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ABSTRACT 

 

The main purpose of the present work was to develop and optimize a continuous flow 

interface to improve the poor concentration detection limits of capillary electrophoresis 

which are one of its main limitations. The question was how the flow rate, applied voltage, 

interface and capillary dimensions and conductivities of background electrolyte and sample 

solution affect the electrokinetic sample injection in a continuous sample flow interface. 

Optimizing these parameters has the potential to perform near quantitative injection from 

large sample volumes in a short time. This can lead to the improvement of a variety of 

existing techniques that aim at lowering the concentration detection limits of CE.  

The injection voltage and flow rate have been optimized and their effect on the injected 

sample amount has been investigated using a tee connector in a commercial capillary 

electrophoresis instrument. The effect of sample injection from both flowing and static 

sample volumes was investigated. Using a tee connector interface with flowing sample 

injection, four times more analyte could be injected into the capillary than in a static system. 

Theoretical simulations along with experiments were performed to investigate the effect of 

flow rate and injection voltage on the injected sample. The results confirmed that more 

analyte could be injected into the capillary in a flowing sample interface due to depletion of 

the ions from the flowing stream indicating near quantitative injection of all of the ions. 

Significant enhancement in the proportion of sample ions that are injected when injecting 

from a flowing sample stream has been demonstrated and this work is the only to compare 

electrokinetic injection of the same sample volume, under the same conditions with the only 

difference being whether the sample stream was flowing or static. 

After having established the influence of the flow rate and injection voltage on the injected 

sample amount a mathematical model of the continuous sample flow interface was 
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developed. The aim was to investigate the influence of the interface dimensions on the 

depletion flow rate, which is the maximum flow rate at a given voltage at which > 90% of all 

sample ions are being injected. Besides this the influence of the capillary dimensions and the 

conductivity ratio of the sample and backgroundelectrolyte on the depletion flow rate were 

investigated. The mathematical model proposed that the total applied voltage, the 

electrophoretic sample mobility and the conductivity ratio between the liquid in the interface 

and the capillary should be as high as practically possible to give high depletion flow rates. 

The conductivity ratio and the electrophoretic sample mobility are determined by the chosen 

stacking method and analyte of interest in an experimental setup. High currents pose a 

practical limitation to the total voltage that can be applied. The results proposed further that 

there is an optimum interface diameter and length at which the depletion flow rate reaches a 

maximum. It should be noted that the depletion flow rate changed only around 5% when 

changing the interface length within a range of 2 to 20 mm and the interface diameter within 

450 to 2750 µm. The mathematical model revealed that the depletion flow rate increases 

exponentially with the capillary inner diameter. Therefore the capillary inner diameter should  

be as big as practically possible. Out of all investigated variables a reduced capillary length 

showed the biggest improvements in depletion flow rate. The limitation when using a short 

separation capillary would be that the voltage needs to be reduced accordingly to avoid high 

currents. 

To study the predictions of the mathematical model experiments were performed. First the 

effect of the interface inner diameter on the depletion flow rate was investigated. The 

mathematical model predicted a less than 4 % change in depletion flow rate when increasing 

the interface diameter from 500 to 1500 µm. A 500, 1000 and 1500 µm inner diameter 

sample flow interface was constructed and integrated into a homemade CE system. A 

fluorescence microscope was used to observe the injection of a fluorescent dye in the 
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transparent interface. During the injection process a plug of incoming sample replaced the 

BGE in the interface. It was found that the majority of BGE had to be replaced by the sample 

in order for the injection to reach stable conditions. In the 1000 µm inner diameter interface 

the depletion flow rate was found to be 0.08 µL/s. In the 1500 µm interface the main 

challenge was the formation of electrolysis bubbles around the electrode which prevented the 

determination of a depletion flow rate. In the 500 µm interface bubbles formed not only 

around the electrode but throughout the interface channel. This limited the number of 

injections that could be performed and no depletion flow rate could be determined. Bubble 

formation was attributed to overheating of the sample solution since the 500 µm channel is 

four times smaller in volume compared to the 1000 µm inner diameter interface. The 

formation of bubbles from electrolysis and overheating progressed with ongoing injection 

time in all interfaces used. Thus an injection approach was required that reached stable 

stacking conditions within a shorter timeframe. To achieve this sample was placed inside the 

interface from the start of the injection while the capillary was filled with BGE. This was 

expected to allow stable conditions from the start of the injection. Unexpectedly this 

approach caused the stacked sample zone to be move towards the capillary outlet within 10 

sec of injection and did not allow the determination of a depletion flow rate either. A 

different BGE was chosen which was expected to stabilize the stacked sample zone at the 

capillary entrance during injection. This in contrast led to the formation of a stacked sample 

zone outside the capillary entrance and did not allow finding the depletion flow rate. For 

prospective future work fine tuning of the BGE parameters is therefore required. This would 

allow the formation of a stacked sample zone before bubble formation and to find the 

depletion flow rate in the 500 and 1500 µm inner diameter interface.  

The mathematical model is a simplification that did not take into account the parabolic 

flow profile of the liquid flowing through the interface and the exact electric field line 
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distribution in the interface. A simulation model was developed to get better guidelines on 

how to choose the interface inner diameter for maximizing the depletion flow rate. The 

simulation model proposed that the depletion flow rate increases with bigger interface inner 

diameters. This result stands in contrast to the mathematical model which predicts a decrease 

in depletion flow rate with bigger interface diameters. It was found that the concentrations in 

the simulation model are not regulated by the Kohlrausch function. In contrast the 

concentration changes in the mathematical model were assumed to follow Kohlrausch’s 

regulating function. This difference was found to be the cause for the differences in the 

predictions of the two models. A closer look at the simulation model revealed that stacking of 

ions occurred without the presence of a conductivity difference between the liquid in the 

capillary and the liquid in the interface. A combination of hydrodynamic flow of liquid into 

the capillary that counteracts the electrophoretic movement of ions out of the capillary 

entrance was found to be the cause for stacking without a conductivity difference. These 

findings were experimentally confirmed when stacking of a fluorescent dye in the absence of 

a conductivity difference was achieved. Therefore it can be assumed that the simulation 

model predictions are correct. Thus it is anticipated that with bigger interface diameters 

higher depletion flow rates can be achieved which can enhance the sensitivity of CE 

equipment when used with a continuous flow interface. The increase of depletion flow rate 

with interface inner diameter will have to be investigated in future work. This is a promising 

new direction and presents great potential for the sensitivity enhancement by electrokinetic 

injection from a flowing sample stream.  

 

" "
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

One of the earliest contributions to electrophoresis might have been made by Tiselius [1,2] 

in 1937. He introduced moving boundary electrophoresis and used it to monitor the movement 

of protein molecules in an electric field. Earlier on Michael Faraday summarized his findings 

by the law of electrolysis. Further Helmholtz, Hittorf and Kohlrausch extensively studied the 

migration of small inorganic ions under the influence of an electric field [3]. Supporting media 

such as starch, paper, gels and other stabilizers which contained the buffer solution were used 

which is summarized beautifully in an excellent review by Righetti [4]. There are numerous 

more great inventors who contributed to the field and made efforts to overcome the limitations 

due to band broadening and instrumentation. 

Originally electrophoresis was described in free solution carried out in capillaries. Hjerten 

was the first to describe the use of a high electric field using 2450 V for separation in his 

machine which employed glass tubes of 3mm i.d. [5]. A further reduction in i.d. was achieved 

by Mikkers et al. who employed Teflon capillaries of 200 µm i.d. using currents of around 30 

µA [6,7]. This further reduced convective problems. Jorgensen and Lukas employed open 

tubular glass capillaries with an i.d. of 75 µm using up to 30 kV in which they performed 

capillary zone electrophoresis [8]. This was the first demonstration of the power of CE 
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showing that capillaries with i.d’s smaller than 100 µm can result in highly efficient 

electrophoretic separations. Further advantages of Jorgensen and Lukas’s system were the use 

of on-line detection and the successful dissipation of heat due to small i.d. while still 

functioning successfully at high voltages. 

Then in the 1980s, commercial instruments were developed to allow for a temperature 

controlled environment which makes it possible to use different modes of CE and opens up a 

variety of new possibilities on how to use this versatile separation method.  

1.2 THE FAMILY OF CE MODES 

The collectively named “capillary electrophoresis” modes comprise capillary zone 

electrophoresis (CZE), often referred to as free solution capillary electrophoresis, micellar 

electrokinetic chromatography (MEKC), capillary isoelectric focusing (CIEF), capillary gel 

electrophoresis (CGE), capillary electrochromatography (CEC), and capillary 

isotachophoresis (CITP). 

CZE is the simplest and most widely used mode of CE. The CZE system can be 

manipulated to be become other modes of CE such as MEKC by adding surfactants, CGE by 

adding gel forming agents and CEC by adding packed chromatographic particles or 

monolithic polymer substrates. 

1.3 CAPILLARY ELECTROPHORESIS 

The migration of charged species under the influence of an electric field is referred to as 

electrophoresis. The migration can be carried out in free solution, in a capillary or a non-

convective surrounding [9]. Due to the differing migration velocities the analyte ions are 



 

Chapter 1  Introduction and Literature Review 

3 

 

separated in the electric field. The basic instrumental set-up of a CE system is illustrated in 

Figure 1.1. The separation of the analyte ions takes place inside a thin fused silica capillary 

(25-100 µm i.d.). Depending on the analyte ion to be investigated, the inner surface of the 

capillary may be coated or uncoated. This coating influences the magnitude and the direction 

of the electroosmotic flow (EOF). In the case of an uncoated fused silica capillary the silanol 

groups on the inner surface of the capillary lead to the formation of a cathodic EOF, 

depending on their degree of dissociation. Both ends of the capillary, which is entirely filled 

with the backgroundelectrolyte (BGE), are placed into the BGE vials. A potential difference 

of up to 30 kV is applied from end to end of the capillary. Due to this an electric field is 

established which induces an electric current. Sample injection (a few nL) can be done by 

removing the buffer reservoir at the inlet and placing the inlet of the capillary into the sample 

vial. The sample is introduced into the capillary either by a height difference of the inlet and 

outlet vials, by applying pressure to the inlet vial, by applying vacuum at the outlet vial, or by 

electrokinetic injection which uses an electric field.  

Ions have different mobilities if their charge to effective hydrodynamic radius in solution 

ratios are different. If the analytes are not exactly physically identical the resulting mobilites 

can also be different. They migrate through the capillary at different velocities and if the 

resolving power of the used instrumentation is big enough this leads to analyte separation. 

Consequently, sample ions are separated according to their relative migration through the 

capillary. The net migration velocity of a sample ion is equal to the vector sum of its 

electrophoretic velocity plus the electroosmotic velocity of the solution. The electroosmotic 

flow (EOF) is equal for all analytes. Depending on degree of dissociation and on the inner 

surface of the capillary wall the EOF can vary in size and direction.  
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There are various methods for the detection of the analyte ions. Ultraviolet (UV) 

absorbance detectors or laser induced fluorescence (LIF) detectors are used very frequently. In 

the case of UV detectors a light beam is used to measure the absorbance of the sample ions as 

they pass by the detection window. In a LIF detector an excitation beam induces fluorescence 

in the sample and the emission of the sample is measured. These detectors allow an on-line 

detection of the samples. 
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Figure 1.1 Instrumental set-up of a CE system  
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1.3.1 THEORY OF ELECTROMIGRATION 

When a charged component is placed into an electric field it is accelerated by the electric 

force eF  which is proportional to the electric field strength. 

 

A

e
N

EFz
F

⋅⋅
=  

 

eF  electric force
 

z  charge number 

F  Faraday constant
 

AN  Avogadro constant
 

E electric field strength 
 

 

The friction force dF , which is determined by Stoke’s law counterbalances the electric force.  

 

epf urF ⋅⋅⋅⋅= ηπ6  

 

 

fF  friction force
 

η  dynamic viscosity 

r  Stoke’s radius
 

epu  electrophoretic migration velocity
 

 

At equilibrium the electric force and the friction force are equal in size. 

fe FF =  

Transforming this equation yields: 
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Since 
E

u
µ

ep

ep =  the electrophoretic mobility 
epµ  can be calculated by the following formula: 
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epu  electrophoretic migration velocity
 

epµ  electrophoretic mobility 

 e elemental charge  

 

Depending on the inner capillary wall surface a certain EOF, which is superimposed on the 

electrophoretic migration, will arise. Electroosmosis causes the bulk flow of the entire BGE 

and depends on the electric field strength. The surface charge on the inner capillary wall leads 

to the formation of an EOF. In the case of a fused silica capillary the negatively charged 

surface is caused by deprotonated silanol groups. The BGE cations balance the negative 

surface charge and thereby form a mobile layer of opposite charge (Figure 1.2). 

Upon application of an electric field, a flow of the entire mobile layer towards the cathode is 

created. The Helmholtz equation describes the EOF. Its quantity can be measured by 

measuring the migration velocity of a detectable neutral substance, which is called an EOF 

marker. The net velocity 
appu  is the vectorial sum of 

epu  and eou  (Figure 1.3) and describes 

the separation of the ions in the analyte sample solution. 
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Figure 1.2 Formation of the EOF in a CE system. 

 

 

 

 

Figure 1.3. Apparent mobility as the vector sum of eou and 
epu  
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1.4 CHEMICAL ANALYSIS 

A chemical analysis can comprise sampling, sample pretreatment in the field, laboratory 

treatment, laboratory assay, calculations, and results presentation. The initial step of the 

analysis is sampling in which a representative portion of a bulk material is removed. 

Immediately after collection it may be necessary to pretreat the sample chemically or 

physically at the sampling site. The sample then arrives at the laboratory which is commonly 

termed the laboratory sample. The laboratory sample usually needs to be further reduced in 

quantity and might need to be processed further by a set of operations in which it is converted 

to the test sample. It may be necessary to remove or mask interferences, or isolate the intended 

analyte from its sample matrix to obtain the test sample. In many analytical procedures the 

analyte needs to be converted chemically to another form to make its measurement possible. If 

the concentration of the analyte prior to performing the assay does not fall within the range of 

the analytical method its concentration needs to be adjusted. Once the sample is prepared 

instrumental methods can be used to perform the laboratory assay. In the last stage 

calculations are performed and the results are presented in a meaningful manner.  

1.5 PRECONCENTRATION IN CAPILLARY ELECTROPHORESIS 

CE can be applied to a diverse range of analytes ranging from small inorganic ions to large 

biomolecules. Thus it is a promising high-resolution separation technique used in many 

biotechnological and clinical research fields. The main advantages compared to liquid 

chromatography techniques are its instrumental simplicity, rapid analysis time, minor reagent 

consumption, and the different modes (see 1.2.) of CE depending on the analytes. It can be 

used in the studies of proteins [10], pharmaceutical and environmental pollutants [11] and for 
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DNA analysis [12]. Despite this the main limitation of CE with absorbance detection is its 

high concentration LOD stemming from a short light-path for absorbance detection and a 

small sample volume [13]. A number of preconcentration techniques can be used in order to 

overcome this issue. One way is to perform off-line preconcentration methods which are 

utilised before sample loading. Another way is to combine the preconcentration step with the 

separation, which is referred to as on-line preconcentration. Off-line preconcentration methods 

usually use a large sample volume from which the sample is reconstituted into a smaller 

volume. Then a small proportion of the preconcentrated sample is injected into the CE system. 

The major drawbacks of this method in comparison with on-line preconcentration methods are 

that it is more time consuming and labor intensive and that analyte loss during sample 

handling and incomplete transfer of sample from the preconcentration device to the CE can 

appear. Incomplete transfer may stem from incomplete solubility of the analytes as it can 

appear in liquid-liquid extraction or irreversible adsorption of analytes in solid-phase-

extraction. In comparison on-line sample preconcentration merely involves only filtering of 

the solution.  

To perform a chemical analysis using CE with preconentration the following steps need to 

be performed. The first step is sampling followed by sample pretreatment in the field. The 

laboratory treatment stage only involves filtering of the solution. The preconcentration, 

injection and separation stage are all combined into one step in CE with preconcentration. 

This makes CE with preconcentration an attractive alternative to CE with offline 

preconcentration. 
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1.5.1 STACKING 

Most of these strategies are based on a chemical discontinuity that is located inside the 

capillary around which analytes are concentrated. This concept is commonly called ‘stacking’ 

or ‘sweeping’ and a range of different discontinuities can be created including conductivity 

(field amplified sample injection [6-8,14-18], field amplified sample stacking [6,19] and 

isotachophoretic stacking [20-24]), pH (dynamic pH junction [25]) and micellar effects 

[26,27] (sweeping [28,29] and micelle collapse [30,31]). A key requirement for all methods is 

the presence of an electrophoretic velocity component that changes upon entering a boundary 

and causes a preconcentration. 

 

1.5.1.1 FIELD INDUCED CHANGES IN VELOCITY 

The principle of stacking due to field induced changes in velocity are shown in Figure 1.4. 

A sample ion travels at a certain velocity under a given electric field strength (E). Once the 

sample ion enters a zone with a lowered E it will slow down and stack into a narrow zone 

resulting in a stacked sample zone with higher concentration.  
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Figure 1.4 Schematic of stacking due to field induced changes in velocity 
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1.5.1.1.1 FIELD AMPLIFIED SAMPLE STACKING  

Field amplified sample stacking (FASS) is the easiest and most common sample stacking 

technique. It is also known as the normal stacking mode (NSM). A low conductivity sample 

plug is injected hydrodynamically. The conductivity of the sample plug is at least ten times 

lower than that of the backgroundelectrolyte (BGE). Upon application of voltage the electric 

field strength in the sample zone is higher than that in the BGE. The ions in the sample zone 

travel at a certain speed under the given electric field. Once they enter the BGE zone with 

lower electric field strength they slow down at the boundary and stack into a zone of higher 

concentration. The concentration enhancement or sensitivity enhancement for a sample ion is 

determined by its ratio of the velocities in the sample zone and the BGE zone. The sensitivity 

enhancements that can be achieved by the normal stacking mode are usually around 10 to 20 

times compared to injection from a sample zone that has the same conductivity as the BGE.  

There are two major drawbacks to this stacking approach. The first one is that the sample 

should be prepared in a low conductivity matrix to provide the necessary conductivity 

difference between sample zone and BGE. Thus, its applicability is limited to low 

conductivity samples. In general this can be achieved by preparing the sample in water [32] or 

diluted buffer. The use of organic solvents has shown to have beneficial effects on FASS 

besides lowering the sample zone conductivity [33]. Another limitation of FASS is the 

maximum length of the hydrodynamically injected sample plug. It is limited to about 5% of 

the capillary volume. Exceeding this limit will result in band broadening due to the mismatch 

of the local electroosmotic velocities in the BGE and the sample zone. The pressure 

differential created by this difference leads to a flow inside the capillary that will broaden the 

stacked sample zone. 
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Because of its simplicity and ease of use FASS can be used in combination with many 

different types of detection methods such as fast-scan cyclic voltammetry detection [34], 

contactless conductivity detection [35], as well as many types of BGEs at high or low pH [36] 

that may contain chiral selectors or organic solvents. Another advantage is that it can be 

combined with other on-line preconcentration techniques such as sweeping and reversed field 

stacking [37]. Due to its ease of use it can be coupled with off-line preconcentration 

techniques such as Soxhlet extraction [38] or subcritical water extraction [39]. For example, 

Chen et al. [40] developed a rapid high-throughput magnetic solid phase extraction (MSPE) 

method coupled with capillary zone electrophoresis for the determination of illegal drugs. 

They used FASS to further enhance the sensitivity of this method. A 30 mM phosphate buffer 

solution at pH 2.0 containing 15% v/v ACN was used. Under optimized conditions the 

sensitivity was increased about tenfold compared to injection and separation without stacking. 

A home-made MSPE array was used that has potential to treat 96 samples simultaneously.  
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1.5.1.1.2 FIELD AMPLIFIED SAMPLE INJECTION  

While in FASS the sample is introduced hydrodynamically, it is introduced by 

electrokinetic injection in field amplified sample injection (FASI). When performing 

electrokinetic injection two situations, depending on the direction of the electroosmotic flow 

(EOF), can arise. Under co-EOF conditions (the EOF is oriented in the same direction as the 

sample ions movement) the sample will be injected by the electroosmotic flow as well as by 

its own electrophoretic movement. In this case more sample ions are injected than at a FASS 

injection of the same sample zone length. Under counter EOF conditions (the EOF is oriented 

in the opposite direction of the sample ions) the sample matrix will be pumped into the 

capillary but the sample ions migrate towards the inlet. Under these conditions less sample 

ions will be injected when comparing it to FASS. The direction and magnitude of the EOF is 

therefore an important factor to consider when performing FASI. There are also two major 

drawbacks to FASI. Firstly this approach is restricted to low conductivity samples since the 

stacking effect relies on the differences in electric field strength. The other disadvantage arises 

from the fact that during FASI the sample matrix is introduced into the capillary by EOF (in a 

co-EOF injection). Once approximately 5% of the capillary volume is filled with sample 

matrix the peaks begin to become broader for the same reason as discussed in section 

1.5.1.1.1. Another important fact about FASI is that the sample ions will be injected to a 

different extent based on their differences in mobility. While the mobility based injection and 

the discrimination effect resulting from it may seem a disadvantage, FASI can give up to 1000 

fold increase in sensitivity. A way to improve reproducibility is to inject a short water-plug 

prior to sample injection. This approach prevents analytes from being lost from the inlet and it 

can enhance the sensitivity of the stacking method.  
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If the EOF is suppressed completely the physical volume that enters the capillary will be 

reduced and therefore allows longer injection times. Hou et al. [41] described an interesting 

study where they suppressed the EOF to simultaneously stack cationic and anionic compounds 

in a single run by two-end field amplified sample injection. Firstly the capillary was filled 

entirely with a high conductivity buffer and then a water plug was injected into each end of 

the capillary. This created two high-field strength zones at both ends of the capillary upon 

application of voltage. This approach allowed simultaneous stacking of anions and cations. 

The sample cations and anions were detected by a common detector which was placed in the 

capillary center. They used model cationic (matrine and oxymatrine) and anionic (5-

sulfosalicylic acid) compounds to optimize the separation. Limits of detection of 20 ng/L for 

the cationic and 60 ng/L for the anionic model compounds were determined, respectively. 

When comparing this approach with non-stacking conditions sensitivity enhancement factors 

of 1003-, 1330- and 1380 could be obtained for the model cationic (matrine and oxymatrine) 

and anionic (5-sulfosalicylic acid) compounds, respectively.  

Due to its simplicity FASI is compatible with many different detection systems such as 

contactless conductivity detection [42] [43] and electrochemieluminescence detection [44]. It 

can also be combined with offline preconcentration techniques such as magnetic solid phase 

extraction [45], polymer monolith microextraction [46], liquid-liquid extraction [47], solid 

phase extraction [48], solvent-bar microextraction [49], as well as dispersive liquid-liquid 

microextraction [50]. Another advantage when using FASI is that it can be combined with 

online preconcentration techniques such as sweeping [51] or MEKC [52]. In a recent study by 

Hai et al. [53] FASI was combined with in-capillary derivatization for the determination of 

selenomethionine and selenomethionine selenoxide. The derivatizing agent phthalic anhydride 
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was first introduced into the capillary hydrodynamically. The derivatization itself was done by 

simply injecting the sample solution electrokinetically. This allowed preconcentration of the 

analytes. The sample solvent was 2 mM borate solution. As BGE they chose a borate buffer 

which was suitable for the derivatization and the separation. Sensitivity enhancement of about 

800-fold could be achieved when comparing it to direct CE-UV detection without 

derivatization or stacking in the same setup.  

An example for the versatility of FASI is that it is applicable to a range of buffer types at 

low [54,55] or high pH [56], to buffer systems with chiral selectors [57] as well as to ionic 

liquid electrolyte systems [58]. FASI has a wide range of applicability and can be used in 

combination with other CE methods. In a study by Wei et al. [59] it was combined with 

monolith microextraction in an octadecyl phosphonic acid-modified zirconia-coated CEC 

column for the analysis of antidepressants in human plasma and urine. Further FASI has been 

used for the separation of multiplex polymerase chain reaction products in non-gel sieving 

capillary electrophoresis [60]. FASI is an almost universal stacking method that can be 

applied under a number of different conditions. 
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1.5.1.1.3 LARGE VOLUME SAMPLE STACKING  

FASS and FASI are both limited by the physical volume of sample that can be injected into 

the separation capillary. Volumes larger than 5% cause a loss in efficiency due to the EOF 

mismatch as explained in section 1.5.1.1.1. Large volume sample stacking (LVSS) allows 

larger volumes of sample to be injected by removing the sample matrix continuously while the 

analytes stack at the sample/BGE boundary. The sample matrix is removed from the capillary 

by the EOF. Before the samples exit the capillary inlet the matrix removal is stopped and the 

separation begins. There are different approaches to perform the transition between the 

removal step and the separation start. The transition can be done by polarity switching or by 

chemical variation of the EOF.  

When performing LVSS with polarity switching a reversed polarity is applied after 

hydrodynamic sample injection causing the sample matrix to be removed by the EOF. Before 

the stacked analyte zone exits the capillary the polarity is reversed and the separation starts. 

To ensure that no sample is lost the transition is controlled by monitoring the current. Once 

the current reaches 95-99% of the final current – the current when the capillary is entirely 

filled with BGE – the polarity is switched and the separation starts. LVSS with polarity 

switching was recently employed for the online concentration and analysis of flavonoids in 

Brassica oleracea (broccoli) [61], the determination of natural polyphenols in plant extracts 

[62], trace determination of sulfonylurea herbicides in water and grape samples [63], the 

analysis of haloacetic acids in water [64], the sensitive determination of barbiturates in 

biological matrix [65] and for the characterization and inhibition studies of the nucleoside-

metabolizing enzymes purine nucleoside phosphorylase and adenosine deaminase present in 

membrane preparations of human 1539 melanoma cells [66]. In the last study only 10 fold 

sensitivity enhancements could be achieved when compared with CE without stacking. The 
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authors state that this represents the highest sensitivity for nucleoside and nucleobase analysis 

using CE with UV detection reported so far. 

In the case of LVSS without polarity switching the transition can be performed by reversing 

or suppressing the EOF. When performing the transition by reversing the EOF a dynamic EOF 

reversal agent in the BGE is used. Upon application of voltage the BGE enters the capillary 

from the detector side, since the bulk EOF points towards the capillary inlet. The EOF in the 

sample zone points towards the inlet while the EOF in the BGE zone has opposite direction. 

Once the sample matrix gets shorter and shorter the EOF in the sample zone and the EOF in 

the BGE zone reach a point where they counterbalance each other and the apparent EOF 

becomes zero. This is the point where the matrix removal stops and the separation starts. The 

advantage of LVSS without polarity switching is that the transition is controlled chemically 

and not manually which is instrumentally simpler and allows better control over analyte loss 

from the capillary inlet. The downside is that its success depends on the control and 

reproducibility of the EOF.  

Another approach to perform LVSS without polarity switching is to suppress the EOF by 

using a high pH sample matrix in combination with a low pH BGE. When voltage is applied 

the bulk EOF causes the BGE to enter the capillary from the detection end. Once the matrix 

gets removed the average EOF is determined by the low EOF in the BGE and the transition 

starts. The bulk solution travels slower towards the inlet than the sample ions towards the 

detector. This approach is commonly termed LVSS using an EOF pump (LVSEP). In a 

complex approach that combines different CE-techniques, Wang et al. [67] developed a 

highly sensitive method for enantioseparation of fenoprofen and amino acid derivatives with 

vancomycin as the chiral selector using LVSEP. They used the partial filling method, LVSEP, 
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as well as anion-selective exhaustive injection (LVSEP-ASEI) to increase the sensitivity of 

the method. Enantioseperation of racemic fenoprofen and six 9-fluorenylmethyl chloroformate 

(FMOC)-amino acid derivatives (at the concentration level of ng/mL) with the background 

electrolyte composed of 100mmol/L Tris-H3PO4 (pH 6.0) and 2 mmol/L vancomycin was 

performed. The capillary was coated with poly(dimethylacrylamide) solution to depress the 

EOF which is required to perform LVSEP-ASEI. By coating the capillary they could further 

minimize the adsorption of the chiral selector to the capillary wall. Under the optimized 

conditions, they could achieve a 1000-fold enhancement in detection sensitivity compared 

with the normal injection. In the field of chiral analysis another study by Kawai et al. [68] 

investigated the effects of the addition of cyclodextrin (CD) into the BGE on the LVSEP 

preconcentration of ibuprofen in urine which was desalted with a C 18 solid-phase extraction 

column. This study is good example for the versatility of LVSEP and its applicability to many 

separation modes. Further LVSEP has been recently used for the analysis of oligosaccharides 

[69] and in combination with partial filling affinity capillary electrophoresis (PFACE) for 

profiling of glycoprotein-derived oligosaccharides [70]. In microchips Kawai et al. [71] used 

LVSEP for the determination of natural polyphenols in plant extracts and could achieve 

sensitivity enhancement of up to 2200-2900-fold compared to conventional microchip CE 

analysis. 

Due to the simplicity of LVSS it can be combined with offline preconcentration methods 

such as phase transfer membrane supported liquid-liquid-liquid microextraction [72] and 

dispersive solid-phase extraction [73]. LVSS can also be used together with other CE 

techniques as presented in a study undertaken by Al-Ghobashy et al. [74]. They employed on-

line micellar sample stacking for the determination of protein concentration of 
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biopharmaceuticals. Protein samples were denatured using SDS and then injected into 

polyethylene oxide (PEO) - filled capillaries. The protein-SDS molecules stacked at the 

interface between the sample plug and the PEO plug. SDS further enhanced the sensitivity due 

to micelle formation in which the protein-SDS molecules partitioned. A useful tool for the 

determination of melamine and its derivatives in liquid milk products has been developed by 

Jin et al.[75]. The three different stacking approaches LVSS, sweeping and selective-

exhaustive injection sweeping have been successfully combined to enhance the sensitivity of 

the method. In order to detect all four analytes simultaneously LVSS-sweeping was used. To 

further enhance the sensitivity of the method selective-exhaustive injection-sweeping of the 

anions and cations was performed separately. Limits of detection of 10 ng/L for melamine and 

ammeline, 50 ng/L for cyanuric acid as well as 20 ng/L for ammelide could be achieved by 

combining the different stacking approaches. A more recent study employed microemulsion 

electrokinetic capillary chromatography coupled with on-line LVSS for the analysis of plant 

hormones [76].  

 

1.5.2 SWEEPING 

By using a pseudostationary phase in CE non-charged analytes can be separated and 

investigated. SDS was used as a pseudostationary phase in micellar electrokinetic 

chromatography (MEKC) which was originally developed by Terabe et al. [77,78].  

Quirino and Terabe initially developed sweeping in order to increase the concentration 

detection sensitivity for charged and neutral analytes in MEKC when the sample and BGE 

have the same conductivity [27,79]. Sample was first injected without the pseudostationary 

phase. Upon application of voltage the micelles from the BGE pass through the sample zone 



 

Chapter 1  Introduction and Literature Review 

22 

 

and sweep the analytes into a narrow band much like a broom picking up dust from the floor.  

The chromatographic retention factor k describes the enrichment of the analytes. k is a 

measure for the analyte-micelle interaction. Since sweeping can be applied to neutral and 

charged analyte molecules and to high conductivity it is a universal concentration method.   

A further enhancement can be achieved when sweeping is combined with stacking. This can 

be achieved by having a sample that has a lower conductivity than the BGE. Besides sweeping 

of the analytes due to the moving micelle front, stacking increases the sample zone 

concentration further [79].  Using a combination of sweeping with SDS micelles and stacking 

can give enrichment factors from 31 to 300. It has been successfully employed for the 

determination of analytes in human serum/plasma, bacterial growth medium, urine, and 

medicinal products [80-85].  

With equal conductivity between sample and BGE the analyte focusing is solely determined 

by the retention factor k of the micelles. This approach can be used for neutral analytes with 

SDS micelles [86-89] as well as charged analytes and anionic sulphated-β-cyclodextrin as the 

pseudostationary phase [90]. This approach allowed 25 – 2500-fold increase in sensitivity 

compared to normal MEKC. It could be successfully applied to the analysis of steroids in 

urine, herbicides in cereal, vegetable and water samples. 

A new method was developed by Rabanes et al. It was employed for the determination of 

charged alprenolol enantiomers. The sample solution contained a high content of organic 

solvent [90]. The pseudostationary phase used was sulfated-β-cyclodextrin. Due to the 

presence of the organic solvent the analyte has only a weak interaction with the 

pseudostationary phase in the sample solution. The analytes are electrokinetically injected 

from the sample solution and move in the opposite direction of the pseudostationary phase. 
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Once the analytes enter the aqueous BGE zone they get swept by the pseudostationary phase. 

In the conventional sweeping mechanism the analyte gets focused when the pseudostationary 

phase front moves through the sample zone. The enhancement factor was greater than two 

orders of magnitude when introducing the sample electrokinetically for the chiral separation 

of alprenolol enantiomers in standard solutions. 

 

1.5.3 LIMITATIONS 

Sample stacking methods can be used with sample injected either hydrodynamically or 

electrokinetically. Sensitivity enhancements with hydrodynamic injection are limited by the 

volume of the capillary – it is impossible to inject more than one capillary volume. Therefore 

much greater sensitivity enhancements can be achieved with electrokinetic injection (EKI) as 

it is not limited by the volume of the capillary. Sensitivity enhancements of 10
4
 – 10

6
 have 

been demonstrated, although with these enhancements sample depletion is observed [91,92]. 

Sample depletion limits the sensitivity enhancement that can be achieved.  

One way to overcome the limitations associated with sample depletion would be to 

increase the sample volume that is available for injection in a static sample vial. By 

optimizing the spatial relation between the capillary inlet and the electrode setup more of the 

sample volume can be made available for injection. Hirokawa et al. explored this issue [93] 

and  found that only analytes in an effective potential field, which is essentially the volume of 

sample between the electrode and the capillary tip, could be introduced into the capillary 

while analytes outside the field are not injected. This suggests a localized injection zone in 

which the ions are depleted. The analyte ions from outside this region only enter the field 
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region by diffusion. Therefore long injection times may be required to inject a large fraction 

of ions from the total sample volume.  

This led them to develop circular Pt-electrodes placed at the very top of the sample such 

that a 3D electric field is created that covers almost the entire sample volume [94]. Utilizing a 

different electrode design greatly improved the transport of ions to the capillary tip, 

introducing about 70 % of analyte amount existing in 230 uL of sample volume within 450 s 

into the capillary. 

Another way to overcome the limitations associated with sample depletion would be to 

replenish the sample volume that is being available for injection continuously. Hirokawa’s 

[94] group achieved replenishing of the sample stream by stirring the sample solution. They 

increased the sample volume from typical 500 µL to 17 mL using a ring electrode for 

injection. An improvement in sensitivity of 100 000 was obtained compared to a conventional 

hydrodynamic injection. Despite this the drawback when stirring the sample is that the sample 

depletes with injection time and the injection gets less efficient with ongoing injection time.  

In order to overcome the drawbacks of localized depletion the effective potential area 

needs to be replenished with undepleted sample during the injection by injecting from a 

flowing sample stream. Supplying an undepleted stream of sample during the injection can in 

theory lead to more sample injection in a shorter time period.  
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1.6 CONTINUOUS FLOW INTERFACES 

In a conventional CE setup the capillary entrance is placed in a sample vial and sample is 

injected. Then the sample vial is replaced by a vial containing BGE and the separation is 

started by applying voltage between the capillary ends. A continuous flow interface is used 

instead of separate vials containing sample and BGE. The capillary entrance is placed in a 

continuous stream of liquid. First the continuous flow interface is flushed with sample and 

injection is performed. Then the continuous flow interface is changed to BGE and voltage is 

applied between the capillary ends to start separation. The construction of such an interface is 

critical and the underlying principles will be discussed here in detail. Several aspects have to 

be considered when constructing a continuous flow interface for CE. 

 

• The first one is that the BGE as well as the sample solution are continuously flushed 

through the interface. This may overcome the problems that originate from 

decomposition due to electrolysis of the BGE or the sample solution. In 

conventional CE systems the sample vials need to be replaced frequently otherwise 

migration time drifts as well as baseline irregularities may be observed. When the 

solutions are continuously replenished electrolysis will not affect the separation 

performance.  

• Another difference is that in a conventional CE setup the voltage needs to be 

interrupted when performing an injection. Also the vials need to be moved 

physically in between. In a flow interface-CE system there is no need to move the 

vial or to interrupt the voltage for injection purposes. Further the reproducibility 

should be improved when no moving parts are involved. 
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• The polarity of the electrodes plays an important role. The grounding electrode 

should preferably be placed in the interface itself. If the high voltage is connected to 

the interface special measures have to be taken to isolate the high voltage from the 

rest of the interface channels such as the waste outlet and the pump that replenishes 

the interface. Otherwise uncontrolled currents may appear and influence the 

precision of the whole setup.  

• Any hydrodynamic flow into the CE capillary should be avoided. Therefore the 

inner diameter of the waste channel should be maximized. The inlet and the outlet of 

the CE capillary have to be kept at the same level otherwise hydrostatic pressure will 

occur and cause hydrodynamic flow inside the capillary.  

• Each type of interface requires individual optimization of parameters such as flow 

rate, length of injection and applied voltage. In practice the optimum set of 

parameters may be quite narrow. The optimization of these parameters is crucial 

when setting up a flow injection-CE interface and it is not trivial [96].  

 

The first report of using flowing interfaces for CE were Kuban et al. [97] who developed a 

flow- through channel and Fang et al.[98] who developed a flow-through reservoir. They 

basically consist of a flow through channel into which the electrode and the CE capillary inlet 

are inserted. The first interface (Figure 1.5 a) consists of a poly(methyl methacrylate) 

(PMMA) block into which a horizontal flow-through channel is drilled as well as two vertical 

channels into which the electrode and the CE capillary are inserted. The capillary as well as 

the electrode are aligned in a way that they reach the center of the flow-through channel. In 

the interface in Figure 1.5 b an Eppendorf pipette tip (P) forms a conical flow through channel 
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which is placed in a supporting vial (R). The electrode (E) is simply inserted into the 

supporting vial and the CE capillary (C) is placed into the center of the conical pipette tip. The 

capillary inlet of the CE capillary is positioned as close as possible to the narrow end of the 

conical tip (2 mm distance between CE capillary inlet and the narrow end of the pipette tip). 

In both cases the interface is continuously replenished by means of a peristaltic pump. The 

electrode in the interface, which is usually a Pt wire, is connected to the ground of the CE 

instrument. The CE capillary is electrically connected to the high voltage of the CE via a 

second Pt electrode that is placed in the capillary outlet vial. 
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Figure 1.5 A schematic diagram of the two original on-line flow injection-CE interfaces 

developed by Kuban et al. (A) and Fang et al. (B). R, plastic reservoir body; P, platinum 

electrode; C, capillary column; OUT, waste solution outlet; IN, inlet; P, conical pipette tip; B, 

buffer electrolyte solution (with sample waste). 
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Different interface designs have since been used, e.g., an H-channel structure [99], a 

modified flow through chamber interface [100], various interfaces using tubular electrodes 

[101-104], and an interface using an on-column polymer–embedded graphite inlet electrode 

[105].  

Using these types of interfaces, there have been three reports on the examination of FASI. 

Kuldvee et al. [106] demonstrated that a short FASI (10 s at 8 kV) from a flowing sample 

stream afforded a 100 fold increase in sensitivity when compared to FASI from a static sample 

(2.5 s at 18 kV). It should be noted, however, that this static sample was in the custom-

interface and the actual volume that was sampled was considerably smaller than is typically 

used with a conventional CE. The static sample was also considerably smaller than the volume 

sampled while flowing. Also, the electrokinetic injection time could not be extended due to 

the hydrodynamic introduction of sample matrix which reduced the field strength at the 

capillary tip during injection. Liu et al. [107] used FASI (15 s at 7.5 kV) in combination with 

sweeping MEKC and obtained a sensitivity enhancement of 64-86 compared to non-stacking 

conditions. The system was not systematically studied.  Kuban et al. [108] were able to 

perform a longer FASI (6 min at 2 kV) by eliminating the pressure-induced flow through the 

capillary, and this resulted in a 2000-fold enhancement compared to a typical hydrodynamic 

injection. They used a homebuilt CE system as well as a homemade interface and no 

comparison was made to FASI in a static sample to establish whether there was any 

improvement from having a flowing sample during injection. 
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1.7 PROJECT AIMS 

From the results in the existing literature it is evident that CE in combination with flow 

injection interfaces provides the possibility for on-line monitoring. It has also been 

demonstrated that flow interfaces can be combined with stacking methods which allow for a 

reasonable enhancement in sensitivity. Despite this there have been no systematic studies 

looking at changing the individual parameters of a flow interface and how it affects the 

amount of injected sample. 

The first aspect that has not been well studied in the existing literature is how the injection 

voltage and flow rate affect the injected sample amount. Besides this there is no study that 

directly compares the injection of a static vial to the injection from a flowing sample stream 

under the same conditions. Another aspect is that there are no comprehensive studies of 

continuous flow interfaces that investigate how the interface and capillary dimensions, the 

conductivity ratio between sample and back ground electrolyte (BGE) affect the injection. 

Therefore the general aim of this work is to understand the effect that the individual 

parameters of a continuous flow interface have on the injected sample amount and to 

ultimately enhance the sensitivity of existing stacking methods using a continuous flow 

interface. 

The specific aims of the project are to: 

1. Show that a continuous flow interface has the potential to be more sensitive than an 

injection from a static vial. This is discussed in chapter 2 where the injection from the 

continuous flow interface with an injection from a static vial under the same conditions 

is compared.  
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2. Develop a computational fluid dynamics model that allows to investigate the effect of 

the injection voltage and flow rate on the injected sample amount which is addressed 

in chapter 2. 

3. Verify the results proposed by the simulations experimentally and find the optimum 

combination of injection voltage and flow rate for maximum sensitivity enhancement. 

This is presented in chapter 2.  

4. Develop a set of guidelines on the choice of parameters when developing a continuous 

sample flow interface to achieve the maximum flow rate for complete sample 

injection. This is achieved by developing a simplified mathematical model in chapter 

3.  

5. Verify the predictions of the mathematical model experimentally. This is discussed in 

chapter 3 where interfaces with different dimensions were built and the effect of 

interface dimensions on the maximum flow rate for complete sample injection is 

investigated and compared to the mathematical model. 

6. Refine the guidelines and rules for interface design proposed by the mathematical 

model. This is addressed in chapter 4 where a more accurate computational fluid 

dynamics model is developed. 

7. Summarize the findings from the mathematical model, the simulation model and the 

experiments into a final set of guidelines for the design of a continuous flow interface 

that allows complete sample injection at the highest flow rate possible. This can be 

found in the final chapter 5. 
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Chapter 2 

STACKING IN A CONTINUOUS SAMPLE 

FLOW INTERFACE IN CAPILLARY 

ELECTROPHORESIS 

2.1 INTRODUCTION 

In the chapter which follows, a continuous sample flow interface is described that was 

constructed using a commercially available Tee connector integrated into a commercial CE to 

allow direct comparison of the benefit of performing field amplified sample injection (FASI) 

on a flowing sample. Sample injection was performed electrokinetically, therefore no physical 

valve was necessary to perform sample injection. The hydrodynamic introduction of sample 

was minimized by adjusting the liquid levels in the buffer and waste vials allowing injection 

times of up to 40 min. FASI with sweeping followed by micellar electrokinetic 

chromatography (FASI-sweep-MEKC) was used to compare sample injection from a static 

system and a flowing stream. It is demonstrated that by continuously flushing the sample 

through the interface, the efficiency of FASI is increased, providing enhanced sensitivity. 

Simulations along with experimental studies were used to study the influence of injection 

voltage and flow rate, and to establish the conditions in which there is near quantitative 

injection of the selected analytes. Significant enhancement in the proportion of sample ions 

that are injected when injecting from a flowing sample stream is demonstrated and this work 
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is the only to compare electrokinetic injection of the same sample volume, under the same 

conditions with the only difference being whether the sample stream was flowing or static.  

2.2 EXPERIMENTAL SECTION 

2.2.1 REAGENTS 

All reagents (sodium dodecyl sulphate (SDS), phosphoric acid, sodium hydroxide, HPLC 

grade acetonitrile) were purchased from Sigma-Aldrich (St. Louis, MO). Stock solutions of 

1 M phosphoric acid, 200 mM SDS and 4 M sodium hydroxide were prepared. 1 M 

phosphoric acid was prepared by mixing an appropriate amount of purified water with 

phosphoric acid. Other solutions were prepared by dilution of the stock solutions with water. 

All solutions were filtered through a 0.45 µm filter from MicroScience (Co Durham, UK) 

prior to use. The background electrolyte (BGE) was 200 mM phosphoric acid with 20% (v/v) 

acetonitrile, and the sweeping solution was 100 mM phosphoric acid, 100 mM SDS with 20% 

(v/v) acetonitrile.  The ���
�  (pH measured in acetonitrile/water with electrodes calibrated in 

water) [1] values of these solutions were adjusted to 2 with 4 M NaOH after the addition of 

acetonitrile and before final dilution in a volumetric flask. The sample diluent was 0.5 mM 

phosphoric acid or 200 mM phosphoric acid with 20% (v/v) acetonitrile, ���
� 	2, for the FASI-

sweeping-MEKC and the capillary zone electrophoresis (CZE) experiments, respectively. 

Alprenolol hydrochloride and propanolol hydrochloride were purchased from Sigma-Aldrich 

(St. Louis, MO) and were prepared in water (1000 mg/L).  
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2.2.2 INSTRUMENTATION 

Water was purified using a Milli-Q system from Millipore (Bedford, MA). The ���
�  was 

measured using an Activon Model 210 pH meter (New South Wales, Australia). All capillary 

electrophoresis experiments were conducted on an Agilent 3D-CE instrument (Waldbronn, 

Germany) equipped with a diode array detector and a fused silica capillary (25 µm and 365 

µm inner and outer diameters, respectively) from Polymicro Technologies (Phoenix, AZ).  

The total length was 50 cm with 20 cm from the inlet end to the detector. Capillary 

temperature was controlled at 20°C. The lift offset, which determines the distance between the 

capillary entrance and the tip of the cylindrical electrode which surrounds the capillary, was 

set to 4 mm. 

 

2.2.3 CONTINUOUS SAMPLE FLOW INTERFACE 

The construction of the continuous sample flow interface was similar to that described by 

Blanco et al. [2]. It accommodates a flow through channel so that it can be flushed with liquid 

in a continuous manner much like a river flowing. The separation capillary entrance is placed 

in the continuous stream of liquid. To perform sample injection the channel is flushed with 

sample. While the sample is flowing voltage is applied via a ring electrode that is part of the 

flow through channel. Since sample is injected electrokinetically no valves are required for 

injection. To start the separation the sample liquid is flushed out of the interface and replaced 

by a continuous stream of BGE. For the separation to start voltage is applied between the 

electrode in the interface and the outlet of the separation capillary. During the separation the 

BGE is flowing through the interface continuously. A schematic of the flowing sample 

interface can be seen in Figure 2.1 A. Briefly, a Tee connector (P-727, Upchurch Scientific) 
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with a 500 µm thru-hole was used to connect the capillary and stainless steel electrode (200 

mm of stainless steel tubing, U-145, Upchurch Scientific), which served as the anode during 

injection and as the cathode during separation. The stainless steel electrode was aligned 

opposing the sample inlet tube (508 µm inner diameter and 794 µm outer diameter) which 

consisted of a 22 cm piece of polyether ether ketone (PEEK) tubing (1569, Upchurch 

Scientific). For the waste outlet, a piece of rubber tubing (1250 µm x 500 µm x 30 cm) was 

connected to the electrode in the interface. The sample inlet tube was connected to a 30 cm 

piece of capillary (25 µm ID, 365 µm OD from Polymicro Technologies (Phoenix, AZ)) using 

a connector (P-643, Upchurch Scientific) which was placed in the inlet vial that contained 

either the sample solution or the micellar solution. All capillaries and the electrode in the 

interface were connected using the supplied fittings and ferrules. The entrance of the 

separation capillary was aligned so that it was 365 µm away from the opposing wall of the 

Tee connector. The continuous sample flow interface axis between the inlet capillary and the 

electrode was positioned vertically inside the capillary cassette. The separation capillary 

coupled to the Tee connector was horizontal. To more accurately regulate the external 

pressure of the CE instrument, a manual pressure regulator (Norgren, R37G-3GK-FRN) was 

installed in the external pressure line. This allowed adjustments of pressures from 0.1 to 6 bar 

± 5%, which are below the capabilities of the Agilent CE to be applied at the inlet of the 

capillary coupled to the sample inlet tube. In order to switch quickly between the full external 

pressure (6 bar) and the lower external pressure from the manual regulator, the first open-close 

valve (Onomi, 1/4) was installed parallel to a series connection of the regulator and a second 

open-close valve.  
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Figure 2.1 Schematic of the continuous sample flow interface used for experiments (A) and 

simulations (B). In the experimental setup (A) the ID of the electrode was 1150 um and the 

separation capillary dimensions were 25 um ID and 365 um OD. For the simulations (B) the 

interface length was 3mm , electrode length 500 um, capillary ID 50 um, capillary OD 150 um 

and the capillary length was 2mm. The blue arrows indicate the direction of the flow of liquid. 

The second electrode is at the outlet of the separation capillary. For further explanation, see 

text. 

  

500 um

separation 

capillary

A B

length electrode

length interface

length capillary

ID electrode

365 um



 

Chapter 2  Stacking from a flowing sample stream 

45 

 

2.2.4 PREVENTION OF PRESSURE INJECTION 

The introduction of sample matrix into the separation capillary needs to be minimized. To 

prevent hydrodynamic sample matrix introduction the inner diameter of the separation 

capillary was 25 um and the channel diameter of the Tee connector was 20 times bigger at 500 

um.  The sample can also be introduced by hydrostatic pressure differences between the inlet 

and outlet of the separation capillary.  The hydrostatic pressure difference is affected by the 

liquid levels of the inlet and outlet vials and the liquid level in the waste vial. Therefore the 

influence of the liquid level in the waste vial on the length of the injected matrix plug length 

was studied which is shown in Figure 2.2. It was found to be at a minimum when the waste 

liquid level is at a height of -7 cm below the liquid levels in the inlet and outlet vials. For all 

runs in the presented work the waste liquid level was set to -7 cm in order to avoid hydrostatic 

injection of sample. 
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Figure 2.2 Effect of waste outlet level on sample plug length injected into the separation 

capillary at a low and high flow rate. sample solution, 1000 ng/mL of PNL, APL in 0.5 mM 

phosphoric acid; BGE, 200 mM phosphate buffer with 20% (v/v) acetonitrile ( ���
�  2.0); 

capillary 25 µm I.D. x 50 cm (20 cm to the detector); temperature, 25 °C ; detection, UV 

absorbance at 210 nm; CE instrument, Hewlett-Packard 3D CE, other explanations are in the 

text 
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2.2.5 ELECTROPHORETIC PROCEDURES 

New capillaries were conditioned by flushing with 1 M sodium hydroxide for 30 min at 1 

bar and purified water for 10 min at 1 bar. Before each CE experiment, capillaries were 

conditioned by flushing with BGE for 3 min at 4 bar. For the FASI-sweep-MEKC from a 

flowing sample stream, the sample was injected at 5 kV at increasing injection times up to 40 

min at sample flow rates of 123 nL/s with the cathode being at the capillary outlet. When 

doing the flow rate and injection voltage study, injection was performed for 5 min at 123, 387 

and 558 nL/s and 5, 10, 15, 20 and 30 kV, respectively. For the FASI-sweep-MEKC runs from 

a static vial at injection times of up to 40 min, a sample volume of 100 uL was used. For the 

FASI-sweep-MEKC runs from a static vial at a fixed time of 40 min a sample volume of 295 

uL was used. In all experiments separations were run at -20 kV with the cathode being in the 

interface. Detection was performed at 210 nm.  Comparison was made with a hydrodynamic 

injection (50 mbar, 10 s). Other conditions can be found in the text or figures.  

FASI-sweep-MEKC with the continuous sample flow interface consisted of the following 

steps (see Table 2.1 for details): (1) cleaning, (2) conditioning, (3) filling the Tee with sample 

with full external pressure, (4) switching the external pressure to use the manual pressure 

regulator, (5) applying voltage for FASI of the analytes under continuous sample flow, (6) 

switching back to full external pressure, (7) filling the lines and Tee with SDS, and (8) 

sweeping and separation by MEKC. During the separation the BGE was flushed through the 

interface using 50 mbar of pressure. The procedure for FASI-sweep-MEKC was similar to the 

one described by Quirino and Terabe [3]. During FASI, sample ions stack at the boundary 

between S and BGE due to a discontinuity in electric field strength. After injection, anionic 
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SDS micelles from the cathodic end enter the capillary sweep the analytes followed by 

separation by MEKC. 

Step Nr. Procedure 

1 Application of 4 bar for 3 min at inlet reservoir (BGE); 

Application of 4 bar for 3 min at inlet (BGE) and outlet reservoir (BGE)  

2 Application of 4 bar for 3 min at outlet reservoir (BGE) 

3 Application of 4 bar for 30 s at inlet reservoir (sample) 

4 Bypass valve is closed, valve in line with regulator is opened; 

Application of manually set pressure at inlet reservoir (sample) 

5 Application of 5 kV at the interface and application of the manually set pressure for the time 

of injection at inlet reservoir (sample) 

6 Valve in line with regulator is closed, Bypass valve is opened 

7 Application of 4 bar for 1 min at inlet reservoir (SDS), outlet reservoir is switched to SDS 

8 Application of – 20 kV at the interface 

Table 2.1 Steps involved in the EKI-sweep-MEKC procedure with the continuous sample 

flow interface 
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2.2.6 COMPUTER SIMULATION 

The multiphysics software COMSOL (version 4.3b) was used to simulate the system to 

explain how the amount of sample injected depends on the flow rate and voltage used during 

sample injection. Figure 2.1 B shows the basic 2D-axisymmetric geometry of the flow 

interface used in this simulation. The cylindrical flow interface, which is an open channel at 

both ends, (length 3 mm and 500 um ID) surrounds the capillary (150 um OD and 50 um ID). 

The capillary end in the simulation was open to both hydrodynamic flow and electrophoretic 

flux.  The influence of electroosmotic flow was not included in the model. The cylindrical 

cathodic electrode (length 500 um) is located on the wall of the flow cell 1 mm upstream from 

the capillary entrance. The simulated sample in the reservoir was iodate with a mobility set to 

50 x 10
-9

 m
2
/Vs, with an initial concentration of 0.1 mmol/L. The counterion was 0.1 mmol/L 

sodium (mobility of 55 x 10
-9

 m
2
/V). The interface and capillary was filled with 1 mmol/L 

sodium nitrate (70 x 10
-9

 m
2
/V) at the start of each simulation. The voltages applied were 100, 

250, 500, 1000, 2000, 3000, 4000 and 5000 volts between the anodic end of the capillary end 

and the electrode. The EOF was assumed to be zero. Time increments were set as 0.1 s from 0 

to 0.3 s, 0.05s from 0.3 to 0.5 s, 0.1s from 0.5 to 1 s, 2.5 s from 2.5 to 5 s, 5 s from 5 to 10 s 

and the simulation was continued for 10 s of injection. All simulations were carried out on a 

supercomputer (SGI Altix ICE 8200 Cluster) with an 8 GHz clock and required approximately 

2-3 days of computation time. 
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2.3 RESULTS AND DISCUSSSION 

The primary limitation of FASI from a sample vial in an Agilent CE instrument where the 

capillary is in line with the symmetry axis of a cylindrical electrode is that only sample ions 

occurring in an effective potential field (essentially the volume of sample between the 

cylindrical electrode and the capillary tip) can be injected [4]. One solution is to perform FASI 

from a continuous sample stream since the proportion of sample ions around the capillary 

entrance is continuously replenished and this may lead to more efficient injection of ions into 

the capillary. To examine this idea, a continuous sample flow interface was developed using a 

commercially available Tee connector with a cylindrical electrode at the sample outlet. This 

electrode design was inspired by the cylindrical electrode that allowed near quantitative 

injection of all sample ions in work published by Hirokawa et al. [5].  

 

2.3.1 COMPARISON OF THE STATIC VIAL AND CONTINUOUS SAMPLE 

FLOW INTERFACE PERFORMANCE 

In a flowing interface at a fixed sample flow rate, the injection time determines the volume 

of sample from which the ions are injected and hence should also influence the total mass of 

analyte ions injected. To verify this, the effect of the injection time on the injected amount of 

analyte in the flowing sample interface was studied using a mixture of alpreonolol (APL) and 

propanolol (PNL) and compared to injection from a static sample in a conventional vial. The 

results in Figure 2.3 verify that the peak area (corrected by migration time) increased linearly 

(R
2
 = 0.9626) from 0.37 at 5 min to a value of 2.36 at 40 min injection time. A 40 min 

injection does not seem practical at first but the purpose here is to show that the injected 

sample amount increases linearly with injection time. This has the potential to enhance the 
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preconcentration of the sample by simply increasing the injection time. Therefore a 40 min 

injection might still be justified instead of labor and time intensive offline preconcetration 

techniques. These results contrast with injections from a static vial (lift offset 4 mm) which 

are also shown in Figure 2.3. It can be seen from these data that the corrected peak area for 

PNL initially increases as the injection time is increased until approximately 20 min, after 

which the peak area does not increase further. This plateau is due to depletion of the analytes 

in the sample zone around the entrance of the separation capillary and is consistent with the 

results reported by Hirokawa [4] and others [3]. This shows that with a static sample it is not 

possible to enhance the sensitivity enhancement by increasing the injection time. With a 40 

min injection, the peak area for PNL was 4.3 times larger with the flowing sample than the 

area from the static system. This suggests that the flowing sample interface can provide 

further improvements over existing stacking systems. However, with the flowing sample 

injection a total volume of 295 µL of sample volume was flushed through the interface, while 

the static system had a volume of 100 µL.   
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Figure 2.3 Comparison of the effect of injection time on corrected peak area of PNL when 

injecting from the flowing sample interface and a 100 µL sample volume in a static system. 

sample solution, 10 ng/mL of PNL, APL in 0.5 mM phosphoric acid; BGE, 200 mM 

phosphate buffer with 20% (v/v) acetonitrile ( ���
�  2.0); SDS sweeping solution, 100 mM 

phosphate buffer, 100mM SDS with 20% (v/v) acetonitrile ( ���
�  2.0); voltage injection from 

a flowing sample interface, 5 kV at a sample flow rate of 123 nL/s; voltage injection from a 

static system, 5 kV from a sample volume of 100 uL; separation voltage, 20 kV reversed 

polarity; capillary 50 µm I.D. x 50 cm (20 cm to the detector); temperature, 25 °C ; detection, 

UV absorbance at 210 nm; lift offset, 4mm; CE instrument, Hewlett-Packard 3D CE, other 

explanations are in the text. 
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In order to better understand the origin of the improved performance of injecting from a 

flowing sample, injections from the same sample volume for the same length of time were 

performed under both flowing and static conditions and these were compared with a standard 

hydrodynamic injection. The static and hydrodynamic injections were performed using the 

instrument as it is intended with a commercial CE vial and no flow interface. Using a volume 

of 295 µL, with a 40 min injection in the static system an equivalent volume of sample (over 

the same 40 min time) was delivered through the interface using a flow rate of 123 nL/s.  

Typical separations of hydrodynamic injection, the 40 min static injection and 40 min flowing 

injection can be seen in Figure 2.4. The hydrodynamic injection was performed without SDS 

micelles, therefore the peak order is reversed. No separation could be obtained when using 

MEKC conditions with hydrodynamic injection due to a 50% shorter separation time. The 

baseline difference before and after the first system peak in the static vial and flowing sample 

interface is due to the presence of SDS micelles in the BGE when performing sweeping. 

The LOD when injecting from the flowing sample is 4.03 times lower for PNL compared to 

the static vial which clearly indicates that FASI from a continuous flowing sample is more 

efficient than from a static vial. The LOD was calculated based on peak height and S/N = 3. 

The sensitivity enhancement factor (SEF) for PNL was 23 000 fold better compared to a 

hydrodynamic injection (see Table 2.2).   
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Figure 2.4 Comparison of electropherograms obtained by CZE with hydrodynamic injection, 

FASI-sweeping-MEKC in the static system, FASI-sweeping-MEKC in the flowing sample 

interface using a standard mixture of propanolol (PNL) and alprenolol (APL); sample 

solution, 50 mg/L PNL, APL in BGE (hydrodynamic injection), 10 ng/mL of PNL, APL in 

0.5 mM phosphoric acid (flow interface and static vial); voltage (electrokinetic) injection from 

a static system, 5 kV for 40 min from a sample volume of 295 uL; voltage injection from a 

flowing sample interface, 5 kV for 40 min at a sample flow rate of 123 nL/s, which 

corresponds to a sample volume of 295 uL; hydrodynamic injection, 50 mbar for 20 s; 

separation voltage, 20 kV (hydrodynamic injection), 20 kV reversed polarity (static vial and 

flow interface); detection, 210 nm; BGE, 200 mM phosphate buffer with 20% (v/v) 

acetonitrile, ���
�  2; SDS sweeping solution, 100 mM phosphate buffer, 100mM SDS with 

20% (v/v) acetonitrile ( ���
�  2.0) (static vial and flow interface);  
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Figure 2.4 caption continued. capillary, 50 µm I.D. x 50 cm (20 cm to the detector); Peak  

assignement, SDS- sweeping front (sys), alprenolol (APL), propanolol (PNL); temperature, 25 

°C; detection, UV absorbance at 210 nm; CE instrument, Hewlett-Packard 
3D

 CE, other 

explanations are in the text. 
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Peak LOD a  SEF b 

 flowing sample
c
 

(ng/mL) 

static sytem
d
 

(ng/mL) 

hydrodynamic 

injectione 

(µg/mL) 

 flowing 

sample c 

static 

system d 

PNL 0.32 1.29 7.33  22918 5681 

APL 1.67 6.97 23.52  14075 3375 

a
 LOD was calculated based on peak height and S/N = 3. 

b
 SEF = LOD from CZE / LOD from flowing sample or static sample injection.  

c
 flowing sample injection was 40 min at 5kV at a flow rate of 123 nL/s, which corresponds to 

a sample volume of 295 uL. 

d
 static sample injection was 40 min at 5kV from a static vial with 295 uL sample volume. 

e
 CZE injection was 10 s at 50 mbar 

Table 2.2 LODs for typical flowing sample, static sample and CZE migrations of PNL and 

APL. Sensitivity enhancement factor (SEF) in terms of LOD for flowing sample and static 

system, other conditions see Figure 2.4. 
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2.3.2 COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF THE 

INJECTION FROM A FLOWING SAMPLE  

It is apparent that the mass of ions injected into the capillary from the flowing stream will 

be a function of both the flow rate and the applied voltage. To examine the relationship 

between these variables and injection, CFD simulations were performed using COMSOL. 

Since a full 3D simulation would not allow for obtaining useful data in a reasonable 

timeframe, it was necessary to make some assumptions and simplifications to the interface 

design in the simulation. First, a symmetrical structure was chosen such that the 2D 

simulations could be performed around a symmetry axis to create a 3D environment. In order 

to do this, it was necessary to change the orientation of the capillary in the interface. 

Experimentally, the capillary axis was oriented perpendicular to the sample flow direction 

(Figure 2.1 A) while, in the simulation, the capillary axis was parallel with the sample flow 

direction (Figure 2.1 B). The simulated channel surrounding the capillary was open at both 

ends. The dimensions, flow rates and voltages were as close as possible to those used 

experimentally, but there are slight differences meaning that the simulations allow only for 

qualitative comparison and to aid in understanding the trends, rather than in predicting 

quantitative differences.   

The linear velocities of the sample fluid were set to 2.5, 4.25 or 7.5 mm/s, and the injection 

voltages were 0, 100, 250, 500, 750, 1000, 2000, 3000, 4000 and 5000 V. In all simulations, 

the interface and capillary were filled with electrolyte (1 mM NaNO3) and the inflowing 

solution changes to sample (0.1 mM NaIO3) at time 0s. Depending on the flow rate, the 

sample required 0.2 – 0.4 s to reach the capillary inlet. Figure 2.5 shows 2D plots of the 

change in iodate concentration at a flow rate of 2.5 mm/s and voltages of 100V and 5000 V, at 
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0, 0.5, and 10 s.  From the figure it can be seen that only a small fraction of the iodate enters 

the capillary when a voltage of 100V is applied, while when 5000 V is used, almost all of the 

ions are injected. This clearly shows that under certain conditions it is possible to completely 

inject the sample ions from the flowing sample. 
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Figure 2.5 Illustration of the sample concentration distribution at 0, 0.5 and 10 sec when 

injecting at 2.5 mm/s using 100 and 5000 V; sample solution, 0.1 mmol/L of IO3; capillary 50 

µm I.D. The inlet flow enters at the bottom-right, outside the capillary, and leaves at the top of 

the apparatus. This simulation was carried out in COMSOL version 4.3b using an 

axisymmetric geometry centered on the lumen axis; other explanations are in the text.  
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To estimate the amount of ions injected into the capillary in the simulations, the flux of 

iodate (mobility of 50 x 10
-9

 m
2
/Vs) entering the capillary was measured at each time point 

and integrated until a time of 10 s. The total iodate flux at the three different flow rates and 10 

different voltages is shown in Figure 2.6. It can be seen at all flow rates that, as the voltage is 

increased, the amount of iodate injected initially increased in an almost linear manner, but 

flattened at higher voltages before leveling off. The point at which it levels off is the depletion 

voltage. Above this voltage, 100% of the iodate is extracted from the flowing sample and 

injected into the capillary. It can be seen in Figure 2.6 that, at a flow rate of 2.5 mm/s, the 

depletion voltage is reached at around 3000 V. At higher flow rates higher voltages are 

required to reach the depletion limit, which can also be seen in Figure 2.6 for flow rates 

corresponding to 4.25 mm/s and 7.5 mm/s. This means higher flow rates and voltage 

combinations are required in order to reduce the injection time. 
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Figure 2.6 Simulation results of the effect of injection voltage and flow rate on injected 

sample amount when injecting at 0, 100, 250, 500, 750, 1000, 2000, 3000, 4000 and 5000 V 

and 2.5, 4.25 and 7.5 mm/s; sample solution, 0.1 mmol/L of IO3; capillary 50 µm I.D.; 

COMSOL version 4.3b, other explanations are in the text. 
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2.3.3 EXPERIMENTAL VALIDATION OF THE SIMULATION RESULTS 

One of the key findings from the simulation data was that at a defined flow rate there is a 

voltage – the depletion voltage – above which there is no further increase in ions injected due 

to depletion of the flowing sample stream. Prior to experimental verification of these results, 

the repeatability of the system was evaluated using the injection of a 100 ng/mL standard 

solution of PNL and APL in 0.5 mM H3PO4 for 3 min at 280 nL/s and 30 kV. The intraday 

repeatability % RSD (n=10) for peak area (corrected by migration time) were 19.9 and 7.2 % 

for APL and PNL, respectively. The interday repeatability % RSD (n=10) for peak area 

(corrected by migration time) were 11.2 and 14.2 % for APL and PNL, respectively. The 

repeatability %RSD (n=10) of the migration times were 2 and 2.3% for PNL and APL, 

respectively.  

The repeatability of rebuilding the interface was assessed by disassembling and 

reassembling the entire interface 6 times and evaluated using the conditions above. The % 

RSD (n=6) for peak area (corrected by migration time) were 4.8 and 3.6 % for APL and PNL, 

respectively. The repeatability %RSD (n=10) of the migration times were 2.8 and 3.1% for 

PNL and APL, respectively. 

Having established the repeatability of the system, an experimental study was performed 

with different voltages (5, 10, 15, 20 and 30 kV) and flow rates (123, 387 and 558 nL/s) with 

an injection time of 5 min. The data are shown in Figure 2.7 where it can be seen that, at a 

flow rate of 123 nL/s, the corrected peak area for PNL initially increases linearly (R
2
 = 

0.9967) until 20 kV after which the peak area does not increase any further. Significantly, this 

is exactly the same behavior observed in the simulations and the plateau is indicative of 

depletion of the analytes and indicates that nearly all of the ions are injected into the capillary. 
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Increasing the flow rate is expected to increase the depletion voltage, which is exactly what 

occurs and can be seen from the figure where the depletion plateau is not reached within the 

maximum 30 kV that can be applied in the instrument. The good agreement in the peak 

response predicted by the simulation and observed experimentally indicates that, despite the 

simplified geometry of the interface used in the simulations, it still accurately accounts for the 

physics of the hydrodynamic and electrophoretic transport of these solutes.   

The data illustrate that most ions are injected at 30 kV and a flow rate of 558 nL/s. 

Injecting for 5.5 min at 558 nL/sec corresponds to 184 µL which is less volume than the 295 

µL used earlier in the static vial but still gives a 3 times bigger SEF of 18,000. This suggests 

that FASI from a flowing sample is more efficient than from a static sample.  
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Figure 2.7 Experimental data on the effect of injection voltage and flow rate on corrected 

peak area of PNL when injecting at 5, 10, 15, 20 and 30 kV and 123 nL/s 387 nL/s and 558 

nL/s; sample solution, 50 ng/mL of PNL, APL in 0.5 mM phosphoric acid; BGE, 200 mM 

phosphate buffer with 20% (v/v) acetonitrile ( ���
�  2.0), SDS sweeping solution, 100 mM 

phosphate buffer ( ���
�  2.0), 100mM SDS with 20% (v/v); separation voltage, 20 kV reversed 

polarity; capillary 50 µm I.D. x 50 cm (20 cm to the detector); temperature, 25 °C ; detection, 

UV absorbance at 210 nm; CE instrument, Hewlett-Packard 3D CE, other explanations are in 

the text. 
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2.4 CONCLUSIONS 

Using a flowing sample, four times more analyte is injected into the capillary than in a 

static system. Theoretical simulations investigating the effect of flow rate and injection 

voltage on the injected sample indicate that this is due to depletion of the ions from the 

flowing stream indicating near quantitative injection of all of the ions. Using a flow rate of 

558 nL/s and an injection voltage of 30 kV, the sensitivity of two cationic drugs could be 

improved 18,000-fold with an injection time of 5.5 min. Future optimization of the interface 

design is likely to lead to even further enhancements and may also overcome the issue of 

injection bias associated with electrokinetic injection by choosing a flow rate and voltage that 

allows all ions, regardless of their mobility, to be injected. In the present work this was not 

studied in detail since the main aim was to gain an understanding of the underlying principle 

of the injection from a flowing stream. When dealing with real samples the field strength that 

is available for injection would change with differences in sample matrix conductivity. These 

differences could lead to analyte ions not being injected. To compensate for this a voltage 

above the depletion voltage needs to be used. 
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Chapter 3 

MATHEMATICAL MODEL AND 

EXPERIMENTS 

3.1 INTRODUCTION 

In Chapter 2 it could be shown that electrokinetic injection from a flowing sample stream can 

lead to higher sensitivity enhancements than injecting from a static vial. The injection voltage 

and flow rate were optimized for the tee connector interface. The question now is how to get near 

quantitative injection from the biggest possible sample volume in the shortest possible time. 

Therefore it is necessary to investigate the influence of the interface dimensions on the highest 

possible flow rate that yields quantitative injection. Other reports investigated the use of different 

interface designs [1-8]. Despite this there is no systematic study that allows the influence of the 

various factors on the electrokinetic injection from a flowing sample stream to be understood.  

This chapter firstly develops a simplified mathematical model from first principles to explain 

the influence of interface geometry on injection, and then provides experimental verification of 

the model in the second half. 
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3.2 DEVELOPMENT OF THE MATHEMATICAL MODEL 

The first stage in developing a mathematical model is to define the setup and dimensions of 

the interface. Then the fundamental concept of electrokinetic transport from a hydrodynamic 

flow is developed. The main goal of the model is to find the depletion flow rate, defined as the 

flow rate at a defined voltage at which > 90 % of all ions are injected. The depletion flow is 

specific to each set of experimental conditions, such as the interface and capillary dimensions as 

well as sample and background electrolyte properties. The model is used to understand the 

influence of each of these variables on the depletion flow rate to make recommendations for 

interface design to maximize the depletion flow rate.  

 

3.2.1 DEFINITIONS AND DIMENSIONS 

The scheme of the interface used for the mathematical model is presented in Figure 3.1. This 

is a flow through channel with a uniform inner diameter, D, with the capillary positioned in the 

middle. The liquid passes through the interface around the outer surface of the capillary. The 

electric field, E, is established between the cylindrical electrode in the interface and the electrode 

at the outlet end of the capillary.  

The electric field strength depends on the length LIntf  between the capillary entrance and the 

electrode. It also depends on the interface diameter D because with a wider interface there is a 

longer path between the capillary inlet and the electrode. To account for this difference, the 

distance between the edge of the electrode and the symmetry axis of the capillary entrance was 

selected as the path of the electric field, seen in Figure 3.1 as L. The angle between the interface 

wall and the electric field line path was defined as θ. 
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Figure 3.1 Scheme of interface for the mathematical model. The electric field strength is 

assumed to be uniform across the interface length LIntf. The field lines are assumed to be parallel 

to the interface walls. To account for the influence of the inner diameter on the field line pathway 

the distance between the lower edge of the electrode and the center of the capillary L was chosen 

as the electric path length. 

 

3.2.2 ELECTROKINETIC AND HYDRODYNAMIC FORCES FOR 

ELECTROKINETIC INJECTION FROM A FLOWING SAMPLE STREAM 

The sample flows through the interface in Figure 3.1 from the bottom of the figure around the 

capillary by pressure. In order to transport sample ions into the separation capillary inlet a high 

voltage is applied to the electrode in the capillary outlet which forms an electric field between 

L = electric path length 

electrode

capillary 

inlet

D = interface diameter

Lintf = interface  length

LCap = capillary length

Ɵ

AD = interface area
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the tip of the capillary and the edge of the grounded ring electrode in the interface. Ions in-

between the capillary and electrode are subjected to the applied electric field. They move with an 

electrophoretic velocity against the hydrodynamic movement of the sample stream. The direction 

of their resulting velocity defines whether they are transported into the separation capillary inlet 

or not. This is based on whether the hydrodynamic or electrophoretic forces dominate.  

The electrophoretic velocity of the sample ions along the electric field line path is vel.,Ɵ which 

is illustrated in Figure 3.2. The electrophoretic velocity vel.,Ɵ is comprised of an electrophoretic 

velocity in radial direction vel.,r which accounts for movement from the outer edge of the flow 

into the center of the flowing stream and the axial direction vel.,a which accounts for movement of 

the ions from the electrode back towards the capillary entrance. Superimposed on vel.,a is the 

hydrodynamic velocity of the sample stream vhydr. The apparent velocity vapp,a is the vector sum 

of the axial electrophoretic velocity vel.,a and the hydrodynamic velocity vhydr . When the apparent 

velocity is positive the ions move towards the capillary and are injected. When the apparent 

velocity is negative, the hydrodynamic velocity is dominant and not all of the ions are injected. 
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Figure 3.2 Scheme of the hydrodynamic, electrophoretic and apparent velocities in the 

continuous sample flow interface 

  

electrophoretic  velocity,  electric path vel., Ɵ
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3.2.2.1 APPARENT VELOCITY OF THE SAMPLE ION 

Using geometry and the theory of electromigration, the apparent velocity vapp,a can be 

expressed as a function of the interface dimensions, the sample mobility, injection voltage and 

the flow rate. The voltage available for injection UIntf leads to the formation of an electric field in 

the interface, EIntf,Ɵ, along the electric path length L (Figure 3.1) according to: 

L

U
E

Intf

Intf =
θ,     (3.1) 

  

 

θ,IntfE  electric field strength along the electric field path 

in V/m
 

IntfU  voltage available for injection in V 

L  length of electric field path in m
 

 
 

 

The angle Ɵ is defined by the length of the interface LIntf and the electric field path L (see 

Figure 3.1). Ɵ is also defined by the electrophoretic velocity of the sample ion along the electric 

field path vel.,Ɵ and its axial component vel.,a  which is illustrated in Figure 3.2. 

θ

θ

.,

.,
 cos

el

aelIntf

v

v

L

L
==      (3.2) 

 

 

 

θ.,elv  electrophoretic velocity of sample ion in the 

direction of the electric field path in m/s
 

aelv .,
 electrophoretic velocity of the sample ion in axial 

direction in m/s 

IntfL  length of interface in m 

L  length of electric field path in m
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An ion with the electrophoretic mobility µ  is acted upon by the electric field EIntf,Ɵ which 

causes it to accelerate until it reaches a constant velocity of vel,Ɵ. 

θθ
µ ,., Intfel Ev ⋅=      (3.3) 

 

 

 

 

θ.,elv  electrophoretic velocity of sample ion along the 

electric field line path in m/s
 

µ  electrophoretic mobility of the sample ion in 

m²/(V*s) 

θ,IntfE  electric field strength along the electric field line 

path in V/m 

  

 

At the same time the sample is being pushed through the interface with a hydrodynamic 

velocity vhydr. The volumetric flow rate fl is given by: 

π⋅

⋅
==

2.

4

D

fl

A

fl
v

D

hydr     (3.4) 

 

 

 

.hydrv  hydrodynamic velocity of sample stream in m/s
 

DA  cross section of interface in m² 

D inner diameter of interface in m
 

fl  volumetric flow rate of sample stream 

in m
3
/s 

 
 

 

The apparent velocity of the sample ion vapp,a  is the sum of the electrophoretic velocity in 

axial direction vel.,a and the hydrodynamic flow velocity vhydr.. 

..,, hydraelaapp vvv −=      (3.5) 

 

 

 

aappv ,
 apparent electrophoretic velocity of sample ion in 

m/s
 

aelv .,
 electrophoretic velocity of sample ion in axial 

direction in m/s 

.hydrv  hydrodynamic velocity of sample 

stream in m/s
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The above formula needs to be rearranged to contain only parameters of the interface setup 

which are independent from each other.  

Using equation 3.2, the following expression for vapp,a can be obtained: 

π
θ

⋅

⋅
−⋅=

2.,,

4

D

fl

L

L
vv

Intf

elaapp
 

Using 
θθ

µ ,., Intfel Ev ⋅=  we obtain 

π
µ

θ

⋅

⋅
−⋅⋅=

2,,

4

D

fl

L

L
Ev

Intf

Intfaapp
 

Further 
L

U
E

Intf

Intf =
θ,  which gives 

πD
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L
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This can be rearranged to give the final equation describing vapp,a as: 

π

µ

⋅

⋅
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



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
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⋅⋅
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v

Intf

IntfIntf
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aappv ,
 apparent electrophoretic velocity of sample ion in 

m/s
 

µ  electrophoretic mobility of the sample ion in 

m²/(V*s) 

IntfL  length of interface in m
 

 fl  volumetric flow rate of sample stream 

in m
3
/s 

 D inner diameter of interface in m 

 IntfU  voltage available for sample injection 

in V 
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The injection voltage 
IntfU  is the only dependent variable remaining in the formula. Therefore 

it is necessary to derive a formula that describes the injection voltage as a function of 

independent interface parameters. 

 

3.2.2.2 DERIVATION OF THE INJECTION VOLTAGE 

In order to understand how the various interface parameters influence the injection voltage an 

electric equivalent circuit was constructed.  

The continuous flow interface and the capillary form an electric series circuit which can be 

calculated using Ohm’s law and Kirchhoff’s mesh rule. The equivalent electric circuit diagram is 

shown Figure 3.3 . 
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I  electric current in A 
 

IntfU  voltage drop across interface in V  

CapU  voltage drop across capillary in V  

U  total applied voltage in V  

CapR  resistance of liquid in capillary in Ohm  

IntfR  resistance of liquid in interface in Ohm  

 

Figure 3.3 Electric equivalent circuit diagram for the continuous flow interface and the 

separation capillary. The electric resistance of the interface is connected in series to the capillary 

resistance. The total voltage is the voltage applied by the high voltage power supply. Part of this 

voltage will drop across the interface and the rest across the capillary. The current is the same in 

the interface and capillary. 
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The voltage drop in a series circuit can be calculated using Kirchhoff’s mesh rule which states 

that the direct sum of any potential differences around any closed network is zero. Thus, 

CapIntf UUU +=        (3.8) 

 

IntfU  voltage drop across interface in V
 

CapU  voltage drop across capillary in V 

 U  total applied voltage 

 

The total resistance is equal to the sum of the individual resistances of the capillary and the 

interface according to equation 3.9: 

CapIntf RRR +=      (3.9) 

 

 

IntfR  electric resistance of liquid in interface in Ohm
 

CapR  electric resistance of liquid in capillary in Ohm 

 

The electric current flowing through the liquid in the interface and in the capillary will follow 

Ohm’s law. Therefore the capillary and the interface carry the same current.  

CapIntf

CapIntf

RR

UU

R

U
I

+

+
==      (3.10) 

Cap

Cap

R

U
I =          

Intf

Intf

R

U
I =  

 

I  electric current in A
 

IntfU  

 

voltage drop across interface in V 

CapU  voltage drop across capillary in V
 

 IntfR  resistance of liquid in interface in Ohm 

 CapR  resistance of liquid in capillary in Ohm 

 

The interface resistance 
IntfR  is defined by the dimension of the interface and the properties of 

the electrolyte and can be calculated by: 
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D

IntfIntf

Intf
A

L
R

⋅
=

ρ
     (3.11) 

 

IntfR  resistance of liquid in interface in Ohm
 

IntfL  length of interface in m 

 Intfρ  electric specific resistivity of liquid in interface in 

Ohm*m 

 
DA  cross section of interface in m

2
 

 

Similarly, the resistance of the capillary can be calculated by: 

d

CapCap

Cap
A

L
R

⋅
=

ρ
     (3.12) 

CapR  resistance of liquid in capillary in Ohm
 

CapL  length of capillary in m 

 Capρ  electric specific resistivity of liquid in capillary in 

Ohm*m 

 dA  cross section of capillary in m
2
 

 

The conductivity ratio between the liquid in the capillary and the interface is defined as:  

Intf

Cap

Cap

Intf
k

γ

γ

ρ

ρ
==      (3.13) 

 

 

k  
conductivity ratio of liquid in capillary and 

interface
 

Capρ  
electric specific resistivity of liquid in capillary in 

Ohm*m 

 Intfρ  electric specific resistivity of liquid in interface in 

Ohm*m 

 
Capγ  electric specific conductivity of liquid in capillary 

 
Intfγ  electric specific conductivity of liquid in interface 

 

Rearranging Ohm’s law for the voltage drop across the interface and capillary we get: 

IntfIntf RIU ⋅=       (3.14) 

CapCap RIU ⋅=        (3.15) 
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Given that the current is identical, then equating equations 3.14 and 3.15 yields: 

Intf

CapIntf

Intf R
RR

U
U ⋅

+
=

      (3.16) 

Adding in the specific resistivities, the interface dimensions, capillary dimensions and the 

conductivity ratio we obtain the following formula for the injection voltage, 

22
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IntfIntf

IntfIntf

Intf

⋅

⋅⋅

+
⋅

⋅⋅

⋅

⋅⋅
⋅

=

π

ρ

π

ρ

π

ρ

     (3.17) 

This formula contains only independent variables all of which are parameters of the interface 

setup.  

 

3.2.2.3 DEPLETION FLOW RATE FOR COMPLETE SAMPLE INJECTION 

Intuitively, all ions are injected when the apparent ion velocity is towards the capillary inlet. 

From a practical perspective, maximizing the flow rate while still injecting all of the ions will 

yield the most significant enhancements in sensitivity in the shortest possible time. Therefore, 

the main goal is to find the depletion flow rate – the maximum flow rate at a defined voltage at 

which all sample ions are injected. 

At a certain flow rate the axial component of the electrophoretic sample ion velocity and the 

hydrodynamic velocity are equal. At this flow rate, the depletion flow rate fl0, the apparent 

velocity in axial direction vapp,a of the sample ion is zero. Below fl0 the apparent velocity points 

towards the capillary inlet and all the sample ions are injected. Above fl0 a certain proportion of 

the incoming sample ions are lost. 
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In order to find fl0, vapp,a is set to zero in equation 3.7 to give:  
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Rearranging this equation yields: 
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fl0 
is the volumetric flow rate where vapp,a is zero. Combining this with equation 3.17 for UIntf 

gives: 
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, which can be rearranged to 
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0fl  

 

volumetric depletion flow rate 

where 
aappv ,
is zero in m

3
/s

 

 U  total applied voltage in V 

 k  
conductivity ratio of liquid in 

capillary and interface 

 D inner diameter of interface in m 

 IntfL

 
length of interface in m 

 CapL

 
length of capillary in m 

 d inner diameter of capillary in m 

 µ  electrophoretic mobility of sample 

ion in m2/Vs 

 

For any flow rate fl < fl0 all of the sample ions get injected 

 

3.2.3 SENSITIVITY ANALYSIS OF THE DEPLETION FLOW RATE  

In the following sections the influence of each variable on the depletion flow rate is 

examined. The formula for 0fl  contains 8 variables that can be varied within certain practical 

constraints with a sensitivity analysis performed by changing each parameter individually. For 

the following calculations the parameters have been chosen as they appear in the experimental 
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setting in section 3.3 in this chapter. The variables were: U = 15 kV, k = 400, 
IntfL = 5 mm, 

CapL  

= 32.6 cm, d=50 µm, µ = 23*10-9 m2/Vs, D = 1000 µm. 

3.2.3.1 INFLUENCE OF INTERFACE DIAMETER  

Varying the diameter of the interface will have two effects. First, based on equation 3.11 an 

increase in interface diameter D will reduce interface resistance as there is a bigger cross 

sectional area available for the current to pass through, thus a lower resistance. This will lead to a 

lower injection voltage. Second, the electric path L is increased with a bigger D. The 

combination of decreased injection voltage and a longer electric path length should cause a 

reduction in the electric field strength and a decrease in the axial component of the 

electrophoretic velocity vel.,a. Thus vel.,a will decrease with increasing interface diameters. This 

means that at higher interface diameters the hydrodynamic velocity for complete sample 

injection should decrease. However, it is important to realise that the flow rate through the 

interface does not decrease in the same manner as the hydrodynamic velocity. This is due to the 

fact that the flow rate decreases quadratically with the interface diameter. For example: if the 

interface diameter is doubled the hydrodynamic velocity is reduced by 4 to keep the same flow 

rate through the interface. This means if the axial component of the electrophoretic sample 

velocity decreases also decreases by a factor of 4, complete sample injection at this flow rate is 

possible. If vel.,a 
decreases less than a factor of 4, this will mean that there is a lower flow rate fl0 

for complete sample injection. If vel.,a 
decreases more than a factor 4 complete sample injection, 

then a higher fl0 
is possible.  

In Figure 3.4 the change of fl0 with the interface diameter D is shown. As can be seen from 

the graph fl0 starts out with a sharp rise from 0.1165 µL/s at 50 µm to the maximum of 0.8110 
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µL/s at 1100 µm. fl0 is decreasing after the maximum at a less sharp slope to 0.4155 µL/s at 

10,000 µm. Between 450 µm and 2750 µm interface inner diameter the depletion flow rate 

decreases only around 5% of its maximum value at 1100 µm. Therefore interface diameters 

should be chosen within the relatively flat top of the graph to ensure a high depletion flow rate. 

All other parameters were defined as previously stated. 
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Figure 3.4 Change of fl0 with the interface diameter D. Above the depletion flow rate fl0 sample 

gets lost and below sample gets injected. The depletion flow rate has a maximum at 1100 µm 

interface inner diameter. The variables chosen were: k = 400, 
IntfL = 5 mm, 

CapL  = 32.6 cm, d = 

50 µm, µ  = 23*10
-9 

m
2
/Vs, U = 15 kV. The inner diameter of the interface D was varied from 

50 to 10,000 µm. 
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3.2.3.2 EFFECT OF TOTAL APPLIED VOLTAGE AND SAMPLE MOBILITY 

A higher total applied voltage is expected to increase the electric field strength and allow 

higher depletion flow rates. From the formula for fl0 it is clear that increasing the applied total 

voltage leads to a directly proportional increase in fl0. fl0 increases proportionally at 0.05400 µL/s 

per 1 kV. The variables chosen were: k = 400, 
IntfL = 5 mm, 

CapL  = 32.6 cm, d = 50 µm, D = 

1000 µm, µ  = 23*10
-9 

m
2
/Vs. Within the chosen constraint of 1-30 kV  the depletion flow rate 

increases from 0.05400 to 1.621 µL/s. With an increased electrophoretic sample mobility the 

samples travel towards the capillary inlet at higher velocities which allows for higher depletion 

flow rates The depletion flow rate increases 3.524*10
7 

µL/s per 1 m
2
/Vs and increases from 

0.7048 to 3.524 µL/s when varying the electrophoretic sample mobility from 10-100*10
-9 

m
2
/Vs. 

The variables chosen were: k = 400, 
IntfL = 5 mm, 

CapL  = 32.6 cm, d = 50 µm, D = 1000 µm, U 

= 15 kV. 

 

3.2.3.3 INFLUENCE OF CONDUCTIVITY RATIO 

Other important factors that will affect fl0 are the conductivities of the BGE and the sample. 

This is expressed as the conductivity ratio k between the liquid in the capillary and the liquid in 

the interface and will affect the distribution of the voltage across the interface and capillary. For 

these calculations, the interface is assumed to be filled with sample and the capillary with BGE. 

Intuitively, a higher conductivity ratio should cause an increased field strength in the interface 

and therefore enable a higher depletion flow rate fl0.  

This is reflected in the formula for fl0 where it is can be seen that increasing k leads to a 

directly proportional increase in fl0. Within the chosen constraint of 200-1000 for k the depletion 

flow rate increases from 0.4084 to 1.981 µL/s proportionally at 0.001970 µL/s per conductivity 
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ratio unit. This suggests that a high conductivity difference between sample and background 

electrolyte will yield higher depletion flow rates. The variables chosen were: 
IntfL = 5 mm, 

CapL  

= 32.6 cm, d = 50 µm, D = 1000 µm, µ = 23*10
-9 

m
2
/Vs, U = 15 kV. 

 

3.2.3.4 INFLUENCE OF INTERFACE LENGTH 

Increasing the interface length Lintf should increase the interface resistance Rintf (see equation 

3.11) and the voltage drop across the interface Uintf, which is the injection voltage (see equation 

3.16). The interface resistance Rintf can be assumed to be negligibly small in the denominator of 

equation 3.16 at short interface lengths Lintf. This means the injection voltage Uintf will increase 

nearly directly proportional with the interface resistance Rintf and therefore the interface length 

Lintf when using a short interface. With the interface getting longer the capillary resistance RCap in 

the denominator in equation 3.15 can be assumed to be negligibly small. In this case the injection 

voltage will not increase any further when increasing the interface resistance and therefore the 

interface length. Therefore the injection voltage will start out with a sharp incline at small 

interface lengths and reach a plateau value at bigger interface diameters. The electric path length 

L as a function of interface length Lintf (see equation 3.6) on the other hand will start out 

relatively flat and the reach a near linear dependence at long interface lengths. The resulting 

electric field strength EIntf,Ɵ along the electric path length L is defined as the ratio of Uintf / L. 

Therefore EIntf,Ɵ and the axial component of the electrophoretic velocity vel.,a will reach a 

maximum as function of the interface length. This means that the hydrodynamic velocity for 

complete sample injection, vhydr and the depletion flow rate fl0 should show the same dependence 

on the interface length.  



 

Chapter 3  Mathematical Model and Experiments 

87 

 

Figure 3.5 illustrates the dependence of fl0 on the interface length LIntf. As expected the 

depletion flow rate increases from 0.7775 uL/s at 2mm interface length, reaches a maximum of 

0.8107 uL/s at 5.5 mm and then declines to 0.7826 at 20 mm. Between the chosen interface 

diameters of 2 mm and 20 mm the depletion flow rate varies only around 5%. Therefore the 

influence of the interface length on the depletion flow rate is negligible for the chosen constraints 

of the interface length. 
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Figure 3.5 Change of fl0 with the interface length 
IntfL . The depletion flow rate shows a 

maximum of 0.8107 uL/s at 5.5 mm interface length. The variables chosen were: k = 400, 
CapL  

= 32.6 cm, d = 50 µm, D = 1000 µm, µ  = 23*10
-9 

m
2
/Vs, U = 15 kV. The interface length 

IntfL

was varied from 2 to 20 mm. 
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3.2.3.5 INFLUENCE OF CAPILLARY DIMENSIONS 

The separation capillary and the interface form an electric series circuit. Part of the total 

voltage will drop across the interface and the majority across the capillary. By reducing the 

voltage drop across the capillary more voltage is available for injection in the interface. 

Reducing the length of the separation capillary is expected to leave more voltage for injection in 

the interface. Thus a reduction in capillary length should increase fl0 exponentially according to 

equation 3.17. From equations 3.16 and 3.17 it can be seen that tripling the inner diameter of the 

capillary d decreases the capillary resistance RCap by a factor of 3
2
 = 9. Therefore increasing the 

inner diameter is expected to increase the injection voltage and fl0 exponentially. 

It can be seen from Figure 3.6 that this is indeed the case. With a shorter capillary the 

depletion flow rate fl0 increases exponentially. At 2 cm capillary length the depletion flow rate is 

10.73 µL/s and falls to 0.2269 µL/s at 100 cm. Figure 3.7 shows that a decrease in capillary inner 

diameter increases the depletion flow rate exponentially from 8.230*10
-3

 µL/s at 5 µm to 3.101 

µL/s at 100 µm capillary i.d. 
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Figure 3.6 Effect of capillary length on depletion flow rate fl0. A shorter separation capillary 

allows for higher depletion flow rates. The variables chosen were: k = 400, 
IntfL = 5 mm , d = 50 

µm, D = 1000 µm, µ  = 23*10
-9 

m
2
/Vs, U = 15 kV. The capillary length was varied from 2 to 

100 cm. 
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Figure 3.7 Effect of capillary inner diameter on depletion flow rate fl0. A bigger capillary i.d. 

allows for higher depletion flow rates. The variables chosen were: k = 400, 
IntfL = 5 mm , LCap = 

32.6 cm, D = 1000 µm, µ  = 23*10
-9 

m
2
/Vs, U = 15 kV. The capillary inner diameter was varied 

from 5 to 100 µm. 
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3.2.3.6 GUIDELINES FOR INTERFACE DESIGN FROM THE MATHEMATICAL 

MODEL 

In order to maximise the depletion flow rate, the following guidelines can be determined from 

the examination above: the total applied voltage, the electrophoretic sample mobility and the 

conductivity ratio between the liquid in the interface and the capillary should be as high as 

practically possible to give high depletion flow rates. The conductivity ratio will be determined 

by the limitations of the stacking method and the electrophoretic sample mobility will be 

determined by the analyte of interest in an experimental setup. Limitations due to high currents 

will arise when choosing the highest possible applied voltage. The results propose that there is an 

optimum interface diameter and length at which the depletion flow rate reaches a maximum. It 

should be noted that varying the interface length between 2 to 20 mm changes the depletion flow 

rate only around 5% of its maximum of 0.8107 µL/s. Within a range of 450 to 2750 µm of 

interface diameter the depletion flow rate changes around 5% of its maximum at 0.8110 µL/s.  

The capillary inner diameter should be as big as current limitations allow and increases the 

depletion flow rate exponentially. Out of all parameters a reduced capillary length showed the 

biggest improvements in depletion flow rate up to 10.73 µL/s at a capillary length of 2cm. This 

again limited because the voltage needs to be reduced accordingly when using a short separation 

capillary to avoid high currents. The mathematical model represents a simplified version of a 

continuous flow interface and did not capture all physical effects. For example in the 

mathematical model the liquid velocity across the interface chamber was assumed to be uniform. 

In reality the velocity profile in the interface chamber is parabolic. This means, that in reality the 

velocity of the liquid at the center of the channel is relatively high, while the velocity close to the 

walls is relatively slow. Another aspect is that the electric field lines are assumed to be parallel 
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throughout the interface channel. In reality the field lines have to go from the ring electrode in 

the interface channel into the separation capillary entrance. Therefore the field line density must 

increase in close proximity to the capillary entrance. Despite these simplifications the 

mathematical model should allow to predict correct trends for the depletion flow rate as a 

function of interface parameters. 
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3.3 EXPERIMENTAL VALIDATION OF THE MATHEMATICAL MODEL 

The mathematical model established an understanding of how the various interface parameters 

affect the depletion flow rate when performing EKI from a flowing sample stream. In this section 

the influence of the flow interface dimensions on the depletion flow rate is examined in an 

experimental setup and then compared with the mathematical model predictions. 

3.3.1 EXPERIMENTAL 

3.3.1.1 MATERIALS AND INSTRUMENTATION 

To monitor the electrokinetic injection from a flowing sample stream a fluorescent dye was 

used. The suitable buffers were set to pH 7.9 in order to have maximum fluorescent intensity 

while preventing damage of the Zero EOF coated capillary. HCL, TRIS, HEPES and Fluorescein 

sodium salt were purchased from Sigma-Aldrich (St. Louis, MO). KOH was purchased from 

Merck Millipore (Darmstadt, Germany). Stock solutions of 100 µg/mL sodiumfluorescein, 400 

mM Tris in water adjusted to pH 7.9 with HCl and 400 mM HEPES in water adjusted to pH 7.9 

with KOH were prepared. Dilutions of sodium fluorescein in Tris-HCl or HEPES-KOH buffer 

were prepared by mixing an appropriate amount of purified water with the 100 µg/mL sodium 

fluorescein solution and the 400 mM Tris-HCl or the 400 mM HEPES-KOH stock, respectively. 

All solutions were filtered through a 0.45 µm filter from MicroScience (Co Durham, UK) and 

sonicated for 10 min prior to use. The background electrolyte (BGE) was prepared by diluting 

the stock solutions with the appropriate amount of water to 40 mM Tris-HCl or 40 mM HEPES-

KOH, respectively. Water was purified using a Milli-Q system from Millipore (Bedford, MA). 

The pH was measured using an Activon Model 210 pH meter (New South Wales, Australia).  
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3.3.1.2 HOMEMADE CE SYSTEM 

The setup of the CE system was designed to allow a controlled flow of sample and adjustment 

of all liquid levels to prevent sample matrix injection. The interface was a straight channel in a 

block of polymer to avoid formation of unwanted turbulences and mixing of sample and BGE at 

the boundary. The capillary was positioned in-line with the axis of the sample flow and the ring 

electrode. This created a symmetrical electric field and a uniform electric field line density for 

injection. An eppendorf 200 µL pipette tip was used to connect the capillary which was 

surrounded by the sample stream to the BGE filled interface. This approach maintained a clean 

sample-BGE front prior to reaching the capillary inlet. 

All capillary electrophoresis experiments were conducted on a homemade system (see Figure 

3.8) equipped with a fluorescence microscope detector (AM4133T-GFBW Dino Lite Premier 

Digital Fluorescence Microscope), a high voltage power supply (Spellman Model 

SMS60P60/24), a pump (milli GAT, Model i-24273-GF) with a connector (MFORCE 3AMP 

Microdrive Plus MFI3CD17N4-EE). The power supply and pump were controlled via a lab view 

program (Student Edition) and connected via a National Instruments controller (NI-USB-6212 

16 Inputs, 16-bit, 400 GS/s, Mulitfunction I/O). A Zero EOF neutral coated capillary (50 µm 

inner and 365 µm outer diameters, respectively) from MicroSolv Technology (New Jersy, USA) 

was used. The total length was 32.6 cm. A Y connector was used to join the sample stream with 

the capillary (see Figure 3.9). In order to connect the separation capillary to the Y connector a 

low pressure standard union (P 603, Upchurch Scientific) with the supplied fittings and ferrules 

(Upchurch Scientific), a polethyletherketone (PEEK) tubing (F -158 x) and a 3 cm piece of 

transparent plastic tubing (060610, Dionex) was used. The separation capillary was connected to 

the Y connector so that no liquid could leak through between the barb of the Y connector and the 
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capillary (see Figure 3.9) In order to establish a connection from the Y-connector to the 

continuous flow interface a 3 cm piece of plastic tubing (060610, Dionex) with a pipette tip at 

the end was used (for details see Figure 3.10). The interface which can be seen in Figure 3.11 

was custom made from a block of polymethyl methacrylate (PMMA). The electrodes were 

custom made from stainless steel. The waste tube was a 9 cm piece of plastic tubing (060610, 

Dionex).  

The ethylene-tetrafluorethylene (EFTE) tubing (1528 XL, Upchurch Scientific) between the 

sample vial and pump was 30 cm in length with 1.6 mm outer and 0.75mm inner diameter. In 

order to connect the EFTE tubing to the Y-connector (P-860 x, IDEX Health & Science) a low 

pressure standard union (P 603, Upchurch Scientific) with the supplied fittings and ferrules 

(Upchurch Scientific) and a 3 cm piece of transparent plastic tubing (060610, Dionex) were used.  
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Figure 3.8 Scheme of the continuous flow interface setup. The pump delivers the sample liquid 

through the Y connector and the interface towards the waste vial. The capillary’s inlet is placed 

inside the interface where the GND electrode is positioned while the other end is inside the BGE 

vial with the HV wire electrode. The BGE vial is elevated 8 mm above the liquid levels of the 

sample and waste vial to counterbalance the hydrostatic sample injection. A detailed description 

of the Y connector and the interface can be found in Figure 3.9 and Figure 3.10; for further 

explanation see text. 
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Figure 3.9 Scheme of the Y connector; the sample stream coming in from the lower end 

surrounds the separation capillary that is coming in from the top. The separation capillary which 

is surrounded by the flowing sample stream is further connected to the sample interface via a 

pipette tip (see Figure 3.10 and Figure 3.11). A connector was used to connect the capillary to 

the Y connector without allowing liquid to pass through between the top Y barb and the 

capillary; further explanations are in the text. 
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Figure 3.10 Scheme of the continuous sample flow interface; a pipette tip was used to connect 

the capillary which is surrounded by the sample stream to the interface. The capillary was 

positioned in-line with the symmetry axis of the interface and the pipette tip. Voltage was 

applied between the GND electrode and the outlet of the BGE filled capillary. The distance 

between the capillary entrance tip and the GND electrode was kept constant at 5 mm. The 

interface consisted of a block of transparent PPMA with a thru hole of i.d’s of 500 µm, 1000 µm 

and 1500 µm. The entire length of the interface was 30 mm and 10 mm in height. The stainless 

steel electrode had a total length of 20 mm with 10 mm being inside the interface. The 

microscope was positioned flat on the polished interface, and recorded the area between 

electrode and capillary inlet (see Figure 3.11), for further explanation see text. 

 

  

SAMPLE 

MICROSCOPE

PIPETTE 

TIP 

GND 



 

Chapter 3  Mathematical Model and Experiments 

100 

 

 

 

Figure 3.11 Top view of the sample interface. A hole drilled into a block of PMMA 

accommodates the ground electrode and the pipette tip which contains the sample stream that 

surrounds the capillary. A close up view recorded from the microscope can be seen in the picture 

below.  
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3.3.1.3 DETERMINATION OF INJECTED SAMPLE PROPORTION 

To compare different injections the recorded fluorescence images were processed using Image 

J (version 1.49 m). The mean gray value over a defined are in the interface (see Figure 3.12) was 

recorded. It is a measure for the fluorescence intensity emitted by the fluorescein sample. The % 

injection was calculated by taking the ratio between the mean gray value of the 0 kV image of 

the blank run and the 15 kV image and expressing it as % of the 0 kV image and then subtracting 

it from 100% using the following formula: 

run  kV 15 of gray valuemean 

runblank  kV 0 of gray valuemean 
100100% ⋅−=injection  
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Figure 3.12 The mean gray value of the emitted fluorescence intensity of the fluorescein sample 

was recorded over the area inside the red dotted line. The intensity was used to calculate the % 

injection value.  

  

1000 um

1000 um

interface i.d.

3000 um



 

Chapter 3  Mathematical Model and Experiments 

103 

 

3.3.1.4 ELECTROPHORETIC PROCEDURES 

New capillaries were conditioned by flushing with backgroundelectrolyte (BGE) for 20 min at 

1 bar and purified water for 5 min at 1 bar followed by a final run of BGE for 5 min at 1 bar. 

Zero EOF coated capillaries have been used in order to minimize the EOF. The capillary was 

stored in water overnight. The first step before sample injection was to disconnect the capillary 

tip which contains the separation capillary surrounded by the sample stream (see Figure 3.10). 

This allows to fill the interface with BGE first and then reconnect the pipette tip to push sample 

through the interface while applying voltage. The following steps described the process in detail: 

(1) before each injection the pipette tip in Figure 3.10 was disconnected and the separation 

capillary was conditioned by flushing with BGE for 5 min, (2) the sample lines were flushed for 

1 min at 20 µL/s with sample, (3) the continuous flow interface was filled with BGE using a 

syringe, (4) the separation capillary surrounded by the sample stream was connected to the 

interface via a pipette tip, (5) the position of the capillary axis was manually aligned with the 

interface symmetry axis, (6) the capillary inlet was positioned 5 mm away from the GND 

electrode in the interface, (7) the injection voltage of 15 kV was switched on and the sample was 

pushed through the interface. This way a sample-BGE front started moving through the interface. 

The corresponding flow rate and injection voltage were switched on at the same time the video 

started recording. For all injections, the sample was injected at 15 kV at different sample flow 

rates with the anode being at the capillary outlet. Recordings of the 0 kV blank runs consisted of 

the same steps as described in (1) to (7) except that that no voltage was applied.  
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3.3.1.5 HYDROGEL PREPARATION 

To control unwanted hydrostatic injection a hydrogel was prepared following the procedure of 

Wuethrich et al. [8]. 600 µL polyacrylamide solution (average Mw 10,000, 50 wt% in H2O , 

Sigma Aldrich) was mixed with 60 µL 5 wt% potassium sulfate (ACS reagent, ≥99.0%, powder, 

Sigma Aldrich) and 120 µL mM Tris-HCl (pH adjusted to 7.9 with HCl) and 320 µL Milli-Q 

purified water in a glass container. The container was placed in a 60 °C hot water bath for 10 

min.  

3.3.2 RESULTS AND DISCUSSSION 

During the efforts to systematically study the various interface parameters, the developed 

mathematical model showed that the depletion flow rate can be maximized by choosing the 

appropriate interface diameter. The aim of the present work was to investigate the relation 

between depletion flow rate and the interface diameter experimentally and to verify the 

predictions of the mathematical model. Therefore the injections from three different interfaces 

with 500, 1000 and 1500 um interface diameter were compared with each other. As a starting 

point the depletion flow rate was determined in the 1000 um interface and then in the 1500 and 

500 um interface.  

3.3.2.1 FLOW STUDIES 

In order to understand the electrokinetic component of the injection it is important to reduce 

the hydrodynamic and hydrostatic sample injection onto the capillary. First the prevention of 

hydrodynamic and hydrostatic injection by physically blocking the outlet of the separation 

capillary with a hydrogel was examined.  
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3.3.2.1.1 PREVENTION OF SAMPLE MATRIX INJECTION USING A HYDROGEL 

One way to prevent the bulk flow of liquid into the separation capillary that is caused by 

hydrodynamic and hydrostatic forces is to use a hydrogel. This approach was based on work by 

Wuethrich et al. [8] who demonstrated the use of a hydrogel to suppress the bulk flow of liquid 

that is caused by the EOF inside a capillary. A hydrogel was prepared and placed at the outlet 

end of the separation capillary together with the electrode. The BGE used in the capillary was 40 

mM Tris-HCl at pH 7.9. The sample used was 150 ng/mL sodium fluoresein in 0.04 mM BGE. 

The interface channel had an inner diameter of 1000 µm. In the present work no successful 

injection could be achieved when using a hydrogel due to a current drop within the first few 

minutes of the injection. We suspect that electrolysis bubbles get trapped between the capillary 

outlet and the hydrogel which then cause a current drop. As this approach was consistently 

unreliable, an alternative approach of using hydrostatic pressure was examined. 

3.3.2.1.2 PREVENTION OF SAMPLE MATRIX INJECTION BY ADJUSTING 

LIQUID LEVELS 

To counterbalance and prevent the hydrodynamic and hydrostatic injection experiments were 

performed using differential hydrostatic pressure created through the relative liquid level heights. 

This was achieved by setting all liquid levels in the setup to the correct height difference. The 

height difference here is defined as the relative height between the liquid level in the waste 

reservoir and the liquid level in the background electrolyte (BGE) container. The liquid level in 

the waste container was set to be at the same height with the symmetry axis of the flow interface 

(see Figure 3.11). By changing the height of liquid level in the BGE container we expected to see 

a change in the amount of liquid introduced into the separation capillary.  

The movement of a fluorescent dye inside the capillary at increasing height differences was 

measured. The liquid inside the interface was kept stationary at a flow rate of 0 µL/s. This 
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allowed to study the contribution of sample matrix injection due to hydrostatic pressure 

differences between the in- and out-let of the separation capillary. In Figure 3.13 it can be seen 

that at +0.8 cm no movement of liquid could be observed after 10 s. There is a flux of liquid into 

the capillary at 0 cm and a flux of liquid out of the capillary at + 3cm. Therefore + 0.8 cm was 

chosen as the optimum height difference to avoid hydrostatic sample injection or loss. In a 

subsequent study shown in Figure 3.14 the movement of a fluorescent dye inside the capillary at 

+ 0.8cm height difference after 10 min was measured. This was done to ensure that + 0.8 cm is 

the right height since the experiments at 10 s served only as a guideline on which height is close 

to the optimum height difference.  
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Figure 3.13 Effect of the height difference between the liquid levels of BGE vial and waste vial 

on the hydrostatic injection into the separation capillary. At +0.8cm the hydrostatic sample 

injection is at a minimum. The left image shows the position of the capillary. The images at 0cm, 

+0.8cm and +3 cm show the movement of the fluorescent dye inside the capillary depending on 

the height difference. The position of the fluorescent dye at 0s at the start of the experiment and 

after 10s is shown. The blue arrow indicates the direction of liquid movement inside the 

capillary. 
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Figure 3.14 Effect of a longer waiting time of on the hydrostatic injection into the separation 

capillary at the optimized height difference. The left image shows the position of the capillary. 

The images at +0.8cm shows the position of the fluorescent dye inside the capillary at 0s at the 

start of the experiment and that there is no significant movement of the dye after 10 min. 
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3.3.2.1.3 EFFECT OF FLOW RATE ON SAMPLE MATRIX INJECTION 

In addition to hydrostatic flow, there is also hydrodynamic flow arising from the flowing 

sample which exerts pressure on the separation capillary inlet and can cause sample matrix to 

enter into the capillary. Therefore the contribution of the hydrodynamic pressure at +0.8 cm 

height difference was investigated.  

In the first step the separation capillary was filled with fluorescent sample and the interface 

with a solution that exhibits less fluorescence. This allowed observing the liquid movement in 

the separation capillary entrance. In the next step the interface was flushed with liquid at either 0 

µL/s or 0.8 µL/s flow rate for 5 min. The results in Figure 3.15 show that at a height difference 

of + 0.8 cm there is no significant hydrodynamic introduction of sample matrix into the 

separation capillary entrance after 5 min at flow rates of 0.8 µL/s for the 500 µm, 1000 µm and 

1500 µm i.d. interfaces. For all following experiments the height difference was set to + 0.8 cm 

since this proved to prevent hydrostatic and hydrodynamic injection of liquid into the separation 

capillary. 
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Figure 3.15 Effect of flow rate on the hydrodynamic sample matrix injection into the separation 

capillary entrance when using different interfaces. The liquid in the 1000 µm i.d. interface was 

water. For the 500 µm and 1500 µm i.d interface 250 and 150 µg/L sodiumfluorescein in 0.04 

mM Tris-HCl at pH 7.9 were used, respectively.  
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3.3.2.2 LINEARITY 

To study the electrokinetic injection from a continuous sample flow interface a suitable 

sample concentration had to be chosen. The most suitable sample concentration for each 

interface was chosen to be within the linear range and to be ten times higher than the lowest 

concentration that could be noticed as a green color in the image recoded by the fluorescence 

microscope. For each interface the fluorescence intensity at different sample concentrations was 

recorded. This was done by filling the interface manually with the desired sample solution. 

Sample solutions used were diluted in 0.04 mM Tris-HCl adjusted to pH 7.9. The linear ranges 

and the corresponding calibration curves can be seen in Figure 3.16. The 1500 µm i.d. interface 

shows the steepest slope of 0.6658 mean intensity units / concentration unit. This is caused by 

the bigger path length in the 1500 µm channel compared to the smaller interfaces. At 

concentrations higher than 250 µg/L the mean intensity does not show a linear response to a 

change in concentration for the 1500 µm i.d. interface. This is because the sample fluorescence 

intensity is out of the linear range of the used fluorescence microscope. The 1000 µm i.d 

interface has a smaller pathlength than the 1500 µm i.d. interface and therefore a smaller slope of 

0.2263 intensity units / concentration unit. Additionally sample concentrations of up to 375 µg/L 

are within the linear range due to its smaller pathlength. Due to its shorter pathlength the 500 µm 

i.d interface is expected to have a slope significantly smaller than the bigger 1000 µm i.d. 

interface. But the 500 µm i.d interface shows a slope of 0.225 intensity units / concentration unit 

which is similar to the 1000 µm i.d interface. This was caused by a very rough wall surface of 

the channel in the 500 µm i.d interface which led to adsorption of dye to the channel wall. This 

enhanced the fluorescent intensities in the 500 µm i.d interface. For the 1000 and 1500 µm 
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interface the sample concentration chosen for observing the sample injection was 150 µg/L and 

for the 500 µm i.d. interface the chosen sample concentration was 250 µg/L. 
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Figure 3.16 Linear ranges of the 500, 1000 and 1500 µm i.d. interfaces. The sample was 

sodiumfluorescein in 0.04 mM Tris-HCl at pH 7.9 buffer. The linear ranges were 25-375 µg/L, 

15 -375 µg/L and 15 -250 µg/L for the 500, 1000 and 1500 µm i.d. interfaces, respectively.  
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3.3.3 DEPLETION FLOW RATE IN THE 1000 µm DIAMETER INTERFACE 

In the interest of finding the depletion flow rate as a function of interface diameter the 1000 

µm diameter interface is chosen as a starting point. The depletion flow rate in the experimental 

setup was defined as the flow rate at a given voltage at which > 90% of all sample ions are being 

injected. Finding the depletion flow rate requires the determination of the injected sample 

proportion at different flow rates. 

3.3.3.1 INJECTION OF A FLUORESCENT DYE 

The interface setup built in Figure 3.10 is expected to allow injection of sample from a 

flowing sample stream. To check this and to see what phenomena occur during the injection 

process sodium fluorescein was chosen as a sample which allowed monitoring the injection. At 

15 kV the incoming sample stream was expected to be injected and preconcentrated in the 

separation capillary entrance. At 0 kV in contrast the sample was expected to pass through the 

interface without injection. 

At the beginning of injection the whole interface and the separation capillary are filled with 

BGE. To perform electrokinetic injection from the flowing sample interface a sample plug was 

pushed through the BGE filled interface. The voltage and flow rate are turned on at the same 

time the recording starts. When performing the blank run at 0 kV, which is shown in Figure 3.17, 

the sample does not get injected and is pushed through the interface towards the waste. When 

applying a voltage of 15 kV the non-fluorescent BGE is replaced by an incoming plug of 

fluorescent sample which can be seen in Figure 3.17, 15 kV. As expected, sample ions are 

injected as the highly conductive BGE is replaced by the lower conductive sample indicating that 

as expected the electric field strength increases. This can be seen in Figure 3.17, 15 kV where 
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there is fluorescent sample in the area between the capillary and electrode at 1.5 min. The time 

was defined as 0 min when the parabolic sample-BGE front reached the separation capillary 

entrance. At 4.5 min the area between the electrode and the capillary entrance is black since all 

incoming sample ions are being injected into the capillary. The fluorescence intensity inside the 

separation capillary also increases over time, which indicates that sample ions are being injected 

into the capillary. Since the observed injection changes with time it is necessary to investigate 

the injection as a function of time in more detail.  
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Figure 3.17 Injection of a fluorescent dye at 0 kV and 15 kV at 0.08 µL/s flow rate in the 1000 

um i.d. interface. The sample was sodium fluorescein in 0.04 mM Tris-Hcl, pH adjusted to 7.9 

with HCl. The BGE was 40 mM Tris-Hcl, pH adjusted to 7.9 with HCl. The corresponding 

recorded intensities can be found in Figure 3.18. The calculated percentage of injected sample 

amount can be found in Figure 3.19. The time was measured from the moment the sample-BGE 

front reaches the separation capillary entrance which was set as 0 min. 
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3.3.3.2 INJECTION AS A FUNCTION OF TIME 

In order to better understand the injection process as a function of time the recorded injection 

of fluorescence sample was quantified.  

The area in the fluorescence images that is between the capillary entrance and the electrode 

(see Figure 3.13) was used for quantification. The mean gray value of the fluorescence emission 

intensity was determined in the area between capillary and electrode. It is a measure for the 

sample amount present. For the 15 kV injection the mean gray value was expected to represent 

the amount of sample that is not being injected and getting lost. For the 0 kV blank injections 

this should equate to the total amount of sample that is entering the interface. 

The recorded intensity for the area in the 15 kV injections (Figure 3.18, 15 kV) is increasing 

till 1.5 min with the fluorescent sample entering the interface. After 1.5 min the sample starts 

being injected into the capillary and thus the intensity starts decreasing till 3.5 min. After 3.5 min 

the intensity increases again slightly since parts of the incoming sample start getting lost and are 

being pushed through the interface to the waste outlet. 

The recorded intensities of the 0 kV blank run are plotted against the injection time in Figure 

3.18, 0 kV. The intensity increases till 2.5 min due to the incoming fluorescent sample stream 

that replaces the BGE in the interface. It reaches a maximum at 2.5 min due to residual amounts 

of BGE that mix with the incoming sample and cause and increase in fluorescence emission. The 

intensity is then decreasing from 2.5 min till 7 min since the BGE residues are flushed out of the 

interface. The change in fluorescence emission caused by mixing with BGE suggests that the 

ionization state of the sample changes as it gets pushed through the interface. Therefore the blank 

injection at 0 kV needs to be used as a reference when determining the proportion of injected 

sample amount in the 15 kV injections. 
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Figure 3.18 Progress of the recorded intensity with time at a 15 kV injection and a blank run at 0 

kV, both at 0.08 µL/s. The corresponding images and calculated % of injected sample amount 

can be found in Figure 3.17 and Figure 3.19, respectively. The time was measured from the 

moment the sample-BGE front reaches the separation capillary entrance which was set as 0 min. 

Other explanations are in the text.  
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3.3.3.3 PROPORTION OF INJECTED SAMPLE AMOUNT  

Before the depletion flow rate can be determined the proportion of injected sample amount (% 

injection) as a function of time for the 1000 µm i.d. interface at 0.08 µL/s flow rate needs to be 

investigated. The findings in 3.3.3.1 suggested that the field strength across the interface 

increases with time. Therefore the injected sample proportion is expected to increase with longer 

injection times.  

As shown in 3.3.3.2 the blank run at 0 kV needs to be considered when determining the 

proportion of injected sample. The determination of the injected sample proportion in % 

injection is explained in 3.3.1.3 in detail. In Figure 3.19 the proportion of injected sample 

(expressed as % injection) was plotted against the injection time when a flow rate of 0.08 µL/s 

was used. The injected sample proportion increases within 2.5 min to above 90% and then stays 

at > 80 % till 6.5 min. Figure 3.17  and Figure 3.18 both show that at around 2.5 min injection 

time the majority of the BGE in the interface has been replaced with sample. Therefore the 

extent to which the BGE is being replaced with sample has an influence on the injected sample 

proportion. A representative value for the proportion of injected sample needs to be determined. 

Therefore the mean value of the % injection was chosen when the majority of BGE has been 

replaced by sample which is at 2.5, 3 and 3.5 min. This yielded an average of 97.3% injection 

(relative standard deviation = 3 %, n = 3) for the 15kV injection from the 1000 µm i.d. interface 

at 0.08 µL/s flow rate. 
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Figure 3.19 Proportion of the incoming sample stream that is being injected into the separation 

capillary in % injection as a function of injection time at 0.08 µL/s in the 1000 um i.d. interface. 

The time was measured from the moment the sample-BGE front reaches the separation capillary 

entrance which was set as 0 min. 
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3.3.3.4 DEPLETION FLOW RATE DETERMINATION 

The amount of injected sample as a function of injection voltage and flow rate was already 

examined in chapter 2. It was shown that a depletion voltage for a given flow rate exists above 

which the amount of sample injected could not be increased any further. Additionally it could be 

seen that increasing the flow rate required a higher depletion voltage. Thus the flow rate and the 

voltage both needed to be increased accordingly in order to inject the entire available sample. 

Further it showed that at a given applied voltage the proportion of sample injected decreased 

when higher flow rates were used. In the present setup the applied voltage is kept constant and 

the % of injected sample is recorded as a function of flow rate. Based on the findings in chapter 2 

the % injection is expected to be >90% at flow rates below the depletion flow rate and <90% 

above the depletion flow rate. 

In Figure 3.20 a representative image of the sample being injected at each flow rate is shown 

in the top, with the proportion of the incoming sample stream that is injected (% injection) 

plotted against flow rate shown in the bottom. The average % injection is 99.2% (%RSD = 

0.891%, n=3) at a flow rate of 0.04 µL/s and 94.7% (%RSD=3.11%, n=3) at 0.06 µL/s. This 

means that the total applied voltage of 15 kV is above the depletion voltage for the flow rates of 

0.04 and 0.06 µL/s according to the findings in chapter 2. The depletion flow rate was 

determined as 0.08 µL/s where 97.3% were injected (%RSD= 3.03, n=3) for the 1000 µm i.d. 

interface. As expected past the depletion flow rate the average % injection decreased to 72.3% 

(%RSD = 3.31%, n = 3) at 0.12 µL/s and 54.5% (%RSD = 8.56%, n = 3) at 0.16 µL/s. This 

correlates with the findings in chapter 2 which suggest that an increased flow rate would require 

a higher applied voltage for complete sample injection to happen. To find the % of injection for 
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each flow rate the average of three % injection values at three different injection times was 

calculated. The time points were chosen when the majority of BGE was replaced by sample as 

described in 3.3.3.3. At 0.04 µL/s flow rate the timeframes chosen were 5, 5.5 and 6 min, at 0.06 

µL/s 3, 3.5 and 4 min, at 0.08 µL/s 2.5, 3 and 3.5 min and at 0.12uL/s 1.5, 2 and 2.5 min. The 

time it takes to replace the majority of the BGE with sample is decreasing with higher flow rates. 

This stands in agreement with the findings in 3.3.3.3 that the flow rate determines the exchange 

of BGE with sample.  
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Figure 3.20 Determination of depletion flow rate from proportion of injected sample (in % 

injection) as a function of flow rate in a 1000 µm i.d. interface. The images are representative for 

the injection at the given flow rate. The time was measured from the moment the sample-BGE 

front reaches the separation capillary entrance which was set as 0 min. 
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The question is if a higher depletion flow rate can be achieved by using different interface 

diameters. The mathematical model predictions in paragraph 3.2.3.1 used the parameters of the 

experimental setup: U = 15 kV, k = 400, IntfL = 5 mm, µ (fluorescein) = 23*10
-9 

m
2
/Vs [9], 

CapL  = 32.6 cm, d = 50 µm. It predicted that the depletion flow rate reaches a maximum at 1100 

µm as shown in Figure 3.4. In the experimental setup only three different interface diameters of 

D = 500, 1000 and 1500 µm have been used. The depletion flow rates have been calculated for 

these three i.d’s using the mathematical model and the result is shown in Figure 3.21. The 

mathematical model predicts that the depletion flow rate increases slightly from 0.78 µL/s at 500 

µm to 0.81 µL/s at 1000 µm. When the interface diameter is increased from 1000 to 1500 µm the 

depletion flow rate decreases to 0.8074 µL/s. This is a change of around 4 % in depletion flow 

rate when changing the interface diameter from 500 to 1500 µm. Therefore changing the 

interface diameter is expected to have only a minor influence on the depletion flow rate.  
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Figure 3.21 Mathematical model predictions for the relation between interface diameter and 

depletion flow rate at interface diameters of 500, 1000 and 1500 µm.  
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3.3.4 DEPLETION FLOW RATE IN A 1500 µµµµm DIAMETER INTERFACE  

When injecting from 1500 µm i.d. interface the trend for % injection vs. flow rate is expected 

to look similar to Figure 3.20. The only difference being that the depletion flow rate is expected 

to be lower than the 0.08 µL/s from the 1000 µm i.d interface. The mathematical model predicts 

a <1 % decrease in depletion flow rate when performing injections from a bigger 1500 um i.d. 

interface. 

The depletion flow rate is determined as described in 3.3.3.4. from the % injection vs. flow 

rate plot as the maximum flow rate at which > 90%  sample injection occurs. Injections at 15 kV 

from a 1500 µm i.d. interface were performed at flow rates of 0.01, 0.02, 0.04 and 0.08 µL/s. 

Unfortunately electrolysis bubbles started to form before stable stacking conditions could be 

reached within 30 min of injection time for the 0.01, 0.02 and 0.04 µL/s injection. Therefore it 

was not possible to get a representative % injection value at 0.01, 0.02 and 0.04 µL/s. When 

injecting at 15 kV from a sample stream that flows at 0.08 µL/s stable injection conditions could 

be reached within the 30 min injection time and yielded 27.3% injection (%RSD = 3.97%, n=3). 

The three timepoints chosen to determine the % injection were 30, 30.5 and 31 min. Due to the 

lack of injections at different flow rates no depletion flow rate could be determined. Despite this 

a comparison between the injection at 0.08 µL/s in the 1000 and 1500 µm i.d. interface can be 

made. The mathematical model suggests that the depletion flow rate in the 1500 µm interface 

should be insignificantly lower than 0.08 µL/s. This would mean that in the 1500 µm i.d.. 

interface at 0.08 µL/s the % injection should lower than 97.3%, which is the % injection at the 

depletion flow rate in the 1000 µm i.d. interface. This is based on the assumption that the % 

injection vs flow rate trend for the 1500 µm i.d. interface follows the same trend as Figure 3.20. 
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As expected 27.3% injection for the 1500 µm i.d. interface is lower than 97.3% injection 

(%RSD= 3.03, n=3) in the 1000 µm i.d. interface. 

To investigate the bubble formation at lower flow rates in the 1500 µm i.d interface a 

comparison of injections between the 0.01 µL/s and 0.08 µL/s injection was made (see Figure 

3.22). At 0.08 µL/s the injection starts to happen visibly after 10 min. At the slower flow rate of 

0.01 µL/s bubbles obstruct the interface before the injection starts to happen. Based on the results 

in Figure 3.19 the progress of injection and the time it takes to reach stable stacking conditions 

depends on the extent at which the BGE has been replaced by the sample plug. The majority of 

the BGE in the interface needs to be replaced for the injection to reach stable stacking 

conditions. The replacement of BGE with sample in the 1500 µm i.d. interface was observed by 

pushing the fluorescent sample plug through the BGE filled interface without applying voltage. 

The change in fluorescent intensity with time was recorded over a defined area between the 

electrode and capillary inlet (see Error! Reference source not found. for details) as shown in 

Figure 3.23. It can be seen that for the 0.08 µL/s run at 0 kV in a 1500 µm i.d. interface it takes 

around 10 min to reach the maximum fluorescent intensity which is also when the injection starts 

in Figure 3.22. At the slow flow rate of 0.01 µL/s the maximum was not reached within the 

recorded 30 min. Therefore it takes longer than 30 min to replace the majority of BGE with 

sample for an injection at 0.01 µL/s. This leads to bubble formation and does not allow to reach 

stable stacking conditions. 

The next interesting step is to investigate the injection from a smaller i.d. interface which is 

expected to reach stable injection conditions earlier. 
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Figure 3.22 Comparison of injections at two different flow rates in the 1500 µm i.d. interface. It 

can be seen that at a faster flow rate of 0.08 µL/s the injection of sample into the capillary takes 

place within the recorded time frame whereas a the slower flow rate the injection does not 

happen and an agglomeration of electrolysis bubbles at the electrode obstructs the interface.  
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Figure 3.23 Change in intensity over time when the fluorescent sample is pushed through the 

1500 µm i.d. interface at 0 kV using a slow and fast flow rate. 
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3.3.5 DEPLETION FLOW RATE IN A 500 µm DIAMETER INTERFACE 

The mathematical model predicts a decrease of around 4 % in depletion flow rate when 

decreasing the interface diameter from 1000 to 500 µm. Also the time it takes to reach stable 

stacking conditions is expected to be shorter due to higher linear velocities of the sample liquid. 

A shorter injection time should prevent a negative impact from electrolysis bubble formation. 

 Figure 3.24 shows an injection performed at 0.08 µL/s in a 500 µm i.d. interface. When 

performing an injection at 0.04, 0.12 and 0.16 µL/s the current dropped during the injection to 

zero before the injection had reached stable conditions. The current interruption was due to 

bubble formation caused by overheating of the small volume between the electrode and the 

capillary entrance. The position of bubble formation and aggregation within the interface was not 

predictable. Due to bubble formation not enough successful injections at different flow rates 

could be performed in the 500 µm i.d. interface. Therefore it was not possible to determine a 

depletion flow rate. Only for an injection at 0.08 µL/s stable injection conditions could be 

reached before heat bubbles caused current interruption. The injection at 0.08 µL/s flow rate 

allowed 100 % sample injection. This is in contrast to the mathematical model predictions which 

suggested that the depletion flow rate decreases slightly for smaller i.d. interfaces. This would 

also mean that the % injection in the 500 um i.d. interface should be lower than the 97.3 % 

injection at 0.08 uL/s in the 1000 um i.d. interface. This can be explained by the fact that bubbles 

agglomerated during the course of injection around the electrode and obstructed the entire 500 

um wide interface before the injection reached stable conditions. With the interface being 

obstructed the electric field distribution might be changed. The bubble formation was attributed 

to heat generation as they appeared throughout the entire interface channel and not only around 

the electrode as in the case of electrolysis bubbles. 



 

Chapter 3  Mathematical Model and Experiments 

131 

 

At higher flow rates of 0.12 and 0.16 µL/s heat generated bubbles are expected to be flushed 

out of the interface. This is expected because of higher hydrodynamic velocities of the sample 

stream. Despite this it was found that the flow rate could be increased up to 40 µL/s and bubbles 

attached to the wall could still not be flushed out. This was attributed to the surface roughness of 

the interface wall caused by the drill that was used to create the interface channel.  
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Figure 3.24 Comparison of an injection from a 500 µm i.d. interface at 15 kV and 0.08 µL/s 

with the blank run at 0 kV. 100 % of all sample ions are being injected into the capillary during 

the course of injection at 15 kV.  
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3.3.6 AVOIDING BUBBLE FORMATION 

One of the key findings from the above study was that electrolysis and heat generated bubble 

formation appeared before stable stacking conditions could be reached. Stacking conditions were 

found to be stable when the majority of the BGE in the interface was exchanged with sample. 

Shortening the time it takes for the sample to exchange the BGE in the interface is expected to 

avoid bubble formation.  

 

3.3.6.1 INJECTION WITH A SAMPLE FILLED INTERFACE AS STARTING 

CONDITION 

A possible way to shorten the sample-BGE exchange time is to have sample present in the 

interface as a starting condition. Then the voltage and flow rate are turned on simultaneously at 

the time the recording started. This is expected to allow studying the trend of % injection versus 

flow rate and determining the depletion flow rate even at bigger diameters and low linear 

velocities. For the smaller i.d. interfaces it is expected to allow injection before the solution starts 

to overheat and bubble formation appears.  

To perform this experiment sample was present in the 1000 µm i.d. interface at the start of the 

injection. The results in Figure 3.25 show the injection events within the first 180 s for the 0.08 

µL/s injection. A bright plug of stacked sample forms in the entrance region of the capillary 

within the first 2 s. Within 10 s the stacked sample plug moves towards the capillary outlet. 

When continuing the injection till 180 s no visible injection happened. Experiments at flow rates 

of 0.04, 0.06, and 0.12 µL/s did not lead to any injection either and the same phenomena could 

be observed.  

With the present approach the stacked zone moved towards the capillary outlet after 10 sec. 

Based on previous results this usually marked the end of an injection, presumably due to a 
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reduction in the electric field over the interface due to the liquid in the capillary having a lower 

conductivity. Injected sample ions replace the chloride ions from the TRIS-HCl buffer which are 

moving towards the capillary outlet. This creates a low conductivity – high electric field strength 

zone inside the capillary. Under the influence of the increased field strength the sample plug 

moves towards the capillary outlet. To stabilize the stacked sample zone in the capillary entrance 

the formation of a low conductivity zone in the capillary entrance area during injection needs to 

be prevented. 
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Figure 3.25 Injection with the sample in the 1000 µm i.d. interface as a starting condition. 

Within 10 s the stacked sample zone moves towards the capillary outlet and prevents further 

injection. Afer 180 s no further sample is getting injected; the sample was 150 µg/L 

sodiumfluorescein in 0.04 mM Tris-HCl; for further explanation see text. 
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3.3.6.2 INJECTION WITH A HEPES-KOH BUFFER 

HEPES was chosen as an anion with lower mobility to replace the fast moving chloride ions. 

It is expected to increase the timeframe before the low conductivity zone in the capillary 

entrance prevents further injection.  

The results in Figure 3.26 show the injection events within the first 180 s when using a 40 

mM HEPES-KOH buffer at pH 7.9 in the capillary and a sample dissolved in 0.04 mM HEPES-

KOH buffer at pH 7.9 in the interface. At the start of the injection 15 kV are applied and the 

sample liquid is moving at 0.08 µL/s through the interface. At 2s bright plug of stacked sample 

forms outside of the entrance region of the capillary within 10 s. When continuing the injection 

till 180 s no visible injection of the stacked sample into the capillary happened. A possible 

reason for stacking outside the entrance could be that the hydrodynamic velocity counterbalances 

the electrophoretic velocity. This can be easily investigated by performing an experiment with 

the sample diluents being water. This should allow a bigger voltage drop across the interface and 

therefore a higher electrophoretic velocity. An experiment with the sample in water resulted in 

sample stacking outside the capillary without injection into the capillary, too. Further 

investigations are necessary to find the right combination of BGE and sample diluents to achieve 

stacking of the sample zone inside the capillary entrance long enough so that the injections can 

reach stable stacking conditions. 
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Figure 3.26 Injection with the sample in the 1000 µm i.d. interface as a starting condition and a 

slower anion in the BGE (40 mM HEPES-KOH, pH adjusted to 7.9). Within 10 s the sample 

stacks outside the capillary entrance and prevents further injection. Afer 180 s no further sample 

is getting injected; the sample was 150 µg/L sodiumfluorescein in 0.04 mM HEPES-KOH; for 

further explanation see text. 
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3.4 CONCLUSIONS  

Within the present work a set of guidelines for continuous sample flow interface parameters to 

enhance the sensitivity of electrokinetic injection from a flowing sample stream is proposed. The 

literature lacks a simple fundamental understanding of the underlying theoretical principles of a 

continuous flow interface. To address this need a simplified mathematical model was developed 

and experimentally verified. This model allowed gaining understanding on how the applied 

voltage, conductivity ratio and the interface and capillary dimensions affect the injection process. 

From the results of the mathematical model a few design recommendations could be derived. 

For a potential application of the continuous flow interface to real samples the sample mobility 

and matrix will be given factors. The conductivity difference between the sample and the BGE in 

the capillary will be affected by the stacking system. The distance between the ring electrode and 

the capillary entrance was found to be of minor importance and should be chosen so that small 

variations do not affect the depletion flow rate. The capillary length should be as short as 

practically possible and is limited by the increase in current which could lead to heat generated 

bubble formation. Knox et al. [10] provide a table on maximum allowed field strengths that 

allow separation without being negatively affected by Joule heating under several operating 

conditions. 

The applied voltage should be chosen as high as possible without the formation of bubbles 

due to overheating. The mathematical model predicted that the capillary inner diameter should be 

as big as possible to enhance the depletion flow rate. Certainly this has practical limitations such 

as bubble formation caused by an increase in current. The mathematical model is able to provide 

a range for the interface diameter and length that leads to a depletion flow rate that is above 95 % 

of its maximum. The presented design recommendations and guidelines on how to choose the 
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interface parameters are a set of intuitive rules that can be applied to a variety of interface 

designs. The developed mathematical model is specifically derived for the used interface 

geometry. Despite this the simple principles used for developing the model can be easily 

adjusted and applied to different interface setups. We anticipate that the present work will enable 

the reader to easily adapt the mathematical model to their own needs. In an experimental setup 

bubble formation due to overheating and electrolysis of sample solutions can be a limiting factor. 

Despite all derived guidelines and rules the practical limitations will be the ultimate governing 

factors that direct the interface design. These presented ideas should be seen as a rough guideline 

that aid in interface design. They can be used in the planning stage when developing a 

continuous sample flow interface. Experiments and laboratory testing together with the presented 

rules will enable a directed and efficient approach for interface design.  

In the experimental part the aim was to investigate how the interface diameter can increase the 

depletion flow rate. Three different interfaces with 500, 1000 and 1500 um i.d. were built and the 

injection process was monitored using a fluorescent sample. The mathematical model predicted a 

less than 4 % change in depletion flow rate when increasing the interface diameter from 500 to 

1500 um. These predictions were experimentally investigated by attempting to determine the 

depletion flow rate at each diameter. In the 1000 um i.d. interface the depletion flow rate was 

determined as 0.08 µL/s. In the 1500 µm i.d. interface electrolysis bubbles and in the 500 µm i.d. 

interface heat generated bubbles appeared before stable stacking conditions could be reached. 

This prevented the determination of a depletion flow rate. Therefore it was necessary to reach 

stable stacking conditions earlier. Therefore the sample was placed in the interface at the start of 

the injection. This caused the stacked sample zone to move towards the capillary outlet within 

the first 10 s of injection. To stabilize the stacked sample zone the slower anion HEPES was 
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chosen which led to the opposite effect. The sample stacked outside the capillary entrance and 

did not enter the capillary entrance. To verify the mathematical model experimentally it is 

necessary to find a suitable stacking mechanism. It needs to allow a stable stacking zone at the 

capillary entrance for long enough so that the depletion flow rate can be determined for different 

interface i.d’s. This could be achieved by using a different type of anion with a suitable mobility 

that lies between the mobility of Chloride and HEPES.  

Another interesting aspect is how the injection voltage is affected by a change in sample 

matrix. This might require optimization of the interface for the slowest occurring electrophoretic 

velocity. Near quantitative electrokinetic injection without mobility bias will be achieved when 

optimizing the presented interface for a set of analytes and matrix conditions. The anticipation is 

that the correct interface geometry combined with suitable stacking methods will lead to 

improvements for a variety of existing stacking techniques.  
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Chapter 4 

COMPUTATIONAL FLUID DYNAMICS MODEL 

OF THE CONTINUOUS FLOW INTERFACE 

4.1 INTRODUCTION 

In chapter three a mathematical model was derived to gain a deeper understanding of the 

fundamental principles that determine the depletion flow rate fl0 for complete injection. The 

mathematical model is a simplification that allows prediction of trends and provides a guideline 

on which parameters to choose. It does not take into account the exact electric field line 

distribution and it does not take into account the parabolic flow of sample through the interface. 

In order to get a more accurate prediction of trends and better guidelines for interface 

development a simulation model has been developed. Hirokawa et al. [1] extensively used 

simulations to increase the injected sample amount. His group studied different electrode to 

capillary setups in static sample vials which was discussed in chapter 1. Despite this no 

systematic study of the effect of interface parameters on the injection in a continuous flow 

interface was undertaken.  

In the chapter which follows, a simulation model that was based on the interface design used 

in the experimental part in chapter 3 is discussed. It is demonstrated that the concentration 

profiles across the interface outlet in a 5 kV and a 0 kV blank injection can be used to calculate 

the proportion of the injected sample stream. Different flow rates were simulated to determine 
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the depletion flow fl0 rate for the sample injection in a 2.5 mm i.d. interface. Simulations at 

different interface diameters were used to study the change in depletion flow rate with different 

interface i.d’s. The simulation model results were verified using the mathematical model 

developed in chapter 3. Significant differences between the simulation and mathematical model 

predictions are demonstrated. The possible reason for the observed differences was attributed to 

unexpected stacking at the capillary entrance without a conductivity discontinuity in the 

simulation model. Stacking at the capillary entrance without a conductivity discontinuity could 

be experimentally verified. A mechanism for the unexpected stacking phenomena is proposed 

which presents an exciting direction in the field of stacking from a continuous sample flow 

interface. 

 

4.2 COMPUTATIONAL FLUID DYNAMICS MODEL 

In the simulation model some simplifications had to be made to allow reasonable 

computational times and allow the simulation to converge to a stable solution. This means that 

the simulation model parameters differ from the experimental parameters. The multiphysics 

software COMSOL (version 4.3b) was used to simulate and explain how the interface diameter 

affects the injected sample amount. The governing equations were a variation of the Navier 

Stokes equation and the Nernst-Planck equation. At the start of each simulation the interface was 

filled with BGE which was then exchanged with the incoming sample at a tenfold lower 

concentration to simulate FASI conditions. The interface length was chosen so that the capillary 

entrance and electrode can be accommodated 5 mm apart from each other. The incoming sample 

stream enters at the bottom of the interface surrounding the capillary and exits the interface in the 

direction of the ring electrode. The capillary i.d. and o.d. were chosen to be the same as the 
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capillary used in the experiment. The length chosen was relatively short at 2 mm since a longer 

capillary requires computational times that would not allow the simulations to be completed in a 

reasonable time. The simulation model interface diameters were different from the experiments 

since the simulations did not converge to a stable solution at smaller interface diameters.  

Figure 4.1 shows the basic 2D-axisymmetric geometry of the flow interface used in this 

simulation. The cylindrical flow interface surrounds the capillary. The cylindrical cathodic 

electrode is located on the wall of the flow cell 5 mm away from the capillary entrance. The 

simulated sample in the reservoir was iodate (diffusion coefficient set to 1.448*10
-9

 m
2
/s) with a 

mobility of 56 *10
-9

 m
2
/Vs, with an initial concentration of 0.1 mmol/L. The counterion was 0.1 

mmol/L sodium (diffusion coefficient set to 1.334*10
-9

 m
2
/s). The interface and capillary were 

filled with 1 mmol/L sodium nitrate (diffusion coefficient set to 1.902*10
-9

 m
2
/s) at the start of 

each simulation. The voltage applied was 5000 volts between the anodic end of the capillary end 

and the electrode. It builds up an electric field between the anodic end of the capillary and the 

electrode which is displayed in Figure 4.2. The field strength is indicated by the arrow length and 

the direction of the field lines is indicated by the arrow and its direction. Towards the capillary 

entrance the electric field line direction points to the capillary entrance which causes the electric 

field line density to increase. This leads to an increase in electric field strength which is 

represented by a longer arrow. Despite this the majority of the field lines are parallel and uniform 

in length in the simulated interface. The EOF was assumed to be zero. The simulation was 

continued till twice the time it takes to fill the entire interface with sample. The time it takes to 

fill the interface with sample was calculated from the interface length and the linear velocity of 

the sample stream. All simulations were carried out on a supercomputer (SGI Altix ICE 8200 

Cluster) with an 8 GHz clock. 
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Figure 4.1 Schematic of the continuous sample flow interface used for simulations. The i.d’s of 

the interfaces used for simulation were 2.5 mm, 10 mm, 50 mm and 100mm. The interface length 

was 12mm, electrode length 500 um, capillary ID 50 um, capillary OD 365 um and the capillary 

length was 2mm. The blue arrows indicate the direction of the flow of liquid. In the shown image 

the incoming sample stream is directly injected into the tip of the separation capillary. The 

electric field is built up by applying a voltage between the ground electrode and the outlet of the 

capillary. For further explanation, see text. 
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Figure 4.2 Simulation of the electric field distribution in the interface used for simulations. The 

arrow surface indicates the electric field strength at different points in the interface. Throughout 

the majority of the interface the electric field strength is uniform which is represented by the 

arrow length. The field line direction is mostly parallel.  
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4.3 RESULTS AND DISCUSSION 

The mathematical model suggested that the various interface parameters need to be adjusted 

accordingly to maximize the depletion flow rate fl0. The simulation model is expected to provide 

more accurate guidelines on how the individual interface parameters can maximize the depletion 

flow rate and sensitivity enhancement.  

 

4.3.1 DEPLETION FLOW RATE fl0 FOR 2.5 mm INTERFACE DIAMETER 

The depletion flow rate fl0 is the highest flow rate at a given voltage at which > 90 % of the 

sample is being injected into the separation capillary. In order to find this flow rate in the 2.5 mm 

inner diameter interface the % of injection at different flow rates need to be determined. 2.5 mm 

inner diameter was used as the starting interface diameter since for smaller interface diameters 

the simulation did not converge towards a stable solution.  

4.3.1.1 INJECTED SAMPLE PROPORTION  

When the sample stream enters the continuous flow interface a certain proportion will be 

injected into the capillary and the rest should exit the capillary. The concentration of the sample 

stream that exits the continuous flow interface should therefore be a measure for the injected 

sample proportion. In this section the injected sample proportion is determined as % injection. 

To determine the % injection in the simulation concentration profiles were recorded across the 

interface outlet in the 0 kV blank run and the 5 kV run. Then the area under the concentration 

profile was determined and used to calculate the % injection. For a 0 kV blank injection the 

concentration profile across the interface outlet is expected to be equal to the incoming sample 

concentration of 0.1 mmol/L NaIO3. The area under the concentration profile for the 5 kV 
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injection is expected to be lower than the area under the 0 kV concentration profile. This is 

because part of the incoming sample stream is expected to be injected.  

The concentration profile obtained from the simulation in Figure 4.3 shows that at 0 kV the 

concentration is 0.1 mmol/L across the interface outlet which corresponds to 0 % injection. The 

corresponding picture above shows the concentration distribution inside the interface channel for 

the 0 kV injection. It can be seen that the interface is entirely filled with 0.1 mmol/L NaNO3 

since no sample has been injected. When injecting at 5 kV the concentration decreases below 0.1 

mmol/L towards the interface wall and increases above 0.1 mmol/L  towards the middle of the 

interface as can be seen from the concentration profile and the corresponding image of the 

interface channel. Close to the capillary entrance the electric field lines point towards the 

capillary entrance and increase in magnitude (see Figure 4.2). Since the sample ions will follow 

the direction of the electric field lines the concentration of sample will increase towards the 

middle and decrease towards the wall of the interface. Integration of the concentration profile 

resulted in 23.3 % injection. The % injection was calculated by taking the difference between the 

integrated area of the 0 kV and the 5 kV concentration profile and expressing it as % of the 0 kV 

concentration profile using the following formula:  

 

run  kV profile_5 _ncetrationarea_of_co

runblank  kV _profile_0ncetrationarea_of_co
100100% ⋅−=injection   (4.1) 
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Figure 4.3  Sample concentration profiles recorded along the red dotted line in the top interface 

images. The concentration was recorded from the interface center at 0 mm to the interface 

channel wall at 1.25 mm. At 0 kV the interface is filled with the sample at its initial 

concentration of 0.1 mmol/L which is reflected by the concentration profile and image at 0 kV. 

At 5 kV part of the sample gets lost which is reflected in the concentration profile at the outlet 

and the image showing that only 23.3 % sample gets injected. The sample stream enters from the 

bottom surrounding the capillary. The cathode ring electrode in the interface is grounded and the 

anode is set to 5 kV at the capillary end. The profiles were recorded at 180 sec which is more 

than twice the time it takes to fill the interface with sample. 
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4.3.1.2 DEPLETION FLOW RATE fl0 

By calculating the % injection for different flow rates in the 2.5 mm i.d. interface the 

depletion flow rate can be determined. The concentration profiles across the outlet are used to 

calculate the % injection as described in the previous section. At low flow rates the expected 

sample ion concentration profile across the outlet should be 0 mmol/L due to 100 % injection. 

With increasing flow rate the % injection is expected to decrease and the concentration profile 

across the interface outlet is expected to increase. 

Figure 4.4 depicts the concentration profile across the outlet for different flow rates. At low 

flow rates of 0.02 and 0.1 mL/min the concentration across the outlet is 0 mmol/L since all 

incoming sample ions are injected. At 0.2 mL/min the concentration in the center of the interface 

channel is around 0.06 mmol/L and decreases closer to the interface wall to zero. This indicates 

that part of the incoming sample stream gets lost and is not injected. At the highest flow rate the 

concentration is around 0.11 mmol/L in the center and decreases to around 0.05 mmol/L at the 

interface wall. 
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Figure 4.4 Concentration profiles recorded across the interface outlet in the 2.5 mm i.d. interface 

at a 5 kV injection are shown for different flow rates. The profiles were recorded at 180 sec 

which is more than twice the time it takes to fill the interface with sample. 
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The % injections for the different flow rates in Figure 4.4 are determined as described in 

4.3.1.1 using equation 4.1. For each flow rate the corresponding concentration profile across the 

interface outlet of the 0 kV blank run was used. When plotting the % injection vs. the flow rate 

100 % injection is expected at low flow rates. This is expected because the electrophoretic 

velocity of the sample ion is bigger than the linear hydrodynamic velocity at low flow rates. 

Above the depletion flow rate the % injection is expected to decrease. This is due to the 

electrophoretic velocity of the sample ion getting smaller than the linear hydrodynamic velocity.  

Figure 4.5 shows that the % injection at different flow rates and a corresponding image of the 

injection above. 100% of all sample is being injected at 0.02 and 0.1 mL/min. At 0.2 mL/min the 

% injection drops to around 70 % and when doubling the flow rate to 0.4 mL/min less than 50 % 

are being injected. At 1.0 mL/min all sample ions pass by the capillary without being injected. 

With 2.5 mm interface i.d. the maximum flow rate at which >90% injection occurs lies in 

between 0.1 and 0.2 mL/min. Simulations at smaller flow rate increments would be necessary to 

determine the maximum flow rate at which >90% injection occurs. This would lead to very long 

simulation times. In order to use the simulation results for design guidelines it was assessed as 

being sufficient to chose the depletion flow rate as the highest simulated flow rate at which 

>90% injection occurs from the limitied number of simulations. Therefore fl0 was chosen to be 

0.1 mL/min for the 2.5 mm i.d. interface.  
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Figure 4.5  % injection as a function of flow rate with corresponding injection pictures in a 2.5 

mm i.d. interface at 180 sec. The % injection decreases with flow rate. The sample concentration 

distribution is illustrated at different flow rates; sample solution, 0.1 mmol/L of IO3; capillary 50 

µm i.d. The inlet flow enters at the bottom, outside the capillary, and leaves at the top of the 

interface.  
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4.3.2 MAXIMIZING THE DEPLETION FLOW RATE fl0  

The mathematical model suggested that the depletion flow rate fl0 can be maximized when 

interface and capillary dimensions, conductivity ratio, total applied voltage and sample mobility 

are changed accordingly. In the simulation model the influence of the interface inner diameter on 

fl0 was examined first as this is one of the more complex variables.  

To find the depletion flow rate the % injection was plotted against flow rate for the different 

interface i.d’s as can be seen in Figure 4.6. From these graphs the depletion flow rates fl0 for each 

interface i.d. were obtained as described in 4.3.1.2. At 2.5 mm, 10 mm, 50 mm and 100 mm 

interface i.d. the depletion flow rates were 0.1 mL/min, 0.6 mL/min, 1.5 mL/min and 1.75 

mL/min, respectively. 
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Figure 4.6 Proportion of injected sample amount as a function of flow rate for different interface 

i.d.’s. Only the flow rates where a transition from >90% to <90% injection is happening are 

shown.  
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The obtained depletion flow rates are plotted against the interface i.d. in Figure 4.7. Based on 

the mathematical model predictions the depletion flow rate is expected to be low at smaller i.d.’s, 

reach a maximum and then decline again. In contrast the simulation results show that a bigger 

interface diameter leads to a higher depletion flow rate. The slope at which 
0fl  rises declines 

towards the bigger interface i.d.’s. This increase in depletion flow rate with i.d. is 

counterintuitive and stands in contrast to the trends predicted by the mathematical model. To 

verify these results a comparison with the mathematical model needs to be performed by using 

the exact same variables that have been employed in the simulation model.  
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Figure 4.7 Depletion flow rate as a function of interface diameter in the simulation model.  
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4.3.3 COMPARISON OF THE SIMULATION MODEL WITH THE 

MATHEMATICAL MODEL 

When using the parameters of the simulation model in the mathematical model the same trend 

for the depletion flow rate 
0fl  vs. interface i.d. is expected.  

Equation 3.19  in chapter 3 was used to plot the depletion flow rate as a function of interface 

diameter. The following parameters were used: U = 5 kV, k = 11.66, IntfL = 5 mm, CapL  = 2 

mm, d=50 µm, µ = 56*10
-9 

m
2
/Vs, interface i.d. = 2.5, 10, 50 and 100 mm. k was calculated 

using equation 3.13 in chapter 3 and the conductivities of the sample and BGE solution. The 

conductivity of the 0.1 mmol/L NaIO3 sample solution was 1.06 * 10
-3

 S/m and the 1 mmol/L 

NaNO3 BGE was 12.4 *10
-3

 S/m. These values were taken from the simulation model. The 

results in Figure 4.7 show that the mathematical model predicts that the 
0fl  decreases with 

bigger interface diameters. This contradicts the simulation model trend. Also the flow rates in the 

simulations are one order of magnitude larger than in the mathematical model. One possibility 

could be that the simulation results are not correct. To quantitatively assess the quality of the 

solution the level of convergence of the solution needs to be considered. It was found that it 

shows at least 3 to 4 orders of magnitude reduction in the norm of the residual. A grid sensitivity 

test was not performed since the grid used in the present simulations is already set to be fine and 

very dense especially around the corners of the capillary entrance. The number of domain 

elements was 23599. This is a much higher number of mesh elements than what is typically used 

in electrophoresis simulations [2]. Therefore the mesh number was deemed to be suitable.  
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Figure 4.8 Comparison between mathematical model and simulation model predictions. The 

trends for the depletion flow rate vs. interface diameter are opposite. Also the flow rates in the 

simulations are one order of magnitude larger than in the simulation model. For further 

explanation see text. 
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4.3.3.1 COMPARISON OF THE INJECTION VOLTAGES 

In order to understand the differences between the results predicted by simulations and the 

mathematical model a closer look at the voltage drop over the interface, which is the injection 

voltage, in both approaches is taken. For the sample ions to be injected the injection voltage 

needs to be high enough so that the sample ions moves against the flow of liquid into the 

capillary. Given the higher depletion flow rates in the simulation model for a given diameter it is 

expected that the simulation model shows a bigger injection voltage than the mathematical 

model. 

To calculate the injection voltage for the mathematical model equation 3.17 in chapter 3, 

which is based on Ohms law, was used. As can be seen in Figure 4.9 the injection voltage in the 

mathematical model is predicted to decline exponentially from around 65V at 2.5 mm to around 

3 V at 100 mm interface diameter. In contrast the injection voltage obtained from the simulation 

model shows a slight increase from around 130 V at 2.5 mm to 170 V at 100 mm interface 

diameter. The simulation model suggests that the voltage drops across the interface is bigger than 

the ones proposed by the mathematical model. Another significant difference is that the injection 

voltage is increasing with bigger interface diameters in the simulation model. The voltage drops 

in the simulation model are influenced by the conductivities that COMSOL uses which therefore 

need to be investigated.  
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Figure 4.9 Difference in the injection voltage in the mathematical model and the simulation 

model. The voltage drop over the interface in the simulation was recorded at 0.6 mL/min flow 

rate for all different interface diameters at 180s, 600s, 15000s and 20000s injection time for the 

2.5mm, 10mm, 50 mm and the 100 mm i.d. interface, respectively.  
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4.3.3.2 CONDUCTIVITY COMPARISON 

For the mathematical model is was assumed that the IO3
-
 sample ions replace the NO3

-
 ions 

inside the capillary following Kohlrausch’s regulating function [3]. This should not alter the 

conductivity inside the capillary significantly. Therefore in the mathematical model the 

conductivities were assumed to be given by the 1 mmol/L NaNO3 BGE in the capillary and the 

0.1 mmol/L NaIO3 sample solution in the interface.  

In the simulation model the interface and capillary are filled with 1 mmol/L NaNO3 BGE at 

0 s. The 0.1 mmol/L NaIO3 sample stream enters at the bottom of the interface moving in the 

direction of the interface ring electrode. Once the sample stream has reached the capillary 

entrance the sample injection starts. The differences in injection voltages between the two 

models suggest that the simulation model injection is not restricted by Kohlrausch’s regulating 

function [3]. Considering Kirchhoff’s mesh rule, which is expressed in equation 3.8 in chapter 3, 

the voltage drop across the interface and the voltage drop across the capillary must be equal to 

the total applied voltage of 5 kV. An increased injection voltage in the simulation model must 

therefore result in a decreased voltage drop across the capillary. The voltage drop across the 

capillary is determined by the conductivity of the solution in the capillary following equation 

3.12 in chapter 3. A decreased voltage drop across the capillary suggests that the conductivity of 

the solution inside the capillary has increased above the initial BGE conductivity of 12.4 *10
-3

 

S/m in the simulation model. 

This could be confirmed by plotting the conductivities at the capillary entrance area at 0s, 

10 s, 30 s and 600 s injection time for a 5 kV injection in the simulation model (see Figure 4.10 5 

kV injections). It can be seen that at 0 s the interface and capillary are filled with BGE and the 

conductivity is 0.0124 S/m. The conductivity increases as expected above its initial concentration 
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to around 0.2 S/m in the majority of the capillary at 10 s. When looking at a 0 kV injection 

shown in Figure 4.10 0 kV injections it is clear that at 10 s injection time the sample-BGE front, 

which is represented by rainbow colored area, has not even reached the capillary entrance. This 

means that at 10 s injection time there is no conductivity difference between the liquid in 

capillary and in the interface. Therefore no increase in conductivity should occur according to 

Kohlrausch’s regulating function. Therefore the increased conductivity of around 0.2 S/m in the 

5 kV injection at 10 s clearly shows that the concentrations in the simulation model are not 

regulated by Kohlrausch’s regulating function.  
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Figure 4.10 Change of conductivity (in S/m) around the capillary entrance area at 0s, 10s, 30s 

and 600s during a 5 kV injection and a 0 kV injection in the 10 mm i.d. interface at 0.6 mL/min 

flow rate. The white rectangular area represents the capillary wall. The symmetry axis of the 

capillary center is on the left side of the images. For further explanation, see text. 
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One possible reason for the preconcentration at the capillary entrance despite the lack of a 

conductivity difference could be that there is hydrodynamic flow of liquid into the capillary 

during the injection process. The sodium ions would then migrate against the hydrodynamic flow 

out of the capillary into the interface. Once the sodium ions enter the interface they experience a 

decrease in electric field strength. The hydrodynamic flow into the capillary reduces their total 

velocity even further and causes them to preconcentrate at the capillary entrance.  

When investigating the flow of liquid inside the capillary in the simulation model it could be 

confirmed that there is hydrodynamic flow of liquid into the capillary at a velocity of around 

3.9*10
-8

 m/s. Despite this the velocity seems too small to cause preconcentration of the sodium 

ions.  

To understand this phenomenon experiments were undertaken using the experimental setup 

described in chapter 3. To achieve no conductivity difference between capillary and interface the 

same sample solution was placed inside the capillary and the interface. The same sample solution 

that was used in the capillary and the interface was flushed through the interface during the 

application of voltage. In the experimental setup the hydrodynamic flow of liquid into the 

capillary is negligibly small. Based on the simulation model predictions there should be 

preconcentration in the capillary entrance.  

This could be confirmed experimentally and is shown in Figure 4.11. The interface and the 

capillary are filled with fluorescent sample solution so that there is no conductivity difference. At 

0 s the flow rate of 0.08 uL/s and a voltage of 15 kV were applied. After 40 s no 

preconcentration could be observed. At 50 s injection time a small plug of increased 

concentration has formed at the capillary entrance. The preconcentrated plug becomes more 
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visible at 55 s and moves towards the capillary outlet which is shown in the images taken at 60 s, 

65 s and 70 s.  
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Figure 4.11 Sample preconcentration without a conductivity difference as a function of time. A 

sample solution of 150 ng/mL of sodiumfluorescein in 0.04 mM Tris-HCl buffer (pH 7.9) was 

placed inside the capillary and in the 1000 um i.d. interface. The same sample solution used in 

the capillary was flushed through the interface at 0.08 uL/s flow rate and a voltage of 15 kV was 

applied. The formation and movement of a preconcetrated sample zone at 40s, 50s, 55s, 60s, 65s 

and 70s is shown. The bright spot on the left side of the interface channel was attributed to an 

impurity on the outside of the interface. Other explanations are in the text.  

40 50 55 60 65 70 s

15 kV, 0.08 uL/s, sample solution 

in capillary and interface
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The simulation model shows that the conductivity in the capillary entrance increases to 

around 30 times of its initial value in the 10 s image in Figure 4.10 5 kV injections. After that the 

conductivity decreases again to around 5 times above its initial value at 30 s and 600 s. As stated 

above the conductivity increase was attributed to the stacking of sodium ions, with the counter-

anion also stacking to maintain charge neutrality. Therefore at 10 s where the conductivity has 

increased 30 times more stacking must happen than compared to 30 s and 600 s. The stacking is 

influenced by the change in velocity that the sodium ions experience when reaching the capillary 

entrance. This would suggest that the sodium ions experience a bigger decrease in velocity at 10s 

compared to 30 s and 600s. This can be explained by the fact that at 10 s the sample-BGE front 

has not yet reached the capillary entrance and the majority of the interface is filled with BGE. 

The sodium ions will stack due to the decreased electric field strength in the interface and the 

hydrodynamic flow into the capillary. At 30s and 600s the interface is already filled with the 

lower conductive sample. This means the sodium ions will experience a smaller decrease in field 

strength upon exiting the capillary entrance. Thus the stacking effect is bigger before the 

interface has reached the capillary entrance and causes a peak in conductivity at around 10 s 

injection time.  

Another finding in the simulation model was that the injection voltage increases slightly with 

increasing interface diameters as shown in Figure 4.9 in the simulation model. This is only 

possible if the conductivity of the liquid inside the capillary increases with the interface 

diameter. Looking at the simulation model data it could be confirmed that the conductivity inside 

the capillary increases from around 0.01 S/m at 2.5 mm interface i.d. to 0.07 S/m at 10 mm i.d., 

0.65 S/m at 50 mm i.d. and 0.8 S/m at 100 mm i.d.  This change in conductivity, and hence 
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change in the distribution of the electric field over the interface during injection is not included 

in the mathematical model previously developed. 

To explain the reason for the higher conductivities inside the capillary at larger interface 

diameters a closer look at the change of conductivity with injection time needs to be taken. As 

stated above the stacking effect is greater before the sample – BGE front has reached the 

capillary inlet. In the 100 mm interface it takes 1600 times longer compared to the 2.5 mm i.d 

interface for the sample-BGE front to reach the capillary inlet. This means in the bigger interface 

there is more time for the conductivity to increase inside the capillary. Thus the conductivity 

inside the capillary is higher at larger interface diameters. This will mean that the voltage will 

adjust to provide a higher proportion over the interface than the capillary, which is what the 

simulation model shows. Unfortunately, the effect of the interface diameter on the conductivity 

change in the capillary entrance could not be experimentally confirmed yet but will be an 

exciting starting point for future research projects on electrokinetic injection from a flowing 

sample stream  
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4.4 CONCLUSIONS 

Within the present work a computational fluid dynamics simulation model is presented. 

Insight into the simulation parameters and setup as well as a comparison to the mathematical 

model is provided. A number of publications provide simulation models that investigate the 

electrode capillary setup for maximum sensitivity in static injection vial. The literature lacks a 

simulation model that aids in the understanding of the underlying theoretical principles of a 

continuous flow interface. To address this need a simplified simulation model was developed. 

The aim of the simulation model was to derive a more accurate and refined set of rules and 

guidelines for interface design compared to the mathematical model developed in chapter three. 

To verify the simulation model predictions it was compared with the mathematical model. It was 

found that the simulation model predictions contradict the mathematical model results. The 

mathematical model proposed a decrease of depletion flow rate with bigger interface diameters 

and was based on the assumption that all concentrations are regulated by the Kohlrausch 

function. In contrast the simulation model proposed that the depletion flow rate increases with 

bigger interface i.d’s. It was found that the simulation model predicts sample preconcentration of 

ions at the capillary entrance even without a conductivity difference between the solutions in the 

capillary and interface. Therefore the concentrations in the simulation model were not regulated 

by the Kohlrausch function. The explanation was that a hydrodynamic flow into the capillary 

could be observed in the simulation model. It was anticipated that the hydrodynamic flow of 

liquid counterbalances the electrophoretic migration of sodium ions out of the capillary entrance 

and causes them to stack at the capillary entrance. It could be confirmed experimentally that 

stacking of sample can occur without a conductivity difference in the presence of a small 

hydrodynamic flow into the capillary. Since this could be experimentally confirmed it is 
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anticipated that the simulation model predictions are correct. This means that with bigger 

interface diameters higher depletion flow rates can be achieved which can enhance the sensitivity 

of CE equipment when used with a continuous flow interface. This will have to be further 

investigated in future work as it is a promising direction in the field of electrokinetic injection 

from a flowing sample stream.  
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Chapter 5 

GENERAL CONCLUSIONS AND FUTURE 

DIRECTIONS 

5.1 GENERAL CONCLUSIONS  

The present literature lacks a systematic study on the electrokinetic injection from a flowing 

sample stream. This need was addressed in the present thesis by the development of continuous 

sample flow interfaces for stacking in capillary electrophoresis in combination with a simulation 

and a mathematical model. The following general conclusions can be made regarding the 

developed interfaces and models. 

In chapter two a tee connector in a commercial capillary electrophoresis instrument was used 

to investigate the effect of field amplified sample injection from both flowing and static sample 

volumes. FASI with sweeping followed by micellar electrokinetic chromatography (FASI-

sweep-MEKC) was used for sample injection comparison from a static system and a flowing 

stream. It was shown that under identical conditions (40 min electrokinetic injection at 5 kV 

from a sample volume of 295 µL) the limit of detection is 4 times lower when using the 

continuous sample flow interface compared to an injection from a static vial. The effect of flow 

rate and injection voltage on the injected sample amount was also investigated using a 2D 

axisymmetric simulation (COMSOL 4.3b) and verified experimentally. Conditions under which 

there is near-quantitative injection of the sample target ions could be confirmed. Using the 

continuous flow interface and electrokinetic injection at 30 kV at a flow rate of 558 nL/s for 5.5 
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min (corresponds to 184 uL of sample) the same enhancement compared to injection from 295 

µL for 40 min injection in a static vial could be achieved. Compared to a hydrodynamic injection 

this sensitivity enhancement factor corresponded to four orders of magnitude improvement.  

In chapter three the aim was to improve the electrokinetic injection from a flowing sample 

stream further by investigating the influence of the capillary and interface dimensions, the 

conductivity ratio of BGE and sample, the total applied voltage and the sample mobility on the 

injection. A mathematical model was presented and a set of guidelines for designing an interface 

that allows for high depletion flow rates was proposed. It was found that the total applied 

voltage, the electrophoretic sample mobility and the conductivity ratio between the liquid in the 

interface and the capillary should be as high as practically possible to yield high depletion flow 

rates. In an experimental setup the conductivity ratio will be determined by the limitations of the 

stacking method and the electrophoretic sample mobility will be determined by the analyte that is 

to be investigated. The highest possible applied voltage will be limited by the highest practically 

possible current. The model suggests further that an optimum interface diameter and length exist 

at which the depletion flow rate reaches a maximum. When varying the interface length between 

2 to 20 mm the depletion flow rate changed only around 5% of its maximum value at 0.8107 

µL/s. Between 450 to 2750 µm of interface diameter the depletion flow rate changed around 5% 

of its maximum at 0.8110 µL/s. The capillary inner diameter increases the depletion flow rate 

exponentially and should be maximized but will be limited by the current. A reduction in 

capillary length showed the biggest improvement in depletion flow rate up to 10.73 µL/s at a 

capillary length of 2cm. The voltage needs to be reduced accordingly when using a short 

separation capillary to avoid high currents.   
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In the second part of chapter three a simple flow through channel interfaces was developed. 

Out of all possible variables the effect of different interface diameters on the electrokinetic 

injection from a flowing sample stream was investigated first.  

In the experimental part the aim was to investigate how the interface diameter can increase the 

depletion flow rate. Interfaces with 500, 1000 and 1500 um i.d. were investigated and the 

injection process was monitored using a fluorescent sample. A change of less than 4% in 

depletion flow rate was predicted by the mathematical model when increasing the interface 

diameter from 500 to 1500 um experimentally. To verify these predictions it was attempted to 

determine the depletion flow rate at each diameter. The depletion flow rate in the 1000 um i.d. 

interface was determined as 0.08 µL/s. Electrolysis bubbles in the 1500 µm i.d. interface and 

heat generated bubbles in the 500 µm i.d. interface appeared before stable stacking conditions 

could be reached which prevented the determination of a depletion flow rate. To reach stable 

stacking conditions before bubble formation appears the sample was placed in the interface at the 

start of the injection. With this approach the stacked sample zone migrated towards the capillary 

outlet within the first 10 s of injection. The slower anion HEPES was chosen in an attempt tp 

stabilize the stacked sample zone. As a result the sample stacked outside the capillary entrance 

and did not enter the capillary entrance. For future work it is necessary to fine tune the stacking 

mechanism. This is expected to create a stable stacking zone at the capillary entrance for long 

enough so that the depletion flow rate can be determined for different interface i.d’s.  

Finally a simulation model was developed in chapter 4. This was done to get more accurate 

predictions than compared to the mathematical model. In the simulation model simplifications 

had to be made in order to allow for reasonable computational times. In particular the capillary 

length in the simulation had to be shortened to 2 mm instead of the 36.4 cm which was used 
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experimentally. To verify the simulation model predictions it was compared with predictions of 

the mathematical model. The simulation model predicted an increase in depletion flow rate with 

interface diameter whereas in the mathematical model a decrease was predicted. The 

mathematical model was based on the assumption that all concentrations are regulated by the 

Kohlrausch function. It was found that the concentrations in the simulation model are not 

regulated by the Kohlrausch function and preconcentration of ions seems to occur at the capillary 

entrance even without a conductivity difference. This was attributed to a hydrodynamic flow of 

liquid into the capillary entrance which counterbalanced the electrophoretic movement of sodium 

ions out of the capillary and led to preconcentration. The preconcentration of sample in the 

absence of a conductivity difference with of a small hydrodynamic flow into the capillary could 

be experimentally confirmed. This opened up new directions for exiting future research projects 

as it suggests that an increase in interface i.d. in a continuous flow interface increases the 

depletion flow rate and could therefore improve the sensitivity of CE. 
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5.2 FUTURE DIRECTIONS 

Finally it should be noted that further research is necessary on the following topics: 

To prevent the formation of bubbles in the interface during injection 

One of the main limiting factors is bubble formation due to electrolysis and Joule heating. 

Electrolysis bubbles appeared around the cylindrical electrode after longer injection times. The 

smaller bubbles start aggregating and formed a bigger bubble that obstructed the entire diameter 

of the interface. This posed a limitation to the injection time that could be used to preconcentrate 

sample ions from the flowing sample stream.  

One possible solution to prevent bubble formation around the electrode could simply be to 

choose the total applied voltage, interface and capillary dimensions accordingly so that the 

current is decreased to a level where bubble formation is negligible within the used injection 

timeframe. Certainly this would limit the maximum depletion flow rate.  

Another way to prevent bubble formation without compromising the depletion flow rate 

would be to place the ring electrode outside the interface. This would require a setup where the 

electrode is a few mm’s away from the interface outlet. The interface outlet would have to be 

immersed in a container that contains sample liquid. The electrical connection from the electrode 

to the separation capillary entrance in the interface could be made by the sample liquid.  
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To find a backgroundelectrolyte that allows stable injection conditions with sample in the 

interface as a starting condition. 

It has been shown in chapter 3 that the approach of replacing the BGE in the interface with 

sample during injection caused a delay in reaching stable stacking conditions. This lead to 

bubble formation due to electrolysis before stable injection conditions could be reached. The 

solution would be to further optimize the BGE composition. This could allow reaching stable 

injection conditions when the sample is placed in the interface at the beginning of the injection. 

Having stable injection conditions from the beginning of the injection could prevent bubble 

formation due to long injection times.  

Bubble formation due to Joule heating appears in the space between the electrode in the 

interface and the separation capillary entrance as well as inside the separation capillary. Since 

Joule heating bubble formation does not only appear around the electrode a different electrode 

position cannot solve this issue.  

One obvious solution is to reduce the current. This would mean either a reduction in the total 

applied voltage, a reduction in capillary inner diameter or an increase in capillary length. All of 

these alterations would cause less depletion flow rate. A better solution would be to decrease the 

conductivities of both the sample solution and the BGE in the capillary while still maintaining a 

high conductivity ratio. This approach might face limitations since the conductivities of sample 

and BGE might be dictated by the stacking approach chosen and the sample that needs to be 

analysed. Another way to reduce the current would be to reduce the interface diameter which 

might compensate the depletion flow rate maximum. The last resort would be that at higher 

depletion flow rates the heat can be transported off more efficiently. This might reduce the 
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bubble formation at high depletion flow rates. Another more promising approach would be to use 

a glass interface and a cooling system when injecting at higher currents.  

 

Increasing the depletion flow rate further 

The aim was to inject from a big sample volume in a relatively short time. Within the 

presented work the maximum depletion flow rate in chapter 2 was 30 uL/min for the Tee 

interface and around 5 uL/min for the interface developed in chapter 3. The simulation model 

shows that a bigger interface diameter should lead to a higher depletion flow rate since the 

injection does not follow Kohlrausch’s regulating function. The influence of different interface 

i.d.’s on the depletion flow rate needs to be examined experimentally and should allow high 

volumes of sample being quantitatively injected within a short time frame. 

 

Utilizing the continuous flow interface to selectively inject sample ions below a certain mobility. 

One of the key findings was that at a given injection voltage and flow only ions that are above 

certain mobilities can be injected. Any sample ions with lower mobilities will not be injected and 

get transported to the waste. This would allow to scan through a given sample mixture and inject 

selectively ions only up to a certain mobility.  

 

Application of the continuous flow interface for real samples 

We anticipate that the presented continuous flow interface can be used to detect ng/L levels of 

pharmaceuticals and personal care products (PPCP) in water samples. This could be achieved by 

using a powerful stacking method in combination with a continuous flow interface at optimum 

interface i.d, voltage and flow rate. When analyzing real water samples the ion concentration and 
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conductivity in the sample would cause a decreased conductivity difference to the BGE. The 

simulations predict that even without a conductivity difference preconcentration is possible as 

long as there is a flow of liquid into the capillary. This would ultimately mean that the 

continuous flow interface could be applied to real sample without being limited to stacking 

approaches that require a conductivity difference between sample and BGE.  




