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Orchid fleck virus (OFV) is one of three commonly found viruses infecting orchids. 
Infected plants have reduced flower quality and often unsightly leaf markings and are 
unsaleable. Effective disease control relies on routine detection of the virus, but foliar 
symptoms can vary markedly and are often not reliable for diagnosis. Current 
laboratory tests use examination of leaf sap by electron microscopy. This is time 
consuming and costly. The preferred immunological tests are not available as OFV 
has an unstable virion and attempts to purify virus particles for antibody production 
have failed. However, direct isolation of viral nucleic acid from infected plants may 
enable development of alternative detection systems. 

In this project OFV was characterised by mechanical inoculation to alternate hosts. 
Sap inoculation was found to be difficult and affected by glasshouse temperatures, 
however, was successful at temperatures significantly lower than previously reported. 
The host range of a Tasmanian isolate of OFV was found to be different to that 
previously reported for isolates of OFV from Japan. Attempts to purify OFV and 
clone the viral RNA were unsuccessful, however primers specific to OFV were 
obtained. 

OFV was detected using RT-PCR with a primer complementary to a region of its 
nucleoprotein gene together with a polydT/SP6 primer complementary to the 3' 
terminus of the genomic segment. The resulting DNA fragments were 0.8kb long and 
their sequences were determined directly. The sequences of DNA fragments obtained 
from 33 OFV isolates from Australia, Brazil, Germany and South Africa were shown 
to be closely related (<2.5% difference), but a single German isolate was clearly a 
distinct strain and the . sequence of the targeted region of its nucleoprotein gene 
differed from that of the others by about 16%. Failure of RT-PCR using a second 
primer set complimentary to part of the phosphoprotein gene of the Japanese OFV 
isolate with all OFV isolates tested suggests that the Japanese isolate may represent a 
third distinct strain of OFV or a different virus. A search of the international 
nucleotide database with the OFV sequences showed them to be related, but distantly, 
to regions of the genomes of three plant rhabdoviruses. 

Isolates of coffee ringspot virus (CoRSV), citrus leprosis virus (CiL V), a common 
violet (Viola sp.), schefflera, hibiscus, ivy and ligustrum leaves showing ringspot 
symptoms and containing small bacilliform virus particles were tested using RT-PCR 
and the OFV specific primers. A single product of 800bp was amplified from one 
isolate of coffee ringspot virus and the violet sample using the primer complementary 
to a region of the OFV nucleoprotein gene together with a polydT/SP6 primer. The 
DNA products were shown to be identical to OFV when sequenced. No other sample 
gave an amplified product. These results suggest citrus leprosis disease, ligustrum 
ringspot and the ringspots on schefflera, hibiscus and ivy are caused by viruses 
different to OFV. However, this study was completed with a limited number of 
samples and the results are not conclusive, the relationship between these viruses 
should be further investigated. 

page 7 



5. Literature Review - The Plant Rhabdovirus Group 



Literature Review Annette Blanchfield 

5.1 I ntroduction 

The Rhabdoviridae represent one of only two virus families that include members 

capable of infecting either vertebrates or plants (Matthews, 1982). Members of both 

groups are transmitted by insects, in which they are propagative. Rhabdoviruses have 

complex bacilliform or bullet-shaped virions composed of RNA, protein, carbohydrate 

and lipid and are easily recognised in electron-microscopic examination of plant sap 

(Jackson et a/., 1987). The importance of rhabdoviruses as disease agents and their 

potential danger to human and livestock health is well documented (Brown and Crick, 

1979). However, rhabdoviruses also cause serious diseases of plants, resulting in 

substantial crop losses. 

Rhabdoviruses are found in tropical. subtropical and temperate regions and are known 

to infect most major crop plants (Jackson et al., 1987). Particles similar to 

rhabdoviruses have been observed in several species of plants showing disease 

symptoms, but the viral nature of the particles has not been supported by adequate 

transmission experiments (Francki, 1973). The most important factor limiting studies 

of plant rhabdoviruses is the difficulty of developing simple and reproducible 

purification protocols suitable for recovery of adequate amounts of virus of sufficient 

purity for biochemical analysis (Jackson et al., 1987). 

5.2 Biological properties 

5.2.1 Geographic distribution and host range 

Rhabdoviruses· have been reported from most parts of the world including tropical, 

subtropical and temperate regions (Peters, 1981). The majority have restricted 

distributions and this probably reflects the distributions of their vectors. 

Rhabdoviruses infect most major crop plants, and in many instances, serious disease 

outbreaks hav� been reported (Jackson et al. 1987). The natural host range of 

individual members is narrow and often limited to one or a few plant species (Peters, 

1981). However, eggplant mottled dwarf virus has been detected in eggplant, tomato, 
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hibiscus, honeysuckle, potato and weed hosts in several locations around the 

Mediterranean basin (Danesh and Lockhart, 1989). Rhabdoviruses have been reported 

in grasses from all parts of the world, but their relationships have not been studied 

(Peters, 1981).  

5.2.2 Ecology and Pathology 

Rhabdoviruses cause various symptoms in monocotyledonous and dicotyledonous 

plants, similar to those caused by infection with viruses belonging to numerous other 

groups (Jackson et al., 1987). Symptoms therefore have no diagnostic value because 

of their highly variably nature, ranging from patterns of chromatic discolouration of 

the foliage to flower colour break, localised to extensive necrosis, stunting, and a 

reduction in the yield of fruits or seeds and latent infections (Jackson et al., 1987; 

Peters, 1994). Among dicotyledons, potato yellow dwarf (PYDV) and lettuce necrotic 

yellows (LNYV) viruses cause diseases of economic importance, whereas eggplant 

mottled dwarf (EMDV) and lucerne enation (LEV) viruses are potentially destructive 

pathogens owing to the severity of the symptoms they elicit. In monocotyledonous 

plants, at least six of the eight known cereal rhabdoviruses are responsible for severe 

field diseases. Maize mosaic virus has been reported as causing yield losses of 100% 

in maize crops. Rice transitory yellowing virus causes serious decreases in yield in 

rice in the central and southern region of Taiwan, where two rice crops are grown in 

the one season (Shikata, 1972). 

5.2.3 Transmission 

The aetiology and epidemiology of most plant infecting rhabdoviruses are poorly 

understood. However, plant rhabdoviruses are believed to be transmitted by plant­

sucking arthropods in a circulative and propagative manner. Of the 25 members listed 

by Peters (1981), whose vectors are known, all except two are transmitted by species 

of the order Hemiptera. Most rhabdoviruses are transmitted by aphids, leafhoppers or 

planthoppers (f?eters, 1994). Beet leaf curl virus is transmitted by the lacebug Piesma 

quadratum and coffee ringspot virus and several other tentative members of the 
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rhabdovirus family are transmitted by Brevipalpus mites (Peters, 1981; Rossetti et al., 

1998). The virus-vector interaction is highly specific. Studies on the vectors of plant 

rhabdoviruses have shown the viruses multiply in both plants and insects (Jackson et 

al., 1987). None of the viruses appears to adversely affect the insects, which suggests 

a long evolutionary association between them (Jackson et al., 1987). A small 

proportion of the plant rhabdoviruses can be mechanically transmitted to a restricted 

range of herbaceous plants (Peters, 1981). 

5.3 Virion properties 

5.3.1 Morphology 

Particles of rhabdoviruses infecting vertebrates and invertebrates usually appear 

bullet-shaped or cone-shaped (Wunner et al., 1995). The particles of rhabdoviruses 

infecting plants often appear bacilliform when fixed prior to negative staining, whilst 

in unfixed preparations they can appear bullet-shaped or pleomorphic (Wunner et al., 

1995). The two types of particle are morphologically distinct, bacilliform with both 

ends rounded and bullet-shaped with one rounded and one planar end. Purified 

preparations of plant rhabdoviruses with a bacilliform appearance in situ often contain 

a high number of bullet -shaped particles, indicating that either the bacilliform shape is 

an unstable form (Peters, 1994) or that only the mature forms are bacilliform in shape 

(Knudson, 1973; Francki, 1973). RTYV represents an exception, for its particles are 

reported to be primarily of the bullet type, in both preparations (Shikata, 1972). 

Plant-infecting rhabdoviruses vary more in size than animal rhabdoviruses (Peters, 

1994). Plant rhabdovims virions vary in length from 100 to 430nm and in diameter 

from 45 to 100nm (Wunner et al., 1995). Defective particles are proportionately 

shorter. Abnormally long, double-length particles and tandem formations are also 

observed. Most possess a membrane envelope which surrounds the nucleocapsid, but 

some putative members of the group lack envelopes (Wunner et al., 1995). 

Projections, tehned peplomers ( 5-lOnm long) protrude from the outer surface of 

virions (Wunner et al., 1995). They consist of trimers of the virus glycoprotein. A 
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honeycomb pattern of peplomers is observed on the surface of some viruses (Wunner 

et al., 1995). The nucleocapsid. about 30-70nm in diameter, forms an internal, coiled 

helix with a hemispherical and a blunt end. It is formed by a helically wound 

nucleoprotein strand composed of a single-stranded RNA genome and a nucleocapsid 

protein (N) (Peters, 1981). It can be seen as cross-striations in negatively stained and 

thin-sectioned virus particles. The nucleocapsid contains transcriptase activity and is 

infectious (Wunner and Peters, 1991). Uncoiled it is filamentous, about 700nm long 

and 20nm in diameter (Wunner et al., 1995). 

5.3.2 Genome properties 

Rhabdovirus particles contain a single molecule of linear, single-stranded, negative­

sense RNA (MW 4.2-4.6 x 106), ie., it is complementary to its messenger RNA 

(mRNA) species produced in cells. The RNA consists of 11-15 kilobases and 

represents about 1-2% of particle weight (Wunner et al., 1995). The RNA has 5' 

terminal triphosphate and is not polyadenylated. The ends have inverted 

complementary sequences. The mRNA of Sonchus yellow net virus (SYNV) is 

polyadenylated at the 3' end (Rezaian et al., 1983). The genome RNA by itself is not 

infective. The genome of orchid fleck virus (OFV) is single stranded RNA, but 

unlike rhabdoviruses, is bipartite with each component approximately 6kb in length 

and polyadenylated at the 3' terminus (Kondo et al. , 1998). Relative to animal 

rhabdoviruses, plant rhabdoviruses often have larger genomes, as they possess an 

extra gene which encodes a protein required to transport the virus between cells 

(Peters, 1994). The genome of SYNV contains more than 14,000 nucleotides 

(Rezaian et al., 1983; Dietzgen et al., 1989), which is 1.18 times longer than that of 

the type member vesicular stomatitis virus (VSV) (11,000 nucleotides) (Peters, 1994). 

The nucleocapsid volumes and size of the plant rhabdovirus genomes do not support 

the belief of some virologists that plant rhabdoviruses are formed by two bullet­

shaped nucleocapsids attached by blunt end aggregation (Peters, 1994). 
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5.3.3 Proteins, lipids and carbohydrates 

Annette Blanchfield 

The best characterized plant rhabdoviruses are SYNV, LNYV, and potato yellow 

dwarf virus (PYDV) (Jackson et a/., 1987). These viruses have been estimated to 

contain about 70% protein, 20-25% lipid and 2-3% RNA (Jackson eta/., 1987). The 

distribution of lipids in PYDV and wheat striate (American) mosaic virus arc also 

similar to that in SYNV. In all three cases, fatty acids and sterols predominate, while 

the proportion of triglycerides is low (Jackson et al., 1987). The virions also contain 

carbohydrate. The carbohydrates are present as N-linked glycan chains on G protein 

and as glycolipids (Wunner et a/., 1995). Virions are composed of about 3% 

carbohydrate by weight (Wunner eta/., 1995). 

The polypeptides of plant rhabdoviruses differ considerably in their size, clearly 

illustrated by the comparison of the relative sizes of the proteins of SYNV, PYDV and 

LNYV (Table 1). Particles of the plant rhabdoviruses contain at least four structural 

proteins. All have a 'nucleocapsid protein' (N) which has a MW 55-60 x 103 and a 

'glycoprotein' (G) which has a MW 71-93 x 103 (Wunner and Peters, 1991). Protein G 

forms a hexagonal array over the outside of the membrane (Peters, 1981 ). In addition, 

plant rhabdoviruses can be grouped according to their protein composition. Viruses 

of the cytorhabdovirus group have one matrix (M) protein (MW 18-25 x 103) and a 

'large' protein (L) (MW 145 x 10\ is detected in some members. Viruses of the 

nucleorhabdovirus group possess two M proteins (MW 27-44 x 103 and 21-39 x 103) 

(Wunner and Peters, 1991). 

page 13 



Table I Comparison of the protein species ofLNYV, PYDV and SYNV. 

Viral proteins (mol. wt. x 103) 

Virus L G N p Ml M2 References 

Lettuce necrotic yellows 170 71 56 38 19 - Dale and Peters 

virus (LNYV) (1981) 

Potato yellow dwarf virus + 78 56 33 22 Knudson (1973) 

(PYDV) 

Sonchus yellow net virus 125- 77 64 45 39 Jackson and 

(SYNV) 150 Christie ( 1977) 

(-) Protein was not detected; ( +) protein was present, but molecular weight was not estimated. 
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An L protein associated with isolmed nudeocapsid pn:paration� \\'as detected in L:'\YV 

(Dale and Peters. 198 I). Comparisons with �ll\\'thistle yellow vein vims (SYVV 1. SYNV 

and EMDV failed to reve;ll the prcsetH.:c of ;111 L protein Ill nuch:o�:apsid preparations. hut 

showed thm high-molecular we1ght pmtems arc present in the soluble fr;n:tion after 

dissociation of the viral envelope with nomonic detergent 1 Dale and Peters. JIJR I; 

Jackson. 1978; Ziemiccki and Peters. 1976a). Plants infected with SYNV were shown to 

contain a 6600-nucleotidc vims-specific tr;mscript cRezaian t'l a/ . . 191:;:1 ). This putative 

mRNA has suflicicm coding capacity to encode an L protein. suggesting an L protein 

could have a functional role in replication (Rezaian cr a/., I 91\3 ). The presence of 

transcriptase acti\·ity in nrions of U\YV and broccoli necrotic yellows vims also implies 

the proteins of plant ;md animal rhabdovimses have similar functional activities 

(Toriyama and Peters, 198 I I. 

A G protein has been identified in all plant rhahtlovimscs tested (Jackson l'l at . . 1987 ). 

The G proteins of U\YV CFrand .. i and Randles. 1975). SYVV <Ziemiecki and Peters, 

1976bl. SYi'\V (Jacbon. 1978) ;md PYDV (Adam and Hsu. 1984) have molecular 

weights varying from 70.000 to 90.000 and stain positively for carbohydrate. The G 

protein is thought to he part of the \'ira! envelope and appears to he exposed on the 

surface of virions (Jackson era/ .. 19871. 

All the plant rhahdoviruses that have been studied ha\'e an N protein that is tightly 

complexed with the vir.!l Rl'\A CFrancki and Randles, 1975: Ziemiecki and Peters. 

1976h: Jackson. 1978: Dale and Peters. 1981 ). Dissociation of the virus with non ionic 

detergents releases a core particle that sediments at 200-250 S (Jackson. 1978). With 

SYNV and L;\YV this particle is less infectious than intact virus. hut the nucleocapsids 

retain some infectivity (Jackson. 1978, Randles and Francki. 1972J. 

A phosphorylated protein with the propertie!> of the P protein has not been unequivocally 

identified in any plant rhabdovims (Jackson cr at .. 1987 ). However. a protein thought to 

be a NS protein. is associated with purified nucleocapsids of LNYV COale and Peters. 
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1981). LNYV, BNYV, sonchus virus, maize mosaic virus and tomato vein-yellowing 

virus (TVYV) are also thought to have a P protein (Dale and Peters, 1981; Falk and Tsai, 

1983; El Maataoui et al., 1985). 

There is 
_
no structural data available about the M proteins of any plant rhabdovirus that 

allows the proteins that correspond to the P and M proteins of VSV to be distinguished 

(Jackson et al., 1987). Additional structural information is needed before the P and M 

functions can be assigned to the proteins of any of the plant rhabdoviruses (Jackson et al., 

1987). 

5.3.4 Genome organisation 

The complete genomes of RTYV (NCBI, AB011257) and SYNV (NCBI, L32603) have 

been sequenced. The genome of LNYV (NCBI, L24365, L24364, L30103) and orchid 

fleck virus (OFV) (Kondo et al. 1998), previously a putative member of the rhabdovirus 

family, have been partially sequenced. The genome organisation for LNYV has been 

described. The genome of OFV is single stranded RNA, but unlike rhabdoviruses, is 

bipartite with each component approximately 6kb in length and polyadenylated at the 3' 

terminus (Kondo et al., 1998). 

Plant rhabdovirus genomes code for at least 5 ORFs in the negative-sense genome, and 

with some viruses, additional genes are interposed (Wunner et al., 1995). The genome of 

RTYV (nucleorhabdovirus) encodes seven genes (1-N-2-3-M-G-6-L-t) (Fang et a!., 1998). 

The genome of SYNV (nucleorhabdovirus) consists of 6 ORFs (3'-N-M2-sc4-Ml-G-L"5') 

separated by dinucleotide GG spacers lying within a common "gene junction" consensus 

sequence (AUUCUUUUUGGUUGG) with some relatedness to the gene junction regions 

of VSV and rabies virus (Heaton et al., 1989). Transcription of a rhabdovirus genome is 

preceded by the synthesis of a leader RNA. The leaders carry functions that regulate 

transcription and replication (Wunner et al., 1995). The leader of SYNV differs 

considerably in length from that of VSV and rabies virus (Heaton et at., 1989). 
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5.3.5 Physicochemical and Physical Properties 

Annette Blanchfield 

The most important factor limiting studies of plant rhabdoviruses is the difficulty of 

devising simple and reproducible purification protocols for recovery of adequate amounts 

of virus of sufficient purity for biochemical analysis (Jackson et al., 1987). Rhabdovirus 

particles are structurally complex and very unstable both in crude extracts of plants or 

insects and in clarified plant sap analysis (Jackson et al., 1987). Their thermal 

inactivation point is approximately 50°C and the longevity in vitro at room temperature 

is only a few hours (Peters, 1981). They do not withstand treatment with organic solvents 

and need to be stabilised in various ways during extraction and purification to retain 

infectivity. The concentration of rhabdoviruses in infected plants is lower than that of 

many other plant viruses. generally between 1 to lOmg/1 (Peters, 1981; Jackson et al., 

1987). Virus buoyant density in CsCl is 1.19-1.20 g/cm3, and in sucrose it is 1.17-1.19 

g/cm3 (Wunner et al. 1995). 

5.3.6 Antigenic properties 

Plant rhabdoviruses are generally poor immunogens, but polyclonal antisera to several 

viruses have been prepared (Wunner and Peters, 1991). Some have been shown to 

contain antibodies to all the virus structural proteins (Wunner and Peters, 1991). G 

protein is involved in virus neutralization and defines serotype. N protein is a cross­

reacting, complement-fixing (CF) antigen (Wunner et al., 1995). 

Serology has been used to assess relationships of plant rhabdoviruses. Several of the well 

characterized viruses have been shown to be antigenically related, however, no 

serological relationships between members of either subgroup have been established 

(Peters, 1994). Studies made so far show that viruses transmitted by plant-hoppers 

between grasses·are closely or distinctly related whereas those transmitted by leaf-hoppers 
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are serologically completely distinct (Peters, 1 994). TVYV was shown to be an isolate of 

EMDV using serological techniques (Adam et al., 1987), however, TVYV was clearly 

distinguished from PYDV by serology (El Maataoui et al., 1 985). Although the 

relationships between the different plant rhabdoviruses have to be elucidated in more 

detail, the limited cases in which some relationships were found strengthen the theory that 

plant rhabdoviruses form a group of many different species (Peters, 1 994). Features such 

as nucleotide sequence homology between the different viruses and genome organization 

have not been used to study their taxonomic relations. Serological relationships between 

rhabdoviruses infecting animals and plants have not been reported (Peters, 1994). 

5.3.7 Ultrastructure and Repl ication 

Although most animal rhabdoviruses replicate and assemble in the cytoplasm, plant 

rhabdoviruses differ markedly in their morphogenesis and site of accumulation (Jackson 

et al., 1987). Electron microscopy has permitted detailed ultrastructural studies of the 

cytopathology of infected plants. These studies show that plant rhabdoviruses can be 

divided into at least four groups depending on the site of nucleocapsid formation and 

assembly of viral particles, and on the cytopathogenic structures encountered in the 

infected cells (Peters, 1 994). 

A large group, including SYNV, PYDV, SYVV and EMDV mature in association with 

the inner nuclear membrane and accumulate in the perinuclear spaces. Extensive 

aggregation in the perinuclear spaces can lead to the formation of invaginations filled 

with viral particles in the cytoplasm and or nucleus (Peters, 1 994; Jackson et al., 1 987). 

In the case of SYNV, virions often accumulate in disordered arrays around the nucleus 

(Jackson et al., 1987). A second group of viruses, including LNYV, maize sterile streak 

virus and broccoli necrotic yellows virus, appear to mature in association with the 

endoplasmic reticulum and accumulate in vesicles of the endoplasmic reticulum (Peters, 

1 994; Jackson et al., 1987). A third group of viruses, of which barley yellow striated 

mosaic virus (BYSMV) and northern cereal mosaic virus are examples, mature in 
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association with membrane-bound granular structures, called viroplasms (Peters, 1994; 

Jackson et al., 1987). The particles accumulate in the vacuolelike spaces after budding 

from the membranes associated with the viroplasms. A fourth group. represented by 

coffee ringspot virus, accumulate in the nucleus and their nucleocapsids are arranged as 

spokes in wheel-like structures surrounded by membranes (Peters, 1994). Several 

rhabdoviruses vary slightly from the patterns of assembly and accumulation described. 

Virions of these viruses appear to be assembled in or near the nucleus, but virions may 

also be found in the cytoplasm close to the cytoplasmic membranes. This type of 

morphogenesis has been extensively studied with wheat striate American mosaic virus 

(Jackson et al., 1987). 

Infection of cowpea protoplasts with SYNV (van Beek et al., 1985a) and festuca leaf 

streak virus (FLSV) (van Beek et al., 1985b) enabled the analysis of replication events 

occurring during infection with plant rhabdoviruses. Infectivity of SYNV was detected in 

extracts of cowpea protoplasts 11-12 hours after inoculation (van Beek et al. 1985a),. 

The infectivity increased until about 30 hours after inoculation and subsequently began to 

decline (van Beek et al., 1985a). Numerous rhabdovirus particles were present in the 

perinuclear space and in the cytoplasm of infected protop1asts at 67 hours after 

inoculation (van Beek et al., 1985a). Replication of FLSV appeared to be slower than 

that of SYNV, because virus particles did not appear in the protoplasts until 26 hours 

after inoculation (van Beek et al., 1985b). However, at that time, small viroplasms were 

observed in the cytoplasm and particles at various stages of morphogenesis were also 

seen budding from cytoplasmic membranes (van Beek et al., 1985b). In contrasts to cells 

infected with SYNV, particles of FLSV never became abundant in the cytoplasm and no 

ultrastructural changes were observed in the nucleus (van Beek et al., 1985b). These 

results show that FLSV, which has a monocotyledonous hosts, is capable of replicating in 

protoplasts from dicotyledonous plants. The site of morphogenesis of FLSV differs 

markedly from that of SYNV. FLSV also appears to replicate inefficiently in the cowpea 

protoplasts, because the numbers of virus particles were much lower than those observed 
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in protoplasts infected with SYNV and were also lower than the concentration observed 

in cells of the native grass host (van Beek et a!., 1985b). 

Studies by Jones and Jackson (1990) showed transcription of SYNV was initiated soon 

after infection of tobacco protoplasts as small amounts of SYNV-specific mRNA 

transcripts were detected within 2 hours after infection and these continued to increase in 

abundance until at least 24 hours after infection (Jones and Jackson, 1990). mRNA 

transcripts were reported to reach their highest concentration at 24 hours postinoculation, 

before appreciable amounts of genomic length RNAs began to accumulate at 36 hours 

postinoculation. This implies that SYNV mRNA transcription and replication of viral 

genomic RNA are temporally regulated (Jones and Jackson, 1990). During this time, the 

four major structural proteins of SYNV accumulated rapidly and replication of genomic 

RNA was not apparent until significant amounts of structural proteins accumulated. As 

the viral proteins reached their maximum amounts, the mRNA concentrations declined, 

as would be expected if transcription, translation, and replication events were 

coordinately regulated. These results suggest the regulation of SYNV replication may be 

similar to that of animal rhabdoviruses (Jones and Jackson, 1990). 

Defective-interfering (DI) particles are common in animal rhabdovirus preparations 

maintained by repeated transfer at high multiplicity of infection (Jackson et al., 1987). 

The genomes of the DI particles lack part of the complete genome and are dependent on 

the wild-type virus for replication. The DI particles have a distinct replicative advantage 

over the complete genome and accumulate at the expense of wild-type virus. Only two 

cases of putative DI particles have been reported in plant rhabdoviruses (Peters, 1994). 

Repeated transfer of PYDV at high inoculum concentrations, under conditions in which 

symptoms developed rapidly in tobacco, resulted in a decreased recovery of the virus by 

purification (Adam et al., 1983). Particles were found which sedimented at a lower rate 

and had a lower density than the normal particles. When this variant form was mixed 

with normal particles, the infectivity of the normal particles was significantly reduced, 

suggesting that t,he variant fraction contained DI particles (Adam et al., 1983). 
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Defective SYNV particles were reported in Nicotiana edwarsonii plants inoculated with 

sap extracted from chronically infected calyx tissue (Ismail and Milner, 1988). The 

infected plants exhibited a chlorotic mottling, instead of the normal vein-clearing 

symptoms. Shorter particles were purified from the inoculated plants and were not 

infectious (Ismail and Milner, 1988). Plants inoculated with a mixture of these short and 

normal particles developed mottling symptoms and yielded predominantly short particles. 

The RNA of these short particles was 77% of the size of the standard virus (Ismail and 

Milner, 1988). 

5.4 Taxonomic structure of the family 

Around 80 plant-infecting rhabdoviruses are currently recognised (Peters, 1994). The 

International Committee on Taxonomy of Viruses distinguished two subgroups of plant 

rhabdoviruses, plus additional unassigned viruses. The viruses are primarily 

distinguished on the basis of the sites of virus maturation, the cytoplasm: 

Cytorhabdovirus; and the perinuclear space: Nucleorhabdovirus (Wunner et al., 1995). 

Exceptions exist and the significance of this property is not known. The 

interrelationships of the different plant viruses within or between the two genera or with 

the unassigned plant viruses have yet to be established at the genetic level. In addition, 

several papers have been published which report the finding of rhabdovirus-like particles 

by electron microscopy in thin sections of plant cells or leaf dip preparations without 

providing appropriate virus transmission or other data implicating their relationship to 

other rhabdoviruses (Jackson et al., 1987). 

Taxonomic structure of the family 

Family Rhabdoviridae 

Animal-infecting rhabdoviruses 

Genus V fS iculovirus 
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Genus 

Genus 

Genus 

Lyssaavirus 

Ephemerovirus 

Novirhabdovirus 

Plant-infecting rhabdoviruses 

Genus Cytorhabdovirus 

Genus Nucleorhabdovirus 

5.4.1 Genus Cytorhabdovirus 

Type Species lettuce necrotic yellows virus 

Annette Blanchfield 

Cytorhabdoviruses replicate in the cytoplasm of infected cells in association with masses 

of thread-like structures (viroplasms) (Wunner et al., 1995). Virus morphogenesis occurs 

in association with vesicles of the endoplasmic reticulum (Wunner et al., 1995). A 

nuclear phase has been suggested in the replication of some cytorhabdoviruses. Evidence 

of the nuclear involvement in the replication of others is lacking (Wunner et al., 1995). 

Their particles contain one protein with low molecular weight, denoted M, and possess a 

transcriptase activity that can readily be detected in vitro (Peters, 1994). 
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Table 2 Species in the Genus Cytorhabdovirus 

Virus and CMIIAAB description No. ( )  

barley yellow striate mosaic virus (BYSMV) 

(3 1 2) 

broccoli necrotic yellows virus (BNYV) (85) 

Festuca leaf streak virus (FLSV) 

lettuce necrotic yellows virus (LNYV) (26, 

243) 

Northern cereal mosaic (NCMV) (322) 

Sonchus virus (SV) 

strawberry crinkle virus (SCV) ( 163) 

wheat American striate mosaic (W ASMV) 

(99) 

5.4.2 Genus Nucleorhabdovirus 

Type Species: potato yellow dwarf virus 

Vector 

leafhopper 

aphid 

unknown 

aphid 

leafhopper 

unknown 

aphid 

leafhopper 

Annette Blanchfield 

Particle dimensions 

(nm) 

45 X 330 

64 X 297 

6 1  X 330 

52 X 360 

60 X 300/350 

50/70 X 250/300 

69 X 190/380 

75 X 250 

Nucleorhabdoviruses multiply in the nucleus of plants forming large granular inclusions 

that are thought to be sites of virus replication (Wunner et al., 1995). Viral proteins are 

synthesized from discrete polyadenylated nRNAs and accumulate in the nucleus. Virus 

morphogenesis occurs at the inner nuclear envelope and enveloped virus particles 

accumulate in the perinuclear space (Wunner et al., 1995). Their particles possess two 

low molecular weight proteins, often called Ml and M2, but are presumably matrix (M) 

and non-structural (NS) proteins, and have low in vitro transcriptase activity (Peters, 

1994). 
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Table 3 Species in the Genus Nucleorhabdovirus 

Virus and CMI/AAB description No. ( )  Vector Particle dimensions 

(nm) 

Datura yellow vein virus (DYVV) unknown 77 X 1 66 

eggplant mottled dwarf virus (EMDV) (115) unknown 66 X 220 
(Pittosporum vein yellowing virus 

(PVYV)) 
(tomato vein yellowing virus (TVYV)) 

maize mosaic virus (MMV) (94) leafhopper 48 X 240 

potato yellow dwarf virus (PYDV) (35) leafhopper 75 X 380 

rice transitory yellowing virus (RTYV) (100) leafhopper 93 X 325 
(rice yellow stunt virus) 

sonchus yellow net virus (SYNV) (205) aphid 94 X 248 

sowthistle yellow vein virus (SYVV) (62) aphid 95 X 220 

Probable members of Plant Rhabdovirus group. Not officially grouped, listed according 

to type of vector. Transmitted experimentally but not characterised physico-chemically. 

Table 4 Aphid transmitted viruses 

Virus and CMI/AAB description No. () In vivo site particle dimensions (nm) 

carrot latent virus (CaL V) 

Lucerne enation virus (LuEV) 

Parsley rhabdovirus (PRY) 

of assembly 
Nuc. 70 x 220 

Nuc. 82-89 x 250 

Cyt. 87 X 214 

Raspberry vein chlorosis virus (RVCV) Cyt. 

( 174) 

65 X 430 
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Table 5 Leatbopper- or planthopper-transmitted viruses 

Virus and CMJ/AAB description No. () In vivo site Particle dimensions (nm) 
of assembly 

Cereal chlorotic mottle virus (CeCMV) Nuc. 63 X 230 

(251)  

Colocasia bobone disease virus (CBDV) Nuc. 65 X 380-335 

Cynodon chlorotic streak virus (CCSV) Nuc. 72 x 240 

Digitaria striate virus (DSV) Cyt. 55 X 280 

Finger millet mosaic virus (FMMMV) Nuc. 80 X 285 

maize sterile stunt virus (MSSV) Cyt. 45 X 255 

oat striate mosaic virus (OSMV) Nuc.-Cyt. 100 X 400 

papaya apical necrosis virus 

Sorghum stunt moaic virus (SSMV) Nuc. 68 X 220 

Shiraz maize rhabdovirus (SMRV) unknown 70-85 X 150-250 

wheat chlorotic streak virus (WCSV) Cyt. 55 X 355 

Wheat rosette stunt virus (WRSV) Cyt. 40-54 X 320-400 

winter wheat (Russian) mosaic virus Cyt. 60 X 260 

(WWMV) 

Table 6 Lacebug-transmitted virus 

Virus and CMJJAAB description No. () In vivo site Particle dimensions (nm) 
of assembly 

Beet leafcurl virus (BLCV) (268) Nuc. 80 x 225-350 

Table 7 Mite-transmitted viruses 

Virus In vivo site of assembly particle dimensions (nm) 

citrus leprosis virus (CL V) Nuc. 50-55 x 120-130 

coffee ringspot v!rus (CRV) Nuc. 59-76 x 178-224 
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orchid fleck virus (OFV) Nuc. 

Table 8 Viruses with no known vector 

Virus In vivo site of assembly 

Cow parsnip mosaic virus Nuc. 

(CoPMV) 

Cynara virus (CV) Cyt. 

Gomphrena virus (GV) Nuc. 

Ivy vein-clearing virus (IVCV) Nuc. 

laburnum yellow vein virus Nuc. 

(LYVV) 

Moroccan wheat rhabdovirus unknown 

(MWRV) 

Melilotus latent virus (MeL V) Nuc. 

Pelargonium vein-clearing Nuc. 

virus (PL VCV) 

Pisum virus (PV) Cyt. 

Raphanus virus (RV) Cyt. 

Other possible members: 

Atropa belladonna virus (AtBV) 

Callistephus chinensis chlorosis virus (CCCV) 

carnation bacilliform virus (CBV) 

cassava sympto!I)1ess virus (CasSV) 

chrysanthemum frutescens virus (CFV) 

chrysanthemum vein chlorosis virus (CVCV) 

clover enation virus (CloEV) 

coriander feathery red vein virus 

Euonymus fasciation virus (EFV) 

Annette Blanchfield 

32-35 X 100-140 

Particle dimensions (nm) 

90 X 265 

75 X 260 

75 X 230-250 

55 X 325 

89 X 245 

50-60 X 220-240 

80 X 300-350 

70 X 250 

45 X 240 

50-70 X 250-350 

page 26 



Literature review 

gerbera symptomless virus (GrbSV) 

Holcus lanatus yellowing virus (HL YV) 

Iris germanica leaf stripe virus (IGLSV) 

Laelia red leafspot virus (LRLSV) 

Launea arborescens stunt virus (LASV) 

lemon scented thyme leaf chlorosis virus (LSTCV) 

Lolium ryegrass virus (LoRY) 

lotus stem necrosis (LoSNV) 

lucerne enation virus (LEV) 

lupin yellow vein virus (LYVV) 

Malva silvestris virus (MaSV) 

Melilotus latent virus (MeL V) 

melon variegation virus (MVV) 

parsley latent virus (PL V) 

pigeon pea proliferation virus (PPPV) 

pineapple chlorotic leaf streak virus (PCLSV) 

plantain mottle virus (PlMV) 

Ranunculus repens symptomless virus (RaRSV) 

red clover mosaic virus (RClMV) 

Sainpaulia leaf necrosis virus (SLNV) 

Sambucus vein clearing virus (SVCV) 

Sarracenia purpurea virus (SPV) 

Sorghum virus (SV) 

Sorghum stunt virus (SSV) 

soursop yellow blotch virus (SYBV) 

Thunbergia alata rhabdovirus (TaRV) 

Triticum aestivum chlorotic spot virus (TACSV) 

Vigna sinensis mosaic virus (VSMV) 

Zea mays virus (ZMV) 

Annette Blanchfield 
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5.4.3 Affinities with other groups 

Plant rhabdoviruses have many similarities to vertebrate-infecting rhabdoviruses. Further 

study may reveal the affinity between subgroup A and members of the vertebrate­

infecting Vesiculovirus genus may be closer than that between nucleorhabdovirus, which 

may have its closest affinities with members of the vertebrate-infecting Lyssavirus genus. 

However, the recent sequencing of OFV, showing OFV has a bipartite genome indicates 

that OFV should not be a member of the plant rhabdovirus group (Gibbs, per. comm.). 
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An orchid species was first shown to contain bacilliform virus particles in 1969, 

described from thin sections of Cymbidium leaves displaying necrotic flecks in Japan 

(Doi et at, 1969). Doi et at. (1969) observed bacilliform virus particles measuring 

approximately 32 nm x 120 nm in the nuclei and cytoplasm of infected cells. The virus 

was designated orchid fleck virus (OFV) (Doi et at., 1969). Subsequently Chang et at. 

(1973) detected bacilliform particles in several orchid genera. Chang et at. (1973) 

succeeded in the mechanical transmission and partial purification of OFV and concluded 

it was the same virus as described previously in Japan. 

However, in 1971, Petzold (1971), and Diivel and Peters (1971) both reported bacilliform 

virus-like particles from Dendrobium sp. in Germany. Both reports were based on 

observations of thin sections, describing the close relationship of the intranuclear 

particles with the inside of the nuclear membrane and the close connection of the 

cytoplasmatic particles with the cytoplasmic reticulum. The intranuclear virus-like 

particles were unenveloped. Some enveloped particles were described by Diivel and 

Peters (1971) in the cytoplasm in double membrane bounded vesicles. In both reports 

distinctive arrangements of spokewheel inclusions were found enclosed by double 

membranes. Petzold (1971) tentatively named the virus Dendrobium virus, without 

comparing it to the virus reported earlier in Japan. Similar virus-like particles, some 

enveloped, with associated cytological features were found in a Phataenopsis 

tueddemanniana from Denmark by Lesemann and Begtrup (1971). Also only detected in 

thin sections, the virus was tentatively named Phalaenopsis virus. 

The first report of bacilliform virus-like particles detected in sap from a diseased orchid 

was by Begtrup-(1972), from a Dendrobium species. Begtrup (1972) observed that only a 

small proportion of the particles were truly bacilliform, and the majority were bullet and 

rod shaped. All were unenveloped and measured 110-120 nm long and 50 nm wide. 

Begtrup (1972) reported the particles were only visible in crude leaf extract negatively 

stained with 1.2% ammonium molybdate, pH 6.8. Lesemann and Doraiswamy (1975) 

reported similar fmdings, detecting bullet-shaped particles in leaf tissue crushed in a 
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solution of 2% ammonium molybdate. Bullet-shaped particles were seldom observed in 

preparations stained with 2% phosphotungstate or uranyl acetate. However, all three 

stains allowed easy detection of Cymbidium mosaic virus and Odontoglossum ringspot 

virus. 

K.itajima et al. (1974) completed a survey of a large collection of orchid species showing 

conspicuous ringspot symptoms and reported rod-like particles either in the nucleus or in 

the cytoplasm of infected cells. The particles were 40 nm wide and varied in length from 

50-200 nm, in thin sections. Although describing them as rod-like, K.itajima et al. ( 1974) 

considered the particles to be similar in morphology and in their relationship to cell 

components to those observed in ringspot of Phalaenopsis and Dendrobium orchids in 

Europe (Lesemann and Begtrup 197 1;  Petzold 197 1).  Kitajima et al. ( 1 974) also likened 

the rod-like particles observed in orchids with those associated with citrus leprosis and 

coffee ringspot disease. 

K.itajima et al. ( 1974) suggested the rodlike particles observed in orchids had a viral 

nature due to their constant association with particular symptoms and their resemblance in 

morphology and intracellular localisation with rhabdoviruses. Although resembling the 

internal component of rhabdovirus particles, the rod-like particles appeared rarely 

surrounded by cytomembranes and were considered as incomplete or defective 

rhabdovirus particles (K.itaj ima et al. 1974). Begtrup ( 1972), Diivel and Peters ( 1971) 

and Lesemann and Begtrup ( 197 1) concluded the uncoated particles seen in thin sections 

represented inner components of viruses related morphologically to bacilliform viruses. 

However, the missing coat on the particles and the unusual spokewheel-inclusions 

separated the viruses in Dendrobium and in Phalaenopsis from other members of the 

group of bacilliform viruses (Begtrup 1972; Diivel and Peters 1971). 

The first report of a bacilliform virus occurring in orchids in the United States was by Ali 

et al. ( 1974). This was also the first report of a bacilliform virus causing floral 

abnormalities in orchids. The white streak symptoms described appeared distinct from 

other virus induced floral symptoms in orchids. Ali et al. ( 1974) reported a rhabdovirus 
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as well as cymbidium mosaic virus infecting the orchid, the combination of infection 

may have produced the colour break symptoms as neither virus alone is known to cause 

such symptoms. Ali et al. (1 974) named the virus Dendrobium rhabdovirus, based on the 

typical bullet-shaped particle structure, together with the virus envelope and the inner 

component of the particles. The particle differed significantly in length and width from 

the bacilliform particles described in orchids by Begtrup (1972), Lesemann and Begtrup 

( 1971 ) and Petzold (1971 ) . However, it was nearly identical in size to the virus 

described by Dtivel and Peters ( 197 1 )  but showed major differences in the structural 

conformation of the virus particles in the infected cells. Both the particles described by 

Ali et a!. ( 1974) and Dtivel and Peters ( 197 1 )  were enveloped. Lawson and Ali ( 1975) 

reported Dendrobium rhabdovirus was the first true rhabdovirus occurring in orchids. In 

contrast to other bacilliform viruses observed in orchids, the virus described by Lawson 

and Ali ( 1975) did not induce the formation of spoke-wheel configurations in the 

cytoplasm, a common feature associated with all other bacilliform viruses reported in 

orchids. The presence of spokewheels and the absence of enveloped particles in 

negatively stained preparations separates the bacilliform viruses in orchids from other 

rhabdoviruses, however, the morphological differences between Dendrobium rhabdovirus 

and other bacilliform viruses found in orchids may represent distinct stages of 

development of similar viruses. Lawson and Ali ( 1975) described both enveloped and 

non-enveloped particles in the perinuclear space, the presence of unenveloped particles 

also separates this virus from the rhabdovirus group. 

Peters ( 1977) described a bacilliform virus from Laelia purpuratum and two Laelio­

Cattleya orchids with dark red spots and ringspots. Long bacilliform particles were 

visible in ultrathin sections obtained from cells from the red spotted area only. The 

appearance of the particles showed similarities to rhabdoviruses and were enveloped, 

however, the characteristic properties of the virus separates it from other rhabdoviruses 

(Peters, 1977). The virus, named Laelia red leafspot virus (LRLSV) (Peters, 1977), 

showed some morphological similarities to the virus described by Lawson and Ali (1975), 

however virion length differed considerably between the two viruses. 
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Only Chang et a!. (1973) succeeded in mechanically transmitting OFV, none of the other 

bacilliform viruses described from orchids have been sap transmitted. Further work must 

be done to determine if the viruses described are distinct from each other. The conflicting 

reports in the literature (Table 1 )  of the size and shape of bacilliform virions found in 

orchids suggests there may be more than one such virus infecting orchids. Based on their 

ultrastructure and their association with cell membranes, two groups may be 

distinguished. The first group include small bacilliform particles, approximately 100-

1 20nm x 30nm in size. All findings have revealed that the virions are associated with the 

formation of "spokewheels" (Duvel and Peters, 1971 ;  Lesemann and Begtrup, 197 1 ;  

Petzold, 1 97 1 ;  Begtrup, 1 972; Kitajima e t  al., 1 974). The other group includes 

bacilliform particles which are larger, 230-320nm x 80-85nm, do not form spokewheels 

and could possibly be true members of the rhabdovirus group. 

Coffee ringspot virus and citrus leprosis virus have been compared to OFV because they 

are similar in particle shape and size and the particles are observed close to the inner 

nuclear membrane, arranged in aggregates and form "spokewheel" inclusions in the 

cytoplasm (Colariccio et al., 1995, Lovisolo et al., 1 996, Chagas, 1980, Kitajima et a!., 

1974, Kitajima et a!., 1972). OFV is transmitted by the mite Brevipalpus californicus 

(Maeda et a!. 1 998). Mite vectors in the genus Brevipalpus have also been demonstrated 

for coffee ringspot virus, citrus leprosis virus, ligustrum ringspot virus and green spot on 

passion fruit (Colariccio et a!., 1995, Rossetti et a!., 1998), suggesting the viruses may be 

related. 
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Table 9 Reported size and shape of bacilliform particles detected in orchids. 

Author Particle shape Size of particles 

(length x width nm) 

Lesemann & Begtrup, 197 1 bacilliform 1 10 X 30 

bullet -shaped 130 or 255 x 55 

Petzold, 197 1  bacilliform 100 X 30 

Begtrup, 1972 bacilliform 1 10-120 X 50 

bullet -shaped some 100nm and 

rod-shaped 90nm 

Kitajima et al., 1 974 rod-like 50 - 200 X 40 

Lawson & Ali, 1975 bacilliform 320 or 1 80 x 85 

bulletshaped 

Lesemann & Doraiswamy, 1975 bullet -shaped 1 05 X 47 

seldom 1 00-120 X 76 

bacilliform & 

cylindrical 

Chang et al., 1 976 bacilliform 150 X 40 

mostly bullet- 100-140 x 32-35 (thin 

shaped sections) 

Peters, 1977 bacilliform 190-230 X 80 

Kondo et al., 1995 bullet-shaped 1 20-1 50 X 40 

bacilliform 
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Table 1 0  Descriptions of symptoms induced by bacilliform particles in orchids. 

Author Orchid genera Symptoms 
Begtrup, 1 972 Dendrobium inoglossum coalescent yellow, chlorotic 

areas 
big dark/black ringshaped spots 

Petzold, 1971 Dendrobium hybrid diffuse yellow flecks, in centre 
brown-black necroses 

Lesemann & Begtrup 1971 Phalaenopsis chlorotic flecks, dark necroses 
lueddemanniana (mixed infection) 

Lesemann & Doraiswamy, Phalaenopsis species chlorotic and or necrotic leaf 
1975 Dendrobium species lesions shaped as rounded 

Miltonia spectabilis flecks or ringspots 
Odontoglossum species 
Oncidium jlexuosum 
Paphiopedilum species 
Stanhopea oculata 
Vanda species 

Chang et al. 1976 Angulo rea systemic leaf chlorotic or 
Cymbidium necrotic flecks 
Dendrobium 
Odontoglossum 
Oncidium 
Pescatorea 

Kitajima et al. 1974 Miltonia species ringspot disease 
Oncidium species 
Brassica species 
Trigonidium acuminatum 
Bifrenaria harrisoniae 
Dendrobium thrysijlorum 
Phalaenopsis hybrid 
Aspasia lunata 
Hormidiumfragrans 

Peters, 1977 Laelia purpuratum dark red spots 
Laelio-Cattleya ringspots 

sunken areas without colour 
change 

Ali et al., 1974 Dendrobium phalaenopsis floral colour break 
chlorotic flecks 
diffuse chlorotic patches 
(mixed infection) 

Kondo et al., 1995 Cymbidium species chlorotic flecks 
necrotic ringspots 
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The descriptions of symptoms induced in orchids by bacilliform viruses are varied (Table 

2). These symptoms have no diagnostic value, but are distinct to the symptoms of stripes 

or necrotic line patterns more typical of orchids infected with Cymbidium mosaic virus 

and Odontoglossum ringspot virus. The large list of varied orchid genera and species 

(Table 2) in which bacilliform particles have been detected illustrates the bacilliform 

viruses have a large host range. The occurrence of bacilliform particles infecting orchids 

in Germany, Denmark, Japan, Korea, the United States, Brazil and Australia suggests 

bacilliform viruses infecting orchids are widespread in areas of the world where orchids 

are cultivated. The bacilliform virus particles found infecting orchids in Brazil and 

Europe have not been compared to those found in Japan because of insufficient 

information. Hence, OFV has many possible synonyms: Dendrobium leaf streak virus, 

Dendrobium virus, laelia red leafspot, short orchid rhabdovirus, orchid rhabdovirus, 

Phalaenopsis chlorotic spot virus, Phalaenopsis hybrid virus, and Phalaenopsis virus 

(Lesemann, 1 986). Although the relationship of these bacilliform viruses to OFV has not 

been shown. 

The genome structure of a Japanese isolate of OFV has been determined (Kondo et al., 

1 998). The genome was single-stranded RNA, but unlike other rhabdoviruses, was 

bipartite with each component approximately 6kb in length and had a polyadenylate 3' 

terminus (Kondo et al., 1998). The 3 '  and 5' terminal sequences of the two RNAs are 

conserved and complementary. RNA1 has 641 3  nucleotides and includes five open 

reading frames. RNA2 has 6001 nucleotides and includes a single long open reading 

frame which encodes a 212  kDa protein (Kondo et al. , 1998). OFV is efficiently 

transmitted by the mite Brevipalpus californicus (Maeda et al., 1998). 

Rhabdoviruses are extremely labile and their concentration in infected plants is usually 

lower than that of many other plant viruses (Jackson et al., 1 987). Therefore, the most 

important factor limiting studies of plant rhabdoviruses is the difficulty of devising 

reproducible purification protocols suitable for recovery of adequate amounts of virus of 

sufficient purity for biochemical analysis (Jackson et al., 1987). Diagnosis of virus 
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diseases are commonly conducted by enzyme-linked immunosorbent assay (ELISA) but 

this method is not available for use with OFV because an antisera has not been produced. 

Current laboratory tests used for diagnosis of OFV involve the examination of leaf sap by 

electron microscopy, however this is time consuming and unreliable because OFV is 

usually present in very low concentration. Recent studies have demonstrated the 

usefulness of the polymerase chain reaction (PCR) as a powerful diagnostic tool, which 

has the added advantage of allowing the subsequent study of genetic variation between 

isolates (Thomson et al., 1995). 

6. 1 Project Objectives: 

• To develop a nucleic acid based diagnostic system for OFV to provide rapid, accurate 

and cost effective tests which integrate with those currently available for other orchid 

viral pathogens commonly found and is compatible with moderate to high volume 

throughput of test samples. 

• To evaluate the sensitivity, specificity and robustness of any such tests developed. 
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Materials and Methods Annette Blanchfield 

7. 1 .1 Virus isolates 

Forty-five isolates of small bacilliform viruses were sourced from orchids of various 

genera, showing symptoms typical of virus infection, from private collections and 

nurseries in different regions in Australia, South Africa, Brazil, Germany and Hawaii 

(Table 1 1) .  Twenty-six Australian, and one South African isolate were provided by 

TASAG ELISA and Pathogen Testing Service. One isolate came from an Australian 

native orchid collected in the wild by Mr. Don Gowanlock. Three Brazilian isolates were 

obtained from Dr. Elliot W. Kitajima. Four isolates from Germany and a rhabdovirus 

isolate infecting an orchid from Hawaii were obtained from Dr. Dietrich-E. Lesemann. 

Leaf samples were either fresh, air dried, dried over calcium chloride or frozen at -sooc 

on receipt. 

A common violet (Viola sp.) showing areas of leaf chlorosis and containing OFV-like 

particles, observed by electron microscopy, was supplied by Mr. Don Gowanlock (Table 

1 2). An isolate of coffee ringspot virus (CoRSV) was obtained from Mr. Cesar M. 

Chagas in Brazil (Table 12). Another isolate of CoRSV, an isolate of citrus leprosis virus 

and schefflera, hibiscus, ivy and ligustrum leaves showing ringspot symptoms were 

obtained from Dr. Elliot W. Kitajima, also in Brazil (Table 1 2) .  

7.2 Isolation & Characterisation of Viri ons & Viral Nucleic Acids 

7.2 . 1  Electron microscopy 

Electron microscopy was used for partial characterisation of the bacilliform OFV virion 

structures. Expressed leaf sap mounted directly onto Parlodion and carbon coated, 

copper/rhodium 400 mesh square grids were negatively stained with ammonium 

molybdate, pH 5.2 and examined with a transmission electron microscope (Phillips EM 

201 ). Morphological characterisation of isolates was made based on particle dimensions. 
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Table 1 1  List of OFV isolates compiled, including sample number, location of collection 

and orchid genera in which OFV was detected. 

Sample no. Country (State) Genera 

003 Hillman, Western Australia Dendrobium sp. 

005 Brazil Miltonia mourelliana 

007 Brazil Miltonia rignelli x mourelliana 

009 Brazil Hormidium calamarium 

0 1 1  Bairnsdale, Victoria Cymbidium sp. 

0 1 3  Australian Capital Territory Cattleya sp. 

017  Kings Langley, New South Dendrobium sp. 
Wales 

0 1 9  Cromer, New South Wales Cymbidium sp. 

023 Germany Wilsonara hybrid 

024 * Gladesville, New South Cymbidium hybrid 

Wales 

025 Hornsby, New South Wales Dendrobium sp. 

027 Blacktown, New South Wales Cymbidium sp. 

029 Belmont, New South Wales Dendrobium sp. 

03 1 Sydney, New South Wales Bulbophyllym elbertii 

033 Sydney, New South Wales Dendrobium hybrid 

037 Lenah Valley, Tasmania Oncidium sp. 

039 Howrah, Tasmania Oncidium sp. 

041 Australian Capital Territory Cymbidium hybrid 

043 Smithfield, New South Wales Cymbidium sp. 

045 Germany Cymbidium sp. 

047 Germany unknown species 

052 Germany unknown species 

053 Durban, South Africa Cymbidium sp. 

056 Brisbane, Queensland Dendrobium kingianum 
(Australian native) 
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057*** St. Agnes, South Australia Cymbidium sp. 

058*** North Richmond, New South Cattleya sp. 
Wales 

059* Blacktown, New South Wales Cymbidium hybrid 

060* Belmont, New South Wales Dendrobium hybrid 

061 *  Kings Langley, New South Cymbidium sp. 
Wales 

062* Hornsby, New South Wales Cymbidium sp. 

063* Bellingen, New South Wales Dendrobium hybrid 

064* Gracemere, Queensland Cymbidium sp. 

077** Hawaii Epidendrum sp. 

237 Brisbane, Queensland Cymbidium sp. 

494 New Town, Tasmania Cymbidium hybrid 

590 Burra Creek, New South Baptistonia echinata 
Wales 

59 1 Burra Creek, New South Angracum sesquipedale 
Wales 

593 Burra Creek, New South Stanhopea embreii 
Wales 

770*** Sydney, New South Wales Dockrillia hybrid 

773 Sydney, New South Wales Cattleya aclandii 

775 Sydney, New South Wales Dendrobium fimbriatum 

776 Sydney, New South Wales Liparis plantaginea 

777 Sydney, New South Wales MCLr:illaria striata 

778 Sydney, New South Wales Odontoglossum hybrid 

780 Australian Capital Territory Hamelwellsara hybrid . .  
*air dried sample shown to be positive for OFV by electron lTilcroscopy but fmled to yield a PCR product 

using mN2 and polydT/SP6 primers. 

**sample is infected by an enveloped bacilliform particle distinctly larger than OFV and failed to yield a 

PCR product using mN2 and polydT/SP6 primers. 

***sample detected by RT-PCR however was not sequenced. 

page 4 1  



Materials and Methods Annette Blanchfield 

Table 12 List of small bacilliform isolates from other plants, including sample 
number and location of collection. 

Sample no. Plant type Location 
090 Viola sp. Qld, Australia, D. Gowanlock 
091 Coffee Brazil, C. M. Chagas 
092 Coffee Brazil, E. W. Kitajima 
093 Ligustrum Brazil, E. W. Kitajima 
094 Ivy Brazil, E. W. Kitajima 
095 Hibiscus Brazil, E. W. Kitajima 
096 Schefflera Brazil, E. W. Kitaiima 
097 Citrus Brazil, E. W. Kitajima 

7.2.2 Mechanical Inoculation 

Mechanical transmission of OFV was attempted in order to introduce OFV to a 

herbaceous host to aid virion purification, and to test experimental range. OFV isolate 

494 was maintained in Cymbidium sp. grown under glasshouse conditions, with an 

average temperature range of 20-25°C. The virus was inoculated to uninfected seedlings, 

grown under glasshouse conditions, with an average temperature range of 20-25°C, with 

4 to 6 expanded leaves. Nine herbaceous species were challenged belonging to the 

Chenopodiaceae, Solanaceae and Aizoaceae families. Sixty seedlings of each 

Chenopodium quinoa, C. murale, C. amaranticolor, C. foliosum and C. alba were 

challenged four times. Twenty seedlings of each Nicotiana glutinosa, N. Tabacum 

'White Burley', Tetragonia expansa, and Petunia hybrida were challenged four times. 

Challenges were also made to six Cymbidium back bulbs, eight times. Inoculum was 

prepared by grinding 1g of symptomatic leaves using a mortar and pestle, in 20 ml of cold 

buffer. Either 0.01M phosphate buffer, pH 7.2 (Appendix 1 )  or 0.02M HEPES buffer, pH 

7.4 (Appendix L) was used. 1% celite was added and the homogenate was rubbed onto 

the leaves of host plants using sterilised cotton buds. Leaves were rinsed after five 

minutes. The freshly inoculated host plants were kept in the dark for 2 hours before 

being transferred to the glasshouse. Symptoms were recorded 10-14 days after inoculation 

and the source plants and inoculated host plants were examined with electron microscopy 

to determine infection with OFV. 
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7.2.3 Virion purification 

Primarily the method described by Chang et al. (1976) for the partial purification of OFV 

was used. Approximately 35g of symptomatic Cymbidium leaves or Chenopodium 

quinoa 1 5-23 days post-inoculation, were freshly harvested and homogenised in 3, 4 or 5 

volumes of extraction buffer (Appendix 1) using a Waring commercial blender (Waring 

products division, New Hartford, USA) at 4°C. The homogenate was then strained 

through two layers of muslin cloth and the filtrate was clarified by centrifugation at 5,000 

rpm for 15 minutes at 4°C in a Sorvall RC5C, SS-34 rotor (Dupont Instruments, 

Northside, NSW). The supernatant was collected and centrifuged at 30,000 rpm in a 

Beckman LS-M ultracentrifuge for 2 hours, at 4°C. The pellet was resuspended in 0. 1M 

phosphate buffer, pH 7.0, using in a glass tissue homogenizer, and centrifuged at 5 ,000 

rpm for 15 minutes at 4°C. The supernatant was centrifuged at 30,000 rpm for 2 hours at 

4°C. The pellet was resuspended in 0.1M phosophate buffer, pH 7.0. Following each step 

of differential centrifugation the purified preparations were examined for the presence of 

virus particles and the amount of contaminating host material present was assessed by 

electron microscopy. Virion preparations were placed on carbon-stabilized copper grids, 

negatively stained with ammonium molybdate, pH 5.2 and viewed in a transmission 

electron microscope. Subsequently, the virion preparation was run through another cycle 

of differential centrifugation if the virion preparation was deemed viable through 

assessment with electron microscopy. 

Additional modifications incorporating a number of rhabdovirus purification methods 

(Hunter et al. 1990, Jackson and Christie, 1 977, Creamer, 1992) were attempted twice in 

order to improve the success of purifications. The extraction buffer described by Hunter 

et al. ( 1990) (Appendix 1 )  was used, the homogenate was squeezed through four layers of 

muslin cloth and centrifuged at 5,000 rpm for 15 minutes at 4°C. The supernatant was 

layered on a step gradient formed from Sml of 300mg/ml of sucrose and 5ml of 

600mg/ml of suprose in extraction buffer at pH 7.4 (Hunter et a!. , 1990). The extraction 
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buffer of Jackson & Christie ( 1 977) (Appendix 1) was used and the supernatant collected 

after centrifugation at 5,000 rpm for 10 minutes at 4°C was layered over a discontinuous 

sucrose gradient of 300 and 600 mg/ml in extraction buffer adjusted to pH 7.5 (Jackson & 

Christie, 1977). One gram of Celite was added to the virus preparation after differential 

centrifugation according to Cremer ( 1992). 

Samples of purified virus particles were stored at 4°C in O. lM phosphate buffer, pH 6.8 

with 1 %  glutaraldehyde. 

7.2.4 Extraction of Viral RNA 

Following successful partial purification of OFV the viral RNA was extracted from three 

different suspensions using an RNeasy Plant Mini kit (QlAGEN) according to the 

manufacturers instructions. RNA was also extracted from partially purified suspensions 

of OFV using the method of Thomson et al. ( 1995). Three different samples were 

combined and incubated for 30 minutes with 0. 1 %  sodium dodecyl sulphate and 50 

j.!g/ml proteinase K. The pooled sample was then emulsified with an equal volume of 

phenol saturated with 0. 1 M  Tris-HCl, pH 8.0, the suspension was centrifuged and the 

supernatant was mixed with an equal volume of phenol:chloroform ( 1 : 1) .  Following 

centrifugation the supernatant was mixed with an equal volume of chloroform:n-amyl 

alcohol (24: 1 ). RNA was precipitated from the aqueous phase by the addition of 0. 1 

volume of 3M sodium acetate, pH 5.2 and 2.5 volumes of cold ethanol and incubation at -

20°C for 3 hours. The sample was centrifuged at l O,OOOg for 30 minutes at 4°C, pelleted 

nucleic acid was washed with 70% ethanol and dried before being resuspended in 30 j.!l 

sterile water. This method was repeated on two other occasions. 

Samples of nucleic acids resulting from the RNA extracts were electrophoresed on 1% 

agarose gels, both following digestion with RNase A (Amersham Pharrnacia Biotech) 

and untreated. 
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7.3 Cloning of Viral Nucleic Acids 

7.3. 1 eDNA synthesis 

1 0f.!l of viral RNA extracted from purified OFV particles using the method of Thomson et 

al. ( 1995), was diluted with !Of.!] sterile, DEPC treated water, heated at 65°C for 10 

minutes, then chilled on ice. The RNA solution was added to the first strand reaction mix 

of a TimeSaver eDNA synthesis kit (Pharmacia Biotech) with the random hexamer 

primer diluted at 1/200. The complete protocol was followed according to the 

manufacturers instructions, including the addition of EcoR1/Notl adapters. The eDNA 

was then ligated directly into a pUC 18 vector, using a Ready to Go pUC 18 EcoR1/BAP 

+ Ligase kit (Pharmacia Biotech). 20111 of eDNA was added and the protocol was 

followed according to the manufacturers instructions. The ligation reaction was 

performed with both heat inactivation by heating at 70°C for 10 minutes and without heat 

inactivation of the ligation reaction. 

7.3.2 Transformation of chemically competent cel ls.  

l OOf.ll of Epicurian coli Sure 2 supercompetent cells (Stratagene) were thawed on ice. 

f.!l of the ligation mix was added and incubated on ice for 10 minutes. The cell 

suspension was heat-shocked at 42°C for 30 seconds, then chilled on ice for 2 minutes. 

900f.!l of 42°C preheated Loria Broth (LB) liquid (Appendix 1 )  was added and incubated 

at 37°C with shaking for 1 hour. Dilutions of the cell suspension were plated onto 

selection LB containing ampicillin (50f.1g/rnl) and 40f.!l of each 20 mg/rnl stock solution 

of IPTG (�-D,-thiogalactopyranoside) and XGal (5-bromo-4-chloro-3-indolyl �-D­

galactopyranoside) per plate. 

1 f.!l of the ligation mix was also added to 100f.ll DH5a E. coli thawed on ice, and 

incubated for 10 minutes on ice. The cell suspension was heat-shocked at 42°C for 90 

seconds and then chilled on ice for 2 minutes. 450f.!l LB liquid, preheated to 37°C was 
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added and the cell suspension incubated at 37°C with shaking for 1 hour. O.Smg XGal 

and IPTG was spread onto the surface of each selection LB plate containing ampicillin 

(50).1g/ml) before dilutions of the cell suspension were plated out. 

Individual, white colonies growing on the LB + ampicillin plates containing IPTG and 

XGal were placed into 2 ml of liquid LB and incubated overnight with shaking at 37°C. 

Individual colonies were also placed onto a master plate and numbered. 

7.4 Sequence Analysis of Cloned Nucleic Acids 

7.4. 1 Miniprep of plasmid DNA 

Minipreparations of plasmid DNA were obtained by the alkaline lysis method described 

by Sambrook et al. ( 1989). 1 .5ml of a single colony culture was centrifuged at 

13,000rpm for 30 seconds at 4°C in a microfuge. The bacterial pellet was resuspended in 

100).11 of ice-cold Solution I (Appendix 1)  with vortexing. 200).11 of Solution II (Appendix 

1 )  was added, mixed by inverting the tube rapidly, then stored on ice. 150).11 of Solution 

ill (Appendix 1 )  was added, and vortexed in an inverted position. The solution was 

stored on ice for 3-5 minutes, then centrifuged at 13,000rpm for 5 minutes at 4°C. The 

supernatant was mixed with an equal volume of phenol :chloroform ( 1 : 1) .  After 

centrifugation at 13,000rpm for 2 minutes at 4°C the supernatant was mixed with 2 

volumes of ethanol at room temperature. The DNA was precipitated for 2 minutes at 

room temperature before centrifuging at 1 3,000rpm for 5 minutes at 4°C. The pellet was 

washed with l rnl  of ice cold 70% ethanol and air dried. The pellet was redissolved in 

50).11 of TE, pH 8.0 containing 20).1g/ml RNase A. Minipreparations of plasmid DNA 

were also obtained using the QIAprep Spin plasmid kit (QIAGEN) following the 

manufacturers instructions. 

Plasmid DNA was screened using restriction enzyme digests. 3).11 of plasmid DNA was 

cut with 1).11 Not 1 restriction enzyme in 1).11 Buffer H (Boehringer Mannheim, 
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Biochemica) and 5� water, the solution was incubated at 37°C for 1 hour before being 

visualised on a 1 %  agarose gel. 

7 .4.2 Sequencing P lasmid inserts 

Plasmid DNA containing an insert was sequenced using St-tl BigDye Terminator Ready 

Reaction Mix (PE Applied Biosystems), 0.32t-tl of 10!-LM universal forward primer 

(Clontech laboratories Inc.), 4t-tl of plasmid DNA template and 7 .68t-tl water to make a 

total volume of 20t-tl each reaction. The following thermocycle regime was used, 

repeated for 25 cycles: 96°C for 10 seconds, 50°C for 5 seconds and 60°C for 4 minutes. 

The extension products were purified by pipeting each reaction mixture into a solution of 

2� of 3M sodium acetate, pH 5.0 and 50t-tl of 1 00% ethanol, stored on ice for 10 minutes 

before centrifugation at 13,000rpm for 30 minutes at 4°C. The pellet was rinsed with 

250� of 70% ethanol and dried in a vacuum centrifuge. 

7.5 Development of RT-PCR Detection System 

7.5 . 1  Nucleic acid extraction 

Four methods were used for the extraction of viral RNA from healthy and viral infected 

orchid leaf tissue for use in a reverse transcription - polymerase chain reaction (RT-PCR) 

system. ( 1 )  RNA was extracted from leaf tissue using an RNeasy Plant Mini kit 

(QIAGEN) according to the manufacturers instructions. (2) Total plant RNA was 

extracted by grinding 2-3g of leaf material in liquid nitrogen and adding the ground 

material to 15ml of CTAB buffer (Appendix 1 )  warmed to 65oc and incubated for 10 

minutes. 2 volumes of chloroform:isoamyl alcohol (24 : 1 )  was added and the solution 

centrifuged at 10,000 rpm for 5 minutes. The supernatant was removed and 'A volume of 

1 0M LiCl and 2 volumes of ethanol were added. RNA was precipitated overnight at 4°C. 
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The solution was centrifuged for 20 minutes at 4°C. The pellet was washed in 70% 

ethanol and air dried then resuspended in 30-SOJ.ll sterile, DEPC treated water. 

Total nucleic acids were extracted from leaf tissue as described by (3) Mackenzie et al. 

(1998). Approximately l OOmg of fresh or dried leaf tissue was frozen in liquid nitrogen 

and ground to a fine powder. 500Jll wash buffer (Appendix 1 )  was added and mixed by 

vigorous vortexing. Samples were centrifuged at l O,OOOg for 5 minutes and nucleic acids 

were extracted from the resultant pellet by adding 600J.1l CTAB buffer (Appendix 1 ), the 

solution was mixed thoroughly and incubated at 55°C for 1 5-30 minutes. The mixture 

was shaken with 300J.1l chloroform:isoamyl alcohol (24: 1) ,  and centrifuged at 14,000g for 

5 minutes. The aqueous phase was mixed with 0 . 1  volume 7 .5M ammonium acetate and 

1 volume isopropanol, following precipitation at -20°C for 45 minutes and centrifugation 

at 14,000g for 20 minutes at 4°C, the pellet was washed with 70% ethanol and dried. The 

total nucleic acids were resuspended in 30-50Jll sterile, DEPC treated water. 

Total nucleic acids were also extracted from leaf tissue as described by (4) Braithwaite et 

al. (1995). Approximately 50mg of leaf was frozen and ground in liquid nitrogen. 500J.1l 

STE buffer (Appendix 1) ,  containing 50mg/ml polyvinylpolypyrrolidone, and 60Jll of 

10% SDS was added and mixed. 500ul phenol/chloroform/isoamyl alcohol (25:24: 1 )  and 

0 . 1  volume 3M sodium acetate (pH 5.2) was then added. The sample was mixed by 

inverting the tube and centrifuged at l O,OOOg at 4°C for 1 0  minutes. The aqueous phase 

was re-extracted with an equal volume of phenol/chloroform/isoamyl alcohol and 0. 1 

volume 3M sodium acetate. Highly coloured samples were extracted a third time with 

phenol/chloroform/isoamyl alcohol. Nucleic acids were precipitated from the final 

aqueous phase with 0. 1 volume 3M sodium acetate and 2 volumes ethanol. After 

precipitation at -20°C for 1 hour the samples were centrifuged at 1 5,000g at 4°C. The 

pellet was wash,ed with cold 70% ethanol, dried and nucleic acids were resuspended in 

30-SOJ.ll sterile, DEPC treated water. 
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7.5.2 Reverse transcription-polymerase chain reaction and 
sequencing 

Dr Hideki Kondo and Professor Tetsuo Tamada of Okayama University, Japan, kindly 

supplied PCR primer sequences derived from genes adjacent to the 3' end of both 

genomic sequences of the bipartite Japanese OFV isolate; one, mN2 primer (5'­

TGCAGGAATATAGCCGACATGTT-3'), in the gene encoding the nucleoprotein, and 

the other, mPl primer (5'- TATATTCTCATTCCAGGGA -3'), the phosphoprotein. RT­

PCR was done using either a one step or two step reaction system. One step RT-PCR 

was done in a 25 111 reaction mix using the SuperScript One-Step RT-PCR System (Life 

Technologies, Gibco BRL). Empirical testing with MgC}z final concentrations of 2mM, 

3mM, 4mM and 5mM determined the optimum concentration of MgCh. 0.5 111 of 

extracted nucleic acid was used with 15 pmol of a polydT/SP6 primer (5'­

AACTGGAAGAATTCGCGGCGGCAGGAATTTTTTTTTTTTTTTTTT-3'), which is 

complimentary to the polyadenylated region at the 3'-terminus of the OFV genome with a 

SP6 bacteriophage primer attached and 50ng of the mN2 primer or the mP1 primer. The 

following thermocycle regime was used; 45°C for 30 min, 94°C for 2 min, followed by 

35 cycles of 94°C for 30 sec, 56°C for 45 sec, noc for 1 min, finally noc for 10 min. 

The two step reaction was done with an initial reverse transcription step in a 10111 reaction 

mix containing 1111 lOx Reaction buffer IV (Applied Biosystem), 1 111 each of dATP, 

dTTP, dGTP and dCTP ( lOmM, Perkin Elmer), 0.5111 AMV Reverse trancriptase 

(Pharmacia Biotech), 0.5111 RNAguard RNase inhibitor (Porcine, Pharmacia Biotech), 1111 

polydT/SP6 primer (30pmol/1!1),  0.51!1 sterile, DEPC treated water, 2111 25mM MgC}z 

solution (Perkin Elmer) and 0.5111 of extracted nucleic acid. The solution was held at 

45°C for 30 minutes, the second reaction mix containing 81!1 25mM MgC}z solution 

(Perkin Elmer); 4111 lOx Reaction buffer IV (Applied Biosystem), 0.251!1 Taq DNA 

polymerase (Applied Biosystem), 1111 mN2 or mPl (50ng) primer and 26.251!1 sterile 

water was then added, to bring the total volume of the reaction mixture to 501!1. The 

following thermocycle regime was used; 94oc for 2 min, followed by 35 cycles of 94°C 

for 30 sec, 56°<;: for 45 sec, noc for 1 min, finally 72°C for 10 min. Empirical testing 
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with MgClz final concentrations of 2mM, 3mM, 4mM and 5mM determined the optimum 

concentration of MgC}z. The cycling protocol was altered from that recommended by Dr. 

Hideki Kondo, which was 45°C for 30 min, 94°C for 1 min followed by 30 cycles of 

94°C for 1 min, 50°C for 1 min, 72°C for 2 min and a final incubation of 72°C for 10  

minutes. 

DNA fragments in a 5 fll aliquot of product mix were fractionated by electrophoresis in 

1 %  agarose gels containing ethidium bromide. Amplified fragments of DNA (800bp) 

from the remaining product mix were excised from the agarose gel without exposure to 

UV light and purified using the QIAquick Gel Extraction Kit (QIAGEN) as 

recommended by the manufacturers. DNA concentration was estimated after further 

agarose gel electrophoresis and comparison against a DNA mass ladder (Life 

Technologies, Gibco BRL), and 10-40 ng of each purified PCR product was sequenced in 

both directions using the SP6 or mN2 primers and the ABI PRISM Dye Terminator Cycle 

Sequencing Ready Reaction Kit (PE Applied Biosystems). Sequencing was done by the 

Biomolecular Resource Facility at the John Curtin School of Medical Research, 

Australian National University. 

7.5.3 Computer analyses 

All sequences were checked against the international nucleotide sequence databases using 

the BLAST programs supplied by the Australian National Genomic Information Service. 

Thirty-four OFV sequences were aligned and the longest open reading frame of each used 

for comparisons; sequences to the 3' side of the first stop codon were deleted from each, 

and the 660 nucleotide 5' ORF used in the comparisons. Aligned sequenced were used to 

calculate and draw a neighbor-joining tree representing their relationships. The 

relationships of the OFV sequences were determined from the pairwise % nucleotide 

differences of the aligned sequences (aligned by CLUST AL V) using the neighbor-joining 

method. To assess the certainty of the calculated relationships, the same alignments were 

translated into �ino acids and these sequences were compared by a maximum likelihood 
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method. This was done by quartet puzzling using the program PUZZLE version 4 

(Strimmer and von Haeseler, 1 996) after all sequence gaps had been excluded. 

Likelihoods were calculated using the HKY substitution model (Hasegawa et a/. , 1985) 

and a gamma distribution of rates of change for variable sites with a shape parameter 

estimated from the data using a neighbor-joining tree. 
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8.1 .1 Virus isolates 

Leaves of orchids infected with a bacilliform virus showed chlorotic flecks, ringspots 

and/or necrotic spots (Figure 2) of varying severity. Symptoms differed between orchid 

genera. Plants co-infected with other viruses showed more severe symptoms (Figure 3). 

Floral symptoms were not observed because the majority of samples collected included 

only leaves. 

8.1 .2 Electron Microscopy 

The OFV isolates examined had non-enveloped, bacilliform and bullet-shaped particles 

measuring between 70-120 x 30-SOnm in dip preparations (Figure 1) .  Particles often 

appeared in tandem or longer formations and short, broken particles were also observed. 

Complete particle structure was difficult to observe because of the fragility of the 

particles. 

Figure 1 Electron micrograph of OFV particles ( l cm = 40nm) in 

expressed leaf sap preparation, negatively stained using ammonium 

mol.)!bdate, pH 5.2. 
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Figure 1 Different orchid genera showing a variety of symptoms induced by OFV 
infection. A. Angracum sp., B. Dendrobium sp. , C. Cymbidium sp. D. Dockrillia 
hybrid, E. Odontoglossum hybrid, F. Stanhopea sp. 
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Figure 2 A. Cattleya sp. infected with OFV and a potex virus. 
B. Dendrobium sp. infected with OFV and a potex virus. 

Annette Blanchfield 
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8 . 1 .3  Mechanical Inoculation 

The two inoculation buffers used resulted in comparable infection rates. The success of 

mechanical inoculation varied with season. Late spring, summer and early autumn was 

the best time for mechanical inoculation. During summer around 80-90% of inoculations 

resulted in successful infections with OFV. When the temperature in the glass house was 

cool ( <20°C) and day length relatively short, only 0-10% of inoculations were successful. 

Local chlorotic mosaic patterns were observed on the inoculated leaves of Nicotiana 

glutinosa, Chenopodium amaranticolor (Figure 4), C. foliosum and C. alba after 2-3 

weeks. No systemic symptoms were observed (Table 13).  Chlorotic spots were 

observed on the inoculated leaves of Chenopodium quinoa (Figure 5) and C. murale after 

2-3 weeks. Chlorotic spots were observed on the upper leaves 1 week later, indicating a 

systemic infection (Table 13) .  Electron microscopy examination confirmed the presence 

of bacilliform particles in the inoculated leaves of N. glutinosa, C. amaranticolor, C. 

foliosum and C. alba and in the upper leaves of C. quinoa and C. murale. 

Mechanical inoculation to Tetragonia expansa, Petunia hybrida, Nicotiana tabacum 

'White Burley' (Table 13)  and Cymbidium back bulbs was not successful. 

Table 13 Results of challenge experiments with OFV to alternate hosts. 

Systemic susceptible plant species 

Chenopodiaceae Chenopodium murale, C. quinoa 

Local susceptible plant species 

Chenopodiaceae Chenopodium amaranticolor, C. foliosum, C. alba 

Solanaceae Nicotiana glutinosa 

Non-susceptible plant species 

Aizoaceae 

Solanaceae 

Tetragonia expansa 

Petunia hybrida, Nicotiana tabacum 'White Burley' 
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Figure 3 Local infection on mechanically inoculated leaf of C. amaranticolor by OFV. 

Figure 4 Systemic infection by OFV of mechanically inoculated Chenopodium quinoa 
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8.1 .4 Virus purification 

The extraction method of Chang et al. ( 1 976) resulted in low yields of OFV virions. 

Virions were not observed in all purification attempts, particles often degraded, however 

the initial volume of extraction buffer used did not influence this result. The amount of 

contaminating host material present after each differential centrifugation step varied little. 

Host materials could not be removed in later steps without destroying the virus particles. 

Therefore, virus preparations that were free of host contaminants were not obtained. 

Using the rhabdovirus purification methods of Hunter et al. ( 1990), Jackson & Christie 

( 1979) or Creamer ( 1992) also failed to purify OFV virions and did not improve the 

initial method of Chang et al. ( 1976). Therefore, direct production of OFV sera was not 

possible through particle purification but enabled attempts at cloning viral nucleic acids. 

Electron microscopy of each of the fractions collected at each of the differential 

centrifugation steps during virus purification visualised virions that were similar in size to 

those observed from leaf dip preparations. 

8 . 1 .5 Extraction of viral RNA from partially purified virus preparations 

No detectable RNA was retrieved from the RNeasy Plant Mini kit (QIAGEN) from three 

preparations of partially purified OFV. However, a 1 kb band of nucleic acid was 

visualised on 1% agarose gels from RNA extracts from two preparations of partially 

purified OFV following the method of Thomson et al. ( 1995). The bands were digested 

by RNase A, suggesting they were RNA. 

8 . 1 .6 eDNA synthesis 

Restriction enzyme digests and sequencing of the plasmid DNA showed the plasmids 

isolated from white transformed colonies did not contain inserts of the eDNA, but rather 
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contained multicopies of the plasmids annealed to each other (Figure 6), which is a 

common problem when eDNA template is present in low concentrations. 

Figure 6 Plasmid DNA on 1 %  agarose gel, showing the plasmids 

did not contain inserts of the eDNA. 

8.2 Development of RT-PCR Detection System 

8.2. 1 Nucleic Acid extraction from leaf material for RT-PCR 

Extraction of RNA from leaf tissue using an RNeasy Plant Mini kit (QIAGEN) and total 

RNA using a CTAB buffer did not yield amplified fragments when tested using RT-PCR 

and known positive samples. The methods of total nucleic acid extraction by Mackenzie 

et al. ( 1 998) and Braithwaite et al. ( 1 995) were both successful, however the method of 

Mackenzie et al. ( 1 998) yielded amplified products of greater concentration in RT-PCR 

tests, especially for dried samples. 

8 .2.2 Reverse transcription-polyme rase chain reaction and 
sequencing 

RT-PCR using primers mPl and polydT/SP6 did not give any amplified products from 

any samples. RT-PCR using primers mN2 and polydT/SP6 amplified a single product of 

800 bp from alj OFV isolates except seven of the nineceen air dried samples, although 
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they were known to contain OFV virions (Figure 7). RT-PCR tests of healthy orchid 

material did not yield any amplified products. RT-PCR tests of the native orchid 

collected from the wild also produced a 800 bp amplicon confirming infection with OFV. 

The orchid sample from Hawaii containing rhabdovirus virions larger than those of OFV 

gave no DNA fragment when tested using RT-PCR and the mN2 and polyA/SP6 primers. 

The optimum concentration of MgC}z was determined to be 5mM for both one and two 

step RT-PCR reactions. Altering the cycling conditions from those recommended by Dr. 

Hideki Kondo by increasing the denaturing time by 30 seconds, increasing the annealing 

temperature from 50°C to 56°C, decreasing the extension time by one minute and 

increasing the number of cycles from 30 to 35 gave optimum results for both the one and 

two step RT-PCR reactions. RT-PCR using a one step or two step reaction gave 

equivalent product qualities. 

The 800 bp amplified fragments were sequenced. Multiple sequence alignment revealed 

that the sequences of the Australian, Brazilian and two of the German isolates of OFV 

were identical or very similar (Appendix 2). Within these isoates there was some 

indication that they may fall into two sub-groups, with only 2.5% sequence divergence 

(Figure 8). Each putative subgroup contained isolates collected from Australia, Brazil and 

Germany. The third isolate from Germany represented a second distinct strain of OFV, 

with 16% sequence divergence (Figure 8). The Japanese isolate is not included in this 

study as insufficient sequence was supplied by Dr. Hideki Kondo. 
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Figure 7 Positive and negative RT-PCR reactions conveyed from fresh, frozen and air 
dried orchid leaves shown to be infected with OFV by electron microscopy. Lanes 1 ,2,3, 
6 were frozen samples. Lanes 8,9, 1 1 , 1 2, 1 5 , 1 8, 1 9  were fresh samples. Lanes 
4,5,7 , 10, 1 3, 14, 16  were air dried samples. Lane 17 was a known healthy sample. 

Neighbor-joining trees and maximum likelihood trees of amino acid sequences were 

compared visually and found to be similar in their major topological features - the nodes, 

that were identical in the OTUs they linked, are circled (Figure 8). 

A search of the international nucleotide database with the OFV sequence showed it to be 

distantly related to those of three cytorhabdovirus sequences (Figure 9), notably lettuce 

necrotic yellows cytorhabdovirus (Appendix 2). 

A single product of 800bp was amplified from one isolate of coffee ringspot virus using 

the mN2 and p6lydT/SP6 primers. The product was shown to be identical to OFV when 

sequenced. RT-PCR tests and sequencing showed the common violet also contained an 

isolate of the most commonly found OFV strain. The other CoRSV isolate, citrus 

leprosis virus isolate, schefflera, hibiscus, ivy and ligustrum leaves did not produce 

amplified produ_cts when tested using RT-PCR with the OFV primers. 

page 61  



6.8% 

8. 1 %  ----------------� � 

1 %  

Sample # 

rn u 
m >. :E = � <( � � E :S :J � Q) 0 

<( Ill (!} U) 
3, 1 1 , 3 1 , 237, 494, 775 * 
776 * 
780 * 
593 * 
1 3  * 
590, 591 * 
5, 1 9, 25, 29, 37, 39, 43 * * 
27 * 
9 * 
1 7, 4 1 , 47, 52, 56 * * 
45 * 
53 * 
7 * 
33, 778 * 
773 * 
777 * 
23 * 
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Doi et al. ( 1977) reported that sap-inoculation of OFV to alternate host plants was 

difficult, but successful in temperatures higher than 30°C. In this study sap inoculation 

was also found to be difficult and affected by glasshouse temperatures, however, very 

successful transmission was achieved at temperatures between 20oc and 30°C, lower 

than previously reported. The host range of a Tasmanian isolate of OFV, 494, was also 

found to be different to that previously reported. Doi et al. (1977) states Nicotiana 

tabacum is a suitable assay species, however N. tabacum never succumbed to infection in 

these challenge experiments suggesting it to be a non-susceptible host species to isolate 

494. Kondo et al. (1995) also reported N. tabacum to be a non-susceptible host species in 

their study with a Japanese OFV isolate. However, contrary to the report of Kondo et al. 

(1995) Tetragonia expansia and Petunia hybrida, described as local susceptible host 

spe-::ies for the Japanese isolate, were also found to be non-susceptible host species with 

isolate 494. The systemic, chlorotic lesions induced by OFV on Chenopodium quinoa 

and C. murale and the chlorotic, local lesions induced by OFV on inoculated leaves of C. 

amaranticolor and Nicotiana glutinosa in these challenge experiments were similar to 

those reported by Kondo et al. (1995). 

Once inoculated to an alternate host plant, OFV could be propagated by mechanical sap 

inoculation, which provided an opportunity to investigate purification of the virus in hosts 

other than orchid. However, the extremely fragile nature of the OFV virions made 

purification of the virus particles difficult and this proved to be a more difficult problem 

to overcome than the problem of polysaccharides present in the orchid tissue. The virions 

could not be successfully separated from host plant contaminants because the particles 

degraded readily, eliminating the possibility of direct production of antibodies to be used 

in an immunoassay. 

The production of a eDNA library of viral RNA was one way to overcome the problem 

of producing antibodies, however the poor quality of the purified virus preparations made 

the extraction of good quality viral RNA impossible. The production of a eDNA library 
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was not successful because high quality and suitable concentrations of viral RNA was 

not obtained through the methods of purifying OFV virions that were used, followed by 

extracting RNA from the purified preparations. 

The extraction of nucleic acids from orchid leaf material for use in RT-PCR was made 

difficult by the presence of polysaccharides in the plant material. The spin columns of the 

RNeasy Plant Mini kit (QIAGEN) were blocked by the polysaccharides in the leaf 

material. However, the use of a wash buffer step in the total nucleic acid extraction 

method of Mackenzie et al. (1998) overcame this problem and allowed routine detection 

of OFV from all but seven air dried samples. 

The absence of a PCR product with the mN2 primer used on some of the dried samples, 

alttough they were known to be positive for OFV, is probably due to the breakdown of 

viral RNA while the leaves dried and was not unexpected. Freezing or drying the leaves 

over calcium chloride were more suitable methods for long term storage. 

Our RT-PCR tests with primers targeting a 3' terminal region of the OFV nucleoprotein 

genome have confirmed that one viral species, OFV, was present in all of the orchid 

samples we tested that showed orchid fleck virus symptoms and that contained OFV -like 

bacilliform virions. RT-PCR tests confirmed the enveloped bacilliform particles 

distinctly larger than OFV contained in the sample from Hawaii were not OFV. The 

sequences of the DNA fragments produced by RT-PCR from the OFV infected plants 

have shown that there are at least two strains of OFV; one was found in a single plant 

from Germany, 33 isolates of the other were found in orchids from four different 

continents. 

OFV isolate 494 showed 82.4% nucleotide identity to the nucleoprotein gene of the 

Japanese isolate cloned and used to design the PCR primers mN2 and mP l .  Partial 

amino acid sequences of the nucleoprotein of the Australian isolate showed 97.0% 

identity to the Japanese isolate (7 amino acid changes) .  The absence of a PCR product 
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with the phosphoprotein primer may be explained by differences between the mPl primer 

and the viral sequences of the Australian, Brazillian and German OFV isolates. The mP1 

primer is located immediately upstream of the phosphoprotein ORF of the Japanese 

isolate, therefore the 5' untranslated region of the phosphoprotein gene of OFV is 

probably variable. The significant diversion (> 1 0% nucleotide divergence) of all OFV 

isolates tested in this study from the Japanese isolate from which the primer sequences 

were derived, and the failure of the primer to part of the phosphoprotein gene to produce 

a PCR product for any tested isolate is strong evidence that the Japanese OFV isolate may 

represent a third distinct strain of OFV or a different virus species although more 

sequence data is required to confirm this. 

In searches of the international gene sequence databases, the OFV sequences only 

mat:::hed significantly with the sequences of other plant rhabdoviruses. However 

comparing these sequences did not clarify relationships among the Rhabdoviridae as, in 

the targeted region, the two nucleorhabdovirus sequences were no closer to one another 

than either was to the single cytorhabdovirus sequence or the OFV sequences. This, 

along with the report that OFV has a split genome (Kondo et al., 1998) indicates that 

OFV should not be considered a member of the plant rhabdovirus family. However, it is 

unlikely that the relationships of rhabdoviruses will be clarified until more gene sequence 

data has been obtained. 

That the native orchid, Dendrobium kingianum, was infected by OFV in the wild suggests 

OFV is endemic in Australian orchid flora or transmission to wild orchids has occurred. 

OFV transmission by a mite, Brevipalpus californicus, has been demonstrated (Maedai et 

al., 1 998) and could facilitate natural spread of the virus, although studies to determine 

the presence of this mite in the wild have not been conducted. 

The results obtained using RT-PCR and the mN2 primer confirm that the small 

rhabdovirus-like particles infecting orchids around Australia, Brazil and Germany are one 

and the same virus, orchid fleck nucleorhabdovirus and is probably the same as the 
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viruses reported by Doi et at. (1969), Chang et at. ( 1973), Petzold ( 1971 ), Duvel and 

Peters ( 197 1 ), Lesemann and Begtrup ( 1 97 1 ), Begtrup ( 1972), Lesemann and 

Doraiswamy ( 1 975) and Kitajima et at. ( 1974), and possibly that reported by Kondo et al. 

( 1 995). The sequences of the isolates of OFV suggest that there are small but significant 

isolate differences in OFV. They also show that the PCR system is extremely sensitive 

and reliably detects and identifies three distinct strains of OFV or possibly two strains and 

a second distinct by related virus species. The results obtained using RT-PCR and the 

mN2 primer also suggest the large rhabdovirus-like particle detected in the orchid sample 

from Hawaii is distinct from OFV and is probably the same virus reported by Ali et al. 

( 1974), Lawson and Ali (1975) and Peters ( 1977). Vilions of rhabdoviruses are easily 

altered in vitro by negative-staining procedures (Jackson et al., 1987). Even when the 

fragile virions are stabilized with fixatives prior to negative staining, they may still break 

or 3well. These problems undoubtedly contribute to the variation in size estimates of 

bacilliform particles observed in orchids in different laboratories. Even though the 

differences in lengths and widths of OFV -like particles reported in the literature could be 

considered sufficiently distinct, the results obtained using RT-PCR suggest they are the 

one virus. Variation in preparative procedures for electron microscopy can contribute 

considerably to the relative degree of flattening, shrinking or swelling of the fragile 

particles (Jackson et a!., 1 987). The particles may also become distorted or may even 

fragment during fixing and staining. Also the accuracy of measurements obtained in 

different laboratories is difficult to evaluate. 

The failure to obtain an amplified product from one isolate of CoRSV, citrus leprosis 

virus or the schefflera, hibiscus, ivy and ligustrum leaves using the OFV primers suggests 

citrus leprosis, ligustrum ringspot, and the ringspots on schefflera, hibiscus and ivy are 

caused by viruses different to OFV. Electron microscopy studies by Kitajima, E.W. and 

Chagas, C.M. (pers. comm.) show that CoRSV samples often contain two distinct 

bacilliform virions. This has also been shown for citrus leprosis virus (Colariccio et al., 

1995). The positive RT-PCR results with one of the CoRSV samples suggests the sample 

may contain bo�h OFV and CoRSV. The other sample may contain only CoRSV, which 
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is possibly a different virus to OFV. OFV has been shown to be transmitted by the mite 

Brevipalpus californicus (Maeda et a!., 1998). Mite vectors in the genus Brevipalpus 

have also been demonstrated for CoRSV, citrus leprosis virus, ligustrum ringspot and 

green spot on passionfruit (Colariccio et al., 1995, Rossetti et al., 1998), suggesting the 

viruses may be related. However, a study of the relationship between these viruses needs 

to be repeated with a higher sample number. RT-PCR primers are currently being 

designed for CoRSV (Nogueira et al., pers. comm.) and further tests incorporating these 

primers will yield conclusive results. RT-PCR tests showing a common violet contained 

an isolate of the commonest OFV strain need further investigation and may show that 

OFV has a wider host range than originally thought. 
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1 1 .1 Appendix 1 

Mechanical inoculation buffers 

0.01M phosphate buffer, pH 7.2 

7 . 17ml 1M di-potassium hydrogen orthophosphate 
2.83ml 1M potassium di-hydrogen orthophosphate 

Dilute combined 1M stock solution to lOOOml with distilled water. 
Adjust to pH 7.2 if necessary. 

0.02M HEPES buffer, pH 7.4 (Lesemann, D-E, per. comm.) 

0.02M N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] 
2% polyvinyl-pyrrolidone (MW 40,000) 
0.2% sodium sulphite 

Adjust to pH 7.4 



Virion purification buffers 

OFV Extraction buffer (Chang et al. 1976) 

O . lM phosphate buffer, pH 7.0 
O . lM sodium diethyldithiocarbamate 
0. 1 %  L-ascorbic acid 
5% Triton X-100 
0.5% sodium deoxycholate 

SCV Extraction buffer (Hunter et al. 1990) 

l OOmM Tris-HCl, pH 8.2 
10mM magnesium acetate 
40mM sodium sulfite 
1 mM manganese chloride 

SYNV Extraction buffer (Jackson & Christie, 1977) 

O . lM Tris-HCl, pH 8.4 
0.01M magnesium acetate 
0.04M sodium sulfite 
0.001M manganese chloride 



LB liquid, for l litre 

lOg NaCl 
l Og tryptone 
5g yeast extract 

Adjust to pH 7.0 

LB agar, for 1 litre 
l Og NaCl 
lOg tryptone 
5g yeast extract 

Adjust to pH 7.0 
Add 20g agar 

Luria Broth (LB) 



Small Scale Preparations of Plasmid DNA (Sambrook et al., 1 989) 

Solution I 
50 mM glucose 
25 mM Tris.Cl (pH 8.0) 
10 mM EDTA (pH 8.0) 

Solution II 
0.2 N NaOH 
1 % SDS 

Solution III 
5 M potassium acetate 
glacial acetic acid 
H20 

60 rnl 
1 1 .5 rnl 
28.5 rnl 



Nucleic acid extraction 

CTAB buffer (Campbell, P. pers comm.) 

2g CTAB (cetyl trimethyl ammonium bromide) 
20 mi 0.5 M Tris-HCI, pH8.0 
4 mi 0.5 M EDTA,pH8.0 
28 ml 5M NaCI 
1 g  polyvinyl-pyrrolidone (MW 40,000) 
47 mi water 

Wash buffer (Mackenzie et al., 1998) 

0. 1g bovine serum albumin 
80 mi 5M NaCI 
0.4 mi 0.5 M EDTA, pH8.0 
2 ml 1M Tris-HCI, pH8.0 

Make up to 200 mi with distilled water 

CTAB buffer (Mackenzie et al., 1998) 

2g CTAB (cetyl trimethyl ammonium bromide) 
10 mi 1M Tris-HCI, pH8.0 
28 ml 5M NaCI 
500 J.1l �-mercaptoethanol 

Make up to lOOm! with distilled water. 

STE buffer (Braithwaite et al., 1995) 

0 . 1M NaCI 
lOmM Tris-HCi, pH 8.0 
lmM EDTA, pH 8.0 



1 1 .2 Appendix 2 

CLUSTAL V mul t iple sequence alignment of OFV i s olates 

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB 0 2 5 
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB 0 3 3  
ALB0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB0 4 7  

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB0 2 5  
ALB0 2 7  
ALB 0 2 9  
ALB0 3 1  
ALB0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB0 2 3  
ALB 0 2 5  
ALB 0 2 7  

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATAGCAGATGAGACGCACCACACCAATAGGAAGAGGCACGGACT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 
TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT * * * * * * * *  * * * * * * * * * * *  * * * * * * * * * * *  * * * * * * * * * * *  * *  * *  
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACAGGAATGATTCCGT 
TCTCATGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGATTCCTAATCCTTCAACATGTGGATCTCACGGGGATGATCCCAT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTCCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT * * * * *  * *  * *  * * * * * * * *  * * * * * * * * * * *  * *  * *  * * * * *  * *  * 
ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTACATTGACATGCGAAGGCACTTCACCCTCTTAACACCCGGC 
ATGGAATGTATATCGATATGAGAAGACI,CTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 



ALB0 2 9  
ALB0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB 0 0 5  
ALB0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB0 2 3  
ALB0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB 0 0 5  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB0 2 3  
ALB 0 2 5 
ALB 0 2 7  
ALB 0 2 9  
ALB0 3 1  
ALB0 3 3  
ALB 0 3 7  
ALB0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB 0 0 5  
ALB 0 0 7  
ALB0 0 9  
ALBO l l  
ALB 0 1 3  

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT * * * * * * * * * *  * *  * *  * * *  * * *  * * * * * * * * * * *  * *  * * * * *  * *  
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGTTGCTAACATGGCTTCATGACAACCAGGTATCTAGGCCTCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGCGT 
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT * * *  * * *  * * * * * * * *  * * * * * * * * * * *  * *  * *  * * * * *  * * *  * * *  
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCTAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
GATTGCGGACATAAACACCAGGTATGATGTTTCTAACGGGTCAGATCGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 
CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT * *  * *  * * * * * * * * * * * * * * * * * * * * * * *  * *  * *  * * *  * * * *  
TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 



ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB 0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB0 19 
ALB 0 2 3  
ALB 0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGGTACTCAAGGGGTCTAGACCCAGGATTCTTCATAGCTTTACAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA * * * * * * *  * * * * * * * * * * *  * *  * * * * * * * *  * * * * *  * * * * * *  * * * *  
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAATGTGTCACTCTGATAGCCAGGATGGCACATATACTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA * * * * * * * *  * * * * * * * * * * *  * * * * * * * * * * * * * *  * *  * * *  * * * * * * *  
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGAGGAGCCGTCGCTGTCAATGAATACTCCGATCCTCGAAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT * * *  * * * * *  * *  * *  * * * * * * * * * * * * * *  * * * * * *  * * * * * * * * * * *  
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 



ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB 0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB0 4 1  
ALB0 4 3  
ALB0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB 0 2 5 
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB 0 4 5  
ALB 0 4 7  

ALB 0 0 3  
ALB O O S  
ALB 0 0 7  
ALB 0 0 9  
ALB O l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB 0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  
ALB 0 3 3  
ALB 0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAGAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCCGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAGAACAAGCCTGGGCTGGCAGCGGAGGCAGACAAGTTCGCCACT 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 
CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA * * * * * * *  * * * * *  * *  * *  * *  * *  * * * * * * * *  * * * * * * * *  * * * * *  
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTG�CCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTCGTGGAGGCATACAACGGCCTATCAGGATCAAGTGCAAACGCCGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG * * * * *  * * * * * * * * * * * * * *  * * * * *  * *  * * * * * * * *  * *  * *  * *  * *  
TCCTGTATCTCGCAAGCTCTACAACCAAGGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAGGGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
CCCTGTGTCCCGCAAACTCTACAACCAGGGCAGAGGCATCCCGACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAJ,GGCAGAGGCATCCCAACTCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 



ALB 0 4 5  
ALB 0 4 7  

ALB0 0 3  
ALB 0 0 5  
ALB 0 0 7  
ALB 0 0 9  
ALBO l l  
ALB0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB0 2 5  
ALB0 2 7  
ALB0 2 9  
ALB0 3 1  
ALB0 3 3  
ALB0 3 7  
ALB 0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB0 4 5  
ALB 0 4 7  

ALB0 0 3  
ALB0 0 5  
ALB 0 0 7  
ALB 0 0 9  
ALBO l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB0 2 3  
ALB0 2 5  
ALB 0 2 7  
ALB0 2 9  
ALB0 3 1  
ALB0 3 3  
ALB 0 3 7  
ALB0 3 9  
ALB 0 4 1  
ALB 0 4 3  
ALB0 4 5  
ALB 0 4 7  

ALB0 0 3  
ALB 0 0 5  
ALB 0 0 7  
ALB0 0 9  
ALBO l l  
ALB 0 1 3  
ALB 0 1 7  
ALB 0 1 9  
ALB 0 2 3  
ALB0 2 5  
ALB 0 2 7  
ALB 0 2 9  
ALB 0 3 1  

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA * * * * *  * *  * * * * *  * * * * * * * *  * *  * * * * * * * * * * * * * *  * *  * * * *  
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCGCCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GGGGCCTGTTCACACCCCCTTCCGCCAGACCCGCGCCCGTTGTGAATGTA 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCGCCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG * * *  * * * * * * * * * * *  * *  * * * * * * * * * * * * * *  * *  * *  * * * * *  * *  
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAG 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCGTCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CACGTCCCTGCCGCCTCGTCCTCTCTGGCAGGGGCCCTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCCCTGGATGCCCTGAA * *  * *  * *  * * *  * * *  * *  * *  * * * * * * * *  * *  * * * * * * * * *  * * *  
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAGTGACTGA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 



ALB0 3 3  

ALB0 3 7  

ALB 0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB0 4 5  

ALB 0 4 7  

CAATGAATAA 

CAATGAATAA 

CAATGAATAA 

CAATGAATAA 

CAATGAATAA 

CAATGAATAA 

CAATGAATAA * *  * * *  * * 
CLUSTAL V mul t i p l e  sequence a l i gnment of OFV i s o l a tes 

ALB0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB 0 4 7  

ALB0 5 2  

ALB0 5 3  

ALB0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB 0 3 9  

ALB0 4 1  

ALB 0 4 3  

ALB0 4 5  

ALB 0 4 7  

ALB0 5 2  

ALB0 5 3  

ALB0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB 0 4 7  

ALB0 5 2  

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCACGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT 

TGTGCCATTGCAGATGAGACTCACCACACCAACAGGAAGAGGCATGGTCT * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * *  
TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTCCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTCCTGATCCTTCAGCATGTGGATCTAACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTGACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACAGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT 

TCTCAGGTTTCTGATCCTTCAGCATGTGGATCTAACGGGAATGATTCCGT * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * *  * *  * * * * * * * * * * * * *  
ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 



ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB 0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB 0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB0 4 5  

ALB 0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB 0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGCGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCCGGT 

ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTACATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGAAGACACTTCACCCTATTGACACCAGGT 

ATGGAATGTATATCGATATGAGGAGACACTTCACCCTATTGACACCAGGT * * * * * * * * * *  * * * * * * * * *  * * * * * * '* * * * * * * * * * * * * * * * * *  * * *  
CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCGGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGCGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGCGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCCGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCCGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGAC��CCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGCGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCTCTCAGTGT 

CAGCTACTGACATGGCTCCATGACAACCAAGTCTCCAGGCCCCTCAGTGT 

CAGCTACTGACATGGCTCCATGATAACCAAGTCTCCAGGCCCCTCAGCGT * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  * * * *  * * *  * * *  
CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTATCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGA 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT 

CATAGCCGACATAAACACCAGGTATGATGTGTCCAATGGGGCAGACAGGT * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * *  
TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCC AGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 



------------------------------------------------------------------------------------------------. 

ALB 0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB 0 3 9  

ALB0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB 0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB 0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB0 3 9  

ALB0 4 1  

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCGGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTTGACCCAGGGTTCTTTATAGCTCTGCAA 

TCTGGAGATACTCAAGGGGGCTAGACCCAGGGTTCTTTATAGCTCTGCAA 
* * * * * * * * * * * * * * * * * * * * * *  * * * * *  * * * * * * * * * * * * * * * * * * * * *  

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGCGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 

CAGTCAAAGTGTGTCACTCTAATAGCCAGGATGGCTCACATATTGGTGAA 
* * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 

GGGTGGAGCTGTAGCCGTCAATGAATACTCTGATCCTAGGAAGGCAAAGT 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 



ALB 0 4 3  

ALB 0 4 5  

ALB0 4 7  

ALB0 5 2  

ALB0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB0 4 5  

ALB0 4 7  

ALB0 5 2  

ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB 0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB0 4 5  

ALB 0 4 7  

ALB0 5 2  

ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAGCCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAGAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA 

CATTGGAAAACAAACCTGGACTTGCTGCGGAGGCTGACAAGTTTGCCACA * * * * * * *  * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG 

GAGTTTGTGGAGGCATACAATGGCCTGTCCGGATCAAGCGCCAATGCAGG * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACCCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA 

TCCTGTATCTCGCAAGCTCTACAATCAAGGCAGAGGCATCCCAACTCGCA * * * * * * * * * * * * * * * * * * * * * * * * * * * � * * * * * * * * * * * * * * * * *  * * * *  



ALB 0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB 0 4 7  

ALB0 5 2  

ALB 0 5 3  

ALB0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB 0 4 5  

ALB 0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB 0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM7 7 7  

AM7 7 8  

AM7 8 0  

ALB0 3 9  

ALB 0 4 1  

ALB 0 4 3  

ALB0 4 5  

ALB 0 4 7  

ALB 0 5 2  

ALB 0 5 3  

ALB0 5 6  

OR2 3 7  

OR4 9 4  

OR5 9 0  

OR5 9 1  

OR5 9 3  

AM7 7 3  

AM7 7 5  

AM7 7 6  

AM77 7  

AM7 7 8  

AM7 8 0  

GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCTGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCGCCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCACCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
GAGGTCTGTTCACACCGCCATCCGCCAGACCCGCACCTGTCGTGAACGTG 
* * * * * * * * * * * * * * * *  * * * * * * * * * * T * * *  * * * * * * * * * * * * * * * * * *  

CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTG3CAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCCCTGGATGCCCTGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAACCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGCTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGCTCCAACCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAACCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAACCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTCCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCTTGGCAGGAGCACTGGATGCCATGAA 
CATGTTCCAGCCCCATCATCATCCCTGGCAGGAGCACTGGATGCCATGAA 
* * * *  * * *  * * * * * * * * * * * * * *  * * * * * * * * * *  * * * * * * * * *  * * * *  

CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
TAA-XXX-A­
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 
CAATGAATAA 



C lu s t a l  W mul t ip l e  sequence a l i gnment of OFV , RYSV , SYNV and LNYV . 

1 5  1 6  3 0  3 1  4 5  4 6  6 0  6 1  7 5  7 6  9 0  

1 RYSV ACATATCTGAC -ACT GCGAGCC - - - -ACAG TTGCTTAT - - AATAT AGCCAGTGCAGATGC - - CTTATTAGTCCCT GAAA-ATGTCAATTA 8 0  

2 OFV - - - - -TGTGATGACC TCAAGGCT- - - ACTC TTTGCCAT - - CACTG TGCCATTGCAGATGA GACTCACCACACCAA CAGG-AAG- -AGGCA 7 7  

SYNV - - - - - - -ACATTCCC TAGAGTCAAGAACAC TTTGATATTGCATGT TGCACATGCAGA-GA CATACTTCAGACCTA CTCCCAAGATCTTCA 8 2  

LNYV - - - - - - -GCAGT-GA ATGAGAACAGAACCC CTGGATTGCTAGTGA 3 7  

9 1  1 0 5  1 0 6  1 2 0  1 2 1  1 3 5  1 3 6  1 5 0  1 5 1  1 6 5  1 6 6  1 8 0 

RYSV TGGCCTGTGCAGGAT GCTTGTGTTCCAGCA CCTAGAACTTAGTGG CCTTCAACTTTATAA AATGGCCA-TGACCC TCATTGCTCATTTCA 1 6 9  

OFV TGGTCTTCTCAGGTT TCTGATCCTTCAGCA TGTGGATCTAACGGG AATGATTCCGTATGG AATGTATA-TCGATA TGAGGAGACACTTCA 1 6 6  

SYNV ATGTC- -CTCAGGTT CTTGTTCTTTCAGAA TCTAGAATTTATGGG ATTACATGCATATGT GA-GCATAGTCACAA TCATGTCAAAGGTCG 1 6 9  

4 LNYV - - CTCAGCAAGGGTT ACTGAA- TTACCTTG CCTGCCAACAATTTG CCTACCCTGGTATGC -ATGCATA- - CACTC TCTTGATAGAGAT-A 1 2 0  

1 8 1  1 9 5  1 9 6  2 1 0  2 1 1  2 2 5  2 2 6  2 4 0  2 4 1  2 5 5  2 5 6  2 7 0  

1 RYSV AACTGATAGAG-CCA AATAAATTTCTCTCA TGGATTTATGACCCT C - - - TCTCTGAGGCG TCTATAGATCAGATC T - - -AT- - - - - - -AA 2 4 5  

OFV CCCT-ATTGACACCA GGTCAGCTACTGACA TGGCTCCATGACAAC CAAGTCTCC-AGGCC CCTCAGTGTCATAGC CGACAT- - - - - - -AA 2 4 7  

SYNV CACT - - - C - CCTCCT AGTCAAGTACTCTCA TGGTTGAGGGTCAGT G - - -GGTCAGAGATG GCAATTGATGAG-GC TTTCATGATCATGAA 2 5 1  

LNYV CACGAGCACACGGGT A-TGAAGTTTAGTGA TTTGCTAGTGGAGAT GGATTGTCC - - GGCC ACTAGAGCAGGTGTA CGGGAGGCTCTGGAG 2 0 7  

2 7 1  2 8 5  2 8 6  3 0 0  3 0 1  3 1 5  3 1 6  3 3 0  3 3 1  3 4 5  3 4 6  3 6 0  

1 RYSV G - -ATAGCTGTTAAT T - - ATGA- - - - CAAT GTGAACTCCAAAACC CACAAACATTGGAAG TATGCCAAACTTG - - - - - CCAGGGGACAAT 3 2 2  

2 OFV - - - ACACCAGGTA- T  G - - ATGTGTC- CAAT GGGGCAGACAGGTTC TGGAGATACTC-AAG GGGGCTAGAC - - - - - - - -CCAGGGTTCTTT 3 2 1  

3 SYNV C - - ACTCTTGATAAT GGAATGATTGACAAT G-G- - CCATAATGCC GAGAGATTGTGGAAG TACGCTCGATGTTTA GATCAAGGGTATTTT 3 3 6  

4 LNYV TTGATAAGAGATTAT GAGATAAC - - - CAAA GATCATCCTAAAAGA ACCACTTACTTTAGA TATGCTAGGAATT- - - - - - - -GGGATCCAA 2 8 6  

3 6 1  3 7 5  3 7 6  3 9 0  3 9 1  4 0 5  4 0 6  4 2 0  4 2 1  4 3 5  4 3 6  4 5 0  

1 RYSV ATTGG-CTG-AACAC T - - -ACTGTGAAG- - - -AGGAACCAGTTTT TGGCTTACATTCTTG CAGATCTCGAGCTAA AATACGGCCTAGCTG 4 0 3  

2 OFV ATAGCTCTGCAACAG TCAAAGTGTGTCACT CTAATAGCCAGGAT- -GGCTCACATA-TTG GTGAA- - -GGGTGGA GCTG- - - - - TAGCCG 4 0 0  

3 SYNV AACAGGCTTCAATCA TCCTATTCAGCAGAA TTGATTGCTATGTT- -AGCATACATT- - - - - - GAA- - - - -ATAAA TATGGGAATTAGCAC 4 1 3  

4 LNYV AATATTTTGGGGCAC TAC-AATCTACAG- - - - AGT-GCAAGACTC TCGTATACGTTGCTG C - GTCTGTCAGTAAG AAGG - - - - - TCTCTG 3 6 4  

4 5 1  4 6 5  4 6 6  4 8 0  4 8 1  4 9 5  4 9 6  5 1 0  5 1 1  5 2 5  5 2 6  5 4 0  

1 RYSV GGAAATCTGA- C TAC TCCAGTCCCAAAAGA ATG-AAAGCCTTAAG TGG-GATGCCGGTT- - - GAACGAATGACAG AGGCAGAGACCATCT 4 8 7  

2 OFV TCAA - - -TGA-ATAC TCTGATCCTAG- - GA AGGCAAAG - - -TCAT TGGAGAACAAACCT- - -GGACTTGCTGCGG AGGCTGACAAGTTTG 4 7 8  

3 SYNV GGAAGTGGGATATAA T - - - -TCACCGTTAA ATATATATGC - - CAT AGC-GAACAA- - - T - - -AAAGCAGTAAAGG AGGTTG-GAAGAATG 4 8 9  

4 LNYV CTCAGGGCGC -AAAC G - - - GTGACCCT - -A -TGGAAAT - - - - -AT TTGCCATCAAAAATC TCGACGCAACCATCA AGGCTC - - -GGTT�G 4 3 9  

5 4 1  5 5 5  5 5 6  5 7 0  5 7 1  5 8 5  5 8 6  6 0 0  6 0 1  6 1 5  6 1 6 6 3 0  

RYSV CCAAGGCGGTAGAGC AAATGTACACCGCAA TAGAGAGTGCAAAGA GAGTTGATGCAGGAG CTGCTTATAGATTGG CGAAGAAACTCGGCC 5 7 7  

2 OFV CCACAGAGTTTGTGG AGGCATACAATGGCC T - - -GTCCGGATCAA GCGCCAATGCAGGTC CTGTATCTCGCAAGC TCTACAATCAAGG- - 5 6 3  

SYNV - -AAAGCAGATGTGT - - TCATACAGTGCAA AA-ACTCCGTGGTTT -CTTTGACCCAGGA- -TGCTTCCGTCATAG ACAAGG -TCTATGCT 5 7 0  

4 LNYV ACCCCGTGGCCGAGA - -ATATGGCAGGTAA GA--TATTGGATCAA ATGCTTATGGATGAG ATGTCTGGAGCATCG TGGGCGACAAAG G - - 5 2 3  



6 3 1  6 4 5  6 4 6  6 6 0  6 6 1  6 7 5  6 7 6  6 9 0  6 9 1  7 0 5  7 0 6  7 2 0  

1 RYSV CACCCAGAGCGAACG CACACAGCAGGCGCA AGGAGCC-CAACAAC AGCAGG-CAGCACAG GGACAAGCAGCCCAA CAGCAAGCAGCAGGG 6 6 5  

2 OFV - - --CAGAGGC�TCC CAACTCGCAGAGGTC TGTT-CA-CACCACC ATCCGC-CAG- - - - - --ACCCGCA-CCTGT CGTGAAC- - - - -GTG 6 3 3  

3 SYNV GCAGCACAACAAAAA CACATCAGATCAG-A AGAAGCTGCACGACC ATCTGAACAGA- - - - --ACAAGGAGGATGA GGTGGTT--GCAATG 6 5 1  

4 LNYV - - - -CAT- -C-AACA CAATGAAGAGTTG-A TGT--CATTA--AAC ATTTATGCGTATTTG ATACTAT-A--CTTA TATCACTTGTTACTG 5 9 8  

7 2 1  7 3 5  7 3 6  7 5 0  7 5 1  7 6 5  7 6 6  7 8 0  7 8 1  7 9 5  7 9 6  8 1 0  

RYSV CAGGGACAAGCGCAA -CAAGCATCAGGTTC TGGGACG-GC - - - - - ACAG-CAAGCCTCAG GCTCAGGGACCGCCC AACAAGCAA-CAGGA 7 4 6  

OFV CATGTTCCAACCCCA -TCATCATCC- - - -C TGGCAGGAGC- - - - - ACTG-GATGCC- -AT GAACAATGA- - - - - - -ATAA- - - - - - - - - - 6 9 3  

SYNV GACACAGATGCCCCA TCCAGGAAAAGAAGG AGTGACGCTCTTACA ACTGAGAAGCCT-AA GAAGGCTCTCCCTGC AATAATCAAACTACC 7 4 0  

4 LNYV AAGATTTAAGAAAA- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - 6 1 2  

8 1 1  8 2 5  8 2 6  8 4 0  8 4 1  8 5 5  8 5 6  8 7  0 8 7 1  8 8 5  8 8 6  9 0 0  

RYSV TCTGGGGCCGCACAP CAACAAGCCCAAGGA AGCCAGCAGACCCCC GCAACAGGACAGGCA GCAGCTGGCACAGCC ATGGAGGTTGACAAG 8 3 6  

2 OFV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 9 3  

3 SYNV AAACATACCGGACTT TTAATAAACTACAGC CACAACTCTACCTCC CCCATTATGAATAAA CGACCTAACATATAA TATAAG - - - - - - - - - 8 2 1  
LNYV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 1 2  

9 0 1  9 1 5  9 1 6  9 3 0  9 3 1  9 4 5  9 4 6  9 6 0  9 6 1  9 7 5  9 7 6  9 9 0  

RYSV AAGGCAGAGGGGAGC CAGAGGGCACAGGAC GCAAACGCTCT'CGGG AATGTTCTGTAAAGG AACTTGCCAATGTAT CCAATAATAATGTCA 9 2 6  

2 OFV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 9 3  

3 SYNV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 7 1  

4 LNYV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ·· - - - - - - - - ·  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 1 2  

9 9 1  1 0 0 5  1 0 0 6  1 0 2 0  1 0 2 1  1 0 3 5  1 0 3 6  1 0 5 0  l 0 5 1  1 0 6 5  1 0 6 6  1 0 8 0  

1 RYSV TGCATTACTGTAAAG CATGGCCTGTGTGTA TTCTTAATTAT�TAA TATGCCTCACTTGCA GGCTGGTGTCTTGTA CTGTTCTCTATCCAC 1 0 1 6  

2 OFV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 9 3  

3 SYNV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 2 1  

4 LNYV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 1 2  

1 0 8 1  1 0 9 5  1 0 9 6  1 1 1 0  1 1 1 1  1 1 2 5  1 1 2 6  
RYSV AAATCTATATATTGT TATGGTATTTATAAT AAAAA 1 0 5 1  

2 OFV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 9 3  

SYNV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 2 1  

4 LNYV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 1 2  

1 1 4 0  1 1 4 1  1 1 5 5  1 1 5 6  1 1 7 0  




