
 

 

A Method for Knowledge Discovery 

and Development with Health Data 

 

A dissertation submitted to the Faculty of Science, Engineering and Technology, 

University of Tasmania in fulfilment of the requirements for the Degree of Doctor 

of Philosophy. 

 

 

Tristan Ronald Ling  

BComp (Hons, First Class) 

 

 

 

 

 

October 2011  



ii 

 

Declaration of Originality and Access Authority 

This thesis contains no material which has been accepted for a degree or diploma by 

the University or any other institution, except by way of background information 

and duly acknowledged in the thesis, and to the best of the my knowledge and belief 

no material previously published or written by another person except where due 

acknowledgement is made in the text of the thesis, nor does the thesis contain any 

material that infringes copyright. 

This thesis may be made available for loan and limited copying in accordance with 

the Copyright Act 1968. 

 

 

 

 

Tristan Ronald Ling 

October 2011 

  



iii 

 

Statement of Ethical Conduct 

The research associated with this thesis abides by the international and Australian 

codes on human and animal experimentation, the guidelines by the Australian 

Government's Office of the Gene Technology Regulator and the rulings of the 

Safety, Ethics and Institutional Biosafety Committees of the University. 

 

 

 

 

Tristan Ronald Ling 

October 2011 

 

  



iv 

 

Abstract 

One of the most overlooked problems in the field of knowledge discovery is the 

acquisition and incorporation of existing knowledge about the data being analysed 

(Fayyad, Piatetsky-Shapiro et al. 1996; Pohle 2003; Kotsifakos, Marketos et al. 

2008; Marinica and Guillet 2009). Doing this efficiently and effectively can greatly 

improve the relevance and usefulness of the results discovered, particularly for 

complex domains with a large amount of existing knowledge (Adejuwon & Mosavi, 

2010; C. Zhang, Yu, & Bell, 2009). This study applies the successful Multiple 

Classification Ripple Down Rules (MCRDR) knowledge acquisition method to 

build a knowledge base from a complex dataset of lung function data, and describes 

a method for utilising the dataset to provide additional knowledge validation. The 

method acquired knowledge successfully, but indicated that a focus on rule-driven 

knowledge acquisition may adversely affect the MCRDR process. Knowledge 

acquisition was performed with multiple domain experts, with separate knowledge 

bases successfully consolidated using an evidence-based method to quantify 

differences and resolve conflicts. This knowledge comparison method was also 

tested as a learning and assessment tool for a small group of medical students, with 

positive results. In addition, the consolidated expert knowledge base was applied to 

the analysis of the lung function data, with a set of common data mining techniques, 

to reproduce and expand on a group of published lung function studies. Results 

showed that new knowledge could be discovered effectively and efficiently in a 

complex domain, despite the user having little domain knowledge themselves. 

Results were supported by recent literature, and include findings that may be of 

interest in the respiratory field. Notably, newly discovered knowledge is 

automatically incorporated into the knowledge base, allowing incremental 

knowledge discovery and easy application of those discoveries. 
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Chapter 1 Introduction 

Data is currently being generated at an unprecedented and ever increasing rate 

(Hilbert & López, 2011): it seems that new electronic records are created about us 

every day. Much of this data is accumulated and archived for a variety of reasons; 

key amongst these is the hope that an analysis will reveal patterns, which can aid in 

future decision-making (Witten & Frank, 2005; D. Zhang, Zhou, & Nunamaker Jr, 

2002). Unfortunately the data is often of such volume that analysis is difficult and 

time consuming (Dai, Yang, Wu, & Hung, 2008).  

Computational methods have been developed to assist in this analysis, under the 

headings of knowledge discovery and data mining. Knowledge discovery is the 

computer-aided process of finding new knowledge by analysing a set of data 

(Goebel & Gruenwald, 1999), and has seen a growth of popularity and development 

parallel to the growth of computing technology since the 1970s (Frawley, Piatetsky-

Shapiro, & Matheus, 1992; Tukey, 1977). Data mining methods are computational 

algorithms which extract patterns from sets of data (Witten & Frank, 2005), 

representing the core of a knowledge discovery method; however it has long been 

identified that this is only one component in a much larger process, including 

components such as preparing the data for analysis, and interpreting the mined 

patterns to identify new knowledge (Fayyad, Piatetsky-Shapiro, & Smyth, 1996b). 

The first step in a knowledge discovery process is to develop an understanding of 

the domain, which involves the identification and encoding of any relevant existing 

knowledge about the data. While this can greatly improve the effectiveness of the 

knowledge discovery, it is a step which has often been overlooked (Fayyad, et al., 

1996b; Piatetsky-Shapiro, 1990; Pohle, 2003). Methods have been developed to 

apply existing knowledge to the computational analysis of data (Kotsifakos, 

Marketos, & Theodoridis, 2008; Liu, Hsu, & Chen, 1997; Marinica & Guillet, 2009; 

Piatetsky-Shapiro & Matheus, 1994), but the acquisition of this knowledge is a 

difficult and time consuming process, making knowledge discovery impractical for 

many complex domains (Adejuwon & Mosavi, 2010; C. Zhang, et al., 2009). The 

problem remains that knowledge discovery methods are largely ineffective in 

complex domains, as they lack the ability to acquire and incorporate the requisite 

domain knowledge.  
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A significant contributor to the difficulty of acquiring existing knowledge is that 

people with detailed expertise have very limited availability, given a typically high 

demand to apply their knowledge in practical situations. The efficiency of acquiring 

knowledge can be improved by taking input from multiple experts; however, this 

presents the potential for conflicts between different experts' opinions. Resolving 

these conflicts correctly and to both groups' satisfaction may not only beneficial to 

the development of a strong base of knowledge for data analysis, but may also be 

beneficial for improving the knowledge of the experts involved.  

Once acquired, computer encoded knowledge can also be applied in a variety of 

ways. Expert systems are computer systems that can reproduce human expertise and 

apply it to complex tasks (Bobrow, Sanjay, & Stefik, 1986; B. G. Buchanan, et al., 

1983; Luconi, Malone, Morton, & Michael, 1984). In this study, the method of 

acquiring expert knowledge is not tied to the knowledge discovery process, 

allowing the application of the acquired knowledge base as an expert system to 

assist in the interpretation of complex data. 

The medical field presents unique challenges and benefits for knowledge discovery 

(Cios & Moore, 2002a). Archives of medical data are continually being added to, as 

the analysis of this data can provide solutions to the singularly important problems 

of life and death (Cios & Moore, 2002a; Roddick, Fule, & Graco, 2003). For these 

reasons the application of knowledge discovery methods are particularly relevant. 

However, analysing medical data is difficult as the data is complex, including a 

large number of measurements of a variety of types. Analysing the data is 

particularly difficult as extensive existing knowledge is needed to make meaningful 

interpretations of the data (Cios & Kacprzyk, 2001; Cios & Moore, 2002a; Prather, 

et al., 1997).  

1.1 Thesis Structure 

This thesis describes the development and testing of a method for discovering new 

knowledge for complex domains. To address the issue that existing knowledge 

needs to be incorporated into the process, the presented method involves acquiring, 

comparing, and consolidating the knowledge of multiple domain experts to develop 

a reliable knowledge base. This expert knowledge is acquired through Multiple 

Classification Ripple Down Rules (MCRDR), a common and effective knowledge 
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acquisition method (Kang, 1996; Richards, 2009), with some enhancements to 

provide additional data-based validation. A new method is also presented for 

quantifiably comparing multiple MCRDR knowledge bases and assisting in conflict 

resolution. The acquired and consolidated knowledge base is applied in numerous 

ways: as an expert system; to the discovery of new knowledge from a large 

compiled dataset; and as a teaching and assessment comparison for acquired student 

knowledge. These components and their interaction are described in Figure 1-1. The 

methods have been tested in the medical field of lung function, through the use of a 

compilation of archived databases. 

 

Figure 1-1: The structure of the methods presented in this thesis 

Chapter 2 reviews relevant literature in knowledge discovery, knowledge 

acquisition, and the application of these methods to the field of lung function and 

the wider medical domain. Chapter 3, described by the upper-left blue segment in 

Figure 1-1, presents the process of knowledge acquisition and knowledge 
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consolidation used, and evaluates the effectiveness of the method in developing an 

expert system for lung function interpretation. Chapter 4, described by the lower 

green segment in the figure, discusses a method for applying this knowledge base to 

the analysis of a large database of lung function data and evaluates the effectiveness 

of the method in deriving new lung function knowledge. Chapter 5, described by 

the tan segment to the right of Figure 1-1, presents the method used to quantifiably 

compare the knowledge of multiple experts, and evaluates the efficacy of the 

method in identifying and assisting in the resolution of knowledge conflicts. The 

same chapter also describes how that knowledge comparison method was applied to 

identify the differences between the acquired knowledge bases of a group of 

medical students, and the expert knowledge base; and a discussion is presented on 

the application of the method as a learning and assessment tool. Finally, Chapter 6 

summarises the findings of each component and discusses potential future 

developments and applications. 
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Chapter 2 Literature Review 

Discovering new knowledge from data is a complex process involving many stages. 

This study presents an approach to knowledge discovery that focuses on the initial 

stages of identification and incorporation of existing knowledge. As such, this 

chapter will be devoted to an analysis of the previous research in the area of 

knowledge discovery, with a focus on knowledge acquisition methods, defining 

both the goals of the various fields of research and what methods are available to 

achieve them. As much of the work carried out in this study is focused on the study 

of lung function, a section is also devoted to explaining relevant research in that 

area, and the details that make this field a complex, interesting, and potentially 

valuable one to study. 

2.1 Knowledge Discovery 

The stated goal of finding new knowledge from data falls under the blanket term of 

knowledge discovery. In the most general terms, the field of knowledge discovery 

describes methods for finding new information about a subject, using some 

combination of recorded data on the subject and knowledge about that data (Goebel 

& Gruenwald, 1999). Ostensibly, the field therefore includes any method that can 

derive new data; but with the vast amount of archived electronic data available for 

analysis, and constantly being added to, the term is almost exclusively used to 

denote research into the development of computerised methods for data analysis 

and logical inference. These computerised methods are the focus for the majority of 

this section.  

There are various terms used to summarise the field, each with its own connotations: 

knowledge discovery, knowledge discovery from databases (KDD), and more 

recently knowledge discovery and data mining (KDDM) are approximately 

synonymous; for a more in-depth examination of the differences between these 

terms, the reader is referred to Kurgan and Musilek’s paper (Kurgan & Musilek, 

2006). This study will use the term knowledge discovery for simplicity, although the 

intended meaning is perhaps closer to KDDM as described by Kurgan and Musilek. 

The term knowledge is generally used in this study to refer to a relationship between 

data elements that represents some feature of the domain: be it the definition that 
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the value of one data element is exactly double that of another; a less specific 

expectation that, for a wide distribution of data, one data element will have a 

negative correlation with another; that the concept represented by one data element 

is a sub-concept of the concept represented by another data element; or any other 

similar relationship. Fayyad et al qualified this definition by saying that they 

considered a data pattern to be knowledge if it exceeded an interestingness 

threshold, adding that their definition is ―by no means an attempt to define 

knowledge in the philosophical or even the popular view‖, and is purely a practical 

definition for finding effective results (Fayyad, Piatetsky-Shapiro, & Smyth, 1996a). 

Nevertheless, this definition seems to have been largely accepted in the knowledge 

discovery literature (Fayyad, et al., 1996b; McGarry, 2005; Pohle, 2003; Prather, et 

al., 1997; Stumme, Wille, & Wille, 1998). While there are many other definitions of 

knowledge (Cassam, 2009; Ortega y Gasset & García-Gómez, 2002; Pears, 1971; 

Piaget, 1972; Zagzebski, 1999), we will restrict ourselves to the definition described 

here, with the qualification of Fayyad et al, as it is relevant to the knowledge 

acquisition and discovery tasks. Following this definition, computational knowledge 

discovery is the process of analysing data to find new, useful information about the 

topic that data is describing. Knowledge is considered new if it was not previously 

known to the person analysing the results of the knowledge discovery. Information 

is generally defined as any data that has some meaning, and therefore usefulness. 

Again, this implies the inclusion of a person who is interpreting the data. For 

philosophical discussions on these points see the aforementioned treatises; but the 

role of a person in knowing information and interpreting data will be discussed 

further throughout this work. 

2.1.1 History and Context 

Initial work in computational knowledge discovery focused on applying computing 

power to assist existing methods, such as making statistical analysis faster and more 

reliable and visualising data (Tukey, 1977). Knowledge discovery methods 

improved after adopting technology from expert systems development, whereby 

knowledge is acquired from an expert and applied to computational tasks (Frawley, 

et al., 1992). The 1990s saw a very rapid period of development and 

implementation of computing technologies in a huge range of fields, particularly in 

business fields such as marketing, manufacturing, and investing (Fayyad, et al., 
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1996a), and an enormous increase in the quality of data recording and storage 

(Hilbert & López, 2011). With strong business successes for simple data analysis 

tools, there was also a significant rise in the quantity of data being stored: with most 

enterprises hopeful that an analysis of their business data could reveal ways for 

them to improve their outputs, processes, and income (Goebel & Gruenwald, 1999). 

With this explosion of data, there was a similar increase in knowledge discovery 

research; particularly into methods to analyse and derive information from large 

databases (Fayyad, et al., 1996a; Frawley, et al., 1992).  

Within knowledge discovery, those methods which focused on database analysis 

became known as Knowledge Discovery in Databases (KDD) methods (Frawley, et 

al., 1992), a name first established by the first KDD workshop in 1989 (Piatetsky-

Shapiro, 1990). The name was chosen to indicate that their goal was to take large 

amounts of data and discover knowledge (Fayyad, et al., 1996a), not just more data 

as in the case of data mining methods (which will be discussed in section 2.3.1, later 

in this chapter).  

By the late nineties, research and development of KDD methods was a significant 

and growing field. Goebel and Gruenwald conducted a study of 43 different KDD 

software products, far from a complete list, and stated that ―despite its rapid growth, 

KDD is still an emerging field‖ (Goebel & Gruenwald, 1999).  

KDD methods, in fact most knowledge discovery methods, follow a standard 

pattern for considering data. The data is broken into cases, typically consisting of a 

single transaction, event, or entity under study. The different pieces of information 

that make up the case are called its attributes (Witten & Frank, 2005). For example, 

a set of cases which represent books may have the attributes title, author, and price 

(although there will usually be many more attributes). Each case is defined by the 

values it has for the set of attributes – continuing the example, a particular case 

(book) may have the values: title: ―A Tale of Two Cities‖; author: ―Charles 

Dickens‖; price: $21.00. From here onwards, any use of the words case and 

attribute will likely be referring to these conventions.  

2.1.2 Components of Knowledge Discovery 

There have been many models developed to describe the knowledge discovery 

process, most of them quite similar. In a seminal work in 1996, Fayyad et al 
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presented the first of these, a 9-step, iterative model for effective knowledge 

discovery. In brief, the defined stages were: developing an understanding of the 

domain and the goal of the knowledge discovery; gathering a dataset; cleaning and 

pre-processing the data; selecting a subset of the attributes to be examined; 

matching the data and goals to suitable data mining methods; selecting a data 

mining method to use; running the data mining method with the data; interpreting 

the mined patterns to discover the identified knowledge; and consolidating and 

acting upon the discovered knowledge (Fayyad, et al., 1996b). This process was 

partially summarised in the diagram presented in Figure 2-1. It is clear from this 

that the data mining stage is only one step in the overall process and that all other 

steps are required for the method to be successful (Fayyad, et al., 1996b).  

 

Figure 2-1: The Steps of KDD (Fayyad, et al., 1996a) 

All subsequent models could be said to conform to the general structure described 

by Fayyad et al, although there are numerous distinctions of varying magnitude. In 

2006 Kurgan and Musilek performed a detailed examination and comparison of the 

various models available, including those developed for both industry and research 

purposes, and presented a generic model based on the models considered. The 6 

steps detailed in this generic model were (Kurgan & Musilek, 2006):  

 Understanding the domain 

 Understanding the data 

 Preparing the data and selecting a data mining method 

 Performing the data mining 

 Evaluating the results 
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 Consolidating the discovered knowledge and applying it 

A comparison between this model and the model of Fayyad et al finds relatively 

minor differences, primarily only in the emphasis and segmentation of different 

components: in particular, the generic model incorporates steps 3-6 into a single 

step. This thesis utilises the steps of the generic model when describing the process 

of knowledge discovery, although with different terminology at times.  

2.1.2.1 Understanding the Domain and Data 

The first steps in the process are some of the most vital, as the existing knowledge 

that is identified about the domain has  a significant impact on every other stage: the 

selection, pre-processing, and cleaning of the data can be improved by having a 

better understanding of how the attributes relate; the data mining process can be 

improved as identifying the relationships that already exist can provide additional 

data to analyse; the interpretation of results is easier as new patterns can be related 

to existing patterns and presented in more understandable terms; and finally the 

establishment and understanding of existing knowledge can be used to determine 

how the new knowledge can be integrated, which areas it affects and how it might 

be used. These benefits are, after all, why this is the first step of the process. Despite 

this usefulness however, it has often been noted this step is often overlooked 

(Fayyad, et al., 1996b; Piatetsky-Shapiro, 1990; Pohle, 2003).  

Many studies have identified that one of the most difficult issues in knowledge 

discovery is that far too many potentially interesting results are generated by 

statistical or mathematical data analysis; and in order to reduce this to a quantity 

that can realistically be evaluated, existing domain knowledge must be used (Liu, et 

al., 1997; Matheus, Chan, & Piatetsky-Shapiro, 2002; Piatetsky-Shapiro, Matheus, 

Smyth, & Uthurusamy, 1994; Piatetsky-Shapiro & Matheus, 1994; Pohle, 2003; 

Silberschatz & Tuzhilin, 1996; Sinha & Zhao, 2008). This would seem to be a 

logical conclusion: in order to determine which relationships are new, the existing 

relationships must be identified; and in order to determine which information is 

useful, knowledge about how that information might be used is required. Another 

component of this is that the stated goal of many studies is identifying 

―interestingness‖ (Freitas, 1999; McGarry, 2005; Ohsaki, Sato, Kitaguchi, Yokoi, & 

Yamaguchi, 2004; Piatetsky-Shapiro & Matheus, 1994; Tan & Kumar, 2001), 
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which is itself a subjective term dependent on a human expert (Freitas, 1999; Liu, et 

al., 1997; Pohle, 2003). 

Approaches to Including Knowledge 

Despite the identified importance of domain knowledge, few studies have expanded 

on how it can be successfully incorporated (Sinha & Zhao, 2008). This section will 

examine those methods that have been developed. 

In a 1994 study, Piatetsky-Shapiro examined a method for using domain knowledge 

to identify which results were actionable, and what the impact of such an action 

might be. This allowed the list of potentially interesting results to be minimised by 

evaluating which results might lead to a useful outcome. The knowledge was 

incorporated in the form of rules added by a domain expert, identifying relevant 

attribute values, and a level of deviation from an expected value, culminating in a 

descriptive conclusion and a probability of success to allow a ranking of usefulness; 

an example is provided in Figure 2-2 (Piatetsky-Shapiro & Matheus, 1994). 

 

Figure 2-2: A sample rule, translated into pseudo-code, demonstrating incorporation of 

domain knowledge to identify useful knowledge (Piatetsky-Shapiro & Matheus, 1994) 

In 1996 Liu et al proposed a method whereby a user can define General 

Impressions (GI) to describe non-specific knowledge about a domain: for example, 

―Savings > → Yes‖ would be used in a loan decision system to imply that having a 

large amount of savings would lead to being granted a loan, even though the user 

cannot put an exact number on how large an amount is required. This would then be 

used to evaluate the surprisingness or unexpectedness of a generated rule, by 

if  measure = payments_per_case 

 sector = surgical_admission 

 measure value increased by more than 10% 

then recommend: 

 A study is suggested for discretionary and high-cost surgery. 

success probability: 0.4 
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lowering the interestingness of a rule if it conforms to an already supplied GI (Liu, 

et al., 1997).  

More recently, some studies have been published examining the problem. In 2008 

and 2009, Marinica et al described three types of knowledge used in data mining: 

domain knowledge, describing the data; user beliefs, relating to the user’s 

expectations about knowledge that might be discovered; and a series of operators 

defining specific types of user expectation. Marinica et al proposed that domain 

knowledge be incorporated through ontologies, following Gruber’s definition of 

ontology (Gruber, 1993). The user’s expectations are defined by rule schemas, 

consisting of an association or an implication between ontology concepts, which 

essentially describe groups of potential rules. The user can then use a set of 

operators to define their specific expectations for each rule schema, describing 

whether any rules of that form should be ignored, or ascribed a certain level of 

interest. The approach has been tested with two simple ontologies and datasets, and 

the work is ongoing (Marinica & Guillet, 2009; Marinica, Guillet, & Briand, 2008).  

Also in 2008, Kotsifakos et al proposed a similar approach for using ontologies. In 

this study, Kotsifakos et al assert that methods such as Liu’s and Piatetsky-

Shapiro’s are impractical as the user is required to provide a set of expectations 

each time an analysis is to be performed. The method validates potential rules by 

checking that the attributes used in the rule are connected, based on the concept 

structures defined in the ontology; the rule is rejected if no such link is presented, or 

if the attribute concepts are too far away from the main ontology node. The study 

notes that this may reduce the potential of discovering truly new and unexpected 

knowledge. On a generated set of 25 rules, this method automatically selected as 

interesting the same 5 rules as an expert manually selected (Kotsifakos, et al., 2008).  

One important factor that was identified by both Liu and Piatetsky-Shapiro, in 

concurrence with previous research into acquiring knowledge (Compton & Jansen, 

1989), is that the acquired and required knowledge will change over time and in 

different contexts (Liu, et al., 1997; Piatetsky-Shapiro & Matheus, 1994). As noted 

by Kotsifakos, this means that a new knowledge acquisition process will be 

required for each data analysis. The identification of all relevant existing knowledge, 

especially of subjective knowledge, such as user expectations about the nature of 

the data in the specific area being analysed, constitute a significant knowledge 
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acquisition task. This is supported by recent studies which identified that most data 

mining techniques are not practical for many real domains because of the quantity 

of knowledge required (Adejuwon & Mosavi, 2010; C. Zhang, et al., 2009). It is 

suggested that the task of acquiring an expert’s knowledge about a complex domain, 

and their expectations about the impact of every potentially interesting combination 

of attributes, presents a more costly task than has been typically indicated in the 

literature; and for complex domains, such as medical areas, an impractical solution. 

Literature regarding the difficulties with knowledge acquisition, and a description 

of various methods developed in that field, will be discussed in section 2.2. 

2.1.2.2 Analysis of the Data 

The analysis of the data, or the data mining component, is the crux of a knowledge 

discovery method. As such it is usually given the most attention of any of these 

components; although it has been estimated that the data mining step only 

constitutes 15% to 25% of the overall work (Brachman & Anand, 1996). This step 

contains some sort of process that takes in data, and returns information derived 

from or about that data. Typically it seeks to identify patterns in the data, which can 

be interpreted to identify relationships that represent the knowledge that the method 

is trying to discover (Fayyad, et al., 1996b). However, the methods for doing this 

tend to produce a large amount of extraneous information: without an effective 

assessment of these results to determine their meaning, usefulness and applicability, 

the results are often meaningless and unusable (Goebel & Gruenwald, 1999; 

Piatetsky-Shapiro, 2000).  This step will be covered in more detail in section 2.3. 

2.1.2.3 Interpreting Results and Applying Discoveries 

Once the data has been analysed and interesting patterns identified, regardless of the 

particular method used, the results need to be interpreted to find what knowledge 

has actually been discovered. This step was identified by Fayyad et al as a critical 

component of knowledge discovery in 1996 (Fayyad, et al., 1996a), but is one that 

has received little focus since (Pohle, 2003). One of the reasons for this neglect is 

that it is one of the most difficult components of knowledge discovery, as it 

inevitably requires expertise and human analysis (Piatetsky-Shapiro, 2000; Pohle, 

2003); indeed, in more complex areas the identification of relevant patterns is no 

longer of concern, but rather the interpretation of those results (Subramanian, et al., 
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2005). A related problem is the incorporation of newly discovered knowledge into a 

knowledge base, or assisting the user in identifying how to apply the new 

knowledge (Pohle, 2003). The process of discovering new knowledge, and having 

this knowledge directly incorporated into the process of discovering new knowledge, 

has been identified as a major goal for knowledge discovery systems, but one that is 

an open problem (Matheus, et al., 2002). A 2006 study used fuzzy ontologies to 

discover patterns, where elements could be matched to multiple concepts, each to 

differing degrees of confidence. This approach was described as occasionally 

making the resultant patterns more understandable for the user, but did not resolve 

the issue (Escovar, Yaguinuma, & Biajiz, 2006). These steps are considered again 

briefly in section 2.4. 

2.2 Knowledge Acquisition 

Identifying and formalising existing knowledge is a vital step which can completely 

alter how effective the knowledge discovery process will be. Many studies have 

highlighted the importance of this stage, and often also mentioned the lack of effort 

applied in this area (Brachman & Anand, 1996; Fayyad, et al., 1996b; Piatetsky-

Shapiro, 1990; Thearling, 1998). Effectively identifying what is already known can 

dramatically improve the end results by ensuring that the process is not simply 

rediscovering knowledge that is already known. Also, increasing the base of 

knowledge to search from can, depending on the method used, increase the 

sophistication of what can be gleaned (Fayyad, et al., 1996b; Ordonez, 2006). It is 

worth considering however that the usefulness of existing knowledge can be 

dependent on the type of knowledge that is being searched for and the extent of 

knowledge already known: if too much emphasis is placed on using existing 

knowledge, this can constrain the search and thus reduce the range of knowledge 

that can be discovered. At times, it is desirable to utilise knowledge discovery 

methods which are unconstrained by any existing patterns and conventional wisdom 

(Piatetsky-Shapiro, 1990). 

The type of knowledge and manner in which it is collated and applied can vary 

greatly. As will be discussed, for many approaches it is considered enough to 

identify which cases to consider, or which attributes to examine most thoroughly. 

However, the process can also be as detailed as adding much more data to each case, 
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by identifying case groupings and sub-groupings; inferring further information; and 

identifying and correcting errors within the data.  

The process of collecting existing knowledge almost invariably involves a human 

with expertise in the area, as it is ultimately human knowledge which the method is 

trying to extend. The task then becomes one of converting human knowledge into a 

format usable by the knowledge discovery process, typically some form of software. 

In computing, the field of knowledge acquisition is concerned with methods that do 

exactly this – convert human knowledge or expertise into a machine-usable, 

reproducible format (Liou, 1990). 

2.2.1 History 

Knowledge acquisition has been defined as the process of ―extracting, structuring, 

and organising knowledge from human experts so that the problem-solving 

expertise can be captured and transformed into a computer-readable form‖ (Liou, 

1990). Another way to express this idea is that knowledge acquisition is the process 

of modelling human expertise about a subject.  

The field arose from work towards building Artificial Intelligence (AI). In the 

1950s and 1960s there was the beginning of an understanding of the power of 

computational systems and the benefits they could provide in automation of tasks. 

However, due to the high cost of developing new systems, there was much 

discussion on how a computer might be made that could learn new tasks easily; 

particularly systems that could learn independently, without human direction 

(Friedberg, 1958; McCarthy, Hayes, & SCIENCE., 1968; M Minsky, 1961). These 

studies laid the foundations for many modern knowledge acquisition, machine 

learning, and expert systems techniques. 

2.2.1.1 Expert Systems 

During the 1960s there began an increasing focus on the practical applications of AI 

studies, as much of AI development had become mired in philosophical questions 

and produced few practical computer systems. Rather than attempting to create fully 

adaptable, independently thinking AI systems, some of the lessons learned were 

used to enhance the sophistication and capabilities of systems by teaching them how 

to perform specific complex tasks (B. G. Buchanan, et al., 1983; B. Gaines & Boose, 
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1988; Lederberg, Feigenbaum, & CALIF., 1967). The first example of this is the 

development of the DENDRAL system (Lederberg, et al., 1967), widely regarded 

as the first example of an expert system: software which can reproduce human 

expertise for complex tasks (Bobrow, et al., 1986; B. G. Buchanan, et al., 1983; 

Luconi, et al., 1984). The tasks performed by these systems are typically something 

that most people cannot perform, one which requires special training or study: 

hence the word expert. Expert systems have also been defined as requiring problem-

solving abilities, to distinguish them from knowledge-based systems (Davies & 

Darbyshire, 1984), which are described as any repository of knowledge. However, 

as the functional difference between the two often only depends on the interface 

used to access them, and the situations in which they are accessed, the two terms are 

often used synonymously. Many have further determined that an important feature 

of an expert system is that it has the ability to explain its reasoning: the theory 

behind this ultimately coming from Plato’s definition of knowing (B. G. Buchanan, 

1986; Davis, Buchanan, & Shortliffe, 1977). 

Expert systems are occasionally intended to replace a human expert in performing a 

task, and while it is debatable that this is the ultimate goal of all expert systems 

research, it is much more common for them to be deployed to assist experts in their 

work; in which case they have the more specific name of an expert support system 

(ESS).  

History of Expert Systems 

The first expert systems were developed from the late 1960s as a way to apply 

computational power to help solve complex real problems. As previously 

mentioned, the earliest recognised expert system was DENDRAL (Dendritic 

Algorithm), a system for assisting organic chemists in interpretation problems: 

applying chemical knowledge to elucidate molecular structures (Lederberg, et al., 

1967). This system consisted of a collection of knowledge about the domain, in the 

form of rules or heuristics (which will be discussed shortly); an engine to be able to 

apply these rules, with some internal logic to produce a result; and an interface to 

allow users to input the data on which it bases its decisions (B. G. Buchanan & 

Feigenbaum, 1978). 
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Given the success of the method in assisting the organic chemists, this approach 

was widely adopted and produced many more expert systems in the 1970s and 

1980s, with significant literature regarding the process and how it could be defined 

and improved. In 1986 Buchanan published a list of expert systems in routine use or 

field testing, along with a bibliography of expert systems literature; some 46 

systems and 374 publications respectively (B. G. Buchanan, 1986).  

With the extensive research and development in the area, the components of the 

expert system model became better defined. The compiled knowledge became 

known as the knowledge base: a collection of heuristics or classification rules, built 

by a person known as the knowledge engineer. The knowledge engineer was 

someone with programming proficiency in the language and structure of the system, 

who could interview or observe the expert performing their task and translate the 

task into the rules that the system could use. A programmer was also required to 

construct the inference engine which could infer, based on given data and the 

knowledge base, what the response should be. The front-end became known as an 

expert system shell: an interface for users, often the experts themselves, to be able to 

input the data being examined and receive the system’s responses.  

However in the late 1980s expert systems rapidly lost their popularity, as the 

methods in use proved incapable of meeting expectations: the limited applicability, 

expense of development, frequent failure to meet the standards of the human 

experts, and the marketing hype combined to bring a rapid fall in investment (Gill, 

1995). A report in the Wall Street Journal in 1990 indicated that the expert systems 

field was probably worth $600 million: but that some researchers had estimated that 

it would have reached $4 billion (Bulkeley, 1990). This dramatic fall was a result of 

a series of problems. The systems could only function in the very specific domain 

which they were designed for: adding further capabilities to the system would 

require extensive further knowledge engineering, additions to the expert system 

shell, and potentially modifications to the inference engine. The knowledge 

engineering process was also a common point of failure: the translation between 

what was observed or described into a rule set, by someone who is not themselves 

an expert in the field, is a difficult process fraught with potential problems. It was 

also a very slow and expensive process: the engineer would be required to engage 

the expert for a considerable time, and then spend more time translating what was 
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learned into something the system could use. This interaction between expert, 

knowledge engineer and knowledge base became known as the ―knowledge 

acquisition bottleneck‖, as it was considered the most expensive and difficult 

component of expert systems development (B. G. Buchanan, et al., 1983; Lenat, 

Prakash, & Shepherd, 1985). 

2.2.2 Knowledge Acquisition Methods 

With the recognition that knowledge acquisition was the most critical component in 

the development of expert systems, many approaches were explored. This led to a 

widely branching field of methods for knowledge acquisition and expert system 

development. This section will explore the major developments in knowledge 

acquisition technology and how they have been applied. 

2.2.2.1 Classification Rules 

As the first successful expert system, DENDRAL provided the standard template 

for expert systems until the 1980s. DENDRAL’s approach to knowledge acquisition 

involved a programmer, later known as a knowledge engineer, interviewing experts 

and encoding their expertise as rules (B. G. Buchanan & Sutherland, 1968). These 

rules were described as heuristic rules by the developers to indicate that they are not 

absolute laws or complete definitions: rather they are guidelines or suggestions that, 

through inferencing, typically lead to correct results (B. G. Buchanan & Sutherland, 

1968).  

These heuristic rules are an example of what are more commonly known as 

classification rules; and they are one of the first, and in many ways the simplest, of 

the data modelling and knowledge acquisition techniques. The term classification 

refers to the grouping of data cases by some measure: all the cases in a group are 

said to have that classification, or belong to that class. The term classification is 

used in many of the methods described here in exactly the same way; it is a 

common way of using knowledge about a case to add extra information, which may 

be used to derive new information or to make deriving further information more 

efficient. A classification rule is a rule which defines which cases should belong to 

a given class, and why (Witten & Frank, 2005). 
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A classification rule consists of one or more conditions, and a classification or 

conclusion. The classification is typically a name or number which is used to denote 

a given group of cases; such as in the DENDRAL system, each classification is an 

interpretation, or label, of what the case represents. Each condition in the rule 

consists of some statement describing a type of case, usually in the form [attribute 

name] [operator] [value], for example: Author (attribute) is (operator) ―C. Dickens‖ 

(value).  

It should be noted that there are many other terms used to describe different 

implementations of rules, for example production rules or inference rules; however 

in practice the rules take the same form. The differentiation comes in their 

application: an inference rule is one which is used to derive new information, which 

can then be used to cause another rule to activate, and so on until no more rules 

activate: at which point some of the additional information provided by the rules is 

presented as the classification (Witten & Frank, 2005). Although the term 

classification rule is used here, it is intended to cover each of these different named 

rules, all of which follow a very similar pattern. 

The most common source for classification rules are human experts. Rules are 

usually easy to create and understand, often being close to literal natural language 

statements, and as such were very popular early in knowledge acquisition research 

and are still commonly used today (Davis, et al., 1977; Stansfield, 2009). The expert 

examines the dataset and creates rules which classify cases based on the values of 

the set attributes. For example, all cases with a sufficient value for attribute A, and 

where attribute B is negative, should have conclusion 1 (if A>30 AND B<0 then 

1).  

One of the major advantages of classification rule systems is that the structure of the 

knowledge learned is readable by the expert – if the expert wants to know why a 

classification was made, they can simply examine the conditions of the rule that 

―fired‖ (the rule that provided the final classification) (Clancey, 1984): which is a 

critical component in creating useable, verifiable expert systems (B. G. Buchanan, 

1986; Davis, et al., 1977). It is generally easy to view the compiled knowledge and 

see what conclusions are being made, and based on which knowledge: hence 

providing a simple means to review effectiveness and progress.  
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Another major advantage for using these rules is that they represent discrete pieces 

of knowledge; which allows new knowledge to be added simply by adding more 

rules, rather than rewriting significant portions of code; and allows modification of 

existing rules (B. G. Buchanan & Sutherland, 1968; Davis, et al., 1977). 

A criticism of rule-based systems was that they lacked flexibility in their 

conclusions, and could not be applied to many real-world problems, especially 

reasoning problems, because facts and data are rarely certain (Zadeh, 1979). This 

led to further development by adding Bayesian probabilities (discussed in section 

2.3.3) and fuzzy logic (in which a classification is provided a confidence, between 0 

and 1, rather than simply being present or not present). Each method gave 

alternative means of adding likelihoods or certainty factors to knowledge and to 

classifications, greatly improving the applicability and usefulness of results; 

however this came at the cost of more complex inferencing and knowledge 

acquisition (Duda, Hart, & Nilsson, 1976; Zadeh, 1979).  

As work progressed on implementing more complex rule-based systems, and as 

existing systems were added to, it also became apparent that in order to solve 

complex tasks thousands of rules might be needed (Walser & McCormick, 1977). 

As it was realised that each rule condition and classification was typically reused 

many times, this led to strategies to reduce the storage requirements of the rules, 

such as the inference net (Duda, et al., 1976). These structures assisted in being able 

to process and use very large numbers of rules, but did not solve other aspects of the 

problem. The acquisition of these rules from human experts was very time-

consuming and risky, as the translation between expert, knowledge engineer, and 

rule was not exact. Anything that was missed or entered incorrectly added to the 

increasingly difficult maintenance of a system where it became very difficult to 

predict what the effect of adding a new rule or changing an existing rule might be. It 

also became apparent that no matter how much effort was made to be thorough in 

the knowledge acquisition, the knowledge bases were never complete: due to 

changing knowledge, new discoveries, and fallible human memory, there would 

always be new rules that would have to be added (Davis, et al., 1977; Duda & 

Shortliffe, 1983). The maintenance of such a system therefore became an ongoing 

and very difficult task: each new rule that was added needed to be extensively 

checked and modified by a knowledge engineer to ensure that it would not change 
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the result of any other rule. This process was facilitated by the cornerstone case 

system, whereby any case that caused the inclusion of a new rule would be stored; 

whenever a new rule was to be tested it would have to be compared to every 

cornerstone case to ensure that it did not match and change the results for the 

previously reviewed cornerstone cases – an exhausting process (Compton & Jansen, 

1989). As a result of these acquisition and maintenance difficulties, the knowledge 

acquisition component became accepted as being the bottleneck in expert systems 

development (B. G. Buchanan, et al., 1983; Lenat, et al., 1985; Walser & 

McCormick, 1977), and alternatives to rule-based system knowledge acquisition 

began to be explored. 

2.2.2.2 Decision Trees 

One of the first developed alternatives to rule-based systems was the decision tree, 

which became popular in the 1980s as a potential solution to the problems in expert 

system development. Using the decision tree method, a logical tree is formed 

consisting of nodes and branches: an attribute is associated with each node, and for 

each possible value (or range of values) for that attribute a branch is created leading 

to a lower node. The lowest nodes have no outward branches, and contain a 

classification (Carbonell, Michalski, & Mitchell, 1983). In this manner, a case can 

be presented to the tree, and by following the branches appropriate to the values for 

the case, a classification is found. Hence, knowledge is stored in a relatively simple 

to follow format, and one which can easily be transformed into a graphical 

representation such as in Figure 2-3 (Quinlan, 1986). These features provide the 

explanatory requirement of an expert system, and the incremental nature of the 

development allows the expert to have input into the way that knowledge is 

structured at each step (Quinlan, 1986).  
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Figure 2-3: An example decision tree for choosing a positive (P) or negative (N) result based on 

weather conditions (Quinlan, 1986) 

Decision trees had already existed before the 1980s; initially they had simply been 

considered a poor alternative to rule-based systems, due to the structure being more 

difficult to understand and define than classification rules, and more difficult to 

maintain (Hart & Center, 1977). For a time decision trees were still considered an 

unviable option, denounced by some as not worthy of being called an expert system 

(Hayward, 1985). However, given the knowledge acquisition problems faced by the 

alternative methods of the time, decision tree development was renewed; 

particularly after the creation of Quinlan’s C4.5 algorithm for induction of decision 

trees (Quinlan, 1986).  

C4.5 became a popular method because it helped ameliorate the knowledge 

acquisition bottleneck. Rather than trying to collate and store an expert’s knowledge, 

with C4.5 the expert looked through a large set of data and classified it; then the 

method used statistical methods to derive a decision tree that was correct for all (or 

as much as possible) of the data. This had the potential to greatly reduce the time 

required to acquire expert knowledge, particularly if such a classified dataset were 

already available (Quinlan, 1986). However the acquired knowledge takes little 

advantage of the knowledge that the expert has, and is unlikely to accurately 

represent any of the decisions which the expert makes; which was the source of 

much of the criticism from rule-based systems researchers (Duda & Shortliffe, 1983; 

Hayward, 1985; Prerau, 1985). While the decision tree could still provide an 

explanation of why it chose a particular classification, such a response may not have 

any meaning to an expert, who used an entirely different approach to their task; and 
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for a task of realistic size and complexity, the decision tree can become very large 

and convoluted, such that a trace of which decisions led to the classification would 

be almost meaningless. Another drawback is that the inevitable maintenance is a 

difficult process (Quinlan, 1987; Witten & Frank, 2005). For these reasons, decision 

trees are an effective method to use for some problems, producing a system that can 

complete tasks effectively with minimal development expense; but in most cases 

are an ineffective knowledge acquisition tool. 

2.2.2.3 Case Based Reasoning 

Another knowledge acquisition approach developed at around the same time is case 

based reasoning (CBR). CBR shifted the focus on the components of knowledge 

from the role of inferencing to the role of memory, basing decisions on past 

experiences rather than incremental logical inference (Kolodner, Simpson, & 

Sycara-Cyranski, 1985). This approach was developed from work in cognitive 

sciences by Schank on the nature and role of memory (Schank, 1980). In CBR 

knowledge is represented by a set of stored cases and a set of defined classifications 

or solutions. In some domains, this approach has been found to be closer to the 

manner in which experts already consider their domain; and hence knowledge 

acquisition is an easier process for the expert (Kowalski, 1991). 

The fundamental procedure for CBR methods is that each successfully solved or 

classified case is stored, along with how it was solved. Then, when any new case is 

examined, the system need only find the most similar case and apply the same 

solution. If necessary, the retrieved solution can be revised to fit this new case; and 

once solved, the case and its solution are stored (Kolodner, 1992).  

As a knowledge acquisition approach, the expert examines cases individually and 

inputs each of them, one at a time, into the system. The CBR system compares the 

current case with all the previously stored cases in the knowledge base, and 

produces a list of cases that it considers to be similar to the new case. The method 

would then use the classification(s) of those cases as the classifications for the new 

case. The expert examines this, comparing it with their own opinion of what the 

classification should be for the current case. If the expert believes there is an error 

or something is missing from the system’s logic, the expert corrects or adds this 

knowledge as appropriate. This is achieved by adding the current case to the set of 
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stored cases and changing which classifications apply to it (Kolodner, 1991). This 

process is shown in Figure 2-4. 

 

Figure 2-4: The Case Based Reasoning Process (Aamodt & Plaza, 1994) 

This approach can be divided into two distinct categories: precedent-based CBR 

and problem-solving CBR (Rissland & Skalak, 1989). Precedent-based CBR 

focuses on identifying similar past cases and using them as evidence to justify using 

a given solution; whereas problem-solving CBR focuses on the solutions used and 

adapting the existing solutions to fit the new case (Barletta & Mark, 1988).  

There are a few points of note about this approach. It can be seen that CBR is itself 

not a method: it contains no prescription on how to identify which cases are similar, 

leaving this up to the individual implementation. In this sense, CBR is more of a 

philosophy or general approach than an actual method. The retrieval stage is clearly 

the critical component, as this is where the expertise is applied: while the 

knowledge can be considered to be the cases and their solutions, this knowledge 

cannot be usefully applied to a new case without an effective means of identifying 

which other case it is most similar to. Hence, while CBR makes an effective 

knowledge acquisition method for associating cases with solutions, there still needs 
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to be a further knowledge acquisition step for the knowledge of what constitutes 

similar cases.  

There is also some difficulty in easily influencing the results that the method 

provides (Féret & Glasgow, 1997; Golding & Rosenbloom, 1996; Kolodner, et al., 

1985; Manago, et al., 1993; Yamaguti & Kurematsu, 1993). It should also be noted 

that the expert is necessarily involved in the process, to review the solution and 

revise it if necessary, which generally makes maintenance of adding to the 

knowledge base quite simple; although this again depends on how the system is 

implemented. Similarly, CBR meets the criteria of being able to explain its result, 

albeit in a slightly different manner to previous methods: the CBR system can show 

its reasoning by presenting the past cases that were used to generate that 

classification, and the attributes that were used to identify the two cases as most 

similar (Kolodner, 1992).  

A drawback of CBR is that the knowledge base is entirely dependent on previously 

seen examples which may only represent a small subset of the dataset, rather than 

representing the entire domain (Chi & Kiang, 1991). While this can often be said of 

any technique using a dataset, it is particularly apparent in CBR due to the method 

being based entirely on the cases themselves: the knowledge for how to correctly 

resolve case types not yet seen cannot be entered into the system. 

2.2.2.4 Ripple Down Rules 

Similar ideas to Schank’s cognitive science studies led to other developments in 

knowledge acquisition. At around the same time as CBR was being formalised, a 

method with similar attributes was being developed which significantly reduced the 

problems associated with the knowledge acquisition bottleneck. 

Ripple down rules (RDR) were developed by Compton and Jansen in the late 1980s 

and early 1990s, after experiences in maintaining a rule-based expert system 

GARVAN-ES1 (Horn, Compton, Lazarus, & Quinlan, 1985). They observed that 

even though the system had a 96% accuracy rating when it was introduced, within 4 

years the accuracy had been improved to 99.7% by the addition of extra rules by the 

knowledge engineers. The problem was that in order to achieve that 3.7% 

improvement, the number of rules in the knowledge base had doubled (Jansen & 

Compton, 1988). Compton and Jansen made the important observation that no rule 
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could be guaranteed to be correct, with most rules subject to revision given enough 

time in use; some rules were even removed entirely at a later point by different 

experts (Compton & Jansen, 1989). They proposed that the knowledge that experts 

provide during knowledge acquisition is rarely, if ever, a complete representation of 

their understanding, but rather just a justification for why their conclusion is correct, 

in the context of the current case (Compton & Jansen, 1989). This was an 

alternative explanation for the extensive maintenance that was always necessary 

with rule-based systems. 

In order to resolve this problem they proposed a new method of structuring and 

maintaining rule-based systems, based on the idea that knowledge was context-

dependent and would require maintenance. The rules in a RDR knowledge base are 

structured in a binary tree, in which each node contains one rule. RDR knowledge 

acquisition functioned in a similar manner to the maintenance of a typical rule-

based system: the system would be presented with a case, which it would attempt to 

produce a classification for based on its knowledge base and provide its reasoning. 

The expert would examine the result, and if they disagreed with the system’s 

conclusions, the system would be updated with a new rule. The difference is the 

manner in which the rule is added:  

 If the system had no classification for the rule, then the expert would simply 

add a rule with the correct classification, justifying why the case should have 

that conclusion. This rule would be added in a node as the child to the right of 

the rightmost node in the tree.  

 If the system reached an incorrect classification, the new knowledge is added in 

the context of the incorrect rule, as this is the situation in which the expert is 

being asked to justify their classification: the rule is added as the child to the 

left of the incorrect rule, as an exception to the incorrect rule.  

Note that the choice of left and right are arbitrary, as long as they are consistently 

used: more correctly there is a true or rule satisfied direction, and a false or rule not 

satisfied direction. This process is described in Figure 2-5. 
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Figure 2-5: An RDR Knowledge Base. If classification E is reached incorrectly (i.e. if a case does 

not have attribute z, nor v, but has attribute t), then an exception rule will be added in the blue node. 

If no classification is reached, a new rule will be added in the green node. 

When considering what results the knowledge base can determine about a case, the 

first rule considered is the top level of the tree; if it is satisfied, then the child rule 

on the left branch is considered. If the top level rule is not satisfied, the child on the 

right hand branch is considered. This continues until no further child nodes’ rules 

are satisfied, or no further child nodes exist. The case is classified according to the 

classification associated with the node whose rule was last satisfied (Compton & 

Jansen, 1989). This structure ensures that any new rule will not interfere with any 

rule other than that it was added to correct: removing the necessity for a knowledge 

engineer to laboriously check that new rules do not break existing knowledge and 

allowing knowledge acquisition and maintenance to be carried out by the expert as 

the system is in use. 

An alternative way of considering the structure is shown in Figure 2-6. In practice, 

the tree is typically heavily weighted on one side, as more new rules are typically 

required than corrections (Compton, et al., 1991). Because of this it might be easier 

to consider an RDR tree as a list of rules, each with a correction tree branching from 

them. 

If z 
then A 

If y 
then B 

If v 
then C 

If x 
then C 

If w 
then D 

If u 
then B 

If t 
then E 

Rule satisfied Rule not satisfied 

Exception Rule 

New Rule 
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Figure 2-6: An RDR Knowledge Base presented as a list of rules with correction trees 

A further advantage of this structure was that no knowledge engineering was 

required; the expert’s justifications were simply added directly to the knowledge 

base as rules, without an engineer laboriously checking that existing rules were still 

valid. RDR achieved this by maintaining evidence for the knowledge base: the case 

used to define each rule was associated with that rule and called the cornerstone 

case. Whenever a rule was found to classify a case incorrectly, and the expert 

offered a justification for why it was wrong, that justification was compared against 

the cornerstone case for the system’s rule. If the new rule changed the classification 

for that cornerstone case, this was indicated to the expert. The expert was then 

required to provide further details justifying the different classifications for the two 

cases, or to accept that the previously seen case was incorrectly classified.  

This new method was applied to redeveloping the GARVAN-ES1 expert system, 

and it was found to require no knowledge engineering: the expert’s rules were 

simply added directly, not requiring any validation. This resulted in ―knowledge 

acquisition at least 40 times as fast as that required for a conventional version of the 

same knowledge base, with the same knowledge engineer/expert involved‖ 

(Compton, et al., 1991). While an increase in efficiency would be expected, due to 

previous experience developing the same expert system, this is a very substantial 

improvement.  

If z 
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Although the knowledge base can be confusing to view in this structure, the system 

can still easily provide explanations for its classifications by tracing back the path 

through the tree and providing the rules at each node. Such rule traces are often 

better descriptors of the knowledge as the rules are exactly as entered by the expert, 

containing no extra conditions added for engineering reasons (Compton, et al., 

1991). It was also noted that this approach automatically, if gradually, discovers 

tacit knowledge: knowledge that experts hold but which they find difficult to 

express, or are not consciously aware of outside of the specific context in which the 

knowledge applies (Richards & Busch, 2003).  

PEIRS 

Possibly the most well-known RDR health expert system, and perhaps the best 

known RDR system in any domain, is the Pathology Expert Interpretative Report 

System (PEIRS).  PEIRS was an expert system for interpreting chemical pathology 

reports, and was an early and major success with the RDR methodology (Compton, 

et al., 1992; Kang, Compton, & Preston, 1995). It established a knowledge base of 

thousands of rules by having multiple experts interact with it directly over a period 

of a few years. It achieved an accuracy rate estimated to be greater than 95%, for 

over 20% of the pathology domain: an impressive feat making it one of the largest 

and most successful expert systems in routine use at the time (Compton & Edwards, 

1994). This early success was later built on with commercial applications, 

particularly with further developments to the RDR method (Compton, Peters, 

Edwards, & Lavers, 2006). 

Drawbacks 

Although the knowledge base built easily and maintenance was simple, building a 

complete knowledge base still took considerable time (Richards & Compton, 

1997a). Another problem is that some classifications would likely have to be 

entered multiple times, if the same classification occured as an exception to 

multiple rules (Compton, et al., 1991; Kang, et al., 1995). One of the most 

significant drawbacks is that, because of the rule structure, only one classification 

could be reached for any one case. For most domains, this caused the creation of 

many complex rules, each implying a compound classification: although the 

knowledge base may contain rules which can classify the case in multiple ways, it 
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will always use the first classification that it reaches (Compton, Kang, Preston, & 

Mulholland, 1993). This related to a further problem: the knowledge base did not 

allow true inferencing, as each rule would only be considered once (if at all), with 

only the first classification reached being provided as the result (Compton, et al., 

1993).  

RDR Modifications 

As RDR represented a significant improvement in knowledge acquisition and 

maintenance, the method was applied and modified in many ways, each overcoming 

some flaw. Gaines developed a method for automatically inducting a ripple down 

rules knowledge base, in the same way as C4.5 could induct a decision tree (B. 

Gaines & Compton, 1992) – this will be discussed further in section 2.3.2. The lack 

of true inferencing in the RDR method led to a number of modifications, to allow 

the method to be applied to configuration tasks. Recursive RDR used several (8) 

individual RDR knowledge bases, each contributing a part of the final configuration 

solution. The results of these knowledge bases could also be used as data for the 

other knowledge bases, allowing a kind of inferencing (Mulholland, Preston, 

Sammut, Hibbert, & Compton, 1993).  

Nested RDR (NRDR) provided a similar solution, by allowing the expert to define a 

separate RDR knowledge base for each concept. This concept knowledge base 

would then decide whether that concept was applicable to the current case or not. 

Thus each concept could be used as a condition in rules defining other concepts: as 

the RDR knowledge base produces a single classification, the value for this 

classification can be used as a rule condition (Beydoun & Hoffmann, 2000). Both 

Recursive RDR and Nested RDR provided a solution to the problems raised by 

configuration problems, but had their own drawbacks (Bindoff, 2010). 

A further addition to the RDR method was an attempt to give the knowledge 

acquisition system some understanding of its own limitations, later described as the 

Prudent RDR method (Compton, Preston, Edwards, & Kang, 1996). This method 

sought to resolve a more general knowledge acquisition issue: that expert systems 

lack common sense and cannot tell when their classifications are obviously wrong 

and they should be asking for more information. After reaching a classification for 

the current case, the prudent method identified whether the current case was a 
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typical example of the cases that usually provide that classification: if the new case 

has a value for an attribute that is not present in the cases that have been confirmed 

with the classification, the expert is flagged that the classifications may be wrong 

and should be checked. Successful tests led to a conclusion that this is a useful aid 

in knowledge acquisition (Compton, et al., 1996).  

Multiple Classification Ripple Down Rules 

The most significant problem with RDR was that it could only provide a single 

classification; this was particularly evident as the domains in which it had first been 

applied were both multiple classification problems (Compton, et al., 1993; Kang, et 

al., 1995). This was a topic of much discussion in the early 1990s, and soon an 

adaptation of the RDR technique was developed, named multiple classification 

ripple down rules (MCRDR) (Compton, et al., 1991; Kang & Compton, 1992; Kang, 

et al., 1995).  

The problem was resolved by generalising the binary tree structure to an n-tree. 

When a classification is found it is recorded, but the search through the tree is 

continued. In this structure, all children nodes represent exceptions rather than just 

the leftmost node, and new (independent) rules are added as siblings at the top level 

of the tree.  

The method’s approach is to consider the rule for the current node: if its rule is 

satisfied, then all its children nodes are considered, in turn. If their rules are 

satisfied, then their children nodes are considered, and so forth. Any rule which has 

its own rule satisfied, but not those of any of its children, has its classification added 

to the result list. This is shown in Figure 2-7Figure 2-7: A MCRDR KBS. The 

highlighted boxes represent the rules that are satisfied for the case [a,c,d,e,f,h,k]. 

The final classifications are classes 2, 5 and 6 (Kang, et al., 1995). Another way to 

consider this is that running a case through the knowledge base is a depth-first 

search, where child-links are only followed if the child’s rule is satisfied; and any 

rules which are satisfied, but have no satisfied children, have their classification 

added to the result list. 
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Figure 2-7: A MCRDR KBS. The highlighted boxes represent the rules that are satisfied for 

the case [a,c,d,e,f,h,k]. The final classifications are classes 2, 5 and 6 (Kang, et al., 1995) 

This structure maintains the acquisition of knowledge in context; but certain 

changes needed to be made to the knowledge acquisition process to support them. 

Adding a new classification to a case is straightforward: the rule is added at the top 

level of the tree, as a sibling to the other top-level rules. Correcting a rule is also 

simple, being quite similar to single classification RDR (SCRDR): the new rule is 

added as a child to the incorrect rule (i.e. in the context that it is required); and as 

with SCRDR, the rule only needs to be sufficient to differentiate a case from the 

parent rule as it will only be considered within that context. Allowing multiple 

classifications also presented a third option during knowledge acquisition: a 

classification may be wrong or extraneous, requiring no classification to replace it 

but nevertheless being incorrect. In this situation the expert defines what was named 

a stopping rule. This is identical to an exception rule in all ways, except that it has 

no classification. The rule is added in the context of the incorrect or extraneous 

classification, and its conditions are defined by the expert as an explanation of why 

the given classification should not appear for the current case. Table 2-1 below 

Rule 0: 
If true then .. 

Rule 1: 
If a,b then class 1 

Rule 2: 
If a,c then class 2 

Rule 3: 
If k then class 2 

Rule 5: 
If d then class 5 

Rule 4: 
If e then class 4 

Rule 6: 
If f,e then class 6 

Rule7: 
If i then class 7 

Rule 8: 
If l then class 8 

Rule 9: 
If i then class 9 

Rule 10: 
If h then class 5 
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summarises these three situations, and the appropriate action to take (Kang, et al., 

1995). 

Wrong classifications To correct the KB 

Wrong classification to be 

stopped 

Add a rule (stopping rule) as an 

exception to the incorrect rule, to 

prevent the classification 

Wrong classification replaced by 

new classification 

Add a rule as an exception to the 

incorrect rule, to give the new 

classification 

A new independent classification Add a rule at the root level to 

give the new classification 

Table 2-1: The three situations in which new rules can be added to a knowledge base (Kang, et 

al., 1995) 

The allowance of multiple classifications also impacted the ensured validity of an 

RDR knowledge base. In single classification RDR any new rule only needs to be 

checked against the cornerstone for the rule it is correcting, and new rules do not 

need to be checked at all, as the rule will only ever be applied within the context of 

the other rule firing or no rules firing respectively. As MCRDR does not stop 

checking rules after a single classification however, the addition of a new rule can 

potentially affect the results for many cornerstone cases. To resolve this, the new 

rule needs to be checked against any cornerstone case which could reach the context 

in which the rule is added: in other words, all cases which satisfy all of the 

antecedents of the new rule. If any cornerstones which match all antecedent rules 

also match the new rule, this must be brought to the expert’s attention as it indicates 

a knowledge acquisition error: either the new rule is lacking some knowledge, and 

needs to be refined so it can differentiate between the cornerstone cases’ 

classifications and the new classification; or the cornerstone case was originally 

misclassified and should in fact have the new classification.  

In SCRDR each cornerstone is linked to the rule that is added for it, greatly 

improving the efficiency of validating against cornerstones as only the cornerstone 

which must be checked is checked. In MCRDR, each cornerstone can satisfy 
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multiple existing rules when it is reviewed, and multiple rules that are added after it 

has been accepted. In order to maintain an efficient review of cornerstones, it is 

clear that a cornerstone case must not only be linked to the rules that were defined 

from it, but all rules which it currently satisfies: both existing rules and rules that 

are added later. Thus, when a new rule is added, all cornerstone cases which satisfy 

the new rule must also be linked with the new rule; and all existing rules which the 

new case satisfies, and their antecedents, must be linked to the new case. Links to a 

cornerstone case are not deleted when that cornerstone satisfies an exception to that 

rule, as any further exceptions to the rule may also apply to the case (Kang, et al., 

1995).  

Both the SCRDR and MCRDR methodologies have some distinctive traits that 

differentiate them from other knowledge acquisition approaches. They have many 

similarities to case based reasoning approaches: cases are considered sequentially 

and individually, and as much knowledge as possible is extracted from a case before 

moving onto the next (Kolodner, 1992; Kowalski, 1991). The CBR-like philosophy 

is continued with the strongly evidence-based approach to validating knowledge, as 

implemented by the cornerstone case system: rather than attempting to validate new 

rules against existing rules, new rules are validated against previously seen cases. If 

the classifications for a previously seen case are modified by a new rule, conditions 

must be added to the new rule to differentiate the previous case from the current 

case, or the previous case must be accepted as having been misclassified (Kang, 

1996). This improves the completeness of new knowledge and ensures consistency 

with existing knowledge, but without requiring any knowledge engineering. 

Another distinctive trait is that once knowledge is entered into a knowledge base, it 

is never deleted. As the knowledge structure is built with exceptions, the outcomes 

of the knowledge base can always be changed by adding new rules. Therefore as 

long as the context of knowledge is maintained correctly, there is no need to delete 

anything, and no risk that legitimate knowledge will be removed (Compton & 

Edwards, 1994; Kang, et al., 1995).  

There remains a concern with MCRDR knowledge bases that knowledge may need 

to be added repeatedly, as exceptions in different locations or as groups of 

conditions used multiple times. It has been found however by multiple studies that 

MCRDR knowledge bases are typically very compact and efficient structures: in a 
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comparison with a SCRDR knowledge base for a single classification task, it was 

found that the MCRDR knowledge base was smaller (Kang, 1996); and a study was 

undertaken in the late 1990s to automatically compact and reduce knowledge bases 

to resolve the issue, but it was found that even after extensive work the 

improvements were fairly minimal, and for most situations not worth the effort 

(Suryanto, Richards, & Compton, 2002). 

Modifications 

As it represented a significant step forward in applicability with few drawbacks the 

MCRDR method was widely adopted, seeing commercial application in a number 

of domains, such as chemical pathology. Compton’s 2006 paper details the 

integration of a commercial RDR system into one laboratory (of many who adopted 

the product), where it was routinely used to assist in the interpretation of the 

laboratory reports. This single instance of a commercial application saw some 

16,000 rules and 6,000,000 cases over a 29 month period (Compton, et al., 2006). 

Although, as with most research developments, there are generally few details of 

the commercial applications, the success of MCRDR still saw a number of 

variations developed which sought to overcome perceived shortcomings. MCRDR 

was adapted to a resource allocation task with the Sisyphus-I system (Richards & 

Compton, 1999), which led to much discussion about how MCRDR could be 

applied to configuration tasks (Compton, et al., 1998; Ramadan, et al., 1998). It was 

also adapted to a help-desk system, under the name Interactive Recursive RDR, 

integrating Recursive RDR and adding the ability to ask the user questions to derive 

further information (Vazey & Richards, 2005). Further developments are discussed 

below. 

Rated MCRDR 

Rated (or Weighted) MCRDR was developed in the early 2000s as a way of 

identifying relationships between classifications, in the form of a value, with the 

initial application of identifying how important a case is to the expert (Richard 

Dazeley & Kang, 2003). The example used was an email classification system 

which could identify advertising spam emails or important work-related emails: if 

this system received work-related advertising it would receive both classifications; 

the new method would be able to give a rating of importance to the emails, ranking 
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work emails highest, advertising lowest, and work-related advertising between the 

two. The method used to find this value was to build a perceptron neural network 

(discussed further in section 2.3.3), taking a weighted value from each rule in the 

knowledge base as the inputs.  

This theory was extended to include discovering different kinds of new information 

in later studies, particularly to developing a Prudent RDR-like estimation of 

whether a case represents a situation not covered by the current knowledge base (R 

Dazeley & Kang, 2004). This approach was shown to perform slightly better than 

the Prudent-RDR system, but not well enough that an expert could only examine the 

flagged cases. 

FCA 

Formal concept analysis (FCA) is a mathematical method for identifying and 

displaying concepts. It was developed in the early 1980s by Wille (Wille, 1982), 

who later applied it to knowledge acquisition tasks (Wille, 1989).  

The FCA method is based on the philosophy of a concept consisting of the 

relationship between objects (extension), and the attributes belonging to those 

objects (intension). The extension is the set of objects which provide examples of 

the concept, and the intension is the attributes which define the concept. These 

definitions are used to develop concept lattices: graphs that display the relationships 

between the extension and the intension thereby revealing the concepts (knowledge) 

present in the domain.  

This method was applied to acquired MCRDR knowledge bases to assist in the 

reuse of the knowledge outside of the constraints of the expert system the 

knowledge was acquired for (Richards & Compton, 1997b). The acquired MCRDR 

knowledge bases were converted into flat knowledge bases of rules, converting 

exceptions into individual rules. Sections of this were then chosen to be examined 

further, as the complete knowledge base was too large to be visualised.  

The concept matrix produced used rules as extents and rule conditions as intents. 

The current concept matrix could be defined in two possible ways: the selection of a 

classification, or the selection of a rule. Selecting a classification first would select 

all rules reaching that classification as the extents, and each of the rule conditions of 

those rules as the intents. Selecting a rule would initially select each of that rule’s 
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conditions as the intents, then search through the knowledge base for all 

occurrences of each of those conditions, adding the rules that contained them to the 

list of extents. The definition of this concept matrix then allowed the creation of a 

concept lattice, which was used to provide a better visual representation of the 

knowledge contained in the knowledge base (Richards, 1998), and to show the 

expert how the concepts in a new rule fit with existing concepts, for additional 

validation (Richards & Compton, 1997b).  

Ontology Development 

Since RDR was developed, there has been an increasing realisation that the 

knowledge acquired does not provide exact definitions, and will only be correct 

some of the time (when it is in the appropriate context). This led to the realisation 

that knowledge, as represented in a knowledge base, changes over time, and initial 

knowledge is frequently wrong. These insights caused the rejection of the 

conventional wisdom that knowledge acquisition required an initial phase of 

modelling the domain, or the development of an ontology, in order to be successful 

(Richards & Compton, 1997c; Suryanto & Compton, 2001). As the development of 

an ontology for a domain is still a desirable outcome, and the FCA studies showed 

that domain knowledge could be modelled from existing knowledge bases, studies 

were undertaken to develop ontologies from RDR knowledge bases after the 

knowledge acquisition, with some success (Suryanto & Compton, 2000, 2001).  

Case And Rule-Driven (CARD) Systems 

In 2006, Vazey examined the case-driven paradigm of MCRDR, and presented a 

predictive model for the case-driven acquisition of knowledge (Vazey, 2006). The 

model quantified the problem of striving for a complete knowledge base when 

acquiring knowledge from a stream of random cases. The study concluded that to be 

most effective, knowledge acquisition should also incorporate some rule-driven 

elements, creating a Case And Rule-Driven (CARD) approach. 

In the same year, Vazey collaborated with Richards to develop a prototype help-

desk knowledge acquisition and expert system based on the CARD model, with 

collaborative editing of a central knowledge base. Minimal results were presented, 

but it was reported that users were willing and able to use both the case-based and 

rule-based knowledge acquisition schemes (Vazey & Richards, 2006). An 
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examination of the collaborative component of the study is presented shortly in 

section 2.2.3 

MCRRR 

A recent development of the MCRDR method at the time of writing is a study by 

Bindoff (Bindoff, 2010), which added the capability of true inferencing to MCRDR. 

Titled ―Multiple Classification Ripple Round Rules‖ (MCRRR), this addition 

allowed the classifications that a rule reaches to also be used as conditions for rules: 

the result being a more intuitive way of defining rules, and enhanced capabilities in 

configuration tasks; but at a cost of higher computation time. This approach shows 

promise in providing a more robust and general solution to the configuration tasks 

presented in Recursive RDR, Nested RDR and the like (Bindoff, 2010).  

ProcessNet 

Another recent movement has been to develop more complex, multi-tiered 

intelligent systems. Such intelligent systems generally consist of many different 

processes, each with their own knowledge acquisition requirements. In a recent 

study, the ProcessNet system was built to allow not only incremental improvement 

in the knowledge for each component process, but to also allow incremental 

learning for how those processes interact. The combination of processes is 

described by a directed, acyclic graph; by following the flow of cornerstone cases 

through these processes, and ensuring that each subsequent process is updated 

accordingly when a process changes, the ProcessNet approach provided a medical 

imaging analysis system that showed continued improvement even allowing for a 

large number of incremental updates to individual processes (Misra, Sowmya, & 

Compton, 2011). 

MCRDR with Multiple Experts 

RDR systems have been developed using multiple sources of expertise wherever 

possible; for large scale production systems it can be a necessity as no single expert 

can devote sufficient time to a project to develop a sufficiently complete and useful 

knowledge base. Most commonly however, expert availability is the biggest 

hindrance to the system development. As such, including multiple experts is often 

not a viable option. The standard approach has been to try and ensure that only the 

most knowledgeable experts use the system, but this requires a balance between 
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level of expertise and availability of expertise. Despite the difficulties, the inclusion 

of multiple experts is still desirable, as reducing the workload of the expert and 

accessing different points of view and experiences provide the potential for a much 

more effective expert system (Shaw & Woodward, 1988).  

Traditional Approach 

Many developed RDR systems have used multiple experts without any specific 

modifications to the process, including initial systems such as PEIRS (Compton & 

Edwards, 1994). The acquisition was performed as normal: whoever was currently 

using the system entered rules for the current case, regardless of whether their 

knowledge was exactly correct or agreed upon by other experts. If the knowledge 

was incorrect in some way it was expected to be caught by the in-built validation 

process, either as the rule was entered, or later when the rule incorrectly classified a 

case and was noticed by an expert who recognises the error. This strategy has 

obvious flaws. Firstly, it offers no guarantee that differences between expert 

opinions will be identified. More significantly, it offers no protection against a less 

knowledgeable expert changing a more knowledgeable expert’s input to match their 

own view. Similarly, if incorrect knowledge is added but then corrected by a more 

knowledgeable expert, there is again no protection from the less knowledgeable 

expert reversing the correction back to the original error, as they view this to be 

correct. In the past it has perhaps been assumed that, as the experts are working 

with the same system in the same physical location, they are likely to have other 

occasion for communication when the knowledgeable expert can raise the issue and 

inform the other of the correct rule; or, if equally knowledgeable experts are 

disagreeing on a point, they will meet and discuss it to find a consensus. However, 

the method itself made no provision for informing an expert that their rule had been 

modified; presumably the assumption being that all errors would be discovered and 

corrected given sufficient time, making this just another component in the 

asymptotic approach of knowledge base accuracy to full correctness. 

Knowledge Base Integration 

Recently more work has been undertaken into the development of knowledge bases 

with multiple experts. In 2005 Beydoun and Hoffmann presented work into how to 

incorporate multiple experts’ conceptual knowledge into a central ontology or 

model. The study used Nested single classification RDR (NRDR) knowledge bases 
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in a hierarchical concept structure (labelled Multiple Hierarchical Restricted 

Domains, or MHRD) to represent individual experts’ knowledge. These models 

were then automatically integrated, where possible, through a method based on 

identifying and quantifying probable inconsistencies between those models. The 

probable inconsistencies were calculated by comparing definitions against all 

possible values for all attributes. Synonymous concepts were merged if the 

estimated differences between their definitions did not exceed a given threshold. If 

the difference did exceed the threshold, an expert was consulted about whether the 

concepts should be merged. The estimated degree of internal inconsistency was then 

used as a measure of the completeness and correctness of the knowledge in the 

integrated model (Beydoun, et al., 2005).  

Collaborative Knowledge Acquisition 

Also in 2005, Richards and Vazey began examining better methods for the 

collaborative development of knowledge bases. Their studies used Web 2.0 models 

such as wikis and social networking paradigms to allow multiple experts to work 

with a single central knowledge base (Vazey & Richards, 2005; Vazey & Richards, 

2006). This collaborative approach was applied to an ICT support call centre. 

Numerous call centre staff were able to access a central knowledge base to find 

solutions for ICT support cases, and to then update the knowledge base if necessary. 

Any element of the knowledge base or the cases could be edited or removed. 

Conflicts were identified in two ways: by tracking all changes to cases or rules, and 

allowing a user to see the history of the changes made to any given element; and by 

allowing users to mark knowledge base elements as live or registered, with live 

elements being viewable to the public and registered only privately viewable, 

essentially indicating the status of an element as agreed upon or in conflict. Under 

the wiki/Web 2.0 paradigm, these conflicts were brought to the attention of the 

authors and left to be resolved through online discussion and other users’ input. Any 

user could elect to receive notifications of changes to a knowledge base, element via 

email or SMS (Richards, 2009). However the focus of Vazey and Richards’ work 

was not on ensuring that the users’ knowledge was correct, but rather the end point 

of having a complete, current and correct knowledge base. This is partially a factor 

of the domain of development; within the ICT support call centre, individuals were 

not necessarily expected to have the knowledge required to solve a case, but rather, 
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to be able to find the relevant knowledge in the knowledge base (Vazey & Richards, 

2006).  

A further contribution of Vazey and Richards’ work was the testing of the Case and 

Rule-Driven (CARD) paradigm of MCRDR development. The CARD methodology 

identifies that knowledge can be added via a top-down, rule-driven approach, or via 

a bottom-up case-driven approach. The case-driven approach is the normal 

paradigm of MCRDR development, but Vazey identifies that there are benefits to 

rule-based development and concludes that a combination of the two is likely to 

provide the best results, although no study has been performed comparing the two 

approaches (Vazey, 2006; Vazey & Richards, 2006). Collaborative knowledge base 

development is discussed again in Chapter 5. 

2.2.3 Knowledge Comparison 

The strong research and development focus on expert systems in the 1980s, and the 

identification of the difficulties involved in knowledge acquisition, also gave rise to 

research into the comparison and consolidation of knowledge. As there were a wide 

variety of knowledge modelling techniques available, this research generally 

focused on how to perform knowledge comparisons for each of those specific 

modelling techniques.  

In 1989 Shaw and Gaines identified that when acquiring knowledge from multiple 

experts, each may describe different parts of their knowledge, use different 

terminology, or use terminology differently (Shaw & Gaines, 1989). They described 

four possible situations in acquiring knowledge from multiple experts: consensus, 

when the experts use the same terminology for the same concept; conflict, when 

experts use the same terminology for different concepts; correspondence, the use of 

different terminology for the same concepts; and contrast, the use of different 

terminology and different concepts. This scheme was applied to the knowledge of a 

group of experts, acquired as repertory grids: a technique which allows the 

definition of conceptual models by asking an expert to list what they considered to 

be the entities in their domain, then being asked to define distinctions between them 

(Fransella, Bell, & Bannister, 1979; B. R. Gaines, 1987; Shaw & Gaines, 1989). 

They concluded that any comparison of expert knowledge necessarily involves 

approximation, as evaluating a complete conceptual system is impractical: there 



 
41 

must be some level of assumption about underlying concepts, which may not in fact 

be identical. However, identifying significant similarities or differences is a 

valuable task as it promotes directed, contextual discussion among the experts that 

may reveal other more subtle distinctions (Shaw & Gaines, 1989). 

Dieng in 1997 described a method for combining multiple experts’ knowledge 

when that knowledge is represented as conceptual graphs (Dieng, 1997). 

Conceptual graphs are a technique for visually representing knowledge: at the 

simplest level, by defining concepts as graph nodes and relationships as the links 

between them, but conceptual graphs can also represent first order logic, and 

contain rules as reasoning. A concept graph contains a set of concepts, a set of 

relationships, and a set of individual markers, which indicate when a concept is a 

named entity rather than a type of entity (Chein & Mugnier, 2008). Dieng’s study 

describes a detailed algorithm for how to combine multiple concept graphs, 

including comparing the concept set, relation set, and individual markers in turn, 

and identifying and resolving synonyms and homonyms in the names of the 

components (Dieng, 1997). A problem with concept graphs however is that they are 

difficult to develop, requiring significant work by a knowledge engineer in 

interviewing experts and attempting to elicit the conceptual models that the experts 

use. 

Richards and Compton’s combination of Formal Concept Analysis (FCA) and 

Ripple Down Rules (RDR), also in 1997, could also be used to compare the 

concepts in different experts’ knowledge. The derived concept lattices of two 

knowledge bases could provide a visual representation of the concepts implied by 

each expert’s rules, allowing easier visual identification of their differences 

(Richards & Compton, 1997c). This method was shown to be effective in the 

identification of broad conceptual differences, for example when an expert defines 

classes which another did not (Richards & Compton, 1997c). However this method 

is less effective at identifying subtler differences between expert’s knowledge, and 

presents no information about the significance of each difference. For example, if 

two experts’ knowledge bases displayed a minor difference in the values used in 

certain rule conditions, say one expert used x<20% and the other x<25%, this could 

visually appear equally as significant a difference as one expert having an entirely 

new rule. The viewer also receives no information on the significance of these 
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differences: two knowledge bases may contain rules which use many subtly 

different conditions, yet almost invariably present identical results in practice. This 

is of course not a downfall in all circumstances: if examining how experts 

conceptually regard problems, the identification of those differences might present a 

significant result in itself. However, when comparing knowledge bases with a large 

number of differences, information on the significance of each difference may be 

needed to perform the comparisons efficiently and effectively. 

Similarly, Beydoun and Hoffmann’s method for automatically integrating multiple 

knowledge bases is applicable as a knowledge comparison method (Beydoun, et al., 

2005). However, while this method worked well for automatically combining 

knowledge bases (as much as is practical), it made no provision for resolving 

conflicts or improving expert knowledge. Making comparisons using all possible 

values for all attributes is also a concern, as the maximum ranges of attributes are 

not always obvious and modelling them could take considerable effort. Also, 

without considering the likely distribution of values for each attribute, the resultant 

comparison may misrepresent the significance of a difference: a small difference in 

value for one rule condition may conceivably result in 100 cases classified 

differently or none, depending on where within the distribution the condition’s 

value lies. 

At approximately the same time, Vazey and Richards conducted studies into the 

application of the wiki paradigm to knowledge acquisition, whereby many experts 

can collaboratively update a central store of knowledge. In their approach, all parts 

of the knowledge base or cases could be edited or removed, with conflicts identified 

by tracking a history of these changes, or by marking the rules as accepted or in 

conflict. Identified conflicts were brought to the attention of the users who created 

the conflict, and resolved through online discussion and other users’ input (Richards, 

2009; Richards & Vazey, 2005; Vazey & Richards, 2006). 

The ICT support domain however presented some quite different features to other 

application domains of MCRDR. The most fundamental difference is that each of 

the users have relatively little knowledge specific to each ICT problem, with their 

expertise focused primarily on general problem solving skills: a survey of users 

indicated that for 67% of cases the user would not have the knowledge to resolve 

the case, and would need to refer to other sources (Richards & Vazey, 2005). The 
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focus of the development therefore was to incorporate these other sources into the 

central knowledge base, making the knowledge base the primary source of 

knowledge. Thus, the most important goal of knowledge acquisition in the ICT 

support domain is to make the knowledge base as complete and correct as possible, 

without particular concern for the users’ knowledge, as it is assumed that they will 

be retrieving their knowledge from the knowledge base. This subtly contrasts with 

the goal in other applications of MCRDR, such as the medical domain considered in 

this study, where the goal is to support an expert’s knowledge and decisions rather 

than present authoritative solutions (Musen, Shahar, & Shortliffe, 2006). A further 

difference in the domain is in the outcome of a case. In ICT support, a case is 

correctly resolved once the problem is corrected. Unless the problem subsequently 

recurs, the solution can be said to be correct regardless of what the solution may 

have been. This does not always apply in other domains however. In a medical 

interpretation setting, the resolution of a case is often ambiguous: different experts 

may well provide different interpretations, and there is often no conclusive evidence 

as to which interpretation is correct. The consequent of these differences is a focus 

on allowing knowledge to be collaboratively corrected, but little work on how to 

assist in that resolution. This accurately models the Web 2.0 paradigm and was 

shown to work in the ICT support domain, but is impractical for a domain such as 

medicine where conflicts in knowledge may appear without obvious solutions, 

especially without wide ranging collaboration.  

2.3 Data Analysis 

The central component of any knowledge discovery method will be the data 

analysis: the methods which are used to identify relationships, trends, or any other 

information from the raw data available. This component is covered by steps three 

and four of Kurgan and Musilek’s generic knowledge discovery model described in 

section 2.1.2 (Kurgan & Musilek, 2006). Clearly, these methods form an integral 

part of knowledge discovery, as they are the methods which are used to discover 

what can be gleaned from the data. However, it is important to remember that the 

result is typically just more data, or metadata; it comes with no meaning or 

explanation attached; and has no guarantee that the discovered patterns are at all 

applicable outside of the set of data that was examined. The data analysis therefore 
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can only be considered to be one step in a knowledge discovery process: the goal of 

knowledge discovery is to find knowledge rather than just extra data, and it is 

necessary to interpret the new data to determine what knowledge may be concluded. 

Therefore, while the data analysis process can be considered to come under the 

coverage of knowledge discovery, it can only constitute a component of that 

process (Brachman & Anand, 1996; Fayyad, et al., 1996b; Goebel & Gruenwald, 

1999). 

There are two terms that are used, at times interchangeably, to describe those data 

analysis methods: data mining and machine learning. The subtle distinctions 

between them lie mostly in the desired goal of the analysis, and partly in the manner 

in which the method performs: data mining methods seek to analyse data to 

discover trends, patterns, or relationships within the data; machine learning methods 

seek to analyse data to determine a model for the interpretation of the same or 

similar data. The difference is often only a semantic one: a pattern or relationship 

can be used as a model and a model can be considered as a description of trends; 

hence the common interchangeability of terms. However, the distinction is still 

made; and the names themselves infer another perspective on the difference: a data 

mining method is one which trawls through data, attempting to unearth some new 

data; whereas a machine learning method considers the data, and learns patterns 

with which to interpret this and other such data. 

2.3.1 Data Mining 

Data mining has been described as any process for analysing sets of data and 

attempting to extract some information from them (Witten & Frank, 2005), or as 

any method of extracting patterns from data (Goebel & Gruenwald, 1999). 

Typically these methods attempt to find statistical trends and patterns within large 

amounts of data, which can be assumed to indicate some underlying connection or 

event. The desired outcome is to be able to describe, with confidence, trends that 

can be used to predict future actions or events, and use this to some advantage 

(Fayyad, et al., 1996a).  

As a field, and as a term, data mining was initially driven by statisticians and data 

analysts (Fayyad, et al., 1996b). Over time, ―pure‖ data mining approaches and 

methods have become less widely used due to the size and complexity of the data 
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now being mined (Fayyad, et al., 1996a), and the demand for more meaningful 

output (Goebel & Gruenwald, 1999). To address these problems data mining has 

become increasingly more integrated with knowledge discovery and machine 

learning.  

2.3.2 Machine Learning 

When considering acquiring knowledge, there are methods which can constitute an 

overlap between knowledge acquisition and data mining: while knowledge 

acquisition methods focus on extracting knowledge from a human expert, there are 

also methods which attempt to acquire knowledge through automated means 

(Witten & Frank, 2005). Machine learning as a term describes any method whose 

goal is for a computer system to obtain new knowledge about a subject, in a 

reproducible format, from a set of data. While this incorporates the goals of 

knowledge acquisition and has an obvious overlap with knowledge discovery, 

machine learning methods involve the computer taking a much more active role in 

the learning process: the focus is on how the computer system can identify relevant 

information about the subject, with minimal human input. These methods take the 

approach that the reduction of human input is the key to avoiding the knowledge 

acquisition bottleneck, and also facilitates the removal of unintentional bias, to 

allow purely statistical and logical methods to find points of interest in the data 

(Grefenstette, Ramsey, & Schultz, 1990; Hong, Wang, Wang, & Chien, 2000).  

2.3.2.1 History 

Machine learning as a field came into existence largely because of perceived 

shortcomings with knowledge acquisition (Grefenstette, et al., 1990). While 

knowledge acquisition methods showed success in some applications, research and 

development in the expert systems area discovered that the most significant 

problem faced, negatively impacting on both the effectiveness and cost of creating 

an expert system, was the knowledge acquisition phase. As has been mentioned, 

this ―knowledge acquisition bottleneck‖ caused a change of attitude in the area, 

shifting the focus from trying to model human expertise directly, towards automated 

processes of deriving expertise (B. G. Buchanan & Shortliffe, 1984; Grefenstette, et 

al., 1990; Hong, et al., 2000; Sester, 2000). Machine learning is the result of that 
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shift. It has been described as the use of statistical analysis of data to derive 

knowledge about how a domain functions (Witten & Frank, 2005).  

The major benefit of this is being able to create an expert system or to derive 

domain knowledge by analysing collected data, with limited expertise required: 

removing the necessity of having a human expert in the domain expend 

considerable time and effort developing and engineering knowledge in the system 

(Quinlan, 1986; Witten & Frank, 2005). This is of particular benefit in subject 

domains where an expert’s time is quite valuable. Machine learning methods also 

allow the possibility of discovering the knowledge in a different manner to the way 

in which the expert would describe it – this may be an advantage or a disadvantage, 

depending on the domain and the ability of the experts to communicate domain 

knowledge. For example, the method may discover relationships that would 

otherwise go unexplored because the current expertise in the field does not suggest 

any such relationship could exist; or it may be a disadvantage, because relationships 

may be discovered which are present in the dataset but which are not present in the 

wider domain. It may also be disadvantageous because the method of discovering 

the relationships can be less efficient, effective or comprehensible than those used 

by an expert (Piatetsky-Shapiro, 1990). 

2.3.2.2 Machine Learning Drawbacks 

Machine learning methods are generally most effective in applications where the 

data that is being used for acquiring or discovering knowledge is sufficiently 

detailed that conclusions can be drawn from it alone, without further domain 

knowledge being applied – typically data that has been classified as being of a 

certain type, or that can easily be categorised according to type, allows statistical 

methods to find new relationships from the existing relationships and other data 

(Witten & Frank, 2005). The existing classifications represent a level of domain 

expertise that has been applied to the data, either from an expert who has examined 

each case and provided the classifications as extra information, or from an expert 

who knows which attributes of the set are important.  

Machine learning methods are also only particularly effective in domains where the 

target knowledge (i.e. the knowledge the method is trying to discover) is relatively 

simplistic: complex relationships which have a practical use are difficult to derive 



 
47 

without also deriving large amounts of other relationships which are meaningless, 

coincidental, or overly specific to the dataset (Witten & Frank, 2005). When the 

goal of the machine learning is knowledge discovery, not just data mining for the 

purposes of training an expert system, it is required for an expert in the domain to 

examine the relationships discovered and to determine what is useful and what is 

not (Abe & Yamaguchi, 2005). If the relationships are too many or too complex 

then this will be a highly difficult and time consuming process, negating the 

advantages of this approach.  

Another drawback is that machine learning can only discover knowledge that is 

present within the dataset being used: if the dataset is of insufficient size, or 

happens to contain statistical relationships which are not representative of the 

domain, then the method will either miss relationships or find misleading 

relationships; whereas an expert can use their extended knowledge of the domain to 

make judgements on what is likely to be coincidence and what is likely to be 

supported by further data (Hall & Smith, 1998). 

2.3.3 Data Mining and Machine Learning Methods  

There have been a large number of approaches developed for performing data 

mining or machine learning tasks. This section will describe some of the key 

developments in the field.  

2.3.3.1 Statistical Methods 

The first data mining tools were essentially computerised versions of the existing 

methods, leveraging mechanical computational power to perform the typically time-

consuming, tedious, and error-prone tasks required in data analysis (Tukey, 1977). 

These initial methods are statistical, mathematical approaches to data analysis; they 

are still commonly in use for manual data analysis and they form the foundation 

from which most data mining methods are derived. 

There is no need to explain the detail of the more common statistical methods here, 

which most readers will be familiar with: regression, Student’s t-test, the analysis of 

variance and their many derivations and related methods provide a strong body of 

data analysis tools which are widely used.  
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Initially, computational power was applied primarily to improve the speed of these 

methods. Data mining had its beginnings in simple statistical methods and the fast 

and accurate visualisation of data, to allow human experts to identify relevant 

information. This work was described as exploratory data analysis, as the work was 

often tentative: it was uncertain what would be discovered from the data, so the data 

was considered in as many different ways as possible (Tukey, 1977).  

2.3.3.2 Information Theory 

In the late 1940s the rapid development of communication and encoding 

technologies led to a discussion of a mathematical theory for communication 

(Shannon, 1948). Through these discussions Shannon’s work defined the 

foundation for the field of information theory, a mathematical approach to 

describing communication from which many advances in a range of fields have 

been made.  

Information entropy is one of the fundamental components of the field described in 

Shannon’s paper (Shannon, 1948). It is a measure of the unpredictability of the 

content of a message; the central tenet is that the more predictable a message is, the 

smaller it can be encoded. The formula is shown below: 

           

 

   

 

The formula finds the entropy (H) of the set of probabilities p1...pn, where any given 

pi is the probability of one possible value (i) for one element of the message being 

encoded.  

For example: if encoding a series of dice rolls, there are six equally likely results for 

each roll, and therefore the encoding for each roll needs to allow evenly for six 

possibilities. When all possibilities are equally likely, as in this example, the 

calculation derives maximum entropy (a result of 1). If the die were weighted such 

that when rolled it always came up 1, this would have zero entropy: the result needs 

no encoding at all, as it is completely predictable, and the length of the series (how 

many times it was rolled) is the only information required. If the weighting were 

less significant, such that the die came up 1 50% of the time, the entropy value 

would be reduced as less information needs to be transmitted: fewer bits would be 
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used to encode a 1 result than the others, as it is known to occur more frequently. 

As these measurements are based on the probabilities of each possible result, the 

entropy calculation can be described as the content of the message which can be 

predicted, based on the biased probability (Witten & Frank, 2005).  

This theorem can be extended to include conditional entropy, or the entropy of one 

variable when the value of another is known, or H(X|Y). The conditional probability 

is calculated by considering the individual entropies of an element X for each value 

of element Y, weighted by the probability of finding that value for Y. The resultant 

value measures the average uncertainty of X when Y is known (Shannon, 1948). 

This calculation can also be used to determine the relationship that exists between 

two variables: if there is zero entropy for X given Y, then Y can be used as a 

predictor for X, as knowing the value of Y implies a certain value for X; if there is 

maximum entropy for X given Y then it cannot be used as a predictor, as the values 

of X are all equally probable as regards to any single value of Y (Khinchin, 1957). 

Information Gain 

Information gain is a widely used measure in information theory and in data mining 

and machine learning (Freitag, 2000; Kent, 1983; Quinlan, 1986), occasionally 

referred to as Kullback-Leibler information gain after the creators (Kent, 1983; 

Kullback & Leibler, 1951). It calculates how much the entropy is reduced for a 

variable X if the value of Y is known. Thus it can be defined as igain(X|Y) = H(X) – 

H(X|Y), where H(X) is the entropy of the variable X and H(X|Y) is the conditional 

entropy of X with known values for Y (Kullback & Leibler, 1951). As described 

previously, a reduction in entropy is a reduction in uncertainty, and a decrease in the 

cost of encoding; information gain quantifies this reduction, allowing comparisons 

of the benefits of knowing the value of a variable, or, of how well one variable can 

predict the value of another. 

This trait has led information gain to be applied in numerous data mining and 

machine learning studies, including Quinlan’s popular decision tree induction 

methods (Kodaz, Özsen, Arslan, & Günes, 2009; MacKay, 1992; Quinlan, 1986). In 

Quinlan’s ID3 approach, information gain was used in building the decision tree to 

identify the best attribute to ―split‖ on at the current level of the tree, or which 

attribute provided the most accurate segmentation of the data based on the class 
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attribute. At any given step, the attribute that is best at predicting the class will be 

chosen for the current level of the decision tree, by calculating the information gain 

for the class attribute given knowledge of the current attribute: the largest 

information gain is the attribute which provides the most extra information about 

the class.  

2.3.3.3 Rule Induction 

As researchers and developers struggled with the problems of the knowledge 

acquisition bottleneck, a diversity of alternative methods were produced in the late 

1970s and early 1980s. One of the first and most intuitive methods developed was 

rule induction. The premise of this approach is that a system can examine data and 

the outcomes (or classifications) of that data, in order to differentiate what might be 

the causes for each result (or class). It can then develop rules which accurately 

classify each case that it knows about.  

Waterman established one of the first studies into the area in 1970 (Waterman, 

1970), and as the knowledge acquisition bottleneck problem became more 

prominent the approach was slowly adopted by more of the research community. 

By 1980 many studies had been undertaken, including some major projects such as 

DENDRAL (B. Buchanan, Mitchell, & SCIENCE., 1977; Michalski, 1978; Simon 

& Lea, 1974).  

Many methods were developed for inducting rules, but all follow the same general 

pattern. Once a body of cases have been identified as belonging to the same class, 

the system can look for the attribute, or attribute-value pairing, which best 

differentiates those cases from the cases without that classification. This attribute or 

attribute-value pair becomes the first condition of a rule defining that classification; 

and the process iteratively continues. 

One of the biggest drawbacks of such a system is that in order to know how to 

create the rules the data needs to have been pre-classified: either having had the 

classification already added, or for one of the attributes of the case to have been 

selected as a differentiator, or class-attribute. This then allows the rules to be 

generated by looking at which other attributes, and which values for those attributes, 

would seem to indicate certain classifications (Roberto J. Bayardo & Agrawal, 

1999). Depending on the number of cases, the number and nature of the attributes 
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for each case and the complexities of the classifications, this process may be 

relatively trivial or impossibly time consuming. For example, consider a database of 

thousands of patient test results, collected over a number of years, which have not 

had the final diagnoses attached (a surprisingly common occurrence (Roddick, et al., 

2003)): a medical expert would have to be employed to examine each and every 

case, interpreting the results and adding their diagnosis; a process which could take 

months of full-time work. Note also that the expert is restricted to the data that is 

available: they cannot request further tests to assist in their interpretation and 

classification. This highlights a further flaw in the approach: even if the data had 

been classified as it was entered (i.e. a final diagnosis is recorded with each case), 

the process could be hindered and mislead by errors or missing values in the data; 

especially if some data that was used to make the classification is not in fact present 

in the dataset. 

The resultant learned classification rules present their own difficulties: there may be 

far too many rules for a human expert to be able to examine and determine which 

rules are valid, which do not describe interesting information, and which are worth 

considering for further study (Bachant & McDermott, 1984; Barker, O'Connor, 

Bachant, & Soloway, 1989). The method is also prone to generating very simple 

rules which provide no real benefit, and very complex rules based on dataset-

specific, coincidental relationships (Towell & Shavlik, 1994). 

2.3.3.4 Decision Trees 

A related field, following a similar pattern of development, is the induction of 

decision trees. Decision trees make a logical choice for simple automated learning, 

as, generally speaking, they are developed incrementally: at each point, the system 

only needs to identify one differentiating factor, which then splits the data into 

smaller segments; this process continues until the data is separated into distinct 

classification groups. As induction of rules provided successful results and the 

knowledge acquisition bottleneck became an increasing concern, induction of 

decision trees gained impetus. As mentioned previously Quinlan’s C4.5 algorithm 

for the induction of decision trees, and the subsequent improvements and extensions 

to the method, were very successful and popular in the late 1980s (Quinlan, 1993).  
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Induction of decision trees began with Hunt’s concept learning system framework 

(CLS) in 1966 (Hunt, Marin, & Stone, 1966). This method took the approach of 

selecting decisions that resulted in the minimum cost of classification: including the 

costs of identifying the value of the attribute and the cost of misclassifying a case; 

and made these calculations to a variable number of steps ahead, in order to 

construct better overall tree paths (Quinlan, 1986). This system proved effective, 

but potentially computationally slow depending on how far ahead it calculated. This 

led Quinlan to develop the ID3 algorithm, which removed the look-ahead cost 

calculation in favour of an information theory calculation, focussing on identifying 

the optimal decision for the current step (Quinlan, 1979, 1986). Until this point, all 

algorithms had required the use of discrete-valued attributes, but Paterson and 

Niblett adapted the ID3 approach to allow the use of integer attributes (Patterson & 

Niblett, 1982; Quinlan, 1986); this was later generalised to any continuous-valued 

attribute in the ASSISTANT study (Kononenko, Bratko, & Roskar, 1984; Quinlan, 

1986). Quinlan’s decision tree methods made use of the information gain 

calculation, to determine the split condition that will accurately assign the 

classifications for the most number of cases, in the current set. The gain is based on 

comparing the accuracy of the system after the split, for each of the subsets of cases, 

compared to the accuracy before the split (when all cases were assigned to one 

category) (Quinlan, 1986).  

After C4.5 was developed many further extensions were developed and applied, as 

there were a number of disadvantages to the approach. As with any classification 

method learned from the data, decision trees often have difficulties with 

generalisation: they may learn to classify the cases which they have seen perfectly, 

but the conditions chosen may represent coincidental relationships rather than real 

relationships; even if the conditions do represent legitimate domain reasoning, the 

values used can only be based on the examples that are available, and so are 

unlikely to accurately define the classification (Quinlan, 1987; Witten & Frank, 

2005). A similar problem is that trees can easily become over-fitted to the data: that 

is, they overly focus on the details within the data, and so cannot be generalised to 

other cases (Davison & Hirsh, 1998). Some very successful extensions were 

developed to overcome this issue, under the name of pruning. The general idea is 

that once the tree has been developed some of the lower branches should be 
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removed, as these will likely be providing specific distinctions between individual 

cases in the dataset and will not be representative of general domain trends (Quinlan, 

1993). A successful and widely adopted approach is reduced error pruning, 

whereby the dataset is divided into a training set and a test set. The training set is 

used to build the decision tree as normal; the test set is then used to test the 

accuracy of the tree, as it is iteratively pruned. Each non-leaf sub-tree of the current 

tree is tentatively replaced by whichever leaf is most correct. If the modified tree 

gives equal or fewer errors, then the modification is kept (Quinlan, 1987).  

2.3.3.5 Case Based Reasoning 

Another group of methods which finds application in both knowledge acquisition 

and in data analysis are case based reasoning methods. These methods can be 

adapted to a machine learning approach by using pre-classified data, or by using 

one of the attributes of the case as the class variable (Watson & Marir, 1994).  

An example of one of these approaches is the k-nearest neighbour (KNN) method, 

which was first established in 1951 (Fix & Hodges, 1951), and further formalised 

10 years later (Johns, 1961; Witten & Frank, 2005). KNN is a method founded on 

case based reasoning principles for classifying cases based on their similarity to 

other cases. This similarity is defined as a hyper-dimensional distance metric: that is, 

if the cases were plotted as points on a hyper-plane, with one dimension for each 

attribute, the distance between two cases is used to identify their similarity. A new 

case is given the same classification as the majority of the k cases which it is closest 

to on the hyper-plane; in other words, its k nearest neighbours.  

This algorithm learns incrementally, potentially increasing its knowledge with each 

new case examined without requiring all data to be re-evaluated. However as the 

number of cases seen increases, or the number of attributes in each case increases, 

so too does the efficiency of the method substantially decrease (Kurniawati, Jin, & 

Shepherd, 1998). The method also has difficulty defining complex relationships, 

except through the storage of a sufficiently large number of cases and the 

examination of a sufficiently large number of attributes, such that the complexity 

can be accounted for and any relationships found. However, as noted, this can cause 

the system to become highly inefficient. A further problem is that the knowledge 

gained from storing these classification boundaries is not easily viewable and 
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understandable by a human expert, due to the potentially vast number and 

multidimensional nature of the spaces being defined (Hand & Vinciotti, 2003; 

Kurniawati, et al., 1998). 

2.3.3.6 Clustering  

Clustering describes a methodology of attempting to identify patterns and trends in 

data by finding what case groupings exist, and how those groups are defined (Jain, 

Murty, & Flynn, 1999). By performing this task, classifications can be derived that 

were previously unknown, and a simple comparative analysis of the members of 

each cluster will provide conditions for determining cluster membership for future 

cases. This ability to find truly new classifications makes clustering a powerful data 

mining tool, although obviously it should be noted that any new classifications 

discovered have no associated meaning: they simply provide evidence that classes 

exist within the data, and it is an expert’s responsibility to determine why this 

should be true and what the implications of this are (Jain, et al., 1999). 

k-Means Clustering 

k-Means clustering is one of the most simple clustering methods, and many 

clustering methods use the k-means approach as a template (Berkhin, 2006). k-

Means finds results by many repeated passes of the same function: each case in the 

dataset is assigned to the cluster that it is closest to, based on a hyper-dimensional 

plot of all cases, with each attribute in the dataset describing one dimension. 

―Closeness‖ is a complex term in clustering, and is where most of the differentiation 

between methods lies: in k-means, closeness is decided by comparing the average, 

total, or maximum (depending on implementation) difference between the mean of 

all cases currently in the cluster and the current case under consideration (Hartigan, 

1975; MacQueen, 1967). Initially, the clusters are decided by randomly assigning 

one case from the dataset to each cluster. Once all cases have been assigned to a 

cluster, the process is repeated, with the mean-points of each cluster constituting the 

midpoints of the new empty clusters. This is repeated until there is no deviation of 

cases from one cluster to another between successive runs; at which point, the 

clusters are determined to have stabilised and the results presented (Hartigan, 1975; 

MacQueen, 1967). The number of clusters (k) that are initially created is determined 

by the person running the clustering method. If this is not known, the clustering 
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process can be run multiple times with different numbers of clusters, to attempt to 

find the best results (Hartigan, 1975; MacQueen, 1967). 

Clustering Limitations 

The biggest flaw with k-means, and with most clustering methods, is that while they 

can find completely new class groupings the method requires that the user input 

how many of these groups to look for (Hartigan, 1975; Witten & Frank, 2005). This 

requires some level of understanding of what the results are likely to be before the 

process is run – severely dampening the benefits of discovering new class groupings. 

This is exacerbated by the second major flaw with clustering methods: that they are 

very expensive in terms of time and processing power, particularly if the number 

and nature of the clusters being looked for is uncertain (Hartigan, 1975; Witten & 

Frank, 2005). Clustering works quite effectively and relatively efficiently with a 

small set of attributes, cases and clusters as parameters; however as these numbers 

rise the processing time dramatically increases, in many cases to the point of being 

unusable (Witten & Frank, 2005). This time requirement can be reduced the more 

that is known about the clusters being searched for: restricting the search space to a 

small number of attributes, or weighting important attributes more than others, will 

dramatically improve the speed and efficiency of the process; as will reducing the 

cases being examined, or specifying the approximate number of clusters to search 

for.  

Clustering methods are usually non-deterministic, with the assignation of random 

cases to the initial clusters determining how the final clusters will be formed: 

however, by having stringent stabilisation requirements it is generally assured that if 

there exist clusters within the data being analysed, they will be discovered (Jain, et 

al., 1999). This is still a downfall of the method however, as there is no guarantee 

that the results are the best possible results, and there will always be doubt.  

A further problem is that clustering can often be inconclusive, as methods generally 

provide little distinction between obvious, strong clusters and weak clusters. The 

clustering algorithm only functions to the extent of having stabilised and defined 

clusters: the veracity of these clusters over larger amounts of data and how reliably 

they can be defined is not presented: this must be pre-determined by considering the 

domain, and concluding whether strong clusters are likely to exist or not (Jain, et al., 



 
56 

1999). The end result of these drawbacks is that for a clustering method to be 

effective there usually needs to be a significant level of expert involvement and 

application of domain knowledge: without this, a clustering method becomes a 

blind search, likely to take significant time only to discover clusters which are 

uncertain and uninformative. This unfortunately means that while clustering can 

find new knowledge and entirely new classifications, to do so effectively requires 

that much of the nature of the classifications is already known. Clustering is 

therefore a method which lends itself to quantifying known relationships, or 

relationships that are expected to exist, rather than a method of discovering new 

knowledge. 

2.3.3.7 Association Rule Mining 

In the early 1990s, as the technology for recording business data became 

increasingly prevalent, there began an increase in studies for analysing that data: 

beginning the field of data mining. One of the earliest applications of this was to 

identify shopping trends in large-scale databases of customer transactions. Each 

record in these databases constitutes the list of items that the customer bought in 

that shopping transaction. This problem presented unique challenges in that each 

case did not conform to having the same limited set of attributes and a value for 

each one, but rather had a variable-numbered combination of a large possible item 

set. Nevertheless, in order to work with these cases each was typically treated as 

having a large number of Boolean attributes, one for each possible item: most of 

which will be false for each case. This allows the automatic identification of which 

items are associated with which other items; in this case for identifying how better 

to market products, but can be generalised to discovering which attributes are 

related to which other attributes (Agrawal, Imielinski, & Swami, 1993). The 

resultant association rules are of the form X → I, where X is an item (or attribute) 

set, and I is an individual item (or attribute) which is not contained in X (Agrawal, 

et al., 1993).  

Interestingness Measures 

While it is a trivially simple task to define all the possible association rules that 

could be supported by a dataset, or more correctly a data model, the difficulty lies in 

identifying which of those rules are adequately evidenced by the data to warrant 
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regarding them as reasonable and indicative of knowledge (Agrawal, et al., 1993). 

The simplest of these, support and confidence, form the fundamental components of 

many of the other measures, some of the more common of which are described here. 

The confidence of a rule is the percentage of the cases that have the antecedent of 

the rule (X), that also have the consequent of the rule (I); for example, in a dataset 

of 20 cases, if 10 cases had all items in X, and of those 10, 4 cases had the 

consequent I, the rule confidence would be 40%. The confidence suggests how 

likely this rule is to represent a true association: if 100% of cases with item A also 

have item B, the system can be maximally confident that there is an association 

between A and B; whereas if only 5% of cases with A also have B, this is much 

more likely to be coincidental, or at least unreliable enough not to warrant further 

action.  

Support attempts to describe the statistical significance of a rule: it is the fraction of 

cases in the dataset that satisfy the rule, having both the antecedent and the 

consequent. This helps to indicate the likelihood that an association is able to be 

generalised beyond the current data (Agrawal, et al., 1993).  

Lift, also called interest (Brin, Motwani, Ullman, & Tsur, 1997; Roberto J. Bayardo 

& Agrawal, 1999), is a measure of how singularly dependent the consequent is on 

the antecedent. A low value for lift indicates that the consequent is unlikely to be 

dependent on the antecedent. Lift can be defined as (Roberto J. Bayardo & Agrawal, 

1999), (Brin, et al., 1997):  

             
                 

              
 

      

        
 

In more literal terms, the lift value describes how much more likely, multiplicatively, 

the consequent is to appear in the set of cases that have the antecedent, than in the 

overall set of cases. For example: as previously, there are 20 cases, 10 having X and 

4 of those with I, giving X → I a confidence of 40%; but of those 20 cases the only 

that have I are the 4 that also have X; then the rule has a lift of 2. Although only 40% 

of cases with the antecedent X have the consequent, which would seem to indicate a 

relatively weak correlation, X is still twice as good a predictor of I than random 

selection, which can only predict cases which have I 20% of the time. Lift is also a 

symmetrical measurement, in that: 
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Gain is a measure used by Fukuda et al to help find optimal ranges for rule 

definition, and is defined as: 

                                            

where the variable   represents the minimum confidence threshold (Fukuda, 

Morimoto, Morishita, & Tokuyama, 1996). Explicitly, the resultant value of gain is 

the number of cases that support the rule above the minimum necessary for the rule 

to match the confidence threshold, given the support for the antecedent. Continuing 

from the previous examples, if the minimum confidence threshold was set at 20%, 

then             would be 2: as the minimum number of cases required for the 

confidence to meet the threshold of 20% is 2 (                ), and the 

               is 4.  

Piatetsky-Shapiro defined a further interestingness measure in 1991, which Bayardo 

and Agrawal pointed out is a specialised case of gain, with   fixed as           

   
, 

where |D| is the number of cases in the dataset (Bayardo Jr. & Agrawal, 1999; 

Piatetsky-Shapiro, 1991). Thus the measure calculates: of the cases that support the 

antecedent, how many more have the consequent than would be expected, using the 

ratio of number of cases with the consequent against the dataset to derive the 

expected value. To illustrate, again using the previous examples: if 10 out of 20 

cases have antecedent X, and 4 cases have consequent I, all 4 of which also have X, 

then the p-s gain is 2; which is indicating that the antecedent X appears in 

association with the consequent I in 2 more cases than would be expected. 4 cases 

have both consequent and antecedent, while based on the ratio of cases with the 

consequent to cases in the dataset (0.2), it would be expected that only 2 of the 10 

cases with the antecedent would also have the consequent. 

Conviction is another function of confidence which was designed to complement lift, 

as it considers the probabilities of both the consequent and antecedent individually 

(Brin, et al., 1997). It is defined as: 

                   
               

                        
 

Each of these measures provides a relative measurement of interestingness for each 

possible rule; however as they are based from different measurements they will 
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often provide conflicting rankings. In order to improve the efficiency of the data 

mining, all measurements for all possibilities are rarely calculated: rather, a first 

pass is run finding all rules which match a minimum threshold for simple 

measurements such as confidence and support, then more complex measurements 

made over the remaining rules (Agrawal, et al., 1993; Bayardo Jr. & Agrawal, 1999; 

Lenca, Vaillant, & Lallich, 2006). These will again often have minimum thresholds, 

displaying only those rules which surpass the threshold value for each measure. The 

literature generally does not suggest optimal thresholds for these or other measures, 

and threshold values are rarely discussed in detail. The most common view is that 

the thresholds should be modifiable by the user, as the required minimum 

interestingness of a rule is dependent on the data and what the user is looking for 

(Hidber, 1999; Lenca, et al., 2006; Tan & Kumar, 2001), although some methods 

have attempted to develop relative thresholds (Lavra , Flach, & Zupan, 1999). 

The major problems with association rules are the computational complexity of 

identifying the rules and the often vague results: the method provides absolutely no 

explanation for why these associations exist, which makes it difficult to quantify 

exactly how well an association might generalise, or what to do with the 

associations once discovered. Nevertheless association rule mining became a very 

popular approach in data mining which found wide application in marketing 

research (Fayyad, et al., 1996a). 

2.3.3.8 Neural Networks 

Neural networks are an approach to developing a self-learning system, based on our 

understanding of the fundamentals of the human brain. As with the brain, a network 

of neurons is established through which information passes, causing some neurons 

to fire; and the extent to which each of the neurons fire determines what the final 

output of the network is. The perceptron, the first method which could be called a 

neural network, was developed in the 1960s based on linear regression techniques. 

This method calculated appropriate weights for each attribute such that the sum of 

the weighted values could be used to predict the class of each case (Nilsson, 1965; 

Witten & Frank, 2005). It was soon identified, however, that this method had 

fundamental limitations (M. Minsky & Papert, 1988), and research in the area did 
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not regain popularity until more complex designs were developed (Witten & Frank, 

2005), such as the multi-layer perceptron and backpropagation.  

In general, the construction of a neural network an initial set of neurons are 

established, each of which take different elements of the case as input and have 

different functions deciding whether they fire, given a range of input values. These 

initial neurons can then feed into another perceptron layer, which potentially feed 

into further layers, with neuron outputs becoming the inputs for the subsequent 

layer. Once established, the network learns through an extensive training process of 

data examination, updating the neuron functions to be more correct for each data 

instance (Gardner & Dorling, 1998; Witten & Frank, 2005). Many neural network 

approaches also employ the backpropagation technique whereby cases are 

presented to the network, and the outcome observed; if the outcome is correct the 

neurons that contributed are positively reinforced, and if the outcome is incorrect 

they are negatively reinforced (Gardner & Dorling, 1998). In some approaches, 

layers of neurons can also be added and removed during the learning process 

(Fritzke, 1993; Huang, Saratchandran, & Sundararajan, 2005). This process 

continues until the network has stabilised and is returning accurate results. 

Neural networks are interesting because they can require very little input or 

supervision, although they require an initial specification of what a correct result is 

in order to begin learning. Successes have been made, particularly for problems 

with noisy data (data that contains many errors) that make human expertise difficult 

to apply (T. Mitchell, 1997). However neural networks are not suited to all domains: 

they are slow to train, do not learn well from complex data sets, and cannot learn 

incrementally. Extensive training is required to produce an accurate system, and 

that system is not adaptable to new situations. Perhaps the biggest drawback is that, 

even more so than with other machine learning techniques, any knowledge in the 

system is entirely opaque: it is stored implicitly within the configuration of the 

network, and the system can give absolutely no justification for why it reaches the 

results it does (Pernin, 2008; Towell & Shavlik, 1993). 

2.3.3.9 Bayesian Classifiers 

Bayesian belief methods, or Bayesian networks, are a probabilistic method which 

produces models of the probabilistic relationships between attributes (Goebel & 
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Gruenwald, 1999). The core of all Bayesian approaches is Bayes’ theorem, which 

defines the probability of a hypothesis (in this case A) given evidence (B): 

       
           

    
 

Given a set of pre-classified data, this theorem allows the calculation of the 

probability of a classification, given certain attributes of a case. This can easily 

define a classifier: the pre-classified dataset provides the probability of each 

outcome for each attribute value; and so any new case can take the probabilities 

associated with the values it has, and find the probability it has for each possible 

classification. This is called the Naïve Bayes approach, as it assumes that each 

attribute is independent: interdependency between attributes changes the resultant 

probabilities.  

There are other applications of Bayes’ theorem: many more complex and 

specialised methods have been developed based on the principle (Szarfman, 

Machado, & ONeill, 2002). A more common example is a Bayesian network: this 

consists of a directed, acyclic graph where nodes are attributes and edges are 

dependencies between attributes, with probability functions associated with each 

node describing the likelihood of each outcome for the attribute given the values of 

the attributes it is dependent on (Heckerman, 1995). This provides a visual 

representation of the data, and the possibility of structuring attribute dependency 

into the calculations.  

Bayesian networks provide an option for including, and to an extent rely upon, the 

input of existing knowledge in the form of the dependencies between attributes. 

There are methods to automatically derive this information, by generating a large 

number of different topologies and identifying which is the most appropriate. The 

graph is then updated by analysis of the data, to find more accurate probabilities and 

possibly new dependencies (Heckerman, 1995).  

2.3.3.10 Genetic Algorithms 

Genetic algorithms are a similar field of development to neural networks. Where 

neural networks are modelled after our understanding of the human brain, genetic 

algorithms are modelled after another proven natural system: genetic evolution. For 
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this reason it is sometimes also referred to as evolutionary computation (M. 

Mitchell, 1998). Genetic algorithms function by randomly generating a number of 

possible solutions to the problem under consideration. A subset of these, comprising 

the most successful strategies with the possibility of some random selections, is 

chosen for reproduction. The components of the subset are duplicated and combined 

in some way into a new population, again with some potential for random 

development; and the process is repeated with that population, until a suitable 

solution to the problem is discovered (M. Mitchell, 1998). 

Evolution has been used for a long time in computing research, with examples as 

far back as the 1950s (Barricelli, 1957; Friedman, 1959; M. Mitchell, 1998). Much 

of this initial work was begun out of a desire to test evolutionary models, where 

many generations of work could be calculated in a realistic time frame, rather than 

in solving problems through an evolutionary approach (M. Mitchell, 1998). Genetic 

algorithms were formalised in the 1970s by Holland, as a way of describing the 

evolutionary processes that he had been modelling (Holland, 1975). However, 

despite having been in relatively consistent use since their development, genetic 

algorithms were considered an esoteric and impractical solution, largely due to the 

high computational cost of finding effective results and the opacity of the processes 

involved and the solutions found. With the increase in computing power and its 

availability of the 1980s and 1990s, evolutionary algorithms became more popular, 

particularly with some commercial successes and a general appeal that many other 

methods lack (Bentley & Corne, 2002; Thearling, 1998).  

Genetic algorithms have been shown to be quite effective at developing 

classification models, comparable to any other approach (Orriols-Puig, Casillas, & 

Bernadó-Mansilla, 2008). However, they also have similar drawbacks to neural 

networks: they are very slow to develop, requiring considerable computation time; 

they generally require extensive initial configuration to achieve effective final 

results, but are relatively inflexible during development; and the end result can be 

quite opaque, unable to provide an explanation for how it achieves its results 

(Orriols-Puig, et al., 2008).  



 
63 

2.4 Results Analysis 

An important component of any knowledge discovery method is to analyse the 

results that have been obtained (Fayyad, et al., 1996b). This step is often not given 

significant consideration when developing a knowledge discovery method: as 

knowledge acquisition and data mining are fields unto themselves, they retain most 

of the focus, with little work on combining the methods (Fayyad, et al., 1996b; 

Piatetsky-Shapiro, 1990; Pohle, 2003; Sinha & Zhao, 2008). There are thought to be 

a few reasons for this lack of focus. Results analysis is often considered to be 

outside the scope of those developing and deploying the knowledge discovery 

method, as it is thought to be more productive and quantifiable to focus on 

modifying the data mining method to produce less results, and try to ensure that it 

produces only good results (Freitas, 1999; Matheus, et al., 2002). Results analysis is 

also one of the most difficult to specifically develop for (McGarry, 2005). The 

standard method is to simply present the results to an expert, and have the expert 

identify which are useful and which are not (Matheus, et al., 2002; Pohle, 2003).  

It generally requires someone with significant expertise and experience to recognise 

when newly discovered knowledge is reliable, or is indeed useful (Brachman & 

Anand, 1996; Fayyad, et al., 1996a). While an expert system may well be developed 

which can reproduce the knowledge of an expert for any case it could be presented, 

this expert system will only be an expert on the things it has been taught: it may 

have much of the knowledge that the human expert has, but it lacks the ability to 

adapt and apply that knowledge to new situations. This key fact has hindered the 

development of effective automated analysis devices in knowledge discovery 

research. It is also useful to consider that it is very likely that only an expert in the 

field will be able to put new knowledge to any use: and so it is necessary to involve 

such an expert in identifying the accuracy of the results (Fayyad, et al., 1996b). 

The ability to interpret results and find knowledge is dependent on the method used 

to discover them: the patterns found from a neural network are very difficult to 

interpret, whereas the patterns learned from classification rules are much more 

easily examined and checked by a human. When trying to discover useful new 

knowledge, the choice of method used, and the type of results it produces, is 

therefore an important consideration (Piatetsky-Shapiro, et al., 1994). 
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2.5 The Medical Domain 

The word domain is commonly used in expert system development to mean the 

field to which the system is being applied, or in other words, the things which the 

knowledge and data describe, and which the system is intended to gain expertise 

about. The methods developed in this study have been tested and are intended to be 

applied in the medical domain, and while perhaps they need not exclusively be used 

for this purpose, they have been developed so as to work best with this sort of data. 

For the purposes of this study, the medical domain is defined as those fields of work 

and research that involve the functions of the human body. These fields are 

characterised by a number of common traits that complicate work in the area and 

require specific consideration. 

2.5.1 Medical Knowledge Discovery 

The medical domain is considered one of the most difficult domains for knowledge 

discovery, but also one that can provide significant benefits (Roddick, et al., 2003). 

Unlike some other domains, the benefits of discovering new medical knowledge are 

obvious: and there is arguably no greater goal than the improvement of health and 

medical understanding.  

2.5.1.1 Difficulties in the Domain 

Although the discovery of new medical knowledge is a desirable goal, there are a 

number of factors which make it a very difficult task. The domain presents a 

distinctive combination of challenges for study and practice, which are outlined 

here. 

Medical Data 

One of the most significant difficulties faced in medical fields is the problem of 

gathering accurate data. Most of the functions being measured are internal to a 

human body and may be invisible to the human eye; and by definition, all functions 

involve elements integral to the patient’s health. This typically makes direct 

measurement an impossibility, such that most data consists of measurements 

incidental to the events being considered (Cios & Moore, 2002a). Often the tests 

being performed to generate the measurements are still intrusive in some fashion, 
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and extrapolation to a normal state is still necessary. These factors mean that 

medical decisions are often made based on best interpretations and estimates 

without the solid data that other fields can provide (Cios & Moore, 2002a).  

Given the difficulty in measuring the desired functions and components, there is a 

large field of research and development devoted to finding new tests that can 

provide different and better information about the functioning of the human body. 

Combined with the endless development of making tests cheaper, faster, and easier, 

these factors result in each case having a plethora of different measurements and 

test results to analyse and make decisions from. When this is multiplied by the ever 

increasing number of fields of study within medicine, the amount of data contained 

in an individual case can become overwhelming (Pribor, 1989). 

Frequently the data is also incomplete: in many situations it is unlikely that a final 

diagnosis be recorded with the case, which may or may not have all test results 

included in a central location; it seems quite common that cases are recorded with 

no conclusions or interpretations added, and where they are recorded, they very 

rarely conform to any sort of standard (Roddick, et al., 2003). 

This difficulty extends beyond the immediate construction of the data through 

measurement, to ethical and social issues regarding how the data is handled. The 

data is fragmented between different hospitals, clinics, general practitioner surgeries, 

and government departments; and often only weakly linked via non-standardised 

identifiers. When this data is accessed by individual projects, for ethical and legal 

reasons the data is always de-identified, making useful linking to other data a 

difficult, if not impossible task. This also requires a greater level of security than 

other domains, and further restricts the ability to compile useful datasets (Cios & 

Moore, 2002a). Although the data is collected widely and in great numbers, there is 

often little collaboration between the points of collection; and at times organisations 

are openly distrustful. Determining ownership of medical data is difficult and 

controversial: whereas ownership is typically tied to the right to sell an item (Cios 

& Kacprzyk, 2001; Cios & Moore, 2002a), legal and social restrictions on the 

selling of medical data confuse the issue. Given highly publicised legal action on 

such matters, and no resolution to determine ownership in general, institutions are 

often hesitant to share data at all (Cios & Moore, 2002a).  
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Medical Knowledge 

The medical domain is an expansive field of study and practice, and contains a vast 

array of knowledge. This knowledge covers all the many aspects of the human body 

and how it functions, and the many, many other organisms, effects and problems 

that can interfere with that function. This knowledge needs not only to cover how 

all these factors work and inter-relate, but also how to identify them, how to 

measure them, and how to treat them.  

The indirect nature of the data mentioned in the previous section contributes to the 

quantity of knowledge in the domain, as all medical experts are required to 

understand how to interpret the implications of measurements incidental to the 

event under consideration. Given the uncertain nature of most medical practices, 

such as interpreting a series of symptoms and test results to form a diagnosis, 

medical experts need to be able to identify all possible causes of the data that they 

have; and know what further tests to perform to eliminate each possibility, until a 

single possibility remains. Thus medical knowledge by necessity relates to all 

possible causes of all possible data values, and which tests and measurements can 

be used to discover each of them. It also commonly presents a different paradigm to 

that in any other domains. The null hypothesis approach is much more frequently 

applied in medicine than other areas, as knowledge often describes how to eliminate 

possible conclusions rather than how to identify them (Roddick, et al., 2003).  

The complexity of this knowledge impacts on medical knowledge discovery tasks: 

it necessitates the inclusion of domain experts more than many other domains, as 

while a knowledge engineer may be able to identify relevant results in a marketing 

system, or be able to make rudimentary decisions about the data and knowledge to 

be included, this often cannot be said for medical systems; the additional education 

and training required to cover the breadth and complexity of medical knowledge is 

too great. Thus any knowledge discovery project involving the medical domain 

needs a strong collaboration between the engineers and the medical experts 

(Roddick, et al., 2003). 

Incompleteness of Knowledge 

To compound the difficulties with gathering and understanding the data, the 

knowledge of exactly how the body functions is incomplete, and is constantly being 
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revised, updated and added to. While understanding has greatly improved and 

continues to improve with further study, the functions of the human body still 

provide many mysteries which require yet further study. For these reasons, medical 

study is unlikely to ever be fully complete, and will always require further work and 

study (Fox & Bennett, 1998; Steeves, 1965). 

Disagreement between experts 

A further complication in acquiring and using medical knowledge is that the most 

recent, and sometimes most relevant, knowledge is often not well defined. This 

problem leads to, and is caused by, alternative views between experts. A major 

cause of these disagreements between medical experts is that much of their 

knowledge is learned through experience rather than from a central source. This is 

due to both the nature of the training, knowledge, and data in the domain. The data 

consists of indirect measurements which are not guaranteed to be representative of a 

single event, problem or state; the data can also vary widely from patient to patient, 

for a huge number of reasons due to the astonishing complexity and variability of 

the human body. As a consequent of these difficulties, expert medical knowledge 

consists of interpretations of these variable, incidental measurements: and in many 

cases these interpretations will be ambiguous and inconclusive. Contributing to this 

is that the experts who have the most practical experience will often not have the 

most training and theoretical study (unavoidably, as there is only so much time in 

each person’s life); and so, a method of interpretation that one expert may have 

learned from published studies of others, another may have learned through first-

hand experience. This leads to inevitable discrepancies as one considers the 

differences inherent in learning through experience and learning through published 

works; the massive variability that can be present between populations of patients; 

and the natural effects of misunderstanding and errors of judgement that can lead 

conclusions to be made erroneously. As each expert will have formulated their 

opinions based on their own evidence, there is typically little indication of which, if 

any, of the options or methods are correct; and correctness usually becomes of little 

concern, provided the knowledge can be shown to be used effectively and without 

inappropriately high levels of risk. 
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2.5.1.2 Computational Studies into Medical Knowledge 

Expert Systems 

There is a rich history of computation being applied to medical knowledge. One of 

the earliest expert systems, MYCIN, was a rule-based system developed in the early 

1970s for identifying bacteria and recommending antibiotics (Horvitz, 1986). 

MYCIN was one of the key studies that established the expert systems field, as it 

was a large and complex system successfully deployed. Since then, many expert 

systems have been developed for the medical area, and continue to be developed: 

for a few examples, see (Aikins, Kunz, Shortliffe, & Fallat, 1983; Edwards, 

Compton, Malor, Srinivasan, & Lazarus, 1993; Pribor, 1989; Shortliffe, 1974; 

Singh, 2006; Snow, Fallat, Tyler, & Hsu, 1988; Stansfield, 2009). The popularity of 

expert systems in this field is unsurprising, since the volume of data to be 

considered, and the complexity of the tasks involved, make computerised systems a 

logical choice (Pribor, 1989). Additionally, the consequences of error mean that any 

additional support, which may improve the quality and consistency of service, is 

beneficial. However, the complexity of the data, the complexity of the knowledge, 

and the high accuracy required contribute to making medical expert systems 

development a difficult process: and hence a problem which attracts expert systems 

researchers. The applications are also quite varied, including diagnosis, prognosis, 

data interpretation, and education (Masić, Ridanović, & Pandza, 1995). 

Data Mining and Knowledge Discovery 

As with expert systems, there is a strong history of data mining and knowledge 

discovery in medicine. The medical domain was identified as an excellent field for 

data mining early in the history of the field (Piatetsky-Shapiro, 1990), and the two 

have since been tightly linked (Abe & Yamaguchi, 2005; Agahi, 2007; Cios & 

Kacprzyk, 2001; Cios & Moore, 2002b; Kononenko, et al., 1984; Prather, et al., 

1997; Roddick, et al., 2003; Tsumoto, 2004; Tsumoto & Tanaka, 1996). For the 

same reasons that the reproduction of domain knowledge is beneficial, the 

discovery of new domain knowledge is also useful. Unfortunately it also suffers 

from the same controversies and difficulties.  
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The issues that apply to expert system development and knowledge acquisition also 

apply to knowledge discovery, as the complexity and breadth of current medical 

knowledge mean that any attempt to discover new medical knowledge requires a 

substantial input of existing knowledge. As an example, one study which did not 

make allowances for existing knowledge found that very nearly all discovered 

knowledge was already known to the medical experts involved, prompting future 

work to involve a redevelopment so as to include an extendable knowledge base 

(Gialamas, et al., 2003; Roddick, et al., 2003). 

However, analysis of data by experts and medical researchers is often still a 

primitive process. Specific questions may be answered by specific studies, which 

has a considerable cost in time, money and other resources, and requires the 

recruitment of subjects to provide data; despite many institutions spending 

extensive resources on maintaining vast databases of patient information. 

Unfortunately this data is often only accessed for specific projects, and following 

the enlistment of a computer scientist who might have their own development goals. 

For many studies, even with specific software development, data analysis is 

performed manually with relatively primitive tools (Agahi, 2007). 

2.5.2 The Lung Function Domain 

The study and medical treatment of the respiratory system is a typically complex 

medical field. The purpose of the lungs is to facilitate the assimilation and exchange 

of gases between the atmosphere and the haemoglobin in the blood: specifically, to 

take in air to oxygenate blood, and to remove carbon dioxide from the blood and 

expel it (Hughes & Empey, 1981). The lungs themselves are made up of many 

components, including the airways, alveoli, pulmonary blood vessels, respiratory 

muscles, and other respiratory controls, all of which contribute to this process 

(Ruppel, 1994).  

Lung function is an important field of study and practice, dealing with one of the 

most critical components of the human body, without which a human cannot 

continue to live. The general functioning of the lungs is well understood, but as with 

most medical fields there is still much that is unknown and requires further study: 

understanding exactly how different aspects of the lung work under different 

circumstances and for different people; determining how diseases affect the lungs, 
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and how best to prevent and treat them; and the problems of new and adaptable 

diseases provide an endless course of study and development. Being of such vital 

importance to life, study into the lungs and how best to identify, prevent, and treat 

problems is of a high priority, with many medical practitioners and researchers 

employed as specialists in lung function (Cotes & Leathart, 1993). 

2.5.2.1 Lung Function Experts 

There are many levels and distinct forms of expertise in lung function. While there 

is certainly overlap between the two, the biggest divide is between respiratory 

clinicians and technicians. Respiratory clinicians primarily practice lung function 

testing and interpretation in the context of a clinic or hospital, for the purpose of 

treating individual patients. Technicians primarily perform lung function testing and 

interpretation in the context of the laboratory, with an end point of classifying a 

patient’s lung function test results rather than determining their treatment.  

In addition to this divide of application of knowledge, there are divides among lung 

function experts between levels of knowledge. While it is natural in any field that 

some people will have more training and experience than others, it is in an 

established aspect of the medical domain that the many occupations which require 

medical knowledge each require many types of expertise, to differing levels of 

complexity. For example, a doctor working in an emergency room, or a general 

practitioner (GP), will need at least a basic level of understanding of almost all 

medical fields as they may encounter and be required to diagnose and treat any 

combination of medical problems. Similarly, a nurse will require some 

understanding of many different medical fields. Depending on the location, the 

specifics of the person’s training and previous employment, the professionals in 

each of these roles may have vastly different levels of experience and knowledge of 

lung function.  

Conflicting Opinions 

As with most medical domains, it is an issue in lung function that many of the 

experts may have different opinions and define conflicting rules, depending on their 

own specialisations, teaching and experiences (a problem clearly shown in the 

results later presented in this study). These disagreements can be as simple as a 
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respiratory specialist having a more detailed understanding of some aspect of lung 

function than a GP; or two respiratory clinicians having encountered different 

borderline cases and forming different opinions on how to derive their results. 

The effects of this are that any decisions or discovered data based on a single 

expert’s opinions may not universally be considered correct: and so a widely 

applicable system, for either knowledge acquisition or knowledge discovery, needs 

to be able to adapt with conflicts and update its knowledge as it is in use.  

2.5.2.2 Lung Function Data 

Although the lungs perform very complex functions within the human body, they 

display few measurable outward signs of these functions (Laszlo, 1994). Even those 

indicators which are apparent are difficult to measure effectively, due to the 

execution of the test interfering with the normal process of breathing (Hughes & 

Empey, 1981; Ruppel, 1994). There are a wide range of tests used to gather data on 

functioning lungs, some more commonly used than others, some which are reliable 

only in certain situations, and most requiring specialist equipment. 

The test results themselves are almost entirely comprised of numeric attributes, 

representing various measurements of the lungs and their functioning. Some other 

factors are also important for consideration, such as smoking history, sex, ethnicity; 

anecdotal evidence such as a medical practitioner’s appraisal by sight and sound; 

and medical imaging techniques, such as the high resolution computed tomography 

(HRCT) tests used in the previously described ProcessNet study (Misra, et al., 

2011); but all explicit lung function tests are measured as real numbers or ratios.  

Lung Function Tests 

No one test can provide a complete overview of all aspects of lung function 

(Hughes & Empey, 1981; A. Miller, 1987; Ruppel, 1994). Although each test 

measures different effects, using different means, all are essentially based on the 

same functions: this means that the information provided by these tests often 

overlap (Ruppel, 1994). This further means that combining the results of many of 

these tests can produce much more detailed information about the patient’s lungs’ 

function than would be available by a single test. Due to the uncertainty within any 

medical domain, caused by the incomplete understanding of medicine and the 
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complexities and wide degree of variation of the human body (Pribor, 1989; 

Tsumoto, 1998), any verification that can be provided from complimentary results 

from multiple tests will be beneficial in making conclusions with that data.  

The lungs are one of the most difficult organs to measure without interfering with 

their function, as much of their function is involuntary: concentration is required to 

control our breathing, and it is usually such an unconscious action that our breathing 

patterns change significantly once we become aware of it and try to breathe 

normally1. The way we breathe is also affected by our emotional state, which can be 

influenced by the tests being performed. Other factors that can influence the 

measurements are the time of day, the temperature, and the state of the equipment 

used to take the measurements (M. Miller, et al., 2005). As such the measurements 

that are taken by these tests usually do not represent the normal function of the 

lungs but rather an approximation: observations on the normal breathing pattern of a 

patient, such as whether they are wheezing, are often reduced to being recorded 

anecdotally. 

The tests themselves are generally divided into categories, based on which aspect of 

lung function is being measured and the inherent difficulty and cost in performing 

the tests. When referred to a specialist for lung function testing, not all patients will 

have all tests carried out: the more complex tests are only performed if the medical 

practitioner deems the basic test inconclusive and warranting further study 

(Pellegrino, et al., 2005). 

Dynamic Spirometry 

The most common series of tests are spirometry tests, as they are relatively 

inexpensive to perform and can be used as an indicator of some very common 

respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and 

asthma (Ferguson, Enright, Buist, & Higgins, 2000). These concern the volume 

change during specific breathing maneuvers (A. Miller, 1987), or in other words, 

the extent of the lungs’ ability to move gas. Spirometry tests are undertaken with 

specialist equipment called a spirometer. To perform a test, the patient inhales as 

much as they can, then immediately exhales as fast as they can into a mouthpiece. 

                                                 
1 As the reader may well attest 
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This procedure is repeated multiple times to get the best results, and for some key 

results, the highest measurements are taken even if they may be from different 

exhalations (M. Miller, et al., 2005; NACA, 2005).  

Dynamic spirometry tests are measured relative to time, and provide a good 

example of how multiple measurements can be used together for more useful 

analysis. The measurement of the Forced Expiratory Volume over one second 

(FEV1, or, the amount of air expelled in the first second of exhalation), while 

moderately useful on its own, is much more useful in conjunction with the 

measurement of Forced Vital Capacity (FVC, the total volume of air that can be 

exhaled from one breath). The FEV1/FVC ratio, with consideration for certain other 

factors, is one of the most commonly used features in making key conclusions about 

a patient’s lung function (Ruppel, 1994). Dynamic spirometry measurements are 

numeric values, recorded in litres or litres per second. In all there may be five or six 

different common spirometry measurements recorded from a test, with perhaps 

twice that many recorded in special circumstances (this is not including the further 

measurements derived by combining multiple other measurements, nor the repeat 

measurements made to ensure reliable results, nor the repeat measurements made 

after application of bronchodilator drugs).  

Bronchodilator Response 

A bronchodilator is anything which dilates the bronchi and bronchioles, the airways 

into the lungs. A bronchodilator drug is often administered during lung function 

testing to help determine where a patient’s problem lies: a first run of spirometry 

test are performed, then a bronchodilator administered. Typically there is a short 

break to allow the drug time to take effect, then a second run of spirometry tests are 

performed (M. Miller, et al., 2005), although it has been recommended that for 

more reliable results the bronchodilators should be administered over time 

(Pellegrino, et al., 2005). Each measurement is then labelled pre-bronchodilator 

(pre-BD) or post-bronchodilator (post-BD). Typically, most measurements are 

retaken after a bronchodilator has been administered, effectively doubling the 

number of measurements. However the administering of bronchodilators is 

dependent on the purpose of the tests and the suspicions of the medical expert (M. 

Miller, et al., 2005). 



 
74 

Static Spirometry 

The second category of tests is static spirometry, or lung volumes tests, which 

attempt to measure the full capacity of the lungs. They are made difficult because 

the lungs will always hold some gas that cannot be expelled, but this is taken into 

account with the procedures. Volume measurements are useful in identifying, 

clarifying, or eliminating many dysfunctions or problems, both new and previously 

identified by other tests (Laszlo, 1994; A. Miller, 1987). Lung volumes are numeric, 

usually recorded in litres. Approximately seven or eight different measurements of 

volume can be recorded in each session. 

Diffusing Capacity 

The final types of tests which make up the dataset are the diffusing capacity tests, 

which measure the ease with which gas is able to pass across the alveolar 

pulmonary cup membrane, thereby facilitating gas transfer. This category covers a 

very different aspect of the lungs to the other categories, and so can be used to 

identify specialised problem types. The measurements can also be used in 

combination with other results to identify complex problems, such as emphysema 

(Ruppel, 1994). The most common diffusing capacity test is the Diffusing Capacity 

of the Lung for Carbon Monoxide (DLCO). It is measured by comparing the partial 

pressure difference between the inspired gas and the expired gas, the significant 

contributing factor to which is how effectively the lung can diffuse the carbon 

monoxide. This test has some ambiguity: as the carbon monoxide transfer is 

dependent on how much blood is present in the lung capillaries, anaemia can cause 

a reduction in DLCO not directly related to the lungs. Because of this, many 

laboratories adjust the DLCO based on the haemoglobin concentration found from a 

blood test, resulting in corrected and uncorrected DLCO values (Crapo, Gardner, & 

Clausen, 1987). There are typically only three or four different measurements made 

in this category of tests. 

Lung function tests generally do not provide enough information in themselves for a 

definitive diagnosis to be made; they will however provide insight into the nature of 

the patient’s lungs and how they are functioning. In order to complete a diagnosis a 

medical expert will generally require much more detail: an examination of patient 

history, a physical examination, chest radiography, blood tests, sputum 
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examinations, and other tests, and a discussion with the patient themselves (Hughes 

& Empey, 1981). 

Interpreting the Results 

Interpreting these results is a complicated process that requires training and 

experience. While many medical practitioners will be able to identify and interpret 

basic conclusions using the simplest measurements, it is generally left to respiratory 

specialists to analyse and interpret the majority of lung function data The numbers 

of patients referred to lung function laboratories for assessment is relatively small, 

but the data produced is complex and only fully understood by a limited number of 

specialist clinicians.  

Reference Equations 

Lung function data can vary significantly depending on the ethnicity and living 

conditions of the patients being tested (Collen, Greenburg, Holley, King, & Hnatiuk, 

2008; Subbarao, Lebecque, Corey, & Coates, 2004). It is therefore very important 

in analysing lung function data to consider these factors, and for this reason, as well 

as for simple practical reasons, studies are typically conducted with specific 

populations of subjects. It is also important as the results of one study cannot 

necessarily be generalised to any population of people. 

Much of the complication in interpreting the data comes from this variability in 

results between people. As with any aspect of the human body, there can be large 

variability in the size and shape of the lungs and airways, and their function, 

depending on the subject; but most of the tests take absolute measures of capacity, 

speed, and function. The effect of this is that what may be a normal result for one 

person may be a critically bad result for another. This can be resolved by recording 

with the test measurements data such as age, height, weight, and sex, and taking 

these into consideration when interpreting the absolute measures of the other tests. 

Still, this is a difficult task, with potentially severe consequences for 

misinterpretation, so reference equations are used to determine expected or 

predicted values for each of the tests (Collen, et al., 2008). 

The reference equations themselves are intermittently derived from large-scale 

studies into healthy populations. They can be derived from any study involving a 
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large population, such that extrapolating the trends in the population is reasonable. 

The equations are derived by sampling a large number of healthy patients through 

physical examinations, and using regression to define an equation incorporating 

factors such as age and height for each test in various demographic groups: 

typically sex and age but sometimes others (Crapo & Morris, 1981; H. Goldman & 

Becklake, 1959; Hankinson, Odencrantz, & Fedan, 1999; Subbarao, et al., 2004).  

There are many reference equations to select from. However, as there are few large-

scale studies performed, many are derived from specific populations. While they 

might make good predictors for those people, they are not necessarily reliable 

predictors for other populations. It is therefore important to choose equations that 

are based on a population as close as possible to the population under consideration 

(Collen, et al., 2008; M. Miller, et al., 2005; Subbarao, et al., 2004). Some of the 

more commonly used equations include those from the third National Health and 

Nutrition Examination Survey (NHANES III) study, which was a 6 year study 

carried out from 1988 to 1994 from a random sample of the U.S. population, 

collecting spirometry results from over 20,000 subjects (Hankinson, et al., 1999). 

Other commonly used equations come from studies by Crapo and Morris (Crapo & 

Morris, 1981; Crapo, Morris, & Gardner, 1981), Knudson (Knudson, Slatin, 

Lebowitz, & Burrows, 1976), and Quanjer (Quanjer, et al., 1993). 

Limits of Normal 

While there are equations that define the expected values for a patient’s test results, 

using these for interpretation has become less commonly used, in favour of the 

more accurate approach of defining the upper and lower limits of normal for a 

patient. This method derives from the reference equations described above, by 

statistically calculating equations that determine what value should be considered 

above normal, and what value should be considered below normal. The limits of 

normal are commonly based on calculating the upper and lower 5th percentile to 

derive the equations, providing a more accurate result than comparing a flat 

percentage of the predicted value (Pellegrino, et al., 2005). This approach is 

recommended by many leading respiratory bodies such as the American Thoracic 

Society (ATS) and European Respiratory Society (ERS) (Pellegrino, et al., 2005). 
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Difficulties with Interpretation 

There are many factors influencing the difficulty involved in the interpretation of 

lung function tests, not the least being disagreements between experts over the best 

practices for doing so. Interpretation is also highly dependent on the geographic 

location and attributes of the population being tested (Collen, et al., 2008; 

Pellegrino, et al., 2005; Subbarao, et al., 2004). 

Disagreement between experts 

As with most medical fields, there can be significant disagreement between experts 

within the lung function domain over how to interpret results and what actions 

should be taken. A common source of disagreement is the differing nature of the 

professions that require lung function expertise. At a general level, the distinctions 

between clinicians and technicians often lead to disagreement. A common source is 

that they each have different goals when applying their expertise: a clinician’s goal 

is to interpret the test results in an attempt to diagnose a patient’s problem, in a 

limited timeframe, which necessitates a more practical perspective on interpreting 

the results. A technician’s goal is to further develop the knowledge of how to 

perform and interpret the tests. Both can lend themselves to warranting greater 

accuracy or specificity, depending on the situation. A clinician will always want to 

be as certain as possible of their diagnosis to give their patient the best chance of 

recovery, without any risk of causing harm by misdiagnosis or failing to account for 

other conditions; but this often needs to be balanced with the expediency of treating 

a patient quickly. A technician however would be expected to be more concerned 

with making certain the results are as reliable as possible, with less pressure being 

applied on the timeliness of results. Additionally, clinicians generally have a much 

broader medical education. Their focus is on the diagnosis and treatment of a 

patient, a task in which lung function tests often have no relevance. Much of their 

understanding of finer details of lung function may therefore be learned through 

experience with patients, whereas a technician can, and is expected, to devote more 

time to published respiratory studies. 

It is also unfortunately true that studies are not infallible and are rarely completely 

accurate: on occasions multiple studies have been published on the same topic, 

reaching different results. For example, there has been much discussion on how to 
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determine reversibility of airflow obstruction (Pellegrino, et al., 2005), with 

different studies reporting different results (Anthonisen & Wright, 1986; Eliasson & 

Degraff Jr, 1985). The GOLD controversy, described in more detail below, is 

another example. While these conflicts may be caused by mistakes in one or both 

studies, they are often caused by studies simply failing to take into account all the 

factors that may affect the results, in varying circumstances; which is unsurprising 

considering the vast expanse of data and possibility to be considered.  

Human error 

Human error is also an unfortunate factor that must be considered, particularly in 

clinical practice. Clinical experts are relied upon to remember everything they have 

learned, and to take into account every factor that might be important in interpreting 

the patient’s test results, under constant pressure to return a diagnosis that they are 

confident in. Compounding this, they must commonly perform this for many 

completely different patients in a single day. With this expectation, it is inevitable 

that eventually even the most well-learned and precise clinician will miss something 

and make a misclassification or a misdiagnosis.  

2.5.2.3 Standardisation of Knowledge 

With the difficulties that can arise over how to best interpret lung function test 

results, it is unsurprising that attempts have been made to consolidate the 

experiences and knowledge of different professionals and develop standard sources 

of information for areas of lung function. These attempts are always long 

undertakings as they seek to, as much as is possible, complete the knowledge of a 

particular area; and they meet with differing levels of success. This section provides 

one example of an attempt at standardisation. 

GOLD 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) is an 

international organisation whose primary goal is to develop and maintain a global 

standard for diagnosing, managing and preventing Chronic Obstructive Pulmonary 

Disease (COPD) (GOLD, 2008). The first version of this report was published in 

2001, having been written by an expert panel including ―…a distinguished group of 

health professionals from the fields of respiratory medicine, epidemiology, 
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socioeconomics, public health, and health education‖ (GOLD, 2008), and the report 

has been updated many times since. Among many other achievements, this report 

describes a standardised approach to identifying and confirming a COPD diagnosis.  

However, even after such a significant study there were disagreements with the 

published results as late as 2009. The GOLD report recommended the use of an 

FEV1 value less than 80% of the predicted value, and an FEV1 to FVC ratio of less 

than 0.7 to diagnose COPD. The lack of the lower limits of normal in this test 

caused many experts to question the accuracy of the report, saying that ―GOLD has 

arbitrarily defined COPD on clinical and physiological criteria that have been 

argued to be not based on scientific evidence‖ (Kerstjens, 2004), and pointing out 

that this approach is not supported by the ATS or ERS. Studies were cited which 

showed that age affected lung volumes, and that consequently the use of predicted 

values for diagnosis would over-predict the disease in older people and under-

predict it in younger people (Aggarwal, Gupta, Behera, & Jindal, 2006; Culver, 

2006; Hardie, et al., 2002). Further studies were carried out to support this, and the 

results openly published in a fairly inflammatory style (Quanjer, 2009). In 2009 the 

GOLD report was amended to state ―…because the process of aging does affect 

lung volumes the use of a fixed ratio may result in over diagnosis of COPD in the 

elderly, especially of mild disease. Using the lower limit of normal (LLN) values 

for FEV1/FVC, that are based on the normal distribution and classify the bottom 5% 

of the healthy population as abnormal, is one way to minimize the potential 

misclassification‖, and that ―…many experts recommend use of the lower limit of 

normal for each population‖ (GOLD, 2008). 

This controversy highlights the potential for disagreement between experts in the 

domain: even creating a standardised approach to identifying a single diagnosis 

from minimal attributes can lead to disagreements which can require some time to 

resolve. Attempting to find a balance between ease of use, applicability to a wide 

population, and accuracy of results can be a difficult task, even without considering 

any errors or statistical anomalies. 

2.5.2.4 Lung Function Computational Studies 

As with most major medical fields, lung function has been the subject for expert 

system development and knowledge discovery. The most well known of these is the 
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PUFF expert system for interpreting lung function data, but this has been followed 

by other studies and developments. 

Expert Systems 

While PUFF is the most well known expert system for lung function, at least in 

research literature, there have been more recent systems developed. One example is 

Pulmonary Consult, a commercial product from the Medical Graphics Corporation 

(MedGraphics, 2011). As it is a commercial product little detail is available on its 

development and content; however it is known to have been built upon the 

knowledge base from PUFF and so largely covers the same area (Thomson, 2009).  

PUFF 

PUFF was developed in the early 1980s as a test of the Essential MYCIN 

(EMYCIN) framework, which was a generalisation of the MYCIN expert system 

such that it could be applied to different domains. PUFF was deployed in the Pacific 

Medical Centre in San Francisco to assist pulmonary physiologists in interpreting 

the results of patient lung function tests, by taking in spirometry, lung volume, and 

diffusing capacity test results and returning interpretations based on the rules in its 

knowledge base.  

The reasons for the expert system being developed in the lung function field were 

many: the interpretation of lung function tests is a daily problem, and so fills a need; 

the interpretation task was complex enough to be challenging; the lung function 

data was mostly self-contained, not requiring large amounts of data apart from that 

gathered in the lung function tests; there was available data; expert interpretations 

tended to be phrased similarly; and there was significant tedious work involved for 

the experts in generating reports.  

It used classification rules, an inference engine, a knowledge acquisition module, 

and an explanation module. The system would function by asking the user, a lung 

function expert, a series of questions about the current case, thereby building the 

data about the current case. Once received, it would infer from that data and the 

rules in its knowledge base interpretations, which it would respond with. Over 4 

years, the system interpreted over 4000 cases, providing interpretations for 

approximately 10 patients each day in use. Figure 2-8: shows a sample of the output 
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from PUFF’s interpretation, following a standard lung function report format where 

possible. 

 

Figure 2-8: PUFF sample report output (Aikins, et al., 1983) 

It was concluded that PUFF was a ―practical assistant to the pulmonary physiologist‖ 

(Aikins, et al., 1983), as it had the support of hospital staff and administration and 

was in daily use. However, areas for improvement were noted. The system lacked 

the ability to identify prototypical patterns; there was difficulty involved in adding 

new knowledge to the system, as the addition of a new rule may affect the 

behaviour of existing rules in unexpected ways; there were problems with the order 

that data was requested; and  it lacked the ability to adequately explain the results 

that were reached (Aikins, et al., 1983).  
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Pulmonary Consult 

Pulmonary Consult is another expert system for assisting in the interpretation of 

lung function test results. It is a commercial product from the Medical Graphics 

Corporation (MedGraphics, 2011), and as such little detail is available on its 

development and content; however it is known to have been built upon the 

knowledge base from PUFF and so largely covers the same area (Thomson, 2009). 

It has been available since the 1980s and is used in many clinical settings. 

Knowledge Discovery 

There have been surprisingly few applications of data mining and knowledge 

discovery to the field of lung function. Numerous studies have been performed in 

highly specialised areas of lung function, such as analysing a thoracic lung cancer 

database (J. Goldman, Chu, Parker, & Goldman, 2008), an association study 

between gene variations and bronchopulmonary dysplasia attempting to find the 

causes of that one lung disease (Rova, et al., 2004), and another data mining study 

into a dataset of a specific lung abnormality (solitary pulmonary nodules) (Kusiak, 

Kern, Kernstine, & Tseng, 2002). Other studies have also been performed on data 

related to lung function, such as a case based reasoning approach to automatically 

building a classifier for molecular biology, which also tested over a lung microarray 

dataset (Arshadi & Jurisica, 2005). However, there has been very little work into 

broader attempts to analyse lung function test data, and almost no exploratory data 

mining: all data mining studies in lung function seem to be explanatory in nature, 

trying to find detailed reasons for specific events or phenomenon.  

Exposed MCRDR 

An approach which combined MCRDR knowledge acquisition, data mining and 

expert-driven analysis was developed in 2006 (Ling, 2006). The method, given the 

name Exposed Multiple Classification Ripple-Down Rules (EMCRDR), was based 

on the premise that the MCRDR methodology would allow the acquisition of a 

strong knowledge base. From that base, experimental hypotheses could be added as 

new ―knowledge‖, which would then be validated (or not) through the MCRDR 

validation process: allowing an exploratory approach to knowledge discovery. The 

validation process would use a dataset to provide evidence for the hypothetical 

knowledge, point out the inconsistencies, and assist in developing the hypothesis 
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until it was compatible with existing knowledge and data. It also suggested that 

extra validation mechanisms might be added to allow the expert to further verify 

that their hypotheses were supported by the data, and a rudimentary data mining 

feature was added that could either assist in defining rule conditions to match a 

group of cases, or could identify the cases that matched conditions defined by the 

expert. 

Modifications to the MCRDR process 

The study contained a few small but significant modifications to the basic MCRDR 

approach to facilitate the knowledge discovery application. The most significant of 

these modifications was to allow the expert free access to view and modify the 

knowledge base, to the extent of being able to edit or delete existing rules. This is in 

direct contrast to the traditionally accepted wisdom in RDR development that the 

knowledge base only ever be added to, never edited or deleted from (Compton & 

Edwards, 1994). Exception rules and stopping rules provide all the functionality of 

editing and removing without invalidating the context of any existing knowledge 

(Kang, 1996).  

The second significant departure from a normal MCRDR implementation was the 

addition of a dataset, which caused the cornerstone case model to be much different: 

rather than the cornerstone cases being any previously seen case which matched a 

rule when the rule was made, the EMCRDR system maintained a list of all 

classifications for all cases in the dataset. When the expert was defining a rule, all 

cases matching the rule would be displayed, and this was used to provide validation 

for the rule. 

Impact of EMCRDR modifications 

The EMCRDR study tested a small dataset of approximately 400 cases, with one 

expert, in the domain of lung function. While it found evidence to suggest that the 

EMCRDR approach worked, the study was far from conclusive (Ling, 2006). It also 

made no conclusions as to how well the method worked. It did however highlight 

many areas for potential improvement; in particular, the study demonstrated the 

effects of the modifications to the base MCRDR approach and how they might be 

better adapted and applied.  
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It was found that while allowing the expert to view the knowledge base provided a 

relatively effortless way of expressing the existing knowledge, it caused a shift of 

focus from a case-based expression of knowledge to a rule-based one; and 

unfortunately this shift invalidates many of the advantages of the MCRDR approach. 

It requires the expert to understand precisely how the knowledge base works in 

order to add rules correctly, which is an unrealistic expectation. Given the inevitable 

restrictions on expert time mentioned previously, it is in most instances impractical, 

if not impossible, to take the time to teach the expert exactly how the rules they 

define inter-relate. Depending on how the knowledge base was built, understanding 

exactly how the rules combine and what applies in any given instance can be a very 

difficult task regardless of how familiar the person is with the MCRDR method. 

Supporting this, the study reported that the expert struggled with determining 

exactly what rules should be applied where to achieve the desired results (Ling, 

2006). This was attributed to the contrast between the traditional MCRDR 

implementation style which hides the structure of the knowledge base, and the more 

explicit style used in places to show the structure of the knowledge base. The 

combination of these conflicting styles and the inherent problems with the expert 

understanding how the knowledge base works resulted in confusion from the expert 

on how to add rules, which type of rule to use, and how to solve errors in the 

knowledge base. 

As a direct consequence of this confusion, the ability to edit and delete rules was 

very rarely utilised, and mostly to little effect. It was noted that the expert liked 

having the ability to edit rules and used it commonly to correct small mistakes; it is 

suggested however that had the expert had a better understanding of how to define 

rules to begin with, less errors would have required correction. Rule deletions were 

very rarely used, and seemed to offer no real benefit over the normal stopping rules, 

and in fact may have hindered progress as at least stopping rules could have 

provided an indication of the problems the expert was encountering. 

A related issue, not discussed in the study but possibly the underlying cause of 

much of the confusion, is that when the knowledge base is viewed as a single entity 

it is missing the integral components of context and evidence. Although a parent 

rule gives an outline of the context for its exception rules, without the context of the 

cases themselves there can be significant missing information. It has been noted by 
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many that the knowledge added to a knowledge base, in any form, is not concrete: it 

may (and is even likely to) change over time, and it may change when presented 

with a different context of application (Compton & Jansen, 1989). This means that 

when a rule is considered outside of the context it was made in, and without a 

framework of data showing how it is applied, there is a stronger chance that the 

expert will misunderstand the intention and application of the rule. Similarly, while 

the method in the study provided a list of all the cases that the new version of a rule 

covered, it gave no indication of which cases were no longer covered by the rule. 

As such, a case which the expert had previously decided was complete, and hence 

would be very unlikely to look at again, could now have different results. This again 

reinforced the rule-centred mode of thinking which was determined to be 

detrimental to the knowledge acquisition and discovery process. 

A further problem raised in the study is that, because the expert is no longer 

considering individual cases until they are completed, it would be expected that the 

ability to derive tacit knowledge is reduced, or even removed completely (Ling, 

2006). Traditionally an expert will consider one case at a time and continue working 

with that case until they are satisfied that it is completely correctly classified. 

However under a rule-focused approach, the expert will define rules for their most 

commonly used knowledge first, in the order that the knowledge occurs to them, 

without completing their current case. Unless they revert to a case-focused approach 

later, they will likely miss some of the rarer conclusions as the expert is unlikely to 

recall them from memory without prompting. Tacit knowledge – that is, knowledge 

which is difficult to define and express – will likely be missed completely as the 

expert is not given a situation requiring such knowledge.  

This also has serious implications for the validation process. If there are no cases 

completely reviewed then indications of cornerstone case conflicts will be less 

likely and less meaningful. This problem was addressed in the EMCRDR study by 

the removal of traditional cornerstone case validation, and instead while a rule was 

being created, showing all the cases in the dataset that match the rule. The expert 

would then look through each of those cases to determine if the rule is correct. This 

is clearly an impractical solution for any sizable dataset, requiring the expert to look 

through and classify potentially hundreds, even thousands, of cases to check that 

each rule is correct. Also, for this validation strategy to be effective at all it requires 
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that the dataset be representative of the frequency and range of cases in the domain 

– and the typical way to ensure an unclassified dataset has these attributes is to use 

as large a dataset as possible. While a size balance might well be found between the 

two, it is a fundamental issue that any method which does not take advantage of all 

the data available will not be as effective as it could be. Also, the lack of 

cornerstone validation meant that the expert was required to examine and evaluate 

every case in the dataset which matched their new rule, in order to find those that 

invalidated the rule or provided additional information, if any existed. 

However, the approach was found to achieve the desired goal, with the expert 

discovering new knowledge and being apparently satisfied with the method and the 

result. It did however highlight many areas for potential improvement, particularly 

in resolving the issues with rule-based thinking and errors in knowledge acquisition, 

misunderstanding the knowledge base, and the potential for providing data mining 

assistance to the user. 

2.6 Summary 

The literature described here shows that knowledge discovery is a complex, multi-

stage process (Fayyad, et al., 1996a; Kurgan & Musilek, 2006). Of these stages, the 

data analysis or data mining stage has been heavily researched, with many methods 

available for finding patterns in data (Brachman & Anand, 1996; Witten & Frank, 

2005). However, these methods encounter difficulty in analysing complex data, 

particularly when there is a large or complex existing body of knowledge about the 

meaning of that data (Liu, et al., 1997; Piatetsky-Shapiro, et al., 1994; Sinha & 

Zhao, 2008). Under various knowledge discovery models, this problem is addressed 

by the identification and incorporation of knowledge in the initial stages (Fayyad, et 

al., 1996a; Kurgan & Musilek, 2006): however, it is an identified problem that there 

few methods have been developed to achieve this (Sinha & Zhao, 2008), 

particularly for domains or applications of a realistic complexity (Adejuwon & 

Mosavi, 2010; C. Zhang, et al., 2009). The purpose of this study is therefore to 

develop and test a new method that can effectively acquire and incorporate existing 

knowledge into a knowledge discovery process, for a complex domain. As the 

literature has shown, the lung function domain is suitably complex and can benefit 

from such data analysis (Cios & Moore, 2002a; Roddick, et al., 2003). 
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However, in developing this method a number of issues are raised. The first 

component is to acquire the knowledge to be incorporated: but as this chapter has 

shown, there are many methods available for acquiring knowledge from data. Of 

those methods that have been tested in assisting knowledge discovery, a commonly 

identified problem is that they require an impractically large knowledge acquisition 

or knowledge engineering commitment to find effective results (Kotsifakos, et al., 

2008; Liu, et al., 1997; C. Zhang, et al., 2009). Another important concern is that 

the knowledge acquisition process must be able to be updated incrementally, as the 

knowledge required will change over time (Liu, et al., 1997; Piatetsky-Shapiro, et 

al., 1994). MCRDR is an incremental knowledge acquisition method that has been 

shown to help resolve problems with knowledge acquisition and engineering 

requirements (Kang, 1996; Kang, et al., 1995), and so this seems a logical choice to 

build the required knowledge base. Chapter 3 presents the results of acquiring a 

knowledge base from lung function experts, including the impact of using a 

MCRDR process modified to take advantage of the availability of a dataset. 

The next question raised in this study is how the acquired knowledge base can be 

applied to a knowledge discovery task. A method was developed to achieve this 

based on the knowledge acquisition framework; this method and its efficacy at 

discovering new lung function knowledge is tested in Chapter 4 of this thesis. 

The final issue raised is that conflicts in knowledge can occur in the lung function 

field, with different experts reaching different conclusions and having different 

understandings of the data (Pellegrino, et al., 2005; Quanjer, 2009). To help resolve 

this issue in the domain, and to ensure that the acquired knowledge was as accurate 

as possible, a method was needed to compare and assist in the consolidation of the 

knowledge of multiple experts. Existing methods for comparing or integrating 

MCRDR knowledge bases lack a focus on improving the knowledge of the experts 

involved, and do not take advantage of available data (Beydoun, et al., 2005; 

Richards, 2009; Vazey & Richards, 2006). Therefore a method was developed to 

quantify the differences between acquired knowledge bases, and provide evidence 

to assist in resolving conflicts. In addition to being tested with the knowledge bases 

acquired from the experts, this method was tested by comparing acquired student 

knowledge with the combined expert knowledge, as a potential teaching and 
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assessment tool. The method used and the results of both these tests are presented in 

Chapter 5.  
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Chapter 3 An Expert System for Lung 

Function Interpretation 

3.1 Introduction 

When attempting to discover new knowledge by analysis of data, the chance and 

magnitude of success can be greatly improved by the establishment of a layer of 

initial knowledge, adding meaning to the data and guidance to the analysis (Fayyad, 

et al., 1996b). This is particularly true of complex data with large quantities of 

existing knowledge. This knowledge can vary greatly in complexity: ranging from 

an understanding of the relevance of attributes, and assigning them weights based 

on significance; to having the ability to identify patterns and groupings within the 

data, and derive some new information implied by that pattern. Identifying and 

using this knowledge effectively can dramatically increase the efficacy of the 

analysis and discovery, by both guiding how to analyse the data and in helping to 

determine the usefulness of the result (Fayyad, et al., 1996b; Pohle, 2003).  

However there are further benefits to the acquisition of such knowledge. Once 

acquired in a computer-useable form, that knowledge can be applied as an expert 

system, capable of automatically providing an expert analysis of similar data. This 

can be desirable for a number of reasons, for example: if expertise is scarce, training 

another expert is usually helpful; expert systems can be duplicated and so expertise 

can be spread; computers can in many areas be more reliable than human experts, 

improving the accuracy of the task being performed; common tasks can be 

automated allowing the human experts to work on higher-level challenges; and the 

knowledge can be put to use in building more advanced systems. 

In the domain considered in this study, many of these problems are evident. While a 

low level of expertise is common, high level expertise is quite scarce. Reliability 

and consistency can be a problem. Common tasks do take up a significant portion of 

the experts’ time. A further challenge is that because low-level knowledge is 

widespread but high-level knowledge is rare, and much of their expertise is learned 

tacitly, experts’ opinions can differ greatly concerning how to interpret the data and 
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what actions should be taken in certain situations.  Each of these factors makes an 

effective expert system a desirable tool. 

 

Figure 3-1: The methods presented in this thesis; the highlighted section shows the components 

presented in Chapter 3 

This chapter presents the results of developing a knowledge base and expert system 

for the interpretation of lung function data, using Multiple Classification Ripple 

Down Rules (MCRDR). With the availability of a large dataset the opportunity was 

taken to implement additional data-based validation, to improve the efficacy of the 

knowledge acquisition. Work was also undertaken to acquire and consolidate the 

knowledge of multiple experts, using methods for collaborative development and 

the integration of multiple knowledge bases. The effects of these modifications on 

the knowledge acquisition process and their potential for future development are 

discussed. The developed knowledge base provides the capability of an expert 

system, and is integral to the methods presented in Chapter 4 and Chapter 5: by 
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assisting in data analysis for knowledge discovery, and by providing a standard of 

knowledge to compare against student input. Figure 3-1 shows these components in 

the context of the larger study. 

3.2 Methodology 

This section describes the modified MCRDR method used to develop a knowledge 

base for decision support in the interpretation of lung function data, and for use in 

assisting knowledge discovery. This method was implemented as an online system 

for examining the data and entering knowledge. In acquiring this knowledge, 

particular datasets and human experts were available which influenced the nature of 

the knowledge acquisition process. These resources will be described first, followed 

by an explanation of the impact of those resources on the knowledge acquisition 

design.  

3.2.1 Lung Function Resources 

The availability of both data and experts had a large influence on the direction of 

this study. The study was prompted in part by the availability of large numbers of 

archived lung function reports, a resource with the potential for expanding current 

knowledge. Whilst a lack of expert availability also shaped the course of the study 

to some extent, this resource deficiency highlights the potential benefits of research 

in this area. 

3.2.1.1 Data 

The data that was used to acquire the domain knowledge consisted of an 

amalgamation of lung function case reports from three sources: 1568 reports from 

Austin Health in Melbourne, Australia2; 1390 reports from the 2004 round of the 

Tasmanian Longitudinal Health Study (TAHS) 3 ; and 5 reports from the Royal 

Hobart Hospital in Hobart, Australia4. Each report was considered to be a single 

case in the dataset, with the source added as a further attribute. In the 

implementation of the knowledge acquisition system, each of these sources were 

                                                 
2 http://www.austin.org.au/ 
3 http://www.epi.unimelb.edu.au/research/major/tahs 
4 http://www.dhhs.tas.gov.au/hospital/royal-hobart-hospital 
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presented as distinct datasets, but also with the option to view them all as a single 

dataset; as it is common for experts to be interested only in a single source of data 

for knowledge discovery purposes. The data was considered similar enough that 

they would be unlikely to want to define a rule for only one dataset, but the 

inclusion of the source as an attribute allowed this if necessary. 

All cases had any identifying data removed for privacy reasons and were identified 

within the online system by an ID number and Source pair; for example, ―case 38 

from the TAHS study‖, or ―38 TAHS‖. The Source was used as an identifier to 

allow for the possibility that cases may be linked back to the archived stores, which 

may have additional information for future analysis.  

Importantly, all cases in the dataset were entirely unclassified – they had no 

information such as eventual interpretations or diagnoses, nor any information on 

the future discovered effects for each patient. This precluded automated machine 

learning approaches from consideration in developing a knowledge base for the data. 

Each case constituted a single set of test results from a single patient, independent 

of history, future tests or information, or any form of information other than the 

recorded test results.  

When presented to the users, all reports were displayed in a format similar to the 

printed formats that are used by most medical institutions, so as to be recognisable 

and familiar. Figure 3-2 shows an example lung function report, as they appear in 

the online system.  

As Figure 3-2 shows, not all cases had values for all attributes, and many were 

missing values for different attributes. The exact measurements taken may have 

depended on the facility where the tests were performed, the reason the tests were 

being performed, who was performing the tests, practical restrictions due to other 

medical problems, or even broken equipment – the reasons for their omission were 

not recorded with the cases. These missing values had little impact on the 

knowledge acquisition process, as most cases contained sufficient information for 

classifications to be made; and if any single case did not, the definition for 

classifications could be derived from other cases. 
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Figure 3-2: Sample lung function report  

Reference Equations 

As described in section 2.5.2, lung function reports are typically presented with the 

predicted values for each attribute, as determined by a set of reference equations. In 

this study, the report data initially contained values derived from the Knudson et al. 

1976 equations (Knudson, et al., 1976) for spirometry, gas transfer equations from 

Cotes and Leathart (Cotes & Leathart, 1993), and Goldman and Becklake’s 1959 

lung volumes equations (H. Goldman & Becklake, 1959). During the 

developmental stages of this study however, these were rejected by a number of 

lung function experts as being somewhat outdated, and new equations were 

introduced: the NHANES III equations for spirometry (Hankinson, et al., 1999), the 

Roca et al. equations for lung volumes (Roca, et al., 1990), and the Quanjer et al. 

equations for gas transfer (Quanjer, et al., 1993). The previous equations were kept 

as an option to allow experts to compare results between reference equations, and to 

allow them to use whichever they felt was most appropriate.  
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Flow-Volume Loops and Data Visualisations 

There were however a few significant differences between the reports that experts 

typically see in their professional work and the reports that were presented with the 

system. Significantly, most cases in the system did not have the Flow-Volume Loop 

(FVL) diagrams, volume graphs, or any associated visual representation of the test 

results. FVL diagrams visually describe the airflow during the inhalation and 

exhalation measured in spirometry. This is generally considered to be a vital 

component in the interpretation of a lung function report, as the visual cues 

provided by the shape of the FVL provide respiratory experts with an immediate 

impression of what to be looking for and how to proceed, and often an initial 

diagnosis. It is also considered to be critical both by inexperienced experts who are 

not as aware of the significance of all of the attributes, and by experienced experts 

who can infer a great deal from an initial glance. While the FVL generally does not 

provide any information that the test results do not, it has become such an effective 

shortcut to interpreting results that it is expected on reports and some experts come 

to rely upon it for their interpretations. In fact, when experts were initially 

approached to take part in this study many were uncomfortable working without 

FVL and declined to take part (this appeared to be entirely based on personal 

preference, with the type and experience of experts not providing any indicator of 

whether they would refuse). As they can have such a critical role, reports were 

added to the dataset from the Royal Hobart Hospital with the FVL and volumes 

graphs attached; and twenty more FVL were created by a leading respiratory 

scientist to match a set of cases chosen to be representative of the range of cases in 

the dataset, to allow as many experts as possible the opportunity to participate in the 

study.  

3.2.1.2 The Experts 

In an effort to ensure the best possible resultant knowledge base, multiple experts 

were used to perform the knowledge acquisition. These experts had a range of 

experience and knowledge in the lung function field, in working with patients and 

performing respiratory research.  

Three experts were used to acquire the knowledge for the main knowledge base in 

this study. Primarily the knowledge came from a single leading respiratory scientist 
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in Australia, with additional input from another highly regarded clinical specialist, 

and some minor additions by another respiratory researcher. Further input, ranging 

from system design and testing to explaining complexities of the lung function 

domain, was taken from 15 more available experts in Australia.  

Initially, in order to organise his thoughts and establish some fundamental 

classifications, the leading expert created a document detailing definitions for a set 

of common classifications. This document was circulated and confirmed by another 

small group of respiratory experts, including the two other experts involved in 

developing the knowledge base. Once confirmed, the administrator of the system 

added these definitions to the system as a basic set of initial rules, in the manner of 

a Vazey CARD approach (Vazey, 2006). The secondary expert then contributed to 

this knowledge base, along with the tertiary expert. As the experts were not 

concurrently available, and in order to allow knowledge comparisons, the first 

expert also developed their own knowledge base independently of the collaborative 

knowledge base. Finally, the two knowledge bases were compared, inconsistencies 

were resolved where necessary, and the knowledge bases consolidated into a single 

final knowledge base. The development and contributions towards each knowledge 

base are summarised in Figure 3-3. The methods for acquiring and consolidating the 

experts’ knowledge are discussed in the following section.  
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Figure 3-3: Contributors to each knowledge base 

3.2.2 MCRDR Implementation 

For the most part, the implementation of the MCRDR knowledge acquisition 

system was as per the original MCRDR implementation by Kang (Kang, 1996), 

with some functional limitations and modifications necessitated by both the 

specifics of the domain, and the dual application as a knowledge discovery device.  

3.2.2.1 Standard Features 

Rules 

Rules in general were handled as per a typical MCRDR system: experts could 

define root level, exception, and stopping rules. Again as with most 

implementations, each rule condition could only be conjuncted, with no option for 

disjuncts, and hence no need for condition grouping within a rule (such as 

[(condition1 AND condition2) OR condition3)]). Although MCRDR can use 

disjuncts perfectly well, this was decided in an effort to keep rule creation 

standardised and to make comparisons between different experts’ rules as simple as 

possible. If ever necessary, disjuncts could be handled by adding multiple rules 

reaching the same conclusion.  

Conditions 

Rule conditions themselves were kept in a very simple format: [Case attribute] 

[Operator] [Value], where [Case attribute] is a field name for an attribute, 

operator is from the set {< (is less than), <= (is less or equal to), > (is greater than), 

>= (is greater or equal to), = (is equal to), != (is not equal to), missing (value is 

unknown), not missing (value is known)}. This is more restrictive than many rule-

based systems which allow a condition to directly compare two attributes (for 

example [attribute1] [is less than] [attribute2]). This method was 

partially chosen for simplicity, but also as it parallels the traditional form used 

within the lung function domain – if making a decision based on two attributes of a 

case, the typical approach is to derive a new attribute from some calculation 

incorporating those two, and refer to that derived value: for example, the ―FEV1 to 
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FVC ratio‖ is often discussed, and is always included in reports as a distinct 

attribute (Pierce, et al., 2005; Subbarao, et al., 2004). 

Classifications 

In order to allow the experts as much freedom of expression as possible rule 

classifications could be defined as free-form text. When defining a rule the expert 

was presented with a list of all classifications currently entered into the system from 

which to choose; and if the exact classification they desired was not present, they 

were given the option of defining a new classification. Each classification consisted 

of a classification title of up to fifty characters, intended to be a short phrase or 

description, and an optional accompanying statement of up to 255 characters, 

intended to be a short paragraph or two explaining anything that may be ambiguous 

about the classification or any further detail the expert felt needed to be expressed. 

3.2.2.2 Novel Features 

The application as a data mining tool necessitated a number of modifications to the 

implementation of the MCRDR system, and provided an opportunity for others. The 

change with perhaps the most impact was shifting from considering individual cases 

as they are presented, to considering a dataset as a whole. This relatively minor 

difference resulted in a cascade of other modifications and adjustments. The 

changes made to the basic MCRDR process were:  

 Presenting a dataset, not a case 

 Defining potential cornerstone cases based on expert acceptance 

 Dataset statistics for additional validation 

 Working with multiple experts: collaboration and consolidation 

Each of these modifications are described in this section. 

MCRDR with a dataset 

The first difference to traditional MCRDR knowledge acquisition was that rather 

than cases being serially presented to the expert, a large number of cases were 

displayed as a set. This approach was necessary to facilitate the knowledge 

discovery component of this study: when trying to develop new domain knowledge, 

the expert needs to be able to examine cases matching specific criteria that they are 
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interested in, and to request summary information about sets of cases. For example, 

the expert may wish to compare the average age of different classification 

categories; or they may wish to know the proportion of cases with one classification 

which also have a second classification. In general, in order to perform any analysis 

of the lung function domain, or a subset of the domain, the user must be able to 

consider a dataset holistically and not as individual, disconnected cases. Given the 

interconnected nature of the knowledge discovery and knowledge acquisition 

components of this study (described in more detail in Chapter 4), and that the 

experts must be aware of all the components, the knowledge acquisition was by 

necessity performed with a dataset rather than through individual cases.  

Performing knowledge acquisition from a set of cases, rather than strictly 

incrementally with cases ―as they occur‖, effects the implementation in many subtle 

ways. Whereas a typical MCRDR system might involve ―loading a case‖ as the first 

step of any interaction, this implementation requires that the expert load a dataset, 

and choose a case to work with. From this point, the specifics of the knowledge 

acquisition are identical: the expert works through that individual case, then works 

on another single case. However, the subtle distinction in selecting a case from a set, 

rather than being presented with an individual case, can result in the previously 

mentioned problem of a rule-centred, rather than a case-centred, approach to 

knowledge acquisition.  

There are however benefits to presenting the user with a dataset. As noted by 

Vazey’s CARD approach, some rule-centred thinking helps the user to establish 

their knowledge base (Vazey, 2006). In addition, using a dataset provides a 

representation of the domain, and as such provides the potential for better validation 

in the rule making process. The methods used to achieve this are discussed further 

in the following sections on cornerstone cases and statistics. 

A functional change to knowledge maintenance was also made. In keeping with the 

incremental nature of the MCRDR process, whenever a new rule is added to the 

system all cases in the dataset are checked to see if they match. Records are then 

created linking each case, classification, and the rule that caused it. These records 

were created and maintained for efficiency purposes, as many of the further 

interactions with the dataset such as displaying statistical information, manipulating 

the dataset, and providing feedback for validation are made much faster by having 
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this information stored rather than repeatedly inferring it through the knowledge 

base. Correctness is maintained by updating these records as necessary whenever 

any change is made to the knowledge base. 

Cornerstone cases 

The inclusion of a dataset also presents an opportunity to improve the effectiveness 

of cornerstone cases. The traditional cornerstone case mechanism uses cases that 

have been previously seen to validate any new rules that are entered, by ensuring 

that a new rule does not change the results for a case that has already been seen. If 

we are working with a set of cases however, the system has effectively ―seen‖ all of 

them already.  

In place of cornerstone cases, the EMCRDR study took the simplistic approach of 

showing all cases that matched the current rule (Ling, 2006). This was useful to an 

extent, in that it provided some feedback on what effect the rule would have on 

classifying the dataset; furthermore this feedback is above what is normally 

provided by cornerstone cases, as it shows the effect of the rule over a wider 

coverage of possibilities. However, it only provided a benefit when defining quite 

specific rules, and when using a minimal dataset, as the sheer number of cases 

presented could be completely impractical to review. Furthermore, the expert would 

only receive indications of conflicts with previous decisions if they reviewed and 

classified each case individually, making this a poor substitute for cornerstone case 

validation.  

In this study a combination of a traditional cornerstone case implementation and a 

dataset review was used. By keeping track of which cases an expert has actually 

viewed, traditional cornerstone case validation can be implemented. Any potential 

new rule is checked against cases this expert has previously reviewed to determine 

whether their list of classifications will change, providing exactly the same level of 

validation that traditional cornerstone case validation provides. However, the shift 

from case-centred to rule-centred thinking that this system can engender can cause 

problems here. It was found early in development that experts often considered 

many cases in the definition of a single rule, and approached the task from the 

perspective of defining a set of rules or classifications, rather than examining a 

single case and adding all the classifications that it should have. This can result in a 
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number of cases being half-reviewed, with some of their classifications added and 

some not, which would then result in a large number of cornerstone cases appearing 

whenever the expert eventually defined a rule that should have been defined for 

previous cases. To resolve this problem, cases were only recorded as having been 

reviewed if the expert explicitly stated that all the classifications for a case were 

present and complete, with the alternative option being to go back to the dataset and 

move on to another case. It is unclear from previous published studies whether any 

similar effect of half-reviewed cases is present in other MCRDR systems, but this 

might make for an interesting study and be a potential area for improvement. When 

viewing the dataset, cases that had been accepted as complete were highlighted in 

green to give a visual indication to the expert. 

When these cornerstone cases were presented to the expert, they were given the 

option to view the case to verify what the classification for the case should be. Once 

they had determined this, the expert could choose to: accept that this case should 

have the new rule’s classification; flag the case as having incorrect classifications, 

to be corrected later; or to modify the rule they are currently creating so that it does 

not apply to the cornerstone case. If they choose to modify the rule, the list of 

cornerstone cases that would be affected is updated and presented to the user as they 

add or remove new conditions. A rule cannot be added to the knowledge base until 

all of the relevant cornerstone cases have been either accepted, flagged as incorrect, 

or the rule changed so as not to create conflicts. When working with multiple 

experts on the same knowledge base, all relevant cornerstone cases were displayed 

whether they were marked as complete by the current expert or by another expert, 

as will be discussed in more detail shortly. 

Additional Cornerstone Case Trials 

Incorporating validation based on cases the expert has not yet seen is a more 

complex matter. While traditional cornerstone validation is helpful and effective, 

the unseen dataset should be a potential source of much stronger validation. As 

mentioned, whenever a rule is added to a knowledge base all cases in the dataset are 

checked and all cases matching the rule have that classification recorded. All case 

classifications are therefore recorded as the knowledge base is updated, meaning 

that the classifications for every case are consistent with the latest knowledge that 
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has been entered. It is also simple to identify all the cases in the dataset that will 

have a classification changed based on the new rule: all these cases can be 

considered to be de facto cornerstone cases.  

This approach was implemented and trialled during development, with an iterative 

prototyping process and multiple experts. By treating unseen rule-matching cases as 

cornerstone cases, it was found that the validation became much less effective, as 

experts would become frustrated by the number of cases that would be presented to 

them. When over 10 cases were frequently presented in the validation phase (with 

occasionally numbers in the hundreds), some experts would ignore the validation 

process entirely rather than work through each case, even when the validation was 

in fact pointing out a relatively minor error. Even with a moderate number of cases 

some experts would become frustrated by having to look through them, especially 

when they were looking through cases which they had not previously seen.  

To address this issue, the approach was modified by differentiating between ―true‖ 

cornerstone cases and unseen cases. However, this resulted in no improvement 

when large numbers of cases were presented, with experts likely to either ignore the 

unseen cases or still ignore the validation entirely. Common responses to the 

frustration of a large list of cases were to either assume that they had made a 

completely erroneous rule, and cancel the rule creation and begin again; that they 

had made some sort of mistake in past rule creation, and just click through 

accepting the new classification for all the cases without reviewing them; or that the 

system had made a mistake, and giving up on the process. The opinion was also 

occasionally voiced that reviewing them was unnecessary as they were confident in 

their rule as it was. The exact reaction seemed largely tied to the expert’s 

confidence in their own abilities, but regardless of which of these responses was 

chosen, the result was negative and impacted the expert’s interaction with the 

knowledge acquisition process. For these reasons the list of cornerstones displayed 

was restricted to only those cases that the expert had already reviewed and accepted 

as complete, with unseen cases forming additional validation through other means. 

This implementation of the cornerstone system allows experts to receive validation 

feedback with a much larger dataset and define more complex rules than was 

possible with the EMCRDR system. The additional validation allowed by the use of 
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a dataset is implemented in a similar, though distinct manner, as described below in 

the Statistics section. 

Statistics 

The addition of a dataset provides potential for strong validation of rules, as there is 

more evidence to either support or refute the claims that the expert is making. 

However, presenting the evidence to the expert to be reviewed is problematic: the 

more evidence there is, the better the validation will likely be, but the more difficult 

and time consuming the task becomes. This is unfortunately a significant concern, 

as was seen in the execution of this study: when the task becomes too time 

consuming there is a tendency to skip details and ignore problems, leaving the 

validation ineffective. Because it is impractical to force an expert to review all cases 

that may be of interest, and likewise it is impractical to show these cases in any 

lengthy format, summaries and statistical information on groups of cases were used 

to provide the additional validation. To avoid the problems with expert frustration it 

was necessary to make the statistics an optional feature of the process: dataset 

statistics were always presented, but the experts were never forced to review them 

to make their rules, unlike explicit cornerstone case validation.  

When defining a rule, the statistics presented related primarily to the set of cases 

that were covered by the current rule conditions, taking into account the position of 

the rule in the knowledge base tree structure. Three sections of statistics were 

shown: classification coverage, describing the distribution of classifications for 

cases covered by the rule; attribute statistics, describing the maximums, minimums, 

means and standard deviations for the cases covered by the current rule; and the 

best correlated attributes (up to 10). Also included were options to view the cases 

for each classification, either those within the set defined by this rule, or all cases 

with that classification in the whole dataset. This was to allow experts to be able to 

easily identify if there were errors with their rule. The presence of any cases with a 

classification that was mutually exclusive (or unlikely to be concurrent) with the 

conclusion of the rule currently being defined, should indicate to an expert that 

there is a deficiency in the rules somewhere. Likewise an expert should be able to 

identify unexpected proportions of other classifications, and examine the cases to 

update the rules accordingly. This simple mechanism allows an extra layer of 
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information about the interaction between classes and their attributes, potentially 

providing additional validation during the acquisition of knowledge. To enhance 

this feature, comparisons were made between the frequencies of each classification 

in the current case set and the overall dataset, and statistically significant 

differences were highlighted (For a more complete description of the statistics 

displayed, and the methods used to determine significance, refer to section 4.2.2 of 

this study). The statistics give a simple visual indication of which classifications are 

somewhat related to the classification currently being defined. This provides a small 

measure of extra validation, provided the expert has an understanding and 

expectation of which classifications should be related in the set of cases being used. 

Similarly, the attribute statistics are intended to provide extra validation, providing 

the expert has an expectation of ranges and averages for certain attributes. However, 

this is a large list to look through, and is less likely to assist in validation for most 

experts as they will not have detailed expectations for the values of each attribute. 

As the attribute statistics also take some computation time, these statistics are not 

displayed by default in the system. The correlated attributes section summarises the 

ten attributes with the most significant difference comparing the values in the 

current rule’s set of cases with the entire dataset. Like the main attributes statistics, 

these can provide assistance to validation but are not shown by default. As the 

attribute statistics are primarily used in the knowledge discovery sections of this 

study, they are described in more detail in Chapter 4. 

Working with Multiple Experts 

The last change from the standard MCRDR process was that knowledge was 

acquired from multiple experts, using different approaches. It was decided to 

employ multiple experts to help ameliorate the discrepancies and disagreements in 

opinion that can occur in the domain, and to make best use of the experts’ time, as 

there were a number of experts available for only brief periods. Two methods were 

used to allow knowledge acquisition from multiple experts: having experts work 

collaboratively on a single knowledge base, in a similar manner to that taken by 

Richards and Vazey (Richards, 2009; Vazey & Richards, 2006); and having experts 

develop their own knowledge bases, which were consolidated afterwards, in a 

similar approach to that taken by Beydoun and Hoffmann (Beydoun, et al., 2005). 
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The former option had the advantage of requiring less work to develop a 

homogenous and complete knowledge base; the latter the advantage of keeping 

expert’s opinions complete and distinct, and to make knowledge comparisons easier 

and more rewarding. Comparisons of expert knowledge are discussed in more detail 

in section 5.3.1. 

Multiple experts with a single knowledge base 

As described in section 2.2.2, this is the standard approach that has been used for 

acquiring knowledge from multiple experts (Compton & Edwards, 1994). However, 

problems can arise in this approach when the experts involved disagree on a rule or 

classification. Two types of problems were considered: situations where a less 

knowledgeable expert made a mistake that a more knowledgeable expert could 

correct; and situations where equally knowledgeable experts disagreed on what the 

correct rule or rules should be. The differentiation between these two, from the 

perspective of finding the correct knowledge, can be quite minor: often it can be 

reduced to whether one expert feels comfortable or feels pressured to accede to 

another’s authority. It is often impossible to verify the truth of knowledge, and no 

matter how well learned they may be any expert can make a mistake. The correct 

knowledge may even be very different from either expert’s opinion. In either case, 

it would therefore be best for the method to check the validity of each expert’s 

opinion as much as is possible; although from a purely methodological perspective, 

the correct knowledge will ultimately be whatever the experts decide is correct. 

Identifying Novice Errors 

The traditional error-discovery strategy, whereby it is assumed that any error will 

eventually be discovered and corrected, is still in use as it is an automatic function 

of MCRDR knowledge acquisition. It is to an extent an unavoidable aspect of RDR: 

errors when defining a rule are likely to be noticed only once that error causes the 

incorrect classification of a new case. This process is improved by having multiple 

experts work with the knowledge base, particularly if both experts review the same 

cases, but also because a new expert is more likely to notice another expert’s 

mistake. For the situation under consideration, with one expert correcting a less 

knowledgeable expert’s mistake, having the knowledgeable expert review all the 

cases that the other reviewed would give the best chance of discovering errors. This 
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is less wasteful than it first appears as for the most part, if their knowledge is at all 

similar, the expert will only need to confirm that the classifications are correct 

rather than go into any detail of defining rules. It is however time-consuming, and 

can become frustrating and repetitive. Given restricted availability of experts in this 

study, this approach was not taken in order to maximise the knowledge acquired. If 

enough cases are evaluated then the traditional error-discovery approach should be 

sufficient. 

Resolving Novice Errors 

Of the two scenarios discussed, the key factor differentiating them is whether one 

expert is happy to accept the other’s opinion as more likely to be correct. While this 

may be attributed to politics, prejudices, and perhaps even sheer stubbornness, 

much of this can avoided by simply ensuring that each expert knows who is 

disagreeing with them. Traditionally, experts will be working on the system within 

the same physical location and will likely have occasion for discussion. Whenever 

an expert notices another’s mistake, they can correct it in the system, and explain 

the mistake in person; or, more likely, an expert will be aware of their standing in 

the work and will know whether to accept other’s corrections or to make corrections 

themselves. 

However, with online technology becoming ever more prevalent, and with this 

system being developed online, experts could work on the same knowledge base 

from almost any geographical location, thus invalidating the assumption that the 

experts know each other and can discuss matters in person. It is expected that the 

impact of this would be unpredictable. Depending on personality and confidence, 

when faced with an unknown person disagreeing with their statements an expert 

may be inclined to accept or reject the change without due consideration of why the 

change was made or how likely the change is to be correct. It is unknown whether 

Vazey and Richards made any such findings with their collaborative developments. 

At the very least, under this approach there is no mechanism in place to correct the 

mistake in the minds of the experts.  

As with the collaborative approaches of Richards and Vazey, in this study it was 

always noted which expert defined each rule, and the creator was displayed when 

the rule was used to reach a classification or when the rule was examined. As no 
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deletions or edits of rules were allowed however, following the principle that 

knowledge is only added to the knowledge base, the ―change history‖ feature was 

unnecessary. Provisions were also made to ensure that when experts were working 

on a single knowledge base they were each made aware of the identity of the other 

participating experts, and provided contact information in order to make informed 

decisions in this regard; although in actual knowledge acquisition it happens that the 

collaborating experts were already acquainted. 

Identifying Conflicts 

In resolving conflicts, the first step is to identify that one has occurred. Conflict 

identification is mostly handled in one direction by the MCRDR rule validation, in 

that it will automatically notify the user when their new rule changes a previously 

accepted case. However, if the current expert disagrees with what a previous expert 

has said, that previous expert will need to be notified of this before the conflict can 

be resolved.  

As with the identification of errors, an expert would normally be notified that 

another has disagreed with them either by eventually encountering a case where the 

same conditions apply, or by discussing it in person. However, in this study an extra 

measure was taken to display disagreements to the experts. Any case which an 

expert had previously accepted (and had therefore been added to the list of potential 

cornerstone cases), whose classifications had been modified by another expert, 

would be highlighted in red (as opposed to the green typically used to display a case 

that had been accepted) and displayed to the expert when they viewed the dataset. 

An option was also provided to select all the currently marked cases. This list of 

conflicting cases was also kept available to the administrator of the system, to 

additionally monitor conflicts.  

Resolving Conflicts 

As with the error resolution, the approach of assuming that conflicts will be 

resolved in person is flawed: experts may well work in different locations and have 

no knowledge of other contributors. As with Richards and Vazey’s collaborative 

approaches, mechanisms for resolving conflicts in this study mostly involved 

creating a dialogue between the experts. It was ensured, with participant approval, 

that the experts were able to contact each other online about disagreements. In 
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addition, the current conflicts were monitored by the administrator of the system, 

and where no other progress was being made the administrator would attempt to 

reconcile them via discussions with as many participating experts as possible. 

The major flaw with this approach was that it assumed a lengthy commitment of 

continued use of the system by the experts involved. As mentioned previously this 

was not possible in this study, with some experts not even able to work on the 

system concurrently. This significantly reduced the likelihood of any dialogue 

through the system, and reduced the likelihood of experts identifying conflicts or 

errors, limiting the efficacy of the collaborative knowledge acquisition in this study. 

Knowledge Base Consolidation 

The alternative approach is to allow each expert to work on their own knowledge 

base and attempt to reconcile them afterwards. Given restricted time with experts, a 

similar integration approach to Beydoun and Hoffmann’s (Beydoun, et al., 2005) 

was also taken, although with less focus on automatic integration and more on 

evidence-based conflict quantification and resolution.  

Reconciling Knowledge Bases 

The process for reconciling knowledge bases was based on comparing the results 

for each knowledge base over the dataset, keeping any comparison grounded with 

evidence, and resolving the conflicts with discussion between the experts. In order 

to allow these comparisons, similar classifications were grouped into equivalencies 

where necessary, through a simple interface of selecting the equivalent 

classifications and marking them as a group for comparison purposes. These 

groupings were decided through consultation with the experts, in order to manage 

the different terminology and levels of detail that different experts might use. More 

detail and examples are given on exactly how these comparisons were performed in 

Chapter 5.  

The comparisons of results over data identified which classifications had different 

definitions between experts, including the magnitude of each conflict. Once these 

were identified, the administrator of the system contacted the experts involved, 

initiating discussions to resolve the conflicts. When presenting the conflict to the 

experts, the cases which had different results provided an easy way to describe the 

exact context in which the conflicts arise, regardless of how complex the rules may 
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be that lead to them; and as per the RDR philosophy, the provision of context is an 

important consideration in consulting experts and receiving useful responses. 

Summary of Modifications 

The four modifications made to the process are repeated here for clarity: 

 Presenting a dataset, not a case 

 Defining potential cornerstone cases based on expert acceptance 

 Dataset statistics for additional validation 

 Working with multiple experts: collaboration and consolidation 

Each modification is somewhat tangential to the central knowledge acquisition 

process, as the interpretation of individual cases, and the definition of rules and 

classifications are all unchanged. However, each modification can still bear an 

influence on the efficacy of the knowledge acquisition, as is shown by the results 

and discussed in the following section. 

3.3 Results and Discussion 

One of the most interesting findings related to the comparison and consolidation of 

the two knowledge bases. The comparison method and results are covered in detail 

in Chapter 5, as it is more pertinent to that discussion. Initially this section will 

discuss the resolution of the conflicts identified by that comparison, including such 

comparison details as are necessary for context. Following this is a detailed 

presentation of the development and performance of the amalgamated knowledge 

base as an expert system. 

3.3.1 Knowledge Base Consolidation 

In consolidating the knowledge bases, there were few instances where the experts 

clearly disagreed with each other; most of the differences could be accounted for by 

small inconsistencies between the knowledge bases. For example, one knowledge 

base might use greater or equal to as a border between classifications, whereas the 

other uses greater than. Differences such as this were also quite common within 

each knowledge base, for example the rule for one gradation of classification might 

use less than 40 while the rule for the next level uses greater than 40, excluding any 

case which falls exactly on 40. The resolution to these border definition problems 
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were typically fairly arbitrary, as the experts tended to consider it unimportant 

which resolution method was used, as long as it was consistent. Each occurrence 

was of little consequence individually, but accounted for 1256 cases (42.4% of the 

dataset) reaching different classifications overall. Once resolved by the 

administrator these differences had little further effect. 

Another source of disparity resulted from the manner in which the knowledge bases 

were built: one expert might add a rule as an exception, where another expert adds 

that same rule at the root level. If the first expert does not encounter any rules which 

should match the exception, but do not match the rule it is an exception to, then the 

mistake will not be noticed.  

There were five identified instances of distinctly different definitions for 

classifications that did not have obvious solutions. To resolve these, the 

administrator initiated an email conversation including each of the two experts 

involved (the primary experts). In one instance both considered the other’s opinion 

too extreme, so a compromise was found that both experts were satisfied with. On 

another occasion one expert declared he had no objection to removing the differing 

condition from his rule. For one other conflict, the primary expert explained his rule 

difference to the other expert, who happily accepted the change once he understood.  

The final two differences were not able to be resolved by discussion of rule 

conditions alone. For one of these, one expert had included in the collaborative 

knowledge base an alternative rule for reaching a given classification, which had no 

counterpart in the independent knowledge base. Although confident that the rule 

was not an accurate definition, the other expert could see some logic behind it and 

was open to the possibility that it may be useable. In response, the expert who had 

added the rule suggested looking at how often the rule misclassified cases compared 

with the other, more widely accepted rule. Using the statistical tools implemented 

for the knowledge discovery section of this study (discussed in Chapter 4), it was 

found to give 158 false positives and 9 false negatives, with 7 cases matching both 

rules, out of the 1390 cases in the TAHS dataset. This was deemed far outside the 

expected parameters for intended coverage of the rule; hence, although the 

alternative rule may have correctly classified some cases, the inaccuracies were 

deemed too great and the rule removed. 
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The second conflict arose from a condition added to a rule by the expert in the 

independently developed knowledge base. The rule existed in both knowledge bases, 

in the same form except for that condition. The condition was added to cover a 

small contingency of cases that the expert considered a possibility. On learning that 

no other expert had included such a condition however, the expert expressed some 

uncertainty and a feeling that the other expert may in fact be better educated in this 

instance. To resolve the problem, he requested data on how many cases were 

affected. Given that only 15 of 947, or 1.5% of cases with the classification also 

matched on that condition, the expert decided that any potential benefit did not 

outweigh his uncertainty and decided to remove the condition. 

Resolving these conflicts led to the resolution of 613 cases (20.7% of the dataset) 

that had previously reached different classifications between the knowledge bases.  

The equated classifications provided a simple way of comparing the results of the 

knowledge bases, to identify problematic differences. In consolidating the 

equivalent classifications into a common structure, one set of classifications (the 

Obstruction group) were problematic: each knowledge base used different versions 

of the classifications, both in terms of gradation and in compound classifications 

with another classification (Reversibility, or, Positive response to bronchodilator). 

The experts were consulted as to which of the gradations of severity should be used, 

and which definitions to keep. It was considered relatively unimportant, the end 

result being much the same in terms of providing a sufficient interpretation; and the 

version included in the initial documentation was kept, as that document had been 

circulated and confirmed by other experts. The Reversibility elements were 

separated into separate classifications, at the assurance of the experts that this was 

not problematic or any less correct. 

Each of the other groups were relatively simple to consolidate, once common 

differences were resolved. In each case the more detailed versions were included for 

completeness. 

The numbers of conflicts presented here highlight that a standardised knowledge 

base and an expert system can be very beneficial to the domain: even between 3 

experts, the two major contributors of which are high-ranked specialists in the field, 
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1869 out of 2963 cases (63.1%) received different classifications. Of these, 613 

(32.8% of the conflicts) were major and needed intervention to resolve. 

The very minimal input from the secondary expert in the collaborative knowledge 

base unfortunately precluded any comparison between collaborative approaches and 

post-acquisition compilation of knowledge bases. 

3.3.2 The Expert System 

The resultant amalgamated knowledge base forms a functional expert system for the 

lung function domain, which is of benefit to the domain in assisting experts make 

consistent and complete interpretations. It also provides a knowledge base capable 

of providing guidance for complex data analysis, as will be discussed in the 

following chapter. This section will examine the details of how this expert system 

was developed and how it performs. 

3.3.2.1 Accuracy 

As has been noted previously (Bindoff, 2010), the accuracy of an expert system 

such as this cannot be directly measured without extra, pre-classified data: the 

system is always correct on every case it has already seen, and asking an expert to 

classify cases outside of the system in order to test it seems a waste of expertise and 

expert time. However a measure can be found, by considering the number of 

corrections which an expert needs to make as they are examining the system. This 

has been described by the formula from Bindoff’s work presented below (Bindoff, 

2010):  

         
            

     
 

This equation provides a measure for how accurately the system classifies each case, 

as it is interpreted by the expert. Cf is the number of classifications initially found 

for the case, Crem is the number of classifications removed by the expert, Crep is 

the number of classifications replaced, and Ra is the number of rules added by the 

expert for the current case. Assuming that the expert completes each case before 

moving on to the next, as more cases are seen there should be a trend towards 

increased accuracy. This should plateau as the knowledge base approaches 

complete coverage of expert knowledge.  
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Figure 3-4: Accuracy of system as more cases are reviewed 

Figure 3-4 shows the accuracy of the system over the 102 cases reviewed by the 

independent expert. The trend line, while certainly not a perfect predictor, gives an 

indication of the general pattern: a quite rapid rise in accuracy which quickly slows 

as more cases are seen. The trend line suggests that perhaps the plateau has not been 

convincingly reached, as there is still a noticeable positive slope at the end of the 

line. However, as the knowledge base achieves 100% accuracy for the last 36 cases 

(over one third of the cases seen overall), it seems reasonable to assume that there is 

little if any improvement left to be made. Certainly, after reviewing 36 cases 

without having to make any changes, the expert was satisfied that the system was 

complete and had little patience to continue. 

3.3.2.2 Rule Creation 

Rules per Case 

The number of rules created for each case examined gives a good estimate of the 

rate at which the system is acquiring knowledge. Figure 3-5 shows the number of 

rules added per case examined, in the order that the expert examined them. 
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Figure 3-5: Rules added per case 

The trend line, while not particularly representative of the data, gives a general 

indication of the pattern: after an initial very high number of rules added per case, 

the numbers steadied, with a gradual slowing as more cases were seen. As the 

number of rules added only once went above 2 after the initial few cases, and only 

once went above 1 after the first 50 cases, the rate of rule addition appears to be 

consistent within this downward trend.  

Time per Case 

The time taken to complete each case can be an indicator of many different aspects 

of the knowledge acquisition process, such as how detailed the expert is being in 

interpreting the data, how complex the task is, which cases prove difficult, how they 

adapt to the system interface, and the variability in complexity in cases. Figure 3-6 

shows the time taken for each case reviewed. As would be expected, both from the 

expert increasing in familiarity with the system and with the system improving in 

accuracy, there is a trend of continued improvement in speed as more cases are seen. 

The average of 3 minutes and 29 seconds well represents the data, as despite the 

obvious upper outliers, the majority of cases are in the lower section, with 65% of 

cases falling below 3 minutes. The standard deviation of 3 minutes and 33 seconds 
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does demonstrate just how variable the times are however, highlighting that 

interpreting cases is not necessarily a simple, consistent process. 

 

Figure 3-6: Time taken per case 

Time per Rule 

The time taken to create each rule gives an indication of the expert’s familiarity and 

ease with the system, the complexity of the knowledge being defined, and the 

number of problems the expert faced in defining a valid rule. The principal 

limitation with this measure is that it is difficult to distinguish which of these factors 

are having the most influence on the data. 

Figure 3-7 shows the time taken per rule created, in sequence as they were created 

by the expert. The moving average demonstrates the variability inherent in the rule 

definition, which is to be expected: some rules are more complex to define than 

others; and the process of finding an explicit definition of tacit knowledge can be a 

variable, incremental process, depending on how long it takes to find a definition 

that fits. The average time taken per rule is 2 minutes and 29 seconds, a fairly 

typical number for systems of this kind, but with a standard deviation of 2 minutes 

and 6 seconds which further highlights the variability. The data is slightly 

suggestive of an upwards trend, but with little conviction. The relatively low 

average time for initial rules is somewhat expected, as the initial rules added to a 

knowledge base are typically quite general, classifying broad segments of the 
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domain, and are the rules which the expert uses most routinely. Hence these rules 

are generally quick to define. However, this can be balanced by the inevitable 

period of acclimatisation to the system interface: learning how to view the cases, 

how to define the rules, and learning the particular details of the data model. This 

acclimatisation period likely accounts for the large initial variability in the first few 

rules: the logs indicate that 70% (approximately 1 minute and 40 seconds in each) 

of the time spent defining the second and fourth rules was involved searching 

through the attribute and classification lists to try and find the appropriate entries; a 

task which took considerably, and increasingly, less time for future rules.  

That the time required to define rules does not decrease might be explained by 

increasingly complex rules being entered. This is supported by Figure 3-8, which 

shows the number of conditions per rule increasing over time. Both time per rule 

and conditions per rule follow similar patterns, suggestive that the complexity of the 

rule is a strong influencing factor on the time required. The addition of two zero-

condition rules later in acquisition also supports that the rules are becoming 

increasingly complex, as these were required to remove incorrect rules: the presence 

of which is a good indication of the complexity of the task.  

 

Figure 3-7: Time taken to define rules, with a 10-based moving average 
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were identified, with the final result of accepting the new classification for both of 

them; a further six minutes were spent deliberating over the values to be used in the 

conditions; whereas the classification was decided upon without change within 

seconds. This would suggest a classic example of defining a rule from tacit 

knowledge (Richards & Busch, 2003): the expert knew exactly what the 

classification should be but took some time and effort expressing why this should 

be the case, and exploring how to precisely articulate the differences between the 

new classification and previous classifications.  

The second longest rule to define, at six minutes, found no cornerstone case to 

examine in rule validation with most of the time taken searching for the desired 

classification and attributes in the interface. The third and fourth longest rules, again 

at six minutes, had similar difficulties with identifying the desired classification, 

with most of the time taken by examining cornerstone cases and modifying 

conditions to validate the rule.  

Conditions per Rule 

The number of conditions used per rule gives a reasonable indication of the 

complexity of knowledge being added, with more conditions generally indicative of 

a more complex rule. The numbers displayed may be misleading in this domain, 

due to the prevalence of attributes calculated from two or more other attributes.  

 

Figure 3-8: Conditions per rule for the independent knowledge base, with new root-level rules, 

exception rules and stopping rules identified 
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Figure 3-8 above shows the frequency of each number of conditions. The graph 

shows that the majority of rules (40 out of 55) had only one or two conditions, 

indicating that the rules are typically fairly general; although the tendency to use 

ratios between two attributes as a single attribute contribute to this slightly. Of the 

113 conditions defined, 37 used compound attributes, and nearly every other used a 

percent of predicted attribute, formed by comparing a measured value to a predicted 

value.   

The average number of conditions used per rule by the independent expert is 2.05. 

As mentioned previously, the data could be said to show an upwards trend, 

particularly discounting the zero-condition rules, suggestive that the experts were 

attempting to define more specific and complex rules. There is a significant drop in 

the average between the 30 and 40 rule marks, as two rules are added with no 

conditions (correcting previous errors by ensuring that the old rule will never again 

be able to fire).  

Interestingly, there appears to be a very even spread of exceptions and new root-

level rules. The exceptions in this study cannot all be said to be correcting errors, as 

it was suggested to the experts that they define general classifications first and use 

exceptions to refine them into more specific sub-classifications. Figure 3-8 shows a 

reasonably even spread of new rules and exception rules over time, with perhaps a 

slight increase in exceptions towards the end of the acquisition, which would be 

expected as most common rules have been added and errors in previous definitions 

are encountered. The mean number of conditions per new root-level rule was 3.8, 

whereas the mean for exceptions was 2.2. Exceptions are expected to have a lower 

number of conditions as they are often small refinements of existing rules, and this 

seems to be reflected in these averages. 
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Figure 3-9: Conditions per rule for the collaborative knowledge base 

Figure 3-9 shows the conditions added for each rule in the collaborative knowledge 

base. The rules added by the administrator are those defined in the initial 

documentation developed by the expert that worked on the independent knowledge 

base, and were agreed upon by a group of experts. It can be seen that these rules 

generally conform to the complexity of the initial rules defined in the independent 

knowledge base, with mostly single condition rules and some dual condition rules, 

with very few more complex than that. This is expected, as the rules listed in the 

document consist of a summary of the general knowledge in the domain. There are 

however more of these simple initial rules defined here than in the independent 

knowledge base. This is likely because the administrator entered all of these rules in 

the order that the rules were presented, rather than by waiting for an exemplar case 

to be presented, which would cause these initial simple rules to be defined over time 

in the independent knowledge base. Of note however is that the subsequent rules in 

this knowledge base stay at a similar level of complexity throughout, with no 

especially complex rules being defined. It is interesting that the other two experts 

also did not define any more complex rules. This may have been an attempt to 

conform to the complexity of knowledge of the rules already defined; it may also be 

a factor of the collaborative nature of the knowledge base, with experts unwilling to 
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define complex rules that would be subject to scrutiny by other, potentially more 

knowledgeable, experts. 

Coverage of Rules 

As this study uses a dataset of cases, which are classified as each rule is added, it is 

possible to determine the rule coverage as each rule is defined: in other words, the 

number of cases classified by each rule when it is added. Assuming that the dataset 

is representative of the domain and does not contain an unreasonable distribution of 

case types, this can provide a measure of the specificity or generality of each rule. It 

is expected that the expert will begin by defining fairly general rules, and as these 

are established the rules will become more complex, as the expert attempts to deal 

with more detailed classifications and to resolve inconsistencies with previously 

defined rules. Figure 3-10 shows the number of cases classified by each rule, in the 

order that the rules were added to the system. 

 

Figure 3-10: Number of cases covered by each rule, in the independent knowledge base, with 

identified outliers indicated in red  

The graph does perhaps indicate a very tenuous slight downward trend in the 

number of cases covered over time. It does appear obvious that a majority of the 

latter 50% of the rules have a smaller coverage, with 21% of the first half of the 
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rules covering less than 100 cases compared to 48% in the second half. The data is 

also skewed somewhat by 3 outliers in the second half, marked in red on the graph. 

The first two of these represent a mistakenly added rule whose coverage was far too 

broad, which was then immediately removed by a stopping rule again covering all 

the same instances. The third outlier is a very general classification the expert 

decided to add towards the end of the knowledge acquisition process, which 

covered many of the cases already seen – meaning that it would have been added 

within the first few cases examined had the expert always intended to include that 

classification. Removing these outliers from consideration gives a better visual 

appreciation of the trend of changing rule coverage as the knowledge develops. 

 

Figure 3-11: Number of cases covered by each rule, added the by the second and third experts, 

with identified outliers indicated in red 

Figure 3-11 shows the case coverage for rules added by the second and third experts 

to the collaborative knowledge base. Again the red marked rules are excluded from 

the trend, as they constituted rules with no conditions that covered every case, 

entered by error. A similar downward trend in cases covered may be occurring, as 

the figure shows quite similar ranges of coverage compared to the other knowledge 

base; but the data is inconclusive. Similarly most rules cover 500 or fewer cases.  
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3.3.2.3 Classifications 

Number of Classifications 

The independent expert defined 29 distinct classifications in addition to the 21 

classifications that were initially added under this expert’s guidance. Of these 50, 43 

were used in classifying cases; with 54 classification-reaching rules, this gives a 

ratio of 1.26 rules per classification, suggesting that the expert performed well in 

quantifying each classification into a single, general rule.  

Classifications per Case 

The number of classifications made per case can give an indication of the level of 

detail that the expert uses in describing each case. Figure 3-12 summarises the 

frequency of the number of classifications each case received, for both the 

independent and collaborative knowledge base (before consolidation). It shows 

again that the independent expert went to more detail than the collaborative 

knowledge base. 

  

Figure 3-12: Numbers of cases having each quantity of classifications 
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Figure 3-13: Frequency of number of rules for each classification 

Rules per Classification 

Figure 3-13 shows how many rules were added per classification, in the 

independent knowledge base. It clearly shows that most classifications had a single 

rule to derive them, with an average of 1.26 rules per classification. Of the 43 

classifications used in this knowledge base, only 9 had more than one rule to derive 

them. It is worth looking at some of these in more detail to understand what these 

nine represent. 
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explaining this classification. The first rule seems straightforward, with seemingly 

reasonable conditions, except that it has an attached exception rule which also has 

the same classification Normal Spirometry; and is in fact the second rule. This will 

have no effect on the results of the system: any case which matches the first rule, 
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applied, and no measurable difference to the user. That the rule was added is simply 
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attempted to correct the mistake by immediately ―changing‖ the existing 

classification and adding the further condition. As the 13th rule added it was still 

relatively early in the knowledge acquisition process. This error was corrected in 

the consolidated knowledge base, but still serves as an example of how the expert 

interacted with the knowledge acquisition process. 

The third rule constitutes a refinement of the first rule, in that it supersedes the first 

rule entirely (at least when the first rule is considered as a combination of the first 

and second, as was intended by the expert). The conditions are identical to those in 

the first rule, except for the first condition which is modified to broaden the 

coverage of the rule, and to provide consistency of coverage with other rules that 

had been defined.  

The fourth rule represents a different event. It is much more general, as it has two of 

the same conditions as the previous rule but is lacking the third, which would again 

cause it to supersede the previous rule and broaden the coverage of this 

classification. However, this can be shown to be an interpretation mistake by the 

expert: when the expert encountered a case that had been classified by this new rule 

(and not the previous rules), he noted that it was a misclassification and changed it, 

with the condition that had differentiated this fourth rule from the previous rules as 

the exceptional condition. The end result of this is that the rule covers exactly the 

same cases that the previous rule does.  

While it could be coincidental that this classification happened to have more 

problems associated with it than any other, the reason may lie in the nature of the 

classification itself. For a medical expert whose job it is to identify the types and 

extent of the problems afflicting a patient, the definition of a single rule to define 

normal or lacking any problems can be expected to be a very difficult task. This 

should also be considered in the context of the MCRDR knowledge acquisition 

process: examine a case, describe your classifications, and then justify why you 

reached that conclusion. A likely thought process for such an expert will be to 

examine the case, and identifying the most likely problems. Investigating these 

further, if the expert finds that none of the problems are present, their classification 

will be normal. Their natural justification for this classification will be in terms of 

the problems they just ruled out: ―The case is normal because, although it has some 

signs of problem X, it is lacking conditions A, B, and C.‖ The rule they define may 
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then be specifically focused on certain problems not being apparent; or, even if they 

consider many possibilities, may easily miss some eventualities. Although the 

expert did establish a single rule to do this, it is unsurprising that they had difficulty 

and required some attempts.  

Normal Lung Volumes 

The second rule that was defined for the classification Normal Lung Volumes was 

added when the expert misclassified a case: as the case should not have actually had 

this classification, the second rule was overly general and was eventually stopped 

when the expert realised it was incorrect. 

Fixed moderate obstruction  

As with Normal Spirometry, this is an example of trying to define a rule for a 

classification that is not present. In this instance, Fixed refers to the case being not 

Reversible. As the rule for reversibility requires two separate conditions to be 

present, when the expert attempted to define the opposite rule they included the 

negative of both of those two conditions. However, the classification Fixed does not 

need both conditions to be present, as only either one of the Reversible conditions 

needs to be false, following de Morgan’s law. This is an example of where allowing 

disjuncts in rule definition would have been useful. The second rule was added to 

cover some of the cases which the first rule missed, when a case was encountered 

which displayed one of the conditions but not the other; however evidently no case 

displaying the opposite combination was encountered, as the third corresponding 

rule was not added. 

Mild airway obstruction  

As with the second rule for Normal Spirometry, this is another example of 

mistakenly attempting to correct an existing rule by adding an exception rule with 

the same classification. The original rule was corrected in the consolidated 

knowledge base. 

Mildly/Moderately/Severely impaired gas transfer  

These three classifications required two rules due to the attributes used in the 

conditions. Cases can contain both a DLCO value corrected for haemoglobin and an 

uncorrected value; or only an uncorrected value, or neither. The uncorrected value 
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should only be used where the corrected value is unavailable: necessitating two 

rules. This is another situation where disjuncts would have helped rule definition, 

provided conditions could also be grouped.  

Severe obstruction 

The second rule for this classification appears as an exception to an exception to the 

first rule for this classification: the expert defined an exception to the initial rule for 

Severe obstruction, but later realised that this exception was slightly too broad when 

he encountered a case that matched the exception rule but should have the original 

classification. He then added an exception to the exception, returning the 

classification for the case to the original Severe obstruction. This is a good example 

of the incremental nature of the knowledge acquisition, and how it will eventually 

discover details that the expert misses or is not explicitly aware of in their reasoning. 

Moderately severe airflow obstruction  

For this classification, it appears that the first rule defined was too specific. 

Eventually the expert encountered a case which should have had the classification 

but was not covered by the rule: and so another rule was added. These rules do not 

appear to be representing different knowledge, with the second rule encompassing 

the other, and so would not have been avoided by allowing disjuncts in rules.  

The overall lack of multiple rules per classification would seem to indicate that the 

experts have a good understanding of the domain and are confident in their 

definitions for each classification. However, the occasions where extra rules are 

needed highlight the potential for expert mistakes, and the existence of the tacit 

knowledge the experts hold that are not included in these standard definitions. 

3.3.2.4 Cornerstone Cases 

Classifications per reviewed case 

Figure 3-14 shows the number of classifications found for each reviewed and 

completed case. When the results of the independent knowledge base are considered 

in comparison to the classifications found for cases not yet seen, there is a striking 

disparity: the mean for reviewed and accepted cases is 5.1 classifications per case, 

whereas the mean over all cases is 3.8. This would suggest that the knowledge is far 
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from complete, as presumably there are still rules and classifications to be added for 

the unseen cases to bring their classification numbers level with those explicitly 

reviewed, despite the knowledge acquisition appearing to have plateaued in Figure 

3-4.  

 

Figure 3-14: Number of classifications given to each reviewed case 

A major contributing factor to this is the nature of the different datasets used. The 

TAHS data constitutes the testing of a broad population spread, regardless of their 

health; whereas the Austin Health and Royal Hobart data are taken from those 

people explicitly recommended for lung function testing because of their likelihood 

of health problems. The TAHS data therefore includes a strong bias towards healthy 

people, whereas the other datasets have a definite bias towards patients with 

problems. This is relevant to this analysis as in this knowledge base healthy people 

generally have less classifications than unhealthy: a common healthy set of 

classifications is {Normal Lung Volumes, Normal Spirometry, No evidence of gas 

trapping or non-uniform ventilation}, whereas an unhealthy patient will usually 

require more detail describing each problem. This tendency is described in Figure 

3-15 and Figure 3-16, where it can be seen that the TAHS dataset has a substantially 

higher rate of classifications than the non-TAHS data, and the mean for the TAHS 

dataset of 3.3 classifications per case compared to the 4.2 for non-TAHS 

classifications.  

However, even taking this into consideration, reviewed cases average one more 

classification per case than unseen cases. It was thought this may be accounted for 
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by the selection of the initial 20 cases for knowledge acquisition: a set which were 

chosen specifically to maximise coverage of classifications, and included some of 

the more complex cases for interpretation. However, those 20 cases show a mean of 

only 0.1 more classifications than the 76 other reviewed cases (5.2 to 5.1).  

Considering Figure 3-14 it can be seen that of the reviewed cases in the independent 

knowledge base only 1 has less than 4 classifications. If it were to be assumed from 

this that cases should generally therefore have at least 4 classifications, this would 

show that almost half (1369 out of 2963, or 46%) of the cases in the dataset are 

missing at least one classification. While it would be rash to make such a 

conclusion, it is good evidence that the knowledge base, while seemingly complete 

after 96 cases reviewed, is still lacking in finer details for some cases.  

This is not evident in the collaborative knowledge base, where the accepted cases 

have equivalent numbers of classifications to the unseen cases. 

 

Figure 3-15: Frequency of number of classifications per case for the TAHS data 
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Figure 3-16: Frequency of number of classifications per case for non-TAHS data 

3.3.3 Impact of Validation 

The impact of the modifications to the validation process is difficult to measure 

directly, and is partially reliant on qualitative data from the experts on how useful it 
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Limiting potential cornerstones to only those cases which the expert has reviewed is 
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0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

0 1 2 3 4 5 6 7 8 9 10 

C
as

e
s 

Number of Classifications 

Frequency of Number of Classifications for non-TAHS 
Data 



 
129 

3.3.3.2 Statistical Tools 

The experts involved in this portion of the study did not themselves use the 

statistical tools available to them, there being some concern that it would be too 

time consuming to examine. As was described, the statistical tools were used by the 

administrator when consolidating the knowledge bases by answering the experts’ 

queries about how their differing rules compared over the data. This application of 

the tools proved very effective in resolving the experts’ knowledge conflicts, 

quantifying their differences and examining the impact of potential changes in 

definition. The results were found very quickly, largely being a matter of selecting 

the appropriate classifications and comparing their results, and entering new rule 

criteria that the experts requested to examine the impact. It is expected that if the 

conflict were identified by the experts themselves in a collaborative setting, and the 

experts were comfortable with examining the statistics themselves, the matter could 

have been resolved between the experts without any intervention. This remains to a 

more specific study to determine however. 

3.3.4 Impact of Implementation Restrictions 

3.3.4.1 Rule Creation 

The effect of not allowing disjuncts in rule creation was only noticeable in four 

instances, three of which were grading severities of the same classification. The 

fourth was a classification that commonly occurred as a compound: the Fixed 

portion of the many Fixed obstruction classifications. Hence although it only 

seemed to cause a problem in one instance it probably should have caused many 

more, with the experts simply not encountering other problem cases. This was not 

overly problematic in the consolidated knowledge base as all of the Fixed 

classifications were consolidated into a single class. The lack of disjuncts did prove 

to be an effective way of keeping rules simple and easy to compare however, and 

kept processing time to a minimum for recording classifications and determining 

statistics for validation; all of which was helpful in ensuring there were no conflicts 

between experts and in comparisons of expert practices.  
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3.3.4.2 Rule Conditions 

The effect of only having simple conditions, and only allowing the comparison of 

two attributes via adding a new attribute, is difficult to measure as there is no direct 

comparison to be made in this domain. There is assumed to be no negative impact, 

as the experts expressed no confusion over defining rules in this format, nor were 

there any examples of an expert attempting to use a different format. In fact, every 

attribute used in a rule condition, by any of the three experts, was a compound 

attribute derived from at least two other attributes. The time taken to define rules 

also indicates no difficulty with this rule implementation style. 

A further examination of the rule conditions shows that of the 115 attributes 

available, only 20 (17%) were used by the three experts in rules; 18 in the 

individual knowledge base and 13 in the collaborative; and as mentioned all were 

compound attributes, derived from other available attributes. If this is taken into 

account and they are broken into their distinct components, this gives an actual 

figure of 50 attributes used (44%). While still seemingly low this is not especially 

unexpected: extra attributes are recorded from the same testing procedures as those 

more commonly used, and hence cost nothing extra to calculate but are included for 

completeness. Each of these extra attributes also has an associated predicted 

reference value, leading to a large number of extraneous attributes. 

3.3.5 Rule-Based Thinking 

There is a concern with this study, which was also raised in the EMCRDR study 

(Ling, 2006), that there may have been a detrimental shift of focus by the experts 

from case-based to rule-based thinking. In both studies the experts exhibited a more 

than desirable focus on the rules being entered rather than the cases being classified: 

each expert would be consciously trying to define correct rules rather than correctly 

classify cases, which can lead to a series of detrimental effects relating to the 

change from an evidence-based, cased based reasoning approach, to a more simple 

expression of conscious knowledge. 

It appears that some of the modifications implemented here did have this effect. The 

clearest evidence that such a shift occurred was the tendency from every expert to 

focus on making individual rules correct, at the expense of classifying cases 

completely before moving on to a different case. Each expert chose at some time to 
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move on to working on another case, or go back to a previous case and make 

changes, without completing the classifications for the current case. This is 

highlighted by the number of cornerstone cases which received further 

classifications after the experts had already accepted them as correct: 24 in the 

collaborative knowledge base and 42 in the independent. This includes experts re-

examining and modifying the classifications for individual cases. These numbers 

are further bolstered by the number of cases that were viewed without being 

completed: 41 in the collaborative knowledge base and 33 in the independent. 

While none of these incidents can be strictly interpreted as an expert switching 

between cases in order to complete an individual rule, the frequency of movement 

between incomplete cases suggests that the experts have a tendency to consider the 

cases as a dataset to be used to define rules, rather than as a series of individual 

cases for incremental classification.  

This is not a surprising result: given that the ultimate goal of this project is to learn 

new information from the dataset, the cases have deliberately been presented as part 

of a dataset for defining rules. It is also important to note that the effects of this shift 

are both positive and negative. As described previously, the extra validation 

allowed by the dataset provides benefits to the knowledge acquisition, likely 

benefitting in the accurate acquisition of tacit knowledge; and a rule-centric 

approach improves the speed of knowledge acquisition in the early stages of the 

process, as the expert can simply define the rules they are most familiar with. 

However, the risks are that as the cases are not completed the validation will be less 

likely to be able to assist; and if cases are only examined to a shallow level before 

continuing it is very unlikely to reveal any tacit knowledge. 

As none of the evidence listed here is uncommon in RDR knowledge acquisition, 

nor does this mode of thinking about the process seem unlikely, it is surmised that 

this rule-centric thinking is probably reasonably common in RDR knowledge 

acquisition; though perhaps not to the extent that is apparent in this study. While it 

may occur in any RDR knowledge acquisition, it seems reasonable to assume that 

the effects are fairly limited, given the success of the RDR method in general. 

Nevertheless care should be taken to avoid compromising the evidence-based nature 

of the knowledge acquisition and validation wherever possible.  



 
132 

3.3.5.1 Misunderstanding the rule structure 

Many of the biggest problems in the knowledge acquisition, and especially in the 

knowledge consolidation, occurred due to misunderstandings of how the knowledge 

base structure functioned. Most experts expressed confusion at least once about 

exactly how the rule they were entering would affect the outcomes of the 

knowledge base. In almost every case the experts’ worries resulted from over-

thinking the problem, and a lack of understanding of how the rule structure worked. 

It is possible that these issues were more prevalent due to the exhibited rule-based 

thinking: as the experts were concentrating on defining a knowledge base for a 

dataset, rather than on classifying cases, they may have become overly concerned 

about how to define the most effective rules rather than in classifying each case 

correctly. This can have a detrimental effect on the knowledge acquisition, by 

reducing the likelihood of acquiring tacit knowledge, and by causing confusion as 

the expert tries to understand the knowledge base structure and, as was seen in this 

study, makes mistakes in rule definition through that confusion. 

These misunderstandings occurred quite frequently with experts unsure about the 

optimal way to resolve a misclassification, trying to make sweeping changes to the 

knowledge base outcomes with a single rule. In all instances when any such issue 

arose, the administrator made the recommendation to the expert that they should 

focus on the case they were working with – simply make sure that all classifications 

are correct for the current case. Once correct, move on to the next case regardless; 

the system will ask you to solve any error when it actually becomes a problem. If 

the current classifications are not correct, then resolve them following the usual 

steps: select the erroneous classification and choose the Change conclusion option; 

then describe why the current classification is wrong. This advice was accepted by 

each expert when given and resolved the immediate problem, but the issue still 

recurred afterwards, and would be expected to continue to occur if the knowledge 

acquisition continued.  

One of the most common problems causing such uncertainty was the expert 

retrospectively viewing a rule and deciding that the rule had been entered 

incorrectly – a typical example is a desire to tighten a rule by changing a condition 

from less than 70 to less than 60. The correct way of resolving this issue in 

traditional MCRDR is to add an exception or stopping rule, specifying that if the 
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value is greater than or equal to 60 then the alternate classification, or no 

classification, should apply. However, as has been seen by the way in which experts 

attempted to correct rules, when considering the knowledge base in terms of the 

rules that it contains this is not an intuitive step to make. Intuitively, the rule 

condition should just be changed from 70 to 60, and the condition the expert 

expects to be adding is less than 60 rather than greater than or equal to 60. The 

examination of the classifications which used multiple rules showed how, after 

realising that they could not simply change an existing rule, the experts would not 

reach the correct solution and would attempt to add an exception rule with the same 

classification hoping that it would override the current (incorrect) rule. 

In this instance, following the advice to focus on the case and its classifications 

rather than the rules, their action should be to do nothing: the case has the correct 

classifications already, so they should move on to the next case and wait until the 

error presents itself by incorrectly classifying a new case. However this is a difficult 

step to take when the expert already knows that the problem exists, particularly 

when they understand that their focus is to be training the system with their 

knowledge: with accompanying concerns that they might forget about the error, the 

system might misrepresent their knowledge to other experts, and that this error 

might be the cause of more significant problems in the future. This problem is much 

more significant when the expert is focussed on defining correct rules, as the 

experts often appeared to be in this study. This is unfortunately a problem with 

using MCRDR to acquire knowledge for the sake of acquiring knowledge; while 

MCRDR acquires knowledge well through routine use, where experts are focussed 

on completing each case correctly and not at all concerned with the structure of the 

knowledge base, it performs less well otherwise. 

3.3.5.2 Irreparable Mistakes 

On the problem of correcting a loosely-defined rule, it is also possible that the 

mistake cannot be corrected under the MCRDR method. It is quite conceivable that 

there may not be another case in the dataset which is covered by the incorrect 

portion of the rule, in which circumstance the knowledge base is wrong, and known 

to be wrong, but cannot be corrected. To illustrate: assuming that there is a case 

with a Temperature of -10 degrees. A rule is defined of the form Temperature ≤ 5 
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→ Freezing, where Temperature ≤ 5 is the condition and Freezing the classification. 

After entering this rule, the expert realises that this is incorrect: the condition should 

state Temperature ≤ 0. To resolve this there should be a stopping rule added with 

the condition Temperature > 0. However, this cannot be added under the context of 

the existing case: the condition Temperature > 0 does not apply to this case, and 

will be rejected. At any rate, the case should have the classification Freezing and so 

removing the classification under the context of the current case would be wrong. 

Instead, the expert would continue going through cases until they find a case which 

has a Temperature between 0 and 5, which would be classified incorrectly by the 

current rule, and provide the opportunity to add the stopping rule. The issue arises 

when there are no cases with a Temperature between 0 and 5: the rule cannot be 

corrected, as there is simply no context to provide justification that the rule should 

be changed.  

There are various solutions to this problem. Perhaps the most obvious solution is to 

allow the expert to edit rules, as was used in the EMCRDR study. This however 

goes against the general RDR philosophy that knowledge should never be removed, 

only added to, based on the assumption that knowledge that is entered is correct in 

the context it was entered in, and therefore should remain as long as that context (i.e. 

the case it was based on) is believed to be true. This assumption is valid in this 

situation, and helps to ensure that knowledge is only entered when there is 

supporting evidence (a case demonstrating the principle represented by the rule). 

However the problem in this example is that the knowledge entered is correct, but 

not correct enough.  

The common way to correct the mistake, and the only solution that strictly adheres 

to the philosophy of never removing knowledge from the knowledge base, is to add 

a stopping rule with no conditions to the incorrect rule, under the context of the 

original or a similar case. This will cause the classification Freezing to never be 

reached by this rule, as it is always overruled by its stopping exception. Then a new 

rule is added for the case, stating the desired knowledge – Temperature ≤ 0 → 

Freezing. While this approach works perfectly well, it can cause the knowledge 

base to become cluttered with useless rules that will never fire, which has two 

negative impacts: firstly, it takes up unnecessary processing time, and secondly, 

these rules can make interpreting the knowledge base very confusing when 
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requesting an explanation for how a classification was reached. The various 

strategies used to restructure and reduce a knowledge base can be implemented here; 

however a periodic post-processing, taking the system out of use and restructuring 

is not ideal as it requires specific and periodic intervention. As mentioned, this is 

the approach that is taken in typical MCRDR developments, and studies have failed 

to find significant detrimental effects from this process (Kang, 1996; Suryanto, et 

al., 2002). This is the method that was used in this study, as a part of the knowledge 

base consolidation, with the administrator manually correcting these rules where 

appropriate.  

A refinement of the rule editing/removal device used in the EMCRDR study 

provides another option: the option of ―undoing‖ the last created rule, rolling the 

knowledge base back to before the newest rule was added so the expert can add it 

again more correctly. This would not have solved all of the instances of such 

problems in this study however, where many of the rules with problems were 

discovered after a few more cases had been examined and further rules added, so is 

unlikely to be of much benefit in general knowledge acquisition. 

A more extreme solution is to allow the expert to define rules outside the context of 

a particular case. This however allows any rule to be defined without requiring any 

evidence, which removes one of the most basic rule validation mechanisms, 

removes all evidence to support and justify the rules, and negates many of the 

advantages of the MCRDR system. If cases have been reviewed, or are 

subsequently reviewed, then cornerstone cases may still be identified for such rules.  

3.3.6 Interface Issues 

Many of the issues encountered, such as implementing rules incorrectly, can be 

attributable to the experts misunderstanding the system or the interface. It was noted 

that of the 15 experts who at various times tested the system and defined rules, 

those with more obvious familiarity with working electronically encountered less 

problems. In particular those experts who were familiar with working in an online 

environment (specifically web forms and related technologies) had very little 

trouble using the system as directed. Indeed the student users who participated in 

the knowledge comparison study, described in section 5.3.2, showed remarkable 

aptitude in identifying within seconds what options were available to them, and to 
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be able to clearly identify, understand, and follow prompts. In contrast, the more 

experienced experts were generally much more hesitant in using the system, had 

difficulty identifying options, and generally had difficulty following the interface. It 

is difficult to ascertain exactly which errors were caused by these interface 

problems; however they would seem to have had some effect on increasing the 

number of misunderstandings and definition problems. This is a failing of the lack 

of training provided to the experts in how to use the system, where more practical 

instruction was needed rather than online tutorials and documentation. This is more 

a point of consideration for any future development rather than a significant 

problem, as although the errors slowed knowledge acquisition and made 

consolidation more difficult, they do not appear to have significantly affected the 

end result. 

3.3.7 Multiple Experts 

3.3.7.1 Identified Errors 

Listing the creator of a rule seemed effective in reducing the number of conflicts: it 

was observed that experts would be more cautious and thorough about changing 

rules when they were aware that it was another expert’s input, and they were not 

just correcting their own previous mistake. It was also observed that the experts 

were more comfortable changing the rules entered by the administrator than rule 

entered by another expert, especially when there was a feeling that the other expert 

would probably know better than themselves. However, it is assumed that this was 

successful partially because each participant was at least acquainted with each other 

expert, and knew of their qualifications and experience. For a larger scale study 

including many experts it may be important to, with participant consent, list each 

expert’s credentials so that other experts can check who is disagreeing with them, 

and to perhaps include a simple facility for communication between the experts. 

This would keep the system open to many experts of many backgrounds. It would 

also be an interesting study to ascertain what differences occur between displaying 

expert credentials and not: for a knowledge discovery system it may well be 

beneficial to attempt to convince experts to not dismiss any rule without 

examination of the data, by not letting them see who created the rule. This would, 

however, need to be balanced with the range of experience and knowledge of the 
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participating experts, to avoid having experts take too much time needlessly 

questioning domain principles, and would require an effective conflict resolution 

strategy.  

3.3.7.2 Identified Conflicts  

While there were multiple strategies in place to resolve conflicts in expert opinion, 

in practice it was found to require more direct intervention. The case highlighting 

approach, showing cases that had been disagreed with in red, proved unsuccessful 

due to the difficulties in organising the timely participation of multiple experts. Due 

to the typical restrictions on expert availability, experts preferred to work with the 

system in discrete time periods, trying to consolidate their interactions into as few 

sessions as possible. The busy and conflicting schedules of each expert further 

meant that these sessions were often quite separated, resulting in there being very 

little overlap in time between the inputs of one expert and another. Hence, it became 

very unlikely that an expert would ever, without direct prompting, access the system 

and see cases which had been disagreed with. With the possibility of experts 

noticing past conflicts effectively removed, it became reliant on the expert who 

made the new rule to contact the other expert and correct them or open discussions, 

which never occurred: given that the experts were busy, they unsurprisingly were 

not interested in taking the time to start a dialogue over every potential difference; 

each of which may only represent an input error. There was generally an attitude 

that the other expert had either only made a minor oversight, or were simply 

mistaken and that they would most likely realise their mistake if they ever looked at 

it again; further, that now that the system was correct (in their view), why should it 

need any further discussion? With these simple justifications and a busy schedule, it 

became clear that these methods of conflict identification would not work, as the 

likely outcome would be that only one party would be aware of any disagreement, 

and would probably pay little attention to it, considering it fixed.  

Given the lack of success of expert-initiated methods, the conflict resolution fell to 

the other alternative: which was for the administrator of the system to resolve the 

conflicts by contacting the experts involved and initiating a discussion. This was a 

far from ideal situation as the administrator lacked the expertise to be able to 

interpret the classifications accurately. This combined with the different phrasings 
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and terminology used, and different levels of detail that experts used in their 

classifications, made identifying true conflicts and communicating them to the 

experts a more difficult and inefficient task than it may have been. Nevertheless, of 

the 5 conflicts identified, all were easily resolved by email discussions within a few 

days of being identified. This approach is considered successful however, as it kept 

required expert time to a minimum, which is still the bottleneck and major problem 

faced in such work.  

There were minor miscommunications due to misunderstandings of the domain 

from the non-expert administrator. It is suggested that in a larger scale project this 

may need to be resolved by having someone with sufficient expertise in the area act 

as mediator; or, by ensuring sufficient commitment from the experts involved that 

they would be able to regularly access the system and review cases, in an 

overlapping time period. It is expected that in a commercial setting with definite 

outcomes for the experts involved, especially if they are paid to participate, that 

either of these would be a viable possibility. 

A third option of conflict resolution was considered for this study, whereby 

whenever a conflict arose from an expert changing a previously accepted case, the 

system would generate an email to the expert who made the initial classifications 

thereby automatically initiating discussions. It became apparent that this would be 

impractical for the experts involved as their schedules for interacting with the 

system were widely deviant, and they would not welcome unsolicited emails, 

particularly if many were minor errors that required no further action. Due to the 

lack of verification in this process and the potential for a large number of emails to 

be generated, this is not recommended as the best solution; particularly with the 

possibility of frustrating the experts who are, in any knowledge acquisition venture, 

the most valuable and important resource.  

3.3.8 Classifications as Rule Conditions 

It was noted at many stages throughout the knowledge acquisition process, with 

many different experts, that one of the initial instinctive responses for experts was 

to define new classifications in terms of previous classifications; or to put it another 

way, to use existing rule conclusions as new rule conditions. This behaviour 

generally disappeared once the expert was informed that this was not possible, 
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requiring only a minor mental shift to always think about classifications separately. 

However the desire would still occasionally manifest in an expert attempting to 

define sub-classifications by adding exception rules, usually without a complete 

understanding of what the end result would be.  

3.4 Conclusions 

The methods described here have resulted in a functional expert system for lung 

function interpretation: a collection of reproducible expertise on how to classify 

lung function cases. This knowledge was successfully compiled from the acquired 

knowledge of multiple experts, both as a collaborative acquisition effort and as a 

post-acquisition consolidation. The use of an extensive dataset of lung function 

cases provided additional evidence-based validation of the knowledge provided, 

which was especially useful in the comparison of expert knowledge and the 

resolution of knowledge conflicts. Additionally, although the results expressed here 

show an MCRDR expert system that conforms to the usual standards of such 

systems, an analysis of the dataset suggests that the system’s knowledge may be 

incomplete. 

It is important to note that the methods have several limitations. Providing the 

dataset for extra rule validation invoked a slight shift away from a case-based focus 

to a rule-based focus, confusing and slowing the experts in the knowledge 

acquisition process. Whether the benefits provided by these modifications outweigh 

the detriments is unclear, but should also be considered in light of the applications 

of those modifications presented in the following chapters.  

Both the processes of having multiple experts work within one knowledge base, and 

of having multiple individual knowledge bases compared and combined seemed to 

function effectively based on the results that were available. The collaborative 

knowledge base seems to be a more efficient method of consolidation, with much 

less effort required by an administrator, but results from this study are far from 

conclusive on this point. The post-acquisition comparison and consolidation 

provided much greater benefit in identifying differences of opinion and resolving 

them, to both experts’ satisfaction and education. Again, however, a comparison 

between the two is inconclusive. 
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The study does show that there are significant differences between experts’ 

practices in the lung function domain: even after having removed terminology 

differences between experts, 63.1% of the dataset received different classifications, 

some of these conflicts even occurring between classifications reached by the same 

expert at different times. This would suggest that the consistency that could be 

provided by an expert system such as the one described in this thesis could be 

greatly beneficial. Similarly the potential for collaboration to develop agreed upon 

standards is a major benefit. 

The produced expert system can be of benefit to the lung function domain, assisting 

experts in interpreting cases; of more relevance to this study however, it also 

provides a store of knowledge that can assist in knowledge discovery and data 

mining, as will be explored in the next chapter. 
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Chapter 4 Knowledge Discovery and 

Development 

4.1 Introduction 

In this age of ubiquitous electronic data logging, transfer and storage, enormous 

amounts of archived data are being created and added to by every action we make 

and decision we take. A recent study has estimated that 295 exabytes (2.95x1020 

bytes) of data were stored in 2007, following a 23% increase per year since 1987 

(Hilbert & López, 2011). If analysed much of this data could reveal patterns, 

representative of recurring events or trends, which could be used to predict future 

events and assist in decision making in a huge range of fields (Witten & Frank, 

2005). Such results can provide not only monetary benefits in areas such as 

identifying business trends and improving working efficiency, but also in critical 

areas such as environmental prediction or disaster prevention and management (D. 

Zhang, et al., 2002).  

Health and medical data is being electronically archived as much as any other form 

of data (Cios & Moore, 2002a; Prather, et al., 1997; Steinberg, Wang, Ford, & 

Makedon, 2008). It was estimated in 2002 that three quarters of a billion people had 

medical data recorded in electronic form in North America, Europe, and Asia (Cios 

& Moore, 2002a). The analysis of medical data presents unique challenges, but can 

provide unique benefits: if done successfully, it has the potential to provide 

improvements in health care for the population, and improvements in quality of life 

for the individual (Cios & Moore, 2002a; Roddick, et al., 2003). 

Knowledge discovery is the process of analysing archived data in order to find new 

knowledge (Goebel & Gruenwald, 1999). A knowledge discovery process is not 

simply an automated mathematical comparison or logical inference however. In 

order to discover truly useful and new knowledge, a level of existing knowledge 

about the data must be identified and incorporated, and the results of the data 

analysis must be examined and interpreted by a human expert (Fayyad, et al., 1996a; 

Liu, et al., 1997; Piatetsky-Shapiro & Matheus, 1994; Pohle, 2003). This is 

especially true in medical knowledge discovery, where there is already a vast 
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amount of complex existing knowledge. The results of knowledge discovery from 

medical data also require specific and extensive expertise to interpret, and the 

validity of the discovered results are critical (Cios & Moore, 2002a; Roddick, et al., 

2003). 

 

Figure 4-1: The methods presented in this thesis; the highlighted section shows the components 

presented in Chapter 4 

This chapter will present a new approach to knowledge discovery in complex 

domains, which can effectively incorporate existing knowledge in data and results 

analysis, and can integrate newly discovered knowledge into a central knowledge 

base. This is achieved by involving the user at every stage of the process, and using 

knowledge acquisition techniques to reduce the costs of expert involvement. The 

method is tested in the field of lung function. The knowledge base and knowledge 

interface described in section 3.2.2 are used to provide context for data exploration, 

while the addition of data mining techniques provides assistance in discovering new 
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relationships or patterns. These patterns can then be interpreted by the user and 

formalised as new knowledge, which is automatically incorporated into the 

knowledge base. The knowledge discovery component of the study is highlighted in 

Figure 4-1. 

4.2 Methodology 

4.2.1 Structure 

The method presented in this study allows a user to explore a dataset to discover 

new relationships and patterns, with the benefit of having identified existing 

patterns. The knowledge discovery method consists of a set of distinct components: 

a database of cases, a knowledge base of rules to classify those cases, a composite 

of functions for calculating statistics and mining interesting relationships in the data, 

and an interface for a user to explore these elements and direct the functions. The 

structure of these components is summarised in Figure 4-2. The database, the 

knowledge base, and the process used to build the knowledge have been described 

in section 3.2; this section will describe the exploratory analysis functions, and the 

process of discovering new knowledge via statistical calculation and data mining.  

 

Figure 4-2: Simplified structure of the knowledge discovery process 
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4.2.2 Data Analysis 

The data analysis functions include simple data mining and statistical calculations, 

which can provide additional data and suggest further links within the database and 

the knowledge base. These are incorporated into the online knowledge acquisition 

and expert system described in Chapter 3 through a dedicated data search and 

analysis interface. By incorporating this into the RDR process, an environment is 

created for exploring trends in the data and testing hypotheses about why those 

trends exist: the knowledge definition options provided by the RDR system can be 

used to identify data of interest, and the data mining functions present any 

interesting relationships for that data.  

These statistical and data mining components are presented in two different sections 

of the system: a case search and statistics page, and as was briefly described in the 

preceding chapter (section 3.2.2), a section incorporated into the rule definition 

page providing additional validation to the knowledge acquisition system. 

4.2.2.1 Case Set Statistics 

The primary interface for the knowledge discovery functions is the search and 

statistics page. The page contains a web form allowing the definition of class and 

attribute criteria to define a subset of cases (shown in Figure 4-3). The form is very 

similar to the rule definition interface, with the notable exception that the existence 

or absence of a class can be included as a condition. These allow the user to identify 

specific subsets of cases to work with or examine; for example, all cases who 

display attribute x and not y, or have Class A. The inclusion of a class as a condition 

uses the maintained case-class-rule records to identify which cases should be 

included in the set, for reasons of efficiency only: if the class conditions were 

converted to their constituent rules, and those rules converted to their constituent 

attribute conditions, the resultant case set would be identical. In essence, by 

including a predefined class as a search condition, the user is specifying that at least 

one of the rules which currently lead to that conclusion must be true. Disjuncts are 

also provided as an option for all of these conditions.  

The page then presents a summary of statistics for that set of cases, compared 

against statistics for the entire dataset, including highlighting any unexpected 

relationships identified through the data mining functions. The use of the entire 
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dataset for comparison provides expected values for the attributes and expected 

frequencies for the classifications, under the assumption that the dataset is 

representative of the wider domain. However the user may also choose to select 

another set to compare against other than the entire dataset, if there is some more 

specific comparison to be made. There is finally an option for the user to transfer 

their existing search conditions to the rule definition screen, to define a 

classification for the current set. These calculations will be described in more detail 

in the following two sections. 

 

Figure 4-3: Partial screenshot of the case set search and statistics screen 

4.2.2.2 Rule Statistics 

The rule statistics section contains the same information as the search page statistics, 

but presented concurrently with the rule definition form. The statistics it presents 

relate to the rule as defined by the current conditions and currently selected class.  

In early versions of the system there was a clear distinction between the combined 

search and data analysis section, and the rule definition section, with statistics 

provided only for the search and case set component. As work progressed it became 

more apparent that the two were closely related, until by the end of development the 

two could have been integrated entirely into one function. The only distinction 
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between the search screen and the rule definition screen is that the search screen 

allows the inclusion of conditions based on classes; and the rule screen requires that 

the rule be given a classification, which it uses to perform MCRDR validation 

against cornerstone cases. Neither of these present a distinct problem: the inclusion 

of a class for the current set of conditions is trivial, as it can simply be any 

placeholder until the user selects a name; and the inclusion of an enhancement such 

as Recursive RDR or MCRRR would allow class conditions to be legitimate rule 

conditions. This highlights the closeness of the processes of knowledge acquisition 

and knowledge discovery: one, applying an expert’s knowledge to a set of data in 

order to formalise that knowledge; and the other, analysing a set of data using 

expert knowledge, in order to formalise some new knowledge. While this is a 

generalisation, and the specifics of how the data is examined and how knowledge 

applied are different, this nevertheless shows the similarity between the two 

processes. 

4.2.2.3 Statistics and Measurements 

The measures used were primarily taken from association rule mining, information 

theory and probability measurements, given their applicability to exploratory data 

analysis and data mining in general (Creighton & Hanash, 2003; Lenca, et al., 2006; 

Marinica & Guillet, 2009). The measures were chosen for their ease of calculation, 

such that the system can be sufficiently responsive with a large database in an 

online environment, and for their simplicity, such that the experts could understand 

what was being indicated.  

In both the independent search screen and the rule definition statistics segment, the 

presented information is divided into three sections: class coverage, attribute 

statistics, and a summary of the 10 most correlated attributes. Each section is 

expandable on the screen to avoid unnecessary clutter. 

Class Statistics 

The class section displays each of the classes that are present in the case set 

currently being considered. For each class, the number of cases that have that class 

is displayed, along with the percentage of the current set which that number 

constitutes. Displayed for comparison are the number of cases that have each class 
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in the complete set, and finally the percentage of all members of that class that are 

in the current set. Each case count has a link for the expert to view and work with 

that set of cases, and each class has a link for the expert to view the rules that define 

it in the knowledge base. 

To determine the significance of relationship between the current set and each class, 

a number of measures are calculated based on the principle that the current 

conditions are the antecedent of an association rule, and the class is the consequent, 

in the form                                  . These measures included the 

confidence, gain, and Piatetsky-Shapiro gain (hereafter referred to as p-sgain). The 

support was displayed explicitly, for the rule and for each class, so is not included 

in interestingness calculations. The user has the option to specify three thresholds: a 

confidence threshold α, between 0 and 1; a gain threshold β, between 0 and n (size 

of the set); and a gain percentage threshold γ. The calculated measures are then 

checked against the user-variable thresholds to determine the interestingness of the 

relationship: if the confidence of the rule exceeds the confidence threshold 

 
       

 
     , the confidence is significant. The p-sgain measure returns the 

number of cases that have the class above what would be expected, based on the 

ratio of that class in the whole dataset. If this measure exceeded the user modifiable 

threshold β the class was marked as significant. To normalise this measure and 

allow a more even comparison between large and small classes, an extra measure 

was defined by dividing the p-sgain by the support of the rule. This was then 

compared to the user-defined threshold γ, and again if it exceeded the gain 

percentage threshold         

 
    , then the class was marked as significant. In the 

web interface, class statistics were highlighted progressively stronger shades of 

green the more measures were found to be significant. 

Attribute Statistics 

Below the class statistics are listed each attribute, grouped into six expandable 

sections: Patient Details, containing attributes such as sex, age, and height; 

Common Spirometry containing those spirometric measurements most commonly 

used by experts, such as FEV1, FVC and FEF25-75; Other Spirometry containing 27 

less commonly used spirometric measurements; Lung Volumes; Gas Transfer; and 
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the source of the data. The attributes contained in each of these groups, and the 

possible values for non-numeric attributes, are listed in Table 4-1.  

Patient Details  FEF25-75 Pre-BD  FRC 

Sex  FEF25-75 % Predicted Pre-BD  FRC % Predicted 

F  FEF25-75 Post-BD  IC 

M  FEF25-75 % Predicted Post-BD  IC % Predicted 

Age Spirometry: Other  ERV 

Height  FEV1 Δ after BD  ERV % Predicted 

Weight  FEV1 Δ % Predicted  SVC Pre-BD 

BMI  FEV1 / SVC Pre-BD  SVC Post-BD 

Smoker  FEV1 / PEF Pre-BD  SVC % Predicted Pre-BD 

yes  FEV1 / PEF Post-BD  RV / TLC 

no  FVC Δ after BD  RV / TLC % Predicted 

ex-smoker  FEV3 Pre-BD  VA / TLC 

missing  FEV3 % Predicted Pre-BD  Raw 

Pack Years  FEV3 Post-BD Gas Transfer 
Spirometry: Common  FEV3 % Predicted Post-BD  DLCO (Hb corrected) 

 FEV1 Pre-BD  FEV3 / FVC Pre-BD  DLCO (Hb corrected) % 

Predicted  FEV1 % Predicted Pre-BD  FEV3 / FVC Post-BD 

 FEV1 Post-BD  FET Pre-BD  VA 

 FEV1 % Predicted Post-BD  FET Post-BD  VA % Predicted 

 FEV1 % Δ after BD  FET Δ after BD  DLCO / VA (Hb corrected) 

 FVC Pre-BD  FIF50 Pre-BD  DLCO/VA % Predicted (Hb 

corrected)  FVC % Predicted Pre-BD  FIF50 Post-BD 

 FVC Post-BD  FEF50 Pre-BD  DLCO (uncorrected) 

 FVC % Predicted Post-BD  FEF50 Post-BD  DLCO % Predicted (uncorr) 

 FVC % Δ  FIF50 / FEF50 Pre-BD  DLCO / VA (uncorrected) 

 FEV1 / FVC Pre-BD  FIF50 / FEF50 Post-BD  DLCO / VA % Predicted 

(uncorrected)  FEV1/FVC % Predicted Pre-BD  PIF Pre-BD 

 FEV1 / FVC Post-BD  PIF Post-BD  TLC - VA 

 FEV1 / FVC Δ  FIF50 / PIF  COHb 

 PEF Pre-BD  FIF50 / PIF Post-BD  Haemoglobin (Hb) 

 PEF % Predicted Pre-BD  SVC / FVC Pre-BD  DLCO % Predicted /    

DLCO / VA % Predicted  

(Hb corrected) 

 PEF Post-BD  IVC 

 PEF % Predicted Post-BD Lung Volumes Other 
 FEF25 Pre-BD  TLC Source 

 FEF25 Post-BD  TLC % Predicted AH 

 FEF75 Pre-BD  RV RHH 

 FEF75 Post-BD  RV % Predicted TAHS 

Table 4-1: Statistics are calculated for these lung function attributes 
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For each of the numeric attributes, whenever statistics were displayed the minimum, 

maximum, mean, and the standard deviation were listed. For the nominal attributes, 

each allowable value was listed, along with a count of how frequently that value 

occurred in the current working set, and for comparison, how frequently it occurred 

in the overall dataset.  

Each attribute is also tested for potential interestingness, as defined by an 

unexpected association to the current set of cases. This was tested through various 

measures. Firstly, by using the range provided by the minimum and maximum 

values in the current set as the consequent of an association rule, and the conditions 

chosen by the user as the antecedent, in the form:                            

                   . As with the class statistics, the attributes were rated with 

confidence, gain, and p-sgain; for numeric attributes, the z-score of the mean for the 

current set (the difference between the mean of the attribute for the current set and 

the mean of the attribute for the entire set, divided by the standard deviation), was 

also calculated. If the difference exceeded the user-defined confidence threshold α, 

the attribute mean was marked as interesting, and the magnitude of the score 

provided. Likewise for gain and p-sgain, if the calculated values exceeded β or γ, 

respectively, then the attribute was marked as interesting (having some association), 

and the magnitude of each difference displayed with the attribute. Associated 

attributes were highlighted green and the magnitude of the significance indicated in 

simple terms, for example ―Cases in this range have the rule conditions 50% more 

often than expected‖. The attribute was highlighted a brighter green depending on 

how many measures found an association. 

Nominal attributes also had an information gain calculated for each value to 

determine if the conditions were a good predictor for that value. For numeric 

attributes, the information gain calculation was not performed automatically, but on 

request for each attribute (as the user hovers the mouse cursor). When requested the 

system uses information gain calculations to find the range which optimally predicts 

the set defined by the current rule conditions.  A screenshot showing a small sample 

of attributes is provided in Figure 4-4. 
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Figure 4-4: A small selection of attribute statistics 

Also displayed, separately to the main list of attributes, was a summary of the 10 

most associated attributes in order of the normalised p-sgain measure, to provide 

the user a more immediate impression of interesting findings.  

4.2.2.4 Knowledge Discovery Process 

Figure 4-5 shows the computational process of the knowledge discovery system, 

from the user defining their set conditions and specifying a comparison set (which 

defaults to the entire dataset), and finishing with a series of options for the user. 

Fundamentally the knowledge discovery method is quite similar to the knowledge 

acquisition method. The user defines search conditions to describe the set of cases 

they are interested in, in a very similar manner to defining a rule, except that they 

can also specify conditions requiring the presence or absence of particular 

classifications. Statistics are calculated for the user-defined set, summarising details 

such as the ranges and averages for each attribute, and the prevalence of each 

classification. The same statistics are calculated for the comparison set. The data 

mining features are then used to compare these two groups of statistics, finding 

unexpected differences and marking them as potentially interesting, along with the 

reasons for marking them as such. The user can then further refine their search 

terms to examine a more specific subset of cases; view more detailed statistics such 

as finding the best information gain range; view a specific case set defined by a 

class or attribute range; or, if they believe that the currently selected set has some 
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property worth recording, they can define a class to apply to that set with the rule 

generated as from the search terms specified. The new knowledge described by this 

rule and classification are then validated against existing cornerstone cases, in order 

to maintain the validity of the knowledge base, and the new knowledge is 

immediately available for use; as per the incremental knowledge acquisition. As this 

study did not implement an MCRRR approach, if the user chooses to define a class 

for the current set and a class is being used as a condition, then the rule leading to 

that class is extracted and its conditions added to the attribute conditions already 

defined. 

 

Figure 4-5: Computational Process of the Exploratory Analysis Component 
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4.2.3 Testing the Method 

To test that the method could successfully discover new knowledge from complex 

data, the system was used to resolve and expand on research questions that were 

raised in respiratory literature, or that were suggested by lung function experts as 

interesting topics to consider and answer through data analysis. To this end a series 

of existing respiratory studies have been examined, and their hypotheses tested 

within this framework. Respiratory experts were consulted throughout in order to 

ensure accuracy and a correct understanding, and to interpret results where 

necessary.  

4.2.3.1 Clinical Studies 

Study 1 

A pertinent study is Agahi’s work from 2007, which sought to make similar use of 

archived data in the examination of three clinical questions in lung function. The 

study by Agahi used the same dataset as the EMCRDR study of 484 respiratory 

cases. However, the classifications provided by the RDR classification system were 

not used in the analysis, with all evaluation carried out manually with Microsoft 

Access (Agahi, 2007).  

Clinical Question 1: Describe the distribution and pattern of lung function 

of subjects who met the FEV1 and/or American Thoracic Society positive 

reversibility criteria. 

Assessing whether a patient demonstrates a significant positive bronchodilator 

response is a critical factor in differentiating asthma from Chronic Obstructive 

Pulmonary Disease (COPD) (Agahi, 2007). A significant response is indicative of 

asthma, whereas a patient with COPD will exhibit a minor response or no response 

at all (Bleecker, 2004; Meneely, Renzetti, Steele, Wyatt, & Harris, 1962); although 

some studies have questioned whether the degree of reversibility is as 

distinguishing as previously thought (Bleecker, 2004; Burrows, Bloom, Traver, & 

Cline, 1987). A substantial component of this problem may be that there is little 

agreement on what constitutes a significant (positive) bronchodilator response, with 

laboratories using different definitions. The change in FEV1 (FEV1 Δ) is the 

attribute most commonly used to define reversibility, with either the absolute 
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change, percentage change, or change in percentage of the predicted value (Agahi, 

2007; Borg, Reid, Walters, & Johns, 2004; Jenkins & Young, 2004). Various other 

measures have been used, such as the FEV1/FVC ratio or the FEF25-75%, but are not 

recommended due to being misleading for different FVC values (Agahi, 2007; 

American Thoracic Society, 1991). The American Thoracic Society (ATS) and the 

European Respiratory Society (ERS) define a positive bronchodilator response as an 

increase post-bronchodilator of at least 12% and 0.2L for either FEV1 or FVC 

(American Thoracic Society, 1991). 

2007 Study Results 

Agahi described that 117 (24%) of the 485 cases met the ATS/ERS criteria for 

reversibility, with 84 cases matching FEV1 criteria and 65 matching the FVC 

criteria. Agahi also stated that 31 cases satisfied both FEV1 and FVC criteria5. Also 

examined was the number of cases that matched the various sub-criteria of the 

ATS/ERS definition for reversibility, although no conclusions were reached about 

this data. These findings are summarised in Table 4-2 and Table 4-3.  

FEV1 Δ ≥ 12% and FEV1 Δ ≥ 0.2L FVC Δ ≥ 12% and FVC Δ ≥ 0.2L Both 

84 (17.3%) 65 (13.4%) 31 (6.4%) 

Table 4-2: Numbers of subjects, out of 485, matching different ATS/ERS reversibility criteria 

in Agahi’s study (Agahi, 2007) 

 Cases % with FVC response % with FEV1 response 

FEV1 response 84 36.9% 100% 

FVC response 65 100% 47.7% 

FEV1 or FVC 117 55.6% 71.8% 

Table 4-3: Ratios of subjects in Agahi’s study with different reversibility criteria (Agahi, 2007) 

Agahi performed one more detailed analysis for the data: ―In subjects who met the 

ATS/ERS criteria is the correlation with DLCO stronger in the FVC responders than 

FEV1 responders?‖. It was reported for this question that FEV1 showed a stronger 

                                                 
5 These numbers are out by 1, but this has little impact on the findings. 
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correlation to DLCO than FVC, with an R2 value of 0.196 compared to 0.001; and 

also that the mean DLCO was higher for FEV1 respondents than FVC respondents. 

This was said to suggest an association between FEV1 response and parenchymal 

function (Agahi, 2007).  

Testing Procedures 

As compared to the analysis performed by Agahi, the options provided by this 

system in incorporating existing knowledge, testing new knowledge, and 

identifying relevant correlations allow a more efficient and detailed analysis.  

The analysis began by defining separate classifications for FEV1 and FVC 

reversibility, with the rules [FEV1 change ≥ 0.2L] AND [FEV1 change ≥ 12%] → FEV1 

Reversibility, and [FVC change ≥ 0.2L] AND [FVC change ≥ 12%] → FVC Reversibility.  

New Results 

The system showed that 7.9% of cases (235) displayed the class FEV1 Reversibility. 

Of these cases, 28.5% (67) also displayed the class FVC Reversibility, a lower ratio 

than the 36.9% found in Agahi’s study. 159 cases (5.4%) showed only FVC 

Reversibility; with 42.1% also showing a significant FEV1 response. This gives 327 

cases matching either of the criteria. These numbers are summarised in Table 4-4 

and Table 4-5.  

FEV1 Reversibility FVC Reversibility Both 

235 (7.9%) 159 (5.4%) 67 (2.3%) 

Table 4-4: Number of subjects, out of 2963, matching different ATS/ERS reversibility criteria 

in this study 

 Cases % with FVC Reversibility % with FEV1 Reversibility 

FEV1 Reversibility 235 28.5% 100% 

FVC Reversibility 159 100% 42.1% 

FEV1 or FVC 327 48.6% 71.8% 

Table 4-5: Ratios of subjects in this study with different ATS/ERS reversibility criteria 
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The percentage of cases overall matching each of the criteria were found to be 

smaller in this study, most likely because much of the data from this study are 

healthy patients whereas the data in the Agahi study were all patients referred for 

respiratory tests. The ratios between groups are roughly equivalent, although a 

higher ratio of Agahi’s subjects with a significant FEV1 response seem to also have 

a significant FVC response; but the ratio of FVC responders to FEV1 responders is 

surprisingly similar. 

When examining the class statistics for the FEV1 Reversibility class, an interesting 

relationship was immediately apparent: there appeared to be a stronger overlap with 

cases with the Low DLCO class than with cases that have the FVC Reversibility 

class. The numbers of cases present are summarised in Table 4-6. Of the 235 cases 

with a significant FEV1 response (in other words, belonging to the FEV1 

Reversibility class), only 67 (28.5%) also had a significant FVC response; whereas 

134 (57%) had Low DLCO. However this confidence test is misleading considered 

by itself. The p-sgain measure provided a more educated indication, as illustrated in 

Table 4-7. As shown, 81% more cases have FVC Reversibility than expected, 

compared to 59% more than expected with Low DLCO. This is repeated, to a 

weaker extent, with the cases that have a significant FVC response: 45.9% of cases 

have Low DLCO, with a p-sgain of 49.21%. The confidence is still higher between 

FVC Reversibility and Low DLCO than between FVC and FEV1 Reversibility, but 

the p-sgain shows a stronger relationship between the reversibility measurements. 

The identification that an FEV1 response is correlated to a reduced DLCO is 

unsurprising in itself: a reversible FEV1 result implies that the airflow is reduced, 

which would likely cause a reduced DLCO test result. It would be expected that a 

post-bronchodilator DLCO test would show an improvement proportional to FEV1.  

 FEV1 Reversibility FVC Reversibility Low DLCO 

FEV1 Reversibility 235 67 (28.5%) 134 (57%) 

FVC Reversibility 67 (48.6%) 159 73 (45.9%) 

Table 4-6: Numbers of cases belonging to various classes (number in parentheses is the 

confidence measure that the two are related, or, the ratio of the class within the class under 

consideration) 
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 FEV1 Reversibility FVC Reversibility Low DLCO 

FEV1 Reversibility - +54 (+81%) +79 (+59%) 

FVC Reversibility +54 (+81%) - +35 (+49%) 

Table 4-7: p-sgain scores for cases with FEV1 Reversibility and FVC Reversibility (indicates, for 

a given class, how many more cases have the second class than expected, shown as the number 

of cases and as a percentage of the class) 

The next most significant class relationship displayed was with the Obstruction 

class, as 63% (150) of the cases demonstrating FEV1 Reversibility were also 

classified as having Obstruction. This is an increase of 80 cases (54%) above the 

expected number (based on the ratio defined by the larger dataset), indicating a 

strong correlation. For the 159 cases demonstrating significant FVC reversibility 

(having been classified with FVC Reversibility), 108 (67.9%) have Obstruction, an 

increase of 61 cases (56.52%) more than expected. These ratios indicate that the 

definition of reversibility correlates well with Obstruction, as would be expected 

because an obstructed patient has more potential for improvement.  

Table 4-8 summarises the distribution of classes for each definition of reversibility. 

The numbers suggest that cases displaying a significant FVC response may also 

have more severe obstruction, but are overall less likely to have a reduced DLCO, 

evidence of gas trapping or hyperinflation, and are more likely to in fact have 

normal lung function. 
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Class Expected 

FEV1 

Reversibility FEV1 p 

FVC 

Reversibility FVC p 

Obstruction 875 63.8% (150) < 0.0001 67.9% (108) < 0.0001 

Mild Obstruction 133 8.5% (20) < 0.01 3.1% (5) - 

Moderate Obstruction 312 50.6% (119) < 0.0001 38.4% (61) < 0.0001 

Severe Obstruction 29 4.7% (11) < 0.0001 8.2% (13) < 0.0001 

Restriction 113 6.8% (16) < 0.01 6.3% (10) < 0.05 

Hyperinflation 263 17.9% (42) < 0.0001 13.8% (22) < 0.05 

Gas Trapping 156 23% (54) < 0.0001 18.9% (30) < 0.0001 

Small Airway 

Obstruction 
81 6% (14) < 0.01 3.1% (5) - 

Low DLCO 691 57% (134) < 0.0001 45.9% (73) < 0.0001 

Normal Ventilatory 

Function 
1007 14.9% (35) < 0.0001 20.8% (33) < 0.0001 

Table 4-8: Distribution of relevant classes for different ATS/ERS reversibility criteria, with 

confidence factor for the association, derived from the binomial distribution 

Next to be examined were cases that demonstrated significant reversibility together 

with Obstruction, this being a common indicator of asthma (Bleecker, 2004; 

Meneely, et al., 1962). The numbers are summarised in Table 4-9. Of the cases with 

Obstruction and FEV1 Reversibility, 58.7% of the cases were also classified with 

Low DLCO, a 60.25% increase from the expected ratio. This is a slight but 

insignificant increase compared to the 57% and 59% found for all FEV1 

Reversibility (p = 0.061). For the 108 cases with FVC Reversibility and Obstruction, 

49.1% also had Low DLCO, 52.48% more than expected. This appears to be a 

slightly stronger increase, but is still statistically insignificant when tested with a 

binomial distribution (p = 0.062). 
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 Cases Low DLCO p-sgain 

 FEV1 Reversibility 235 134 (57%) 59% 

 FVC Reversibility 159 73 (45.9%) 49% 

Obstruction and 

FEV1 Reversibility  150 88 (58.7%) 60.25% 

FVC Reversibility  108 53 (49.1%) 52.48% 

Table 4-9: Relationship for FEV1/FVC Reversibility classes, with and without Obstruction, to 

Low DLCO 

Most Associated Attributes 

For the cases showing significant FEV1 reversibility, the system indicated a 

relationship with many attributes, summarised in Table 4-10. Most significantly the 

percentage change in FVC after bronchodilator administration was highlighted as 

associated, based on a difference of 1.2 standard deviations from the expected mean 

of 2.48%, to the actual mean of 11.47%; notably just under the FVC reversibility 

criteria limit. Likewise the system indicated a relationship to the absolute change in 

FVC, with a 1.1 standard deviation change from 0.07 expected to 0.35.  

As can be seen, the FEV1/FVC ratio was also highlighted as associated, with a mean 

of 0.68 taking it below the GOLD threshold for defining obstruction. Subjects with 

FEV1 reversibility also showed a significant drop in both pre- and post-

bronchodilator PEF, FEF25-75% % of predicted, and FEF50.  
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Attribute Expected Mean 

Actual 

Mean Std Deviations 

FVC % Δ 2.48% 11.47% 1.2 

FVC Δ 0.07 0.35 1.1 

FEV1/FVC pre-BD 0.71 0.62 0.7 

FEV1/FVC post-BD 0.74 0.68 0.4 

PEF % of predicted  pre-BD 93.08% 75.77% 0.8 

PEF % of predicted  post-BD 95.37% 85.35% 0.5 

FEF25-75% % of pred. pre-BD 77.2% 47.62% 0.9 

FEF25-75% % of pred. post-BD 86.56% 61.84% 0.7 

FEF50 pre-BD 3.4 1.94 0.9 

FEF50 post-BD 3.76 2.63 0.7 

Table 4-10: Attributes indicated as related to the FEV1 Reversibility class 

Cases with FVC reversibility showed associations of varying strength with almost 

every spirometry measurement. Table A-1 in Appendix A shows these changes. Of 

note are that the RV showed a large increase from 108.69% of predicted to 136.86%. 

Similarly the FRC increased from 101.65% to 118.4%. VA/TLC was also reduced, 

from 0.86 to 0.78. Lastly diffusing capacity dropped from 84.13% of predicted to 

70.48%. 

The next analysis considered the secondary question in Agahi’s study, ―In subjects 

who met the ATS/ERS criteria is the correlation with DLCO stronger in the FVC 

responders than FEV1 responders?‖. As already described in Table 4-9, the system 

indicated a significant relationship between cases showing either FEV1 Reversibility 

or FVC Reversibility and those showing Low DLCO. The numbers show some 

relationship, and as with Agahi’s findings the relationship with FEV1 responders is 

stronger. Examining further, the absolute change of FEV1 after bronchodilators 

(FEV1 Δ) shows a strong Pearson correlation with all DLCO measurements 

(R=0.527 for uncorrected DLCO, p<0.0001), but with no significant correlation 

between the percentage change of FEV1 (FEV1 % Δ) and any DLCO measurement. 
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A weaker but still significant correlation is shown between the percentage 

improvement of FVC and DLCO measurements, (R=0.295 for uncorrected DLCO, 

p<0.0001, with stronger correlations between other DLCO measurements), although 

there is no significant correlation shown between absolute change of FVC and 

DLCO. The stronger relationship between FEV1 Reversibility and DLCO, than 

between FVC Reversibility and DLCO, also matches the findings of Agahi. 

Comparisons were also made between the set of Obstructed cases, and cases having 

both the Obstructed and FEV1 Reversibility classes, in order to examine what else a 

significant FEV1 reversibility might be shown to indicate, in the context of 

obstructed subjects. Some 150 subjects displayed both classes. The class 

associations are summarised in Table 4-11. The results indicate a statistically 

significant relationship to Evidence of Gas Trapping, Hyperinflation and Low 

DLCO. The indicated attribute association are described in Table 4-12. Expected 

values appeared for FEV1 and FVC bronchodilator change. When corrected for 

haemoglobin, DLCO showed an increase of 0.4 standard deviations, as did VA. 

Class Cases p-sgain p 

Evidence of Gas Trapping 42 (28%) 24 (58%) < 0.0001 

Hyperinflation 34 (22.7%) 16 (47.6%) < 0.0001 

Low DLCO 88 (58.7%) 41 (46.8%) < 0.0001 

Table 4-11: Classes showing the strongest association to cases with FEV1 Reversibility, for the 

150 cases with Obstruction 
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Attribute Expected Mean Actual Mean Std Deviations 

FEV1 % Δ 9.18% 22.2% 1.3 

FVC % Δ 5.86% 11.98% 0.6 

DLCO (Hb corrected) 14.78 18.16 0.5 

DLCO % of predicted (Hb 

corrected) 
55.81% 65.37% 0.4 

VA % of predicted 89.98% 98.14% 0.4 

Table 4-12: Some of the attributes indicated as most related to the FEV1 Reversibility class, for 

the 150 cases with Obstruction 

There were 108 cases in the dataset with both FVC Reversibility and Obstruction. 

The class comparison between those cases and cases with Obstruction are shown in 

Table 4-13. Two of the same classes were identified as with FEV1 Reversibility, 

although each to a lesser extent. Both were supported when looking at the attribute 

correlations (summarised in Table 4-14): cases with FVC Reversibility showed an 

association with RV, which increased from an expected mean of 130.51% of 

predicted to 150.57%. Cases with FEV1 Reversibility showed no appreciable change 

in expected RV. In examining diffusion, cases with FVC Reversibility showed a 

small reduction in mean uncorrected DLCO, dropping from 72.31% of predicted to 

63.15%, although with a much smaller drop in corrected DLCO (55.81% to 51.18%). 

This is the reverse of subjects with FEV1 Reversibility which showed an increase in 

both those measurements. The differences are inconclusive, being no larger than 

half a standard deviation in either case, yet present an interesting result. Further 

analysis showed that for obstructed cases, the percentage of FEV1 change bears no 

significant correlation to the DLCO (expressed as a percentage of the predicted 

value); whereas the percentage change of FVC showed some association, with a 

stronger correlation for cases that have FVC Reversibility without FEV1 

Reversibility (correlation = -0.32474, p < 0.05).  
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Class Cases p-sgain 

Evidence of Gas Trapping 27 (25%) 14 (52.9%) 

Low DLCO 53 (49.1%) 19 (36.4%) 

Table 4-13: Classes showing the strongest association to cases with FVC Reversibility, for the 

108 cases with Obstruction 

Attribute Expected Mean Actual Mean Std Deviations 

FVC % Δ 5.86% 21.1% 1.6 

FEV1 % Δ 9.18% 17.69% 0.9 

FEF25-75% Pred Post-BD 44.66% 27.11% 0.7 

FEF50 Post-BD 1.9 1.08 0.7 

RV % of predicted 130.51% 150.57% 0.4 

DLCO % of predicted 

(uncorrected) 

72.31% 63.15% 0.3 

DLCO % of predicted (Hb 

corrected) 

55.81% 51.18% 0.2 

Table 4-14: Some of the attributes indicated as most related to the FVC Reversibility class, for 

the 108 cases with Obstruction 

A summary of several mean attribute comparisons between cases in the classes 

FEV1 Reversibility and FVC Reversibility and are presented in Table 4-15. The 

results support previous indications that cases with FVC Reversibility have 

generally lower values for spirometry tests than cases with FEV1 Reversibility. 

Interestingly the mean diffusing capacity (DLCO) is worse in FVC Reversible 

patients than FEV1 Reversible, even though the correlation between FEV1 

Reversibility and DLCO was stronger than FVC Reversibility and DLCO.  
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Attribute FEV1 Reversible FVC Reversible 

FEV1% Pred Pre-BD 63.35% 57.46% 

FEV1% Pred Post-BD 75.64% 65.59% 

FVC% Pred Pre-BD 82.49% 72.11% 

FEV1 / FVC Pre-BD 0.62 0.59 

FEV1 / FVC Post-BD 0.68 0.57 

FEF25-75% Pred Post-BD 61.84% 46.87% 

FEF25 Pre-BD 3.56 2.29 

FEF25 Post-BD 4.59 2.66 

FEF75 Pre-BD 0.47 0.31 

FEF75 Post-BD 0.65 0.31 

FEV3 Post-BD 3.01 2.2 

SVC Post-BD 1.3 0.22 

VA / TLC 0.84 0.78 

DLCO% Predicted 67.72% 53.54% 

Table 4-15: Significant differences between attribute means for cases with FEV1 Reversibility 

and cases with FVC Reversibility 

These identified associations and calculated results show the potential of the 

method to identify new or unexpected relationships for the data being examined, 

beyond what is found in a typical analysis. The analysis performed in the Agahi 

study was reproduced quickly with a larger dataset, and further relationships 

automatically identified to expand on the conclusions reached and the knowledge 

gained. An examination of the strength and value of the findings is presented in 

section 4.3.2.  



 
164 

Clinical Question 2: Can VA be used to estimate TLC in patients with 

airflow obstruction? 

Alveolar volume (VA) is a closely related measure to Total Lung Capacity (TLC), 

such that it is often used to estimate the TLC. VA is measured by the inhalation and 

holding of a known concentration of gas, typically helium, for a specific time limit; 

the amount of that gas that is exhaled is recorded, and the difference is recorded as 

the volume that the alveoli, and hence lungs, can hold (van der Lee, van Es, 

Noordmans, van den Bosch, & Zanen, 2006). TLC however is measured accurately 

by more complex means, such as a body plethysmography, in which the patient is 

typically enclosed in a sealed box of known air pressure; however the cost and size 

of the equipment make it a difficult and expensive test (Wanger, et al., 2005). Due 

to the differences in process, VA underestimates TLC in patients with airflow 

obstruction, where the obstructive defect means that the measured gas cannot reach 

all parts of the lung (Ferris, 1978). However, if the extent of this effect could be 

estimated based on the degree of obstruction, or other factors, the less expensive VA 

test could be used to estimate TLC effectively for all patients. 

2007 Study Results 

In Agahi’s study, patients were grouped in 10% intervals of the percentage of the 

predicted FEV1/FVC value, and the mean VA /TLC were calculated for each. It was 

reported that an FEV1/FVC ratio above 70% of predicted had an average VA /TLC 

ratio close to 1; but below 70% the VA /TLC ratio dropped progressively.  

Further analysis was performed with patients exhibiting an FEV1/FVC ratio < 0.7, 

and a regression equation defined for patients with an FEV1/FVC ratio below 0.7, 

with R2=0.252: 

 
  
   

            
    

   
  

Data Analysis 

An overall examination of the dataset showed a mean VA/TLC ratio of 0.86, 

suggesting that VA underestimates TLC in general. However, this may have been 

affected by an unusual number of abnormal patients, given the nature of the Austin 

Health dataset. To overcome this, only patients with Normal Ventilatory Function 

or Normal Lung Function were selected, which gave a mean of 0.91.  
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An initial comparison of cases displaying Obstruction to those without Obstruction 

immediately showed an association, with the mean VA /TLC ratio dropping by 1.5 

standard deviations to 0.78. Table 4-16 shows the findings of the comparison. For 

the data in this study, the information gain measurement identified 0.81 as the 

optimal cut point for predicting Obstruction, and 0.82 as the optimal minimum for 

predicting Normal Lung Function or Normal Respiratory Function. Similarly, the 

information gain statistic found that by selecting only cases with an VA/TLC greater 

than 0.81 provided 80% more non-Obstruction cases than would be expected. This 

highlights that non-obstructed cases are much more likely to have an VA /TLC ratio 

closer to 1, whereas the lesser improvement in cases with Obstruction suggests that 

while there is an association between VA/TLC and Obstruction, it is not as reliable a 

correlation.  

 Mean Optimal information gain Gain improvement 

Normal Function 0.91 ≥ 0.82 50% 

Obstruction 0.78 ≤ 0.81 59% 

without Obstruction 0.89 ≥ 0.82 80% 

Table 4-16: Mean VA/TLC, optimal cut point and improvement of that cut point for predicting 

the class from VA/TLC  

The calculated details for VA and TLC showed no significant change in either mean 

for cases with Obstruction; but cases with a VA < 93% of their predicted VA showed 

a 42% information gain. TLC showed a 48% information gain for cases above 117% 

of predicted, but this was not supported by confidence or p-sgain measures. This 

indicates a relationship between Obstruction and a reduced VA, but with no 

associated reduction in TLC. An investigation of cases without Obstruction showed 

a complimentary result: a 77% information gain increase for predicting non-

Obstruction in cases with a VA > 93% of predicted. The calculations also displayed 

a minor inverse effect for TLC: cases without Obstruction tended to show either a 

normal or reduced TLC value.  

To investigate this relationship further, the cases were then divided into three 

subgroups based on their VA/TLC ratios: VA/TLC < 0.8; 0.8 < VA/TLC < 1.2; and 

VA/TLC > 1.2. 
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VA /TLC < 0.8 

Selecting cases with a VA /TLC < 0.8 found 651 subjects (22% of the dataset). 

Immediately apparent was a very strong association with Obstruction, with 60.8% 

(396) of the set showing the class: 51.45% (203.75) more cases than expected for 

this subset. This is again a strong indication that cases with Obstruction have a low 

VA/TLC ratio. A comparison for Obstruction representation between the different 

groups is provided in Table 4-17. 

 Cases Obstruction p-sgain 

VA/TLC < 0.8 651 (22%) 396 (60.8%) +204 (+51.5%) 

0.8 < VA/TLC < 1.2 2111 (71.2%) 452 (21.4%) - 

VA/TLC > 1.2 10 (0.4%) 2 (18.2%) - 

All cases 2963 875 (29.5%) - 

Table 4-17: Comparison between support, confidence and p-sgain values for different values of 

VA/TLC and Obstruction 

Overall, the measures indicated that cases with a reduced VA /TLC show a general 

corresponding decrease in spirometric results, with a slightly weaker increase in 

lung volume results, and a weaker still decrease in gas transfer. Some of the 

stronger associations are presented in Table 4-18. The strongest correlation 

suggested was to the post bronchodilator FEV1/FVC ratio. Of the two components, 

FEV1 seemed to have a stronger association than FVC, although both seemed to be 

reduced. Post bronchodilator FEF25-75 showed a very similar reduction. The residual 

volume showed a marked increase in the subjects of this study. These factors 

together indicate a strong relationship between reduced airflow, such as is present in 

cases with Obstruction, and a reduction in VA with no corresponding reduction in 

TLC; which is a logical result considering how the VA is measured compared to 

how the TLC is measured, supporting the findings of Agahi’s study. 
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 Expected 

Mean 

Mean Standard 

deviations 

Optimal 

information gain 

Information 

gain  

FEV1/FVC 0.74 0.57 1.3 < 0.54 73% 

FEV1 % pred. 84.24% 54.68% 1.2 < 64.5% 70% 

FVC % pred. 94.1% 79.1% 0.9 < 82.25% 44% 

FEF25-75% 2.79 1.3 1.1 < 1.11 60% 

RV % pred. 108.7% 147.3% 0.9 > 137.8% 72% 

Table 4-18: Attributes associated with the range VA/TLC < 0.8 

0.8 < VA /TLC < 1.2 

The next range examined contained 71.2% (2111 cases) of the dataset. No strong 

associations were found, except that 50% of the cases were listed as having Normal 

Lung Volumes. 

VA /TLC > 1.2 

Only 10 cases (0.4% of the dataset) had an VA/TLC > 1.2, with a maximum of 2.37. 

In general, these cases showed a slight increase in some spirometry, a general but 

ultimately insignificant increase in gas transfer, and a large mean drop in both TLC 

and RV which nevertheless showed no significant trend. It is expected that the 

minor statistical changes are products of the small sample size, and perhaps 

representative of outliers for TLC, or errors in TLC measurement.  

The cases did show a very strong association with Restriction, correlating with 8 of 

the 10 cases. The two cases which did not show Restriction had VA measurements 

much higher than predicted (230% and 130%) and reduced TLC (89% and 82% 

respectively). The only unexpected correlation displayed for those two cases was 

with BMI, displaying 32.04 and 36.39 respectively, both much higher than the 

average of 28.07; but with a sample size of two and no obvious pattern little can be 

drawn from this. A cursory examination of cases with a BMI above 30 showed no 

significant associations, nor did a combination of BMI and VA /TLC measurement 

associate unexpectedly with any other class or measurement. 

A quick examination of VA /TLC < 0.6 showed a continuation of the trend shown 

by the three mentioned groups: Obstruction was further correlated with 71.1% of 
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cases (113 of the 159), this being 58.45% more than expected. A strong correlation 

with Severe Obstruction was also indicated; and by far the most correlated variable 

was the FEV1 /FVC ratio, with a drop of 2.5 standard deviations from 0.74 expected 

to 0.41. Other spirometric measurements showed increased association, but none to 

the extent of the FEV1 /FVC ratio. 

Further Analysis 

Based on these results it seemed evident that VA provided a reasonable estimate of 

TLC except in the presence of Obstruction; and that a strong association was 

evident between VA/TLC and FEV1/FVC, with an increasing association the more 

disparate the FEV1/FVC ratio. The VA/TLC ratio was plotted against the FEV1/FVC 

ratio, as displayed in Figure 4-6. As the figure shows, the data follows a linear 

model reasonably accurately with an R2 value of 0.3583. However, as compared to 

the power trend line and the moving average, the linear model seems to 

overestimate for low and high values of FEV1/FVC. The moving average in 

particular shows a fairly linear trend until approximately 0.7 FEV1/FVC, at which 

point the trend flattens out to an FEV1/FVC ratio of 1.  

 

Figure 4-6: VA/TLC plotted against FEV1/FVC, showing a decrease in VA/TLC of increasing 

magnitude as FEV1/FVC decreases 

R² = 0.3583 

R² = 0.4275 

0 

0.5 

1 

1.5 

2 

2.5 

0.1 0.3 0.5 0.7 0.9 1.1 

V
A
/T

LC
 

FEV1/FVC 

VA/TLC to FEV1/FVC  

Linear (Regression) 

Power (Regression) 

100 per. Mov. Avg. 
(Regression) 



 
169 

From this evidence a regression analysis was performed attempting to predict TLC 

from a combination of the VA and the FEV1/FVC ratio. The data was divided 

around a threshold of a 0.7 FEV1/FVC ratio, based on the indicated trend lines (and 

also as this equates to a common definition of Obstruction).  

For the cases without Obstruction, based on pre-bronchodilator FEV1/FVC ratio, 

generating a Pearson correlation coefficient between the VA and TLC gave a value 

of 0.912; a generated linear regression model barely improved this to a value of 

0.913 (R2 values of 0.8315 and 0.8335 respectively), making any correction of VA 

rather pointless. Post-bronchodilator FEV1/FVC provided a correlation coefficient 

of 0.877, which a regression model again only improved by 0.001 (R2 = 0.772). 

The cases with Obstruction demonstrated, as expected, a much weaker correlation. 

Pre-bronchodilator values gave a correlation of 0.757, which a linear regression 

model improved to a correlation coefficient of 0.888 (R2 = 0.789), with the equation: 

                   
    

   
                  

Post-bronchodilator values for obstructed cases provided a correlation coefficient of 

0.787, which a regression equation improved to 0.901 (R2= 0.812), with the 

equation: 

                   
    

   
                  

The post-bronchodilator regression equation provides a slightly stronger R2 value 

based on less cases (n = 1873 post-bronchodilator, n = 2555 pre-bronchodilator), 

but as this requires a bronchodilator to have been administered to the subject, it may 

be less applicable in general circumstances. 

To test the veracity of the system’s selection of FEV1/FVC as most correlated, a 

number of other indicated variables were used in place of the FEV1/FVC ratio, 

including FEV1, FEV1 % of predicted and FEF25-75; these were generally found to 

produce comparable, but ultimately less accurate, results.  

Effects of BMI on Lung Function 

As obesity is currently such a major health issue in the world today (Caballero, 

2007), there is an increasing rate of studies trying to identify the effects of 

overweight and obesity on all aspects of lung function. Jones and Nzekwu 
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performed a study into the effects of BMI on lung volumes (Jones & Nzekwu, 

2006), and Stritt and Garland studied the effects of obesity on volumes and 

spirometry (Stritt & Garland, 2009). Work in the area continues, such as with the 

study currently underway by O’Donnell et al on the effects of BMI on static lung 

volumes in patients with obstruction (O’Donnell, et al., 2011). These studies are by 

no means the only examples of such work. 

Given these investigations into the relationships between BMI and lung function, 

this section will focus on using this system to reproduce the results of those studies 

mentioned, and on examining what other information the data may provide. 

Previous Study Results 

Jones and Nzekwu’s study collected results for 373 patients both male and female 

with a range of BMIs, but with a number of other fixed criteria, including: over 18 

years of age; an FEV1/FVC ratio over 90% of predicted; a RV less than the upper 

limit of normal; DLCO above the lower limit of normal, when adjusted for VA. 

Results were analysed using linear or exponential regression, and analyses of 

variance (Jones & Nzekwu, 2006).  

The study found linear relationships between BMI and VC, and between BMI and 

TLC, but without a significant change in either mean. FRC and ERV decreased 

exponentially as BMI increased, with the greatest rate of change in patients 

overweight or with mild obesity: at a BMI of 30, FRC was at 75% of the value of a 

person with a BMI of 20, and ERV at 47% (Jones & Nzekwu, 2006).  

Stritt and Garland’s study identified a lack of information regarding correlations 

between specific BMI levels and their effect on lung volumes, and even less 

information on correlations with spirometry. Patients were selected according to a 

series of criteria: a FEV1/FVC ratio at least equal to predicted; a DLCO at least 70% 

of predicted; and no evidence of respiratory muscle weakness. Patients were then 

grouped according to BMI (Stritt & Garland, 2009). 

Reported results were that the 13 patients with a BMI below 30 displayed a mean 

TLC of 93% of predicted, a mean FEV1 at 73% of predicted, and a mean FVC at 

77%; whereas the 10 patients with a BMI at 30 or above showed 81%, 67%, and 70% 

respectively (Stritt & Garland, 2009). 
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O’Donnell et al have produced a larger scale study of 2,265 patients with a 

FEV1/FVC ratio less than 0.7, investigating the effects of BMI on volumes and 

airflow function. They found that as BMI increases, FRC, RV, ERV and specific 

airway resistance decreased exponentially. They also found a linear decrease in 

TLC, and linear increases in IC and IC/TLC, but no significant effect with VC 

(O’Donnell, et al., 2011).  

Testing Procedures 

To perform a similar analysis to the Jones and Stritt studies, classes were defined in 

5-step BMI intervals: Underweight (BMI < 20), Normal Weight (20 ≤ BMI < 25), 

Overweight (25 ≤ BMI < 30), Obese I (30 ≤ BMI < 35), Obese II (35 ≤ BMI < 40), 

Obese III (40 ≤ BMI < 45), and Obese IV (BMI ≥ 45). Before examining the data, 

the following criteria were added to remove extraneous factors: Age > 18; without 

Obstruction (FEV1/FVC ratio ≥ 0.7); with an FEV1/FVC ≥ 90% of predicted; 

normal DLCO (above 80% of predicted); and RV < 120% of predicted. 

New Results 

No class associations were indicated for any of the BMI categories defined. Table 

4-19 summarises the mean values for volume measurements, FEV1 and FVC over 

each category (SVC showed no substantial or consistent change). Mean TLC 

showed a relatively consistent linear downward trend culminating in a 7.07% (0.7 

standard deviations) drop in mean percent of predicted between normal BMI and a 

BMI above 40. FRC showed a strong decrease as BMI increased, dropping 

consistently until the last group. This trend also seemed to continue in the opposite 

direction, with the group of patients with a BMI below 20 showing a higher FRC. 

Using all BMI groups, comparing BMI to FRC (expressed as a percentage of 

predicted) gave a correlation coefficient of -0.38; although FRC appeared to 

improve slightly as BMI became very high indicating it may not be a linear trend 

(see Figure A-1 in Appendix A). ERV showed a similar relationship, including the 

Underweight group. Unfortunately a lack of ERV prediction equation in the data 

meant no percentage of predicted value was available. The ERV data also showed a 

slight improvement as BMI becomes very high, again possibly suggestive of a non-

linear trend.  
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 TLC FRC ERV RV IC FEV1 FVC 

Underweight 103.25% 106.77% 1.86 93.36% 108.4% 95.9% 98.3% 

Normal Weight 104.33% 98.95% 1.64 93.05% 113.2% 100.4% 101.3% 

Overweight 103.32% 91.62% 1.22 90.22% 118.4% 99.5% 99.7% 

Obese I 100.85% 82.18% 0.82 90.74% 123.7% 96.1% 94.3% 

Obese II 100.35% 80.24% 0.84 90.39% 128.1% 93.8% 92.6% 

Obese III 101.25% 76.64% 0.64 92.9% 135.7% 94.5% 91.9% 

Obese IV 97.26% 87.46% 1.04 92.31% 110.2% 94.1% 91.8% 

BMI correlation -0.146 -0.38 -0.5 -0.04 0.19 -0.16 -0.252 

Significance <.0001 <.0001 <.0001 0.27 <.0001 <.0001 <.0001 

Table 4-19: Mean values for volume and spirometric measurements, for each of the defined 

BMI categories, expressed as percentages of the predicted value (no ERV predicted data was 

available, and so the direct measure was included) 

The numbers show a small but insignificant decrease in RV as BMI increased, with 

subjects with a BMI between 25 and 40 showing the largest decrease (still only a 

drop from 93.05% of predicted to 90.22%). This was the only attribute of those 

examined that had no significant correlation, disagreeing with the findings of 

O’Donnell et al. IC showed a consistent increase as BMI increased, although 

subjects with a BMI above 45 displayed a sufficiently smaller mean. Underweight 

subjects also continued the trend with a decreased value. Although not displayed in 

the table, VA/TLC showed a trend similar to other attributes, with a very small 

decrease from 0.95 to 0.9 between Normal Weight and Obese III, with Obese IV 

subjects showing an increase to 0.97.  

These results correlated well with the Jones study, identifying similar relationships 

between TLC, FVC, and ERV. Notably the results here also identified the slight 

improvement for very high values of BMI, although the Jones study identified this 

improvement at slightly lower BMI levels.  

In comparing the results in Table 4-19 to those of the Stritt study, there was no 

equivalent relationship found between BMI and TLC: Stritt found a drop from 93% 

of predicted to 81% when comparing patients without obesity to those with. The 
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divisions described here found a negative correlation, but not to the extent described 

by Stritt and Garland. Comparing normal (BMI between 20 and 24) subjects with 

those with a BMI above 45 found at most a drop from 104.3% to 97.3% (0.7 

standard deviations). Comparing subjects with a BMI above 30 to those below, as in 

the Stritt study, again showed only a slight decrease as shown in Table 4-20. The 

general trend in this data appears to be a slight negative correlation between BMI 

and TLC, but nothing in the order of the data in Stritt’s results.  

Similarly, the system showed no significant change in the FEV1, expressed as a 

percentage of predicted. Closer analysis showed a very similar trend of a slight 

decrease as BMI increased, with a small increase for very high BMI, as shown in 

Table 4-19. A direct comparison of BMI < 30 to BMI > 30 again showed a slight 

drop (0.36 standard deviations). Hence again, a trend seems to be evident, but not in 

the strength reported by Stritt. A very similar trend is apparent for FVC, although 

slightly more pronounced and with no increase as BMI becomes very large, 

although the rate of decrease slows significantly. The trend becomes smaller for 

post-bronchodilator FVC however (correlation coefficient -0.169). The percentage 

change of FVC also appeared to be correlated with BMI, increasing as BMI 

increases with a correlation coefficient of 0.206. FEF25-75, FEV1/FVC ratio, PEF, 

and FEV1 post-bronchodilator change showed no correlation.  

  TLC % pred. FEV1 % pred. FVC % pred. 

Stritt and Garland 
BMI < 30 93% 73% 77% 

BMI ≥ 30 81% 67% 70% 

This study 
BMI < 30 103.7% 99.73% 100.24% 

BMI ≥ 30 100.67% 95.47% 93.7% 

Table 4-20: A comparison of Stritt and Garland’s results (Stritt & Garland, 2009) to those 

found from this data 

Although the O’Donnell study is more comprehensive, the data available in this 

study still provided 875 more lung function reports to examine. Subjects were 

selected based on having the Obstruction class and a BMI greater or equal to 20, 

and were divided into the same BMI groups as previously. The correlations 

coefficients found in this study for the volumes measurements examined by 
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O’Donnell et al are presented in Table 4-21. Results are largely consistent with their 

findings, although IC showed no significant correlation, and SVC showed quite a 

weak correlation. 

Attribute Correlation Confidence 

TLC -0.214 < 0.001 

RV 0.189 < 0.001 

FRC -0.318 < 0.001 

ERV -0.301 < 0.001 

SVC -0.089 < 0.05 

IC/TLC 0.206 < 0.001 

Table 4-21: Correlation coefficients, with confidence values, for the lung volume attributes 

examined by O’Donnell et al (O’Donnell, et al., 2011) 

4.3 Results and Discussion 

In evaluating the success of the new method as a knowledge discovery tool for 

complex data, there are a number of considerations that bear an influence on the 

conclusions. These issues are discussed in the following section, before the 

evaluation itself is presented and conclusions made about the efficacy of the method. 

4.3.1 Difficulties in Evaluation 

The success of a knowledge discovery process is dependent on whether it discovers 

new and interesting knowledge, both of which are evaluated by a human analysing 

the results: the newness is dependent on the existing knowledge of the person 

performing the analysis, while interestingness is a subjective measurement that can 

depend not only on the knowledge and experience of the human but also on their 

insight, current thoughts, and contextual information (Clancey, 1993; Compton & 

Jansen, 1989; Liu, et al., 1997; Piatetsky-Shapiro, et al., 1994). This makes the 

effectiveness of a full knowledge discovery process inherently difficult to evaluate, 

dependent as it is on the human involved: while many studies have been performed 

comparing the effectiveness and efficiency of the data analysis component of 

knowledge discovery, where the rules produced (and reduced) can provide 
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quantifiable results (Freitas, 1999; Goebel & Gruenwald, 1999; McGarry, 2005), 

there is little consideration for evaluating the entire knowledge discovery process 

from beginning to end (Piatetsky-Shapiro, 2000; Pohle, 2003). These problems are 

particularly apparent in the approach described in this thesis, as the human 

involvement and guidance is an integral component at every stage.  

This human involvement also causes the variability of results to be a stronger factor 

in this study than in many. Although major studies identified early that any 

knowledge discovery is an iterative process (Fayyad, et al., 1996b), research into 

data mining methods, and data-focused knowledge discovery methods, often base 

their results on a single pass of generation and results interpretation (Hidber, 1999; 

Lenca, et al., 2006; Marinica, et al., 2008; Tan & Kumar, 2001). This minimises the 

element of variability dependent on the person performing the analysis and result 

interpretation, allowing a simpler evaluation of results. In this method however, the 

strongly iterative approach and pervasive involvement of human expertise increase 

this variability. 

This dependency on the human involved particularly complicates the evaluation of 

this study given the necessity of having a non-expert testing the system. The 

discovered knowledge is inevitably not of the complexity or quality that might be 

discovered by someone with experience and expertise working with the data; nor 

are the conclusions reached by interpreting the results as sophisticated. It is also 

likely that an expert would have much finer criteria for identifying interesting 

relationships, based on having more detailed expectations for what the data should 

represent. It is therefore difficult to evaluate the full capability of the method in 

identifying truly new knowledge. This implies that the method can only be 

evaluated here by testing what knowledge can be discovered that is new to the user; 

and, given other evidence, it might be extrapolated that someone with more 

significant expertise could derive newer and more complex knowledge. In some 

ways this makes evaluation easier: discovered knowledge that is new to a non-

expert can be tested against existing literature, whereas truly new knowledge could 

not be otherwise verified. The significance of the discovered knowledge is 

discussed further in section 4.3.2. 

Some work has been carried out attempting to determine how to best perform 

comparisons for knowledge discovery methods, but these methods invariably focus 



 
176 

on rule interestingness criteria and tend to ignore the human component. Works 

such as Freitas’ 1999 study attempted to identify criteria that could be used to 

compare different rule identification methods, balancing efficiency with 

effectiveness; but while recognising the subjective aspect of interestingness, Freitas 

deferred the matter to other research (Freitas, 1999). Despite the work that has been 

undertaken in adding subjective interestingness measures to knowledge discovery 

approaches, there is still the significant question as to how to combine objective and 

subjective measures (McGarry, 2005); and until this is resolved, comparisons 

between methods which include differing levels of human involvement and 

subjectivity cannot be easily compared. 

4.3.2 Evaluation of Approach 

Given these difficulties, the method has been tested by using the system to resolve 

questions that were raised in the literature, or that were suggested by lung function 

experts as topics to be considered. This section will consider what can be concluded 

about the approach from the examination of those topics. 

4.3.2.1 Discovered Knowledge 

Each of the data analysis studies were performed in a single session, including 

analysing any relevant previous studies and interpreting the results; the system logs 

show a mean time of slightly less than 3 hours of use per study. Although more time 

could certainly have been spent analysing subsections of the data, qualifying results 

in regards to specific factors and finding further related studies, this form of 

exploratory analysis becomes an almost endless process with diminishing returns. 

Rather, the data analysis was continued until such a point as the user felt that new 

knowledge had been discovered and the research questions answered; which 

seemed a reasonable approach for any user of the system to take. 

Examination of Results 

This section will discuss the results of each of the data analysis studies in turn, 

qualifying the knowledge found with a subsequent review of relevant literature, to 

allow an evaluation of the method as a knowledge discovery tool. 
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Question 1: The distribution and pattern of lung function of subjects who 

met the FEV1 and/or American Thoracic Society positive reversibility 

criteria. 

The ratio of FEV1 reversible subjects to FVC reversible subjects seems to be 

variable. Smith et al found 43 patients displaying FVC reversibility to 63 displaying 

FEV1 reversibility (Smith, Irvin, & Cherniack, 1992), a ratio of 0.68; which exactly 

matches the ratio found in this study of 159 with FEV1 reversibility to 235 FVC. 

However, this ratio was almost exactly reversed in a recent study from Saad et al 

(Ben Saad, Préfaut, Tabka, Zbidi, & Hayot, 2008), which found 49 FEV1 reversible 

cases to 77 FVC reversible cases, a ratio of 1.57 (or 0.64 for FVC to FEV1).  

Smith et al compared the distribution of lung function for spirometry-derived 

reversibility to other means, but published no data on how different spirometry 

criteria compared. However, Saad et al published a comparison of FEV1 and FVC 

reversibility to support their conclusion that FVC should more commonly be used to 

define reversibility. Their results showed a similar discrepancy between the two 

groups for mean FEV1 % of predicted and FVC % of predicted. FEV1 showed a 

mean of 46% of predicted for FEV1 reversible cases, with 39% of predicted for the 

FVC group; a ratio of 0.85, comparing to a 0.87 ratio from this study. Saad et al 

showed a mean FVC of 69% of predicted for the FEV1 group and 59% for the FVC 

group, a ratio of 0.86, consistent with this study’s ratio of 0.87. The actual 

percentages of the predicted values are lower than those found here, but the ratios 

are internally consistent between the two studies. FEV1/FVC showed no significant 

difference in the Saad study. SVC again showed a similar effect, with Saad 

reporting 70% of predicted for FEV1 reversible cases to 62% of predicted for FVC 

reversible cases; this difference is of a much smaller magnitude than the one shown 

by this study, but nevertheless both show a pattern of reduced SVC for FVC 

reversible cases. 

The claims of the Saad et al study that FVC is more sensitive in identifying 

reversibility (Ben Saad, et al., 2008) are not supported by the ratio of FEV1 to FVC 

reversible cases found here; however, the number of cases which FVC identifies 

which FEV1 does not, and the variety of cases and magnitude of effects in those 

cases, does suggest that FVC reversibility can provide important information about 

a case and should not be ignored. 
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Question 2: Can VA be used to estimate TLC in patients with airflow 

obstruction? 

A subsequent review of literature on this topic found a number of studies producing 

similar findings. Punjabi et al retrospectively analysed 2,477 patient results to 

assess the relationship between VA and TLC. They also found that patients with a 

FEV1/FVC ratio ≥ 0.7 showed a very strong correlation (VA /TLC values between 

0.97 and 0.99); whereas for patients with a reduced FEV1/FVC, VA generally 

underestimated TLC (VA/TLC between 0.67 and 0.94). They produced a regression 

equation for a corrected VA: 

                 
    

   
                    

(Punjabi, Shade, & Wise, 1998). Punjabi et al discuss a number of other studies 

publishing similar results: Burns and Scheinhorn (Burns & Scheinhorn, 1984) 

examined VA and TLC comparisons in subjects with an FEV1/FVC ranging from 

0.28 to 0.95, and also found that an FEV1/FVC ratio < 0.7 indicated a discrepancy 

between VA and TLC. Similar findings for the relationship between reduced airflow 

and the difference between VA and TLC have been shown by Ganse et al (van 

Ganse, Comhaire, & van der Straeten, 1970) and Ferris (Ferris, 1978). 

Earlier studies have found differing results. Pecora et al found that VA produced an 

accurate assessment of TLC, and based on the derivation of regression equations 

and statistically significant correlation coefficients recommended that it be used in 

place of more expensive TLC tests (Pecora, Bernstein, & Feldman, 1968). Mitchell 

and Renzetti supported this result with their study (M. Mitchell & Renzetti Jr, 1968). 

Punjabi et al provide a lengthy discussion on the reasons for these discrepancies, 

justifying their conclusions (Punjabi, et al., 1998). 

A more recent study analysing the relationship between alveolar volume and TLC 

concluded by defining an equation based on doubly correcting VA using FEF25-75 

and a measured difference between IC measured during SVC, and IC measured 

during the VA measurement (Anees, Coyle, & Aldrich, 2009). This study 

retrospectively analysed 171 patient results, and concluded that their equation could 

be used to correct VA for any patient recording a good effort in spirometry 

measurement. The results show the correlation between their doubly corrected VA 
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and TLC with an equation for predicting doubly corrected VA from TLC, with R2 = 

0.7145 (Anees, et al., 2009): 

                 

These results are consistent with the analysis performed in this study, with FEF25-75 

providing an effective correcting factor for VA, although a comparison of the R2 

values might suggest, as found in the analysis here, that FEF25-75 is not quite as 

accurate a correcting factor as FEV1/FVC. Qualifying the results by applying this 

study’s FEV1/FVC equation to the Anees et al 171 cases, or by applying the doubly 

correcting equation over this data should give a better insight, but the singular IC 

measurement in this dataset make this a future project. 

Effects of BMI on Lung Function 

The results of the analysis with BMI are more difficult to confirm as the literature 

inspiring the analysis is quite recent, and there have been no subsequently published 

studies. As was shown in the analysis however, the results generally matched the 

findings of the other published works, with some notable differences, and should 

provide valuable evidence supporting or extending their results.  

4.3.2.2 Efficiency of Analysis 

The efficiency of the statistics generation is an important consideration in ensuring 

that the interface is responsive to the expert’s interactions, and that the expert can 

satisfactorily manipulate the data as they desire. The statistics used were kept 

simple to afford this freedom, such that the system can run through an online 

interface with a simple web server: even when considering the full dataset with a 

complex series of conditions the statistics page loaded in a few seconds. This delay 

was still noted to be an annoyance to users and a potential reason for not wanting to 

use the system for extended periods (this is described in section 5.4.2). There is 

however much room for optimisation in the generation of these statistics, in many 

areas including algorithmic optimisation, hardware upgrades, and a change of 

development platform or a shift to an offline interface. Increasing the size of the 

database or increasing the number and complexity of generated statistics and 

interestingness measures is still a very viable option. More complex interestingness 

measures can easily be adopted by only having them calculated on demand for a 
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section of data, as the system currently does with the information gain optimal 

range calculations. Such an approach does limit the level of suggestion and advice 

the system can offer, but the application and results of the information gain 

calculations used in the study show that such features can still provide useful 

assistance, especially in exploratory data analysis and the testing and validation of 

specific ideas.  

4.3.2.3 Significance of Discovered Knowledge 

It is important to be clear about the significance of the lung function conclusions 

that were discovered in this study, and those that might be found by using this 

approach. A search of recent respiratory literature shows that the discovered results 

of the different analyses are hardly groundbreaking in the field, but this is expected: 

the studies were performed by a non-expert in the field, with very little experience 

or knowledge of available literature and domain knowledge. The second question 

from the Agahi study provides an example: the results were certainly not ground 

breaking to the field, with a very similar result and regression equation having 

already been presented in a paper some 12 years previously. However, the results 

were new to the user, expanding the user’s understanding of the data and the field. 

That the results were developed independently of similar conclusions, after only a 

few hours of analysis, indicate that the approach can be used to successfully 

discover new knowledge.  

This is further supported when we consider that the user is relatively uneducated in 

the field, certainly having no formal education in the area and learning about the 

data only through the development of this study. It should also be noted here that 

any generalisation of the ease of use is somewhat lessened by the user also being 

the developer of the software, and hence being familiar with the interface and 

statistics used. However, the results shown by others using the statistical tools 

(presented in section 5.5.2) show few signs of difficulty. Regardless, the problem of 

usability is one that can be overcome with training and familiarity, perhaps 

combined with simple interface alterations. It is therefore expected that an analysis 

by a user with domain knowledge, research expertise, and specific questions and 

expectations in mind would produce far more interesting results. 
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Rather than discovering revolutionary knowledge for lung function, the primary 

goal was instead to demonstrate the intended application and the efficacy of the 

system. However, this does not mean that the results are irrelevant. The results still 

represent legitimate analysis of real lung function data, and as such they can provide 

useful evidence supporting or expanding on the results of other lung function 

studies, or provide directions for future research. The full significance to the lung 

function field of the specific results found here are not for this author to say; 

however, at the least they can be considered to show support for many of the 

findings of the cited studies, such as Saad et al (Ben Saad, et al., 2008) and Punjabi 

et al (Punjabi, et al., 1998); or to provide further evidence to develop the research of 

other studies, such as that performed by Anees et al (Anees, et al., 2009). The 

results of the BMI analysis may prove useful given the scarcity of currently 

published results (relative to the interest in the area), and the small number of 

subjects used in many of the relevant studies. However, there are a number of issues 

to be considered in generalising to prospective results that might be found by this 

approach. 

A major factor in the applicability of the results found here is that they were 

developed using the percentages of predicted values. The use of fixed value 

interpretations is a major flaw, as the international standard is now to use 

statistically derived, individually calculated normal limits. This is a known problem 

with the system, which was unfortunately identified too late in development. Any 

further development or redevelopment of the method would incorporate statistically 

derived limits of normal from the beginning. However, this flaw does not detract 

from the efficacy of the system as a demonstration of the applicability of the 

approach. If incorporated from the initial stages of development the use of limits of 

normal would be a trivial change, not causing any change in the computation time 

of the system, nor in the applicability of the approach. Neither are the two methods 

(statistical limits of normal and percentage of predicted limits) mutually exclusive: 

both could be incorporated into one system concurrently. It is suggested that any 

change in the function of the system caused by the use of limits of normal would be 

only beneficial: finding more accurate results for lung function, broadening the 

range of experts that could happily participate, and allowing further comparative 

analyses of approaches to lung function interpretation, without a cost in 
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computation time of any significance. The use of statistically derived limits of 

normal should also reduce the complexity of the task, as experts are not required to 

remember or calculate relevant percentage limits. 

The nature of the analysis as a retrospective study of archived data presents some 

concerns. This form of study is common in the health field, where collection of new 

data can often be difficult: studies such as Agahi’s (Agahi, 2007), Stritt and 

Garland’s (Stritt & Garland, 2009) and O’Donnell et al (O’Donnell, et al., 2011) are 

examples of such retrospective lung function studies, using previously collected or 

archived data to test ideas. As discussed by these studies, and has been discussed 

previously in section 2.5.1, the process of collecting the data for analysis can be 

difficult and needlessly complex. The approach developed here shows the potential 

for a unified database and a central knowledge base from which to perform such 

studies. However, this database as it currently exists does not conform to the more 

rigorous experimental designs of many of these studies: for example it does not 

have detailed information about the laboratories collecting the data or the 

equipment or processes they used, such as is present in most detailed lung function 

studies, for example Jones and Nzekwu’s study (Jones & Nzekwu, 2006); nor does 

it contain data for all the attributes that might be of use, for example many cases 

lack DLCO values corrected for haemoglobin, and many lack detailed smoking 

history, a critical factor for many areas of study.  

Increasing the number of records in the database would also be a beneficial step. 

The numbers present in the current database are quite adequate for many studies, 

and should be enough to provide reasonable distributions for the studies described 

here. For studying rare cases however, a larger database or a specialist dataset 

would be required; for example, in the current database there are only 2 patients 

with a BMI above 30 and Restriction.  

All of this extra information can certainly be added, and represents not so much a 

limitation of the approach, but a potentially limiting factor that must be considered 

in evaluating the significance of these results, and in making conclusions about the 

applicability of the method.  

A further issue to be considered is that applicability of the statistics used to this type 

of data, and how well the results of the interestingness measures and calculated 
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information can be used to identify relationships. Most statistical calculations will 

not be perfectly suited to this data, due to the low degree of independence between 

each of the attributes. This is obviously well understood and accounted for within 

lung function and other health research, but it should nevertheless be noted. 

The measures used in this system are only an illustration of the approach and 

demonstrate a fraction of the potential analysis power. If this approach were to be 

taken further the functions provided could be greatly expanded upon, to include 

more specialised analysis tools such as regression calculation, more extensive data 

mining calculations, data visualisations, and any other data analysis approach 

deemed useful for the domain of application. Each of these functions could add 

extra support for the user in data analysis, depending on what the user is trying to 

find or what may be present in the data. The computational complexity of the 

incorporated analysis methods must be considered, as intensive calculations will 

reduce the degree of interactivity; however, as with the optimal range information 

gain calculations used in this study, reasonably complex calculations can still be 

incorporated, with expert guidance selecting when they should be used.  

As with all retrospective studies, this approach is hindered by the lack of flexibility 

of the database. As the data is necessarily de-identified and potentially from some 

years before the date of analysis, there are many specific questions that cannot be 

answered through this system due to a lack of the necessary data. This is a larger 

problem given that new forms of data will always be identified, new tests or 

procedures developed, and problems found that invalidate old data. The usefulness 

of a system in that design however is still evident from the many retrospective 

studies that are performed in health areas and the beneficial results that are found.  

Given the stated limitations, the most appropriate use of the current system is as a 

source of preliminary data analysis: testing a hypothesis against the store of data 

and knowledge to verify that a trend is apparent. The current system is not best 

suited to a complete validation of hypotheses, nor for providing a conclusive 

explanation of any trend that it finds; but it can provide evidence and a basis for 

continuing research into a hypothesis, and preliminary suggestions of cause. The 

BMI studies provide examples of this sort of use. The other useful application of the 

current system is to find supporting evidence for existing studies that require 

additional data. A good example of this is Stritt and Garland’s study (Stritt & 
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Garland, 2009), which presented interesting findings but based on small numbers of 

subjects (comparing a group of 13 patients to a group of 10). By testing their 

hypotheses and findings with this larger database, stronger supporting evidence was 

found to reinforce their findings and validate them against a larger database, which 

likely provided a better distribution. This provided qualifications for the exact 

numbers found, suggesting that a further and larger study is probably required. 

4.3.2.4 Knowledge Acquisition 

A significant feature of the new approach is the integration of a knowledge 

acquisition method, which means that the results of the data analysis, and any 

information generated from the process of that analysis, all feed into the existing 

knowledge base. This adds to the store of data available for analysis, improving the 

effectiveness of both the knowledge discovery process and the detail of the expert 

classification system. This is shown by the results of the data analysis studies: the 

definition of classes such as FEV1 reversibility and FVC reversibility add this 

information to the cases which would not have been identified in any other way, yet 

which can provide significant information on the relationships between attributes 

and their meaning – in this case, that a capacity to reverse FEV1 has a stronger 

correlation to a reduced diffusing capacity than FVC reversibility, among other 

correlations. This additional information is also retained, such that if any future data 

analysis study defines any set which has a significant relationship to these classes, 

this will be displayed to the user, thus adding to the information discovered about 

the new study. 

The benefits to the classification system are more variable. The impact might be 

enormous in adding the identification of a newly discovered class of health problem 

or patient, providing a level of expertise to the system that some experts may not 

have. The benefits may be more subtle, such as providing a finer distinction 

between types of reversibility, which may influence a practitioner’s decision on 

how to diagnose or treat a patient. However, as can be seen from the examples 

presented, if not checked the output would swiftly become cluttered with the 

subclasses and groupings specific to each particular data analysis effort: for 

example, an Obese I with normal airflow, RV, and diffusing capacity classification 

is likely to be mostly unnecessary information, and is presented in an unnecessarily 
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complicated manner. The use of separate knowledge bases and the ability to clone 

and transfer knowledge between knowledge bases restricts this pollution and still 

allows for the benefits, although it does require some administrative process to 

decide how the knowledge is allocated.  

One of the main difficulties with analysing data such as that used in this study is the 

amount of prior knowledge required. It became evident in development that the 

volume of knowledge required for an effective data mining tool to be developed is 

far beyond what could reasonably be included by ordinary means. In identifying 

interesting relationships an option was implemented to exclude any attributes whose 

base attribute (for example FEV1 in the case of FEV1 % predicted, FEV1 post-

bronchodilator change, or FEV1/FVC) were used in rule conditions. However, this 

immediately led to problems as genuinely interesting results were excluded: 

sometimes the relationship between FEV1 and FEV1 % of predicted, or FEV1 pre- 

and post-bronchodilator, are exactly what need to be examined.  

It was apparent that even using a method such as Liu’s general impressions could 

not provide a reasonable solution for the general case. If using Liu’s expectation-

based measures, every attempt to use the system to answer a data analysis question 

would require a specialised knowledge acquisition process to identify the user’s 

existing knowledge and expectations for the relevant segment of data in the 

particular context under consideration. As has been previously discussed, in the 

knowledge acquisition section of this study and in other studies, knowledge that is 

acquired can only be considered correct for the context it was acquired in; and even 

then it is subject to change (Compton & Jansen, 1989; Compton, et al., 2006; 

Richards, 2001). Attempting to acquire a knowledge base which can describe, for a 

complex domain such as lung function, the expectations of an expert for all 

attributes and for all contexts in which those attributes might be considered would 

be a considerable research task in itself. Such a knowledge base would likely 

describe the domain better than the knowledge base developed in this study and 

would doubtless prove a valuable resource for many tasks, but it is expected that it 

would also require a considerable commitment from a number of domain experts; a 

commitment that is beyond the scope and capabilities of this project. 

The impracticality of predetermining detailed expectations is supported by the 

analysis performed here. For example, in identifying what relationships increasing 
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BMI has to lung function, the user has a specific set of expectations about what the 

data will show in the context defined in the analysis: subjects with normal airflow, 

normal diffusing capacity, a not unusually high residual volume, and an increasing 

BMI. Defining expectations for each individual attribute, for each possible context 

of this sort would be a much more time consuming process than simply entering 

those criteria and examining the data. The establishment of an exhaustive 

expectation knowledge base might be expected to allow more extensive data mining 

that may find relationships that the expert would not think to look for. However, the 

user’s knowledge about relationships that they would not think to look for represent 

tacitly held knowledge, as do their expectations for those relationships. Acquiring 

such tacit expectations would require a considerable effort in knowledge acquisition, 

which is unlikely to reach completion and would likely still result in a large number 

of false positive results. In contrast, the method presented here allows the user to 

specify a context and have their expectations tested directly against the evidence (an 

important element in identifying tacit knowledge), with the benefit of having 

otherwise interesting relationships identified automatically. The efficacy is further 

enhanced by being able to adjust the interestingness thresholds for the context 

currently being examined, without being restricted to a set threshold for all contexts 

or having to predict the threshold that will best suit the current run of analysis.  

The necessity for incorporating domain knowledge presents the biggest challenge to 

data mining for this data. Without being able to incorporate the level of knowledge 

used in performing the analysis here, the results of a data mining approach would be 

enormous (Liu, et al., 1997; Piatetsky-Shapiro & Matheus, 1994; Silberschatz & 

Tuzhilin, 1996). Examining the relationships that were discovered during the testing 

of the method, it was not immediately apparent from the defined interestingness 

measures that this relationship was significant. For example, in order to conclude 

that relationship of increased BMI and decreased diffusion was significant 

depended not only on identifying that a trend was apparent, but that one was not 

expected. In examining the various BMI classes for significant trends, an average of 

43 attributes per class were identified by the system; of these, approximately a 

quarter were chosen as interesting and examined further, based on a tacit 

understanding of expectations and overlap between what each attribute represents. 

Were the system to automatically perform further analysis for all of these attributes, 
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this would lead to a much larger number of uninteresting and redundant results to be 

analysed.  

Furthermore, even given the identification of such trends, nothing conclusive can be 

stated from them unless other potential factors are removed. The identification of 

these factors is a complex process dependent on the knowledge of the user: for 

example, in order to be able to say with any conviction that BMI has an effect on 

airflow, other potentially influencing factors need to be removed, such as whether 

the patient has COPD, asthma, or a similar problem. This in turn requires an 

understanding of which attributes indicate those problems, and what patterns in the 

data would represent patients that do not display those traits. The author is not 

aware of any knowledge discovery techniques that can sufficiently account for this 

issue. 

Thus it can be seen that the necessity for complex domain knowledge in effective 

data mining is a major difficulty for data of this kind. The solution presented here is 

twofold. Firstly, to incorporate a knowledge acquisition process so the expert can 

define their expected results as a class; the system can then show the relationship 

between that class and the set resultant from the data analysis. Secondly, this 

approach does not overwhelm the expert with results that may or may not be 

significant, and instead allows them greater control over what data analysis is 

performed. This reduces the complexity of knowledge acquisition by allowing their 

knowledge to be applied more directly, which may improve efficiency given the 

well-recognised cost of knowledge acquisition (B. G. Buchanan, et al., 1983; Lenat, 

et al., 1985).  

4.4 Conclusions 

The results presented here show that this method can successfully perform a 

knowledge discovery task in a complex field such as lung function. While the lung 

function results derived in this study may not present anything likely to surprise a 

lung function specialist, they do demonstrate the efficacy of the system at allowing 

a user to discover new knowledge and develop their understanding of the field. That 

the results were confirmed by recent literature, and can produce findings relevant to 

current work, shows the capacity of the approach to derive useful knowledge. That 

the analysis of this data was performed and the subsequent results developed by a 
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relatively uneducated user, in a very short time frame, also indicates that the 

approach has a reasonable level of efficiency and simplicity. The analysis for each 

of the topics was performed without any specialised preparation of subjects or a 

clinical study, and with very little individual preparation.  

It is not conclusively shown that this approach outperforms more traditional forms 

of knowledge discovery for this type of data; although this is suggested to some 

extent by the lack of published knowledge discovery works with this data. In 

particular, the complexity of the existing knowledge that was required to achieve 

the results found here appears to be beyond what other methods of knowledge 

discovery can effectively incorporate. As such, it is expected (though not proven) 

that it is the level of knowledge that can be integrated into the data analysis that 

allows the effective analysis of complex data. A further benefit is that any new 

knowledge can be immediately included in the knowledge base that this method is 

built around, by simply giving the current rule set a classification, and validating the 

knowledge against cornerstone case conflicts. The search conditions that were used 

to establish the case set of interest are converted into a rule and validated, via the 

normal MCRDR procedure. Once accepted, the rule is added to the knowledge base, 

and the knowledge contained therein will now be automatically applied to every 

case examined by the system. The new class, or expanded definition of an existing 

class, can then immediately be used in future analysis. Perhaps most significantly, 

this approach integrates the knowledge acquisition and results analysis components 

of knowledge discovery, allowing a smoother overall process of knowledge 

discovery. These tasks are often neglected in the development of knowledge 

discovery methods, despite evidence that they are costly components and vital to 

the success of discovering new, useful, and applicable knowledge, with many 

methods making no provisions for incorporating them (Fayyad, et al., 1996b; 

Kotsifakos, et al., 2008; Liu, et al., 1997; Piatetsky-Shapiro, 2000; Pohle, 2003).  

Concerns with the experimental rigorousness of the data collection, and missing 

data elements, can restrict the conclusiveness of results found. This restriction, 

combined with the incorporated knowledge acquisition elements and the speed of 

the process, support the use of this system as an initial hypothesis validation or an 

exploratory data analysis tool. The results show that given a suggestion of a 

relationship or trend, a user can quickly use this tool to explore how well that 



 
189 

suggestion is represented in a dataset, and to then expand on their idea, exploring 

what related trends exist that might support, refine, or explain their hypothesis.  

While the results indicate that the method can be used for knowledge discovery, the 

study used a combination of only two of the many dozens of datasets that exist, in 

Australia alone. A larger compiled set of data, with a more complete range of 

attributes, can only serve to benefit the efficacy of data exploration, the 

conclusiveness of results, and the range of applicability.  

Similarly, while the data analysis functions incorporated into the system in this 

study demonstrate the potential for online analysis in such a format, these can be 

readily expanded upon to improve the effectiveness of the analysis and the level of 

assistance which the system can provide. The author also sees no reason why the 

knowledge acquisition components and the approach to exploratory analysis could 

not be incorporated into existing data analysis software. 
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Chapter 5 Knowledge Comparisons and a 

Tool for Learning and Assessment 

5.1 Introduction 

When acquiring and consolidating the knowledge of multiple experts in a given 

domain, there is potential for conflicts in knowledge to arise. In order to effectively 

consolidate the knowledge of all experts involved, these conflicts must be identified 

and resolved to each expert’s satisfaction. While methods exist to collaboratively 

develop (Richards, 2009; Vazey & Richards, 2006) or integrate (Beydoun, et al., 

2005) MCRDR knowledge bases, these methods do not focus on using evidence to 

resolve conflicts or, more importantly, on improving individuals’ knowledge. This 

chapter presents a method to identify any conflicts, quantifiably measure the 

significance of each one with evidence, and present the reasons behind each conflict, 

such that the experts can reach a resolution and learn from the experience. This 

same pattern of quantified knowledge comparison is also applied as a novice 

learning and assessment tool, comparing a knowledgeable expert’s input to that of a 

less knowledgeable professional or student. In addition to the benefits of knowledge 

comparison and the identification of weaknesses, it is shown that the knowledge 

acquisition process provides a useful opportunity for participants to apply learned 

theory and develop knowledge through practice. The contributions of this chapter, 

and their position in the larger method, are highlighted in Figure 5-1. 

The learning outcomes of this approach are supported by the constructivist view of 

learning, which suggests that learning is an active process on the part of the learner: 

knowledge is not something that can simply be given or imparted, but needs to be 

developed based on an individual’s interpretation and processing of experiences 

(Anderson, 2004; Duffy & Cunningham, 1996; Mezirow, 1991; Tapscott, 1998).    
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Figure 5-1: The methods presented in this thesis; the highlighted section shows the components 

presented in Chapter 5 

5.2 The Learning Process and Constructivism 

There are many variant schools of thought on the learning process. Behaviourism 

describes learning as an internal and unobservable process, asserting that learning 

can only be described by observing the learner’s subsequent behaviours (Anderson, 

2004; Good & Brophy, 1990). Cognitive psychologists attempted to describe 

learning, creating a model dependent on memory, motivation, processing and 

reflection (Anderson, 2004; Craik & Tulving, 2004). They asserted that there are 3 

levels of memory, sensory memory, short-term memory, and long-term memory, 

and that the level of thought, or processing, given to knowledge will decide how it 

moves from one memory store to the next. Knowledge is then encoded in long-term 

memory in the form of networks of concepts, or information maps (Anderson, 2004; 

Stoyanova & Kommers, 2002).  
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A more recent school of thought is that of Constructivism, which takes a similar 

view to cognitive psychology but with a stronger focus on the experiences and 

perceptions of the learner. Constructivism states that knowledge is not something 

that can be given to a learner, but requires that the learner be much more active in 

the process: knowledge is only developed based on the learner’s individual 

interpretation and processing of their experiences (Anderson, 2004; Duffy & 

Cunningham, 1996). While a learner may be told or given a concept, that concept 

will not form into knowledge unless the learner has an opportunity to apply it to a 

particular context or example, witnessing how the concept functions in a concrete, 

contextualised fashion. This gives rise to the goal of situated learning, whereby 

knowledge should be learned in the same context that the knowledge will be applied 

(Lave & Wenger, 1991). There is also an emphasis that knowledge is something 

which is discovered by the learner, rather than taught by a teacher (Tapscott, 1998). 

In support of this view, evidence and practical application have long been identified 

as beneficial in the development of understanding, as opposed to rote learning 

(Brown & Palincsar, 1989).  

This suggests that learning should involve practical elements, as learners will better 

be able to form knowledge if presented with evidence to support theory and are 

allowed to discover the results of the application of theory over real examples 

(Duffy & Cunningham, 1996; Lave & Wenger, 1991).  

Both the constructivist and situated cognition views of learning hold that knowledge 

is dependent on the context in which it is described (Anderson, 2004; Duffy & 

Cunningham, 1996; Mezirow, 1991; Tapscott, 1998). Previous studies have shown 

that different experts can present different results when asked the same question in 

different circumstances, even when having the same underlying beliefs, and that 

these conflicts of knowledge can equally occur from a single expert describing their 

knowledge in different ways, or from a difference in the underlying beliefs of two 

experts (Compton, 1992).  

Based on these models of learning, it is clear that the practical application of 

knowledge is a critical component in effective learning, and that examples and 

evidence are integral to this process. In light of this, the method presented here 

makes use of evidence as much as possible when comparing knowledge and 
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assisting in the resolution of conflicts, with the goal of improving the knowledge of 

those involved.  

5.3 Methodology 

In Chapter 3, the expertise of multiple experts was acquired in separate knowledge 

bases, using the MCRDR knowledge acquisition framework described in that 

chapter. In order to effectively and accurately combine the acquired knowledge 

bases, including identifying and resolving conflicts, a strategy was implemented 

taking advantage of the large database of cases available. 

Rather than only comparing the conceptual structures present in the knowledge base, 

the database of cases allows an evaluation of how close the two knowledge bases 

are in practice. The fundamental principle is to compare how the two knowledge 

bases function over a large set of cases, which should highlight the differences in 

definitions and provide a quantifiable measurement for how different each 

definition is. This focus on evidence is especially relevant considering the 

viewpoint that knowledge is only correct in the context that it is acquired for, and 

may change when discussed in a different context: in order to accurately compare 

definitions, and especially to resolve conflicts, evidence is required to provide 

sufficient context. 

5.3.1 Knowledge Consolidation 

5.3.1.1 Testing 

The knowledge comparison method was first tested with the knowledge bases of the 

three experts described in Chapter 3, in order to develop a consolidated knowledge 

base for general use. As described in section 3.2.1, one lung function expert 

developed a knowledge base independently, and two others collaborated on a single 

knowledge base. Through a combination of some domain knowledge, identification 

of similar rule conditions, and consultation with the experts involved, the system 

administrator (the author) identified as many classification equivalencies as possible 

while attempting to preserve detail.  
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5.3.1.2 Equating Classifications 

The first stage in the method is to identify equivalent classifications between the 

two knowledge bases. While this step could be avoided by finding an agreed upon 

standard of terminology before the knowledge acquisition process, this was not 

done in order to avoid limiting the level of knowledge that was acquired. It was also 

desired to keep the process as natural to the expert as possible, and to acquire the 

experts’ terminology as much as possible, as a terminology comparison may itself 

provide interesting results.  

A post-acquisition definition of equivalent classifications can be partially automated, 

by an analysis of the rule conditions used to reach each classification: any 

classifications that use the same rule conditions can be considered very likely to be 

synonymous. This automation could further be extended by considering very 

similar conditions, or by identifying classes that include the same set of cases. None 

of these options were implemented in this study, however, as there was no 

expectation that this domain would provide vastly different terminology, or that 

synonymous terminology would be difficult to identify. In such domains the 

grouping of classifications can be performed manually, through application of 

domain expertise, consultation with the experts involved, and examination of rule 

conditions.  

5.3.1.3 Quantified Comparison 

To generate a quantified comparison between the two knowledge bases, a simple 

algorithm is followed. Each case in the dataset is examined in turn, and the results 

for that case are compared between each knowledge base (either by performing an 

inference through the knowledge base with that case, or by recalling the stored 

results for that case). Various elements of the results are recorded: the relevant 

counts of occurrences of each classification (taking into account the defined 

equivalencies); the unique occurrences for each knowledge base; and the matching 

occurrences. This system also recorded the number of cases in each knowledge base 

having each quantity of classifications, for example the number of cases that had 

two classifications, the number of cases that had three classifications, and so on. 

This allows the calculation of the average number of classifications per case in each 

knowledge base, and the percentages of matches, unique occurrences, and conflicts, 
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both for each classification and for each knowledge base overall. Although more 

statistical measures could be derived from this process, and more measurements 

recorded, these were deemed sufficient for the purposes of the comparisons in this 

study.  

5.3.1.4 Interface 

In this system, the first statistics shown are the number and percentage of matching 

cases and conflicting cases, both with and without classification equivalencies, and 

the mean percentage of classifications matched per case. Next are the frequency of 

numbers of classification per case, and the mean classifications per case, for each 

knowledge base. Finally, each classification equivalency group is listed, and for 

each one the number of cases which have that class in each knowledge base, the 

number of matches, and the number of unique occurrences are shown. Each of these 

also has the relevant percentage that the number represents. Options are also 

presented to view the rules for each knowledge base which lead to those 

classifications. 

An important component of this process is the ability to view the cases relevant to 

any particular comparison. Whenever a set of cases is described, the numbers 

displayed provide links to allow the user to view those cases. While the particular 

interface used is irrelevant, the function of viewing and allowing action on the 

described cases is integral to the usefulness of the comparison method. 

5.3.1.5 Conflict Identification and Resolution 

Once equivalencies have been defined and statistical comparisons made, the task is 

to identify the differences between the experts’ rules, the causes of those differences, 

and how they might be resolved to reach a satisfactory consensus. The grouped 

classifications are sorted in order of significance of difference and are worked 

through in turn, by first examining the rules to see if the differences were caused by 

an error or a difference of opinion. Where necessary the experts are consulted to 

establish if an error has been made. If not, the experts are informed that there is a 

disagreement between them, and a discussion initiated to determine exactly why the 

disparity exists, which would be the best alternative to use, or what other options 

are available. This process is aided by the presentation of the statistics showing how 
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significant the differences are, how the different rule definitions relate to other 

definitions, and summaries of the attributes of the cases for each definition. Further 

assistance in resolution can be found by presenting the experts with exemplar cases 

which display the conflict, to ensure that the experts have a genuine conflict of 

opinion, and to ascertain exactly which attribute each expert uses to define that 

conflict. This process is summarised in Figure 5-2. 

 

Figure 5-2: Summary of the conflict identification and resolution process 

It should be noted that this is as iterative process: it is likely that after initial 

equivalencies are defined and comparisons examined, some equivalencies may be 

found to be incorrect or further equivalencies may be required. Some experts may 

wish to add further classifications, or change or remove previous classifications. 

This can be accommodated, equivalencies adjusted as necessary, and the statistics 

recalculated. 
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5.3.2 A Learning Tool 

It was hypothesised that this same strategy could also be applied as a learning tool 

for domain novices, and potentially as an assessment tool for students, with only 

slight modifications. The system could be applied such that it provided students 

with a means of testing their lung function interpretation knowledge in a practical 

situation, with real lung function tests, and receive feedback about their 

comparisons to an expert level of knowledge. This feedback could identify the 

differences in classifications between the student and expert, and for equivalent 

classifications could identify the rule conditions that differentiate them. The system 

could again make use of real cases in demonstrating practical examples in which the 

student’s definition disagrees with the experts’. Such a comparison might also 

effectively be used as an assessment tool in various ways: by determining the 

number of cases where the student’s knowledge matched the experts’, both for all 

cases and for only those seen by both; calculating the degree to which each case 

matched; and by examining how different their definitions are. The system could 

also provide feedback on which specific areas the student’s knowledge is lacking. 

5.3.2.1 Compact Knowledge Acquisition 

Carrying out a full knowledge acquisition process with multiple experts, and many 

cases, would however be too time-consuming. In order to practically test the 

approach, it was decided that a limited set of cases would have to be defined. 20 

cases were selected as being roughly representative of the spread of classifications 

non-specialists might be expected to reach, based on the experts’ definitions and 

with expert consultation. As well as generic exemplars of classifications, some 

borderline and difficult cases were chosen to attempt to force participants into 

making precise definitions.  

5.3.2.2 Testing 

To test this application, a range of participants were sought. The first type of users 

tested consisted of medical students, ranging in experience from the third year up to 

the sixth (and final) year of the degree. These students were invited to participate 

via a group email to all medical students at the University of Tasmania from third 

year and higher. All willing respondents were included in the testing. Ethics 
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approval was obtained to interview participants, and consent forms signed prior to 

participation. 

Each participant was informed of the goals of the study, how the study would be 

carried out, and what results might be found. They were then directed to and given a 

username and password for the online system, but wherever possible the 

participants were met in person and guided through the knowledge acquisition 

process, in order to observe the process, answer any questions, and to ensure 

everything ran smoothly.  

Before beginning, each participant was given a questionnaire to ascertain their level 

of experience and confidence with interpreting lung function tests, including a 

sample lung function report to interpret on paper (see Appendix B). Upon logging 

in to the system, each participant was directed first to an online tutorial for how the 

system was structured, how to view cases, how to enter their interpretations 

(classifications) for each case, and how to define rules to justify their decisions. 

Participants were then directed through a MCRDR knowledge acquisition process, 

by examining each of the 20 sample cases in turn, for each one describing their 

classifications then justifying them by defining rules for each classification. Each 

participant developed their own knowledge base, independent of any other acquired 

knowledge. Where the knowledge acquisition involved a face-to-face meeting, the 

participants’ actions and difficulties were discussed and observations made, with 

care taken to avoid interrupting the process as much as possible. It was made clear 

to the participants that the interviewer was only there to help with technical issues 

and resolve confusion about the process, and that the interviewer had no specialist 

knowledge in lung function and should not be taken as a guide for any knowledge-

based decisions. It was also made clear that the participation was anonymous, and 

that it would not contribute in any way to their assessment. Once the 20 cases were 

completed, each participant was given another questionnaire asking their opinions 

on the software, the information presented, the usefulness of the process, and if the 

student felt they had learned anything (see Appendix B). 

Once each participant had developed their knowledge base, each one was compared 

to the compiled expert knowledge base developed previously, via the same methods 

as described above. However, rather than attempt to resolve conflicts, an individual 

report was generated for each participant contrasting the participant’s knowledge 
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with the experts’, and provided to the participant if desired. The knowledge 

comparison was expected to be more difficult due to the range of difference in 

knowledge: the experts were expected to define many classifications which the 

students could not. While it was thought that the comparisons may be more 

effective if a knowledge base was developed representing a ―perfect student‖, no 

such knowledge base was available. Also considering that the participants are at 

differing levels of education and hence expected to have differing levels of 

knowledge, the expert knowledge base was used instead. This was considered as 

possibly having benefits for learning however, as feedback can be more detailed 

and complete, closer to a practical knowledge scheme rather than a generalised 

reproduction of textbook patterns. To assist in ameliorating the discrepancy in 

knowledge, a component of the comparison process was the limiting of 

classifications to only those that appear in both knowledge bases, to allow a 

measurement of the correctness of the participants’ knowledge. 

5.4 Results 

5.4.1 Expert Knowledge Consolidation 

The comparison of the two expert-developed knowledge bases discussed in section 

3.2 demonstrates the application of this method for knowledge comparisons. While 

the practical outcomes of this comparison were discussed in that chapter, the 

process of that comparison will be presented and discussed here.  

5.4.1.1 Equating Classifications 

Fundamentally, the process of equating classifications is a process of analysing the 

terminology. The terminology used by the experts in their knowledge bases will be 

briefly discussed to provide some context to the equating of the classifications, then 

the groupings themselves discussed. 

Classification Terminology 

It was found that there were significant differences in the terminology used for 

classifications in this study, not only between the three experts, but within the input 

of each expert individually. The variability was ameliorated to an extent by the 

document detailing the standard classifications expected to be used (see section 
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3.2.1), which was circulated among the experts involved, and provided a good 

reference base. However when this same expert later defined his own knowledge 

base, although he largely used the same rules, he used different terminology or 

different forms of terminology for almost every classification.  

On investigation of the classifications used it is immediately apparent that there are, 

as with most language structures, many ways of expressing each classification. This 

stems in part from the nature of the classifications: they are not comprised of exact 

medical terms or final diagnoses, but are interpretations of the information available, 

meant to summarise what the body of test results represent and aid in a final 

diagnosis. Table 5-1 shows some examples of the differences in classifications, with 

classifications taken from all experts (/ indicates two distinct classifications).  

 Classification(s) Alternative Classification(s) 

1 Obstruction – Mild Mild airway obstruction 

2 Low DLCO Impaired gas transfer 

3 Mild Obstruction/Reversibility Mild airflow obstruction with a positive response to BD 

4 Hyperinflation Moderate Hyperinflation/Severe Hyperinflation 

Table 5-1: Terminology Differences 

Table 5-1 displays three distinct problems with terminology that were encountered. 

The first three comparisons are examples of semantic differences: Obstruction – 

Mild and Mild airway obstruction are expressing exactly the same interpretation, 

and were at times used as the classifications for identical rules. Similarly, Low 

DLCO and Impaired gas transfer express the same classification and are reached by 

identical rules: and both were defined by the same expert. The third comparison 

shows another variation on the first, but with some extra information added; this 

extra information is added by a distinct classification in the first instance, Mild 

Obstruction and Reversibility; and by a single classification in the second, Mild 

airflow obstruction with a positive response to BD. This terminology difference is 

slightly more problematic than the semantic differences shown by the previous 

examples. The last example shows another problem, but a common one: in the first 

instance an expert described Hyperinflation as a classification, whereas in the 

second the expert went to a further level of detail by defining Moderate 
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Hyperinflation and Severe Hyperinflation. It was noted that this problem frequently 

occurred between different experts, although both these instances were again 

created by the same expert.  

Defining Equivalencies 

Although the terminology can vary greatly between experts (for example, entries 2 

and 3 in Table 5-1), it is largely irrelevant which versions are used. As mentioned, 

many of the more distinct differences did in fact come from the same expert, and at 

no point did any participant, in any part of this study, express or display confusion 

about the terms used. All of these terms seem to be equivalently understood by any 

level of expert in the field, being merely semantic variations on expressing the same 

underlying concept: provided that the expert has enough training and experience to 

understand that concept.  

As described previously, given the relatively limited number of classifications in 

use (61 distinct classifications between the two knowledge bases) the classification 

equating was resolved by manually identifying which classifications were 

equivalent, and marking them as such. For purely semantic differences this was a 

simple process, although it involved consulting the experts occasionally. For 

compound classifications, the multiple classifications would be equated to the 

single other classification. When experts used different levels of detail, all 

associated classifications were equated to the most general classification.  

In all, 30 of the 61 classifications were equated, into 5 different groups, with half of 

these in a single group. This group, all related to Obstruction classifications, was 

particularly problematic as it contained many gradations of severity, and an extra 

component that was sometimes added as a separate classification and sometimes 

compounded into the main classification. The severities presented difficulties 

because each expert had their own definitions of what the rule for each severity 

should be; and the independently developed knowledge base had a different number 

of gradations (6 compared with 3) that did not neatly overlap with the others . 

The compound element was the presence of Reversibility or a Positive response to 

BD (bronchodilator) in the patient. This element of the classification is simple to 

define as its own classification, as the expert mostly did in the independently 

developed knowledge base. However, as the reversibility classification is most 
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frequently only considered in the presence of an obstructive classification, the 

natural tendency for experts is to define a compound classification with both 

elements, as in the form Reversible mild obstruction. Experts were also inconsistent 

with when they would include the reversibility element and when they would not, 

for example the same expert might define Reversible mild obstruction, Irreversible 

mild obstruction, and Moderate obstruction. 

The second largest grouping of classifications, containing 6, involved those 

displayed in the second example of Table 5-1: Low DLCO and Impaired gas 

transfer. In the independently developed knowledge base these equivalent 

classifications were graded into severities Mildly/Moderately/Severely impaired gas 

transfer, whereas the collaborative knowledge base used the Low DLCO term, along 

with an exception rule qualifying the Low DLCO classification in certain 

circumstances. Given the gradations were present only in one knowledge base they 

were equated for comparison purposes. 

Two other groups, the Restriction and Hyperinflation classification groups, were 

again grouped because the independent knowledge base included gradations (2 and 

3 extra grades respectively). Finally, in the collaborative knowledge base the 

classification Normal Lung Volumes had an exception, Normal TLC, qualifying the 

classification in circumstances where the expert determined it was not strictly 

correct. As no similar detail was included in the independent knowledge base, the 

two were equated for comparisons. 

5.4.1.2 Comparing Results 

Before Equating Classifications 

When initially compared, because of the differences in terminology and levels of 

detail used between the experts, the collaborative and independent knowledge bases 

had no cases with exactly the same classifications. If only classifications that 

appeared in both knowledge bases were considered, 40% (1194) of the cases 

matched, with an average 12.3% of classifications matching per case; however with 

each knowledge base providing a mean 2.7 and 3.8 classifications per case, this 

gives an average of less than one matching classification per case, and in fact means 

that most cases have no matching classifications. Without grouping the 
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classifications, the collaborative knowledge base used 27 different classifications, 

19 of which occurred only in that knowledge base. The independent knowledge 

base used 41 classifications, 33 of which were not used in the collaborative 

knowledge base.  

After Equating Classifications 

After defining the classification groupings, the collaborative knowledge base 

contained 21 distinct classifications or classification groups, of which 13 did not 

appear in the independent knowledge base. The independent knowledge base itself 

contained 23 classifications or groups, 15 of which did not appear in the 

collaborative knowledge base. Both these and the pre-equated classification 

numbers are presented in Table 5-2 for comparison. 

 Independent Collaborative 

Class Groups Unique Class Groups Unique 

Before Equating 41 33 27 19 

After Equating 23 15 21 13 

Table 5-2: Total number of classifications or classifications groupings in each knowledge base, 

and number of classifications or groups that occur in only one knowledge base, before and 

after equating classifications 

The comparison of the knowledge bases over the full dataset is summarised in 

Table 5-3. The comparison showed that there were still only 5 cases with perfect 

matches, with 99.8% having some difference in classifications due to the large 

number of unique classifications defined in each knowledge base. Some 36.9% 

(1091) of the cases were designated ―weak matches‖ (cases which match when only 

considering classifications that had an equivalent classification in both knowledge 

bases). The average number of classifications matched per case doubled to 24.6%, 

although still with an average of less than one matched classification per case.  
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 Matching 

Cases “Weak Matches” 

Average Classifications 

Matched per Case 

Before Equating 0 1194 (40.3%) 0.4 (12.3%) 

After Equating 5 (0.2%) 1091 (36.9%) 0.8 (24.6%) 

Table 5-3: Cases with equivalent classifications and the mean number of classifications 

matched per case, between the collaborative and independent knowledge bases, before and 

after equating classifications 

To aid in the comparison of the two knowledge bases, the frequency of number of 

classifications per case was calculated, and is displayed in Table 5-4. This suggests 

a number of points about the relative detail of the different knowledge bases. The 

independent knowledge base clearly tends to go to more detail for each case, with a 

mean average of one more classification per case, and a roughly equivalent modal 

average. The independent knowledge base might be said to be more complete, as it 

has far less cases with no classifications, and a strong majority (over 90%) with 3 or 

more classifications. It also has a much larger number of cases with high numbers 

of classifications, with almost 24% of cases having 5 classifications or more. These 

numbers may suggest however that it has defined some simpler, more general 

classifications that apply to large numbers of cases; a conclusion which is in fact 

supported by the individual classification statistics examined shortly.  

 
0 1 2 3 4 5 6 7 8 Mean per case 

Collaborative 146 52 1297 859 491 118 0 0 0 2.6 

Independent 5 95 193 1081 884 479 170 48 8 3.7 

Table 5-4: Frequency of number of classifications per case, for each knowledge base 

The most useful statistics generated are those about each particular classification 

grouping. After defining equivalencies, 8 classifications or groups of classifications 

were identified as appearing in both knowledge bases. The results of these 

comparisons are summarised in Table 5-5. Described are the total number of cases  

receiving each classification (―occurrences‖), the number of cases for which the 

classification appeared with both knowledge bases (―matches‖), and the number of 
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cases for which the classification was applied in only one knowledge base (―unique 

occurrences‖). For example, 1991 cases were found to have the equated 

classifications Normal lung volumes or Normal TLC; of these, 84.8% (1689) had the 

classification in both knowledge bases. Some 227 cases had one of the 

classifications only in the collaborative knowledge base, and 75 cases had the 

classification group only in the independent knowledge base. This indicated both 

that the contrasting definitions for this classification group needed to be examined, 

and also the magnitude of the difference.  

Classification 

Group 

Occurrences 

Matches 

Unique Occurrences 

Collaborative Independent Collaborative Independent 

Normal Lung 

Volumes 
1916 1764 1689 (84.8%) 227 75 

Impaired gas 

transfer 
1287 847 842 (65.2%) 445 5 

Obstruction 454 871 442 (50.1%) 12 429 

Hyperinflation 256 568 256 (45.1%) 0 312 

Restriction 569 298 245 (39.4%) 324 53 

Evidence of gas 

trapping 
888 136 136 (15.3%) 752 0 

Small Airway 

Obstruction 
94 171 41 (18.3%) 53 130 

Normal TLC but 

evidence of 

functional 

hyperinflation 

15 150 15 (10.0%) 0 135 

Table 5-5: Comparison results for the classification groupings which appear in both knowledge 

bases 

In support of the theory that the independent knowledge base includes some simpler 

and more general classifications than the collaborative knowledge base, the 
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comparison also showed a series of classifications unique to the independent 

expert’s knowledge base which have high numbers of cases. The classification No 

evidence of gas trapping occurred only in the independent knowledge base, for 

1929 cases (65% of the dataset). While the opposite classification Evidence of gas 

trapping appeared in both, it is at least partially this explicit definition of the 

negative form that inflates the numbers presented in Table 5-4. The definition of 

Normal spirometry (1216 cases) and Normal gas transfer (455 cases) are similar. 

Other definitions inflating these numbers were This patient is underweight (151 

cases) and This patient is obese (808 cases), both quite general classifications used 

primarily to summarise data and help inform more complex decision making. Other 

classifications such as Evidence of non-uniform ventilation (823 cases), 

Improvement in FVC post BD and others showed some more complex 

classifications that are only reached in this knowledge base. There are also some 

classifications at a similar level of complexity that occurred only in the 

collaborative knowledge base. Discussions with the experts found these 

discrepancies to be representative of different specialisations or points of focus for 

each expert. The higher level of complexity for the independent knowledge base 

may also be a result of the lengthier knowledge acquisition process undertaken by 

that expert, viewing more cases and hence revealing more tacit knowledge. 

5.4.1.3 Evidence-based Conflict Resolution 

The most important aspect of these statistics here is their application in combining 

the two knowledge bases. As was described in section 3.3.1, the identification of 

these conflicts, and the presentation of the relevant statistics to the experts involved, 

facilitated directed and detailed discussions into where the experts disagreed, 

assisted by the indicated significance of those disagreements. The same methods 

used to identify those conflicts, and the exploratory tools described in section 4.2.2, 

allowed the impact of potential modifications to each expert’s knowledge to be 

trialled and the results presented to find the best possible solution. Section 3.3.1 

describes the five conflicts which did not have obvious solutions, but required 

discussions with the experts. Once presented with the conditions of their differing 

rules, three conflicts were resolved immediately. The remaining two differences 

remained in conflict until the statistics pertaining to those rules were presented. The 

relative impacts of the differing rules, defined by the number of classifications 
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generated by each, led to one conflict being resolved; the second was corrected after 

a more detailed examination of the impact of the differences, facilitated by the 

statistical methods described in section 4.2.2.  

5.4.2 Novice to Expert Knowledge Comparisons 

The results for the student knowledge acquisition and knowledge comparisons are 

presented here, for each student in turn. The implications of the results, and a 

discussion on the efficacy of the method as a learning and assessment tool, are 

presented afterwards in section 5.5.2. 

5.4.2.1 Student 1 

The first student participant was in their third year of a medical degree, and as such 

was expected to display a limited understanding of lung function. The student 

described that they had ―some‖ confidence with interpreting lung function reports 

(3 on the 5-level Likert scale), and estimated that they had seen less than 10 reports 

previously. Informally, the student professed from the outset to having little 

understanding of lung function reports, and that they were participating primarily to 

gain some experience with examining such reports. Some bugs and un-optimised 

code were evident during this knowledge acquisition session, slowing the process 

somewhat. 

Terminology and Equating Classifications 

After examining the 2 cases, the student defined six different classifications: 

Restriction, Restriction with impaired gas exchange, Normal lung function, 

Obstruction – Mild, Obstruction – irreversible, and Obstruction – severe, 

irreversible. The terminology itself shows a quite limited range of knowledge, 

being contained in a small number of classifications with repeated themes. These 

were equated to expert classifications where possible, for example Restriction was 

grouped with the various degrees of Restriction defined by the experts, and the 

Obstruction classifications grouped with that category. Two of the classifications, 

Restriction with impaired gas exchange, and Obstruction – Irreversible appeared to 

be compound classifications when compared to the expert knowledge base, 

consisting of both Restriction and Impaired gas exchange, and Obstruction and No 

positive response to BD. As such no direct comparison could be made. 
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Comparing Results 

The comparison between student 1 and the combined expert knowledge base 

showed significant deviations, as expected. The student averaged 1.7 classifications 

per case with the majority (1831 cases, 62%) having 2 classifications. Some 266 

cases were given no classification. However, holistic comparisons are likely to 

unfairly represent the student’s knowledge. As the student only had the opportunity 

to examine 20 cases, there is a limited range of knowledge which can be acquired; 

whereas the expert knowledge base is compiled from over a hundred cases 

examined, and would be expected to be more complete for this reason alone. A 

measurement used to overcome this issue was to compare only classifications that 

appeared in both knowledge bases. Using this statistic, 192 (6.5% of the dataset) 

were found to be matches. That this is quite a small number indicates a large degree 

of incorrectness in the knowledge acquired from the student. Table 5-6 shows some 

of the generated comparison statistics for each corresponding classification 

grouping. 

Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 1 Experts Student 1 Experts 

Normal lung function 1746 1084 1060 (59.9%) 686 24 

Restriction 2158 298 230 (10.3%) 1928 68 

Obstruction – Mild 207 229 180 (70.3%) 27 49 

Obstruction – Severe, 

irreversible 
316 11 5 (1.6%) 311 6 

Table 5-6: The results of the comparison between student 1 and the combined expert 

knowledge bases (percentages indicate the ratio of cases that match out of all cases identified in 

that class, by either expert or student) 

The Normal lung function classification comparison shows a large discrepancy 

between the two, with the student overestimating which cases are normal. Although 

this does accurately identify 1060 of the 1084 expert-identified cases, including 

false positives the accuracy rate is 59.9%. An examination of the rules identifies 
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that the student uses none of the same conditions, or even the same attributes, as the 

experts. The most obvious difference is that the student does not include any 

volumes or diffusion components, focusing solely on spirometry. The definitions 

for Restriction are similarly disparate, with the ratio of matched cases roughly 

doubled, but still a very large number of false positives (1928) and a large number 

of false negatives (68). An examination of the rules indicates that the student again 

only used spirometry values to identify Restriction, whereas the experts exclusively 

used volumes measurements.  

The comparison between Obstruction – mild definitions is much closer, with the 

student identifying 180 of the 229 cases correctly. However, their definition did also 

identify 27 false positives. Examining the rule definitions, the experts used 

FEV1/FVC < 0.7 AND FEV1 % of predicted pre-BD ≥ 80; whereas the student used 

FEV1/FVC % of predicted pre-BD < 85 AND FEV1 % of predicted pre-BD > 80 

AND FVC % of predicted pre-BD > 90. This in itself identifies a likely discrepancy, 

based on the difference between the FEV1/FVC percentage of predicted value and 

the explicit FEV1/FVC ratio, and the one-sided inclusion of FVC percentage of 

predicted. However, the significance of those changes would not be obvious 

without the measured differences over the dataset.  

The comparison between Obstruction – Severe, irreversible and the expert-defined 

Fixed severe obstruction is slightly misleading because of the severity component: 

as was seen in the expert knowledge base consolidation, the gradations appear not 

to be strictly defined but are rather subjective measures. However, the discrepancy 

displayed is far greater than could be reasonably attributed to that alone, with 311 

false positives and 6 false negatives (55% of the cases correctly identified by the 

student’s definition), indicating that although the rule conditions may appear 

reasonable there is a lack of understanding in some significant area.  

Viewed Case Comparison 

The same comparison when only considering the 20 cases seen by the student 

presents a similar result. The student averaged approximately the same number of 

classifications per case (1.8), and matched 2 cases to the experts’ classifications 

(when considering classes used by both). The individual classification comparisons 

are summarised in Table 5-7; they show very similar ratios to those found by 
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comparing against the complete dataset. The only significant differences are the 

increased accuracy rates for Restriction and Obstruction – Severe, irreversible. 

Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 1 Experts Student 1 Experts 

Normal lung function 6 3 3 (50%) 3 0 

Restriction 12 6 5 (38.5%) 7 1 

Obstruction – Mild 2 3 2 (66.7%) 0 1 

Obstruction – Severe, 

irreversible 
7 2 2 (28.5%) 5 0 

Table 5-7: The results of the comparison between student 1 and the combined expert 

knowledge bases, for the 20 cases seen by the student (percentages indicate the ratio of cases 

that match out of all cases identified in that class, by either expert or student) 

Participant Feedback 

The student described the system as difficult to use (2 out of 5 on the Likert scale) 

and that they would not use such a system again, citing the slow speed and glitches. 

However, the student described the cornerstone-based conflicting rule indications as 

helpful (4 out of 5). The student did feel that they learned more about lung function 

through the process, and indicated that while not willing to move on the scale from 

2 (not confident) they did feel more confident than before. The full details of all 

participant questionnaire feedback is summarised in Table 5-14. 

5.4.2.2 Student 2 

The second student participant was in the fourth year of a medical degree, and had 

recently completed a respiratory rotation as part of their training, working with a 

specialist respiratory unit. All significant bugs had been corrected and the system 

optimised, resulting in a much smoother interaction. It was noted that the student 

used more sophisticated terminology than others, as might be expected given a 

more advanced education and practical experience. It was also noted that the 

student showed less interest in the task the further it progressed, being content to 

accept classifications suggested by the system without a thorough examination of 
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the case. The student described themselves as neither not confident nor confident, 

with little experience with lung function reports, having seen 11-30 reports. The 

student also commented that the reports should use reference ranges rather than 

percentage of predicted values, and that beginners would be helped by the inclusion 

of a volumes graph.  

Terminology and Equating Classifications 

Perhaps due to their recent clinical experience, their use of terminology was much 

closer to that used in the expert knowledge bases, with more degrees of detail. The 

classifications defined by the student were: Hypoinflation; Restriction; Mild 

Restriction; Moderate Restriction; Normal ventilatory function; Obstruction – 

moderate; Reversible moderate obstruction; Obstruction – severe, bronchodilators 

have a mild effect; Reversible mild upper airway obstruction; Mild diffusion 

impairment; Moderate diffusion impairment; and Diffusion impairment. This raised 

some interesting points. The drawing of a distinction between Hypoinflation and 

Restriction is unusual.  

As can be seen from the defined classifications, the student defined degrees of 

severity for each of Restriction, Obstruction, and Diffusion impairment, using the 

gradations Mild, Moderate, and Severe. However, no set of gradations were 

completed: for example Restriction included Mild and Moderate severities but not 

Severe, whereas Obstruction included Moderate and Severe, but not Mild. This is an 

apparent drawback from using a limited set of cases: the student did not see 

examples of cases which matched each of the criteria. The situation is further 

complicated by the subjective nature of each of these distinctions. 

The incomplete range of severities makes equating the classifications difficult: 

based on the subjective nature of the number and thresholds of severities, grouping 

all severities together seems a reasonable choice. This is impractical however when 

some severities have been defined but others not, as there would be a distinct gap of 

coverage in the knowledge base missing those severities. Fortunately in this case 

the numbers and ranges of severities used seemed to roughly equate between the 

student and the experts, so the decision was made to equate individual severities 

where possible. Hence Obstruction – moderate was considered as a distinct 

classification rather than a member of the Obstruction group, as the student and 
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expert had both used this same term. This student also used some compound 

classifications presenting the same difficulties as student 1. The lack of singular 

counterparts for Reversible moderate obstruction, Obstruction – severe, 

bronchodilators have a mild effect, and Reversible mild upper airway obstruction 

make comparisons for these classifications more difficult. 

Comparing Results 

The comparison between this student and the combined expert knowledge base 

showed a similar pattern to the first student’s comparison. Some 208 cases (7% of 

the dataset) matched when considering classifications used in both knowledge bases. 

This number itself is misrepresentative of the closeness of some of the definitions 

however. Examining the number of classifications per case shows that some of the 

discrepancy is likely a result of an incomplete acquisition of knowledge: 1432 cases 

(nearly 50% of the dataset) received no classifications in the student’s knowledge 

base, with the majority of the other cases (1075) receiving one classification, giving 

an average of less than one classification per case (0.7). It is expected that this is 

partially a symptom of the specificity of some of the classifications, and partially 

that this student’s interest waned as the process continued. Both indicate an 

incomplete knowledge acquisition process, suggesting that perhaps a wider range of 

cases need to be used, and highlighting the importance of having a student complete 

all cases to the best of their ability. 
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Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 2 Experts Student 2 Experts 

Hyperinflation 567 568 567 (99.8%) 0 1 

Restriction/Hypoinflation 374 298 298 (79.7%) 76 0 

Mild diffusion impairment 310 496 129 (19.1%) 181 367 

Moderate diffusion 

impairment 
125 126 124 (97.6%) 1 2 

Normal ventilatory 

function 
177 1084 94 (8.1%) 83 990 

Obstruction - moderate 115 545 61 (10.2%) 54 484 

Moderate restriction 138 94 29 (14.3%) 109 65 

Mild restriction 100 154 25 (10.9%) 75 129 

Table 5-8: The results of the comparison between student 2 and the combined expert 

knowledge bases (percentages indicate the ratio of cases that match out of all cases identified in 

that class, by either expert or student) 

Table 5-8 shows the comparison between classifications appearing in both 

knowledge bases. As alluded to earlier, some of these classifications show that 

although the overall matched cases measure indicates a very low level of similarity 

there is actually a strong agreement for some areas. The Hyperinflation 

classification, for example, is only different in one of 568 cases: examining the 

rules shows that the only difference is the use of less than or equal to by the expert 

and less than by the student, which was shown by the expert comparisons to be an 

arbitrary distinction. Similarly, Moderate diffusion impairment is only differentiated 

by 3 cases. The rules show that the student used the uncorrected DLCO value for 

their definition, while the expert knowledge base used two rules, one using the 

uncorrected DLCO and the other using the corrected DLCO value, resulting in the 

difference. This would appear to be considered an unimportant distinction, as the 

two versions of the rule in the expert knowledge base were defined by the same 
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expert. The Restriction/Hypoinflation comparison is also quite similar, although the 

statistics indicate that the student used a broader definition than the experts. This 

discrepancy is due to the distinction between Restriction and Hypoinflation in the 

student’s knowledge base. Interestingly, the student’s Hypoinflation definition is 

identical to the experts’ definition for Restriction; however their Restriction 

definition itself is markedly different and more complex.  

Mild diffusion impairment however shows an unexpected difference, given the 

accuracy of Moderate diffusion impairment. Not only is there a large difference 

between the number of cases classified, the student’s definition also classifies a 

largely different set of cases. This difference appears only to be due to the use of the 

uncorrected DLCO value by the student and the corrected value by the experts. Both 

use otherwise identical conditions (DLCO % of predicted < 80 AND DLCO % of 

predicted > 60), although the expert uses less than or equal to rather than less than.  

The differences in Mild restriction and Moderate restriction are products of the 

very different definition for Restriction used by the student. The large discrepancy 

in Normal ventilatory function is due to the different attributes used to define the 

rule, and the evidently stricter ranges the student applies.  

A further point of interest is the student’s definition Diffusion impairment, as the 

cases classified by it overlap almost perfectly with the expert definition of Severely 

impaired gas transfer (diffusion impairment is a synonym for impaired gas 

transfer). The reason for this is the manner in which the student’s rules were formed: 

the initial definition was for Diffusion impairment, specifying the rule DLCO 

uncorrected % of predicted < 80. This was however superseded by the later 

definition of the exception rules for Mild and Moderate diffusion impairment, which 

specified the ranges 60 < DLCO % of predicted < 80, and 40 < DLCO % of 

predicted < 60 respectively. This only leaves those cases with a DLCO percentage 

of predicted below 40 to be covered by the initial rule. The significance of this is 

that it demonstrates the importance of clearly determining the detail of the 

classifications before the knowledge acquisition process is begun, particularly when 

using a limited set of cases as any mistakes such as this are less likely to be 

corrected by encountering one of the pertinent cases. While this definition could be 

considered incorrect when compared on a purely computational basis, the 

underlying statement could not actually be said to be false: those cases certainly do 
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exhibit Diffusion impairment. The only error is the lack of specificity equivalent to 

the other levels of specificity defined. As such this should perhaps not be 

considered as completely incorrect knowledge. The definition of the broad 

classification first, then severities later, provides a general fallback or ―safety net‖ 

which ensures the relevant knowledge is applied even in cases which might be 

missed by the definition of more complex rules.  

Viewed Case Comparison 

The comparison results over the 20 cases seen by the student shows a marked 

improvement from the overall results in many areas. The student averaged 2 

classifications per case, and matched 4 cases to the experts’ classifications (when 

considering classes used by both), with a 22.5% average of classifications matched 

per case. The individual classification comparisons are summarised in Table 5-9; 

they show complete accuracy for Restriction, significant improvement in Mild 

diffusion impairment, and very significant improvement in Normal ventilatory 

function accuracy rates.  
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Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 2 Experts Student 2 Experts 

Hyperinflation 4 4 4 (100%) 0 0 

Restriction/Hypoinflation 6 6 6 (100%) 0 0 

Mild diffusion impairment 4 5 4 (80%) 0 1 

Moderate diffusion 

impairment 
4 4 4 (100%) 0 0 

Normal ventilatory 

function 
4 3 3 (75%) 1 0 

Obstruction – moderate 2 8 0 2 8 

Moderate restriction 3 0 0 3 0 

Mild restriction 5 6 4 (57.1%) 1 2 

Table 5-9: The results of the comparison between student 2 and the combined expert 

knowledge bases, for the 20 cases seen by the student (percentages indicate the ratio of cases 

that match out of all cases identified in that class, by either expert or student) 

Participant Feedback 

This student described the process as fairly easy (4 out of 5 on the Likert scale). The 

cornerstone conflicts were again said to be helpful (4 out of 5), however the 

information additional statistics provided were described as unhelpful (2 out of 5). 

They described their confidence as unchanged and felt that they had not learned 

anything from the process. The student said they would use the system again 

however, if there were an initial set of rules already established in the system. All 

participant questionnaire feedback is summarised in Table 5-14. 

5.4.2.3 Student 3 

The third student participant was again in the third year of the medical degree. As 

such the student’s knowledge was relatively shallow and incomplete, and the 

student indicated that they were only familiar with spirometry. The student stated 
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little experience with lung function reports (2 on the Likert scale), having seen less 

than 10 lung function reports before. They also described themselves as not 

confident (2 on the Likert scale). This was apparent in the definition of some rules, 

where the student could describe classifications for a case but was uncertain about 

how best to justify those classifications in a rule. A key example is an expressed 

desire to define a rule based on the shape of the flow volume loop, but being unable 

to as the student did not know which attributes represented those features of the 

graph. The uncertainty of definition also led to a high number of cornerstone cases 

conflicts being identified as the student defined new rules, and for the last five cases 

the student declared they were satisfied to define any vaguely plausible condition 

which would stop cornerstone conflicts.  

Terminology and Equating Classifications 

The classifications defined by this student were: Normal lung function; Obstruction 

– mild; Obstruction – moderate; Fixed moderate obstruction; Obstruction – severe, 

bronchodilators have a mild effect; Mixed defect; Moderate mixed defect; and 

Severe mixed defect. The use of the mixed defect terminology is rare in this study, 

having been identified early in development as a compound classification, and split 

into its component Obstruction and Restriction elements, with separate rules for 

each. Given that there are significant implications for having both conditions 

simultaneously, the experts did later include a rule explicitly reaching the 

classification Mixed defect. While having some understanding of what constituted a 

Mixed defect, the student expressed confusion about exactly what the components 

were or how they might be separately defined, suggesting that the student may have 

learned the pattern to identify a mixed defect but lacked the understanding of what 

it represented. As the experts made no distinction of severity of Mixed defect, and 

the student did not express which component the defined severities applied to, they 

were all grouped and compared to the expert-defined Mixed defect. The Obstruction 

classifications were compared against their equivalent severities where possible. 

The only classification with no direct equivalent was Obstruction – severe, 

bronchodilators have a mild effect. 
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Comparing Results 

Considering only classifications appearing in both knowledge bases, there is a 

remarkable number of matching cases, with 1189 (40.2% of the dataset) meeting 

this criteria. The reasons for this are clearer when investigating the other statistics: 

the average number of classifications is below one per case, with the majority (2170, 

73%) having one classification and 753 (25%) receiving no classifications. As 

shown in Table 5-10, 1046 of these single classification matches are caused by the 

closeness of definition for the Normal lung function classification. The high number 

of matching cases would therefore be indicative of the level of correctness of the 

student’s knowledge, whereas the very small number of classifications per case 

shows that there are many areas in which the student has little or no knowledge.  

Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 3 Experts Student 3 Experts 

Normal lung function 1551 1084 1046 (65.8%) 505 38 

Obstruction – mild 451 229 69 (11.9%) 352 160 

Obstruction – moderate 91 545 68 (12%) 23 477 

Mixed defect 113 61 14 (8.8%) 99 47 

Fixed moderate 

obstruction 
47 52 0 47 52 

Table 5-10: The results of the comparison between student 3 and the combined expert 

knowledge bases (percentages indicate the ratio of cases that match out of all cases identified in 

that class, by either expert or student) 

The other classifications and classification groupings show quite low percentages of 

matching cases and disparate numbers of cases classified. Investigating the rules 

show the differences in conditions; the student’s rules are generally based on 

relevant or related attributes, showing an understanding of the underlying 

physiological effects, but a lack of knowledge of the clinical parameters in 

professional use. The large degree of difference between the end result suggest that 
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while the student’s understanding may be grounded on some logical foundation, 

that understanding is not detailed enough to reach accurate conclusions. 

Viewed Case Comparison 

The comparison results over the 20 cases showed a surprising decrease in matches, 

with only 3 cases matching (15%). The average classifications per case increased to 

1.1 however (2 cases had 2 classifications, the rest 1). The individual classification 

results were reasonably similar to those for all cases, showing very similar patterns, 

as shown in Table 5-11. 

Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 3 Experts Student 3 Experts 

Normal lung function 6 3 3 (50%) 3 0 

Obstruction – mild 7 3 1 (11.1%) 6 2 

Obstruction – moderate 2 8 2 (25%) 0 6 

Mixed defect 3 4 0 3 4 

Fixed moderate 

obstruction 
3 2 0 3 2 

Table 5-11: The results of the comparison between student 3 and the combined expert 

knowledge bases, for the 20 cases seen by the student (percentages indicate the ratio of cases 

that match out of all cases identified in that class, by either expert or student) 

Participant Feedback 

The participant described the software as fairly easy to use (4 out of 5 on the Likert 

scale). They identified the cornerstone conflict indications as very helpful (5 out of 

5) and the statistical information as helpful (4 out of 5), saying that they used the 

statistical information for most rules (4 out of 5). The student made the comment 

that the program was effective and easy to use once they had become familiarised 

with it. They described that they were now more confident in interpreting lung 

function reports (4 out of 5), and that they improved their knowledge from the 

process, citing specific knowledge learned by seeing the statistics for how their 
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rules classified cases, and how their definitions conflicted. They indicated they 

would use the system again, stating that such a program would be useful in practical 

application on a ward, especially if the consultants used it and their knowledge 

could be used. All participant questionnaire feedback is summarised in Table 5-14. 

5.4.2.4 Student 4 

Student 4 was a fourth year student of the medical degree. They stated some 

experience with lung function reports (3 out of 5), having seen between 11 and 30 

reports. They noted that they were unsure of their confidence (3 out of 5), stating 

that they ―know the basic principles but probably need to apply the knowledge in 

more situations‖. The student expressed throughout the process that they were 

concerned their classifications were not sophisticated enough, and remarked 

multiple times that although they were aware that they were not being assessed, it 

―felt like a test‖. 

Terminology and Equating Classifications 

The classifications defined by the student were: Evidence of gas trapping; Mild 

restriction; Mild airway obstruction; Moderately severe airway obstruction; Mild 

obstruction of small airways; Mild emphysema; and Moderate emphysema. The 

emphysema classifications are difficult, as the experts did not go so far as to include 

diagnoses in their knowledge base, hence no analogue exists. As no other severities 

were defined for Mild restriction, and as it was found to be quite broad in scope 

with no minimum threshold, it was equated to the Restriction group of expert 

classifications. Mild obstruction of small airways was considered for grouping with 

the expert defined Small airway obstruction, but ultimately was excluded as the 

student’s definition was very specific to the mild component and a full comparison 

would be uninformative. The Obstruction classifications were compared directly 

with their counterparts. 

Comparing Results 

Using only shared classifications, 135 cases (4.6%) find the same results. This 

student displays a lower breadth of knowledge than previous participants however, 

with an average of 0.4 classifications per case, 1815 with no classifications and 

1148 with a single classification. Examining the rule structure it appears that this is 
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not due to overly specific rules, but to the definition of overly general rules: the 

initial rules defined were very broad, utilising conditions such as FEV1/FVC % of 

predicted < 100. When these were found to classify further cases incorrectly, the 

student added an exception to the rule to define a new and separate classification, 

when the appropriate procedure would have been to remove the existing 

classification (adding a stopping rule), and then add a new classification (adding a 

new, non-exception rule). While not exclusively defining rules in this format, the 

nested nature of many of the rules ensured that no case would receive more than 

one classification. 

Table 5-12 shows the classification comparisons. The definition for Restriction is 

representative of the student’s definitions in general, with the conditions TLC % of 

predicted < 100 AND FEV1/FVC % of predicted < 100. These conditions are 

clearly far too general, as the use of < 100% would incorporate even cases that have 

a measurement 99.9% of the predicted value. These definitions indicate the level of 

the student’s knowledge: they were following the heuristic ―a case is restricted 

when TLC is reduced‖, which agrees with the experts’ definition, but the student 

had no understanding of what constituted a significant reduction. This would seem 

to be an example of a student learning a pattern without understanding the pattern. 

The definitions for Evidence of gas trapping, Moderately severe airway obstruction, 

Mild emphysema and Moderate emphysema exhibit the same problem, although 

Mild airway obstruction uses the more realistic conditions FEV1/FVC % of 

predicted < 80 AND FEV1/FVC % of predicted > 60 and finds an approximately 

equivalent number of classifications to the expert, although this is also shown to be 

a very different set of cases. In addition to being overly general, Mild emphysema 

exhibits the opposite problem with the condition FEV1/FVC % of predicted = 100, 

which actually serves to balance out the frequency of classification, although it 

classifies incorrectly.  
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Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 4 Experts Student 4 Experts 

Restriction 474 298 129 (20.1%) 345 169 

Mild airway obstruction 131 137 26 (10.7%) 105 111 

Moderately severe airflow 

obstruction 
304 102 20 (5.2%) 284 82 

Evidence of gas trapping 98 405 15 (3.1%) 83 390 

Table 5-12: The results of the comparison between student 4 and the combined expert 

knowledge bases (percentages indicate the ratio of cases that match out of all cases identified in 

that class, by either expert or student) 

Viewed Case Comparison 

The comparison results over the 20 seen cases showed 7 matches (35%) using 

shared classifications, with exactly one classification per case. Restriction showed a 

large increase in accuracy, but still with 2 false positives (out of 7 positives) and 1 

false negative (out of 6 true positives). Full numbers are summarised in Table 5-13 

Classification Group 

Occurrences 

Matches 

Unique Occurrences 

Student 4 Experts Student 4 Experts 

Restriction 7 6 5 (62.5%) 2 1 

Mild airway obstruction 2 3 1 (25%) 1 2 

Moderately severe airflow 

obstruction 
4 2 0 4 2 

Evidence of gas trapping 2 6 2 (33.3%) 0 4 

Table 5-13: The results of the comparison between student 4 and the combined expert 

knowledge bases, for the 20 cases seen by the student (percentages indicate the ratio of cases 

that match out of all cases identified in that class, by either expert or student) 
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Participant Feedback 

Student 4 described the system as very easy to use (5 out of 5). They were however 

unsure of the usefulness of the cornerstone conflict indications (3 out of 5). While 

stating an understanding of the rule statistics presented, they were unsure of their 

usefulness (3 out of 5) and they never influenced their rule making decisions (1 out 

of 5). The student indicated no increase in confidence, but that they had learned 

from the process, stating that the system had identified multiple areas to ―read up 

on‖. The student said they would use the system again. All participant questionnaire 

feedback is summarised in Table 5-14. 

 

 Student Participant 

Mean 1 2 3 4 

Experience with lung function reports 3 2 2 3 2.5 

Number of reports seen 1-10 11-30 1-10 11-30 - 

Confidence in interpreting lung function reports 2 3 2 3 2.5 

Ease of use of software 2 4 4 5 3.75 

Usefulness of cornerstone conflict indications 4 4 5 3 4 

Usefulness of statistics in rule definition 3 2 4 3 3 

Influence of statistics on rule definition NA NA 4 1 2.5 

Confidence in interpretation post-test 2 3 4 3 3 

Increase in confidence after using system 0 0 2 0 0.5 

Did participant learn from the process? yes no yes yes - 

Would participant use the system again? no yes yes yes - 

Table 5-14: Summary of pre- and post-acquisition questionnaire answers (NA indicates not 

answered) 
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5.5 Discussion 

5.5.1 Knowledge Consolidation 

The successful identification and resolution of conflicts, and the successful 

compilation of multiple experts’ knowledge into the expert system presented in 

Chapter 3, indicate that this approach can be used for knowledge consolidation. The 

results presented here provide details of how well the method functions, what 

deficiencies exist and how it might be improved. 

5.5.1.1 Equating Classifications 

The identification of classification equivalencies is one of the weak points of the 

method presented here, as it required some manual analysis work and post 

knowledge acquisition communication between the experts involved. The extent of 

this problem is dependent on the domain and the experts involved; in domains in 

which the terminology is clear, consistent, and unambiguous, no classification 

equating would be necessary. The domain used in this study showed significant 

differences in the terminology used for the same classifications, not only between 

different experts but at times between the same expert at different times. It is worth 

noting that in this study no participant ever expressed confusion about the meaning 

of any particular terminology. Even student participants who demonstrated a lack of 

understanding of some classifications seemed familiar with the terminology used, 

and indeed in this study the definition of classification equivalencies was not 

considered to be a difficult task to complete manually. Nevertheless, it is necessary 

in order to computationally compare results accurately; the doubling in average 

matched classifications after equating classifications, and the drop of unmatched 

classifications from 52 to 28, show how much extra knowledge was able to be 

compared between the expert knowledge bases. The minimisation of the effort 

required for this task is a problem to be solved, especially if considering applying 

the method to domains whose terminology may not be as easy to resolve. 

There are two specific problems related to terminology identified during this study 

that require resolution: the use of compound classifications and the definition of 

differing levels of severity both present difficulties for comparison. The major 

problem with the definition of severities is that different experts used different 
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numbers of grades, and different thresholds to define each grade, making direct 

comparisons at times impossible. The definitions are clearly subjective, and do not 

necessarily conflict with each other: in most situations each expert would be 

satisfied to accept a slightly more or less detailed scale of distinction. However 

ignoring the defined scales loses some of the detail in the acquired knowledge, and 

risks missing some genuine conflicts of opinion. For these reasons the solution used 

in this study was to compare gradations directly where possible, but otherwise to 

group them together and compare holistically, as this would at least allow some 

comparison of the knowledge defined. This is a workable solution, as shown by the 

effective comparisons made here, but other options may be considered. 

The use of compound classifications presents other difficulties. This problem was 

identified relatively early in expert knowledge acquisition, as experts sought to 

define the classification Mixed defect (Restriction and Obstruction), and it was 

advised that experts separate classifications wherever possible. This was largely 

adhered to, although a common exception was the definition of various 

combinations of Reversibility or Positive response to bronchodilators with 

Obstruction. This was not a significant problem in comparing and consolidating the 

expert knowledge bases, as each expert generally seemed quite able to follow the 

recommendation of defining singular classifications. The occurrences of compound 

classifications such as Reversible obstruction were relatively easy to compare in 

this study by examining the rules and identifying the conditions which 

corresponded to each component. The alternative approach to breaking down the 

compound classification is to identify the component classifications as defined in 

the other knowledge base, and identifying those cases which match both 

classifications. This seems to the author to be a practical and simple solution for 

more complex situations. 

There are many approaches to avoiding or improving the definition of classification 

equivalencies. The use of a method such as formal concept analysis to identify 

conceptual differences, as described by Richards and Compton (Richards, 1998; 

Richards & Compton, 1997c), would likely improve this process by providing a 

visualisation of the classifications and rule conditions in each knowledge base. 

Depending on how different the definitions are, this could assist in identifying 

equivalent terminologies based on similarities of conceptual structure. The 
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hierarchical separation of classifications and rules into conceptual components may 

also assist in the general comparison of compound classifications. A discussion on 

the comparative effectiveness of formal concept analysis and the method presented 

here is provided shortly. 

There are other options for improving the classification equating task. One of the 

simplest alternatives is to perform a level of domain modelling before the main 

knowledge acquisition, and then be prescriptive about the classifications that can be 

used. This would not in fact remove the problem of identifying which 

classifications are equivalent, but would rather shift the work to an earlier stage; 

although it might be expected to be an easier task as idiosyncrasies and 

terminological differences are identified and resolved before they become widely 

manifest in the knowledge base. This would also resolve any issues with differing 

gradations of severities and the definition of compound classifications. This 

approach was rejected from this study however, for a few significant reasons. 

Firstly, it restricts the range of knowledge that can be acquired and expects experts 

to list all knowledge that they might define before they have seen any cases, making 

the uncovering of tacit knowledge a more difficult task. Secondly, there can be a 

loss of detail in the knowledge acquired as the definitions will often be more 

generic than otherwise in order to accommodate a wide range of experts’ views; and 

as experts seek to conform to those generic classifications they will not be 

producing their usual output. Thirdly, the differences in terminology between 

experts can be an interesting result in itself. Lastly, and most practically, this study 

did not have a limit on the number of experts that would be invited to participate, 

and it seemed undesirable to define a prescriptive set of classifications for experts to 

use without their input into what those classifications should be. 

There are other options for improving the terminology equating process. While not 

particularly necessary for this domain, the automatic identification of similar classes 

could be useful in domains where differences in terminology present a significant 

problem. The methods presented in this study can already find similar classes based 

on the attributes of the class membership, and it is expected that this could provide a 

simple way of suggesting equivalent terminology for experts’ knowledge bases. 

This method would not replace the classification analysis, but should alleviate some 

of the work involved. 
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5.5.1.2 Quantified Comparisons and Conflict Identification 

One of the most significant benefits of this approach is that it does not rely solely on 

abstractions and theoretical understanding to compare knowledge. The application 

of each knowledge base over a dataset allows a measure for how significant each 

difference is, and to quantify the overall comparison in a number of ways. The 

frequency of the number of classifications made by each knowledge base (as shown 

in Table 5-4: Frequency of number of classifications per case, for each knowledge 

base), and the overall numbers and ratios of matches, can provide a general 

impression of the relative qualities of each knowledge base. This impression is then 

qualified by the numbers of cases given each individual classification. For example, 

the higher frequency of larger numbers of classifications generated in this 

comparison indicated that the individual expert knowledge base used more general 

classifications, and the individual classification numbers identified which 

classifications those tended to be.  

The quantification of the individual differences is important in assessing the 

importance of conflicts. A subtle difference in definition that may appear to be 

inconsequential might in practice have a significant difference on the end result; for 

example, the 450 case (34.8% of all cases identified) difference between definitions 

for Diffusion impairment are entirely due to the interchanged use of the corrected 

and uncorrected values for DLCO, with the rules being otherwise identical. 

Conversely, a difference that may appear to be significant may have quite a minor 

practical effect, as for example with the definitions for Normal lung volumes: one 

knowledge base made use of TLC and FRC in defining rules, whereas the other 

used at times TLC and other times only RV, and yet the differences were quite 

minor with an 84.8% agreement overall.  

The quantification of the differences between definitions has further importance to 

knowledge base consolidation because of the nature of the data. While there do 

exist standards as to how to clinically determine different classifications, the inter-

related nature of each of the attributes mean that there are typically multiple 

methods to define a classification, using different attributes, all based on reasonable 

underlying principles. For example, as described in section 4.2.3 there are many 

definitions for the classification Reversibility that are in clinical use and much 

disagreement over the best definition to use (American Thoracic Society, 1991; 
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Borg, et al., 2004; Jenkins & Young, 2004). This is supported by the knowledge 

acquired from the different experts in this study, as the two specialist experts 

entered differing definitions for a number of classifications that required resolution. 

Two of these conflicts were only resolved by examining the number of cases 

affected by each different definition, after which the experts were able to select the 

definition that best fit their expectations and understanding. These two examples 

best demonstrate the benefit of being able to quantify the difference between two 

definitions, where a conceptual comparison was simply insufficient. Those two 

examples also highlight that even experts cannot always be sure what the impact of 

differences in definition will be, as they requested the number of cases each 

classified by each definition. The identification of which differences are significant 

and which are inconsequential can also reduce the number of conflicts which need 

to be brought to the experts’ attention, an important consideration given the value of 

expert time. 

Formal Concept Analysis 

As described earlier, formal concept analysis also provides a means of comparison 

between the knowledge defined in each knowledge base, and as such overlaps with 

the goals of this method. Where the approach presented here differs is in the 

identification of quantified results and exemplars of differences, as will be 

discussed. Whereas formal concept analysis can better provide a visualisation 

allowing the identification of significant conceptual differences, this approach is 

more able to identify subtler differences, and importantly, the significance of those 

differences to the end classification. It is suspected that this approach would also 

perform better for larger knowledge bases, where a visualisation would be too large 

to be easily inspected. However, this method is not intended as a replacement, but 

rather presents certain comparison information that other approaches do not: it is 

suggested that a combination of the two methods might provide better results, 

depending on the domain and knowledge structures. Further study is needed to 

qualify this conjecture however. 

5.5.1.3 Conflict Resolution 

As has been described, quantifying the differences between different definitions of a 

classification can assist in resolving those conflicts. While most of the conflicts 
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encountered were resolved by simply viewing the different definitions and 

identifying a sensible solution, or presenting the conflict to the experts who could 

immediately resolve it, some of the conflicts required the use of the classification 

statistics. These methods resolved all conflicts that were found between the experts 

in this study; however, the comparison method provides a further option for conflict 

resolution should it be necessary.  

For a more rigorous conflict resolution process, it is suggested that as part of the 

resolution discussion each expert could be presented with a case or cases that are 

exemplars of their conflict. These cases are easily identified by the method used: the 

interface as developed provides the option to view the set of cases described by any 

particular statistic, for example those cases which uniquely have the classification 

Obstruction in the first knowledge base. The presentation of the cases, with the 

classifications added by each expert, provides the full context in which the conflict 

should be considered. Examining the set of cases that are causing a particular 

conflict can also allow the identification of other attributes which may differentiate 

the groups, or further refine their definitions. This should ensure as little confusion 

as possible and may elicit more detailed knowledge, particularly tacit knowledge, 

which may not have been forthcoming in a less specific context. This does however 

require the availability of the experts to respond to the conflicts in a detailed manner, 

which is not always possible, as is demonstrated by this study. 

Another area the method might be expanded is in the automatic identification of 

why two definitions produce different results. The method as described generates a 

measurement of how different two definitions are, and it provides the rules as 

explanation; however, it does not automatically identify what the differences in 

definition are, nor the significance of each of those differences. It is expected that 

an automated analysis of the effects of each differing rule condition on the results 

could identify this relatively easily, but it is unknown whether the benefits would 

outweigh the cost of computation. 

5.5.2 Teaching and Learning 

In addition to being used to consolidate two expert knowledge bases, the knowledge 

acquisition and comparison method was also tested as a general tool for education 

and assessment. It was hypothesised that the knowledge acquisition and subsequent 
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comparison would provide practical experience and help participants explore their 

understanding of lung function, and that the knowledge comparison may also 

provide a tool for the assessment of participants’ knowledge against the 

consolidated expert knowledge base. 

5.5.2.1 Practical Experience 

The process of acquiring a participant’s knowledge in the structured ripple down 

rules format, with associated statistics for how that knowledge applies over a 

dataset, showed some promise as an educational tool. All but one student indicated 

in their questionnaires that they felt they had learned from the process, even without 

any feedback to compare their definitions to the experts’. One student indicated a 

significant increase in confidence (from ―not confident‖ to ―confident‖) in 

interpreting lung function reports, describing specific knowledge learned from the 

process. Another student described an increase in confidence, but not significant 

enough to move them from ―not confident‖. Likewise all but one student participant 

indicated they would use the system again, the one exception being the first student 

who cited the initial bugs as the only reason for their reticence. As there was no 

instruction of any sort about lung function knowledge, no expert knowledge was 

provided, and the administrator of the system made it clear that he did not have any 

education in lung function, the described gain in confidence and knowledge learned 

is assumed to have come from the practical experience of working with lung 

function tests and seeing the practical application of learned theory. This is 

supported by the participants’ comments: two students commented before 

beginning that they had some understanding of principles, but felt they needed to 

apply the knowledge in practical situations. The two students who described an 

increase in confidence both attributed this to the practical application of theory; 

another student identified multiple areas to ―read up on‖, based on shortcomings 

identified because in attempting to apply knowledge they discovered gaps and 

inconsistencies. This is an expected result as the benefits of practical application of 

theory are well-described, with the situated learning and constructivism schools of 

thought advocating the necessity of practical application of theory in learning 

(Anderson, 2004; Duffy & Cunningham, 1996; Lave & Wenger, 1991). 

Nevertheless it is an important result that the students learned through the process 

and were supportive of the approach. 
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The impact of the dataset statistics provided in the rule definition process appears to 

be minimal, with participants averaging 3 out of 5 on the Likert scale for usefulness, 

and a 2.5 for influence on rule definition. It might be expected that the students 

would not be able to take full advantage of the statistics in guiding their definitions, 

as to do so requires at least a reasonably confident expectation of the frequency of 

appearance of each classification, and a reasonably confident expectation of the 

ranges displayed for each attribute. Given the self-described low level of experience, 

knowledge and confidence for the students involved, it is perhaps unsurprising that 

they did not devote much attention to the statistics. As the only student with 

practical experience, the second student participant commented that the statistics 

were a good and useful idea once they had been explained to them. However, they 

did not use that knowledge at any point – whether that was because of a lack of 

understanding of how to use it, a lack of interest, or a lack of time, is unclear. A 

similar pattern was noted for the other participants, with the one exception being 

student 3, who did examine the statistics for each rule defined and described 

information learned from doing so. Student 3 noted in the post-acquisition 

questionnaire that the statistics indicated the percentage of cases present for the 

classification being defined, and that they used that information to adjust the rule 

conditions to avoid making classifications that were too broad. At the very least, the 

student learned from this what sort of distributions to expect from some lung 

function attributes, and how better to differentiate opposing classifications. This 

demonstrates some usefulness to making the statistics available, and the results 

demonstrate no negative impact; although there is the possibility that the figures 

may confuse and intimidate users, and that improved interface responsiveness by 

removing the statistics may be of benefit. A further negative is that only one student 

gained any benefit from the statistics; but this was also the only student who seemed 

to show any interest in them. There is no evidence to show a benefit from removing 

the statistics, but some positive results were achieved from them; the matter 

requires further study. 

The benefit of the rule conflict indications, based on the identification of 

cornerstone case conflicts, is clearer. The average questionnaire result described the 

usefulness of the conflict indications as 4 out of 5 (―Useful‖), with one participant 

being uncertain of the impact and one student describing them as very useful. It was 
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noted that conflicts were quite common, with every participant defining conflicting 

rules, which forced them to analyse both the accuracy of their knowledge and 

analyse the conflicting cases to identify relevant differences.  

5.5.2.2 Knowledge Comparisons 

The comparison of participant knowledge to expert knowledge can provide a 

variety of insights into the nature of that participant’s knowledge. Of particular 

benefit is the identification of specific weaknesses, gaps in knowledge, or 

misunderstandings.  

Identifying Weaknesses  

Terminology and Classification Equivalencies 

The terminology used in each knowledge base can provide insights into the 

knowledge expressed, particularly when compared with the experts’ terminology. 

These insights are revealed in the process of finding the classification equivalencies 

in the knowledge bases. As expected, each participant defined much fewer 

classifications than were present in the expert knowledge base. The classifications 

that are defined by each participant give the simplest indication of the student’s 

level of knowledge, or at least the knowledge that they feel confident expressing. 

For example the first student defined the classifications Restriction, some severities 

of Obstruction, irreversibility, and Normal lung function, indicating a lack of 

knowledge of any volumes- or diffusion-based classifications. This is valuable in 

itself, although it does not describe how correct their knowledge is. Equating the 

terminology used can also reveal confusion on the part of the student: for example 

the second student defined separate classifications Restriction and Hypoinflation, a 

distinction not made by the experts.  

Many of the classifications defined by the student participants also highlighted the 

problems that the method faces with compound classifications that cannot be 

directly compared. This was a more common problem with student participants than 

with experts, for example, the first student’s classifications Restriction with 

impaired gas exchange, and Obstruction – Irreversible appear to be compound 

classifications when compared to the expert knowledge base. This is perhaps due to 

the shorter acquisition process, with less instruction as to how and what type of 
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classifications to define, and perhaps as the participants had less knowledge to be 

able to separate and differentiate compound classifications. For example the third 

participant defined Mixed defect (which the experts separated into Restriction and 

Obstruction), but when it was suggested that they define classifications as 

individually as possible they professed that they did not know how to separate the 

classification. For these reasons the comparison of the compound classifications is 

more of an issue for student-expert comparisons. In some instances the conditions 

of the compound classifications may be separated into two rules to allow direct 

comparisons, but to ensure accuracy this would require consultation with the person 

that defined the rule. Whether a discussion was attempted or not, there is still the 

possibility that the classification is not in fact a compound classification, at least to 

the person defining it: that the definition uses characteristics of the case that are 

only present when both classification components are present at the same time, and 

therefore cannot be reduced to separate rules. In this situation it can only be 

compared against a combination of the individual expert-defined classifications, if a 

comparison is to be made.  

Comparison Results 

Although the terminology can describe general limits of knowledge and suggest 

flaws, these are relatively meaningless without some identification of the 

correctness of the knowledge that is there and the significance of the problems. The 

definition of Restriction and Hypoinflation separately is not in itself incorrect, as the 

experts also used both terms at times. It is only once the results of the classifications 

across the dataset are compared to the experts’ results that the discrepancy is 

revealed. The large difference in number of cases identified in this situation 

highlighted the flawed knowledge. Similarly the comparisons provide 

measurements for how accurate each classification is, including areas in which the 

student has a strong understanding.  The strong correlation between cases classified 

for the Hyperinflation and Moderate diffusion impartment classifications between 

the second student participant’s knowledge base and the experts knowledge base 

clearly shows the students’ strengths The quantified results for the first student’s 

definition of Obstruction, revealing 180 of 229 cases correctly classified, with 27 

false positives, gives a clear and unambiguous measurement of how correct the 

student’s knowledge is.  
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As with the expert comparisons, the significance of a difference in definition is not 

always obvious. A subtle difference in definition might in practice have a strong or 

limited effect. For example, one student’s use of the uncorrected DLCO value rather 

than corrected showed a very significant difference for Mild diffusion impairment, 

despite the seeming insignificance of the difference. This highlights those flaws in 

knowledge that have an empirically more substantial impact on the end result, 

rather than relying on an intuitive sense of significance, which might be incorrect. 

As with the expert to expert comparisons, a holistic comparison can also provide 

useful information, such as general breadth of knowledge, general accuracy of 

knowledge and student confidence. The breadth of knowledge can be indicated by 

the number of classifications per case: for example, the knowledge base developed 

by student 3 showed 73% of cases had one classification and 25% had none, 

demonstrating a quite narrow range of knowledge. The number of matching cases 

however showed 1189 or 40% of the dataset, when considering classifications 

present in both knowledge bases; indicating that although there may not be a broad 

range of knowledge, the knowledge which is there is reasonably accurate.  

Evidence-based Resolution 

As was suggested for expert comparisons, the use of exemplars is suggested as a 

strong basis for demonstrating weaknesses in knowledge. Once a problem in 

knowledge is identified, the expert’s knowledge can be presented along with a case 

demonstrating the difference in action. It is suggested that the presentation of a real 

example for the student to consider would allow the student to not only examine the 

attributes present in the expert’s definition, but also allow them to examine the 

associated pattern of other related lung function variables. This would be expected 

to further reinforce their understanding of the classification. 

Assessment 

Given that this method quantifiably compares the knowledge of a student to a more 

reliable source, a logical application of the method is for student assessment. A 

number of considerations apply to this however. Although the method provides 

some general measurements of accuracy, the results here show that none can be 

considered individually sufficient as an analysis of student knowledge. The overall 
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accuracy measure reached 40% for student 3 and 7% for student 2; however, when 

considering the accuracy of individual classifications, and the more logical rule 

definitions provided by student 2, it is clear that this student had a better 

understanding of lung function. The reason for student 3’s higher score is evident in 

the individual classification statistics, with the single classification Normal lung 

function providing 1046 of the 1189 correct matches: as the student happened to 

define the most common classification accurately, their overall accuracy is higher. 

As pointed out previously, this accuracy measure needs to be supplemented by 

considering the breadth of knowledge, indicated in part by the number of 

classifications per case. However, this also fails to differentiate between the two 

students to any significant degree. A more useful measure in this situation is the 

average accuracy for each classification defined: this gives 19.7% for student 3, and 

42.5% for student 2. While this does give a good estimate of the accuracy of each 

student’s knowledge base, it should only be considered as one component of any 

assessment.  

The method could still provide useful assistance to an assessor however. The 

quantification of how many cases a classification covers has been shown to be 

useful, with experts unable to predict what the results of differing definitions will be 

over a dataset. This then should also be a useful tool to an assessor in identifying 

the accuracy of a definition. Further advantages are provided in the identification of 

specific areas that a student has difficulty in, and identifying specific cases that 

highlight those difficulties, presenting not only a method of assessment but also the 

means to improve the student’s knowledge.  

Student Knowledge Acquisition 

There are some concerns about the accuracy of the knowledge acquisition process, 

and the impact it may have on the knowledge acquired. These concerns relate to the 

restricted set of cases used, the complexity of the process, and the relative 

inexperience of the participants.  

The knowledge acquisition process performed with the student participants was 

necessarily modified from a typical MCRDR approach. A significant change was 

that the number of cases was restricted to 20, rather than the usual approach of 

allowing knowledge acquisition to continue for as many cases as needed for the rate 
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of corrections to plateau. The biggest concern with this change is that there would 

not be enough cases to allow the participants to express their knowledge, and to 

identify and correct mistakes. The lack of complete knowledge acquisition is 

suggested by some of the results: the knowledge base developed by student 2, for 

example,  contains definitions for mild and moderate Diffusion impairment and 

Restriction, but not severe, whereas Obstruction had definitions for severe and 

moderate but not mild. This particular missing knowledge is not a serious concern, 

as the missing definitions can be derived from the others if necessary; in fact the 

general definition Diffusion impairment effectively represented the student’s 

definition for Severe diffusion impairment by a process of elimination. The missing 

terms are however indicative that the knowledge acquisition may be insufficient. 

This is supported by the results for the 20 seen cases compared to the overall results. 

Each participant defined some classifications which were reasonably accurate for 

the 20 cases examined, but which then became much less accurate over the 

complete dataset. Student 2 in particular defined some very accurate rules for the 

reviewed cases, with 3 classifications showing 100% agreement with the experts. 

Although the accuracy of these definitions dropped over the full dataset, it might be 

expected from this that if the student had seen some of those incorrect cases they 

could have added further exceptions and improved their definitions. The other 

participants displayed this to varying degrees, although no pattern could be 

discerned to predict which definitions would extrapolate well and which would not. 

The difference in mean classifications per case, between seen and unseen cases, is 

also significant. While this would seem to indicate that the students had more 

knowledge that was not acquired, part of the discrepancy comes from the students 

not having a strong understanding of the underlying patterns. The lack of 

understanding is shown by the inaccuracy of some of the rules, even over the 

reviewed cases, and it results in the definition of rules which are based too heavily 

on specific attributes of the current case, rather than being expressions of an 

underlying pattern.  

Despite some evidence that the students had more knowledge to be acquired, there 

are however a number of factors ameliorating this concern. The 20 cases are still 

thought to have provided sufficient breadth of classifications. The cases were 

selected with expert consultation to find a spread of cases that provided multiple 
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examples of each of the classifications the students were expected to display. Some 

cases were chosen as typical examples of a classification, and others were selected 

as difficult borderline cases to hopefully derive detailed knowledge. The relative 

inexperience of the participants assisted in ensuring that a limited set of cases could 

cover the relevant areas. Furthermore, the presentation of statistics for how their 

definitions applied over the full dataset provided some access to the much larger 

store of data, to help elucidate detailed and accurate knowledge. Nevertheless, in 

any similar study or application, the number of cases used should be carefully 

considered to balance the time required with the data needed to express the 

participants’ knowledge. The other impact of reduced cases in the MCRDR 

acquisition process is that it may not provide sufficient data to verify previously 

defined rules, as cases exemplifying previous errors may not be present. This is 

resolved somewhat by the addition of dataset statistics, but it is argued that this is 

not an especially relevant concern in this situation: the goal is to acquire the 

student’s knowledge for comparison and assessment, rather than ensuring that all 

knowledge is complete and correct. If the participants add faulty definitions, they 

would presumably be relying on that same faulty knowledge in a practical situation, 

which is exactly the kind of mistake that the method is hoping to identify. 

Classifications that were shown to be completely accurate for the reviewed cases 

might be considered to be nominally correct, given there is no evidence that the 

student could not correct their classification when presented with a problematic case. 

However, any classification which incorrectly classifies, or fails to classify, 

reviewed cases should certainly be considered as evidence of a weakness in 

knowledge; and by applying that weakness over the larger dataset a more complete 

understanding of the significance of that flawed knowledge can be found.  

The problem of an incomplete knowledge acquisition process was raised in the 

results, both as a consequence of an insufficient range of cases, and for one 

participant due to fatigue or lack of interest. It is suggested that the problems 

presented by this latter point would not apply were the approach developed as an 

assessment tool, as this would provide a more meaningful outcome to the 

participants. A similar improvement might be seen if developed specifically as a 

learning tool. Developing a process that participants can and will complete to the 

best of their ability is a significant concern for further research in the area, and 
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financial incentives may be necessary to encourage participants to engage in future 

research projects that will not directly affect their real grades. 

The complexity of the knowledge acquisition process is also a concern. In particular, 

the results show some problems introducing the participants to the method in a short 

time frame, including how to define rules and the types of terms they should use. 

The students were given guidelines for how to define their classifications, such as to 

try and make general classes then make more specific ones, and not to use 

compound classifications but to separate classifications into individual components 

wherever possible. Apart from this they were largely left to perform the knowledge 

acquisition as they saw fit, with no prescription of specific classification 

terminology. This choice made for some difficulty in analysis but was expected to 

better represent the student’s knowledge, and provide more realistic results of the 

application of such a method. If this method was applied to a class of students, for 

example, many of the same problems would be encountered as each one cannot be 

supervised individually. As would be expected, difficulties were encountered as 

students defined compound classifications or used differing paradigms of 

classification than expected. For example, one student went beyond simple clinical 

interpretation and attempted to define a diagnosis of Emphysema. Further 

difficulties occurred with students misunderstanding the rule structure, a problem 

also encountered with the experts in this study: student 4 encountered difficulties 

after defining overly broad rules, then only defining exceptions when the rule 

produced incorrect results, without defining any new rules or stopping rules. The 

third student also remarked that the system was effective and easy to use once they 

had become accustomed to it. These problems make it clear that were any such 

system to be employed, significant consideration needs to be made to present the 

options unambiguously and with clear instructions. However, given that the 

comparisons in this study were successfully made and weaknesses identified, and 

given the positive feedback from the participants both in terms of learning and 

willingness to use the system again, the method seems to show some promise for 

further research. Important areas of research include determining the effects of 

being prescriptive about the classifications used, and whether the process can be 

explained and presented in a sufficiently understandable manner. 



 
239 

The final concern is with the suitability of the participants. The evidently large 

discrepancy between the knowledge of the student participants and the experts’ 

knowledge calls into question the usefulness of the comparisons. This is perhaps a 

failing of the experimental design; however, the results still serve to demonstrate 

the function and efficacy of the method. There is also no reason why future studies 

could not develop a knowledge base tailored to a specific knowledge level, such as 

the knowledge expected from a certain class or professional, to provide a more 

relevant comparison. It has been considered that as the students’ knowledge is quite 

shallow and relatively undeveloped, they perhaps should be assessed in stricter 

terms of correctness of method rather than focusing on similarity of end result. 

However, the process has been shown to be an effective learning tool for these 

students, and provides real practice and application of theory which they were 

apparently otherwise lacking: the third year students had seen less than 10 cases 

each and the fourth year students only between 10 and 30, so working through 

another 20 cases should almost certainly provide useful reinforcement of learning. 

The approach as presented also allows an identification of the gaps in knowledge of 

each participant, which is of some importance. Some of these students did, after all, 

go on practical hospital rotations and at times may well be expected to put their 

knowledge to the test in a real situation. Regardless of the relative merits of this 

exact method to the particular participants, the results still serve to demonstrate the 

application of the method in effective comparisons of knowledge.  

5.6 Conclusions 

This chapter described a method for quantifiably comparing the knowledge of 

multiple experts. This knowledge is acquired by a ripple down rules knowledge 

acquisition process, and the resultant knowledge bases compared over a dataset in 

order to identify and reconcile conflicts. The results of comparing and consolidating 

two expert knowledge bases in lung function were presented: they showed the 

ability of the method to identify important conflicts between experts’ knowledge, 

and to provide quantified evidence on the differences between definitions to assist 

in resolving those conflicts. This not only provides a method that can consolidate 

the acquired knowledge of multiple experts, improving the knowledge acquisition 

outcomes, but addresses the issue identified earlier in this study of finding 
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resolutions to knowledge conflicts that are acceptable to all parties and improve the 

knowledge of the experts involved. 

The chapter also described the potential application of this comparison method as a 

teaching and learning tool, and presented the results of comparing knowledge bases 

acquired from four medical students with the combined expert knowledge base. 

Participants indicated that they benefitted from using the method by identifying 

weaknesses in their knowledge, by learning from the dataset statistics provided, and 

by gaining practical experience in examining and applying theory of interpretation 

to lung function reports. Participants also indicated they would use a similar system 

again. This provides some quite positive results for application as a learning tool, 

despite very little focus on participant education. The potential for future 

development of this method, and its application as an assessment tool are discussed. 

Although there are measurable benefits to using the approach, more work needs to 

be done to ascertain how this method might be used to produce an assessment rating.  

The approach to comparison is not expected to replace conceptual knowledge 

comparison methods such as formal concept analysis, but rather complement these 

techniques. Some concerns exist with the problem of differing expert terminology, 

and with ensuring that participants understand and conform to the procedures of the 

knowledge acquisition. However, it is concluded that the method can effectively 

quantify differences in knowledge, identify significant differences, and assist in 

their resolution. The method can also assist in learning through the provision of 

practical experience, and provide a measure for how correct participant knowledge 

is in comparison to defined expert knowledge. 
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Chapter 6 Summary 

This thesis examined the issue that knowledge discovery methods often lack the 

ability to incorporate existing domain knowledge (Sinha & Zhao, 2008), and that 

this omission makes knowledge discovery in complex domains impractical 

(Adejuwon & Mosavi, 2010; C. Zhang, et al., 2009). Although attempts have been 

made to resolve this problem, studies frequently identified that in order to be 

successful, these methods require a knowledge acquisition or knowledge 

engineering process that is still impractically expensive (Kotsifakos, et al., 2008; 

Liu, et al., 1997; C. Zhang, et al., 2009). Based on these requirements, a method 

was developed to overcome this problem based on the MCRDR knowledge 

acquisition approach. This method was tested in the suitably complex domain of 

lung function (Cios & Moore, 2002a; Roddick, et al., 2003). In developing the 

method it was noted that the base MCRDR approach was not able to take advantage 

of a dataset to assist in knowledge acquisition; hence an enhancement was 

developed to provide additional evidence-based validation. It was also noted that 

existing methods for collaborative knowledge base development (Richards, 2009; 

Vazey & Richards, 2006) or knowledge base integration (Beydoun, et al., 2005) 

lacked an ability to assist in conflict resolution, and lacked a focus on improving the 

experts’ knowledge; therefore a comparison and consolidation method was also 

developed and tested. 

Several findings have been presented in this thesis, from a range of experiments. 

The first experiment, presented in Chapter 3, described the development of a 

knowledge base for the field of lung function that is capable of interpreting patient 

lung function test results. This knowledge base was developed through a modified 

MCRDR method: the knowledge was acquired from multiple experts, both 

collaboratively and through post-acquisition consolidation; and a large dataset of 

cases were used to provide additional validation of acquired knowledge. The effects 

of these modifications were examined: the use of multiple experts seemed effective, 

but was inconclusive without an effective comparison and without a more extensive 

evaluation, particularly for the collaborative knowledge acquisition. The validation 

modifications, while likely successful in improving the end result, seemed to 
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complicate the acquisition process by shifting experts from a case-based to a rule-

based focus with some detrimental effects.  

The second study presented in this thesis, described in Chapter 4, was a method for 

the incorporation of complex domain knowledge into a knowledge discovery 

process. The method applies the consolidated knowledge base, together with 

common data mining techniques such as association rule mining and information 

gain comparisons, to the analysis of a dataset. This method was tested by 

reproducing and expanding upon published respiratory studies. The results showed 

that a user could, with little lung function knowledge, effectively discover new 

knowledge from a large dataset with the incorporation of complex existing 

knowledge. Each data analysis study was also performed efficiently, finding results 

rapidly. The discovered knowledge was reinforced by recent literature, and some of 

the analyses seem to present relevant findings for current research, despite the 

relative inexperience of the user. A notable advantage of the method is that it also 

incorporates newly discovered knowledge automatically, allowing progressive 

knowledge discovery. 

While the method is not considered as rigorous as more specifically designed 

studies, the use of retrospective data analysis is widely recognised in the field, and 

the results suggest that the presented approach provides an efficient and effective 

way to perform this type of analysis. Certain restrictions on the data mean that some 

findings made from the discovered knowledge are not considered to be conclusive; 

but the results still suggest that the method can be effectively used as an exploratory 

data analysis tool, testing and expanding upon research hypotheses, with potential 

for the discovery of new relationships to assist in the development of the initial idea. 

It is also expected that the method can improve through the addition of more 

expansive datasets and further data analysis functions, which should improve the 

results and increase the scope of application.  

Finally, Chapter 5 presented a method for quantifiably comparing the knowledge of 

multiple experts. Comparing the results of applying each expert’s knowledge to the 

dataset allowed the identification of conflicts, the magnitude of each and the details 

causing each conflict, as well as the information needed to resolve them. The results 

showed that the method could successfully identify and quantify the differences 

between the experts’ acquired knowledge, and provide the information needed to 
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resolve them, such that a consolidated knowledge base was developed. The same 

method was also applied to the acquired knowledge of a group of medical students, 

as a knowledge comparison tool for improving, and identifying weaknesses in, 

student knowledge. The students described beneficial learning outcomes through 

the acquisition process, as it provided them an avenue to apply and develop their 

own practical understanding of previously learned theory, and highlighted 

inconsistencies in their asserted explanations. The quantified comparisons likewise 

showed potential for increasing the students’ understanding by discovering exactly 

where their knowledge was lacking. The method could also provide examples of 

cases where the students’ understanding would result in incorrect interpretations, 

both demonstrating the flaws and, once corrected, allowing the students to identify 

for themselves the relevant patterns in real cases, rather than simply memorising a 

rule. The comparison method also showed some promise as an assessment tool, 

through the calculation of general accuracy measures and magnitudes for each 

difference in knowledge, defined by their results for a set of real cases. It was 

established from the expert knowledge comparisons that the magnitude of 

differences in knowledge were difficult to estimate by looking at rule conditions 

alone. Although successful as a learning tool, and showing promise as an 

assessment tool, further work is required to determine a reliable means of 

application for assessment, given the multi-faceted comparison results. 

6.1 Further Work 

Many aspects of the work presented in this thesis require further evaluation, 

particularly in comparison to other approaches. The knowledge acquisition results 

leave many unanswered questions about the effects of the implementation changes, 

and how best to overcome difficulties faced. How to maintain the case-based 

approach to knowledge acquisition, while allowing the expert some freedom to 

define rules without a case, is an interesting problem. As the effects are not 

disastrously detrimental, the author suspects that the resolution to this problem will 

be in balancing and minimising the impact of rule-based acquisition, rather than 

removing it entirely.  

How to maximise the impact of the statistical validation is also an area to be 

explored. The positive results from the student knowledge acquisition shows that 
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this method has some promise, but the unwillingness of most participants to 

investigate the statistics highlights that there is further work to be done. 

The statistics derived from the dataset, both for validation and for knowledge 

discovery, can likely be improved. The statistics used in this study only provide an 

example of the types of calculations that can be performed. Similarly, the data 

mining techniques used (basic association rule and information gain calculations) 

provide only an example. Many different data mining techniques could be 

employed to assist the user further. 

Perhaps most promising for future research and development is the application of 

the knowledge comparison method as a learning and assessment tool. Testing the 

method with students found that most participants felt they had benefited from the 

process, particularly in gaining practical experience examining cases. Notably, the 

students described that they had learned from the process before they had seen any 

comparison between their knowledge and the experts’; in fact, before they had seen 

any expert knowledge. It would be expected that by incorporating these 

comparisons the learning outcomes could be improved significantly. The potential 

for the method to automatically identify significant (or subtle) problems with a 

student’s knowledge, and then automatically identify pertinent cases to provide the 

student with, is an area that shows much potential for further work. 

6.2 Conclusion 

Although presented as individual experiments in separate chapters, the methods 

described in this thesis are, in fact, components of a single system. This system 

allows experts to compare, consolidate, and develop their knowledge by intuitively 

interpreting data, both at an individual case level and by examining wider data 

trends. The knowledge comparison results showed that knowledge can be tested 

against a more experienced expert, or experts of a similar level of experience can 

contrast their differing approaches to data interpretation; in both situations 

differences are identified and quantified, and possible solutions can be explored 

with evidence; thus allowing collaborative knowledge acquisition which assists in 

identifying and resolving conflicts, and improving each expert’s knowledge. The 

student participants indicated that even with minimal use of the system, without any 

focus on being taught, they learned from the experience. This provides very 
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promising evidence that this system helps to develop knowledge and could be 

applied as a learning tool. 

In the same framework, experts can easily test hypotheses against the dataset; the 

data mining tools will assist in identifying interesting relationships within the data, 

based on the knowledge that the expert has described. As more definitions are 

added to the knowledge base, it becomes easier to test specific relationships, and 

automatically identify interesting or unexpected relationships between data groups. 

Any new relationships that are discovered are automatically included in the 

knowledge base, allowing them to be applied immediately to either discover further 

knowledge, or as a benefit to an expert system. The successful discovery of new 

knowledge in the lung function domain shows that the method can effectively 

acquire complex knowledge and apply it to a knowledge discovery task. That this 

was performed by a novice in the domain provides more evidence that it is the 

acquired knowledge which allowed the discovery of useful results. 
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Appendix A – Additional Data Analysis 

Tables and Figures 

 

Attribute Expected Mean Actual 

Mean 

Std Deviations 

FEV1 % Δ 5.59% 15.71% 1.3 

FEV1 Δ 0.12 0.26 0.8 

FEV1 % of predicted pre-BD 79.31% 57.46% 0.9 

FEV1 % of predicted post-BD 84.24% 65.69% 0.7 

FEV1/FVC pre-BD 0.71 0.59 0.9 

FEV1/FVC post-BD 0.74 0.57 1.2 

PEF % of predicted  pre-BD 93.08% 66.89% 1.2 

PEF % of predicted  post-BD 95.37% 75.44% 0.9 

FEF25 pre-BD 4.62 2.29 0.9 

FEF25 post-BD 5.01 2.66 0.8 

FEF25-75% % of pred. pre-BD 77.2% 44.63% 0.9 

FEF25-75% % of pred. post-BD 86.56% 46.87% 1.1 

FEF50 pre-BD 3.4 1.9 0.9 

FEF50 post-BD 3.76 2.08 1 

RV % of predicted 108.69% 136.86% 0.7 

FRC % of predicted 101.65% 118.4% 0.5 

VA/TLC 0.86 0.78 0.5 

DLCO uncorrected % of pred. 84.13% 70.48% 0.6 

TLC – VA 0.87 1.44 0.6 

Table A-1: Attributes indicated as related to the FVC Reversibility class 
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Figure A-1: BMI to FRC comparison, for all weight groups 
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Appendix B – Pre and Post Knowledge 

Acquisition Questionnaires 
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Appendix C – Ethics Consent Form and 

Participant Information Sheet 
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