisan 

2002). On Macquarie Island, however, much of the variation in vegetation types occurs in the coastal 

areas, which make up a small proportion of the island’s surface area.  The coastal slopes are 

topographically complex and subject to frequent landslips, and at the time of study, exposed to   

extensive grazing by introduced rabbits. This has produced a complex mosaic of plant assemblages 

at different successional stages.  Fortin et al. (1989) recommend that sampling effort be 

concentrated within those strata that exhibit the highest levels of variation.  In addition, we knew in 

advance that parts of the coastal slopes would be unsafe or inaccessible due to the presence of 

nesting sea birds, so there was a need to generate extra sites to compensate for access limitations. 

This corresponds with warnings by other researchers that truly random samples are often not 

possible to collect in real-world field studies (Lepš and Šmilauer 2007; Roleček et al. 2007).  

To balance these sampling concerns, we considered three criteria in determining the proportion of 

sites to be located in each stratum.  We ranked the strata according to area; standard deviation of 

the NDVI as a surrogate for variation in the density of the vegetation; and a subjective assessment of 

the likelihood of accessibility issues and variation of vegetation types within each stratum. The 

ranking for each criterion was calculated using ranked-pairs voting, a technique used in multi-criteria 

decision analysis (e.g. Feick and Hall 2002). Every possible pair of strata was subjected to pairwise 

voting for that criterion, with the higher ranked stratum receiving a score of 1 for each pairwise vote 

it won. Thus, for each criterion, a total of 28 votes were available. The three criteria resulted in 

contradictory rankings. To create a composite ranking, the scores from the pairwise voting were 

weighted and summed, with the weights set according to the perceived importance of each 

criterion. Given the observed variability in coastal vegetation and the likely difficulty of accessing 

coastal areas, the access/variability criterion was assigned a weight of 0.6. Surface area and the 
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standard deviation of NDVI within each stratum were each given weights of 0.2. The weighted 

rankings were then summed to calculate the proportion of all planned sites to be located in each 

stratum. 

3.2.5. Assigning random point locations 

A random sampling tool was used to generate 380 sites within the strata, using the proportions 

derived from the composite rankings (Beyer 2004). Since the ecological processes that drive 

vegetation patterns are subject to spatial autocorrelation (Ricotta 2007), we attempted to improve 

the statistical independence of the sites by enforcing a minimum distance between sites within a 

stratum, following a suggestion from Guisan & Zimmermann (2000). To explore the spatial 

autocorrelation of the environmental parameters used in the landform classification, we constructed 

semivariograms of each parameter. The distance at which sites were spatially autocorrelated ranged 

from 100 m for the wetness index to 2 km for elevation. To balance the need for efficient sampling 

against minimising the effects of spatial autocorrelation in the environmental gradients, a minimum 

distance of 100 m was enforced between sites within each stratum.  
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Figure 2: Semivariograms of the input variables for the fuzzy c-means classification of landscape 

strata. Spatial autocorrelation for each variable occurs at distances less than the major range. Thus, 

spatial autocorrelation occurs within 149 m for the wetness index, and 1185 m for elevation. 

  

Elevation (major range: 1185 m) Slope (major range: 618 m) 

Curvature (major range: 1135 m) Wetness Index (major range: 149 m) 

Solar Radiation (major range: 229 m) Wind speed (major range: 562 m) 

NDVI (major range: 626 m) 
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3.2.6. Field application 

Macquarie Island was visited twice during the summer months of 2008/09 and 2009/10 and 349 

sites were surveyed. Because inter-annual vegetation dynamics are relatively low for most parts of 

Macquarie Island, we combined data from the two seasons (Sluiter and Pebesma 2010). Those sites 

that were determined a priori to be in inaccessible locations were not visited (e.g. halfway down a 

200 m cliff or in an albatross breeding site). If a site was approached and found to be inaccessible, it 

was relocated by up to 30 m if a safer site with similar vegetation could be found. If not, that site 

was discarded from the sample.  

3.2.7. Comparison samples 

We compared the ability of GeoStrat to capture environmental variation against a large control 

sample and four other sampling methods – 1) an existing purposive sampling design; 2) an area-

proportional stratified random sampling;  3) an equal-stratified random sampling; and 4) 

unrestricted random sampling designs. All the randomised samples included 380 sites and were 

generated using the same sampling tool as used for GeoStrat (Beyer 2001-2011). For area-

proportional stratified random sampling, the number of points per stratum was set according to the 

proportion of the land area covered by each stratum. The total number of points in each sample was 

the same as the planned GeoStrat points. To represent the true distribution of environmental 

variation, a control sample was generated with 5000 unrestricted random points.  

To simulate the effect of testing these sampling regimes in the field, we reduced the size of each 

sample by the same proportion of sites in each stratum that were excluded from the planned 

GeoStrat due to access problems. For example, 35% of planned sites in stratum 2 (coastal flats) could 

not be visited. Thus, for all sampling regimes, 35% of the points in stratum 2 were randomly 

removed, to produce a simulated field sample.  

Purposive site locations were taken from a long-term vegetation monitoring project on Macquarie 

Island (see Bergstrom et al. 2009a). By definition, all of these sites were accessible in the field, so this 
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sample was not reduced as the others were. This sample was designed to capture representative 

samples of perceived major communities on the island and is dominated by sites in coastal areas, 

where the vegetation is extremely variable, and away from the exposed parts of the plateau that are 

dominated by the floristically-poor feldmark. 

3.2.8. Testing the performance of the sampling designs 

To test how well each of these sampling regimes captured variation in the terrain, for each point we 

extracted the values for the terrain and image variables used in the stratification: elevation, slope, 

surface curvature, solar radiation, wind speed, wetness index, and NDVI.  

Empirical cumulative distribution function plots showed the distribution of each sample for each 

continuous variable. Kolmogorov-Smirnov tests were used to test whether each sample’s 

distribution matched the distribution of the control sample. All analyses were conducted using the 

stats package in R (R Core Development Team 2010). 

As a partial test of the ability of the sampling designs to capture vegetation patterns, we extracted 

the vegetation type for each sampling point from an existing 1:25 000 scale map of vegetation 

structures (Selkirk et al. 2000). We plotted the proportion of each field sample in each vegetation 

class and in each stratum of the stratification scheme. 

3.3. Results 

3.3.1. Stratification 

Seven strata were generated by fuzzy c-means classification of the terrain variables and NDVI (Fig. 

3).  Visual examination of the stratification shows that it clearly separated coastal zones and 

mountain tops from other parts of the landscape. Stratum 1 (s1) covered 2261.7 ha of mountain 

tops and high plateau areas with generally very sparse vegetation, especially those areas exposed to 

the prevailing westerly winds.  Stratum 2 (s2) (1809.6 ha) covered the vegetated coastal flats but 
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excludes coastal rocky outcrops and some beaches. Strata 3 (s3) (2192.2 ha) and 4 (s4) (1137.9 ha) 

had patchy distributions throughout the plateau area, appearing to serve as boundary zones 

between the high exposed sites of s1 and the mid-altitude grasslands of stratum 5 (s5). S3 occurred 

around the fringes of s1, while s4 appeared to be transitional between s3 and s5.  Stratum 5 (2024.6 

ha) covered the mid-altitude short grasslands and dense herbfields, and includes the most gentle 

east coast slopes down to near sea level. The steep coastal slopes were divided between strata 6 (s6) 

(1277.4 ha) and 7 (s7) (1686.4 ha). The division between these two strata appeared to be largely 

driven by shadow effects in the QuickBird image. Stratum 6 covered most of the steep east coast 

slopes and the base of slopes on the west coast that are not facing south-west (and hence obscured 

by shadow). Stratum 7 was largely defined by the low NDVI, and it hence included the steepest and 

least vegetated slopes, shadowed areas, lakes, beaches and coastal rocks. 

Combining votes from three criteria for ranking the number of observations in each class increased 

the number of sites in coastal regions (Table 2 and Fig. 4).  Stratum 7, one of the coastal slope strata 

was ranked lowest in the subjective assessment of the likelihood of environmental change and 

access problems. This ranking was because a large part of the stratum contains very steep bare rocky 

ground, and was hence considered unlikely to change significantly. During fieldwork, however, it 

became apparent that both of the coastal slope strata were extremely difficult to access and 

contained complex vegetation.  In hindsight, s7 should have been given higher ranking. 
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Figure 3: The environmental parameters used to drive the fuzzy c-means classification of the 

landscape. The first six parameters were derived from a 5 m resolution DEM, and the NDVI was 

calculated from a 2.5 m resolution QuickBird satellite image. 
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Figure 4: Fuzzy c-means 

classification of the input terrain 

and NDVI variables produced seven 

strata. 380 sites were located 

across the island, using 

proportional stratified random 

sampling.   
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Table 2: Composite rankings of strata as determined by pairwise voting show that no single criterion 

determined the proportion of sites to be located in each stratum. 

Stratum Primary Rankings Composite 

Ranking 

Sites per 

Stratum Area NDVI Access/Variation 

1: Mountain top 1 3 6 5 44 

2: Coastal flat 4 2 3 2 65 

3: Plateau I  2 6 4 4 51 

4: Plateau II 7 5 5 7 33 

5: Mid-altitude grassland  3 7 2 3 59 

6: Coastal slope I  6 4 1 1 87 

7: Coastal slope II 5 1 7 6 41 

 

The strata produced for GeoStrat have extensive overlaps with the broad structural vegetation 

classes of Selkirk et al. (2000) (Table 3). The mountain tops (s1) were almost entirely covered in 

open-canopied short vegetation. The two plateau strata (s3 and s4) which fringe the mountain tops 

contained varying mixtures of open- and closed-canopy short vegetation. Stratum 5 was almost 

entirely covered by closed vegetation. The three coastal strata (s2, s6 and s7) all contained complex 

mixtures of vegetation structures. 

Table S1: Comparison between the strata defined through fuzzy c-means classification of spatial data 

and the dominant vegetation structures, as mapped by Selkirk et al. (2000). 

Stratum Dominant vegetation types Floristic description 

1: Mountain top open short (91%) Open feldmark  

2: Coastal flat closed (52%); closed tall (22%); 

closed short (14%) 

Complex mosaic of dense herbfields, mires 

and megaherbs 

3: Plateau I closed short (52%); open short 

(47%) 

Complex mix of dense grasslands and 

herbfields, opening out into feldmark 

4: Plateau II open short (75%); closed short 

(23%) 

Closed feldmark, tending towards short 

grasslands 

5: Mid-altitude grassland closed short (88%) Short grasslands and herbfields 

6: Coastal slope I closed short (41%); vegetation 

complex (34%); closed tall (14%) 

Complex mosaic of dense herbfields and 

megaherbs 

7: Coastal slope II vegetation complex (44%); open 

short (38%); closed short (10%) 

Mosaic of megaherbs and rocky outcrops 

with small areas of short grassland and 

herbfield 
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3.3.2. Field application 

A total of 288 out of 384 (75%) planned GeoStrat sites were visited, with a total of 26 sites being 

relocated by up to 30 m to avoid inaccessible areas. The 96 excluded sites were either physically 

inaccessible (43 sites) or could not be visited due to time constraints (53 sites). During the two field 

seasons, all 58 purposive sites from the long-term vegetation monitoring program were also visited. 

The three coastal strata were least accessible, with visitation rates between 51% and 65%, compared 

with 98% for the mountain tops (Table 4). 

Table 4:  The number of GeoStrat sites that were planned and visited for each stratum. 

Stratum Planned Visited Proportion 

Visited 

1 44 43 0.98 

2 66 43 0.65 

3 52 37 0.71 

4 33 30 0.91 

5 59 56 0.95 

6 89 58 0.65 

7 41 21 0.51 

Total 384 288 0.75 

 

3.3.3. Comparison with other sampling designs 

Using the proportions in Table 4, the down-weighting of the planned random samples to account for 

access problems in the field reduced the total sample size by 75-78.5%. The purposive sites were not 

down-weighted because the sites were all, by definition, accessible.   

The coastal vegetation on Macquarie Island is restricted in area but extremely variable, ranging from 

rocky outcrops, through mires and short grasslands to dense stands of the tussock grass Poa foliosa 

and the megaherb Stilbocarpa polaris. In contrast, the feldmark is extensive but floristically simple, 

being dominated by a mixture of the cushion plant Azorella macquariensis, bryophytes and gravel. 

The purposive sample was strongly biased towards the coastal areas in order to capture this 

variation. 
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Plotting the proportions of the samples within each stratum showed that all the randomised samples 

had similar distributions to the control sample and none performed consistently better or worse 

than the others (Fig. 5). All designs under-sampled coastal slopes II (s7), which covered the steepest 

coastal slopes with low NDVI. This stratum contained very steep and unstable scarps, which were 

difficult to access safely. To fully compensate for the large proportion of inaccessible sites in s7, the 

number of sampling sites in this stratum would need to be significantly increased. GeoStrat is the 

only randomised sampling system tried here that could be adjusted in this way. GeoStrat over-

sampled coastal slopes I (s6), but was otherwise very close to the control sample. 

The purposive sample showed the largest deviations from the control, heavily over-sampling the 

vegetationally complex coastal flats (s2) at the expense of other strata, especially the mountain tops 

(s1) and plateau II (s4). These two strata have relatively little variation in vegetation. The biggest 

differences in sample size among the designs were in the mountain tops (s1), which were over-

sampled by area-proportional and equal- stratified random sampling, and under-sampled by 

GeoStrat and the purposive samples.   
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Fig. 5: Proportion of each stratum in the total sample of visited sites, according to the sampling 

design. In the legend, apSRS = area-proportional stratified random sample, eSRS = equal-stratified 

random sample, and URS = unrestricted random sample. Among the randomised sampling methods, 

the greatest variation was in s1, the largely bare mountain tops. These are not especially ecologically 

variable, and were over-sampled by URS and apSRS. 

Plotting the proportion of sites in the vegetation classes mapped by Selkirk et al. (2000) showed 

close agreement between all the randomised samples and the control (Fig. 6). The sampling designs 

were most variable in the most common vegetation types. There was little difference among the 

sampling designs in the number of sites in rare vegetation types, such as mire and closed vegetation, 

but large variation in the number of sites in the common closed short herb and open short 

vegetation, which collectively cover almost 80% of the island. GeoStrat slightly over-sampled the tall 

closed vegetation in coastal areas, and under-sampled the open short vegetation, which represents 

the feldmark that dominates the high parts of the island. The purposive design included twice as 

many sites in closed tall vegetation and half as many sites in the open short vegetation than the 

randomised designs. 
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Fig. 6: Proportion of the sample in each vegetation type, as mapped by Selkirk et al. (2000). In the 

legend, apSRS = area-proportional stratified random sample, eSRS = equal-stratified random sample, 

and URS = unrestricted random sample. There was little difference among the randomised samples in 

terms of capturing these broad vegetation types. 

Kolmogorov-Smirnov comparisons were used to compare the empirical cumulative distribution of 

each variable for each sample with the control (Table 5). These showed that equal-stratified random 

sampling was not significantly different from the control in terms of its distribution against all 

environmental variables (Table 3). The area-proportional stratified random sample was significantly 

different from the control when plotted against surface curvature; unrestricted random sampling 

was significantly different for two variables: elevation and solar radiation; and both GeoStrat and the 

purposive samples were significantly different from the control for four variables. The D-statistics 

showed that deviations from the control distribution were very small for GeoStrat (0.085-0.128) and 

large for the purposive sample (0.266 – 0.378). 

Table 5: Kolmogorov-Smirnov tests of whether the distributions of the samples against the terrain 

and image variables were drawn from the same population as the control sample. The D statistic is 
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the distance between the empirical distribution functions of the control and experimental samples, 

and the P-value indicates significance (* denotes a significant difference from the control). 

 

Elevation NDVI Curvature Slope 

 

D P D P D P D P 

GeoStrat 0.112 0.002* 0.128 0.000* 0.086 0.037* 0.061 0.270 

apSRS 0.054 0.394 0.031 0.952 0.075 0.085* 0.051 0.470 

eSRS 0.072 0.111 0.061 0.247 0.071 0.122 0.052 0.428 

URS 0.090 0.020* 0.038 0.807 0.050 0.469 0.068 0.147 

Purposive 0.378 0.000* 0.352 0.000* 0.094 0.689 0.109 0.498 

 

 

Wind 

Speed 

Solar 

Radiation 

Wetness 

Index 

 

D P D P D P 

GeoStrat 0.045 0.635 0.085 0.040* 0.062 0.239 

apSRS 0.046 0.583 0.073 0.101 0.041 0.740 

eSRS 0.054 0.396 0.04 0.775 0.067 0.159 

URS 0.055 0.358 0.081 0.049* 0.057 0.322 

Purposive 0.279 0.000* 0.266 0.001* 0.078 0.874 

 

Empirical cumulative distribution function plots showed that all randomised designs follow similar 

distribution curves to the control sample (Fig. 7). The purposive sample is biased towards sites that 

are at low elevations, with moderate solar radiation and exposure to the prevailing winds and high 

NDVI (i.e. heavily vegetated). The GeoStrat curve lies between the purposive curve and the other 

randomised curves for elevation, solar radiation, and NDVI, indicating that GeoStrat, like purposive 

samples is deliberately biased towards the most vegetationally complex parts of the island.  

The Kolmogorov-Smirnov tests and empirical cumulative distribution plots show that all the 

randomised samples are close to the control, while the purposive sample poorly captures the 

variation in terrain, NDVI, and mapped vegetation types. GeoStrat performs slightly less well than 

the other randomised samples in capturing the variation in terrain. 

Although all the randomised sampling designs perform similarly in terms of capturing the variation in 

the environmental variables, we believe the bias of GeoStrat in the direction of the purposive 

sample demonstrates that it is functioning as a compromise between capturing environmental 



Chapter 3: GeoStrat 
 

80 
 

variation and the perceived variation in vegetation types. The flexibility in setting the proportion of 

sites in each stratum also allows researchers to increase the number of sites in areas where practical 

considerations are likely to restrict access. 

 

  

Fig. 7: Empirical 

cumulative distribution 

functions for the seven 

terrain and image 

variables used in the 

stratification, for each 

sampling design. In the 

legend, apSRS = area-

proportional stratified 

random sample, eSRS = 

equal-stratified random 

sample, and URS = 

unrestricted random 

sample. These plots show 

considerable differences 

between the distribution of 

the purposive sample 

(purple line) and the 

others, including the 

control. GeoStrat (Red line) 

shows smaller differences, 

and lies between the 

purposive line and the 

other randomised samples. 
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3.4. Discussion 

Vegetation surveys are expensive and time-consuming to conduct, and it is important to ensure that 

the resulting data provides accurate information on the distribution of plants across the terrain. All 

the randomised sampling designs tested here performed similarly in capturing the true variation in 

the terrain variables and the broad vegetation structures mapped by Selkirk et al. (2000). The 

purposive sample was strongly biased towards the coastal areas where the vegetation is complex 

and away from the extensive but vegetationally simple plateau and mountain tops. Where the 

GeoStrat sample deviated from the true distributions of the terrain variables, it acted as a 

compromise between the other randomised samples and the purposive sample.  

Landscape stratification for randomised survey design is generally employed to improve the 

sampling efficiency of randomised sampling, on the assumption that the variables used to stratify 

the sample are likely to affect the distribution of plant species. Terrain morphometric classification 

groups similar parts of the landscape in an objective and repeatable way, and is less prone to 

artefacts of stratification caused by converting continuous variables into discrete classes, then 

intersecting those classes, as occurs in GRADSECT-style stratifications.  Such stratifications are 

limited in the number of variables that can be incorporated because of the exponential increase in 

the number of strata as the numbers of variables and classes increase (Guisan and Zimmermann 

2000; Austin 2002; Chiarucci 2007). With GeoStrat, the number of continuous input variables that 

can be incorporated is limited only by data availability and the ecological judgement of the 

researcher. The number of classes produced is likewise determined by the researcher. In this study, 

we have demonstrated that GeoStrat can be implemented in remote, physically challenging 

conditions and that it comes close to capturing the full range of terrain variation whilst also 

capturing some of the vegetation patterns targeted by purposive sampling. 

Using pairwise voting and weighted composite rankings allows us to incorporate more sophisticated 

measures of the relative “interest” in each stratum than simple area-proportional sampling. In this 
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case study, we used three separate variables to assign the proportion of sampling sites to each 

stratum: area; an objective quantitative measure of vegetation variability, NDVI; and a combined 

measure of perceived ecological variability and accessibility. This methodology in GeoStrat could also 

be applied to other measures more appropriate to specific vegetation sampling projects.  

Most comparisons of the effectiveness of sampling regimes to date have either been based on 

simulated data (e.g. Hirzel & Guisan, 2002) or conducted in easily-accessible sites (e.g. 

Goedickemeier et al. 1997) and hence can be considered idealised scenarios. Here, we tested the 

effect of working in difficult environments on the planned sampling designs.  After down-weighting 

for access limitations, all the randomised sampling designs, including GeoStrat, under-sampled the 

steepest coastal slopes (s7). Only GeoStrat, however, provided a mechanism to increase the number 

of samples in this stratum.  

Fully testing the success of a vegetation sampling regime requires accurate knowledge of the true 

distributions of plant species and of the ecological variables, such as terrain or geology, which are 

under examination. Spatial datasets of terrain variables provide a good approximation of the true 

variation in these variables, which can be compared to the distribution in the sample 

(Goedickemeier et al., 1997; Franklin et al., 2001), as has been done here.  

The tests presented here investigate the ability of the sampling designs to capture environmental 

variation as an imperfect proxy for the distribution of plant species. Better testing of the sufficiency 

and efficiency of sampling designs requires accurate knowledge of the true distribution of plant 

species in geographic space, as well as knowledge of the true distribution of environmental 

variables. This is unlikely to be possible in remote areas or for large regions, but such testing may be 

feasible in small areas and for conspicuous plant species. We recommend such experiments be 

undertaken to better understand the performance of the various randomised sampling designs. 

Further, we are unaware of any previous studies comparing the performance of sampling designs in 

areas where access is limited by safety concerns or the presence of wildlife. As access limitations are 
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unlikely to be randomly distributed across a study area, we believe it was important to examine the 

effect of spatially patchy access limitations on the performance of the sampling regimes. The strong 

performance of equal-stratified random sampling is likely to be an artefact of the coincidence of the 

hardest to access sites being in the smallest strata, and commensurately strong down-weighting of 

the sample in this stratum.  On Macquarie Island, equal-stratified random sampling functioned 

similarly to GeoStrat, but in environments where the greatest access limitations occur in larger 

strata, this relationship is unlikely to hold. 

3.5. Conclusions  

This study demonstrated a method for proportionally stratifying a random sample to account for 

topographic and ecological variation, as well as expected field limitations. GeoStrat uses fuzzy c-

means classification of the landscape into homogeneous strata, and the proportion of planned sites 

in each stratum is determined by a composite ranking of three criteria: area, standard deviation in 

the NDVI, and the likelihood of ecological variation and access limitations. This method enabled the 

collection of quantitative species composition data for a large, ecologically representative sample in 

a remote environment. Down-weighting each of the samples on the basis of the access difficulties 

encountered in the field allowed a fair comparison between sampling designs in a physically 

challenging environment. 

All of the randomised samples here including GeoStrat came close to sampling the full range of 

terrain variables, with equal-stratified random sampling performing best. GeoStrat, however, allows 

researchers to use their knowledge of the study area to account for likely field difficulties, and for 

likely hotspots of biological diversity.  The flexibility in the design stage allows for flexibility in the 

field, and the use of fuzzy c-means clustering of environmental variables overcomes the limitations 

of existing landscape stratification methods for vegetation survey. 
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4.  Are plant communities discrete mappable 
entities or fluid groupings? A test case using 
sub-Antarctic tundra vegetation  

4.1. Abstract 

Question: Accurate maps for monitoring vegetation change at landscape scales require mapping 

units that can be defined robustly and repeatably. This study examines whether unsupervised 

classification of floristic data can produce stable definitions of communities suitable for change 

detection mapping at landscape scales. It further examines the effect of various choices in cluster 

analysis on the stability of the classification. 

Location: Macquarie Island, sub-Antarctic 

Methods: Researchers attempting to define communities using statistical clustering methods face 

many choices in their analysis, including sampling design, the taxa for inclusion, data transformation, 

the number of clusters and the clustering algorithm. Silhouette plots were used to measure the 

effect of all these choices on the isolation of the clusters in floristic data from sub-Antarctic 

Macquarie Island, an island with relative low species richness, no trees and simple vegetation 

structure. The overlap between best-matched pairs of clusters was used as a further test of the 

stability of the clusters to minor changes in classification method. Finally, we made qualitative 

comparisons of existing community definitions for the island. 

Results: No combination of methods resulted in well isolated clusters in the data. The best matched 

pairs of sites had a mean overlap of 25.8%, with the most stable clusters containing sites dominated 

by a single species.  

Conclusions: Macquarie Island vegetation cannot be divided into stable communities for mapping 

purposes using any of the methods examined here. While arbitrary communities could be defined, 

we consider that maps of individual species are likely to provide fewer definitional uncertainties, and 

are hence likely to provide a more robust framework for change detection mapping. 
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4.2. Introduction 

Vegetation maps are widely used in land management and conservation planning to monitor 

changes in ecosystems through time, assess impacts of management interventions or monitor the 

effects of environmental shifts such as climate change (Xie et al. 2008). Although simple in concept, 

mapping can be problematic as maps used for change detection must represent discrete, 

unambiguously defined units to ensure that successive surveys can distinguish ecological change 

from artefacts due to the mapping process (Zimmermann & Kienast 1999;  Fortin et al. 2000; Hearn 

et al. 2011).  

There are many ways to map vegetation. At regional scales, maps of plant communities are popular, 

especially among land managers, applied ecologists and remote sensing analysts (e.g. Vegetation 

Subcommittee 2002; Xie et al. 2008). However, mapping of plant communities for change detection 

is a task that depends on a very specific definition of the term “community”, i.e. a homogeneous, 

discrete and recognisable vegetation unit that recurs across the landscape (Austin 1985). More than 

a century after the concept was first proposed (see Kendeigh 1954), a wide range of methods have 

been developed for defining  plant communities and some dispute about whether they are a suitable 

entity for mapping purposes. Even where recurring assemblages of plants can be recognised by their 

most prominent species, closer inspection of most such communities reveals great internal 

heterogeneity (Whittaker 1951; Austin 2002) and mapped boundaries can often only represent best 

estimates of boundary zones in areas of uncertainty (Noy-Meir & van der Maarel 1987; Green & 

Hartley 2000). Under this view, communities form as the result of overlapping resource 

requirements and ecological tolerances of individual species, rather than as homogeneous entities.  

Many researchers now adopt an operational definition of plant community along the lines of “the 

living organisms present within a space-time unit of any magnitude” (Palmer and White 1994). There 

is general acceptance that communities are fluid entities, which raises questions about the purposes 

for which categorical maps can be useful.  
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Concerns have been raised about the scientific validity (Whittaker 1951), discreteness (Cushman et 

al. 2010), temporal stability (Guisan and Zimmermann 2000), definitional uncertainty (Franklin 

1995), and even the reality (Dobrowski et al. 2008) of discrete plant communities. There is some 

doubt about the accuracy and usefulness of categorical community maps as opposed to individual 

species maps (Nilsen 1999; Zimmermann & Kienast 1999; Faber-Langendoen et al. 2007; Cushman et 

al. 2010).  

In vegetation classification schemes and mapping projects, there is often limited testing of the 

assumptions that the communities are persistent and discrete entities, which can be reliably 

described independently of the partition method used  (e.g. Vegetation Subcommittee 2002; Hill and 

Thomson 2005; Daemane et al. 2010). Most commonly, one or two partitioning methods are used, 

with TWINSPAN often used in isolation (Coker 2000; Dirnböck et al. 2003; Verrelst et al. 2009). Some 

researchers have compared phytosociological tables and a statistical clustering method (Grabherr et 

al. 2003; Černá & Chytrý 2005) or combined ordination with one or two clustering techniques 

(Bergstrom et al. 2002; Faber-Langendoen et al. 2007; Daemane et al. 2010). 

Despite the lack of agreement over the appropriateness of the concept of crisply bounded plant 

communities for mapping, such maps are still popular. Cushman et al. (2010) suggested that the 

plant community paradigm persists largely due to a combination of historical legacy and 

management convenience.  Maps of plant communities appear able to present complex ecosystems 

as a single data layer, are relatively cheap to produce, require less data than multiple maps of 

individual species distributions, and are easy to interpret (Franklin 1995; Hearn et al. 2011). Franklin 

(1995) noted that mapping of individual species distributions presents fewer definitional 

uncertainties than community mapping, and that community mapping is often employed because 

data limitations make individual species-mapping difficult, rather than because of loyalty to the 

community concept.  Community mapping however, is only appropriate if the resulting maps are 

useful for their intended purpose. Increasingly, that purpose includes the capacity to predict the 
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distribution of resources or to accurately monitor changes in vegetation patterns (Cushman et al. 

2010; Hearn et al. 2011)  and hence requires precise definitions of mapping units.  

To investigate the challenges of defining plant communities, we examined the vegetation of sub-

Antarctic Macquarie Island.  The island’s tundra-like vegetation is relatively simple in both species 

richness and structure yet expected to change significantly in coming years due to a major pest 

(rabbits, rats and mice) eradication program (Shaw et al. 2011), changing climate conditions 

(Pendlebury and Barnes-Keoghan 2007) and recently discovered die-off in the endemic cushion plant 

(Bergstrom & Bricher unpublished data;  Department of Primary Industries 2009). Fine resolution, 

accurate maps of the vegetation on Macquarie Island would thus allow significant change to be 

defined and monitored, and the impact of management action assessed. 

To effectively monitor this change at an island-wide scale, the mapped entities must be objectively 

and repeatably defined. There have been several previous attempts to define the plant communities 

of Macquarie Island, using a range of techniques (Taylor 1955; Selkirk et al. 1990; Selkirk et al. 2000; 

Kirkpatrick and Scott 2002; Bergstrom et al. 2009a). We examine these classifications, and compare 

them for overlapping consistency. We then test the stability of plant communities on Macquarie 

Island as defined though statistical clustering of floristic data.  

As there is no clear agreement in  the literature on the best method for identifying clusters in 

floristic data, and there are a number of choices that must be made in cluster analysis (including 

sampling design, the clustering algorithm, the taxa included in the analysis, data transformations, 

and the number of clusters) we conduct multiple clustering attempts to test the effect of these 

choices on the stability of the clusters, make recommendations for future vegetation mapping 

efforts on the island and examine the significance of our findings to vegetation science more 

broadly.  
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4.3. Methods 

4.3.1. Study site 

Macquarie Island (54°30’S, 158°57’E) is located approximately equidistant between Australia, New 

Zealand and the Antarctic continent (Fig. 1). The 12,390 ha island is characterised by low-growing 

non-woody vegetation, with 44 vascular plant species and approximately 135 bryophyte species 

along with lichens, algae and fungi (Selkirk et al. 1990). A plateau of 200 m to 400 m elevation 

dominates the island, surrounded by steep escarpments and a fringe of coastal flats. The most 

exposed parts of the plateau are characterised by open feldmark, with an extremely variable mix of 

gravel, cushion plants and mosses, interspersed with small individuals of other vascular plant 

species. Less exposed parts of the plateau are characterised by short grasslands. Areas where the 

water table is close to the surface contain bryophyte- and sedge-dominated mires. The coastal 

slopes contain a complex mix of short grasslands, heavily disturbed or grazed sites and tall tussock 

grasslands and mega-herbfields (Selkirk et al. 1990).  

Macquarie Island has a long history of disturbance by introduced vertebrate species, especially cats, 

rabbits, black rats, and mice, which have severely impacted the vegetation (Copson 1984). Cats have 

been removed from the island and a pest eradication program has begun to remove the rabbits and 

rodents (Parks and Wildlife Service 2007). Fluctuations in the rabbit population have been linked to 

changes in the distributions of several coastal plant species, most notably the megaherb Stilbocarpa 

polaris, tall tussock grasses Poa foliosa and Poa cookii, and the fern Polystichum vestitum (Copson & 

Whinam 1998; Bergstrom et al. 2009).  The eradication is in an early phase, but there are already 

signs of coastal vegetation recovery (Shaw et al. 2011).  On the plateau, die-off in the endemic 

cushion plant Azorella macquariensis, first noted by us in December 2008, has since been recorded 

in all areas of the species’ range, and resulted in the species being listing as critically endangered 

under Australian legislation (Department of Primary Industries 2009). Measuring the impact of the 

eradication program and the cushion plant die-off requires, among other things, quantifying changes 
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in vegetation patterns. For this, the first step is to test whether plant communities can be defined in 

an objective and repeatable way. 

 

Of the existing community descriptions for Macquarie Island, four covered the entire island (Taylor 

1955 ; Selkirk et al. 1990; Selkirk et al. 2000;  Bergstrom et al. 2009), while Kirkpatrick and Scott’s 

classification (2002) was restricted to undisturbed tall vegetation on the coastal slopes. Taylor (1955) 

and Selkirk et al. (1990) attempted to subjectively describe the main communities on the basis of the 

dominant species and environmental variables. Selkirk et al. (2000) mapped vegetation structure by 

visually classifying the foliage density and canopy height observable in a SPOT 3 satellite image 
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Fig. 1: Macquarie Island (54°30’S, 158°57’E) is 

located in the Southern Ocean. It is small (12, 390 

ha), heavily disturbed, and has a small flora. This 

results in complex vegetation patterns that may pose 

challenges for unambiguous mapping of plant 

communities. 
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(panchromatic resolution: 10 m; multispectral resolution: 20 m). Bergstrom et al. (2009) used 

multivariate clustering to explore changes in vegetation cover at 18 sites between 2001 and 2007. 

The sites for that study were purposively chosen in 2001 to represent a range of subjectively defined 

plant communities. Kirkpatrick and Scott (2002) used TWINSPAN to divide 30 undisturbed sites on 

coastal slopes into four groups on the basis of their floristic composition.   

We qualitatively compared the published descriptions of the community descriptions for the tall 

coastal vegetation, by drawing links among described communities with at least partial overlap.  

4.3.2. GeoStrat 

To choose the sampling sites, we developed GeoStrat, a geographically-explicit proportional 

stratified random sampling design (see chapter 3 for details). Six terrain variables (elevation, slope, 

surface curvature, topographic wetness index, solar radiation and prevailing wind speed) were 

calculated from a 5 m resolution digital elevation model (DEM). A normalised difference vegetation 

index (NDVI) was calculated from a cloud-free QuickBird satellite image that was acquired on 15 

March 2005.  These seven spatial data layers were classified using fuzzy c-means clustering to 

generate a map of eight landscape strata. The proportion of random points in each stratum was 

allocated according to rankings of the surface area, standard deviation of NDVI, and likelihood of 

complex vegetation and access problems for each stratum. Accounting for accessibility in the design 

inflated the number of potential sites in the vegetationally complex coastal slopes, where access was 

limited due to safety and conservation concerns. Stratification for vegetation sampling assumes that 

the strata correspond with actual vegetation types.  

During the summers of 2008/09 and 2009/10, we visited 349 sites. From the sites chosen through 

GeoStrat, 43 sites were discarded and a further 26 planned sites were relocated by up to 30 m into 

similar vegetation due to inaccessibility. The sample was supplemented by 54 purposively located 

sites used for other ecological research projects that were deemed to be representative of perceived 

plant communities (Bergstrom et al. 2009; Bergstrom, unpub. data), and eight sites were purposively 
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located to sample very rare vegetation types (e.g. the formerly common Polystichum vestitum 

fernbrakes or Stilbocarpa polaris dominated herbfields), as recommended by Roleček et al. (2007). 

4.3.3. Field Methods 

At each site, a 10 x 10 m plot was marked out, and the location of the south-east (magnetic) corner 

of the plot was recorded using a Trimble ProXH single-frequency differential GPS receiver (horizontal 

precision mean = 0.22 m, SD = 0.3 m). The size of the field plots was chosen to match four 

multispectral pixels in QuickBird satellite imagery, so that the plots could be used to train image 

classifications. An 8.75 m2 vertical photograph was taken in each corner of the plot, covering a total 

area of 35 m2 or 1/3 of the plot. The photographs were taken from a height of approximately 2.5 m 

using a Nikon D80 digital camera with a 14 mm wide-angle lens mounted on a dipod (Fig. 2). A 

species list was recorded for each site. 

(a)  
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(b)  

Fig. 2: (a) Site layout, showing the location of the GPS logger in the south-east corner, and the 

photography equipment over the north-west quarter of the plot. A guy-line pegged to the ground or 

held by a field operator is used to stabilise the dipod. (b) A field operator photographs the south-west 

corner of a feldmark site. 

4.3.4. Photographic interpretation 

Cover values for each study plot were estimated using point intercept photo-interpretation. One 

hundred points were randomly placed over each photograph using Coral Point Count software 

(Kohler and Gill 2006), and the ground cover class beneath each point identified.  For each site, the 

results from the four photographs were summed. Points were excluded where the ground cover 

class could not be confidently identified or was obscured by research equipment (e.g. photo markers 

and tape). 

Point intercept interpretation methods frequently underestimate the species richness of a site, as 

rare or understorey species have a reduced chance of being sampled (Foster et al. 1991). To avoid 

this, we added a token 0.5% cover for all taxa that the field species list recorded as present, but that 

were not represented in the point intercept data. We tested the effect of this addition in the 

statistical analysis (as recommended in chapter 2). 

Most vascular plants were identified to species level, and non-vascular taxa were identified to 

broader levels of biological organisation (e.g. algae and fungi were treated as single taxa). Those 
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vascular plant species that could not be reliably identified to species level in photographs 

(Deschampsia spp., Acaena spp., Epilobium spp., and two species of Colobanthus, C. apetalus and C. 

affinis) were identified to genus level. Of these genera, only the two Acaena spp. have different 

ecological ranges, with Acaena minor restricted to high altitude sites, while Acaena magellanica 

occurs in all environments, including most of the range of A. minor.  We do not believe that 

identifying these genera to genus level would significantly cloud floristic classifications. 

Two non-vegetated ground cover classes were also quantified – water and bare ground/dead 

vegetation.  

4.3.5. Statistical Analysis 

Every analysis of plant community data involves a number of choices. These include which taxa to 

include, how strongly the data are transformed, which clustering algorithms to use, and the optimal 

number of clusters. We tested the effects of these choices by repeating the clustering analysis with 

different inputs. By definition, clustering algorithms find groups in data regardless of the presence of 

clear structures in the dataset. Cluster stability provides an objective criterion to test whether the 

clusters are artefacts rather than true groups (Pillar 1999). Silhouette plots were used to measure 

the isolation of the clusters in each clustering attempt (Maechler et al. 2002). 

4.3.5.1. Data subsets 

We tested the sensitivity of the classification results to the inclusion of different subsets of the data. 

First, we examined the sensitivity of the clustering to the sampling design by comparing randomly 

and purposively sampled sites. We then examined the effect of including two groups of taxa in the 

analysis: the broad taxa used for non-vascular plants (e.g. bryophytes and lichen); and very small, 

widely dispersed vascular plant species. The broad non-vascular taxa often make up a large 

proportion of the vegetation at a site, but these taxa include ecologically diverse species, and may 

thus blur the boundaries between communities. There are a number of very small vascular plant 

species on Macquarie Island, which occur as isolated individuals in a wide range of habitats, and 
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which are easily overlooked. To minimise the possibility that our results were an artefact of selection 

criteria, we conducted partitioning around medoids (PAM) clustering on multiple subsets of the data 

(Table 1) and tested the isolation of the resulting clusters (Kaufman and Rousseeuw 2005).  

Table 1: The data subsets used for the cluster analysis, including subsets of sites and of taxa. Cluster 

stability was tested for each of these subsets. 

Subset Description 

1 All sites, all taxa Data from all sites. All taxa recorded in the point intercept method. 

2 All sites, few 

interstitials 

As in subset 1, but with those taxa that were extremely rare or difficult to 

identify in photographs removed. These taxa are: Deschampsia spp., 

Puccinellia macquariensis, Isolepis aucklandica, Cardamine corymbosa, 

Cerastium fontanum, Colobanthus apetalus/affinis, Coprosma perpusilla, 

Crassula moschata, Nematoceros spp., Stellaria media, Stellaria 

parviflora, Grammitis poepiggiana and Huperzia australiana. 

3 All sites, no 

interstitials 

As in subset 2, but with additional taxa excluded.  These taxa generally 

occur as small, isolated individuals that may be overlooked in a 

photograph. Their inclusion in the analysis has the potential to add noise. 

This subset was the strictest in terms of taxon-exclusion. The additional 

excluded ground cover classes were: Callitriche antarctica, Epilobium 

spp., Montia fontana, Ranunculus crassipes and bare ground. 

4 All sites, all taxa, 

with field 

observations 

As in subset 1, but with 0.5% cover listed for all taxa recorded in the field 

species list that were not recorded in the point intercept observations. 

5 Random sites, all 

taxa, with field 

observations 

As in subset 4, but only data from randomly located sites were included. 

6 Purposive sites, all 

taxa, with field 

observations 

As in subset 4, but only data from purposively located sites were 

included. 

7 All sites, no broader 

taxa, with field 

observations 

As in subset 4, but a number of taxa were excluded. Those species that do 

not occur in more than one site in the dataset (Anthoxanthan odoratum, 

Poa cookii, Poa litorosa, Carex trifida, Galium antarcticum, Myriophyllum 

triphyllum, Rumex crispus, Stellaria parviflora, Hymenophyllum 

falklandicum, Huperzia australiana) were removed. In addition, those 

broad taxa that include ecologically diverse species (fungi, algae, lichens, 

bryophytes) were excluded to minimise the potential for the creation of 

clusters that represent biologically/ecologically diverse vegetation types.  
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4.3.5.2. Data transformations 

The strength of the data transformation in ordination and clustering analyses affects the degree to 

which common and rare species dominate the clustering. We analysed the data using the Bray-Curtis 

distance metric applied to three transformations: untransformed, square-root transformed, and 

Wisconsin transformed data. Stronger data transformations were not used, as they have been 

shown to produce poor clustering results in similar data collected on Macquarie Island (see chapter 

2 for details).  

4.3.5.3. Ordination and clustering 

Non-metric multidimensional scaling (nMDS) was used to explore the distribution of the sites after 

each transformation. Two- and three-dimensional nMDS were calculated using the metaMDS tool in 

the R package Vegan (Oksanen, 2006). 

The data were clustered using two clustering algorithms. PAM clustering is a form of fuzzy c-means 

clustering that allows the use of non-Euclidean distance metrics, including Bray-Curtis distance 

(Maechler et al. 2002). Hclust is an agglomerative hierarchical clustering algorithm, and was applied 

with an average weighted linkage method (R Core Development Team 2010) 

One measure of cluster stability is the isolation between clusters, as measured using silhouette plots 

(Maechler et al. 2002). Silhouette widths are calculated by equation [1]. The mean silhouette width 

(MSW) was used to validate single clustering results as well as to compare the results of multiple 

clustering efforts. 

  ( )  
 ( )   ( )

   { ( )  ( )}
       [1] 

Where, for i, a site belonging to cluster a, a(i) = average Bray-Curtis dissimilarity of site i to all other 

sites in cluster A and b(i) = average Bray-Curtis dissimilarity of i to all sites in the nearest 

neighbouring cluster. Fielding (2007) suggests that an MSW of 0.7 indicates strongly structured 

clusters, while a value around 0.5 suggests a weak clustering structure, and a score below 0.25 

indicates no evidence of clustering. 
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Previous classifications of the vegetation on Macquarie Island have defined between four and 35 

communities, so there was no a priori reason to choose any particular number of clusters. To guide 

this decision, we applied PAM to all combinations of data subsets and transformations. MSWs were 

used to choose an optimal number of clusters. The combinations of data subsets, transformations, 

number of clusters and clustering algorithms tested are summarised in Table 2. 

Table 2: Summary of the analysis methods tested in this study. All combinations of data subset, 

transformation and cluster numbers were assessed for stability using the mean silhouette width of 

the clusters generated using PAM. Once the cluster number had been set at eight, the choice of 

clustering algorithm was tested for all data subsets and transformations. 

Data subset Transformation No. Clusters Clustering Algorithm 

1 All sites, all taxa 

Untransformed 

2 

Partition Around 

Medoids (PAM) 

3 

2 
All sites, few 

interstitials 

4 

5 

3 
All sites, no 

interstitials 

Square Root ... 

4 

All sites, all taxa, 

with field 

observations 

Hierarchical 

Clustering 

5 

Random sites, all 

taxa, with field 

observations 

Wisconsin 

46 

6 

Purposive sites, all 

taxa, with field 

observations 

47 

48 

7 

All sites, no broader 

taxa, with field 

observations 

49 

50 
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4.3.5.4. Measures of overlap 

To further explore cluster stability, we paired up the best-matching individual clusters from each pair 

of clustering attempts. For each cluster-pair, the percentage of sites that was common to both 

clusters was calculated. This measure of site overlap among clusters was calculated by equation [2] 

and is analogous to the Jaccard coefficient for species overlap among sites. 

   
   

   
      for sites A and B.     [2] 

4.4. Results 

4.4.1. Existing community definitions 

The qualitative comparisons of the existing community descriptions by other researchers showed 

that overlaps among the various descriptions were only partial (Fig. 3) ( Taylor 1955; Selkirk et al. 

1990; Selkirk et al. 2000; Kirkpatrick & Scott 2002; Bergstrom et al. 2009). No pair of research teams 

defined a single community in the tall coastal vegetation the same way, which illustrates the 

complexity of even this vegetation on a small island, and the subjectivity involved in deciding where 

the boundaries among communities should lie. The structural classes defined for mapping purposes 

by Selkirk et al. (2000)  are not connected to the community definitions of other authors in Fig. 3, 

because each of these classes contain a complex mosaic of almost all the communities as defined by 

the other authors. 
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Fig. 3: Relationships between the definitions of plant communities described by previous authors. The 

structural classes defined by Selkirk et al. (2000) are not connected to any other communities 

because they all represent complex mosaics of almost all the communities defined by the other 

researchers. 

4.4.1.1. Clustering results 

This study examined the impact of multiple choices on the clustering of vegetation data, and no 

combination of choices resulted in stable groupings of sites. Using the MSW as the measure of 

stability, all clustering attempts indicated there was either no or very weak clustering structure in 

the data (Fielding 2007).  
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In choosing an appropriate data transformation, data subset and number of clusters, the MSW was 

low for all clustering attempts (mean = 0.18, SD = 0.05) (Fig. 4). The highest MSW of 0.32 was found 

for 18 to 21 clusters applied to untransformed data from the purposive sites only. There was thus no 

clear evidence for an optimal number of clusters, and all clustering efforts produced very low MSW.  

 

Fig. 4: Mean silhouette widths of PAM clusters of data subset 7 with varying numbers of clusters. 

Similar results were obtained with all other data subsets. A mean silhouette width below 0.25 

indicates that there is little evidence of cluster structure in the data, while a value above 0.5 is 

needed to indicate a reasonable cluster structure.  

For most subsets of the data, however, there was a small peak in MSW around eight clusters, with a 

slightly smaller peak around 14-17 clusters.  All further analyses were therefore conducted with 

eight clusters. The choice of data subset made little difference to the MSW (range 0.13-0.3, mean = 

0.21). The increase in the MSW for purposive sites (0.3) was minor relative to randomly-sampled 

sites (0.26), so there was no evidence for stable cluster structures in the dataset even when 

targeting sites to sample homogeneous areas of perceived plant communities. 

We performed all further analyses on subset seven. This subset included data from all sites visited in 

the 2008/09 or 2009/10 field seasons. It included a token 0.5% cover for all species observed in the 

field but that were missed by the point intercept photo analysis (as recommended in chapter 2) and 

excluded the broad non-vascular taxa.  This data subset theoretically should produce the best 
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opportunity for clear clusters, but it produced similar results to those obtained using other subsets 

of the data. 

4.4.1.2. Comparing clustering algorithms 

The two clustering algorithms were applied to data subjected to the three transformations 

(untransformed, square-root and Wisconsin). Due to the voluminous nature of the analysis, plots are 

presented here only for the untransformed data, which produced the strongest clustering results. 

PAM clustering resulted in more equal-sized clusters than hclust. Hclust produced two very large 

clusters and a number of very small clusters (largest cluster: 178 sites) (Fig. 5a), and an MSW of 0.3 

(Fig. 5b). The clusters produced by PAM were more equal in size (smallest cluster: 13 sites; largest 

cluster: 78 sites). The MSW for the PAM clusters was low (0.27) and five of the eight clusters 

produced by PAM on untransformed data contain sites that are closer to the medoids of their 

nearest neighbouring clusters (Fig. 5c) than to the medoid of their assigned cluster.  This suggests 

there was little or no cluster structure in the dataset (Fielding 2007). 
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Fig. 5: Clustering of untransformed data in subset 7 into eight clusters. (a) The hclust dendrogram, 

with cluster sizes ranging from 1 site to 178 sites. (b) The silhouette plot for the hclust, with an MSW 

of 0.3. (c) The silhouette plot of the PAM clustering, with an MSW of 0.27. (d) The first two 

dimensions of a 3-dimensional nMDS, showing highly overlapping convex hulls around the eight 

clusters found using PAM (Stress = 0.14). Clusters 2 and 6, the most clearly separated clusters in the 

nMDS plot contain feldmark sites, which are characterised by extensive bare ground and the cushion 

plant, Azorella macquariensis. 

 

(a) 

(b) 

(D) 

(c) 

(d) 

- - -  8 clusters 
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The clusters identified by the two clustering algorithms for the three data transformations had only 

weak overlaps (Table 3). The overlaps for best-matched pairs of clusters ranged from 0.6% to 48.6% 

with a mean overlap of 25.8%. That is, almost three-quarters of the sites that occurred in either of a 

best-matched pair of clusters did not occur in both. Thus, changes in data transformation or 

clustering algorithm had large effects on the partitioning. This suggests that any grouping masks 

great internal heterogeneity and the boundaries are very fuzzy (Pillar 1999).  

Table 3: Mean percentage (%) overlap of sites between the best pairs of clusters in all six clustering 

attempts. This demonstrates that changing either the data transformation or cluster algorithm 

resulted in a mean of at least 65% of sites changing clusters. 

Cluster Set hclust 

(wis) 

hclust 

(sqrt) 

hclust 

(untrans) 

PAM (wis) PAM 

(sqrt) 

PAM (untrans) 22.0 25.1 27.3 23.5 34.7 

PAM (sqrt) 25.8 25.7 26.1 25.9  

PAM (wis) 21.3 21.2 20.9   

hclust (untrans) 28.7 31.2    

hclust (sqrt) 27.6     

 

The few pairs of clusters with reasonable overlaps among the various clustering attempts contained 

sites with very high coverage of a single taxon. For example, cluster 7 from PAM (untransformed) 

had a relatively high overlap with a cluster from each of the other clustering attempts (mean overlap 

41.2%). Eighteen sites occurred in at least three of the six matching clusters, out of a total of 33 sites 

identified by at least one of those clusters. Those 18 sites had more tussock grass Poa foliosa than all 

other sites in the dataset. The other group of matching clusters with overlaps above 40% (PAM 

(untransformed) cluster 1 and its closest matches) mostly comprises sites with extensive mats of 

Acaena spp. In this group, 29 sites occur in at least three clusters of the six best matching clusters, 

out of a total of 42 sites identified by at least one of these clusters. These 29 sites are among the 34 

sites with the highest percentage cover of Acaena spp., and all have at least 15% cover.  Acaena spp. 

occurs in a wide range of habitats, but mostly occurs as isolated small individuals. It forms extensive 

mats in some lower altitude sites, and it is these sites that dominate the clusters in this group. This 
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suggests that the most stable clusters in each clustering attempt were dominated by a single species 

with a restricted ecological range. All other matched groups of clusters had less overlap, and their 

relationships to individual species were harder to discern.  

Plotting the results of the clustering attempts with non-metric multidimensional scaling (nMDS) 

further demonstrated the lack of clear separation among many clusters. Three-dimensional nMDS 

plots for all data transformations, subsets and clustering algorithms showed that most clusters were 

not clearly separated in ordination space, although feldmark plots with large amounts of bare 

ground, cushion plants, and bryophytes (clusters 2 and 6 in Fig. 5d) showed reasonable separation 

from the other clusters. 

4.5. Discussion 

The success of a cluster analysis lies in the stability of the clusters that are produced and the 

robustness of the clustering to the choices that are made in the analysis. While it was possible to 

generate clusters in the data collected here, the clusters were not well isolated. The small MSW for 

all number of clusters, sampling methods, included taxa, data transformations, and clustering 

algorithms showed that clustering was unstable and sensitive to any methodological changes. The 

low overlap of sites between matched pairs of clusters provides further evidence of instability, with 

few exceptions. The most stable clusters were those in which the sites with highest coverage of a 

single dominant taxon. If the only stable clusters are those dominated by a single taxon, it is likely 

that mapping individual species distributions will be more useful for monitoring changes in 

vegetation patterns than mapping communities, because the entities being mapped will be so much 

less ambiguous (see Franklin 1995). One limitation of the approach used here is that bryophytes 

were excluded from the analysis. Much of the ecological variation on Macquarie Island occurs within 

the bryophytes, which were excluded on pragmatic grounds in this study due to challenges of 

identifying bryophyte species in photo-plots. 
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A wide variety of statistical methods has been developed for defining plant communities, in addition 

to traditional phytosociological techniques such as comparison tables. We tested a  number of the 

options involved in unsupervised classification, in addition to comparing the results of previous 

attempts to define the communities on the island (Taylor 1955; Selkirk et al. 1990; Selkirk et al. 

2000; Kirkpatrick and Scott 2002; Bergstrom et al. 2009).  If the vegetation of Macquarie Island does 

form homogeneous, discrete, and recognisable units (sensu Austin 1985) then it could also be 

expected that attempts by different research teams to define those communities would reach a 

reasonable level of agreement, at least for those research teams working at similar times. As it is, no 

pair of research teams produced identical definitions of a single plant community in the tall coastal 

vegetation.  It is impossible to know the degree to which the differences among the community 

definitions are due to the variations in scope, techniques used to define the communities, and 

subjective judgements of the researchers, as opposed to genuine temporal changes in the 

vegetation patterns between the dates of the classifications. Copson (1984) noted that the 

vegetation alliances and associations described by Taylor (1955) had become increasingly difficult to 

identify in the intervening 30 years. The community definitions were created up to 44 years apart, 

and the vegetation in coastal areas has changed especially rapidly in the past decade due to the 

large increase in rabbit numbers after the removal of cats and reduction in the Myxoma control 

program (Bergstrom et al. 2009a&b; Dowding et al. 2009). The observation that the combinations of 

species are shifting through time adds weight to concerns that community mapping may not be 

most useful for tracking changes through time. 

The basic nature of plant communities has been contested since the concept was first proposed 

(Kendeigh 1954). Many ecologists now use a strictly operational definition of communities and 

hence avoid the question of whether the communities are discrete, homogeneous and bounded, but 

applied ecologists and land managers still frequently use a categorical patch model to describe 

vegetation patterns, although questions remain about its appropriateness (Palmer & White 1994). 

Cushman et al. (2010) found large discrepancies among independently produced community maps, 
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and between the maps and field observations of individual species distributions, for forest inventory 

in the USA. Similarly, Hearn et al. (2011) found low levels of repeatability in the application of 

Britain’s National Vegetation Classification scheme to a small area by experienced surveyors, though 

the poor results in their study may have been exacerbated by the application of a national scheme to 

a relatively small area.  Not all studies have been so negative (e.g. Stevens et al. 2004) and it is 

unclear what drives the variation in repeatability among studies. We therefore believe that testing 

the stability and repeatability of community definitions is an important preliminary step in 

vegetation mapping exercises. Because the question of whether plant communities can be sensibly 

defined as having discrete boundaries for mapping purposes is so contested, we believe it was 

important to test the choices made in any attempt to classify data. We are not aware of any 

vegetation classification studies that have explicitly tested the effect of so many of those choices.  

The use of a large, geographically stratified proportional random sample, supplemented with 

purposive samples for core and rare vegetation types increased our confidence that the data were 

statistically representative and captured the full range of environmental and floristic variation 

(Goedickemeier et al. 1997; Franklin et al. 2001; Lájer 2007; Roleček et al. 2007). Few researchers 

have collected real-world data using both purposive and stratified random sampling designs to test 

for the effect of sampling design on the outcome of ecological research. Goedickemeier et al. (1997) 

tested the effect of sampling design on a biodiversity assessment, with mixed results. Hirzel and 

Guisan (2002) used simulated data of a hypothetical species distribution to test the effect of 

sampling designs on distribution predictions, and again obtained mixed results. Neither of these 

studies, however, looked at plant community descriptions or tested the purposive sampling that is 

so common in phytosociological studies (Lájer 2007). One might expect the data from the 

purposively located sites to form more stable clusters than data from randomly located sites, which 

include sites located in ecotones. Clustering just the purposive sites, however, resulted in only a 

small increase in the cluster stability.  
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 Unstable partitions in the data indicate that the data has a fuzzy cluster structure at the given level 

of clustering being examined (Pillar 1999). By this measure, the vegetation of Macquarie Island is 

fuzzy at all levels of groupings, and hence any attempt to delineate boundaries in geographic space 

will involve subjective and uncertain assessments about where to place boundaries and how to 

define the communities. As Fortin et al (2000) noted, identifying the dynamics of ecotones is not 

possible if they are located subjectively by researchers.  

If the geographically-stratified random sampling design is representative of the topographic 

variation on Macquarie Island and the vegetation could be divided along discrete boundaries in 

geographic space, then we would have expected to see relatively stable groupings in attribute space. 

Instead, these results indicate that if plant communities can be said to exist on the island, it is only as 

fluid groupings that result from overlapping  resource requirements, ecological tolerances, historical 

disturbance, and interaction among species that respond to environmental gradients 

individualistically (Zimmermann and Kienast 1999; Cushman et al. 2010). Such a definition sees 

communities as fluid entities rather than stable groupings suitable for change detection maps. 

Treating fluid communities as hard classes for categorical mapping may be appropriate for 

understanding general patterns in the vegetation, so long as both the map creators and its users 

understand and accept the necessary level of generalisation (Palmer and White 1994).  

There are a number of features of the Macquarie Island flora that may complicate problems with the 

plant community paradigm. Due to its isolation, the island contains relatively few vascular plant 

species and many of these are ecological generalists. A similar situation has made it difficult for 

researchers to agree on community definitions for the arctic Svalbard archipelago, though Nilsen et 

al. (1999) were able to define mappable communities with reasonable accuracy. Macquarie Island 

has a relatively small extent and is less topographically diverse than the study areas in many such 

classification studies, which may also contribute to the lack of discontinuities in the floristic 

composition of sites. This may partially explain why classification appears to be more successful over 
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larger, more diverse areas, such as the Austrian alps (Grabherr et al. 2003). Macquarie Island is also 

a heavily disturbed environment and this disturbance has interrupted succession processes (Selkirk 

et al. 1990). The temporal instability of plant communities adds an additional level of uncertainty 

that is not addressed in the present study (see Palmer and White 1994).  

4.6. Conclusions 

Despite testing a wide range of assumptions, including sampling design, choice of taxa for inclusion 

in the analysis, data transformations and clustering algorithms we were unable to find stable 

groupings in a large floristic dataset for Macquarie Island. We tested a reasonable subset of the 

methods commonly used to partition floristic data into plant communities, and the lack of stability in 

our results corresponds with the lack of agreement among other researchers on the definitions of 

plant communities on Macquarie Island.  

Given that the aim of this study is to develop methods for change detection over time, we consider it 

important to have tested the assumption that plant communities can be delineated unambiguously 

before any vegetation mapping was conducted. This paper does not examine temporal changes, but 

the ability to clearly identify homogeneous and repeated vegetation units at a single time-step is a 

necessary first step. Other researchers have warned of the risk that real ecological changes may be 

confounded by artefacts of the mapping process (Cushman et al. 2010; Hearn et al. 2011).  

Although mapping the distributions of individual species may not capture the complexity of an 

ecosystem, this approach has the advantage of minimising the ambiguity in defining the entities to 

be mapped. The less ambiguity there is in the definition of the mapping units, the greater the chance 

that apparent change is real, rather than an artefact of the mapping process. For change detection 

on a small, heavily disturbed island with low species-richness, like Macquarie Island, single species 

mapping is likely to be more informative than community mapping. 
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5.  Mapping sub-Antarctic cushion plants: using 
random forests to combine very high 
resolution satellite imagery and terrain 
modelling 

5.1. Abstract 

Detecting changes in the distribution and density of plant species requires accurate and high-

resolution baseline maps of those species. The need for accurate and objective mapping methods 

has led to the development of many novel techniques in the fields of species distribution modelling 

and satellite image classification. Within the field of satellite image classification, there are major 

divisions between object-based and pixel-based training methods and between spectral 

classification and species distribution modelling. In this study, random forest classification was used 

to explore the effectiveness of these approaches on maps of the distribution of the critically 

endangered cushion plant Azorella macquariensis on sub-Antarctic Macquarie Island. These models 

were created using pixel- and object-based classifications using terrain variables, spectral data from 

very high resolution WorldView-2 satellite imagery, and a combination of both (hybrid). The hybrid 

classifications produced higher accuracies than either the terrain or spectral variables in isolation, 

with classification accuracies of up to 90.9%. The multiple pixel based classifications had the highest 

accuracies, and there was little difference in the performance of the object and single pixel based 

classifications, perhaps because of the apparently patchy nature of A. macquariensis distributions at 

all spatial scales. Highly accurate maps of absent, sparse and moderate Azorella cover indicate that 

these maps provide a suitable baseline for monitoring expected change in the distribution of the 

cushion plants.  

  



Chapter 5: Mapping Azorella 
 

109 
 

5.2. Introduction 

There is increasing interest in monitoring landscape-scale changes in the distributions of plants due 

to a range of impacts, including climate change, species invasions, and management actions 

(Wallentin et al. 2008; Stohlgren et al. 2010). Monitoring changes in the distribution of individual 

species or communities is dependent on the creation of accurate high-resolution maps. Such maps 

can be used to monitor responses to environmental changes at regional or landscape scales, and 

hence complement plot-level studies. The production of these maps is time-consuming and 

expensive, and extensive research has been directed at improving mapping methods (Lu & Weng 

2007; Xie et al. 2008). Traditionally, species distribution maps have been produced by manually 

drawing boundaries on the basis of field surveys or photo-interpretation. In addition to the cost, 

manual mapping involves subjective judgements, and the degree of repeatability may hence be low 

(Cherrill & Mcclean 1999; Hearn et al. 2011; but see Stevens et al. 2004 for an example of high 

repeatability). 

The field of remote sensing has produced a wide range of semi-automated image interpretation 

methods to improve the repeatability and objectivity of the resulting maps (Xie et al. 2008).  As part 

of efforts to improve accuracy, mapping technologies are expanding rapidly on a number of fronts, 

including the development of object-based image analysis techniques (Blaschke 2010); the merging 

of terrain and spectral data in image classifications (e.g. Dirnböck et al. 2003); the use of texture 

measures to provide contextual  information (e.g. Mallinis 2008; Dobrowski et al. 2008; Grossmann 

et al. 2010); and more sophisticated classification algorithms such as random forests (RF) (Breiman 

2001; Pal 2005; Cutler et al. 2007).  

There have been two key technology-driven approaches to investigating species distributions: 

species distribution modelling (SDM) and satellite image classification. SDM uses available terrain 

and other environmental data to derive maps of potential habitat (Guisan and Zimmermann 2000). 

SDMs rarely incorporate temporal disturbances, such as landslips or fires, and are hence limited to 
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defining the potential distribution of a species, rather than its actual distribution at a given point in 

time (Dobrowski et al. 2008). In contrast, satellite image classification produces thematic classes on 

the basis of spectral values (e.g. Laliberte et al. 2004; Lawrence et al. 2006; Mallinis 2008). This 

general approach includes a wide range of methods, including pixel-based and object-based image 

analyses and both supervised and unsupervised classification. Such classification may be based on 

raw spectral data (Laliberte et al. 2004),  include indices created from combinations of the available 

spectral bands (Dobrowski et al. 2008; Hüttich et al. 2011), or include texture measures calculated 

from one or more spectral bands (Grossmann et al. 2010).  These approaches have proved especially 

useful for classifying images on the basis of the vegetation structure and for identifying disturbance 

patterns, but to be less successful at identifying individual species or vegetation types (Dirnböck et 

al. 2003). To compensate for these inherent problems, some researchers have used a hybrid 

approach that incorporates both ecological and spectral data (e.g. Franklin 1995; Dirnböck et al. 

2003; Dobrowski et al. 2008). Such hybrid approaches combine the structure and disturbance 

information from the satellite imagery with the potential habitat information for individual species 

from the SDM. One of the limitations of increasing the number of variables in a classification analysis 

is that it increases the size of the sample needed to train the classification. One solution to this is to 

use a binary classifier to target the analysis on a single class of interest. By reducing the number of 

classes of interest, it requires smaller training sets than classifying multiple classes (Boyd et al. 2006). 

As with traditional SDMs and satellite image classification, there is a large number of statistical and 

remote sensing methods that can be used to generate the hybrid models. One of the major divisions 

in remotely sensed image classification techniques is between pixel-based and object-based image 

analysis. Pixel-based classification has limited ability to incorporate information from neighbouring 

pixels into the classification. When applied to very high resolution imagery, the increased variability 

of the pixels often results in speckled classification results (Dobrowski et al. 2008; Blaschke 2010). In 

contrast, Geographic Object-based image analysis (GEOBIA) starts by segmenting the image into 

areas of contiguous, spectrally similar pixels, known as objects, and the classification is then applied 
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to the objects rather than the pixels. GEOBIA is becoming increasingly popular as a method for 

managing very high resolution (VHR) satellite imagery, because the pixels are often smaller than the 

individual entities to be mapped (Blaschke 2010). However, it is not always obvious a priori which 

level of analysis would be most appropriate for a given mapping application. The richest spectral 

data and finest spatial resolution are retained when analysing data at the pixel-level. In contrast, 

GEOBIA makes the classification more efficient by generalising the spectral distinctions among 

neighbouring pixels. The price of this generalisation is the risk of incorporating pixels that genuinely 

belong in different classes into a mixed object (Wang et al. 2004). Where the pixel size is smaller 

than the entities being mapped, as often occurs with VHR imagery, there are clear advantages to an 

object-based approach, which disappear when the entities being mapped are typically smaller than 

an individual pixel (Blaschke 2010).  It is less clear which of the two approaches is likely to be most 

useful for mapping entities that vary in size from smaller than a single pixel to larger than multiple 

contiguous pixels (Addink et al. 2007). 

5.2.1. Random Forests for image classification 

Ecological datasets are often complex, unbalanced, and noisy. Collecting field samples is expensive 

and time consuming, while extracting derivatives from geographic data such as satellite images and 

digital elevation models (DEMs) is comparatively cheap and easy. Thus, generating predictive 

variables is often simpler than collecting extra field samples, and it is hence difficult to acquire 

sufficiently large field samples to conduct reliable statistical regressions of all the potential 

predictive variables. Further, when the relationships among the variables are complex and non-

linear, traditional statistical classification techniques often fail to find meaningful ecological patterns 

(De’Ath and Fabricius 2000). 

To improve the interpretation of such data, researchers have begun using tools from the field of 

machine learning, including random forests (RF) classification (Cutler et al. 2007). RF is an ensemble 

classifier that builds a forest of classification trees, using a different bootstrapped training sample 
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and randomly selected set of predictor variables for each tree. Unweighted voting is then used to 

produce an overall prediction for each site in the sample (Breiman 2001; Liaw and Wiener 2002). RF 

has been shown to perform well in comparison to decision trees and other ensemble classifiers (Pal 

2005) and is able to capture complex, non-linear interactions among noisy, non-normal predictor 

variables  (Gislason et al. 2006; Cutler et al. 2007). In addition, RF provides measures of variable 

importance that can be used for exploratory ecological interpretation (Pal 2005; Gislason et al. 2006; 

Cutler et al. 2007). RF has been used to classify vegetation with very high accuracy in a number of 

mapping applications, including mountain forest communities (Gislason et al. 2006); cropping (Pal 

2005); invasive species (Lawrence et al. 2006; Cutler et al. 2007); and predicting rare species 

distributions (Cutler et al. 2007). 

5.2.2. Contributions of this paper 

In this study, we examine the use of several of these new tools for mapping the distribution of an 

endangered cushion plant that is endemic to sub-Antarctic Macquarie Island. Azorella macquariensis 

was listed as critically endangered under Australia’s Environment Protection and Biodiversity 

Conservation Act 1999 and endangered under equivalent Tasmanian legislation, after we discovered 

widespread dieback in late 2008 (Department of Primary Industries 2009; Bergstrom and Bricher, 

unpublished data). To monitor and understand changes in the distribution of A. macquariensis, a 

first step is to produce a high-accuracy fine-scale map of its distribution at the time the dieback was 

first discovered. 

We extract a vegetation index and several texture measures from VHR WorldView-2 satellite 

imagery and derive several environmental variables from a fine-resolution digital elevation model 

(DEM).  We examine the effect of three training methods (two pixel extraction methods and object-

based analysis) on the accuracy of the image classifications. We then compare the performance of 

each of these. Finally, we test whether the best-performing classification is able to accurately predict 

sparse and moderate cover of Azorella. The primary aim of the study is to maximise the accuracy of 
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the mapping, with a secondary aim of improving the understanding of the autecology of A. 

macquariensis. Additionally, we explore whether these methods can reliably separate sparse and 

moderate cover of Azorella or improve understanding of the autecology of Azorella.  

5.3. Methods 

5.3.1. Study Site and Datasets 

We investigated the distribution of an endemic cushion plant on subantarctic Macquarie Island 

(54°30’S, 158°57’E). The 12,390 ha island is dominated by a plateau at 200 – 400 m altitude, with the 

endemic cushion plant Azorella macquariensis dominating the highest parts of the island. Azorella 

occurs as small cushions on the fringes of mid-altitude plateau grasslands, forms extensive cushions 

on east-facing higher slopes, and then becomes progressively smaller and sparser in feldmark 

(vegetation with less than 50% cover) and in the extreme polar desert zones (Fig. 1). In feldmark and 

polar desert, Azorella is usually the dominant vascular plant species, with other species occurring as 

epiphytes or between cushions. The distribution of cushions tends to be patchy at all spatial scales 

ranging from tens of centimetres to the entire plateau. There is therefore no ‘natural’ scale of 

analysis, and both image pixels and objects are likely to contain mixtures of Azorella and other 

species. Thus, the entity being mapped is a patch that contains Azorella, and the minimum size of 

that entity is uncertain and variable. 
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Fig. 1: Azorella exhibits a range of growth patterns on Macquarie Island, from sparse polar desert 

(top left) to dense herbfields (bottom right). This variability increases the challenges involved in 

modelling its distribution. 

On sub-Antarctic islands, Azorella spp. are widely considered to be keystone species because they 

provide a large proportion of the biomass in feldmark environments and create microhabitat for 

other species (Le Roux et al. 2005). The sub-Antarctic region has experienced significant climate 

change in the past 50 years (Bergstrom and Chown 1999; Pendlebury and Barnes-Keoghan 2007) and 

sub-Antarctic  Azorella species are expected to shift their distribution in response to that change, 

due to their vulnerability to dry conditions and shading from neighbouring plants (le Roux et al. 

2005) . On Macquarie Island, A. macquariensis has recently been observed to undergo extensive die-
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back, leading to it being listed as critically endangered (Department of Primary Industries 2009; 

Bergstrom and Bricher, unpublished data). The reasons for the dieback are still not conclusive 

despite three years of research.  As much dead cushion is now being blown away leaving bare peats 

exposed to the wind, the future of the species is bleak, at least in the short term.  There is a need for 

fine-scale and accurate spatial data for monitoring changes in Azorella distribution to help 

researchers understand the causes of the dieback; develop and assess the effectiveness of 

conservation efforts; and quantify the impact of climate change.   

5.3.1.1. Field data 

Macquarie Island was visited over two summers in 2008/09 and in 2009/10. During these visits 349 

sites were visited, of which 201 were in the cloud-free portion of the available satellite image (Fig. 

2). Most sites were located using a geographically stratified random sampling design we developed, 

named GeoStrat, with some additional sampling purposively located in homogeneous patches of 

perceived plant communities, as part of an ongoing study of vegetation on the island (see Bergstrom 

et al. 2009a). GeoStrat used an unsupervised fuzzy c-means classification of the island based on six 

terrain variables that were anticipated to affect microclimate (elevation, slope, solar radiation, 

surface curvature, topographic wetness index, and topographically-deflected mean wind speed) and 

a normalised difference vegetation index (NDVI) derived from WorldView-2 satellite imagery (see 

chapter 2 for details).   Of the 201 sites in the cloud-free portion of the image, 172 were positioned 

by GeoStrat and 29 were purposively located.  

At each site, a 10 x 10 m plot was laid out and an 8.75 m2 vertical photograph was taken at each 

corner of the plot (i.e. four photographs per plot).  Point-intercept analysis was used to estimate the 

percent cover of all vascular plant species, using Coral Point Count software (Kohler and Gill 2006) to 

lay 100 randomly located points over each photograph. The results were averaged for each site. 

Azorella occurred in one-third of the sites, forming 0.25 – 26.6% of the canopy at those sites. Initial 

attempts to apply regression models to the percent-cover data proved unsuccessful, as evidenced by 

a random forest multiple regression, using all input variables that explained 29.1% variance with a 
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mean square residual of 10.2, We subsequently switched focus to classifying the data into two or 

three classes. The two-class classification divided the sites into present and absent. The three-class 

classification divided the sites into absent, sparse and moderate cover, with the boundary between 

the sparse and moderate classes set at 5% cover.  

An independent validation dataset was acquired from another ongoing study of Azorella on 

Macquarie Island (Bergstrom, unpub. data). This dataset comprised 88 randomly located sites that 

contained Azorella, showing presence only. 
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Fig. 2: Field sites on 

northern Macquarie 

Island, showing the 

observed presence or 

absence of Azorella. 

Panel (a) shows the 

location of Macquarie 

Island in the Southern 

Ocean; (b) shows the 

extent of the island; and 

(c) shows the extent of 

the WorldView-2 image 

and location of the 

training samples. Those 

field plots in areas 

obscured by cloud in the 

image were excluded 

from the analysis. 
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5.3.1.2. Satellite imagery 

For northern Macquarie Island, two recent images very high resolution (VHR) satellite imagery were 

available for analysis. A cloud-free QuickBird image of the entire island with 2.4 m pixels obtained in 

March 2005 was used for the GeoStrat sampling design. A mostly cloud-free WorldView-2 image, 

with 2 m multi-spectral pixels and 8 spectral bands, was obtained in December 2009. From this 

image, we calculated an NDVI layer and a set of texture measures, which have been shown 

elsewhere to improve the accuracy of image classification (e.g. Murray et al. 2010). NDVI is a widely 

used index that captures the relative proportions of red and near infrared (NIR) reflectance in a 

satellite image,  as a proxy for the amount of live vegetation in a pixel (Sellers 1985).  Texture 

measures provide information about the spatial context of a pixel (Murray et al. 2010).  Here, we 

used grey-level co-occurrence matrix (GLCM) texture measures (Haralick et al. 1973; Franklin et al. 

2001). The GLCM was calculated for the NDVI image using an 11 x 11 cell kernel.  GLCM computes a 

matrix that compares the greyscale values of neighbouring cells in a moving window. From the 

GLCM, we calculated eight texture measures: mean, variance, homogeneity, contrast, dissimilarity, 

entropy, angular second moment and correlation (Haralick et al. 1973).  

5.3.1.3. Terrain data 

Elevation values were taken from a 5 m resolution digital elevation model (DEM) of Macquarie 

Island, with heights accurate to 5 m, derived from Airborne Synthetic Aperture RADAR data acquired 

in 2000 by the NASA PACRIM Mission 2 (Tapley et al. 2004; Brolsma 2008). From this DEM, we 

derived the following terrain variables, which we considered likely to affect the distributions of 

plants on the island: slope, aspect, topographically-deflected wind speed, solar radiation, 

topographic wetness index, surface curvature (including planar and profile curvature), ridgeness, 

valleyness and distance from the coast (see Chapter 3 for details). 

To explore the controlling environmental parameters influencing the distribution of Azorella we 

incorporated a suite of terrain variables, as proxies for direct environmental variables (van Niel et al. 

2004), into the analysis. The vegetation on Macquarie Island exhibits strong altitudinal gradients, 
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although elevation only indirectly affects plant physiology (Guisan & Zimmermann 2000; Selkirk et 

al.1990).  Azorella species in the sub-Antarctic are known to be affected by wind and precipitation 

patterns (Le Roux et al. 2005). Spatial data on precipitation were unavailable,  but some terrain 

variables are known to affect water flow patterns, namely surface curvature (including both planar 

and profile curvature). Additionally, the topographic wetness index models potential areas of water 

accumulation (for details, see chapter 2).  The prevailing wind on Macquarie Island comes from the 

west and north west, at a mean speed of 35.1 km/h (Bureau of Meterorology 2011), and we used a 

topographically-deflected wind speed model to estimate the wind speed across the island (Liston 

and Sturm 1998; Wallace 2006). Solar radiation, as the source of energy for photosynthesis, is likely 

to have a direct impact on vegetation distributions. Distance from the coast correlates with the 

distributions of several plant species on Macquarie Island, including Azorella, so we calculated the 

surface distance from the coastline. Azorella appears to be more common in higher, more exposed 

sites than in gullies, even at high elevations. To test this, we calculated two multi-scale measures of 

topographic position, namely ridgeness and valleyness, using the multi-scale landform classification 

algorithm in the LandSerf software (Wood 1996). This calculated the proportion of scales at which 

each cell occurred in a ridge or valley for neighbourhood sizes ranging from 3 x 3 to 49 x 49 cell 

neighbourhoods. For species distribution modelling at broad scales, measures of climate variability 

are often incorporated (Guisan and Zimmermann 2000). Macquarie Island is sufficiently small and 

isolated that there is only a single meteorology station, and it is hence not possible to interpolate 

climate variables across the island, although a lapse rate of around 0.8°C per 100m has been 

recorded (Tweedie and Bergstrom 2000) and this is included by way of proxy data in the measure of 

elevation.  

5.3.1.4. Random Forest Classification 

Random forest classification (RF) is increasingly used for mapping vegetation from remotely sensed 

data (e.g. Pal 2005; Gislason et al. 2006; Cutler et al. 2007; Grossmann et al. 2010), and was used in 

this study to predict the presence of Azorella on the basis of high resolution terrain and spectral 
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data.  There are only two user-determined variables to set: the number of variables in the random 

subset at each node, and the number of trees in the forest.  RF is claimed to be relatively insensitive 

to the first of these (Liaw and Wiener 2002). We used the randomForest package in R (Liaw and 

Wiener 2002) to construct 5000 trees per classification, and plotted the error rates as a function of 

the number of trees. The number of input variables for each forest varied, but for all forests, a 

random subset of three input variables was used to split the data at each node of each tree. When 

the classes in an RF classification are unbalanced, the error rates are highest in the rarest classes 

(Evans and Cushman 2009). A few techniques have been suggested to correct for this (e.g. Liaw and 

Wiener 2002; Evans and Cushman 2009; Grossmann et al. 2010) but we chose not to apply them, as 

the dataset was only moderately unbalanced. Instead, we chose to use the predictive accuracy for 

the smaller ‘present’ class as the primary measure of model performance, rather than overall 

accuracy.  

RF produces multiple outputs to aid in interpreting the results. In addition to the hard class 

predictions, it calculates the probability of membership for each class, out-of-bag (OOB) accuracy 

estimates, variable importance measures, and partial dependence plots. The OOB accuracy estimate 

is an internal accuracy measure that is reported to be unbiased and slightly more conservative than 

independent validation (Liaw and Wiener 2002; Gislason et al. 2006). It is calculated by withholding a 

random subset of 36% of the training set (the out-of-bag set) from the construction of each tree, 

then applying the out-of-bag set to that tree. For each data point, its class for the entire forest is 

calculated by counting the votes from each tree for which it was in the out-of-bag set. The OOB error 

estimate for the forest is the proportion of data points for which the voting classified them 

incorrectly (Liaw and Wiener 2002). The OOB accuracy is the inverse of the OOB error estimate. 

The variable importance measures and partial dependence plots aid in interpreting the impact of the 

input variables. To calculate the variable importance, the mean decrease in accuracy is calculated 

according to the increase in prediction error when OOB data for that variable is permuted and all 
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other variables are left unchanged (Liaw and Wiener 2002). The partial dependence plots show the 

relationships between individual predictor variables and the predicted probability of the presence of 

Azorella  (Cutler et al. 2007). 

5.3.1.5. Experimental design 

This paper examined the role of several analysis approaches in improving the accuracy of RF 

classification for mapping the distribution of Azorella. These comparisons were as follows: 

 Pixel-based versus object-based image analysis 

 Within pixel-based classification, training the classification using values from a single image 

pixel in the centre of a field plot, versus multiple contiguous pixels that intersect with the 

field plot boundaries 

 The role of terrain, spectral, and hybrid sets of input variables 

 Producing reduced classifications using a hypothesis-driven subset of the input variables 

versus using the variable importance measures to select input variables for reduced 

classifications.  

 The number of classes: a binary classification versus a three-class classification 

We first tested the reliability of RF OOB accuracy estimates and plotted the error rates against the 

size of the forests. We then built a series of forests, using all combinations of training methods 

(single pixel, multiple pixel, and object); input variables; variable reduction methods; and class 

number (Table 1).  

Table 1: The combinations of sampling approach, input variables and the number of classes for the 

classifications compared in this study. 

Sampling Approach Input Variables Number of Classes 

Single pixel Terrain Absent/Present 

Multiple pixel 
Spectral 

Absent/Sparse/Moderate Hybrid 

Object Hypothesis-driven  
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A total of 27 input variables were available for the classifications, including ten terrain variables and 

17 spectral variables (eight spectral bands, eight texture measures, and an NDVI layer). For each 

combination of training method and sets of input variables (i.e. terrain, spectral and hybrid) a forest 

was first built using all available input variables. Then the variable importance plots were used to 

indicate which variables contributed most to the classification. Trial-and-error was used to find a 

minimum set of input variables that maintained the accuracy of the full-model classification. This 

process showed that including variables with lower importance often decreased the model accuracy 

by introducing noise. In addition to the improvement of model accuracy, reduced models make 

ecological interpretation of classifications simpler (Evans and Cushman 2009). For each variable in 

the reduced models, a partial dependence plot was created to show the marginal effect of that 

variable on the class probability.  

In addition to reduced models with the inputs selected on purely statistical grounds, we created RFs 

using a subset of variables that we considered a priori to be most likely to maximise the ecological 

and spectral separation of Azorella from other vegetation. These variables were the blue, green, 

yellow, red edge and near-infrared 2 spectral bands; NDVI; the mean, homogeneity and entropy 

GLCM texture measures; and the elevation, slope, solar radiation, curvature, ridgeness, valleyness, 

and wetness index terrain variables. 

The major purpose of this study was to develop a baseline map for change detection. As the 

distribution of Azorella on Macquarie Island is expected to contract, it was therefore important to 

test whether these classifications simply identified the high elevation, bare areas of the island or 

whether they can distinguish these from areas that contain small amounts of Azorella. We therefore 

repeated the classifications using three classes – absent, sparse and moderate cover of Azorella.    

We assessed the classification accuracy using confusion matrices of the OOB accuracy estimates, a 

kappa statistic, independent validation of the present class, and visual inspection of the resulting 
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maps. As OOB accuracy tends to be lowest for the smallest class, the primary OOB measure of 

interest was the producer’s accuracy for the present and moderate cover classes. 

5.3.1.6. Testing pixel- and object-based classifications 

The most appropriate scale of analysis can be difficult to discern in advance, especially for a species 

where individuals range in diameter from a few centimetres to several metres, and which is patchy 

at multiple spatial scales. We therefore classified both pixels and small objects. Pixel-based analysis 

allows mapping at the finest resolution, but limits the amount of contextual information that can be 

incorporated (Dobrowski et al. 2008).  

We tested two pixel-based training methods. For the single pixel approach, we extracted values for 

the image pixel at the centre of the study plot at each site. For the multiple pixel approach, we 

extracted values for each image pixel that intersected with the plot boundaries at each site. The 

former approach ensured that the selected pixel was within the boundaries of the study plot, 

regardless of errors in GPS positioning or in georeferencing of the image. The latter approach 

captured the variability of spectral values within a plot, at increased risk of erroneously including 

pixels from outside the plot boundaries. This latter approach is also vulnerable to spatial 

autocorrelation, but is commonly used in remote sensing applications (Mannel et al. 2011). 

For the object-based RFs, the WorldView-2 image was divided into objects using the multi-resolution 

segmentation algorithm in eCognition Developer 8 software. This segmentation algorithm divides an 

image into homogeneous regions by grouping neighbouring pixels based on their Euclidean distance 

in multivariate attribute space. The size of the objects is determined by the scale parameter, which 

sets the threshold for homogeneity within each object. The value of the scale parameter is generally 

determined by trial and error, because there are no objective methods available to choose an 

appropriate value (Luscier et al. 2006). Here, we used the pixel values in the eight spectral bands of 

the WV-2 image to identify image objects. We set the scale parameter to 35, and the shape 

parameter to 0 so that the objects could take any shape. We considered this to be most appropriate 
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for cushion plants, which mix with mosses to form clumps ranging in shape from almost circular to 

long, thin, inter-connected terraces. At this scale, objects were observed to follow the edges of these 

terraces, and had a mean area of 208.4m2. The mean values for the terrain derivatives, spectral 

bands, NDVI, and texture measures were calculated for each object. These mean values were then 

subjected to the same RF classification procedure as the pixels.  

In addition to reduced models with the inputs selected on purely statistical grounds, we created RFs 

using a subset of variables that we considered a priori to be most likely to maximise the ecological 

and spectral separation of Azorella from other vegetation and bare ground. These variables were the 

blue, green, yellow, red edge and near-infrared 2 spectral bands; NDVI; the mean, homogeneity and 

entropy GLCM texture measures; and the elevation, slope, solar radiation, curvature, ridgeness, 

valleyness, and wetness index terrain variables. 

5.3.1.7. Accuracy Assessment 

The major accuracy assessment tool for RF is the out-of-bag (OOB) accuracy estimate, which was 

calculated for each class. OOB errors are claimed to be accurate, so long as enough random forest 

trees have been grown (Liaw and Wiener 2002). This approach allows all data to be used to train the 

models, improving the efficiency of field data collection (Lawrence et al. 2006). To test this 

assumption, we randomly divided the dataset into 50/50 training/test datasets. RF classifications 

were built on the training datasets and then applied to the test datasets, to assess the validation 

accuracy. We compared the validation accuracy with the OOB accuracy estimate for a classification 

built on the entire dataset. Additionally, Kappa statistics were calculated for each classification, using 

the epiR package, to measure the whether the agreement between predicted and observed values 

beyond the level expected from chance alone. 

Once the classification had been finalised, we applied it to all pixels/objects in the image to produce 

a predictive map. The present class was then validated against the independent set of sites that are 

known to contain Azorella.  
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5.4. Results 

5.4.1. Testing random forest classification 

RF classification is claimed to be relatively insensitive to the number of trees in the forest.  In this 

study, the error rates stabilised before the forests reached 1000 trees with values between 0.005 

and 0.2, and the highest errors in the presence class (Fig 3). 

 

Fig. 3: Error rates plotted against the number of trees for single pixel RF based on all input variables. 

Black shows the overall error rate, light grey shows the error rate for the presence class and dark 

grey shows the error rate for the absence class. 

Validation of the out-of-bag (OOB) accuracy estimates showed that where the number of 

observations was low, the OOB accuracy estimate was conservative in comparison to test validation, 

underestimating the classification accuracy by a small amount in most cases, but by 12% for the 

smallest present class in the single-pixel classification, and with the kappa statistic varying by up to 

0.084.  This discrepancy disappeared for the object and multiple-pixel approaches (Table 2). We 

therefore considered that OOB errors provide a suitable but conservative accuracy measure for 

comparing models within this study. Comparison with accuracy values from other studies, however, 

should be done cautiously. Other researchers have also  found that the OOB error underestimates 
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accuracy compared with validation (Gislason et al. 2006; Hüttich et al. 2011), but have not reported 

such a large offset in the error estimates as in the present study (Lawrence et al. 2006). In the 

present study, the disparities between the OOB and validation accuracy measures were typically 

small, so we considered it to be still useful for comparing models. Additionally, because of the 

relatively small size of the field sample for the single-pixel and object-based approaches and the 

availability of an independent dataset for the present class, we chose not to sacrifice data for an 

independent validation.  

Table 2: Confusion matrices of the accuracies of the single pixel-based (A); object-based (B); and 

multiple pixel-based (C); classifications of field sites on the basis of all input variables. The Test rows 

show the accuracy scores from validation of an RF classification built on a 50% training set. The Full 

model OOB rows show the accuracy scores for an OOB estimate of model accuracy for an RF 

classification built on the entire dataset.  

(A) 

 

Absent Present Accuracy Kappa 

Te
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Absent 64 4 94.1%  

Present 1 31 96.9%  

Accuracy 98.5% 88.6% 95% 0.888 
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Absent 129 7 94.9%  

Present 10 55 84.6%  

Accuracy 92.8% 88.7% 91.5% 0.804 

 

(B) 

 

Absent Present Accuracy Kappa 

Te
st

 

Absent 65 2 97.0%  

Present 4 28 87.5%  

Accuracy 94.2% 93.3% 93.9% 0.859 
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Absent 128 7 94.8%  

Present 8 57 87.7%  

Accuracy 94.1% 89.1% 92.5% 0.828 
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(C) 

 

Absent Present Accuracy Kappa 

Te
st

 

V
al
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at
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n

 

Absent 1718 0 100.0% 
 

Present 2 828 99.8%  

Accuracy 99.9% 100.0% 99.9% 0.998 

Fu
ll 

m
o

d
e

l 

O
O

B
 Absent 3435 1 100.0% 

 

Present 2 1658 99.9%  

Accuracy 99.9% 99.9% 99.9% 0.999 

 

Across all the classification models that we compared, both the OOB and validation accuracy 

measures showed several consistent patterns. The statistically-driven hybrid model and hypothesis-

driven subset of input variables had the highest accuracies, while classifications based on spectral 

variables alone had the lowest. The multiple pixel training method consistently had the highest 

accuracies, though its inflation of the OOB accuracy estimates due to spatial autocorrelation, caused 

by extracting data from multiple adjacent pixels in each plot limited interpretation. The object-based 

classifications consistently had the lowest accuracies. The effect of training method was the most 

important predictor of model accuracy; such that multiple pixel based classifications had equal 

validation accuracy, regardless of which subset of input variables was used (Fig. 4 and Table 3). 

The multiple hypotheses tested in this study created voluminous results. Here we present detailed 

results for the most important models, but for completeness present all classification results in 

Appendix B. 
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Fig. 4: The OOB and validation accuracy measures for all two-class classification models. OOB over-

estimated the accuracy of the multiple pixel-based models. This was most obvious for the multiple 

pixel-trained spectral classification, in which the OOB predicted 96.4% accuracy for the present class, 

while independent validation showed that the accuracy of that class was 73.9%. 

Table 3: Summary of the performance of the two-class classification models. We used four methods 

of assessing the reliability of the classifications, which need to be considered jointly. The OOB and its 

resulting kappa were unreliable for the multiple pixel-trained classifications, due to spatial 

autocorrelation. Validation data were only available for the present class, so could not assess 

whether the models over predicted the distribution of Azorella. Visual inspection acted as a final, if 

subjective, check of the models’ performance.  

Input 
Variables 

Training 
Method 

OOB 
Reliability 

OOB 
(Present) 

Kappa 
(from 
OOB) 

Validation 
(Present) 

Visual 
Inspection 

Overall 
Performance 

Hybrid 

Single Pixel High 89.2 0.862 89.8 Excellent Excellent 

Multiple Pixel Low 99.9 0.999 90.9 Excellent Best 

Object Moderate 89.2 0.851 81.8 Good Good 

Hypothesis-
driven 

Single Pixel High 86.5 0.817 92 Excellent Excellent 

Multiple Pixel Low 99.8 0.996 93.2 Excellent Best 

Object Moderate 87.7 0.839 80.7 good Good 

Terrain 

Single Pixel High 81.5 0.717 93.2 Good Good 

Multiple Pixel Low 100 0.9996 90.9 V. good V. good 

Object Moderate 76.9 0.689 95.5 Good Good 

Spectral 

Single Pixel High 75.4 0.666 79.5 Poor Poor 

Multiple Pixel Low 96.4 0.949 73.9 Poor Poor 

Object Moderate 75.4 0.666 75 Poor Poor 
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5.4.1.1. Testing the training method 

Using a combination of spectral and terrain variables, we tested the effect of the training method on 

the accuracy of the image classifications, using two measures of accuracy. Both OOB accuracy 

estimates and independent validation of the present class showed that the multiple pixel approach 

provided the highest accuracy, though it provided only a small improvement over the single pixel 

sampling method (Fig. 5). The object-based method was the least accurate by both measures.  The 

OOB accuracy estimate tended to over-estimate the accuracy of the multiple pixel training method, 

producing accuracies near 100% for every subset of input variables we examined. It appeared to be 

vulnerable to the effects of spatial autocorrelation in the sampling method. In contrast, the 

independent validation estimate was not affected by this. 

The random forest classifications based on a combination of terrain and spectral input variables 

accurately predicted the presence of Azorella with very high accuracy. Independent validation of the 

present class showed that the single pixel (89.8%) and multiple pixel (90.9%) approaches had very 

similar accuracy, with both performing better than the object-based classification (81.8%). The OOB 

accuracy estimate could not separate these three models. 

 After inspection of the variable importance plots, the same input variables were selected for both 

the single pixel- and object-based classifications: elevation, solar radiation, coast distance, NIR 1, NIR 

2, red edge, NDVI and the GLCM Mean texture measure. These variables were also selected for the 

subsets used in the terrain and spectral data classifications. The multiple pixel classification required 

most of the same variables, but replaced the two NIR spectral bands with ridgeness. 

The partial dependence plots (Fig. 6) showed that Azorella presence typically occurs at elevations 

above 200 m, with NIR 1 reflectance values below 550, NDVI values below 0.55, GLCM Mean values 

less than 50, distances from the coast greater than 600 m, the highest values for solar radiation (> 

5.6 MWh/m2), red edge reflectance below 650, and NIR 2 reflectance less than 850 (out of 2048 DN 

values). 
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On Macquarie Island, Azorella typically grows on the highest parts of the island (i.e. those areas with 

high elevation, solar radiation and distance from the coast); with low to medium reflectance in the 

NIR and red edge portions of the spectrum, and hence to be in open vegetation; and with low values 

in the NDVI and the mean values of the GLCM matrix based on the NDVI layer (Fig. 6). The slope, 

shape of the terrain, topographic position and wetness index had little effect on the classifications, 

as shown by low variable importance values, and by the fact that excluding them from reduced 

classification models did not decrease the accuracy of the classifications, and often increased the 

accuracy marginally.  The maps produced by the three classifications appeared very similar, though 

the multiple pixel training method produced a slightly more fragmented pattern of Azorella 

distribution than either of the other two hybrid classifications. In conjunction with the high 

validation accuracy, this indicates that the multiple pixel approach was better able to capture the 

variability in the dataset. 

 Relying on the variable importance measures to select the variables for inclusion in the reduced 

model showed that terrain variables were most important to the classification, with the role of 

spectral data largely being confined to locating areas with sparse vegetation. Spearman rank 

correlation coefficients showed that the spectral variables incorporated into these models were 

strongly correlated with NDVI (Table 4), indicating that the major role of spectral variables in these 

classifications was to select areas with sparse vegetation. 

Table 4: Spearman rank correlation coefficients between NDVI and other spectral variables selected 

in the hybrid classifications based on terrain, spectral and hybrid sets of input variables. Strong 

correlations between input variables need not result in the variables being excluded from the RF 

models, but they do complicate the interpretation. 

Spectral 

Variable 

Correlation 

with NDVI 

GLCM Mean 0.94 

Red Edge 0.82 

NIR 1 0.89 

NIR 2 0.87 
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Fig 5: Predicted Azorella presence on northern Macquarie Island, from single pixel, object and 

multiple pixel based classifications of the hybrid variables. The main map shows the hard classes for 

Azorella presence, with the individual prediction layers made partially transparent to demonstrate 

the overlaps in the predicted distributions. The inset maps show the probability of Azorella presence 

based on single-pixel (A); multiple pixel (B); and object-based (C) classifications. The differences 

among the three image training methods were subtle.   
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Fig. 6: Partial dependence plots for the variables selected for the reduced hybrid multiple pixel-based 

classification of Azorella presence/absence. The variables included were chosen on the basis of the 

variable importance measures. The y-axis shows a relative measure of the marginal effect on the 

probability of Azorella presence. Azorella is associated with high values for elevation, distance from 

coast, ridgeness, and solar radiation; and with low values for GLCM Mean, NDVI and red edge 

reflectance. 
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To further explore the respective roles of terrain and spectral variables in predicting the presence of 

Azorella, we produced classifications using the terrain and spectral variables in isolation.  

5.4.1.2. Terrain-based classification 

Independent validation of the terrain-based classification of the presence or absence of Azorella 

using the multiple pixel training method showed that terrain-based classification was equally 

accurate at predicting Azorella presence as the hybrid classification (90.9%).  

The OOB and independent validations for the single pixel and object-based classifications conflicted 

in their assessments of model fit. OOB indicated that the hybrid classifications were 7.7 – 12.3% 

more accurate than the terrain-based ones, while independent validation showed that the terrain-

based classifications out-performed the hybrid ones by 3.4 – 13.7%. These contradictory results are 

difficult to interpret, though comparisons of the terrain-based maps indicated that all three training 

methods produced very similar spatial distributions. We therefore present full details here for the 

multiple pixel training method, and present full results for the other models in Appendix B.  

The variable importance measures used to choose the most important variables for inclusion in a 

reduced model revealed that the classification was primarily based on elevation, distance from the 

coast, solar radiation, aspect, and ridgeness. The partial dependence plots (Fig. 7) showed that 

Azorella typically grows above 200 m elevation, more than 1000 m surface distance from the coast; 

in areas with the highest annual solar radiation (> 5 600 000 Wh/m2); and with the lowest 

topographically-deflected mean wind speed (<33 kts). The relationship between Azorella distribution 

and aspect was not clear. The relationships between Azorella presence and elevation, coast distance 

and solar radiation are very similar to those in the hybrid classifications.  

These spatial rules describe the mountain tops and highest parts of the central plateau that 

dominates Macquarie Island (Fig. 8). The highest areas have the highest solar radiation levels 

because there are no surrounding hills to provide shade from the morning or afternoon sun. 

Elevation also correlates with distance from the coastline because the island is part of an oceanic 
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ridge, with a plateau running along the spine of the island.  The slope and curvature measures were 

not included in any reduced RF classifications, indicating that they had little predictive value for 

Azorella presence.  Topographic position was included in one of the terrain-based classifications in 

the form of the ridgeness variable, but it was not consistently chosen and the valleyness measure of 

topographic position was never included in a reduced model.  

Terrain-based classification of Azorella presence is a form of SDM, and hence maps potential, rather 

than actual, Azorella distribution. It might therefore be expected to over-estimate the area of the 

present class, unless Azorella is currently occupying its entire potential habitat (Franklin and Miller 

2009). High accuracies in the OOB estimates for the absent class indicated that the terrain-based 

classifications were not badly over-predicting Azorella distribution. Inspection of the resulting maps, 

however, showed that the terrain-based classifications predicted presence in large homogeneous 

blocks, rather than the fragmented patterns seen with the other classifications in this study, and that 

are seen in the field (Fig. 8 and Appendix B).  
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Fig. 7: Partial dependence plots for the random forest classification of terrain variables for the 

presence and absence of Azorella, using a multiple-pixel based classification, with the variables 

chosen on the basis of variable importance measures. The y-axis shows a relative measure of the 

marginal effect on the probability of Azorella presence. Azorella presence is associated with high 

values for elevation, distance from the coast, ridgeness, and solar radiation; and with mixed values 

for aspect. 
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Fig. 8: Terrain-based prediction of Azorella presence, using the multiple pixel training method. Panel 

(A) shows the hard class for Azorella presence and panel (B) shows the probability of Azorella 

presence. These maps show potential, rather than actual, Azorella habitat, and hence predict solid 

areas of Azorella on the highest parts of the island. 
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5.4.1.3. Spectral-based classification  

Classification on the basis of spectral variables and the multiple pixel training method also achieved 

90.9% accuracy in the present class, when tested with independent validation. This is the same as 

the hybrid and terrain based classifications of the multiple pixel image samples. Classifications of the 

objects and single pixel image samples had much lower validation accuracy (75% and 79.5%, 

respectively). Thus, the multiple pixel approach appeared to largely compensate for the reduced 

accuracy of basing the classification on spectral data only, by capturing the variation in spectral 

response within each field site. All three spectral-based classifications produced very similar maps, 

so we will discuss the multiple pixel classification here, for consistency. See Appendix B for details of 

the single pixel and object-based classification results.  

Variable importance measures showed that almost all spectral variables were required to maintain 

the accuracy of the classification based on the full set of spectral variables.  Four of the GLCM 

texture measures were excluded (correlation, dissimilarity, entropy and homogeneity) along with 

yellow reflectance. The partial dependence plots (Fig. 9) showed that Azorella presence was 

associated with low values for GLCM variance and mean, red edge, NDVI, NIR 1 and NIR 2; high 

values for GLCM angular second moment and reflectance in the blue and red bands; and extreme 

values in the GLCM contrast texture measure and the UV and green reflectance bands. The strong 

correlations between the NDVI, mean GLCM, and the red edge and near infrared reflectance bands 

reinforce the importance of the sparseness of the vegetation in predicting Azorella presence. 

The map derived from the spectral-based classification included areas that, for ecological reasons, 

could not contain Azorella.  Most notably, it predicted the presence of Azorella on beaches and bare 

coastal rocks. This indicated that spectral data alone was unable to adequately describe the 

distribution of Azorella, despite the high validation accuracy for the present class for the multiple 

pixel training method. 
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Fig. 9: Partial dependence plots for the multiple pixel-based classification of Azorella presence and 

absence based on the spectral variables. The y-axis shows a relative measure of the marginal effect 

on the probability of Azorella presence. Azorella presence is associated with high values for GLCM 

Angular Second Momentum, blue and red reflectance; with low values for GLCM variance, GLCM 

mean, NDVI, red edge, NIR1, and NIR2 reflectance; and with mixed values for GLCM contrast, and 

green and UV reflectance. 
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Fig. 10: Spectral-based prediction of Azorella presence, using the multiple pixel training method. 

Panel (A) shows the hard class for Azorella presence and panel (B) shows the probability of Azorella 

presence. The predicted presenceclass  includes small patches of beach and rocky headlands, that are 

known to not contain Azorella. 
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5.4.1.4. Three-class hybrid classification 

The terrain and spectral classifications appeared to predict the presence of Azorella principally by 

mapping indirect variables that correlate with the presence of Azorella, rather than direct 

observations of the Azorella itself. This is inherent to SDMs like the terrain modelling presented 

here. It also occurred in the spectral-based classifications, in which it became apparent that the 

classification was principally mapping areas with sparse or absent vegetation. One of the major 

purposes for mapping Azorella cover on Macquarie Island was to provide a baseline for change 

detection, and if current trends continue, it is more likely that Azorella distribution will shrink rather 

than expand. Thus, maps of bare ground in potential Azorella habitat would be of limited use for 

change detection. 

To explore whether the RF classification could reliably separate sparse and moderate cover of 

Azorella from bare ground, we divided the sites into three classes and repeated the hybrid 

classification.  

Three class classifications resulted in very unequal class sizes. Azorella was absent from 136 of the 

field sites, the sparse class (< 5% cover) was found at another 44 sites, and the moderate class (> 5% 

cover) occurred at 21 sites. The low number of observations in the moderate cover class resulted in 

extremely low accuracy for these classes when using the single-pixel or object-based classifications 

(Fig. 11 and see Appendix B for full results).  OOB accuracy estimates for classifications based on 

multiple pixels per site remained high (>89.6% accuracy for the present class, regardless of input 

variables). 
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Fig. 11: Comparison of OOB accuracy estimates for three-class classifications of Azorella cover on 

northern Macquarie Island. All image training methods and sets of variables perform well for the 

absent class, reasonably for the sparse class,  and with the worst performance in the moderate cover 

class, which had the smallest training data set. 

As with the presence-absence classifications, the OOB accuracy assessment appeared to over-

estimate the accuracy of the classification based on a hybrid set of input variables, with only two 

pixels misclassified (Table 5).  

Table 5: Confusion matrix for the multiple pixel classification of the hybrid set of variables. The 

extremely high accuracy values are largely a function of selecting multiple adjacent pixels from each 

field plot, resulting in severe spatial autocorrelation.  

  

Predicted 

  

Absent Present Sparse Accuracy 

O
b

se
rv

ed
 Absent 3436 0 0 100.0 

Present 0 528 0 100.0 

Sparse 2 0 1130 99.8 

Accuracy 99.9 100.0 100.0 100.0 
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The independent validation dataset did not include estimates of Azorella cover that could be used to 

separate the sparse and moderate cover classes, but it could be used to identify sites that were 

falsely predicted to contain no Azorella. Using this more robust accuracy measure, 84.1% of the 

independent validation sites contained some amount of Azorella. Inspection of the maps showed 

that these sites were on the fringes of the predicted sparse cover class, in areas where the classes 

were heavily fragmented.  Inspection of the map (Fig. 12) showed that the moderate cover class was 

largely restricted to east-facing slopes and sheltered depressions on the plateau. The solid band of 

moderate Azorella cover running down the centre of the bottom third of the predictive map 

appeared to be at least partially artefactual, largely influenced by distance from coastline. Although 

there is a large amount of moderate cover Azorella in this area, field observations show that it does 

not form a solid area of the form seen in the map. The sparse cover class included both extremely 

exposed west-facing slopes and areas where the feldmark intergrades with surrounding short 

grasslands. This corresponded with field observations. 

The input variables chosen based on their high variable importance measures for the reduced hybrid 

classification were: elevation, distance from the coast, GLCM mean, topographically-deflected wind 

speed, aspect, ridgeness, wetness index, and NDVI. The partial dependence plots for the moderate 

cover class (Fig. 13) showed that this class was most likely at altitudes above 250 m, more than 1500 

m from the coast, at higher wind speeds, at NDVI values below 0.6, GLCM mean values less than 50, 

and wetness index scores below seven. The relationships with aspect and ridgeness were unclear. 

This indicates that higher Azorella cover was associated with the highest, driest, most exposed sites 

with sparse vegetation.  
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Fig. 12: Three-class Azorella distribution map, created using a combination of terrain and spectral 

variables selected according to the variable importance measures. The sparse class occurs on the 

highest and most exposed western-facing sites, and the moderate class occurs on east-facing flanks 

of the mountains, and in protected hollows, in line with current understanding of the species’ 

ecology. 
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Fig. 13: Partial dependence plots for the moderate cover class of the multiple pixel-based 

classification of Azorella cover based on a hybrid set of input variables. The moderate cover class was 

associated with high values for elevation, distance from the coast, and wind speed; with low values 

for the GLCM mean, wetness index, and NDVI; and with mixed values for aspect and ridgeness. 
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5.4.1.5. Hypothesis-driven 3-class classification 

Allowing variable importance and OOB measures to guide the choice of input variables excluded 

several variables that might a priori be expected to play a role in separating Azorella from bare 

ground. Using the hypothesis-driven subset of input variables, rather than statistically-chosen input 

variables, resulted in a three-class map with higher independent validation accuracy.  The 

hypothesis-driven three-class map correctly predicted Azorella presence in 89% of the independent 

validation sites, and again produced extremely high OOB accuracy scores (Table 6).  

Table 6: Confusion matrix for the multiple pixel classification of the hypothesis-driven set of variables. 

As with the other multiple pixel-trained classifications, spatial autocorrelation in the training pixels 

led to an inflated accuracy assessment. 

  

Predicted 

  

Absent Present Sparse Accuracy 

O
b

se
rv

e
d

 Absent 3431 0 5 99.9 

Present 0 525 3 99.4 

Sparse 3 2 1127 99.6 

Accuracy 99.9 99.6 99.3 99.7 

 

Inspection of the resulting map showed that areas of moderate Azorella coverage predicted with this 

classification were more fragmented than in the statistically chosen set of inputs, though the 

moderate class was again more likely to occur on the eastern flanks of the island’s peaks and in 

depressions on the highest parts of the island (Fig. 14). The predicted moderate cover class was 

slightly more extensive than in the statistically-driven hybrid 3-class classification (731 ha, compared 

with 692 ha). The solid band of moderate cover class that was predicted by the hybrid classification 

as much more fragmented in this hypothesis-driven classification. The predictions of this 

classification more closely correspond with field observations and inspection of landscape 

photographs.  
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Fig. 14: Three-class Azorella distribution map, created using a hypothesis-driven subset of input 

variables. The predicted moderate cover class is more fragmented and less ‘blocky’ than that 

produced by the statistically-driven hybrid classification. This resulted in a higher validation accuracy 

and more realistic appearance to the map. 



Chapter 5: Mapping Azorella 
 

146 
 

5.5. Discussion 

This study explored the effectiveness of several emerging tools in the field of vegetation mapping to 

produce high-resolution maps of the distribution of an endangered sub-Antarctic cushion plant. Of 

the three training methods tested here, extracting multiple pixels per field plot resulted in the 

highest validation accuracies.  Validation of the present class indicated that the object-based training 

method was generally the least accurate. This is probably because the image segmentation acts as a 

smoothing or averaging function, and hence captures less spectral variability. For all three training 

methods, the hybrid and hypothesis-driven classifications were most accurate, while the spectral-

only classification was least accurate. In contrast to this general pattern, the classifications based on 

multiple-pixel sampling were all equally accurate. Overall, the statistically-derived and hypothesis-

driven sets of input variables were generally most accurate and the multiple pixel training method 

independently improved the accuracy of the models. For the two-class classifications, there was no 

way to separate the performance of the statistically-driven hybrid classifications from those based 

on the hypothesis-driven subset of input variables, but the latter performed slightly better in the 

three-class classification.  

In summary, all two-class classifications were able to identify sites that contain Azorella with very 

high accuracy, regardless of the training method or the set of input variables, but the best 

performance was associated with multiple pixel training method and the hybrid sets of input 

variables that included both terrain and spectral information. Only multiple pixel training provided 

high accuracies for the three-class classification, and in this case, the best performance was found 

from the hypothesis-driven subset of variables.  

In addition to the improved classification accuracy of the hypothesis- and statistically-driven hybrid 

classifications, there are theoretical reasons to favour them. Classifications based purely on spectral 

data exclude ecological data about the potential habitat for species, while those based purely on 
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environmental (i.e. terrain, climatic or geological) data  capture potential rather than realised habitat 

(Dobrowski et al. 2008).  

Using the variable importance measures in random forest classification to reduce the variables 

incorporated in the final classification often improved the OOB accuracy estimate and aided in 

ecological interpretation of the classification models. The OOB accuracy estimate showed that the 

statistically-driven classifications performed slightly better than those based on the hypothesis-

driven subset of variables. In contrast, independent validation showed that the hypothesis-driven 

classification performed slightly better than the statistically-driven hybrid classifications.   

Other researchers have found that OOB was a conservative measure of the accuracy of random 

forest classification (Gislason et al. 2006). Here, we found disagreements between OOB and 

validation accuracies of up to 13.7%, with disagreements in both directions. We are hence cautious 

about relying on OOB as a sole measure of model performance. The independent validation is a 

more robust measure of the classifications, but here we were only able to use it to assess the 

prediction accuracy of the present class.  

One of the limitations of RF in comparison to regression-based classification methods is that it does 

not produce an equation with slope and intercept coefficients that can be used for direct ecological 

interpretation. Ecological interpretation of RF classification is, therefore, limited in comparison to 

statistical regression models (Cutler et al. 2007). For studies such as this one, where the primary task 

is classification, ecological interpretation is of secondary importance. The variable importance 

measures can be combined with visualisation tools to provide basic post-hoc ecological 

interpretation, though such interpretation must be considered hypothesis-generating rather than 

hypothesis testing. The ecology of Azorella is already quite well described (e.g. Selkirk et al. 1990), 

but the spatial rules revealed in the partial dependence plots from these classifications go some way 

to quantifying the existing descriptions of it as a species that typically grows in feldmark and 

intergrades into high-altitude short grasslands.  
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RF classification proved to be a useful tool for mapping the distribution of Azorella, despite a 

comparatively small sample size of 201 field sites; collinear input variables that made weak 

contributions to the classification; complex and non-linear interactions between the input variables; 

and noisy, non-normally distributed data. The accuracies of the classifications in this study are on a 

par with those found in other image classification mapping applications using a range of input data 

(e.g. Gislason et al. 2006; Cutler et al. 2007; Evans and Cushman 2009). Mapping projects have 

differing goals, extents, spatial and spectral resolutions, and accuracy measures, so comparisons 

with other studies should be done cautiously (Dobrowski et al. 2008).  

This study highlighted some major challenges in mapping vegetation in high-latitude areas. Spatial 

data on environmental variables that are likely to affect plant habitat, like soil composition, are often 

missing. On Macquarie Island, the presence or absence of peat is likely to be a significant predictor 

of the distribution of Azorella, but such data were not available. Furthermore, field data were 

gathered from 349 sites over two summers, of which just 201 sites were within the cloud-free area 

of the available WorldView-2 image.  In attempting to collect contemporaneous field data and 

satellite imagery, a gamble must be made that the imagery will cover the same area as the field 

data. In the sub-Antarctic, cloud cover often interferes with image acquisition, increasing the risk 

that field sites will be obscured. In this study, the exclusion of 42% of field sites left us with 

insufficient data to divide into training and test datasets. The independent validation data from 

another vegetation study provided some remedy for this, but this approach is not ideal because it 

could not be divided into absent, sparse and moderate classes to match the training data. 

This study is part of a small but growing body of work using semi-automated image interpretation to 

monitor vegetation in the sub-Antarctic. Other projects have focussed on plant communities rather 

than single species (Lucieer 2008; Murray et al. 2010). Mostly, remotely sensed mapping of high 

latitude vegetation has mapped broad vegetation types or vegetation indices to capture general 

vegetation patterns (Stow et al. 2004; Fretwell et al. 2011). The methods presented here 
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demonstrate that semi-automated classification of satellite imagery can be used to map individual 

species in sub-Antarctic tundra.   

5.6. Conclusions 

Despite the limitations on the available environmental data and the reduced number of field sites 

that could be used to train the classifications, they provided highly accurate maps of Azorella 

distribution, in either two or three classes. There are three characteristics of Azorella that may make 

it better suited to mapping from satellite imagery than other species: Azorella has a clearly defined 

ecological range on the island; it is located in sparsely vegetated areas, which have a distinct spectral 

response; and it is often the dominant species in a structurally simple vegetation type.  Further, this 

study has demonstrated that the OOB measure in the randomForests package is inappropriate for 

assessing the accuracy of multiple pixel-trained image classifications, and alternative cross-validation 

measures should be used. 

This study has demonstrated that a critically endangered plant species can be reliably mapped using 

random forest classification to combine very high resolution satellite imagery and terrain modelling. 

It has shown that the multiple pixel training method and hypothesis-driven subsets of input variables 

resulted in the most accurate maps. These maps provide a reliable baseline for monitoring expected 

changes in the distribution of Azorella on Macquarie Island. Accurate monitoring of these changes 

may in turn help improve understanding of the causes of the die-off. 
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6.  Mapping multiple plant species 

6.1. Introduction 

Chapter 5 introduced and tested a suite of techniques to map a single plant species on Macquarie 

Island, by classifying very high resolution spectral and terrain data.  This resulted in highly accurate 

maps, especially when the random forest (RF) classifier was trained on multiple pixels per field plot 

and a hypothesis-driven subset of the available input variables. Identifying the distribution of a 

single species is computationally simpler than multi-class classification (Boyd et al. 2006) and was 

hence appropriate for testing analysis methods, but the ability of these tools to accurately 

distinguish multiple classes was not tested. This chapter presents preliminary results for testing 

whether these methods could be applied to a multi-class classification of the vegetation on 

Macquarie Island.  

Earlier in this thesis, it was established that stable communities, suitable for change detection 

mapping, could not be defined (see chapter 4), so the classification in this chapter is based on the 

distributions of individual species. Mapping individual species rather than exclusive vegetation 

classes requires the capacity to produce overlapping classes to capture the intergraded distributions 

of those species. RF classification is suitable for this task because it produces measures of the 

probability of membership for each class (Liaw and Wiener 2002). In contrast with the maximum 

likelihood classification used to determine which hard class should apply at a given location, the 

presence or absence of the overlapping classes can be optimised by choosing a likelihood threshold 

that maximises the accuracy of that class. 
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6.2. Methods 

6.2.1. Datasets 

Two WorldView-2 satellite images covering parts of Macquarie Island were available. An image 

covering the northern half of the island was acquired on December 26 2009, and was used for the 

analysis in chapter 5.  A second image, acquired on January 9 2011, covered the southern half of the 

island and was almost entirely cloud-free. Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) atmospheric correction (Cooley et al. 2002), using the sub-arctic summer 

atmospheric model and maritime aerosol model, was applied to both images before they were 

mosaicked to a single image for analysis using ENVI 4.7 software. The cloud-free portion of the 

mosaicked image covered 91.2% of the island. The cloud-obscured area and a narrow strip between 

the two images were masked out of the analysis. The spectral derivatives introduced in chapter 5, 

normalised difference vegetation index (NDVI) and grey level co-occurrence matrix (GLCM) texture 

measures, were calculated for the mosaicked image and the 5 m resolution terrain data used in 

earlier chapters were also incorporated into this analysis. The visible portion of the mosaicked image 

coincided with 312 of the 349 field sites visited during the summers of 2008/09 and 2009/10 (see 

Chapter 3 for details of the field data collection), and an assumption was made for this exercise that 

no substantial change in vegetation occurred between the two seasons.  

6.2.2. Training the classifier 

The ground cover classes chosen for the classification were those that formed large proportions of 

canopy at many sites. These classes were Agrostis magellanica, Luzula crinita, bryophytes, Azorella 

macquariensis, Acaena spp., Pleurophyllum hookeri, tall vegetation (comprising Poa foliosa and 

Stilbocarpa polaris), bare ground, and water. The last two classes were sampled by manually 

selecting points on the image that contained no vegetation, and generating 10 x 10 m squares 

around those points, using Geospatial Modelling Environment software (Beyer 2009-12). The bare 

ground was divided into dark, medium and light-coloured ground. The two large-structured species, 
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P. foliosa and S. polaris, were combined into a single tall class because they are structurally and 

ecologically similar and there were too few S. polaris sites to adequately train a separate class.  

Stilbocarpa polaris cover has been heavily grazed by rabbits in recent years, such that few sites 

retain dense canopies.  

To train the classifiers, we selected sites with a high percentage of a single cover class of interest, 

avoiding sites with more than 25% cover of more than one of the classes, to exclude mixed pixels.  

The training set was made up of 71 field plots and 42 digitised bare and water plots, leaving 241 field 

plots for use as validation sites.  

For each site, the layer values for all pixels that intersected the field plot were extracted using the 

multiple pixel training method presented in chapter 5. RF classification was applied to the 

hypothesis-driven subset of variables used for mapping Azorella in chapter 5: i.e. the blue, green, 

yellow, red edge and near-infrared 2 spectral bands; NDVI; the mean, homogeneity and entropy 

GLCM texture measures; and the elevation, slope, solar radiation, curvature, ridgeness, valleyness, 

and wetness index terrain variables. For the RF, the number of trees was set at 2000, after 

exploratory analysis showed that classification errors stabilised at 0.002 at approximately 1000 

trees.  

The default output of RF classification is a series of hard classes that do not overlap, with each 

observation assigned to the cover class with the highest probability. The values for the probability of 

membership for each class can be interrogated to find an optimal probability-threshold that will 

produce the maximum accuracy for each class, regardless of overlaps with other classes. We 

adapted the approach taken by Grossmann et al. (2010) to adjust the cut-off boundaries for the 

presence of each class. Here, the probability of class membership was plotted against the presence 

or absence of that species of interest for all validation sites, to find a probability-threshold that 

maximised the separation between true presences and absences.   
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6.2.3. Testing the classification accuracy 

Once the forest had been trained, the RF was applied to the mosaicked image.  Several accuracy 

measures were used to test the accuracy of the classification. First, a confusion matrix was used to 

explore the relationships between species presences in the validation plots and the hard classes.   In 

addition to dominating the canopy at some sites, many plant species on Macquarie Island grow as 

isolated individuals in most environments across the island, so they were deemed to be present in 

the validation sites when there was more than 10% cover. The exception to this was Azorella, which 

has a typically sparse growth habit. For this class, it was deemed to be present at a site whenever it 

occurred in a site. We calculated both the producer’s accuracy, which assesses the sensitivity of the 

classification, or errors of omission; and the user’s accuracy, which assesses the specificity of the 

classification, or errors of inclusion (Foody 2010). 

As many of the species under examination grow in mixed stands and ecotones, there was likely to be 

high levels of uncertainty in the classification. This was quantified using standardised entropy after 

the approach of Fisher et al. (2006). 

    
 ∑  (  )     [ (  )] 

   

    (
 
 
)

 

Where E is the entropy of a pixel, and ranges between 0 and 1; n is the number of classes; and P(Cn) 

is the probability of membership to class n. Low entropy indicates an unambiguous classification, 

while high values indicate confusion and high classification uncertainty.  

To further examine the relationship between the probability of class membership and species cover 

in the validation plots, Spearman rank correlation coefficients were calculated.  
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6.3. Results and Discussion 

6.3.1. Hard Classes 

Multi-class random forest classification produced variable accuracies.  For the spectrally and 

ecologically distinct Pleurophyllum hookeri, both the producer’s and user’s accuracies were very 

high. In contrast, the Agrostis, Azorella, bryophytes, Luzula and bare ground classes had very high 

user’s accuracies, but low producer’s accuracies. The hard classes identify the core areas for these 

species, but exclude the ecotones where they intermingle. The tall vegetation class had a very high 

producer’s accuracy (91.3%) but strongly over-estimated the true distribution of these two plant 

species (Fig. 1 and Table 1). Overall, the multi-class classification presented here had much lower 

accuracies than the binary classifications presented in chapter 5, though it varied by class. 
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Fig. 1: Map of hard classes of dominant species’ distributions on Macquarie Island.

Macquarie Island
Dominant Species
(Hard Classes)

Acaena monostand

Dense Azorella dominated feldmark

Agrostis grassland

Bare ground

with bryophytes in background

Bryophyte dominated grassland

 Luzula  dominated grassland

 Pleurophyllum  dominated grassland Poa foliosa  tussock grassland

Stilbocarpa  monostand

Tall Vegetation

0 1 2 3 4
km

No Data

Unclassified

Acaena

Agrostis

Azorella

Bryophytes

Dark Bare

Lake

Light Bare

Luzula

Mid Bare

Pleurophyllum

Tall Vegetation



Chapter 6: Mapping multiple species 
 

156 
 

 

  



Chapter 6: Mapping multiple species 
 

157 
 

6.3.1.1. Acaena 

The Acaena class (958.1 ha) was concentrated at the base of the coastal escarpments, in low – mid 

altitude bowls, and along coastal streams. These are areas where water and nutrients tend to 

accumulate, and below petrel nesting localities. Of the validation sites classed as Acaena, 58% 

contained >10% Acaena cover. A similar proportion of sites contained significant amounts of 

Agrostis and bryophytes. This class contained 50% of the validation sites that had significant cover of 

Acaena. There was no correlation (ρ = 0.03) between observed Acaena cover and the probability of a 

plot being assigned to this class (Table 2). Thus, this class simultaneously under- and over-estimated 

the true distribution of Acaena spp. The probability map showed that this class had intermediate 

probability in all vegetated areas, with the highest values on coastal slopes and flats (Fig. 2). 

6.3.1.2. Agrostis 

The Agrostis class (2421.3 ha) mostly covered patches of the coastal slopes and the lower parts of 

the plateau. Of the validation sites in this class, 88% had significant Agrostis cover, and a similar 

proportion of the sites contained significant bryophyte cover. This class contained 38% of all 

validation sites with significant Agrostis cover.  There was some correlation (ρ = 0.47) between 

Agrostis cover in a site and membership of this class. Agrostis grows on all parts of the island and in 

a wide range of growth habits; ranging from isolated individuals on beaches and in feldmark to 

dense monostands in mid-altitude grasslands.  This class appeared to capture the dense Agrostis 

grasslands, but excluded the ecotones where Agrostis intermingled with other species. Probability 

mapping revealed moderate to high probability for this class in all vegetated areas, though the 

probability was somewhat lower on coastal flats. 

6.3.1.3. Azorella 

The Azorella class (2408.4 ha) in this map (Fig. 1) was somewhat different to that produced in 

chapter 5. The classification was trained on the dense Azorella beds that were more common in the 

southern half of the island. The Azorella class covered extensive areas of the southern half of the 

plateau and was more fragmented in the north. This general pattern corresponded with field 

observations of the distribution of Azorella. Of the validation sites in this class, 89.1% contained 
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some Azorella. More than 80% of these sites also contained significant cover of bryophytes and bare 

ground. The Azorella class contained 35.5% of all validation sites with some Azorella cover, and there 

was a correlation between the percent-cover of Azorella in a site and the probability of class 

membership (ρ = 0.63).  This class, trained as it was on dense Azorella, underestimated the 

distribution of Azorella, especially in sparse feldmark. There were few false positives, suggesting that 

the class was quite specific to Azorella. The probability of Azorella presence was moderate in the 

sparsely vegetated high altitude parts of the island. 

6.3.1.4. Bare Classes 

The bare ground classes (light: 1009.7 ha; mid: 560.4 ha; and dark: 283.8 ha) were fragmented 

across the beaches and highest peaks. All the validation sites in the three bare classes contained 

significant bare ground.  These classes, however, represented just 9.2% of the validation sites with 

significant bare ground. There was reasonable correlation between the cover of bare ground in a site 

and the probability of membership to one of these classes (ρ = 0.43 – 0.69). These classes thus 

severely underestimated the total area of bare ground on the island. Probability maps showed that 

the three bare ground classes largely targeted separate parts of the non-vegetated areas. The light 

bare ground was focussed on the highest peaks; the dark bare ground mostly occurred on steep 

slopes and in penguin colonies; and the mid-shaded bare ground targeted intermediate areas across 

the plateau. 

6.3.1.5. Bryophytes 

The bryophyte class (2494.9 ha) typically occurred between the Azorella and bare ground classes on 

the higher parts of the plateau. Of the validation sites assigned to this class, 95.2% contained 

significant bryophyte cover. This class, however, underestimated the total distribution of 

bryophytes, as it contained 24.9% of the validation sites with significant bryophyte cover. Extensive 

bryophyte cover occurred in all the vegetated classes, but the percent-cover of bryophytes in a site 

was correlated with the probability of membership (ρ = 0.44) to the bryophyte class. Thus, the 

bryophyte class represented areas with dense bryophyte cover, but excluded mixed vegetation. 
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Inspection of the probability maps showed a moderate to high probability of bryophyte presence for 

all parts of the plateau, apart from lakes and the highest peaks, where vegetation was extremely 

sparse. Modelling the distribution of bryophytes as a single taxon on Macquarie Island is 

complicated by the wide variation in ecological and spectral characteristics of the 180 bryophyte 

species included in this taxon. It is unlikely to be practical to collect species-level data for bryophytes 

from a sufficiently large sample to train and test an image classification.  

6.3.1.6. Luzula 

Luzula grows in a wide range of habitats on Macquarie Island, often mixed with Agrostis. The Luzula 

class (126.3 ha) occurred as small patches (mean 160.8 m2) on the coastal slopes and low altitude 

grasslands, often surrounded by the Agrostis class. Of the validation sites classed as Luzula, 88.9% 

contained significant Luzula cover, indicating that the class was specific to areas with high Luzula 

cover. In contrast, this class represented just 12.7% of the validation sites that contain significant 

amounts of Luzula. There was a weak correlation between Luzula cover and the probability of class 

membership (ρ= 0.29). Probability of presence was moderate to high for all but the steepest coastal 

slopes. Together, these results indicated that the hard class severely underestimated the extent of 

Luzula, particularly the areas where it intermingles with other species.  

6.3.1.7. Pleurophyllum 

The Pleurophyllum class (145.1 ha) was concentrated near the base of the escarpments on the west 

coast and on the lower parts of the northern plateau. These areas typically occurred between the 

Agrostis and Acaena classes. Of the validation sites assigned to this class, 88.9% contained significant 

amounts of Pleurophyllum.  This class very closely matched the true distribution of Pleurophyllum, 

representing 88.9% of all sites with significant Pleurophyllum cover. Thus, this class was both 

sensitive and specific to the distribution of the species, despite there being no correlation between 

the percent-cover and probability of class membership (ρ = 0.09). It is likely the lack of correlation 

was due to the small number of plots with moderate cover of Pleurophyllum in the validation 
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dataset, and this should be investigated further. The probability maps showed moderate probability 

of Pleurophyllum cover on coastal slopes, especially on the western side of the island. 

6.3.1.8. Tall Vegetation 

The tall class (1171 ha) covered almost all of the coastal flats between a thin strip of beach and the 

Acaena class that characterised the base of the escarpments. Of the validation sites in this class, 

44.7% were observed to contain significant cover of at least one of the two tall species (P. foliosa 

and S. polaris). Significant cover of bare ground (68%) was more common and bryophytes (44.7%) 

were as likely as the tall species to grow in these sites. This class contained 91.3% of all validation 

sites with significant cover of tall vegetation.  Thus, this class significantly over-estimated the 

distribution of the two tall plant species. Most obviously, the featherbed mire that characterises the 

north-west coastal shelf was classified as containing tall vegetation. This area had a high probability 

of belonging to this class. In reality, however, this area contained small patches of tall vegetation 

interspersed with bryophyte- and sedge-dominated mires.  The mires contain an extremely complex 

mixture of species and were not well captured by a classifier trained on plots with high cover of a 

single species. Training a separate mire class would likely improve the accuracy of the tall vegetation 

class. 

6.3.1.9. Standardised Entropy 

The classifications in highly vegetated areas were uncertain (Fig. 2). The standardised entropy layer 

showed low uncertainty for the lake and bare ground classes. The Azorella class also had low 

entropy, especially in the highest parts of the southern plateau where the class formed large 

homogeneous patches. Uncertainty was highest on the steep coastal slopes and the low-altitude 

grasslands, where multiple species grow in complex mixtures. Thus, it was likely that the areas of 

high entropy in the classification reflected real world complexity, rather than poor classification 

results. 
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Table 1: Confusion matrix of the hard map classes and validation sites. The user’s accuracy (sensitivity) was high for all classes except the tall vegetation. The 1 

producer’s accuracy (specificity) was much lower for most classes. 2 

 

 

Map Class 

 

 

Acaena Agrostis Azorella Light 
Bare 

Mid 
Bare 

Dark 
Bare 

Lake Bryo-
phyte 

Luzula Pleuro-
phyllum 

Tall Total Accuracy 
(%) 

V
al

id
at
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Acaena > 10% 22 13 3 0 0 1 0 4 0 0 1 44 50.0 

Agrostis > 10% 23 73 19 1 0 2 0 45 9 4 16 192 38.0 

Azorella > 0% 2 12 41 4 6 1 1 46 1 0 2 116 35.3 

Bare Ground > 10% 13 32 38 6 6 5 1 44 4 3 32 184 9.2 

Bryophytes > 10% 22 73 39 3 1 4 1 59 7 7 21 237 24.9 

Luzula > 10% 8 26 1 0 0 1 0 8 8 1 10 63 12.7 

Pleurophyllum > 10% 0 1 0 0 0 0 0 0 0 8 0 9 88.9 

Tall Vegetation > 10% 1 1 0 0 0 0 0 0 0 0 21 23 91.3 

Total 38 83 46 6 6 5 1 62 9 9 47     

Accuracy (%) 57.9 88.0 89.1 100.0 100.0 100.0 NA 95.2 88.9 88.9 44.7     

 3 
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Fig. 2: Probabilities for membership of each land cover class and the standardised entropy measure 

of the confusion of the classification. Acaena, Agrostis, and Pleurophyllum are associated with the 

coastal slopes. The tall vegetation has the highest probabilities on the coastal flats and with mire 

areas. The bare ground and Azorella classes are most commonly associated with the highest parts of 

the island, though the dark bare ground class is most associated with the steep shadow-affected 

slopes on the west coast. 
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Table 2: Spearman rank correlations between the probability of class membership and the percent-

cover of individual cover class at the validation field sites. The relationships between percent cover 

and the probability of class membership were typically weak to moderate. 

  
Percent Cover in Field Sites 

  
Acaena Agrostis Azorella Bare Bryo Luzula Pleuro Tall 

P
ro

b
ab

ili
ty

 o
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ss
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em
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Acaena 0.03 0.31 -0.61 -0.28 -0.15 0.19 -0.17 0.26 

Agrostis 0.05 0.47 -0.50 -0.30 0.03 0.31 -0.02 0.18 

Azorella 0.04 -0.21 0.63 0.40 -0.06 -0.24 0.05 -0.26 

Dark Bare -0.27 -0.41 0.04 0.56 -0.38 -0.37 0.08 0.03 

Light Bare -0.10 -0.08 -0.01 0.43 -0.26 -0.05 0.02 -0.02 

Mid Bare -0.24 -0.42 0.32 0.69 -0.32 -0.38 0.20 -0.12 

Bryophytes 0.14 0.13 0.30 0.12 0.44 0.09 0.25 -0.34 

Luzula 0.04 0.43 -0.51 -0.21 0.00 0.29 -0.10 0.20 

Pleuro -0.09 0.31 -0.48 -0.21 0.00 0.17 0.09 0.18 

Tall -0.24 -0.17 -0.45 0.11 -0.45 -0.12 -0.13 0.34 

 

6.3.2. Overlapping Classes 

The use of hard classes implies that the classes are mutually exclusive. In the case of mapping 

individual species , this assumption is often unreasonable. For such cases, it is possible to produce 

overlapping classes by adjusting the probability threshold for class membership. Plotting the 

probability of class membership against the presence or absence of the species of interest in the 

validation plots showed that this was feasible for all vegetated classes (Fig. 3). This is similar to the 

approach of Grossmann et al. (2010) to tuning cut-offs for the presence of small classes.   

For the  tall vegetation and Pleurophyllum classes, the box plots showed clear breaks in the 

probability between validation plots where the species was present or absent, using a 10% cover 

threshold for determining presence for all species other than Azorella (Fig. 3).  This break was 

reflected in the high accuracies for the hard class map. The box plots indicated that reducing the 

probability threshold for the Acaena, Agrostis, Azorella,  bryophyte and Luzula classes would likely 

increase the accuracy of these classes, though the division is not so clear-cut as for the first two 

classes.  These are the classes which under-estimated the distribution of widely-dispersed species. 
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The box plots indicated that changing the threshold for classification would have little effect on the 

accuracy of the bare ground classes.  

Using these plots as guidance, the probability thresholds for each class were adjusted to produce 

overlapping classes. For the species whose distribution had been underestimated by the hard 

classes, the overlapping classes had lower producer’s accuracy, but higher user’s accuracy (Table 3). 

For the tall class, which had over-estimated the distribution of P. foliosa and S. polaris, the 

overlapping classes improved the producer’s accuracy without changing the user’s accuracy. The 

map showed that the overlapping class excluded several small patches on the plateau that the hard 

class map had falsely predicted would contain tall vegetation (Fig. 4). 

 For the Pleurophyllum class, the  overlapping classes performed similarly to the hard classes. The 

11.1% increase in producer’s accuracy meant little, as it represented a single plot due to the small 

number of validation plots that contained Pleurophyllum. Maps of the overlapping class for 

Pleurophyllum showed a slight reduction in predicted area, compared with the hard class. 

Table 3: Comparison of the accuracies of the hard-class and overlapping-class classifications. In 

general, the overlapping classesincreased the user’s accuracy at the expense of the producer’s 

accuracy. This was most obvious in species with broad distributions. For the classes with restricted 

ranges (Pleurophyllum and tall vegetation), overlapping classes increased  the producer’s accuracy, 

with no effect on the the user’s accuracy. 

 Hard Classes Overlapping Classes Change 

Class Producer's 
Accuracy 

User's 
Accuracy 

Producer's 
Accuracy 

User's 
Accuracy 

Producer's 
Accuracy 

User's 
Accuracy 

Acaena 57.9 50 33 72.7 -24.9 22.7 

Agrostis 88 38.0 82.1 59.9 -5.9 21.9 

Azorella 89.1 35.3 77 66.4 -12.1 31.1 

Bryophytes 95.2 24.9 88.9 43.9 -6.3 19.0 

Luzula 88.9 12.7 34.8 36.5 -54.1 23.8 

Pleurophyllum 88.9 88.9 100 88.9 11.1 0.0 

Tall 44.7 91.3 58.3 91.3 13.6 0.0 
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Fig. 3: Box plots showing the probability of class membership as a function of whether the species is 

present within validation plots. For all species apart from Azorella, “present” means >= 10% cover. 

For Azorella, “present” means > 0% cover. There were clear differences in the class membership 

probabilities between the sites at which Pleurophyllum and tall vegetation, the most restricted 

species, were present and those where they were absent. For the more widespread species, there 

were no obvious differences in the class membership probabilities that could be used to easily choose 

appropriate thresholds for membership of the overlapping classes. 

The overlapping classes increased the user’s accuracy for the widely dispersed species by increasing 

the sensitivity of the classes to areas with lower percent-cover of the target species (Fig. 4). This was 

done at the expense of decreasing the producer’s accuracy. Thus, these maps incorporated areas of 

mixed vegetation into the distribution of these species, becoming more sensitive to the presence of 

the species and simultaneously less specific.  This pattern was especially notable for Luzula, as this 
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species most commonly occurs in mixed stands. The overlap class covered 2795.3 ha, while the hard 

class covered just 126.3 ha. For the hard classes that performed well or over-estimated the species 

distributions, the overlapping classes improved the producer’s accuracy without reducing the user’s 

accuracy. Thus, these classes became more specific to the target species. 

 

Fig. 4: Comparison of hard and overlapping classes for all vegetated classes. For the widespread 

species, the overlapping classes covered much larger areas than the hard classes. This relationship 

was reversed for those classes with restricted ranges. 
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6.4. Conclusions 

Multi-class mapping of species distributions on Macquarie Island identified core habitat areas for all 

classes except tall vegetation, which could not be distinguished from the featherbed mire. For 

almost all species, both the hard- and overlapping-classes had much lower accuracies than the 

binary classifier for Azorella presented in Chapter 5. On the basis of the validation, we consider that 

only the Pleurophyllum class was sufficiently accurate to be used as a baseline for change detection 

mapping.   

There are two key potential reasons for this lower accuracy, and they indicate directions for future 

research opportunities. Firstly, the classifier presented here was trained on sites with the highest 

cover of the target species. As many of the target species grow in a range of environments across 

the island with varying densities, the classifier was not tuned for areas with lower densities. Thus, 

the effect of training samples on the resulting classification needs to be examined. Secondly, binary 

classifiers have been shown to be more computationally efficient (Boyd et al. 2006) in other 

environments, and a future  study could apply a series of binary classifiers to test whether these 

improve the accuracy for the target classes.  

The species for which this classifier was most accurate, Pleurophyllum hookeri, occurs as isolated 

individuals in a wide range of environments, but only forms a major component of the canopy in a 

restricted area. The species for which this classifier performed most poorly were those that grow 

mostly in intermixed stands across a wide range of environments.  

Although the accuracies for most classes in this study were not high enough to provide reliable 

baselines for change detection, the maps presented here improve on the existing maps of 

Macquarie Island vegetation. To date, these maps have showed structural vegetation classes 

digitised from 30 m resolution satellite imagery (Selkirk et al. 2000) or changing patterns in NDVI 

(Bergstrom et al. 2009a).  
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This study has shown that multi-class RF classification of species distribution on Macquarie Island is 

appropriate for depicting the general distribution of core habitat of those species, although the 

accuracy is too low for the classes to act as baseline maps for change detection. Further 

experimentation with training samples and binary classifiers may further improve the accuracy of 

these maps. 
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7.  Conclusions 
In this study, approaches to mapping the vegetation of sub-Antarctic Macquarie Island have been 

proposed and tested for their robustness and accuracy. All stages of the mapping process have been 

examined, from sampling design and field techniques to the methods used for classifying satellite 

imagery.  On this isolated and heavily disturbed island, there is particular need for efficiency in field 

sampling methods and for a sampling design that is adaptable to the practicalities of fieldwork in a 

harsh environment. Recent rapid vegetation change on the island in response to management 

activities and environmental change have prompted interest in accurately monitoring those changes 

at a range of spatial scales. This study provides tools for accurate monitoring at the plot and 

landscape scales. 

7.1. Field Methods 

Objective 1: to establish a reliable and efficient field sampling method to capture species abundance 

data for vascular plants at the required scale of image analysis 

Chapter 2 demonstrated that photo-sampling can act as a valid replacement for quadrat-based field 

sampling of field species cover in several vegetation types on Macquarie Island. Two methods of 

photo-interpretation were compared to field quadrat cover estimates for their capacity to identify 

the species present in a plot and to estimate the canopy cover of each species. Pseudoturnover rates 

among the three observation methods (24.6% ± 10.5) were similar to those found in double-

sampling tests of field quadrat methods elsewhere. There were no significant differences among the 

total cover estimates for each morphological group. Finally, multivariate clustering showed that the 

three observations from each plot were more similar to each other than those from other plots, so 

long as the clustering incorporated species-abundance rather than simply presence-absence data.  

There are two key features of sub-Antarctic tundra vegetation that likely contributed to the success 

of this approach. Firstly, the vegetation has a simple vertical structure, with rarely more than two 
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overlapping strata. Secondly, the island also has a depauperate flora, which aids in the identification 

of specimens in the photographs. This approach has been used in marine studies, but has rarely 

been tested in terrestrial environments. This chapter therefore demonstrates the practicality and 

reliability of photo-sampling for low-statured terrestrial vegetation. Photo-sampling takes less time 

in the field, but the need for increased data processing means that for most terrestrial 

environments, field quadrat methods are likely more time efficient overall. For environments where 

field access is limited, such as sub-Antarctic islands, the increase in field efficiency may compensate 

for the additional data processing requirement. The point-intercept method of photo interpretation 

was the most time-efficient, but must be supported by the collection of a species list in the field, as 

rare species are frequently missed by point-intercept sampling. Photo-sampling has an additional 

benefit in providing a permanent digital record that can be used for plot-scale change detection  

Objective 2: to establish a geographically stratified random sampling method to capture the full 

variation of both the terrain and vegetation patterns 

Chapter 3 described GeoStrat, a geographically stratified proportional random sampling design that 

uses existing knowledge on terrain and vegetation to locate field sites. The first task in developing 

GeoStrat was to classify the island into homogeneous strata on the basis of terrain and vegetation 

data. Fuzzy c-means classification was applied to six terrain variables believed likely to affect 

vegetation patterns (elevation, slope, surface curvature, wetness index, solar radiation and 

topographically deflected wind speed) and a normalised difference vegetation index (NDVI) to find 

seven strata. The proportion of potential sites per strata was set by ranking the strata according to 

three criteria: area, variance of the NDVI within each stratum, and a subjective assessment of the 

ecological variability and likelihood of access difficulty. These three rankings were combined by 

weighted pairwise voting to calculate the proportions of sites for each stratum. A random sampling 

tool was used to assign the locations for 380 potential field sites. Over two summers, 288 of these 

sites were visited, along with 58 sites that were purposively located in perceived core areas of plant 
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communities. The excluded sites were either inaccessible (43 sites) or were excluded due to time 

constraints (53 sites). Most commonly, sites were excluded from the three coastal strata.  

To test the performance of the GeoStrat and purposive samples, three other randomised samples 

were generated: an equal stratified random sample, an area-proportional stratified random sample, 

and an unstratified random sample. Each of these was resampled to simulate the access limitations 

experienced in the field.  As a control, a very large unrestricted random sample was generated.  

All the randomised sampling designs came close to matching the control in representing the 

variation in the terrain variables used to drive the stratification, while the purposive sample was 

strongly biased towards the vegetationally complex coastal regions. Compared with the other 

randomised sampling designs, GeoStrat exhibited slight bias towards the coastal regions, with small 

but significant deviations from the true distributions of elevation, solar radiation, NDVI, and surface 

curvature. GeoStrat therefore acts as a compromise between true random sampling and purposive 

sampling. In this study, GeoStrat performance was similar to equal stratification, but this was likely 

an artefact of the most ecologically complex and difficult to access areas occurring in the smallest 

strata. GeoStrat provides a tool to ensure that the sampling can be targeted at the most complex 

vegetation, regardless of stratum size. Finally, this chapter demonstrated that (almost) random 

sampling could be practically implemented despite the predicted challenges in accessing large parts 

of this remote and steep island.  

7.2. Mapping methods 

Objective 3: to establish a robust statistical method for identifying plant communities that can 

then be translated into mapping units 

Classifications of Macquarie Island’s vegetation into plant communities have produced little 

agreement among researchers on the definitions of those communities in the past. In a bid to 

remedy this issue, unsupervised classification was used to identify stable groupings in floristic data 
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collected using GeoStrat and purposive sampling. The following choices involved in numerical 

classification were tested: the sampling design, taxa included in the analysis, strength of the data 

transformation, number of clusters, and clustering algorithm. The stability of the resulting clusters 

was primarily tested by measuring their mean silhouette width. Regardless of the sampling design, 

included taxa, transformation, number of clusters, or algorithm, no clustering attempt produced a 

mean silhouette width greater than 0.32. A mean silhouette width less than 0.3 indicates that there 

is no evidence of cluster structure. It was therefore concluded that stable groupings, suitable for 

defining robust mapping units, could not be found in the floristic data.  

Objective 4: to produce accurate high resolution maps of the plant communities, and to use 

these maps to describe the spatial ecology of the vegetation of Macquarie Island. These maps 

should be sufficiently accurate to be used as baselines for future change detection. 

The instability of the groupings in the floristic data meant there was little basis for defining robust, 

stable mapping units using the community paradigm. It was therefore considered more appropriate 

to map individual species or small groups of spectrally and ecologically similar species. Chapter 5 

examined the effectiveness of a suite of mapping tools to accurately map the distribution of the 

endangered endemic cushion plant, Azorella macquariensis. This species was chosen because it has 

an ecologically distinct distribution, an independent validation dataset exists, and because accurate 

mapping is vital to understand the recently discovered widespread die-off.   

There are two main approaches to vegetation mapping: species distribution modelling on the basis 

of environmental parameters and satellite image interpretation. Recently, attention has focussed on 

hybrid approaches that use both spectral and environmental data to predict the distribution of a 

species or community.  Other developments in the field of image interpretation, most notably 

object-based image analysis and sophisticated machine learning tools, such as random forest 

classification, have also increased accuracies in vegetation mapping.   
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Chapter 5 examined the effectiveness of spectral data from very high resolution WorldView-2 

satellite imagery, high resolution terrain data, pixel-based and object-based image analysis, and 

random forest classifications to maximise the accuracy of Azorella distribution maps. The accuracy of 

the maps was assessed using independent validation, the out-of-bag (OOB) accuracy estimate in the 

random forest tool, and visual inspection of the maps.  

Of the three image training methods examined here, extracting multiple pixels per field site most 

improved the validation accuracy scores and the realistic appearance of the maps, but it made the 

OOB accuracy estimates unreliable. The highest accuracy was found when using a hybrid of terrain 

and spectral variables to train the classifier. Accuracies for the binary classification 

(presence/absence) were very high regardless of whether the input variables for the reduced 

classifications were chosen statistically (90.9%) or on the basis of a priori judgements of utility of 

those variables (93.2%). Using a three-class classification (absent, sparse, and moderate cover 

classes), the highest validation accuracy was found using a hypothesis-driven subset of input 

variables (89%). 

Chapter 6 explored the application of the image interpretation techniques developed in chapter 5 to 

a multi-class classification of several dominant plant species on Macquarie Island. Two main 

approaches were examined: a hard classification that produced a map of the most likely species 

present in each pixel, and a map of overlapping classes to maximise the accuracy of the distribution 

of individual species. The preliminary results presented here showed that both approaches produced 

generally lower accuracies than the binary classification of Azorella presented in the last chapter.  An 

exception to this general pattern was Pleurophyllum hookeri, a megaherb with a limited ecological 

range, with map accuracies of 88.9%. The overlapping classification improved user’s accuracies for 

widespread species by including areas with mixed vegetation into the distribution of each target 

species. These maps also excluded some areas that the hard classification spuriously allocated to 

that class. Of the target species mapped in this chapter, only the Pleurophyllum class was considered 

to be sufficiently accurate to be used as a baseline for change detection, though these maps were 
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still an improvement on existing vegetation mapping for Macquarie Island. This chapter ended by 

describing directions for future research to improve map accuracies.  

In summary, this study has developed and assessed methods for the major stages of mapping 

vegetation on sub-Antarctic Macquarie Island. These methods exploit recent developments in 

satellite image interpretation, terrain analysis, and classification methods. I demonstrated that those 

tools can produce extremely high accuracies in mapping Macquarie Island plants and is hence 

suitable for producing baseline maps for change detection. Furthermore I have produced the first 

distribution map for the critically endangered endemic species, Azorella macquariensis on 

Macquarie Island.   
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Appendix: Supplementary materials for 
Chapter 5 
This appendix presents the results of binary classifications of Azorella distribution excluded from 

chapter 5.  

Kappa statistics of the OOB errors for the binary classifications were affected by the spatial 

autocorrelation in the multiple pixel training method. The single pixel and object-based 

classifications performed similarly for all subsets of input variables. (Fig. S1)  

The statistical hybrid and hypothesis-driven subsets of variables had the highest accuracies, 

performing significantly better than terrain or spectral classifications in isolation, with the spectral 

classification having the lowest accuracies for all training methods. 

 

Fig. S1: Kappa statistics of the OOB accuracy measures for the two-class classifications of the 

presence and absence of Azorella. For the multiple pixel-trained classifications, the kappa statistic is 

much higher than the other training methods for all sets of inputs. OOB, as implemented in the 

randomForest package, is unsuitable for use with multiple pixel training methods common in remote 

sensing applications. 
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Terrain-based classifications 

This section presents the confusion matrices (Table S1) and comparative maps (Fig. S2) for the 

terrain-based classifications for the three image training methods. All three terrain-based 

classifications produced solid patches of potential Azorella habitat across most of the plateau. The 

differences among the three maps are marginal, with the multiple pixel-trained map covering a 

slightly greater extent than the other maps. 

Table S1: Confusion matrices for OOB accuracy estimates for single pixel-based (A); object-based (B); 

and multiple pixel-based (C) RF classifications based on terrain data only. These accuracy estimates 

are for classifications based on the smallest possible subset of input variables without reducing the 

accuracy of the classification. 

(A) 

 

Predicted  

 

 Absent Present Accuracy Kappa 

O
b

se
rv

e
d

 

Absent 123 13 90.4%  

Present 12 53 81.5%  

Accuracy 91.1% 80.3% 87.6% 0.717 

 

(B) 

 

Predicted  

 

 Absent Present Accuracy Kappa 

O
b

se
rv

e
d

 

Absent 123 12 91.1%  

Present 15 50 76.9%  

Accuracy 89.1% 80.6% 86.5% 0.689 

 

(C) 

 

Predicted  

  

Absent Present Accuracy Kappa 

O
b

se
rv

e
d

 

Absent 3435 1 100.0%  

Present 0 1660 100.0%  

Accuracy 100.0% 99.9% 100.0% 0.9996 
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Fig. S2: Predicted Azorella presence on northern Macquarie Island on the basis of terrain variables. 

The main panel shows the hard classes for Azorella presence based on single pixel, multiple pixel and 

object-based classifications. The predicted cover layers are partially transparent to demonstrate the 

overlaps in the predictions. Each of the image training methods resulted in solid blocks of predicted 

Azorella habitat on the plateau and mountain peaks, which is likely to show potential, rather than 

actual, Azorella distribution. The inset maps show the probability of Azorella presence based on 

single pixel (A); object (B); and multiple pixel -based (C) random forest classification of terrain. 
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Spectral-based classifications 

This section presents the confusion matrices (Table S2) and comparative maps (Fig. S3) for the 

spectral-based classifications for the three image training methods. The three spectral-based 

classifications produced much more fragmented patches of potential Azorella habitat than the 

terrain-based classifications. These maps all spuriously included beaches and rocky coastal 

headlands in the area of predicted Azorella presence. The differences among the three maps are 

subtle, with the multiple pixel-trained map covering a slightly greater extent than the other maps. 

Table S2: Confusion matrices for the pixel-based (A) and object-based (B) classifications of the field 

sites on the basis of spectral data only. 

(A) 

 

Predicted  

 

 Absence Presence Percentage Kappa 

O
b

se
rv

e
d

 Absence 123 13 90.4%  

Presence 16 49 75.4%  

Percentage 88.5% 79.0% 85.6% 0.666 

 

(B) 

 

Predicted  

 

 Absence Presence Percentage Kappa 

O
b

se
rv

e
d

 Absence 122 13 90.4%  

Presence 16 49 75.4%  

Percentage 88.4% 79.0% 85.5% 0.666 

 

(C) 

 

Predicted  

  

Absent Present Accuracy Kappa 

O
b

se
rv

e
d

 

Absent 3381 55 98.4%  

Present 60 1600 96.4%  

Accuracy 98.3% 96.7% 97.7% 0.949 
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Fig. S3: Predicted Azorella presence on northern Macquarie Island on the basis of spectral variables. 

The main panel shows the hard classes for Azorella presence based on single pixel, multiple pixel and 

object-based classifications. The predicted layers are partly transparent to demonstrate the overlaps 

among the predictions. The differences among the three image training methods are subtle. The 

spectral classifications resulted in much more fragmented predicted distributions than the terrain-

based classifications, and predicted Azorella in coastal areas where the species is known not grow. 

The inset maps show the probability of Azorella presence based on single pixel (A); multiple pixel (B); 

and object-based (C) random forest classification of terrain. 
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Hybrid Classifications 

This section presents the confusion matrices (Table S3) and comparative maps (Fig. S4) for the 

hybrid classifications for the three image training methods, with the input variables chosen on 

statistical grounds. The three hybrid classifications all performed as compromises between the 

hybrid and spectral classifications. The areas of predicted presence were all confined to the higher 

parts of the plateau, and were more fragmented than those in the terrain-based classification. The 

differences among the classifications based on the three training methods were subtle, with the 

single pixel-trained classification having the most restricted distribution, and the multiple pixel and 

object-based classifications extending around the fringes of the single pixel-trained presence class. 

Table S3: Confusion matrices for the single pixel-based (A); object-based (B); and multiple pixel-based 

(C) RF classifications, using both terrain derivatives and spectral data.  

(A) 

 

Predicted  

 

 Absent Present Accuracy Kappa 

 O
b

se
rv

e
d

 

Absent 131 5 96.3%  

Present 7 58 89.2%  

Accuracy 94.9% 92.1% 94.0% 0.862 

 

(B) 

 

Predicted  

 

 Absent Present Accuracy Kappa 

O
b

se
rv

e
d

 

Absent 129 6 95.6%  

Present 7 58 89.2%  

Accuracy 94.9% 90.6% 93.5% 0.851 

 

  

Predicted  

(C) 

 

Absent Present Accuracy Kappa 

O
b

se
rv

e
d

 

Absent 3435 1 100.0  

Present 1 1659 99.9  

Accuracy 100.0 99.9 100.0 0.999 
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Fig S4: Predicted Azorella presence on northern Macquarie Island, from single pixel, object and 

multiple pixel based classifications of the hybrid variables. The predicted distribution layers are partly 

transparent, to demonstrate the overlaps among the predicted distributions. The hybrid RF 

classifications were more fragmented than the terrain-based classifications and lacked the spurious 

predictions of Azorella presence in coastal areas that the spectral-based classifications produced.The 

main map shows the hard classes for Azorella presence while the inset maps show the probability of 

Azorella presence based on single-pixel (A); multiple pixel (B); and object (C) trained classifications.  
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Hypothesis-driven Classifications 

This section presents the confusion matrices (Table S4), partial dependence plots (Fig. S5) and 

comparative maps (Fig. S6) for the classifications based on a hypothesis-driven subset of the 

available input variables for the three image training methods. These three maps appeared very 

similar to those based on statistically-derived hybrid sets of variables, though the accuracies were 

slightly higher. 

Classifications based on a hypothesis-driven subset of variables showed slightly improved accuracies 

compared to the hybrid models, when measured by the independent validation and slightly lower 

when measured by the OOB accuracy estimate. The single and multiple pixel classifications both had 

accuracies greater than 90% on both measures, while the object-based classification had lower 

accuracy, with 80.7% by independent validation, and 87.7% by OOB for the present class. 

Table S4: Confusion matrices for the single pixel-based (A); object-based (B); and multiple pixel-based 

(C) RF classifications, using a hypothesis-drive subset of the terrain derivatives and spectral data.  

(A) 

 

Predicted 

 

 Absent Present Accuracy 

O
b

se
rv

e
d

 

Absent 129 7 94.9% 

Present 9 56 86.2% 

Accuracy 93.5% 88.9% 92.0% 

 

(B) 

 

Predicted 

 

 Absent Present Accuracy 

O
b

se
rv

ed
 

Absent 129 6 95.6% 

Present 8 57 87.7% 

Accuracy 94.2% 90.5% 93.0% 

 

(C) 

 

Predicted 

  

Absent Present Accuracy 

O
b

se
rv

ed
 

Absent 3432 4 99.9 

Present 4 1656 99.8 

Accuracy 99.9 99.8 99.8 
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The partial dependence plots showed that many of the input variables had non-linear relationships 

with the probability of Azorella presence. These plots showed that Azorella presence was linked to 

high values for elevation, solar radiation, slope, solar radiation, and blue and yellow reflectance; 

with lower values for red edge and NIR 2 reflectance, GLCM Mean; and with extreme values for 

green reflectance, GLCM homogeneity and entropy, curvature, valleyness and wetness index. 

 

Fig. S5: Partial dependence plots for the present class for the multiple pixel-based classification of 

hypothesis-driven subset of input variables. Azorella presence was associated with high values for 

blue and yellow reflectance, elevation, ridgeness, slope, and solar radiation; with low levels of red 

edge and NIR2 reflectance, and the GLCM mean texture measure; and with mixed values for green 

reflectance, GLCM homogeneity and entropy, curvature, valleyness, and wetness index. 
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Fig. S6: Predicted Azorella presence on northern Macquarie Island, from single pixel, object and 

multiple pixel based classifications of the hypothesis-driven subset of variables. The main map shows 

the hard classes for Azorella presence, with the three predictive layers made partially transparent to 

demonstrate the overlaps among the predictions. Each of these predictions was similar to the 

classifications based on the statistically-chosen subsets of hybrid variables. The inset maps show the 

probability of Azorella presence based on single-pixel (A); multiple pixel (B); and object (C) trained 

classifications. 
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