
 

i 
 

                                        

 

 

Manipulating the Immune Response of Tasmanian Devils 

to Target Devil Facial Tumour Disease 

 

Candidate: Gabriella Kathleen Brown 

 

Bachelor of Biotechnology with First Class Honours 

(University of Tasmania, 2008) 

 

Submitted in fulfilment of the requirements for the degree of 

Doctorate of Philosophy 

University of Tasmania 

September 2013 

 

 



 

ii 
 

Declaration of Originality 

 

 

This thesis contains no material which has been accepted for a degree or diploma by the University 

or any other institution, except by way of background information and duly acknowledged in the 

thesis, and to the best of my knowledge and belief no material previously published or written by 

another person except where due acknowledgement is made in the text of the thesis, nor does the 

thesis contain any material that infringes copyright. 

 

 

 

___________________________ 

Gabriella Brown 

April 2013 

  



 

iii 
 

Authority of Access 

 

 

This thesis may be made available for loan and limited copying and communication in accordance 

with the Copyright Act 1968. 

 

 

 

___________________________ 

Gabriella Brown 

April 2013 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

Statement regarding published work contained in thesis 

 

 

The publishers of papers comprising material from Chapters 3 and 4 of this thesis hold the copyright 

for that content, and access to the material should be sought from the respective journals. The 

remaining non published content of the thesis may be made available for loan and limited copying 

and communication in accordance with the Copyright Act 1968. 

 

 

 

___________________________ 

Gabriella Brown 

April 2013 

 

 

 

 

 

 

 

 

 

 



 

v 
 

Statement of Co-authorship 

The following people and institutions contributed to the publication of work undertaken as part of 

this thesis: 

 

Author details and their roles:  

Candidate: Gabriella K. Brown, Menzies Research Institute Tasmania 

Author 2: Alexandre Kreiss, Menzies Research Institute Tasmania 

Author 3: A. Bruce Lyons, School of Medicine, University of Tasmania 

Author 4: Gregory M. Woods, Menzies Research Institute Tasmania 

 

Paper: Natural Killer Cell Mediated Cytotoxic Responses in the Tasmanian Devil 

Publisher: PLoS One. Accepted August 11, 2011; Published September 21, 2011 

Comprising information contained in chapters 3 and 4 of this thesis 

 

The candidate was the primary author and authors 2, 3 and 4 contributed to the idea, its 

formalisation and development.  

The candidate and authors 2 and 4 obtained materials, reagents, tools and permissions, including 

cell lines and ethics approval, for the performance of the experiments presented in the paper. The 

candidate and author 2 performed the laboratory work presented in the paper.  

All authors played roles in analysis of the data collected.  

The candidate and author 4 were primarily responsible for the preparation of the manuscript 

 

 



 

vi 
 

 

We the undersigned agree with the above stated “proportion of work undertaken” for each of the 

above published (or submitted) peer-reviewed manuscripts contributing to this thesis: 

 

 

 

Signed: __________________    ______________________ 

 

 Gregory Woods     Thomas Marwick 

 Supervisor     Director 

 Menzies Research Institute Tasmania  Menzies Research Institute Tasmania 

  

 

 

Date:_____________________ 

 

 

 

 

 

 

 



 

vii 
 

 

Statement of Ethical Conduct 

 

 

 

The research associated with this thesis abides by the international and Australian codes on human 

and animal experimentation, the guidelines by the Australian Government’s Office of the Gene 

Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of 

the University. 

 

 

 

___________________________ 

Gabriella Brown 

April 2013 

 

 

 

 

 

 

 

 



 

viii 
 

Table of Contents 

Abstract .........................................................................................................................................1 

Commonly Used Abbreviations ......................................................................................................3 

Chapter 1 - Literature Review ............................................................................................................ 6 

1.1 Innate Immunity...................................................................................................................... 6 

1.1.1 Physical, chemical and biological barriers ...................................................................... 6 

1.1.2 Cellular responses ........................................................................................................... 8 

1.1.3 Phagocytic cells ............................................................................................................... 9 

1.1.4 Innate cytotoxicity: Natural Killer cells ......................................................................... 11 

1.2 Adaptive immunity ................................................................................................................ 12 

1.2.1 Antigen presentation and costimulation ...................................................................... 12 

1.2.2 Cellular immunity .......................................................................................................... 14 

1.2.3 Humoral Immunity ........................................................................................................ 16 

1.2.4 Innate/Adaptive Interaction ......................................................................................... 17 

1.3 Immune responses against allografts ................................................................................... 18 

1.4 Immune responses against cancer ........................................................................................ 20 

1.4.1 Cancer development and pathogenesis ....................................................................... 20 

1.4.2 Anti-tumour immune responses ................................................................................... 22 

1.5 The canine transmissible venereal tumour: a contagious cancer ........................................ 23 

1.6 Devil Facial Tumour Disease: the cancer and its host ........................................................... 26 

1.6.1 The Tasmanian devil ..................................................................................................... 26 

1.6.2 The immune response of the Tasmanian devil ............................................................. 27 



 

ix 
 

1.6.3 Devil Facial Tumour Disease ......................................................................................... 27 

1.6.4 Theories for transmission of DFTD ................................................................................ 29 

1.7 Immunological intervention against cancers ........................................................................ 31 

1.7.1 Cancer Vaccines ............................................................................................................ 31 

1.7.2 Immunotherapy ............................................................................................................ 34 

1.7.3 Advantages and limitations of cancer vaccines and immunotherapy .......................... 37 

1.7.4 Application of immunotherapy for treatment of DFTD ................................................ 38 

Chapter 2 - Materials and Methods ................................................................................................. 44 

2.1 Laboratory equipment and consumables ............................................................................. 44 

2.1.1 Reagents ........................................................................................................................ 44 

2.1.2 Consumables ................................................................................................................. 45 

2.1.3 Laboratory Equipment .................................................................................................. 46 

2.2 Reagents ................................................................................................................................ 47 

2.2.1 Complete medium (for cell culture) .............................................................................. 47 

2.2.2 Phosphate buffered saline (PBS) ................................................................................... 47 

2.2.3 FACS buffer.................................................................................................................... 47 

2.2.4 FACS fixative .................................................................................................................. 48 

2.3 Cell culture ............................................................................................................................ 48 

2.3.1 Cell line characteristics.................................................................................................. 48 

2.3.2 Cell culture .................................................................................................................... 48 

2.3.3 Cryopreservation and thawing ...................................................................................... 49 

2.3.4 Cell counts and viability examination ........................................................................... 49 



 

x 
 

2.4 Animals .................................................................................................................................. 50 

2.5 Blood processing ................................................................................................................... 51 

2.5.1 Mononuclear cells ......................................................................................................... 51 

2.5.2 Adherent cell differentiation ........................................................................................ 51 

2.5.3 Mitogen stimulation of Tasmanian devil mononuclear cells ........................................ 52 

2.5.4 Generation of Concanavalian A culture supernatant ................................................... 52 

2.5.5 Separation of serum ...................................................................................................... 52 

2.6 Immunisations and adjuvants ............................................................................................... 52 

2.6.1 Immunisation preparation ............................................................................................ 52 

2.6.2 Live cell challenge ......................................................................................................... 55 

2.7 Cytotoxicity assays ................................................................................................................ 55 

2.7.1 Chromium release assays .............................................................................................. 55 

2.7.2 ADCC and NK cell cytotoxicity assays ............................................................................ 56 

2.7.3 Separation of assay culture supernatant ...................................................................... 56 

2.7.4 IL-10 block assays .......................................................................................................... 56 

2.7.5 Mitogen supplemented cytotoxicity assays .................................................................. 57 

2.7.6 Con A culture supernatant supplemented cytotoxicity assays ..................................... 57 

2.7.7 IL-2 supplemented cytotoxicity assays ......................................................................... 57 

2.7.8 Poly I:C supplemented cytotoxicity assays ................................................................... 58 

2.7.9 Formulae and statistics ................................................................................................. 58 

2.8 Flow Cytometry ..................................................................................................................... 58 

2.8.1 Cell type marker flow cytometry (Glycophorin A, Periaxin) ......................................... 58 



 

xi 
 

2.8.2 Serum/supernatant antibody flow cytometry .............................................................. 59 

2.9 Immunohistochemistry ......................................................................................................... 60 

2.9.1 Antibodies (primaries, secondaries, concentrations and dilutions) ............................. 60 

2.9.2 Immunohistochemistry of cytospins ............................................................................. 60 

2.9.3 Giemsa staining of cytospins ......................................................................................... 61 

2.9.4 Biopsy removal and processing ..................................................................................... 61 

2.9.5 Immunohistochemistry of formalin-fixed Tasmanian devil tissues .............................. 61 

2.10 Immunotherapy of Tasmanian devils ................................................................................... 62 

2.10.1 LAK cell immunotherapy ............................................................................................... 62 

2.10.2 Con A culture supernatant-treated cell immunotherapy ............................................. 63 

2.10.3 Con A culture supernatant injection ............................................................................. 63 

Chapter 3 - Analysis of immune responses against xenogeneic tumour cells and DFTD tumour cells 

in Tasmanian devils ............................................................................................................................... 64 

3.1 Introduction .......................................................................................................................... 64 

3.2 Results ................................................................................................................................... 65 

3.2.1 DFTD diseased Tasmanian devils do not form cytotoxicity or antibody responses 

against DFTD tumour cells ............................................................................................................ 65 

3.2.2 Functional cytotoxicity and antibody responses occur against foreign tumour cells in 

Tasmanian devils ........................................................................................................................... 68 

3.2.3 Natural Killer cells are not directly responsible for the killing of K562 cells by 

Tasmanian devil mononuclear cells .............................................................................................. 71 

3.2.4 Immunisation against irradiated DFTD cells does not consistently induce cytotoxicity 

and antibody responses in Tasmanian devils ............................................................................... 74 



 

xii 
 

3.2.5 Immunisation against irradiated DFTD cells in Montanide adjuvant supplemented with 

CpG DNA induces variable levels of cytotoxicity but no antibody development ......................... 75 

3.2.6 Sonication of DFTD cells increases the immunogenicity of DFTD cell preparations but 

does not induce antibody development ....................................................................................... 77 

3.2.7 Immunisation with DFTD protein and ISCOMATRIX® adjuvant and other immune 

agonists does not induce cytotoxicity responses or antibody ...................................................... 78 

3.3 Discussion .............................................................................................................................. 83 

Chapter 4 - Mechanisms of cytotoxicity and their effector cells in Tasmanian devils .................... 90 

4.1 Introduction .......................................................................................................................... 90 

4.2 Results ................................................................................................................................... 91 

4.2.1 Immunocytochemistry analysis of peripheral blood mononuclear cell populations ... 91 

4.2.2 Evidence for antibody-dependent cell mediated cytotoxicity (ADCC) against K562 cells 

in Tasmanian devils ....................................................................................................................... 96 

4.2.3 Analysis of ADCC effector cells by selective depletion and functional assays ............ 104 

4.2.4 Serum from DFTD immunised mouse or devil serum does not induce ADCC 

responses....................................................................................................................................106 

4.2.5 Activation with Concanavalin A, cytokines and Poly I:C induces Tasmanian devil 

mononuclear cells to form cytotoxicity against DFTD cells ........................................................ 109 

4.3 Discussion ............................................................................................................................ 116 

Chapter 5 - Manipulation of Tasmanian devil immune response to target DFTD cells ................. 123 

5.1 Introduction ........................................................................................................................ 123 

5.2 Results ................................................................................................................................. 124 

5.2.1 Immunotherapy with autologous MAK cells, Con A culture supernatant treated DFTD 

cells and Con A culture supernatant ........................................................................................... 124 



 

xiii 
 

5.2.2 Evidence for morphological changes consistent with the redistribution of beta-2 

microglobulin (β2M) protein in DFTD cells in response to MAK cell injection ........................... 133 

5.2.3 Immunisation of DFTD diseased and healthy Tasmanian devils with Con A culture 

supernatant treated DFTD cells .................................................................................................. 134 

5.3 Discussion ............................................................................................................................ 140 

Chapter 6 - Final Discussion ........................................................................................................... 146 

Chapter 7 - References .................................................................................................................. 163 

Chapter 8 - Appendices .................................................................................................................. 194 

Section A.1 - Additional Tables – Materials and Methods ....................................................... 194 

Section A.2 - Additional Tables – Chapter 3 Cytotoxicity assay data ....................................... 199 

Section A.3 - Additional Tables – Chapter 3 Cytotoxicity assay data ....................................... 211 

Section A.4 - Additional Tables – Chapter 5 Cytotoxicity assay data ....................................... 227 

 

 



 

1 
 

Abstract 

The Tasmanian devil (Sarcophilus harrisii) is a marsupial carnivore confined to the island of 

Tasmania, where it is the top predator in the natural ecosystem. However, the Tasmanian devil is in 

danger of extinction due to the emergence of a contagious cancer. Devil Facial Tumour Disease 

(DFTD) is transmitted between devils by biting, a common behaviour which occurs during feeding 

and mating. The disease was first identified in 1996 and has since spread through over 60% of the 

natural distribution of the Tasmanian devil. Once contracted, the disease is invariably fatal, and has 

reduced Tasmanian devil population numbers by over 80%. Epidemiology estimates that the 

Tasmanian devil may become extinct in the wild within 20 years. Considering the importance of this 

animal in the natural ecosystem, its extinction in the wild must be prevented. One of the few options 

to achieve this is to develop an immunological intervention, a vaccine or immunotherapy capable of 

targeting this deadly tumour. This thesis aimed to characterise the anti-tumour immune response of 

the Tasmanian devil and to identify target pathways for immunological intervention.  

This thesis details the first characterisation of specific anti-tumour responses in Tasmanian devils. An 

analysis of DFTD infected Tasmanian devils found no evidence for a natural anti-tumour response 

against the tumour cells. The integrity of specific anti-tumour immunity was analysed using 

xenogeneic tumour cell immunisation with human K562 tumour cells to induce strong responses. 

Cytotoxicity responses were measured using chromium release assays and antibody production was 

analysed using flow cytometry. This result suggested that, with a sufficiently immunogenic 

preparation, specific anti-tumour responses could also be induced against DFTD. However, trials 

using six different killed DFTD cell preparations failed to induce consistent immune responses, with 

only two of fourteen devils showing evidence for a response against whole cells.  

During this project, investigations performed between our laboratory and collaborators verified a 

lack of MHC I expression on DFTD tumours. In the absence of this protein, cytotoxic T lymphocytes 

would not target the tumours, providing an explanation for the poor response in the vaccine trials. 

However, the K562 tumour cells used in the xenogeneic immunisations also lacked surface MHC I, 

but they were successfully recognised by the Tasmanian devil’s immune system. This thesis also 

analysed the mechanisms of this anti-tumour response against K562 cells. Evidence was provided for 

the presence of functional natural killer (NK)-like cells in Tasmanian devils, which could consistently 

kill K562 cells by antibody dependent cell mediated cytotoxicity (ADCC).  However, although 

Tasmanian devils can form strong ADCC responses against MHC I negative cells, antibody responses 

against DFTD are generally poor, and the results of initial experiments testing ADCC killing of DFTD 

cells were not promising. 
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Some immunotherapy strategies used in humans can induce MHC I independent killing of tumour 

cells using non-specific stimulation with cytokines, activating antibodies or mitogens. This thesis 

reports the discovery of a technique which can consistently activate Tasmanian devil lymphocytes to 

target DFTD cells. Stimulation with the mitogen Con A resulted in the generation of cytotoxic cells 

which had the capacity to kill up to 80% of DFTD cells in vitro. Activation could also be achieved using 

the cytokine-rich supernatant from Con A cultures, recombinant Tasmanian devil IL-2 and the toll-

like receptor agonist Poly I:C. This promising result provided a basis for immunotherapy of DFTD, and 

this thesis also reports the use of these mitogen-activated killer cells in the first successful treatment 

of DFTD in a Tasmanian devil. 

The work presented in this thesis provided the first evidence for functional anti-tumour responses in 

Tasmanian devils, and that it is possible to induce cytotoxic responses against DFTD cells in 

Tasmanian devils. The identification of NK-like cells and a technique to consistently activate these 

and other lymphocytes to kill DFTD cells was a major advance which provided a basis for an 

immunotherapy. The results of this preliminary trial were extremely promising and should direct the 

development of vaccine and immunotherapy strategies for the disease in the future. 
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Commonly Used Abbreviations 

 

ADCC Antibody Dependent Cell-mediated Cytotoxicity 

APC Antigen Presenting Cell 

β2M Beta 2 Microglobulin 

CD(3) Cluster of Differentiation (eg. CD3) 
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cDNA Coding DNA 

CIK Cytokine-Induced Killer (Cell) 

Con A Concanavalin A 

Con A sup Cytokine rich supernatant from Con A lymphocyte cultures 

CpG Referring to a synthetic oligonucleotides which contains repeated 
motifs containing Cytosine and Guanine bases 

CPM Counts Per Minute (Radiation emission measure) 

CTVT Canine Transmissible Venereal Tumour 

CTL Cytotoxic T lymphocyte 

DC Dendritic Cell 
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PAMP Pathogen Associated Molecular Pattern 
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Chapter 1 - Literature Review 

The Tasmanian devil (Sarcophilus harrisii), the world’s largest extant marsupial carnivore, has 

recently become the host of an extraordinary disease. Devil facial tumour disease (DFTD), is a 

contagious cancer that has emerged from a single founder female Tasmanian devil [1]. Emergence of 

a transmissible cancer is extremely rare, as cancer usually originates within, and only affects, one 

animal. For this to occur, the cancer must evade the host’s immune surveillance system, avoiding an 

allogenic immune response. Consistent with this hypothesis, wild devils show no evidence of anti-

tumour responses when infected with the disease [1] although they are otherwise capable of 

mounting functional immune responses [1,2] and rejecting allografts [3]. The spread of DFTD has 

resulted in a severe population decline and may drive this unique animal to extinction [4].  This 

chapter contains a literature review which will discuss current knowledge of immune responses in 

mammals and the Tasmanian devil, the characteristics of DFTD and possible immunological 

interventions for use against it. 

1.1 Innate Immunity 

All living creatures require protection from pathogens to survive. Organisms from all kingdoms 

display a wide variety of immune mechanisms designed to protect against microbial invasion, 

differing in specificity and complexity from the evolution of diversity-generating retroelements in 

bacteria [5] to the complex, multi-faceted immune systems of vertebrate animals. Within this vast 

diversity, this literature review will particularly concentrate on the immune system of one particular 

class of animals, mammals, and their responses against one disease; cancer. 

Mammals have developed complex immune responses capable of protecting against acquired 

pathogens and environmental antigens. Broadly, the immune system is divided into two branches: 

innate immunity which is responsible for consistent, first line defences against all pathogens, and 

specific (or adaptive) immunity in which powerful responses can be developed against individual 

pathogens. The innate immune system comprises several levels of response, including physical 

barriers, a diverse symbiotic microbial flora, chemical components including proteins and cellular 

defences [6]. Together, these different sections of the innate immune system provide a highly 

successful initial defence against invading pathogens. 

1.1.1 Physical, chemical and biological barriers 

Initial exclusion of pathogens is accomplished at epithelial barriers. On the external surface, the skin 

consists of numerous constantly replenished strata cells, which provide a thick barrier from the 
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environment [7]. Interior surfaces including the respiratory, gastrointestinal and reproductive tracts 

are covered by mucous membranes, which differ in structure and complexity depending on their 

location. Examples of specialised structure and function include the epithelium of the lung, which 

consists of ciliated cells and a thick secretion of mucus allowing it to effectively trap and physically 

remove pathogens ([8], reviewed in [9]). Some epithelial surfaces accumulate immune proteins 

within mucus, such as the accumulation of immunoglobulins and cytokines in the cervical mucus in 

the reproductive tract [10] to further protect against pathogens by altering immune responses at the 

site. All types of epithelia house residual populations of innate immune cells. When the barriers are 

compromised, such as through burns [11], wounds [12] or menstruation [13], these components are 

ready to continue the innate immune response.  

Several types of immune proteins are produced in the innate immune response. Firstly, epithelial 

and residual immune cells at the site of infection produce cytokines, including Interleukins (IL), 

interferons (IFN) and tumour necrosis factor alpha (TNFα), to alter the milieu in favour of 

inflammation as soon as the barrier is compromised [14,15]. Increased release of TNFα and IL-1 by 

tissue dwelling macrophages initiates the upregulation of adhesion molecules in the epithelial cells 

of blood vessels near the site [16]. Macrophages and endothelial cells then release IL-8 which, like 

TNFα, is a powerful chemoattractant for neutrophils and increases extravasation at the site of 

infection. In the case of endothelial cells, the IL-8 is stored in granules known as Weibel-Palade 

bodies, ready for rapid release [17]. Endothelial cells at the site of infection are also capable of 

producing IFNγ, a cytokine which acts primarily to activate Natural Killer (NK) cells to eliminate virus 

infected cells [18] but can also promote neutrophil phagocytosis [19] and activate cells of the 

adaptive immune system [20].  

Complement is another group of small innate immune proteins that is present in the blood. The 

components of the complement system are synthesized in the liver and have several primary actions 

to augment innate cell responses. In situations of infection, each component in the complement 

pathway is activated in a set sequence, or ‘cascade’ [6]. There are three pathways for the activation 

of the complement system. The ‘classical’ complement activation pathway, so called because it was 

the first of the three mechanisms identified, is engaged following antibody-antigen interaction. This 

pathway therefore requires activation of responses from the adaptive immune system and provides 

an opportunity for interaction between the two branches of immunity (reviewed in [21]). The 

‘alternative’ complement pathway is activated by direct binding to the pattern associated molecular 

patterns (PAMPs) of a microbe. A specific example of a potent molecular activator for the alternative 

complement pathway is the measles virus envelope fusion protein  [22]. Activation of the ‘lectin’ 
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complement pathway occurs through the engagement of lectin receptors, such as mannose 

receptors, with target molecules on the cell surface of a pathogen. This pathway often serves to 

enhance the activation of the alternative complement pathway [23]. The effects of complement 

proteins mimic and supplement the effects of cytokines in the innate immune system, including cell 

migration and phagocytosis. The activated complement protein C5a shows a similar effect to that of 

IL-8 and serves as a chemoattractant for neutrophils [24] while C3a is a powerful inducer of 

extravasation [25].  Other complement proteins, such as C3b, function as opsonins to increase 

phagocytosis [21] or, in the case of C9, mediate direct lysis of target pathogens through pore 

formation by multimerisation and insertion into the cell membrane [26] via attachment to C5b, C6, 

C7, and C8 [27]. 

1.1.2 Cellular responses 

The cells of the innate immune system are able to respond against a variety of invading pathogens 

due to the expression of pathogen-associated molecular patterns (PAMPs). Examples include 

bacterial products such as lipopolysaccharide and flagellin, or virus associated molecules such as 

double-stranded RNA. The receptors for PAMPs are the pattern recognition receptors (PRR) of the 

mammalian innate immune system [6]. As previously discussed, plants also have PRR [28]which, 

although they bear many similarities to the receptors in animals, are thought to have arisen through 

convergent evolution [29]. There are three main classes of PRR: mannose receptors, 

glycosphingolipids and toll-like receptors (reviewed in [30,31]). 

Mannose receptors are expressed on the surface of mononuclear phagocytes (monocytes and 

macrophages) [32] and subsets of dendritic cells [33]. They are glycoproteins that interact with 

glycoconjugates bearing terminal D-mannose, L-fucose and N-acetylglucosamine residues. These 

include microbial polysaccharides, glycoproteins and glycolipids (reviewed in [34]). Binding occurs 

through interaction of the target molecule with carbohydrate recognition domains [33] and 

stimulation of mannose receptors activates phagocytosis [35]. 

Glycosphingolipids are highly expressed on neutrophils where they serve as attachment points for 

many pathogen-derived molecules, including viral proteins, glycoproteins and carbohydrates [36,37]. 

The binding between microbes and sphingolipids occurs at terminal carbohydrate residues [37] and 

the signals are transduced through intramembrane domains via a PI-3K-dependent signal 

transduction pathway [38,39]. Glycosphingolipid binding contributes to the induction of 

phagocytosis in neutrophils under non-opsonised conditions [36].  
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Members of the toll-like receptor (TLR) family of PRR respond to a variety of common pathogenic 

stimuli. One example of interactive TLR responses is those against bacteria. The ligand for TLR 

regulated responses against gram negative bacteria is lipopolysaccharide, which activates TLR4 [40] 

on the cell surface [41]. Peptidoglycan, a molecule associated with gram positive bacteria, activates 

TLR2, as well as mannose receptors [40], on the cell surface. TLR2 is then endocytosed along with 

the pathogen and recruits an additional TLR (TLR6) to the phagosome membrane, where they co-

operatively induce the production of TNFα [40,42] and induce oxidative destruction of the microbe 

[43]. However, within this study, two TLRs are of key importance: TLR3 and TLR9. 

Toll-like receptor 3 is expressed internally and on the cell surface of fibroblasts and epithelial cells. 

However, in immune cells its expression is localised to the endosomal compartment [44]. The major 

role of TLR3 is thought to be the induction of immune responses against viral infection, as a major 

experimental ligand for its activation is the synthetic double-stranded RNA molecule, 

Polyinosinic:polycytidylic acid (Poly I:C) [45]. Activation of TLR3 induces the production of 

inflammatory cytokines including type I IFN [44], IFNγ [46], IL-6, IL-8 [47], TNF α, and IL-12 [45]. 

Binding of ligands such as Poly I:C to TLR3 can also stimulate the upregulation of activating receptors 

in some innate cell subsets, including CD69 [48], a receptor which mediates proliferation of 

lymphocytes such as NK cells. TLR3 activation can also induce responses from components of the 

adaptive immune system [49,50].  

Another TLR with wide ranging effects on both innate and adaptive immune responses is TLR9 [51]. 

The major ligands for these receptors are single stranded DNA fragments containing repeated motifs 

of unmethylated cytosine and guanine nucleotides, a characteristic which is more common in 

bacterial DNA than eukaryotic DNA [52]. Stimulation of TLR9 induces expression of a similar milieu of 

inflammatory cytokines to those released in response to TLR3 activation [31,53]. Although the ability 

of TLR9 to activate NK cell cytotoxicity is well established [54], recent work has shown that 

stimulation of TLR9 may play a role in communication between the innate and adaptive immune 

responses through activation of dendritic cell antigen presentation [55] and activation of adaptive 

immune subsets including T and B lymphocytes [52,56]. As such, synthetic agonists of TLR9 and TLR3 

are good candidates for adjuvant supplements in vaccines [45,56]. 

1.1.3 Phagocytic cells 

Removal of microbes by phagocytosis is central to innate defence against pathogens. 

Polymorphonuclear leukocytes, commonly known as neutrophils, are the most abundant phagocytic 

lymphocytes in the circulation [57,58]. Neutrophils have a distinctive histological appearance, with 
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multilobar nuclei and cytoplasmic granules, and expression of the marker protein NIMP-R14 [59]. 

Eosinophils and basophils are also types of polymorphonuclear leukocytes, which function mainly in 

allergy and responses against parasites [60,61]. Macrophages are mononuclear cells which label 

positively for express CD14 and CD68 [62,63]. Neutrophils and macrophages are the main effectors 

of destructive phagocytosis of pathogens [58,64] and are sometimes known as ‘professional 

phagocytes’. The process involves attachment of the microbes through interaction with PAMPS, then 

uptake to intracellular vesicles. Upon activation of PRR in the vesicle membrane [40], the pathogen is 

then destroyed using chemical degradation by reactive oxygen species and enzymes such as 

peroxidise and superoxide radicals [43,65]. Neutrophils and macrophages produce inflammatory 

cytokines which can augment the activity of other innate phagocytes and promote responses in 

other cell subsets, including those of the adaptive immune system [16,66].  

An additional role for macrophages is to present antigens to cells of the specific immune system 

[30]. Following phagocytosis of a pathogen, a macrophage can process its proteins into short 

peptides which are then expressed on the cell surface. This process is known as antigen 

‘presentation’, and plays a vital role in the induction of specific responses against infections. Due to 

their ability to perform this function, macrophages are classed as ‘professional’ antigen presenting 

cells (APC).  

Dendritic cells (DC) are also innate phagocytes and APC. They have a distinctive shape in situ, with 

numerous dendrite-like processes [67] and exist in low numbers in peripheral tissues [33], where 

they sample peptides from their environment and phagocytose microbes then efficiently process 

them for antigen presentation [33,68]. Although DC are part of the innate immune system, their 

principal function is to present antigens to naive T cells of the adaptive immune system. They 

primarily interact with T lymphocytes [69], inducing production of cytokines with subsequent 

activation of B lymphocytes [70] and cytotoxicity from innate cells [71]. They therefore form an 

important bridge between the two immune branches, a role which will be discussed in detail later in 

this review. 

Monocytes, the precursor for macrophages and DC, are capable of a wide range of innate effector 

functions. Their differentiation is controlled by the presence of the cytokine GM-CSF, while other 

cytokines drive the further specific differentiation of the final cell types. In general, macrophage 

development requires exposure to IL-3 [72] while transition to DC requires the presence of IL-4 [73]. 

Other factors can bias this development towards differentiation to DC, including the inflammatory 

cytokine TNFα [74].  Undifferentiated monocytes are also capable of cytotoxicity against tumour 
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cells in the presence of cytokines such as IFNγ [75] and TNF α [76]. Additionally, they can function as 

effectors of antibody-dependent cell mediated cytotoxicity responses [77]. 

1.1.4 Innate cytotoxicity: Natural Killer cells 

The most effective cytotoxic responses of the innate immune system are mediated by NK cells. 

Structurally, NK cells appear as large lymphocytes with abundant cytoplasmic granules [78]. They are 

lymphoid derived [79] but are phenotypically and functionally different from lymphocytes of the 

specific immune system. NK cells are commonly characterised by the expression of the activating 

ligand and adhesion molecule CD56 and the Fcγ III receptor, CD16 [80]. A large proportion of NK cells 

also express CD8, the marker for cytotoxic T lymphocytes [81]. These identifying characteristics 

highlight important structural features corresponding to their major functions of NK cells: they are 

‘constitutively’ activated for formation of rapid cytotoxicity responses, capable of mediating 

antibody-dependent cell mediated cytotoxicity and produce cytokines capable of augmenting both 

innate and specific responses. 

The responses of NK cells, like other lymphocytes, are directed by interaction with the major 

histocompatibility complex (MHC) proteins of target cells. The targets for NK cell cytotoxicity are 

cells with missing, or aberrant, MHC I molecules [82]. The NK cell receptor for MHC I consists of a 

complex between CD94 and NKG2, known as the KLRC complex [83]. When binding to cells 

expressing normal MHC I molecules occurs, NK cells receive an inhibitory signal and release the cell 

undamaged. Upon encounter with a target cell in which cell surface MHC I is absent or aberrant, the 

NK cell will mount a cytotoxic response. For this reason, NK cells are termed ‘unrestricted’ by MHC 

molecules and have the capacity to kill abnormal cells which are otherwise resistant to cytotoxic 

lymphocyte responses. 

The NK cell response against specific target cells requires the formation of a tight junction, or 

‘immunological synapse’ between the two cells. The NCAM protein (CD56), which is highly expressed 

in NK cells, aids in attachment to target cells [84]. Circulating natural killer cells contain high 

concentrations of cytotoxic granules [80] which are released when in contact with a target cell. The 

events leading to granule release are characterised by rapid restructuring of the cytoskeleton [85], 

relocation of liposomes , which contain cytotoxic granules composed of perforin and granzymes, to 

the cell surface [86], and release into the ‘immunological synapse’ between killer and target cell. 

These two protein components have distinct functions for the induction of cytotoxicity. Perforin is a 

pore-forming protein which associates with the membrane of the target cell in a very similar manner 

to that of the complement protein C9 [87] and causes osmotic stress and lysis, and by forming an 
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entry point for other cytotoxic factors [88]. Granzymes are cytotoxic proteases which initiate 

apoptosis through activation of the caspase cascade beginning with the cleavage of caspase 3 [89]. 

The mechanisms of cytotoxicity are similar between NK cells and cytotoxic T lymphocytes (CTL) of 

the specific immune system, and the two cell types often serve complementary functions. 

Typical target cells for NK cells include virus-infected, transformed or tumour cells with absent or 

abnormal MHC and xenogeneic cells with intact but foreign MHC (reviewed in [82]). NK cells are 

effectively activated by inflammatory cytokines, such as IL-15 from the innate immune system, IFNγ 

and IL-12 from both the innate and adaptive immune systems, and IL-2 from the adaptive immune 

system [18,90,91]. Exposure to IL-21 enhances the proliferation and cytotoxic responses of NK cells 

in conjunction with IL-15, an effect which can be perpetuated in vitro using non-specific agonists 

such as Flt3 ligand [92]. Activation by some TLRs, especially TLR3 and TLR9 which mimic viral 

infection, directly induce NK cell cytotoxicity [54,93]. The wide variety of activation pathways and 

the capacity for rapid and unrestricted cytotoxic responses make NK cells an attractive target for 

manipulation using vaccines and immunotherapies. 

1.2 Adaptive immunity 

One important characteristic of the vertebrate immune response is the capacity to form long-lasting 

and specific responses. The adaptive immune response, so named because it allows the host to 

‘adapt’ and develop resistance against infections, is mediated by cells such as T lymphocytes, which 

recognise a target antigen, and antibody-producing B lymphocytes. Adaptive immune responses are 

crucial for immunity against tumours and foreign cells. However, the success of a specific response is 

often achieved in concert with factors from the innate immune system, and the interaction between 

the two branches of immunity will also be discussed. 

1.2.1 Antigen presentation and costimulation 

T lymphocytes require access to individual peptides in order to form specific responses. The three 

major pathways for antigen ‘presentation’ for T lymphocyte activation in mammalian cells are: MHC 

I restricted presentation, which occurs in all nucleated cells; MHC II restricted presentation and cross 

presentation, which primarily occur in DC [94,95,96,97]. B lymphocytes can also endocytose specific 

antigens that match their B cell receptor and present these to T lymphocytes [98].  

The MHC I restricted pathway provides a mechanism to allow presentation of antigens by all cells for 

immune surveillance [99]. In this pathway, proteins in the cell can be tagged with ubiquitin 

molecules and degraded into small peptides within a proteasome [100]. The peptide fragments are 
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then transported to the endoplasmic reticulum via transporter associated with antigen processing 

(TAP) proteins [101]. The peptide is then bound to MHC I molecules which is coupled with the 

stabilising molecule beta 2 microglobulin (β2M), a process in which TAP also plays a crucial role 

[102]. The peptide-MHC I complex is transported to the cell surface where it is bound to the T cell 

receptor (TCR) in combination with the MHC I-specific ligand CD8 [103,104]. Thus, the pathway that 

results in presentation to CD8 positive cells, most commonly CTL, is termed the ‘MHC I restricted’ 

pathway.  

Like the MHC I pathway, presentation of antigen on MHC II molecules are also ‘restricted’ to T 

lymphocytes bearing a specific ligand: CD4. T cell populations positive for this molecule include T 

helper lymphocytes and T regulatory lymphocytes. The MHC II restricted pathway involves fusion of 

phagosomes with lysosomes, vesicles that contain proteolytic enzymes stored at an acidic pH, which 

is optimal for their function [105]. Presentation of MHC II molecules on the membrane of APC results 

in the exposure of pathogenic proteins to T cells via attachment of the TCR and CD4 molecules [103]. 

The third major antigen-presentation pathway is cross presentation, which involves the binding of 

peptides that have been processed through the Class II pathway onto class I MHC molecules. This 

confers some APC the ability to present antigen directly to CD8 positive cells, such as CTL, rather 

than only to CD4 positive cells [97]. This is an important pathway for cell-mediated immunity as it 

results in direct activation of cytotoxic lymphocytes against pathogens and non-self antigens.  

A fourth antigen presentation pathway, known as cross-dressing, has recently been proposed. This 

pathway involves the direct transfer of preformed antigen-MHC I complexes from donor cells to 

professional APC without the need for further antigen processing by trogocytosis [106]. A study 

performed by Wakim and Bevan [107] presented evidence to support the theory of cross-dressing, 

and suggested a role for this pathway in the activation of CD8+ T lymphocytes, particularly those 

previously activated by exposure to antigen. 

As well as presenting antigens to specific immune cells, APC are also responsible for the co-

stimulation of T lymphocytes, a process which is required to fully activate their immune responses 

[108]. Thus, activation of T lymphocytes requires two signals: the first is the encounter of antigen, 

via the TCR as described above, and the second requires a ‘co-stimulatory’ signal. In the case of 

inflammatory responses, this is typically provided through interaction of molecules expressed on the 

membrane of APC and the T cell [108,109]. The best known costimulatory ligand is CD28, which 

interacts with B7 molecules on the T cell membrane [110]. The original view that costimulation 

through the CD28/B7 pathway was essential for activation of T lymphocyte responses became the 

subject of some conflict within the literature [111], especially when analysis of CD28 deficient mice 
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strains showed a capacity for development of T lymphocyte-mediated responses [112]. Additionally, 

some responses, such as the production of IL-4, do not require co-stimulation [113]. The 

complexities of costimulation were subsequently explained by the discovery that a range of stimuli 

can co-activate T lymphocytes. Among these were inducible costimulator ICOS (otherwise known as 

CD278), and soluble factors such as IL-1 [114]. These factors largely influence T lymphocyte 

responses which augment antibody production, and the CD28/B7 pathway appears to be crucial for 

the induction of effective TH1-driven inflammation, through the induction of IL-2 secretion, 

lymphocyte proliferation and by delaying apoptosis [115].  

1.2.2 Cellular immunity 

As previously discussed, T lymphocytes are broadly defined in two classes: CD4 positive and CD8 

positive lymphocytes. The two subsets of T lymphocytes have distinct functions in mediating 

antigen-specific immune responses. CD4 positive T lymphocytes are indirect effector cells which can 

either be capable of augmenting or diminishing and controlling immune responses. T helper (TH) 

lymphocytes perform the former function, whereas different types of T regulatory cells are 

responsible for the latter. Within the population of CD4 lymphocyte population there are a number 

of functionally distinct subsets, including the inflammatory TH1, TH2 and TH17 cells [116,117], and 

regulatory types including FoxP3+/CD25+ regulatory cells (Tregs) and TH3 cells [118].The best 

characterised inflammatory CD4 cell types are TH1 and TH2 cells, which promote cellular immunity 

and inflammation or humoral responses, respectively. The most characterised T regulatory cells are 

the FoxP3+/CD25+ Tregs. The activity of T regs is modulated by TH3 cells, which are believed to arise 

from a different lineage, are involved in mucosal immunity and produce large amounts of TGFβ, a 

cytokine with a complex role in tumour immunity and increases the activity of Treg cells [119,120]. 

In relation to tumour immunity, type 1 (TH1) responses are the most desirable outcome of 

lymphocyte activity. CD8 positive cells most often mediate direct responses against target cells, 

particularly cytotoxicity. Conversely, inflammatory responses against tumours can be reduced 

through the activity of regulatory TH cell types, which can induce tolerogenic tumour 

microenvironments. Activation of inflammatory T lymphocyte responses and the prevention of 

tolerance is crucial for successful responses against virus-infected cells and tumours, and also plays a 

pivotal role in graft rejection. 

As previously discussed, TH cells are primed to respond against specific antigens following encounter 

of antigen presented by professional APC, through binding of TCR in conjunction with CD4 receptors 

[103]. If costimulation also occurs, TH lymphocytes are able to proliferate and secrete copious 

amounts of cytokines to augment and direct the development of immune responses [116]. The 
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cytokine milieu determines the bias of TH cells towards type 1 or 2 responses. In particular, IFNγ 

induces TH1 responses and IL-4 directs TH2 responses. In a TH1 type response, effector cells produce 

IL-2 and IFNγ [116], which can direct the responses of cytotoxic lymphocytes or innate immune cells, 

including NK cells and macrophages [121,122], and promote the release of inflammatory factors, 

such as IL-12, in other cell subsets [123].  

Cytotoxic T lymphocytes (CTL) express CD8 receptors and are primed through encounter of specific 

antigen presented on MHC I molecules. This ‘restriction’ for MHC I, which is expressed on all 

nucleated cells, allows CTL to function as the primary effectors of immune surveillance [124,125] and 

responses are induced against cells which display abnormal antigens. As previously discussed, some 

cytotoxic pathways of CTL are very similar to those of NK cells and are mediated through a number 

of mechanisms. In particular the granule exocytosis pathway, which involves the release of cytotoxic 

granules into the synaptic cleft resulting in lysis of the target cell membrane through perforin 

insertion and the activation of apoptosis by granzymes is similar between the two types [87]. Other 

apoptosis inducing molecules, Fas ligand (FasL) and TNFα, can also play important roles in CTL 

cytotoxicity [126]. The effector responses of CTL can be perpetuated by cytokines produced by a 

variety of cell types. Cytotoxic cells proliferate in response to IL-2 [127] which is largely produced by 

TH1 cells [128]. Potent CTL responses are also formed in the presence of IFNγ , which is produced by 

NK cells and macrophages as well as TH1 cells [129]. Studies in both CTL clones and primary cells 

have verified that these cells release IL-2, IFNγ and GM-CSF in various models of activation, such as 

Concanavalin A stimulation [130,131]. Selective proliferation and increased cytotoxicity of CTL occurs 

in the presence of IL-21 [92,132], a cytokine which is largely produced by helper T lymphocytes. 

Functional studies performed using antibodies as agonists also suggest that IL-21 can enhance the 

effects of co-stimulation and TLR activation in CTL [92]. Thus, many sources contribute to the 

upregulation of CTL responses. 

The capacity for T and B lymphocytes to form specific memory responses against individual diseases 

is an important ability of the mammalian adaptive immune response. Following the initial response 

against cells or pathogens bearing the target antigen, a small proportion of T lymphocytes become 

memory cells, which are characterised by expression of CD45RO molecules [133]. Memory T 

lymphocytes have the capacity to rapidly proliferate and mount specific responses upon subsequent 

encounter of their target antigen [134] and to recruit naive T cells to respond [135]. Memory T cells 

can be CD4 or CD8 positive, and give rise to mainly cytokine-producing or cytotoxic effector 

lymphocytes depending on their existing bias [135,136]. The persistence of memory T cells is crucial 

for the success of vaccines and for the development of long-term immunity against common 
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infections. Although CTL play crucial roles in the elimination all abnormal cell types, including virus-

infected cells, their roles in graft rejection and tumour immunity are of considerable importance in 

this study, and will be reviewed in more detail in later sections. 

1.2.3 Humoral Immunity 

B lymphocytes of the adaptive immune system are responsible for the production of antibody. The B 

lymphocytes of mammals derive from the same precursor as T lymphocytes, but develop in the bone 

marrow and later migrate to the spleen [137]. The receptors of B lymphocytes (B cell receptors) are 

formed through random recombination of variable diverse joined (VDJ) gene segments, which 

produce a variety of receptors that can bind unique antigens [6]. Maturation continues in the 

periphery, where naive B lymphocytes encounter antigens within the spleen or lymph nodes. B cells 

can process environmental antigens through the MHC II restricted pathway [138], although antigen 

presentation is not their major role.  Upon encounter of specific antigen, B cells form antigen-

specific receptors, which can be synthesized for expression on the cell surface in a soluble form 

(antibody) [98].  

As B lymphocytes mature they undergo immunoglobulin isotype switching to different isotypes, 

beginning with IgM and usually switching to IgG then to IgA or IgE in a subset of cells. In the final 

stage of maturation, some B lymphocytes become plasma cells, a transition which involves loss of 

the capacity to present antigen and a switch to produce IgG antibody (reviewed in [139]). Once B 

lymphocytes become differentiated into plasma cells they can persist in the bone marrow or in the 

periphery, secreting low levels of specific antibodies against their target antigen. Additionally, some 

B lymphocytes differentiate into ‘memory cells’. The memory B lymphocytes which reside in the 

germinal centres of lymphoid follicles are well located to encounter their B cell receptor specific 

antigen. The production of specific antibodies by B lymphocytes plays an important role in the 

immune responses against many diseases. B cell memory is also the basis of the majority of vaccines 

licensed for use in humans. In disease, the effects of antibody include agglutination of virus particles 

(IgM), immunity at mucous membranes (IgA), responses against parasites and helminths (IgE), 

opsonisation of microbes and formation of attachment points for NK cell and macrophage 

cytotoxicity against foreign and tumour cells (IgG). Antibody also mediates the first stage of graft 

rejection responses, through the formation of lytic plaques in blood vessels [140]. 
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1.2.4 Innate/Adaptive Interaction 

In the past, the innate and adaptive immune systems were regarded as separate branches which 

were responsible for distinct immune responses. However, recent studies have shown that constant 

interaction between the two immune branches drives optimal responses (reviewed in [141]). In this 

Thesis, three specific mechanisms of interaction between the innate and adaptive immune 

responses have been particularly significant: stimulation of cytotoxic responses with agonists of TLR 

receptors, activation of innate or non-specific cytotoxic responses using a heterogeneous group of 

cytokines and induction of antibody-dependent cytotoxicity. 

As previously discussed, activation of toll-like receptors on innate immune cells has a wide range of 

effects [44,54,142], including the development of adaptive responses by B and T lymphocytes 

[52,56,143]. Other effects of TLR9 activation include upregulation of antigen presentation in DC [95] 

and production of cytokines such as IFNγ , which result in increased stimulation of T lymphocyte 

activity [144]. Activation of TLR9 can also induce maturation of dendritic cells [145]. Exposure to 

certain types of CpG oligonucleotides can also directly induce B lymphocyte proliferation, activate 

the cells upon simultaneous encounter with specific antigen, and can ‘license’ them for transition to 

plasma cells [52,146]. The effects of CpG on both the innate and specific immune responses make 

them a valuable addition to vaccine adjuvants [56], a characteristic which was utilised in 

experiments reported in this Thesis. 

Interaction between the innate and adaptive immune responses can also be controlled by cytokines. 

An example of an adaptive immune-system cytokine with the capacity to augment responses in 

innate immune cells is IL-2. Although it is synthesized primarily by T lymphocytes, IL-2 can induce 

cytotoxic responses in NK cells [121,147]. The mechanism for this response is an upregulation of 

IFNγ [148], which itself is a cytokine capable of inducing responses from both innate and specific 

immune subsets. IFNγ is a powerful inflammatory cytokine, and its expression requires complex 

mechanisms for regulation. Major sources include NK cells [46] and helper T lymphocytes [129], but 

the cytokine is also produced in various macrophage populations, particularly following stimulation 

with a combination of IL-12 and IL-18. Although IL-12, like IL-2 and IFNγ, is a cytokine with the 

capacity to induce cytotoxic responses from NK cells and increases the inflammatory activity of 

macrophages [122,147], it can upregulate antibody responses [149] and can also stimulate T 

lymphocyte cytokine production, including secretion of IFNγ [150]. In fact, some studies have shown 

the capacity of IL-12 to selectively upregulate groups of helper T lymphocytes that are responsible 

for IFNγ production [151]. However, optimal production of IL-12 by DC requires the presence of IFNγ 

as well as stimulation of the activating ligand CD40 [152]. Thus, this intricate positive feedback 
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interaction between cytokines such as IL-2, IL-12 and IFNγ contributes to the activation of both 

innate and specific immune responses. 

There are also many situations in which antibody, a component of the adaptive immune response, 

can induce responses by cells of the innate immune system. One important role of antibody is 

opsonisation of pathogens for phagocytosis by innate immune cells, such as neutrophils and 

macrophages, which bear receptors for the Fc portion of immunoglobulin. A related pathway, 

antibody-dependent cell-mediated cytotoxicity (ADCC) pathway is another example of interaction 

between innate and specific immune responses. Mediation of ADCC requires two individual factors: 

formation of specific antibody through activation of the adaptive immune response and cytotoxicity 

responses by effector cells bearing receptors for the Fc portion of immunoglobulin. Interestingly, the 

cytotoxic effector cells of the adaptive immune response, namely CTL, do not bear Fc receptors 

(FcR). However, innate immune cells including monocytes, macrophages, neutrophils, eosinophils 

and NK cells express different variations of FcR and are capable of killing cells coated in specific 

antibody [77,153,154,155,156]. In the case of NK cells, which express FcR IIIγ (CD16) molecules 

[157], cytotoxicity is mediated through the same lytic pathway as for other targets. Thus, although 

killing in the ADCC pathway is mediated by innate immune cells, the responses are specific due to 

the involvement of antibody. The ADCC pathway plays a role in graft rejection [158], particularly in 

acute responses [140]. One example for the capacity of ADCC to induce allograft rejection is 

response against tolerated skin grafts in ducks following adoptive infusion of hyperimmune serum 

[159]. Development of ADCC is also important in the immune response against cancers, and specific 

antibody against tumour associated proteins can induce responses from NK cells [160,161].  

1.3 Immune responses against allografts 

The ability to reject foreign cells from genetically different individuals is an important characteristic 

of the mammalian immune response. There are three different categories of graft rejection 

response in mammals: hyperacute, acute and chronic rejection. Many mechanisms have been shown 

to participate in graft rejection responses, including both innate and specific immune cells, ADCC and 

the activation of complement. Each of the three types of responses are mediated by different 

immune mechanisms and have distinct pathological characteristics. This section will discuss the graft 

rejection response. 

The fastest and most effective type of response against allografts is hyperacute rejection, which 

happens within days of exposure to the foreign cells [162]. The mechanism responsible for 

hyperacute rejection is the binding of pre-formed antibodies, which activate the complement 
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cascade, leading to cell damage. Hyperacute rejection is a prominent cause of kidney transplant 

rejection [163], through antibody-mediated agglutination of donor erythrocytes in the blood vessels 

or destruction of MHC II mismatched donor B cells within the transplant tissue [164]. Exposure to 

mismatched ABO blood antigens or MHC I molecules can also cause hyperacute rejection, although 

this effect can be abrogated in some patients using immunoadsorbtion of antibody [165]. 

Acute rejection is the term used to describe rapid rejection that occurs anywhere from one week to 

several months following transplantation. The major mechanism responsible for acute allograft 

rejection is through the activation of cell-mediated immunity against mismatched MHC I molecules 

[166]. The activity of several cytokines, most notably TNFα, IFNγ and IL-10 [167,168], are particularly 

implicated in the responses against allografts, with patients prone to expressing high levels of TNFα 

and IFNγ particularly likely to have earlier rejection. The role of antibody in acute graft rejection 

remains controversial [140]. Unlike grafts which undergo hyperacute responses, biopsies of 

allografts following acute rejection show little evidence for the accumulation of antibody or 

complement components within blood vessels. However, although acute rejection can be mediated 

in the absence of antibody, a subset of patients pre-sensitised against graft-associated proteins can 

form antibody, resulting in ADCC responses by NK cells [140]. NK cells may also mediate cellular 

cytotoxicity responses against grafts in the absence of CTL and are particularly implicated in the 

rejection of bone marrow transplants [169].  

 Chronic rejection of a graft occurs after several months or years of full establishment and sufficient 

function. Some cases of chronic rejection are caused by fibrosis of blood vessels, resulting in 

insufficient circulation and necrosis of the transplant. In the remainder of cases, immunological 

mechanisms are involved in the rejection of long term grafts, although the pathogenesis of chronic 

rejection remains incompletely understood [140]. Similar to acute rejection, the development of 

alloreactive antibodies after transplantation is considered a risk factor for graft failure [170]. 

Additionally, blockade of CD4 signalling to inhibit TH cell responses does not affect the outcome of 

chronic cardiac graft rejection models but blockade of CD40L, which prevents their capacity to 

interact with B lymphocytes and augment CTL responses, leads to indefinite graft survival [171]. 

Although many studies have shown similar decreases in rejection responses through blockade of the 

CD40/CD40L pathway [172], some studies have shown little effect in overall outcome [173]. Chronic 

graft rejection can also involve an alteration of dendritic cell status from tolerogenic to a non-

tolerogenic state, resulting in activation of TH cells to promote rejection [174]. Thus, multiple 

mechanisms can contribute to chronic rejection of allografts. 



 

20 
 

1.4 Immune responses against cancer 

Following a breakdown in the regulation of cell division, increased growth of normal cells leads to 

the development of neoplasms , masses of abnormally dividing tissue [175]. The resultant lesions are 

often referred to as tumours (a word which simply means ‘lumps’). Tumours are initially benign but 

they can progress to become malignant and form cancers. The transition to cancer requires a 

number of changes to the cells of a neoplasm: often less differentiated, immature cells within 

tumours tend to selectively proliferate, causing the tumour to lose hallmarks of the primary tissue 

and revert to a progenitor-like cell type; the cells divide at an uncontrollable rate and begin to 

invade neighbouring tissues, including the bloodstream where they can metastasise to other sites.  

1.4.1 Cancer development and pathogenesis 

It is widely acknowledged that development of a cancer requires a number of distinct mutation 

events [176,177]. Mechanisms for the development of cancer have been most thoroughly studied in 

human subjects. Genetic analysis has resulted in the identification of alleles responsible for a 

heritable tendency for the development of specific types of cancers, such as Wilms’ tumour locus in 

kidney cancer and BRCA mutations in breast and ovarian cancers [178,179]. However, 

epidemiological studies involving identical twins suggest that genetic predisposition accounts for 

only a small percentage of cancers, suggesting that environmental factors play a greater role in their 

development [180]. Cancer risk can be increased by exposure to environmental carcinogens, such as 

cigarette smoke [181], hair dyes [182], food borne mutagens, such as 2-Amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP) [183], or ultraviolet radiation [184]. Recurrent infection, 

especially with pathogens such as Helicobacter pylori, can also increase cancer risk [185,186]. 

Environmental carcinogens can exacerbate cancer development either by increasing rates of cell 

growth and mutation [175] or by contributing to suppression of the immune response [187].  

Defining characteristics of cancers include the capacity to invade neighbouring tissues, to divert 

blood supply or undergo angiogenesis, and to evade the immune system. Some factors involved in 

cancer pathogenesis is are derived from normal physiological processes but overexpressed in cancer 

cells. This section will briefly discuss several examples of proteins that may aid invasion, 

angiogenesis and immune escape by cancer cells and their potential importance in a contagious 

cancer such as DFTD. 

In order to become invasive and metastasise, a cancer must first break down their surrounding 

basement membrane, which involves destroying the type IV collagen that is secreted in the  
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extracellular matrix (ECM) of the tissue of origin [188]. The major class of enzymes that aid in this 

breakdown are the matrix metalloproteinases (MMP), a class of zinc-atom bearing endopeptidase 

proteins that normally function in the remodelling of ECM [189]. The expression of MMP is usually 

tightly controlled via a number of mechanisms including regulation of transcription, mRNA stability 

and protein degradation (reviewed in [190]). However, high levels of MMP expression in cells can 

impart an invasive phenotype [191,192,193] and is associated with progression in several types of 

human malignancies, including prostate, breast and colon cancer [194,195,196]. Levels of MMP are 

also modified by certain hormones, including platelet-derived growth factor, cytokines such as TNFα 

[197] and tissue inhibitors of metalloproteinases (TIMPs) [198]. Interestingly, the activity and 

production of MMP is induced by some inflammatory cytokines normally associated with anti-

tumour responses, including TNFα, but downregulated by cytokines that are otherwise related to 

tumour progression, such as TGFβ [199,200]. Thus, the control of factors that aid in metastasis of 

cancers may be complex and difficult to modulate. Following a rapid increase in size, tumours 

become limited by blood supply and require angiogenesis for continued growth and invasion [201]. 

The secretion of MMP, in particular MMP-9, can play a role in increasing angiogenesis. Some 

tumours are able to recruit host cells, such as neutrophils, to produce a source of MMP-9 for 

increased angiogenesis [202]. Other endothelial cell growth factors, such as VEGF, are also important 

for angiogenesis and are therefore produced in large amounts by some cancer cells [203].  

In addition to an increased rate of growth and angiogenesis, cancers must also evade, overcome or 

actively manipulate the host immune response. Many tumour types overexpress stress-associated 

chaperonin molecules, such as heat shock proteins (HSP), to delay or reduce apoptosis and increase 

proliferation [204]. Expression of HSP90 (90 kDa heat shock protein) and HSP 70 is associated with 

poor prognosis, particularly in breast and prostate cancer [205,206], and can contribute to disease 

severity, even in the absence of other cancer associated factors, such as VEGF expression [207]. One 

proposed mechanism for this relationship is that HSP, which normally act as a ‘molecular chaperone’ 

to preserve essential proteins under conditions of stress, may protect certain oncogenic proteins 

from degradation, although this remains contentious [208,209]. 

There is abundant evidence that many types of tumours evade the host immune response by 

altering the surface expression of proteins through epigenetic mechanisms. One of the most 

common epigenetic adaptations of cancer cells is to downregulate expression of antigen-

presentation molecules, such as MHC I, TAP or accessory proteins within immunoproteasome 

(reviewed in [210]). In some cancer types, such as cervical cancer, the loss of MHC I expression 

occurs in several stages [211,212]. Another prominent epigenetic mechanism is the loss of tumour 
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associated antigens (TAA). This has been particularly well characterised with melanoma, in which 

immunoselection promotes the loss of TAA such as the MART-1/Melan-A antigen in more 

progressive tumours [213,214]. The loss of TAA can also occur following immunotherapy or 

vaccination with specific tumour antigens [215]. 

In addition to manipulating their own phenotype to evade immune responses, many types of 

tumours are capable of manipulating the host immune response to induce a tolerant 

immunophenotype. Tolerance to tumours is often mediated by the localised polarisation of Treg 

responses [216] or through the induction of tolerogenic DC (reviewed in [217]). Additionally, some 

tumours can induce chronic stimulation of CTL, resulting in corrupted memory function and 

exhaustion of the anti-tumour response[218]. Decreased expression of MHC I or the associated β2M 

protein is common in many malignancies [219] including melanoma, particularly metastases, and 

colorectal cancer [220,221] and often correlates with a poor prognosis. In vitro studies using co-

culture of melanoma cells with autologous lymphocytes or utilising the B16 melanoma cell line have 

confirmed that decreased expression of MHC I is associated with poor in vitro induction of CTL 

responses [220,222]. Another common mechanism for immune escape is the production of 

immunosuppressive cytokines, such as interleukin 10 and TGFβ. IL-10 can modulate the Th1 and CTL 

driven cellular anti-tumour response and protect tumours against apoptosis [223,224,225]. The role 

of TGFβ in tumorigenesis is complex; many types of immune cells can secrete TGFβ, which normally 

functions to regulate their own proliferation [226]. Additionally, as the cytokine can prevent growth 

of tumour cells, even at very low concentrations [227], it is thought to play a role in tumour 

prevention. However, some tumour types can become resistant to the effects of TGFβ activity 

[228,229] or can produce the cytokine to prevent proliferation and activity of immune cells in the 

local area. Additionally, resistance to TGFβ is often indicative of a more invasive and metastatic 

tumour phenotype [186,228,229].  

1.4.2 Anti-tumour immune responses 

Anti-tumour responses broadly progress in a sequence of events involving all of the components of 

the mammalian immune system. Initially tumours are infiltrated by antigen presenting cells, 

including macrophages and DC, which sample and process tumour associated antigens (TAA). The 

majority of these cells are immature DC [230] which then migrate to tumour-draining lymph nodes 

and activate TAA specific cellular responses, particularly those of TH1 lymphocytes. This results in the 

production of abundant cytokines, including IL-2, TNFα and IFNα and the migration of T lymphocytes 

to the tumour site. 
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Within the tumour site, resident APC can produce cytokines including IL-12 that attract T 

lymphocytes. Increased levels of Th1 cytokines attract tumour- antigen primed CTL, which can 

mediate direct lysis of tumour cells. The presence of high numbers of CD8+ CTL in tumours is 

correlated with better prognosis compared to a higher abundance of CD4+  T lymphocytes, which can 

contain sub-populations of T regulatory (Treg) cells [231]. In tumours with absent, low or aberrant 

MHC I expression, NK cells can mediate anti-tumour cytotoxic responses. Cytokines including IL-2, IL-

12 and IFNγ can induce tumour infiltration by NK cells and augment their cytotoxicity. NK cells can 

also interact with DC to increase cytokine production and promote cross-presentation of TAA to 

drive anti-tumour responses.  

Development of ADCC responses is also important in the immune response against cancers. The 

increased response from CD4+ T lymphocytes can also induce the production of tumour-specific 

antibody by B lymphocytes. This can induce direct anti-tumour ADCC responses from NK cells, 

macrophages and neutrophils.  ADCC is the basis of some new anticancer therapeutics, which are 

antibodies targeted at epitopes common to cancer cells. These include Herceptin, which targets the 

oncogene HER2 [232] that is expressed highly in some breast cancers and adenocarcinomas [233] 

and can induce ADCC responses from NK cells [160]. Rituximab, a similar ADCC drug used for the 

treatment of leukaemia and lymphoma by targeting the CD20 protein [234], also induces NK cell 

responses [161]. 

The development of an anti-tumour response can produce at least five possible outcomes: tumour 

tolerance, immunoselection, tumour progression, stable disease or tumour regression. Tolerance to 

tumours is often mediated by the polarisation of Treg and dendritic cell responses [216,235]. This 

can occur rapidly and early in an anti-tumour response and can be a powerful suppressor of 

cytotoxic anti-tumour responses [236]. Immunoselection of tumours results in the generation of a 

more evasive phenotype, often through the downregulation of MHC I expression or production of 

immunosuppressive cytokines. Both of these outcomes usually lead to tumour progression, 

characterised by metastasis and growth, and a worse disease prognosis.  If the immune system can 

successfully respond against a tumour, the result would either be stable disease or tumour 

regression. This outcome could lead to the resolution of the disease before its symptoms occur, or in 

improvement if clinical disease has been identified. 

1.5 The canine transmissible venereal tumour: a contagious cancer 

Cancer is usually an endogenous disease that originates from genetic changes leading to a loss of 

normal cell proliferation. Due to the activity of normal immune responses against cancers and 
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allografts, the emergence of a contagious tumour is extremely rare. Apart from isolated cases of 

tumour transmission between related or immunocompromised individuals, there are only two 

known naturally occurring diseases that are caused by transmissible tumours: DFTD and the Canine 

Transmissible Venereal Tumour (CTVT). 

CTVT is an established disease in the canine populations of many countries, and affects dogs on all 

continuously populated continents. The tumours of this disease are transmitted to wounds on the 

genitals developed during mating or in the nose and mouth following sniffing or licking of the 

infected area. Following infection the tumours can initially grow rapidly in the absence of an immune 

response. There is abundant evidence for the aetiology of this disease, as tumours can be caused 

only through the transmission of live cells, either naturally or by experimental implantation 

[237,238], but not lysates or killed cells [239]. Additionally, all CTVT cells bear gross cytogenetic 

anomalies, which are similar between tumours but different to cells of the host. These include an 

altered number of chromosomes to between 58 – 60, compared to 78 in a normal canine cell, the 

loss of at least one sex chromosome and pronounced nucleoli in most cells [240,241]. Although the 

earliest records of this disease date back approximately 200 years, it is thought to have originated in 

a population of wolves or Asiatic dogs up to 2500 years ago [242]. However, the chromosomal 

alterations of CTVT were found to be very well conserved despite geographical divergence of the 

disease over a long period of time [241]. 

Unlike its aggressive counterpart, DFTD, CTVT does not usually develop into a malignant cancer. 

Although the tumour is initially capable of evading the host immune system, it later becomes 

sensitive to the anti-tumour response and undergoes regression. The immunological factors that 

characterise these two disease phases have been well characterised. During the period of immune 

escape CTVT cells downregulate the expression of β2M and MHC I proteins on the cell surface 

[242,243] and secrete TGFβ [244], which act to suppress both CTL and NK cell anti-tumour responses 

[239,244]. The CTVT cells can also produce factors that can induce apoptosis in monocytes, DC and B 

lymphocytes [245] However, after several months of tumour growth, a sudden signal switch occurs; 

the tumour becomes susceptible to lymphocyte infiltration, leading to abundant production of IL-6 

and an upregulation of MHC I in the tumour cells [243,244]. The cytotoxic activity of infiltrating 

lymphocytes leads to tumour necrosis [246] and rapid regression [237,247]. Following resolution of 

the tumours, protection against the disease is long-lasting and recovered dogs are usually immune 

to rechallenge with CTVT cells [238]. Although most CTVT infections regress, some cases result in 

metastatic disease and fatality. This is rare, reported in less than 5% of cases [247], and appears to 

be more common in oral or nasal disease [248] where metastasis occurs to the tonsils and adjacent 
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lymph nodes, but can also involve the spleen, skin, lungs and liver [249]. In some cases CTVT can 

become disseminated and result in mortality [250]. 

Although CTVT usually regresses spontaneously it is often treated. Surgery, chemotherapy, 

radiotherapy and immunotherapy are all effective for treatment of CTVT. Single agent 

chemotherapy with vincristine sulphate is an effective and preferred option and three infusions 

cures most CTVT cases [251]. Some CTVT tumours, particularly large tumours, those in older animals 

and those with a plasmacytoid cell type, are more resistant to vincristine therapy [252,253] in which 

case agents such as doxorubicin, methotrexate or cyclophosphamide can be used [251,254]. 

Radiotherapy of CTVT usually involves 10 Gy doses, with some tumours responding after a single 

treatment [255].  

Although chemotherapy and radiotherapy are generally effective against CTVT, both treatments are 

associated with stress of the animal and deleterious side-effects. Common symptoms associated 

with the standard chemotherapy treatment include neutropenia, leukocytosis, thrombocytopaenia 

and red cell-related disorders such as haemoglobanemia [251]. Consequently, several studies have 

aimed to develop immunotherapies as less injurious treatment options for CTVT. In the past, 

vaccines attempted to generate immunity against the tumours in healthy dogs using tumour 

homogenate preparations or via passive transfer of antibodies from immune animals [256]. 

However, although some trials were successful the results between studies were highly variable 

[247]. More recently, studies have utilised modern immunotherapy methods, including generation 

of LAK cells [246] and injection of dendritic cell/tumour cell hybrids during early stages of tumour 

infection [257]. Immunisation with hybrid DC induced a significant reduction in maximum tumour 

size and showed no adverse side-effects in the recipients. This treament also generated systemic 

effects including CTL and NK cell cytotoxicity. Additionally, as the therapy in this trial was given as 

fortnightly sub-cutaneous injections it could be less injurious than weekly chemotherapy doses. 

The two examples of naturally occurring contagious tumours have many characteristics in common. 

Both  CTVT and DFTD bear gross karyotypic abnormalities compared to their hosts but have 

persisted as stable cell lines [241,258] and both initially infect without inducing an immune response 

in the host [1,237]. However, there are many fundamental differences between the two contagious 

tumours. Firstly, CTVT rarely becomes malignant and appears to co-exist successfully with its host 

through its pattern of infection and spontaneous regression. In contrast, DFTD is consistently fatal 

and does not generate an immune response. The immunological mechanisms responsible for the 

immune escape of CTVT may provide a good basis for the study of DFTD infection. Additionally, the 
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development of immunotherapies including LAK cells and hybrid vaccines against CTVT may also 

provide direction for the development of an immunological intervention against DFTD. 

1.6 Devil Facial Tumour Disease: the cancer and its host 

1.6.1 The Tasmanian devil 

The Tasmanian devil (Sarcophilus harrisii) is the largest extant marsupial carnivore. It is 

approximately ‘fox terrier-sized’, with a short black or black and white coat, a large head, powerful 

jaws, and a ‘strong, root-like tail’ [259]. Typically, male Tasmanian devils weigh between 7.5 kg and 

13 kg, while females are usually smaller at between 4.5 and 9kg [4]. Since the death of the last 

known thylacine in 1936, the devil has become the top predator in the natural Tasmanian 

ecosystem. They are also scavengers, and play an important role in the removal of carrion from the 

environment. The presence of the Tasmanian devils is considered the major contributing factor to 

the control of harmful feral species, such as foxes and feral cats. The devil belongs to an important 

species with a crucial environmental niche in Tasmania. 

The Tasmanian devil is confined to the island of Tasmania. It does not inhabit any adjacent islands 

[260] except those on which it has been artificially introduced.  Historically, the devil has been a 

widespread native species across the main island of Tasmania, although there have been anecdotal 

reports of population declines in the past [260]. Devils usually inhabit the pastures, woodland and 

costal scrub areas across northern, central, eastern and south-eastern Tasmania [4]. The distribution 

of the species in the south west of Tasmania has not been extensively examined due to its rugged 

topography and inclement conditions. 

Tasmanian devils often travel long distances at night, although males tend to move about more than 

females [260]. Daily movements within devil populations average 9km [4] but anecdotal evidence 

from Tasmanian wildlife biologists suggest that some individuals can travel over 50 kilometers in one 

night [261]. Movement over such large distances is often necessary in search of food. The Tasmanian 

devil is the top predator in the natural food chain of the Tasmanian woodlands [4].Their diet mainly 

consists of carrion and can be highly varied. Post-mortem dissections of devils suggest that they eat 

other mammals and marsupials, fish, birds, roots, berries and grasses [260]. Food is mainly 

consumed as carrion although devils are also capable of hunting their prey [4]. Many devils can feed 

cooperatively on one carcass, but compete with their companions for a share [262]. These 

competitions involve the devils making loud noises and locking jaws in displays of strength, a 

behaviour which often results in wounds from the canine fangs. During most of the year, Tasmanian 
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devils are non-territorial with large home ranges which are often shared by many other devils [260]. 

Studies using radio collars to survey devil movement showed that individual devils interact with 

many others in one night’s movement [263], although not all encounters result in aggression. The 

exception to their non-territorial behaviour is in the mating season, where both male and female 

devils fight competitively, and the courtship behaviour also involves biting [262]. During these 

aggressive encounters bite wounds most frequently occur on the face and head [262] and it is not 

uncommon to see adult devils with extensive facial scarring [4].  

1.6.2 The immune response of the Tasmanian devil 

Several studies have characterised innate and adaptive immune responses in Tasmanian devils. 

Lymphoid tissues, including the thymus, spleen and lymph nodes, are present in all animals, 

including juveniles, and all structures were similar in appearance to those in placental mammals [1]. 

The one notable difference in Tasmanian devil lymphoid tissue compared to other species was a 

large number of plasma cells in the spleen, lymph nodes and bone marrow [1]. Tasmanian devils 

have a normal range of white blood cells [2], which are similar in size and appearance to those of 

other animals. Immunohistochemistry suggests that the immune cells of Tasmanian devils express 

characteristic proteins appropriate to the different immune cell types. The T lymphocytes of devils 

express CD3 and their B lymphocytes express MHC II and CD79b protein [264]. Other antigen 

presenting cells such as monocytes, macrophages and DC also express MHC II protein, and markers 

such as CD11b [265].  

The neutrophils of Tasmanian devils are capable of normal phagocytosis, an anticipated result in the 

immune system of a scavenging animal [2]. Their lymphocytes proliferate when stimulated in vitro 

with common mitogens, and there is no significant variation in this response with sex, age or 

between DFTD diseased and healthy animals [2]. Tasmanian devils are capable of mounting strong 

humoral responses, as demonstrated through immunisation with horse red blood cells [1]. These 

results provide evidence for competent innate and adaptive immune responses in Tasmanian devils. 

1.6.3 Devil Facial Tumour Disease 

The biting behaviour of the Tasmanian devil during mating, the co-operative sharing of food and the 

extended daily range of movement in shared territories would contribute to the spread of Devil 

Facial Tumour Disease (DFTD), a contagious cancer which was first identified in 1996 [4,266]. Its 

spread has caused vast decreases in species numbers and has brought some populations close to 

local extinction [267]. DFTD is invariably fatal to affected individuals [268], and wild animals show no 
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immune response against the disease [1]. The disease is characterised by ‘disfiguring and 

debilitating’ tumours in and around the mouth and on the face, head and neck [269]. The cells of the 

tumours are poorly differentiated [269], and distinctively round or spindle-shaped with large nuclei. 

The cells may be collected together in follicles or nests surrounded by sheaths of connective tissue 

[269].  There is abundant evidence to suggest that DFTD is a transmissible neoplasm, transferred 

between Tasmanian devils as an ‘allograft’ [266,270]. Therefore, rather than the involvement of a 

virus or microorganism, the tumour cells themselves are the aetiological agent of the disease. The 

most likely route of DFTD transmission is transfer of live tumour cells through biting [266], either 

during fighting or other means such as acquisition of viable cells into wounds during co-operative 

feeding or cannibalism of dead diseased devils [262]. 

A number of genetic, cytogenetic and molecular studies have indicated that the cells of the disease 

are clonal [266,270,271] and the original tumour would have arisen in a female Tasmanian devil in 

the early 1990s [272]. The first identified cases of DFTD were recorded in photos of devils taken by a 

wildlife photographer in 1996 at Mount William National Park in north-eastern Tasmania [4]. Ten 

years later, the disease was confirmed in devils from 41 separate sites covering over 51% of 

mainland Tasmania [4]. DFTD has since spread to many previously disease-free sites, and continues 

to encroach on uninfected populations. Currently, the only area that may be confidently labelled 

disease-free is the far north west of the state. Immunohistochemistry studies initially identified 

DFTD as an undifferentiated neoplasm of neuroendocrine origin [273]. DFTD cells stain strongly for 

the marker periaxin [274] and express many genes associated with the myelination pathway, 

suggesting that DFTD could have arisen from a Schwann cell of the peripheral nervous system [271]. 

The proportion of adult devils found to be infected in any one site by trapping surveys has reached 

up to 83% [4]. In the area where the disease first appeared, mean spotlighting sightings have 

decreased by 80% in the 10 years following disease arrival [4]. The most recent analysis of 

Tasmanian devil numbers using spotlighting data suggest a state-wide population decline of 80% 

since the disease emerged [261]. Epidemiological estimates published in 2007 suggested that the 

species will become extinct in the wild within 25 years [268]. However, it is possible that the rate of 

decline has increased over the subsequent years as the disease continues to infect new populations. 

There is therefore an urgent need to develop and implement a conservation strategy to prevent the 

extinction of the Tasmanian devil in the wild. 

The original analysis of DFTD pathology was performed by Loh and colleagues [269]. The majority of 

DFTD tumours appear as large, solid, often multicentric tissue masses inside and outside the mouth, 

on the face and neck regions of infected devils. Ulceration and necrosis are common features of 
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large DFTD tumours. The tumours are highly invasive; metastasis occurs in at least 65 percent of 

cases, and commonly affects organs such as the lung, liver, kidneys and regional lymph nodes. These 

pathological characteristics of DFTD are implicated as factors in its ability to cause mortality in 

infected animals and also its capacity for infection. The frequent ulceration of DFTD tumours [269], 

which results in large areas of exudative surface, can increase the opportunity for secondary 

infection or loss of protein and can increase the friability of the underlying tumour. The rapid growth 

of the tumour and high rate of metastasis also contribute to DFTD-associated mortality. Other 

theories for the pathogenesis of DFTD suggest that the growth of tumours in and around the mouth 

may prevent feeding or interfere with senses used in the acquisition of food [275]. The collective 

evidence for the pathogenesis and epidemiology of DFTD suggests that it is a debilitating and 

dangerous disease with the capacity to irreversibly affect the Tasmanian devil population. 

1.6.4 Theories for transmission of DFTD 

Observations that wild Tasmanian devils infected with DFTD inevitably succumb to the tumour 

within a short period of time suggest that there is no host immune response developed against the 

disease [1]. Histological data from DFTD tumour biopsy samples supports this assertion, with no 

evidence for lymphocyte infiltration in the majority of tumour samples [273]. Since Tasmanian devils 

are otherwise prone to developing tumours [259], one explanation for this lack of immune response 

is generalised immunodeficiency resulting in a failure to mount functional anti-tumour responses. 

However, as previously discussed, studies examining the immune system of the Tasmanian devil 

have shown that the species possesses a range of functional responses. One deficit in the 

information from previous studies on the Tasmanian devil’s immune system is an analysis of specific 

anti-tumour responses. Importantly, the capacity for lymphocyte cytotoxicity against tumours has 

not been assessed. However, given the current evidence for a competent immune system it appears 

unlikely that immunodeficiency is the basis of DFTD transmission. 

There is abundant historical evidence for previous population declines in Tasmanian devils following 

the geographical isolation to the island of Tasmania [276]. As low population numbers can lead to 

inbreeding, and other marsupial species have been found to show decreased genetic diversity [277], 

this was initially investigated as a factor in the transmission of DFTD. Genetic studies analysing 

nuclear microsatelite markers indicated a limited general genetic diversity within the Tasmanian 

devil population [278]. The Tasmanian devil MHC I and II genes, which are critical for responses 

against allografts and tumours, were sequenced following construction of a spleen cDNA library 

[279]. Analysis of Tasmanian devil MHC I and II genes by single-strand conformational polymorphism 

PCR showed a limited genetic diversity at these loci throughout the eastern Tasmanian devil 
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population [270]. Additionally, poor responses were formed in functional studies involving in vitro 

mixed lymphocyte reactions (MLR) between unrelated devils [1,270]. From 2006 to 2011 this was 

generally accepted, and the laboratories leading these genetic studies were optimistic that 

genetically resistant animals would be identified within the wild population [280,281]. 

However, despite the initial evidence for a genetic basis of DFTD transmission, recent studies of 

disease dynamics and the Tasmanian devil immune response has superseded this theory. Analysis of 

mitochondrial DNA suggested that only a limited loss of genetic diversity has occurred over an 

extended time period [282]. A study examining the effect of MHC allele variation in wild populations 

on the transmission of DFTD found no effect [283]. Another trial documented the successful 

rejection of allogeneic skin grafts, even among devils that were thought to have identical MHC I 

genes [3]. This provided functional evidence to dispute the role of low genetic diversity in DFTD. 

Additionally, the site located on the disease front, at which a previous study noted a reduced 

severity of DFTD infection attributed to increased genetic diversity [281], has recently undergone a 

change in disease dynamics and has suffered a severe population decline similar to the other areas 

included in the report [284]. This collection of data suggests that a lack of genetic diversity is not 

solely responsible for the transmission of DFTD and that other factors must be involved. 

If immunodeficiency or genetic paucity cannot account for the transmission of DFTD, tumour 

associated factors are most likely involved. Since DFTD arose from an immune privileged tissue from 

the nervous system [271] it is not surprising that the immune response against the tumour is limited. 

Several studies have found evidence for the alteration of molecules associated with tumorigenesis 

and the production of factors capable of modulating the immune response. Genetic mapping 

suggests several alleles that are known tumour suppressor or oncogenes in other species are located 

in an area at which gross chromosomal rearrangement occurred in DFTD [272]. As previously 

discussed, production of anti-inflammatory cytokines is a common adaptation in tumour cells. 

Immunohistochemistry studies suggest that the majority of DFTD tumours produce IL-10 and that 

many produce TGFβ [265]. Interestingly, the number of DFTD tumours positive for TGFβ appeared to 

increase over time, and may represent another tumour adaptation for increased transmission and 

immune escape [265]. 

Downregulation of MHC I protein also appears to be an important adaptation to allow DFTD to 

evade the host immune response. Recent studies in two research groups have shown that DFTD cells 

fail to express this protein on the cell surface. A potential mechanism to account for this is the 

decreased production of essential components in the MHC I antigen processing pathway. DFTD cells 

express low levels of TAP1 and PSMB8 mRNA compared to normal DFTD tissues [265]. This would 
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result in limited transport of MHC I protein to its appropriate cellular location and therefore 

decreased expression and function of the MHC I antigen presentation pathway in DFTD cells, 

compared to normal Tasmanian devil cells such as fibroblasts [265]. The absence of surface MHC I 

expression on DFTD cells was recently confirmed using a combination of molecular and 

immunohistochemical techniques [285]. A downregulation of MHC I expression would render the 

DFTD cells impervious to CTL activity and provide an important mechanism of immune escape. 

The mechanisms of immune escape identified in DFTD bear a resemblance to those utilised by the 

other natural contagious tumour, CTVT. There are many consistencies between the two diseases, 

with the fundamental difference being the change in immune response that occurs in CTVT [286]. 

Similar to CTVT, the capacity for DFTD cells to produce MHC I is not irreparably impaired [285]. 

Surface expression of the MHC I protein can be restored by treatment with cytokine rich 

supernatants prepared from Con A stimulation of Tasmanian devil lymphocytes, which are likely to 

contain high levels of IFNγ [285]. It is therefore possible that immunological mechanisms targeted at 

modulating tumour MHC I expression, or those used to overcome infection or reduce disease burden 

in CTVT could direct strategies for immunological intervention against DFTD.  

1.7 Immunological intervention against cancers 

The persistence of tumours and cancers is less likely to occur in the presence of a fully competent 

immune response. As previously discussed, cancers must either escape immune surveillance, induce 

local immune suppression or grow rapidly enough to overwhelm the immune response. Activating 

the immune system to target established cancers is therefore an attractive therapeutic strategy, and 

this goal has been pursued since the 1970s. Two major areas of interest for immunological 

intervention against cancer are vaccines and immunotherapies. Interestingly, these two areas often 

overlap, particularly regarding the use of ‘cellular vaccines’ to treat cancer or the use of cytokines or 

adjuvants in immunotherapy. This literature review will broadly define vaccines as ‘therapeutics 

containing antigens derived from tumour cells’ and immunotherapies as ‘infusions containing 

autologous cells or recombinant cytokines’.  The approaches used to achieve immune activation 

against established tumours, their advantages, limitations and potential for adaptation to treat and 

prevention DFTD will be discussed. 

1.7.1 Cancer Vaccines 

Vaccine development has been the focus of extensive research for approximately 200 years and has 

resulted in the production of immunisations against many widespread diseases. However, the 
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development of vaccines against cancers must overcome unique challenges. Although the majority 

of successful vaccines against other diseases are prophylactic, cancer vaccines are mainly 

therapeutic, and must induce responses against established disease [287]. Additionally, tumours 

often show significant variation and heterogeneity in the expression of antigens, a characteristic 

which makes them poor targets for specific vaccines. Cancer vaccines must also activate T 

lymphocyte-mediated responses such as cytotoxicity and cytokine production in preference to 

humoral responses, whereas many current vaccines rely on the generation of antibody. 

Consequently, many cancer vaccines and immunotherapies target different pathways, including 

antigen presentation and NK cells. Another important problem is the activation of autoimmunity, 

which has occurred as a side-effect in several experimental, but otherwise promising, clinical cancer 

vaccine trials [288,289,290]. Therefore, careful selection of vaccine components is crucial for the 

development of safe and effective cancer vaccines. 

The most important factors in a vaccine are an immunogenic target antigen and an effective 

adjuvant (reviewed in [287,291]). An appropriate choice of vaccine preparation is crucial to success. 

Recently, a number of specific antigens associated with particular cancers have been identified as 

targets for vaccines. Breast cancer is an example for which many candidate antigens have been 

analysed. Proteins such as Her2, MAGE-3 (melanoma associated antigen 3), mammaglobulin, and 

CEA (carcinoembrionic antigen) have all been used as vaccine targets in animal models and have 

induced immune responses without activating autoimmunity. Some antigens, which are common to 

several types of tumours, provide potential targets for prophylactic vaccines. These include NY-ESO1, 

heat shock proteins (HSP) and vimentin [292,293,294,295]. Cancer vaccines are also being 

investigated for use in animals. An example is immunisation against canine melanoma using the 

surface antigen GD3, which can induce tumour site inflammation, cellular responses and antibody 

development in normal dogs [296]. Due to the limited number of molecular tools available to assess 

the presence of DFTD-specific antigens, these conserved tumour markers may provide candidates 

for targeting DFTD tumours. Vimentin and HSP are of particular interest, as proteomics studies have 

identified Tasmanian devil antibodies to vimentin following DFTD immunisation [297] and expression 

of HSP can be induced with factors such as heat, ultrasound and irradiation (reviewed in [204]). 

Identification of specific antigens on DFTD cells is an important area for ongoing research. However, 

as no candidate antigens have been discovered to date, development of vaccines for DFTD will be 

restricted to the use of preparations containing whole tumour cells in the near future. Many 

methods have been evaluated to kill pathogens for vaccines, including irradiation, sonication and 

temperature-induced lysis. As vaccines against DFTD must aim to induce cellular responses in 
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preference to antibody, preparations containing live attenuated cells are likely to be most effective 

(reviewed in [298,299]). However, since use of live DFTD cells in vaccines would carry an 

unacceptable risk of disease transmission, only killed cell preparations could be used. Immunisation 

with cellular extracts, such as DNA, are also possible [298,300], although they are generally not as 

effective in the induction of cellular immunity (reviewed in [301]). Irradiation may be an appropriate 

method of attenuation for DFTD cells, as the ultrastructure of the cells would not be compromised, 

and immune responses could be targeted to surface antigens. Additionally, since irradiation can 

increase the expression of MHC molecules in tumour cells [302,303], this method of attenuation 

could potentially overcome one of the major immune escape mechanisms associated with DFTD 

infection. Alternatively, the use of sonication or temperature induced lysis could expose intracellular 

proteins which are otherwise expressed only in small amounts, or could increase the expression of 

HSP and other immunogenic chaperonin proteins [304]. Use of DNA or protein extracts from DFTD 

cells would be more likely to induce antibody formation than cellular responses, unless combined 

with specific adjuvants to increase cross presentation. 

Many recent vaccines have incorporated cell hybrids designed to increase immune exposure to 

tumour antigens. Hybrids are usually created by in vitro fusion of tumour cells with cultured DC. This 

strategy aims to exploit the natural capacity of DC to activate both CD4+ and CD8+ T lymphocytes 

through their ability to express tumour antigens on both MHC I and II and provide costimulation 

[305]. DC hybrid vaccines have been shown to increase cytotoxic responses against tumour cells 

[306]. Additionally, vaccine potency can be enhanced through their ability to secrete cytokines, such 

as IL-12 and IFNγ [306,307]. In particular, vaccines containing patient-derived DC and tumour cell 

hybrids have yielded promising results in early trials. The use of patient-derived dendritic cells 

minimises MHC disparity between vaccine and recipient [306]. Thus, the presentation of antigens on 

homologous MHC I molecules is recognised efficiently leading to more effective vaccines. There is 

also no risk of graft-versus-host responses occurring in recipients. However, DC hybrid-based 

vaccines may be less effective in patients with advanced disease. Long established tumours can 

often bias the immune response to produce a tolerogenic environment in which the cancer is not 

targeted [308]. Consequently, in this situation the activity of DC would be affected and the efficacy 

of the vaccine would be decreased.  

The choice of an appropriate adjuvant is imperative to the success of a cancer vaccine. TLR agonists, 

such as CpG DNA and Poly I:C, are increasingly being used as adjuvants for cancer vaccines because 

of their potential to induce specific responses via activation of cells in the innate immune system 

[52,56,143,309]. Many cancer vaccines combine TLR agonists with other immunomodulators, such 



 

34 
 

as Montanide to increase the effect of the individual adjuvants [292,310,311]. When used with 

specific antigens, this combination of adjuvants in cancer vaccines can induce antibody development 

and long-lasting TH1 and CD8+ T lymphocyte responses [292,311]. The use of CpG DNA useful as an 

adjuvant can also activate many components of the immune response, including B lymphocytes, NK 

cells and DC [53,55,56,57,139]. Another TLR agonist that is commonly used as an adjuvant is Poly I:C, 

which can induce responses from NK cells and DC [47,93,312]. Other adjuvants that target specific 

pathways, such as Flt 3 ligand which promotes DC differentiation and activation [313,314,315,316] 

or immune stimulating complexes (ISCOMs) like ISCOMATRIX® which stimulates cross presentation 

of protein antigens [317] could also be good candidates for use in adjuvants in immunisations 

containing DFTD cell protein. 

1.7.2 Immunotherapy 

For many decades, immunotherapy of cancer has been an expanding area of research. Many types 

of immunotherapy have been trialled in human and animal medicine, including infusion or injection 

of cytokines [318]. Unfortunately, as the Tasmanian devil is a little-studied species, with few tools 

available to characterise and manipulate its cells, some of these techniques are not applicable for 

treatment of DFTD. Therefore, this review will concentrate on the use of intravenous cytokines and 

cytokine-induced cells for immunotherapy against cancers. 

As previously discussed, inflammatory cytokines play a crucial role in the immune response against 

cancer. The use of cytokines as immunotherapeutics against cancers has therefore been extensively 

investigated. Many cytokines have been trialled successfully in animal models and adapted for 

testing in humans, including interleukins (IL)-2, IL-7, IL-12, IL-15, IL-21 

[319,320,321,322,323,324,325,326] and interferons (IFN)α and IFNγ [327,328]. Although some trials 

have shown promising results, clinical efficacy has been variable with the majority of these 

cytokines, and only two are currently licensed for use in immunotherapy: IFNα and IL-2 [318]. 

Immunotherapy with IFNα has been particularly explored in the treatment of certain cancers, 

including renal cell carcinoma (RCC) and melanoma [327,329], but has also been trialled in the 

treatment of haematological malignancies and Kaposi’s sarcoma [328]. Although IFNα is approved by 

the American FDA for treatment of hepatocellular carcinoma (HCC), there is some conflict within the 

literature in relation to the ideal route of administration [330,331,332]. The efficacy of IFNα 

treatment can often be enhanced when administered in combination with specific antibodies [333] 

or cytotoxic drugs [332], or modified using PEGylation [331]. IFNα is also commonly used for 

immunotherapy of melanoma, in which it has been shown to prolong survival time and decrease the 
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probability of relapse [327], although the effect of IFNα treatment on long term survival has been 

debated [334]. A recent meta-analysis concluded that IFNα therapy is advantageous in the 

treatment of melanoma, and recommended that the practice be continued [335].  

Because of its effects on T lymphocyte proliferation and activation, IL-2 is also commonly used for 

immunotherapy. Like IFNα, infusion with IL-2 is also common in the treatment of RCC and 

melanoma, and the two are sometimes used in conjunction [330]. However, infusion of IL-2 alone 

can be effective, and has been trialled in the treatment of melanoma, RCC and malignant pleural 

effusion [320,336]. In treatment of melanoma, high dose IL-2 can induce clinical responses in up to 

25 percent of cases (reviewed in [318,328]) and can lead to the development of durable, long lasting 

responses in melanoma patients [337]. Other strategies used to manipulate the immunogenicity of 

melanoma include the administration of IFNγ in order to upregulate MHC I expression in the tumour 

cells [338] which, in a small proportion of patients, can lead to complete regression [338]. Apart 

from this effect treatment with IFNγ, which otherwise plays such an important role in the immune 

response, has not yielded promising clinical results [328].  

Immunotherapy can involve transfer of living immune cells. Adoptive cell transfer is based on the in 

vitro selection and expansion of tumour-reactive autologous lymphocytes. Several methods have 

been investigated for improved efficacy in adoptive cell transfer. Many protocols involve the 

injection of autologous leukocytes, following activation or priming in vitro. An ideal population of 

cells for use in adoptive transfer is tumour infiltrating lymphocytes (TIL), as they are likely to be 

primed against tumour-specific antigens. Infiltrating lymphocytes are isolated from tumour biopsies 

or resections using density gradient centrifugation, flow cytometry and properties such as 

adherence, then expanded in vitro using stimuli such as cytokines, native tumour cell antigens, 

irradiated allogenic cells or activated antibodies [339,340,341,342]. The technique used for in vitro 

expansion of TIL is crucial for the biological activity of the cells, as excessive stimulation can exhaust 

the cells, leading to reduced clinical efficacy [342]. Some human clinical trials using TIL have shown 

promising clinical results, with clinical response rates of 50 – 70 percent of patients [339,340,341]. 

Some protocols use lymphokine-activated killer (LAK) cells, T lymphocytes or NK cells which are 

stimulated using IL-2 [343]. However, although LAK cell killing can be efficient in vitro and has 

successfully induced responses in animal studies [344], its use as an immunotherapy has yielded 

inconsistent results [345]. Use of LAK cells is particularly hampered by a poor capacity to divide in 

vitro [346] and many immunotherapy protocols combine LAK cells and IL-2 infusion, with higher 

efficacy [345,347]. However, as the capacity to rapidly expand the activated cells in vitro is important 

for a successful immunotherapy, other techniques for lymphocyte activation have been sought. 
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More recently, studies have activated naive immune cells for therapy using a combination of 

cytokine treatment and specific antibodies capable of activating the T cell receptor, via activation of 

CD3. The technique usually involves initial culture with IFNγ, then a combination of an anti-CD3 

activating antibody and IL-2 for further activation and expansion [348]. This produces an effector cell 

type known as cytokine-induced killer (CIK) cells, which exhibit potent cytotoxic capacity and show a 

high rate of proliferation [348,349,350,351]. Despite the fact that CIK cells are usually generated 

from heterogeneous lymphocyte populations, the subset of cells which shows the highest 

proliferation and effector characteristics are CD3+/CD56+, a phenotype usually associated with NKT 

cells [351,352]. CIK cells often exhibit more potent activity than LAK cells in vitro and in animal 

models [346,350,351] and have shown promising results in human clinical trials [353,354,355], 

including the reduction of tumour size and levels of tumour associated markers in the blood, and the 

capacity to induce ongoing increases in numbers of cytotoxic cells in the peripheral blood of patients 

[353].  

Some immunotherapy strategies use antibodies to target molecules and ligands that are involved in 

the activation of the anti-tumour responses, particularly those of T lymphocytes. Several antibody-

based therapies are now in use to treat a variety of cancers. Many antibody-based agents target 

specific molecules that block the immune response, resulting in the abolition of tolerance and 

increasing the anti-tumour immune response. Two examples are antibodies against either CTLA4 or 

PD-1. Such molecules deliver inhibitory signals to T lymphocytes and regulate their activity 

[356,357]. 

The use of antibodies as agonists to cause CTLA-4 blockade has recently been extensively tested in 

patients with metastatic melanoma, but may also be used to treat a variety of other cancers, 

including prostate, breast, lung, ovarian and renal-cell cancer [356,358,359]. Many trials have 

documented beneficial and durable effects of CTLA-4 antagonists, although like most 

immunotherapies the response rates among patients were generally low [360,361,362]. Overall, 

treatment with CTLA-4 increased patient survival in many trials [363]. One unusual characteristic of 

the response to CTLA-4 blockade is that disease stabilisation or regression often occurs after a delay 

in initial effect [356]. Treatment with CTLA-4 antagonists is often performed in conjunction with 

administration of cancer peptide vaccines [363,364,365], which aims to utilise the enhanced 

inflammatory immune response to increase the effectiveness of the vaccines. However, despite the 

potential benefits of CTLA-4 therapy, its use has the capacity to cause a spectrum of autoimmune 

side effects [366,367]. These commonly include colitis and associated gastrointestinal symptoms, 

dermatitis, hepatitis and endocrine disturbances [368,369]. Consequently, future trials using CTLA-4 
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agonists will need to customise treatment protocols to reduce the severity of side effects as well as 

maximising the therapeutic benefits of the agents. 

The PD-1 (Programmed death 1) receptor is also found on T lymphocytes and interacts with ligands 

(namely PD-L1 and PD-L2) on non-hematopoietic cells.  The PD-1 molecule delivers suppressive 

signals to T lymphocytes at normal tissues, providing an important mechanism for the control of 

inflammatory responses and normal tolerance [370]. Consequently, if its receptors are expressed on 

tumour cells they can likewise induce tolerance to cancers. By using antibodies to bind PD-1 or its 

ligands, the pathway, and the inhibitory signal to responding T lymphocytes, is disrupted [357]. 

Antibodies against PD-1 or its ligands can increase T-cell responses in vitro and induce anti-tumour 

activity in clinical trials [357,371]. One particularly promising trial showed objective responses in 18-

28% of patients with lung cancer, melanoma or renal-cell cancer [357]. However, like the use of 

CTLA-4 antibody, agonists against PD-1 and its ligands can induce side effects linked to autoimmunity 

[357]. Future research in this area will concentrate on characterising, monitoring and reducing the 

side effects associated with these therapies. 

1.7.3 Advantages and limitations of cancer vaccines and immunotherapy 

A major advantage of immunotherapy over traditional cancer treatments such as radiotherapy or 

chemotherapy is the specificity of the resulting response. This is particularly evident when specific 

antigens are used for a cancer type, but may be less so if immunisation is limited to whole cell 

preparations [287]. Specific responses also have the advantage of being effective in situations such 

as ‘minimal residual disease’, whereas other types of therapy are not as effective when the cancers 

exist only at low levels. However, although many of the strategies for cancer immunisation and 

immunotherapy are theoretically sound, their practical application has often yielded poor results. 

Due to the evasive nature of cancer as a disease, the heterogeneity within cancer types and the 

variety of immune-evasion mechanisms available for cancer cells, there are many problems that 

must be overcome to consistently induce an immune response. Although some cancer therapeutics, 

particularly cellular immunotherapies, have shown promising success in both human and animal 

models [257,339,340,341], many regimes have shown conflicting results, and few immunotherapies 

are currently licensed for human use [328]. There may be several factors which have contributed to 

the poor outcome of many cancer vaccine and immunotherapy trials, most notably the subset of 

patients recruited for therapy. The vast majority of trials are performed in patients with advanced 

metastatic cancer, which may limit the capacity for effective therapy [330].  Additional complications 

associated with cancer immunotherapy and vaccinations include toxicity, which is particularly 

prevalent in cytokine immunotherapy [372,373], and the activation of autoimmune responses 
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following treatment. This side effect has been observed in both animal and human models, where it 

can affect up to 26 percent of patients [288,372].  

1.7.4 Application of immunotherapy for treatment of DFTD 

Although it would be preferable to design strategies for prevention of DFTD infection, immunological 

intervention would not be limited solely to naive animals. Indeed, given the lack of MHC I protein 

expression on DFTD cells, the capacity for development of functional anti-tumour responses in naive 

devils may be limited. Treatment of pre-existing tumours in diseased devils could be a more 

successful strategy. Therefore, the use of cancer vaccines and immunotherapy in DFTD may be an 

important intervention to preserve the species in the wild. This section will discuss how the 

vaccination and immunotherapy techniques above could be applied in the treatment of DFTD. 

One strategy that could be used to develop preventative vaccines, as well as therapeutic vaccines, is 

the identification of specific antigens expressed on the surface of DFTD tumour cells. As no specific 

antigens have been identified, immunisation against DFTD is currently limited to whole tumour cells 

or purified cellular components. Although these preparations would contain a variety of tumour 

associated antigens, surface proteins may only be present in small amounts. This may decrease the 

specificity of the vaccines [287]. Less specific vaccines could also carry a higher risk of side effects, 

such as autoimmunity. DFTD arose from a Tasmanian devil Schwann cell, and express many similar 

antigens to this cell type [274]. Several types of immunotherapy can also result in autoimmunity, as 

a side-effect of the treatment [288,372]. Autoimmunity against Schwann cells is well known to be a 

major mechanism in many diseases, including multiple sclerosis and optic neuritis [374]. Given the 

similarity between DFTD cells and Schwann cells, development of autoimmunity is likely to have 

severe consequences for an affected Tasmanian devil. Consequently, vaccine and immunotherapy 

strategies should be selected carefully to minimise the risk of this side effect.  

Immunotherapy is likely to be a more effective intervention against DFTD than chemotherapy. 

Previous trials performed within our laboratory [375] and by the Tasmanian Department of Primary 

Industries, Parks, Wildlife and the Environment (Stephen Pyecroft, personal communication) have 

shown that chemotherapy is not effective in the treatment of DFTD. Additional advantages of a 

successful immunological intervention would be the specificity of the resulting response against the 

tumours, and the potential for ongoing immunity. Also, there are unique traits of this disease that 

could make immunological intervention even more likely to succeed. Firstly, the clonal nature of the 

disease may mean that, if an intervention can induce a response against one tumour, it should be 

able to target the cancer in all animals. This is not observed in human cancer patients, as the genetic 
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and physiological variation makes the tumours unique to the individual. Secondly, primary DFTD 

tumours usually originate at easily accessible sites. The immune evasion mechanisms employed by 

the tumours may hamper the development of an immunological intervention. Consequently, 

immunotherapy techniques should be specifically designed to circumvent these issues. 

The immune evasion strategies utilised by DFTD are similar to those of CTVT, a disease in which 

several immunotherapy options have been explored. One particular study on CTVT involved the use 

of cellular vaccines containing hybrids between canine dendritic cells and the tumour cells [257]. As 

previously described, the rationale of this strategy is to exploit the ability of dendritic cells to present 

antigens bound to MHC I directly to CTL. The use of these vaccines in dogs significantly inhibited 

tumour progression and accelerated the rate of regression compared to untreated dogs, in which 

the tumours underwent natural regression. Histology of the CTVT tumours in treated dogs showed 

that lymphocyte infiltration occurred earlier in the tumours of vaccinated dogs. The study concluded 

that the vaccine successfully amplified the adaptive anti-tumour immune responses, and that NK cell 

cytotoxicity also played an important role. At the time of inoculation, the CTVT tumours would have 

been in an infectious state similar to the cells in DFTD tumours. Consequently, DC hybrid vaccines 

may be an appropriate strategy to induce immune responses. If a similar vaccine could achieve these 

outcomes in DFTD, it may be possible to induce tumour regression. However, there is currently no 

technique defined for effective culture of Tasmanian devil DC. Refinement of techniques for the 

culture of Tasmanian devil DFTD cells will be an important area of future research, with the aim to 

produce DC fusion vaccines for use against DFTD in the future. 

The mechanisms that induce CTVT to spontaneously regress could also be appropriate situations to 

simulate in order to target an immune response to DFTD. One important component of the response 

against CTVT tumours is infiltration of LAK cells into the tumours [244]. LAK cells have been used for 

immunotherapy in other animals, such as mice, in which their anti-tumour effects included 

decreased establishment of metastases [344] and reduction in existing secondary tumours [345]. In 

some studies, LAK therapy has been combined with chemotherapy [376,377,378]. LAK cells are 

known to play an important role in the immune response against CTVT. They alter the cytokine 

environment of the tumour, leading to inflammation, and can mediate cytotoxic responses [244]. 

Additionally, the presence of LAK cells coincides with the upregulation of MHC I in the tumour, which 

results in a T lymphocyte response [286]. These would all be desirable effects in the case of DFTD. 

Original experiments generated LAK cells using the cytokine-rich supernatants from lymphocytes 

stimulated using mitogens such as Concanavalin (Con) A [344,379], a strategy that may be useful in 

DFTD since large quantities of purified cytokines are not readily available. Another type of cytotoxic 
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cells, CIK cells, may also be useful for immunotherapy. One useful characteristic of CIK cells is their 

capacity for proliferation in vitro, as well as cytotoxicity [352]. The preparation of CIK cells normally 

involves activating naive leukocytes with anti-CD3 antibody, followed by stimulation with IL-2 and 

IFNγ. Although no specific antibody is available against CD3 in Tasmanian devils, the functional 

pathway, and production of the cytokines necessary for CIK cell production, may be activated using 

other ligands, such as Con A [380]. Therefore, generation of CIK cells in Tasmanian devils may be 

possible, and may provide a basis for immunotherapy against DFTD. Consequently, the use of 

activated killer cells could be another immunotherapy strategy for the treatment of DFTD.  
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Project Aims 

In other mammals, antitumour immune responses are mainly mediated through the activity of 

cytotoxic cells such as T lymphocytes and NK cells. Other specific responses, such as the 

development and release of cytokines and antibody, can also play an important role. However, 

evidence from an increasing number of studies suggests that components of the innate immune 

system can influence antitumour activity. The overall aim of this project was to characterise the 

immune responses against tumour cells in Tasmanian devils and to identify pathways and 

mechanisms through which the immune system could be induced to target DFTD cells. Thus, this 

project was split into three basic components: analysis of the specific antitumour immune responses 

in Tasmanian devils, characterisation of the specific pathways involved in these antitumour 

responses, and manipulation of the pathways in vivo to target DFTD. Each of these aims formed the 

basis of a results chapter for this thesis. 

The first aim of this thesis was to determine if Tasmanian devils could form antitumour cytotoxicity 

and antibody responses, against foreign cancer cells and DFTD cells. One assumption that is often 

made about DFTD transmission is the complete absence of a host immune response against the 

tumour. However, only one study has provided histological evidence for this immune ignorance 

[269], and none have sought functional evidence for a lack of response. Thus, a secondary aim of this 

chapter was to determine if DFTD diseased Tasmanian devils can form specific antitumour responses 

against DFTD cells. Tasmanian devils are a species particularly prone to developing cancer [259]. If 

Tasmanian devils did fail to produce an immune response against DFTD, one explanation could be a 

generalised immunodeficiency across the species. Therefore, a secondary aim of this chapter was to 

determine if Tasmanian devils could form cytotoxicity responses and antibody against foreign cancer 

cells. If the antitumour pathways were intact in Tasmanian devils, it may be possible to immunise 

against DFTD cells. Consequently, a secondary aim of this chapter was to determine if Tasmanian 

devils could be induced to form antitumour responses against DFTD cells through immunisation with 

killed cell preparations. 

The results of recent experiments suggest that DFTD cells fail to express MHC I protein on the cell 

surface [285]. Induction of antitumour responses against these cells would be very difficult, as the 

obligatory ligand for T lymphocyte cytotoxicity is missing. Therefore, the second aim of this thesis 

was to characterise the antitumour cytotoxicity responses of Tasmanian devils against cancer cells in 

the absence of functional MHC I protein. Although several studies have previously analysed the 

presence of immune cell subsets in Tasmanian devils, Natural Killer (NK) cells, the innate cytotoxic 

cell type that is crucial for responses against MHC I negative cells, has not been characterised. Thus, 
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a secondary aim of this chapter was to identify NK cells in Tasmanian devils. The mechanisms for 

targeting MHC I negative cells could potentially be manipulated to induce responses against DFTD 

cells and tumours. Immunisation with xenogeneic K562 cells, which lack MHC I provided a good 

model to analyse these responses. In other studies assessing responses against xenogeneic cells, 

antibody-dependent cell mediated cytotoxicity (ADCC) has been an important pathway for 

responses. Consequently, a secondary aim of this chapter was to determine if Tasmanian devils can 

form ADCC responses against tumour cells. Cytotoxicity responses can also be activated through 

nonspecific stimulation with factors such as mitogens, cytokines and agonists for specific receptors. 

Therefore, a secondary aim of this chapter was to determine if these stimuli could activate cytotoxic 

responses against DFTD cells. 

The third chapter of this thesis aimed to determine if the mechanisms for activation identified in the 

previous chapters were able to induce immune responses against DFTD in vivo. Strategies such as 

adoptive cell transfer, therapeutic immunisation and cytokine injection were available to treat one 

Tasmanian devil with DFTD. The secondary aims of this chapter were to assess whether each of 

these prospective treatments was effective or viable strategies to treat the DFTD tumours of 

affected Tasmanian devils in captivity. 
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Summary of Aims:  

This project aimed to characterise immune responses against tumour cells in Tasmanian devils and 

to identify pathways and mechanisms through which the immune system could target DFTD cells. 

 Chapter 3: Determine if Tasmanian devils could form antitumour cytotoxicity and antibody 

responses, against foreign cancer cells and DFTD cells. 

– Determine if DFTD diseased Tasmanian devils can form specific antitumour responses 

against DFTD cells. 

– Determine if Tasmanian devils could form cytotoxicity responses and antibody against 

cancer cells. 

– Determine if Tasmanian devils could be induced to form antitumour responses against 

DFTD cells through immunisation with killed cell preparations. 

 Chapter 4: Characterise the antitumour cytotoxicity responses against MHC I negative cells in 

Tasmanian devils. 

– Identify Natural Killer cells in Tasmanian devils. 

– Determine if Tasmanian devils can form ADCC responses against tumour cells. 

– Determine if non-specific stimulation with mitogens, cytokines or agonists for specific 

receptors could activate cytotoxic responses against DFTD cells. 

 Chapter 5: Determine if activation mechanisms identified in the previous chapters of this 

thesis were able to induce immune responses against DFTD in vivo. 

– Assess the in vivo effects of adoptive transfer of mitogen-activated immune cells on 

the immune response against a DFTD tumour. 

– Assess the in vivo effect of therapeutic vaccines containing cytokine treated, MHC I 

expressing, DFTD cell on the immune response against a DFTD tumour. 

– Assess the in vivo effect of cytokine injection on the immune response against a DFTD 

tumour. 
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Chapter 2 - Materials and Methods 

2.1 Laboratory equipment and consumables 

2.1.1 Reagents 

Reagents Supplier Catalogue Number 

Aminopropyltriethoxysilane (APTS) Sigma - Aldrich A3648 

51Chromium solution PerkinElmer NEZ030S001MC 

Concanavalin A (Con A) Sigma - Aldrich C 7275 

Dimethyl Sulfoxide solution (DMSO) Sigma - Aldrich D2650 

Disodium Hydrogen Phosphate Merck 1065855000 

Flt 3 Ligand CSL Not Provided 

Fetal Bovine Serum (FBS) Bovogen SFBS 

Formaldehyde (methanol buffered) Sigma - Aldrich F1635 

Gentamicin Sulfate Pfizer 61022027 

Giemsa solution Fluka/Sigma Aldrich 48900 

Glucose (solid) Sigma - Aldrich D9434 

Histopaque 1077 Sigma - Aldrich 10771 

ISCOMATRIX® adjuvant CSL Not Provided 

Isofluorane (pressurised liquid) Attane™/ Bomac Pty Ltd 
APVMA 
58070/250/1203 

L – Glutamine Sigma - Aldrich 9871901 

α-D-Mannose (solid) Sigma - Aldrich M6020 

Montanide gel 645101 adjuvant Seppic 639101 

Montanide ISA51 VG Seppic 645101 

Phosphate Buffered Saline (PBS) tablets Oxoid BR0014G 

Phytohemagglutanin Sigma - Aldrich L2646 

Polyinosinic:polycytidylic acid (Poly I:C) Sigma - Aldrich P0913 

Potassium Chloride (solid) Calbiochem (EMD Millipore) 529552 

Potassium Dihydrogen Phosphate Sigma - Aldrich P9791 

Propidium Iodide Sigma P4170 
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RPMI 1640 Medium Invitrogen GIBCO 22400 

Sodium Azide (NaN3) Sigma - Aldrich S2002 

Sodium Chloride (solid) Sigma - Aldrich S6191 

Trichostatin A (TSA) Sigma - Aldrich T8552 

Triton X-100 BDH 30632 

Trypan Blue Sigma - Aldrich T6146 

2.1.2 Consumables 

Product Supplier Catalogue Number 

Automatic pipette tips 50 – 1000 µL Eppendorf 02519 

Automatic pipette tips 2 – 200 µL Eppendorf 03439 

Automatic pipette tips 0.1 – 20 µL Eppendorf 02249 

3 – 4 mm Biopsy punch Paramount Surgimed Ltd 5607 

35 mm Cell culture dish Iwaki 4000-010 

25 cm3 cell culture flask Iwaki 3100-025 

75 cm3 cell culture flask Iwaki 3110-075 

10 mL Centrifuge tube Schering Plough LBSCT1203X 

15 mL Centrifuge tube Iwaki 3235-105 

50 mL Centrifuge tube Iwaki 2345-050 

Coverslip Esco 400163 

Cryogenic freezing vials Iwaki 2712-002 

Disposable Pasteur pipette Samco 225 - 15 

Eppendorf tube Quantum Scientific LAC11514 

25 mm 0.8/0.2 Filter Pall Corporation 4187 

Flow cytometry tubes BD Falcon 350028 

10 mL lithium heparin blood storage tubes BD 367 526 

Microscope slide Esco 4951C 

18 G needle Terumo NN-1838R 

21 G needle Terumo NN-2125R 

Nylon wool Poly Sciences inc. 18359 
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2 mL Serum clot activator tubes Greiner bio-one 454 906 

10 mL Syringe Terumo SS+10ES 

5 mL Syringe Livingstone DSL005MLS 

1 mL Syringe Terumo SS-01T 

96 Well round-bottom microplate with lid Iwaki 3870-096 

96 Well flat-bottom microplate with lid Greiner 655180 

6 Well flat-bottomed microplate with lid Iwaki 3810-006 

24 Well flat bottomed microplate with lid Iwaki 3820-024 

2.1.3 Laboratory Equipment 

Product Supplier Model number 

Automatic cell harvester Skatron Combi 11025 

Benchtop centrifuge Sorvall RT 6000D 

Benchtop microcentrifuge Eppendorf 5415D 

Class II biological safety cabinet Gelman Sciences BH – 204 

Electric Pressure Cooker Russel Hobbs RHNHP401 

Flow Cytometer Becton-Dickinson Canto II 

Fluorescent Microscope Olympus BX 50 

Gamma radiation counter Laboratory Technologies Genesys Genii HE 

Haemocytometer Hawksley improved neubauer 

Incubator 35ºC Heraeus BB15 

Incubator 37ºC Binder 142489 

Inverted Microscope Leitz 090-123.012 

Microplate fluorescence detector BIO-RAD 3550 

Microscope Olympus 246046 

Microscope-mounted camera Leica DFC 495 

“Stinger™” Anaesthetic machine Advanced Anaesthesia Specialists 00449 
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2.2 Reagents 

2.2.1 Complete medium (for cell culture) 

RPMI liquid culture medium (GIBCO, New York, USA) was refrigerated before use. Foetal Bovine 

Serum (FBS) (Bovogen Biological, Victoria, Australia) was stored at -20°C, thawed when required. The 

serum was heat inactivated in a water bath at 56°C for 1 hour then aliquoted into 50 mL volumes 

under sterile conditions and stored at -20°C. L-glutamine (Sigma Aldrich, Ayrshire, UK) was stored at 

-20°C then dissolved using heat. Gentamicin sulfate (Pfizer, Western Australia, Australia) was 

refrigerated at 4°C. 

To prepare complete medium, 50 mL from the contents of a 500 mL RPMI 1640 medium bottle was 

removed under sterile conditions and discarded and replaced with 50 mL of heat-inactivated FBS 

(10% V/V). L-glutamine was added for a total of 2 mM (equivalent to 5 mL). Gentamicin was added 

for a total of 100 IU/mL (equivalent to 375 µL). The complete medium was thoroughly mixed and 

refrigerated at 4°C until required, then warmed to room temperature (21°C) for use in cell culture. 

2.2.2 Phosphate buffered saline (PBS) 

2.2.2.1 Cell culture grade PBS 

One PBS tablet (Oxoid Ltd., Hampshire, England) per 100 mL of water was mixed to dissolve using a 

magnetic stirrer. The solution was autoclaved at 121°C for 20 minutes and stored at 4°C until 

required. 

2.2.2.2 Standard PBS 

A stock solution of PBS was prepared by dissolving 160 g of solid sodium chloride (Sigma Aldrich, 

New South Wales, Australia) 4g of potassium chloride (Calbiochem/EMD Millipore, Massachusetts, 

USA), 23 g of disodium hydrogen phosphate (Merck, Massachusetts, USA) and 4 g of potassium 

dihydrogen phosphate (Sigma Aldrich, New South Wales, Australia) in 1 L of water. The pH of the 

solution was adjusted to 7.3 using dropwise additions of concentrated HCl and NaOH as required. 

The stock solution was diluted 1/20 for use. 

2.2.3 FACS buffer 

Foetal Bovine Serum (FBS) (Bovogen Biological, Victoria, Australia) was diluted to 5% V/V in standard 

PBS. The solution was either used immediately for flow cytometry or frozen at -20 °C.  
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2.2.4 FACS fixative 

In a glass bottle, 13 mL of 37% aqueous formaldehyde solution with 10 – 15% methanol (Sigma 

Aldrich, New South Wales, Australia), 10 g of solid glucose (Sigma Aldrich, New South Wales, 

Australia), 1.1 mL of 15% NaN3 (Sigma Aldrich, New South Wales, Australia)  in PBS were combined 

with standard PBS to a total volume of 500 mL. 

2.3 Cell culture 

2.3.1 Cell line characteristics 

2.3.1.1 K562 Cells 

Human K562 cells were originally sourced from the American Type Culture Collection (ATCC). They 

appeared as large and round cells which were unattached in culture. The identity of samples we 

used was verified by positive labelling for Glycophorin A (an erythrocyte marker) and as appropriate 

target cells for NK cell cytotoxicity in 4 hour chromium release assays. 

2.3.1.2 DFTD cells  

DFTD cell lines were provided by A-M. Pearse and K. Swift, from the Tasmanian Department of 

Primary Industries, Parks, Wildlife and Environment (DPIPWE). The cell lines were established from 

primary tumour biopsy samples taken under the approval of the Animal Ethics Committee of 

Tasmania’s Park and Wildlife Services (permit numbers 33/2004–5 and 32/2005–6). DFTD cells were 

attached to the substrate in culture and varied in shape from rounded to long and spindle-like in 

appearance. Three strains of DFTD cells were available for use in the laboratory; however the cell 

line used in the majority of experiments was C5065, a Strain 3 DFTD cultivar. The cultured DFTD cells 

consistently labelled strongly for periaxin when assessed by flow cytometry or 

immunohistochemistry of cytospins or fixed on glass coverslips. 

2.3.2 Cell culture 

All cell cultures, cryopreservations and thawing of cell lines were performed under sterile conditions 

in a type II Biohazard cabinet. As a standard procedure, all sterile solutions (such as culture medium 

and PBS) were warmed to room temperature and aliquoted from larger storage containers for use 

with individual cell lines or in primary cultures. 
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K562 cells were cultured in complete RPMI medium at 37 °C in a humidified atmosphere containing 

5% CO2 in 95% air. The cells grew rapidly and required sub-culture each 1 – 2 days. For regular 

maintenance, 75% volume from the K562 cell suspension was removed under sterile conditions and 

replaced with an equal volume of fresh culture medium. Harvested cells were pelleted from 

suspension by centrifuging at 240 g for 5 minutes. 

DFTD cells were cultured in complete RPMI medium at 35 °C in a humidified atmosphere containing 

5% CO2 in 95% air. The cells were harvested or sub-cultured at 75% (as the cells grew at a variable 

rate this was required sub-culture each 1 – 2 days for fast-growing cells or up to 14 days for slow-

growing cells). The cells were firmly attached to the substrate in culture and were dislodged by 

repeated flushing with culture medium through a pasteur pipette. For regular maintenance, 30 - 50% 

volume from the DFTD cell suspension was removed under sterile conditions and replaced with an 

equal volume of fresh culture medium. Harvested cells were pelleted from suspension by 

centrifuging at 240 g for 7 minutes. 

2.3.3 Cryopreservation and thawing 

Suspended cells (cultured K562 or DFTD cells, or primary cells such as lymphocytes) were harvested 

from culture and pelleted as described above, then placed on ice in a sterile biohazard cabinet. All 

supernatant was drained and the pellets were resuspended in a minimum volume. A solution of 10% 

DMSO (Sigma Aldrich, New South Wales, Australia) in culture medium was prepared and added, 

dropwise, to the cell pellet, with gentle agitation with each addition. Aliquots of 1 – 2 mL in volume 

were transferred to cryogenic vials and placed on ice. All samples were frozen to -80 °C in an ethanol 

bath, allowing a gradual temperature decrease of 1 °C per minute. If necessary, the cryopreserved 

samples were transferred to liquid nitrogen for long-term storage. 

Frozen cells were placed in a 37 °C water bath until almost thawed. With a small amount of ice 

remaining, the cells were transferred to a sterile centrifuge tube and 8 mL of complete RPMI 1640 

medium was added dropwise, with mixing after each addition. The solution was centrifuged at 240 g 

rpm for 5 minutes then the supernatant was aspirated, the pellet resuspended in 10 mL of complete 

medium and the cells were inoculated into a culture flask. 

2.3.4 Cell counts and viability examination 

Cell number and viability was determined using trypan blue exclusion according to the previously 

published protocol [381]. Briefly, 10 – 20 µL of 0.4% trypan blue solution (Sigma-Aldrich, St Louis, 

USA) per sample was placed into separate wells of a 96 well plate. An equal volume of cell 
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suspension was added and pipetted to mix. A glass coverslip was placed on the centre of a 

haemocytometer and a volume of the cell suspension mixture sufficient to cover the central 

chamber, was loaded by capillary action. At 40x magnification, dead cells could be easily 

distinguished due to the dark blue staining of their nuclei. The viable cells within each individual 

square of the central chamber were counted to a total of at least 100 cells. The number of cells was 

calculated using the following formula:  

Cell concentration = number of cells × (25/number of squares) × 104 (cells/mL) 

The number of dead cells in the same area of the haemocytometer was also counted. When 

required, the percent viability of the samples was determined using the following formula: 

Viability = (viable cell count / total cell count) × 100 

2.4 Animals 

A full list of information about the wild and captive Tasmanian devils used in the experiments 

detailed in this thesis is given in Section A.1 of the Appendix (Chapter 8). 

All experiments involving the use of Tasmanian devils were conducted under the approval of the 

University of Tasmania Animal Ethics Committee (permit number A0009215). The captive Tasmanian 

devils used in this study were fully adapted to captivity and housed in secure shelters under 

quarantine conditions at 3 locations within the greater Hobart: Fern Tree, Richmond and Taroona. 

Female devils could be kept in groups of up to 4 devils per pen. All male devils were housed 

individually in separate pens. The devils were fed on a diet of native meat from disease free areas 

and their health was maintained by DPIPWE keepers and vets. Wild Tasmanian devils used in this 

study were captured using pipe traps then transferred to hessian sacks for examination. The devils 

were micro chipped, if necessary, then euthanised (if infected with DFTD) or retained for collection 

of blood samples then released.  

Anaesthesia of the Tasmanian devil is required for blood collection, and immunisation, and has been 

widely used by DPIPWE veterinarians. The vapour anaesthetic Isofluorane® is the agent of choice, 

given its short recovery period and fewer harmful side effects than other inhalation anaesthetics 

(reviewed in [382]). Isofluorane gas was administered in oxygen at an approximate rate of 2 

L/minute via a mask. No adverse effects were recorded in the Tasmanian devils used in this study. All 

devils were anaesthetised and approximately 10 mL of blood was taken from the jugular vein. Up to 

2 mL of blood from each sample was injected into clot activating tubes (Greiner Bio-one, 
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Frickenhausen, Germany). The remainder was injected into lithium heparin anticoagulant tubes (BD 

Biosciences, New Jersey, USA). The samples were stored at room temperature until arrival at the 

laboratory (< 24 hours).  

2.5 Blood processing 

2.5.1 Mononuclear cells 

Whole blood samples were processed under sterile conditions. Peripheral blood mononuclear cells 

(MNC) were isolated from uncoagulated whole blood using density gradient centrifugation on 

Histopaque 1077 solution according to the manufacturer’s protocol (Sigma Aldrich, St Louis, USA). 

The MNC were washed with PBS for 10 minutes at 250 g. The cells were diluted for assay use in 

culture medium. 

2.5.2 Adherent cell differentiation  

2.5.2.1 Nylon wool adherent cells  

As no methods were available for the specific isolation of cytotoxic cells in Tasmanian devils, T 

lymphocytes were enriched in MNC suspensions by depleting B lymphocytes using nylon wool 

adherence according to the previously published method [383]. Briefly, columns containing 0.6 g of 

nylon wool were saturated with RPMI culture medium and equilibrated at 37 °C for 30 minutes and 

washed with RPMI culture medium. Suspensions of MNC were applied to the columns. Small 

volumes of RPMI culture medium were added gradually, over a period of approximately 10 minutes. 

The eluent containing enriched T cells was centrifuged at 250 g. The cells were diluted for assay use 

in RPMI culture medium. 

2.5.2.2 Plastic adherent cells 

Monocytes were depleted from mononuclear cell layers using plastic adherence, as described by 

Horowitz and colleagues [384]. MNC suspensions in RPMI culture medium were applied to the 

surface of 35 mm culture dishes (Iwaki, Tokyo, Japan), gently agitated to thinly cover the surface and 

incubated at 37 °C for 45 minutes. RPMI culture medium was added dropwise and the dish was 

gently agitated to loosen the plastic non adherent cells. The solution was collected and the wash 

repeated twice. The plastic non adherent cells were centrifuged for 10 minutes at 250 g. The cells 

were diluted for assay use in culture medium. 
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2.5.3 Mitogen stimulation of Tasmanian devil mononuclear cells 

Previous studies have established that Tasmanian devil leukocytes proliferate following exposure to 

mitogens such as Concanavalin A (Con A) (Sigma Aldrich, New South Wales, Australia) and 

phytohaemagglutinin (PHA) (Sigma Aldrich, St Louis, USA) [385]. Con A and PHA were received as 

lyophilised powders and reconstituted in cell culture grade PBS. For mitogen stimulation of 

peripheral blood MNC from Tasmanian devils were cultured for 48 hours in complete medium 

containing 25 µg/mL Con A or 50 µg/mL PHA, doses which induced proliferation responses in the 

majority of samples in the previous study. After 48 hours, the culture was harvested and centrifuged 

for 15 minutes at 250 g then the supernatant and the cell pellet were separated. 

2.5.4 Generation of Concanavalian A culture supernatant 

Following a 48 hour Con A stimulation (with 5 µg/mL Con A) of Tasmanian devil MNC, the 

supernatant of each sample was separated from the cell pellet following centrifugation. The residual 

Con A was removed from the solution using chelation with 15 mg/mL α-D-Mannose (Sigma Aldrich, 

New South Wales, Australia) then the samples were passed through 25 mm 0.8/0.2 µm filters (Pall 

Corporation, New York, USA) under sterile conditions. The resulting solution contained the cytokines 

present after Con A culture, with little residual mitogen or mannose. 

2.5.5 Separation of serum 

Blood stored in clot-activating tubes was centrifuged at 1100 g for 10 minutes and the serum was 

harvested. The clot was removed and the process repeated. The serum was aliquotted in 200 µL 

volumes into cryogenic vials and stored at 4 °C (for short-term use within 2 months) or at -80 °C (for 

long-term storage). 

2.6 Immunisations and adjuvants 

A full list of information about the captive Tasmanian devils used in the immunisation experiments 

detailed in this thesis is given in Chapter 8 (Appendix Section 1). 

2.6.1 Immunisation preparation 

2.6.1.1 K562 cells 

K562 cells were harvested, resuspended in PBS and combined with an equal volume of Montanide 

adjuvant under sterile conditions then incubated at 37 °C before transfer to the captive facility. Four 



 

53 
 

healthy female Tasmanian devils (CD 2, CD 3, CD 4 and CD 5) were injected with 108 cells in a total 

volume of 1 mL, containing equal parts cell suspension and adjuvant, subcutaneously into the right 

shoulder. A total of two doses was given at monthly intervals. Blood samples were collected 14 days 

(± 2 days) after each injection. Six months later, two devils (CD 2 and CD 4) were boosted with a third 

dose of K562 cells. 

2.6.1.2 Irradiated K562 and DFTD cells in Montanide adjuvant 

K562 and DFTD cells were harvested from culture then irradiated with 20 Gy of gamma radiation 

using a Varian Clinac 23-EX linear accelerator (Varian Medical Systems Inc., California, USA). The cells 

were pelleted and resuspended in PBS then combined with an equal volume of Montanide adjuvant 

(Seppic, Puteaux, France) under sterile conditions then incubated at 37 °C before transfer to the 

captive facility. Two healthy female Tasmanian devils (CD 8 and CD 9) were injected with 108 

irradiated cells in a total volume of 1mL, containing equal parts cell suspension and adjuvant, 

subcutaneously into the right shoulder, limiting the number of injection sites. A total of four doses 

was given at monthly intervals. Blood samples were collected 14 days (± 2 days) after each injection.  

2.6.1.3 Irradiated DFTD cells in CpG Montanide adjuvant 

DFTD cells were irradiated as described in 2.6.1.2. Two CpG oligonucleotides were chosen based on 

their reported capacity to induce NK cell and CTL responses [143]. The CpG oligonucleotides 

suspensions were mixed with Montanide adjuvant and then an equal volume of irradiated DFTD cell 

suspension under sterile conditions then incubated at 37 °C before transfer to the captive facility. 

Two healthy devils (CD 10 and CD 13) were injected with irradiated DFTD cells and adjuvant 

containing CpG ODN 1585 (sequence:  GGGGTCAACGTTGAGGGGGG) subcutaneously into the right 

shoulder. Two more devils (CD 11 and CD 12) were injected with irradiated DFTD cells and adjuvant 

containing CpG ODN 1826 (sequence:  TCCATGACGTTCCTGACGTT) subcutaneously into the right 

shoulder.  A total of three doses was given at monthly intervals. Blood samples were collected 14 

days (± 2 days) after each injection. 

2.6.1.4 Sonicated DFTD cells 

DFTD cells were harvested from culture then placed on ice. The chilled samples were sonicated with 

24 kHz of ultrasound energy for 4 repetitions of 60 seconds, returning to the ice in between for 60 

second intervals. The cell debris was pelleted and resuspended in PBS then combined with an equal 

volume of Montanide adjuvant (Seppic, Puteaux, France) containing CpG ODN1585 under sterile 

conditions then incubated at 37 °C before transfer to the captive facility. Due to limited access to 
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research animals, the only available devils for this trial had previously been injected with DFTD cells 

but had been rested for an extended period (over 12 months). The cytotoxicity and antibody 

responses of the two devils (CD 10 and CD 14) were examined and found to be low, a state referred 

to as pre immune 2 (PI 2). The sonicated DFTD cells and CpG adjuvant were injected subcutaneously 

into the right shoulder.  A total of two doses was given at monthly intervals. Blood samples were 

collected 14 days (± 2 days) after each injection. 

2.6.1.5 Heat treated DFTD cell protein extracts 

DFTD cells were harvested from culture then heat treated at 56 °C for 1 hour then chilled at -80 °C. 

The chilled samples were sonicated with 24 kHz of ultrasound energy, for 4 repetitions of 60 

seconds, returning to the ice for 60 second intervals in between. The cell debris was pelleted and 

resuspended in PBS then the total protein was extracted using commercial RIPA buffer (Thermo 

Scientific, lllinois, USA) and a standard procedure for isolating protein from monolayer cultured 

mammalian cells. The DFTD cell protein extract was combined with an equal volume of 

ISCOMATRIX® adjuvant (CSL, Victoria, Australia) under sterile conditions then incubated at 37 °C 

before transfer to the captive facility. The immunisations were injected subcutaneously into the 

right shoulder in two healthy devils (CD 15 and CD 16).  A total of three doses was given at monthly 

intervals. Blood samples were collected 14 days (± 2 days) after each injection. 

In a different trial, DFTD cell protein extracts were mixed (as described above) with equal volumes of 

ISCOMATRIX® adjuvant supplemented with the immunostimulant Flt 3 ligand and the TLR 3 agonist 

Poly I:C (CSL, Victoria, Australia) then injected subcutaneously into the right shoulder in two healthy 

devils (CD 7 and CD 17).  A total of three doses was given at monthly intervals. Blood samples were 

collected 14 days (± 2 days) after each injection. 

2.6.1.6 Con A culture supernatant-treated DFTD cells 

Culture medium was removed from flasks containing DFTD cells and replaced with medium 

containing 5% Con A culture supernatant (prepared as described in 2.5.4). The cells were incubated 

for 48 hours at 35 °C in a humidified atmosphere containing 5% CO2. The cells were repeatedly 

frozen in liquid nitrogen then thawed at 37 °C in a water bath a total of 10 times then checked for 

viability as described in 2.3.4. The cell debris was pelleted and resuspended in PBS then combined 

with an equal volume of ISCOMATRIX® adjuvant (CSL, Victoria, Australia) under sterile conditions 

then incubated at 37 °C before transfer to the captive facility. The immunisations were injected 
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subcutaneously into the right shoulder in two healthy devils (CD 39 and CD 40). Two doses were 

given, at 0 and 35 days and blood samples were taken 14 days (± 2 days) after each dose. 

2.6.1.7 Trichostatin A treated DFTD cells 

Culture medium was removed from flasks containing DFTD cells and replaced with medium 

containing  10 nM trichostatin A (TSA) (Sigma Aldrich, New South Wales, Australia). The cells were 

repeatedly frozen in liquid nitrogen then thawed at 37 °C in a water bath a total of 10 times then 

checked for viability as described in 2.3.4. The cell debris was pelleted and resuspended in PBS then 

combined with an equal volume of ISCOMATRIX® adjuvant under sterile conditions then incubated 

at 37 °C before transfer to the captive facility. The cell debris was pelleted and resuspended in PBS 

then combined with an equal volume of ISCOMATRIX® adjuvant and injected subcutaneously into 

the right shoulder in one healthy Tasmanian devil (CD 1). Two doses were given, at 0 and 35 days 

and blood samples were taken 14 days (± 2 days) after each dose. 

2.6.2 Live cell challenge 

Cultured DFTD cells were harvested (as described in 2.3.2), pelleted at 240 g for 7 minutes and 

counted for number and viability. An aliquot containing 25 000 DFTD cells was removed to a 

cryogenic vial and resuspended in a total of 100 – 200 µL of PBS then the sample was immediately 

transferred to the captive facility, where the cells were injected sub-cutaneously into the shoulder or 

back of immunised Tasmanian devils. The challenged devils were anaesthetised once every 7 – 14 

days and the injection site was palpated for evidence of tumour growth. At first sign of tumours, 

measurements were taken in 3 dimensions using a caliper and ruler. When the tumour had reached 

an appropriate size, a 3 - 4 mm core biopsy was taken from the tumour and immediately fixed in 

formalin (as some tumours were quite small at identification this was sometimes 2 – 3 weeks). The 

tumours were then either monitored and measured each 7 – 14 days or removed by surgery. 

2.7 Cytotoxicity assays 

2.7.1 Chromium release assays 

Cytotoxicity assays were performed using triplicate samples in V-bottomed 96 well plates (Greiner 

Bio-one, Frickenhausen, Germany). Effector ratios (100:1, 50:1, 25:1, 12:1, 6:1 to 3:1) were tested 

against samples of 104 target cells. Negative and positive controls contained RPMI culture medium 

and 1% Triton X detergent in water, respectively. Cultured DFTD cells, from the strain 3 line C5065, 

were incubated with 100 µCi of radioactive 51Cr solution (5 mCi/mL sodium chromate in normal 



 

56 
 

saline – PerkinElmer, Massachusetts, USA) for 2.5 hours, with frequent gentle agitation, each 10 – 15 

minutes (this was essential to maintain viability of the cells and to ensure efficient radioactive 

labelling). Cultured K562 cells were incubated with 100 µCi of radioactive 51Cr solution for 1 hour, 

with regular agitation. Labelled cells were washed 3 times in RPMI culture medium then diluted for 

assay use. The assays were incubated for 18 hours at 37 °C in a humidified atmosphere of 5% CO2. 

The plates were centrifuged briefly at 170 g for 4 minutes then 100 µL aliquots of supernatant were 

harvested into polystyrene tubes and analysed for radioactivity (in counts per minute) using a 

Genesys gamma radiation counter (Laboratory Technologies Inc., Illinois, USA).  

2.7.2 ADCC and NK cell cytotoxicity assays 

The procedure for chromium release cytotoxicity assays was modified to detect antibody-dependent 

killing. Triplicate samples of MNC, nylon wool non adherent cells or plastic non adherent cells at 

ratios of 25:1, 12:1, 6:1 and 3:1 were tested against samples of 104 target cells. Serum from K562 

immunised devils was diluted 1/10 in RPMI culture medium and 50 µL was added to the wells of test 

assays. Pre immune serum diluted 1/10 or RPMI culture medium was added to control assays. The 

assays were incubated for 18 hours before analysis as described in 2.7.1. NK cell assays were 

performed using standard and antibody-dependent cell-mediated cytotoxicity assay procedure but 

incubated for 4 hours before analysis. 

2.7.3 Separation of assay culture supernatant 

K562-immunised Tasmanian devil MNC were cultured in 24 well plates at ratios of 100:1 with DFTD 

tumour cells at 104 cells/mL. The samples were incubated for 18 hours at 37°C in a humidified 

atmosphere of 5% CO2, after which the supernatants were harvested, centrifuged at 1200 rpm for 15 

minutes and separated from the pellets. The supernatant was aliquotted in 200 µL volumes into 

cryogenic vials and stored at -20°C until required for use to supplement ADCC assays. 

2.7.4 IL-10 block assays 

Triplicate samples of Tasmanian devil MNC at ratios of 50:1, 25:1, 12:1 and 6:1 were tested against 

samples of 104 target cells. Rat anti mouse IL-10 or goat anti mouse IL-10 antibodies were diluted 

1/25 in RPMI culture medium and 50 µL was added to the wells of the assays. An equivalent volume 

of culture medium was added to untreated control assays. The assays were incubated for 18 hours 

before analysis as described in 2.7.1. 
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2.7.5 Mitogen supplemented cytotoxicity assays 

Triplicate samples of Tasmanian devil MNC at ratios of 50:1, 25:1, 12:1 and 6:1 were tested against 

samples of 104 target cells. MNC samples were prepared in culture medium containing 50 µg/mL Con 

A or 100 µg/mL PHA for final mitogen concentrations of 25 and 50 µg/mL, respectively. Untreated 

control samples were prepared without addition of the mitogen. The assays were incubated for 18 

hours before analysis as described in 2.7.1. 

In some assays, Tasmanian devil MNC were stimulated with Con A as described in 2.5.3. The cells 

were washed twice in complete medium to remove any traces of the mitogen. The stimulated cells 

were then used in 18 hour cytotoxicity assays, as described in 2.7.1 and incubated for 18 hours 

before analysis as described in 2.7.1.  

2.7.6 Con A culture supernatant supplemented cytotoxicity assays 

Triplicate samples of Tasmanian devil MNC at ratios of 50:1, 25:1, 12:1 and 6:1 were tested against 

samples of 104 target cells. MNC samples were prepared in culture medium containing 50% Con A 

culture supernatant (prepared as described in 2.5.4) for a final concentration of 25% within the 

assays. Untreated control samples were prepared without addition of the mitogen supernatant. The 

assays were incubated for 18 hours before analysis as described in 2.7.1. 

2.7.7 IL-2 supplemented cytotoxicity assays 

Tasmanian devil IL-2 was synthesised by our collaborators at the Walter and Eliza Hall Institute, 

based on the published devil genome sequence. Briefly, the cytokine was synthesised using DNA2.0 

encoding the full length sequence for devil IL-2 with a 3Gly6His C-terminal tag. The gene, as a 

BamHI-NotI fragment was cloned into a pFastBac1 expression vector and then transformed into E. 

coli. Positive bacmid DNA was transformed into Sf21 cells according to the Bac-to-Bac protocol using 

the CellFectin II reagent and cultured for 4 days. The supernatant was subsequently harvested and 

concentrated. Triplicate samples of Tasmanian devil MNC at ratios of 50:1, 25:1, 12:1 and 6:1 were 

tested against samples of 104 target cells. MNC samples were prepared in culture medium 

containing cloned Tasmanian devil IL-2 diluted at 1/200 or 1/2000 for a final concentration of 1/100 

or 1/1000 within the assays. Untreated control samples were prepared without addition of the 

mitogen supernatant. The assays were incubated for 18 hours before analysis as described in 2.7.1. 
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2.7.8 Poly I:C supplemented cytotoxicity assays 

Polyinosinic:polycytidylic acid (Sigma Aldrich, St Louis, USA) was received as a lyophilised powder 

and reconstituted in cell culture grade PBS at a concentration of 5 mg/mL. The Poly I:C solution was 

then heated to 50 °C for 30 minutes and cooled to allow optimal annealing of the double-stranded 

RNA. Triplicate samples of Tasmanian devil MNC at ratios of 50:1, 25:1, 12:1 and 6:1 were tested 

against samples of 104 target cells. MNC samples were prepared in culture medium containing 20, 

10, 2 and 0.2 µg/mL Poly I:C for final concentrations of 10, 5, 1 and 0.1 within the assays. Untreated 

control samples were prepared without addition of the mitogen supernatant. The assays were 

incubated for 18 hours before analysis as described in 2.7.1. 

2.7.9 Formulae and statistics 

Mean counts per minute (CPM) values were calculated from replicates and the percent cytotoxicity 

values were calculated according to the equation: 

Percent cytotoxicity = ((sample CPM – mean negative control CPM) 

 (mean maximum control CPM – mean negative control CPM)) × (100/1) 

Statistical significance for chromium release data was calculated using an F test of pre immune and 

post immune data sets for immunised devils or on serum free vs. serum supplemented samples for 

ADCC and 4 h NK assays. In assays involving nylon wool and plastic non adherent cells, F tests were 

performed between pre immune and non adherent cell data sets, then between total mononuclear 

cell and non adherent cell data sets to calculate statistical significance. Results were considered 

significant with a p value below 0.05. 

2.8 Flow Cytometry 

2.8.1 Cell type marker flow cytometry (Glycophorin A, Periaxin) 

K562 cells were harvested in suspension and pelleted as described in 2.3.2 then diluted to 5×106 

cells/mL and 100 µL aliquots were incubated with 10 µL of phycoerythrin (PE)-conjugated  CD235a 

(Glycophorin A) antibody (Dako, California, USA) for 20 minutes at room temperature. The samples 

were washed three times in PBS, with centrifugation at 14,000 g (in a microcentrifuge) for 1 minute.  

DFTD cells were harvested and pelleted as described in 2.3.2 then diluted to 5×106 cells/mL. Rabbit 

anti-mouse periaxin antibody (Sigma Aldrich, St Louis, USA) was diluted 1/500 in FACS buffer then  

100 µL aliquots were incubated with equal volumes of DFTD cell suspension for 20 minutes at room 
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temperature. The samples were washed three times in PBS, with centrifugation at 14,000g (in a 

microcentrifuge) for 1 minute then incubated with an Alexa Fluor 488 conjugated goat anti rabbit 

IgG (Invitrogen, Oregon, USA) and washed again as above. 

All samples were diluted to approximately 400 µL volume and analysed by flow cytometry on a BD 

Canto II (Becton Dickinson, New Jersey, USA) operating a 488 nm solid state laser. Although the 

parameters were adjusted for each sample, approximate voltages used on DFTD and K562 cells were 

235 (FSc), 405 (SSc), 269 (Alexa Fluor 488) and 286 (PE). 

2.8.2 Serum/supernatant antibody flow cytometry 

Rabbit anti devil immunoglobulin (RαDIg) was purified using a protein A column (Sigma Aldrich, St 

Louis, USA) from the serum of rabbits immunised with ammonium sulphate precipitated Tasmanian 

devil serum. The specificity of this reagent for flow cytometry with devil serum was previously 

established and optimised by A. Kreiss [385], and appears to target an epitope in bound antibody but 

not IgG associated with the surface of B lymphocytes (observed using flow cytometry and 

immunohistochemistry but not presented in this thesis). Tasmanian devil serum was diluted 1/25 in 

FACS buffer. DFTD tumour cells were harvested and pelleted as described in 2.3.2 then diluted to 

5×106 cells/mL in FACS buffer. Aliquots of 100 µL (containing approximately 5×105 cells) were 

incubated with an equal volume of diluted serum for 20 minutes at room temperature then washed 

three times in PBS, with centrifugation at 14,000 g (in a microcentrifuge) for 1 minute. The samples 

were incubated with RαDIg at 1/10 in FACS buffer, washed (as above) in PBS, then incubated with an 

Alexa Fluor 488 conjugated goat anti rabbit IgG (Invitrogen, Oregon, USA) and washed again as 

above. All samples were diluted to approximately 400 µL volume and analysed by flow cytometry on 

a BD Canto II (Becton Dickinson, New Jersey, USA) operating a 488 nm solid state laser. Although the 

parameters were adjusted for each sample, approximate voltages used on DFTD and K562 cells 

were235 (FSc), 405 (SSc) and 269 (Alexa Fluor 488). 
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2.9 Immunohistochemistry 

2.9.1 Antibodies (primaries, secondaries, concentrations and dilutions) 

Target Epitope Host 
Experimental 

Dilution 
Supplier and catalogue 

Number 

Polyclonal Human CD3ε (intracellular 
portion) 

Rabbit 1/400 Dako, California USA A0452 

Monoclonal Human MHC II Mouse 1/100 Dako, California USA 
M0775 

Polyclonal Human Periaxin Rabbit 1/400 Sigma, Missouri, USA HPA 
001868 

Monoclonal Devil CD8 (hybridoma culture 
supernatant – not commercially tested) 

Mouse 1/10 Walter and Eliza Hall 
Institute, Vicroria, Australia 

Monoclonal Devil MHC I (intracellular 
portion) 

Mouse 1/100 University of Southern 
Denmark 

Monoclonal Devil β2-Microglobulin 
(hybridoma culture supernatant – not 
commercially tested) 

Rat 1/20 University of Southern 
Denmark 

Polyclonal anti rabbit isotype control Rabbit 1/400 Abcam, New South Wales, 
Australia ab27472 

Monoclonal anti mouse isotype control Mouse 1/100 Abcam, New South Wales, 
Australia ab18447 

2.9.2 Immunohistochemistry of cytospins 

Suspensions of MNC were diluted to 2×105 cells/mL in standard PBS. Cytospins were prepared at 55 

g for 5 minutes then immediately fixed in acetone.  

The cytospins were rehydrated in PBS and drained. Peroxidase block (3% hydrogen peroxide in PBS) 

was applied to each cytospin for 15 minutes. This was followed by Dako’s serum free protein block 

solution (Dako, California, USA) for 30 minutes. Rabbit anti-human CD3 (Dako, California, USA), 

rabbit anti-human periaxin (Sigma, Missouri, USA) and mouse anti-human MHC II (Dako, California, 

USA) were diluted in commercial diluent (Dako, California, USA), as listed in Table 2.9.1, then applied 

for 2 hours at room temperature.  

Secondary anti-rabbit and mouse HRP linked secondary antibodies (Dako, California, USA) were 

applied to samples labelled with single antibodies and the LSAB universal link HRP system (Dako 

California, USA) was applied to slides labelled with both antibodies. Finally, the samples were 

labelled with DAB chromogen (Dako, California, USA), counterstained in Mayer’s hematoxylin (HD 

Scientific, New South Wales, Australia), mounted in aqueous medium (Dako, California, USA) and 

visualised under a light microscope (Olympus, Victoria, Australia) with mounted camera (Leica, 

Wetzlar, Germany).  
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2.9.3 Giemsa staining of cytospins 

Samples were covered in a modified giemsa solution designed for staining of cellular blood 

components and blood parasites (Fluka/Sigma Aldrich, St Louis, USA). The solution was filtered and 

diluted 1:10 in phosphate buffered water (pH 6.5) prior to use. The samples were stained for 6 

minutes then washed thoroughly in water. 

2.9.4 Biopsy removal and processing 

Core biopsies from DFTD tumours were taken using 3mm punches and immediately fixed in 10% 

buffered formalin (Sigma Aldrich, New South Wales, Australia) for 7 days. The biopsies were 

embedded in paraffin wax, sectioned longitudinally into 3µm thick slices and placed onto 

aminotriethoxysilane-coated slides (Sigma Aldrich, St Louis, USA).  

2.9.5 Immunohistochemistry of formalin-fixed Tasmanian devil tissues 

The tissue sections from Tasmanian devil tumour biopsies were deparaffinized in xylene and 

rehydrated through graded alcohol solutions to water. All sections were boiled in citrate buffer 

solution (pH 6) in an electric pressure cooker (Russel Hobbs, Greater Manchester, England) for 10 

minutes at medium heat. Slides were left to cool to 35°C then quenched in water. A peroxidase block 

solution (3% hydrogen peroxide in PBS) was applied to each cytospin for 15 minutes, followed by 

Dako’s serum free protein block solution (Dako, California, USA) for 30 minutes. Rabbit anti-human 

CD3 (Dako, California, USA), mouse anti-human MHC II (Dako, California, USA), Rabbit anti human 

periaxin (Sigma Aldrich, St Louis, USA) and mouse anti devil CD8 (provided by L. Corcoran and 

colleagues, WEHI, Victoria, Australia) primary antibodies and appropriate negative controls (Dako, 

California, USA) were diluted in commercial diluent (Dako, California, USA), as listed in Table 2.9.3, 

and applied to the sections for 2 hours at room temperature. Monoclonal rat anti devil β2M antibody 

(provided by H. Siddle and colleagues, Cambridge University, England) were diluted in the same 

commercial diluent and applied for 18 hours at 4°C. 

LSAB universal link HRP system (Dako, California, USA) antibodies were applied to slides for 30 

minutes at 21 °C then the samples were washed and labelled with DAB chromogen (Dako, California, 

USA). The slides were counterstained in Mayer’s hematoxylin (HD Scientific, New South Wales, 

Australia), mounted in aqueous medium (Dako, California, USA) and visualised under a light 

microscope (Olympus, Victoria, Australia) with mounted camera (Leica, Wetzlar, Germany).  
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2.10 Immunotherapy of Tasmanian devils 

A full list of information about the captive Tasmanian devils used in the immunotherapy experiments 

detailed in this thesis is given in Chapter 8 (Appendix Section 1). 

2.10.1 LAK cell immunotherapy 

One DFTD diseased captive female Tasmanian devil (CD 16) was available for immunotherapy. The 

DFTD tumour was developed following challenge with live cells after a vaccine trial showed evidence 

for antibody development by ELISA and appeared as a clearly visible mass on the back at 

commencement of therapy. The tumour type was known to be Strain 3. The method for generation 

of Tasmanian devil LAK cells was chosen based on assessment of cytotoxic responses against DFTD 

cells following stimulation with mitogens, cytokines or the agonist Poly I:C of which stimulation with 

Con A induced the strongest responses.  

For immunotherapy, whole blood samples, of approximately 10 mL in volume, were taken as 

described in 2.4. The MNC were extracted as described in 2.5.1 and the cells were stimulated with 

Con A as described in 2.5.3 to induce a transition to LAK cells. The samples were washed 3 times, at 

250 g for 10 minutes, in sterile cell culture grade PBS then counted for number and viability in a total 

volume of 1 mL. In general, 50 - 60% of the original number of cells extracted was viable when 

recovered from mitogen stimulation. The LAK cells were transferred to a cryogenic vial and the 

original tube was washed with 1 mL of extra PBS. The cells were pelleted once more, resuspended in 

100 – 200 µL of cell culture grade PBS then incubated at 35 °C before transfer to the captive facility. 

Upon arrival at the facility, the candidate devil was anaesthetised as described in 2.4 and the tumour 

was measured in 3 dimensions using a calliper and ruler. A 3 - 4 mm core biopsy was taken from the 

tumour and immediately fixed in formalin. The activated MNC were then injected into several sites 

within the tumour mass using a 14 gauge needle.  

A thorough health examination of CD 16 was performed at each visit. Injections of autologous LAK 

cells were given at weeks 0, 5 and 7. Tumour measurements were taken on weeks 0, 5, 7 and late in 

week 8 and biopsy punches were taken on weeks 0, 5, late in week 8, to monitor the effect of LAK 

cell injection. 
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2.10.2 Con A culture supernatant-treated cell immunotherapy 

The treatment of cells with Con A culture supernatant upregulated surface MHC I expression [285]. 

MHC I positive cells were cultured as described in 2.1.2.6 and washed 3 times in cell culture grade 

PBS then counted for number and viability. An aliquot containing 108 cells was taken to a cryovial, 

completed to 2 mL with PBS then pelleted and resuspended in 100 – 200 µL then incubated at 35 °C 

before transfer to the captive facility. Upon arrival, the candidate devil was anaesthetised as 

described in 2.4 and the MHC I positive cells were injected subcutaneously into the shoulder of the 

candidate devil at week 8.5. Tumour measurements were taken on weeks 11, 12, 13 and a punch 

biopsy was taken on week 11 to monitor the effect of MHC I positive cell injection. A subsequent 

injection of MHC I positive cells was given at late in week 17 following a sudden decrease in 

tumour size. 

Two wild DFTD diseased Tasmanian devils (DD 11 and DD 18) were trapped and relocated to the 

captive facility at Richmond. The devils were anaesthetised as described in 2.4 then blood samples 

were taken and tumour number and size was recorded and punch biopsies were taken from selected 

tumours. 7 days later, both devils were injected with MHC I positive cells prepared as above. The 

devils were examined once a week and tumour measurements and biopsy punches were taken. 

2.10.3 Con A culture supernatant injection 

Con A culture supernatant, which was free from activated MNC, was prepared as described in 2.5.4 

and diluted 1:4 (to a final concentration of 20%) in cell culture grade PBS and incubated at 35 °C 

before transfer to the captive facility. Upon arrival at the facility, the devil was anaesthetised as 

described in 2.4 and the tumour was measured in 3 dimensions using a caliper as described in 2.6.2. 

The solution of Con A culture supernatant was then injected into several sites within the tumour 

mass using a 21 gauge needle. Tumour measurements were taken late in weeks 14, late in week 15, 

late in week 17, late in week 18, week 19, and late in week 24. A punch biopsy was taken late in 

week 17 to monitor the effect of intratumoural Con A culture supernatant injection. Blood samples 

were taken in weeks 19, 22 and 24 for analysis of cytotoxicity responses. 
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Chapter 3 - Analysis of immune responses against xenogeneic tumour 

cells and DFTD tumour cells in Tasmanian devils  

3.1 Introduction 

In order to be transmissible, DFTD must be able to evade the host immune response. Although 

previous studies have provided evidence for the normal development and function of many immune 

responses in Tasmanian devils [2], there is little evidence for immune activity against DFTD, with 

poor lymphocyte infiltration into the tumours [269]. However, the immune responses of infected 

wild devils against DFTD have never been analysed. The first aim of this thesis chapter was to 

determine if Tasmanian devils with DFTD can form immune responses against DFTD cells.  

A potential explanation for the poor immune response against DFTD could be that, despite evidence 

for an otherwise competent immune system, Tasmanian devils fail to form anti-tumour responses 

altogether. Past observations of Tasmanian devils in zoos [259], and recent observations in our 

captive research populations, suggest that they are prone to developing cancers. However, the 

development of anti-tumour responses in the species has not been verified. In mammals, anti-

tumour responses are largely mediated by the specific immune system. Therefore, it was important 

to examine the development of lymphocyte cytotoxicity and antibody responses against DFTD and 

other tumour cells. Therefore, the second aim of this thesis chapter was to determine if Tasmanian 

devils can mount functional cytotoxic and humoral anti-tumour responses. To test these responses 

in Tasmanian devils, a tumour immunisation model was developed. Immunisation with foreign 

cancer cells was likely to induce a strong systemic immune response, including development of 

cytotoxicity and antibody. Since DFTD cells lack cell surface MHC I expression human K562 [285], a 

cell line that is also deficient in this protein, was selected for the experiments. The radioactive 

chromium release assay was used to analyse cytotoxicity responses of Tasmanian devils against K562 

and DFTD cells. 

If the anti-tumour responses of Tasmanian devils were functional, it should be possible to induce 

immune recognition of DFTD through vaccination. Therefore, the third aim of this chapter was to 

determine if Tasmanian devils can be induced to form immune responses against DFTD cells. 

Immunisation strategies were designed to induce lymphocyte cytotoxicity responses, either directly 

or through the prior activation of innate immune responses. The non-specific immunomodulatory 

adjuvant Montanide provided the basis for several immunisation preparations. ISCOMATRIX®, which 

can increase cross presentation of protein antigens between dendritic cells and cytotoxic T 
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lymphocytes [317], was also tested. Other molecules used to supplement these basic adjuvants 

included TLR agonists such as CpG oligonucleotides and Poly I:C, which can augment specific 

responses against tumours [143] and a stimulatory ligand for dendritic cells, Flt 3 ligand. In addition 

to adjuvant choice, several strategies for killing DFTD cells were used, and their effects on 

immunogenicity were assessed. 

3.2 Results 

3.2.1 DFTD diseased Tasmanian devils do not form cytotoxicity or antibody 

responses against DFTD tumour cells 

The transmissible nature of DFTD suggests that Tasmanian devils do not form a functional immune 

response against the tumour cells when exposed to the disease. Further evidence for a lack of 

response has been provided by immunohistochemistry studies which show limited lymphocyte 

infiltration into DFTD tumours. Evidence for a functional immune response directed at the tumour 

has not been specifically investigated. To determine if Tasmanian devils with DFTD showed evidence 

of functional cytotoxic responses against the tumour cells, cytotoxicity responses were measured 

using the chromium release cytotoxicity assay (Section 2.7.1). Eight representative responses are 

shown in Figure 3.1. None of the animals tested showed any evidence of cytotoxicity responses 

against DFTD tumour cells and the responses formed were not statistically different to healthy 

controls; one healthy wild and one captive Tasmanian devil (Fig. 3.1). 

Another important specific immune response is antibody production. Serum collected from wild 

devils with DFTD was assessed using flow cytometry for the presence of antibodies against DFTD 

tumour cells (2.8.2). The fluorescence profiles from 12 wild devils with DFTD were compared to 

three healthy captive devils. None of the diseased animals showed any evidence for an antibody 

response to DFTD cells, with similar fluorescence profiles compared to the controls. Representative 

results from six devils are shown in Figure 3.2.  
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Figure 3.1. In vitro cellular cytotoxicity responses of DFTD infected wild devils against 

DFTD tumour cells.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from DFTD 
diseased Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent cytotoxicity 
values at mononuclear cell: tumour cell ratios of 50:1 to 6:1 are presented for mononuclear cell 
samples from eight diseased Tasmanian devils (Dd 1 - Dd 8). The cytotoxicity responses of two 
healthy devils, one from a wild DFTD affected population (Wd 1) and one living in captivity (Cd 1), 
and one captive devil that formed a cytotoxic response against DFTD after vaccination (positive 
control) are also shown. The statistical difference between the responses formed by the DFTD 
diseased Tasmanian devils the healthy devils were assessed using F Tests, with a value of P<0.05 
classified as significant and marked with an asterisk (*). 
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Figure 3.2. Antibody responses of DFTD infected wild devils against DFTD tumour 

cells.  

Serum antibody levels of six wild DFTD infected Tasmanian devils (Dd 1 – Dd 13) were analysed 
using flow cytometry. Samples were compared to the levels of DFTD antibody in the serum of 
three naive captive devils (Cd 14, Cd 16 and Cd 17), which are represented by the solid purple 
curves in each panel. The responses of individual diseased devils are shown using coloured 
histogram outlines. 
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3.2.2 Functional cytotoxicity and antibody responses occur against foreign 

tumour cells in Tasmanian devils 

The failure of Tasmanian devils to produce immune responses against DFTD tumour cells may be due 

to an intrinsic inability to develop anti-tumour immunity. To examine the ability to mount cytotoxic 

responses, four Tasmanian devils were immunised with a xenogeneic tumour cell line, human K562 

(2.6.1.1). 

Four Tasmanian devils were injected subcutaneously with human K562 cells and lymphocyte 

cytotoxicity was measured 14 days after each dose using the chromium release cytotoxicity assay 

(2.1.7). No spontaneous cytotoxicity was observed in samples from any of the four devils prior to 

immunisation (Fig. 3.3). One of the four devils formed a weak but statistically significant cytotoxic 

response after one K562 cell immunisation (Fig. 3.3a). After a second dose, three of the four devils 

formed clear cytotoxic responses, all of which were statistically significant compared to the levels of 

cytotoxicity prior to immunisation (Fig. 3.3a, e and g). One devil did not form a cytotoxic response 

(Fig. 3.3c).  

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against K562 tumour cells and the fluorescence profile was compared to pre immune 

levels as a baseline (2.8.2). None of the four devils produced antibody after the first dose of K562 

cells. However, all four devils formed strong antibody responses after two doses as the fuorescence 

profile shifted to the right along the x axis, indicating an increase in bound serum antibody (Fig. 3.3 

b, d, f and h). 

To provide evidence for the formation of long-lasting responses after immunisation of Tasmanian 

devils, the lymphocyte cytotoxicity responses of two animals that had been previously immunised 

against K562 cells were measured several months after the final dose (2.7.1). Four months after the 

final injection with K562 cells, one devil produced a strong cytotoxic response against K562 (Fig. 

3.4a). This response was similar in intensity to the response after the second K562 immunisation and 

was statistically different to the level of cytotoxicity before immunisation. The other devil showed a 

low level of cytotoxicity which was detectable only at the highest effector: tumour cell ratio (Fig. 

3.4b). When a boost of K562 cells was given, both devils produced strong cytotoxicity responses 

within seven days, which were greater than those previously formed against the second dose of 

K562 tumour cells (Fig. 3.4). 
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Figure 3.3. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against live K562 tumour cells in Montanide adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from four 
immunised Tasmanian devils with radioactively labelled K562 cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The 
statistical difference between the pre immune responses of each devil and the cytotoxicity formed 
after each dose was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum K562 antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry. 
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Figure 3.4. Memory cytotoxicity responses of devils previously immunised against live 

K562 tumour cells in Montanide adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from two 
immunised Tasmanian devils with radioactively labelled K562 cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown for pre 
immune, post dose 2 and four months post dose 2 samples. The statistical difference between the 
pre immune responses of each devil and the cytotoxicity formed four months following the second 
immunisation was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum K562 antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry.  
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observed prior to immunisation (Fig. 3.5). Neither devil formed a cytotoxic response after the first or 

second immunisation with K562 cells. The assay was performed at a higher ratio for the third 

immunisation. After the third dose of irradiated K562 cells one devil produced a cytotoxicity 

response at effector: tumour cell ratios of 50 and 100:1 (Fig. 3.5a) and the other at a ratio of 100:1 

only (Fig. 3.5c).  

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against K562 tumour cells and the fluorescence profile was compared to pre immune 

levels as a baseline (2.8.2). Neither devil produced an antibody response after the first dose of 

irradiated K562 cells. However, both devils showed evidence for an antibody response after the 

second dose, (Fig. 3.5b and d). These responses did not increase after a third dose of K562 cells. 

3.2.3 Natural Killer cells are not directly responsible for the killing of K562 

cells by Tasmanian devil mononuclear cells 

The absence of MHC I on K562 cells should make them targets for NK cell cytotoxicity. Distinguishing 

characteristics of NK cells include innate cytotoxicity against MHC null cells and the capacity to 

develop rapid cytotoxic responses. Therefore, these characteristics were analysed in the 

mononuclear cells of K562 immunised Tasmanian devils to determine if NK cells were responsible for 

the killing. NK cell functional assays are classically performed over four-hour time periods to 

determine the capacity for rapid killing of target cells [386]. To further analyse the role of NK cells in 

anti K562 cytotoxicity, short length (4 hour) cytotoxicity assays were performed using K562 cells and 

the MNC from immunised Tasmanian devils (2.7.2). No evidence for rapid, NK like killing of K562 

cells was observed within these assays (Fig 3.6a). These results suggested that the effector cells in 

the anti K562 responses were not behaving in the characteristic manner of NK cells. 

Basic specificity assays, in the form of “Bystander Killing”, were performed using K562 cells and Yac-1 

cells, a MHC I null mouse tumour line, for 18 hours. Bystander killing of radioactively labelled Yac-1 

cells was examined in a mixture with unlabelled K562 cells, and specificity for each cell line was 

examined separately using standard chromium release assays (2.7.1). No killing was observed in the 

Yac-1 sample or the mixture (Fig 3.6b). However, the mononuclear cells from immunised devils 

formed strong specific responses against K562 cells. This result demonstrated that some degree of 

priming against K562 had occurred.  
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Figure 3.5. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against irradiated K562 tumour cells in Montanide adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from two 
immunised Tasmanian devils with radioactively labelled K562 cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The 
statistical difference between the pre immune responses of each devil and the cytotoxicity formed 
after each dose was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum K562 antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry.  
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Figure 3.6. Tumour cell line specificity and short length NK cell cytotoxicity assays in 

an immunised Tasmanian devil.  

NK cell cytotoxicity assays were performed by culturing mononuclear cells from two immunised 
Tasmanian devils with radioactively labelled K562 cells for 18 hours. Specificity assays (bystander 
killing) were performed using chromium release cytotoxicity assays containing mononuclear cells 
from an immunised Tasmanian devil with radioactively labelled Yac-1 cells, K562 cells or a mixture 
of radioactively labelled Yac-1 and unlabelled K562 cells for 18 hours. The statistical difference 
between the two cell populations was assessed using F Tests, with a value of P<0.05 classified as 
significant and marked with an asterisk (*).  
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3.2.4 Immunisation against irradiated DFTD cells does not consistently induce 

cytotoxicity and antibody responses in Tasmanian devils 

Given the evidence that Tasmanian devils can produce functional cytotoxicity and antibody 

responses against tumour cells, immunisation with killed DFTD cells could potentially induce 

protective immune responses. Tasmanian devils were injected with sequential doses of irradiated 

DFTD cells (2.6.1.2) to assess the formation of anti-tumour responses against DFTD. 

 

 

Figure 3.7. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against irradiated DFTD tumour cells in Montanide adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from two 
immunised Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The 
statistical difference between the pre immune responses of each devil and the cytotoxicity formed 
after each dose was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum DFTD antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry.  

 

 

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

Pre immune

Dose 1

Dose 2

Dose 3

Dose 4

Fluorescence Intensity

C
e
ll

 C
o

u
n

t

40

200

160

120

80

0

100 101 102 103 104

a.

c.

b.

d.

*

120

200

160

40

0

80

100 101 102 103 104

P
e
rc

e
n

t 
C

y
to

to
x
ic

it
y

Mononuclear: tumour cell ratio



 

75 
 

Two healthy captive Tasmanian devils were injected subcutaneously with irradiated DFTD cells and 

cytotoxicity was measured 14 days after each dose using the chromium release cytotoxicity assay 

(2.7.1). Prior to injection there was no evidence for spontaneous cytotoxicity against the DFTD cells 

(Fig. 3.7). After four injections, one devil did not produce cytotoxic responses after any dose (Fig 

3.7a). The second devil produced very weak but statistically significant cytotoxic responses against 

DFTD cells after doses 1 and 4 (Fig 3.7c). 

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against DFTD tumour cells and the fluorescence profile was compared to pre immune 

levels as a baseline (2.8.2). There was no evidence of antibody response in either devil after the first 

dose (Fig. 3.7b and d). After the second dose, one devil showed a slight increase in fluorescence 

intensity (Fig. 3.7d), indicating a small increase in antibody level. The second devil showed no 

evidence of antibody development. The weak response in the previously responsive devil remained 

constant after the third injection but decreased after the fourth dose. The unresponsive devil 

showed no change after either the third or fourth injection. 

3.2.5 Immunisation against irradiated DFTD cells in Montanide adjuvant 

supplemented with CpG DNA induces variable levels of cytotoxicity but no 

antibody development 

Altering the adjuvant used in irradiated DFTD cell immunisations may increase the responses 

produced against the tumour cells. Adjuvants supplemented with immunomodulatory molecules 

such as CpG oligonucleotides, immunisation preparations containing accessible MHC I molecules and 

heat shock proteins or the cross-presentation inducing agent ISCOMATRIX® were used to determine 

if repeated exposure to killed DFTD cells could induce cytotoxicity and antibody responses against 

the tumour cells. 

Four devils were injected three times with irradiated DFTD cells in Montanide adjuvant 

supplemented with synthetic oligodeoxynucleotides (ODN) containing repeated CpG motifs (2.6.1.3). 

Cytotoxicity responses were measured 14 days after each dose using the chromium release 

cytotoxicity assay (2.7.1). Prior to injection there was no evidence for spontaneous cytotoxicity 

against DFTD cells (Fig. 3.8). After one dose, all devils showed evidence for a moderate level of 

cytotoxicity (Fig. 3.8a, c, e and g).  
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Figure 3.8. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against irradiated DFTD tumour cells in CpG Montanide adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from four 
immunised Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 50:1 to 6:1 are shown. The statistical 
difference between the pre immune responses of each devil and the cytotoxicity formed after 
each dose was assessed using F Tests, with a value of P<0.05 classified as significant and marked 
with an asterisk (*). Serum DFTD antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry.  
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After a second dose, only one of the four devils produced a moderate cytotoxicity response that was 

statistically significant compared to the level prior to injection (Fig.  3.8a). No other devil formed a 

clear cytotoxic response after the second dose (Fig. 3.8c, e and g). After a third injection, the 

responsive devil maintained the cytotoxicity response, which retained statistical significance (Fig. 

3.8a). One other devil formed a weak cytotoxicity response after the second dose, although this was 

not statistically significant (Fig. 3.8e). The third devil that received a third dose of irradiated DFTD 

cells in Montanide adjuvant with CpG oligonulceotides did not produce a cytotoxic response after 

the third dose (Fig. 3.8g). 

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against DFTD tumour cells and the fluorescence profile was compared to pre immune 

levels as a baseline (2.8.2). There was no clear evidence of antibody development in any of the four 

devils injected with DFTD cells and CpG Montanide adjuvant, even after three doses (Fig. 3.8b, d, f 

and h). 

3.2.6 Sonication of DFTD cells increases the immunogenicity of DFTD cell 

preparations but does not induce antibody development 

The absence of MHC I molecules on the surface of DFTD cells [285] could result in a failure to induce 

CTL responses. However, despite a decreased surface expression, MHC I protein may be present in 

the cytoplasm of DFTD cells in which case immunisation preparations containing lysed cells may be 

more immunogenic. The presence of intracellular MHC I protein was determined using 

immunohistochemistry. A mouse anti-Tasmanian devil MHC I protein IgG antibody was developed by 

our collaborators at the University of Southern Denmark. Immunohistochemistry with this antibody 

was performed on cytospins of cultured DFTD cells (2.9.2). MHC I protein staining was present in the 

cytoplasm of cells in DFTD cytospin samples, with a punctate pattern and little nuclear localisation, 

consistent with limited membrane expression (Fig. 3.9). 

The effect of exposing the molecules to the immune system of Tasmanian devils was assessed using 

immunisations with DFTD cells lysed by sonication (2.6.1.4). An additional advantage of this of lysis 

technique was the potential upregulation of chaperone protein expression, including highly 

immunogenic heat shock proteins, in the sonicated samples. Due to limited access to research 

animals the following experiments were performed in two Tasmanian devils that had been 

previously injected with killed DFTD cells. The two devils were rested for more than 12 months and 

their cytotoxicity responses against DFTD cells were tested (this was called ‘Pre Immune 2’) at which 

time both devils showed no evidence of cytotoxicity against DFTD cells (Fig. 3.10). The devils were 
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injected with sonicated DFTD cells in Montanide adjuvant supplemented with CpG oligonucleotides. 

Cytotoxicity responses were measured 14 days after each dose using the chromium release 

cytotoxicity assay (2.7.1). After one dose of sonicated DFTD cells in CpG Montanide adjuvant, both 

devils produced evidence for moderate cytotoxicity responses, which were statistically significant to 

the level prior to injection (Fig. 3.10a and c). After the second dose, one devil produced a weak 

cytotoxic response but the response of the other increased. Both responses retained their statistical 

significance (Fig. 3.10c). 

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against DFTD tumour cells and the fluorescence profile was compared to pre immune 2 

levels as a baseline (2.8.2). There was no clear evidence for antibody development in one devil, even 

after three doses (Fig. 3.10b). The serum antibody level of the devil that showed evidence of 

cytotoxicity increased slightly after dose 1 and it remained at this level after doses 2 and 3 (Fig. 

3.10d), providing evidence for a weak antibody response.  

ISCOMATRIX® adjuvant can promote cytotoxicity responses through cross-presentation of protein 

antigens to cytotoxic T lymphocytes by dendritic cells [317]. Two Tasmanian devils were injected 

with a preparation containing DFTD protein extracts in ISCOMATRIX® adjuvant (2.6.1.5) and 

cytotoxicity was measured 14 days after each dose using the chromium release cytotoxicity assay 

(2.7.1). Prior to injection there was no evidence for spontaneous cytotoxicity in either devil (Fig. 

3.11). Neither devil showed evidence of a cytotoxic response after any dose of DFTD protein (Fig. 

3.11a and c).  

3.2.7 Immunisation with DFTD protein and ISCOMATRIX® adjuvant and other 

immune agonists does not induce cytotoxicity responses or antibody 

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against DFTD tumour cells and the fluorescence profile was compared to pre immune 

levels as a baseline (2.8.2). There was no evidence of antibody development in one devil after three 

doses (Fig. 3. 11b) but there appeared to be a slight increase in the serum antibody of the other after 

the second dose (Fig. 3.11d). This response increased slightly again after dose 3. 

The activity of dendritic cells can be increased by stimulation with activating ligands such as Flt 3 

ligand and Poly I:C. Two Tasmanian devils were injected with a preparation containing DFTD protein 

extracts in ISCOMATRIX® adjuvant supplemented with Flt 3 ligand and Poly I:C (2.6.1.5) and 

cytotoxicity was measured 14 days after each dose using the chromium release cytotoxicity assay 
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(2.7.1). Prior to injection there was no evidence for spontaneous cytotoxicity in either devil (Fig. 

3.12). Neither devil showed evidence of a cytotoxic response after any dose (Fig. 3.12a and c).  

Serum collected 14 days after each dose was assessed using flow cytometry for the presence of 

antibodies against DFTD tumour cells and the fluorescence profile was compared to pre immune 

levels as a baseline (2.8.2). There was no evidence of antibody development in either devil, even 

after three doses (Fig. 3.12b and d). 

 

 

Figure 3.9. Distribution of MHC I protein in DFTD cell cytospins.  

Immunohistochemistry was performed on cytospins of C5065 DFTD cells using antibodies for 
Tasmanian devil MHC I. Images were taken at 400x and 1000x magnification. The brown staining 
indicates cell regions expressing MHC I protein. The distribution of MHC I protein appeared to be 
intracellular, a pattern characterised by the absence of staining across the nucleus and no 
accumulation at cell borders. Panels a. and b. show a samples labelled with Mouse anti Tasmanian 
devil MHC I IgG and panels c. and d. show samples labelled with mouse IgG as a negative control. 
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Figure 3.10. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against sonicated DFTD tumour cells in CpG Montanide adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from two 
immunised Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The 
statistical difference between the pre immune responses of each devil and the cytotoxicity formed 
after each dose was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum DFTD antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry. 
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Figure 3.11. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against DFTD tumour cell protein in ISCOMATRIX® adjuvant.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from two 
immunised Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The 
statistical difference between the pre immune responses of each devil and the cytotoxicity formed 
after each dose was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum DFTD antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry.  
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Figure 3.12. Cellular cytotoxicity and antibody responses of healthy captive devils 

immunised against DFTD tumour cell protein in ISCOMATRIX® adjuvant supplemented 

with Flt 3 ligand and Poly I:C.  

Chromium release cytotoxicity assays were performed by culturing mononuclear cells from two 
immunised Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent 
cytotoxicity values at mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The 
statistical difference between the pre immune responses of each devil and the cytotoxicity formed 
after each dose was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). Serum DFTD antibody levels of the immunised Tasmanian devils were 
analysed using flow cytometry. 
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3.3 Discussion 

Devil Facial Tumour Disease (DFTD) is one of two examples of a naturally occurring transmissible 

cancer. There is no evidence for disease resistance among wild devils [1]. The disease rapidly 

progresses after infection, with death occurring within only a few months after tumour appearance 

[269]. The transmissible nature of the disease suggests that the tumour cells are capable of evading 

the host immune response [1]. Histology has provided evidence for a lack of anti-tumour activity 

against DFTD, with low levels of lymphocyte infiltration in only seven percent of samples [269]. The 

experiments discussed in this chapter sought to confirm the lack of immune response against DFTD 

using functional studies of lymphocyte cytotoxicity and antibody production against DFTD tumour 

cells. Additionally, the production of functional anti-tumour immune responses in Tasmanian devils 

was examined as their absence could provide a reason for DFTD transmission. Furthermore, the 

presence of functional cytotoxicity and antibody responses in Tasmanian devils would be crucial for 

the use of an immunological intervention, such as a immunisation, against DFTD. 

The results presented in this chapter provided evidence that wild Tasmanian devils with DFTD fail to 

mount a specific anti-tumour immune response against cells of the disease. This suggests that, 

despite prolonged exposure to the disease, the immune system fails to identify and eliminate the 

tumour cells. This finding was in good agreement with the immunohistochemical evidence of low 

lymphocyte presence within DFTD tumours [269]. This low level of lymphocyte infiltration would not 

result in cytotoxicity. One potential explanation for the lack of immune activity against DFTD 

tumours in Tasmanian devils is an inability to mount specific anti-tumour responses. Work in our 

laboratory has previously shown that Tasmanian devils have a functional immune system, with a 

normal range of cells and the capability of phagocytic responses and mitogen induced lymphocyte 

proliferation [1,2]. However, the formation of anti-tumour responses, including cytotoxicity, against 

tumour cells had not been assessed.  

Cytotoxic lymphocytes are important cellular mediators of anti-tumour immunity in other mammals 

[387] but have yet to be identified in Tasmanian devils. These cells require prior exposure to their 

targets, as well as co-stimulatory signals, before they form a response and have the capacity to 

produce lasting ‘memory’ responses [6]. Since these cells fail to form responses against DFTD under 

normal conditions, studies to determine their functional presence in Tasmanian devils were clearly 

warranted. The approach taken in this study was to immunise Tasmanian devils with xenogeneic 

tumour cells from the human erythroleukaemia K562 line [388] in order to induce the development 

of anti-tumour cytotoxic responses. Antibody and cell mediated cytotoxicity was assessed to obtain 

evidence of an anti-tumour response. All Tasmanian devils immunised with K562 cells developed 
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cytotoxic responses and specific antibody against the cell line. The responses against K562 cells 

occurred after the second immunisation with K562 cells, thus suggesting a requirement for prior 

exposure to the target cells, which is a defining characteristic of cytotoxic T lymphocyte cytotoxicity. 

As the assays were performed fourteen days after the first immunisation, it is possible there may 

have not have been a sufficient time for the responses to fully develop before a second dose was 

given. This may have skewed the interpretation of the data to suggest that two doses, rather than a 

longer time period for reaction, were required. One piece of evidence supporting this interpretation 

was the development of a weak response in a single devil after the first immunisation. If the trial was 

repeated, measurements could be taken at day 21 to further examine the timing of the responses 

and a requirement for a second dose of K562 cells. In addition to the requirement of multiple doses, 

there were no responses observed in short-length assays. There was also no evidence for 

spontaneous activity or by-stander killing, suggesting some specificity for the target cell type. These 

characteristics collectively supported the possibility that T lymphocytes were likely to be responsible 

for the cytotoxic responses observed against K562 cells.  

The development of long-lasting cytotoxicity against K562 cells and evidence of rapid generation of 

responses upon rechallenge is consistent with the formation of immunological memory.  Some 

animals produced long-lasting responses, with cytotoxicity still evident after several months, and 

mounting rapid responses following challenge with a boost of tumour cells. The K562 immunisation 

experiments therefore provided the first evidence for the development of long lasting, specific 

responses against tumour cells in Tasmanian devils. However, the formation of memory responses 

was only analysed in Tasmanian devils immunised against live cells as the two devils that received 

irradiated cell injections became unavailable for vaccine research soon after the completion of the 

trial; one died suddenly of a suspected viral infection, the other was required for breeding. 

Nevertheless, since the formation of memory responses in Tasmanian devils occurs, it is possible 

that a successful DFTD vaccine could induce the same type of response.  

Considering Tasmanian devils are capable of forming cytotoxic responses, it should be possible to 

induce an immune response against DFTD. However, as inoculation with live DFTD tumour cells has 

the potential to establish the disease [275] it was necessary to use killed cells for immunisation. 

High-dose γ-irradiation is a simple and widely used method for inducing cell death for vaccination 

[389]. This method has the additional advantages of inducing the upregulation of immune proteins 

such as MHC I [303] and cell death molecules such as Fas [390] in tumour cells. Use of radiation 

would also largely preserve the ultrastructure of the tumour cell to target immune responses against 

the extracellular proteins found in living cells. The immunisation of Tasmanian devils with K562 cells 
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provided a useful model to assess the effect of this treatment on tumour cell immunogenicity. The 

reactions against irradiated K562 cells required one additional dose of tumour cells for induction of 

cytotoxicity and antibody responses. This result suggested that rather than increasing the intensity 

of immune responses, irradiation of DFTD cells slightly decreased the intensity of the responses 

formed compared to viable cells. Alternatively, the decreased immune response could be explained 

by the absence of actively growing cells in irradiated cell immunisations, limiting the expression of 

immunogenic factors associated with tumour cell proliferation. Even though irradiated cells were 

not as effective, an immune response was still generated, suggesting that induction of immune 

responses against irradiated DFTD cells may still be possible. 

Following the successful induction of anti-tumour responses against irradiated K562 cells, the 

development of cytotoxicity and antibody responses against DFTD was assessed using multiple 

injections of irradiated cells in the presence of Montanide adjuvant. One of the two devils injected 

with irradiated DFTD cells showed evidence of a weak but statistically significant cytotoxic response 

but no evidence for antibody.  With no prior studies assessing cytotoxicity against DFTD, it was 

difficult to relate statistical significance to capacity to protect against the disease. Therefore, 

because the one cytotoxicity response formed against these immunisations was clearly weaker than 

those induced against the model cell line K562 and there was no evidence of concurrent antibody 

development as observed in previous trials it is unlikely to be protective against DFTD. Consequently, 

strategies were required to increase the immunogenicity of the immunisations. 

Immune responses against irradiated DFTD cells may be improved through alteration of the adjuvant 

used in the preparations. Many studies have reported increased cellular cytotoxicity with the use of 

adjuvants supplemented with synthetic nucleotides containing areas rich in cytosine and guanine 

motifs (CpG oligonucleotides). These are more common in the genomes of prokaryotes than in 

mammalian DNA [52]. They provide pathogen-associated molecular patterns (PAMPs) which 

contribute to the activation of innate immune responses through stimulation of Toll-like Receptor 

(TLR) 9 [51]. Although the primary receptors of CpG DNA occur in the innate immune system, the 

molecules have a remarkable range of effects on the effector cells of specific immunity. The 

presence of CpG oligonucleotides promotes the growth, maturation and activation of antigen-

presenting cells (APC), resulting in the induction of an inflammatory, Th1 type, immune response 

[55,142,391]. CpG oligonucleotides are also mitogenic for T and B lymphocytes. They can stimulate 

antibody production, increase CTL cytotoxicity and activate Natural Killer (NK) cells [52,54,56]. The 

efficacy of immunisations containing CpG oligonucleotides has been demonstrated against a variety 

of pathogens. These include the malaria parasite [309], the hepatitis C virus [392] and the bacterium 
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Chlamydia trachomatis [310]. Cancer immunisation trials, where immune responses against well 

known cancer antigens such as NY-Eso-1 were induced, have also been promising [292]. Therefore, 

supplementation of killed DFTD cell immunisations with CpG oligonucleotides was an attractive 

strategy for increasing their effects. 

The addition of CpG oligonucleotides appeared to increase the immunogenicity of the irradiated 

DFTD cell preparation. All devils immunised with irradiated cells in the presence of CpG adjuvant 

developed evidence for a cytotoxic response after one dose. The immunisation preparation was 

clearly not ideal for immunisation against DFTD cells, as only one of the four devils maintained a 

significant level of cytotoxicity after further doses of DFTD cells. This response, although it only 

occurred in one animal, appeared to be real as it increased in intensity with each following dose. This 

was an extremely important finding, which provided the first evidence that the immune systems of 

Tasmanian devils are able to form cytotoxic responses against DFTD cells following immunisation.  

However, since there was no antibody development in any devil, we were not confident that even 

the moderate cytotoxicity response observed would be protective against DFTD. Therefore, since 

induction of cytotoxicity against DFTD was possible, perhaps a more immunogenic immunisation 

would increase the capacity for responses. Manipulation of the cell preparation, rather than the 

adjuvant, could increase the immunogenicity of the immunisation preparations. 

An ideal protein target for generation of an immune response against DFTD would be Major 

Histocompatibility Complex (MHC) class I molecules. In the majority of vertebrates these proteins 

are responsible for the presentation of healthy ‘self’ antigen for surveillance by CTL. They are highly 

polymorphic and the arrangement of the genes in this protein is essentially unique to each individual 

[393]. Since all cases of DFTD are derived from a single tumour in one devil [271], the MHC proteins 

of all tumours should be identical. Molecular studies of Tasmanian devil MHC I genes have provided 

strong evidence for an identical MHC type in all DFTD tumours which differs from that of the host 

[270]. As the presence of foreign MHC I in DFTD tumours should activate a CTL response in the host 

devil, forcing the immune system of a naive animal to identify the DFTD tumour MHC I protein could 

induce a lasting immune response against the disease. T lymphocytes of Tasmanian devils do not 

infiltrate DFTD tumours [269] nor do they respond against the tumour cells either during prolonged 

disease or following immunisation. Thus, there may be an abnormality in the MHC I protein. Studies 

performed in our lab and by our colleagues at the University of Cambridge suggest that DFTD cells 

fail to express MHC I protein at the cell surface [285,297]. This would prevent the induction of a CTL 

response against the tumour cells. However, the MHC I protein appeared to be present in the 
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cytoplasm of the tumour cells. Therefore, immunisations containing lysed DFTD cells could 

potentially induce stronger immune responses through exposure to intracellular MHC I.  

A common method for lysis of cells for immunisation is treatment with ultrasound, or sonication. 

This technique has the additional advantage of inducing the expression of chaperone proteins 

associated with environmental stressors, including heat shock proteins (HSP) [304]. Many of the 

common HSP have been widely investigated as molecules of interest for cancer vaccination or 

therapy as they are upregulated in many types of cancer cells [Reviewed in [204]]. They are also 

highly immunogenic and can induce effective specific responses through the recruitment of the host 

immune system [394,395]. Consequently, with the exposure of intracellular MHC I and other 

immunogenic proteins and the potential for upregulation of HSP, the use of a preparation containing 

sonicated DFTD cells was an alternative option for immunisation of Tasmanian devils. The adjuvant 

chosen was Montanide supplemented with CpG oligonucleotides, as the evidence of a response 

after the first dose in previous trial was encouraging.  

Due to a limited number of available research animals, the two devils injected with heat-treated 

sonicated cells in this study had been previously immunised with killed DFTD cells. They were, 

however, rested for a prolonged period of time and their cytotoxicity and antibody responses 

against DFTD cells were reassessed and found to be at low levels consistent with other pre immune 

responses. Both devils immunised with sonicated cells produced evidence of a cytotoxic response 

after the first immunisation. The intensity of responses in one devil, like the functional response 

observed in the previous trial, continued to increase after the subsequent doses of DFTD cells. These 

results provided further evidence that Tasmanian devils can be induced to form cytotoxic responses 

against DFTD. One substantial difference between sonicated cells and the irradiated cells used in the 

previous trial is exposure to intracellular proteins rather than those expressed only on the cell 

surface. Neither devil immunised with sonicated cells showed evidence for antibody development 

against intact cells, suggesting that responses were not directed against surface antigens. Such a 

response would be unlikely to provide protection against DFTD tumours where amounts of available 

intracellular protein would be low. The possibility of a bias in these results, caused by the previous 

DFTD cell immunisations cannot be discounted. Therefore, although the results of this trial were 

encouraging, immunisation of more Tasmanian devils with this preparation will be required to verify 

its effectiveness. 

The ability to induce a lasting memory response is a vital characteristic of a successful vaccine. 

Several alternative immune pathways can lead to the development of cytotoxicity and memory 

against tumours if normal CTL responses are not activated. One such pathway is cross-presentation, 
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a phenomenon in which antigen-presenting cells (APC) can present foreign antigen on MHC I 

molecules in addition to MHC II. This response plays an important role in anti-tumour immunity 

because, even though tumours express foreign cellular antigens, they may lack the co-stimulatory 

molecules required to fully activate CTL responses. Cross presentation of antigen by APC results in 

direct activation of CTL through simultaneous presentation of antigen and costimulation [6]. The 

recently developed adjuvant ISCOMATRIX® promotes cross presentation of protein directly to CTL 

[317]. Therefore, we reasoned that immunising Tasmanian devils with DFTD protein extracts and 

ISCOMATRIX® could result in an upregulation of cross presentation and increased cytotoxicity. 

However, immunisation with the combination of ISCOMATRIX® adjuvant and DFTD protein did not 

induce cytotoxicity or antibody responses. It is also possible to increase the function of APC, 

especially dendritic cells (DC) through stimulation with innate activating molecules. Examples include 

Flt 3 ligand, a hematopoietic cytokine and growth factor, and polyriboinosinic polyribocytidylic acid 

(Poly I:C), a synthetic double-stranded RNA  analogue, which are capable of inducing proliferation 

and increasing activity of DC [312,313,314]. These ligands are also capable of concurrently activating 

NK cell cytotoxicity, making them useful for supplementation of immunisation adjuvants. However, 

addition of these factors to DFTD protein and ISCOMATRIX® immunisations of Tasmanian devils still 

did not increase the responses formed. 

The results presented in this chapter provide evidence that Tasmanian devils have functional anti-

tumour responses. Some devils showed evidence for cytotoxicity against DFTD cells, although 

immunisation against killed DFTD cells resulted in poor immune responses in the majority of devils. 

There were also striking differences between the responses formed against K562 and DFTD cell 

immunisations. The foreign cell line appeared to require two doses to elicit a response and had all 

the hallmarks of CTL cytotoxicity. However, the majority of significant responses formed against 

DFTD cells occurred after the first dose and were not induced after later doses. These rapid, short 

duration responses may have been formed by an innate cell subset, potentially NK cells, and would 

be unlikely to result in long-lasting immunity. In addition to poor cytotoxicity responses, very few 

devils immunised with DFTD cells showed evidence for any development of antibody. The flow 

cytometry assay used detected only small increases in some devils. The potential effect of these 

responses could have been analysed by determining the statistical significance of the mean 

fluorescence intensity values of individual samples from those of the pre immune sample. However, 

as these immunisation experiments were limited to a small sample size, this type of analysis was 

likely to result in an overestimation of significance, rather than showing a limited response. 

Consequently, the likelihood of a functional response was assessed qualitatively in this data, and few 

animals formed sufficient antibody levels to consider the responses protective.   



 

89 
 

As previously discussed, DFTD cells fail to express MHC I protein on the cell surface. NK cells are 

innate cytotoxic lymphocytes capable of killing target cells without the presence of MHC I [6]. If 

DFTD tumour cells completely downregulate surface MHC I expression, NK cells should kill DFTD cells 

under normal conditions. However, there is no evidence for spontaneous cytotoxicity in naive or 

diseased Tasmanian devils, suggesting that NK cells are not functional against the tumour cells.  

In summary, although Tasmanian devils do not form immune responses against DFTD when they 

harbour the tumours, the species is capable of producing functional anti-tumour responses against 

foreign cells. Additionally, immunisation with killed DFTD cells has provided the first evidence for 

lymphocyte cytotoxicity responses against DFTD tumour cells in some Tasmanian devils. However, 

the reactions to the DFTD immunisations were highly variable and only immunisation with sonicated 

cells and CpG oligonucleotides resulted in promising responses against the disease. Clearly, more 

immunisation trials with this preparation and new adjuvant combinations are warranted. An 

alternative strategy for developing a vaccine against DFTD would be to investigate the other immune 

pathways which contributed to the response against K562 cells with a view to manipulating the 

Tasmanian devil’s immune response against DFTD. 
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Chapter 4 - Mechanisms of cytotoxicity and their effector cells in 

Tasmanian devils 

4.1 Introduction 

Despite the evidence for functional immune responses, immunisation to induce a response against 

DFTD has been unsuccessful in the majority of Tasmanian devils, even after repeated exposure to 

killed cells. This may have been due to the lack of MHC I on the surface of the tumour cells and the 

inability to induce a cytotoxic T lymphocyte (CTL) response. Since this major anti-tumour response 

does not appear to be present against DFTD cells in Tasmanian devils, strategies to induce immune 

responses should target other cell types and cytotoxicity pathways that do not rely on MHC I 

expression on DFTD tumour cells. The immune response against K562 cells would provide a good 

model to study responses against MHC I negative cells [388]. Immunisation with K562 would 

therefore allow the characterisation of immune responses against MHC I negative cells that could 

potentially be harnessed for responses against DFTD cells. 

The peripheral blood mononuclear cells (MNC) used in the in vitro cytotoxicity assays must contain a 

population of cells which have the capacity to kill MHC I negative K562 cells. Previous studies 

performed in our laboratory have examined the different types of white blood cells in peripheral 

blood [2] but the cell types present in MNC suspensions isolated from Tasmanian devils has not been 

thoroughly analysed. Therefore, the first aim of this chapter was to analyse the composition of the 

MNC fractions in Tasmanian devil peripheral blood, using immunocytochemistry. This would identify 

the potential effector cells of the response against MHC I negative K562 cells. The cell types with the 

capacity to mount cytotoxic responses, such as T lymphocytes and Natural Killer (NK) cells, were of 

particular interest. T lymphocytes have previously been identified in Tasmanian devils using 

immunohistochemistry with a cross-reactive antibody to CD3ε [264]. However, although NK cells 

play an important role in the anti-tumour responses of other mammals, they have not been 

evaluated in Tasmanian devils. The second aim of this chapter was to identify NK cells in 

Tasmanian devils. 

Identification of pathways capable of killing these MHC I negative cells may provide targets for 

manipulation against DFTD and direct future strategies for vaccine or therapy development. 

Therefore, in addition to determining the immune effector cell populations present in the 

experiments, it was important to analyse the mechanisms responsible for the cytotoxicity responses 

against K562 cells in Tasmanian devils. Therefore, the third aim of this chapter was to determine the 

mechanism of killing in the MHC I negative K562 cell immunisations.  
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The K562 cells used for immunisations described in the previous chapters were xenogeneic cells. 

Thus, responses to xenogeneic tissues may provide clues as to the nature of the effector cells. NK 

cells are usually a prominent effector type in responses against foreign cells, as the MHC I molecules 

involved are either disparate or, as in the case of K562 cells, missing. The cytotoxicity responses 

formed by the Tasmanian devils immunised with K562 cells were not typical of NK cells, but 

resembled those of CTL. Prior immunisation was required to induce responses and there was no 

evidence for spontaneous killing of the cancer cells. Previous studies using a xenogeneic model have 

reported similar observations, including limited spontaneous NK cell cytotoxicity against xenogeneic 

cells and increased cytotoxicity following priming with target-cell specific antigen [396]. Thus, NK 

cells may still be candidates for the cytotoxicity responses against K562 cells. The authors of this 

study also found that the NK cells could kill the foreign cells in the presence of target cell-specific 

antibody [396]. Since all devils immunised with K562 cells produced strong antibody responses, 

antibody-dependent cell mediated cytotoxicity (ADCC) may be one candidate pathway for the 

responses against these tumour cells. 

A variety of innate immune cell types can form ADCC responses, including NK cells, monocytes, 

eosinophils and neutrophils. Only MNC types, such as monocytes and NK cells, would be present in 

the populations used in these experiments. Basic techniques for cell separation, such as adherence 

to nylon wool or plastic, could be used to enrich or deplete certain cell types from MNC suspensions 

for use in functional assays. The serum from immunised Tasmanian devils, which would contain anti-

K562 antibody, could also be added to chromium release cytotoxicity assays to determine if ADCC 

responses can target MHC I negative tumour cells. 

4.2 Results 

4.2.1 Immunocytochemistry analysis of peripheral blood mononuclear cell 

populations 

The fraction of T and B lymphocytes, monocytes and polymorphonuclear cells in MNC suspensions 

was assessed by immunocytochemistry of cytospins (2.9). As some of the procedures used involved 

the enrichment of cell types based on adherence, the proportions of different cell types in nylon 

wool non adherent cell and plastic non-adherent cell populations were also enumerated using 

immunohistochemsitry. In order to identify Tasmanian devil NK cells, both immunohistochemistry 

and Giemsa staining techniques were used (2.9).  
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Table 4.1. Percentages of individual cell types in Tasmanian devil peripheral blood 

mononuclear cell, nylon wool filtered and plastic non adherent cell populations analysed 

by immunohistochemistry 

 

4.2.1.1 Cell types present in total mononuclear cell suspensions 

T lymphocytes were identified with an antibody against an intracellular CD3ε epitope. The T 

lymphocytes of Tasmanian devils were similar in appearance to their human equivalent, with large 

round nuclei and scant cytoplasm. They were the most abundant cell type in the majority of 

samples, representing an average of 55% of the total MNC population (Table 4.1). CD3ε protein was 

strongly expressed in T lymphocytes in a distribution consistent with membrane association as the 

staining was evenly spread throughout the cell, and across the nucleus, and appeared to be stronger 

at the cell periphery (Fig. 4.1a). Some larger lymphocytes expressed lower levels of CD3. These may 

have represented naive lymphoblasts or Natural Killer T cells (Fig. 4.1a).  

Cell type Labelling Morphology Mean % presence ± Standard deviation 

 

  
Mononuclear 

Cells 

Nylon non 

adherent cells 

Plastic non 

adherent cells 

T lymphocyte CD3
+
 

Round nucleus, scanty 

cytoplasm 
55 ± 8 73 ± 7 76 ± 12 

B lymphocyte MHCII 
+
 

Round nucleus, scanty 

cytoplasm 
33 ± 8 9 ± 6 13 ± 4 

Monocyte MHCII 
+
 

Large cell, bean-shaped 

nucleus, abundant 

cytoplasm 

5 ± 3 4 ± 2 1 ± 1 

NK like CD3
-
/MHCII

-
 

Large lymphocyte, 

round nucleus, scanty 

cytoplasm,  

4 ± 1 5 ± 2 3 ± 2 

Neutrophil CD3
-
/MHCII

-
 

Large cell, multi-lobar 

or ring-shaped nucleus 
7 ± 5 13 ± 10 4 ± 3 
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Figure 4.1. Appearance and Immunohistochemistry labelling patterns of normal 

peripheral blood mononuclear cells from Tasmanian devils. 

Panel a: CD3 labelled MNC cytospins showing positive staining of T lymphocytes. Images were 
taken at 1000x magnification. Cells annotated with solid arrowheads represent T lymphocytes 
with normal morphology. Faintly stained cells annotated with open arrowheads are likely to be 
naive T lymphoblasts or NKT cells. 

Panel b: CD3 labelled mononuclear cell cytospins showing negative staining of neutrophils. Images 
were taken at 1000x magnification. Cells annotated with solid arrowheads represent neutrophils 
with normal morphology as large cells characterised by a multilobar or circular nucleus. 

Panel c: MHC class II labelled mononuclear cell cytospins showing positive staining of B 
lymphocytes. Images were taken at 1000x magnification. Cells annotated with solid arrowheads 
represent B lymphocytes with normal morphology. 

Panel d: MHC class II labelled mononuclear cell cytospins showing positive staining of monocytes. 
Images were taken at 1000x magnification. Cells annotated with solid arrowheads represent 
monocytes with normal morphology characterised as large, MHC II positive cells with round or 
bean-shaped nuclei. 
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Polymorphonuclear cells (neutrophils) were identified as large cells which had multi-lobar nuclei and 

did not express CD3ε or MHC II, (Fig. 4.1b). Although contamination with neutrophils was generally 

low when using histopaque gradient centrifugation, this cell type was found in all Tasmanian devil 

MNC samples. The majority of these contaminating neutrophils in the cytospins had ring-shaped 

nuclei, suggesting they were likely to be immature. Neutrophils comprised on average 7% of the 

total cell population. 

B cells were identified as lymphocytes which expressed MHC II. The distribution was consistent with 

a mainly cytoplasmic protein with strong expression outside, rather than across, the nucleus, and no 

accumulation at the cell periphery (Fig. 4.1c). This type comprised, on average, 33% of the MNC 

population in Tasmanian devils (Table 4.1). Monocytes in MNC samples also strongly expressed 

MHC II but could be distinguished from B lymphocytes as they were larger and had distinct bi-lobar 

nuclei (Fig. 4.1d). This cell type comprised, on average, 5% of the total MNC population (Table 4.1).  

4.2.1.2 Cell types in differentiated cell suspensions 

Filtration of MNC through nylon wool depleted B lymphocytes in the MNC suspensions, reducing 

their percentage to an average of 9% compared to 33% in total MNC suspensions.  Consequently, 

the percentage of T lymphocytes within the nylon non-adherent fractions increased, to an average 

of 73% (Table 1). Nylon wool filtration did not substantially affect the proportion of monocytes 

present in the cell suspensions indicating that, similar to other species, Tasmanian devil monocytes 

are nylon wool non-adherent. Nylon wool filtration increased the percentage of contaminating 

neutrophils in the population to an average of 13% (Table 1). However, there was substantial 

variation in neutrophil numbers between samples.  Several attempts were made to elute the nylon 

wool adherent cells from the columns. However, recovery was consistently poor, with low numbers 

and viability in each sample. Consequently, the cell populations present in the nylon adherent 

population could not be analysed. 

Plastic adherence substantially decreased the monocyte fraction to an average of 1% of the total 

population. The effect of plastic adherence on lymphocyte populations was similar to that of nylon 

wool, increasing T lymphocyte presence to an average of 76% and reducing B lymphocyte numbers 

to 13% (Table 1). The percentage of neutrophils increased slightly in plastic adherent cells compared 

to total MNC, with an average of 4%.  
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4.2.1.1 Evidence for the physical presence of Natural Killer-like cells in the 

peripheral blood of Tasmanian devils  

Natural Killer cells may be an important cytotoxic effector cell type in the response against both 

K562 cells and DFTD cells. However, the absence of specific markers has hampered efforts to identify 

this cell type in Tasmanian devils. In other species, NK cells can be histologically identified as large 

lymphocytes (compared to T or B cells) with prominent cytotoxic granules in the cytoplasm (large 

granular lymphocytes). Giemsa staining is commonly used to identify NK cells, as it can stain the 

acidic cytotoxic granules of NK cells. Therefore, the cytospins of Tasmanian devil MNC were Giemsa 

stained to provide further evidence for the presence of NK-like cells in Tasmanian devil peripheral 

blood. NK-like cells were defined as cells with a similar appearance to T or B lymphocytes but a 

larger diameter and the presence of azurophilic (darkly stained) granules in the cytoplasm. Large 

granular lymphocytes matching this description were identified in all Giemsa-stained MNC 

preparations examined (Fig. 4.2a and b). NK cells can also be identified as large CD3-/MHC II- using 

immunohistochemistry. NK-like cells were identified in Tasmanian devil MNC cytospins (Fig. 4.2c and 

d) and accounted for on average 4% of the total MNC population (Table 4.1). Some CD3-/MHC II- 

cells in the MNC cytospins had abundant cytoplasm, a typical morphological characteristic of plasma 

cells rather than NK cells, and were not included in this enumeration. 

 



 

96 
 

 

Figure 4.2. Identification of Natural Killer-like cells in Tasmanian devils.  

Panels a and b show Giemsa stained MNC cytospins. The presence of large granular lymphocytes 
consistent with the morphological appearance of NK cells is indicated with solid black arrowheads. 
Panels c and d show immunohistochemistry double-staining with CD3 and MHC II. The presence of 
negatively stained large lymphocytes consistent with the phenotype of NK like cells is indicated 
with solid black arrowheads. The typical morphology of a plasma cell (also negative for both 
markers) is indicated with an open arrowhead. 

 

4.2.2 Evidence for antibody-dependent cell mediated cytotoxicity (ADCC) 

against K562 cells in Tasmanian devils 

The results of Chapter 3 show that devils are capable of producing cytotoxicity and antibody 

responses against K562 tumour cells. Thus, the failure of Tasmanian devils to mount immune 

responses against DFTD cells cannot be attributed to a lack of capacity to form anti-tumour 

responses. Further study of the K562 immunisation model may provide some insight into the 

effector cell types and pathways of cytotoxic responses in Tasmanian devils. With increased 

understanding of these responses, it may be possible to manipulate their components to target 

DFTD.  
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4.2.2.1 Exclusion of B lymphocytes by nylon wool filtration and activation of 

ADCC by addition of serum to cytotoxicity assays 

Nylon wool non adherent cell suspensions were used in 18 hour cytotoxicity assays to determine if 

an increased proportion of T lymphocytes would enhance cytotoxicity against K562 cells (2.7.1). 

When the anti-K562 cytotoxic activity of nylon wool non adherent cells from two immunised devils 

was evaluated in 18 hour assays, no response occurred (Fig. 4.3). The total MNC layers of these 

samples formed strong responses. Thus, an essential component of the cytotoxicity response against 

K562 cells was removed during nylon wool filtration. 

Depleting B lymphocytes and plasma cells by nylon wool filtration would deplete the potential for 

antibody formation within the assay, which could facilitate antibody dependent cell-mediated 

cytotoxicity (ADCC) against the tumour cells. The capacity for ADCC responses was assessed by 

adding serum from K562 immunised devils to cytotoxicity assays containing MNC from naive devils. 

The MNC formed cytotoxic responses against K562 cells in the presence of immune serum (Fig. 4.4a-

d). There were no cytotoxicity responses in the absence of serum or with pre immune serum. 

Consequently, MNC from Tasmanian devil peripheral blood contain cells that are capable of ADCC. 

Despite the presence of functional cytotoxic responses, devils with DFTD do not show evidence of 

cytotoxicity against the tumours. One explanation is a systemic suppression of the host immune 

system in devils with DFTD. In order to determine if DFTD diseased devils are capable of forming 

cytotoxic responses, their ability to mount ADCC against K562 cells was assessed. Standard ADCC 

assays were performed with the MNC from two DFTD diseased devils and serum from a K562 

immunised Tasmanian devil (2.7.2). Both diseased devils formed cytotoxic responses against the 

K562 tumour cells in the presence of immune serum (Fig. 4.4e and f), indicating that the presence of 

DFTD does not alter the activity of cells responsible for ADCC. There was no response detected in 

assays containing MNC and pre immune serum. 

Nylon wool adherence (2.5.2.1) may have depleted effector or helper cells that mediated the ADCC 

responses against K562 (Table 1). Serum from immunised devils was added to cytotoxicity assays 

performed with nylon wool non-adherent cells (NNAC) to determine if the effector cells were 

removed following adherence to nylon wool. In the presence of immune serum, NNAC cells formed 

cytotoxic responses in all samples (Fig. 4.5). Consequently, the effector cells of ADCC responses 

against K562 cells are not removed from the MNC suspensions following nylon wool filtration, 

although the process may have removed helper cells. 
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Figure 4.3. Cellular cytotoxicity responses of nylon wool non adherent cells and total 

mononuclear cells from two K562 immunised Tasmanian devils.  

Chromium release cytotoxicity assays were performed by culturing MNC from two immunised 
Tasmanian devils with radioactively labelled K562 cells for 18 hours. Percent cytotoxicity values ± 
1 standard deviation at MNC: tumour cell ratios of 25:1 to 3:1 are shown for nylon wool non 
adherent cells and total MNC. The statistical difference between the two cell populations was 
assessed using F Tests, with a value of P<0.05 classified as significant and marked with an 
asterisk (*).  
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Figure 4.4. Antibody-dependent cell-mediated cytotoxicity responses of mononuclear 

cells from four healthy, K562 naive Tasmanian devils and two DFTD diseased devils.  

Chromium release cytotoxicity assays were performed by culturing MNC from six Tasmanian devils 
with radioactively labelled K562 cells for 18 hours in the presence of antibody in the form of K562 
immunised devil whole serum or pre immune serum (no antibody) as a control. Percent 
cytotoxicity values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 to 3:1 are 
shown for serum free and serum supplemented samples. The statistical difference between 
responses in the presence and absence of antibody was assessed using F Tests, with a value of 
P<0.05 classified as significant and marked with an asterisk (*).  The ADCC responses from healthy 
devils are displayed in panels a – d, and the responses of two wild diseased devils are displayed in 
panels e and f. 
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Figure 4.5. Antibody-dependent cell-mediated cytotoxicity responses of nylon wool 

non adherent cells and total mononuclear cells from two healthy, K562 naive Tasmanian 

devils and one DFTD diseased devil.  

Chromium release cytotoxicity assays were performed by culturing radioactively labelled K562 
cells for 18 hours in the presence of Tasmanian devil MNC, MNC plus K562 specific antibody (from 
immunised serum), or nylon wool non adherent cells plus K562 specific antibody. Percent 
cytotoxicity values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 to 3:1 are 
shown for serum free samples and serum supplemented samples containing nylon wool non 
adherent cells or total MNC. The statistical difference between responses in the presence and 
absence of antibody was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). 
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4.2.2.2 Analysis of in vitro antibody formation  

In order for ADCC responses to occur in 18 hour cytotoxicity assays containing MNC from immunised 

Tasmanian devils and K562 cells, specific antibody must be produced within the assays. The 

supernatant from cytotoxicity assays containing immunised Tasmanian devil MNC and K562 cells 

(K562 culture supernatant) was added to the cytotoxicity assays containing naive MNC to determine 

if it contained sufficient antibody to induce ADCC responses (2.8.2). None of the devils tested 

showed any evidence for cytotoxicity responses in the presence of immunised devil culture 

supernatant (Fig. 4.6). Thus, there was not sufficient anti-K562 antibody released into the culture 

supernatant to induce ADCC responses.  

One explanation for the absence of ADCC responses in samples containing culture supernatant was 

that all antibody produced within the assay was bound to the target (K562) cells. The presence of 

antibody in the supernatant was analysed using flow cytometry labelling of K562 cells and compared 

to the immune and pre immune serum of the same devil as positive and negative controls, 

respectively. There was no evidence for the presence of antibody attached to the K562 cells in these 

assays, with similar fluorescence intensity to the pre immune sample (Fig. 4.7). This suggested that 

the culture supernatant did not contain anti-K562 antibody. The presence of antibody bound to the 

K562 cells in the 18 hour cultures was also analysed using flow cytometry. To accomplish this, K562 

cells from these cultures were cultured with rabbit anti-devil IgG as a secondary reagent to detect 

devil anti K562 antibody. When the K562 cells from these cultures were examined using flow 

cytometry, the mean fluorescence intensity of the assay pellet cells was greater than that of 

untreated K562 cells (Fig. 4.8). The increase in fluorescence suggested that antibody was bound to 

the tumour cells in the samples, rather than in the supernatant. 
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Figure 4.6. Antibody-dependent cell-mediated cytotoxicity responses in the presence 

of supernatant from K562 cell and immunised Tasmanian devil cultures.  

Chromium release cytotoxicity assays were performed by culturing MNC from three Tasmanian 
devils with radioactively labelled K562 cells for 18 hours in the presence or absence of culture 
supernatant from cultures containing  K562 cells and MNC from immunised Tasmanian devils. 
Percent cytotoxicity values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 
to 3:1 are shown for supernatant free and supernatant supplemented samples. The statistical 
difference between responses in the presence and absence of antibody was assessed using F Tests, 
with a value of P<0.05 classified as significant and marked with an asterisk (*).  
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Figure 4.7. Flow cytometry profile of K562 positive serum and K562 culture 

supernatant.  

Antibody content of known positive serum from a K562 immunised Tasmanian devil (red curve), 
the supernatant from K562 culture with MNC from immunised devils (yellow curve) and pre 
immune serum from the same devil (blue curve) were analysed using flow cytometry, where the 
fluorescence intensity is directly proportional to the amount of bound antibody in the primary 
sample. 
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Figure 4.8. Flow cytometry profile of untreated K562 cells and cell pellets from 

cultures containing mononuclear cells from immunised devils.  

Antibody content of the cell pellet (blue curve) and untreated K562 cells (yellow curve) were 
compared using flow cytometry. The fluorescence intensity of the curves is directly proportional to 
the amount of bound antibody in the primary sample. 

 

4.2.3 Analysis of ADCC effector cells by selective depletion and functional 

assays 

The ability to activate Tasmanian devil ADCC responses against MHC I negative tumour cells may 

provide a mechanism to target DFTD cells. Further analysis of the effector cell types involved in the 

ADCC responses against K562 cells could identify a cell population to target for the induction of 

cytotoxic responses against DFTD. The MNC suspensions contained four cell types with the capacity 

for cytotoxicity or ADCC: T lymphocytes, monocytes, neutrophils and NK cells.  

T lymphocyte responses can be differentiated from those of innate cells by the length of time in 

which they occur. Monocytes and NK cells can mediate cytotoxicity responses within 4 hours 

[397,398], whereas those of T lymphocytes require longer periods of time. Short length (4 hour) 

cytotoxicity assays were performed with MNC from non-immunised devils and anti-K562 antibody 

(2.7.2). Cytotoxic responses were consistently formed within this time period (Fig. 4.9). One devil 
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was tested twice, on different days, and formed clear responses in both assays (Fig 4.9 a and d). This 

suggests that innate cells are more likely to be responsible for the ADCC responses against K562 cells 

than T lymphocytes. 

 

 

Figure 4.9. Short duration antibody-dependent cell-mediated cytotoxicity responses 

of mononuclear cells from three Tasmanian devils.  

Chromium release cytotoxicity assays were performed by culturing MNC from three Tasmanian 
devils with radioactively labelled K562 cells for 4 hours in the presence of antibody  in the form of 
K562 immunised devil whole serum or pre immune serum (no antibody). The assay was performed 
twice on different days using MNC from one Tasmanian devil (panels a and d). Percent cytotoxicity 
values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 to 3:1 are shown for 
serum free samples and serum supplemented samples. The statistical difference between 
responses in the presence and absence of antibody was assessed using F Tests, with a value of 
P<0.05 classified as significant and marked with an asterisk (*).  
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serum. Monocytes are strongly adherent to plastic and were removed from MNC suspensions by 

incubating in plastic vessels (2.5.2.2) to leave NK cells as the major population of cells with the 

capacity for ADCC. Cytotoxicity assays were performed with plastic non-adherent cells in the 

presence and absence of immune serum (2.7.1). In all assays, monocyte depleted cells formed 

cytotoxic responses which were not significantly different from those of total MNC but were 

significantly different from samples without antibody (Fig. 4.10). Therefore, monocytes are not 

major effectors of ADCC against MHC I negative tumour cells and, by elimination, the responses are 

most likely mediated by NK cells. 

4.2.4 Serum from DFTD immunised mouse or devil serum does not induce 

ADCC responses 

Given that Tasmanian devils can form ADCC responses against tumour cells, it is possible that 

cytotoxicity responses could occur against DFTD cells in the presence of specific anti-DFTD antibody. 

Tasmanian devils generally produce only weak antibody responses against whole DFTD cells (refer to 

Figures 3.7, 3.8 and 3.10 – 12). However, in samples from some devils, antibody can be detected 

against total DFTD cell protein using an ELISA (A. Kreiss, personal communication). These serum 

samples may contain sufficient antibody against surface epitopes on DFTD cells to induce ADCC 

responses. Additionally, immunised mice develop strong antibody responses against DFTD cells and 

serum from these mice could also be used as a source of anti DFTD antibody. 

Standard ADCC assays were performed with MNC from naive Tasmanian devils and serum from a 

DFTD immunised Tasmanian devil that had received two doses of sonicated DFTD cells (2.7.2). None 

of the devils tested formed evidence for functional ADCC responses in either the presence or 

absence of serum (Fig. 4.11). The responses in assays containing immune serum were not 

significantly different to pre immune samples (p = 0.095). Cytotoxicity assays were performed with 

MNC from naive Tasmanian devils and serum from a DFTD immunised mouse. None of the devils 

tested formed cytotoxicity responses that were significantly higher than levels of cytotoxicity against 

DFTD cells in samples containing serum from a non-immunised mouse (Fig. 4.12; p = 0.595). 

Therefore, neither devil nor mouse anti DFTD serum induced ADCC responses against the tumour 

cells. 
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Figure 4.10. Antibody-dependent cell-mediated cytotoxicity responses of plastic non 

adherent cells and total mononuclear cells from two healthy, K562 naive Tasmanian 

devils and one DFTD diseased devil. 

 Chromium release cytotoxicity assays were performed by culturing radioactively labelled K562 
cells for 18 hours in the presence of Tasmanian devil MNC, MNC plus K562 specific antibody (from 
immunised serum), or plastic non adherent cells plus K562 specific antibody. Percent cytotoxicity 
values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 to 3:1 are shown for 
serum free samples and serum supplemented samples containing plastic non adherent cells or 
total MNC. The statistical difference between responses in the presence and absence of antibody 
was assessed using F Tests, with a value of P<0.05 classified as significant and marked with an 
asterisk (*). 
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Figure 4.11. Antibody-dependent cell-mediated cytotoxicity responses of mononuclear 

cells from eleven Tasmanian devils in the presence of serum from DFTD immunised mice.  

Chromium release cytotoxicity assays were performed by culturing MNC from eleven Tasmanian 
devils (Cd 2 – Cd 34) with radioactively labelled DFTD cells for 18 hours in the presence or absence 
of antibody from DFTD immunised devil serum. Percent cytotoxicity values ± 1 standard deviation 
at mononuclear cell: tumour cell ratios of 25:1 are shown for serum free samples and serum 
supplemented samples. The statistical difference between responses between untreated and 
serum supplemented groups was assessed using F Tests, with a value of P<0.05 classified as 
significant.  
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Figure 4.12. Antibody-dependent cell-mediated cytotoxicity responses of mononuclear 

cells from thirteen Tasmanian devils in the presence of serum from DFTD immunised 

mice.  

Chromium release cytotoxicity assays were performed by culturing MNC from thirteen Tasmanian 
devils (Cd 2 – Cd 23) with radioactively labelled DFTD cells for 18 hours in the presence or absence 
of antibody from DFTD immunised mouse serum. Percent cytotoxicity values ± 1 standard 
deviation at mononuclear cell: tumour cell ratios of 25:1 are shown for serum free samples and 
serum supplemented samples. The statistical difference between responses between untreated 
and serum supplemented groups was assessed using F Tests, with a value of P<0.05 classified as 
significant.  
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naive Tasmanian devils (2.7.5). Neither Con A nor PHA induced significant cytotoxicity responses 

against DFTD cells (Fig. 4.13a and b).  

 

 

Figure 4.13. Effect of mitogen supplementation on cytotoxicity responses against DFTD.  

Chromium release cytotoxicity assays were performed by culturing MNC from two naive 
Tasmanian devils with radioactively labelled DFTD cells and concanavalin A (Con A) or 
phytohaemagglutanin (PHA) for 18 hours. Percent cytotoxicity values ± 1 standard deviation at 
mononuclear cell: tumour cell ratios of 50:1 to 6:1 are shown for each treatment. The statistical 
difference between the two treatments was assessed using F Tests, with a value of P<0.05 
classified as significant and marked with an asterisk (*). 

 

As supplementation with mitogens did not induce responses within the duration of a standard 

cytotoxicity assay, a longer period of time may be required for activation. Therefore, Tasmanian 

devil MNC were cultured with Con A for 48 hours and then cytotoxicity assays were performed 

against DFTD cells (2.7.5). In all samples tested, the Con A stimulated MNC formed cytotoxic 

responses, which were statistically different from those of untreated samples (Fig. 4.14). Therefore, 

Con A stimulation is a method capable of consistently activating cytotoxic responses against DFTD 

cells. 
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Figure 4.14. Effect of 48 hour Con A culture on cytotoxicity responses against DFTD.  

Chromium release cytotoxicity assays were performed by culturing 48 hour Con A activated MNC 
from four Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Percent 
cytotoxicity values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 to 3:1 are 
shown for each treatment. The statistical difference between the treatments was assessed using F 
Tests, with a value of P<0.05 classified as significant and marked with an asterisk (*). 
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The Con A culture supernatant prepared from Tasmanian devil MNC was likely to contain a range of 

cytokines that are capable of inducing cytotoxicity responses. Interleukin 2 (IL-2) was one candidate 

as it induces cytotoxicity responses in CTL and NK cells. Tasmanian devil IL-2 was added to 

cytotoxicity assays containing naive Tasmanian devil MNC at dilutions of 1/100 or 1/1000 (2.7.7). All 

samples formed cytotoxic responses in the presence of IL-2 (Fig. 4.16). Statistically significant 

differences between treated and control samples were only observed at dilutions of 1/100 (Fig. 

4.16a and b). IL-2 can therefore induce Tasmanian devil MNC to produce cytotoxicity responses 

against DFTD cells. 

Potential effector cells of the mitogen-induced cytotoxic responses against DFTD cells were 

Tasmanian devil NK cells. Poly I:C, a common agonist of NK cell cytotoxicity, was used to supplement 

cytotoxicity assays to determine if NK cells could be specifically activated to kill DFTD cells. A range 

of concentrations between 10 and 0.1 µg/mL Poly I:C was used to examine the cytotoxicity response 

(2.7.8). The strongest cytotoxicity response was formed at a concentration of 5µg/mL, although 

responses at any dose were significantly stronger than in untreated controls (Fig. 4.17). All 

subsequent assays were performed at a concentration of 5 µg/mL and showed an increase in 

cytotoxicity in the presence of poly I:C compared to untreated samples (Fig. 4.18). Two of the four 

reactions showed a statistically significant difference between untreated and Poly I:C treated 

samples (Fig. 4.18a and c). The other two reactions showed raised levels of cytotoxicity, particularly 

at ratios of 25:1 and 12:1, but the responses were not significant compared to the untreated 

samples (Fig. 4.18b). Therefore, Poly I:C can activate Tasmanian devil cells to form cytotoxicity 

responses against DFTD cells. 
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Figure 4.15. Effect of Con A culture supernatant on cytotoxicity responses against DFTD.  

Chromium release cytotoxicity assays were performed by culturing MNC from eight Tasmanian 
devils with radioactively labelled DFTD cells for 18 hours in 25% Con A culture supernatant. 
Percent cytotoxicity values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 50:1 
to 6:1 or 25:1 – 3:1 are shown for each treatment. The statistical difference between the 
treatments was assessed using F Tests, with a value of P<0.05 classified as significant and marked 
with an asterisk (*).  
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Figure 4.16. Effect of Interleukin (IL)-2 on cytotoxicity responses against DFTD.  

Chromium release cytotoxicity assays were performed by culturing MNC from four Tasmanian 
devils with radioactively labelled DFTD cells for 18 hours. Cloned Tasmanian devil IL-2 was added 
at dilutions of 1/100 or 1/1000. Percent cytotoxicity values ± 1 standard deviation at mononuclear 
cell: tumour cell ratios of 25:1 – 3:1 are shown for each treatment. The statistical difference 
between the treatments was assessed using F Tests, with a value of P<0.05 classified as significant 
and marked with an asterisk (*). 
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Figure 4.17. Effect of Poly I:C concentration on cytotoxicity responses against DFTD.  

Chromium release cytotoxicity assays were performed by culturing MNC from two Tasmanian 
devils with radioactively labelled DFTD cells for 18 hour, with Poly I:C added at concentrations of 
10, 5, 1 and 0.1 µg/mL. Percent cytotoxicity values ± 1 standard deviation at mononuclear cell: 
tumour cell ratios of 25:1 – 3:1 are shown for each treatment. The statistical difference between 
the treatments was assessed using F Tests, with a value of P<0.05 classified as significant and 
marked with an asterisk (*). 
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Figure 4.18. Effect of 5 µg/mL Poly I:C on cytotoxicity responses against DFTD.  

Chromium release cytotoxicity assays were performed by culturing MNC from four Tasmanian 
devils with radioactively labelled DFTD cells for 18 hour with and without 5µg/mL Poly I:C. Percent 
cytotoxicity values ± 1 standard deviation at mononuclear cell: tumour cell ratios of 25:1 – 3:1 are 
shown for each treatment. The statistical difference between the treatments was assessed using F 
Tests, with a value of P<0.05 classified as significant and marked with an asterisk (*). 
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blood MNC suspensions used in the cytotoxicity assays have not been thoroughly analysed. The MNC 

of Tasmanian devils were obtained using density gradient centrifugation and included lymphocytes 

and monocytes, with minimal numbers of neutrophils and erythrocytes [404]. The MNC of 

Tasmanian devils could also contain NK cells, which have not previously been identified in this 

species. As NK cells in other species are able to mediate cytotoxicity against MHC I negative cells, 

they may be important effector cells in the responses against the K562 cells. In order to determine if 

NK cells were present in the peripheral blood of Tasmanian devils, the cell types present in MNC 

suspensions were analysed.  

Two cross-species reactive antibodies against CD3 and MHC II have previously been used to identify 

cell types in Tasmanian devil lymphoid tissues [264]. These antibodies were used separately or 

together for immunohistochemistry to distinguish individual cell populations in the MNC of 

Tasmanian devils.  In the MNC cytospins, ‘null’ lymphocytes [404] which did not express CD3 or MHC 

were also identified. These cells were typically larger than T and B lymphocytes, and the majority 

had an appearance consistent with the NK cells of other species. Further evidence for the presence 

of NK-like cells among the MNC of Tasmanian devils was the presence of large granular lymphocytes 

in Giemsa-stained cytospins. Giemsa staining is commonly used to identify NK cells as it can highlight 

the cytoplasm. The perforin granules of NK cells are enclosed in highly acidic endosomes within the 

cytoplasm [405], and are stained darkly with the Azure component of the Giemsa stain [406]. 

Consequently, the combination of immunochemistry and Giemsa staining used in this study 

provided the first evidence of NK-like cells in Tasmanian devils. 

Although Tasmanian devils have NK-like cells, the responses against MHC I negative K562 cells were 

not typical of NK cell cytotoxicity and had the hallmarks of a CTL response. There was no 

spontaneous killing prior to immunisation, the killing was specific, and two doses of vaccine were 

required, suggesting that prior exposure to the target antigen was necessary, and the responses 

were long-lasting (refer to Figures 3.3 – 3.6). However, despite these characteristics, it is unlikely 

that CTL mediated this killing of K562 cells as they were not allogeneic and do not express MHC I 

protein [388], the obligatory ligand for CTL responses. Many other studies have shown the capacity 

for NK cells to specifically reject foreign cells, although some have suggested the involvement of 

factors such as cytokines and complement [158,169,407]. For example, NK cells can behave in a 

manner consistent with these responses, especially when target cell specific antibody is present 

[396].Thus, antibody-dependent cell-mediated cytotoxicity (ADCC) was a potential mechanism to use 

for the identification of NK cell responses in Tasmanian devils.  
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When devil anti-K562 antibody was added to short length (4 hour) cytotoxicity assays, the MNC of 

naive Tasmanian devils formed cytotoxicity responses against K562 tumour cells. This provided 

evidence for the development of ADCC responses by innate immune cells, rather than CTL which 

require longer time periods for cytotoxicity. Some of the responses produced in 4 hour assays 

reached higher levels of cytotoxicity than those formed by other samples in 18 hour assays. The in 

vitro responses of Tasmanian devil MNC are known to vary considerably between assays and 

between devils [385]. Consequently, this variation may be attributable to normal variation between 

samples.  Apart from NK-like cells, the MNC suspensions contained other cells that could mediate 

cytotoxicity and ADCC responses. The activity of different cell types with the capacity for ADCC were 

excluded based on evidence from other studies or removed from the Tasmanian devil MNC 

populations by adherence. Eosinophils, which mainly form ADCC responses against parasites rather 

than tumour cells [408] were not present in the MNC suspensions and were therefore excluded as 

potential effector cells. Some MNC suspensions contained contaminating neutrophils, most of which 

appeared to be immature, with ring-shaped nuclei rather than the characteristic multi-lobar nuclei 

of mature neutrophils. The immature neutrophils in the samples were also unlikely to act as the 

effector cells as high effector ratios are required for neutrophil ADCC responses [409] and the cell 

type was only present in low proportions in the MNC suspensions. Additionally, immature 

neutrophils form ADCC responses in the presence of IgA [410], which was not likely to be the most 

abundant isotype in the serum. Cytotoxicity responses were retained when monocytes were 

depleted by plastic adherence, suggesting that these were not the effector cells. The only remaining 

candidate was NK cells. Therefore, the results from these functional assays, together with the 

histological evidence for the presence of NK-like cells, provide evidence that functional NK cells exist 

in Tasmanian devils. 

As well as being the effectors of ADCC responses against xenogeneic tumour cells in Tasmanian 

devils, NK cells may be crucial effector cells to target the induction of anti-tumour responses against 

DFTD. Recent research from our laboratory and collaborators at the University of Cambridge 

suggests that DFTD cells downregulate the expression of MHC I protein at the plasma membrane 

[285,297]. This would render them impervious to CTL responses in the absence of this obligatory 

ligand for cytotoxicity. However, as MHC I also acts as an inhibitory ligand for NK cells its absence 

would make DFTD cells candidates for NK cell cytotoxicity. No studies have sought to determine why 

Tasmanian devil NK cells do not directly recognise DFTD cells under normal conditions. Potential 

explanations for the absence of NK cell responses include the expression of non-classical MHC I 

molecules on the surface of DFTD cells, the production of immunosuppressive cytokines capable of 

decreasing NK cell activity or the absence of activating ligands on the tumour cells, all of which could 
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restrict the activity of NK cells. Thus, the interaction between NK cells and DFTD tumours provides an 

important area for future research. 

The results supporting the development of ADCC responses of NK cells in Tasmanian devils provided 

an explanation for the mechanism for the responses against the MHC I negative K562 cells. As the 

cytotoxicity responses directed against this cell type may be harnessed to target DFTD cells, the 

development of ADCC against K562 cells were more thoroughly analysed. In order for ADCC to occur 

in the 18 hour cytotoxicity assays against K562 cells, there would need to be a source of antibody 

production within the assays. The most likely candidates for this were B lymphocytes and plasma 

cells, which can be depleted using nylon wool [383]. This B lymphocyte-depleted population did not 

kill K562 cells, suggesting that the effector cells, or an essential helper cell type, were removed by 

nylon wool filtration. As the cytotoxicity responses of nylon wool non adherent cells were restored 

by addition of devil anti-K562 cell antibody, the effector cells were still present in nylon-wool filtered 

cells. Thus, it was most likely that a helper cell population was removed by nylon wool filtration. One 

way to determine if antibody production was occurring within the 18 hour assays was determine if 

supernatant from these cultures could replace antibody in ADCC assays. There was no evidence for 

ADCC responses supplemented with supernatant from the assays containing K562 cells and 

immunised devil MNC, and no evidence of antibody presence in the culture supernatants tested. 

However, flow cytometry analysis of cell pellets from cytotoxicity assays containing K562 cells and 

mononuclear cells from Tasmanian devils suggested that there was anti-K562 antibody bound to the 

K562 cells. This result suggested that formation of antibody does occur within the 18 hour 

cytotoxicity assays. Therefore, since ADCC responses may have been occurring in the in vitro assays 

against K562 cells and they are a likely mechanism to account for the cytotoxicity against K562 cells.  

Another potential pathway for the cytotoxicity against K562 cells was through activation of cytotoxic 

cells by cytokines formed within the assay. In addition to removing B lymphocytes, nylon wool 

filtration could also have removed activated T lymphocytes, which are nylon wool adherent [411]. As 

the obligatory ligand for CTL cytotoxicity was absent on the K562 cells, it is unlikely that CTL would 

form cytotoxic responses. However activated cells may have produced cytokines that augmented the 

responses of other cell types, including NK cells or monocytes, within the 18 hour assays. The 

inability to effectively elute the adherent cells from the nylon wool columns prevented a full analysis 

of these cells. The production of cytokines within the 18 hour cytotoxicity assays could be analysed 

using techniques such as ELISA. This was not possible for this project as specific antibodies were not 

available. If the nylon-wool adherent cells could be separated from the columns, functional assays 
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using supernatant from 18 hour cultures with K562 cells could have been performed to indirectly 

assess cytokine production. 

Other mechanisms of non-specific stimulation could activate Tasmanian devil MNC and provide an 

avenue to analyse the production of cytokines and cytotoxicity. Mitogens such as Concanavalin (Con) 

A can induce direct activation of T lymphocytes and NK cells [400,412]. Since Con A stimulation can 

induce proliferation in Tasmanian devil MNC [2], it may also function to induce cytotoxicity and 

cytokine production. Stimulation with Con A for 48 hours promoted cytotoxicity responses in 

Tasmanian devil MNC. This was an important finding, as it provided evidence that the MNC of 

Tasmanian devils could be activated to kill DFTD cells. These experiments also described a method 

for consistent activation of cytotoxicity responses against DFTD. In addition to activating cytotoxicity 

responses, Con A culture can induce the production of cytokines, including IL-2 and IFNγ [400,413]. 

Although no specific antibodies were available for analysis of cytokines, their presence could be 

analysed indirectly using functional assays. In other species, the supernatant from Con A cultures 

(Con A culture supernatant) can activate a number of cell types, including B lymphocytes, monocytes 

and macrophages [402,403,414]. Thus, if cytokines were present in Con A culture supernatant it 

could activate responses such as cytotoxicity in naive Tasmanian devil MNC in cytotoxicity assays. 

The killing of DFTD cells in assays supplemented with Con A culture supernatant provided evidence 

for the production of cytokines during mitogen activation. The effector population of these cytotoxic 

responses was difficult to define. As previously discussed, the Tasmanian devil MNC used for the 

cytotoxicity experiments are heterogeneous populations in which Con A may induce a variety of 

responses in different cells, particularly T lymphocytes and NK cells  [380,400,412]. It is also possible 

that the cytokines produced during Con A culture assisted in the mitogen activation of the MNC. 

Thus, the activity of cytokines may play an important role in the activation of the Tasmanian devil 

immune system to target the tumours. 

Two cytokines which could be present in the Con A culture supernatant and capable of inducing 

cytotoxicity responses like those observed are IL-2 [415] and IFNγ [402]. Analysis of the individual 

effects of these cytokines could provide information to distinguish which is the most likely candidate 

for induction of the responses. Cloned Tasmanian devil IL-2 protein was available for use in 

functional assays, and its presence consistently induced cytotoxic responses against DFTD cells. 

Therefore, IL-2 in the Con A culture supernatant is one possible candidate for the active cytokine 

involved in the cytotoxicity responses. However, there is evidence in the literature to suggest that a 

major mechanism for activation of NK cytotoxicity by IL-2 is the induction of IFNγ production [148]. If 

this occurred in the IL-2 cytotoxicity assays, supplementation with IFNγ alone should show a similar 
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effect. However, cloned Tasmanian devil IFNγ protein was not available for assessment of its effect 

on lymphocyte function. The agonist polyriboinosinic polyribocytidylic acid (Poly I:C), which targets 

toll-like receptor (TLR) 3, is a potent inducer of IFNγ production [416]. This agonist can target MNC 

such as monocytes and NK cells [47,417]. Thus, Poly I:C activation was used as a surrogate measure 

of the effect of IFNγ on Tasmanian devil MNC. Addition of Poly I:C to cytotoxicity assays induced 

responses in all samples tested, however the strength of the response was highly variable and some 

samples did not show significantly greater responses than untreated MNC. Since the MNC used in 

the cytotoxicity assays contained both T lymphocytes and NK cells, it is difficult to distinguish the 

contributions of each effector population to cytotoxicity against DFTD cells. Poly I:C has well-

characterised effects on NK cells, including activation of cytotoxicity against tumour cells [47], which 

is often attributed to the production of IFNγ. Stimulation with IFNγ can also induce T lymphocyte 

cytotoxicity [418], thus production of this cytokine during the 18 hour may have also activated T 

lymphocytes. Consequently, it is not possible to distinguish the activity from each these cytotoxic 

cell types using the cytokines and agonists available. Specific antibodies for labelling and sorting 

viable Tasmanian devil cells would be required for isolation of the individual populations to test their 

separate responses against DFTD cells. 

The results presented in this chapter have discussed two processes through which Tasmanian devil 

MNC can be induced to target MHC I negative tumour cells. The activation of NK cell ADCC responses 

in Tasmanian devils provided a potential mechanism for targeting immune responses against DFTD 

cells. In the field of human medicine, NK cells can contribute to ADCC anti-tumour responses, such as 

those induced by monoclonal antibody based cancer therapies. Drugs like Herceptin, for targeting 

breast cancer, and Rituximab, for targeting chronic lymphocytic leukaemia and non-Hodgkins 

lymphoma, are able to induce NK cytotoxic responses by binding to FcRIII receptors [160,161]. 

However, attempts to use this pathway to target DFTD have been hampered by the lack of strong 

antibodies against DFTD. Previous studies have reported successful induction ADCC responses by 

transfer of antibody between closely related species. One example of such a reaction is transfer of 

antibodies between closely related species of ducks, which can successfully induce ADCC-mediated 

rejection of tolerated skin grafts [159,419]. Therefore, if functional levels of DFTD antibody could be 

induced in a closely related marsupial transfer to Tasmanian devils may induce ADCC responses 

against DFTD cells. Ideally, the species used would be directly related to Tasmanian devils, in the 

Dasyurid family. However, many Dasyurid marsupials are endangered or difficult to maintain in 

captivity and would therefore be unsuitable for these experiments. An alternative would be to use 

Brushtail possums (Trichosurus vulpecula), an abundant marsupial species which are frequently kept 

in captivity. Future studies of ADCC in Tasmanian devils may pursue this approach. However, the 
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most promising strategy for targeting cytotoxicity responses against DFTD cells appeared to be 

through activation with mitogens or cytokines.  

The in vitro experiments examining non-specific activation of MNC provided the first methods for 

consistent activation of cytotoxicity against DFTD cells. Antibody dependent cell-mediated 

cytotoxicity responses appear to be functional in Tasmanian devils, and can be mediated by NK cells. 

The ADCC pathway could potentially be exploited to induce responses against DFTD cells for 

vaccination or therapy. The cytotoxic cells induced in vitro by stimulation with mitogens, Con A 

culture supernatant or Tasmanian devil IL-2 have similar qualities to lymphokine-activated killer 

(LAK) cells in mice and humans [343]. The activation of Tasmanian devil cells with Con A culture 

supernatant or cloned IL-2 is thus a similar mode of activation to that of human and mouse LAK cells, 

and the cells possess a similar capacity for cytotoxicity. In other species, particularly mice, LAK cells 

have been used for adoptive immunotherapy of tumours [344,345,347]. It is therefore possible that 

the activated cytotoxic cells from Tasmanian devil may also be capable of inducing responses in vivo 

and may provide the basis for an immunotherapy against DFTD. This chapter also described the first 

identification of NK cells in Tasmanian devils. NK cells should play an important role in immune 

responses against DFTD cells, in the absence of surface MHC I. Thus, the characterisation of 

Tasmanian devil NK cells and their interaction with DFTD cells will provide a significant area for 

future research. 
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Chapter 5 - Manipulation of Tasmanian devil immune response to 

target DFTD cells 

5.1 Introduction 

Regardless of MHC genotype [283], wild Tasmanian devils with Devil Facial Tumour Disease (DFTD) 

show no evidence of an immune response against the tumour [1]. Studies performed in our 

laboratory in collaboration with other groups suggest that DFTD cells downregulate MHC I 

expression on the cell surface [285,297]. This would allow them to escape the host immune 

response. The absence of MHC I expression presents a challenge for development of an effective 

immunisation strategy against DFTD. Without expression of MHC I, which is the obligatory ligand for 

cytotoxic T lymphocyte (CTL) activity, the cells are protected from this major anti-tumour response. 

The analysis of Tasmanian devil immune responses against MHC I negative tumour cells and 

mechanisms for cytotoxicity has identified a number of methods that can induce Tasmanian devil 

mononuclear cells to produce cytotoxicity responses against DFTD cells. The ability to consistently 

activate cytotoxicity against DFTD, in experiments reported in Chapter 4, was an extremely 

promising result as it provided the basis for an immunotherapy, which may be a potential 

intervention against DFTD.  

Chapter 4 discussed the ability of several agents to induce anti-tumour immune responses against 

DFTD cells in peripheral blood mononuclear cells. The strongest cytotoxicity against DFTD cells was 

induced following activation with the mitogen Concanavalin (Con) A. This technique resulted in 

mitogen-activated killer (MAK) cells that could produce both cytokines and cytotoxicity responses in 

vitro. These MAK cells also had the potential to mediate direct cytotoxicity against the DFTD cells 

within solid tumours and provide a source of cytokines, such as interleukin (IL)-2, IL-15 and 

interferon gamma (IFNγ). If the cells were capable of producing IFNγ within the tumours, this could 

induce the upregulation of surface MHC I protein and make the DFTD cells targets for CTL activity. 

Therefore, the use of MAK cells as an immunotherapy was worthy of investigation.  

The cytokine rich Con A culture supernatant contained the appropriate cytokines to induce the 

upregulation of MHC I protein on the surface of DFTD cells [285]. Flow cytometry analysis for cell 

surface expression of beta-2-microglobulin (B2M) showed that 48 hours of culture in 10% Con A 

culture supernatant consistently induced surface MHC I expression in cultured DFTD cells [285]. 

Subsequently, when MHC I positive DFTD cells were required for experiments they were treated 

using this method, and are hereafter referred to as ‘treated’ cells. The Histone deacetylase inhibitor 

trichostatin A (TSA), which can also induce MHC I protein in tumour cells by increasing the 
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expression of genes associated with the antigen presentation pathway [420], was also used to treat 

DFTD cells [285]. However, although TSA treatment upregulated MHC I mRNA levels in DFTD cells, it 

induced only limited surface expression of the protein [285]. Immunisation with treated DFTD cells 

was therefore another potential immunotherapy strategy. The presence of the allogeneic MHC I 

proteins could induce responses against established tumours if a small amount of MHC I protein was 

present on the DFTD tumour cells. Immunisation with treated DFTD cells could also work in synergy 

with MAK cells to increase the effects of immunotherapy. Immunisation with treated DFTD cells 

would prime the Tasmanian devil’s specific immune system to respond against any MHC I positive 

DFTD cells within the tumours. MAK cell therapy would provide a local source of cytokines, such as 

IFNγ, which could induce the expression of MHC I on DFTD cells within the tumours. Direct injection 

of the Con A culture supernatant into DFTD tumours may also be a potential strategy to augment 

expression of IFNγ and MHC I. The experiments in this chapter aimed to assess the effect of three 

immunotherapy strategies: adoptive MAK cell therapy, immunisation with treated DFTD cells and 

intra-tumoural injection of 10% Con A culture supernatant. One female Tasmanian devil, CD 15, with 

a DFTD tumour that had developed following challenge with live cultured DFTD tumour cells, was 

available for this immunotherapy.  

5.2 Results 

5.2.1 Immunotherapy with autologous MAK cells, Con A culture supernatant 

treated DFTD cells and Con A culture supernatant  

Autologous peripheral blood mononuclear cells (MNC) from CD 15 were induced to become 

mitogen-activated killer (MAK) cells by culturing in Con A culture supernatant for 48 hours (2.10.1). 

Tumour measurements were taken over a period of 24 weeks and biopsy samples were taken to 

examine the effect of each treatment (2.9.5). Each biopsy was analysed using immunohistochemistry 

with antibodies against CD3 (T lymphocytes), CD8 (cytotoxic T cells), MHC II (APC including B 

lymphocytes, dendritic cells and macrophages) (2.9.5). Immune cells observed were collectively 

referred to as ‘leukocytes’. Neutrophils, which do not express these markers, may also have been 

present, as part of the inflammatory response. The biopsies were also stained for periaxin to label 

DFTD cells. Prior to commencement of therapy, the tumour was small (Fig. 5.1) and 

immunohistochemistry of biopsy samples showed no evidence for the presence of CD3+ or CD8+ cells 

in or around the tumour and limited numbers of infiltrating MHC II+ leukocytes. The DFTD tumour 

tissue labelled positively for periaxin (PRX), while the surrounding stromal regions immediately 

surrounding the tumours were composed of fibrous PRX- tissue (Fig. 5.2). Thus, there was no 

evidence for an immune response against the DFTD tumour prior to the commencement of therapy. 
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Figure 5.1. DFTD tumour volume in a Tasmanian devil during immunotherapy with 

mitogen-activated killer cells, MHC I positive DFTD cells and Con A culture supernatant 

A Tasmanian devil, with a DFTD tumour caused by experimental inoculation with live cells, was 
treated with three different immunotherapy techniques over a period of 16 weeks. Doses of 
mitogen-activated killer (MAK) cells were given at timepoints indicated with arrows. Doses of 
MHC I positive (Con A culture supernatant-treated) DFTD cells were given at timepoints indicated 
with solid black arrowheads. Doses of 20% Con A culture supernatant solution were given at 
timepoints indicated with open arrowheads. Biopsy samples were taken at timepoints indicated 
with asterisks (*) and samples in which substantial immune cell infiltration was observed are 
marked with crosses (+). Time points at which blood samples were taken are marked with 
circumflex accents (^). 

During the MAK cell therapy, the tumour steadily increased in size for the next six weeks, from 0.2 to 

16.2 cm3, plateaued until week 8 then increased sharply to 31.9 cm3 by week 10 (Fig. 5.1). After the 

first injection of MAK cells there was evidence for infiltration of MHC II+ cells to the stromal region at 

the periphery of the DFTD tumour (Fig. 5.3). Some CD3+ cells were present in the same area, but few 

were CD8+ cells (Fig. 5.3). A small number of leukocytes were present within areas corresponding to 

regions of densely packed PRX+ DFTD tumour in the biopsy, suggesting that the infiltration was 

limited to the periphery of the tumour (Fig. 5.3). In a biopsy taken after all three MAK cell injections, 

there were fewer cells located at the tumour periphery (Fig. 5.4). However, MHC II+ cells were 

scattered at low density throughout the tumour and CD3+ and CD8+ lymphocytes were clustered in 

some areas (Fig. 5.4). Large areas of DFTD tumour stained strongly for PRX (Fig. 5.4).  
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Figure 5.2. Immunohistochemistry of MHC II, CD3, CD8 and PRX in a pre-

immunotherapy DFTD tumour biopsy (week 0) 

Sections from a biopsy sample taken from the DFTD tumour of a Tasmanian devil prior to 
immunotherapy were analysed by immunohistochemistry for MHC II, CD3, CD8, PRX or Mouse 
IgG1 as an isotype control. Sections stained for MHC II expression are displayed in row 1. Sections 
stained for CD3 expression are displayed in row 2. Sections stained for CD8 expression are 
displayed in row 3. Sections stained for PRX expression are displayed in row 4. The stromal tissue 
region around the DFTD tumour is indicated with a solid black arrowhead. The 
immunohistochemistry shows an absence of leukocyte infiltration into the tumour prior to 
immunotherapy. 
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Figure 5.3. Immunohistochemistry analysis of CD3, CD8, MHC II and PRX in a DFTD 

tumour biopsy taken following one dose of mitogen-activated killer cells (week 5) 

Sections from a biopsy sample taken from the DFTD tumour of a Tasmanian devil after one dose of 
mitogen-activated killer (MAK) cells were analysed by immunohistochemistry for MHC II, CD3, 
CD8, PRX or Mouse IgG1 as an isotype control. Sections stained for MHC II expression are 
displayed in row 1. Sections stained for CD3 expression are displayed in row 2. Sections stained for 
CD8 expression are displayed in row 3. Sections stained for PRX expression are displayed in row 4. 
The stromal tissue region around the DFTD tumour is indicated with a solid black arrowhead. The 
regions in which large numbers of MHC II+ and CD3+ cells were infiltrating are indicated with black 
arrows. The immunohistochemistry shows an accumulation of leukocytes at the tumour periphery 
but no infiltration into the tumour following one injection of MAK cells. 
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Figure 5.4. Immunohistochemistry analysis of MHC II, CD3, CD8 and PRX in a DFTD 

tumour biopsy taken after three doses of MAK cells (week 8) 

Sections from a biopsy sample taken from the DFTD tumour of a Tasmanian devil after three doses 
of mitogen-activated killer (MAK) cells were analysed by immunohistochemistry for MHC II, CD3, 
CD8, PRX or Mouse IgG1 as an isotype control. Sections stained for MHC II expression are 
displayed in row 1. Sections stained for CD3 expression are displayed in row 2. Sections stained for 
CD8 expression are displayed in row 3. Sections stained for PRX expression are displayed in row 4. 
The stromal tissue region around the DFTD tumour is indicated with a solid black arrowhead. The 
immunohistochemistry shows a slight infiltration of CD3+, CD8+ and MHC II+ leukocyte numbers 
within the tumour following three injections of MAK cells. 
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Following MAK cell therapy, an immunisation with viable Con A culture supernatant-treated DFTD 

cells was given to induce an allogeneic response against any MHC I positive DFTD cells present in the 

tumours (2.10.2). The cells were injected subcutaneously at a site near the tumour at week 10. The 

tumour continued to increase in size at week 11, then the growth plateaued until week 12 (Fig. 5.1). 

Immunohistochemistry of a biopsy taken at week 11 showed the presence of abundant MHC II+ cells 

within tumour areas, suggesting an infiltration of macrophages and dendritic cells (Fig. 5.5). A large 

number of CD3+ and CD8+ lymphocytes were also present in the tumour (Fig. 5.5). Staining for PRX 

showed a reduction in DFTD cell numbers within this sample compared to previous biopsies and a 

decreased intensity of PRX staining in many tumour cells (Fig. 5.5). This pronounced change in 

immune response occurred within 7 days of the treated DFTD cell injection.  

The third treatment strategy for immunotherapy of CD 15 was intra-tumoural injection of Con A 

culture supernatant, which could potentially provide a source of IL-2 and IFNγ to augment the 

immune response. Three intra-tumoural injections of a solution containing 20% Con A culture 

supernatant in phosphate-buffered saline were given at weeks 12, 13 and 14 (2.10.3). During this 

time, the tumour rapidly regressed in size (Fig. 5.1) and immunohistochemistry of a biopsy taken on 

week 14.5 showed a level of MHC II+ and CD3+ cell infiltration similar to the biopsy taken in week 11 

(Fig. 5.6). The biopsy stained for CD8 showed that more cells were present in the biopsy taken in 

week 14.5 than at week 11. Consequently, injection with cytokine-rich supernatant may have 

increased the cytotoxic responses against the DFTD tumour. There were few strongly stained PRX+ 

DFTD cells present in the biopsy sample, and some cells with DFTD-like morphology showed more 

diffuse PRX staining than in previous samples (Fig. 5.6). This suggested that the immune response 

may have altered the antigen expression of the tumour cells. After the third intra-tumoural dose of 

Con A culture supernatant, another subcutaneous dose of treated DFTD cells was given late in 

week 16. 
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Figure 5.5. Immunohistochemistry analysis of MHC II, CD3, CD8 and PRX in a DFTD 

tumour biopsy taken after three doses of MAK cells and one dose of treated DFTD cells 

(week 11) 

Sections from a biopsy sample taken from the DFTD tumour of a Tasmanian devil after three doses 
of mitogen-activated killer MAK cells and one dose of Con A culture supernatant-treated cells 
were analysed by immunohistochemistry for MHC II, CD3, CD8, PRX or Mouse IgG1 as an isotype 
control. Sections stained for MHC II expression are displayed in row 1. Sections stained for CD3 
expression are displayed in row 2. Sections stained for CD8 expression are displayed in row 3. 
Sections stained for PRX expression are displayed in row 4. The immunohistochemistry shows a 
substantial infiltration of CD3+, CD8+ and MHC II+ leukocytes into the tumour and a decrease in PRX 
expression in DFTD cells following one injection of treated DFTD cells. 
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Figure 5.6. Immunohistochemistry analysis of MHC II, CD3, CD8 and PRX in a DFTD 

tumour biopsy taken during the regression of a DFTD tumour (week 14) 

Sections from a biopsy sample taken from the regressing DFTD tumour of a Tasmanian devil which 
had immunotherapy treatment with mitogen-activated killer MAK cells, treated DFTD cells and 
intra-tumoural injections of Con A culture supernatant were analysed by immunohistochemistry 
for MHC II, CD3, CD8, PRX or Mouse IgG1 as an isotype control. Sections stained for MHC II 
expression are displayed in row 1. Sections stained for CD3 expression are displayed in row 2. 
Sections stained for CD8 expression are displayed in row 3. Sections stained for PRX expression are 
displayed in row 4. The immunohistochemistry shows that high numbers of CD3+, CD8+ and MHC 
II+ leukocytes remained in the tumour following injection with Con A culture supernatant. The 
periaxin expression decreased further in this sample. 
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To provide evidence for the presence of a functional cellular response during regression and to 

elucidate potential mechanisms for the observed anti-tumour activity, blood and serum was 

collected late in week 17, in week 18 and late in week 23 and analysed for cytotoxicity and antibody. 

The first blood sample at week 17 was tested for cytotoxicity responses against both untreated and 

Con A culture supernatant-treated DFTD cells (2.7.1). Because of limited sample availability, the 

remaining assays were performed on untreated DFTD cells only because a successful vaccine would 

need to induce responses against DFTD cells without surface MHC I.  

 

 

Figure 5.7. Cytotoxicity and antibody responses of a Tasmanian devil during 

regression of a DFTD tumour after immunotherapy 

Three blood samples were taken from a Tasmanian devil that had been given immunotherapy to 
induce an immune response against a DFTD tumour. The samples were taken at weeks 17, 18 and 
23. During this period, the DFTD tumour was regressing. Chromium release cytotoxicity assays 
were performed by culturing the Tasmanian devil’s mononuclear cells with radioactively labelled 
DFTD cells for 18 hours. Percent cytotoxicity values at leukocyte: tumour cell ratios of 100:1 to 6:1 
are shown for all assays (panels a. and c.). Panel a. shows the cytotoxicity responses of 
mononuclear cells from each blood sample against untreated (wild type) DFTD cells. The statistical 
difference between the samples taken during immunotherapy for DFTD cells was assessed using F 
Tests, with a value of P<0.05 classified as significant and marked with an asterisk (*) when 
significantly different from the pre immune sample. Since this Tasmanian devil had also been 
immunised with DFTD cell protein preparations, the responses were compared to the Pre immune 
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sample taken before any immunological intervention was given. Panel c. shows the responses of 
mononuclear cells from a single blood sample, at week 17, against Con A culture supernatant-
treated DFTD cells, which would have expressed surface MHC I protein, and untreated cells, which 
do not express the protein. The statistical difference between MHC I positive and wild type DFTD 
cells was assessed using F Tests, with a value of P<0.05 classified as significant and marked with an 
asymmetrical cross (†) when a significant difference was observed between samples. 

Serum antibody against untreated and Con A culture supernatant-treated DFTD cells was analysed 
using flow cytometry (panels b and d, respectively). The solid purple curve represents the pre 
immune antibody level in both panels. Pale and dark blue curves respectively represent antibody 
levels after the first and third protein immunisations performed on the same devil in an 
immunisation trial prior to immunotherapy and show an absence of antibody response against 
whole cells during immunisation. The green curve represents the antibody level during challenge 
with live DFTD tumour cells following the DFTD protein vaccines and shows an absence of 
response during challenge and tumour development. The yellow, orange and red curves represent 
the first, second and third blood samples taken in weeks 17, 18 and 23 during tumour regression in 
response to immunotherapy treatment and show an immune response against Con A culture 
supernatant-treated (surface MHC I positive) DFTD cells but not untreated DFTD cells. 

 

 

In the samples taken at week 17, 18 and 23 there was no significant level of cytotoxicity against 

untreated DFTD cells (Fig. 5.7a.) The samples were also analysed for anti-DFTD antibody presence 

(2.8.2). All three samples taken during tumour regression contained antibodies which bound treated 

DFTD cells but not untreated cells (Fig. 5.7b and d), suggesting that there was a response against 

MHC I+ cells but not untreated cells. When the cytotoxicity responses against untreated and Con A 

culture supernatant-treated DFTD cells was compared, there was a significant difference between 

the two assays (Fig. 5.7c). However, due to the limited numbers of mononuclear cells available, 

simultaneous assays using MHC I+ and MHC I- cells were only performed in the sample taken in week 

17. The tumour continued to regress and appeared to be completely resolved when checked late in 

week 23 (Fig. 5.1). Regular (monthly) examinations of the site following tumour regression showed 

no recurrence of the tumour, and subsequent biopsies confirmed that only scar tissue remained at 

the site. The devil remained tumour free for approximately 8 months and then was euthanised due 

to unrelated health issues. 

5.2.2 Evidence for morphological changes consistent with the redistribution of 

beta-2 microglobulin (β2M) protein in DFTD cells in response to MAK cell 

injection 

The in vitro evidence for antibody production in CD 15 occurred only against DFTD cells which were 

positive for MHC I. This suggests that MHC I expression may have been important in the immune 

response against the DFTD tumour. An antibody specific for Tasmanian devil β2M was used for 
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immunohistochemistry on tumour biopsies taken during immunotherapy. In the pre-treatment 

biopsy, the β2M staining was strongly associated with the nucleus of DFTD cells, with some staining 

of the cytoplasm (Fig. 5.8). The similar areas in a biopsy section stained with PRX confirmed that the 

tissue observed was composed largely of DFTD cells with few stromal cells. Following a single dose of 

MAK cells, a morphological change occurred in the DFTD cells; the nuclei of some cells became 

enlarged, rounded and appeared vacuolated (Fig. 5.8). The amount of β2M expression within the 

cytoplasm also increased in some areas of the biopsy (the nuclei were still strongly positive). Staining 

with PRX confirmed that the tissue observed was composed largely of DFTD cells. In the biopsy 

sample taken late in week 7 (after two MAK cell doses) more cells had enlarged, vacuoled nuclei. A 

second morphological change occurred in this sample, with some cells showing distinct rings of β2M 

staining at the edges of their nuclei, and less intense staining at the centre (Fig. 5.8). This 

accumulation of β2M protein may be consistent with its redistribution within the cell. Two more 

biopsies were taken during the immunotherapy of CD 15, after Con A culture supernatant-treated 

DFTD cell injection and Con A culture supernatant injection, respectively. As the tumour was heavily 

infiltrated with immune cells, these sections stained strongly for β2M and there were few PRX+ DFTD 

cells (Fig 5.8 Rows 4 and 5). The DFTD cells that were visible in these sections stained showed the 

ring-like staining pattern when labelled with β2M. Many DFTD also stained less intensely for PRX. 

5.2.3 Immunisation of DFTD diseased and healthy Tasmanian devils with Con A 

culture supernatant treated DFTD cells  

The earliest evidence for a response against the DFTD tumour during the immunotherapy occurred 

after injection with treated DFTD tumour cells. Two wild Tasmanian devils with DFTD tumours were 

injected with the same number of live treated DFTD cells as were used in the first immunotherapy 

trial to replicate the technique and examine the efficacy of treated DFTD as an immunotherapy. In 

blood samples taken before injection of treated cells, there was no evidence of cytotoxicity 

responses in either devil (Fig. 5.9). Following treatment, there was no evidence of cytotoxicity 

against untreated DFTD cells at 7 and 14 days after vaccination, nor was there evidence for antibody 

responses against treated or untreated DFTD cells was observed in any serum sample from either 

devil (Fig. 5.9). The original tumours in both devils continued to grow steadily. At the site of treated 

cell injection, both devils developed new tumours, which grew rapidly, within 14 days. One devil was 

euthanised 33 days after the commencement of the trial. The second devil received 2 intra-tumoural 

injections of Con A culture supernatant and one dose of killed treated DFTD cells. These treatments 

did not result in tumour regression. This devil was euthanized 47 days after commencement of the 

trial.  
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Figure 5.8. Immunohistochemistry analysis of β2M+ expression in a DFTD tumour 

during immunotherapy of a Tasmanian devil 

Sections from five biopsy sample taken from the DFTD tumour of a Tasmanian devil before and 
during immunotherapy with mitogen-activated killer (MAK) cells, MHC I positive DFTD cells and 
Con A culture supernatant injection were analysed by immunohistochemistry for β2-Microglobulin 
(β2M) and periaxin (PRX) expression. Photographs were taken under 1000x magnification. Cells 
with small, defined nuclei with strong β2M expression, and little cytoplasmic staining, which were 
characteristically observed in the pre-treatment sample, are indicated with black arrows. Cells 
with enlarged, vacuoled nuclei and stronger cytoplasmic β2M expression, characteristic of those 
observed during MAK cell threrapy, are indicated with solid black arrowheads. Cells with ‘ring-like’ 
β2M staining at the periphery of the nucleus and weak nuclear staining, which were observed after 
3 doses of MAK cell immunotherapy, Con A culture supernatant-treated cell injection and 
intratumoural injection of Con A culture supernatant (cytokine injection) are indicated with open 
arrowheads in rows. DFTD cells with weak PRX staining were observed in samples taken after Con 
A culture supernatant-treated cell injection and cytokine injection; examples are indicated with 
circumflex accents (^). The changes identified in the biopsy sections suggest that the DFTD cells in 
the tumour may have altered their expression of β2M, and potentially MHC I during 
immunotherapy. 

 

Three healthy Tasmanian devils were injected subcutaneously at day 0 with DFTD cells which had 

been modified in culture then irradiated (2.6.1.2). Two devils received the Con A culture 

supernatant-treated cells, which would have expressed surface MHC I. One devil received cells that 

had been treated with trichostatin A (TSA), which increased the levels of MHC I RNA, and potentially 

several immunogenic surface proteins, but induced little expression of surface protein [285]. 

Cytotoxicity assays were performed using untreated DFTD cells, as responses would be required 

against untreated cells to prevent transmission of normal tumour cells. After one dose, neither of 

the devils immunised with Con A culture supernatant-treated cells formed any evidence of 

cytotoxicity against untreated DFTD cells (Fig. 5.10a and b). The devil immunised with TSA-treated 

cells showed evidence for a weak but statistically significant cytotoxic response against the 

untreated cells at 6 days after injection (Fig. 5.10c). However, this response had receded at 13 days. 

None of the three devils injected formed cytotoxicity responses 7 days after a second dose (Fig. 

5.10). One devil that was injected with Con A culture supernatant treated cells showed evidence for 

a weak, but statistically significant, cytotoxicity response after the second dose (Fig. 5.10a). There 

was no evidence for a response in the two remaining devils (Fig. 5.10b and c). Antibody levels in the 

serum samples were analysed by flow cytometry (2.8.2). In order to assess the responses against all 

types of cells used in the immunisation, replicate experiments were performed for untreated, Con A 

culture supernatant-treated and TSA-treated DFTD cells. None of the immunised devils showed any 

evidence for antibody development against either untreated, Con A culture supernatant-treated or 
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TSA-treated DFTD cells after any dose (Fig. 5.11). As the in vitro results after vaccination may not 

accurately represent responses in vivo, the three immunised devils were challenged with live, 

untreated DFTD cells 47 days after the second dose of treated DFTD cells to determine if any 

protective immune response had been formed. All three devils developed DFTD tumours 37 days 

after this challenge. Therefore, the immunisation of these healthy devils with treated DFTD cells did 

not induce protective responses against the disease in these devils. 

 

 

Figure 5.9. Cytotoxicity and antibody responses of two diseased Tasmanian devils 

following immunisation with two doses of live MHC I positive DFTD cells 

Two Tasmanian devils with DFTD tumours were immunised with MHC I positive (Con A culture 
supernatant-treated) DFTD cells. Chromium release cytotoxicity assays were performed by 
culturing mononuclear cells from the immunised Tasmanian devils with radioactively labelled wild 
type DFTD cells for 18 hours. Percent cytotoxicity values at mononuclear cell: tumour cell ratios of 
100:1 to 6:1 are shown in panels a, c and e. The statistical difference between the pre immune 
responses of each devil and the cytotoxicity formed after each dose was assessed using F Tests, 
with a value of P<0.05 classified as significant and marked with an asterisk (*). Serum DFTD 
antibody levels of the immunised Tasmanian devils were analysed using flow cytometry and are 
displayed in panels b, d, and f. The levels of cytotoxicity and antibody observed suggest that there 
was no cellular immune response against DFTD following injection of live MHC I positive DFTD cells 
alone. 
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Figure 5.10. Cytotoxicity responses of three healthy Tasmanian devils following 

immunisation with two doses of killed MHC I positive DFTD cells 

Two healthy Tasmanian devils were immunised with MHC I positive (Con A culture supernatant-
treated) DFTD cells and one Tasmanian devil was immunised with Trichostatin A (TSA)-treated 
DFTD cells. Chromium release cytotoxicity assays were performed by culturing mononuclear cells 
from the immunised Tasmanian devils with radioactively labelled DFTD cells for 18 hours. Two 
assays were performed after each dose; day 7 and day 14. Percent cytotoxicity values at 
mononuclear cell: tumour cell ratios of 100:1 to 6:1 are shown. The cytotoxicity responses of the 
two devils immunised with irradiated MHC I positive DFTD cells are shown in panels a and b. The 
cytotoxicity response of one devil immunised with irradiated TSA-treated DFTD cells are shown in 
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panel c. The statistical difference between the pre immune responses of each devil and the 
cytotoxicity formed after each dose was assessed using F Tests, with a value of P<0.05 classified as 
significant and marked with an asterisk (*). The samples that showed statistically significant 
responses were was dose 2 day 14 in panel a. and dose 1 day 1 in panel c. The levels of cytotoxicity 
in these three devils suggest that there was no cytotoxic response against DFTD following injection 
of killed MHC I positive DFTD cells alone. 

 

 

Figure 5.11. Antibody responses of three healthy Tasmanian devils following 

immunisation with two doses of killed MHC I positive DFTD cells 

Two healthy Tasmanian devils were immunised with MHC I positive (Con A culture supernatant-
treated) DFTD cells and one Tasmanian devil was immunised with Trichostatin A (TSA)-treated 
DFTD cells. Serum DFTD antibody levels of the immunised Tasmanian devils against wild type, Con 
A culture supernatant-treated and TSA treated DFTD cells were analysed using flow cytometry. 
Responses against wild type cells are displayed in the panels of column 1, Con A culture 
supernatant-treated cells are displayed in the panels of column 2 and TSA treated cells are 
displayed in the panels of column 3. The solid purple curves represent the pre immune antibody 
levels. The yellow and orange curves represent responses at 7 and 14 days post dose 1, 
respectively. The red and crimson curves represent responses at 7 and 14 days post dose 2, 
respectively. The levels of antibody in these three devils suggest that there was no humoral 
response against DFTD following injection of killed MHC I positive DFTD cells alone. 
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5.3 Discussion 

Successful induction of an anti-tumour response against DFTD needs to overcome immune barriers 

established in the disease. The previous chapter discussed cytotoxic cells as potential effector cells 

against DFTD tumour cells. An important finding of this thesis was that stimulation with mitogens or 

cytokines could consistently induce mononuclear cells to produce cytotoxicity responses against 

DFTD. These cytotoxic cells have similar qualities to lymphokine-activated killer cells from mice and 

humans, including their potential for cytotoxicity responses and mode of activation [343]. The best 

responses out of the five stimuli tested against DFTD tumour cells were formed after a 48 hour 

culture with the mitogen Con A. Potentially, these mitogen-activated killer (MAK) cells could also 

mediate anti-DFTD responses in vivo. One anticipated mechanism for in vivo immune responses 

would be direct cytotoxicity against the tumour cells. Mitogen stimulation would also induce 

cytokine production, including IFNγ, which could induce upregulation of surface MHC I protein. 

Experiments were undertaken to assess the effect of activated Tasmanian devil cytotoxic cells as an 

immunotherapy for the treatment of a devil with an established DFTD tumour. 

The results of this in vivo immunotherapy experiment were promising. The use of three techniques 

in sequence, MAK cell therapy, Con A culture supernatant-treated DFTD cell immunisation and intra-

tumoural cytokine injection, resulted in activation of the devil’s immune response and complete 

regression of the tumour. This experiment provided the first evidence that a Tasmanian devil’s 

immune response has the capacity to eliminate DFTD tumours in vivo. As separate treatments were 

used, it was difficult to determine which, if not all, caused the regression. The first treatment used in 

the diseased devil was the injection of MAK cells directly into the tumour. Initially, there were an 

increased number of leukocytes present in the stroma around the tumour following the first dose of 

MAK cell therapy. Further MAK cell injections did not induce substantial leukocyte infiltration into 

the tumour and the tumour continued to grow. The lack of response to the MAK cell injections may 

have been due to insufficient MAK cells reaching the tumour, as only low numbers of MAK cells 

could be injected due to difficulty in obtaining sufficient cells for treatment. Under anaesthesia the 

devil had a low heart rate and slow blood flow, resulting in low sample volume and lengthy 

collection periods which contributed to clotting, poor mononuclear cell recovery and low viability. 

Compounding this effect of the low yields was the characteristic clumping caused by Con A. Larger 

numbers of MAK cells per injection may improve the responses. Con A induced aggregation could be 

avoided by stimulating the cells with IL-2. In addition to the loss of cells during stimulation, not all of 

the activated cells remained in the tumour following injection. As biopsy samples were taken prior to 

the immunotherapy injections, the biopsy site would bleed when the injection was given. 
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Consequently, loss of cells via bleeding from the puncture wound would have been another factor 

which limited the response. Future MAK cell therapies would benefit from biopsies given time to 

heal prior to injection of cells.  

As the MAK cell immunotherapy did not produce a strong immune response and the tumour was 

increasing in size, Con A culture supernatant-treated DFTD cells were injected sub-cutaneously near 

the tumour to boost the immune response. Within seven days of injection, large numbers of 

immune cells colonised the tumour. The presence of CD3+ cells was consistent with an infiltration of 

T lymphocytes. Staining for CD8 suggested that cytotoxic cells were present among the CD3+ 

lymphocytes, which would have been directly killing MHC I positive DFTD cells within the tumour. 

Thus, in order for the devil’s immune system to respond against the tumour following an 

immunisation with treated cells, they must have expressed at least trace amounts of surface MHC I 

at this stage. Under normal circumstances, DFTD tumours do not express surface MHC I [285].  There 

are two lines of evidence that suggest the MHC I expression changed in the DFTD tumour of CD 15 

during the immunotherapy. Analysis of serum samples taken during tumour regression contained 

antibody that bound to Con A culture supernatant-treated DFTD cells but not untreated cells. This 

suggested that upregulation of immunogenic antigens, potentially MHC I or β2M, occurred during 

the immunotherapy of CD 15 and was crucial for the immune response against the tumour. 

Additionally, immunohistochemistry staining with antibodies to β2M showed changes in distribution 

of the protein during MAK cell immunotherapy and following injection with treated cells. 

Immunohistochemistry of biopsies taken throughout the immunotherapy trial showed a re-

distribution of β2M from patterns consistent with nuclear expression to cytoplasmic expression in 

later samples. Thus, although MAK cell treatment may not have had an obvious effect on the 

immune response, it may have subtly altered the tumour cells or their microenvironment to 

facilitate a response to the immunisation with Con A culture supernatant-treated DFTD cells. 

Consequently, It is possible that the combination of augmented MHC I expression and exposure to 

treated DFTD cells was a more effective immunotherapy than the two techniques alone. Since the 

MHC I protein appeared to be redistributed to the DFTD cell surface and provide an epitope for 

antibody production, ADCC responses may have occurred against the tumour. As discussed in 

Chapter 4, NK cells would have been potential effector cells in this response. Although this response 

could not be directly assessed in CD 15, future immunotherapy experiments may examine ADCC 

responses against DFTD cells in vitro.  

 Although cytotoxic T lymphocytes were likely to be major effectors against the tumour cells, other 

cell types may have contributed to the anti-tumour response. The presence of CD8+ cytotoxic T 
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lymphocytes strongly suggested that there was some level of MHC I expression within the DFTD 

tumour at this stage of the response. The remaining CD3+CD8- T cells were most likely CD4+ cells, 

potentially T helper lymphocytes which would have contributed to the specific anti-tumour 

response. At this stage there was no antibody to CD4 to confirm their presence. The CD3+CD8- 

population could have included rarer lymphocyte phenotypes such as NKT cells and γδT cells. Both of 

these cell types can act as cytotoxic effectors and could have promoted anti-tumour responses in 

other CD3+ cells [421,422]. As no antibodies were available to analyse these populations, they could 

not be identified among the CD3+ population in the DFTD tumour. Some NK cells could also have 

been present in the tumour along with the other leukocytes and acted as effector cells to augment 

the cytotoxic response against the tumour. However, as there were no antibodies to label 

Tasmanian devil NK cells, their presence within the tumour could not be confirmed. There was also 

an abundance of infiltrating MHC II+ cells within the tumour. Morphologically, many of the MHC II+ 

cells had features consistent with macrophages and dendritic cells. Such an increase in T cells and 

antigen presenting cells would be expected in an effective anti-tumour response [423].   

The third treatment given as part of the immunotherapy of CD 15 was intra-tumoural injection with 

a solution containing Con A culture supernatant. As the supernatant would have contained 

inflammatory cytokines, such as IFNγ and IL-2, it may have amplified the existing rejection response. 

The use of multiple treatments and the lack of reagents to examine interactions such as cytokine 

production, cytotoxic cell activation and apoptosis within the tumour made it difficult to interpret 

the effect of intra-tumoural injection with Con A culture supernatant. Examining the outcomes of 

the immunotherapy treatments individually, or in combination, in other devils gave some insight 

into the mechanisms of activation in the first trial. Another aspect of immunity that could have been 

tested in this experiment was the development of long-lasting immunity against DFTD cells after 

tumour regression. The duration of the immune response in the devil with the regressed DFTD 

tumour could have been assessed by challenge with live cells. This was not done in the original 

experiment, but could have provided more insight into the extent of the immune response formed 

against the tumour cells. Additionally, the contribution of ADCC as a pathway to facilitate the anti-

tumour responses observed in the treated devil could have been examined following tumour 

regression, using a similar process to the characterisation of the cytotoxic responses against K562 

cells. Future DFTD immunotherapy trials may involve challenge after treatment to test the duration 

of the anti-tumour response and to determine if long-term immunity develops against the disease. 

Nonetheless, this was the first successful immunotherapy performed in a Tasmanian devil, and 

provided valuable lessons to direct the use of similar techniques in the future. 
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Since the most pronounced response against the DFTD tumour occurred after injection with treated 

DFTD cells, two more DFTD infected devils were immunised with Con A culture supernatant-treated 

cells. This made it possible to determine if injection with treated DFTD cells alone would induce an 

effective response against the DFTD tumour. Both of the devils developed DFTD tumours at the site 

of injection with treated cells and there was no evidence for immune responses in either devil. Thus, 

injection of treated cells alone did not appear to have the pronounced effect as that of the first 

immunotherapy experiment. It is possible that the development of tumours at the injection sites 

was due to a transient expression of their MHC I. Although flow cytometry confirmed surface MHC I 

expression, it may have been a short-lived in vivo. This may not have provided sufficient time to 

induce an immune response against the treated cells as well as a failure to eliminate the viable cells. 

Experiments analysing the duration of MHC I expression induced by IFNγ and Con A culture 

supernatant suggest that the protein remains on the cell surface for only 72 hours (H. Siddle, 

personal communication). Therefore, in order to reject the immunised tumour cells, effector cells of 

the immune response would need to be functional within 72 hours, a period of time which may have 

been insufficient for full activation. This also infers that there is not sufficient expression of MHC I 

expressed on untreated DFTD cells for responses to occur. Consequently, there would be no capacity 

for responses against untreated cells, even when the animals have been ‘immunised’ against MHC I. 

Injection with treated DFTD cells alone was therefore unlikely to have been the sole cause of the 

successful immune response against DFTD in CD 15.  

Both devils used in these experiments had multiple extensively developed DFTD tumours when they 

were first injected with the treated cells. Consequently, the limited immune response against the 

treated DFTD cells could have been due to a generalised immunosuppression as a result of the 

relatively late stage of DFTD. To examine the effect of treated cells on the immune responses of 

animals in better condition, three healthy devils were immunised with treated DFTD cells that had 

been irradiated to prevent growth of tumours at the injection site. The presence of surface MHC I on 

these cells was verified using flow cytometry. None of the devils immunised with irradiated treated 

cells showed evidence for antibody or cytotoxic responses against untreated DFTD cells and all three 

devils developed tumours upon challenge with live DFTD cells. The decision to challenge the devils 

referred to in this comment was complex as the evidence from the two different trials reported in 

this chapter was conflicting. While the cytotoxicity and antibody assays performed did not detect 

strong immune responses in these animals, CD 15 showed a similar level of in vitro response against 

untreated DFTD cells and yet was induced to completely reject an established DFTD tumour. 

Consequently, the only way to conclusively establish the effect of the immunisations against the 

tumours was to perform a challenge with viable DFTD cells. This was undertaken in controlled 
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conditions, with the maximum amount of care provided for the challenged devils; the injections 

were made in locations on the back and shoulders where any resultuing tumours could be easily 

removed and the devils were monitored daily for signs of tumours or poor condition. Although the 

conditions for live challenge were not  ideal, we believe that it was warranted to determine the 

outcome of a vaccine strategy that arose from such a promising result as that presented in figures 

5.1 – 5.7 of this thesis. 

 This result supported the other evidence that DFTD cells are highly inert to the immune response of 

a healthy devil. There was no evidence for antibody responses against treated cells in the devils 

tested. Thus, it would appear that the treated cells were not immunogenic to healthy devils as well 

as DFTD affected devils. The development of DFTD tumours in all three devils following challenge 

with live, untreated cells, supported the conclusion that immunisation with killed MHC I positive 

DFTD cells did not induce protective responses in healthy devils. A possible explanation could be that 

the irradiated cells may have lost MHC I expression in vivo and thus removed the target molecule for 

a cytotoxicity response. Further studies may investigate the development of a DFTD tumour cell line 

with stable MHC I expression. This would be useful to confirm the effect of MHC I presence on the 

immune response against DFTD. 

Consideration of the ineffective immune responses against treated cells alone raises the possibility 

that there must have been other factors in the successful treatment of the tumour of devil CD 15. 

One possible explanation is that the intra-tumoural injection of MAK cells in the weeks prior to the 

treated cells may have altered MHC I expression in the tumour. The MAK cells used for 

immunotherapy were treated in the same way as those that produce the Con A culture supernatant 

used as a source of IFNγ to upregulate MHC I. Consequently, the MAK cells could also have produced 

a source of cytokines in the tumour site. Another difference between the first experiment and 

subsequent immunotherapies was that CD 15 had been immunised several times with DFTD cell 

protein before the tumour developed. It is possible that these immunisations increased the potential 

for an immune response against tumour proteins in the form of the treated DFTD cells. However, 

CD 15 did not form any evidence for immune responses against intact DFTD cells in any cytotoxicity 

or antibody assay performed during the immunisations or challenge. There was also no evidence for 

an antibody response against treated DFTD cells in samples taken before the anti-tumour response 

was formed in the immunotherapy experiment.  This suggested that there was no recognition of 

DFTD surface proteins prior to the immunotherapy, and implies that the immunisations given prior 

to challenge and tumour development did not play a significant role in the immunotherapy response 

against the established tumour.  
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Another possible explanation for the success of the first immunotherapy experiment was that all 

three components of the treatment were necessary for effective anti-tumour responses. The 

requirement for more than one factor in immunotherapy has been demonstrated in at least one 

other study. Overwijk and colleagues [424] used a combination of activated T lymphocytes, tumour 

antigen immunisations and administration of a combination of cytokines chosen to promote T cell 

division and activation to treat B16 melanomas in mice. Only the combination of all three therapies, 

not each individually or paired treatments, induced an appropriate response. In addition to tumour 

regression, most mice treated successfully with immunotherapy suffered vitiligo. This autoimmune 

condition has been correlated to tumour protection and a successful anti-tumour response, 

particularly in immunisations against melanoma [425,426]. There are many common factors in the 

protocol used in the mouse immunotherapy trial and the initial DFTD immunotherapy experiment. 

Both trials began with adoptive transfer of activated immune cells. In both cases, the second step 

was vaccination with tumour antigens. The final step in both trials was injection with a mixture of 

cytokines which contained both proliferative and activating factors. The therapy used in the mouse 

trial required a higher number of cells for adoptive transfer and the treatment regimen was more 

intensive than is realistic for a large animal like a captive Tasmanian devil. Future trials for DFTD 

immunotherapy may therefore seek to replicate the first experiment to determine if the 

combination of therapies, rather than individual treatments was crucial in the development of an 

anti-tumour immune response. 

In summary, immunotherapy using a combination of mitogen activated killer cells, treated DFTD cells 

and intra-tumoral cytokine injection has provided evidence that activation of a Tasmanian devil’s 

immune response can promote the rejection of a DFTD tumour. Activation of Tasmanian devil 

mononuclear cells with Concanavalin A produced cells that appeared to be capable of altering the 

β2M expression of DFTD cells. This change in β2M expression may have contributed to the 

development of strong immune responses formed against a DFTD tumour in one Tasmanian devil. 

Injection with treated DFTD cells could have provided a crucial stimulus to escalate an immune 

response against the tumour. When these treatments were used individually, there was little or no 

evidence for an immune response against DFTD tumours. The potential immunotherapy strategy 

outlined in this chapter could be refined to provide an intervention for the protection of wild 

Tasmanian devils against DFTD.   
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Chapter 6 - Final Discussion 

Devil Facial Tumour Disease (DFTD) poses an unacceptable risk of extinction to the Tasmanian devil. 

This species occupies an important environmental niche as the top predator in the Tasmanian 

ecosystem. Tasmanian devils are also credited with a crucial role in controlling feral pests [427]. 

Consequently, its preservation is important for the protection of other endemic species. Current 

strategies for its conservation include establishing captive populations, which are isolated from 

diseased wild animals. However, the benefit of these captive populations is limited to the small 

areas of land they cover, and will not ensure the survival of the Tasmanian devil in its wild habitat. 

Immunological intervention such as a vaccine or immunotherapy could provide an option for 

protection of the Tasmanian devil in the wild. The studies presented in this thesis investigated the 

potential for an immunological intervention against DFTD. This task would not be possible without 

additional knowledge of the immune response of the host. As Tasmanian devils are marsupials, 

differences from the classical immune responses of eutherian mammals were anticipated and a 

variety of immune pathways were examined. The aims of this thesis were to characterise the devil’s 

anti-tumour immune response, to identify pathways capable of killing DFTD cells and to determine 

the effectiveness of several immunotherapeutic strategies against DFTD. 

At the commencement of this study, the mechanism of DFTD transmission was unknown. A potential 

mechanism was a generalised immununodeficiency within the species. One histological study 

provided evidence for poor lymphocyte infiltration into DFTD tumours [269] suggesting a lack of 

immune response to DFTD. However, other studies had shown that both healthy and DFTD-diseased 

Tasmanian devils had phenotypically normal immune cells that can form a range of normal immune 

responses [1,2,264], although none of these studies evaluated specific anti-tumour responses. An 

alternative mechanism for transmission was a limited diversity within the MHC genes of the 

Tasmanian devil population [270]. This may have decreased the capacity to respond against a 

transmitted tumour. This evidence included low response levels in mixed lymphocyte reactions 

(MLR) and the lack of diversity verified by genotyping [270]. Previous studies of immunity, which 

used MLR in another marsupial, the gray short tailed South American opossum Monodelphis 

domestica, also showed low response levels. Rather than interpreting this result as a lack of genetic 

diversity, the authors hypothesised that the low response could be due to T cells with a different 

ontogeny from those of eutherian mammals [428]. Further functional evidence for the lack of 

genetic diversity in Tasmanian devils was sought using skin grafting experiments [3]. The results of 

this trial showed that healthy Tasmanian devils were capable of mounting successful allogeneic 
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responses against foreign tissue. Consequently, it is unlikely that the low genetic diversity within the 

species is potentially responsible for the transmission of DFTD tumour cells between devils. 

Another possible explanation for the survival of DFTD cells following transfer could be a disruption of 

normal apoptosis pathways. The cytotoxic cells of the immune system initiate cell death in their 

targets by inducing apoptosis. If normal apoptosis pathways were disrupted in DFTD cells, the 

tumour cells could divide unimpeded by cytotoxic signals from the host immune response. Apoptosis 

pathways can be experimentally activated by cytotoxic drugs. Results from work performed in our 

laboratory suggested that DFTD cells could undergo normal cell death responses when treated with 

a variety of chemotherapeutic agents. These included vincristine, which affects microtubules in 

rapidly growing cells, the DNA-intercallating agent doxorubicin, the antimetabolite methotrexate 

and the alkylating agent carmustine [375]. As these four drugs induce apoptosis through different 

mechanisms, it is unlikely that a failure of apoptosis accounts for the survival of transmitted DFTD 

cells. 

The results reported in this thesis showed that DFTD cancer cells fail to induce a response from the 

immune system of the host devil. In order to determine if there was a consistent lack of specific 

immune responses against DFTD, the cytotoxicity and antibody responses of healthy and DFTD-

diseased affected wild devils were tested. The data presented in Chapter 3 provided functional 

evidence for a lack of anti-DFTD-tumour responses in healthy devils. This was also evident in animals 

with established DFTD. A potential way to induce immune responses against DFTD was through 

vaccination with killed DFTD cells. Several trials were performed using a variety of killed DFTD cell 

preparations and adjuvants, all of which were chosen to stimulate cytotoxicity responses. Irradiated 

cells were combined with the non-specific immunomodulator Montanide, with or without 

supplementation with CpG oligonucleotides to increase the potential for downstream activation of 

anti-tumour immune responses [52,54,143,145]. Other trials utilised ISCOMATRIX®, an adjuvant 

designed to promote cross presentation of tumour cell antigens to cytotoxic T lymphocytes (CTL). 

However, when antibody and cytotoxic anti-tumour responses were assessed, only a minority of 

vaccinated devils showed evidence of a response. The lack of immune response in most devils 

following vaccinations suggests that the DFTD cells can go undetected after exposure of a healthy 

animal. Thus, there must be a characteristic that allows the cells to grow without activating the 

host’s immune response. 

One mechanism that would contribute to the lack of immune response induced against DFTD cells, 

even during extended periods of infection or after repeated vaccination, is that the tumour cells 

downregulate their MHC I molecules [285]. Although this is a common immune evasion mechanism 
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in many cancers, it had initially been discounted in DFTD as there was evidence for the expression of 

MHC genes in the tumour cells [270]. Recent evidence suggests that, although the gene is 

transcribed, the protein is not expressed on the cell surface [285,297]. Consequently, there would be 

no capacity for CTL responses from the host devil against the tumour cells. In the absence of a 

functional CTL response, the development of a vaccine would be challenging. The ideal response to 

protect against DFTD would be cellular cytotoxicity. In the trials documented in this thesis, all 

adjuvants chosen were designed to induce cytotoxicity responses. If a CTL response was induced 

there would be no capacity to target DFTD cells as MHC I was missing. Consequently, non-MHC I 

restricted cytotoxicity may need to be targeted. 

One intriguing result was that, where responses were induced after immunisation, they were 

strongest at seven days after the first dose. In most cases, these responses were not evident at 14 

days and after further doses. This situation occurred in several animals and in different trials. An 

interpretation of this result is that natural killer (NK) cells were initially activated and mediated the 

cytotoxicity. NK cells have been shown to be rapidly activated in response to immunisations, after 

which they drive dendritic cell maturation and interaction with T cells, resulting in cytotoxicity, 

cytokine production and an increased adaptive response [429,430,431]. The numbers of activated 

NK cells generated following immunisation with protein antigens, such as hepatitus B virus envelope 

proteins, can influence the strength of specific immune responses generated, particularly those of 

IFNγ-producing T lymphocytes [432]. In other mammals, such as mice, NK cells are capable of 

augmenting the activation and response of CD4+ cells, which increases CTL-mediated immune 

responses [433]. Additionally, NK cell killing of infected cells in early disease can also provide a 

crucial source of antigens to CD8+ T lymphocytes to generate a specific immune response [434]. 

Thus, NK cells can drive responses that are crucial in the development of cytotoxicity after 

immunisation. In the case of DFTD, although the NK cells could have been activated to increase the 

maturation of dendritic cells, augment the development of CD4+ and CD8+ T lymphocyte responses 

and provide a source of tumour antigen, any subsequent cytotoxicity response would not be able to 

target DFTD cells due to the lack of MHC I protein on the cell surface. Thus, one possible explanation 

for the presence of cytotoxic responses after the first immunisation only was that NK cell-mediated 

cytotoxicity occurred initially. As the normal switch to a CD8+ T cell-mediated response occurred, the 

inability to target DFTD cells because of the absence of MHC I resulted in a lack of cytotoxicity after 

the following doses. 

Since MHC I protein is absent on DFTD cancer cells, NK cells should theoretically play an important 

role in an immune response against the disease. However, in DFTD affected devils, there is no 
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evidence for NK cell killing. Prior to the commencement of this project, no studies had investigated 

NK cells in Tasmanian devils, although the presence of other types of immune cells had been 

determined [2,264]. Thus, an aim of this study was to identify NK cells in Tasmanian devils and 

determine if they were able to function normally against tumour cells. Despite the absence of a 

specific marker for Tasmanian devil NK cells, histological and immunohistochemical experiments 

provided the first evidence for NK-like cells in the peripheral blood. Further support for NK cells was 

the genetic identification of several characteristic NK cell receptors. A study by van der Kraan and 

colleagues [435] showed the presence of the activating receptors KLRK1/NKG-2 and another CLEC4E. 

No analogues for common inhibitory receptors were identified. The gene for CD69, a protein which 

is expressed on activated T lymphocytes and NK cells [436] was also identified in Tasmanian devils 

[435]. The identification of these receptors, combined with the histological evidence presented in 

this thesis, strongly suggest the presence of NK-like immune cells. Analysis of protein expression and 

function of these receptors will require future experiments. The data presented in Chapters 3 and 4 

provide evidence for the functional presence of NK-like cells in Tasmanian devils. Immunisation with 

MHC I negative human K562 tumour cells resulted in the induction of cytotoxic responses, which 

were attributed to NK or NK-like cells. The NK-like cytotoxicity responses against K562 cells were 

dissimilar to classical NK cell responses, as there was no spontaneous killing and the reactions 

required up to 18 hours. Similar NK cell responses have been observed against xenogeneic cells 

[396]. This non-classical NK cell killing is thought to occur through alternate cytotoxicity pathways 

such as antibody-dependent cell mediated cytotoxicity (ADCC). The parallels observed between the 

results presented in this thesis and those of similar killing in other studies prompted experiments to 

explore the involvement of ADCC in the anti-K562 cytotoxicity responses of Tasmanian devils.  

Experiments presented in Chapter 4 of this thesis identified two mechanisms through which the 

peripheral blood lymphocytes of Tasmanian devils could be activated to form NK-like activity: ADCC 

and non-specific activation. The ADCC pathway could successfully induce in vitro cytotoxic responses 

against MHC I negative K562 tumour cells following immunisation. Additionally, supplementation 

with serum containing K562-specific antibody could induce ADCC responses in the lymphocytes of 

naive Tasmanian devils. As wild Tasmanian devils do not produce antibodies against surface 

molecules of DFTD cells there is no opportunity for infected animals to develop ADCC responses. 

Immunisation of Tasmanian devils with killed DFTD cells also induced low levels of antibody, which 

could not induce effective ADCC responses. However, given the evidence for ADCC killing of other 

MHC I negative tumour cells the possibility remains that similar responses could occur against DFTD 

tumour cells in the presence of sufficiently strong levels of surface antibody. Studies in other 

models, such as species of ducks, have shown that passive transfer of antibody can induce rejection 
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of foreign cells and tolerated grafts through ADCC killing [159,419]. ADCC responses could thus 

provide a potential mechanism to induce rejection of established DFTD tumours in Tasmanian devils.  

The formation of an ADCC response was one potential mechanism to explain the immune response 

formed against a DFTD tumour during the successful immunotherapy of one devil. Following 

injection with Con A culture supernatant-treated DFTD cells, the immunised devil formed antibody 

responses which could target the treated but not untreated cells in vitro. Among the molecules that 

could be induced on the cell surface by Con A culture supernatant treatment were β2M and MHC I. 

Immunohistochemistry analysis of β2M expression in the biopsies during the immune response 

following immunotherapy showed changes consistent with a potential upregulation of β2M protein, 

and therefore presumably MHC I protein, on the surface of DFTD cells within the tumours. 

Alternatively, other molecules that are associated with β2M could also have been upregulated in 

response to treatment with Con A culture supernatant. There is evidence that treatment with 

cytokines in Con A culture supernatant, particularly IFNγ, can upregulate the activity of the TAP 

pathway [285], which would potentially result in the expression of non-classical MHC I proteins. An 

example of a TAP associated protein which associates with  β2M is the Qa-2 molecule[437]. 

Consequently, if both changes in DFTD cell surface protein expression and development of a surface-

reactive antibody had occurred, ADCC may have been one cytotoxicity pathway activated in the 

immune response following immunotherapy. The activation of the host NK cells through ADCC may 

also have led to production of cytokines  and an increase in free tumour antigen through apoptosis 

[434]. Thus, an ADCC response may also have provided a stimulus to increase the infiltration and 

activity of T lymphocytes, particularly cytotoxic cells, within the tumour. In addition to its 

implications for responses in infected devils, ADCC may provide an important pathway to induce 

protective immune responses against DFTD in naive devils. If immunisations against DFTD cell 

surface antigens could induce antibody production in naive Tasmanian devils, and if this could lead 

to ADCC responses against the tumours, some Tasmanian devils could develop long-lasting immunity 

against tumours. The results presented in this thesis suggest that ADCC may be an appropriate 

target for future immunisation strategies to induce responses against DFTD. Specific protein antigens 

or DNA are often efficient inducers of antibody responses and may thus present good options for 

inclusion in DFTD immunisations.  

The ADCC cytotoxicity data presented in this thesis are also the first experiments to provide physical 

evidence for the presence of functional NK cells in any marsupial species. Many studies have 

identified genes associated with NK cell activity in other marsupials [438,439,440,441], and the 

assessed various cellular responses such as proliferation and antibody formation [442,443]. 
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However, no former studies have provided histological evidence for the presence of NK cells or 

functional cytotoxicity responses in marsupials. Consequently, if future studies sought to analyse 

whether NK cells were present in other marsupial species, they may use similar techniques and 

strategies to those described in this thesis. The analyses performed in the Tasmanian devil may 

therefore inform future strategies for the characterisation of NK cell activity in other marsupial 

species. 

In addition to activation via the ADCC pathway, cytotoxicity responses can be induced in peripheral 

blood mononuclear cells of Tasmanian devils using non-specific stimulation with cytokines, mitogens 

and the Toll-like receptor (TLR) agonist Poly I:C. Data presented in Chapter 4 provided evidence that 

peripheral blood mononuclear cells activated with non-specific stimuli could kill DFTD cells. 

Experiments performed in our laboratory, in conjunction with collaborators from Cambridge 

University, showed that the cytokine rich supernatants from Con A stimulated mononuclear cells 

induced the upregulation of surface MHC I molecules in DFTD cells [285]. The identification of 

methods that could induce immune responses against DFTD and alter the antigen expression of the 

tumour cells, provide two potential directions for immunotherapy: adoptive cell transfer or 

therapeutic vaccination. After demonstrating the success of the activation techniques in vitro, an 

immunotherapy experiment was undertaken in a Tasmanian devil with DFTD. This trial incorporated 

adoptive transfer of activated peripheral blood lymphocytes, injection of MHC I positive DFTD cells 

and injection of the cytokine rich supernatant from mitogen activated lymphocyte cultures. The 

results of the immunotherapy experiment were encouraging, as the tumour was completely 

eliminated. However, the contribution of each of the three immunotherapy techniques in the trial 

was difficult to interpret, as discussed in Chapter 5. Thus, the mechanisms responsible for inducing 

the competent anti-tumour response in the initial experiment have not been defined. Additionally, 

there were several limitations to the extrapolation of the results of the treatments from this trial to 

other cases of DFTD. Firstly, the treatment was performed on only one DFTD infected Tasmanian 

devil that had been injected with DFTD cells in captivity as an immunisation challenge rather than 

being a naturally acquired tumour. Therefore the tumour was of a known strain and age. Secondly, 

the tumour was very small at the commencement of therapy, compared to the majority of DFTD 

tumours identified in the field. Thirdly, the tumour in this animal was a single mass. Adaptation of 

this technique to wild devils may therefore be more difficult, as their tumours may be multicentric, 

metastatic, advanced or a different strain to the cells used in immunotherapy. 

Chemotherapy has been explored as potential methods to treat DFTD [375], with all results 

suggesting DFTD cells were found to be highly resistant to chemotherapy in vivo. Thus, 
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chemotherapy may not provide a reliable option for treatment of DFTD. Additionally, there is in vitro 

evidence that DFTD cells are radioresistant [375]. The results presented in this thesis suggest that 

the use of immunotherapy may be a more promising direction. The success of a treatment in one 

animal provides a ‘proof of concept’ for the use of immunotherapy against DFTD. With refinement of 

the protocols used, it is possible that other devils may also be induced to form an immune response 

against DFTD in future. A particular advantage of immunotherapy, compared to chemotherapy, is 

the specificity of the response and the possibility that a successful treatment may also induce long-

lasting immunity. The development of such immunity occurs against CTVT, the other transmissible 

tumour which utilises similar immune evasion mechanisms to DFTD. Following regression of the 

MHC I negative tumour after activation of the immune response, the host dog develops lifelong 

immunity against the disease, even in its MHC I negative, infectious form [247]. Some 

immunotherapeutic approaches have also been trialled against CTVT. One strategy which has been 

used is therapeutic immunisation against this tumour using hybrids formed between dendritic cells 

and tumour cells [257]. The principle behind this technique is that the hybrids have the capacity to 

express tumour cell associated antigens on both MHC I and MHC II, allowing them to directly 

stimulate anti-tumour responses from both helper and cytotoxic T lymphocytes. This technique 

cannot currently be used to produce DFTD immunisations, as there is no effective method for 

culture of Tasmanian devil dendritic cells. However, future studies may seek to culture dendritic cell 

lines from Tasmanian devils for use in hybrid vaccines similar to those that can successfully induce 

responses against CTVT. Methods used to culture of human dendritic cells may provide direction in 

such studies, and direct the selection and development of reagents for Tasmanian devil dendritic cell 

culture. 

Based on the successful immunotherapy of the DFTD diseased Tasmanian devil, therapeutic 

immunisation of Tasmanian devils with established DFTD tumours is worthy of further investigation. 

As discussed in Chapter 5, treatments that provide a source of IFNγ offer a potential strategy as this 

could upregulate MHC I expression within the tumours. One technique to achieve this objective 

would involve transfection of IFNγ genes into DFTD cells. These transfected cells could be inoculated 

directly into DFTD tumours to augment the immune response via MHC upregulation. This strategy 

has previously been used in other intra-tumoural therapeutic immunisations [444,445,446]. These 

methods involve transfecting tumour cells with the genes for production of lymphocyte-activating 

cytokines, such as IL-12, IFNγ or GM-CSF. An advantage of this technique is that production of IFNγ 

by transfected cells could overcome the notoriously short half life of the cytokine in vivo. The limited 

activity of IFNγ usually necessitates frequent injection for successful immunotherapy [447]. Injection 

with modified cells would provide a longer-lasting source of IFNγ to stimulate a continued immune 
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response. DFTD cells capable of secreting IFNγ would also express MHC I molecules. This is the 

objective of other studies assessing the effects of MHC I positive cells [445]. The expression of 

allogeneic MHC I would be an advantageous immunogen in therapeutic immunisations for DFTD. 

One possible issue with injection of live IFNγ producing DFTD cells would be their potential to revert 

to an infectious phenotype. This may allow them to establish new tumours or add to the bulk of 

existing tumours, or could provoke the development of additional immune escape mechanisms. 

However, previous studies have shown that transfection of IFNγ into tumour cells can activate 

potent anti-tumour responses and abrogate tumourigenicity [448].  

Another method for therapeutic vaccination involves the isolation of tumour cell membranes. The 

cells used are often transfected with gene constructs that code for highly immunogenic molecules 

such as co-stimulatory molecules [449]. Alternatively, immunogenic proteins could be attached to 

the cell surface using protein transfer onto the cells surface using specific glycolipids as anchor 

points [450]. The membranes are then isolated to create a safe and immunogenic vaccine [451]. The 

membrane liposomes created using this technique can induce T lymphocyte proliferation, secretion 

of IFNγ and anti-tumour immune responses in mice [450]. One advantage of this method is that the 

immunisations would contain higher concentrations of membrane proteins, rather than intracellular 

proteins which are not easily accessible in a tumour mass. Use of cell membrane extracts is a similar 

strategy to the recently licensed vaccine against human papilloma virus (HPV), where the 

immunogenic agents are the capsid proteins assembled into a virus-like structure, without viral DNA 

[452]. Analogous to the HPV capsid structures, the membrane liposomes from tumour cells would 

provide safer preparations than those containing whole DFTD cells with intact membranes, such as 

irradiated cells. This would mean the immunisations are more likely to induce responses that can 

target whole cells. Consequently, DFTD cell membrane-based immunisations may also provide a 

potential technique for prophylactic vaccines in naive devils if they could induce responses against 

wild-type DFTD cells. 

Choice of adjuvant is also important for the success of a cancer vaccine. Since immunisations against 

DFTD aimed to induce a cellular cytotoxic response, the adjuvants used reflected this strategy. TLR 

agonists, such as CpG DNA and Poly I:C, are increasingly being used as adjuvants [52,56,143,309] and 

are often combined with other immunomodulators, such as Montanide [292,310,311]. This 

combination of adjuvants can be used with specific antigens in cancer vaccines to induce antibody 

development and long-lasting Th1 and CD8+ T lymphocyte responses [292,311]. Another attractive 

quality of CpG adjuvant supplementation is its capacity to activate many components of the immune 

response, including B lymphocytes, NK cells and DC [53,55,56,57,139]. This effect has been 
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demonstrated in cancer vaccines in animals [296]. Agonists of more specific cell subsets, such as Poly 

I:C and Flt3 Ligand which induce responses from NK cells and DC in vitro and in vivo could also be 

used [47,93,312,313,314,315,316]. Other adjuvants that target specific pathways, such as immune 

stimulating complexes (ISCOMs) such as ISCOMATRIX® which stimulates cross presentation of 

protein antigens [317], was most likely to be useful when incorporated into immunisations 

containing DFTD cell protein. The use of these adjuvants to induce immune responses against DFTD 

cells has not yet been successful. However, the DFTD cell preparations used to date have been 

crude, and the capacity to purify the antigens included has been limited. Many of these adjuvants 

may still provide a good basis for the development of DFTD immunisations, when used with more 

refined cellular preparations or specific antigens. 

The development of an effective immunotherapy or vaccine against DFTD would be extremely 

valuable in the conservation effort to protect Tasmanian devils in the wild. Certain animals within 

wild populations would present key targets for immunotherapy. Since increased incidence of biting 

and, therefore, disease spread occurs during the mating season [262], female devils infected during 

this time may be unable to wean pouch young under normal circumstances. However, with an 

immunotherapy their survival may be prolonged, resulting in successful weaning. Recent results of 

epidemiology and behavioural studies suggest that submissive male devils are most likely to spread 

DFTD, and aggressive males contract tumours within the oral cavity [453]. Thus, submissive male 

devils may be appropriate targets for immunotherapy, if such individuals could be identified through 

observation with remote cameras, microchipping and tracking. The availability of an immunotherapy 

would also provide additional security for captive insurance populations of Tasmanian devils, and 

serve as an alternative to euthanasia if an outbreak of infection or breach of quarantine conditions 

occurs. Consequently, future research in this area will be a crucial undertaking in the effort to save 

the Tasmanian devil from extinction in the wild. The results of this thesis, which have outlined 

potential strategies for inducing immune responses against established DFTD tumours in Tasmanian 

devils, are significant as a basis for future research in this field. 

Despite the potential for the use of adoptive cell transfer or therapeutic immunisation 

immunotherapy for established DFTD, the challenge remains to produce a vaccine capable of 

protecting naive devils from the disease. In the absence of MHC I expression, NK cells may provide a 

good target for induction of immune responses against DFTD, and may form early responses against 

DFTD cells in the first seven days following vaccination with DFTD cells. Consequently, the 

characterisation of this cell type and mechanisms for its activation in this thesis will provide crucial 

information for future vaccine development. As previously discussed, one result with particular 
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significance for vaccine development is the capacity for NK cells to mediate ADCC responses. The 

simultaneous formation of antibody against MHC I positive DFTD cells and rejection of a DFTD 

tumour, in which there was some evidence of increased surface MHC I protein expression, in an 

immunotherapy-treated devil implies that ADCC may be a potential mechanism for the regression of 

the tumour. Thus, the ADCC pathway could be one strategy to manipulate immune responses 

against DFTD tumours in vivo. Development of a vaccine against DFTD may therefore target antibody 

formation in order to induce ADCC responses against MHC I negative DFTD cells. This could 

potentially require development of an antibody against ‘self’ antigens, a process which could be very 

difficult. However, if a sufficiently immunogenic preparation was used to induce antibody production 

this could lead to ADCC against DFTD cells. Antibody responses can often be induced using 

vaccination against tumour specific antigens and, consequently, the identification of candidate 

antigens associated with DFTD cells is an important area of vaccine research. In 2012, C. Tovar 

produced preliminary evidence for the identification of specific DFTD antigens from the serum of 

some devils that are capable of forming antibody responses against DFTD cells. In this study, 

candidate antigens were identified using immunoproteomic techniques to separate proteins that 

were bound by antibodies formed in the serum for structural characterisation and identification 

[297]. Among the antigens identified in this study was vimentin, a protein that is abundant in other 

tumour types and a candidate for tumour vaccines [294]. Another potential molecule for use as a 

target in DFTD immunisation is periaxin, which is expressed in high amounts in DFTD cells [274]. A 

limitation for the use of both periaxin and vimentin in vaccines against DFTD is that both proteins are 

expressed intracellularly. An ideal antigen for immunisations against DFTD would be expressed on 

the cell surface. A possible issue with the use of periaxin as a vaccine target would be the potential 

for activation of autoimmunity, as periaxin is also expressed on Tasmanian devil Schwann cells, as 

would many cell surface antigens on DFTD tumour cells. However, the development of an 

autoimmune response is unlikely to occur rapidly following immunisation. As Tasmanian devils have 

a short lifespan, and often naturally develop neurological problems late in life (S. Peck, personal 

communication), the risk of autoimmunity may be outweighed by the benefit of using an 

immunisation to prevent infection with DFTD. To date, none of the identified antigens have been 

assessed for their ability to induce an immune response.  

The identification of other specific antigens associated with DFTD will be an important area for 

further research. Methods to specifically isolate membrane associated proteins from DFTD tumour 

cells are also worthy of exploration. One such process could be the conjugation of DFTD cell surface 

proteins to a carrier protein such as ovalbumin or to haptens to increase their immunogenicity and 

the potential for antibody formation. This could be achieved on DFTD cells by biotinylating cell 
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surface molecules, using streptavidin binding to attach the selected carrier or hapten, then isolation 

using a specific fractionating column. In addition to increasing the immunogenicity of immunisation 

preparations, this technique would both provide a basis for the isolation of DFTD surface proteins. 

The isolated fractions could then be used to immunised Tasmanian devils, with ovalbumin acting as a 

carrier protein to induce antibody responses and increase the immunogenicity of the surface 

proteins for induction of antibodies. 

The objective of this thesis was to increase knowledge of the interaction between DFTD and the 

immune response of a host devil. This study verified that wild Tasmanian devils do not produce 

immune responses against DFTD in wild Tasmanian devils under normal conditions. Additionally, 

healthy devils immunised with DFTD cells do not consistently form cytotoxic responses against the 

tumour cells. This is most likely a result of the lack of surface MHC I expression on DFTD cells, which 

would restrict the capacity for the cytotoxic T lymphocytes of healthy devils to form responses 

against the tumour cells. However, without specific molecular tools the absence of CD8+ cytotoxic 

cell activity against DFTD cells cannot be thoroughly examined. Despite the absence of a response 

under normal conditions, cytotoxicity responses can be activated against DFTD cells using non-

specific stimulation using the mitogen Concanavalin A, cytokines such as IL-2 and the TLR agonist 

Poly I:C. Thus, this study provided evidence that the immune systems of Tasmanian devils can kill 

DFTD cells. Tasmanian devils also possess functional NK cell responses, which are capable of 

targeting MHC I negative foreign tumour cells through the ADCC pathway. This response may be an 

attractive approach for future vaccination strategies. A crucial finding of this project was that, with 

sufficient stimulation, the immune system of a Tasmanian devil can form an immune response 

capable of rejecting an established DFTD tumour. The findings presented in this thesis will direct 

future immunotherapy strategies for use against DFTD. The knowledge base established through the 

experiments reported in this thesis will provide a basis for future efforts to develop immunological 

interventions against DFTD. 
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Conclusions and future directions 

The work presented in this thesis has increased the understanding of the Tasmanian devil immune 

response and its interaction with DFTD. At the commencement of this study, several immune 

responses in Tasmanian devils had been examined, including phagocytosis, antibody development 

and lymphocyte proliferation, both in response to mitogens and in mixed-lymphocyte reactions. 

However, there had been no examination of anti-tumour responses in Tasmanian devils, and no 

investigations had used functional approaches to determine the reason for the observed absence of 

immune response against DFTD in wild Tasmanian devils. In addition to analysing the basic anti-

tumour immune responses in Tasmanian devils, this study also aimed to activate immune responses 

against DFTD cells through the use of vaccines and immunotherapies.   

 The first important finding from this thesis was the confirmation that Tasmanian devils show no 

evidence for the formation of two major immune responses, cytotoxicity and antibody, against DFTD 

cells, even during long-term infection with the disease. This finding supported the previous evidence 

from pathological studies which did not provide a functional perspective. In addition to the lack of 

response in affected wild devils, immunisation with killed DFTD cells fails to induce a protective 

immune response in the majority of animals. The in vitro demonstration of the consistent lack of 

immune responses against DFTD in Tasmanian devils also complements the recent finding of the 

absence of surface MHC I protein expression on the tumour cells, as this situation would explain the 

absence of a response. 

The experiments in this study also demonstrated the presence of functional anti-tumour responses 

in Tasmanian devils. Immunisation with human K562 tumour cells had the capacity to induce both 

cytotoxicity responses and antibody formation. Additionally, this study provided the first evidence 

for the presence and function of NK cells in Tasmanian devils. The finding that these responses are 

intact in Tasmanian devils has positive implications for the prospect of developing a vaccine against 

DFTD. The presence of these responses provides a basis to target in future vaccine trials. 

Another result of significance in this thesis was the discovery of two mechanisms that can induce 

cytotoxic responses against MHC I negative tumour cells: ADCC and non-specific lymphocyte 

activation. The capacity for ADCC responses was examined against K562 cells. Although preliminary 

experiments have not successfully induced ADCC responses against DFTD cells, this pathway may 

provide a target to induce cytotoxicity against DFTD cells. Some results from this thesis also indicate 

that if antibody responses can be activated against DFTD in infected devils, ADCC may occur against 

DFTD tumours under certain conditions. Non-specific stimulation of mononuclear cells from 
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Tasmanian devils with the mitogen Concanavalin A, inflammatory cytokines such as IL-2 and TLR 

agonists such as Poly I:C can induce the killing of DFTD cells in vitro. The mitogen stimulation of DFTD 

cells provided the basis for an immunotherapy.  

This thesis also reported the first successful induction of an anti-tumour immune response in a 

DFTD-affected Tasmanian devil. The use of three immunotherapeutic techniques resulted in the 

total regression of a DFTD tumour. In this trial it was difficult to attribute each treatment an 

individual effect, and it was possible that each of the three treatments played an important role in 

the regression response. This thesis has discussed the potential importance of ADCC responses, and 

evidence for changes in surface expression of MHC I within the DFTD tumour during the 

immunotherapy. However, regardless of the mechanism, the activation of an effective in vivo 

immune response against DFTD in one devil was a highly significant result, which urgently warrants 

further immunotherapy trials in Tasmanian devils.  

The results of this thesis have implications for future immunotherapy and immunisation trials 

against DFTD. Immunotherapy experiments may seek to repeat the same protocol, with the same 

sequence and timing, as the first immunotherapy trial. It is probable that the presence of interferon-

γ (IFNγ) in the tumour microenvironment was an important factor in the regression of the DFTD 

tumour in the first trial, both for its capacity to induce anti-tumour cytotoxic responses and in the 

upregulation of MHC I within the tumours. As such, this cytokine would make a good target for 

immunotherapy. Other therapeutic vaccine methods used in cancer immunotherapy studies, 

particularly the use of dendritic cell hybrids to induce immune responses against CTVT, may also 

provide good options for immunotherapy trials. This technique is not currently applicable to DFTD, 

as Tasmanian devil dendritic cells have not previously been cultured. Future experiments may seek 

to adapt techniques used for the culture of human dendritic cells, and make use of stimulating 

agents such as ionomycin and phytohaemagglutanin. With the adaptation and refinement of 

immunotherapy protocols, it is possible that other devils may be induced to form immune responses 

capable of rejecting established DFTD tumours. Future development of an immunological 

intervention could be crucial in the effort to save the Tasmanian devil from extinction in the wild. 

Despite the potential for success in immunotherapy, the challenge remains to induce a protective 

immune response against DFTD in naive Tasmanian devils. The lack of surface MHC I protein poses 

an impediment to the induction of immune responses in naive Tasmanian devils, as no cytotoxic T 

lymphocyte response could be formed in the absence of this molecule. This thesis suggests that 

ADCC may be a potential pathway to target for the induction of responses against DFTD in naive 

Tasmanian devils. If a sufficiently strong antibody could be induced against wild-type DFTD cells 
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cytotoxicity could be formed against the tumour cells, in a similar way to the responses against K562 

cells. Consequently, future immunisation strategies could aim to induce antibody formation rather 

than targeting cytotoxicity responses.  

The identification of competent anti-tumour responses and methods to activate the killing of DFTD 

cells in this project were major advances in understanding the immune system of the Tasmanian 

devil and its role in this disease. This thesis has provided evidence that the Tasmanian devil’s 

immune response can eliminate DFTD and has developed and discussed strategies to overcome the 

tumour’s immune evasion mechanisms. And with over 80 percent decline in the species since the 

emergence of DFTD in 1996, the promising results and strategies developed in this thesis could not 

have been come at a more important time. However, our knowledge of the cancer and its 

interaction with the host is still limited by the inability to study the specific components of the 

immune response. A deeper knowledge of the processes involved in the anti-tumour responses of 

Tasmanian devils will be crucial to develop a successful intervention against DFTD. 
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Chapter 8 - Appendices 

Section A.1 -  Additional Tables – Materials and Methods 

Table 8.1. Wild Tasmanian devils 

Tasmanian devil number Sex Disease status Reference Name Capture location 

Dd 1 Female DFTD infected Ada West Pencil Pine 

Dd 2 Female DFTD infected Nancy West Pencil Pine 

Dd 3 Male DFTD infected Swampy Forestier Peninsula 

Dd 4 Male DFTD infected Puma West Pencil Pine 

Dd 5 Male DFTD infected Jas Forestier Peninsula 

Dd 6 Male DFTD infected Scabby Scoota Forestier Peninsula 

Dd 7 Female DFTD infected Pink Peregrine Forestier Peninsula 

Dd 8 Male DFTD infected Gavin Dainty Forestier Peninsula 

Dd 9  Male DFTD infected Black Jack Forestier Peninsula 

Dd 10 Male DFTD infected Donkey Kong Forestier Peninsula 

Dd 11 Male DFTD infected Ed Forestier Peninsula 

Dd 12 Male DFTD infected Eenie Teeny 
Mikey Mo 

Forestier Peninsula 

Dd 13 Female DFTD infected Flame Forestier Peninsula 

Dd 14 Male DFTD infected Pussy Gums Forestier Peninsula 

Dd 15 Female DFTD infected Tsarina Forestier Peninsula 

Dd 16 Male DFTD infected Pete Forestier Peninsula 

Dd 17 Male DFTD infected Tank Forestier Peninsula 

Dd 18 Male DFTD infected Kerry Forestier Peninsula 

Wd 1 Male Healthy Panthazar West Pencil Pine 

Wd 2 Male Unknown Flynn Forestier Peninsula 

Wd 3 Female Unknown Esquivela West Pencil Pine 

Wd 4 Male Unknown Okapi West Pencil Pine 

Wd 5 Male Unknown Azael West Pencil Pine 

Wd 6 Male Unknown Pomaire West Pencil Pine 

Wd 7 Female Unknown Unknown (Neo) Freycinet Peninsula 
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Table 8.2. Captive Tasmanian devils 

Tasmanian 
devil number 

Sex 
Age (at first use 
in experiments) 

Reference Name Captive facility 

Cd 1 Female  3 Grevillia Fern Tree 

Cd 2 Female 5 8444 Richmond 

Cd 3 Female 5 6356 Richmond 

Cd 4 Female 5 7277 Richmond 

Cd 5 Female 5 8130 Richmond 

Cd 6 Male 3 Catman Fern Tree 

Cd 7 Female 2 Betty Fern Tree 

Cd 8 Female 3 Mel Fern Tree 

Cd 9 Female 4 Candy Fern Tree 

Cd 10 Male 3 Grommit Fern Tree 

Cd 11 Female 3 Estrella West Pencil Pine 
(relocated to Fern Tree) 

Cd 12 Male 3 Wazza Fern Tree 

Cd 13 Female 3 Tiarna Fern Tree 

Cd 14 Male 5 Cedric Fern Tree 

Cd 15 Female 4 Missy Fern Tree 

Cd 16 Male 4 Tom Fern Tree 

Cd 17 Female 3 Carlotta Fern Tree 

Cd 18 Male 4 Bob Fern Tree 

Cd 19 Male 1 Bailey Taroona 

Cd 20 Male 1 Leo Taroona 

Cd 21 Female 1 Leila Taroona 

Cd 22 Female 1 Lolita Taroona 

Cd 23 Female 1 Storm Taroona 

Cd 24 Male 1 Mather Taroona 

Cd 25 Male 1 Muffs Taroona 

Cd 26 Male 1 Chaps Taroona 

Cd 27 Female 1 Weenie Taroona 
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Cd 28 Female 1 Wizzie Taroona 

Cd 29 Male 1 Axl Taroona 

Cd 30 Female 1 Elsie Taroona 

Cd 31 Female 1 Lottie Taroona 

Cd 32 Female 1 Mildred Taroona 

Cd 33 Female 1 November Rain Taroona 

Cd 34 Female 1 Pilsner Taroona 

Cd 35 Male 1 Aggy Fern Tree 

Cd 36 Female 1 Poppy Fern Tree 

Cd 37 Male 1 Toby Fern Tree 

Cd 38 Male 2 Phil Fern Tree 

Cd 39 Female 5 Michelle Fern Tree 

Cd 40 Female 5 Tilly Fern Tree 

Cd 41 Male 5 Felix Fern Tree 

Cd 42 Female 5 Maydeem Fern Tree 
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Table 8.3. K562 Immunised Tasmanian devils 

Tasmanian 
devil number 

Immunogen Doses Adjuvant 
Reference 

Name 
Captive 
facility 

Cd 2 Untreated K562  2 
Montanide Gel 
645101 

8444 Richmond 

Cd 3 Untreated K562  2 
Montanide Gel 
645101 

6356 Richmond 

Cd 4 Untreated K562  2 
Montanide Gel 
645101 

8130 Richmond 

Cd 5 Untreated K562 2 
Montanide Gel 
645101 

7277 Richmond 

Cd 6 Irradiated K562  3 Montanide ISA51 VG Catman Fern Tree 

Cd 7 Irradiated K562 3 Montanide ISA51 VG Betty Fern Tree 

 

 

Table 8.4. DFTD Immunised Tasmanian devils 

Tasmanian 
devil number 

Immunogen Doses Adjuvant 
Reference 

Name 
Captive 
facility 

Cd 8 Irradiated DFTD  4 Montanide ISA51 VG Mel Fern Tree 

Cd 9 Irradiated DFTD  4 Montanide ISA51 VG Candy Fern Tree 

Cd 10 Irradiated DFTD  
Sonicated DFTD  

3 
2 

Montanide Gel 
645101 
CpG ODN 1585 

Grommit Fern Tree 

Cd 11 Irradiated DFTD  3 Montanide Gel 
645101 
CpG ODN 1668 

Estrella Fern Tree 

Cd 12 Irradiated DFTD  3 Montanide Gel 
645101 
CpG ODN 1668 

Wazza Fern Tree 

Cd 13 Irradiated DFTD  3 Montanide Gel 
645101 
CpG ODN 1585 

Tiarna Fern Tree 

Cd 14 Sonicated DFTD 
(previously 
immunised) 

2 Montanide Gel 
645101 
CpG ODN 

Cedric Fern Tree 

Cd 15 DFTD cell 
extract  
Live DFTD cell 
challenge 

3 ISCOMATRIX® Tom Fern Tree 

Cd 16 DFTD cell 
extract  
Live DFTD cell 
challenge 

3 ISCOMATRIX® Missy Fern Tree 
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Cd 39 Frozen-thawed 
MHC I positive 
DFTD  
Live DFTD cell 
challenge 

2 ISCOMATRIX® Michelle Fern Tree 

Cd 40 Frozen-thawed 
MHC I positive 
DFTD  
Live DFTD cell 
challenge 

2 ISCOMATRIX® Tilly Fern Tree 

Cd 1 Trichostatin A 
treated DFTD  
Live DFTD cell 
challenge 

3 ISCOMATRIX®  Grevillia Fern Tree 

Cd 7 DFTD protein,  3 ISCOMATRIX®, Flt 3 
Ligand, Poly I:C 

Betty Fern Tree 

Cd 17 DFTD protein,  2 ISCOMATRIX®, Flt3 
and Poly I:C  

Carlotta Fern Tree 

 

Table 8.5. Immunotherapy devils 

Tasmanian 
devil number 

Sex Treatment Doses 
Reference 
Name  

Location 

Cd 15 Female LAK cell immunotherapy 3 Missy Fern Tree (captive 
devil) 

MHC I positive cell 
immunotherapy 

2 

Intratumoural cytokine 
injection 

3 

Dd 11 Male MHC I positive cell 
injection 

1 Ed Forestier Peninsula 
(relocated to 
Richmond) 

Dd 18 
Male MHC I positive cell 

injection 
1 Kerry Forestier Peninsula 

(relocated to 
Richmond) 
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Section A.2 -  Additional Tables – Chapter 3 Cytotoxicity assay data 

Table 8.6. Cytotoxicity responses against DFTD cells in infected Tasmanian 

devils and healthy controls 

Devil Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD 
(%) 

Significance (F 
test) 

Wd 1 

50 794.7 48.7 4 0 -2 1 3   

25 769.5 37.1 -3 2 -2 -1 3   

12 741.8 62.6 0 -1 -8 -3 4   

6 793.4 14.8 0 2 0 1 1   

Cd 1 

50 964.3 102.9 -3 5 4 2 4   

25 906.4 65.8 -3 0 2 0 3   

12 933.0 103.9 3 4 -4 1 4   

6 857.2 84.1 0 -6 -1 -2 4   

Dd 1 

50 2213.4 71.2 5 10 5 7 3 0.3887  

25 2196.0 45.1 5 5 8 6 2 0.4742  

12 2176.3 43.6 6 3 6 5 2   

6 2020.7 56.0 1 0 0 0 1   

Dd 2 

50 640 12 2 1 1 1 0 0.1734  

25 587 3 0 0 0 0 0 0.1369  

12 591 29 1 0 0 0 1   

6 567 68 1 -1 -1 0 2   

Dd 3 

50 717 48 4 4 2 3 1 0.5884  

25 689 11 2 2 3 2 0 0.5037  

12 674 80 0 3 3 2 2   

6 676 67 2 3 1 2 2   

Dd 4 

50 636.6 84.9 -4 -11 -16 -10 6 0.2118  

25 662.6 45.2 -5 -10 -10 -9 3 0.1683  

12 646.2 18.3 -11 -9 -9 -10 1   

6 643.8 43.0 -11 -12 -7 -10 3   

Dd 5 

50 283.3 54.6 1 4 0 2 2 0.2188  

25 244.7 13.9 0 1 0 0 1 0.1741  

12 248.7 22.7 1 -1 1 0 1   

6 239.7 10.5 0 0 0 0 0   

Dd 6 

50 801.9 20.1 1 3 0 1 1 0.9969  

25 782.9 23.4 1 -2 1 0 2 0.8785  

12 804.4 69.5 3 -4 5 1 5   

6 750.6 31.1 -5 -1 -2 -2 2   

Dd 7 

50 754.1 58.8 2 -3 -6 -2 4 0.3639  

25 705.7 37.6 -3 -7 -7 -6 3 0.4426  

12 699.8 4.4 -6 -6 -6 -6 0   

6 645.1 24.9 -10 -11 -8 -10 2   

Dd 8 

50 713.1 39.9 -2 -5 -8 -5 3 0.1953  

25 731.8 9.7 -3 -4 -4 -4 1 0.1547  

12 707.5 23.4 -4 -4 -7 -5 2   

6 721.9 9.6 -5 -4 -5 -4 1   

* Significantly different to healthy wild devil sample, # Significantly different to captive devil sample 
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Table 8.7. Cytotoxicity responses against K562 cells in Tasmanian devils 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD (%) 
Significance 

(F test) 

Cd 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 886.6 70.4 1 0 2 1 1   

50 838.3 12.9 0 0 0 0 0   

25 782.7 38.4 0 0 0 0 0   

12 766.1 33.4 0 0 0 0 0   

6 779.2 77.5 0 0 0 0 0   

Dose 1 

100 884.7 185.7 26 10 21 19 8 0.0000 * 
50 838.1 218.5 25 6 20 17 10   

25 602.1 45.5 4 5 8 6 2   

12 489.4 9.6 0 1 1 1 1   

6 427.5 12.5 0 0 0 0 0   

Dose 2 

100 1377.5 63.7 46 43 41 43 3 0.0000 * 
50 915.7 54.0 22 19 24 22 3   

25 642.1 22.1 10 8 10 9 1   

12 480.4 16.5 2 2 1 2 1   

6 467.8 34.6 3 0 1 1 2   

Cd3 
 
 

PI 

100 1133.6 55.2 5 7 5 6 1   

50 949.1 82.9 4 0 2 2 2   

25 954.4 53.1 2 1 3 2 1   

12 797.4 83.2 1 0 0 0 1   

6 743.8 23.7 0 0 0 0 0   

Dose 1 

100 529.7 41.3 3 1 4 3 2 0.1406  

50 510.2 23.7 2 1 3 2 1   

25 506.3 4.9 2 1 2 2 1   

12 471.9 68.3 3 0 1 1 2   

6 455.3 4.1 0 0 0 0 0   

Dose 2 

50 286.8 56.9 2 11 3 5 5 0.9599  

25 216.4 13.2 0 0 0 0 0   

12 191.8 10.7 0 0 0 0 0   

6 153.5 108.5 0 0 0 0 0   

3 219.1 50.8 0 4 0 1 2   

Cd 4 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 843.9 21.9 0 0 1 0 1   

50 911.7 16.1 1 2 2 2 1   

25 891.7 34.6 1 1 0 1 1   

12 765.0 148.5 1 0 0 0 1   

6 796.5 29.1 0 0 0 0 0   

Dose 1 

100 559.4 57.8 7 2 3 4 3 0.0548  

50 565.9 8.1 4 4 5 4 1   

25 494.2 25.6 0 2 2 1 1   

12 471.2 23.3 0 0 1 0 1   

6 434.5 20.1 0 0 0 0 0   

Dose 2 

100 1933.8 130.4 65 67 76 69 6 0.0000 * 

50 1759.8 65.3 58 63 62 61 3   

25 1057.5 80.3 32 25 29 29 4   

12 623.7 32.4 10 8 7 8 2   

6 501.8 24.5 2 4 2 3 1   
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Cd 5 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 1073.3 443.9 15 1 0 5 8   

50 799.4 65.2 0 0 0 0 0   

25 863.3 2.4 1 1 1 1 0   

12 904.5 120.9 0 0 4 1 2   

6 762.1 23.3 0 0 0 0 0   

Dose 1 

100 588.0 90.9 10 3 3 5 4 0.7479  

50 582.2 12.3 4 5 6 5 1   

25 503.0 45.5 0 1 4 2 2   

12 446.7 11.5 0 0 0 0 0   

6 441.0 49.0 0 0 0 0 0   

Dose 2 

100 1235.4 45.7 35 39 36 37 2 0.0026 * 

50 719.9 47.9 11 15 12 13 2   

25 568.5 21.6 7 5 5 6 1   

12 456.8 49.4 3 0 0 1 2   

6 406.8 12.0 0 0 0 0 0   

* Significantly different to the Pre Immune sample 
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Table 8.8. Memory cytotoxicity responses against K562 cells 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity 
(%) 

Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 886.6 70.4 1 0 2 1 1   

50 838.3 12.9 0 0 0 0 0   

25 782.7 38.4 0 0 0 0 0   

12 766.1 33.4 0 0 0 0 0   

6 779.2 77.5 0 0 0 0 0   

3 721.2 27.8 0 0 0 0 0   

Dose 2 

100 1377.5 63.7 46 43 41 43 3 0.0000 * 
50 915.7 54.0 22 19 24 22 3   

25 642.1 22.1 10 8 10 9 1   

12 480.4 16.5 2 2 1 2 1   

6 467.8 34.6 3 0 1 1 2   

4 Months 
Post Dose 2 

100 3146.6 91.6 61 60 56 59 3 0.0000 * 

50 1595.5 195.3 23 12 17 17 6 0.4997  

25 1001.8 15.2 1 2 1 1 1   

12 909.6 66.3 0 1 0 0 1   

6 799.5 65.6 0 0 0 0 0   

Challenge 

100 5895.3 201.5 71 66 66 68 3 0.0000 * 
50 3929.5 536.0 45 42 30 39 8 0.4161  

25 2516.0 89.0 20 19 18 19 1   

12 1711.9 75.7 7 6 8 7 1   

6 1176.4 37.2 0 0 0 0 0   

Cd 4 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 843.9 21.9 0 0 1 0 1   

50 911.7 16.1 1 2 2 2 1   

25 891.7 34.6 1 1 0 1 1   

12 765.0 148.5 1 0 0 0 1   

6 796.5 29.1 0 0 0 0 0   

3 778.8 88.7 0 0 0 0 0   

Post   Dose 2 

100 1933.8 130.4 65 67 76 69 6 0.0000 * 

50 1759.8 65.3 58 63 62 61 3   

25 1057.5 80.3 32 25 29 29 4   

12 623.7 32.4 10 8 7 8 2   

6 501.8 24.5 2 4 2 3 1   

4 Months 
Post Dose 2 

100 1606.2 89.2 20 15 17 17 3 0.0003 * 

50 982.4 28.7 0 1 1 1 1 0.0213 # 

25 782.3 45.0 0 0 0 0 0   

12 787.9 20.1 0 0 0 0 0   

6 807.6 26.6 0 0 0 0 0   

Challenge 

100 5175.7 3265.5 80 88 89 86 5 0.0000 * 

50 6086.6 96.4 71 69 71 70 1 0.9929  

25 4793.7 124.4 51 54 50 52 2   

12 3188.0 30.0 28 29 29 29 1   

6 2022.7 44.7 12 12 11 12 1   

* Significantly different to the Pre Immune sample, # Significantly different to the previous sample 
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Table 8.9. Cytotoxicity responses against irradiated K562 cells 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 6 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 465.2 33.0 9 6 7 7 2   

50 420.4 33.4 7 5 5 6 1   

25 396.2 46.3 3 7 5 5 2   

12 347.4 18.3 2 3 3 3 1   

Dose 1 

50 551.5 73.6 10 4 5 6 3 0.9135  

25 403.8 26.2 1 1 0 1 1   

12 395.8 27.8 0 0 1 0 1   

6 394.2 19.5 0 0 1 0 1   

Dose 2 

50 3885.7 190.1 4 6 4 5 1 0.4884  

25 3400.2 546.7 6 1 1 3 3   

12 3249.7 144.5 2 1 2 2 1   

6 2808.6 158.8 0 0 0 0 0   

3 2637.4 46.8 0 0 0 0 0   

Dose 3 

100 1033.5 38.8 63 60 56 60 4 0.0335 * 

50 616.3 62.7 30 21 20 24 6   

25 433.4 5.0 8 8 7 8 1   

12 379.8 3.9 3 3 3 3 0   

6 328.3 6.1 0 0 0 0 0   

Cd 7 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 382.9 33.2 4 3 5 4 1   

50 366.5 13.3 3 4 3 3 1   

25 335.7 67.4 4 3 0 2 2   

12 327.0 5.2 2 2 1 2 1   

Dose 1 

50 455.5 40.3 4 3 1 3 2 0.5537  

25 380.1 27.6 1 0 0 0 1   

12 379.4 32.4 1 0 0 0 1   

6 359.3 5.5 0 0 0 0 0   

Dose 2 

50 4009.1 53.5 6 6 5 6 1 0.4496  

25 4107.1 208.3 7 5 6 6 1   

12 3413.7 52.8 3 2 2 2 1   

6 3290.7 122.3 1 2 2 2 1   

3 3129.7 130.0 1 2 0 1 1   

Dose 3 

100 738.6 43.2 34 30 38 34 4 0.1211  
50 449.4 38.2 12 9 6 9 3   

25 374.8 4.2 2 3 3 3 1   

12 368.5 12.4 1 2 3 2 1   

6 332.2 8.9 0 0 0 0 0   

* Significantly different to the Pre Immune sample 

 

 



 

204 
 

Table 8.10. Innate cytotoxic cell assays: cell line specificity and 4 hour reactions 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 14 Naive devil 

50 665.0 31.7 2 1 1 1 1   

25 588.3 15.8 0 0 0 0 0   

12 537.4 32.8 0 0 0 0 0   

6 527.5 34.5 0 0 0 0 0   

Cd 2 
Immunised 

devil 

100 925.9 105.1 0 2 0 1 1 0.2042  

50 455.4 23.2 0 0 0 0 0   

25 342.1 22.9 0 0 0 0 0   

12 330.4 29.6 0 0 0 0 0   

6 391.8 45.8 0 0 0 0 0   

Cd 3 

YAC1 
tumour 

cells 

50 1267.7 162.0 0 0 0 0 0   

25 1164.1 415.2 0 0 0 0 0   

12 1712.8 677.9 0 0 1 1 1   

6 1131.1 109.4 0 0 0 0 0   

K562 
tumour 

cells 

50 522.0 47.0 0 0 0 0 0 0.5709  
25 746.0 220.6 0 1 0 0 0   

12 578.3 23.0 0 0 0 0 0   

6 514.6 91.3 0 0 0 0 0   

1:1 Mixture 
(YAC1 

labelled) 

50 7504.1 243.2 58 57 61 58 2 0.0000 # 

25 6593.4 1044.3 46 61 44 50 10   

12 5238.0 625.7 36 44 33 38 6   

6 5069.8 598.8 31 42 35 36 6   

* Significantly different to the naive sample, # significantly different to the YAC-1 cell sample 

 

 

 

Table 8.11. Cytotoxicity against irradiated DFTD cells in Montanide adjuvant 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 8 

PI 

50 399.0 19.7 7 0 2 3 4   

25 406.8 53.3 14 5 0 6 7   

12 368.0 38.9 0 0 5 2 3   

6 375.2 26.2 3 0 0 1 2   

Dose 1 

100 3261.0 179.3 8 10 1 6 5 0.6264  

50 3268.8 232.2 0 11 9 7 6   

25 2983.5 124.1 0 0 1 0 1   

12 2998.7 51.2 0 1 0 0 1   

6 2939.4 42.9 0 0 0 0 0   

Dose 2 

100 2677.4 102.3 10 6 5 7 3 0.7076  

50 2893.4 659.3 3 2 33 3 1   

25 2627.7 61.0 8 5 4 6 2   

12 2740.8 69.9 8 7 11 9 2   

6 2472.2 106.9 3 0 4 2 2   
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Dose 3 

100 1561.9 76.9 8 4 3 5 3 0.9744  
50 1550.9 20.0 5 4 5 5 1   

25 1449.4 10.6 1 1 1 1 0   

12 1546.1 20.5 4 5 5 5 1   

6 1386.1 71.5 0 1 0 0 1   

Dose 4 

100 620.5 29.9 10 6 6 7 2 0.8927  
50 601.5 20.3 8 5 4 6 2   

25 623.4 36.5 6 6 11 8 3   

12 576.2 26.5 1 4 6 4 3   

6 550.4 5.2 2 2 1 2 1   

Cd 9 

PI 

50 357.0 34.9 3 0 0 1 2   

25 333.2 23.3 0 0 0 0 0   

12 345.2 4.5 0 0 0 0 0   

6 341.2 20.5 0 0 0 0 0   

Dose 1 

100 3010.9 47.3 1 0 0 0 1 0.0264 * 

50 3186.0 25.5 3 5 4 4 1   

25 2881.7 101.9 0 0 0 0 0   

12 3213.4 112.2 4 3 8 5 3   

6 2931.8 65.9 0 0 0 0 0   

Dose 2 

100 2600.7 149.3 10 2 3 5 4 0.1638  

50 2567.4 110.9 7 4 1 4 3   

25 2466.5 71.3 3 0 1 1 2   

12 2484.1 148.5 1 0 6 2 3   

6 2444.9 112.0 4 0 0 1 2   

Dose 3 

100 1554.7 43.9 5 6 3 5 2 0.0612  

50 1539.7 53.1 3 6 3 4 2   

25 1493.9 118.6 6 0 3 3 3   

12 1442.6 23.7 0 2 1 1 1   

6 1374.6 56.1 0 0 0 0 0   

Dose 4 

100 723.7 34.9 18 16 13 16 3 0.0008 * 
50 808.1 53.1 26 23 17 22 5   

25 629.9 60.3 8 13 3 8 5   

12 621.6 46.3 6 12 5 8 4   

6 581.0 30.8 6 5 1 4 3   

* Significantly different to the Pre Immune sample 
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Table 8.12. Cytotoxicity responses against irradiated DFTD cells in Montanide 

adjuvant supplemented with CpG oligonucleotides 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 10 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

50 1768.5 41.2 11 12 15 13 2   

25 1758.4 35.5 11 13 13 12 1   

12 1606.5 14.5 5 6 6 6 1   

6 1675.9 49.0 11 6 9 9 3   

Dose 1 

50 1926.7 39.5 34 30 32 32 2 0.0911  

25 1891.9 40.7 31 31 28 30 2   

12 1897.7 6.3 30 31 30 30 0   

6 1886.6 132.8 25 37 27 30 7   

 

        
  

Dose 2 

50 1037.0 6.3 33 34 33 33 1 0.0444 * 

25 998.7 30.3 29 33 30 31 2   

12 806.6 22.0 16 14 17 16 2   

6 635.9 22.3 4 3 1 3 2   

Dose 3 

50 2169.2 237.9 54 34 40 43 10 0.0151 * 

25 1564.7 92.1 20 13 19 17 4   

12 1069.7 76.6 0 0 0 0 0   

6 1155.4 72.2 1 3 0 1 2   

 
Cd 11 

 
 
 
 
 
 
 
 
 
 
 

PI 

50 1827.8 99.2 1 0 0 0 1   

25 1816.0 45.7 0 0 0 0 0   

12 1885.0 84.5 0 0 3 1 2   

6 1816.7 30.0 0 0 0 0 0   

Dose 1 

50 1698.9 54.8 18 19 23 20 3 0.0000 * 

25 1770.4 42.0 26 25 22 24 2   

12 1790.4 144.9 33 19 22 25 7   

6 1624.9 99.6 18 11 21 17 5   

Dose 2 

50 592.0 58.9 4 0 0 1 2 0.5552  

25 543.8 26.0 0 0 0 0 0   

12 561.0 50.9 0 0 0 0 0   

6 538.1 48.6 0 0 0 0 0   

Cd 12 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

50 1741.9 87.3 15 8 12 12 4   

25 1702.7 32.9 9 11 10 10 1   

12 1697.1 29.2 9 9 11 10 1   

6 1475.4 21.9 0 1 0 0 1   

Dose 1 

50 1628.2 56.7 20 15 15 17 3 0.4088  

25 1670.5 39.5 17 18 21 19 2   

12 1758.7 141.6 24 16 30 23 7   

6 1634.7 101.1 23 15 13 17 5   

Dose 2 

50 720.9 36.1 6 10 11 9 3 0.4670  

25 615.8 31.2 4 0 0 1 2   

12 610.0 12.1 0 1 1 1 1   

6 579.2 1.1 0 0 0 0 0   
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Dose 3 

50 1691.1 125.6 29 19 21 23 5 0.3076  

25 1336.9 95.6 7 4 12 8 4   

12 1135.1 57.5 0 0 2 1 1   

6 1105.0 28.1 0 0 0 0 0   

Cd 13 

PI 

50 2060.4 58.3 6 6 11 8 3   

25 1932.2 45.4 0 4 1 2 2   

12 1987.5 16.4 5 5 3 4 1   

6 1940.2 79.1 4 4 0 3 2   

Dose 1 

50 1918.0 45.3 34 30 31 31 2 0.0226 * 

25 1559.7 20.5 12 14 13 13 1   

12 1667.8 34.5 20 17 19 19 2   

6 1576.2 12.4 14 13 15 14 1   

Dose 2 

50 743.9 25.2 9 10 13 11 2 0.1509  

25 793.8 21.4 13 16 15 15 2   

12 686.9 23.4 7 8 4 6 2   

6 557.5 36.5 0 0 0 0 0   

Dose 3 

50 670.0 105.1 6 16 0 6 8 0.8933  
25 640.1 83.7 0 0 12 4 7   

12 570.3 47.6 0 0 3 1 2   

6 661.5 35.2 8 2 7 6 3   

* Significantly different to the Pre Immune sample 
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Table 8.13. Cytotoxicity responses against sonicated DFTD cells in Montanide adjuvant 

supplemented with CpG oligonucleotides 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 10 

PI 

50 599.2 68.2 13 5 0 6 6   

25 530.2 18.4 0 0 0 0 0   

12 551.2 42.2 0 5 0 2 3   

6 566.7 23.1 4 1 0 2 2   

Dose 1 

50 446.2 28.9 33 36 43 38 5 0.0041 * 

25 415.0 24.7 31 37 28 32 4   

12 408.9 14.7 32 33 28 31 3   

6 381.8 6.0 26 27 26 26 1   

Dose 2 

50 1243.0 52.7 16 16 12 15 2 0.0139 * 

25 1501.8 153.8 18 31 31 27 7   

12 1437.7 47.4 22 23 26 24 2   

6 1140.2 61.6 13 7 10 10 3   

 
Cd 14 

 

PI 

50 598.2 9.6 4 6 6 5 1   

25 607.7 23.0 6 8 4 6 2   

12 547.3 20.8 2 0 0 1 1   

6 521.7 33.1 0 0 0 0 0   

Dose 1 

50 515.2 26.2 53 45 52 50 5 0.0040 * 

25 410.3 32.4 33 25 36 31 6   

12 422.1 6.5 34 34 32 33 1   

6 417.6 5.0 32 33 33 33 1   

Dose 2 

50 2312.8 174.8 71 55 66 64 8 0.0012 * 

25 1852.5 43.1 44 41 44 43 2   

12 1397.5 36.0 22 24 20 22 2   

6 1281.9 88.6 18 12 20 17 4   

* Significantly different to the Pre Immune sample 
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Table 8.14. Cytotoxicity responses against DFTD cell total protein in ISCOMATRIX® 

adjuvant 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 15 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

50 288.2 19.4 8 4 12 8 4   
25 280.9 10.0 8 8 4 7 2   
12 258.3 17.2 -2 4 4 2 4   

6 245.6 44.7 4 5 -11 0 9   

Dose 1 

50 1606.3 120.6 0 1 6 2 3 0.0290 * 
25 1583.7 30.2 1 2 1 2 1   
12 1518.3 35.6 -1 1 -1 0 1   

6 1413.3 84.3 -3 -5 -1 0 2   

Dose 2 

50 941.5 75.9 2 9 7 6 3 0.5822  
25 956.0 45.9 5 7 9 7 2   
12 900.4 62.9 7 4 2 4 3   

6 847.2 71.3 -2 4 4 2 3   

Dose 3 

50 479.2 61.7 -8 -7 5 0 7 0.0281 * 
25 531.2 82.2 -7 2 12 2 9   
12 496.5 26.8 -1 -5 1 0 3   

6 491.4 28.7 0 -6 -1 0 3   

Cd 16 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

50 267.7 4.3 5 4 3 4 1   

25 253.8 37.2 -8 7 4 1 8   

12 268.4 12.9 2 6 
 

4 3   

6 222.6 12.3 -5 -3 -8 0 3   

Dose 1 

50 1634.7 183.0 -3 5 6 2 5 0.2138  

25 1418.7 121.9 -4 -6 0 0 3   

12 1485.3 48.8 0 -3 -2 0 1   

6 1492.7 60.8 -1 -3 0 0 2   

Dose 2 

50 1072.1 86.1 8 14 14 12 4 0.1047  

25 902.5 16.6 5 4 4 4 1   

12 1056.6 213.6 8 4 22 11 10   

6 903.5 153.7 -2 12 4 4 7   

Dose 3 

50 616.6 49.2 8 10 18 12 6 0.1180  

25 594.7 50.1 3 12 13 10 6   

12 586.4 10.5 8 10 8 9 1   

6 539.5 50.1 6 -3 7 3 6   

* Significantly different to the Pre Immune sample 
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Table 8.15. Cytotoxicity responses against DFTD cell total protein in ISCOMATRIX® 

adjuvant supplemented with Flt 3 ligand and Poly I:C 

Devil Assay Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 7 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 419.5 31.4 10 2 5 6 4   

50 458.6 34.6 9 16 8 11 5   

25 441.3 21.7 12 6 8 9 3   

12 431.7 30.3 12 7 3 7 4   

Day 7 
(Dose 1) 

50 1070 35 2 1 2 2 1 0.0188 * 

25 985 89 -1 -1 2 0 2   

12 1031 12 1 1 0 1 0   

6 1100 162 1 -1 6 2 3   

Day 14 
(Dose 2) 

100 1306 84 11 9 19 13 5 0.5919  

50 1295 25 13 10 13 12 2   

25 1268 5 11 11 10 11 0   

12 1170 88 -1 10 5 5 5   

Day 42 
(Dose 3) 

100 820 50 -1 -6 0 0 3 0.1976  
50 830 52 2 -3 -3 0 3   

25 810 31 -2 -1 -5 0 2   

12 795 68 -8 -4 1 0 4   

Day 49 
(Dose 3) 

100 1124 93 7 1 10 6 4 0.5111  

50 1141 42 9 5 7 7 2   

25 1148 24 8 6 6 7 1   

12 1068 82 -1 6 5 3 4   

Cd 17 
 
 
 
 
 
 
 
 
 
 
 
 
 

PI 

100 1633.1 29.9 7 7 9 8 1   

50 1609.5 273.2 -5 9 16 7 11   

25 1689.9 148.7 3 11 15 10 6   

12 1704.7 104.0 15 10 7 11 4   

Day 7 
(Dose 1) 

100 1137 109 1 3 5 3 2 0.1580  

50 1245 59 5 6 4 5 1   

25 1067 111 4 1 0 1 2   

12 1070 38 2 2 1 2 1   

Day 14 
(Dose 2) 

100 1677 56 37 37 31 35 3 0.0498 * 

50 1497 97 26 29 18 24 6   

25 1546 18 28 26 27 27 1   

12 1488 157 21 16 34 24 9   

Day 42 
(Dose 3) 

100 1060 19 14 14 12 13 1 0.1377  

50 941 61 2 10 5 6 4   

25 870 78 6 -4 2 1 5   

12 959 46 3 9 8 7 3   

Day 49 
(Dose 3) 

100 1312 72 12 18 13 14 3 0.5594  

50 1284 160 15 19 5 13 7   

25 1242 24 12 10 11 11 1   

12 1267 58 14 14 9 12 3   

* Significantly different to the Pre Immune sample 
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Section A.3 -  Additional Tables – Chapter 3 Cytotoxicity assay data 

Table 8.16. Cytotoxicity responses of MNC and nylon non-adherent cells from K562 

immunised devils against K562 cells 

Devil 
Sample 

Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance (F 
test) 

Cd 2 

MNC 

25 2584.7 43.8 57 60 57 58 2   
12 1783.9 54.9 33 30 30 31 2   

6 1015.9 27.3 4 6 5 5 1   
3 962.7 65.6 1 5 3 3 2   

Nylon wool 
non 

adherent 
cells 

25 1106.0 94.6 9 10 4 8 3 0.0102 * 
12 872.3 40.7 1 0 0 0 1   

6 779.3 7.6 0 0 0 0 0   
3 808.1 18.9 0 0 0 0 0   

Cd 4 

MNC 

25 9168.9 262.9 63 67 64 64 2   
12 7080.6 503.7 49 48 41 46 4   

6 4393.4 130.6 23 22 24 23 1   
3 2697.8 716.4 3 5 15 8 6   

Nylon wool 
non 

adherent 
cells 

25 2024.7 82.0 1 2 3 2 1 0.0002 * 
12 1778.8 80.5 0 1 0 0 1   

6 1580.7 97.2 0 0 0 0 0   
3 1671.5 133.1 0 0 0 0 0   

* Statistically significant compared to response of MNC. 

 

Table 8.17. ADCC responses of MNC from naive devils against K562 cells 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 1 

No Antibody 

25 636.3 116.6 3 -6 3 0 5   
12 635.0 146.7 2 -7 5 0 6   

6 718.0 31.6 5 3 3 4 1   
3 613.0 118.0 0 4 -6 -1 5   

Immune 
Serum 

25 1066.7 247.0 32 29 14 25 10 0.0051 * 
12 955.3 10.4 20 20 21 20 0   

6 712.3 79.1 14 8 10 11 3   
3 616.7 140.1 1 11 9 7 6   

Cd 16 

No Antibody 
25 880.7 38.6 -1 -2 -3 0 1   
12 893.5 55.1 -3 -1 0 0 1   

6 833.7 37.1 -2 -4 -4 0 1   

Immune 
Serum 

25 4415.1 697.8 98 109 73 93 18 0.0000 * 
12 3600.9 259.1 65 79 70 71 7   

6 3018.9 718.4 64 69 33 55 20   
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Cd 15 

No Antibody 

25 2015.4 103.3 1 1 0 1 1   
12 2024.3 46.7 1 1 1 1 0   

6 1987.3 135.3 0 0 2 1 1   
3 1923.8 112.9 -1 0 1 0 1   

Immune 
Serum 

25 13452.0 515.6 92 110 101 100 9 0.0000 * 
12 11975.8 553.7 70 86 68 75 10   

6 12715.7 681.1 74 92 97 88 12   
3 11276.3 694.7 63 74 50 62 12   

Cd 7 

No Antibody 

25 658.0 155.1 4 6 -7 1 7   
12 764.3 47.5 8 4 6 6 2   

6 681.0 43.0 3 0 4 2 2   
3 652.0 121.3 -5 4 4 1 5   

Immune 
Serum 

25 1012.0 247.2 11 30 27 23 10 0.0180 * 
12 963.3 42.9 23 19 21 21 2   

6 788.7 166.9 18 6 18 14 7   
3 695.7 175.7 13 2 15 10 7   

Dd 2 

No Antibody 

25 730 79 -1 1 3 1 2   
12 678 86 -2 -1 2 0 2   

6 769 26 3 2 2 2 1   
3 751 62 2 0 3 2 2   

Immune 
Serum 

25 2784 112 52 52 48 51 3 0.0000 * 
12 2493 113 46 45 40 43 3   

6 2606 243 53 43 43 46 6   
3 1829 165 24 32 25 27 4   

Cd 3 

No Antibody 

25 789 45 2 4 3 3 1   
12 892 165 10 3 3 5 4   

6 855 38 3 5 5 4 1   
3 857 111 2 7 5 4 3   

Immune 
Serum 

25 32 35 47 38 8 32 35 0.0024  
12 27 29 25 27 2 27 29   

6 20 20 18 19 1 20 20   
3 10 12 14 12 2 10 12   

* Statistically significant compared to untreated sample. 
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Table 8.18. ADCC responses of MNC and nylon wool non-adherent cells from naive 

devils against K562 cells 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 1 

MNC 
No Antibody 

25 636.3 116.6 3 -6 3 0 5   

12 635.0 146.7 2 -7 5 0 6   

6 718.0 31.6 5 3 3 4 1   

3 613.0 118.0 0 4 -6 -1 5   

MNC 
Immune Serum 

25 1066.7 247.0 32 29 14 25 10 0.0051 * 

12 955.3 10.4 20 20 21 20 0   

6 712.3 79.1 14 8 10 11 3   

3 616.7 140.1 1 11 9 7 6   

Nylon non 
adherent cells 
No Antibody 

25 951.7 272.6 27 26 8 20 11 0.0148 * 

12 719.3 34.6 13 11 10 11 1 0.6000  

6 670.0 86.5 10 5 12 9 3   

3 559.3 124.9 7 -1 9 5 5   

Cd 7 

MNC 
No Antibody 

25 658.0 155.1 4 6 -7 1 7   

12 764.3 47.5 8 4 6 6 2   

6 681.0 43.0 3 0 4 2 2   

3 652.0 121.3 -5 4 4 1 5   

MNC 
Immune Serum 

25 1012.0 247.2 11 30 27 23 10 0.0180 * 

12 963.3 42.9 23 19 21 21 2   

6 788.7 166.9 18 6 18 14 7   

3 695.7 175.7 13 2 15 10 7   

Nylon non 
adherent cells 
No Antibody 

25 1031.0 72.9 27 22 22 23 3 0.0249 * 

12 699.3 142.5 12 15 4 13 3 0.8670  

6 677.7 146.5 14 12 3 13 1   

3 754.3 22.1 13 13 12 12 1   

Dd 5 

MNC 
No Antibody 

25 455.7 70.2 5 1 -1 2 3   

12 409.0 21.0 -1 0 1 0 1   

6 429.0 25.2 1 1 -1 1 1   

3 429.0 16.5 1 0 1 1 1   

MNC 
Immune Serum 

25 795.0 60.8 18 14 18 17 3 0.0123 * 

12 654.3 40.7 9 12 11 11 2   

6 564.3 27.6 7 6 8 7 1   

3 511.0 33.5 6 4 5 5 1   

Nylon non 
adherent cells 
No Antibody 

25 659.0 12.1 11 12 11 11 1 0.0256 * 

12 513.7 19.7 6 4 6 5 1 0.6851  

6 465.3 20.6 3 4 3 3 1   

3 446.3 22.0 1 3 3 2 1   

* Statistically significant compared to untreated sample, # statistically significant compared to MNC 
plus antibody. 
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Table 8.19. ADCC responses of MNC against K562 cells in the presence of supernatant 

from immune MNC and K562 culture 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 38 

No Antibody 

25 1060.1 251.9 1 -1 4 1 2   
12 1129.5 353.2 0 0 6 2 3   

6 1189.6 442.4 5 4 -2 2 4   
3 892.3 157.5 1 0 -2 0 1   

K562 culture 
Supernatant 

25 1048.4 146.4 3 2 1 2 1 0.1818  
12 1477.5 107.7 6 7 5 6 1   

6 958.8 115.6 2 1 1 1 1   
3 737.9 96.6 0 -1 -2 0 1   

Cd 5 

No Antibody 
25 485.0 45.1 6 10 5 7 3   
12 552.8 75.0 11 16 7 11 5   

6 540.7 60.5 10 14 7 11 4   

K562 culture 
Supernatant 

25 645.2 86.9 15 10 21 15 6 0.6515  
12 585.7 51.7 8 12 14 11 3   

6 544.1 33.3 6 9 10 9 2   

Cd 1 

No Antibody 

25 854.6 43.0 -8 -2 -4 0 3   
12 863.0 25.4 -3 -6 -3 0 2   

6 795.2 143.5 -2 
  

0 10   
3 882.2 33.2 -1 -6 -2 0 2   

K562 culture 
Supernatant 

25 978.4 43.9 2 1 2 1 0 0.2602  
12 1132.9 213.0 4 1 4 3 2   

6 1068.5 177.1 4 1 1 2 2   
3 1031.7 371.9 2 5 -1 2 3   

* Statistically significant compared to untreated sample. 
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Table 8.20. 4 hour ADCC responses of MNC from naive devils against K562 cells 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 14 
(test 1) 

No Antibody 
25 588.3 15.8 0 0 -1 1 1   
12 537.4 32.8 -1 -2 -1 0 1   

6 527.5 34.5 -2 -1 -2 0 1   

Immune 
Serum 

25 2242.6 177.9 36 41 33 36 4 0.0001 * 
12 1615.5 128.8 24 21 26 23 3   

6 1209.4 19.2 15 15 14 15 0   

Cd 10 

No Antibody 

25 292.4 1.7 0 0 1 0 0   
12 256.5 16.0 -3 -1 -2 0 1   

6 276.9 6.3 0 -1 0 0 0   
3 246.0 51.8 -7 -2 0 0 4   

Immune 
Serum 

25 555.5 44.4 17 19 23 20 3 0.0000 * 
12 399.4 9.7 9 10 9 9 1   

6 359.8 28.6 7 8 4 6 2   
3 295.7 24.2 2 0 4 2 2   

Dd 5 

No Antibody 

25 225.7 19.8 -1 0 -1 0 1   
12 245.0 20.4 1 0 0 0 1   

6 237.3 9.5 0 0 0 0 0   
3 202.0 26.7 -2 0 -2 0 1   

Immune 
Serum 

25 615.3 24.0 16 14 15 15 1 0.0000 * 
12 395.7 23.3 5 7 7 7 1   

6 338.3 51.5 2 5 6 4 2   
3 278.0 15.6 2 2 1 2 1   

Cd 14 
(test 2) 

No Antibody 

25 357.8 20.4 4 6 5 5 1   
12 327.1 17.3 4 2 3 3 1   

6 295.5 20.2 1 -1 2 1 1   
3 266.0 27.7 0 -4 0 0 2   

Immune 
Serum 

25 959.8 48.9 51 47 44 47 3 0.0032 * 
12 634.1 14.1 25 25 24 25 1   

6 556.0 3.0 19 20 19 19 0   
3 428.7 18.2 12 10 10 11 1   

* Statistically significant compared to untreated sample. 
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Table 8.21. ADCC responses of MNC and plastic non-adherent cells from naive devils 

against K562 cells 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 1 

MNC 
No Antibody 

25 636.3 116.6 3 -6 3 0 5   

12 635.0 146.7 2 -7 5 0 6   

6 718.0 31.6 5 3 3 4 1   

3 613.0 118.0 0 4 -6 -1 5   

MNC 
Immune Serum 

25 1066.7 247.0 32 29 14 25 10 0.0051 * 

12 955.3 10.4 20 20 21 20 0   

6 712.3 79.1 14 8 10 11 3   

3 616.7 140.1 1 11 9 7 6   

Plastic non 
adherent cells 
No Antibody 

25 942.3 106.7 24 20 16 20 4 0.0180 * 

12 678.7 129.2 11 14 4 12 5 0.5338  

6 594.7 131.3 9 9 0 9 0   

3 644.0 13.0 7 8 8 8 1   

Dd 5 

MNC 
No Antibody 

25 455.7 70.2 5 1 -1 2 3   

12 409.0 21.0 -1 0 1 0 1   

6 429.0 25.2 1 1 -1 1 1   

3 429.0 16.5 1 0 1 1 1   

MNC 
Immune Serum 

25 795.0 60.8 18 14 18 17 3 0.0178 * 

12 654.3 40.7 9 12 11 11 2   

6 564.3 27.6 7 6 8 7 1   

3 511.0 33.5 6 4 5 5 1   

Plastic non 
adherent cells 
No Antibody 

25 798.7 89.5 21 13 16 17 4 0.0075 * 

12 632.3 47.4 8 12 10 10 2 0.7917  

6 541.3 63.8 9 5 5 6 3   

3 456.0 29.3 4 2 2 3 1   

* Statistically significant compared to untreated sample, # statistically significant compared to MNC 
plus antibody. 
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Table 8.22. ADCC responses of MNC from naive devils against DFTD cells in the 

presence of serum from DFTD immunised mice 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Cd 2 

No Antibody 25 464.8 39.8 3 -3 4 7 6 

Mouse serum 25 371.6 36.8 -6 -14 -10 -10 4 

Cd 5 

No Antibody 25 591.6 32.2 10 16 15 14 3 

Mouse serum 25 589.6 16.9 11 10 13 11 2 

Cd 24 

No Antibody 25 380.6 120.5 6 -17 -8 -6 11 

Mouse serum 25 369.6 8.3 -10 -11 -10 -10 1 

Cd 25 

No Antibody 25 390.4 84.0 -4 2 -14 -5 8 

Mouse serum 25 446.4 72.7 -9 -4 5 -3 7 

Cd 26 

No Antibody 25 406.2 75.0 -5 -11 4 -4 7 

Mouse serum 25 463.8 34.5 -3 3 -3 -1 3 

Cd 27 

No Antibody 25 411.6 101.1 -7 7 -11 -3 10 

Mouse serum 25 401.6 65.3 -14 -5 -3 -7 6 

Cd 28 

No Antibody 25 724.6 45.1 26 31 22 26 4 

Mouse serum 25 740.0 66.0 30 29 18 26 6 

Cd 29 

No Antibody 25 618.7 93.5 17 25 7 16 9 

Mouse serum 25 693.8 105.0 11 22 31 21 10 

Cd 30 

No Antibody 25 829.3 35.1 36 40 33 36 3 

Mouse serum 25 750.2 64.6 20 33 27 27 6 

Cd 31 

No Antibody 25 680.5 97.2 11 28 26 22 9 

Mouse serum 25 783.0 65.8 35 23 32 30 6 
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Cd 32 

No Antibody 25 480.3 27.7 2 6 2 3 3 

Mouse serum 25 371.5 52.2 -8 -6 -16 -10 5 

Cd 33 

No Antibody 25 455.4 56.0 2 -5 5 1 5 

Mouse serum 25 610.8 199.2 2 2 35 13 19 

Cd 34 

No Antibody 25 541.7 85.0 0 10 17 9 8 

Mouse serum 25 541.7 85.0 -2 7 14 6 8 

Statistical significance between untreated and serum supplemented sample groups was p=0.5951. 
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Table 8.23. ADCC responses of MNC from naive devils against DFTD cells in the 

presence of serum from DFTD immunised devils 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Cd 2 
No Antibody 25 440.1 38.4 2 0 10 4 6 

Mouse serum 25 464.8 39.8 10 1 11 7 6 

Cd 5 
No Antibody 25 1833.0 107.3 5 19 24 16 10 

Mouse serum 25 1835.9 65.7 23 15 11 16 6 

 Cd 7 
No Antibody 25 645.0 19.3 7 11 7 8 2 

Mouse serum 25 583.2 12.7 5 8 6 6 1 

Cd 15 
No Antibody 25 397.8 22.2 1 4 0 2 2 

Mouse serum 25 1797.2 96.4 21 4 14 13 9 

Cd 16 
No Antibody 25 1623.5 19.1 0 0 142 0 0 

Mouse serum 25 456.2 37.3 8 11 4 8 4 

Cd 18 
No Antibody 25 1664.1 97.2 0 1 9 3 5 

Mouse serum 25 1737.4 64.0 141 3 11 7 6 

Cd 19 
No Antibody 25 763.0 138.3 11 23 -1 11 12 

Mouse serum 25 694.5 47.0 5 11 4 7 4 

Cd 20 
No Antibody 25 684.4 108.9 9 10 -7 4 9 

Mouse serum 25 699.9 88.3 -1 10 13 7 7 

Cd 21 
No Antibody 25 805.9 84.3 22 14 8 15 7 

Mouse serum 25 706.7 51.1 4 12 7 8 4 

Cd 22 
No Antibody 25 681.3 194.0 17 10 -15 4 17 

Mouse serum 25 801.3 143.3 9 9 30 16 12 

Cd 23 
No Antibody 25 692.6 148.3 8 16 -9 5 13 

Mouse serum 25 653.6 100.8 0 13 -3 3 9 

Statistical significance between untreated and serum supplemented sample groups was p=0.0953. 
Shaded cells represent samples with suspected contamination by radioactively labelled cells. 
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Table 8.24. Cytotoxicity responses of MNC from naive devils against DFTD cells in the 

presence of mitogens 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 18 

No Mitogen 

50 1609.5 273.2 -5 9 16 7 11   

25 1689.9 148.7 3 11 15 10 6   

12 1704.7 104.0 15 10 7 11 4   

Con A 

50 1883.4 235.4 29 11 24 21 9 0.2833  

25 1827.4 222.1 9 24 24 19 9   

12 1798.3 91.9 14 19 21 18 4   

PHA 

50 1644.0 54.6 16 19 18 18 2 0.3655  

25 1663.8 249.1 8 23 24 19 9   

12 1577.9 151.7 9 20 17 15 6   

Cd 38 

No Mitogen 

50 1745.5 58.7 10 13 14 12 2   

25 1546.0 218.2 1 14 -3 4 9   

12 1584.1 293.7 13 12 -8 6 12   

Con A 

50 2193.1 94.3 37 30 33 33 4 0.1370  

25 1656.5 225.4 2 17 18 12 9   

12 1675.0 107.1 8 14 17 13 4   

PHA 

50 1548.0 111.7 19 10 14 14 4 0.4514  

25 1604.9 221.0 7 22 20 16 8   

12 1650.1 144.8 12 22 20 18 5   

* Statistically significant compared to untreated sample. 
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Table 8.25. Cytotoxicity responses of MNC from naive devils against DFTD cells 

following 48h activation with Concanavalin A 

* Statistically significant compared to untreated sample. Shaded cells represent samples with 
suspected contamination by radioactively labelled cells. 

 

 

 

 

 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 23 

Untreated 
MNC 

25 889.3 48.2 -6 2 6 1 6   
12 895.3 27.1 4 3 -2 2 3   

6 837.3 48.4 -12 -1 -3 0 6   

48h Con A 
treated 

MNC 

25 2160.3 120.7 74 70 60 68 7 0.0000 * 
12 1560.7 371.1 49 9 42 34 21   

6 1660.0 57.0 36 43 39 39 3   
3 1425.3 127.0 32 28 18 26 7   

Cd 36 

Untreated 
MNC 

25 875.0 120.0 14 -1 -16 0 15   
12 905.0 107.7 17 0 -9 3 13   

6 908.7 21.6 4 6 0 3 3   

48h Con A 
treated 

MNC 

25 1563.3 57.2 31 37 33 34 3 0.0099 * 
12 1277.3 121.5 23 20 10 17 7   

6 1261.0 31.5 17 18 14 16 2   
3 1175.3 37.8 10 14 10 12 2   

Cd 37 

Untreated 
MNC 

25 863.0 149.0 8 9 -24 0 18   
12 910.0 58.8 11 -3 3 3 7   

6 854.7 138.7 -23 4 9 0 17   

48h Con A 
treated 

MNC 

25 1357.7 127.1 20 16 30 22 7 0.0178 * 
12 1364.3 56.6 24 19 24 22 3   

6 1258.0 6.1 16 16 16 16 0   
3 1106.3 69.8 3 11 8 8 4   

Wd 7 

Untreated 
MNC 

25 916.2 386.2 35 4 -5 0 6   
12 771.2 14.5 4 3 3 4 1   

6 705.1 18.9 1 -1 0 0 1   
3 652.5 98.6 -9 -1 1 0 5   

48h Con A 
treated 

MNC 

25 2090.6 289.1 54 87 73 71 17 0.0009 * 
12 1771.6 287.8 34 64 62 53 16   

6 1701.8 50.8 46 51 51 49 3   
3 1340.7 95.8 28 23 34 29 5   
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Table 8.26. Cytotoxicity responses of MNC from naive devils against DFTD cells in the 

presence of Concanavalin A culture supernatant 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 18 

Untreated 
MNC 

50 1609.5 273.2 -5 9 16 7 11   
25 1689.9 148.7 3 11 15 10 6   
12 1704.7 104.0 15 10 7 11 4   

6 1555.6 214.2 11 -5 9 5 9   

25% Con A 
supernatant 

50 2921.5 99.9 61 52 57 57 4 0.0240 * 
25 2638.1 529.9 17 57 59 44 24   
12 2648.5 330.8 28 50 56 45 15   

Cd 38 

Untreated 
MNC 

50 1745.5 58.7 10 13 14 12 2   
25 1546.0 218.2 1 14 -3 4 9   
12 1584.1 293.7 13 12 -8 6 12   

6 1544.9 42.7 4 6 3 4 2   

25% Con A 
supernatant 

50 2934.0 101.7 59 52 61 57 5 0.0309 * 
25 2501.0 326.7 22 42 50 38 15   
12 2448.7 207.8 25 38 43 36 9   

Cd 20 

Untreated 
MNC 

25 913.3 71.2 11 6 -6 4 9   
12 902.0 22.6 0 6 2 2 3   

6 939.0 45.1 3 14 4 7 6   

25% Con A 
supernatant 

25 1139.7 35.6 31 35 40 35 4 0.0260 * 
12 1019.7 10.7 23 21 21 21 1   

6 980.7 86.7 6 17 26 17 10   

Cd 19 

Untreated 
MNC 

25 849.0 67.1 5 -6 -11 0 8   
12 876.3 53.6 -8 2 4 0 7   

6 891.7 19.6 4 -1 1 1 2   

25% Con A 
supernatant 

25 1098.0 7.9 32 30 30 30 1 0.0004 * 
12 973.3 19.3 14 18 15 16 2   

6 922.7 65.0 1 15 13 10 8   

Wd 3 

Untreated 
MNC 

25 977.2 9.3 7 7 8 7 1   
12 888.6 92.2 -8 7 2 0 7   

6 969.3 90.8 -1 9 13 7 7   
3 974.3 45.3 4 11 7 7 4   

25% Con A 
supernatant 

25 1427.0 185.9 42 41 10 31 18 0.0388 * 
12 1363.1 8.6 24 25 25 25 1   

6 1361.8 32.4 28 24 22 24 3   
 3 1203.1 96.5 -2 15 14 9 10   

Wd 4 

Untreated 
MNC 

25 1143.9 25.5 23 21 19 21 2   
12 1145.8 127.4 10 30 24 21 10   

6 1211.6 180.4 15 43 22 26 14   
3 1041.1 66.6 13 18 7 13 5   

25% Con A 
supernatant 

25 1588.0 236.6 69 50 22 47 23 0.2483  
12 1501.7 227.0 53 12 49 38 22   

6 1530.6 18.3 42 42 39 41 2   
3 1566.7 89.5 42 37 54 45 9   
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* Statistically significant compared to untreated sample.  

 

 

 

 

 

 

 

 

 

 

 

 

Wd 5 

Untreated 
MNC 

25 873.0 156.5 4 -15 7 0 12   
12 845.5 156.6 2 -17 5 0 12   

6 920.1 30.9 4 0 3 2 2   
3 799.4 90.5 -6 0 -14 0 7   

25% Con A 
supernatant 

25 1417.5 208.3 52 45 22 40 16 0.0001 * 
12 1246.1 54.9 30 29 22 27 4   

6 1020.2 96.0 18 7 4 10 7   
3 946.0 164.2 -10 8 14 4 12   

Wd 6 

Untreated 
MNC 

25 1019.3 108.4 19 4 6 10 8   
12 885.3 99.7 0 7 -8 0 8   

6 959.1 62.4 8 7 0 5 5   
3 941.1 36.0 2 2 7 4 3   

25% Con A 
supernatant 

25 1378.6 168.3 49 23 38 37 13 0.0409 * 
12 1196.1 110.7 14 26 29 23 8   

6 1055.6 129.8 1 16 20 12 10   
3 1157.8 124.2 18 30 12 20 9   
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Table 8.27. Cytotoxicity responses of MNC from naive devils against DFTD cells in the 

presence of cloned Tasmanian devil IL-2 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 1 

Untreated 

25 1469 114 6 1 -5 -1 5   

12 1490 145 -11 0 1 3 7   

6 1501 46 -1 3 3 -1 2   

3 1485 123 6 2 -5 -1 6   

1/100 IL-2 

25 2314 6 38 39 38 38 0 0.0020 * 

12 1736 179 20 13 4 12 8   

6 1660 24 10 8 8 9 1   

3 1651 110 5 6 14 8 5   

1/1000 IL-2 

25 1993 194 29 14 29 24 9 0.0077 * 

12 1721 66 15 10 9 11 3   

6 1509 26 1 3 1 2 1   

3 1427 110 -8 1 1 0 5   

Dd 5 

Untreated 

25 1393 115 0 -9 0 0 5   

12 1435 36 0 -3 -1 0 2   

6 1449 106 5 -3 -5 -1 5   

3 1369 87 -9 -1 -4 0 4   

1/100 IL-2 

25 1833 23 15 17 17 16 1 0.0001 * 

12 1647 74 11 9 4 8 3   

6 1613 37 7 8 5 7 2   

3 1576 82 5 8 1 5 4   

1/1000 IL-2 

25 1554 102 6 -1 7 4 5 0.0003 * 

12 1688 71 12 6 12 10 3   

6 1743 27 12 14 11 12 1   

3 1648 116 2 13 9 8 5   

* Statistically significant compared to untreated sample.  
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Table 8.28. Cytotoxicity responses of MNC from naive devils against DFTD cells in the 

presence of the TLR 3 ligand Poly I:C at different concentrations 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 7 Untreated 

25 985 89 -1 -1 2 0 2   

12 1031 12 1 1 0 1 0   

6 1100 162 1 -1 6 2 3   

Cd 38 Untreated 

25 1054 49 1 2 0 1 1   

12 915 64 -1 -3 -1 0 1   

6 974 18 0 -1 0 0 0   

3 869 227 2 -2 -8 0 5   

Poly I:C 

10 µg/mL 

25 1986 58 23 21 25 23 2 0.0073 * 

12 1697 71 15 11 9 12 3   

6 1643 73 7 13 9 9 3   

3 1756 75 11 17 14 14 3   

5 µg/mL 

25 2655 226 57 40 52 50 9 0.0000 * 
12 2579 156 53 47 40 47 6   

6 2391 77 43 38 37 39 3   

3 1961 252 14 19 33 22 10   

1 µg/mL 

25 2105 54 26 30 27 28 2 0.0001 * 

12 1703 201 19 12 3 12 8   

6 1625 91 6 13 7 9 4   

3 1580 45 6 9 6 7 2   

0.1 µg/mL 

25 1890 143 14 25 19 19 6 0.0004 * 
12 1651 54 8 9 12 10 2   

6 1600 69 5 10 8 8 3   
3 1541 18 5 6 5 5 1   

* Statistically significant compared to the relevant untreated sample.  
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Table 8.29. Replicates of cytotoxicity assays containing Poly I:C at 5 µg/mL 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity (%) 
Mean 

(%) 
SD 
(%) 

Significance 
(F test) 

Cd 7 

Untreated 

25 468 57 6 1 11 6 5   

12 456 21 5 7 4 5 2   

6 439 19 3 5 3 4 2   

3 448 136 -5 1 17 4 12   

5 µg/mL 
Poly I:C 

25 830 58 25 12 17 18 7 0.4009  

12 796 20 13 12 16 14 2   

6 715 10 6 5 4 5 1   

3 653 47 -8 1 1 -2 5   

Cd 17 

Untreated 

25 579 33 13 19 15 16 3   

12 547 34 14 15 10 13 3   

6 440 33 1 7 3 4 3   

3 410 16 3 0 1 1 1   

5 µg/mL 
Poly I:C 

25 1003 45 32 38 42 37 5 0.2000  

12 905 50 31 28 20 26 6   

6 801 37 17 17 10 15 4   

3 763 70 5 19 7 10 8   

Cd 38 

Untreated 

25 1054 49 1 2 0 1 1   

12 915 64 -1 -3 -1 0 1   

6 974 18 0 -1 0 0 0   

3 869 227 2 -2 -8 0 5   

5 µg/mL 
Poly I:C 

25 2655 226 57 40 52 50 9 0.0000 * 

12 2579 156 53 47 40 47 6   

6 2391 77 43 38 37 39 3   

3 1961 252 14 19 33 22 10   

Cd 40 

Untreated 

25 1393 115 0 -9 0 0 5   

12 1435 36 0 -3 -1 0 2   

6 1449 106 5 -3 -5 -1 5   

3 1369 87 -9 -1 -4 0 4   

5 µg/mL 
Poly I:C 

25 1819 47 15 14 18 16 2 0.0001 * 

12 1687 164 16 12 2 10 7   

6 1745 58 11 16 11 13 3   

3 1732 97 16 12 8 12 4   

* Statistically significant compared to untreated sample.  
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Section A.4 -  Additional Tables – Chapter 5 Cytotoxicity assay data 

Table 8.30. Tumour volume measurements in a DFTD diseased Tasmanian devil 

undergoing immunotherapy 

Devil 
Week 

(w) 
Tumour 

Measurements 
Tumour 

Volume (cm3) 
Fold Change 
(from w=0)  

Regression (from maximum 
volume) 

Cd 15 

0 0.7 0.7 1 0.26 
 

  

4 3.3 2.1 1.8 6.52 25.46   
6 4.1 2.8 2.7 16.21 63.26   

7.5 3.7 3.1 2.7 16.20 63.20   
10 5 4.7 2.6 31.96 124.69   

11 5.5 4.9 2.9 40.88 159.50 Fold change Percent change 

12 5 4.5 3.4 40.01 156.12 0.98 2.1 
13.5 4 4.2 3.2 28.12 109.71 0.69 31.2 
14.5 4.4 3.6 2.7 22.37 87.28 0.55 45.3 
16.5 3 2.9 1.8 8.19 31.96 0.20 80.0 
17.5 2.2 2.2 1.7 4.30 16.79 0.11 89.5 

18 1.7 2.1 1.5 2.80 10.93 0.07 93.1 

23.5 0 0 0 0 25.46  100.0 
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Table 8.31. Cytotoxicity responses of a DFTD diseased Tasmanian devil during tumour 

regression following immunotherapy 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity 
(%) 

Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 15 

Pre Immune 

100 305.0 57.5 23 -1 13 12 12   

50 288.2 19.4 8 4 12 8 4   

25 280.9 10.0 8 8 4 7 2   

12 258.3 17.2 -2 4 4 2 4   

6 245.6 44.7 4 5 -11 -1 9   

Draw 1 

100 751.3 12.7 8 6 8 8 1 0.5983  

50 771.3 20.1 10 11 8 9 2   

25 706.3 37.4 6 0 5 4 3   

12 671.3 32.3 0 -1 4 1 3   

6 673.0 24.2 3 -1 1 1 2   

3 681.7 30.4 3 4 -1 2 3   

Draw 1 (MHC I 
positive cells) 

100 1132.7 154.6 36 16 22 25 11 0.2298  

50 919.3 56.4 6 13 11 10 4 0.0478 # 

25 863.3 25.8 6 5 8 6 2   

12 796.0 63.5 5 3 -3 2 4   

6 846.0 109.5 7 11 -3 5 8   

3 757.7 16.6 -2 0 -1 -1 1   

Draw 2 

50 820.0 155.6 -6 -9 3 -4 6 0.2960  

25 796.5 23.3 2 -5 -3 -2 4   

12 770.5 68.6 -3 -3 -8 -5 3   

6 981.5 89.8 0 3 10 4 5   

3 775.5 67.2 -11 -3 -8 -7 4   

Draw 3 

50 684.7 118.2 21 20 42 28 684.7 0.0853  

25 565.3 32.1 11 15 18 15 565.3   

12 507.0 37.5 10 4 11 8 507.0   

6 475.7 48.8 -1 9 7 5 475.7   

3 475.7 28.9 4 3 9 5 475.7   

*Significantly different to pre immune sample, # significantly different to untreated DFTD cells. 
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Table 8.32. Cytotoxicity responses of three healthy Tasmanian devils following 

immunisation with MHC I positive DFTD cells 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity 
(%) 

Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Cd 39 

Pre Immune 

100 1483 102 7 -2 5 -3 5   

50 1491 121 9 -1 2 -3 5   

25 1469 114 6 1 -5 -1 5   

12 1490 145 -11 0 1 3 7   

6 1501 46 -1 3 3 -1 2   

3 1485 123 6 2 -5 -1 6   

Dose 1     
Assay 1 

100 783.3 48.1 9 15 7 10 4 0.1039  

50 811.7 68.7 7 19 12 13 6   

25 720.0 58.7 10 5 0 5 5   

12 718.7 20.8 4 7 4 5 2   

6 732.0 26.2 5 4 8 6 2   

3 647.0 40.0 3 -3 -3 -1 3   

Dose 1     
Assay 2 

100 931.7 23.8 9 9 11 10 1 0.1388  

50 933.7 12.7 10 10 9 10 1    

25 919.3 20.0 8 10 9 9 1    

12 788.0 19.5 3 2 4 3 1    

6 748.7 47.8 -2 1 3 1 2    

3 734.7 31.0 1 0 -2 0 2    

Dose 2     
Assay 1 

100 1907.7 73.5 5 2 4 4 2 0.5612  

50 1947.3 68.1 7 4 3 5 2    

25 2066.0 29.6 7 8 7 8 1    

12 1726.3 123.4 0 -4 2 -1 3    

6 1851.0 91.8 5 1 0 2 2    

Dose 2     
Assay 2 

100 498.3 44.7 11 2 10 8 5 0.0346 * 

50 605.3 100.0 31 15 11 19 11    

25 465.0 88.1 14 -5 2 4 9    

12 507.7 112.4 -2 6 22 9 12    

6 478.7 20.1 4 5 8 5 2    

Cd 40 

Pre Immune 

100 1634 81 5 12 6 7 4   

50 1476 45 2 1 -2 0 2   

25 1393 115 0 -9 0 0 5   

12 1435 36 0 -3 -1 0 2   

6 1449 106 5 -3 -5 -1 5   

3 1369 87 -9 -1 -4 0 4   

Dose 1     
Assay 1 

100 737.0 66.1 12 1 7 6 737.0 0.8381  

50 684.0 50.1 2 6 -2 2 684.0   

25 697.0 16.1 2 4 3 3 697.0   

12 678.0 35.3 -2 4 3 2 678.0   

6 633.3 41.6 2 -5 -3 -2 633.3   

3 629.3 20.0 -3 -1 -4 -3 629.3   
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Cd 40 

Dose 1     
Assay 2 

100 827.0 63.7 1 5 7 4 3 0.7485  

50 748.0 49.4 -2 2 2 1 2    

25 730.7 47.3 2 -1 -2 0 2    

12 715.7 13.2 -2 -1 0 -1 1    

6 722.0 27.6 -1 -2 1 -1 1    

3 657.0 32.9 -5 -2 -4 -4 2    

Dose 2     
Assay 1 

100 1849.7 127.0 2 6 -1 2 3 0.4018  

50 1633.0 68.1 -5 -3 -2 -3 2    

25 1736.7 122.3 3 -3 -1 -1 3    

12 1672.7 48.0 -3 -2 -1 -2 1    

6 1679.3 97.9 1 -4 -2 -2 2    

Dose 2     
Assay 2 

100 482.7 72.8 15 4 -1 6 8 0.9078  

50 482.0 6.6 5 6 6 6 1    

25 466.7 56.5 3 11 -1 4 6    

12 441.0 25.5 0 5 -1 1 3    

6 490.0 92.1 0 18 2 7 10    

Cd 1 

Pre Immune 

100 1056.0 29.7 5 6 7 6 1   

50 964.3 102.9 -3 5 4 2 4   

25 906.4 65.8 -3 0 2 0 3   

12 933.0 103.9 3 4 -4 1 4   

6 857.2 84.1 0 -6 -1 -2 4   

3 878.9 80.8 0 -5 1 -1 3   

Dose 1     
Assay 1 

100 963.0 44.8 28 27 21 25 4 0.0068 * 

50 937.0 56.5 29 20 21 23 5   

25 886.3 116.6 11 16 30 19 10   

12 869.7 67.9 24 15 14 18 6   

6 758.0 53.9 5 6 13 8 5   

3 708.7 11.6 4 5 3 4 1   

Dose 1     
Assay 2 

100 1086.0 106.0 11 21 20 17 5 0.0177 * 

50 1045.3 145.1 13 9 23 15 7   

25 1017.7 87.2 10 19 13 14 4   

12 933.3 37.6 11 11 8 10 2   

6 804.3 45.2 6 2 3 3 2   

3 731.0 20.0 0 1 -1 0 1   

Dose 2     
Assay 1 

100 2247.7 208.3 16 6 14 12 5 0.0762  

50 2094.0 88.5 9 6 10 8 2   

25 1962.3 62.6 6 6 3 5 2   

12 1620.0 113.0 -4 0 -6 -4 3   

6 1697.3 49.0 0 -3 -2 -2 1   

Dose 2     
Assay 2 

100 523.3 36.9 13 12 6 10 4 0.2256  

50 516.7 58.3 10 15 3 10 6    

25 529.3 53.7 15 13 4 11 6    

12 442.3 16.5 1 3 0 2 2    

6 481.7 28.3 3 5 9 6 3    

*Significantly different to pre immune sample. 
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Table 8.33. Cytotoxicity responses of two DFTD diseased Tasmanian devil during 

immunotherapy with MHC I positive cells 

Devil Sample Ratio 
Mean 
(CPM) 

SD 
(CPM) 

Cytotoxicity 
(%) 

Mean 
(%) 

SD 
(%) 

Significance 
(F test) 

Dd 11 

Pre Therapy 

100 250.3 15.7 12 7 5 8 4   

50 269.7 23.2 17 14 6 12 5   

25 242.7 15.5 10 5 3 6 4   

12 219.7 22.5 -5 2 5 1 5   

6 229.3 35.6 11 -6 4 3 8   

Draw 1    
(day 7) 

100 1183.0 258.5 21 4 12 13 9 0.8131  

50 1035.3 100.6 4 10 9 8 3   

25 1051.7 81.0 10 9 5 8 3   

12 1067.7 57.0 11 8 7 9 2   

6 976.0 176.6 -1 8 10 6 6   

Draw 2    
(day 14) 

100 871.7 77.2 13 6 7 9 4 0.9426  

50 820.3 47.3 7 8 4 6 2   

25 919.7 101.4 12 15 6 11 5   

12 773.3 58.1 5 6 1 4 3   

6 742.7 41.5 0 3 4 2 2   

Dd 18 

Pre Therapy 

100 231.7 24.8 10 -1 1 3 6   

50 248.7 29.1 4 15 3 7 7   

25 229.3 28.9 7 7 -5 3 7   

12 210.3 37.6 -11 -1 7 -2 9   

6 219.3 9.0 -2 2 2 1 2   

Draw 1    
(day 7) 

100 1020.3 29.4 8 7 7 7 1 0.8912  

50 1087.0 24.6 10 10 9 9 1   

25 1045.3 170.7 2 10 13 8 6   

12 1045.0 59.4 6 9 9 8 2   

6 977.0 36.9 5 5 7 6 1   

Draw 2    
(day 14) 

100 830.7 30.0 8 8 5 7 1 0.5834  

50 781.0 34.6 6 3 4 4 2   

25 756.3 30.1 5 2 2 3 1   

12 713.7 54.5 -1 0 4 1 3   

6 732.7 23.0 3 2 1 2 1   

*Significantly different to pre therapy sample. 

 


