Symmetric Functions and Infinite
Dimensional Algebras

Timothy Howard Baker, B.Sc. (Hons.)

A thesis submitted in fulfilment of the
requirements for the degree of
Doctor of Philosophy
at the
University of Tasmania.

September, 1994



Declaration

Except as stated herein this thesis contains no material which has been accepted
for the award of any other degree or diploma in any University. To the best of my
knowledge and belief, this thesis contains no material previously published or written
by another person, except where due reference is made in the text of the thesis.

Timothy H. Baker

i



Acknowledgements

Firstly, I’d like to thank my supervisor Dr. Peter Jarvis for putting up with me and
providing continuous encouragement during the course of this work. I'd also like to
thank the head of the theory group Professor Bob Delbourgo, for creating a great
environment in which to work. Special thanks also go to Dr. Ming Yung for lengthy
discussions on symmetric functions, and taking a continued interest in my work.

Now to the story-tellers: Dr. Roland Warner whose breadth and depth of knowl-
edge about subjects in and out of physics is astonishing; Dr. Dong-Sheng Liu who has
the ability to crack people up, any place, any time; Dr. Ioannis Tsohantjis who can
brighten up the gloomiest of days with his numeracy skills and his iridescent smile;
Dr. Dirk Kreimer, the cultural and professional beacon in my life, who has rekindled
the deutschophile in me.

I sincerely thank Julio Herrera Coronado and my friends at spanish classes for
providing me with the social highlights of my week. jLos echaré de menos, amigos !
Thanks are also due to: Silvio Dahmen, Dr. Haye Hinrichsen and Birgit Wehefritz
who will always remain my friends; Neville Jones, for laying the Internet at my feet,
and who together with Suellen, are two of the most easy-going, friendly people I
know; Kurt Cobain who, during the typing of this thesis, provided me with instant
insomnia when I needed it.

Thanks also go to Dr. ITan MacArthur, Dr. Jim McCarthy, Prof. Vladimir Rit-
tenberg, Prof. Francisco “Chico” Alcaraz, Horatiu Simon, Thomas Wittlich, Klaus
Krebs and Markus Pfannmiiller.

To my parents, who raised and supported me, to Jer and Jen, the best brother
and sister anyone could wish for, and to Jessie and Sam who always give me an extra
special welcome whenever I return home — I love you all very much.

Lastly, but definitely not least, I'd like to thank my best friend Tony Waites, who
has been my teacher in the school of life. Words can’t express what his friendship
means to me, so I won’t try.

il



Abstract

Infinite-dimensional algebras and symmetric functions arise in many diverse areas
of mathematics and physics. In this thesis, several problems in these two areas are
studied.

We investigate the concept of replicated and g-replicated arguments in Schur and
Hall-Littlewood symmetric functions. A description of “dual” compound symmetric
functions is obtained with the help of functions of a replicated argument, while Schur
and Hall-Littlewood functions of a ¢-replicated argument are both shown to be related
to Macdonald’s symmetric functions.

Various tensor product decompositions and winding subalgebra branching rules
for the N =1 and N = 2 superconformal algebras are examined by using the triple
and quintuple product identities, and various generalizations thereof, concentrating
on the particular cases when these decompositions are finite or multiplicity-free.

The boson-fermion correspondence is utilized to develop an algorithm for the
calculation of outer products of Schur and @-functions with power sum symmetric
functions, and general (outer) multiplication of S-functions. A procedure is also de-
veloped for the evaluation of (outer) plethysms of Schur functions and power sums. A
few examples are given which demonstrate the usefulness of this method for calculat-
ing plethysms between Schur functions. By examining the vertex operator realization
of Hall-Littlewood functions we are also able to generate an algorithm for express-
ing Hall-Littlewood functions in terms of Schur functions. The operation of outer
plethysm is defined for Hall-Littlewood functions and the algorithm developed for
S-functions is extended to this case as well.

Kerov’s generalized symmetric functions are used to provide a realization for level
k Fock space representations of the quantum affine algebra U,(sl(2)). Using these
functions, we derive a generalized Macdonald identity which enables the regularized

—

trace of a product of U,(sl(2)) currents to be calculated.
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“There is truth, my boy. But the doctrine you desire, absolute, perfect dogma that
alone provides wisdom, does not exist. Nor should you long for a perfect doctrine,
my friend. Rather, you should long for the perfection of yourself. The deity is within

you, not in ideas and books. Truth is lived, not taught.”

—The Glass Bead Game, Hermann Hesse

“The Truth is out there. I know this as that’s where I was when I lost it.”

— David Shanahan

“The boy reached through to the Soul of the World, and saw that it was a part of
the Soul of God. And he saw that the Soul of God was his own soul.”

—The Alchemist, Paulo Coelho

“Because little boys will always think they can fly.”

— advertisement for Dettol

“Whither will my path yet lead me 7 This path is stupid, it goes in spirals, perhaps

in circles, but whichever way it goes, I will follow it.”

—Siddhartha, Hermann Hesse
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Chapter 1

Introduction

In this thesis, we study some particular problems in the theory of symmetric functions,
and in the representation theory of certain infinite-dimensional Lie algebras, namely
the N =1and N =2 superconformal algebras in two dimensions, and the quantum
affine algebra U,(s((2)). In this introductory chapter, we shall review the areas of the
literature relevant to the contents of this thesis.

1.1 Symmetric functions

The symmetric functions which we call S-functions s, (z), were first studied by Jacobi
[1], who defined them in terms of ratios of antisymmetric determinants. S-functions
are functions of a countable number of indeterminates x = (xq, s, -), which are
indexed by a partition A of some integer n and which are homogeneous of degree n

sx(ex) = sy (x).

The theory of these functions was developed by Schur [2] who used them as a means
of studying the characters X;} of irreducible representations of the symmetric group
Sn- A decade later [3], he investigated projective representations of S, and some new
symmetric functions (@Q-functions) which enabled him to calculate the spin-characters
of these types of representation. Frobenius [4] also employed symmetric functions to
investigate characters of the symmetric group, his efforts culminating in the celebrated
Frobenius formula for the characters of S,,. Explicit formulae for these characters (in
reduced notation [5,6]) in terms of partition labels, have been calculated by Specht [7].
The set of all S-functions forms a (graded) ring and the structure constants cfw of this
ring are called Littlewood-Richardson coefficients. A combinatorial recipe for their
calculation was given in [8] although it was not until much later that a complete proof
of the validity of this procedure was given [9]. S-functions also have a combinatorial
description in terms of tableaux, however we shall concern ourselves just with their
algebraic aspects.

S-functions are also important in the representation theory of finite-dimensional
(classical) Lie algebras, in that the character of the irreducible representation of gi(n)
labelled by a standard partition A, is just the S-function sy (z). The integers which la-
bel irreducible representations of gl(n) need not be positive however. For the general



case where the parts of A are not necessarily positive, the character of the correspond-
ing representation can be succinctly described in terms of composite S-functions [10],
which are functions of the variables {z;,z;'}. From this relationship, the expan-
sion of the product of two S-functions s, and s, in terms of S-functions s, carries
precisely the same information as the decomposition of the tensor product of the ir-
reducible representations (i), (v) of gl(n) in terms of the irreducible representations
(A). Another type of multiplication (called the inner product) of S-functions exists,
in which the coefficients fyﬁy which occur in the product are given by the coefficients
which occur in the tensor product decomposition of irreducible representations of
the symmetric group. There is a generic formula for these coefficients in terms of
characters of S, (see (2.25)), however Littlewood [11] discovered remarkable formu-
lae which connect outer and inner products of S-functions. This enables yli‘y to be
calculated in terms of cﬁy, and the procedure is much more efficient in certain cases.
Littlewood’s formulae can even be used to develop some explicit formulae in the case
where the partitions p and v have a particular shape [12,13]. Thus the decomposi-
tions of irreducible representations of the Lie algebra gl(n) are connected to those of
the symmetric group S,,.

Symmetric functions are directly connected with the Quantum Hall effect [14-17].
Given a system of massive fermions in a magnetic field in two spatial dimensions, it is
well-known that the ratio of the wavefunction of an excited state, to the wavefunction
of the ground state is a symmetric function. It has also been shown that the infinite-
dimensional algebra Wi, is the underlying symmetry algebra of this system [16,
18-20]. Due to the existence of free fermionic realizations of this algebra [21], it is
perhaps not too surprising that symmetric functions appear, due to the boson-fermion
correspondence and its connection with S-functions (see Chapter 5).

There exist several different generalizations of S-functions. Firstly, as previously
mentioned, there are ()-functions which are associated with projective representa-
tions of S, [22,23]. Hall-Littlewood functions Py (x;t) were introduced implicitly by
P. Hall [24] in connection with the enumeration of the subgroups of finite Abelian
p-groups, and later in a more explicit form by Littlewood [25]. These functions are
also homogeneous and are identical to S-functions when ¢ = 0, while Q)-functions
correspond to the case when ¢t = —1. The case when ¢ is a root of unity was in-
vestigated by Morris [26] who obtained some analogous properties to the ¢ = —1
case. There exist functions X (t) whose ¢ — 0 limit is the S, character X}, but
these are not the characters of some t-deformation of the symmetric group. They are,
however, directly related to certain polynomials called Green’s polynomials which
are used in the evaluation of the irreducible characters of the group GL(n,t) over
a finite field of ¢ elements [27]. In analogue to Specht’s treatment of the characters
of S,,, Morris [28] was able to use certain properties of Hall-Littlewood functions to
provide explicit formulae for X)(¢) for certain partitions A. The coefficients f}), (t)
which arise from the expansion of the product of two Hall-Littlewood functions have
been examined [29-31], and although no combinatorial description for them exists,
as in the t = 0 case, certain special cases are known explicitly, such as when the skew
diagram A\ — p is a horizontal or vertical strip [32,33], or when v is a rectangular block
and A is of a particular form [34].



There are numerous other generalizations of S-functions which have various appli-
cations in mathematics. Firstly, there are Jack symmetric functions [23,35,36], which
depend on a parameter « such that when o = 1, they become ordinary S-functions.
These functions originally arose in statistics, but they also occur in statistical me-
chanics [37,38], where they are just the eigenfunctions for certain Coulomb systems.
Jack symmetric functions are just a special limit of a generalized Hall-Littlewood
function Py(x;q,t) considered by Macdonald [39,40]. These Macdonald’s functions
can also be considered as a generalization of Hall-Littlewood functions in the sense
that when ¢ = 0, ordinary Hall-Littlewood functions Py (x;t) are recovered. Macdon-
ald’s functions are defined in terms of certain properties which they are required to
possess with repect to an inner product on the ring of symmetric functions over the
field FF = Q(q,t). In [40] the properties of these functions were extensively examined.
There exists another formulation of Macdonald’s polynomials as the trace of an in-
terwiner (algebra homomorphism) of modules over the quantum group U, (sl(n)) [41].
This was generalized to affine Macdonald’s polynomials in [42], by considering homo-
morphisms of the affine quantum group Uq(sl/(;z)). Finally, a whole series of general-
izations of S-functions was considered in [43] and their properties compared.

1.2 Finite-dimensional algebras

Although the algebras considered in this thesis are infinite-dimensional, it is useful to
remind ourselves of their finite-dimensional counterparts, which are usually involved
in their definition anyway. Moreover the methods used to study the finite-dimensional
case often (although not always) can be carried over to the infinite-dimensional case.

Lie algebras have long surpassed their original role in classifying symmetries of
ordinary differential equations, and have become vitally important in describing the
symmetries of many physical systems. The finite-dimensional semi-simple Lie alge-
bras and their representations have long since been classified. As was mentioned in
the previous section, the characters of the irreducible representations of gl(n) are just
given by (composite) S-functions. More recently, Lie superalgebras (Z, graded Lie
algebras with a graded commutator) were introduced and classified [44]. The rep-
resentation theory of these algebras proved to be similar for certain representations
known as typical representations [45], but somewhat more difficult for atypical rep-
resentations [46,47]. The characters of these Lie superalgebras can be expressed in
terms of symmetric functions, which allow various branching, modification and Kro-
necker product rules for representations of these algebras to be derived (see [48,49] for
comprehensive reviews). Lie algebras and superalgebras also have useful realizations
in terms of bosonic and fermionic creation and annihilation operators [50,51] which
enables one to ascertain the kinematical or dynamical symmetries of many physical
systems (e.g. supersymmetric quantum mechanics [52,53]).

Another type of algebra, which has appeared in the last decade and has had a
wide variety of applications in physics, is the so-called quantum group which may be
regarded as a deformation, depending on a parameter ¢, of the universal enveloping
algebra of a semi-simple Lie algebra. Thus they are not finite-dimensional algebras,



but are finitely generated. They were first constructed as an algebra by Kulish and
Reshetikhin [54] and as a Hopf algebra by Sklyanin [55], and subsequently generalized
by Drinfeld [56] and Jimbo [57]. Their representation theory for ¢ not a root of unity
was found to be simliar to the corresponding semi-simple Lie algebra [58]. Compli-
cations arise when ¢ is a root of unity due to the fact that the centre of the algebra
becomes larger, as it is augmented by certain powers of all the generators. Never-
theless, it is often these representations that are useful in physics [59-69], and their
representation theory (especially in the simplest case U,(sl(2))) has been investigated
by several authors [70-74].

Quantum groups are an example of quasi-triangular Hopf algebras and as such,
for each quantum group there exists a universal R-matrix which intertwines with the
action of the coproduct. For the quantum group U,(sl(2)) this was first given by
Drinfeld [75], for U,(sl(n)) by Rosso [76], and for U,(g) with ¢ any complex simple
Lie algebra by Kirillov and Reshetikhin [77]. Khoroshkin and Tolstoy subsequently
gave explicit formulae for the univeral R-matrices of all quantum (super)groups which
possess a symmetrizable Cartan matrix [78] and then for untwisted quantum affine
algebras [79]. This enables one to construct representations of the braid group, and
hence to go on to generate knot invariants [80-82]. Once one has a braid group
generator, one can try to construct solutions of the Yang-Baxter equation, either
directly [83] or by using additional relations which it satisfies, for example the defining
relations of the Temperley-Lieb algebra [84], the Birman-Wenzl-Murakami algebra
[85], the BH algebras [86], or the braid monoid algebras [87]. The importance of
discovering solutions of the Yang-Baxter equation lies in the fact that every solution
gives rise to an integrable vertex model of a two-dimensional (classical) statistical
mechanical system (or equivalently, a one-dimensional quantum spin chain). For a
review see reference [88].

By considering ¢-deformations of simple Lie superalgebras, one comes across the
concept of quantum supergroups. The definition of these graded Hopf algebras is
slightly more involved than for their non-graded counterparts due to the need for
extra Serre relations [78,89,90]. R-matrices have also been investigated for quantum
supergroups [91-95]. There exist various realizations of quantum (super)groups in
terms of g-deformed bosonic and fermion oscillators, as well as anyonic oscillators [96]
and these realizations have found use in quantum-mechanical applications [97-99].

1.3 Infinite-dimensional algebras

Of central importance in many diverse areas of mathematics and physics are a partic-
ular class of infinite-dimensional algebras called (affine) Kac-Moody algebras, which
were introduced in the late 1960’s [100-102]. For a review on Kac-Moody algebras and
their relevance to physics see [103,104]. As in the case of for their finite-dimensional
counterparts, the representation theory has been developed [105] and various realiza-
tions have been constructed. Unlike the finite-dimensional case, where the simple Lie
algebras can be realized in terms of a finite number of fermionic/bosonic modes, sim-
ple Kac-Moody algebras have various verter operator realizations: that is, in terms



of a finite number of bosonic free fields, the modes of which, generate a Heisenberg
algebra. There are numerous inequivalent vertex operator realizations, depending on
how the Heisenberg subalgebra is embedded in the Kac-Moody algebra [106, 107],
the two main ones being the principal realization [108,109] and the homogeneous
realization [110,111] (see also [112]).

All simple (twisted and untwisted) Kac-Moody algebras can be embedded in the
infinite-dimensional algebra gl(c0) of infinite matrices with a finite number of non-zero
entries, which has a simple realization in terms of generators of a Clifford algebra.
There is fundamental link between representations of gl(oc) and the Kadomtsev-
Petviashvili (KP) hierarchy of nonlinear partial differential equations (see [113]).
Namely, the equations in the hierarchy are described by the group orbit of the high-
est weight vector of the vacuum representation of gl(co). An alternative construction
using Wronskians has been described by Nimmo [114], which relies on the properties
of supersymmetric polynomials, and has the added advantage of generating only the
non-trivial equations in the hierarchy. Symmetric functions are also involved in the
description of the tau functions for the KP hierarchy (functions which are a solution
to every equation in the hierarchy) because it has been shown [113] that every Schur
polynomial (which are just S-functions in disguise) is a tau function for the KP hi-
erarchy. Indeed, not only are Schur polynomials solutions of the KP hierarchy, but
the Hirota polynomials, which describe the individual equations in the hierarchy, can
also be succinctly expressed as various combinations of Schur polynomials [115,116].
By considering the various embeddings of affine Lie algebras in gl(cc), one obtains
the various reductions of the KP hierarchy. Thus for example, the subalgebra Agl)
of gl(o0) gives rise to the KdV hierarchy (of which the KdV equation is the simplest
element). Similarly one can consider the algebras B, and C, (which are subalgebras
of gl(00)) and construct the corresponding hierarchies. In particular with the BKP
hierarchy (associated with the algebra By), the role played by Schur polynomials is
taken over by Schur @Q-polynomials (again, closely related to Q-functions) [117,118].

Another type of infinite-dimensional algebra which arises in different areas of
physics is the Virasoro algebra [119] which is the algebra of conformal transformations
in two-dimensions. In the seminal work of Belavin, Polyakov and A. B. Zamolod-
chikov [120] it was shown how the operator algebra structure of two-dimensional
conformally-invariant quantum field theories is determined by the representation the-
ory of the Virasoro algebra. Thus the complete classification of the unitary, irre-
ducible highest weight representations of this algebra became an important problem.
The first piece of the puzzle was solved with the calculation of the determinant of
the inner product on the Verma module [121-123]. This allowed Friedan, Qiu and
Shenker [124] to determine which values of central charge ¢ and highest weight h are
necessary for the representation to be unitary. At that stage however, it was not a
sufficiency condition, and it was not until the Goddard-Kent-Olive construction [125]
was discovered, that it was proven [126] that all the representations listed in the
discrete series [124] were, in fact, unitary. The knowledge of the Kac-determinant
also enabled the location of all Verma module singular vectors (vectors in the Verma
module which are annihilated by all the Virasoro raising generators and which hence
generate submodules) to be determined [123] and the embedding diagram [127] to be



written down. This allowed the irreducible characters of the discrete series of uni-
tary representations to be computed [128] (although the characters for the irreducible
¢ = 1 representations had been known previously [122]). Knowledge of the explicit
structure of the singular vectors [129-132] in the Verma module enables one (in prin-
ciple) to derive the partial differential equations satisfied by the correlation functions
in any two-dimensional conformal field theory. There are also Fock space representa-
tions of the Virasoro algebra, although in this case, the embedding structure of the
submodules generated by the singular vectors is more complicated [133]. Neverthe-
less, the explicit form of the Fock space singular vectors can be derived [134-136]
using vertex operator techniques (and in some cases directly [137]), and it turns out
that the singular vectors can be succinctly expressed in terms of Schur polynomials !
Moreover, there is an amazing connection between the Fock space representations of
the Virasoro algebra at ¢ = 1 and the modified KP hierarchies which we shall now
describe. The Fock representation V(h = n?/4,¢ = 1) is completely reducible and
decomposes into irreducible Verma modules as

V(n?/4,1) = é M((n+2r)?/4,1).

r=0

It was shown in references [111,138] that there is a one-to-one correspondence between
the vectors in M ((n + 2r)?/4,1) for r > 1 (the highest weight vector being given by
a Schur polynomial) and the Hirota polynomials occuring in the n-th modified KP
hierarchy. Thus there is an intimate connection between S-functions, hierarchies of
nonlinear partial differential equations and the Virasoro algebra !

Just after the Virasoro algebra was introduced, two supersymmetric extensions of
it were proposed, the Ramond [139] and the Neveu-Schwarz superalgebras [140], both
collectively known as either the super-Virasoro algebras or the N = 1 superconformal
algebras. In analogy with the ordinary (N = 0) case, the determinant formula was
computed [122,141-143] and the necessary [124] and sufficient [126] conditions on
the values of central charge and highest weight for the representations to be unitary
were found. Using these results, the embedding diagram for the Verma submodules
generated by the singular vectors was obtained [144,145] and hence also the irreducible
characters. Explicit forms for some of the singular vectors in Verma modules of the
Neveu-Schwarz superalgebra were given in [146,147] and for the Ramond superalgebra
in [148], while for Fock representations, singular vectors were contructed for the ¢ =1
[149] (where they were described in terms of super-Schur polynomials in commuting
and anti-commuting variables) and the discrete series of representations [142,150,151].

As was shown in references [120, 124, 152], the critical exponents for the bulk
correlation functions in a two-dimensional conformally invariant statistical mechani-
cal system are governed by the highest weights of irreducible representations of the
Virasoro algebra. In the case of quantum spin chains at criticality, there is a sys-
tematic procedure for extracting the operator content of the chains. That is, the
irreducible representations describing the spectrum of the Hamiltonian of a chain of
infinite length can be deduced from the eigenvalues of the Hamiltonian of a finite-
size chain [153]. However, the allowed values of the highest weight h which describe
the spectrum are limited by unitarity constraints, so that this process becomes much



easier once the central charge associated with the model is known. This can also be
computed from finite size chains, by looking at the ground state energy per unit site
of the chain [154,155].

The Ramond and Neveu-Schwarz superalgebras are not the only supersymmetric
extensions of the Virasoro algebra. In fact the possible extensions were discussed by
Ademollo et al. [156,157] who wrote down explicitly the (anti-)commutation relations
satisfied by N = 2, N = 3 and N = 4 superconformal algebras. In a similar vein
to the N = 1 case, for the N = 2 superconformal algebras the Kac determinant
[143,158-161], the embedding diagram and character formulae [162-164] and Fock
space singular vectors [135,150] have be written down. For the N = 3 case, the
determinant formulae have been conjectured [165], although a proof of them still
seems to be lacking. For the N = 4 superconformal algebra, the Kac determinant
was conjectured by Kent and Riggs [166] and partially proved by Matsuda [167]
and conditions for the existence of unitary representations [168,169] and character
formulae [170] have been examined. This programme has also been extended to the
sg(\él)—extended N = 4 superconformal algebras [171-174]. Another way of extending
the Virasoro algebra is to include primary fields of spin greater than 2, resulting in a
class of algebras called W-algebras. These are nonlinear algebras, in the sense that
the commutation relations do not close on the algebra itself, but on its universal
enveloping algebra [175,176].

The final algebras we shall mention are the quantum affine algebras, which are
g-deformations of Kac-Moody algebras g. These algebras can either be defined by
Chevally generators associated to the simple roots of the Dynkin diagram of § [56,57],
or by the deformation of the central extension of the loop algebra g ® C[t,t™'] [177].
However, in this latter description, the expression for the coproduct of the raising
and lowering generators is not quite complete. In analogy with the undeformed
case, vertex operator realizations for level one representations of U, (sl(2)) were con-
structed [178] using one set of deformed bosonic oscillators. This was extended to the
case of arbitrary level k by using three sets of deformed oscillators [179-182] These
various realizations were shown to be equivalent, and the relations between them were
established by Bougourzi [183]. Finally, arbitrary level representations of U,(sl(n))
were constructed [184] using n? — 1 commuting sets of deformed bosons.

The main application of quantum affine algebras has been to studying the degen-
eracies in the spectrum of the (anti-ferromagnetic) XXZ quantum spin chain Hamil-
tonian in the thermodynamic limit (i.e. as the length of the chain tends to infin-
ity) [185-189]. In this scheme, the Hamiltonian of the spin 1/2 XXZ chain is related

—

to the derivation operator of U,(sl(2)) and the space of states (realized by the infinite
tensor product of two-dimensional vector spaces) is isomorphic to the tensor product

—

of certain irreducible U,(sl(2)) modules. The isomorphism is accomplished by certain
“vertex operators” which are defined as intertwiners (algebra homomorphisms) be-
tween irreducible representations. From the definition, it is possible to obtain explicit
realizations of these intertwiners acting on Fock representations [190,191]. Physically
relevant quantities are then given by ratios of weighted traces of these intertwiners
over the appropriate irreducible representations [188].



1.4 Structure of the thesis

We begin in Chapter 2 with a review of the symmetric functions we shall be dealing
with in this thesis: S-functions, @)-functions, Hall-Littlewood functions, Jack func-
tions, and Macdonald’s functions. In addition to reviewing some of the standard
results concerning these functions, we provide a new proof of one of Littlewood’s re-
sults concerning the inner product of S-functions, along with some generalizations.
The inner product of Hall-Littlewood functions is defined, and Littlewood’s result is
generalized to this case as well, providing an efficient procedure for calculating these
inner product coefficients. In the last part of this chapter, we examine the relation-
ship between Macdonald’s functions associated with different parameters, obtaining
some explicit results with the aid of some identities involving basic hypergeometric
series.

In Chapter 3 we define the concept of S-functions of a replicated argument which
turn out to be related to Jack symmetric functions. We utilize these functions in
answering a question concerning functions dual to compound and supersymmetric
S-functions under an induced inner product. All of these results are then extended
to the Hall-Littlewood case. In the final section, we introduce g-replicated Schur and
Hall-Littlewood functions and show how they are related to Macdonald’s functions.
All of the standard bases for the ring of symmetric functions spanned by Macdonald’s
functions are described, while the relations between them are listed in Appendix F.
Throughout this chapter, various interesting combinatorial identities arise and are
examined.

The calculation of branching rules for the N = 1 and N = 2 superconformal
algebras is the objective of Chapter 4. Identities such as the Jacobi triple product
identity and Watson’s quintuple product identity are used to derive branching rules for
certain winding subalgebras of the N = 1 superconformal algebra. This is extended
to the N = 2 superconformal algebras, where new identities are derived to tackle this
branching rule problem, as well as the determination of certain decompositions of the
tensor product of two irreducible representations of these algebras.

Various applications of the boson-fermion correspondence to the theory of sym-
metric functions are examined in Chapter 5. After a brief review of the classical
boson-fermion correspondence, we derive a result concerning the multiplication and
skewing of S-functions by power sum symmetric functions. This is mildly generalized
to an identity involving S-functions and elementary Hall-Littlewood functions. We
look at the @-function case and derive similar results with regards to the multiplica-
tion and skewing of Q-functions by power sums. The boson-fermion correspondence
is then applied to developing an algorithm for S-function multiplication, where we
derive some explicit results for decomposing the product of S-functions in terms of
non-standard S-functions. We then turn our attention to the calculation of outer
plethysms of the form s)(2") = s,(x) ® p.(x), which enable us to derive some explicit
results concerning more general plethysms.

We then generalize this by finding applications of Jing’s generalized boson-fermion
correspondence to the theory of Hall-Littlewood functions. Firstly, we derive an
algorithm for decomposing Hall-Littlewood functions in terms of S-functions and



exhibit this procedure through some explicit results for one and two-part, and one-
hook Hall-littlewood functions. Secondly, we introduce the concept of the (outer)
plethysm of two Hall-Littlewood functions and, as in the S-function case, we use the
aforementioned generalized boson-fermion correspondence in deriving some explicit
formulae concerning the calculation of these plethysms.

In Chapter 6 we use symmetric function techniques to carry out some calculations
involving the quantum affine algebra U,(sl(2)). We define an inner product on the

—

power sums which allows us to realize the level one representation of U,(sl(2)) on
the ring of symmetric functions Ap, where F' = Q(¢). The matrix elements of the
currents of this algebra are then described in terms of a set of symmetric functions
defined by Kerov [192]. Traces of products of these currents can then be calculated
following a procedure introduced by King [193]. These results are then extended to
level k representations of Uq(sl/@)) using the realization given by Matsuo [182].

Conclusions are presented in Chapter 7 where we summarize the new results ob-
tained and outline possible directions for future research.

Several appendices are given at the end where detailed proofs of some of the results
described in this thesis are given, as well as providing convenient summaries of other
results.



Chapter 2

Symmetric Functions

In this chapter we shall review the parts of the theory of symmetric functions which
we shall use in this thesis. Most of the material covered here can be found in [33,39,
194-197]. In addition, we derive some new results concerning inner products of Schur
and Hall-Littlewood functions, and some identities between Macdonald’s functions.

2.1 S-functions

Let us review some terminology. Let A = (A, Ag,...,\,) be a partition of weight n,
(we shall alternatively write |[A\| = n or A F n) and length p ( {(\) = p). That is
P di=mnand Ay > Ay >--- > ), > 0. To a given partition A, one can ascribe a
Young diagram with A; boxes in the first row, A; boxes in the second row, and so on.
Thus the partition A = (6,4,2,1) has the Young diagram

|| (2.1)

Let A" denote the conjugate partition of \. That is, the partition obtained by reflecting
the Young diagram about the main diagonal. Thus, in the above example, we have
N = (4,3,2%1%)

|

An alternative notation for the partition A is the Frobenius notation. Suppose the
Young diagram of A has r boxes along its main diagonal. Then we say A has Frobenius
rank r. Let a; be the number of boxes to the right of the i’th diagonal box, and b;
the number of boxes directly below it. This specifies uniquely the partition A, and so

we can write
. a; ao s QA
)\_(51 by --- b, >’ (2.2)
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where a1 > ay > --->a, >0, by > by > --- > b, > 0. Sometimes we shall also write
A= (ai,...,a.]bs,...,b.). Thus, the Young diagram (2.1) represents the partition
(5,2]3,1) in Frobenius notation. The advantage of this notation is that the conjugate

of the partition (2.2), is
N e
a, Gy - QA :

A partition with Frobenius rank one is called a (one-)hook, while a rank 2 partition
is called a two-hook etc.

Let the ring of symmetric polynomials in the indeterminates zy, xo, ..., z, with
integer coefficients be denoted by A,,. That is

Ay = Zzy, ..., x,]°".

Given a partition A, define the monomial functions m, by

mA(T1, ..., ) = Z xéh) o xg?n) )
O'GSn
where if {(\) = p < n, we set \p4; = --- = A, = 0. Then these functions, where A

runs over all partitions of length less than or equal to n, form a Z-basis for A,,. That
is, every symmetric function in A,, can be written as a linear combination of the m
with integer coefficients. It is often more useful to work with a (countably) infinite
number of variables and then specialize by setting all but a finite number of them to
zero. This is achieved by working with the ring A which is defined to be the inverse
limit of the (graded)-rings A,, (see [33] for details).

Given p > 0, let e,(z) denote the n’th elementary symmetric function which has

the generating function
o0 o0

> en(z) 2" = [[(A + 22) , (2.3)

n=0 =1
so that one can write
en(x) = mpny(x) = Z Tiy Ty
i1 <<

Similarly let A, (x) denote the n’th complete symmetric function with generating func-
tion

i}hn(x) 2" = f[l(l —x2) (2.4)

From (2.3) and (2.4) we have the important relation
S (~1Ve5(@) haoyla) = 0. 2.5)
=0

Finally we need the notion of the n’th power sum p,(z) defined by

pu(@) = miy () = Y at (26)



A very important relation we shall find use for time and again, is

[[(1 = 2:2)~* = exp <a ipn(a:)z”> , aeR (2.7)

7 n=1

Given a partition A of length £(\) < p, let Ay be the following determinant,

A -1 A —2 A
x11+17 x12+1’1 L. xlp
A1+p—1 Az+p—2 Ap
A B Ty T SRIR
A — )
Atp—1 o Xetp—2 . Ap
Ip Z'p Z'p

with Ay = [T1<;<j<,(%i—2;) being the Vandermonde determinant. For a finite number

of indeterminates zy, ..., x, one defines the S-function s(xy,...,x,) to be
Ay
S/\(ZCI,...,ZUP) = A—O (28)

This has the useful property that [48]
sa(z1,...,x,), ifL(N) <p,
8)\(1'1,...,1'1,,0,...,0):{ 3 10, ») ifﬁg)\;>p,

which allows one to talk about S-functions in a countable number of indeterminates
x. The S-functions s, form a Z-basis for the ring A. There are actually several
standard bases for A. For A = (Ay,..., ) let Ay = hy ---hy,, and similarly for e
and py. Then it is known that h, and e, also form Z-bases for A, while the p, form
a Q-basis.

There is an involutive endomorphism w on A defined by its action on the power
sums w(p,) = (=1)""'p, which has the remarkable property that

w(sr(z)) = sy (). (2.9)

One important identity involving S-functions and the complete symmetric func-
tions hy is the Jacobi-Trudi identity

S)\(x) = det (h)\ifi+j(x))1§i,j§n ) (2'10)

where n > (()) is arbitrary. In the above determinant, it is understood that h,, = 0
if n < 0. In particular, we have h, = s(,), e, = s(») and the useful formula for
one-hook S-functions

r

St riny (@) = S (=1 hy5(@)es(2) (2.11)

=0

The equation (2.10) can be used to derive modification rules which enable non-
standard S-functions ( functions s, where the elements of A are not in non-increasing
order) to be expressed in terms of standard S-functions.

12



o (A, A i N =—{ M, A =LA+, L, A, ) (interchanging two
consecutive rows in the determinant),

e if \;;1 = \; then sy = 0 (two consecutive rows are equal),
e if \, <0 then s, = 0 (the last row is a row of zeros).

Another determinantal formula for S-functions exists for A written in Frobenius no-
tation, the Giambelli formula: if A = (aq,...,a,|b1,...,0,), then

sa(z) = det(s(ai|bj)($))1gi,jgr ) (2.12)

where s(qjp) = S(q41,10) 1 @ one-hook S-function. This provides us with the alternative
modification rules

o {a1,...,0;,a;41,...,0.;|b1,....0,} = —{ar,...,¢;41, 0G4 ...,0:|b1,... 0},
e {ai,...,a;,a;...,a.|by,...,0.} =0,

with similar rules for the labels b;.
As previously mentioned, one expression for the one-hook S-function s () is
just

S(alp) = haties — hayoep 1+ -+ (_1)bha+b+1- (2-13)

From this formula, Macdonald [33, p 30, Ex. 9] defines s(q) for arbitrary integers a
and b and concludes that s = 0 except when a + b = —1, in which case

Sap) = (—1)". (2.14)

We would like to point out that (2.14) is valid only in the case a < 0, b > 0, because
there are b+ 1 terms in (2.13). To get an expression in the case a > 0, b < 0, we use
(2.5) to rewrite (2.13) in the form

S(alb) = PaChy1 — Pa—r€pp2 + -+ (—1)Catpit,

which is a sum involving a 4+ 1 terms. Thus when a > 0, b < 0 with a +b = —1, we
should define s(p = (—1)* = (—1)"*'. Hence the correct definition of s(,) in the
case where one of a or b is negative is

(1), b>0,a<0, a+b=—1,

Sap =14 (=1, b<0,a>0, a+b=—1,
07 else.
This allows us to give a third modification rule, namely that if a, + b, = —1, then

(_l)br{a‘17‘“7a7'—1|b17'--7br—1}, bT‘ 2 0,
{ala .. .;arflaar|b17 .. .7br717br} = (—l)br+1{a1, .. -7ar—1|b17 .. -,br_l}, b,« < 0,
0 else.

13



Multiplication of S-functions (also called the outer product of S-functions) is ex-
pressed by means of coefficients cﬁy such that

SuSy = Zcfw S). (2.15)
)

The coefficients C;/\w are called Littlewood-Richardson coefficients, and there is a com-
binatorial rule for their determination, the details of which, we refer the reader to [33].

S-functions and power sums are related by the characters of the symmetric group
Sy by the Frobenius formulae

pr=>_ X4 s, Sy = ZZ;IX;\ Pps (2.16)
P P
where X;} is the character of the representation (A) of S, evaluated on elements of the
class p, and z, = [[; i™m,! for a partition of the form A\ = (n™~, ... 2™ 1™). These
Sy characters obey the orthogonality relations
>z XEXY = b, D XOX) = 2,640 (2.17)
pFn AFn

Moreover, there are the useful relations
XY =e,X), g, = (=1)lFI=40), (2.18)

An important ingredient for discussing S-functions is the fact that one can define
an inner product on A by requiring that for the functions py = py,py, - -+ we have

(DA Dp ) = 23 Oxpee (2.19)
From the explicit form of the power sums (2.6), it follows that [33]

> = ) paly) = [0~ 7)™

A A i

By using the Frobenius formulae (2.16) and then the orthogonality relations (2.17) in
the above equation, we end up with the Cauchy identity

> sa(@)saly) = [T — i)™ (2.20)

A 1,7

Macdonald has shown [33] that if (uy) and (v,) are Z-bases of A, then the following
are equivalent

(uxn,vp) =0xs YA = z/\:uA(x)vA(y) = H(l — ziy;) (2.21)

It then follows from (2.20) that the S-functions s, are self-dual under the inner
product (2.19):
<S,\,SM> :6/\M‘ (222)

14



Using the Littlewood-Richardson coefficients one can define skew S-functions
S/\/M("L‘) = ZC;);VSV(x)a
having the property that under the inner product (2.19),

(Sx/us ) = (5x, 5450 ).

Equation (2.20) allows one to show [33] that S-functions in the indeterminates (z1, 2,
-y Y1, Y2, - --) (which we shall call compound S-functions) can be expressed in the

following form
52(2,) = X 170 ()50 (1) = X2 hyso(@)34 (). (2.23)
o 0,0
Finally, there is the notion of a supersymmetric S-function

sa(@/y) =D (=1)Vlsy(2) s (1),

p

where p' is the conjugate partition of p. We shall discuss more about compound and
supersymmetric S-functions in Chapter 3.

Given partitions A, p and v of weight n, define coefficients yli‘y by the decomposi-
tion of characters

XX ="y, X (2.24)
A

That is, 7;, is the multiplicity of the irreducible S, representation () in the Kronecker
product decomposition of (1) ® (v). Using the orthogonality relations (2.17), we see
that

1
A A v
Yoy = > . XOXEXY (2.25)
p “p

Note that they are symmetric under the interchange of any of the three indices A, p
and v, and have the useful property that 7"},, = fyﬁ‘,,/, which follows from application
of (2.18). These coefficients are used to define the inner product s, s, of two S-
functions,

Su°8, = Z*y;}l, Sy - (2.26)
y

The label “inner” is just there to distinguish it from the “outer” product of S-functions
given by (2.15) and should not be confused with the inner product (bilinear form)
(2.19). Although (2.25) gives an explicit formula for calculating the inner product
coefficients, it is not particularly efficient for that purpose. Littlewood [11] has given
an alternative procedure for their evaluation, using the theory of induced representa-
tions. It is based on the formula

(5x8u)°80 = 3 _(52°50/0) (84085 ) - (2.27)

(o

which Remmel [12] has generalized to the case where the S-functions appearing here
are replaced by skew S-functions. We would like to point out another proof of (2.27)

15



based on generating function techniques. First note that this is equivalent to proving
that
Zciu/y/()fu = Z CZan,BfY/%prﬁm (228)
p afnp

holds for all partitions o, A, ;1 and v. Call the expression on the left of (2.28) I,
and that on the right .J;,,,. Upon using the fact that

sa(2y) = 3 Y su(@)50(y), (2.29)
1,V
for the set of indeterminates xy = (x1y1, 1y2, . . ., ToY1, Tays,...) we can form the

generating function

Y Ioawso(w)sa(v)su(@)s,(y) = TT(1 = wivjye) ™ ] (1 — wanyn) ™"

TV 0,7,k l,m,n

However, utilizing (2.29) once again we see that the product on the right is also the
generating function for Y-,y JoauwSe(u)sx(v)s,(z)s,(y). Thus Ioy = Joau. Hence
(2.28) is proved.

The above method can be used for other identities of the same ilk, so that we can
prove that, for example

p _ A
Z C)\,LLC/OJ-V’-Y?T - Z 7ﬁ1n17ﬂ27}2753773C%lﬁzcgsﬁc%ﬂzCT(;M’
po Bnpo

is true for all partitions A, u, v, 7 and «. Hence it follows that

($x8u80)°8r = D _($2°5a) ($,°85/a) (51°87/5) - (2.30)
af

Similarly one can prove

A _ « «@ A A A A A
ZE:/yaiazcgéAgcizA5 - jg: qéﬁhl7%%%2wﬁ;ﬂ37ﬁ:n4cgiazCg§a4caiazCﬁfﬁzcﬂgﬂ4cﬂfﬂscﬂ§n4’
a afno
which corresponds to the identity
(S/\ZS)\?))O(SMS,\S) = Z (55105/\4/711)(S)\z/ﬁlosz\dnz)(slbosm)(S)\s/ﬁbosﬂz) : (2'31)

B1B2m1n2

The identities (2.30), (2.31) appear to be new.

2.2 (@-functions

The study of projective representations of S,, led Schur to introduce some more sym-
metric functions, which are called @Q-functions. Elementary @Q-functions g, (z) are
defined by the generating function

ni;o%(x)zn ~1I (1 —i—xiZ) = exp <2 > l}%(x)z”) : (2.32)

S\l — iz n odd
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so that ¢,(x) € Q[p1,ps,ps,...]- One consequence of (2.32) is that it leads to a
recursive definition of ¢, (z) [197]

kap(z) =2 3 ai(x)p;(2)
i+j=k
j odd
which, by Cramer’s rule, provides us with determinant formulae which express the ¢,
in terms of por 1t £ >0

2p? -1 0 ... 0 0 0
ps m -2 0 -0 0
22n—1 2p3p1 0 D1 -2 .. 0 0
= 0 - 0 0
eyt T 7
Doan—1 Pan—3 0 e 0 pr —k+ %
2pon—1p1 0 powms3 -+ p3 O n -
Ps P1 —% 0 . 0 0
gn 2p3p1 0 P1 -2 0 0
= Ps D3 0 pr - 0 0
G2n+1 2n+1)! | : | . . ’
2D2n 11 0 powms -~ 0 p —k
P2nt1 P2n-1 0 oop 00 py |,

(the subscripts on the determinants in the above equations represent the size of the
determinant) which are similar to those which express the complete and elementary
symmetric functions h, and e, in terms of power sums p, [33, p. 20].

The original definition for Qx,,..x,) (21, ..., 2,) for a finite number of arguments
takes the form [3]

n A1 Ap
_9p Liy "'xipA 9
Q(Al,...,/\p)(xh---,xn) =2 Z ﬁ (xip7"'7xi27xil) ) ( -33)
i1 yemip=1 i1 ip
where
w; — W,
Alwy,...,w,) = [ —2,
1<icj<p Wi+ Wj
and
€T; — l‘j
e
1<j<n ZT; —|—"L'j

J#
These functions obey a Cauchy identity

> 2 @@ = T (122)

\eDP Q=1 — LiYj
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where DP is the set of all partitions with distinct parts.
Another (equivalent) way of defining @-functions is through Pfaffians. Before we
give it, note that (2.32) entails the constraint

S (—1g;(2) guy () = 0. (2.31)

Jj=0

For a two part partition (m,n) (strict or non-strict), it follows from (2.33) that

Q(m,n) (37) =dm + 2 Z Qm+] Qn ]( )

Observe that (2.34) implies that Q) (2) = —=Q(nm)(x). If Pf(A) denotes the Pfaf-
fian of the anti-symmetric matrix A, then for any partition A with distinct parts
AL > Ay > - > Ay, Qa(x) can equivalently be defined by

Pf(QA 5 (), peven,
Qx(r) = { PE(Qs, 5, (1)), 2;oolol,

where \ = (A1, .., Ap, 0). This definition has the advantage that it can be used when
the number of indeterminates is not necessarily finite.

More recently, an analogue of (2.8) has been proven [118] with the result that for
n > p, p and n even,

PE(A")
_ 9P
Q) (T15 -5 Tn) = 2 Pf(A)
where
I R (4. ¢ i =)
Az]_<xi+xj>’ A_<—OT 0)7 Cz]—l'i .

If p is odd one must replace A by X, and if n is odd, (z1,...,x,) by (21,..., %, 0).

2.3 Hall-Littlewood functions

One particular generalization of the idea of S-functions is that of the Hall-Littlewood
function [24,25] in the variables xq, xs, . . ., x, defined for a partition of length /(\) < n
by

(1, wn3t) = (1 — )" Za(m II xi_mj), (2.35)

oESn 1<i<j<n i = Tj

where o acts as o(z} - - z)) = x/\E e x)"(’ )» and t is some parameter. When ¢ = 0,
@ reduces to the S-function sy, while the )-functions introduced in the previous

section are just Qx(z; —1).

18



There exists a modification rule for Hall-Littlewood functions @ (z;t), where \ is

a non-standard partition as follows. Let s < r and m = [1(r — s)]. Then'

+Z tz+1 tl 1 (T i,541)> T_S:2m+]-7
=1
Q(s,r) = m—1
+ Z tH_l ¢ 1 Q(r—i,s+i)+(tm_tm_l)Q(r—m,s-l-m)a r—s=2m.
=1
(2.36)
Given a field F, let Ap = A ®z F be the ring of symmetric functions over F. In the
case of the Hall-Littlewood functions (2.35) in an infinite number of indeterminates,
it is known [33] that they form a basis for Ap where F' = Q(¢), the field of rational
functions in ¢.

An inner product (-,-); can be defined on the space Ay so that the power sum
symmetric functions py obey the orthogonality conditions

(pA(@), pu() Yo = Orp2a(t), where 2\(t) =z [J(1 =)', (2.37)
with z, being defined as on page 14. Given a partition A = (n ..., 1) let by(t) =

[1; Ym, (t) where .
%i(t) =L =)L =% (1 =)

Let Py(z;t) = by '(t) Qx(w;t). Then these functions obey the generalized Cauchy
identity

> Pa(ai)Qa (a3 t) = [[ 7—. (2.38)
A ij + Tl

By an argument similar to that occuring for the S-function case (c.f. (2.21)), it follows
that under the inner product (2.37) we have the important orthogonality condition

(Pa(:t), Qu(ws;t) )e = Oap -

A function of particular interest is the elementary Hall-Littlewood function g, (z;t) =
Q(n)(z;t) which has the generating function

iqn(x; t)2" = H

so that, in particular g, (x;0) = h,(z). From the determinantal expansion of h,(z) in
terms of powers sums [33], we have

1—tx;z
1— ;2

(2.39)

(1 -t 1 0 - 0 0
(1—)p  (1-t)p R 0
1| (1=8)ps Q=)p (Q=t)pp =3 -~ 0
n: : : : . .
(1 — tn_l)pn,l (1 — tn_Q)kaZ . ... (1 _ t)pl —n+1
(]_ _tn)pn (]_ _tnfl)pn e e e (]_ _t)pl

!This corrects a misprint in Macdonald [33, p. 109].
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The function g,(x;t) also has a simple expansion in terms of h,(z) and e, (z),

n

Gulw50) = S (1) hay(2)ey (), (2.40)

J=0

which follows directly from the generating functions (2.39), (2.3) and (2.4). This
relation provides us with an elementary way of proving the result [22] [33, p. 110]

Py (2;1) = ni:(—t)j S(n—j,13)() - (2.41)

Jj=0

To prove (2.41), we can use (2.11) to write the right-hand side of the above equation
as

—1n—1-
r.hs. = Z Z th n —;€5

=0

= (1—-1) Z ho_je; = (1 —t)"'gy(2;t) = Lhus.,

— n—1

where in the last line we have used (2.5).
Multiplication of Hall-Littlewood functions Py(x;t) is defined by means of coeffi-
cients f,(t) such that

Pu(l't Z P)\g;t

where f) (t) € Z[t] and are non-zero if and only if |\| = |u| + v|. There are several
explicit formulae known for these coefficients, especially when A\ — u is a horizontal
or vertical strip [32,33]. Using the identity (2.38), Hall-Littlewood functions with
compound arguments (z1,Zs,...,%1,Ys,...) can be expressed as

Q)\(xayat) = Z Qp €T; t Qo’(ya )7

P/\(xay;t) = Z p(r px; Ptr(y;t)a
po

where f (t) = %((’;’)(” 2 (t). Similarly skew Hall-Littlewood functions can be de-
fined

Pu(x;t) Z
Quyw(x;t) Z t) Qp(z; ). (2.42)

Following [33] we can define an operator D on Ap, such that D(f) is the adjoint of
multiplication by f

(D(f)m, g )= (m, fg)i .
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Then it is clear, using the inner product (2.37), that the skew functions (2.42) can
equivalently be defined in terms of this adjoint operator,

D(QV) P/‘ = P#/V’ D(QV) Qu = bVQ/_L/Va
D(PV) Q,u = Qu/u; D(Py) Pﬂ = b;lpu/y.

The transformation between the power sums and the Hall-Littlewood functions
Py(z;t) is accomplished by polynomials X}(t), such that

ZXA Py(z; 1), (2.43)

which clearly have the property that Xl;\(()) = Xﬁ. Like the characters of S,,, these
polynomials obey certain orthogonality relations,

32, MOXEOXY(0) = 0w bo(t), Y BMOXAOXAW) = 2000, (249)

pFn AFn

which can be derived from the relation (2.38). The polynomials X, (t) are related
to Green’s polynomials @Q}(¢q) = ¢"MX}(¢™1), n()) = ¥;(i — 1)A; which have been
tabulated by Morris [28].

Given partitions pu, v, A and p of n, define coefficients Fﬁy(t) by

XE(t) X2(t) = ), (t) X (1), Vp b n. (2.45)
)
Applying the orthogonality relations (2.44) to (2.45) furnishes the formula
P (0 = 5 55 (X X0 (2.4
p

Notice the symmetry

A TN b (t) ow
0, =1, = b (1) s, .

Tables of the polynomials F/\ ,(t) are given in Appendix E for partitions of weight
< 4. From these tables, it appears that '), (¢) € Z[t] although it is not clear whether
this is valid in general. If it were true, 1t would be natural to ask whether or not
there was a combinatorial description of these polynomials as there is for the Kostka-
Foulkes polynomials K, (t), which are the elements of the transition matrix between
Hall-Littlewood and S-functions.

Using these coefficients, one can define the inner product of Hall-Littlewood func-
tions

P,(z;t) ZF t)Py(z;t) . (2.47)
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Note that from (2.43) and (2.45) it follows that for the argument xy = (x1y1, T1ya, . . .,
ToY1, TaYa, - . .) We have

\(zy; t Z F x; t)P,(y;t). (2.48)

Using (2.48) and generating function techniques, one can derive an analogue of equa-
tion (2.27) in the form

D SO0, () = > f5,(t) fa, (O as(t)L,(1). (2.49)

apnp

Unfortunately, it is not possible to express either side of the the above equation in
terms of inner or outer products of Hall-Littlewood function, as in (2.27). Never-
theless, we can still use (2.49) to calculate I'), () in some simple cases, in a similar
manner to (2.27).

Ezample
From the definition (2.46) and the orthogonality relations (2.44), we know that

T (t) = 6,0b,(t) /(1 — t). Suppose we wish to calculate T(~"1(¢). Since

P(n 11)—|—P() n> 2,
P(n—l) P(l) { (1 —+ t)P(lz) + P( 2), N = 2,

we can substitute A = (n — 1), p = (1) in (2.49) when n # 2 to obtain

n11 _ Z f () ba(t) o bl/(t) )

Mol (1—1) (1—1t) 7

The advantage of this expression over the direct formula (2.46), is that it involves a
sum involving p(n—1)+1 terms (where p(n) is the number of partitions of n), instead

of p(n) terms. Thus, for example, using f((llj))(l)(t) =1+t+12 f((21)3()1)(t) =0, we have

Tl () = (L+t+ )21 —12) — (1= )1 — %) = t(t + 1)(t + 2)(1 — ),

which agrees with the entry appearing in the tables of Appendix E, which were
generated by direct calculations using (2.46).

2.4 Macdonald functions

Finally, we discuss another set of symmetric functions over the field F' = Q(q,1),
which are generalizations of the Hall-Littlewood functions. We first define an inner
product on the power sum symmetric functions by

(px(x),pu(x) >(q,t) = 2\(q, 1) s (2.50)
where
£() 1— q/\i
alg,t) =2 1 T (2.51)
i=1
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Then it was shown by Macdonald [39], that there exist unique symmetric functions
Py\(z; q,t) satisfying the following conditions:

Py(w;q,t) = ma(z) + X;UM(‘]at)mu(x)a

<PA(x;Q7t)7PM(x;Q7t)>(q,t) = 0, fOI')\?él,L, (252)

where the order < is any total order compatible with the dominance partial order <,
defined by
)\j/L<:>>\1+"'+)\k§/L1+"'+,uk Vk > 1. (253)

By compatible, we mean that if A precedes p under the dominance order < then it
precedes it under the total order <.

Letting by '(q, %) = (Pa(q, 1), PA(q, 1) ) (qu), define Qx(q,t) = ba(q, t)Px(g, 1), so that
from (2.52) we have

< P/\(Q7 t)a Qu((b t) >(q,t) = (5)\u- (254)
Define
(@:0)0 = (1— a)(1— ag) -~ (1 — ag"™"), (5 )0 = ﬁoa — ag),

where we understand (a;q)o = 1. Then from the explicit form of the power sums, it
follows that they obey the identity [39]
1

> g Pl = (Lt @)ee.

From (2.54), the functions Py, @, are dual bases for Ap. It follows then that the
Macdonald functions Py(x;¢,t) obey the identity

_ 17 Mg )
z/\:P/\(‘T’Qat) (Y5 ;1) —g (:ciyj]; Qoo (2.55)

There is a beautiful formula for the specialization z = (1,¢,¢%,...,¢""!) of the

function Py(z;q,t). Define ¢, € End(Ap) by its action on the power sums
1—u"
11—t

Eut(pr(2)) = ( ) pr(), (2.56)

so that em-1,(p,(2)) = p,(1,¢,...,¢""1). Then Macdonald has shown that

@y — @
cur(Pa(z;0,1) = I NG (2.57)

TEA

where the above product is over all nodes z in the diagram of A\, and a(z), a(z), I'(z)
and [(x) are respectively the number of squares to the left, to the right, above and
below the node z. In particular it follows that for one variable z

Py (234, t) = 2™, (2.58)
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Macdonald has defined “integral forms” .J\(x;q,t) of the functions Py(x;q,t) by
In(w5q,t) = ex(g. 1) Palws g, 1), (2.59)

where

ex(q,t) = JI (1 — ¢"@¢ @+,
TEA

with a(x), I(z) defined above. They are “integral” in the sense that if they are
expanded in terms of the functions Sy(x;t) = det(qx,_i+;(z;1))

I(r0,t) =D Kua(g,t) Sulast), (2.60)

then it is conjectured that the functions K,,(q,t) are polynomials in ¢ and ¢t with
integral coefficients. In the case where ¢(A\) < 2 or £()\') < 2, then Stembridge [198]
has proven that K,x(¢,t) is a polynomial, while when A is a hook-partition, then
this is a polynomial with non-negative coefficients. If X(q,t) are defined by the
expansion

1
Ta(wig,t) =3 - 0 X2(q,t) po(z), (2.61)
then Macdonald has shown that
X)g,t) =2,X) (t,q), g, = (—1)lPI7H0), (2.62)

Another set of symmetric functions which we need to introduce are the Jack
symmetric functions PA(O‘) (x), which are defined as a particular limit of a Macdonald
function

(a) T .40
PV (z) = 1ltgrllPA(uz:,t ).

For these functions, there is an inner product (-, - ), on the ring Ag of symmetric
functions with coefficients in G = Q(«) which is defined by

(p,\(x),p#(x) >a - 5)\u 2 Ofg(/\)a (263)

under which, the Jack symmetric functions obey the orthogonality relation

<P)Ea)7 P;Sa) >a = 6/\u Y

where the numerical factor jy is calculated in [199, Theorem 5.8]. Let g{®(z) =

P(%) (2)/jny denote the elementary Jack function, which has the generating function

igﬁf" () 2" = J](1 —@iz) /. (2.64)

It was shown by Macdonald [40] that the functions
T/Sa) = det(g/(\?),H,]) (265)
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form a basis for Ag, dual to the S-functions under the inner product (2.63). We shall

see in Chapter 3 that the functions T)Ea) are intimately related to S-functions with a
replicated argument.

We shall now describe how it is possible to derive some relations between one-row
and two-row Macdonald functions associated with different parameters. It follows
from (2.55) and (2.58) that the generating function for one-row Macdonald functions
is

ZQ (x;q,t I_IM:exp<oo ll_t: pn(x)z”> (2.66)

i (77 0) minl—q

From this generating function, we see that (dropping the argument x for convenience)

s (122325 @)oo v (17523 @)oo
Qu (g, t°)2" =
pz::O (1) H (tz:2;q) oo 1;[ (%25 ) o

_ ( > Quola) (") (X Quola) ).

p

(g, 8%) = Z Qm (p-m) (@, 1) ™. (2.67)

so that

In a similar manner it can be seen that for a positive integer k, we have

Q( q, tk Z Q (p—na—- 7nk)(q, t)Q(nz)(q; t) ... Q(nk)(q, t) tn2+2n3+---(k71)nk‘ (2.68)

.....

Now, the Pieri formulae for one-row Macdonald functions, which expressses the prod-
uct of one-row functions in terms of two-row functions, has the form [200]

Q) Qumy = D &} Quutjm—j), (2.69)
=0

where p=n—m >0, d} =1 and for j > 0

o — L0 (@7 a); (2.70)
7o q9); (Pt q);

It turns out that by applying the formula (2.69) to the functions appearing in (2.67),
we can reexpress them in terms of the functions @, (¢, ) in the form

2 L pfj (tZ Q)2y
Q(Qp)(qvt ) = Zt (t ) Qp-l-],p ])(qvt)a (2'71)
=0 q)2j
2 2o (5 0)250
Qup-1(g, 1) = Yt o Qp+i-1o-7(4, ) (2.72)
j=1 yq 27—1
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Let us prove this for (2.72). From (2.67) we write

p
Qep-1)(0, 1) = D (F + "7 Qe (0, ) Qp-k)(a, 1)

p—k

p
= Y (e (Z dz%l) Qp+k—1+1p—k—1)(q: 1)

=0
p
= > " fiQuri-1p-n(0:1),

where
j—1

fi=S "+ $2i=1-n) g2i—1-2n
n=0
Although it is not apparent, we can rewrite this as a terminating basic hypergeometric
series of the type ¢, which is defined by

201(a,b;¢,4,2) = —(af q)ngbf On 2"

Indeed,
2-2j4-2. ,

(=217 q) 251
where we have used the g-Vandermonde summation formula

fi=a01(t,d" ;¢ ¥t q,q) = 971

h g o) = g (/G Dn
201(a,q7" ¢4, q) G (2.74)

From (2.73) the result (2.72) follows, and the proof of (2.71) is similar.

The question then arises as to whether the function Q\ (g, t*) can be expanded in the
form

Q q’tk Za)\/i qat k) Qu((b ) (275)

where the functions ay,(q,t, k) € Z(q, ), the field of quotients of integer-valued poly-
nomials in ¢ and ¢. For the case of |A\| = 3 we have explicitly

by _ (L=t (1 —gt") (1 = gt")
Qe (g, t") = 1—)(1—qt)(1 — ¢%)
(L= t*)(t — ") (1 — qt*)
(1—1)2(1 — qt2) Qe (g, t) +
(1 —t%)2(1 — ¢2t) (1 — qt?*)
(1= 0)2(1 — ) (1 — ¢2t%) Qe1)(q, 1)
(1 —t%)2(t — t*)(1 — qt) (1 4+t + qt + t* + qt* 4 gt +1)
(I —t)(1—2)(1— ) (1 — ¢tF)

b (=)= 91— (L - (1 — g8)
Cet) = T a e - - e g 2@l

Q3 (g,t)

(1=t = ) ~ 1)
(1—t)(1—2)(1—t) Quz(a,1),

Q(21) (q, tk)

Q(13) (Q7 t)a
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There are two observations we can make from the above example. Firstly, the coeffi-
cient a(13(13)(q, ¢, k) appears to contain some general structure. This is not surprising
however, as the function Q1n)(z;¢,t) is proportional to the elementary symmetric
function e, (x). In fact,

Qumy (4, 1) = bany(q,t) Pany(g: 1) = bany(g; 1) en, (2.76)
where biny(q,t) = (t;t)n/(q¢;t)n. Thus

(¢:t*)n (t51)n

Secondly, for k > 3 the coefficients do not factor into products of the form (1 — ¢*t?),
where a, b € Z,. In the case kK = 2, we have checked for partitions of weight < 4
and all coefficients ay,(q,t) are of this form. It remains to be seen what is so special
about this case.

Another result stemming from the Pieri formula (2.69) concerns the expansion of
Q) (g, t) in terms of functions Q,m)(¢% ¢). By considering the generating function
(2.66) and splitting the infinite product into factors involving even and odd powers
of g, we obtain the relation

Qany(g,t*) = Quny(a, ). (2.77)

Quw(0:1) = " Q1) (@*, 1) Quiy (¢, 1) (2.78)
k=0

Similarly we can derive the result

Q) (@) = Y Quons—ng) (@) Qun) (€, 1) -+ Q) (g5, 1) g2 st (ki

N2 yeen g

(2.79)
Again, by applying the Pieri formula (2.69) to (2.78), resumming the resulting ex-
pression, and then using the identity

(t; On
(t;q%)n

201t g G, ¢ ) = (=43 @)n : (2.80)

one can show that

p Ao ) c )
Qupofat) = Yo BB gt (28
Jj= ! -
P
Qup(g,t) = Zq ( % )2t 0) Qp+ip-j) (q t). (2.82)
j=0 (;:¢%)2;

To prove the summation formula (2.80)%, one first transforms this ¢, with base ¢?
to a g¢7 with base ¢, using [201, Eq. (3.5.5)],

1
201(a”, 0% a°¢°0 7% % 2% ) = G L5 21""’287 pq;—wq2b| (2.83)

Ty---

2T take great pleasure in thanking Prof. M. Rahmen for pointing out a proof of this identity
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where
1 3
(a0°2%b % ¢%) oo (@°a”2?b % ¢%) o (—q2 b1 ) o (—q2azd %5 ) oo

G = 1 3
(220723 ¢%) oo (2207 ¢%) oo (—q2 axb™"; @)oo (—q2a* 2D ¢)

b

and
1

L= —q%a2x1f3, co =q\/c1, c3=—q\Jel, ci=a, c5=q2ab ',

Ce = —q%ab‘l, ¢ = —qab™?, ¢z = —q%xb—l,

di =/, dy=—\[c1, d3= —q%axb_3, dy = —qazxb™2,

ds = qaxb 2, dg = q%axb’l, dr = qa®b 2,
and then summing the resulting series using Jackson’s sum of a terminating, very-
well-poised, balanced g¢7 series [201, Eq. (2.6.2)]

1
a, qal/Za _qa§7 b7 C, da €, qin

807 1 1 1454

5 5 -1 -1 1, -1 1
a2,—a2,aqb™ ", aqct, agd tage™ !, ag""

_ (ag; @)n(agb” ¢ )n(agb~ d" ") (age™ d ™),
~ (agb V), (age 1), (agd 1), (agbte ML),

provided a?q" ! = bede.

Again, we may ask the question as to whether the functions @Q,(g,t) can be ex-
panded in terms of the functions @,(¢*,t) where the coefficients in the expansion
have a nice factorized form. Taking the |A\| = 3 case we have

Q0 ) = (1-¢")(1 = ¢ —¢*)(1 —gt)(1 —¢*) Qe (d".1)
o 1= =)L) )1 - ) P
(1—¢")*(g—¢") (1 —g)(1 +q+qt+¢" +¢"t+¢"*'t)
1-9)1—-¢*)(1—-¢*)1—q"?)
1-q)(q¢—d") ¢ — ¢
(1—q)( 2)( 3)Q(13)(qk7t),
1-g)(1-¢*)(1-q*
(1 —¢")*(1 —¢* 1) (1 — ¢*) K
t) = t
Q(21) (Q7 ) (1 — q)2(1 _ th)(l — qth) Q(21) (q ) )
(1-¢"(g—¢"0 - ")
(1—¢q)*(1 —¢*t)
(1—¢") (1 —g"t)(1 — "% k
t) = ).
This last equation follows from (2.76), in that, for all n > 0,

k.
Quy(0.8) = L% Qa1

We note once again that for £ > 2, the above coefficients do not necessarily factorize,
but when k£ = 2 they do. We have also checked this for partitions of weight 4, and the
same conclusion applies, and we conjecture that this behaviour is true for partitions
of any weight.

Q(21) (qk7 75)

_|_

+ Q(13)(qk7t)7
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Chapter 3

Symmetric Functions of a
Replicated Argument

In this chapter, we discuss symmetric functions of a replicated argument, and their
applicability in the problem of determining dual functions of compound and super-
symmetric symmetric functions under an induced inner product. After first providing
some motivation for the problem, we define replicant S-functions and investigate their
dual basis under the normal Schur function inner product. The dual compound prob-
lem is then solved with the aid of these replicant functions. These results are then
extended to the Hall-Littlewood case and some interesting combinatorial identities
are derived in the process.

We then introduce g-replicant symmetric functions and generalize the identities
of the previous section. The relationship of these g-replicant symmetric functions to
Macdonald’s symmetric functions is then examined, and some standard bases for the
symmetric functions over the field F' = Q(q, t) are listed, with the transition matrices
between them being calculated in Appendix F.

3.1 Motivation

As mentioned in Chapter 1, infinite dimensional Heisenberg algebras play a central
role in applying symmetric function techniques to various problems in mathematical
physics. This algebra is generated by operators {o;| i € Z} obeying the commutation
relations

[ty Q] = M Opm 0- (3.1)

These algebras can be realized on the space of symmetric functions by the association

0
a_p = pu(x), Qy, = nm, n >0, (3.2)
with the central element o acting as a constant. An alternative basis to that consist-
ing of monomials in the creation operators «_,,, which corresponds to the power sum
basis py(z), is the basis consisting of all Schur functions s)(z). The S-function basis
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has proven convenient for carrying out calculations in bosonic Fock spaces, using the
realization (3.2).

We now pose the following question: suppose we have 2 commuting copies {aﬁf)} of
the Heisenberg algebra (3.1) (or k copies in general) realized on the space A(x) x A(y).
Then for a state

1) ORNC)

2
|v) = al,, -ral, ol - -a(_,)nq|0> ,

we know that
1 1 2 2
1) |2= 11D, - al) Jo) ]2 [ al),, o), o) |

In the language of symmetric functions this corresponds to using the inner product
()" )A(z)xA() on the space A(z) x A(y). Compound S-functions form a basis for the
subspace generated by monomials (a{") 4+ (), which are only orthonormal under the
inner product (-,-)a(,y). A natural question to ask then is, what is the nature of the
functions dual to these compound S-functions, using the inner product (-, )a(z)xa(y)-
It turns out that the key to this question is the notion of S-functions of a repli-
cated argument. These functions formally extend the idea of compound S-functions
sx(z,x,..., ) to the case where the argument z is repeated « times, where « is not
necessarily an integer.

3.2 Replicant S-functions

Our starting point for the description of replicant S-functions is the equation [33]
sx(@y) = > v su(@)s0(1), (3.3)
L,V

where the argument zy represents the set of indeterminates zy = (z1y1, 1%, - .,
ToY1, ToYs, .. .). Here the coefficients 72‘1, denote the coefficients arising in the inner
product of S-functions, defined by (2.26). Equation (3.3) can be derived from the
observation that py(zy) = px(z)pa(y), along with the Frobenius formula (2.16). First
note that for an S-function with its arguments set equal to 1, we have [33]

—_————
n

n
s,\(l,l,...,l):<)\,>, (3.4)
where the generalized binomial coefficient associated to a partition A is defined by
X X —¢(x)
= —. (3.5)
()15

The above product is over all nodes x = (i,7) in the partition A, and ¢(x) = j — i,
h(x) = X\i +A; —i — j + 1 are the content and hook-length respectively, of the node
x € A. This definition reduces to the usual definition of a binomial coefficient when
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A = (n), a one-part partition. With the particular choice y = (1,1,...,1) in (3.3), it
—_————

n
follows that, for an S-function whose arguments are repeated n times,

n
Sx(T1y @1, oy Ty ) = > ( , >’yﬁysu(aj).

- - ~\v
n n ’

The generalized binomial coefficient (3.5) is just a polynomial in the variable X and
can thus be evaluated for any X € R. Hence following [202], given o € R we define
the replicated S-function sy (2(®)) to be

(a)) = Zb/\u(a)su(x) where by, (o) = Z ( Oé/ ) sz\u‘ (3.6)

s\ P

Certainly we have s(2() = s,(z). In analogy to the Frobenius formulae (2.16), we
can also define power sums with a replicated argument by

=3 X s, (z(¥). (3.7)

Let us now prove that
pa(@@) = o' PVpy (2), Va € R (3.8)

Certainly this is true when o = n, an integer. To prove it for arbitrary o € R is
equivalent, using (3.6) and (2.16), to proving

o' =3 ( Z‘ ) XE. (3.9)

p
But this is just an identity of polynomials in the variable o, which we know holds
for the “variable” n, hence (3.8) is true for all & € R. If we now multiply both sides
of (3.9) by zy'X and use the orthogonality relations (2.17) we obtain the inverse

relation
a - (o
( o ) =3 27Xt (3.10)
A

Note that we can utilize (3.10) and the definition of 7;, (see (2.24)) to rewrite the
transition coefficients by, («) in the form

by Zz EXAXE ), (3.11)

This gives us by,(1) = ), as one expects.

As alluded to in Chapter 2, there is a connection between S-functions of a repli-
cated argument and Jack symmetric functions which we now point out. Using the
fact that v(") = d,,, which follows from (2.25) and the orthogonality relations (2.17)
for S, characters, we have



However, the right hand side of the above equation is just the expansion, in terms of
S-functions, of the elementary Jack symmetric function ¢{® ) (z) (see Stanley [199]).

Thus 50, (2(*) = g% (2) and (2.63) provides us with the generating function
S sy (@) = T[(1 — @i2) ™ (3.12)
n=0 i

If we now take the Jack limit of the transition matrix between the S-functions s, and
(1/a) (z) (1/a) (z) (1/a)

the functions gy = gy, gy, " (x) -+ appearing in the tables in Appendix F,
we have )
Y N o1 (1))
5y = ; -, Xoxp Koy 9,7, (3.13)

where K ! is the inverse Kostka matrix, which is the transition matrix between the
monomial symmetric functions and the S-functions. By inserting (3.13) into (3.6)
(using the definition of by, given by (3.11)) and using both of the orthogonality
relations (2.17) we obtain the result

sa(@®) = 3K g (@)
I

From this it follows that s (z(®) = TA(I/O‘) (x), where the functions TA(O‘) are defined
by (2.65).

One question we may ask is, what are the functions dual to the functions sy (z(®)
under the ordinary S-function inner product (-,-) ? To answer this question, let us
first note that, given a set of indeterminates z;y;, we see from (3.8) that

pa((zy) ) = pr (') pA(y'?). (3.14)
From Macdonald [40] we know that ¢(® = ¥, 2y 'a~*Mp,, from which it follows
that
s (@) = 32, pula). (3.15)
I

Thus using the generating function (3.12), along with (3.14) and (3.15) we have

10 = ziy) ™" =37 23 pale™) pa(y™?).
0] A
However using (3.7) and the orthogonality relations (2.17), we have

St nE ) p?) = 3 AT XX () s ()
A Apo

= > 5p(@)s, ("),

which implies that
[1(1 = @igy) ™ = 37 5,()5,(4?). (3.16)
p



Hence, from (2.21) we have

<5A(x(a—1)), Su(x(a)) ) = Oxu- (3.17)

This result can be proved another way, by observing that

pa(a'®) = ey wa(pa(x)),

where g5 = (—1)M =™ and the endomorphism w, is defined [40] on the power sums

by wa(pn(z)) = (=1)" tap,(x). Thus using the linear properties of w, we have
sx (1Y) = wa sy (z)). (3.18)

In analogy to (2.9), it follows from the definition (3.6) and the fact that v,, = v/,
that sy (2(®) = w(sx(z(™)). So if we now use (3.18) along with the relation [40]

(Wa-ifig9)a=(wf,g) foramy f,g€A,
then
(@ @), 50 )) = (lon (@), 50 ) = Ctr (w6 @), el ) e
= (5:(2),wa-1(5u(7)) )a = (5a(2), su(@) ) = Oap,
thus yielding (3.17).

Ezample
Consider |A| = 3 and the following replicated S-functions

a(a+1)(a+2)8 ala® —1)

5(3) (x(a)) = 6 (3) (ZL‘) + ?5(21)(1') + 6 5(13)(33)7
N ala? —1) a(20” +1) ala? —1)

8(21)($( )) = f%) (17) + fs(zn(ﬂ?) + fs(w)(x),
N ala—1)(a—2) ala? —1) ala+1)(a+2)

8(13)(33( )) = 6 5(3) (ZL‘) + fS(gl)(l‘) + 6 8(13)(33).

Using the self-dual nature of S-functions (see (2.22)) one can show explicitly that
(3.17) is true for the above functions

3.2.1 Compound S-functions and duality

Next, we return to the question of compound S-functions and duality. Let A(z,y)
denote the ring of symmetric functions in the variables (z1,xs,...,%1,¥2,...). Then
certainly

< S)\(aja y)a Su(xa y) >A(:v,y) = (5)\u-

Let us instead, consider the inner product on A(z) x A(y) induced by those of A(z)
and A(y),

(f1(®)91(y), f2(2)92(Y) Ya@)xaw) = (f1(2), fo(2) Ya@) (91(¥), 92(Y) Iagy)-  (3.19)
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We can ask ourselves the following question: what are the functions dual to the
compound S-functions under the inner product (3.19)7 In other words, we want to
find functions 5(z,y) € A(z,y) such that

(§)\(1‘, y)a Su(l‘, y)) = < §)\(x, y)v Su(xa y) >A($)><A(Z/) = 6)\M‘ (320)

Ezample
Consider the following compound S-functions:

s@)(@,y) = s () +se)(@)sa)(y) + 5@ (@)se)(y) + 5@ (Y),

sen(@,y) = S (T) + 5@ ()5 (y) + sa)(x)san (y)
+s11)(7)s1) (y) + 501) (7)) () + s(21) (y)

sa)(@,y) = sas)(®) + san()s)(y) + sy (@)san (y) + saz) ().

Then it can be checked that the functions §,(z,y) given by

5(3(x,y) W s g 5@, Y)
Sen(w,y) | = B sen(@,y) |,
S$a3)(,y) I —§5 16 s (2, y)

satisfy (3.20). Let us explain where the entries of the above matrix come from.
Suppose we write

§)\(IL‘, y) = Z CL)\MSH(]I, y) = Zd/p\asp(x)sg(y)’

where d) = 3, ax,ch,. Then for the orthogonality condition (3.20) to hold, we

require
Z ), b = Sru (3.21)
Now, from (3.18) and the fact that cu,l,, = ¢, we know that S-functions with a

replicated argument, obey the Littlewood-Richardson rule. Thus, using (3.16), we
have

>0 s (r)s,(t) = [T —rity) ™ = 3 choehysu(r/?)s, (2)

uvpo
(12
Y e pa< 4 )WTST(T)S,,@).
UvponT

Hence, by comparison with (3.21), we can conclude that

1/2
d/p\a = Z ( 4/ ) Cl/jafy;;/\’

un

which gives
1/2
amzz( / )%ﬁ&zbm(%) . (3.22)

n /)7
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Thus, returning to the above example, using 7{’3)0 = 0po, 7((;’;)(21) = 7((311))(21) =

7((21;)(21) = 1 and its symmetries, we have for example

u _ /2y _ 5
3B — (3)’ - 16’
1/2 1/2 1/2 5 -1 1 1
a(21)(21) = (3)/ + (21)/ + (13)/ = 1_6 + ? + 1_6 = Za
which agrees with the above example.
We can extend the above result by considering n sets of variable z;, 1 = 1,...n,
where ©; = (2;1,%;2,...). Then in the ring A(zy,2o,...,2,), the functions dual

to the compound S-functions sy(x1,...,z,) under the inner product on the space
A(z1) x A(xg) X -+ x A(z,), are of the form

Sa(@i, .. mn) =D asu(z, ... T0),
I
where ay, = by,(1/n).

3.2.2 Supersymmetric S-functions

We can repeat the analysis of the previous section in the case of supersymmetric
S-functions sy(x/y). That is, under the inner product of A(x) x A(y) we want to find
the functions §,(x/y) which satisfy

(§)\(1‘/y), Su(l'/y)) = 6Au-

If we write §)(z/y) = X, axsS.(x/y), then we find that the coefficients in the super-
symmetric case are exactly the same as those in the compound case. i.e. given by
(3.22). The proof is almost exactly the same, except that one must use the relations

— (6%
()-or(3) e

We should point out here the relationship between compound, supersymmetric and
replicated S-functions. Firstly from the relation

S an(rTsa(t) = [T —rity)* = (=) (r)sa (1),

A irj A
we deduce that sy(r(=®) = (=1)sy (r(®). Thus, in particular we have h,(z) =
(—1)"e,(z=1) and vice-versa. In fact, the operation of replacing the argument z(® by
(=% in any symmetric function of weight || is equivalent to applying the involution
(—=1)*w to that function. That is, on the subspace A™ of homogeneous symmetric
functions of degree n we have,

W_g = (—1)"wwaq.
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Moreover, we have

sa(@/y) = D (=1)lsy (w)s Z $x/o(2)5,(y V) = sx(a,y=Y),

p

so that supersymmetric S-functions can be viewed as compound S-functions where
the second set of indeterminates is replicated -1 times.

3.3 Hall-Littlewood functions

In this section we shall extend the concept of replicated argument to Hall-Littlewood
functions and consider the analogous problem of dual compound functions. It follows
from (2.48) that

Py(@1, w1, @2, Dy ) = S D0, (t) Pu(l, ..., ;)P (y;t).

~~ ~~ v S——
n n n
There is no succinct expression for P,(1,...,1;t) as there is in the S-function case.

n
The best we can do is to use the inverse Kostka-Foulkes matrix, defined as the tran-
sition matrix between S- and Hall-Littlewood functions

t) =3 Ky, ()sulz)

along with (3.4). This enables us to define Hall-Littlewood functions of a replicated
argument, analogous to (3.6), by

«
ng a,t)P,(z;t), Dl t) ZFW p(, < o ) , (3.23)
so that we recover (3.6) when t =0 (K/\_/}(O) = 0)u). Similarly, we define
Qx (1) = br(t) Pa(2(; ¢ Zg;m )Qu(z;t).

(Note the transposed indices in g). From the relation [33],

1 1
z¢(t)

we can rewrite the coefficients gy, using (3.9) and (2.45) as

X2(t) XY, (3.24)

=
hs)
—~

~+~
N
~[]

Tl(t) Z %(t)xj(t)xg(t) o), (3.25)

g)\u(a, t) =

Note that, from the orthogonality relations (2.44), this transition matrix reduces to
the identity matrix as a — 1.
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Before embarking on a study of the dual compound Hall-Littlewood functions,
let us try to glean some identities involving z,(t), as we did in the ¢ = 0 case (see
(3.9) and (3.10)). Define g,(2(*);t) = Q) (z(®;¢). The functions g, (z(®;t) have the
generating function

nf%‘]n(ﬁ( ’ H(l—tmz) _ (azl—t” )’ (3.26)

PRNE Sl 74 n>1

from which it follows that

=3 2 (1) Vpy (). (3.27)
AFn
These functions can be considered to be a special case of a set of generalized symmetric
functions considered by Morris [203] where the single parameter ¢ in (3.26) is replaced
by a set of parameters t,...,%,. For a single variable z, if we set = 1, then
Gn(1@;1) = g (¢ 1), where g{®% (x,y) denotes the Lagrange polynomial with
generating function [204]

[ee]
3 g™, y)2" = (1 —z2) (1 —yz) "~
n=0

They have the explicit form

zn: (Oé)r(ﬂ)nﬂ" r, n—r

) _
gn " (2,y) 2 i Y

where (), = a(a+1)---(a+r — 1) denotes the Pochhammer symbol. If we now
put x = 1 (one variable) in (3.27), we obtain the interesting identity

— ey —o,  (—a)r (@) r
S () = g, (191 = g o (r 1) = 30 Sy ()
AFn = rl(n—r)!
In particular, setting o = 1, -1 in the above equation, we have
1

RN (1)
2ot X

n o ()

=" — "L (3.29)

Note that the first of these relations can also be deduced from the orthogonality
relation (2.44) upon setting p = v = (n). (See also reference [203]). The identity
(3.28) is a special case of the more general identity

R0 (5 ) -5

which is proved in the same way as (3.9) and (3.10) were. To see that (3.28) is just
a special case, put ;= (n) in (3.30) and use the fact that (see (2.41))

o) = { (~t)" ifo=(n—r17)

o)

XU, (3.30)

0 otherwise
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3.3.1 Dual compound Hall-Littlewood functions

Similar arguments to before show us that

IR
sz ))px(yw))_H <71 t Zy]) :%:Q/\(l'(a);t)P)\(y(ﬁ);t);

1 — 2y,

SO that under the inner product defined by (2.37), the functions Py(2(®);t) and
Qx(z1 ;1) are dual. As in the t = 0 case, this result can also be deduced using the
the fact that

Q/\( ’ ) WaW(Q)\(x t)) (331)

and using the various properties of the endomorphisms w, and w.

Again, the question may be asked as to the nature of the functions dual to these
compound functions under the inner product of A(z)[t] X A(y)[t]. A similar analysis
to that undertaken in the previous section shows that if

.'L' y7 Za/\u Qu T, Y, )7

where ay,(t) = gru(5,t), then

(O, Y5 1), Pu(@, 45 1) Y a@)i AW = Ona-

Ezample

Given the weight 3 compound functions

Py (z,y;t) = Pgy(a;t) + (1 —1) Py (w5 t) Pay(y; t)

(1 —t)Puy(z;t) Peoy(y; t) + Prsy(ys; t),

Py (w5 1) + Py (w;8) Py (y; ) + (1 — £2) P2y (a5 ) Py (3 1)
(1 — %) Pay (25 1) Pz (y3 t) + Pay (23 6) Py (3 1) + Py (y; 1),

Pusy(z,y5t) = Pusy(x;t) + Pz (w;) Pay(y; t) + Pay (st P( 2)(y; 1)

+  Pusy(y;t),

_|_

Pory(z,y;t)

_|_

\_/A

we have the dual functions Q,(x,y;t) given by

Q) (,y;1) Q) (z, y; 1)
Qe (2, Y3 t) Qe (z,y;t) |,

Q(13)(xay;t) Q 13) (aj Y; )
where
1 5+ 2t + t2 —2—t—t? 1
M:—6 t+t—2 4412 —¢3 t—2 :
1-=tH(1-t) Et+1)(E—-2)1—-¢t*) 5—-2t—2t>+¢
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3.3.2 Dual supersymmetric Hall-Littlewood functions

Let us extend the results of the previous section to the supersymmetric case. Before
we do this, we first have to define what we mean by supersymmetric Hall-Littlewood
functions. We define Py(z/y;t) to be compound Hall-Littlewood functions in the
variables z and y(V. That is

Py(z/y;t) ZB P,(y;t), Qx(z/y;t) ZB Q1) Q0 (ys 1),

where

Z gllo’ lat)a Z go—y ].,t)

There is no simple relation between Py(z/y;t) and Py(y/z;t) as there is in the S-
function case. All one can say is that P\(z/y;t) = X, gxu(—1,%)P,(y/x;t) and the
usual S-function relationship (when ¢ = 0) is recovered by noticing that g,(—a,0) =
(=1)Mgyu (e, 0). Thus, for example, we have [33]

Pany(z/yst) = Zt"()‘)P)\(y/x; t), where n(X) => (i — 1)\
AbFr i

One more interesting observation concerns the elementary supersymmetric functions
¢n(x/y;t), which have the generating function

gjlqn(x/y;t)zn ~1I (11__15;,;) (11_—tyyi;> : (3.32)

i

From the generating function (2.39), we see that q,(z("Y;t) = t" ¢, (z; "), so that

n

G(z/yst) = Xn:qp(x;t)qn_p(y(‘”;t) =5 1"y (w5 ) gy (y3 171

p=0 p=0
= Y (=1)" Sy (@) Sn-r (y3 1), (3.33)
p=0

where Sy (z;t) denotes the functions dual to the S-functions under the inner product
(2.37)
Sx(m;t) = det(qr—ij(2: 1)),

and we have used the result [40] Sy(z;¢t™") = (—t)" NSy (2;¢). Thus setting = 0 in
(3.33), we get
¢ (0/y; 1) = (=1)"Sam (3 1). (3.34)

This result (3.34) can be obtained in a different way: recall that Fﬁ(p) = 0, and
hence

qn(x@;t)z(l—t)an)(x%)=MZUK#;(t>( )qut z( ) (1),

’ (3.35)
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In particular, since
-1\ [ (=) ifo=(1")
o ] 0 otherwise ’
then setting o = —1 in (3.35) we recover (3.34).

Returning to the dual function problem, suppose we need to find functions

Qx(z/y;t) ZD »Qp(z; 1) Qs (y3 1),

such that .

(Qx(fﬂ/y; t), Pu(z/y;t) ) = Oap (3.36)
That is, we need 3, D), B4 = dy,. A similar calculation to that done in the previous
section, yields

chwgpa —1,1) gﬁk( 1/2,t).
Thus if we write QA(x/y; t) = X, a0 Qu(y/x;t), we have
D;\o- = Zaul/fﬁugo'll(_lvt)a
I71%

and hence if ay, = g, (—1/2,1), then (3.36) will hold.

3.4 g-replicated symmetric functions

We shall now generalize some of the results of section 3.2 by introducing g-replicated
symmetric functions whose ¢ — 1 limits are the “ordinary” replicated symmetric
functions. We begin by recalling the formula for S-function of a finite number of
variables evaluated at z = (1,¢,¢%,...,¢" "), which takes the form [33]

_ n N
sx(Lg,q% ..., gV ™) = "™ l N ] : (3.37)
q
where o
’ o 1 — qa—c(x)
n(A) = Z(z — 1), l ] = H —
i—1 A g zEA 1 —gh®

with ¢(x) and h(z) denoting the content and hook length respectively at the node
x € A. Using this we define ¢-replicated S-functions for any «a, ¢ € R by

(z3q, 00 qu [u L su(). (3.38)

If we again define power sums via the Frobenius formula (2.16), then

&(q%)
N

pA(SU),

(g, a) =
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with & (q) = (1 —¢*) -+ (1 — ¢*) where m = £(\). This allows us to derive the
following identities

SICNR l y ]
6)\((]) %:X/\q :U’I qa

« _ _—n()) 1 A
=q —X, 3.39
[ N ]q zu: zu(q:q*) " (3:39)

where z)(gq,t) is defined in (2.51). Let us pause for a moment to examine the second
of these identities. By writing u = ¢ as an independent variable, we can rewrite this
as

1 — ug=@ 1
n(A) - A
q — = X7, 3.40

U =2 (3:40)

This equation yields a wealth of non-trivial identities involving the functions z, (¢, u).

Examples
(a) With the choice A = (m), we have X(™ =1, and so

Z 1 _ (U§Q)m.

i z(@uw) (G @)m

(b) With the choice A = (1™), we have X{") = (=1)“ =¥ "and hence

1

(_1)€(u) _ (_1)m m(m—1)/2 (q ~Mug q)m
(% Dm

= q

(3.41)

(¢) For A = (m—1,1) we have [7] X{™™") = m{ —1 where m{ is the number of parts
of p equal to 1. Hence

5 (mf —1) iy (1—qm‘1> (ug™ O

. 2u(@5 1) 1—¢q (@3 D

(d) For A = (m — 2,2) we have

(mi(mi =3)/2+mb)  ,(1=u)(1—=¢""?) (ug”';qQ)m
u;n 2u(q; w) TS0 G Dm

(e) For A = (m — 2,1%) we obtain

5 (my(mf —3)/2—mh+1)  4(L—¢" (L —¢""?) (ug"*q)m
m 2u(g; ) (1-a)(1—¢ (@ O)m

Note that letting ¢ — 0 in examples (a) and (b) reproduces the identities in (3.29).

Using (3.24), (3.37) and (3.39), it follows that

Qx(1,q,...,¢° 5t) = Z ,f:((j,at)) Xg\(t). (3.42)
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Note that for 0 < |g| < 1, limg_00 £4(¢%) = 1. In the limit & — oo, equation (3.42)
has two limits which are readily computable. Firstly, when ¢ = ¢, we have

1
QML 4,8, 5t) = =X (t) =",
P “p
recovering the well known result in [33, p. 109, Ex. 1]. Similarly, when ¢ = ¢,

o —1)p)
(1,1 lat 27 L) = t E:% X?(t) = (_t)lMK(NM),A(t) = (_t)w 5/\,(1\M)7
P P

where we have used the expression for the inverse Kostka-Foulkes matrices occuring
in (3.48) for ¢ = 0.
In a similar manner as was done above, we can define g-replicated Hall-Littlewood

functions
P\(z;q, a,t) ZF (1,4, .., ¢* )Py (;1). (3.43)

Again from this, we can derive the identity

> o _ XS(t) = bo(t) Y- Ky (2) [ y ] : Vot n. (3.44)

AFn 22) (q’ qa) pkEn K

Before examining this identity for generic values of ¢, let us first take the spe-
cial case ¢ = t. First note that the right-hand side of the above equation is just
by (t) £404(Pr(x;t)) where g4 , is the specialization endomorphism defined by (2.56).
Setting u = ¢* = t* we have from (2.57)

1 5% @)y — V(@)

o B0 =00 1 S

AFn Z)\(U) TEOT

(3.45)

5=0

Let us illustrate some of the two-variable identities in the above equation by making
particular choices for o. It can be checked that when o = (n) (respectively (1™)) is
substituted into (3.45), we recover the first identity in (3.29) (respectively (3.41)).
For the case 0 = (n — 1,1), we know [28] that X(n b 1)( t) =m} +t—1, so that

ZM:(U—l)(U—t).

AFn 2\ (u)

Similarly, using Morris’ result [28]

n— n— t
X&) = (—1)ntn T 2(?) (mi =t —1+1"),

it follows that
(1)

t2_nu; Zt)nfl
ol u) .

(M)A = 1) = 1+17) = (~1)rgrDe=2)/2 ( i
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Let us return to (3.44) for the case of generic ¢. Inserting o = (n) we obtain, after
some algebra, the q—analogue of (3 28):

I v U

AFn Z)\(q j=0 q q) (q Q)n —j

The particular choices of u = ¢, ¢! reproduce (3.29), while if u = ¢?, we see that

> ) _ (1-g ' (1= =1+ 91—t +q(1—¢" ),

o Aa(t)

where &,(u) = [T, (1)(1 +q).

3.4.1 Relation to Macdonald functions

Let us now show that the g¢-replicated S- and Hall-Littlewood functions introduced
in the previous section can be related to Macdonald functions. From the generating

function
o0

[ PSS
Z (730, )" :H(q Ti%i @)oo

we deduce from (2.66) tha Sy (25 ¢, ) = Qmy(2;¢,¢*) a one-part Macdonald func-
tion. In fact, we have

;aumﬂmmnznﬁﬁﬁﬁk, (3.46)

i (Tl @)oo
so that the functions sy(z; ¢, ) form a basis for Ap, F' = Q(q,q%), dual to the S-
functions under the inner product (2.50) (with ¢t = ¢®). We shall return to this point
presently.
We can ask ourselves, once again, what are the functions dual to s)(x; ¢, &) under

the normal S-function innner product (2.19) 7 By inspecting the generating function
(3.46), we see that

(sx(w; ¢, @), su(w;¢%,a7") ) = Oae (3.47)
For example,

- (=g (1 =g (1 = ¢*"?)
B (R ) A
(1—¢* {1 —¢")(1 - g™
(1-9)*(1—¢*)

s (1—q*)(1—q¢* )1 —¢*?)
(T—=q)(1—¢*)(1—¢%
ey (=@ =q*H(1 = g*t)
@ e) = T e g e o
(I—q)(1—q"*)(1—q'"®)
(1 —q%)*(1 —¢*)
sa =) —q" (1 - ¢ %) 5010 ()
(=) (1= g1 —g*) "

+q

S(21) (x)

+q 5(13) (:U),

+q“

S(21) (ﬁ)

+q
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With a bit of algebra, one can check that (3.47) is indeed satisfied by these two
functions.

The g-replicated Hall-Littlewood functions (3.43) can also be related to Macdonald
functions. For |¢| < 1, let Ry(x;¢,t) = limy 00 Pr(2; ¢, a,t). These functions also
form a basis for A, this time dual to the Hall-Littlewood functions Qy(z;t). They
are related by

Ra@ia.t) = T s XX Qulait),
Quet) = T ey XEOX0) Ratrsa.0),

where (,(q,t) = 2, £, 1(q) £, 1 (t). There are several distinguished bases for Ap, which
we shall now list. Let

T\(z;q,t) = det(gArHj)-

where g,(z;¢,t) = Q) (w;¢,t) is the elementary Macdonald function whose generat-
ing function is given by (2.66). Then the T)(x;q,t) form a basis of Ap dual to the
Schur functions sy(z). Thus we have the following dual bases of Ar under the inner
product (2.50):

(Pa(z;9,1), Qx(750,1)), (Ralz;q,1t),Qx(251)), (Ta(z;9,1),5:(2)),
(2)\(1‘ q)vs)\(xv ))7 (g,\(x;q,t),m)\(x)),

where g\ = g, 0x, - -+, and the functions ¥y = lim, 0 $1(7; ¢, @) were introduced in
reference [40, Sec. 8 Ex. 10].

The transformations between these various bases are shown in Appendix F, in
terms of X(q,t), X (t), X, and the Kostka matrix Ky, = ¥, z;'X;X#(1). Some
(but not all) of these transformations can alternatively be described in terms of the
matrices Ky,, K,(t) and K,,(q,t), by using the relations [40]

1
Kou(a:1) = 2 X7 (4. 0), Xoa,t) = 2 X5 K (4, 1),
rr g (3.48)

1
X2 (q, )Xk, X ZK H)X(q,t).

—1 _
Ky (a.t) = ex(g, t)en(q,t) 57 Cola, t)
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Chapter 4

Superconformal Algebras

The N = 1 and N = 2 superconformal algebras are the objects of study in this
chapter. We derive branching rules governing the reduction of certain irreducible
representations of the Ramond superalgebra into its Ramond and Neveu-Schwarz
winding subalgebras. Some tensor product decompositions of the N = 2 supercon-
formal algebras are then investigated, along with their winding subalgebra branching
rules.

Unlike investigations of semi-simple Lie algebras, where symmetric function tech-
niques can be applied to the branching rule problem, we must resort here to the
“brute force” decomposition of the characters of the appropriate irreducible repre-
sentations. As a result, the calculations of these superconformal algebra branching
rules may seem to proceed in a rather ad hoc manner. Nevertheless, it is instructive
to demonstrate some of the techniques needed to carry out such calculations. The
key to these results are identities such as the Jacobi triple product, and Watson’s
quintuple product identities, and some new “two-variable” identities which convert
infinite products to infinite sums.

4.1 Branching rules for N =1 superconformal al-
gebras

We begin by recalling the definitions of the Neveu-Schwarz and Ramond (N = 1) su-
perconformal algebras. These are infinite-dimensional superalgebras with even gen-
erators {L, : n € Z} and odd generators {G, : r € Z + 5 — €} satisfying the
equations

~

Loy L] = (1 —m) Loy + g(n3 — )00
[Lna Gr] = (% - T)GTL+T‘
¢
{G,,G,} = 2L, + 5(r? — 1)0r4s0 (4.1)
6L, = 0= [¢G,] (4.2)
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where n,m € Z for both algebras and r,s € Z,e = % orr,s € Z+ %,6 = 0 for the
Ramond (which we shall denote by R) and the Neveu-Schwarz (denoted by NS) alge-
bras respectively. Obviously they both contain the Virasoro algebra as a subalgebra
with central charge ¢ = %é Again due to (4.2) ¢ takes on a constant value on any
irreducible representation. These representations V'(¢, h) are generated by a highest

weight vector | h) which satisfies
L, h)y=G:lh) = 0 Yn>0 Vr>0
Lol h) = h|h)
In reference [124] the conditions on h and ¢ for the representation to be unitary were
found to be either that ¢ > 1 and A > 0, or that
8

c = 1——— > 2 4.
¢ m(m + 2) e (4:3)
[(m+2)p—mg* —4 ¢
h=~h" = — 4.4
b 8m(m + 2) * 8 (4.4)

where p=1,....m—1, q¢=1,...,m+ 1, with p — g even for the Neveu-Schwarz
algebra and odd for the Ramond algebra.

The characters of the unitary irreducible modules of the Ramond and Neveu-
Schwarz algebras are defined as

Xen(2) = tr(z0),

where the trace is taken over the module V'(¢, h). They were calculated in [145] with
the result that .
h o 1+ Zn+ef§

ven(2) = 711

el 1—2n
when ¢ > 1 and A > 0, or
1 1 4 e
B /8 m o0 _|_ Zn € 2
Xé,h(z) = 1—_€Z / \ijyq(Z) T];[l W (45)
where U7 (z) = ) {zo‘" — zﬂ"}
nez
2 2)n — 2 24
and a, — [2m(m + 2)n — p(m + 2) + mq| (4.6)
8m(m + 2)
5, = [2m(m + 2)n +p(m +2) + mq]* — 4
" 8m(m + 2)

when ¢, h belong to the discrete series (4.3). The factor of 2 which appears in the
Ramond characters is a result of the fact that when h # ¢/16 the highest weight is
two-fold degenerate [145]. !

'This is due to the fact that G3 = Lo — ¢/16 and so when h # ¢/16 the odd vector Gp| h) is also
a highest weight vector.
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We now turn our attention to the branching of irreducible representations of the
N = 1 superconformal algebras, induced by what are known as their winding sub-
algebras. Winding subalgebra branching rules for Kac-Moody algebras have been
investigated by Kac and Wakimoto [205], while those for the Virasoro algebra have
been studied by Baake [206]. We will not be able to use symmetric function tech-
niques, and we will have to appeal directly to the decomposition of various characters.
The p’th winding subalgebra of the N = 1 superconformal algebra is generated by
the operators Ln, G, defined by

= 1 c 1

L, = pL nt+ = 54 ( — 2—)) In0 (4.7)

~ 1

G, = %GW pEL, (4.8)
If the original N = 1 superalgebra has central charge ¢, then the p’th winding sub-
algebra is an N = 1 superconformal algebra with central charge pc. Moreover if a
module of the original N = 1 superalgebra has a highest weight h, then this same
module has a highest weight h+ 7 (p— %) with respect to its p-th winding subalgebra.

The question as to what type (i.e. Ramond or Neveu-Schwarz) of subalgebra these
winding subalgebras are, depends on the type of algebra being considered, and also
upon whether p is even or odd. Consider the case when the original algebra is the
Ramond algebra. This has generators G, with r € Z. Certainly the generators G,
defined by (4.8) will generate a Ramond subalgebra regardless of whether p is odd or
even. However these generators can also generate a Neveu-Schwarz subalgebra if p is
an even integer but not when p is odd.

When the original algebra is a Neveu Schwarz algebra, things are different. This
algebra has generators G, r € Z —|— . The generators G, will thus generate a Neveu-
Schwarz subalgebra if p is odd but not if p is even. In a similar manner, it can be seen
that these generators will not define a Ramond winding subalgebra for any integer p.

In reference [206], the branching rules Vir.—;» O Vir.—; of the p = 2 subalgebra
of the ordinary Virasoro algebra were calculated to be the following

VE,0) L Vire, = VL2’ +in+d)

nez

V(.3) L Virer = @V, 2n? + 3n+ %)
nez

VE, L) Vi, = VA, E(n+1)%).
nez

These branching rules have applications in deducing the spectrum of the 2-D Ising
model with a defect [207]. It was observed that the property of these branching rules
being multiplicity free, was characteristic of the p = 2 case only. We will now see that
this is also true in the super case, by computing the SVir.—7/10 D SVir.—7/5 branching
rules of the p = 2 winding subalgebras and that not only are they multiplicity-free,
but finite as well.

Since p = 2, then from the above comments, we can look for the branching of
c= 1—70 Ramond modules into both Ramond and Neveu-Schwarz submodules. In this
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case (4.7) implies that the relationship between the characters is
Lo/2+7/160
Xopoa(2) = tr (50) = 27/ <(22) e ) =270 xan (). (49)

Let us introduce some identities which will be of use in the calculations. Firstly,
there is the Jacobi Triple product identity (see for example [208])

[T =20 +z A+ 2 ) =) P z#0, |z|<1, (4.10)

n=1 nez

and Watson’s quintuple identity (see for example [209])
[T =2")(1 —22>)(1 — 27 '2*" ) (1 — 2% ) (1 — 222" 7?)
n=1

=Y At gty p 40, |z]<1, (4.11)

neZ

or equivalently,

00 (1 o xZn)(l _ 02]}2”_2)(1 _ a—2x2n)

3n%4+2n( —3n 3n+2

= — : 4.12
nl;[1 (1 + az2n1)(1 + a—lz2n1) %:Zx (a ") (4.12)
4.1.1 Ramond subalgebra

First consider the Ramond module V(Tm 1—6) We will now calculate how the ¢ = 1—70

representations of the Ramond algebra decompose into irreducible representations of
its ¢ = I Ramond winding subalgebra. From the character formulae (4.5) and the
identity (4.12)

00 (1 _ me)(l _ Z5n—1)(1 _ Z5n—4)

(14 2")
— 9,7/16
X7/10,7/16 < H 1 — z”) 711;[1 (1 + Z5n+2)(1 + Z5n+3)

7/80 ,2/16 ,2/5 T+2" 2 (142" 25 (1—2)(1 = 21 (1 — 2
2z~ H 1— Z2n H 1 _|_22n H (1 —|—Z5n+2)(1—|—25n+3)

n=1 n=1 n=1

]__|_22n 00
T L2 ) =20 (1= 2 )1 =2,
-z

n=1

= 92 7/80 2/16 2/5 H

n=1

But the last four products appearing in the above equation can be rewritten in the
form

o0

H (1 - ZlOn)(l 4 ZlOn—l)(l - ZlOn—2)(1 4 ZlOn—3) %

n=1

(1 4 ZlOn—5)(1 4 ZlOn—?)(l - ZlOn—S)(l 4 ZlOn—Q)

(1 _ (iz5/2)2”)(1 o 272(2-2,5/2)271)(1 o 22(i25/2)2n72) 5

X

I
8

(1 . Z74(iz5/2)4n72)(1 . Z4(Z-Z5/2)4n72)‘

X 3
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This last equation can be simplified, by setting ¢ = 22 and using the quintuple identity,
to

Z (iq5/4)3n2+n (q73n . q3n+1)

nez

1 1

_ 60n2—Tn 60n2+17n+1 60n2—43n+75 60n2—67n+185

= > (¢ —q +> (¢ 2 —q 2

nez neZ
1
60n2—13n++ 60n 37n+5 60n2797n+39 60n2—73n+22
+ E (q 2 —q + E —q .

nez neZ

Thus we have the identity

X?A( ) = Z /80 (Xz (2 2) + X%?H(ZQ) + X§?5(22) + X%??(Zz)) )

from which it follows that we have the decomposition

V(1_70’ 1_76) d Be=1/5 = V(57 80) b V(%7 %) D V(%7 2%) D V(%7 7%)' (4.13)
Similarly, one can show that

Vg i) d Bt =V(E ) @VE R OVE IR 0V(E 4R (414)

Note that these branching rules are multiplicity-free and finite.

4.1.2 Neveu-Schwarz subalgebra

In this subsection we will see how the ¢ = % Ramond modules split up into the direct

sum of irreducible modules of its ¢ = g Neveu-Schwarz subalgebra. For example,
consider
_|_ ZZTL*I
X7/103/80 = 22~ 7[R0/ H 1 — 20

n=1
" ﬁ (1—2") (1421 +2"72)(1 4277
L (1+ 22”—1) (1 — 25n=1)(1 — 25n—4)
_ 9 7/80 1/8 H ZZTL 1 (1 _ ZZOn)(l _ 220n74)(1 _ 220n716)
ne1 — z2n (1 _ Z20n—2)(1 _ ZZOn—lS)

(4.15)

If we now use the quintuple identity in its ratio form (4.12) on the last product in
(4.15), we obtain (upon letting ¢ = 2?)

_ 7/8041/16 1 +qn 12 15024100 ((_ 4\=3n _ [ _4\3n42
X7/10,3/80 = 22~ H Z ( q ) ( q ) )
n=1 q nez
_ 22—7/80 1/16 H 1 + qn 1/2 Z (q60n2—4n _ q60n2+44n+8)
n=1 qn neZ

+ Z (q60n2—16n+1 B q60n2—64n+17)} '

neZ
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That is,
X?,Q(Z) = 277 7/%0 (X};?LL(ZQ) + X}L?s(ZQ)) )
which yields the branching rule

V(g ) 4 NSemris =2 (VL ) @ V(L 15)) - (4.16)
In a similar manner, one gets
V(g 55) 4 NSemrys =2 (VL B @ V(L,3%)) . (4.17)

Thus we see that these branching rules are finite, and again multiplicity-free, up to
the overall doubling associated with the two-fold degeneracy of the Ramond highest
weight.

For generic p > 2 the central charge pc, when ¢ is any member of the discrete
series of central charges (4.3), is no longer a member of this discrete series. Hence
by looking at the character formulae for irreducible representations where ¢ > %, it is
clear that the multiplicities occurring in the p > 2 branching rules explode. To solve
this “missing label” problem, it would be necessary to construct additional invariants
for the winding subalgebras in much the same way as it is done in the ordinary Lie
algebra case (see for example [210-213]).

4.2 Branching rules for N = 2 superconformal al-
gebras

We shall now extend the results of the previous section to the case of the N = 2 su-
perconformal algebras. In addition to investigating the winding subalgebra branching
rules, we shall examine the decomposition of the tensor product of certain irreducible
representations of these algebras, which turn out to be finite and multiplicity-free.
These tensor product decompositions have been studied in the case of the Virasoro
(N = 0) algebra [206,214], where the product of two irreducible ¢ = £ representations
is multiplicity-free, and in the case of the two N = 1 superconformal algebras [215],
where the product of two irreducible ¢ = 1—70 representations is finite and multiplicity-
free.

The N = 2 superconformal algebra is an infinite-dimensional algebra with even
generators {L,,J,}, odd generators {G!, G?} and non-zero (graded) commutation
relations

c
(Lo, L] = (n—m) Ly + Z(n3 — N)0n1m,0
L, GI] = (3n=7)Ghyr, =12,

[Lna Jm] = _mJn-i-m

[Jna Jm] = 57’1/(5n+m70

[Jnv G‘Zﬂ] = iejkGfL+r
{Gg., Gf} — 26jkLr+s + iij(T - S)Jr+5 + 5(7"2 — i)éjk6r+s,0
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where ¢, is the antisymmetric symbol with €5 = +1. Clearly the generators L,, form
a Virasoro algebra with central charge ¢ = 3¢, while the generators .J,, form a U/(\l)
Kac¢-Moody subalgebra with central term c.

There are three different types of algebras called the P, A and T algebras, de-
pending upon how the various generators are moded [158]. For all three algebras
the elements L, are moded by the integers Z. For the P algebra we have generators
Jo,n € Z and Gi,r € Z. For the A algebra, we have J,,n € Z and Gi,r € Z + 3.
Finally, for the T algebra, the generators G} are moded by Z, while for the generators
Joand G2, n e Z+ 5.

Highest weight representations of the A algebra are labelled by real numbers ¢, h, ¢
corresponding to the eigenvalues of the maximal abelian subalgebra of the A algebra,
which is generated by {¢é, Ly, Jo}. The module V4(¢é h, q) is generated by a (unique
up to scalar multiple) highest weight vector | h, ¢), satisfying

Xl h,gy = 0 YV n>0

Jol hoq) = al h,q)
where X, € {L,,n > 0,J,,m > 0,G, r > 0} are the raising generators of the A
algebra.

Highest weight representations of the P algebra are also labelled by real numbers
¢, h, q. However there are two types of highest weight representations P* depending
upon the conditions satisfied by the highest weight vector | h,q F %> In both types
of modules, which we will denote by Vp= (¢, h, ¢), the highest weight vector satisfies

Xl hgF3) =0 ¥V n>0
Lol haF3) = hlhg¥F3)
JolhaF3) = @FDIhaFi)
with X, € {L,,n > 0, Jy,,m > 0,G4,r > 0}. Moreover for the P modules the high-
est weight state obeys the additional relation
Gol h,q — %> =0,
while for the P~ modules the maximal weight state satisfies
Go| hyq + %> = 0.

Here G, = 75(G), +iG}), G = (G, —iG}). 1t was shown in reference [158] that
the P™ and P~ representations are actually isomorphic.

For the T' algebra, the generators J, are moded by Z + % so that the maximal
abelian subalgebra is generated by {¢, Ly}. Therefore highest weight representations
Vir(¢, h) are labelled by the eigenvalue h of Ly and the central charge ¢. The highest
weight state | h) satisfies

Xn|h,> = 0 V n>0
L0|h> = h|h>
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where X, € {L,,n >0, J,,m > 0,G4 r > 0}.

The conditions for a representation of the N = 2 SCA’s to be unitary were found
by Boucher, Friedan and Kent [158]. Restricting ourselves to the case when ¢ < 1,
they found that unitary representations exist only when

E=1-=  m=234,... (4.19)
m

Moreover, for each integer m, the corresponding eigenvalues h and ¢ must assume the
following form:

. A Jk — 3 A _J—k
A modules : hiy = o G T T
jok€Z+1, 0<jk,j+k<m-—1 (4.20)
+ . S L Pi (J—k)
P~ modules : hi = E—i-g, ¢ =+t—— -
3k €Z, 0<j—LEkj+k<m-—1 (4.21)
—2r)2 P
T modules: Al = u—i—f,
16m 8
r e, 1<r< 3. (4.22)

The characters of the A and P* modules are defined by

+
X (@, y) = tr(atoy”),
where the trace is taken over the module V4 p+ (¢, h,¢). Similarly, the character of
the T modules is defined via
X' (x) = tr(z™),

with the trace taken over the module Vr(é, h).
In references [162-164] the characters of the irreducible unitary representations
with ¢ < 1 were computed. For the A, P* algebras they were found to be given by

m),A A A m
Xg'k) (r,y) = xh],ky%,k@A(x,y)Fg-,k)(x,y),

Pi Pﬂ: P:I: m
X (2,y) = 2"y Sp(a, y) DV (2, ™),

where
00 (1+yx”_1/2)(1+y_1x"_1/2)
Du(z,y) = , (4.23)
711;[1 (1 —am)?
_ (14 yz™)(1 +y~ta™
p(z,y) = W7+y " ]] ( ) — ) (4.24)
n=1 (1 - )
mn+j, —1 mn-+k
(m) _ mn2+(j+k)n x Y x Yy
Fj,k (z,y) = éx (F+k) (1 -7 il — 3 +xmn+ky> . (4.25)
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Note that we can rewrite the expression in (4.24) in the form

5 . xmn—l—j x—mn—k
F%) (1., y) — Z Zmn +(j+k)n (_ o + mnk)
net, y+x y+x

) 1 1
— xmn2+(3+k)n _
Yy 7%:2 Y + xmntj Y + xfmnfk

which we shall find useful. Matsuo [162] has given the these characters in a factorized
form with

F(m) . lo—o[ (1 _ xmn)2(1 . xmn_j—k)(l - :Umn+j+k_m)
T Wy (L y Tomm T ) Ty B (L g ko)

This factorized form will also be very useful later on. Note also the symmetries of
the A and P* characters

X0 = X bmatm = X m

and also o)
Xz(l?;) = Xm—q,—p

For the T algebra the characters take the form

XM (z) = 22 dp(2) AU (2),

with
S xn/?
(DT("L.) - Tll;[ll_xn/2,
Agm)(x) — Z(_l)nx(mn2+(mf2r)n)/4
nez
— H (1 . xmn/?)(l . x(mn—r)/?)(l . x(mn—l—r—m)/?).
n=1

However, when h = ¢/8 there is no factor of 2 appearing in the above character
formulae for the T algebra. This is due to the fact that when h # ¢/8 the highest
weight is two-fold degenerate, spanned by the linearly independant vectors | h) and
G| h). But when h = ¢/8, the latter vector is singular (i.e. it is annihilated by the
raising generators and has zero norm) and hence the submodule with this vector as
its highest weight vector is factored out when creating the irreducible module with
these particular values of highest weight h and central charge ¢. Thus there are only
“half” the number of states in the irreducible module with the consequence that the
degeneracy of each eigenvalue of the Ly operator is half what it usually is.

If we take two modules V; and V5 then we can form the tensor product module
Vi ® V, which is also a module of the SCA under the diagonal action A(X,) =
1® X, + X,, ® 1. Certainly, if V. has central charge ¢, £k = 1,2, then the tensor
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product module has central charge ¢; + ¢;. Now it may happen that Vi and V5,
are irreducible but that V; ® V5 is not, and that it decomposes into a direct sum
(which may be finite or infinite) of irreducible submodules. In reference [215] it was
found that a sufficient condition for the tensor product decomposition of two unitary,
irreducible N = 1 modules with central charges ¢; and ¢, to be finite, was that

G3=0¢+e6 <1 (426)

where ¢1,¢ and ¢3 belonged to the unitary discrete series (4.3). Moreover, these
decompositions were multiplicity-free for the Neveu-Schwarz algebra. For the N =1
SCA the only pair of central charges(¢;, ¢2) belonging to the series (4.3) which satisfy
the condition (4.26) is (35, 15 )-

In the case of the N = 2 SCA we conjecture that the same condition applies.
Namely, given two N = 2 SCA modules with central charges ¢; and ¢, a necessary
and sufficient condition for the tensor product decomposition of these two modules
to be finite, is that

c3=c+c <1

where ¢;, ¢, and é3 belong to the discrete series (4.19). Specifically, the pairs of central
charges (¢, é2) which satisfy é; = é + é& < 1 with é, é, é; belonging to the N = 2
discrete series of central charges (4.19) are

(%’%)v (%’%)a (%’%) (4'27)
In this section we shall be calculating explicitly some of the tensor product decompo-
sitions of unitary, irreducible N = 2 modules with these central charges, and exhibit
their finite nature. As we also observed with the N = 1 winding subalgebra branch-
ings, there appears to be no systematic way of examining all cases together. We
therefore examine in detail some selected decompositions which exhibit some of the
techniques required to tackle such calculations, and list the rest of the results in
Appendix G.

For the T algebra, in addition to examining the finite case, we shall also be
calculating the tensor product decomposition of two N = 2 modules whose central

charges satisfy
¢1+ ¢ =1 (4.28)

It was shown in [206,214] that tensor product decompositions of two unitary, irre-
ducible Virasoro algebra (N = 0 SCA) modules was multiplicity-free (but infinite)
when their respective central charges ¢;, s satisfied ¢; + ¢o = 1 (in fact for the dis-
crete unitary series ¢ = 1 — 6/(m(m + 1)) only the pair (3, 3) has this property).
Unfortunately for the N = 1 superalgebras there are no pairs of central charges with
this property. But for the N = 2 SCA’s the pairs

(61752) = (%7%)7 (%7%) (429)
with ¢, ¢, belonging to the series (4.19), satisfy (4.28). For these cases we shall find
that infinite, multiplicity-free (up to an overall factor of 2 which may be induced

by the double degeneracy of the highest weight) tensor product decompositions of 7'
algebra modules exist for these values of central charges too.
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4.2.1 The T algebra

In this subsection we will restrict our attention to the 7" algebra. The techniques that
one must use are very similar to those used in reference [215] involving the use of the
Euler pentagonal identity

ﬁ L— ) =3 (=1)"a (4.30)

neZ

along with the Jacobi triple product identity (4.10) and Watson’s quintuple identity
(4.11).

Let us first consider 71" algebra representations with ¢ = From the unitary

1

3
constraints (4.22) the only module with ¢ = £ has highest weight AT = + and the
character

X( _ 2x1/16 H + xn/Z
From this, one deduces that
[X§3”T(x)]2 = 4x1/8<1> ﬁ 1—2a"
n=1
= 27 (2),

and hence

We can also compute

XgS),T(x)XYl),T(x) — 4x3/16<I>T(x) (1 + xn/2)(1 - x?n)(l - $2n_1/2)(1 - x2n—3/2)
n=1
= 423/ () IIa- ")
n=1
= 247 (),

where we have used the fact that [[0° (1 + 2™)(1 — 2?"') = 1. This gives us
VT(37 16) ® VT(Q? g) = 2VT(67 1_6)

The other tensor product decomposition we can examine for this pair of central
charges is

X§3),T(x)xg4),T(x) — 92,./8¢ 7(z) H(l —|—$n/2)(1 . xQn)(l . $2n_1)2
n=1
n:l

= Q(I)T(a:) (Z( 1)n 3n2 —n/2+1/8jL Z n el +5n/2+5/8>

nez nez
12),T 12),T
= (@) + P (@),
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ie.
VT(%)%G)®VT(%7116) VT(67§)®VT(67§)
Note that this decomposition is multiplicity-free, which is due to the fact that the

highest weight in the module Vr(3, 15) is non-degenerate.

Finally, for the pair of central charges (%, %) we have another two decompositions.
Firstly,

o0

Xg?,),T(x)X?),T(x) _ 4:61/4@T(x) H (1+ x”/Q)(l . x5n/2)(1 . x5n/271/2)(1 . x5n/272)
n=1
— 4x1/4(I>T(x) H (1 _ x5n)(1 + x5n—3/2)(1 + x5n—7/2)(1 _ xlOn—Z)(l _ xlOn—S)
n=1
— 4<I>T(35) Zx15n2/2+13n+23/4 + Zx15n2/2+7n+7/4
nez neZ
= Q(Xgll) (z) +X1 )

Vi &) o3, &) =22, e n(3]).
A similar calculation of X§3)’Txg5)’T shows that
Ve(h ) @ Ve &) =2 (Ve(3 ) @ Va3 B).

In Appendix G we have summarized the finite tensor product decompositions which
have been obtained.

Let us now turn our attention to the pairs of central charges in (4.29) whose decom-
positions turn out to be infinite, and consider the product of two ¢ = % T module
characters. For example,

(X§4)’T(x))2 — gyl [q>T($)]2 ﬁl(l . x?n)Z(l o an—1/2)2(1 o an—3/2)2

= 42Y'®p(2) H(l—x )14+ 2™ (1 4 2 7?)

— 4(I)T(l') Z xZn +n+1/4

nel
V(55 0V(ss) = D2V(L2n’+n+ ).

nel

Similar calculations reveal that

Vi Hevid L) = @vaint+)),
n>0
VROV = @V’ +in+ ).

neZ
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Note that the above two decompositions are multiplicity-free, coming from the fact
that they involve the module V (3, 16) which has a non-degenerate highest weight.

We can do the same thing with a ¢ = % T character and a ¢ = % T character and
find that

Vi, HeVEd = Pav3n®+in+2),
nez

Vi, HeVEh = Pav,n®+in+d),
nez

Vi, LYoV = @P2v(,in®+in+ ).
nez

4.2.2 The A algebra

The calculation of tensor product decompositions of A algebra modules is somewhat
more involved due to the fact that the vectors in these modules are indexed by two
labels, and so the characters are functions of two indeterminates. This means we
can no longer use the one-variable identities such as the triple product and quintuple
product identities.

One of the two-variable identities which we shall find use for is the one found
n [162,163,216]

00 1 — " 2 1 1

H ( z") Z L2 +n (_ + >

- 1 + yan— 1/2)(1 + y—lxn 1/2 = 14+ yx2n+1/2 14+ y—1x2n+1/2

(4.31)

where y # 0 and | = |< 1. This identity arose in references [162,163] from the
character formulae and the fact that the trivial one dimensional representation of the
A algebra has unit character. One finds the same (up to a change of variables) identity
from examination of the character of the trivial representation of the P* algebras.
For a recent discussion of these types of identities which arise from considering various
character identities of affine Lie superalgebras, see reference [217].

When 5 = 1 (m = 3), unitarity restricts the values of j and k (i.e. h and ¢) to the
values 1 > 5 and hence there are only three unitary simple modules with this value of
central charge with characters Xg/)2,1/2a Xg/)z,gﬂ, X:(z/)z,1/2 (we drop the superscripts
A and P* for convenience). Thus there are only six distinct tensor products we can
consider and these fall into two different types. One set does not reduce (that is, the
tensor product modules remain irreducible) and the other set decompose into two
irreducible modules. As an example of the former, let us consider the tensor product

decomposition of the module V(3,0,0) with the module V (3, ¢, —3)-
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B 1+yxn 1/2) (l_i_yflxnfl/Z)Z
XS/)Q 1/2X§/)2 3/2 = = g0y~ 18 H (1—an)* X

n=1
o H (1 _ x3n)2(1 _ ‘,L.?)nfl)(]_ _ ‘,L.3n72) y
- 1+yx3n—1/2)(1_|_y—1x3n—1/2)(1+y1-3n—5/2)(1+y—1x3n—5/2)
10_0[ (1 x3n)2(1 ‘,L.?)nfl)(]_ ‘,L.3n72)
i’ 1+y1‘3n 1/2)(1_|_y—11-3n 3/2)(1+y1-3n 3/2)(1+y—1x3n 5/2)
00 3n\2
_ .1/6,—1/3 (L —a’)
=x"y (I)A(l',y) H (1 +1‘3n_1/2)(1 —|—y_11‘3n_5/2)

n=1
Here we have used the facts that []0°,(1 — 2") = [I22,(1 — 2*)(1 — z*" 1)(1 —
x3n72) and similarly H;OLOZI(l_i_yilxnfl/Q) — ?Lo:l(l+yi1x3n71/2)(1+yi1x3n73/2)(1+

y*123=5/2) I we now use the identity (4.31) with y replaced by yx, we obtain

(3) (3) . 1/6,-1/3 6n2+3n [ 1 1
Xij20/2X1/23/2 = ¥ Y E:Zx ( L+ 1+ yabn+s/2 + 1+ y—Lgbn+1/2
NG

X1/2,5/2>
thus obtaining the relation

win

)

).

As an example of the other type of decomposition between two ¢ = % A modules
consider the product

=
W=

1
3 )

00 1_|_ xn—l/? 2 14+ —lxn—l/Q 2
[X1/21/2] H J I nf ) X
n=1 (1 - )
00 (1 _ x3n)4(1 _ x3n—1)2(1 _ x3n—2)2
13 1_|_yx3n 1/2) (1+y71x3n71/2)2(1_|_yx3n71/2)2(1+y71x3n75/2)2
o ( )ﬁ (1_1.371,)2(1+y1.3n73/2)(1+y711.3n73/2)
= T
ALY LA mn=12) (1 =13 172) (1 4 yan=572) (1 + y—Ladn—5/2)

Using the identity (see Appendix A for details)

Fi(y) = lo—o[ (1-— x? ) (1+ Y 3/2)(1 4yl 3/2)
1 (1 a3 12) (1 4y LB 2) (1 4 yadn=52) (1 + y—ladn572)
= Z x6n2+5n+1 g ~6n=5/2 B 26n+5/2
nez y 4+ x6n=5/2 g 4 g6n+5/2
—6n—1/2 6n+1/2
6n2+n z _ €T
i E:Zx (y +g6n-1/2 gy x6”+1/2> ) (4.32)

we obtain " ) “ “
3 6 6
[X1/2,1/2] = Xi/2,1/2 T X5/2,5/2°
This is equivalent to the tensor product decomposition

V(3,0,00®V(5,0,0)=V(3,0,0)® V(3,1,0).
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The entire set of six decompositions between the various ¢ = % A modules is given in
Appendix G.

We will now consider the decompositions one obtains from modules with central

charge ¢ = l tensored together with ¢ = % modules. While there were only three
unitary ¢ = l modules there are six unitary ¢ = % modules with characters ng*,z
where (7, ) {(2, $).(,2),(5,2),(3,2),(3,2),(2,2)}. This gives total of 18 differ-

ent tensor products of this type. In this section we will consider a selection of them.
Consider, for example, the following product of characters

3 4
Xg/)2,1/2X5/)2,1/2 = ®4(z,y) X

y H (1 _ 1.371,)(1 _ 1.471,)(1 4 yx3n73/2)(1 4 y71x3n73/2)
Il = =2y (1 4yt 12) (1 + g~ e 12) (1 4 yan=T72) (1 + y~ L= 7/2)
= q)A(l', y)FQ(y)

With an argument similar to that used in Appendix A we can convert the function
F), to an infinite sum of the form

12n2 1212 p12n+1/2
F = T n°+n .
>(y) %:Z (y 4212 gy $12n+1/2>
—12n-7/2 12n+47/2
12n24+7n+1 z R
i T%:Zx (y + r—12n-7/2 Y+ 1‘12”+7/2> (433)

Thus it is easy to see that

3 4 12 12
Xg/)2,1/2X5/)2,1/2 = X5/2)1/2+X(7/2)7/2

.V (5,0,00©V(3,0,00 = V(2,0,0)8V(2,1,0).

With the one identity (4.33) we are able to calculate several other tensor product
decompositions of this type, although sometimes it is not particularly easy to see
that this identity can be used. For example, let us examine the following product of
characters.

4 —
Xg?})2,3/2X§/)2,5/2 = /1%y 5/6@A(5U7y) X
« H (1 _ x?m)(]_ _ ILATL)(]_ 4 yx3n75/2)(1 4 y71x3n71/2)
] (1_x4n—2)(1_|_yx4n—1/2)(1+y—1x4n—7/2)(1_|_yx4n—5/2)(1_|_y—1x4n—3/2)’

(4.34)

As it stands, the identity (4.33) cannot be applied to the inﬁnite product which
appears in (4.34). However let us make the substitution y = 2x'® in (4.34). Then the
infinite product in that equation takes the form

1
3 (L) (1= )1 20 14 2 (435)
T T :
n=1 (1—x4n—2)(1+zx4n+12 )(1+z‘1x4n_165)(1+zx4n+11 ) (142127 1%2)
1
=1 "2y Fy(2) (4.36)
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where going from equation (4.35) to (4.36) we have shifted the indices by an appropri-
ate amount and then cancelled the resulting factors. Hence we can write the product
of characters as

(3) (4) gLl 12n2411n—1/2 1
Xi/2,3/2X1/2,5/2 =T %Y 50 (2,y) {Z gl (ﬁ
n€z Y+t
1 12n245n—5/2 1 1
—7) Y e T ]
Y+ 2 nez y+zx 2 Y+ 2
(12) 12 _ (2 (12)
X13+X1 1=X1. 1 TX 11
125,35 2743 20105 4923

This provides us with the decomposition
Vs —30VEn 3 =VE %5 eVE 55

The identity (4.33) can similarly be used to compute four other tensor product de-
compositions between ¢ = % and ¢ = % A modules. These are listed in Appendix G.

4.2.3 The P algebra

The calculations needed to calculate the tensor product decompositions of unitary,
irreducible P* modules are very similar to those in the case of the A algebra. Here we

will consider the PT algebra only, as the P~ decompositions follow from the simple

relation X%)’Pf (z,y) = X%)’PJF (z,y~"), and restrict our attention to the modules

with ¢ = % Here there are only three modules which are unitary with characters Xf&,

Xf’%, ng’g. Hence there are only six different decompositions among these modules.

Consider now the product of characters

[Xﬁ]z _ {xg/s(yl/Z —|—y_1/2)} Hl ((1 +g£n )&;L yx;n 33))
X(I)A x y lo_o[ (1 o x3n) (1 _ 30— 1)(1 . x3n—2)
- +yx3n 1)(1_i_yflx?)nfl)(l+yx3n72)(1+y71x3n72)
= fv3/4(y1/2 +y 1/2)%(56, y) X
P B TR TRV
1+yx3" 1)(1+y_1x3" 1)(1+yx3" 2)(1_|_y—1x3n 2)

(4.37)

Letting y = 223/ we can reexpress the latter product in (4.37) as

1+ zz!/? (1 — 2¥)2(1 + 22 3/2) (1 + 2~ Lan—3/2)
1+ y=1p=1/2 H 1 4 pg3n— 1/2)(1 4 z—lg3n— 1/2)(1 + Zl’3n_5/2)(1 + Z_ll'3n_5/2)

—6n—1 6n-+4
_ -1 6n2+5n x _ x
=y v Z v 4 g—6n—1 4 gbntd
nez yrx yrx

1 1
6n2+5
—l—xzxn n<y+x6n+1 _y+x—6n—4>}

neZ
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2
where we have used the identity (4.32). Hence [Xf’{] = X(G% + X@, and thus
VG508 VER)=VE L) eVE ). (4:38)

Note that in (4.38) the eigenvalues of Jy do not seem to add up correctly. This is
because the highest weight state has J eigenvalue ¢ — % whereas we are labelling the
modules by the quantity gq.

The calculations needed to find the other five tensor product decompositions be-
tween ¢ = % modules of the PT algebra are very similar and the results are shown in
Appendix G.

4.3 Winding subalgebras of the N = 2 supercon-
formal algebras

We shall conclude this chapter with a study of the finite branching rules of the various
winding subalgebras of the N = 2 superconformal algebras. As in the N = 1 case,
these subalgebras are indexed by a (positive) integer p, and are generated by the
elements (we shall ignore the modings for the moment) Ly, @ﬁ, J,n which are defined

by
. ¢ 1
Ln = ELpn—Fg( —]—9>

N 1

Gl = \/ﬁGg, (4.39)
I = Jom

These winding subalgebras carry a central charge of p¢ as can easily be checked
by direct calculation. The type (A, P* or T) of algebra the winding subalgebra
is, depends on p and on the type of algebra the original algebra was. Suppose the
original algebra was a T' SCA. Then if p is odd there exists a 7" winding subalgebra,
but if p is even then no winding subalgebras exist. Similarly the A algebra has only
winding A subalgebras if p is odd but no others if p is even. The case of the P*
algebra is more interesting. Certainly it is easy to see that for p both even and odd
there are P* winding subalgebras. Moreover when p is even, there exist well-defined
T and A winding subalgebras. We will, in fact, be able to show that when ¢ = % and
p = 2, the branching rules are finite. So let us now consider the winding A, P*, and
T subalgebras of the ¢ = + PT algebra.

4.3.1 Winding A subalgebras

Let us examine the winding A subalgebras of the P* algebra (for definiteness). For
the ¢ = % P* modules the p = 2 winding A subalgebra has central charge ¢
which is also a central charge which belongs to the discrete series. To compute thes

2
3
e
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branching rules, note that the P character can be written in terms of an A character
of its A winding subalgebra by means of

X (@y) = tr(atoy™))
_ i -1)/8g, (xzioyjo)

L 0
(3)

Consider, as an example, the P* character x; which we can write as

JY)-

00 2n\2
(3) — /24,16 (42 (1—a™) %
1,0(%9) Ty a(z”,y) 1:[1 (1+ ya2=1)(1 + y~la2n)

y ﬁ (1 + yl.San)(l + yfll.?m, 1)
e’ (1 _ x3n—1)(1 _ x3n—2)
= 7 3¢ Py (g, 9) F3(q, ), (4.40)
where ¢ = 22 and the function Fj is defined by

H q3n)2(1 _ q3n71)(1 _ q3n72)
1 _ q3n—1/2)(1 _ q3n—5/2)

T (IL+ye™ DA+y g™ )

X

];[ 1+ yq3n 1/2)(1 + yq3n—3/2)(1 + y—1q3n 3/2)(1 + y—1q3n—5/2) : (441)
But we can reexpress F3 as
1 1

— 6n2+4n—3/2 .

F3(q7 y) - T%:Zq <y _|_ qﬁn—3/2 y + q—6n—11/2>
1 1
6n2+2n—2 .
+ T%:Zq <y + q6n—5/2 Y+ q—6n—9/2> ’ (442)

with the equivalence of expressions (4.41) and (4.42) being established by an argument
similar to that given in Appendix A.
Using (4.40) and (4.42), it is easy to see that

3 _ 6 6
X% =28 (s 2@ 0) + XS s p (2% 1))
and hence
VP+(3’24’3) VA(37127_é)®VA(%71_727_%)- (443)

Note how the L eigenvalue of the P* highest weight state changes when considered
as a highest weight state of its Windlng A subalgebra. The highest weight vector of
the P™ module had an L, elgenvalue but the new A generator LO ILU + 15 1 turns
this into a highest weight vector of the first A module in (4.43) with LO e1genvalue
%ﬁ + % = % The Jy eigenvalue of this first module however does not change (it
only appears to because of the way P* modules are labelled: the .J, eigenvalue of the
highest weight vector of the module Vp+(é, h, q) is ¢ F %) In a similar fashion we can

calculate the branching rules
Vp+(3,2,0) = Vil
Ve+(3,57.5) = Val(

247

_ 2
’ 3

~ N[

) Va
Va3

m|" ol
Sl NI
S—

(5,

— =
t\:>|’_‘ o

D=
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4.3.2 Winding P* subalgebras

If we now consider the p = 2 winding P* subalgebra of the ¢ = % P7 algebra we
can calculate, with similar methods as were used for the winding A subalgebra, the
following character decompositions,

X0 = 2 (R ) + Xl y))
X = 2 (@) + X))
Xso = 2 (%) + X% y))

VP"‘(%?%?%) VP+(§7%7%)@VP+(§7£7%)7
VP"‘(%:%aO) = VP"‘(%aiaO)@VP*'(%a%ao)a
Vi d) = Vorlh )@ Vorlh B2

4.3.3 Winding T subalgebras

The case of the winding 71" subalgebras is more interesting, most notably because T’
characters are functions of only one parameter, whereas P* characters are functions
of two parameters. We can, however, comfortably set y = 1 in the P* characters
since those characters are valid for all y # 0. With this in mind we observe that

3 ]. +x )
Xg,())(xa 1) = 3/8 H 1 _ xn 2
y 10_0[ (1 _ x3n)2(1 _ 1.377,71)(1 _ ‘,L.3n72)
(1 + 231 (1 4 237=2)(1 + 237)(1 + a3n=3)

n=1
1—2%)
— 38 (12 (
) rl )nl;Il (14 2%")
— I3/8<I>T($2) H (1 . IGn)(l . x6n—3)2
n=1
7 (a?), (4.44)

so that
VP'*’(%aﬂag) VT(3712)
1

Note that there is no factor of 2 occuring in (4.44). This is because h{" = L =

i 12
% X % = ¢ and hence the highest weight state in this irreducible 7" module is not

degenerate With similar calculations we find that
(@ 1) = 207550 (2?),
o, 1) = a5 (@),
with the result that

Vp+(3,3,0) = 2Vp(3,9)
VPJF(%)%)%) = VT(%?%)
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This concludes the calculations of the branching rules of the winding subalgebras
of the P* algebra with ¢ = %, which we conjecture are the only finite decompositions
associated with the winding subalgebras of the N =2 SCA’s.

We note here that, unlike the case for the N = 1 SCA’s [215], the necessary
condition for a module V(& + ¢é, h, q) to occur in the tensor product decomposition
of V(¢1, h1,q1) ® V(é2, ha, ¢2), namely

h—(h1+h2) €7Z or h—(h1+h2) GZ"‘%
together with ¢ — (¢1 + ¢q2) € Z for the A algebra (4.45)
or q—(q +q) € Z+ 5 for the P algebra

is not a sufficient condition as well. As an example, consider the A algebra decompo-
sition
Va(5,0,0) ® Va(3,5,0) = Va(g, 5,0) ® Va(2,25,0).

There is one more additional ¢ = 2 module satisfying the conditions (4.45), which
is the one corresponding to m = 12, r = s = 7/2, that is, the module VA(%, 1,0).
However this module does not appear in the above tensor product decomposition and
so the above conditions are only necessary, not sufficient. It is to be hoped that in the
future, sufficient conditions for a module to appear in a tensor product decomposition
of two irreducible modules of the N = 2 SCA can be found.
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Chapter 5

Applications of the
Boson—Fermion Correspondence

In this chapter we discuss the boson-fermion correspondence and how it can be applied
to derive many explicit results concerning symmetric functions. We begin with a
brief review of the boson-fermion correspondence for S-functions and @-functions
and derive some explicit results concerning the multiplication of these functions by
power sums. We then proceed to apply the boson-fermion correspondence to the
problem of outer multiplication (Littlewood-Richardson rule) and outer plethysm of
S-functions. We then turn to Hall-Littlewood functions, deriving an algorithm for
decomposing these functions in terms of S-functions. Finally we define the concept of
the outer plethysm of Hall-Littlewood functions, and generalize the results developed
in earlier sections to enable us to calculate some examples explicitly.

5.1 The boson—fermion correspondence for
S-functions

Central to the development of the results in this chapter is the concept of the boson—
fermion (B-F) correspondence [218], and its relationship to the theory of symmetric
functions. There are actually three different versions which we shall be using, which
can be related to S, () and Hall-Littlewood functions. They have been used to
great effect in deriving various symmetric function identities [196,219-221], not to
mention their use in studies of the KP and BKP hierarchies [113,222,223]. Due to its
importance in what follows, we shall devote considerable attention to reviewing the
classical (pertaining to S-functions) B-F correspondence which relates free fermions
(which generate a Clifford algebra) to “free” bosons (which generate a Heisenberg
algebra), the latter being able to be realized in terms of symmetric functions. We
shall be mainly using the notation used by the Kyoto school [113].

The algebra A of free fermions is generated by v, 1}, i € Z satisfying the anti-
commutation relations
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There is a Fock representation F of this algebra with a vacuum |0) which satisfies

$i]0) =0 (i <0), ¥i10)=0 (i =0),
Ohy =0 (i>0), Opyr =0 (i <0). (5.2)

Using this definition of the vacuum, we can compute the vacuum expectation value
(a) = (0]a]0) for any product of free fermions. In particular we have

(Yiths) =0, (Wiv5) =0,
L\ 6ij i:j<0 w0\ 5z’j Z:]ZO
(inhj) = { 0 else o (i) = { 0 else
If we define normal ordering of a product of free fermions by : ;1} := b7 — (Vi)})
then
e iy, >0 . *,._{wz‘wj j<0
ALV { — ;. j <0, X —Yi; J 20,
Let
H, =Y i, n € Z. (5.3)
i€z

Then the operators H,, generate a Heisenberg algebra
[Hy, Hy) = 1 0p4m.0- (5.4)

Suppose we have a set of Heisenberg generators {«, : n € Z} satisfying (5.4). For
n # 0, these have a realization on the space A(z) of symmetric polynomials in the
indeterminates (1, o, ...) in terms of power sum symmetric functions py(z) = 3, 2%
in the form

0
a_p, < P, ap & k— for k > 0. (5.5)
Opk
Let us adjoin to the Heisenberg algebra an operator ¢ satisfying

lq,n] =0 for n #£ 0, lq, ] = 1.

We shall be considering representations of the Heisenberg algebra on the space
A=A2)® (@kez e““q) where the generators a, for n # 0 act on A(x) via (5.5)
and «g, ¢ act according to

ag e* = k e, etk — gilk+1)a, (5.6)

Define vertex operators acting on A

Y(z) = exp (i Palz) Z") exp (- i 8pf(x) z‘") €122,

V*(2) = exp (n:il p":f) z”> exp (:ii apni(x) z”> z e, (5.7)
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(For notational simplicity, we drop the symbol ® in these and subsequent formulae.)
If the modes of these vertex operators are given by the expansion

P(2) = ", Ur(e) =D dna "
nes nes
then it is well known that the modes 9, 1" satisfy the anti-commutation relations
of the free fermion algebra (5.1). Moreover, every state a|0), a € A in the fermionic
Fock space can be identified with a symmetric function as follows: define a grading
(charge) on the elements of A by setting deg(¢;) = 1, deg(y)f) = —1, for all i € Z
(this can be achieved by the grading operator ad(Hy) with Hy defined in (5.3) ). Thus

an element % -+ - % b - -9, |0) € F will have a charge [ = s —r. If we let
Ofg_r--n if1<0 o 1

(Il=1¢ (0] ifl=0, H(z) =Y —pu(z) H,,
(Ol -~y if1>0 =t

then we have the isomorphism ¢ : F — A
oal0)) = (1" a|0). (5.8)

In fact each of the charge subspaces F; consisting of states a|0) where a has charge [, is
isomorphic to A(z). The right-hand side of (5.8) can be evaluated explicitly in terms
of S-functions for a generic state in F so that, if 0 < i, <--- <41, 0< 7, < -+ < Jy,

Q(wi‘]l . .. wiijis .. wil | O>) — (_1)j1+--.jr+l(l*1)/2 S/\(l‘) eilq, (59)
where A is a partition of the form

A=(i1+1—lis+2—1... ig+s— L " (r— 1)t 2k krl i),
(5.10)
Note that for [ = 0, we can write this in Frobenius notation as

= i Gg e,
=1 jp—=1 - g5 =1)"
In deriving the results in this chapter, we shall often ignore the momentum factor
¢4 occuring in (5.9), when no confusion arises. Observe that in the case [ = 0, using

the anti-commutation relations (5.1) and the isomorphism (5.9), one can derive the
modification rules for S-functions given in Chapter 2 (see page 13).

As previously mentioned, the boson-fermion correspondence has been used to prove
useful identities involving S-functions. We now intend to show that it can also be
applied to decompose power sum symmetric functions in terms of S-functions. By
using the vertex operators (5.7) representing the fermionic currents ¢(z) and ¥*(z) it
was shown [113] that under the above isomorphism, the Heisenberg generators (5.3)
are mapped onto the following operators on A;

H_y < pa(2), H, +—n

@ " 0, (5.11)
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while Hy <> 0. Thus, acting on the vacuum, we know that o(H_,|0)) = p,(z).1 =
pn(x). However, according to (5.3), H_,|0) can be written as an infinite sum of
bilinear fermionic modes acting on the vacuum (only a finite number of which will
survive) which can then be expressed as Schur functions using the explicit correspon-
dence (5.9). Thus,

Polx) = Q(Hn|0>)29(231/)iw2‘n: |0>>

icZ
n—1 n—1 )
= 0 ((Z Vi, — O+ Z)WM&) |0>) =) (1) sguo1—ji (@),
i>n i<0  i=0 i=0

which is a well-known identity between the simple power sums p,(z) and one-hook
S-functions. In a similar manner we can calculate p(, ) (%) = pp(2)pm(x), by writ-
ing out H_,H_,,|0) in terms of fermionic modes, and then using the fermionic
anti-commutation relations to write this as a finite sum of terms of the form

* V% 5,0 |0) which can then be interpreted in terms of S-functions. In this
manner, we get

n+m .
p(n,m Z Z n—l—m (k71|n+mfk) (Jf)

k=n+1 k=1
+ Z Z(—l)nm*k*l S(k—1,1-1|n—k,m—1) (), n>m 2 0.
k=1 1=1

In principle, one could expand the power sum p,(x) in terms of S-functions by ap-
plying the operator H_), H_), - - - to the Fock space vacuum. However, it would be
easier to use recursively the following result

Lemma 1 If\=| . oo , where j;, > 1, i, > 0, then
J1— Lo Jr — 1
T n—1
posy = O (s = (1" 5,0) = S (=1F " s, (5.12)
q=1 k=0
0 ! L
na—pn »oT 2:1 (S”q_ N (_1)n S”‘J_) B pzq:(_l)erqu +]q6ip+jqa” Stpg
q= )
where
_ 11 igEn iy - 11 1y k
Ha ji—1 g —1 je—1 )T\ -1 jr—1 n—k—1
and
I/i _ 41 Z’q 2%
q J1—1 JgEtn—1 Jgr—1 )7
£ - < i e /fp\ cee >
Pq Ji—1 - g1 - g1 ’

where i, means that the label i, is omitted.
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This can be proved by applying the Heisenberg generators H., as given by (5.3) to
the S-function given by (5.9) and utilizing formulae such as

m

w;wil"'wimm) = z:(—l)p*1 i, T/Jil"'@;"'wimm) J =0,

p=1

where = denotes omission of the relevant object. Note that non-standard partitions
1y, vy and oy, will arise in the above expansion. However, these are easily modified
to standard partitions using the modification rules outlined on page 13. Equation
(5.12) was proven by Macdonald [33, pg. 32] in the form

D S\ = Z(—l)ht(”_)‘) Su, (5.13)
1

where the sum is over all partitions p such that the skew diagram 6 = yu — X is a
border strip of length n. By this we mean that € is a connected skew diagram which
contains no 2 x 2 blocks, the length of 6 is 3, 0;, and ht(6) is the one less than the
number of rows # occupies. Hence to calculate p, s\ one can use the algebraic result
(5.12), or the combinatorical result (5.13).

We have seen how certain fermionic bilinear expressions, which represent power
sums, were able to be decomposed in terms of S-functions via the B-F correspondence.
A question which might now be asked is, are there any other bilinear expressions in
fermionic modes, like (5.3), which represent known symmetric functions. Let us try
a simple generalization of the form

Hy(t) = 7" i, (5.14)

i€
These generators fulfill the commutation relations

" —t"

[Ha(t), ()] = (87 — ") o () + ¢ ©——

6n+m,07

the central term arising due to normal ordering in (5.14). Note that the usual (free
fermion) relations are obtained in the limit ¢ — 1. For generic ¢ these generators do
not form a closed algebra. The set {H,(—1) : n even} form an ordinary Heisenberg
algebra while the set {H,,(—1) : n odd} obey the commutation relations.

[Hn(_l)v Hm(_l)] =N 6n+m,0-

These operators can be used to generate the principal realization [108] of the level

—

one Kac-Moody algebra si(2), which is generated by {h,,e,, f, : n € Z}, where

€n = %(H2n+1(1) - H2n+1(_1))7 fn = %(H2n71(1) + H2n71(_1))7 and hn - H2n(_1)7
n #0 (ho = Ho(—1) + 3). Indeed, the operators H,(t) where ¢ is a principal N’th

root of unity are the building blocks of the principal realization of gl{(N) [106].

The elegant representation of H,(1) = H, in terms of power sums and their
adjoints unfortunately does not generalize to the ¢ # 1 case. In fact, if we have the
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generating function H(w,t) =Y, H_,(t)w™ then it follows from the vertex operator
realization of the fermionic currents ¢(z) and 1*(z) in (5.7), that

H(w,t) = : (w)y* (tw) : = Z(w, wt), (5.15)
where [113]
Z(u) = (exp @:1 %pn(un - m) exp (Zjl a;;n(u—n - U—n)> - 1) |

By comparing coefficients of w in (5.15), we see that

tl—ao oo

Hy(t) = 1—tz (2;8)qn (5 1),
tl—ao oo
Hy(t) = 1—¢ Z (@; ) Gn+p (3 1), p#0, (5.16)

where ¢, (z;t) is an elementary Hall-Littlewood function (whose generating function
is given by (2.39)) and the differential operator g, (x;t) has the generating function

£ )=t (S -1 )

n=1

Thus the operators H,(t) can be realized in terms of fermions, as in (5.14), or in terms
of bosons, as in (5.16). Note that the operators given by (5.16) have the correct limits
(5.11) as t — 1. Using (5.16) we see that

t
H_n(t)|0>:th (z5t) =t Py(w5t), n >0,

1

so that if we now use the definition (5.14) along with the correspondence (5.9), we
obtain another proof (c.f. page 20) of the well-known expression of a one-part Hall-
Littlewood function in terms of one hook S-functions

n—1

Py (w5t) = Z(—t)k Stn—1—klk) (T), (5.17)

k=0

To see the action of H ,,(t)H _,,(r) on the vacuum, we first need the result
(Ii(xat) (]j($; T) = Z[n] {q] n(x T)Qz n( ) (1 + )Qj—n—l(x;r)@'—n—l(x;t)

n=0

r _
+; Qj—n—2(T; 1) Gicn—2(; t)} ;
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where [n],; = %, which is proved using the generating functions for g, and g,.

From this, one obtains the following two equivalent expressions for H_,,(t)H_,,(r)|0)

(tr i[i]r,t —r(t+r) i[z — 1]+ r? i[z — 2],n7t> Pliin)(x5t) Py (x57) =

=0 =1 i—2
m—1 m—1
Do ) s iy () = D0 (=) S k1) ()
k=0 k=0
n—1m-—1
3 (=) =)™ Sk me-1) (2),
k=0 1=0

which is an unusual identity involving elementary Hall-Littlewood and S-functions. If
one were to consider a general string of operators H_,,, (t1) --- H_,,, (t¢)|0) one would
obtain a relation between k different elementary Hall-Littlewood functions P, (z;t;)
t=1,...,k and hook S-functions of Frobenius rank 1,2,...,k.

5.2 The boson—fermion correspondence for
@-functions

In addition to the (classical) B-F correspondence between free fermions and bosons,
there is a B-F correspondence between neutral free fermions and bosons. Again, the
bosons can be realized on the space of symmetric functions. In this case however,
the states created out of the neutral free fermions have a nice representation, via this
correspondence, in terms of )-functions. The neutral free fermions ¢;, ¢ € Z are
defined in terms of free fermions, by

_ i + (_1)j ij
= 7 ,

so that they satisfy the anti-commutation relations

o;

{¢i,0;} = (=1)'0i50. (5.18)
There is a vacuum |0) defined by ¢;|0) = 0 for i < 0. Let
1 i
Gn=52(-1)"" bibin, (5.19)
i€z

with normal ordering defined as for free fermions. That is,

bid; if 7 <0
NS — ;i ifj>0 .
(1 —=0di0)pigo ifj=0
Then the generators {G,, : n € 2Z + 1} generate a Heisenberg algebra
n
[Gna Gm] = 5 6n+m,0-
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Again, if one lets
X(z) = Lexp (2 Z —z ) exp (— > iz‘") =3 X2,
\/_ n odd n odd apn JEZ

then there is an isomorphism ¢; <+ X;. Moreover, there is an isomorphism of the
states [117,219]

Ox, -+ - Bx | 0) > <6H(x)¢xl¢>\2"'¢kp> :2_p/2QA(£U) if p is even
o (e @y, dr, -+ - dr, 00) = 27 P2 Q,(z) if pis odd

where G(2) = 3, 44 2Pn(2)Gp. In particular the state ¢, ¢y|0) < 5Q(mn)(x). Under
this isomorphism, the Heisenberg generators have the realization

0
G, < pulx), G, <—>§ap @)

As in the S-function case, there is a relation between (odd) power sums and Q-
functions, which is derived by considering the two different ways of writing G_9_1]0)

using the fermionic realization (5.19) and the bosonic one (5.20). Doing this, we
arrive the decomposition of odd power sums in terms of two-part ()-functions

S

n>0  nodd. (5.20)

1 k
Paw+1 (2 5 Z Q2k+1-5,5) (T)-

Note that it is only possible to express the odd power sums in terms of (Q-functions,
because the space spanned by the Q-functions is isomorphic to Q[p1, ps, s, - . .|. Sim-
ilarly one can consider G_g,, 1G 2, 1|0) which results in

12 . 1 )
Pem+12n+1)(T) = 3 Y (=1Y Qumtznsa—jj (x) — 3 > (1) Qamr14j2041-5) ()
=0 =1
122 .
+ ZZZ D™ Qams1—i2nt1-i.)(T)-
=0 j=0

Again, we can recursively decompose p,(z) with each \; odd, with respect to Q-
functions, by using

Lemma 2
S 1 .
P2k+1 Q(/\l,...,An) = Z Q(/\l,...,Aj+2k+1,...,/\n) + B Z(—l)l Q(Al,...,/\n,2k+1—i,i), (5.21)
j=1 =0
n_9 = 2 1)Ptag. ~ -
5 3p2k+1 Q(/\l,...,)\n) - pq(_ ) 2k+1,Mp+ g Q(Al,...,Ap,...,Aq,...,An)

n

+ Z Qriy X2k 1,000)>
=1
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which can be proved using the anti-commutation relations of the neutral free fermions
(5.18). Once again, the partitions in the above expression are non-standard and are
changed to standard ones by noting that the interchange of any two consecutive
partition labels introduces a minus sign in front of the @-function. As in the S-
function case, there is a combinatorial version of (5.21). We refer the reader to
[197,224] for the details.

Ezample
Using the elementary ()-functions

¢ =2p1, @ =2p},  @3=13p+ 35,  qu=3pi+ 3pspn,
g5 = %p‘;’ + %pg,pf + §p57 g6 = 4;‘},27? + %pgpi’ + %pi + %p5p17
we have
_ 4 3oy _ 1
P3Qe,y = 3(p3py — p3) = Q1) — Quuz) + 5Q3.2,1)-

5.3 Littlewood-Richardson rule

As another application of the boson-fermion correspondence, we shall now show how
it can be utilized to derive fairly explicit formulae for the multiplication of two S-
functions in terms of S-functions with non-standard partitions. Let us begin with
the Pieri formula for the multiplication of an S-function by a complete symmetric
function, which takes the form [33]

B S = Sx, (5.22)
A

where the sum is over all partitions A such that A — u is a horizontal n-strip. That is,
the partitions A occuring in the above product are those obtained by adding n extra
boxes to the diagram g in any manner provided that the resulting diagram is a valid
diagram, and no two of the added boxes lie in the same column.

The question we can ask ourselves is: how can we turn multiplication by h,, into
an operation involving free fermions? The answer comes from the generating function
for h,, which we can write as

R(z) =3y = exp (z P ) = 0(n(z),

p=0 n>1

where

9 .
n(z) =exp | > 27| zT%e™M.
(,m Opn
Thus, when we multiply an S-function, represented by a product of free fermionic
currents, by the function h,, represented by the current R(z), we can shuffle the
(annihilation) operator 7(z) through the currents ¢)(w) using the relation

w/z
1 —w/z

et = (22 ) wtwmo) (5.2
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which will then hit the vacuum, leaving us with an expression involving just free
fermions. As an example, let us look at the product hy s, ). We know that s, ) =

0(Vn+19¥m|0)), so that (dropping the o(-) for simplicity)
1 % dzdwydwy
—2

2mi

wy " hwy MR(2) (wi) ) (w2)] 0)

D, S(n,m) = ZW1 Wy

Lo oty 2y o) 0

27 2ZW1 W ! 2 1wy /21 —wy/z
= > ettt Uns1—im_je " 0),
ij>1

where the contours in the above integrals circle the origin. The upper limits of this
last sum are constrained by the fact that e *7|0) = ¢*,|0), so that 1,e"|0) = 0 if
p < —1. Thus we finally obtain

Mk Stnm) = Y, Z S (n-tm-tk—imjyirj); (5.24)

i=—17=0

where the expression on the right involves non-standard S-functions which can be
turned into standard S-functions using the modification rules described in Chapter 2.
For k smaller than m or n, many terms on the right hand side of (5.24) cancel amongst
themselves, so that in this particular case, it is not a very efficient formula. However
we shall soon derive a formula which is more efficient when % is small. This method
can be extended to the general case, given by the combinatorial expression (5.22),
with the result being

ni+pna+p—1 np+1

Mh Stnpvemp) = D Do Tt D S(keptintetipmi =it ,npt1—ip)- (5.25)

11=1 dp=1 ip=1

In the case of the product of a complete symmetric function and a one-hook S-
function, we can use the exchange relation

(2 () = (2 = 1) (win(),

to show that

a
P S(alp—1) = S(atnlp-1) + Smta—1ipp) + D (3(n+i71,a7i\b71,0) + 3(n+i72,a7i\b,0)) . (5.26)
i=1
For n > a the partitions in the above expression are standard, and the result could
also easily have been derived by adding n boxes to the hook diagram (a|b) in the
prescribed manner. When n < a, the terms on the right start cancelling each other
out. Again, we will be able to derive a more efficient expression for this case.
We would now like to start multiplying S-functions on the left by the two-part
S-function s, ). The generating function for these S-functions takes the form

2
R(z1,22) = Z S(nm) 21 73" = <1 - z_2> exp (Z %(Zlf + 35)) :

n,m>0 1 k>1
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Again, we can decompose this into free fermionic currents and an annihilation oper-
ator. Indeed R(z1, z2) = ¥(21)9(22)n(21, 22), where

0 .
(21, 22) = exp (Z 5, (" + z;")> N0y e
n>1 Pn

Using the exchange relation

oerzaboti) = (20 ) (255 ) oot .

l—w/z ) \1—w/z

we can follow the previous example and show that

k+1 k42—
(n,m) hk Z Z S(n+i—1,m+j—1,k+2—i—75)s (527)

=1 j=1
which is a more efficient expression than (5.24) for small k. In a similar manner, one
can derive the result

p+2 p+3—i1 q+1 g+2—i3

Soa) = D D Do D S(irtistn—2yististm—2pt2—ii—izgt2—is—is)-  (0-28)

i1=1 49=1 1i3=1 d4=1

Generally, we can consider multiplication on the left by the general S-function
S(n1,...np) through use of the generating function

n1 np __ Pk
R(Zl""’zp): Z S(”h"w”p) Zl ...ZP _H (1__> b (Z?(Zf—i_zg)) .

N1 yeenyTlp>0 i<j i k>1

This allows us to write R(z1,...,2,) = ¥(z1) - (2)n(21, ..., 2p) where

0 g i
n(zla---azp) = exp (Za—(zln+zpn)) 2 0 P+1._.Zp0¢06 piq

n>1

Thus by using the relation
d w/z;
n(zla"'azp)d}(w) = H <#> zp(w)n(zla"'azp)a

we obtain the result

k+1 k+2—iy  ktp—t1——ip_1
S(nl,...,np)hk — Z Z o Z S(il+TL171,i2+n271,...,Z'p+np71,k+p7i17---77:13) (529)

=1 is=1 ip=1

Let us now turn our attention to multiplication on the left by one-hook S-functions.
They have the generating function

H(zw) = Y Swpm-1) 2" (—w)™ = ﬁ exp (Z 2%(27]“C — wk)> : (5.30)

n,m>0
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That is, H(z;w) = ¢*(w)(2)7(z; w) where

T(z;w) = <%>a0 exp (Z i(sz _ wk)) :

E>1 aplc

Upon using

w—y
s = (222 st (531
we see that
P p—1
S(njm— 1 Z S(n+1+ip+1—i1m-2) + Z S(n41+i,p—i,1m=1), (5-32)
=0 1=0

which is a more efficient version of (5.26) in the case when p is small.

Note that until now, we have not found it necessary to use the anti-commutation
relations for free fermions. As a final example of the method described above, and
one in which the anti-commutation relations are needed, let us consider the product
of two one-hook S-functions. By using the generating function (5.30), along with the
exchange relation (5.31) and

(5w () = (w:‘;) ¥ ()75 ), (5.33)
we see that
(_1)m+q5(n|m—1) S(plg—1) Z (wfm zwnJr]w q+z7/)p J wim—iwnﬂﬂwiqﬂﬂ%ﬁ
1,7>0

_wimfiqwnﬂwiq“%fjfl + wimfiflwn+]‘+1wiq+i+17ﬁ/)l7*j*1) |0> :
Consider for a moment, the first term in the above expression. For it to be non-zero,
we require 0 < j < ¢q. We also require that either 0 <1 <qg—1o0rit=p+q— 7.
In this latter case, we must use relation {¢7,1;} = 1 to get rid of the annihilation
operator t_, yielding the term % " . ab,y;[0). After treating the other
terms in a similar fashion, and gathering like terms, we end up with the result

q—1
Smim-1)5plg-1) = Sipmiq-1) + Sntptimiq-2) + D Snplmti-ig-i-1)
=1
p—1 p q—2
D Sutitlpi-tmg-1) F D D Sajtlpjmti-1g-i-2) (5-34)
i=1 §=0i=0
—1q— p—1q-2
155 5) LSRRI ») SR
j=0i=0 j=0i=0

Let us remark that instead of considering S-function multiplication, we can consider
S-function division (i.e. skewing) and derive similar formulae by consider the gen-
erating functions for D(s,). These generating functions will be purely functions of
3% and hence can be applied directly to the generating function for s,, crunched
together using the standard rules yielding a formula for the skew function sy, in
terms of non-standard S-functions, which can then be converted into standard ones

using the modification rules.
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5.4 S-function plethysms

In this section, we shall be interested in a particular operation among S functions,
that of (outer) plethysm. Littlewood’s original definition [195] was couched in terms
of invariant matrices of elements of the group GL(n), and there is a large amount of
literature (see for example [225-230]) devoted to the problem of their computation.
There is an alternative definition [33] involving a particular substitution process which
we now describe. Given a symmetric function f(z) = Y, coz® expressed in terms of

monomials % = 2" x5? - - - define new variables {y1,ys, ...} by
H(l + yzz) = H(l —+ ZUaZ)Ca. (535)

This allows one to define the plethysm of two symmetric functions f, g € A(z) by

(f®a9)(@) =g,y )

This operation is right-distributive, but not left-distributive [195]:

(f+9)@sx =2 (f®5:,)(9®5,). (5.36)

p

An important result in the theory of plethysms is [33]
Sx® s, =) ak,s,, (5.37)
p

where aﬁu are non-negative integers, and the sum is over all partitions of weight
ol = Al |l

There is a standard method for recursively computing plethysms based on the
identity [195]

Al 1l
> Diy(sx @ 5,) = | D2 su/om) | ® 5, (5.38)
n=0 m=0

where Dy is the adjoint (skew) operator Dys, = s,/x. Although this method can
sometimes be ambiguous, Butler and King [231] used (5.38) to develop an unam-
biguous method for calculating these plethysms. While this procedure is useful for
calculating plethysms of S-functions of small weight, it is not very practical for larger
weights. It is our intention here to outline another way of calculating plethysms which
allow us to obtain some quite general results.

By taking the logarithm of (5.35) it follows that p,(y) = f(z™). Thus to calculate
the plethysm s ® s,,, one expresses s,(z) as a multinomial in the power sums p; (),
p2(x), ... and then makes the substitution p;(z) — sx(z7). Thus a knowledge of how
to express s, (z?) in terms on S-functions with argument z, along with the Littlewood—
Richardson rule for multiplying the S-functions together is sufficient (in theory) to
be able to calculate any plethysm.

We will soon see how the B-F correspondence and its relation to S-functions
will enable us to derive an algorithm for calculating plethysms of the type s) ®
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pr = sa(z], 2%, ...), which, as explained above, allows one to calculate more general
plethysms. The use of vertex operators in investigating S-function plethysms is not
new: various stability properties of the plethysm operation have been studied [232]
in this way. The emphasis in our approach however, is on the explicit calculation of
plethysms.

Let us examine, as a warm-up, expansions of the functions h,(z?) and e,(2?) in
terms of functions of the argument x . By examining the generating function for
complete symmetric functions, given by (2.4) and (2.7), we have

Sl = o (X (o) =en (3 5 0)

- (i (o)) (S -1n)-),

=0

so that we obtain
2n

ho(2?) = Z(—l)khk(x)hzn_k(x). (5.39)
k=0
The Littlewood-Richardson rule between two complete symmetric functions provides

us with
k

hkth—k = Z 3(2n7j,j)- (540)

=0
Substituting (5.40) into (5.39) and rearranging the sum, we obtain the result [225]

haa?) = é(—l)ﬂ' S(anmsap (@), (5.41)

Similarly, considering the generating function for the elementary symmetric functions
(2.3) and repeating the above process, we get

n

en(x2) = Z(—l)j+n 8(2]"127172]‘)(1‘). (5.42)

J=0

So, by examining the generating functions for h,(z) = s (z) and e,(z) = sqn)(2)
we have been able to determine expansions of the functions s(,)(z?) and s¢n)(2?) in
terms of S-functions. As shown in Appendix B the functions s(,)(2®) can also be
expanded in terms of elementary ()-functions and replicated S-functions.

How do we go about treating S-functions associated with more general partitions 7
As we saw in section 5.3, the creation part of a product of vertex operators of the form
(5.7) is a multilinear generating function for S-functions associated with partitions of
a particular shape. Hence it might be possible to modify these generating functions
(vertex operators) to extract the requisite information. This is indeed the case as we
shall now see.
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5.4.1 The case r =2

Let us examine the case r = 2 in some detail, as it is this case which yields the most
explicit results. Define the following vertex operators

U(z) = exp (2%:'1)”75@ z”) exp (—anl 6pna(:c) z‘") €120,

U*(z) = exp (-2;’3’”:”) z”) exp (znj apf(x) z—n> y2000=1(5.43)

where Y°." =3, cven- Note that the vertex operators (5.43) are just the operators (5.7)
with z — 2% and 2z — 22. Thus if we write U(2) = 3,7 U 22", U*(2) = 3 en Uiz 2,
then o

(\I!* ST '\I’i1|0>) = (1) D 2 (2

-1

where A is given by (5.10). Thus if we could express the vertex operators ¥(z), U*(z)
in terms of the the operators 1(z), ¥*(z) we could use the B-F correspondence to
write sy(z?) in terms of functions s,(z). To this end, define

~ —

(z) = ¥(2)P(=2), P*(2) = " (2)"(=2). (5.44)

Using (5.7) we can write these out as vertex operators of the form

D(z) = 2 exp (2;’]’ "7(;”) z"> exp< 22

) eZiq(_l)a0Z2a0+1,

3pn
1}‘(2) = 2exp (_2;/]?7:2 ) exp <22 e ) (1)t 2a0— 1200
By comparison with (5.43) we see that
U(z) = d(2)€(2), U (2) = 9 (2)€"(2), (5.45)

where

o) = gee - e (Y0,

&(2) = (1) zeexp (—Xn:, 8pf(x) z‘”) . (5.46)

Now note the crucial fact that the operators £(z) and £*(z) are functions only of the
operators 0/0p, (), acting on the space A(x). Thus if we are given a string of vertex
operators W(z) or ¥*(z) acting on the vacuum, we can write them out according to
(5.45) and then shuffle the operators £(z) and £*(z) to the right (picking up various
factors along the way) which will then disappear into the vacuum. This will leave us
with a generating-type function solely composed of the currents 1(z), ¥(—z2), ¥*(z2)
and 1*(—z) from which, one can extract S-functions of the argument x. Let us now
examine the details of this procedure.
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Using (5.44) we can expand 1)(z) as a power series &(z) = ez Un 2271, where
Un = D (=1 ona gty =2 3 (=1 Yon1 0. (5.47)
JEZ j<n—1
If we now use the fact that h,(2?) = ¥,|0), we have
1 1 ~ .
hn(xQ) — ’ % —an,( )|0> - % %Z_M-HI/)(Z) 6_“1|0>

omi ) 2 dmi J 2
1~ .
= —=4,e"0
S0nc0),
where the contour in the above integrals encircles the origin. However, noting that
Y, €*4]0) = 0 for n < k, we have, using (5.47)

n—1

ho(2%) = = 3 (1) 4an_1-545¢ "] 0) .
j=—1
Upon using the fact that ;4,57 0) = s;_x_1,j_k)(x), we recover (5.41). In a similar
manner we can consider s,_1,m)(z?) = ¥, ¥,,|0), and get
1 dz

U,0,,[0) = ) — 5 " (2)€(2)P(22)8 (22)]0)

n-l-m—l—p,&p e | 0> )

where we have used the property £(2)d(w) = —w?(1 — w?/22) "' (w)E(z). Hence

m n+p—1m—2—p

S(n— 1m Z Z Z S(k—1,2m—2p—3—k,j+1,2n+2p+1— ])(SU) (5-48)
p=0 j=—2 k=—2
As for the results of section 5.3, the partitions that occur in the right hand side of
(5.48) may be non-standard, and hence must be modified using the standard rules.
By carefully examining the summation occuring in (5.48), and using the modification
rules for S-functions, we can write out the cases m = 1 and m = 2 explicitly, with
the results

S (@?) = D (=1 s@n 2 ji2)(@) = D (=1) s@n—jj12)(2)
71=2 7=1
+ Z(—l)jS(gn,J"j)(l‘) — S(gn_g,lz)(l‘), (5.49)
j=2
n—2 ) -
S(n_272) (aj2) = (—1)-78(2”_4_]’], Z 2n 14— ]7]73 1) (:'U) - S(2n_47371) (:'U)
=4 j=3
n—2 ) n—1
+ (—1)] S(2n—4— ”22 Z 2n727j,j,2)(x) + S(2n-5,3,2) (I)
Jj=2 Jj=2
n—1 ) n )
— > (1) s@n—2-4412)(€) D (=1 5205 (€) — S@n—6,3.3)(2)
j=3 j=4
+ 8(2n75’22,1) (ZL') (550)
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In the above expressions, the partitions are in standard form provided n > 2 and
n > 4 respectively.

For the general case we have

S(nl7p+1,n27p+2,...,np_171,np)(xQ) — \Ilnl \I]ng e \Ilnp|0>

_ ]_ Z %dz 2(k1—n1) k2 TL2+1) . Zg(kpinp*»pil) X
klv -k
2
<1l (1 ) _]2> i -, €10)
z<] Z
- pH 1_ ZJ ¢n1¢n2 1 ¢np—p+1 e—piq|0>, (551)
1<j

where R;; acts as a raising operator:
Rijhy, - taUn, a, =y Ungn - om0+,

One can now use (5.47) to rewrite the terms occuring in (5.51) in terms of free
fermions, which can then be turned into S-functions of argument x. Unfortunately, it
is not worthwhile writing down explicit expressions like (5.48) for partitions of length
greater than two.

There is however, a neat formula expressing one-hook S-functions with argument
z? in terms of one and two-hook S-functions of argument x. Recall that ¥* ,W;[0) =
(—1)7s(1-1)(2?). By using (5 45) and the relation £*(z Jo(w) = (272 —w=2)ih(w)E*(2),
we have (—1)7s(;_1)(2?) = (w*_]wl P _]+1%+1)|0> Expressing these back in terms
of free fermions, we obtain after some algebra

(=1)s6-1)(2?) = ZZ 1P s (g 2im1—gl2j—pp—1) (%) + S(20)2j-1) (7)

plqO

+ Z Z P54 2i01 g2j 2 pp-1)(T) = S@iv12i 2)(2).  (5.52)

p=1¢=0

Note that all the partitions occuring in the above equation are standard, and no
modification is necessary. The extension of this method to p-hook S-functions is now
obvious although again, it is not worthwhile to write down any explicit cases.

5.4.2 The general case

Let us now extend the above construction to enable us to calculate sy(z") for generic
(integral) values of r. Let Z” = Y, and define the vertex operator

n n=0 (mod r)




with a similar expression for U*(z) which we will not be using. If we express this in
terms of its modes by ¥(z) = Y,cz V2", then the B-F correspondence tells us that

Q(\Ijil .. .\Ijis

0)) = sa(2"), (5.53)

where A\ = (i — s+ 1,ip — s + 2,...,45). Note that in this expression, we have
reordered the modes to absorb the factor of (—1)"%% occuring in (5.9). This is
possible because the modes ¥,, and U} still obey the anti-commutation relations for
free fermions.

Let w be a primitive r'th root of unity. That is, w” = 1 and

1+wk+w2k+___+w(r—1)k:{ r, k=0 (modr)

0, else
Now define
P(z) = Y)pw2) P '2)
r—1
S pn(l‘) " 8 _
= 1—w))" 7 exp (r Il—z”) exp (—r z ”> X

1= 2 2 Opala)

w el Zrao—l—r(r—l)/? wr(r—1)a0/2+r(r—1)(r—2)/6,

which we have written in a normal-ordered form, shifting all of the differential oper-
ators to the right. Then U(z) = ¢(2)&(2) where

-1
é—(z) — h(l . wj)jfn Zr(rfl)/Z wr(rfl)(2r71)/6 ef(rfl)iq wfr(rfl)ao/Z %
j=1

X exp ((r - 1)%)” apf(x) z—n> .

If we expand the current ¢(z) into its modes

’QZ)\(Z) — Z QZ)\p er—r(r—l)/Q,

PEL

then o _
wp — Z w7,2+27,3+...+(r71)zrwi1 . wiT‘ (554)

2158250005 ir

i1+-+ip=rp—r(r—1)/2

Using the results of Appendix C, we can rewrite this in the form

by =1 > ( > (sgno) wiv@)“ia(s)+"'+(T—1)ia(r>) Yy by, (5.55)

i1<ig<...<ir oESr_1
i1+t =rp—r(r—1)/2

where S,_; denotes the symmetric group on the elements {2,3,...,r}. From here
on, we can simply mimic the r = 2 case. That is, given a string of vertex operators
U(z) generating an S-function s,(z") according to (5.53), we decompose it into the
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operators ¢(z) and £(z) and then move the annihilation-type operators £(z) to the
right using the relation

~ o’ r=t ~

i) = () e,
uT

This leaves us with a generating function composed just of free fermions which can

be decomposed into S-functions of argument x.

Ezxample

Let us demonstrate the above with an example of how to handle h,(z"), which is
associated with the state ¥,|0). Now,

r(r—1)(2r—1)/6

- — i), e ) 0) (5.56)

izi(1—wi)

0,00) = § Co i) 0) =

So that if we now use the fact that

we are able to express h,(z") in terms of S-functions with argument z. It is still,
however, too difficult to write down an explicit result valid for arbitrary . In the
case r = 3, with w® = 1, using (5.55) and (5.56) we have

ha(2%) = — > (wi2+2i3 - wi3+2i2) S(igin+1,i1+2) (), (5.57)
TW ocii<in<is
i1+iz+iz=3n—3

so that, for example
hg(ib'g) = 8(9) (l’) — S(g”(l’) + S(711)(£U) + 8(53) (l’) — 8(521)(1’) — 8(54) (ZU) + 8(522) (ZL‘)
+5(441) () — S(a32) () + 5(333) (),

which may be checked explicitly by noting that, in terms of power sums, both sides are
equal to (p3 + 3peps +2pg) /6. It is interesting to note that not all of the terms on the
right hand side of (5.57) are non-trivial (e.g. the ones corresponding to (i, i2,1i3) =
(—=2,1,7) or (—1,2,5)).

5.4.3 Examples

Using the above results we are in a position to calculate some plethysms by brute
force (from the definition). For example, if we want to calculate s,y ® s(2), we write
S(2) = 5(p2 + pi), so that

1
S(n) @ S(2) = 5 (hn(l‘2) + hi(l‘)) .

Upon using (5.40) and (5.41), we recover the well-known result

/2]
Stm) @ S2) = D, S(2n—25,2))5 (5.58)

~

<.
Il
=)
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where [z] denotes the integer part of z. Similarly, using s(2) = 1 (p? — p2) we see that

[(n+1)/2]
S(n) @ S(12) = Z S(2n—2j+1,2j—1)- (5.59)
7=1

One could go on to calculate s(,) ® s(3) from the definition

1 1 1
Sn) ® 53) = ghn(x?)) + §hn(x2)hn(x) + _(hn(x))ga

by combining the equations (5.40), (5.41) and (5.57) along with the formula

n  min (n—p,2n—2j)

S(2n_]7]) (.'L.) hn = Z Z 8(2n_j+p7j+Q7n_p_q)(x)’
p

0 g=max (0,n—j—p)
which follows from the Littlewood-Richardson rule. In a similar manner, one can
obtain explicit expressions for the plethysms s,y ® s@1) and s@,) ® ss) by using
s@1) = (P} — p3)/3 and susy = pi/6 — pap1/2 + p3/3.
We can also write down explicit expressions for the plethysms s;,_1,1) ® s(2) and
Stn—1,1) ® 5(12) through the use of (5.49) and the (outer) product

n—1 n—1

n
Sta-1,) = D S@njg) T 2D Sea-1-4,41) + D SEn-2-4j2)
=2 =2 =2
n—1
+ S(2n-2-7,4,12) T S(2n—2,12)- (5.60)
7=1
Thus we have
5] -
Stn-1,1) @S2y = Z S(2n—2-24,2j+2) T Z S9n—2—j,j+1,1)
=0 =1
5] 5]
+ Z S(2n—-2-24,25,2) T+ Z S(2n—3-2§,2j+1,12), (5.61)
=1 =0
5] -
S(n—1,1) @ 512) = Z S(2n—3-24,2j+3) T Z S(2n—2—j,j+1,1) T S(2n-2,12)
=0 =1
5] 5]
+ Z S(2n—3-25,2j+1,2) T Z S(2n—2-2;,2,12)- (5.62)
=1 =

In a similar manner we can calculate the plethysms s, 2) ® 5(2) and s, 2) ® s(12). From
the Littlewood-Richardson rule we have

84



n—2

2 _
S(n2) — . S(2n—j,j+4) +22% (2n—1—j,j+4,1) +32% (2n—2—7,j+4,2)
j= j j
n—4 n—4 n—2
+ 225(271 3—5,j+4,3) +Z S(2n—4—j,j+4,4) +Z S(2n—1-j,j+3,12)
Jj=0 Jj=0 Jj=0
n—4 n—3 n—3
+ S(2n—2—j,j+2,22) +22 S(2n—2—4j,j+3,2,1) T Z S(2n—3—7,j+3,3,1)
Jj=0 j=0 j=0

+  S@n31) t S@n22) T 282n-132) T Stat1m+1,2) T S@n-2,32) + S@2n-1,22,1)-

Combining this with the expression for s(,2)(z*) given by (5.50), we end up with

n—2)/2] _
S(n2) & S2) = Z S(2n—24,2j44) Z S(2n—1—j,j+4,1) T S(2n,22)
Jj=0 =0
—4) [(n— 5)/)] 1—(—1)"
+ 2 Z S(2n—2-2j,2j+4,2) T Z S(2n—3-25,2j+5,2) T % S(n+1,n+1,2)
=0 j=—1
n—4 [(n—4)/2] [(n—2)/2]
+ Z S(2n—3—j,j+4,3) T Z S(2n—4-2§,2j+4,4) T Z S(2n—1-2;,2j+3,12)
j=0 Jj=0 Jj=0
—2)/2] n—3 [(n
+ Z S(2n-2-2j,2j+2,22) T Z S(2n—2—j,j+3,2,1) Z 3(2n—3—2j,2j+3,3,1)a
j=0 Jj=0 Jj=0
[(n—3)/2] n—3 14+ (=1)"
S(n,2) @ S(12) = Z S(2n—1-25,2j+5) T Z 2n—1—j,j+4,1)+¥2)) S(n+1,n+1,2)
j=0 j=-1
—4)/2 [(n—5)/2] n—4
+ Z Sen-2-2j2i+42) 2 Y. Sen-3-2j2i+52) T D S(2n-3—jj+4,3)
§=0 =0 j=—1
[(n—5)/2] [(n—3)/2] [(n—3)/2]
+ S(2n—5-24,2j+5,4) T Z S(2n-2-25,2j+4,12) T Z S(2n—3-2§,2j+3,22)
j=0 j=0 j=0
- [(n—4)/2]
+ Z S(2n—-2-7,j+3,2,1) T S(2n—4-2§,2j+4,3,1)-

As a final example, using equations (5.34) and (5.52) we have the plethysms

n—1lm—2 m n—1
Smim-1) © 52) = D D Sen—jijlzm—2-ig) T D D EpamS@n—1-qqizm—pp—1)
J=0 i= p=1¢=0
m—1

M=~

+2

(1 - 5p,q,7n)5(2n+17q,Q\2mf2fp,p*1) + S2nj2m-1);

p=1 ¢=0
n—1m—2 m n—1
Sm-1) @ 502) = D Y Sajjlzm2-ii) + D D (1= Epgm)Sn1-ggem pp1)
7=0 =0 p=1 ¢=0
m—1 n
+ Z Ep,q,mS(2n+1—q,q2m—2—p,p—1) T S(2n+12m-2),
p=1 ¢=0
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where e, = 1 (resp. 0) if p 4+ ¢ + m is even (resp. odd).

5.5 Hall-Littlewood functions

The final type of boson-fermion correspondence we shall look at is the B-F correspon-
dence between certain deformed Heisenberg generators and the generalized fermions
of Jing [221], in which the states in the fermionic Fock space can be associated to Hall-
Littlewood symmetric functions. The deformed Heisenberg operators ¢, considered
by Jing obey the commutation relations

n

[ONZn, a{m] = m 6n+m,07 n 7£ 0, (563)

along with operators ag and ¢ which satisfy (5.6). These operators, for n # 0, can
again be realized on the ring A(x)[t] of symmetric functions over Q(¢), through the
association p

n="n :
Opn(x)
Instead of the vertex operators used in [221], we use a slightly different version, with

the inclusion of the operators &, and ¢, so that they reproduce the free fermion
currents (5.7) when ¢ = 0,

A0 = e (S e (- 3 0 e,

a = (1—=1")pu(x), a

(5.64)

n=1 n=1
* — _ n —-n —ag ,—1q
©*(2) exp( nEZI " pn(x) 2 )exp <n§1 n (@) z > z e M. (5.65)

Let ¢n, ¢f denote the modes of these currents, so that ¢(z) =¥, ¢,2™ and ¢*(z) =
Yo piz7™. By forming the generating function Z(p,q) = ¢(p)¢*(q) as was done
in [113] and taking the appropriate limit, it can be seen that for n # 0, the generators

~ 1
H, = D8

1EL

(5.66)

are identical to those given in (5.64) and hence satisfy the commutation relations
(5.63). From the normal-ordering relations

_wz—tw w—tz

Pl (w) = ————p(2)p™(w) ;@ w)p(z) = ——— ¢ (w)p(2) 1

Z—w 1 z—w

p(2)p(w) = 2 Lo (2)p" (w) ;.

z—tw wz — tw

and following the techniques in [221], one can derive the anti-commutation relations

{(pna Spm} = t(anrlSOmfl + tSOerl(pnfl;
{0n Om} = ton_1Pmi1 T t0m 100415 (5.67)
{on O} = ton19m 1+ o1t + (1 — )6
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which yield the free fermion relations in the limit ¢ — 0. Equations (5.65) and (5.66)
represent Jing’s generalized B-F correspondence between the deformed Heisenberg
generators (5.63) and the deformed fermions (5.67).

Analogous to the ¢ = 0 case where each state in the fermionic Fock space was
associated with an S-function of a particular shape, the states in the Fock space
generated by the generalized fermions can be associated to Hall-Littlewood functions.
Indeed, if the bra and ket vacua are defined as in (5.2), then we have the equivalence
[221]

Q(SOAISOAQ - '<PAp_1<PAp|0>) = QA(SU; 75): (5-68)

where A = (A —p+1, 2 —p+2,...,),). By using this equivalence, we shall be able
to derive some identities between S-functions and Hall-Littlewood functions.

5.5.1 Inverse Kostka-Foulkes matrices

It turns out that we can use the techniques of the previous section, where we de-
composed a vertex operator in terms of products of free fermionic currents and an
annihilation-type operator, to find a simple way of calculating the inverse Kostka-
Foulkes matrix elements K, /(t), where

Py(x;t) = 3 K3, (1) su().
Write ¢(z) = ¢(z) ¥(2) where $(z) = ¢(2)y*(tz) and

I(z) = (1 — 1)t ez exp (— Z t" 0 z‘") )

n=1 ap” (x)

Again, we have the crucial fact that ¥(z) is a function only of differential operators.
Now observe that we can write §(2) = Y ,cz $n2"™, where

@n = th wn—j'ﬂbi]’- (569)
JEZL
Thus
(1 =t) pdz _, P
alo) = LD L L a0 = gaelo

n—1
= (1—1) Yt/ ¢ji", €7|0),
=0

and we recover once again the result

n—1

Py (w3t) = 3 (=) su-1-spp) ().

k=0
Similarly, we can use the fact that

tz —w

9()P(w) = =

p(w)d(z),
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to obtain
m—1 )
Onom|0) = t2(1 - t)2 Pn—1Pm + (1 — t_l) Z Pt jPm—j—1 62zq|0> .
=0

If we now use (5.69) to convert everything on the right hand side of the above equation
back into free fermions, and use the fact that

-1

o €*1]0) = 13 )0,
provided |t| < 1, we find that
n+m—3
2
Q(n—l,m) (QT; t) = (1 - t) Z (_t)q S(n+m—3—q|q+1)(x)
qg=—1

2 m—j—3 _ _
+ (Z +H1—t Z) ( Yo ()R s s g1 (2)
j=—1 7=0 q=-—1

m—j—3 )

- Z (_l)qt2q+]+3_m 3(n+m73*q|q+1)(x)
qg=—1
n+j—2m—j5—3

— > > ()P j—a—q,n+j—2—pp+1,q+1)(x))}- (5.70)

p=—1 ¢q=-1

Thus we are able to express two-part Hall-Littlewood functions in terms of one and
two-hook S-functions. One can explicitly write out the cases m = 1, 2 with the result
that, for n > 2

n—2
Poay(est) = D (=0 se1wmy (@) + (=) (1+ )50 1) ()
k=1
n—3
+ Y (=) sms kom0 (),
k=1
while for £ > 4 we have
k—4 k—4
P22y (@3t) = D (=8)"s(k-2-qla+1)(®) + (1 =) D_(=8)"5(-3-p0jp+1,0)(2)
q=1 p=0
Z ( S(k—1-p,1p+1,0)(T) + S(k—3—p,1\p,0)($)) — (=) 1 (1 + ) s(opp—1) (x)

( )k 3(]_ +t)8(1‘k_2)(l’)

When k£ = 4, we see that

1
Py (23t) = 1= Ha = e (231) = s2)(7) — t s12) (@) + £ 500 (2).
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which gives the correct result, which can be checked by computing the inverse of the
Kostka-Foulkes matrix for |A| = 4 appearing in Macdonald [33]. For the general case
we have

1— t_lRZ‘j -

Oy - oy |0) = (1 — )2 #0~D T g, Pu-pOn, 10},
ij

1<j

and so application of (5.69) will allow one to express Py(x;t) where \ is a p part
partition in terms of one, two, up to p-hook S-functions, although it is not feasible to
write down general expressions for more complicated partitions than the ones above.
As in the S-function case, there is an exception however — one-hook partitions. We
must first though, ascertain how one-hook Hall-Littlewood functions are represented
by fermionic states.

As a first guess, we might expect that the state ¢*; ---¢*,; ¢; - - i, |0) can be
associated with an r-hook Hall-Littlewood function. Let us examine the simplest
state ©* ;;]0). From the vertex operators (5.65) we have

0(Z;il0)) = fij(w;t) = (05 t)qi(;8) + (1 — 1) Z ¢j+1(0/7; ) i1 (258), (5.71)

where the supersymmetric functions ¢, (x/y; t) are defined by their generating function
(3.32). The function f;;(z;t) has the one-hook S-function (—1)7s(;_1)(z) as its
limit when ¢ — 0, but does it represent a one-hook Hall-Littlewood function ? In
the special case t = —1, by using ¢,(0/x;—1) = (=1)"g,(x; —1), it follows that
fij(x;=1) = Quy(x), a two-part Q-function. For the case of generic ¢, consider
the case of functions associated to partitions of weight 3 (which are all one-hook
partitions). From the definition (5.71), we have

1 1 1
fos(wit) = —2(1- £°pan) + 5 (1= (1 = ) - ;1= )p),
]‘ 3 t 2 ]‘ 3
fro(x;t) = 6(1 —1)*(t + 2)pai) — 5(1 — 1) (1 = t")peary — 5(1 — 1)1 = t")pw),
1 1 1
foalzit) = —c(1- £)*(2t + 1)paiy — =t~ t*)p(a1) — 1=~ t2)p(3)-

However, under the Hall-Littlewood inner product (2.37) we see that

(foz, fi2) = (foz, fo1) =0, ( fro, for ) =2 (1 —t)%,

so these functions are not orthogonal, as Hall-Littlewood functions should be.

Now, there is actually a formula which expresses one-hook Macdonald functions
Qnxy(7;¢;t) in terms of the elementary functions g,(z;q,t) and e,(z) [192]. By
taking the limit ¢ — 0 in that formula, we deduce that

Q1w (251) = k(1) ;}(—l)j i (T3 t) epj(m),  (t) = (L —t)(L—17)--- (1 —t").
" (5.72)
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Using this, along with the vertex operators ¢(z) and ¢*(z) we see that

Q(Somz/)in| 0>) = (_l)n_IQm-Hen—l + (_l)n_2Qm+2€n—2 + Gm+n
= (—1)7171"}/7;711(25) Q(m+171n—1)(x; t) (573)

Thus it is the states ¢,,1)*, |0) that are connected with one-hook Hall-Littlewood
functions, not the states ¢* ;p;|0). The path is now clear as to how one can turn
these back into S-functions. First, note the exchange relation

w
v * = ——— Y (w)d(2).
(@ () = s v ()
Thus using the integral technique, we see that
PmtZn]0) = (1= 1) D77 Gy} _ |0

j=1

Upon using (5.69) to express everything in terms of free fermions, and then passing
back to S-functions, we arrive at the result

m+j—1 )
Pinyian-ny(w5t) = > > (—t)f S (mtj— k0 k—1,n—j—1)(Z)
j=1 k=0
m (1 — tn)
+(=t) ﬂs(o\nﬂnq)(ﬂﬁ), (5.74)

which expresses one-hook Hall-Littlewood functions in terms of one and two-hook
S-functions.

One can check, by converting ¢ potb* 510" ]0) into S-functions using the above tech-
nology, that this state does correctly represent the two-hook function Qq oj1,0)(z;1).
Thus we are led to conjecture that for r-hook Hall-Littlewood functions,

(i o, 25 055 10)) = Qeir sy 1o 1) (#31)- (5.75)

As far as we know however, there is no analogue of (5.72) for hook partitions with
Frobenius rank greater than one, so proving the above conjecture would seem to be
quite difficult.

5.6 Hall-Littlewood plethysms

In this section we will extend the definition of plethysm to encompass Hall-Littlewood
functions. We define the plethysm between two functions f, g € A[t] to mean express
g as a multinomial in power sums and then make the substitution p;(z) — f(27;¢).
That is, if g(z;t) = 3, a,(t)pu(z), then

F®g=> au(t)f(ah;t") f(ah ) - f gkt o). (5.76)
7
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Note that this definition includes “ordinary” (outer) plethysm between functions
f € A C Aft]. Let us give an example. If we consider the generating function
for 3=, qn(2?;t*)2?" along with the product formula

k-1
Qn—k49k = Q(n—k,k) + (1 - t) Z Q(n—j,j)v

Jj=0

we find that

n—1

Gl ) = (L4 0) Y (1P Qeanyp(&58) + (1) Quumy(w58). (5.77)

§=0
Hence we have

I ®5(2) = Qen) — tQ@en-1,1) + Qen-22) =+ — tQms1,n-1) + Qnn) i-f n i-s even
Qe2n) = tQen-1,1) + Qen—22) =+ + Qnt1,n-1) if n is odd

and
a(t)Qzn) + b(1)Qzn-1,1) + at)Qen-22)

R b(t)Q(n—I—l,n—l) +(1- t)Q(n,n) if n is even

Q2n) + 0(1)Q2n—1,1) + a(t)Q2n—2.2) '

+--+ b(t)Q(n—l—l,n—l) +t(t — I)Q(n,n) if n is odd
where a(t) = (1 — ¢)(1 +*) and b(t) = 2¢(t — 1). Note that in these examples, all
of the coefficients in expansion of the plethysm are elements of Z[t]. Suppose we had
defined the plethysm operation ® with p;(z) — f(27;t) instead of (5.76). Then it
appears that the coefficients in the plethysm

BQ, =Y a3,(t)Qu

n ® q2 =

are no longer polynomials in ¢ with integer coefficients. For example

w(r%5t) = Quy(;t) — Qui(a;t) + %Q(m (z;1) — %Q(m?)(ff; t)
P Quy(31),
so that
©®p = 1 -1 —t+2)Qu + 3t(1 —t)(t — 3)Quy + (1 — t + £*) Q2
— B+ DQur + Qo

We will now show that the procedure developed in section 5.4 can be extended so
as to calculate Q) (2";t"), which together the multiplication rule for Hall-Littlewood
functions, will enable us to calculate (in principle) plethysms of the form

O\ ® Q=) _a3,(t)Qu.
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In particular, it will provide strong evidence for the coefficients a5, (t) € Z[t].

Let us begin, once again, with the case r = 2. Let T(2) = 32, T,2°" be the vertex
operator ¢(z) in (5.65) with x — 2% and z — 2%. Write Y(2) = ¢(2)&(z) where
p(2) = p(2)p(—2) and

N 1+1¢

§(x) = ——ze (=) Texp (Z apf(x) z”)

We also write p(z) = 3, ,22"~" where

()bn = Z(_l)jSOanlfj(pj
JEZ

| —2
= (_1) ( PnPn— 1+2290n+]§0n 1 ]), (578)

1+t =

where we have used the anti-commutation relations (5.67) recursively to order the
modes correctly. Thus the equation
1+1 -
000) =~ o),
upon application of (5.78), correctly reproduces (5.77). Similarly, using the exchange
relation
22 — t2w?

22— 2

é(o)otw) = - (

enables us to derive the relation

) Bw)E(2)

L+t (. . U iy
TnTm|0> - ( 4 ) (@n(pml + (1 - t2) Z(anrj(pTﬂlj) e’ q|0> :
j=1

Use of (5.78) will enable us to decompose this into generalized fermions, and hence will
allow us to express Q(,_1,m)(2% %) in terms of functions Qx(x;t), where ((\) < 4.
The resulting partitions will however, be non-standard and hence will need to be
modified using the modification rule (2.36). If we consider the simplest case when
m = 1, we find after some algebra,

n—2
Qn-1 1)(5U ) =(1+1) Z(_1)]‘“@(2%27]‘,3‘,12)(3«"; )+ (=1)"Qu-1n-112)(;1)
7=1
(1+72) i Qen-1-jj2) (@ 1) + (=1)" 1+ 1)Qu-1,n-12)(7; 1)
n—1
+ (101 =) D (1Y Qenjjy (w3 t) + (=1)"(1 = *)Qnmy (w3 1)
=0

+ (E+D)E = 1) [Qan(@51) — Q1)@ )] — (1 +1)Qn—s,2) (7;1)
+ t(1+1¢)? [Q(2n72,2) (731) — Qan—3,2,1)(7; t)] .
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Note that we reproduce (5.49) when ¢ = 0, as we should.

Like the S-function case, we can extend the above considerations to the case of
generic r, and the details are almost exactly the same. Thus we have, for example
when w? = 1,

1+282 —t(2+ H)w + t(t — 1)w?

3(w _ wZ) Z wi2+2i3Q(i1,i2+1,i3+2) (x; t)

i1+i2+iz=3n—3

Quy (2% 1%) =

This is not quite as compact as the S-function case given by (5.57), but it can in
principle be treated using the modification rules (2.36).

Finally, let us remark that it might be possible to extend the above definition
of plethysm to Macdonald functions by defining for any two symmetric functions
f(z:q,t), g(x;q,t) € Ap, where F = Q(q,t), the plethysm f ® g to mean: expand
g in terms of power sums, and then make the substitution p;(z) — f(27;¢7,#). As
an example, let us calculate the plethysm Q) ® po = Q) (z?; ¢ t%). From the
generating function for single-row Macdonald functions, we have

R e (S P

n=1 q

- (;%Q( v:0,1) )(i@ (550, z)l),

=0

hence
2n

Q) (@*; 4%, 1) =Y (1) Quy (%3 ¢, ) Qe2n—i) (z3 ¢, 1)

k=0
By apply the Pieri formula (2.69) to this expression and then resumming it, using the
method used to derive (2.72) and (2.82), with the aid of the summation formula

(@:0%)n (t%4%)n
(t; @) 2n

which follows directly from the Bailey-Daum summation formula [201, Eq. 1.8.1], we
see that

2010t ¢ 2" g Pt g, —q/t) = , (5.79)

Q(n)(xQ;qQ,tQ) — Z(_l)n—j

Qntk,n—k) (75 ¢, 1). (5.80)
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Chapter 6

Symmetric Functions and
Quantum Affine Algebras

In this chapter, we demonstrate the utility of symmetric functiog\techniques in pro-
viding concrete realizations of the quantum affine algebra U,(s/(2)) and hence the
means to calculate traces of products of currents of this algebra. In the case of level
one realizations of U,(sl(2)), these traces have been used in the calculation of cor-
relation functions of the spin % XXZ quantum spin chain [188], and we hope that
the traces calculated here in the level k£ case might be of use in the calculation of
correlation functions of the spin & XXZ chain [190].

The key to this construction is to note that the Fock spaces used in the free field
realization of U,(sl(2)) at level k can alternatively be described as rings of symmetric
functions spanned by particular sets of Kerov’s generalized symmetric functions [192].
Not only that, it turns out that matrix elements of currents of the algebra in this
basis can also be described in terms of these same functions. This allows a technique

of King’s [193] to be used to calculate traces of products of these currents.

6.1 Generalized symmetric functions

In order to perform certain vertex operator trace calculations, we shall find it neces-
sary to introduce some symmetric functions which are a specialization of the symmet-
ric functions introduced by Kerov [192]. To describe Kerov’s symmetric functions,
let v = (v, v9,...) be a sequence of real numbers and define an inner product on the
power sum symmetric functions by

(PxsDu ) = Oxp 22V, (6.1)
where vy, = v/ - - - 0" for a partition of the form A = (n™» -.-1™). Define functions

Py(z;v) which span the ring Ap, where FF = Q(v1,vs,...) by requiring that they
are pairwise orthogonal, and that the transition matrix between these functions and

the monomial symmetric functions my,(x), where || = |A|, is unitriangular (upper
triangular with one’s on the diagonal). That is,
Poaiv) = ma(@)+ X unal0) ma(a) (62)
<A
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( Py(z;v), Py(z50) )y, = 0, for A # p, (6.3)

where the ordering in the above sum is the standard lexicographic ordering. By using
the Gram-Schmidt orthogonalization procedure, one can derive a unique orthogonal
basis for Ar. Hall-Littlewood symmetric functions correspond to the case when v, =
(1 — ")~ and Maconald’s functions to the case v, = (1 — ¢")/(1 — ¢"). For our
purposes, we shall be interested in the case

KN —KN

Up = @ <ﬁ> , (6.4)
where we assume o« € R and x € Z. We shall denote the symmetric functions
so obtained Py(z;q, k,«). From the definition (6.4) of the number v,, we see that
the functions defined by (6.2), (6.3) are either a slight generalization of Jack sym-
metric functions or of Macdonald’s symmetric functions. Indeed, when ¢ — 1,
Py(z;q,K,0) — P)Em/Z)(x) in the notation of Chapter 2. In fact, when x = 2,
these functions are Jack symmetric functions for all values of ¢. Similarly when
a = 1, Py\(x;q, K, a) are identical to the Macdonald’s function Py(¢*", %), again in
the notation of Chapter 2. As mentioned in Chapter 2, a very interesting property of
Macdonald’s functions is that, if they are defined by (6.2), (6.3) with the inner prod-
uct (2.51), then the definition is independent of the total order appearing in the sum
in (6.2) if the total order is compatible with the dominance order defined by (2.53).
It is not known, however, whether the functions Py(x; ¢, k, «) share this property. For
what follows, we shall always be using the total lexicographic ordering.

6.1.1 Cauchy identities and skew functions

Once we have constructed the functions Py(z; ¢, k, @) , we can define their dual func-
tions Qi (z; ¢, K, a) = bx(q, K, a) Py(z; q, Kk, @), where by(q, k,a) = ||P\(x; q, k, @)|| 72,
such that

(Pr(m5q,k, ), Qu(z; ¢, Ky ) ) = Oxpe

The exact form of b, (g, , @) is unknown, but as we shall see, it is not necessary for our
purposes. We can see however, from the relationship with Macdonald’s functions [39]
when o = 1, that

2ka(z)+4l(z)+4

l—q
(k—2)|A|
ba(g, K, 1) H q2ra(@) +l(@)+2
:vE/\

where a(x) (respectively [(x)) is the arm-length (resp. leg-length) of the node z € A.
Let us now develop a Cauchy formula for the functions Py(z; ¢, k, «). Firstly, we have

the result
1 (zay; 0% ) 1L

T p\\Z)paYy) =
;ZA((L K, Q) (@) 2alv) ij (Tay;qt 2§q2'€)<1></>a

~ e (l i m(x)pn(y)) . (65)

Cns0 ™ — 4
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where we have denoted z)(q, k, «) = z\v, for the particular choice (6.4) of vy, and

H 1 —2¢/)"

Equation (6.5) is proved by a standard calculation (see Macdonald [39] for example).
From this we obtain the following Cauchy identity

26\1/

. ok F2.
Y Pi(z;q, 5, ) Qx(y;q,ﬁ,a)zﬂ(mzyﬂ )" (6.6)
A

i (Tiyq™ 2 q2“)<1></>a

The functions P,\(:L‘ q, Kk, ) form a basis for the ring Ap, so there exist structure
constants # = (q, k,a) (actually rational functions of the indeterminates ¢ and
«) such that

Pu(z;q,5,0)P)(z;q,k,0) =Y fo,PA(z; ¢, K, ),
)
or equivalently

Qu(w; ¢, K, )Qu (T3¢, K, @) = Z L (75q, K, ),

where
FA bu(Q7 K, a)bV((L K, Oz) A
- bA(Qa K, Oé) o
Using these coefficients we can define the skew functions
Pyju(w;q,k,0) = Z (259, K, @),

Q)\/u(x; q, K, Oé) - Z QV x;q,K, Oé)

It then follows from (6.6) that we can define compound functions in the indeterminates
x and y via

Py(z,y;q,6,0) = > Pyo(x;0,8,0)Py(y; ¢, K, ),

Q/\(xa Y q, R, a) = Z Q)\/O'("L.; q, R, Q)Qg—(y; q, R, O[)

6.1.2 Replicated functions

For the purposes of the next section, we shall find it useful to introduce the symmetric
functions defined by (6.2), but with replicated variables, as was done in Chapter 3.
We want to be able to define the function Py(2(™;q, k, ) so that when 7 = m, an
integer, we have

m m

Py(z™; q, K, a) = P\(T, T @).
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Before we proceed with the definition, we must introduce the transition matrix
Y =Y!(q, k,a) between the power sums and the functions P,

pa(z) =3 Y Pu(zsq, K, ).
I
The functions YY" have been studied by Srinivasan [233] in the case a = 1 (the
Macdonald case). From the Cauchy identities (6.5) and (6.6), it follows that we have
orthogonality relations of the form

1
S Y = e s ), (6.7
p P I I

1
g Y = alaa, ©5)

Let us now show that YM(") =1 for all partitions p = n. Using the first orthogonality
relation (6.7), we see that

Qx(7;q, K, @) Z pu( ). (6.9)

W4, K, a)

Now we know that the transition matrix between the functions Py and the monomials
m,, is upper uni-triangular. Also we have the fact that m,(zy,...,z,) =0if {(p) > n
Thus we have for one variable z,

_ [ 2 i A= (n),
P)\(Z’ q, R, Oé) - { 0 otherwise.

and so from the Cauchy identity (6.6) we have

00 /o
(124" ™) oo
Q) (75, 5, )2" = (
nz:% o ) H (wizq™%; )
= exp pn(x) 2" | .
<a n>0q g ( ) )

This implies that Qu)(z;q, K, ) = X0y z;l(q, Kk, @)p,(r) and so comparison with
(6.9) leads us to conclude that Y, = 1.

In exactly the same way as was done in Chapter 3, we can use these orthogonality
relations to derive a formula for the symmetric function P)\(x(m); q, K, @) where each
of the indeterminates in the argument is repeated m times, in the form of

m m

P\(T1, . 210,y X2y QL Ky () = ZBM (T3, K, ),

where B),(m) is a polynomial in the “variable” m of the form

Byu(m) = 3 ——

S S O
o <o (Q7 K, Oé) 7

g
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Thus we can consistently define our functions Py (2(™; ¢, k, ) of the replicated variable
(™) to be
P/\( ™) 14, Ky Oé ZB)\,U 37 14, Ky Oé) (610)

Again, we can repeat the analysis of Chapter 3 to derive the Cauchy identity

k+2. 2K ™/a
> P05, 0) Q050 0) - H((”‘”q”’“ )m)", (6.11)

i \(ZiY5077% 4% ) o
which we shall need in the next section.

Ezxample

From the calculations we have carried out using Mathematica, the transition matrices
Y and B are very complicated, even for partitions of low weight. We’ll only show
here results for |A\| = 2. In this case we have

1 1
V=12 - +1) al+1)1-¢") |,
(1, a) 6(1, )

where 0(z,y) = (v +y)(¢*** = 1) + (z — y)(¢* — ¢*"). Also

2a2q4—2n(q4n _ 1)((]25 _ 1)

(¢* = 1)6(1,a) ’

a? qn _ q—,‘i Qa q2.‘i _ q—2.‘i
b_l y vy = 5 Y 9 + o 4 1 -
(12)((] K, ) 2 \q2—q2 2 ¢t—qt

b(_2§ (q,k,a) =

The matrix By, (7) appearing in the definition (6.10) of replicated symmetric functions
takes the form

70(t,0) 2ar(l —7)(¢® — 1)(q4” —1)
p_| ?La 0(1, a))?
(1 —7) 7 0(1,ar)
2 0(1, )

6.2 Vertex operator traces

We shall see in the next section that there are (homogeneous) vertex operator realiza-

tions of level k representations of Uq(sl/@)). [t is our intention to introduce here a very
general vertex operator which will describe the currents of this realization, and which
we will be able to connect with the symmetric functions Py(z; ¢, k, «) introduced in
section 6.1. We define these vertex operators as

] 1
V(z% 1), . ZT(LTn); wY”), . ,wﬁf")) = exp <Z —pm (T2t + - Tnz;”)> X

m>0 m

 exp (z L D) + - -nnwm) C 612)

m>0 m
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where D is the adjoint operator with respect to the inner product (6.1). That is,

D(ppn) = m v, a%n

Following the standard calculation [234], the matrix elements of the above vertex
operator in a basis of Kerov symmetric functions take the form

(Py(z;0),V Qu(z;v) Z ,...,z,(LT");v)Q,,/g(w§"l),...,wé"");v). (6.13)

Suppose we want to calculate the regularized trace of the vertex operator V' over the
space Ap. That is, we want to calculate

Sp/1 = Zp‘”‘ Pu(z ),...,ZT(LT");U) Qu/y(wyl),...,wé"");v). (6.14)
Let us follow the method in reference [193,202]. Define
Spir = Zp‘”‘r'”‘ Pﬂ/,,(zgn), - zT(LT"); v) Qu/y(wgm), o wr([’”); v),
uv

Ay = me Pg/A(zYl),...,zT(LT");v) Qg/#(wgm),...,wﬁﬁ");v).
i3

Suppose that the Kerov functions with replicated arguments obey a very general
Cauchy identity

ZT'A‘PA V)Y ™5 v) = T (@, y;v),

so that for the functions Py (z;v) with v, defined by (6.4) for example, the expression
on the right has the form

ookt 20 2K ™/a
7o) =TT ({000 (6.15)

ij (xiyjqn_%n; q2ﬁ)oo)

We then form the generating function I = 3, Ay, P (u)Q,(s), obtaining

I = Zp'ﬂ Pg(zYl),...,ng"),u;v) Qg(wgm),...,wﬁﬁ"),s;v)
3

n n
=TT 5 Gy v) TT T3 (o5 0) 3 (o, 0 ) 3 s, 5:0)
ij=1 k=1
n
— H J;)'ﬂlj (Zia wj; U) Z p\a\+|o—1|+\02\Pal (ZYI), o ZT(LTn); U) %
5,j=1 0,01,02,\, 1
XQtfz (wgm)a R wT(Lﬂn); U) 020P)\(u U) alaQu(S U)

We conclude from this that

n

Ay = H g, (zi,wj;v) Zpl)‘H'“l_‘”‘Pu/g(zgn), . zr(f"); v) QA/(,(wgm), e wr([’”); v).

i,j=1
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This means that
n
Spr = Zr‘ / Ay = H J;;mj (ZiaijU) 57":!)2/19*1
Q=1
and hence by interating this [193] we arrive at

oo 1 n

Son=y —— T (2w ). 6.16
p/1 ;(l—p]) igl p ( J ) ( )

Ezxample

In the Hall-Littlewood case, the above trace calculation leads to the particular iden-
tities

Zt|M|P / ﬁ t)Q#/V( ), Z(TI); t) — H(l _ tp)—l H(l o txiwj)—cm—
p=1 i,J

X H(l — txkzl)fa" H(l - tymwn)iﬂq— H(l - tyrZS)iﬁna
k.l m,n

r,s

and

Zt\u\pu/y(x(a), Y, t_l)Qu/ll(w(T)y 2. ™) = H(l — )7t H(l — zw;)®T
ng 1

p= i,J
H 1 - xkzl an (1 - ymwn H(l - yrzs)
k1l m,n T,

6.3 Level 1 representations of U,(sl(2))

The aim of this section is to calculate the regularized trace of currents of the free field
realization of the level one Uq(sl/(a)) algebra using symmetric function techniques.

Let us recall the Drinfeld [177] realization of the quantum affine algebra Uq(sl/(a)).
It is generated by the elements {EF : n € Z}, {H,, : m € Z/{0} }, ¢*%, ¢*V?™ and
the central elements k, v*'/? which satisfy the following relations

2 n__ a—n
GV ) =0, [HHa) = 2T ST s,
2n q—qt
Finl/2[9n
OB = B, [H,, B = £V2 1 2n[ gt n#o
(nfm)/Z\I] - 7(nfm)/2(1)
[} E,) =" mim 7 e (6.17)
q—q!
EerEHEi jE2EjEEnﬂ—(IﬂEiEriﬂ E;?tl—i—lEi
dErf - nEi, dan =4q Hm
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where [n] = (¢" — ¢ ")/(¢ — ¢ ') is the usual (symmetric) g-number and ¥,, and ®,
are the modes of the currents

=> U,z = q‘/ﬁH0 exp ( (g—q~ Z H,z ") , (6.18)

n>0 n>0

_ —-n __ —\/§H0 n

= ®,27"=¢ exp( 20¢—q¢")>_ Hpz™ ) (6.19)
n<0 n<0

The central element v takes the value ¢* on representations of level k, where k& must
be a non-negative integer for unitary representations. In the Chevally basis {e;, f;, t;}
t = 0,1, the relations of this algebra take the familiar form

t—t;t
tit; = tjt;, les, f5] = 5ijq g
tieit; ' = %, tifit;' =q e

tiejt;t =q %, tifit;t = fi, i # 7

where the explicit correspondence between the two sets of generators is given by [190]

to =~g V2, ey = EpqV2Ho

)

fO - qﬁHOEjp

)

ty = qV2M, er = Ey, fi=Ey

Let us recall the Frenkel-Jing construction of level one representations [178]. Suppose
we have a deformed Heisenberg algebra with generators {a, : n € Z \ {0} } U{a, Q}
satisfying the commutation relations

[ty Q] [2n]n] Ontm.0 n#0,m#0,
2n

[Q, 0] = 4, (6.20)

with all other commutators being zero. Note that as ¢ — 1, we recover the ordinary
Heisenberg algebra (3.1). The level 1 free field realization is then [179] given by
H, = «, along with the currents

E*(2) =Y Erz ",
nez
where

E ()—exp<i\fz

n>0 [

)exp (?\f P - (i

Z—n) eiﬂinﬂ:ﬁao
Qp, .
n>0 [n]

(6.21)
The currents ¥(z) and ®(z) are just realized by (6.18) and (6.19) with H,, replaced
by an, and ¢¢ = gL with Ly given by (6.30). If we define normal ordering : : of
operators by requiring that annihilation operators a,, n > 0 be moved to the right
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of creation operators «,, n < 0, then from the definition (6.21) and the commutation
relations (6.20) we have

E*(2)E*(w) = (2 —w)(z—q7w) : E*(2)E*(w) : (6.22)
NEF(w) — 1  EE(NEF(w) -
E*(2)ET (w) g e—g ) EX(z)ET(w) :, (6.23)
where
+ +  2V2 +v2 qun/Q
cEF(2)ET (w): = 219 () V2 exp <j:\/_2:0 [n] (2" —i—w”)) X

Fn/2
X exp <$\/§ > T

n>0 [TL]

ol + w)) ,
BB (w): = (%) /20 exp <i\fz O (Fn/2n _ qin/2wn)> "

n>0

X exp <:F\/_ Z (T2 — qi”/Qw_”)> : (6.24)
n>0

The Fock space is spanned by all the monomials in the raising generators of the

deformed Heisenberg algebra (6.20)

o ot _np|0) ny>mng > >mn, >0, (6.25)

—ni - —n2

with the Fock vacuum |0) being annihilated by all a,,, n > 0. We can realize this
Fock space in another way, namely on the space of symmetric functions Ay, where
F = Q(¢). To see this, note that if we set

2n] 0

O_p = —7— Pn, ay = [n] %7

0 6.26
5 n>0, (6.26)

then the commutation relations (6.20) are fulfilled (the position and momentum op-
erators g and @) effectively decouple from the Fock space, so we can consider them
separately). Moreover, we can define an adjoint operator D on the power sums by

2n[n] 0

D(pn) = [271] 3pn’

n > 0. (6.27)

This adjoint operator defines an inner product on the ring Ay such that the inner
product between two power sums is given by (6.1) where v, is given by (6.4) with
a = 2, k = 1. Moreover, this inner product will be consistent with the Fock space
inner product on the states (6.25) and the association (6.26). Thus we can consider
our Fock space to be spanned by the set of power sums p,(z), or alternatively, by the

functions Qy(x; q) = Qx(x;q,1,2).

Consider now the vertex operator

V(" w™) = exp (T 3 ;Z—%pn(x)zn> exp (77 3

n>0
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which is a special case of (6.12) in the case where v, is given by (6.4) with a = 2,
x = 1. In terms of this operator, we can express the level one currents E*(z) as

Ei(z) - V(q¥1/2z(iﬁ); q¥1/25(¥5))6i\/§ini\/§ao, B = \/57 5=, (6.29)

To calculate the regularized trace of a product of these vertex operators, let

Ly = Lo + Ly, (6.30)
where
— 2n?
Ly = — NP5
0 = 2 Bl O T P g,
LO = %Of%,

which has the property that [Lg, «_,] = m a_,,. Equivalently, if f € A% is homoge-
neous of degree n, then Lo.f = n f. The operator p® will be used to regularize the
vertex operator traces. Define

Ty (@) =TI = pzay;) ™ (1 = pg taay;) ™. (6.31)

i7j

Then from section 6.2, we have that the regularized trace of the product of two vertex
operators of the form (6.28) over the space A is given by

tr (pPV (20 y )V (20 () = ﬁ

)7 (@2) T () Tt (v 2) T s w).

(6.32)
From this it is clear how to go about calculating the regularized trace of E*(2)E~ (w).
Write
tr (p BT (2)E (w)) =T - M,

where M is the trace over the momentum lattice:
sz
M = tr <pL°(—)‘/§“°> :
w
and T is the trace over the space Ap:

T = tr (pho V(g /22092, V25V V(g 20V g1 2V
For the case of Uy (s l( )), the momentum lattice is just Z.y/2 so that

M= (2) S L0 -0+ 2,

nel w n=1
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where we have used the Jacobi triple product identity (4.10). To calculate the trace
T, we first normal order the vertex operators using (6.23) and (6.24) obtaining

T e 1 tr (pljo V(qil/Qz(\/i), ql/Qw(f\/i)

(2 — qu)(z — ¢~ 'w)

m_ L1 va-va
= ~ i q

]:1(1_p]) P (

><J V2,— \/_( 1/2 1/22)171;\/5,\/_( 1/2 1/2 )

,qfl/Zz( V2) ql/Qu—)(\[)))

—1/22; q—1/22)J;]/_5,\/§(q—1/2Z ql/Qw) %
g’ w;q qTwiq " w
N | G 1-p)(A—’P)(1 —q %)
S (L=p) T (L=gp2)(1 =P 2)(1 =g 2)(1 — ¢ pi )’

where we have used (6.31) and (6.32) with & = 2. Combining everything together we
have

tr (P B (2) B (w)) = (z—qw)é—q—lw)ﬁ(l_ ML+ 2P 22
" ﬁ 1 (1—p") (1 — ") (1 — %)
(1—p) A=gpZ)(1—q'p2)(1—gp2)(1 — g 'p/2)’

and we recover the result of Jing [235], who derived his result by a brute force calcu-
lation using various combinatorial identities. We can extend this result to a string of
n vertex operators and after combining the contributions from the normal ordering,
the trace over the momentum lattice, and the trace over Ar, we obtain

tr (p0B (o) B (o) B () - B (1)) =

11z = 2)(zi — q 22) (wi — w;) (wi — ¢wy) [[(21 — qum) (21 — ¢ 'wim) " X

1<j l,m
0= (1 2B ) (1 B )

T wl-.-wn Zln-.Zn
<111 (1 r= ) <1 Pq’ a) (1—]?7%) <1—qu2%> X

j=1 ab 2b Wy Wy

—1
q(1-r) (%)
Zd
where [, m, i, j, a, b, ¢, d run from 1,...,n. It is not clear whether this result could

also have been obtained by brute force, as was the case for n = 1.

6.4 Level k representations of U,(sl(2))

We shall now extend the results of the previous section to the case of level k, where
k is an arbitrary (complex) number, not equal to 0 or —2. There are several different
realizations of the level k U,(sl(2)) algebra [183], all requiring three commuting sets
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of deformed Heisenberg generators; the one we shall use is that given by Matsuo [182].
Let {an, ayn, B, : n € Z} be generators satisfying the commutation relations

o, 0] = [2n]7£kn] e,
[, O] = — [2n1£kn] Ontm,0, (6.33)
[ﬁna ﬂm] = w&wm,o,

together with the position and momentum operators

[Qa» ] = 1, [Qa, @) = —1, [Qs, o] = 1,

with all other commutation relations being zero. Then the level k free field realization
is given by the generators H,, = %Ozn, along with the currents

s (4%(2) - B*(2)) . (6.34)

A (2) = ¢F2Qa+Qa) HE(a0ta0)/ky~(a0Eho) /2 oy (i 3 ijka/gzm) o
m

m>0

(v + Om) —kmso Sy k)2 M)
o X (#EE — aa  a

Tlo—q )im[[ ]]5m> )

Bi(z) — ¢T2(Qa+Qa) Zi(a0+d0)/kq(aoiﬁo)/2 exp <Z <i (Qpm + O_éfm)q¥km/2
m>0 [km]

—1y £(k+2) o [m] “1y kg2 (M) m
+(g— g )™ /[2 | Aot (0—q7)g /%ﬁ_m>z >><

(U + Q) ko~
% Fkm/ m
o (* D I ) |

while ¢¢ = ¢~I° with L, given by (6.45). The Fock space F of the level k represen-
tation of U,(sl(2)) is spanned by the monomials

b _ _
b ...ap €1 ... Q6 adl ...a‘isl|0>,
s

O _ny —nplF—my —-my =l

where ny > -+ >mn, >0, m; >--->m, >0and l; > --- > [; > 0. Now the Fock
space F is isomorphic to the space F, ® Fg @ F5 where F,, Fg and F; are the Fock
spaces associated with the Heisenberg generators {a,}, {3,} and {@,} respectively.
Thus, when we come to do the trace over the total Fock space F, we can separate it
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into traces over each of the individual Fock spaces. We will now show that we can
equally well consider each of the above Fock spaces to be spanned by the functions
Py\(z;q, k, ) for appropriate choices of the parameters ¢, k, and a.

In order to treat all these cases together, define a set of Heisenberg generators C),
with the commutations relations

[2n][kn]

[Cna Cm] = 6n+m,07 (635)

together with position and momentum operator Q)¢ and Cj satisfying

[Qc, C()] = 1.

The generators ay,, (3, and @, correspond to the special cases (k, @) = (k, 1), (k+2,1)
and (k, —1) respectively of the generators C),. If we now set

C, = % D(p),  Dlpy) = 0”[12[;]"] ain, n >0, (6.36)
C .= % Dns n >0, (6.37)

then it is seen that, not only are the commutation relations (6.35) satified, but that
the above definition of the adjoint operator D correctly reproduces the scalar product
(6.1) on the space Ap.
Our present goal is to calculate the regularized trace of the operator E™(2)E~ (w).
From (6.34) we see that
-1
+ - _ + - + -
ET(2)E (w) = m (A (2)A" (w) — A7 (2) B (w)
—B*(2)A" (w) + B*(2)B~ (w)),
so we must calculate the traces of each of the terms in the above equation. First
of all, we shall put the above terms in normal ordered form, moving all annihilation

operators to the right of the creation operators, and all Cj operators to the right of
the operators Q. The result is

A()A () = ¢ (ﬂ) A (A (w)

2 — qkw
+(\B~ (w =Pz - )z g M) B (w) -
s G-t O
BT (2)A (w) = q:B*'(2)A (w):, (6.38)

z— q_kw

) . B (2)B~(w) : .

In order to describe the normal ordered expressions occuring in (6.38) in terms of
the generalized vertex operators (6.12), we need to introduce some new notation. For
the particular choice of v, given by (6.4) the vertex operators (6.12) have the form

Ve (2 w™) = exp <T v L () zn> exp (n T D(pn(x)) w—"> . (6.39)

= an[kn]

L
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This operator will account for terms of the form exp(},- p[’;%) 2™), but looking

at the explicit expressions for A*(z) and B*(z), we see that factors of the form
exp((q—q™") Yo %pn(a:) 2™) will also arise in the normal-ordered expressions. How
can we express them in terms of vertex operators of the form (6.39) 7 By looking at

the expansion

[n][xn]
[2n]

00
(q - q—l) o = Z [(q4s+n+lz)n 4 (q4s+3—nz)n - (q4s+3+/~az)n - (q4s—n+lz)n] ,
5=0

we define new variables Z through the relation

Pa(2) = pal{g" ™2} 20) + pa ({7 2122,)
—pn({g" 7 2320) — pn({g™ 121 2,). (6.40)

With the introduction of this notation, we can write the above normal-ordered prod-
ucts as

AT (2) A (w) =Ty My, c AT(2)B™ (w) : = Ty My,
: BT (2) A" (w) : = T3 Ms, : BT (2) B (w) : = Ty My,

where

(o+ao)/k _ (o+ao)/k
M, = <3> g™, M= (i> q "

and

qfk/2z,qk/ZUﬂAJ);qfk/22(71)’qk/2ﬂ0 v%(o;qk/2§(—1),q4k/2ﬁa
(k+2)/2%(*1), q(7k72)/26—)(*1), qfk/2z(71), qk/2u—)),(6‘41)
qfk/2z,qk/210(71);qfk/2z(71),qk/2zp) Vb(q‘*”ZiD(’l);qk/ZE(_l))
—k/2z,qk/2 (—1),q—(k+2N?iﬁ;q—k/zz(—l)’qk/zﬂ%(%k+2ﬂ2§(*1)), (6.42)
2, q"? (71);q7k/22(71),qk/2u—)) Vﬁ(qk/22; qfk/Z{l:])

Vs q—k/Zz,qk/Q (—1),q(k+2)/22; q—k/QZ(—l),qk/2w,q—(lc+2)/2{f](*1)), (6.43)
T, = V(g "2z, "2 (44);q4%122(71)’qk/2ﬂ0 v%(qk/22,q4k/2ﬁﬂgl);0)

Valq ™22, g1 (41),qﬂ%#m/ZE,q(7k72ﬂ2i5(71);qfk/2z(71),qk/2ﬂ0' (6.44)

z,¢"*w™; g

—k/2

Due to the structure of the Fock space F, when we calculate the trace of T}, we can
calculate the traces on the separate spaces Fc.

Let us first consider the momentum traces. Note that due to the presence of the
momentum “raising” and “lowering” operators exp(£2(Q, + Q)) in the definitions
(6.34) of the currents E*(z), the eigenvalues of ag and ap are constrained in such
a way that ag + @y must be a constant, which we take to be zero. The momentum
lattice of the &y and (3, operators is just the lattice 2Z. In order to calculate the trace
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of the above vertex operators, we will need to regularize them with the operator p™°
where Ly = Lo + Lo with!

b = 5 (G o = o) ot o)
Ly = (05 +68)+ gy (55 + 2) (6.5

which has the property that [Lg, C_,] = nC_,. Thus for the momentum part of the
trace we have from the Jacobi triple product identity (4.10)

tr (szMl) —tr (pz°M4) _ (Z p2n2/k Zn) (Z P (m +m)/(k+2))
neEL MEZ

=2 [T(1—p" ") (1—g*p Y =2*) (1=~ p W =2k) (1 —p¥/ 20 (14-p»/ *+2)) | (6.46)

—

1

J

while

tr (pﬁo Mg) — Z p2n2/k Z p(m2+m)/(k+2)q—2m
nez meEZ
ﬁ 1— p4y/k 1+p(4y 2)/k) (1_p2j/(k+2))(1_q—2p(2j—2)/(k+2))(1_q2p2j/(k+2)),(6'47)

with the same result for the regularized trace of M5 but with ¢ replaced by ¢ .

The regularized traces of the operators 7T; defined above are calculated in Ap-
pendix D with the surprisingly simple results

by ! w2 (2= ¢
tr (p Tl) - H (1 —=p")(1—¢%p;)(1 —q2p7) (w —q*piz z—qpiw )’

(6.48)

i (L=p) (1 = ¢%pj)(1 — g~ 2p7)’
o B 0 1 w — qk+22 o — qfkf2pjw
(vt 70) = 1;[ 1—pi) (1 —¢°p;) (L — q72p) (w —qkp72> < 2= qFpiw )

Finally, by combining together (6.46), (6.47) and (6.48), we obtain the result for the
regularized trace of the operator E*(z)E~(w). One can now go on, in theory, to
calculate the trace of a string of currents E*(21) --- E*(z,)E~ (wy) - - - E~ (w,). Due
to the fact that each of the currents is the sum of two terms (see (6.34)), the above
product is a sum of 2" terms, each of whose trace can be calculated by the procedure
outlined above.

IThe constraint ag + @& = 0 means that we have to define f/g in a slightly different way to
Matsuo [182] in order to ensure convergence of the momentum traces.
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Chapter 7

Conclusion

7.1 Summary

This thesis has dealt with various problems in the theory of symmetric functions and
the representation theory of superconformal and quantum affine algebras.

The standard lore on symmetric functions was reviewed in Chapter 2 and a num-
ber of new results were obtained. In particular, one of Littlewood’s formulae relating
inner and outer products of S-functions was reproven via generating function tech-
niques, and various generalizations derived. The inner product of two Hall-Littlewood
functions was defined and Littlewood’s formula was generalized to this case as well.
Finally, the transformations connecting the Macdonald’s functions Qx(q,t), Q. (%, t)
and Q,(q,t*) were examined and some general results obtained for functions associ-
ated with one-row partitions, using some very non-trivial identities involving basic
hypergeometric series.

S-functions with a replicated argument were introduced in Chapter 3 as an aid
in determining the nature of the functions dual to compound S-functions under an
induced inner product. This was then extended to the Hall-Littlewood case. Schur
(Hall-Littlewood) functions with a g-replicated argument were then introduced and
their relationship to Macdonald’s functions Py(q, ¢*) (respectively Py(g,t)) investi-
gated. Various bases for the ring of symmetric functions Ap, F' = Q(q,t) were given
and the transition matrices between them listed.

Branching rules for the N =1 and N = 2 superconformal algebras were studied
in Chapter 4. Using various infinite product identities, certain winding subalgebra
branching rules were calculated in the case where these decompositions were finite
and/or multiplicity-free. Tensor product decompositions between certain irreducible
representations of the N = 2 superconformal algebra were also examined using similar
techniques, concentrating again on the case where they were finite and/or multiplicity-
free.

Chapter 5 saw the boson-fermion correspondence for free and neutral free fermions
applied to various symmetric function calculations: the multiplication and skewing
of S- and @-functions by power sums; outer multiplication of S-functions; outer
plethysm of S-functions. Jing’s generalized boson-fermion correspondence was then
applied to the problem of decomposing Hall-Littlewood functions in terms of S-
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functions. The operation of outer plethysm was then defined on the ring of Hall-
Littlewood functions and the techniques developed earlier generalized to enable their
calculation. -

Traces of products of currents of the quantum affine algebra U,(sl(2)) were cal-
culated in Chapter 6. We defined a basis of symmetric functions, through which we

were able to realize the generators of U, (s/(2)) and calculate traces of products of the
currents using symmetric function techniques.

7.2 Outlook

From the work done in this thesis, several problems suggest themselves for further re-
search. The elements of the transition matrices M), (a, b; k,[) between the Macdonald
functions Py(¢q% t*) and P,(¢*,t') appear to be rational functions of polynomials in ¢
and ¢ with integer coefficients. Moreover, the elements of the matrices M), (1, 1;2,1)
and M,,(1,2;1,1) appear to factorize into simple factors of the form (1 —¢"¢™). The
reason why this is so is not at all apparent, and hence deserves further attention.

The extension of the branching rules considered in Chapter 4 to the N = 3 and
N = 4 superconformal algebras is also an open problem. In the N = 4 case, new
identities may be needed to tackle the relevant character formulae. The N = 3 case
is not tractable at all at the moment due to the fact that the determinant formulae
are still unproven, and the character formulae unknown.

By considering other different specializations of Kerov’s symmetric functions, trace
calculations in representations of the level & quantum affine algebra U,(sl(N)) should
be feasible [184]. The extension of this method to other (quantum) affine algebras
and superalgebras should also be practicable, provided the relevant vertex operator
realizations [236,237] of those algebras are on hand. In a similar vein, Kerov’s func-
tions should also have applications in describing the principal realization of algebras
such as gl(n) [106].

The procedure we have developed for calculating outer plethysms of the form
sx(z") = sy(z) @ p,(x) was particularly suited for deriving explicit expressions for the
plethysms s) ® s(2) and sy ® s(;2). The expressions for more general plethysms are
not quite as pretty due to the presence of roots of unity in the expansion s)(z") =
>, Anusu(z), and so the fact that the plethysm coefficients a), are non-negative
integers is no longer obvious. A problem to look at therefore, is to examine the
nature of the coefficients A,, and determine whether they are always integers.

Turning to Hall-Littlewood functions, the conjecture (5.75) concerning p-hook
Hall-Littlewood functions needs to be (dis)proven. Whether this is achievable by
some Hall-Littlewood analogue of the Giambelli formula (2.12) remains to be seen.
The extension of the method developed in section 5.3 for multiplying S-functions
also should be generalizable to the Hall-Littlewood case, although the resulting non-
standard functions will need to be modified according to the fairly nasty rules (2.36).
The introduction of outer plethysms of Hall-Littlewood functions also opens up new
problems. For example, is there an interpretation of this operation in terms of invari-
ant matrices of matrix representations of some group, thus generalizing Littlewood’s
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original definition of S-function plethysm 7 If the answer were yes, then it should be
possible to see whether formulae such as

$x @ (54 8,) = (52 ® 5,) * (52 ® 5,),

which cannot easily be deduced from the substitution definition (5.35), also hold in
the Hall-Littlewood case.

Finally, let us note that there exist vertex operator realizations (“boson-fermion”
correspondences) for S, @, and Hall-Littlewood functions, but not for Macdonald’s
functions. The question arises then, what are the constraints on the numbers v,, such
that Kerov’s symmetric functions have a vertex operator realization ? Looking at
it in the other direction, suppose we are given the vertex operator V(z;z71) defined
by (6.12) which has a mode expansion V(z;27") = 3,5 V,,2". Then for a partition
A= (A1,...,A), one can define symmetric functions

~

Pr;v) =V, - Voy, - 1,

and ask the question: for what type of numbers v,,, does this definition coincide with
the Gram-Schmidt type definition (6.2), (6.3) 7
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Appendix A: Product identities

In this appendix we shall prove the identity (4.32) which provides a paradigm for the
proof of several other identities used in Chapter 4.

Consider z as being a fixed complex number with | = |< 1 and consider the
following function of y

lo_o[ (1 — 3 ) (1_|_yx3n 3/2)(1+y—1x3n 3/2)
]__|_yl-3n 1/2)(1+y Lyp3n— 1/2)(1_|_yx3n 5/2)(1_|_y 1p3n— 5/2)

As a function of y, this function has simple poles at the points y = —z=G3m=1/2) m €

Z, and y = —xFGm=5/2) 1y € 7. Let us calculate the residues of these simple poles.
First note that for m > 0 the formulae

00 00 m
H apn — H ) H Qn
n=1 n=1 n=1

0
Hn 1an7m

m ?

n=1 An—-m

hold provided a,,_,, # 0 for 1 < n < m. Thus

Res(f, _x3m—1/2) — lim (y + x3m_1/2)f(y)

y_)_z.Sm—l/Q
1
___,.3m—1/2
- z J;[l 1 — g3(n—m) X
n#Em
00 1 x3n)2(1 _ ‘,L.3(nfm)71)(1 _ ‘,L.3(n+m)72)
H 1 — 3(n+m)— )(1 x3(n+m)—3)(1 _ x3(n—m)—2)

— ameiy H _1.371, 3m— 1)(1 3n 1 H (l_xi’m)
- 7t Il ==y (1 = pnme2) (1 — a3n—3m)°

n=1

Noting that

m m
H ap = H Am+1-n,
n=1

we see that

x2—3n)(1 _ x3n—1) m—1 1— x3n
— p3n— 2)(1 _ xlf?)n) n1;[1 1 — p—3n

m—1
— _x3m71/2 H x7(3n72)+3n71 H _p3n
n=1 n=1

— (_1)mx(3m2+5m71)/2.

Res(f, _l,3m—1/2) — 23m= 1/2 H

An easy way of calculating Res(f, —z~*"*1/2) is to use the symmetry f(y) =
f(y™'). For a function f with this property, denote by R the residue of f at a.

R =lim(y —a)f(y).

y—a
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Then

lim (y—a ) f(y) = lim ~2(7" —a)f(y)
y—a y—a a
_ Li_%é(z—a)f(z) z=y !
1

Hence
Res(f, _x—3m+1/2) _ (_1)m—1x(3m2—7m+1)/2‘

Using similar techniques, we find that

Res(f,_x?,mﬁ%/z) _ (_1)mx(3m2+m—3)/2,

Res(f, —z2m3/2) = (—1)m-1pBm’—1im+7)/2,

Now the function g(y) defined by

0 %
9(y) = 712:1(—1)71155(3”27”“)/2; T x_13n+1/2 - ;(_1)n1$(3n2+5n1)/2y n x::lan_yz
+ i(—l)n_lx(anz_lln”)/?'y n x}3n+5/2 - i(_l)n_lx(3n2+n_3)/2y T J171,71—5/2
nz ontasmiy [ 2On52 x6n+57;
- nEZx (y Tgn52 oyt x6n+5/2>
iy o < L6172 - L6n+1/2 >
= Y+ z-on—12 gy gonti/2 |

obviously has the same poles as the function f(y) and the same residue at those poles.
Hence the function F(y) = f(y) — g(y) is entire i.e. it has no essential singularities in
the complex plane (except possibly at infinity). But lim, o F(y) = 0 = lim,_,» F'(v)
Hence, by Liouville’s theorem, F(y) = const. i.e. F(y) = F(0) = 0 (here we have
defined F'(0) = 0 due to the fact that F' has a removable singularity at y = 0). Thus
f(y) = g(y) and the identity (4.32) is proved. The technique outlined above can be

used to prove the identities (4.33) and (4.42) occuring on Chapter 4.
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Appendix B: Determinant formulae for h,(z?)

There is an interesting relation between h, (x?), the elementary Q-functions g, (x) and
the functions h, (2®)) = h,(z, ), which we would like to point out. Here

o) = (5 ) )

AFn

denotes a replicated S-function(see Chapter 3). For the particular case o = 2, this
can be simply written as

hn(x(z)) = Z (p+ 1)5(m+p,m)(x)-

2m+p=n

Now,

S = e (( 5+ 5 ) 2nr) = (S w6 (Sawe)

neven n odd

Hence
h2n Zhn —J QQ] ) h2n+1 Zhn -7 Q2y+1( )

Thus, by using Cramer s rule, we can write this as

1 1 0 0 0
hy(2) hy (%) 1 0 0
2(z® o (22 (x?
e = (ap| M RO RO s
hgn_g(l'@)) hn_l(fL'Z) hn_z(l'Q) e hl (.’L’Z) 1
hon (%)) n(@?)  hnoi(@?) e ha(2?) ha(2?)
hy(2®) 1 0 0 0
hs () hy (%) 0 e 0
(2@ o (22 (x?

(@) = (ap| P RO RO C
hgn_l(.'L' 2)) hn_l(fL'Z) hn_z(l'Q) e hl (.’L’Z) 1
honi1 (@) hp(2?) hpoa(2®) oo ha(2®) ha(a?)

1 0 0 0
h2(35g;) q2(7) e 0
i) = (cap| M e al
hzn—2($(2)) Gon—2(T) Gon-a(z) -+ qa(T)
han (z?) Gon(T)  GQon—2(z) -+ qu(v) qo(7)
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ha (2?) ¢ () 0
hs (@) g3(z) q1(z)
qs(z) g3(z)

hzn—1($(2)) CI2n—1(I) CI2n—3(I)
h2n+1($(2)) Q2n+1(l") Q2n71(l")
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Appendix C: Fermionic sum rearrangement

In this appendix, we shall prove equation (5.55) concerning the rearrangement of a
sum involving free fermions:

Z w22zt (r=1)ir i, i
1 T

11,89 ,5000y ip

i1+-+ip=rp—r(r—1)/2

—r Z ( Z (sgno) wio(2)+2ia(3>+'“+(rl)iom) Uy, ey

i1<in<...<ir oESy_1
i1+---+iT:7‘p*T(7‘*1)/2

where w" = 1.

Proof
Certainly

Lhs. = ) > Wi it = ing, gy (C.1)

71—657‘ iﬂ'(l)<.“<iﬂ'(’r‘)
i1+-+ir=rp—r(r—1)/2

Now we know that S, = Uj_,S?, where
St ={reS :n(1) =p}

is the set of all permutations which map 1 to the number p. We shall show that if
7 € SP, then the inner sum in (C.1), call it F}, say, is independent of p. Let us change
variables and let

(7:7r(1)7 7:7r(2)7 SRR Z7r(1")) = (jlaj?a R 7j7")'

Thus
F, - Z wiz+2i3+---+(r—1)irwil ey
(1)< <iz(r)
w(1)=p
i1+ tip=rp—r(r—1)/2
;- Fod (p—1)j__ g
_ | Z | w]ﬂ, 1(2) (p )J,r L(p) Ir I(T)wjﬂ.—l(l) .- .wjﬂ.—l(r)'
J1<<jr
Jitejr=rp—r(r—1)/2
Now, jr-1) =71 and (p — 1)j1 = (p — 1)(rp — r(r — 1)/2 — j1 — - - - — j,), therefore
F, = > (—1)(17*1)(7**1)(—1)”71wjr1<p+1>+2jr1(p+2)+“'+(”*1)j”’1(p*”7/)3'1 Vs

1< <ir
Jitgr=rp=r(r—1)/2

where (—1)™ " is the sign of the permutation 7. Define o € S,, such that (1) = 1,
by writing

7r1—< 1 v p—=1p p+1 .- r )
“\No(r+2-=p) -+ o(r) 1 o(2) -+ o(r+1-p) )"



That is, 7! = 06" "P where § = (12 ... r) is the unique r-cycle in S,. Since

(1) = (-1 1= ()7 = (T e,

_ 0, Jo2)t2Js3yt+H(r—1)j, )y
Fp— Z (_1) wie® © (r=1) (T)z/)Jl d’]m
J1 < <ir
Jitegr=rp—r(r—1)/2

so that F}, is independent of p. Hence each set S? contributes equally to the sum on
the r.h.s. of (C.1), and since S! is isomorphic to the permutation group S, ; on the
numbers {2,3,...,7}, we finally obtain the result.
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Appendix D: Trace calculation

Let us demonstrate how one goes about calculating the traces (6.48) in Chapter 6.
For example, let us compute the regularized trace of the operator T} given by (6.41).
Call the three factors Cy, Cy and Cs. Using (6.15) (with k = k and o = 1) and (6.16),

we have
Cy = tr (p™° Valg ™2, ¢ ™; 72500, 2w )
00 — j 00 — s 2
:H 1 ].—q 2p] H l_qZk 2+2kp] y
i1 (1 _ p]) 1— q2pj 0 1 — q2k+2+2kspj
<z . qk+2+2kspjw> (z o qk+2+2kspjw>
X .

- qk—2+2kspjw - qk—2+2kspjw

The second factor is just

Cy = tr (p™ Vj(0;¢*/227Y g 720)) = ] A=
7j=1

due to the fact that the vertex operator was of the form 1+ O(D(p,)), and hence only
“counted” the number of states. The final factor Cj is (apparently) more complicated
due to the presence of factors of the form J5"*'(z, @), where Jy"(w,y) is given by
(6.15). However, from the definition of the “variables” @ (6.40), we have, for example,
the amazingly simple result

00
J;;l(z,@) — 1—[0J;jl(z,q4r+n+1w)J;jfl(z,q4rfn+1w)J;jl(z,q4rfn+3w) %
r:
XJ;;—I(Z,q4r+n+3w)

1 — g lzwp’ (D.1)
1 — qzwp? '

Hence, after some simplification, we have

Oy = tr( Lo Vd(qfk/ZZ, "2 q(k+2)/2A( ), q(fk—Z)/Qa—](—l), g *2zD), qk/Qw))

1"—"[ (L—p)) (w—q* 22\ (2 - pw y
o (= q‘zpf) w — q kpiz z—qpw
. H s, (z — 22k iy (1- Rtk
k+2+2kspjz 7 — qk+2+2kspjw 1 _ q2k—2+2kspj )

Combining all three factors together we obtain the result

_ 00 1 w— quZ> (Z _ qk+2p]w>
tr (pfe T ) = . . . . .
(1) )V ey o T ey (w — iz ) \ = = dpiw
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The calculation of T5 is very similar, the only difference being that one has factors
of the form J;;l(,’z\, w), which, after using (D.1) take the form

I (2, 0) =

1 — qnpjzw ﬁ 1— q4s+4+npjzw 2 1 — q4s+27npjzw 2
1— q—npjzw i 1 — q4s+4—npjzw 1 — q4s+2+npjzw

Letting Dy, Dy and D3 be the three factors of 75, we see that D, = (',

b 0 1 Z_qk+2pjw o0 Z_q4s+k+6pjw 2 Z_q4s—kpjw 2
2= H 1—pi \z—qF 2piw 11 z — g2 kpiy z— s tithpiy |

j=1 s=0
and finally
D. — ﬁ (1—p) (z = ¢"2pw)(z — ¢ ")
P (=) (1 — ) (z — g *piw)?

lo_o[ 1— q2ks+2pj 1— q2ks+2k+2pj w — q2ks+k—2p]’z y
0 1 — q2k572pj 1 — q2k5+2k*2pj w — q2ks+k+2pjz

y (z _ q2ks+k—2pjw> (z _ q4s+k+4pjw>2 (z _ q4s—k+2pjw>2

2 — q2hstht2piy) 2 — qsktpiy 2 — ghstht2piy

Combining all the factors together we get the simple result

Lo _ Lo — - 1
w(ph ) = (" 1) = U a=ma—en)i )

The calculations for T3 and T} are very similar.
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Appendix E: Tables of the polynomials Ffw(t)

e Al e oy
2)(2) 1 |0
@ 0 [ 1
(12)(1%) |1 -2 | 2t

pv (3) (21) (1)
(3)(3) 1 0 0
(3)(21) 1 0
(3)(1%) 0 0 1
(21)(21) 1—t 1+t —1¢2 1
(21)(13) 0 (1+t)(1 -t t(2+1)
X)) @ -DE -1 tQ+)2+0)(1—¢) | 2(1+4t+1?)
pv A (4) (31)
(4)(4) 1 0
(4)(31) 0 1
(4)(2) 0 0
(4)(21%) 0 0
(4)(1* 0 0
(31)(31) 1—t 1
(31)(2%) 0 1—¢2
(31)(21%) 0 1—¢
(31)(1%) 0 0
(22)(2?) 1—¢? t(1 —?)
(2%)(21%) 0 (1+1)(1—1?)
(22)(1%) 0 0
(21%)(21%) (1—1)(1—1?) (1+6)(1—12)(1+t—t?)
(212)(1%) 0 (t+ 1) —1)(t*—1)
(AHAY) A=A =)A=t [t + )2+t + ) —1)(t* — 1)
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JR% (22) (21%)
(4)(4) 0 0
(4)(31) 0 0
(4)(2%) 1 Y
(4)(21%) 0 L
(4" 0 gy
(31)(31) 1—t 1
(31)(2%) D) 1+t
(31)(21?) 11—t (1+t)(1+t—t%)
(31)(1%) 0 1—t(1+t+1t?)
(22)(22 1+t t(1 — %)
(22)(21?) tit—1)(t2 = 1) (1+t)(1+t+12—2t3)
(22)(1%) -1t - 1) 20(1 + ¢+ %) (1 — t*)
(21%)(21°) || (# = 1)(—1 — ¢t — ¢ +26%) | 1 + 4t + 3¢* + 1* — 4" — 31
(21%)(1%) 20> —1)(t* — 1) tH(2+3t)(1+t+t%)(1—¢*)
(1)(1%) PB+t+28) —(L+ O+ ) - 1)

B -1 - 1)

(1 + 5t + 3t% + 3t%)

v (1)

(4)(4) 0

(4)(31) 0

(4)(2%) 0

(4)(21%) 0

(4’ 1

(31)(31) 0

(31)(2%) 0

(31)(21?) 1

(31)(1%) H(2 4+t + %)

(27)(2? 1

(2°)(21?) 2t

(22)(1%) t2(3 +t + 2t%)
(212)(21?) t(3 + 2t)
(212)(1%) t2(1 + 5t + 3t% + 3t3)

(1M (1Y) | t4(3 + 4t + 102 + 3¢5 + 3t%)
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Appendix F: Transformations between bases of
Macdonald functions

In this appendix we list the transition matrices between the various standard bases
for the ring A of symmetric functions over the field F' = Q(g,¢). The matrices M),
displayed in the tables relate the function uy in the left-most column to v, in the
top-most row by uy = 37, My, v,. It is to be understood that the labels p and o (if
they appear) are summed over.

L R(q,1) | I(q,1) | S(q) |
E : B R 0N @D |l SO
J mXé(q,t)Xﬁ(t) 1 m)@(q,t)x‘;
B0 e (g, () 1
T Z@eXo RO G ARG
1 A A 1 A
S cp1<q,t>XpX5(t) cu(q,t>cui<q,t)@(q,t)XUXé‘(q’” cgl(q,tV%Xﬁ
A A A
o I O R OOl o0 O T O T T R Al IR O R
p &) XX (1) cu(q,%(cz?(q, A1) E(a)XA
S| @t W @ealg, Dep a0 25 (@) 2@
A oL A I G o e e A A PO
Kyo oyt K, o X0 (gt Ky o
mi g o (@epla: (g0 o7 (@) 2 (0)
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T(e,t) | S5(t)

X2 (t)x 1

b/\ (t)'za§0 (Q) Za(qa t)

1 v 1
I X OING)

1 A
D ()6 1) XX

Aoy b
2,6, (q) Yo Xo

AL 1
2y (q) XoXo

Q| Lal H| M| | =

S

X (t)xH

pbu(t)

X)X A(t)

MOEACIRG
u\l)Zp\4,

X ()

K,
2pbu (1)

X5 XA (t)

9(g,1) |

K*l
uo A o
AN R,

X2(gq,t)x"

2, (t)

—1I
pno

Zp (9)

A o
Mg, x5

1
29E,(q) NP

—T7—1
K/\UK;LT O, T

Zl) (ta q) Xpo
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Appendix G
positions

: Summary of tensor product decom-

We list in this appendix the various tensor product decompositions of the N = 2
superconformal algebras calculated in Chapter 4. First we have the T" algebra decom-

positions

|~
|
[\
=

win
oo

VT(%?%) (%’16 '8)
V(5. 35) ® V(5. 5) = 2Vr(3, )
Vr(z,16) ® Vr(3,15) = Vr(3,5) @ V(3. 2)
Vi3, 35) ® Vi3, 15) = 2V (35, 1) @ Vi35 )
Vilhh) @ Vi) = 22, ) @ Ve (4, B)
For the A algebra
VA(%707 0) ® VA(%? 070) = VA(§707 0) ® VA(%? L 0)
Va(3,0,0)® Va(3,53) = Va3, 5 3)
Va(3,0,0) ® Va(z, 5. —3) = Va(5. 5. —3)
Va9 8 Vah ) = Valh b D @ Va3 D)
VA(%, é, —é) ® VA(%, %, %) = VA(%, %,0)
Va5 3 ®Vals 53 = Val3,5.3) © Va3, 3, —3)
VA(%707 0) ® VA(%: 070) = VA(%707 0) ® VA(%? 17 0)
Va(3,0,00 @ Va5, 5,0) = Va(3, 5,0) ® Va(3, 3,0)
Va(5:0,0) ® Va(3, 3, —3) = Val§: 1. —3) @ Va(g: 1 3)
Vath b —he itk 0 1aCd D e a5 D
Va5 5 =3) ® Va(5,0,0) = Va3 . —5) © Va(§, 25, )
Va8 Valh b = Vald D) @ Va6 .
while for the PT algebra we have
VP*'(%: i: %) ® VP"‘(%: %70) = VP"‘(%: %7 _%)
Vo e 8 Vo 23 = Von o )8 Vi 15 )
Voo 1@ Ve 21 8) = Voo G 2 )
Vor (B 5000 Voo 20) = Vi 1,1 @ Ve 1)
e .00 @ Vo 0 2) = i3, 5.
Vir (o 1 © Ve 20 2) = Ve G By )8 Ve, 1, )

124



Bibliography

[1]
2]

3]

[10]

[11]

[12]

[13]

C. G. Jacobi. Werke 3 (1841) 439.

I. Schur. Uber eine Klasse von Matrizen die sich einer gegebenen Matrix zuord-
nen lassen. Ges. Abhandlung 1 (1901) 1.

I. Schur. Uber die Darstellungen der symmetrischen und der alternierenden
Gruppe durch gebrochene lineare Substitutionen. J. Reine Angew. Math. 139
(1911) 155.

F. G. Frobenius. Uber die Charaktere der symmetrischen Gruppe. Ges. Ab-
handlungen 3 (1900) 148.

F. D. Murnaghan. The theory of group representations. John Hopkins Press,
1st edition, 1938.

T. Scharf, J-Y. Thibon, and B. G. Wybourne. Reduced notation, inner
plethysms and the symmetric group. J. Phys. A 26 (1993) 7461.

W. Specht. Die Charaktere der symmetrischen Gruppe. Math. Zeit. 73 (1960)
312.

D. E. Littlewood and A. R. Richardson. Group characters and algebra. Phil.
Trans. A. 233 (1934) 99.

A. Lascoux and M. P. Schiitzenberger. Sur une conjecture de H. O. Foulkes. C.
R. Acad. Sci. Paris 286A (1978) 323.

R. C. King. Generalized Young tableaux and the general linear group. J. Math.
Phys. 11 (1970) 280.

D. E. Littlewood. The Kronecker product of symmetric group representations.
J. Lond. Math. Soc. 31 (1956) 89.

J. B. Remmel. A formula for the Kronecker products of Schur functions of hook
shapes. J. Alg. 120 (1989) 100.

J. B. Remmel. Formulas for the expansion of Kronecker products s, »)®s1p-r
and 81k o1y ® S(1p-r ). Discr. Math. 99 (1992) 265.

125



[14] M. Stone. Schur functions, chiral bosons, and the Quantum-Hall Effect edge-
states. In M. Stone, editor, Quantum Hall Effect, pages 366—-371. World Scien-
tific, 1992.

[15] G. V. Dunne, A. Lerda, and C. A. Trugenberger. Landau levels and vertex
operators for anyons. Mod. Phys. Lett. A 6 (1991) 2819.

[16] A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Infinite symmetry in the
Quantum Hall Effect. Nucl. Phys. B 396 (1993) 465.

[17] P. Di Francesco, F. Lesage, M. Gaudin, and C. Itzykson. Laughlin’s wave
functions, Coulomb gases and expansion of the descriminant. hep-th 9401163.

[18] S. Iso, D. Karabali, and B. Sakita. Fermions in the lowest Landau level:
bosonization, W, algebra, droplets, chiral bosons. Phys. Lett. B 296 (1992)
143.

[19] M. Flohr and R. Varnhagen. Infinite symmetry in the Fractional Quantum Hall
Effect. J. Phys. A 27 (1994) 3999.

[20] D. Karabali. Algebraic aspects of the Fractional Quantum Hall Effect. Nucl.
Phys. B 419 (1994) 437.

[21] D. Karabali. W, algebras in the Quantum Hall Effect. hep-th 9405057.
[22] A. O. Morris. On Q-functions. J. Lond. Math. Soc. 37 (1962) 445.

(23] J. R. Stembridge. Shifted tableaux and the projective representations of sym-
metric groups. Adv. in Math. 74 (1989) 87.

[24] P. Hall. The algebra of partitions. In Proc. /th Canadian Math. Congress,
Banff, pages 147-159, 1959.

[25] D. E. Littlewood. On certain symmetric functions. Proc. Lond. Math. Soc. 43
(1961) 485.

[26] A. O. Morris. On an algebra of symmetric functions. Quart. J. Math. Ozford
Series 2 16 (1965) 53.

[27] J. A. Green. The characters of the finite general linear group. Trans. Amer.
Math. Soc. 80 (1955) 402.

(28] A. O. Morris. The characters of the group GL(n, q). Math. Zeit. 81 (1963) 112.
[29] T. Klein. The Hall polynomial. J. Alg. 12 (1969) 61.

[30] A. O. Morris. The multiplication of Hall functions. J. Lond. Math. Soc. (3) 13
(1963) 733.

126



[31] A. O. Morris. A survey on Hall-Littlewood functions and their application
to representation theory. In D. Foata, editor, Lecture Notes in Mathematics,
volume 579, pages 136154, 1976.

[32] A. O. Morris. A note on the multiplication of Hall functions. J. Lond. Math.
Soc. 39 (1964) 481.

133] 1. G. Macdonald. Symmetric functions and Hall polynomials. Oxford University
Press, Oxford, 1st edition, 1979.

(34] 1. J. Davies. Enumeration of certain subgroups of Abelian p-groups. Proc.
Edinburgh. Math. Soc. (2) 13 (1962) 1.

[35] H. Jack. A class of symmetric polynomials with a parameter. Proc. Roy. Soc.
Edinburgh Sect. A 69 (1969) 1.

[36] R. J. Beerends and E. M. Opdam. Certain hypergeometric series related to the
root system BC. Trans. Amer. Math. Soc. 339 (1993) 581.

[37] P. J. Forrester. Selberg correlation integrals and the 1/7? quantum many body
system. Nucl. Phys. B 388 (1992) 671.

[38] P. J. Forrester. Selberg correlation integrals and the 1/7? quantum many body
system. Nucl. Phys. B 416 (1994) 377.

[39] I. G. Macdonald. A new class of symmetric functions. Actes 20¢ Séminaire
Lotharingien, Publ. I. R. M. A. Strasbourg 372/S-20 (1988) 131.

[40] 1. G. Macdonald. Symmetric functions and Hall polynomials. Chapter 6, 2nd
edition, to appear.

[41] P.I. Etingof and A. A. Kirillov Jr. Macdonald’s polynomials and representations
of quantum groups. hep-th 9312103.

[42] P. I. Etingof and A. A. Kirillov Jr. On the affine analogue of Jack’s and Mac-
donald’s polynomials. hep-th 9403168.

[43] 1. G. Macdonald. Schur functions: theme and variations. Actes 28¢ Séminaire
Lotharingien, Publ. I. R. M. A. Strasbourg 498 /S-27 (1992) 5.

[44] V. G. Kac. Lie superalgebras. Adv. in Math. 26 (1976) 8.

[45] V. G. Kac. Representations of classical Lie superalgebras. In Lecture Notes in
Mathematics, volume 676, pages 597-626, 1978.

[46] M. D. Gould, A. J. Bracken, and J. W. B. Hughes. Branching rules for typical
and atypical representations of gl(n|1). J. Phys. A 22 (1989) 2879.

[47] J. Van der Jeugt, J. W. B. Hughes, R. C. King, and J. Thierry-Mieg. Character
formulas for irreducible modules of the Lie superalgebras sl(m/n). J. Math.
Phys. 31 (1990) 2278.

127



[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

C. J. Cummins. Application of S-function techniques to the representation the-
ory of Lie superalgebras and symmetry breaking. PhD thesis, University of
Southampton, 1986.

R. J. Farmer. Orthosymplectic superalgebras in mathematics and physics. PhD
thesis, University of Tasmania, 1984.

M. Baake and P. Reinicke. Explicit reduction of spl(1,2) to osp(1,2) as a
simplified model for applications of supersymmetry to nuclear physics. J. Math.
Phys. 27 (1986) 859.

D-S Tang. Formal relations between classical superalgebras and fermion-boson
creation and annihilation operators. J. Math. Phys. 25 (1984) 2966.

M. de Crombrugghe and V. Rittenberg. Supersymmetric quantum mechanics.
Ann. Phys. (NY) 151 (1983) 99.

P. H. Dondi and M. Sohnius. Supersymmetric transformations with isospin.
Nucl. Phys. B 81 (1974) 317.

P. P. Kulish and N. Yu. Reshetikhin. Quantum linear problem for the sine-
Gordon equation and higher representations. Zap. Nauch. Semin. LOMI 101
(1981) 101.

E. K. Sklyanin. Uspekhi Mat. Nauk. 40 (1983) 214.

V. G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation. Sov.
Math. Dokl. 32 (1985) 254.

M. Jimbo. A ¢-difference analogue of U(g) and the Yang-Baxter equation. Lett.
Math. Phys. 10 (1985) 63.

G. Lustig. Quantum deformations of certain simple modules over enveloping
algebras. Adv. Math. 70 (1988) 237.

L. Alvarez-Gaume, C. Gomez, and G. Sierra. Hidden quantum symmetries in
rational conformal field theories. Nucl. Phys. B 319 (1989) 155.

G. Moore and N. Seiberg. Classical and quantum conformal field theory. Com-
mun. Math. Phys. 123 (1989) 177.

E. Witten. Gauge theories, vertex models and quantum groups. Nucl. Phys. B
330 (1990) 285.

G. Moore and N. Yu. Reshetikhin. A comment on quantum group symmetry
in conformal field theory. Nucl. Phys. B 328 (1989) 557.

A. Ch. Ganchev and V. B. Petkova. U,(sl(2)) invariant operators and minimal
theories fusion matrices. Phys. Lett. B 233 (1989) 374.

128



[64]

[65]

[71]

[72]

73]
[74]

[75]

[76]

[77]

78]

[79]

P. Bouwknegt, J. McCarthy, and K. Pilch. Free field realizations of the WZNW
models. the BRST complex and its quantum group structure. Phys. Lett. B
234 (1990) 297.

C. Gomez and G. Sierra. Quantum group meaning of the Coulomb gas. Phys.
Lett. B 240 (1990) 149.

J.-L. Gervais. The quantum group structure of 2-D gravity and minimal models.
Commun. Math. Phys. 130 (1990) 257.

D. Arnaudon. New fusion rules and R-matrices for representations of sl/(NN), at
roots of unity. Phys. Lett. B 28 (1992) 31.

C. Gomez, M. Ruiz-Altaba, and G. Sierra. New R-matrices associated with
finite dimensional representations of U,(sl(2)) at roots of unity. Phys. Lett. B
265 (1991) 95.

H-T. Sato. Quantum group symmetry in Quantum Hall system. hep-th 9312174.

V. K. Dobrev. Character formulae for U,(sl(3,C)) representations. In L. Lu-
sanna, editor, XIII Johns-Hopkins Workshop “Knots, Topology and Field The-
ory”, (Florence, June 1989), Proceedings, pages 539-547. World Scientific, 1989.

P. Furlan, A. Ch. Ganchev, and V. B. Petkova. Quantum groups and fusion
rule multiplicities. Nucl. Phys. B 343 (1990) 205.

C. de Concini and V. G. Kac. Representations of quantum groups at roots of
1. Int. Jour. Mod. Phys. A’ 7 Suppl. 1A (1992) 141.

G. Lustig. Quantum groups at roots of 1. Geom. Ded. 35 (1990) 89.

G. Keller. Fusion rules of U,(sl(2,C)),¢™ = 1. Lett. Math. Phys. 21 (1991)
273.

V. G. Drinfeld. Quantum groups. Proceedings ICM, (MSRI, Berkeley, 1986),
Ed. A. M. Gleason, 1986.

M. Rosso. An analogue of PBW theorem and the universal R-matrix for
Un(sl(N +1)). Commun. Math. Phys. 124 (1989) 307.

A. N. Kirillov and N. Yu. Reshetikhin. ¢-Weyl group and a multiplicative
formula for universal R-matrices. Commun. Math. Phys. 134 (1990) 421.

S. M. Khoroshkin and V. N. Tolstoy. Universal R-matrix for quantized (su-
per)algebras. Commun. Math. Phys. 141 (1991) 599.

S. M. Khoroshkin and V. N. Tolstoy. In H.-D. Doebner et al, editor, “Quantum
Symmetries”, Proceedings, Workshop on Quantum Groups of the I Wigner
Symposium, Goslar 1991, page 336. World Scientific, 1993.

129



[80] V. F. R. Jones. A polynomial invariant for knots via von Neumann algebras.
Bull. Amer. Math. Soc. 12 (1985) 103.

[81] V. F. R. Jones. Hecke algebras representations of braid groups and link poly-
nomials. Ann. Math. 126 (1987) 335.

[82] I. Tsohantjis and M. D. Gould. Quantum double finite group algebras and link
polynomials. Bull. Aust. Math. Soc. 49 (1994) 177.

[83] R.B. Zhang, M. D. Gould, and A. J. Bracken. From representations of the braid
group to solutions of the Yang-Baxter equation. Nucl. Phys. B 354 (1991) 831.

[84] R. J. Baxter. The inverse relation method for some two-dimensional exactly
solved models in lattice statistics. J. Stat. Phys. 28 (1982) 1.

[85] J. Birman and H. Wenzl. Braids, link polynomials and a new algebra. Trans.
Amer. Math. Soc. 313 (1989) 249.

86] G. A. F. T. da Costa. Yang-Baxterization of the BH algebra. hep-th 9405098.

[87] U. Grimm and P. A. Pearce. Multicolour braid monoid algebras. J. Phys. A
26 (1993) 7435.

[88] H. Saleur and J-B. Zuber. Integrable lattice models and quantum groups. Tri-
este Spring School on String Theory and Quantum Gravity, 1990.

[89] R. Floreanini, D. A. Leites, and L. Vinet. On the defining relations of quantum
superalgebras. Lett. Math. Phys. 23 (1991) 127.

[90] M. Scheunert. Serre-type relations for the special linear Lie superalgebras. Lett.
Math. Phys. 24 (1992) 173.

91] A. J. Bracken, M. D. Gould, and R. B. Zhang. Quantum supergroups and
solutions of the Yang-Baxter equation. Mod. Phys. Lett. 11 A (1990) 831.

92] R. B. Zhang and M. D. Gould. Universal R-matrices and invariants of quantum
supergroups. J. Math. Phys. 32 (1991) 3261.

93] R. B. Zhang, A. J. Bracken, and M. D. Gould. Solution of the graded Yang-
Baxter equation associated with the vector representation of U,(osp(M/2N)).
Phys. Lett. B 257 (1991) 133.

[94] J. R. Links, M. D. Gould, and I. Tsohantjis. Baxterization of the R-matrix for
the adjoint representation of U,(D(2,1;«)). Lett. Math. Phys. 27 (1993) 95.

—

[95] T. S. Hakobyan and A. G. Sedrakyan. R-matrices for U,(osp(1,2)) for highest
weight representations of U,(osp(1,2)) for general ¢ and ¢ is an odd root of
unity. hep-th 9304077.

130



[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

R. Caracciolo and M. A-R. Monteiro. Anyonic realization of SU,(N) quantum
algebra. Phys. Lett. B 308 (1993) 58.

P. D. Jarvis and T. H. Baker. ¢-deformation of radial problems: the simple
harmonic oscillator in two dimensions. J. Phys. A 26 (1993) 883.

M. Chaichian, D. Ellinas, and P. P. Kulish. Quantum algebra as the dynamical
symmetry of the deformed Jaynes-Cummings model. Phys. Rev. Lett. 65 (1990)
980.

M. Kibler and T. Négadi. On the g-analogue of the hydrogen atom. J. Phys.
A 24 (1991) 5283.

V. G. Kac. Simple graded Lie algebras of finite height. Funct. Anal. Appl. 1
(1967) 328.

R. V. Moody. Lie algebras associated with generalized Cartan matrices. Bull.
Amer. Math. Soc. 73 (1967) 217.

R. V. Moody. A new class of Lie algebras. J. of Alg. 10 (1968) 211.

P. Goddard and D. Olive. Kac-Moody and Virasoro algebras in relation to
quantum physics. Int. Jour. Mod. Phys. 1 A (1986) 303.

V. G. Kac and A. K. Raina. Highest weight representations of infinite-
dimensional Lie algebras. World Scientific, 1987.

V. G. Kac and D. A. Kazhdan. Structure of representations with highest weight
of infinite-dimensional Lie algebras. Adv. in Math. 34 (1979) 97.

F. ten Kroode and J. van de Leur. Bosonic and fermionic realizations of the
affine algebra gl,,. Commun. Math. Phys. 137 (1991) 67.

R. K. Dodd. Fundamental representations of the m-principal realization of gl...
J. Math. Phys. 31 (1990) 533.

J. Lepowsky and R. L. Wilson. Construction of the affine Lie algebra Agl).
Commun. Math. Phys. 62 (1978) 43.

V. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson. Realization of the
basic representations of the Euclidean Lie algebras. Adv. in Math. 42 (1981)
83.

I. B. Frenkel and V. G. Kac. Basic representations of affine Lie algebras and
dual resonance models. Inv. Math. 62 (1980) 23.

G. Segal. Unitary representations of some infinite-dimensional groups. Com-
mun. Math. Phys. 80 (1981) 301.

131



[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

I. B. Frenkel. Two constructions of affine Lie algebra representations and the
boson-fermion correspondence in quantum field theory. J. Funct. Anal. 44
(1981) 259.

M. Jimbo and T. Miwa. Solitons and infinite dimensional Lie algebras. Publ.
RIMS, Kyoto Univ. 19 (1983) 943.

J. J. C. Nimmo. Wronskian determinants, the KP hierarchy and supersymmetric
polynomials. J. Phys. A 22 (1989) 3213.

M. Kashiwara and T. Miwa. The 7 function of the Kadomtsev-Petviashvili
equation - Transformation groups for soliton equations I. Proc. Japan Acad.
57A (1981) 342.

T. H. Baker, P. D. Jarvis, and C. M. Yung. Hirota polynomials for the KP and
BKP hierarchies. Lett. Math. Phys. 29 (1993) 55.

Y. You. Polynomial solutions of the BKP hierarchy and projective represen-
tations of symmetric groups. In V. G. Kac, editor, Infinite dimensional Lie
algebras and groups. World Scientific, 1989.

J. J. C. Nimmo. Hall-Littlewood symmetric functions and the BKP equation.
J. Phys. A 23 (1990) 751.

M. Virasoro. Subsidiary conditions and ghosts in dual resonance models. Phys.
Rev. D 1 (1970) 2933.

A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal
symmetry in two dimensional conformal field theory. Nucl. Phys. B 241 (1984)
333.

V. G. Kac. Highest weight representations of infinite dimensional Lie algebras.
In Proceedings of ICM, Helsinki, pages 299-304, 1978.

V. G. Kac. Contravariant form for the infinite-dimensional Lie algebras and
superalgebras. In Lecture Notes in Physics, volume 94, pages 441445, 1979.

B. L. Feigin and D. B. Fuks. Invariant skew-symmetric differential operators
on the line and Verma modules over the Virasoro algebra. Funct. Anal. Appl.
16 (1982) 114.

D. Friedan, Z. Qiu, and S. Shenker. Conformal invariance, unitarity and critical
exponents in two dimensions. Phys. Rev. Lett. 52 (1984) 1575.

P. Goddard, A. Kent, and D. Olive. Virasoro algebras and coset space models.
Phys. Lett. B 152 (1985) 88.

P. Goddard, A. Kent, and D. Olive. Unitary representations of the Virasoro
and super-Virasoro algebras. Commun. Math. Phys. 103 (1986) 105.

132



[127] B. L. Feigin and D. B. Fuks. Verma modules over the Virasoro algebra. Funct.
Anal. Appl. 17 (1983) 241.

[128] A. Rocha-Caridi. Vacuum vector representations of the Virasoro algebra. In
J. Lepowsky, S. Mandelstam, and I. M. Singer, editors, Vertexr Operators in
Mathematics and Physics, pages 451-473, New York, 1984. Springer.

[129] L. Benoit and Y. Saint-Aubin. Degenerate conformal field theories and explicit
expressions for some null vectors. Phys. Lett. B 215 (1988) 517.

[130] M. Bauer, Ph. Di Francesco, C. Itzykson, and J-B. Zuber. Covariant differential
equations and singular vectors in Virasoro representations. Nucl. Phys. B 362
(1991) 515.

[131] A. Kent. Singular vectors of the Virasoro algebra. Phys. Lett. B 273 (1991)
26.

[132] A. Kent. Projections of Virasoro singular vectors. Phys. Lett. B 278 (1992)
443.

[133] G. Felder. BRST approach to minimal models. Nucl. Phys. B 317 (1989) 215.

[134] M. Kato and S. Matsuda. Construction of singular vertex operators as degen-
erate primary conformal fields. Phys. Lett. B 172 (1986) 216.

[135] M. Kato and S. Matsuda. Null fields in conformal and superconformal algebras.
In T'sukuba Superstring Workshop, 1987.

[136] A. Rocha-Caridi. On highest weight and Fock space representations of the
Virasoro algebra. In L. Ehrenpreis and R. C. Gunning, editors, Theta Functions
Bowdoin 1987, pages 259-271. American Mathematical Society, 1989.

[137] N. Chair, V. K. Dobrev, and H. Kanno. SO(2,C) invariant ring structure of the
BRST cohomology and singular vectors in 2D gravity with ¢ < 1 matter. Phys.
Lett. B 283 (1992) 194.

[138] M. Wakimoto and H. Yamada. The Fock representations of the Virasoro algebra
and the Hirota equations of the modified KP hierarchies. Hiroshima Math. J.
16 (1986) 427.

[139] P. Ramond. Dual theory for free fermions. Phys. Rev. D 3 (1971) 2415.

[140] A. Neveu and J. H. Schwarz. Factorizable dual model of pions. Nucl. Phys. B
31 (1971) 86.

[141] V. G. Kac and M. Wakimoto. Unitarizable highest weight representations of the
Virasoro, Neveu-Schwarz and Ramond algebras. In Lecture Notes in Physics,
volume 261, pages 345-371, 1986.

133



142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

A. Meurman and A. Rocha-Caridi. Highest weight representations of the Neveu-
Schwarz and Ramond algebras. Commun. Math. Phys. 107 (1986) 263.

S. Nam. The Kac formula for the N =1 and N = 2 superconformal algebras.
Phys. Lett. B 172 (1986) 323.

V. K. Dobrev. Multiplet classification of the indecomposable highest weight
modules over the Neveu-Schwarz and Ramond superalgebras. Lett. Math. Phys.
11 (1986) 225.

A. Rocha-Caridi. Representation theory of the Virasoro and Super-Virasoro
algebras: Irreducible characters. In K. Dietz and V. Rittenberg, editors, Infi-
nite Lie Algebras and Conformal Invariance in Condensed Matter and Particle
Physics, pages 59-80. World Scientific, 1987.

L. Benoit and Y. Saint-Aubin. A pedagogical presentation of singular vectors.
In J. Mickelsson and O. Pekonen, editors, Topological and geometrical methods
in field theory, pages 22-27. World Scientific, 1991.

L. Benoit and Y. Saint-Aubin. Fusion and the Neveu-Schwarz singular vectors.
Int. Jour. Mod. Phys. A 9 (1994) 547.

G. M. T. Watts. Null vectors of the superconformal algebra - the Ramond
sector. Nucl. Phys. B 407 (1993) 213.

P. Bouwknegt, J. McCarthy, and K. Pilch. Ground ring for the 2D NSR string.
Nucl. Phys. B 377 (1992) 541.

M. Kato and S. Matsuda. Null field construction in conformal and supercon-
formal algebras. Adv. Stud. Pure. Math. 16 (1988) 205.

—

M. Kato and Y. Yamada. Missing link between Virasoro and si(2) Kac-Moody
algebras. Prog. Theor. Phys. Supp. 110 (1992) 291.

J. L. Cardy. Conformal invariance and surface critical behaviour. Nucl. Phys.
B 240 (1984) 514.

G. von Gehlen, V. Rittenberg, and H. Ruegg. Conformal invariance and finite
one-dimensional quantum chains. J. Phys. A 19 (1985) 107.

H. W. Bléte, J. L. Cardy, and M. P. Nightingale. Conformal invariance, the
central charge, and universal finite-size amplitudes at criticality. Phys. Reuv.
Lett. 56 (1986) 742.

G. von Gehlen and V. Rittenberg. The spectra of quantum chains with free
boundary conditions and Virasoro algebras. J. Phys. A 119 (1986) L631.

M. Ademollo, L. Brink, A. D’adda, R. D’auria, E. Napolitano, S. Sciuto, E. Del
Giudice, P. di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, and R. Pettorino.
Supersymmetric strings and colour confinement. Phys. Lett. B 62 (1976) 105.

134



[157] M. Ademollo, L. Brink, A. D’adda, R. D’auria, E. Napolitano, S. Sciuto, E. Del
Giudice, P. di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Pettorino, and J. H.
Schwarz. Dual string with U(1) colour symmetry. Nucl. Phys. B 111 (1976)
77.

[158] W. Boucher, D. Friedan, and A. Kent. Determinant formulae and unitarity for
the N = 2 superconformal algebras in two dimensions or exact results in string
compactification. Phys. Lett. B 172 (1986) 316.

[159] P. Di Vecchia, J. L. Petersen, and M. Yu. On the unitary representations of
N = 2 superconformal theory. Phys. Lett. B 172 (1986) 211.

[160] P. Di Vecchia, J. L. Peterson, M. Yu, and H. B. Zheng. Explicit construction
of unitary representations of the N = 2 superconformal algebra. Phys. Lett. B
174 (1986) 280.

[161] M. Kato and S. Matsuda. Null field construction and Kac formulae of N = 2
superconformal algebras in two dimensions. Phys. Lett. B 184 (1987) 184.

[162] Y. Matsuo. Character formula of ¢ < 1 unitary representation of N = 2 super-
conformal algebra. Prog. Theor. Phys. 77 (1987) 793.

[163] V. K. Dobrev. Characters of the unitarizable highest weight modules over the
N = 2 superconformal algebras. Phys. Lett. B 186 (1987) 43.

[164] E. B. Kiritsis. Character formulae and the structure of the representations of
the N =1, N = 2 superconformal algebras. Int. Jour. Mod. Phys. A 3 (1988)
1871.

[165] A. Kent, M. Mattis, and H. Riggs. Highest weight representations of the N = 3
superconformal algebras and their determinant formulae. Nucl. Phys. B 301
(1988) 426.

[166] A. Kent and H. Riggs. Determinant formulae for the N = 4 superconformal
algebras. Phys. Lett. B 198 (1987) 491.

[167] S. Matsuda. Coulomb gas representations and screening operators of the N = 4
superconformal algebras. Phys. Lett. B 282 (1992) 56.

[168] T. Eguchi and A. Taormina. Unitary representations of the N = 4 supercon-
formal algebra. Phys. Lett. B 196 (1987) 75.

[169] M. Yu. The unitary representations of the N = 4 SU(2)-extended superconfor-
mal algebras. Nucl. Phys. B 294 (1987) 890.

[170] T. Eguchi and A. Taormina. Character formulas for the N = 4 superconformal
algebra. Phys. Lett. B 200 (1988) 315.

[171] A. Sevrin, W. Troost, and A. Van Proeyen. Super7 conformal algebras in two
dimensions with N = 4. Phys. Lett. B 208 (1988) 447.

135



172]

[173]

[174]

[175]

[176]

[177]

178

[179]

[180]

[181]

[182]

[183]

184]

[185]

[186]

K. Schoutens. O(N)-extended superconformal field theory in superspace. Nucl.
Phys. B 295 (1988) 634.

J. L. Petersen and A. Taormina. Characters of the N = 4 superconformal
algebra with two central extensions. Nucl. Phys. B 331 (1990) 556.

J. L. Petersen and A. Taormina. Characters of the N = 4 superconformal
algebra with two central extensions (IT massless representations). Nucl. Phys.
B 333 (1990) 833.

V. A. Fateev and A. B. Zamolodchikov. Conformal quantum field theory models
in two dimensions having Z3 symmetry. Nucl. Phys. B 280 (1987) 644.

F. A. Bais, P. Bouwknegt, M. Surridge, and K. Schoutens. Extensions of the Vi-
rasoro algebra constructed from Kac-Moody algebras using higher order Casimir
invariants. Nucl. Phys. B 304 (1988) 348.

V. G. Drinfeld. A new realization of Yangians and quantized affine algebras.
Sov. Math. Dokl. 36 (1988) 212.

I. B. Fenkel and N. Jing. Vertex representations of quantum affine algebras.
Proc. Natl. Acad. Sci. 85 (1988) 9373.

A. Abada, A. H. Bougourzi, and M. A. El Gradechi. Deformation of the Waki-
moto construction. Mod. Phys. Lett. A 8 (1993) 715.

A. Kato, Y-H Quano, and J. Shiraishi. Free boson representation of ¢-vertex
operators and their correlation functions. Commun. Math. Phys. 157 (1993)
119.

—

K. Kimura. On free boson representation of quantum affine algebra U,(sl(2)).
hep-th 9212039.

A. Matsuo. A g-deformation of Wakimoto modules, primary fields and screening
operators. Commun. Math. Phys. 160 (1994) 33.

A. H. Bougourzi. Uniqueness of the bosonization of the U,(su(2);) quantum
current algebra. Nucl. Phys. B 404 (1993) 457.

—

H. Awata, S. Odake, and J. Shiraishi. Free boson realization of U,(sl(N)).
hep-th 9305146.

O. Foda and T. Miwa. Corner transfer matrices and quantum affine algebras.
Int. Jour. Mod. Phys. 7 A Suppl. 1A (1992) 279.

B. Davies, O. Foda, M. Jimbo, T. Miwa, and A. Nakayashiki. Diagonalization of
the XXZ Hamiltonian by vertex operators. Commun. Math. Phys. 151 (1993)
89.

136



[187] B. Davies. Corner transfer matrices and quantum affine algebras. J. Phys. A
27 (1994) 361.

[188] M. Jimbo, K. Miki, T. Miwa, and A. Nakayashiki. Correlation functions of the
XXZ model for A < —1. Phys. Lett. A 168 (1992) 256.

[189] M. Idzumi, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima, and T. Tokihiro.
Quantum affine symmetry in vertex models. Int. Jour. Mod. Phys. A 8 (1993)
1479.

[190] A. H. Bougourzi and R. A. Weston. Matrix elements of U,(su(2)y) vertex
operators via bosonization. hep-th 9305127.

[191] Y. Koyama. Staggered polarization of vertex models with Uq(sl/(;z)) symmetry.
hep-th 9307197.

[192] S. V. Kerov. Hall-Littlewood functions and orthogonal polynomials. Funct.
Anal. Appl. 25 (1991) 65.

[193] R. C. King. In D. Stanton, editor, Invariant Theory and Tableaux, New York,
1990. Springer.

[194] D. E. Littlewood. The theory of group characters and matriz representations of
groups. Oxford University Press, 1st edition, 1940.

[195] D. E. Littlewood. The theory of group characters. Oxford University Press, 2nd
edition, 1950.

[196] Y. You. On some identities of Schur Q-functions. J. Alg. 145 (1992) 349.

[197] T. Jozefiak. Schur Q-functions and applications. In S. Ramanan, C. Musili, and
N. Mohan Kumar, editors, Proceedings of the Hyderabad conference on algebraic
groups, 1989, pages 205-224. Manoj Prakashan, India, 1991.

[198] J. R. Stembridge. Some particular entries of the two-parameter Kostka matrix.
Proc. Amer. Math. Soc. 121 (1994) 367.

[199] R. P. Stanley. Some combinatorial properties of Jack symmetric functions. Adv.
in Math. 77 (1989) 76.

[200] N. H. Jing and T. Jézefiak. A formula for two-row Macdonald functions. Duke
Math. J. 67 (1992) 377.

[201] G. Gasper and M. Rahman. Basic Hypergeometric Series. Cambridge University
Press, 1990.

[202] P. D. Jarvis and C. M. Yung. Vertex operators and composite supersymmetric
S-functions. J. Phys. A 26 (1993) 1881.

[203] A. O. Morris. Generalizations of the Cauchy and Schur identities. J. Comb.
Theory 11A (1971) 163.

137



[204] A. Erdélyi. Higher Transcendental Functions Vol 1. Mcgraw-Hill, 1953.

[205] V. G. Kac and M. Wakimoto. Branching functions for winding subalgebras and
tensor products. Acta Appl. Math. 21 (1990) 3.

[206] M. Baake. Branching rules for unitary representations of Virasoro and Super-
Virasoro algebras at ¢ = 1. J. Math. Phys. 29 (1988) 1753.

[207] M. Henkel and A. Patkds. The Ising quantum chain with defects. The exact
solution. Nucl. Phys. B 314 (1990) 609.

[208] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford University Press, 5th edition, 1979.

[209] M. V. Subbarao and M. Vidyasagar. On Watson’s quintuple product identity.
Proc. Am. Math. Soc. 26 (1970) 23.

[210] M. Moshinsky, J. Patera, R. T. Sharp, and P. Winternitz. Everything you
always wanted to know about SU(3) D O(3). Ann. Phys. 95 (1975) 139.

[211] A. M. Bincer. Missing label operators in the reduction sp(2n) | sp(2n — 2). J.
Math. Phys. 21 (1980) 671.

[212] J. W. B. Hughes. SU(2) x SU(2) shift operators and representations of SO(5).
J. Math. Phys. 24 (1983) 1015.

[213] J. W. B. Hughes and J. Van der Jeugt. A pair of commuting scalars for G(2) D
SU(2) x SU(2). J. Math. Phys. 26 (1985) 894.

[214] M. R. Bremner. Tensor products of unitarizable representations of the Virasoro
algebra with central charge 5. Comm. Alg. 16 (1988) 1513.

[215] M. R. Bremner. Tensor products of unitary Super-Virasoro modules with central
charge -~. Can. J. Math. 42 (1990) 561.

[216] B. Feigin and E. Frenkel. Bosonic ghost system and the Virasoro algebra. Phys.
Lett. B 246 (1990) 71.

[217] V. G. Kac and M. Wakimoto. Integrable highest weight modules over affine
superalgebras and number theory. hep-th 9407057.

[218] T. H. R. Skyrme. Kinks and the Dirac equation. J. Math. Phys. 12 (1971)
1735.

[219] P. D. Jarvis and C. M. Yung. Determinantal forms for composite Schur and
Q-functions via the boson-fermion correspondence. J. Phys. A 27 (1994) 903.

[220] N. Jing. Vertex operators, symmetric functions and the spin group I',. J. Alg.
138 (1991) 340.

138



[221] N. Jing. Vertex operators and Hall-Littlewood symmetric functions. Adv. in
Math. 87 (1991) 226.

[222] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa. Operator approach to the
Kadomtsev-Petviashvili equation. Transformation groups for soliton equations
III. J. Phys. Soc. Japan 50 (1981) 3806.

[223] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa. Transformation groups for
soliton equations. IV. A new hierarchy of soliton equations of KP-type. Physica
4D (1982) 343.

[224] A. O. Morris. The spin representation of the symmetric group. Can. J. Math.
17 (1965) 543.

[225] D. E. Littlewood. On orthogonal and symplectic group characters. J. Lond.
Math. Soc. 30 (1955) 121.

[226] D. E. Littlewood. Plethysms and inner products of S-functions. J. Lond. Math.
Soc. 32 (1957) 18.

[227] D. E. Littlewood. Products and plethysms of characters with orthogonal, sym-
plectic and symmetric groups. Can. J. Math. 10 (1958) 17.

[228] P. H. Butler and R. C. King. The symmetric group: characters, products and
plethysms. J. Math. Phys. 14 (1973) 1176.

[229] Luan Dehuai and B. G. Wybourne. The symmetric group: branching rules,
products and plethysms for spin representations. J. Phys. A 14 (1981) 327.

[230] Luan Dehuai and B. G. Wybourne. The alternating group: branching rules,
products and plethysms for ordinary and spin representations. J. Phys. A 14
(1981) 1835.

[231] P. H. Butler and R. C. King. Branching rules for U(N) D U(M) and the
evaluation of outer plethysms. J. Math. Phys. 14 (1973) 741.

[232] C. Carre and J-Y. Thibon. Plethysm and vertex operators. Adv. Appl. Math.
13 (1992) 390.

[233] B. Srinivasan. On Macdonald’s symmetric functions. Bull. Lond. Math. Soc.
24 (1992) 519.

[234] P. D. Jarvis and C. M. Yung. The Schur function realization of vertex operators.
Lett. Math. Phys. 26 (1992) 115.

[235] N. H. Jing. On a trace of g-analog vertex operators. In T. Curtwright, D. Fairlie,
and C. Zachos, editors, Quantum groups - Proceedings of the workshop held in
Argonne Illinois, pages 113-122. World Scientific, 1990.

139



[236] L. Frappat. Vertex operator representation of osp(m/n)(!). Annecy Preprint
Lapp-TH-201/87.

[237] L. Frappat, P. Sorba, and A. Scarrino. Vertex operator representations of basic
affine superalgebras. J. Math. Phys. 30 (1989) 2984.

140



