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Abstract  

The wet sclerophyll forests in southern Tasmania are dominated by Eucalyptus 

obliqua and are managed on a notional silvicultural rotation length of 80 to 100 

years. Over time, this will lead to a simplified stand structure with a truncated forest 

age and thus reduce the proportion of coarse woody debris (CWD), such as old 

living trees and large diameter logs, within the production forest landscape. Course 

woody debris is regarded as a critical habitat for biodiversity management in forest 

ecosystems. Fungi, as one of the most important wood decay agents, are key to 

understanding and managing biodiversity associated with decaying wood. In 

Australia, wood-inhabiting fungi are poorly known and the biodiversity associated 

with CWD has not been well studied. 

This thesis describes two studies that were undertaken to examine the importance of 

CWD as habitat for wood-inhabiting fungi in the wet sclerophyll forests of 

Tasmania.  

Study one examined the effect of changing tree age on the fungal species richness, 

fungal community composition and rotten wood associations within the tree. Six 

living E. obliqua trees in each of three age-classes (69, 105 and >150 years old) 

were felled. Each tree was cross-cut at nine standard sampling points and the decay 

profile was mapped. Fungi were isolated from rotten wood at each sampling point, 

and from control samples of clear heartwood and sapwood.  Samples of each rotten 

wood type were collected and classified, based on their colour and texture.  

Wood-inhabiting fungi in Australia are not well known, making the identification of 

fungal cultures problematic. In study one, cultures of wood-inhabiting fungi were 

grouped into putative species groups and identified using both morphological 

techniques and polymerase chain reaction (PCR) and sequencing of the internal 

transcribed spacer (ITS) region of the ribosomal DNA.  

Ninety-one species of wood-inhabiting fungi were isolated from the 18 trees 

examined in study one. Eight different rotten wood types were identified and 

studied. The community composition of wood-inhabiting fungi in trees greater than 

150 years old (the oldest age-class examined) was very different compared with 

those found in the younger two age-classes; more than half of all species were only 
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found in these older trees. In addition, trees in the oldest age-class contained greater 

volumes and proportions of rotten wood habitat.  

The second study examined the wood-inhabiting fungi that had been isolated in a 

previous study by Z-Q Yuan (University of Tasmania) from large (>85 cm) and 

small (30-60 cm) diameter E. obliqua logs in mature, unlogged forests and 20-30 

year-old logged forests that were regenerating after clearfelling. The previously 

described morphospecies were tested using PCR-sequencing of the ITS region of 

ribosomal DNA and a consensus final species groupings was obtained. 

This study determined that a total of 60 species of wood-decay fungi had been 

commonly isolated from the 36 logs examined. Significant differences in fungal 

community structure were found between mature forests and regenerating forests. 

Some differences in fungal species richness and community composition were also 

found between logs of different sizes.  

These studies are among the first to examine wood-inhabiting fungi in mature E. 

obliqua trees and logs in Tasmania. The ecological information obtained from this 

research will assist in the development and deployment of strategies for the 

management of mature living trees and logs in wet eucalypt forests in Tasmania. 

This research suggests there is a need for forest managers to consider instigating 

measures that allow for some trees in the production forest landscape to live long 

enough to develop decayed wood habitat. This will provide important habitat for 

fungi as both trees and large diameter logs, sustaining an important component of 

forest biodiversity. 
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CHAPTER 1: FUNGI IN EUCALYPT FORESTS  

1.1 Introduction 

This thesis examines the taxonomy and ecology of the wood decay fungi present in 

living trees and fallen logs in the wet eucalypt forests in Tasmania, Australia and 

how they are influenced by substrate and forest type. In order to provide a context 

for the significance of research into wood decay fungi, this chapter begins with an 

exploration of the global significance of Australian eucalypt forests and argues that 

the high biological diversity (or biodiversity) associated with eucalypt forests has 

important implications for forest management. The review then discusses potential 

threats to biodiversity and the ecological significance of disturbance in Australian 

eucalypt forests, and then focuses specifically on the implications of these 

disturbance factors for fungi and fungal diversity. 

1.2 Fungi in Australian eucalypt forests 

Fungi play numerous key functional roles in forest ecosystems ranging from 

saprotrophs and pathogens of plants and animals through to symbionts of 

phototrophic organisms such as those in lichens and mycorrhiza (Dix and Webster 

1995). Fungi are also an extremely taxonomically diverse group of organisms; 

within Australia there are thought to be approximately 250 000 species of fungi 

compared with only 22 000 species of vascular plants (Hawksworth 1991; May and 

Pascoe 1996). Despite their importance within ecosystems, fungi are often 

overlooked. As a result, the taxonomy and ecology of fungi are very poorly known 

compared with the majority of other organisms present in forest ecosystems (May 

and Simpson 1997). In Australia for example, only 5% of the estimated total 

number of species of fungi have been formally described, and those that are named 

are often represented by only a few collections (May and Pascoe 1996). Given their 

importance for ecosystem processes, several studies have suggested the use of fungi 

as focal species, or indicators of ecological continuity, in forest ecosystems world-

wide (e.g. Butler et al. 2002; Heilmann-Clausen 2003; Høiland and Bendiksen 

1996; Sverdrup-Thygeson and Lindenmayer 2003). 
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1.3 Australian eucalypt forests have high levels of biological diversity 

Native eucalypt forests and woodlands are a quintessential part of the Australian 

landscape; they dominate the less arid regions of Australia (i.e. areas with over 250 

mm annual rainfall) and covered almost 20% of Australia’s landmass at the time of 

European settlement (NLWRA 2001; Williams and Brooker 1997). These eucalypt 

forests and woodlands cover a diverse range of environments, from the tropics and 

sub-tropics of northern Australia, to the cool temperate, sub-alpine and alpine 

regions of southern Australia (Ladiges 1997; NLWRA 2001). Plants in the genus 

Eucalyptus L’Hér. are key components of these systems
1
 (Brooker 2000; Ladiges 

1997), and are collectively termed eucalypts. They are long-lived, and tend to 

dominate the ecosystems they inhabit by virtue of their height and size (Kirkpatrick 

1997). The genera include more than 700 species, the vast majority of which are tall 

forest and woodland species (Brooker 2000; Williams and Brooker 1997). Almost 

all species of Eucalyptus are endemic to Australia, with only 14 species found 

elsewhere, in south-east Asia (Ladiges 1997; Williams and Brooker 1997). Forests 

per se, with trees ≥ 10 m tall and with ≥ 30% projected foliage cover, are more 

restricted in their geographical extent occupying 1.2% of the Australian landmass at 

the time of European settlement, being limited to areas generally exceeding 500 mm 

annual rainfall (NLWRA 2001). The following discussion will focus on these taller 

vegetation types.  

Australian temperate eucalypt forests are biologically and evolutionarily very 

different from other temperate forests world-wide (Norton 1996b; Potts and 

Wiltshire 1997; Recher et al. 1996; Wardell-Johnson et al. 1997). In contrast with 

most temperate forests, they have an evolutionary history that features a 

comparative lack of recent glaciations, so much of their evolutionary development 

has been in situ (Nix 1982; Norton 1996b). As a result of this long period of in situ 

evolution, of Australia’s relative isolation, and of the major climatic pulses of the 

past circa 2.5 million years (Hopper et al. 1996), Australian eucalypt forests are 

                                                 

1
 The classification of eucalypts is controversial (e.g. Brooker 2000; Ladiges and  Udovicic 2000 ). 

This thesis uses the genus Eucalyptus to describe species in all associated subgenera including  

Angorphora, Corymbia, Blakella, Eudesmia, Symphomyrtus, Minutifructa and Eucalyptus as 

described by Brooker  (2000). 
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extremely biologically diverse, not only in terms of the number of different species 

of eucalypt but also in relation to the vast number of other species eucalypt forests 

support (e.g. Kirkpatrick 1997; Recher et al. 1996; Wardell-Johnson and Horwitz 

1996). Australian temperate eucalypt forests are among the most species rich, if not 

the richest temperate terrestrial communities in the world (Recher et al. 1996) and 

include some internationally recognised areas of high biodiversity and regional 

endemism, such as the south-west biodiversity hotspot (Western Australia), the 

south-east forest region (New South Wales and Victoria) and the Tasmanian 

eucalypt forests (Norton and May 1994; Recher et al. 1996). In addition to these 

specific areas of recognised high biodiversity, eucalypt forest ecosystems generally 

support a high number of species at the site level and the change in species and 

genotypes between sites  can be very high (Recher et al. 1996; Wardell-Johnson and 

Horwitz 1996).  

Given that the conservation and maintenance of biological diversity is commonly a 

major goal for contemporary forest management (Brown 1996; Brown et al. 2001; 

Grove et al. 2002), the high biological diversity associated with eucalypt forests and 

its high regional variation have important consequences.  

Fungi in Australian eucalypt systems also have high levels of biological diversity 

While the taxonomy and biology of fungi in eucalypt systems is less studied than 

that of most other types of organisms, the high biological diversity of eucalypt 

systems is also thought to relate to high fungal diversity (May and Simpson 1997). 

Estimates of fungal biodiversity in eucalypt forests per se are not available; 

however the expected ratio of number of species of fungi to their vascular plant host 

is thought to be about 10:1 (Pascoe 1990). If there are more than 700 species of 

eucalypts in Australia, there are at least 7000 species of fungi hosted by them (May 

and Simpson 1997). Clearly, the actual diversity of fungi in eucalypt systems is 

much higher as this estimate does not include any fungi associated with other 

organisms found in eucalypt systems such as understorey plants, invertebrates or 

mammals. Not only is fungal diversity high in eucalypt communities in Australia, 

but diversity on any one site is also very high. Sampling at individual sites in 

Victoria by May and others (see May and Simpson 1997) yielded more than 50 



Chapter 1- Fungi in Eucalypt Forests 

 4 

ectomycorrhizal fungi and more than 130 species of saprotrophic and parasitic 

macrofungi.  

Although our understanding is hampered by a lack of taxonomic knowledge, a large 

number of the fungi in eucalypt systems are also thought to be endemic to Australia, 

particularly for parasitic and symbiotic fungi (May and Simpson 1997). 

Ectomycorrhizal fungi, for example, are mostly endemic; the eucalypt systems in 

southern Australia are considered to be a global biodiversity hotspot for hypogeous 

fungi with more than 35% of genera and 95% of species endemic to Australia 

(Bougher and Lebel 2001). In contrast, wood decay polypores and corticioids 

demonstrate low endemism at a species level (May and Simpson 1997). Compared 

with vascular plants such as eucalypts, fungi display fairly limited local endemism 

and are generally considered to be endemic at a continental level (May and Simpson 

1997).  

1.4. Australian eucalypt forests have high structural complexity 

The structural complexity present in natural Australian eucalypt forests is thought to 

be one of the key features leading to their capacity to support high biological 

diversity (Butler et al. 2002; Cork and Catling 1996; Franklin et al. 2002; Grove 

2002; McComb and Lindenmayer 1999; Scotts 1994). Australian eucalypt forests 

are characteristically heterogeneous systems, both spatially and temporally, often 

with a wide variety of trees of different sizes and ages, in different states of growth 

and decay (e.g. Duncan 1999; e.g. Jackson and Brown 1999; Lindenmayer et al. 

1999b; Lindenmayer et al. 1991). These structures can range from different 

diameter living trees to standing dead trees (stags) and different diameter logs and 

branches on the forest floor in different phases of decay (Lindenmayer et al. 2000; 

Lindenmayer et al. 1999a; Woodgate et al. 1996). This is particularly the case for 

wet forests such as those in southern Tasmania, which are often multi-aged forests, 

resulting from a mosaic of fire histories (Wells and Hickey 1999). 

1.5 Anthropogenic disturbance in Australian eucalypt forests  

Most forest systems are highly adapted to natural disturbances such as fire, drought, 

wind storms, pathogens and climate change (see Burgman 1996). In many 

Australian eucalypt forests for example, fire is one of the most important factors 

determining their ecological dynamics (Gill 1997). Natural disturbances rarely 
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remove entire stands; generally they leave numerous biological legacies such as 

large dead trees, logs and dense understorey vegetation (Hansen et al. 1991; 

Lindenmayer and McCarthy 2002) and can play an important role in ecosystem 

function such as regeneration and habitat creation (Lindenmayer and Franklin 

1997). This contrasts with human or anthropogenic disturbance which often occurs 

at scales, patterns and intensities which do not mimic natural disturbance 

(Lindenmayer and McCarthy 2002). 

Throughout Australia, eucalypt forests are managed for a wide range of uses 

including conservation, recreation, water supply and timber harvesting (National 

Forest Inventory 2005). While almost 15% of Australia’s forest estate is formally 

protected in nature conservation reserves within IUCN reserve categories I-VI 

(including formal nature conservation reserves as well as reservation within 

leasehold land, multiple-use forests and private land National Forest Inventory 

2005), the majority of Australian native eucalypt forests (including some of those in 

reserves) are subject to varying levels of anthropogenic-induced disturbance 

(Norton and May 1994). Since European settlement of Australia (starting in 1788) 

approximately half of Australia’s forests have been cleared or severely modified 

(Resource Assessment Commission 1992). Between 1972 and 1980, for example, 

more than 17 000 hectares of native vegetation, primarily eucalypt forest, were 

cleared or harvested as part of forestry activities in Tasmania (Kirkpatrick 1991). 

This clearing and modification has not been uniform; it has been concentrated in 

areas which are relatively accessible and have high productivity (Norton 1996b; 

Pressey et al. 1996). This means that some forest types have been subjected to 

heavy anthropogenic disturbance while, in contrast, others are largely unaffected 

(Gill and Williams 1996; Resource Assessment Commission 1992).  

Anthropogenic disturbance can take many different forms. Hobbs and Hopkins 

(1990) describe four categories of anthropogenic disturbance in Australia: complete 

removal of vegetation (and complete disruption of ecosystem processes); 

replacement of vegetation (partial disruption of ecosystem processes); exploitation 

or utilisation of vegetation; and little deliberate modification or disturbance. 

Complete removal of vegetation can be the result of a range of factors including 

clearing for urbanisation, mining and roads (Gill and Williams 1996; Norton 1996b; 

Wardell-Johnson and Horwitz 1996). Replacement of vegetation generally refers to 
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clearing for agriculture, horticulture or plantation forestry (Hobbs and Hopkins 

1990) and exploitation can refer to the use of forests for grazing and wood 

extraction and removal of other natural materials. Land which has had no deliberate 

modification is usually either unused land (e.g. desert) or land set aside for nature 

conservation, protection and tourism. This final category usually has had only 

minor disturbance (Norton 1996b).  

1.6 The ecological significance of anthropogenic disturbance 

There are many changes that are likely to occur in eucalypt forests as a result of 

disturbance regimes (Gill and Williams 1996; Hickey 1993; Laurance and Laurance 

1996; Lindenmayer and McCarthy 2002; Mackey et al. 2002; Norton 1996a). It can 

be difficult to measure how disturbance will affect biodiversity however (Ehrlich 

1996), particularly as in Australia, where large components of the biodiversity 

remain unknown. With reference to forest harvesting, Norton and May (1994) 

suggest that the ecological significance of anthropogenic disturbance on 

biodiversity in eucalypt forests will depend on several factors. These include: the 

proportion of the total forest system which is undergoing modified disturbance 

regimes, the pattern of disturbance in the landscape, the frequency of disturbance in 

relation to historical levels of ecosystem turnover, the frequency and duration of 

other pressures on the system (such as climate change) and the overall resilience of 

the system. For example, forest clearing over a small area of a total forest 

ecosystem may have little lasting impact on the forest ecosystem, however clearing 

extensive areas in space and time may diminish the capacity of the forest to 

regenerate in the short to medium term (Norton and May 1994). Similarly, a forest 

is likely to become severely modified or degraded if it is subjected to a significantly 

more, or less, frequent fire regime than would be naturally present in that forest. 

The following section focuses on two specific factors which can be influenced by 

anthropogenic disturbance in forests and investigates how changes to these factors 

might affect biodiversity. These two factors are loss in structural complexity and 

fragmentation of forest landscapes. The focus of the former will be primarily at a 

stand-level, while the latter will be dealt with at a landscape-scale. These factors 

have been chosen from the broader suite of physical and biological changes in 

disturbed forests as they have received significant attention recently (e.g. As 1993; 
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Bengtsson et al. 2000; Bunnell 1995; Gibbons and Lindenmayer 2002; Gill 1997; 

Gill and Williams 1996; Grove et al. 2002; Kirkpatrick et al. 2002; Lindenmayer 

and Franklin 1997; Lindenmayer et al. 1999a; Lindenmayer et al. 1999b; Mackey et 

al. 2002; Mazurek and Zielinski 2004; Niemelä 1999; Pharo et al. 2004; Shifley et 

al. 2006; Vesk and MacNally 2006; Wardell-Johnson and Horwitz 1996). In 

addition, both loss of habitat, through reduction in structural complexity, and 

fragmentation have been identified as the major causes of high species extinction 

rates in the past 50 years (Burgman and Lindenmayer 1998). 

The structural diversity of forest ecosystems is clearly an important factor in 

maintaining forest biodiversity (Franklin et al. 2002; Lindenmayer et al. 2006). 

Some of the anthropogenic disturbances which can lead to a change in forest 

structural diversity include clearfell forest harvesting (creating more even-aged 

stands and the removal of large trees and logs) (Acker et al. 1998; Bobiec 2002; 

Lindenmayer and McCarthy 2002; Lindenmayer et al. 1991; Sippola and Renvall 

1999); the removal of debris for energy generation at time of forest harvest (Grove 

et al. 2002; Mac Nally 2006; Rudolphi and Gustafsson 2005); and coppicing and 

burning (Mac Nally 2006).  

The fragmentation of eucalypt forests is another factor which may contribute to 

significant losses in biodiversity (e.g. Gill and Williams 1996; Henle et al. 2004a; 

Henle et al. 2004b; Hobbs 2005; Melbourne et al. 2004; Pharo et al. 2004; Saunders 

et al. 1991). Gill and Williams (1996) suggest that the three primary causes of 

fragmentation in the forest systems of south-eastern Australia are: agriculture, 

urbanisation and plantation forestry. Two other factors, forest harvesting and 

mining, could also be included as timber removal and clearing for mining can 

significantly alter the landscape and act as barriers between undisturbed forest 

remnants (Norton and May 1994; Wardell-Johnson and Horwitz 1996). 

Fragmentation of the forest landscape can result in a wide range of specific 

modifications such as the introduction of weed species, changes in nutrient flows 

due to increased run-off from adjacent areas, removal of natural materials and 

rubbish dumping (Gill and Williams 1996).  

The adverse impacts of fragmentation on forest ecosystems arise principally from 

the fragmentation of the remaining habitat into smaller, more isolated patches, and 

the impacts of changes in the surrounding matrix on the remaining forest fragments 
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(Hobbs 2005). For example, widespread clearing in some regions of Australia has 

resulted in a very fragmented landscape with only 2-3% of the original native 

vegetation remaining, often in small patches of only a few hectares (Saunders et al. 

1993). These small patches are physically isolated from each other by the 

surrounding matrix of disturbance and can also be subject to disturbance from the 

surrounding matrix (Saunders et al. 1993). For simplicity, in this review, the only 

aspect of fragmentation that will be thoroughly considered is the isolation of 

remnant native forest patches.   

1.7 Disturbance effects on fungi 

This section focuses specifically on one aspect of biodiversity, fungi, and examines 

how the diversity of fungi is affected by the two disturbance factors discussed in the 

previous section.  

1.7.1 Changes in structural complexity 

Structural complexity in forest ecosystems has received widespread attention for its 

importance for fungi (Bader et al. 1995; Berg et al. 1995; Heilmann-Clausen and 

Christensen 2004; Lindhe et al. 2004; Renvall 1995; Sippola et al. 2004). In well 

studied forests such as those in northern Europe, different elements of structural 

diversity appear to support different numbers of species, different species or 

different assemblages of fungi (Heilmann-Clausen and Christensen 2004; Lindhe et 

al. 2004; Nordén and Paltto 2001; Renvall 1995; Sippola et al. 2004; Tedersoo et 

al. 2003). Some of these elements include: diversity of substrate types; diversity of 

substrate ages and/or sizes; diversity of features within a substrate; diversity of 

decay stages within a substrate; and microclimatic changes. In the following 

discussion, each of these factors will be treated separately; however in a forest 

system they are all interrelated. 

Diversity of Substrate Types 

A number of studies have demonstrated that different types of substrates such as 

living trees, fallen logs, stags and stumps support very different species of fungi 

(e.g. Berg et al. 1994; Jonsell and Weslien 2003; Lindhe et al. 2004). In a study of 

wood decay fungi in Picea abies, Quercus robur, Populus tremula and Betula 

pendula in Sweden, Lindhe et al. (2004) found that over a nine year period, logs 



Chapter 1- Fungi in Eucalypt Forests 

 9 

and stumps contained different species assemblages, with logs hosting significantly 

more species than stumps. This was thought to be primarily due to differences in 

decay rate as logs decay faster and therefore the turnover of species is higher. 

Similarly, Berg et al. (1994) found that wood decay fungi in northern Sweden were 

dependent on specific substrates such as old trees, logs and stags. This may have 

been the result of different species adaptations to the defence mechanisms present in 

the living tree, and not in logs and stags, as well as differences in the microclimate 

within each substrate (Boddy 2001). Factors such as the concentration of carbon 

dioxide, moisture and temperature within the wood have been found to influence 

the fungi able to colonise it and can differ between substrate types (Boddy 1992). 

Different host species also generally support different fungal assemblages (Berg et 

al. 1994; Rayner and Boddy 1988; Renvall 1995).  

Diversity of Substrate Ages and/or Sizes 

Maintaining a diversity of substrate ages and sizes appears to be particularly 

important for fungal diversity. In many cases however, it is difficult to differentiate 

between the effect of substrate size and age on the associated fungal diversity and 

thus no distinction will be made here. Living trees and logs of different sizes are 

known to support different elements of fungal biodiversity, with large old trees and 

large diameter logs being particularly important, due to their reduced abundance in 

managed forests in Australia (Simpson and Eldridge 1986) and overseas (e.g. 

Andersen and Ryvarden 2001; Bader et al. 1995; Basham 1991; Berry and Lombard 

1978; Edmonds and Lebo 1998; Heilmann-Clausen and Christensen 2005; Høiland 

and Bendiksen 1996; Johannesson and Stenlid 1999; Lumley et al. 2000; McAfee 

and Taylor 2001; Nakasone 1993; Nordén and Paltto 2001; Renvall 1995; Tedersoo 

et al. 2003; Vasiliauskas and Stenlid 1998). The importance of the latter may be due 

to a range of factors including the larger wood volume available for colonisation, 

the larger surface area for fruitbody production (Høiland and Bendiksen 1996) and 

the relative temporal and microclimatic stability of large diameter substrates (Grove 

et al. 2002; Kruys and Jonsson 1999). The temporal element is also important: large 

trees tend to be significantly older than small diameter trees and thus have had more 

time for colonisation by fungi and more chance for exposure to events such as fire 

which may predispose them to fungal attack (Aho 1977; Basham 1958). Old, large 

diameter trees, in particular, tend to contain a very high variety of features and this 
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may also contribute to their species richness (see paragraph below and Franklin et 

al. 2002; Grove 2002; Groven et al. 2002; Lindenmayer and Franklin 1997). The 

larger diameter of branches found on old, large diameter trees may also act as a 

more effective infection court for fungi than small diameter branches on smaller 

diameter trees (Wardlaw 2003). Although large diameter substrates are generally 

acknowledged as supporting large numbers of fungi, the species associated with 

fine woody debris and small diameter substrates should not be overlooked. Several 

studies have found fungi specifically associated with small diameter substrates 

(Heilmann-Clausen and Christensen 2004; Kruys and Jonsson 1999; Nordén et al. 

2004), particularly Ascomycete species (Nordén et al. 2004). 

Diversity of Features and Microclimates 

Features of substrates such as hollows, dead or decaying tree tops and fire scars are 

known to support specialist organisms which are restricted to these features (in 

Tasmania, (e.g. Grove 2001a; Kantvilas and Jarman 2004) and overseas (e.g. 

Ranius and Wilander 2000)). This may also be the case for fungi. If this is so, then 

greater species richness may be achieved by increasing the number of these features 

in a substrate or forest stand. Similarly in Scandinavia, changes in forest 

microclimate such as sun exposure can affect the fungi present within substrates, 

particularly those with smaller diameter which have limited buffering capacity 

(Lindhe et al. 2004). 

Diversity of Decay Stages  

One aspect of structural complexity which appears critical for fungal diversity is 

maintaining dead wood substrates in a variety of decomposition stages. Renvall 

(1995) identified five decay stages in logs in Scandinavia, ranging from freshly 

fallen (stage 1) through to almost completely decomposed (stage 5). He found that 

the species assemblage of fungi present in the logs was highly dependent on the 

decay stage of the log, with decay stage 3 supporting the greatest number of species. 

Many other studies in Europe have found the species of fungi present on 

decomposing logs to be significantly related to the amount of decomposition within 

the log which has already taken place (Bader et al. 1995; Heilmann-Clausen and 

Christensen 2005; Høiland and Bendiksen 1996; Niemelä et al. 1995; Pyle and 

Brown 1999; Sippola and Renvall 1999). These studies, and others, indicate that 
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there is often a succession of fungi which will inhabit a log or other substrate as it 

decomposes (Chapela et al. 1988; Juutinen et al. 2006; Lindhe et al. 2004; Lumley 

et al. 2000; Niemelä et al. 1995; Willig and Schlechte 1995). A good example is 

Phellinus nigrolimitatus, a wood decay fungus which has only ever been found in 

logs in decay classes 3-5 in Europe, despite extensive surveys (Stokland and 

Kauserud 2004). This element of succession has important ramifications for the 

maintenance of fungal diversity within forests since there must be a continuous 

supply of logs within the dispersal range of the species to maintain the fungi present 

at each stage of the logs’ decomposition (Edman and Jonsson 2001).  

As can be seen from the previous discussion, studies of the ecology of fungi in 

Australia lag well behind those in many other countries (May 2001; May and 

Simpson 1997) and so there is very little literature investigating the importance of 

forest structural complexity for fungi in Australia. Broader Australian literature 

highlighting the biological importance of structural complexity in forest ecosystems 

is plentiful, however, and has been briefly included here to demonstrate similarities 

between Australian systems and those overseas which have been more thoroughly 

investigated. Large old trees and logs are clearly recognised as critical habitat for 

more than 400 species of hollow-dwelling mammals and birds (e.g. Abbott 1998; 

Gibbons and Lindenmayer 2002; Gibbons et al. 2002; Lindenmayer et al. 1993; 

Mackowski 1987; Whitford and Williams 2001). The importance of large trees and 

logs for more cryptic organisms such as bryophytes (Jarman and Kantvilas 2001) 

and saproxylic beetles (Grove 2002; Grove and Bashford 2003; Meggs 1996; 

Michaels and Bornemissza 1999; Yee 2005) has also been demonstrated in a limited 

number of systems.  

1.7.2 Fragmentation 

How fungi cope with forest fragmentation in Australia is unclear. As with other 

types of organisms, however, there is likely to be a wide variation in adaptability 

and resilience to fragmentation. Studies in the northern hemisphere have 

demonstrated that most fungi have very good dispersal abilities, although their 

dispersal is often imprecise and can be limited by the ability of spores to withstand 

UV radiation (Gustafsson 2002; Heilmann-Clausen 2003; Komonen 2005; Nordén 

2000; Rayner and Boddy 1988; Stenlid and Gustafsson 2001). The majority of fungi 
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disperse over long distances using vast numbers of tiny (5-30 µm) airborne spores 

(Rayner and Boddy 1988). For example, each fruitbody of the polypore Fomitopsis 

pinicola typically produces 10
11
 spores (Nordén 1997). While the majority of these 

spores appear to settle within a short distance of the fruitbody (e.g. Nordén and 

Larsson 2000; Stenlid and Gustafsson 2001), long distance dispersal of airborne 

spores has been recorded: more than 300 m for some wood decay fungi (Nordén 

2000) and, on rare occasions, thousands of kilometres for some rusts (e.g. on wind 

currents from Africa to Australia: Knox et al. 1994). Although effective in terms of 

spreading spores long distances, this method of dispersal is somewhat haphazard, as 

airborne spores have no method for locating and settling on suitable substrates 

(Heilmann-Clausen 2003), aside from small variations in size, shape and 

ornamentation which may help in adapting to specific environments (Nordén 2000; 

Nordén et al. 2000). 

Although spore dispersal could be successful throughout fragmented landscapes, 

fragmentation may reduce genetic differentiation and spore viability in fungi. The 

haphazard dispersal of spores is even more important when sexual spores are the 

dominant mode of long-distance dispersal. The spores most commonly used for 

long-range dispersal by Basidiomycetes fungi are haploid sexual spores (Nordén 

2000). To successfully establish a population, the mycelium produced by two 

compatible haploid spores must join within a substrate to complete the sexual cycle 

and produce a fruitbody with more spores for dispersal (Stenlid and Gustafsson 

2001). Thus, where many types of sexual spores are concerned, the successful 

colonisation of a new substrate or isolated forest fragment requires not one, but two 

compatible spores to arrive in the same area. Studies of wood decay fungi in 

Sweden by Edman and Gustafsson (Edman et al. 2004a; Edman et al. 2004b) have 

indicated that geographically isolated fungal populations in southern Sweden 

suffered from negative genetic effects including reduced spore viability and low 

spore deposition. This was particularly apparent for rare species and species on the 

margin of their geographic range (Edman et al. 2004a; Högberg and Stenlid 1999) 

and may be the result of inbreeding caused by isolation of populations. Edman et al. 

(2004a) suggest that even though most wood decay fungi have the capacity to 

disperse between forest fragments, the quantity of dispersed spores may not be 

enough to prevent inbreeding.  
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For certain of types of fungi, particularly truffle-like species and wood decay fungi, 

vectors may be important modes of local dispersal (Fogel and Trappe 1978; 

Lawrence 1989; Rayner and Boddy 1988). One well studied example is Dutch elm 

disease, where the bark beetles Scolytus multistriatus and Hylurgopinus rufipes act 

as vectors for fungi in the genus Ophiostoma (e.g. Brasier 1991). Clearly, the 

dispersal of fungi that is reliant on vectors is dependent on the ability of the vectors 

to disperse effectively through a fragmented landscape and on their resilience to 

fragmentation. In her study of dead-wood dependent beetles, Yee (2005) found that 

25% of beetles appeared to disperse by crawling (rather than flying) and these 

putative vectors would be expected to be strongly affected by fragmentation.  

Hyphal cords, rhizomorphs and other vegetative propagules are also important for 

fungal dispersal although they are often effective only at a local scale. Some species 

of root rot fungi in the genus Armillaria, for instance, disperse poorly by spores and 

rely on spread by rhizomorphs as their primary dispersal mechanism (Redfern and 

Filip 1991). Related to this, newly arrived spores compete poorly for substrates and 

resources with already established mycelia (Nordén 2000; Stenlid and Gustafsson 

2001). In a fragmented landscape with a reduced availability of substrates this is 

likely to be significant, as it would mean that fungi attempting to disperse between 

fragments using spores would compete poorly with fungi already established in 

these fragments and this situation may lead to a decrease in diversity of fungi within 

individual fragments.  

While studies of the effects of forest fragmentation on fungi are still in their early 

stages internationally, there is some strong evidence to suggest that fungi will 

respond negatively, in a similar manner to many other groups of organisms. In 

Australia, there have been no studies dealing with forest fragmentation and fungi. 

As forests continue to be subjected to anthropogenic disturbance, there is an 

increasing need to examine the ways in which fungi respond to disturbance. As 

fungi are often considered indicators of ecosystem health (e.g. Tommerup and 

Bougher 1999), understanding the ways in which they respond to disturbance may 

be of particular importance.  



Chapter 1- Fungi in Eucalypt Forests 

 14 

1.8 Outline of the thesis 

This thesis takes one small but crucial element of the above discussion of fungi and 

disturbance in Australian eucalypt forests and examines it in detail. It provides 

critical baseline data on the taxonomy and ecology of wood decay fungi associated 

with elements of structural diversity in the wet eucalypt forests in southern 

Tasmania, Australia. Wood decay fungi are defined in this thesis as fungi found on 

or inhabiting woody substrates (Nordén 2000). 

Two primary studies were conducted: the first examined the wood decay fungi 

found inhabiting living Eucalyptus obliqua trees of different ages while the second 

examined the fungi present within E. obliqua logs on the forest floor.  

The specific objectives of this thesis are: 

• To provide a morphological and molecular analysis of the taxa of wood 

decay fungi inhabiting Eucalyptus obliqua trees in the wet forests of 

southern Tasmania (Chapter 3). 

• To compare the wood decay fungi found within living E. obliqua of 

different ages, examining patterns of succession and the importance of 

large, mature trees for fungal diversity (Chapter 4). 

• To examine the relationship between wood decay fungi, rotten wood 

type and tree age in living E. obliqua (Chapter 5).  

• To identify the wood decay fungi associated with decomposing E. 

obliqua logs on the forest floor and investigate their relationship with 

rotten wood type (Chapter 6).  

• To investigate the associations between assemblages of wood decay 

fungi in large and small diameter E. obliqua logs in unlogged and 

logging regenerated forests (Chapter 7).  

• To discuss the ecological importance of structural complexity for fungal 

diversity within a production forest matrix, examining the possible 

impacts of forest management and making recommendations for future 

research directions and forest management (Chapter 8). 
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Each chapter has been written in the format of a journal article or journal article in 

development, meaning some repetition between chapters is unavoidable. 

Relationships between chapters are highlighted where appropriate. Study site 

history, descriptions and locations, as well as general sampling methods are 

presented in Chapter 2.  

Authorities of fungal species are listed only in reference tables, not throughout the 

text. 
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

2.1 The Study System 

Wet eucalypt forest is a widespread forest type in Tasmania, making up 

approximately 883 000 hectares of the 3.17 million hectares of native forest in the 

state (National Forest Inventory 2005). Wet eucalypt forests are tall open forests, 

characterised by a canopy of one or more eucalypt species and an understorey of 

either broadleaved shrubs and ferns or rainforest species (Kirkpatrick 1988). 

Dominant eucalypts in this system include Eucalyptus obliqua L’Hérit., E. regnans 

F.Muell. and E. delegatensis R.T.Baker. Of these E. obliqua is the most widespread 

and can live for up to 400 years, reaching sizes of  75 m tall and over 2 m girth 

(Alcorn et al. 2001). 

Over 48% of wet forests are reserved, while the remainder are managed for a range 

of values including timber harvesting, water supply, conservation, recreation and 

environmental protection (National Forest Inventory 2005). Since the 1960s, wet 

eucalypt forests managed for timber production have been subjected to clearfell, 

burn and sow silviculture (Gilbert and Cunningham 1972; Hickey and Wilkinson 

1999) as this attempts to mimic the natural regeneration after severe wildfire. The 

current planned rotation time is 80-100 years (Whiteley 1999). Natural fire 

frequency has been estimated to occur once every 20-100 years, however, with fires 

varying in intensity to create multi-aged stands (Hickey et al. 1998). Thus, after 

successive rotations under this silvicultural regime, a simplified stand structure is 

projected, combined with a truncated forest age (Grove et al. 2002). In particular, 

the number and volume of mature trees and large diameter logs in the landscape will 

be drastically reduced in the long-term (Grove et al. 2002) and this could have a 

profound effect on wood-inhabiting organisms such as fungi.  

This thesis describes two studies which aim to collect base-line data on the effect of 

current CBS silvicultural systems on wood-inhabiting fungi. The first study 

investigates the decay and fungal communities present within living E. obliqua trees 

of varying ages while the second study looks at fungi within different sized 

E. obliqua logs on the forest floor.  
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2.2 Study Sites and Sample Selection 

2.2.1 Study 1: Decay and wood decay fungi in living Eucalyptus obliqua. 

This study took place at the Warra Long Term Ecological Research (LTER) site in 

southern Tasmania, 60 km southwest of Hobart. Warra LTER is part of a world-

wide network of long-term monitoring sites and it is particularly focussed on 

assessing the biological, social and economic impacts of a range of silvicultural 

alternatives to clearfell, burn and sow silviculture (Hickey et al. 2001).  

Trees were selected from the two 'aggregated retention' coupes WR008I and 

WR001E, located less than 1km apart (Figure 2.2.1, Hickey et al. 2001). Three age 

classes of Eucalyptus obliqua trees are present at these sites. Two of these (69 yrs 

and 105 yrs) comprise trees that regenerated after the two most recent severe 

wildfire events in the area; in 1934 and 1898 respectively (Alcorn et al. 2001; 

Hickey et al. 1998). The third age-class (mature trees, >150 yrs) comprises trees that 

were already well established at the time of the 1898 fire and survived both fire 

events, although their exact age is uncertain (Alcorn et al. 2001). Both sites had 

similar understorey species composition, slope and aspect, described in detail in 

Alcorn et al. (2001).  

Selection of study trees 

Six E. obliqua trees in each age class (4 each from WR008I and 2 each from 

WR001E) were selected along a 100 m by 10 m transect within each coupe (Figure 

2.2.2). The first 2-4 trees along the transect within each age class were selected, 

provided they fitted specific selection criteria. These criteria were as follows:  

1) Trees must be E. obliqua; 

2) Trees must be in dominant/co-dominant strata; 

3) Trees must be within a similar size class for each age class (based on DBHOB); 

and 

4) Variables such as aspect and slope should be kept as constant as possible. 
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Figure 2.2.1. Location of the study area in southern Tasmania, showing the two study sites 

for Study 1 and six study sites for Study 2, as well as the State forest and Forest reserve 

boundaries. LT1 is WR008I and LT2 is WR001E. Refer to Table 2.3.1 for descriptions of 

the alphanumeric site codes for Study 2. Map prepared by Forestry Tasmania. 

 

 

 

Living tree sites (Study 1) 

Logging regenerated sites (Study 2) 

Mature unlogged sites (Study 2) 
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Figure 2.2.2. Location of 100 m by 10 m transects (          ) in Aggregated Retention Coupes 

(A) WR008I (grid reference 473785E, 5228171N)  and (B) WR001E (grid reference 

474935E, 5228057N). Maps provided by Forestry Tasmania. 



Chapter 2-General Materials and Methods 

 20 

           

       

     

  

 

 

 

 

 

      

 

 

 

      

 

   

Figure 2.2.3. Live tree sampling method used in this study, showing three standard sampling 

heights, each cut into two ½ metre billets to expose three different cut faces.  

 

Trees were felled to coincide with current logging regimes. Each was assessed for 

structural characteristics and examined for fungal colonisation and for decay. Prior 

to felling, trees were marked to distinguish the north side and the diameter at breast 

height over bark (DBHOB) was marked and measured. Once felled, other key 

features of each tree were recorded such as tree height, crown height and the height, 

cardinal point and size of all branches, branch stubs, knots, hollows and fire scars. 

Other features such as the presence of a dead top were also recorded. Tree age class 

was confirmed by ring counting all sample trees in the field (Leigh Edwards, pers. 

comm. 2003). Where the butt of the tree was too decayed to enable ring counting, an 

estimate of the age of the tree was obtained by counting the number of rings at 11 m 

Within the crown 

Sections samples for decay and fungi 

Sections sampled for beetles 

The three upper cut faces at each 

sampling point were examined for 

decay. Samples of decayed wood were 

excised for isolation of associated 

wood decay fungi. 

At each sampling point, two ½ metre 

billets were sampled for beetles in a 

separate study by Katherine 

Harrison. 

Below the crown 

11-12m (main stem) 
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height where decay was not as apparent. The characteristics of each tree are shown 

in Table 2.2.1.  

Table 2.2.1. Selected architectural features of all trees measured in each age class. Tree age 

class was verified by counting growth rings of each individual.  

Tree 

Code 

Age 

Class 

DBHOB 

(cm) 

Tree 

Height 

(m) 

Number 

of Stem 

Hollows 

Fire Scar 

Area (m
2
) 

Number 

of  Large 

Dead 

Branches
#
 

Dead Top 

Present 

T41 69 24 19 0 0 0 No 

T9  29 24 0 0 0 No 

T25  29 27 0 0 0 No 

T43  30 25 0 0 0 No 

T24  31 26 0 0 0 No 

T7  41 23 0 0 0 No 

Mean  30.6±5.61 24±2.82 0 0 0  

T10 105 43 31 0 0 4 No 

T30  43 28 0 0 5 No 

T2  64 30 0 0 0 No 

T40  64 33 0 0 0 No 

T42  64 32 0 0 0 No 

T3  76 32 0 0 0 No 

Mean  59±13.24 31±1.78 0 0 1.5±2.35  

T6 >150
*
 73 23 0 0.40 5 Yes 

T4  95 21 0 1.81 3 Yes 

T44  96 22 0 0.47 2 Yes 

T5  99 30 1 0.26 10 Yes 

T45  99 39 2 1.16 6 Yes 

T21  111 28 0 2.54 2 Yes 

Mean  95.5±12.42 27.2±6.79 0.5±0.84 1.11±0.91 4.7±3.08  
*
 Trees in this age class could be any age ranging from 150 years to more than 350 years 

old. 
# 
Large dead branches are those >5cm in diameter. 

 

Selection of sampling points 

Once the structural attributes were recorded, the stem of each tree was cut at three 

standard sampling points (Figure 2.2.3). These were within the main stem at 11-12m 

height, immediately below the crown, and within the live crown. These points were 

chosen as they have been found to be concentration points for decay in other studies 

(Wardlaw 1996; Wardlaw 2003). Sampling point 1 (11-12m) was representative of 

decay within the main stem of each tree and to encompass the area most prone to 

decay identified by Wardlaw (2003,  6-12m height in the main stem). Sampling 

point 2, immediately below the crown, was chosen to incorporate the majority of 

senescent branch stubs which are thought to be good colonisation points for fungi 

(Wardlaw 1996). Finally, sampling at point 3, within the crown, attempted to find 
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decay and fungi which were colonising through large living or dying branches. At 

each standard sampling point, the stem was cut into two 50cm billets, creating three 

upper cut faces.  

2.2.2 Study 2: Wood decay fungi in large and small diameter E. obliqua logs 

This study was based on the results of field work and fungal isolate morphology 

carried out by Zi-Qing Yuan from the University of Tasmania. The background/ 

field data collected by Yuan are described below. I continued this study, and 

undertook all molecular studies, wood decay enzyme tests, final fungal species 

groupings and statistical analyses. This study, by Yuan, was carried out concurrently 

with a study of saproxylic beetles in large and small diameter logs presented in Yee 

(2005). 

Location of study sites 

Sampling took place in five mature (unlogged) sites and five logging regenerated 

sites in the southern forests of Tasmania, in the vicinity of the Warra LTER site 

(Figure 2.2.1, Table 2.3.1). The mature forests were representative of unharvested 

forest with a multi-aged stand of two or more cohorts of eucalypts which had 

regenerated from successive wildfires. The logged forests were forests regenerating 

from a single rotation of clearfell, burn and sow silviculture (Alcorn et al. 2001). 

The oldest logged site was less than 33 years old, representing the first CBS 

silviculture in these forests in the 1960s. All sites were lowland wet eucalypt forests 

dominated by E. obliqua, with similar understorey species composition, slope, 

elevation and aspect. For more information on site selection see Yee (2005).  

Within each site a 50 x 50 m plot was established. This was located at least 50 m 

from the road to minimise edge effects. All sampling was conducted within this 

quadrat. 
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Table 2.3.1. Name, location and recent disturbance history of study sites in study 2 (log 

study). 

 Site name and 

Access Road 

Latitude x Longitude Year of 

clearfelling 

Year of last 

wildfire 

S 

South weld Spur 1 

43.0826 S x 146.7223 E 1975 - 

E 

Edwards Rd 

43.0918 S x 146.7473 E 1969 - 

L
o
g
g
in
g
 

re
g
en
er
at
ed
 

fo
re
st
 

PR2 

West Picton Rd 

43.1672 S x 146.6869 E 1976 - 

M 

Manuka Rd 

43.0933 S x 146.6442 E - 1906 

WR 

Manuka Rd 

43.0935 S x 146.713 E selectively 

logged 1983 

1914 

M
at
u
re
-

u
n
lo
g
g
ed
 f
o
re
st
 

P01 

West Picton Rd 

43.1667 S x 146.6869 E - 1934 

 

Selection of study logs 

At each site (Figure 2.2.1, Table 2.3.1), three large and three small diameter logs 

were sampled for wood decay fungi. These logs were all at an intermediate decay 

stage (Lindenmayer et al. 1999a; Meggs 1996), characterised by a lack of bark, soft 

sapwood, heartwood still intact but rotting in places and the logs retaining their 

original shape. In the mature forests these logs would have been recruited naturally, 

while in the logging sites, they were the result of logging harvest debris. The large 

logs all had a diameter greater than 85 cm (Table 2.3.2), representative of mature 

trees (>150 years old), while the small logs were a similar size to a tree approaching 

commercial maturity (80-100 years old) ranging from 30-60 cm diameter. Shape and 

curvature of the small diameter logs was examined closely to ensure the logs were 

not simply large branches from mature trees. 

Selection of sampling points  

Each log was sampled at six points across its length by removing a thin cross 

sectional disc and examining the face for decay (Figure 2.2.4). The six sampling 

discs were located in pairs one metre apart, with at least four metres separating each 

pair. Where decay was found in a disc, a sample of decay was removed from the 

leading edge of the decay column and returned to the lab for isolation of associated 

wood decay fungi.  
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Table 2.3.2. Names and diameter of study logs used for destructive sampling. 

 Site Large log diameter (cm)  Small log diameter (cm) 

 EDL1 87.5  EDS1 42 

E EDL2 100  EDS2 30 

 EDL3 99  EDS3 35 

 SDL1 92  SDS1 39 

S SDL2 95  SDS2 55 

 SDL3 85  SDS3 49 

 PR2DL1 94  PR2DS1 43 

PR2 PR2DL2 100  PR2DS2 52 
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  PR2DL3 95  PR2DS3 49 

 MDL1 97.5  MDS1 32 

M MDL2 125  MDS2 35 

 MDL3 95  MDS3 46 

 PO1DL1 100  PO1DS1 49 

PO1 PO1DL2 90  PO1DS2 53 

 PO1DL3 100  PO1DS3 50 

 WRDL1 90  WRDS1 43.5 

WR WRDL2 110  WRDS2 44 
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 WRDL3 105  WRDS3 33 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.4. Schematic representation of the location of sampling discs on A) small; and B) 

large diameter logs. Note that only four of the six sampling points are shown in each 

diagram. For the large logs, only one quarter of the cross-sectional area of each disc was 

examined to attempt to account for differences in sample size. 

1 m >4 m 

30-60 cm 

1 m >4 m 

>85 cm 

Area sampled per 
sampling point for 
large logs 

Area sampled per  
sampling point for 
small logs 

A) 

B) 
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2.3. Laboratory Sampling Methods 

2.3.1 Classification of rot types 

For the living trees in study one, the cut face of each billet was photographed, the 

number of patches of decay (i.e. decay columns) counted and the area of decay 

measured (Figure 2.3.1). A sample of rotten wood from each decay column was 

taken back to the laboratory for further examination. Control samples of clear 

heartwood and sapwood were also collected from each cut face.  

Rotten wood samples from both living trees and logs (study one and two) were 

grouped into preliminary rot types based on similarities in colour, texture and 

wetness of the wood and the  presence of hyphae or other fungal markings such as 

zone lines. In this preliminary grouping, colour and texture were used as the main 

indicators of rotten wood type (white or brown rot). The texture of the rotten wood 

was described as blocky, stringy, pocketed or crumbly. 

Figure 2.3.1. An example of a) a photograph taken for each cut face at each sampling point 

and b) a corresponding diagram showing the patterns of decay and the code assigned to 

each. Letters A-F represent the location of sampling of decay patches, letters H and S 

represent the location of sampling for clear heartwood and sapwood respectively. 

 

The preliminary rot types were then visually compared with those described by Yee 

(2005) from decaying logs in the southern forests of Tasmania and a final consensus 

of rot types was obtained using Yee’s (2005) original classification (see Chapter 5).   
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2.3.2 Fungal isolation from wood samples  

The isolation of fungi from decayed wood was considered a useful method for 

studying wood decay fungi on eucalypts as fruitbody surveys do not necessarily 

accurately reflect the community composition of fungi within a substrate (Rayner 

and Boddy 1988). Fruitbodies are usually formed in response to a range of 

environmental variables and so fruitbody surveys require repeated sampling to 

obtain accurate results (May and Simpson 1997). In addition, macrofungal 

fruitbodies are only occasionally encountered on living eucalypts in wet forest 

systems either in regrowth forest (T. Wardlaw, pers. comm. 2003) or mature stands 

containing old growth trees (Y. Bar-Ness, pers. comm. 2004). Different isolation 

conditions will favour different groups of fungi, however, and this is an important 

consideration when interpreting the results of these studies (May and Simpson 

1997).  

Fungi were isolated from wood samples by excising subsamples (1cm
3
 pieces) of 

wood from at least three different places around the edge of each decay column 

found in living tree and log sampling faces. Control wood samples were also 

collected from both clear heartwood and clear sapwood. All wood samples were 

then surface sterilised for 2 minutes in domestic White King bleach (approximately 

2.5% available chlorine) and incubated at 20°C for four-six weeks on specialised 

fungal media (Malt extract agar (MEA) and MAT). Malt Extract Agar is a standard 

fungal medium regularly used for the culture of wood decay fungi, while MAT is a 

more specialised medium for Basidiomycetes which is based on MEA but contains 

antibacterials and fungicides for inhibition of lower fungi and yeasts (Hopkins et al. 

2005). The specialised medium (MAT) was used as this was known to effectively 

isolate slow growing wood decay Basidiomycetes from wood (C. Mohammed, pers. 

comm., 2002; Barry et al. 2002) and it is similar to other common media selective 

for Basidiomycetes in wood and soil (Hale and Savory 1976). Basidiomycetes were 

chosen as the focus of this study, since they are one of the dominant phyla of wood 

decay fungi (Dix and Webster 1995; Simpson 1996). 

Incubating plates were examined weekly and subcultures of possible Basidiomycete 

fungi were taken when found and maintained on MEA. More than 80% of cultures 

were obtained from isolations on MAT; very few fungi of interest were found on 

MEA isolation plates. Fungi were considered to be potential wood decay fungi (and 
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therefore of interest to this study) if they either tested positive for wood decay 

enzymes or displayed some of a range of characteristic Basidiomycete characters in 

culture (Refer to section 2.4.1; Stalpers 1978). 

2.3.3 Collection and Processing of Fungal Fruitbodies  

Fungal fruitbodies were collected from a number of different locations to form a 

reference collection of identified fruitbodies, identified cultures and identified ITS 

sequences used for comparison with fungi isolated in both studies one and two. 

Macrofungal fruitbodies were collected during the fieldwork for both study one and 

two and a more general collection was made from fungi growing on wood 

throughout Tasmania. These fungal fruitbodies were usually identified to species. 

Where this was not possible, tag names were used, equivalent to those lodged in the 

Tasmanian Herbarium (TAS). Access was also granted to a collection of reference 

cultures collected internationally. For the specific details of the individual 

collections, see Section 2.4.3. These fruitbodies are being held at the CSIRO fungal 

collection in Hobart. 

Fungal cultures of all fresh fruitbodies collected were obtained by excising 8-15 

small sterile pieces of fruitbody from within the cap or stipe. These pieces were then 

sterilised for 1.5 minutes in domestic White King bleach (approximately 2.5% 

available chlorine) and incubated for four to six weeks on both MEA and MAT. An 

isolation was considered successful when the majority of fruitbody pieces resulted in 

the same mycelium. This mycelium was then subcultured and maintained on MEA 

20 ºC for the duration of the study. Copies of each isolate have been lodged with the 

CSIRO Forest Health culture collection in Hobart. 

A clean, 1 cm
3
 piece of each fruitbody was removed and stored in an eppendorf tube 

at –80 ºC to be used for DNA extraction if required. All fruitbodies were then 

described and air dried according to the instructions in Brundrett et al. (1996).  

2.3.4. Testing the reliability of isolation techniques from fruitbodies 

It was critical to the reference collection that the isolation techniques used were 

reliable and targeted appropriate species of wood decay fungi. The reliability of the 

isolation techniques used was tested by examining the accuracy of mycelial 

isolations from fruitbodies from the reference collection. Both fruitbodies and 
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mycelial cultures were subjected to PCR-RFLP analysis and the results were 

compared. This was thought to be a quick, reliable way to determine the accuracy of 

isolations as PCR-RFLP of the ITS region has been shown to differentiate well 

between species of fungi on eucalypts (Glen et al. 2001a).  

Twenty-five species of wood decay fungi were chosen from the fruitbodies collected 

by G. Gates and D. Ratkowsky (Section 2.4.3, Table 2.3.1). The 25 were mostly 

well known wood-decay or wood-inhabiting species and were therefore thought to 

be appropriate representatives for isolates obtained from the living trees or logs in 

studies one and two. 

The aerial mycelium was collected from 14-21 day old cultures of each isolate and 

the hymenial surface of dried fruitbodies and DNA was extracted from all samples 

using the glassmilk method  described in Glen et al. (2002). Amplification of the 

DNA was carried out by PCR in 50 µl volumes with similar conditions to those in 

Glen et al. (2001b). For more information see section 2.4.2. The fungal specific 

primer ITS1F (Gardes and Bruns 1993) for the ITS region of the nuclear rDNA was 

used in combination with a universal reverse primer ITS4 (White et al. 1990) as this 

pair were known to successfully amplify the ITS from nearly all fungal species 

tested (M. Glen, pers. comm. 2004; Gardes and Bruns 1993)  

Following PCR, a 7.5-10 µl aliquot of unpurified PCR product was digested for 3-4 

hours with 5 µl of reaction mix containing 1U of the restriction enzymes AluI and 

TaqI (Biotech International) according to the manufacturer’s instructions. These 

enzymes were selected since they gave unique RFLP-PCR patterns for the ITS 

region in up to 85% of Basidiomycete species previously tested (Glen et al. 2001a; 

Glen et al. 2001b). The entire digest reaction was subject to electrophoresis on a 

2.5% agarose gel for 5 hours at 4V cm
-1
. Gels were post-stained for 15 minutes in 

1µg ml
-1
 ethidium bromide and photographed under UV light. Fragments were sized 

using Kodak Digital Science 1D Image Analysis Software by reference to five 

equidistant lanes of size standards on each gel (HindIII digested bacteriophage 

lambda DNA, HpaII digested pUC19 DNA, Biotech International and Geneworks 

20 and 100bp ladders). Only those fragments larger than 100bp were used to 

discriminate RFLP groups due to poor resolution and visibility of smaller bands. 

The range of sizes considered for a single fragment varied by 5% as suggested in 
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Glen et al. (2001b). Where RFLP matches were found between the fruitbodies and 

cultures, the culture was lodged in the culture reference library. 

Table 2.3.1. Species of wood-inhabiting fungi for which cultures and fruitbodies were 

subjected to PCR-RFLP analysis to determine the accuracy of isolation techniques. 

Collection number is the number used in the CSIRO culture collection in Hobart, Australia. 

RFLP match indicates whether a successful match was obtained for RFLP patterns for both 

fruitbody and  mycelial culture and thus a successful isolation. 

Name Collection 

Number 

RFLP 

Match 

Anthracophyllum archeri (Berk.) Pegler WR079 Yes 

Armillaria hinnulea Kile & Watling WR056 Yes 

Beenakia dacostae D.A. Reid WR051 Yes 

Clitocybe semiocculta Cleland WR052 No 

Conchomyces bursiformis (Berk.) E. Horak WR092 No 

Datronia brunneoleuca (Berk.) Ryvarden WR022 No 

Ganoderma applanatum (Pers.) Pat. WR023 Yes 

Heterotextus peziziformis (Berk.) G.Cunn. WR026 No 

Hymenochaete "brown resupinate" WR087 Yes 

Panellus longinquus (Berk.) Singer WR016 Yes 

Perenniporia ochroleuca (Berk.) Ryvarden WR031 Yes 

Phellinus sp. WR036 Yes 

Pleurotus purpureo-olivaceus (G. Stev.) Segedin, P.K. 
Buchanan & J.P. Wilkie 

WR012 No 

Polypore, all-white, resupinate WR066 Yes 

Polypore, yellow-buff, resupinate WR086 Yes 

Polyporus melanopus (Sw.: Fr.) Fr. WR062 Yes 

Postia cf. caesia  (Schrad.: Fr.) P. Karst. WR018 Yes 

Pycnoporus coccineus (Fr.) Bondartsev & Singer WR114 Yes 

Rigidoporus laetus (Cooke) P.K. Buchanan & Ryvarden WR029S Yes 

Schizophyllum commune Fr.: Fr. WR097 Yes 

Stereum vellereum Berk. WR061 Yes 

Stereum ostrea (Blume & Nees: Fr.) Fr. WR055 Yes 

Trametes ochracea (Pers.) Gilb. & Ryvarden WR116 Yes 

Xylaria castorea Berk. WR095 Yes 

Xylaria castorea Berk. WR090 Yes 

 

Of the twenty-five species tested, twenty showed successful matches between RFLP 

patterns for fruitbodies and mycelial isolations (Table 2.3.1). These included all 

species of polypores (except Datronia brunneoleuca) and both isolates of Xylaria. 

With the exception of D. brunneoleuca, the five species which did not have 

successful matches between fruitbodies and cultures were mushroom-like or jelly 

fungi. Due to their small surface area to volume ratio, it is more difficult to isolate 

from these species as there are few regions which have not been exposed to external 
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contamination and the fruitbodies degenerate quickly. Jelly fungi are especially 

difficult to culture (Fenwick 1995). In addition, the Clitocybe semiocculta fruitbody 

was not as fresh as most other material, potentially reducing chances of successful 

isolation and increasing the chance of contamination. Given that 80% of cultures 

tested showed successful mycelial isolation, the technique used was deemed suitable 

for the target wood decay fungi. 

2.4 Identification of Fungi Isolated From Wood  

2.4.1 Morphological grouping of fungal isolates 

Fungal isolates were sorted into broad morphological groups based on their 

macroscopic appearance, then identified to morphospecies using traditional 

morphological taxonomy (Nakasone 1990; Stalpers 1978). Isolates were grown on 

1.5% MEA at 20ºC and examined two weeks and six weeks after subculturing. At 

both ages, the macroscopic and microscopic characteristics of the isolates were 

recorded. 

Macromorphology 

Macroscopic characters recorded include colour and texture of aerial hyphae, 

characteristics of culture margin and changes in the colour of the reverse of the 

culture medium. The specific terminology used to describe these features followed 

that of Stalpers (1978).  

At two weeks, the radius of each isolate was measured to indicate growth rate. 

Micromorphology 

The three different regions of hyphae, the marginal hyphae, submerged hyphae and 

the aerial hyphae, were examined for each culture as these often contain different 

features. In each region, the characteristics and dimensions of the generative hyphae 

were noted especially the presence, or absence, and characteristics of clamp 

connections, hyphal diameter, wall thickness, branching, pigmentation and 

ornamentation. The presence and characteristics of specialised hyphae (e.g. skeletal 

hyphae, binding hyphae, lactiferous hyphae) and other structures such as terminal 

swellings, cystidia, chlamydospores and conidia were also recorded (Stalpers 1978).  
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Enzyme Tests 

Enzyme tests were carried out to detect the production of the wood degrading 

enzymes laccase and tyrosinase by each isolate. Enzyme testing is a useful technique 

as it can be both taxonomically and ecologically important (Kaarik 1965 in Stalpers 

1978). Laccase (a lignin-degrading enzyme) and tyrosinase (a cellulose-degrading 

enzyme) were chosen for testing as these are the key enzymes for culture 

identification used by Stalpers (1978) and have been found to give a good indication 

of the decay capacity of more than 90% of isolates. Drop testing was chosen in 

preference to the use of specialised media (such as Gallic/Tannic Acid (GTA)) as it 

is a quick, reliable and repeatable way of determining enzymatic capacity (Gramss et 

al. 1998; Worrall et al. 1997), factors which are particularly important when large 

numbers of isolates are examined. One test of each of two solutions was applied to 

the culture margin of each 2 week-old isolate. The presence of laccase was indicated 

by a purple colour change to the application of 0.1M α-naphthol dissolved in 

ethanol. The presence of tyrosinase was indicated by a brown colour change to the 

application of 0.1M ρ-cresol dissolved in ethanol. Isolates were monitored for 

enzyme colour changes after 3 hours, 24 hours and 72 hours (Stalpers 1978). Each 

drop test was performed at least twice to test for reliability. 

2.4.2 Sequence analysis of fungal isolates 

Isolates from each morphospecies were selected for sequencing of the ribosomal 

DNA internal transcribed spacers (rDNA ITS) to confirm the morphological 

groupings and attempt to identify them to species or genus level. Fruitbodies and 

cultures from fruitbodies were also sequenced. The rDNA ITS is widely considered 

to be an appropriate region for fungal species differentiation as interspecific species 

variation in the ITS of many fungal species has been observed (e.g. Farmer and 

Sylvia 1998; Glen et al. 2001a; Kåren et al. 1997). The level of intraspecific 

heterogeneity does vary between species, however, and some intrageneric 

homogeneity has also been observed (Farmer and Sylvia 1998; Glen et al. 2001a). 

The conserved nature of the subunits surrounding the ITS (18S, 5.8S and 28S) also 

makes the development of universal fungal primers possible for phylogenetically 

diverse groups of fungi (White et al. 1990). As the ITS region is widely used for 

fungal studies, it is well suited for identification of unknown fungal isolates as it is 
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possible to compare their ITS sequences with those found on public databases e.g. 

Genbank, EMBL (Hoff et al. 2004; Horton and Bruns 2001). 

The aerial mycelium was collected from 14-21 day old cultures of each isolate or the 

hymenial surface of dried fruitbodies and DNA was extracted from all samples using 

the glassmilk method  described in Glen et al. (2002).  

Amplification of the DNA was carried out by PCR in 50 µl volumes with similar 

conditions to those in Glen et al. (2001b). The fungal specific primer ITS1F (Gardes 

and Bruns 1993) for the ITS region of the nuclear rDNA was used in combination 

with a universal reverse primer ITS4 (White et al. 1990) as this pair successfully 

amplified the ITS from nearly all fungal species tested (Gardes and Bruns 1993, M. 

Glen, pers. comm.) The concentration of each primer was 1 µM, dNTPs 

concentration was 0.2 mM and MgCl2 concentration was 2 mM. Each 50 µl PCR 

contained 1.1U TTH+ polymerase (Fisher Biotech) and 1x polymerisation buffer 

(Fisher Biotech). Amplification parameters were an initial denaturation at 95ºC for 3 

minutes, followed by 35 cycles of denaturation at 94ºC for 30 seconds, annealing at 

55ºC for 30 seconds and extension at 72ºC for 30 seconds, with a final extension at 

72ºC for 7 minutes.  Following PCR, 90-100 µl of PCR product was purified, 

precipitated and concentrated using the MO BIO Laboratories Inc. UltraClean PCR 

Clean-up Kit to remove primers and dNTPs.  

DNA sequencing and final ethanol precipitation were carried out according to the 

instructions provided with the Beckman Coulter GenomeLab Dye Terminator Cycle 

Sequencing with Quick Start Kit with the following modifications. Between 1 and 5 

µl of DNA template were used in a 10 µl sequencing reaction with 3.2 pmol of 

primer and 2 µl of DTCS Quick Start Master Mix. During ethanol precipitation, 0.25 

µl of 20 mg/ml of glycogen was used. Sequences were determined on a Beckman 

Coulter CEQ 8000. Forward sequences were obtained for all isolates with reverse 

sequences only when additional information was required. At least two complete 

(forward and reverse) sequences were obtained for each morphospecies.  

DNA sequences were edited using BioEdit (Hall 1999). Sequences of isolates from 

the same morphospecies were aligned in ClustalW (Thompson et al. 1994) and 

manually assessed for similarity. Once a consensus sequence was obtained for each 

morphospecies, Blast (Altschul et al. 1997) searches of public databases were 
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carried out using BioManager (ANGIS). Phylogenetic trees of each morphospecies 

were created in ClustalW and viewed in TreeView (Page 2001), including similar 

sequences downloaded from BioManager (ANGIS 2005). Sequences from related 

but different genera were used as outgroups where possible. Molecular designation 

of isolates was determined by sequence groupings from dendrograms. Where highly 

similar but non-identical sequences were obtained from several isolates, 

chromatograms were reviewed to verify nucleotide variation. 

2.4.3 Comparison of isolates with reference fungal collection 

The cultures in the reference collection came from three different sources, outlined 

below. The first two sources were collections of fresh fruitbodies which were 

cultured and maintained as described in section 2.3.3. A complete list of all 

fruitbodies collected can be found in Appendix 2.1. The third collection was a set of 

identified cultures developed and maintained by CSIRO Clayton Laboratories. 

Sequences of the ITS region of cultures from this third source were prepared by K. 

Potter and T. Trang (University of Tasmania). A list of these sequenced cultures can 

be found in Appendix 2.2. 

Collection of fungi from during Studies 1 and 2 

Fruitbodies found on, or in the vicinity of the study trees in Study 1 at the time of 

the original field work were collected. Two years following the field work in Study 

1, the study site (now logging regeneration) was revisited and any potential wood 

decay fungi were collected. Fungi from both surveys were cultured (section 2.3.3), 

described and dried (Brundrett et al. 1996). Identifications were carried out in 

consultation with Genevieve Gates and David Ratkowsky (University of Tasmania). 

Similarly, any fruitbodies found on, or in the vicinity of the study logs in Study 2 

were collected, cultured, identified and dried by Z-Q Yuan (University of Tasmania) 

following the methods outlined in Brundrett et al. (1996). 

Collection of wood inhabiting fungi from Tasmania 

This reference collection also included both fruitbodies and cultures. Reference 

fruitbodies were also obtained from more than 130 identified fruitbodies growing on 

wood collected from throughout Tasmania by D. Ratkowsky and G. Gates 

(University of Tasmania) (Ratkowsky and Gates 2005). These fruitbodies were then 
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cultured and maintained as described in section 2.3.3. The surveyed sites are listed 

in Ratkowsky and Gates (2005). 

National and international collection of wood inhabiting fungi  

This reference collection only contained mycelial cultures. Access was granted to 

the large culture collection of identified wood decay fungi developed and maintained 

by CSIRO Clayton Laboratories. Sequences of the ITS region of cultures from this 

third source were prepared by Karina Potter and Tran Tranh Trang (University of 

Tasmania). A list of these sequenced cultures can be found in Appendix 2.2. 

Comparing reference collections with study isolates 

The morphological features of all reference cultures were compared with the 

cultures isolated from wood in studies one and two. Where similarities were found 

between study isolates and reference cultures, sequences of the ITS region of the 

original reference fruitbody was obtained and compared with sequencing of the 

study isolate. More details of this process are given in section 3.2. 

2.5 Statistical Analysis 

The specific details of statistical methods used are discussed in each chapter 

however a general outline is given below. 

2.5.1 Univariate statistics 

One-way analyses of variance (ANOVA) were undertaken in SAS 9.1 (Anon. 2002), 

and unless otherwise stated, a follow up multiple comparison test (Ryan-Einot-

Gabriel-Welsch Multiple Range Test: REGW test) was used to determine the 

differences between pairs of treatment means. All standardisation techniques such as 

Chao Estimator and Rarefaction were performed in EstimateS unless otherwise 

stated.  

2.5.2 Multivariate statistics  

Both constrained and unconstrained ordination methods were used to explore 

changes in assemblage structure. Non-metric Multidimensional Scaling (NMS), an 

unconstrained ordination technique, was used to explore fungal assemblage variation 

in relation to various treatments. NMS is a non-parametric ordination technique and 
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relates the similarity of entities (e.g. trees, logs) based on ranked distances in 

multidimensional space. It is generally considered to be one of the most effective 

ordination methods for ecological community data as it deals well with zero-inflated 

data and non-normal data (McCune and Grace 2002). NMS was performed using a 

Sorensen (Bray-Curtis) distance measure in PC-ORD (McCune and Mefford 1999) 

choosing the slow and thorough autopilot method.  

The constrained technique Canonical Analysis of Principal coordinates (CAP) 

analysis (Anderson and Willis 2003) was also used to explore fungal assemblage 

structure relationships. CAP uses a priori canonical axes to examine community 

structure (Anderson and Willis 2003). CAP was performed in CAP12 (Anderson 

2004) using 9999 unrestricted random permutations of the data.  

Indicator Species Analysis was run in PC-ORD for Windows 4.25(McCune and 

Mefford 1999) and used to investigate whether particular species were significantly 

associated with parameters such as tree age class or log size. A cut-off value of 

IndVal ≥25, p<=0.05 was used. 

Mantel tests were performed in PC-ORD for Windows 4.25 (McCune and Mefford 

1999) to compare community distribution patterns such as the relationship between 

fungal and beetle community structure in living trees. Mantel tests were based on 

Non-metric Multi-dimensional Scaling (NMS) ordinations prepared in PC-ORD for 

Windows 4.25 (McCune and Mefford 1999) for each group. The Mantel tests gave p 

values based on Randomisation (Monte Carlo) tests using 1000 randomised runs. 
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Appendix 2.1 

Species of wood-inhabiting fungi cultured and sequenced as part of the reference collection 

for Studies 1 and 2. Fruitbodies in Study 2 were collected and identified by Z-Q Yuan 

(University of Tasmania) and fruitbodies in the Tasmania-wide collection were collected 

and identified by G. Gates and D. Ratkowsky (University of Tasmania). Species which were 

not able to be identified are shown with tag names only.  Numbers indicate the number of 

fruitbodies collected in each study.  

Species name Fruitbodies 

Collected 

in Study 1 

Fruitbodies 

Collected 

in Study 2 

Tasmania-

wide 

Collection 

Sequence 

Obtained 

Amauroderma rude (Berk.)Torrend.   1 Yes 

Anthracophyllum archeri (Berk.)Pegler   1  

Antrodia sp.  1  Yes 

Antrodiella zonata (Berk.)Ryvarden   2 Yes 

Armillaria hinnulea Kile & Watling  1 1 Yes 

Armillaria novaezelandiae (G. Stev.) Herink  1 1 Yes 

Ascocoryne sarcoides (Jacq.) J.W. Groves & 

D.E. Wils 

  1  

Australoporus tasmanicus (Berk.) P.K. 

Buchanan & Ryvarden 

  1 Yes 

Austroboletus sp.  1   

Beenakia dacostae D.A. Reid   1  

Beige “apricot fungus”  1  Yes 

Bisporella citrina (Batsch ex Fr.) Korf & S.E. 

Carp. 

  1  

Bisporella sp.   1  

Bisporella sulphurina (Quél.) S.E. Carp.   1  

Boletellus obscurococcineus (Höhn.) Singer 1 1   

Byssomerulius corium (Pers.: Fr.) Parmasto   2 Yes 

Callistosporium sp. “maroon on wood’    1  

Chlorociboria aeruginascens (Nyl.) Kanouse 

ex Ramamurthi, Korf & Batra 

 1 1  

Chondrostereum purpureum (Pers.) Pouzar   1  

Clavicorona piperata (Kauffman) Leathers & 

A.H. Sm. 

  1  

Clitocybe semiocculta Cleland   1  

Conchomyces bursiformis (Berk.) E. Horak   1 Yes 

Coprinus “small grey”   1 Yes 

Coprinus disseminatus (Pers.: Fr.) Gray   1  

Corticioid “red-brown”  1  Yes 

Cortinarius abnormis  1   

Cortinarius sanguineus (Wulfen) Fr.   1   

Crepidotus aff. applanatus (Pers.) Kumm.  1 2  

Crepidotus stromaticus (Cooke & Massee) Sacc.   1  

Crepidotus variabilis (Pers.: Fr.) P. Kumm.   2  

Datronia brunneoleuca (Berk.) Ryvarden   1 Yes 

Dermocybe austroveneta (Cleland) M.M. Moser 

& E. Horak 

 1   

Entoloma viridomarginatum (Cleland) E. Horak   1   

Fistulina hepatica (Schaeff.) With.  2  Yes (all) 

Flammulina velutipes  (Curtis: Fr.) Singer   2  

Fomes hemitephrus (Berk.) Cooke   1 Yes 

Fomitopsis lilacinogilva (Berk.) J.E. Wright & 

J.R. Deschamps 

  1 Yes 

Galerina sp.  2   

Ganoderma applanatum (Pers.) Pat.   1 Yes 
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Gloeoporus phlebophorus (Berk.) G.Cunn.   1 Yes 

grey jelly fungus   1  

Gymnopilus allantopus (Berk.)Pegler   1  

Gymnopilus junonius (Fr.:Fr.)P.D.Orton  1   

Heiorganum curtisii (Berk.) Singer, Garcia & 

Gomez 

  1  

Heterotextus peziziformis (Berk.) Lloyd   1  

Hohenbuehelia sp.  1 2 Yes 

Hymenochaete "brown resupinate"   1 Yes 

Hymenoscyphus pezizioideus (Cooke & 

W.Phillips) Gamundi 

  1  

Hyphodontia sp.1  1  Yes 

Hyphodontia sp.2  1  Yes 

Hypholoma brunneum (Massee) D.A. Reid  1 1  

Hypholoma fasciculare (Huds.: Fr.) P. Kumm.  1  Yes 

Hypholoma fasciculare (Huds.: Fr.) P. Kumm. 

var armeniacum Y.S. Chang & Mills ined. 

  1 Yes 

Hypholoma sublateritium (Cooke) Sacc.  2  Yes 

Hypocrea aff. sulphurea  (Schwein.) Sacc.   1  

Hypoxylon aff. placentiforme Berk. & M.A. 

Curtis 

  1  

Hypoxylon archeri Berk.   1  

Hypoxylon howeanum Peck   1  

Inonotus hispidus (Bull.) P. Karst.  1  Yes 

Lachnum lachnoderma (Berk.) G.G. Hahn & 

Ayers 

  1  

Lactarius sp.  1   

Lentinellus castoreus (Fr.)Kühner & Maire   1  

Lentinellus pulvinulus (Berk.) Pegler   1  

Lentinellus tasmanica R.H.Petersen   1  

Lycoperdon pyriforme Schaeff.: Pers.   1  

Marasmiellus affixus (Berk.) Singer   2  

Marasmius sp.  2   

Mollisia sp.   1  

Mucronella pendula (Massee) R.H. Petersen   2  

Multiclavula sp.   2  

Mycena “gelatinous grey frilly”   1  

Mycena “grey rubbery”   1  

Mycena interrupta (Berk.) Sacc.   1  

Mycena nargan Grgur.   1  

Mycena sp.  3   

Panellus ligulatus E. Horak   1  

Panellus longinquus (Berk.) Singer   1  

Panellus stipticus (Bull.: Fr.) P. Karst.   2  

Peniophora “resupinate purple”    1 Yes 

Peniophora incarnata (Pers.) P. Karst.   1 Yes 

Perenniporia ochroleuca (Berk.) Ryvarden   1 Yes 

Phellinus sp.    1 Yes 

Phellinus wahlbergii (Fr.) D.A. Reid  3 3 Yes 

Phellodon niger (Fr.) P. Karst.  1   

Phlebia sp.   1 Yes 

Pholiota pallidocaulis Y.S. Chang & A.K. Mills   1  

Pleurotus purpureo-olivaceus olivaceus (G. 

Stev.) Segedin, P.K. Buchanan & J.P. Wilkie 

  1  

Pluteus atromarginatus (Konrad) Kühner   1  

Podoserpula pusio (Berk.) D.A. Reid   1  

Polyporaceae sp.1  1  Yes 
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Polyporaceae sp.2  1  Yes 

Polyporaceae sp.3  1  Yes 

Polypore, all-white, resupinate   1 Yes 

Polypore, yellow-buff, resupinate   1 Yes 

Polyporus aff. dictyopus Mont.  1  Yes 

Polyporus cf. gayanus Lév.   1 Yes 

Polyporus melanopus (Sw.: Fr.) Fr.   1 Yes 

Polyporus sp.1  1  Yes 

Poria sp.  1  Yes 

Postia cf. caesia (Schrad.: Fr.) P. Karst.   6 Yes 

Postia pelliculosa (Berk.) Rajchenb.   2 Yes 

Postia sp.  1  Yes 

Postia, blackish brown upper surface   1 Yes 

Psathyrella echinata (Cleland) Grgur.   1 Yes 

Pseudohydnum gelatinosum (Scop.: Fr.) P. 

Karst. 

  1  

Psilocybe brunneoalbescens Y.S.Chang & 

A.K.Mills 

  1  

Psilocybe sp.   1  

Pycnoporus coccineus (Fr.) Bondartsev & 

Singer 

  2  

Resupinate fungus, unknown genus.    1 Yes 

Resupinatus "grey"   1  

Rigidoporus laetus  (Cooke) P.K. Buchanan & 

Ryvarden 

  3 Yes 

Russula persanguinea Cleland  1   

Ryvardenia  campyla (Berk.)Rajchenb.  3  Yes 

Ryvardenia campyla (Berk.) Rajchenb.   1 Yes 

Ryvardenia cretacea  (Lloyd) Rajchenb.   1 Yes 

Schizophyllum commune Fr.: Fr. 1  1 Yes 

Schizophyllum-like sp.1  1   

Steccherinum(?) sp.   1 Yes 

Stereum ‘all brown'   1  

Stereum hirsutum (Willd.: Fr.) Pers. 1 2 3 Yes 

Stereum illudens Berk. 1  1 Yes 

Stereum ochraceoflavum (Schwein.) Peck   2  

Stereum ostrea (Blume & Nees: Fr.) Fr. 1 1 1 Yes 

Stereum rugosum Pers.   1  

Stereum sp.  1   

Trametes ochracea (Pers.) Gilb. & Ryvarden     1 Yes 

Trametes versicolor (L.: Fr.) Lloyd 1 1 2 Yes 

Tremella fimbriata Pers.:Fr.   1  

Tremella fuciformis Berk.   1  

Tremella mesenterica Retz.: Fr.   1  

Tricholomataceae "Gelatinous white-on-

wood” 

  1  

Tubaria "Bettye's brown"   1  

Tubaria rufofulva (Cleland) D.A. Reid & E. 

Horak 

  1 Yes 

Tubaria sp.  2  Yes 

Tyromyces merulinus (Berk.) G. Cunn.   2 Yes 

Tyromyces sp.  1  Yes 

Unknown corticioid species   1 Yes 

Vibrissea dura G. Beaton & G. Weste   1  

Xylaria apiculata  Cooke   1  

Xylaria castorea Berk.   3  
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Appendix 2.2. 

Species of wood-inhabiting fungi cultured and sequenced by K. Potter and T. Trang from 

the CSIRO Clayton Culture Collection. DFP Code is the Clayton Collection Code. Name is 

the original name assigned to the culture and may now be out of date. Collection location 

indicates the country where the isolate was collected.  

DFP  Isolate 

Code 

Name Collection 

Location 

10679 Echinodontium tinctorium (Ellis & Everh.) Ellis & 

Everh. 
USA 

7384 Flavodon flavus (Klotzsch) Ryvarden Japan 

6413 Fomitopsis palustris (Berk. & M.A. Curtis) Gilb. & 

Ryvarden 
India 

7381 Fomitopsis pinicola (Sw.) P. Karst. Spain 

10323 Fomitopsis spraguei (Berk. & M.A. Curtis) Gilb. & 

Ryvarden 
USA 

11112 Gloeocystidiellum porosum (Berk. & M.A. Curtis) 

Donk 
New Zealand 

7872 Gloeophyllum odoratum (Wulfen) Imazeki USA 

6241 Gloeoporus dichrous (Fr.) Bres. USA 

10274 Hymenochaete corrugata (Fr.) Lév. India 

11114 Hyphodontia sambuci (Pers.) J. Erikss. New Zealand 

7380 Laricifomes officinalis (Vill.) Kotl. & Pouzar Spain 

10807 Lentinus cyathiformis (Schaeff.) Bres. Germany 

7382 Lentinus squarrosulus Mont. Spain 

10806 Lentinus tigrinus (Bull.) Fr. Germany 

5259 Lenzites betulina (L.) Fr. Portugal 

2543 Lenzites elegans (Spreng.) Pat. New Guinea 

2378 Neolentinus lepideus (Fr.) Redhead & Ginns UK 

2384 Neolentinus lepideus (Fr.) Redhead & Ginns UK 

2385 Neolentinus lepideus (Fr.) Redhead & Ginns UK 

2386 Neolentinus lepideus (Fr.) Redhead & Ginns UK 

2387 Neolentinus lepideus (Fr.) Redhead & Ginns UK 

7519 Neolentinus lepideus (Fr.) Redhead & Ginns USA 

16544 Phanerochaete chrysosporium Burds. USA 

6235 Phellinus conchatus (Pers.) Quél. USA 

6987 Phellinus lloydii (Cleland) G. Cunn. New Zealand 

2390 Phellinus weirii (Murrill) Gilb. UK 

2445 Phellinus weirii (Murrill) Gilb. Canada 

2447 Phellinus weirii (Murrill) Gilb. Canada 

2447 Phellinus weirii (Murrill) Gilb. Canada 

10022 Pleurotus ostreatus (Jacq.) P. Kumm. UK 

5250 Polyporus brumalis (Pers.) Fr. Portugal 

7956 Postia sericeomollis (Romell) Jülich USA 

7378 Pycnoporus sanguineus (L.) Murrill Spain 

6225 Radulomyces confluens (Fr.) M.P. Christ. USA 

7726 Rigidoporus crocatus (Pat.) Ryvarden USA 

8330 Rigidoporus sanguinolentus (Alb. & Schwein.) Donk UK 

2377 Serpula lacrymans (Wulfen) J. Schröt. UK 

14579 Tinctoporellus epimiltinus (Berk. & Broome) 

Ryvarden 
Zambia 

14579B Tinctoporellus epimiltinus (Berk. & Broome) 

Ryvarden 
Zambia 

6242 Trichaptum biforme (Fr.) Ryvarden USA 
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CHAPTER 3: IDENTIFICATION OF WOOD DECAY FUNGI FROM 

LIVING EUCALYPTUS OBLIQUA TREES 

3.1 Introduction 

Wood decay fungi are central to many ecosystem processes including the recycling 

of nutrients and the creation of decayed wood habitat in natural ecosystems (Grove 

et al. 2002; Heilmann-Clausen and Christensen 2003) and are also recognised as one 

of the major factors threatening solid wood production in eucalypts (Kile and 

Johnson 2000; Wardlaw 2003). Wood decay fungi are also biologically important in 

their own right as a diverse and speciose group of organisms (Simpson 1996). More 

than 1500 species of macrofungi are known to inhabit wood in Finland (Siitonen 

2001) while 1250 species are estimated from Denmark (Heilmann-Clausen 2003) 

and 1100 species from Sweden (Gustafsson 2002). Microfungi, while less well 

known, are also thought to frequently grow within or on wood (e.g. Lumley et al. 

2000). 

Despite their ecological and commercial importance, the taxonomy of wood decay 

fungi in Australia is poorly developed (Hood 2003; May 2001; Simpson 1996). In 

contrast with Europe and North America, where decay species are relatively well 

characterised (Boddy 2001; Nordén and Paltto 2001), the identification of wood 

decay fungi in Australia is often problematic since many decay species are not yet 

named (or even discovered!) (Buchanan 1989; Buchanan 2001). Of the predicted 

250 000 species of fungi in Australia, as few as 5% of these have been identified and 

described in detail (Hawksworth 1991; May and Pascoe 1996). This is primarily due 

to lack of professional mycologists and the short history of mycological research in 

Australia. In 1996 there was the equivalent of less than ten full time taxonomic 

mycologists in Australia (May and Pascoe 1996) and the situation is little different 

today. Much of the taxonomy of wood decay fungi in Australia is therefore based on 

outdated monographs of Australasian fungi (e.g. Cunningham 1963; Cunningham 

1965) or applications of northern hemisphere works (see Buchanan 2001; Simpson 

1996) although a few good Australian publications do exist (e.g. Fuhrer and 

Robinson 1992; Hood 2003; see also McCann 2003). Since the taxonomy of higher 

fungi is primarily based on the description of  fruitbodies, the sporadic and cryptic 
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appearance of many fungal fruitbodies (an international phenomenon) also 

complicates matters.  

The poor understanding of fungal taxonomy in Australia is further highlighted when 

the taxonomy of cultures of wood decay fungi is considered. In countries with a 

longer history of fungal taxonomy, it may be possible to identify a large proportion 

of wood decay fungi from their cultures. In Australia, however, this is rarely the case 

unless they can be matched to a culture from a known fruitbody (Buchanan 1989). 

There are few publications to assist in the description and identification of 

basidiomycete wood decay fungi in culture, however, they include Nobles (1948), 

Stalpers (1978) and Nakasone (1990). While all provide useful information about 

fungal taxonomy, they include few, if any, Australian species and so may not result 

in identification even to family level. Stalpers (1978) is the only comprehensive key 

to include fungal isolates from Australia and for this reason, is the basic key 

followed here. 

Molecular techniques are increasingly being used to augment cultural morphology 

and attempt to identify wood decay fungi and their phylogenetic relationships 

directly (Adair et al. 2002; Glen et al. 2006a; Johannesson and Stenlid 1999; Oh et 

al. 2003; Vainio and Hantula 2000). PCR-RFLP (polymerase chain reaction – 

restriction fragment length polymorphism) has consistently been used to 

discriminate fungi to species level and beyond (e.g. Gardes and Bruns 1996; Glen et 

al. 2001b; Johannesson and Stenlid 1999; Kåren et al. 1997; Kauserud and 

Schumacher 2002) due to its speed and accuracy. With the development of improved 

technology however, PCR and sequencing of fungi is increasingly proving a fast, 

reliable and inexpensive method of detecting fungal species relationships, providing 

more taxonomic information than can be achieved with PCR-RFLP (Bougoure and 

Cairney 2005; Hoff et al. 2004; Horton and Bruns 2001; Silva-Pinhati et al. 2004).   

Although a wide variety of organisms are known to inhabit decayed wood, the 

majority of active decay species are Basidiomycetes together with some 

Ascomycetes such as the Xylariaceae (Rayner and Boddy 1988; Schwarze et al. 

2000). Agarics, corticioid and polypore species are the most commonly observed 

morphological groups (Bader et al. 1995; Buchanan 1989; Heilmann-Clausen 2003; 

Nordén 2000). These three groups accounted for more than three quarters of the 277 

species of macrofungi found on deciduous wood in Danish forests (Heilmann-



Chapter 3-Identification of Wood Decay Fungi 

 42 

Clausen 2003). Examples of well known cosmopolitan pathogenic fungi include the 

agarics Armillaria spp., the polypores Phellinus spp., Inonotus spp. and Ganoderma 

spp. and the corticioids Phlebia, Coniophora and Peniophora spp. (Boddy 2001). 

Although relatively rare, fungi found fruiting on living eucalypts include species of 

Armillaria, Fistulina, Gymnopilus, Hymenochaete, Inonotus, Phellinus, and 

Piptoporus (Kile and Johnson 2000; May and Simpson 1997). Very little is known 

about their ecology however, and their taxonomy is generally not well developed 

(Buchanan 2001; Buchanan and May 2003; May 2001; May and Simpson 1997).   

This chapter documents the species of fungi associated with decayed wood in living 

Eucalyptus obliqua trees in southern Tasmania in three age classes: 69 year old and 

105 year old regrowth
1
 trees, and mature trees greater than 150 years old. The fungi 

described in this study were obtained by isolation from decayed wood, not by the 

collection of fungal fruitbodies, thus making the development of effective methods 

for the identification of Australian fungal cultures central to this study. While this 

thesis is predominantly ecologically focussed, the taxonomy of cultures of wood 

decay fungi was quickly identified as needing more thorough attention. Two 

identification methods, traditional morphological methods and DNA sequencing, 

were used to provide complementary information to determine robust groupings at a 

probable species level. As well as determining groupings of isolates, sequence data 

were used to provide tentative identifications based on searches of public databases 

and similarities to reference collections.  

 

 

 

 

 

                                                 

1
 NB Trees in both these age classes (i.e. 69 and 105 years old) are regrowth from wildfire, not 

regrowth from logging. 
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3.1.1 Glossary 

This study examines a number of different methods used to group isolates into 

putative species or species groups. The different terminology used to describe these 

groupings is explained below. 

Morphological species: putative species determined by morphological examination 

of cultures.  

ITS species: putative species determined by dendrograms based on molecular 

sequence information.  

Species /Final species: inferred species determined using the combined 

morphological and molecular information. These are the putative species which 

were used for the remainder of the analyses in this study. 

Main species: species which contain more than one isolate. 

Singletons: Species which contain only one isolate (ie were only found once). 

Ungrouped isolates: Isolates with unremarkable morphological features which were 

not able to be allocated to a morphological grouping. 

3.2 Methods 

Species delineation 

A total of 18 E. obliqua trees, six from each of three age classes (69, 105 and 150 

years old) in two adjacent sites in southern Tasmania, were felled and examined for 

wood decay fungi as described in Section 2.2. Isolations were carried out from clear 

sapwood and heartwood as well as samples of rotten wood collected at each 

sampling point. 

Two methods were used to group and identify the fungal species present (Section 

2.4). First, a traditional morphological analysis of all fungal isolates was carried out 

(Stalpers 1978), followed by a DNA sequencing study of the isolates to test the 

morphological groupings and gain a better understanding of their taxonomic 

affiliations. Representatives of each morphological group were sequenced. Between 

two and 15 isolates of each morphological group were chosen to cover the full 

spectrum of morphological and tree/location variation within each morphological 

group. Ungrouped or singleton isolates were also subjected to sequencing, both for 

identification and classification purposes. If sequence variation was found, further 

isolates were sequenced to enable the determination of two or more groups. Based 
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on the results of the molecular study, the morphological grouping was then revisited 

and the macroscopic and microscopic features re-examined. The final fungal species 

groupings used in this study were based on the results of both the morphological and 

molecular data. For more details of this process refer to Section 2.4. Public 

databases were searched for the best match to consensus sequences from the final 

fungal species groupings using BLAST (Altschul et al. 1997) to assist in providing 

tentative identifications. 

Comparison with reference isolates 

Sequences of study isolates and reference fungi were aligned and dendrograms were 

created using Clustalw (Thompson et al. 1994) and DNAml of the Phylip package 

(ANGIS; Felsenstein 1989) and viewed in TreeView (Page 2001). Sequences were 

considered likely to belong to the same species if there was less than 1-2% variation 

between them, however this did depend on the species involved (for more 

information see Section 3.4 or Glen et al. 2001a). A more general search of 

sequences in the reference collection was also carried out for matches with the 

sequence of each final fungal species grouping using FastA (Pearson and Lipman 

1988). 

3.3 Results 

Isolation rates 

Three hundred and twelve isolates of wood decay fungi were obtained from 18 

living trees. The majority of these isolates were obtained from samples of wood  

from the leading edge of decay columns (70.8%, Table 3.3.1). Only a few isolates of 

wood decay fungi were obtained from the samples of clear heartwood and sapwood 

(15.1% and 14.1% respectively). The rotten wood samples resulted in the greatest 

isolation success rate at 65.7% while only 23.8% of the heartwood and 27.5% of the 

sapwood samples yielded wood decay fungi. Those wood samples that did not yield 

isolates of wood decay fungi yielded either common contaminant fungi (e.g. 

Penicillium spp., Mucor spp.) or did not grow any fungi while incubated on media 

for six weeks.  
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Table 3.3.1. Proportion of fungal isolates obtained from the different wood samples, and the 

isolation success rate for each wood sample type. Isolation success rate was determined by 

dividing the total number of isolates from each wood sample type by the total number of 

wood samples collected for that same wood sample type. 

Wood sample type Decayed 

Wood 

Clear 

Heartwood  

Clear 

Sapwood 

All 

Proportion of isolates (%) 70.8 15.1 14.1 - 

Isolation success rate (%) 65.7 23.8 27.5 46.5 

 

Morphological grouping of fungal isolates 

All isolates were described morphologically and were sorted into nine main 

morphological species and 145 ungrouped isolates. These nine main morphological 

species are described briefly in Table 3.3.2. Two morphological species (M04 & 

M06) were thought to belong to the Hymenochaetaceae due to the presence of setae 

or setal hyphae (Stalpers 1978). The remaining morphological species could not be 

identified from morphological information alone. 

Table 3.3.2. The primary distinguishing features of each of the nine main morphological 

groups found in the study. 

Distinguishing features: Morphological 

group code Macroscopic Microscopic 

M01 Culture white, becoming brown 

and white with age. Aerial 

mycelium silky to felty. 

Single clamp connections 

present at every septum, 

monomitic, oil filled terminal 

swellings in aerial and 

submerged hyphae. 

M02 Culture white, becoming yellow 

with age. Aerial mycelium 

woolly to felty. Can produce 

small brown fruitbody primordia 

after 6 weeks. 

Single clamp connections 

present at every septum, 

monomitic, oil filled terminal 

swellings in aerial and marginal 

hyphae. 

M03 Culture white to cream. Aerial 

mycelium woolly becoming silky 

with age. 

Multiple clamp connections 

present in marginal hyphae, 

sometimes aerial hyphae. 

Chlamydospores and 

arthroconidia present. 

M04 

(Hymenochaetaceae) 

Culture white quickly becoming 

brown to dark brown. Aerial 

mycelium silky, reverse dark. 

Hyphae simple septate, often 

pigmented brown, septa 

ampullate. Setal hyphae and 

setae present in submerged 

hyphae. 

M05 Culture hyaline, becoming 

orange or reddish with age. 

Aerial mycelium silky to absent. 

Single clamp connections 

occasionally present, thick-

walled generative hyphae, 

gloeocystidia and 

chlamydospores.  
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Distinguishing features: Morphological 

group code Macroscopic Microscopic 

M06 

(Hymenochaetaceae) 

Culture white, becoming 

greenish-yellow with age. Aerial 

mycelium cottony to woolly. 

Reverse becomes greenish-

yellow/brown with age. 

Hyphae simple septate, often 

highly branched and pigmented 

light brown. Chlamydospores 

and setal hyphae often present. 

M07  Culture white, becoming yellow 

in places with age. Aerial 

mycelium silky. 

Single clamp connections 

present at every septum, thick-

walled generative hyphae, early 

binding hyphae, 

chlamydospores present. 

M08  Culture white, aerial mycelium 

woolly. 

Single clamp connections 

present at every septum, 

arthroconidia, chlamydospores 

and terminal swellings present. 

Xylariaceae Cultures white, becoming black 

in patches with age. Some 

produce black, stick-like 

fruitbodies with age. 

Simple septate hyphae, 

Intercalary hyphal swellings 

often present. 

 

Sequence information changed the morphological species grouping 

Useful sequence information was obtained from 167 isolates which were then 

compared using ClustalW and TreeView. Examples of these comparisons can be 

seen in Appendix 3.2. For the majority of isolates, the sequence information 

confirmed the morphological species groupings. Where this was not the case, one of 

two situations occurred. Either the sequence of some ungrouped isolates matched 

those within existing morphological species and all were combined into one ITS 

group, or there were found to be two or more distinct sequence types within a 

morphological species. In the second situation, the morphological species was 

divided into two or more ITS species. Some ungrouped isolates were also found to 

have similar sequences to other ungrouped isolates and so were combined to form a 

new ITS species. Based on this information, all the isolates were classified into 18 

ITS species and 80 singletons.  

Obtaining the final species  

Based on the combined information from the morphological and ITS sequence 

analyses, a total of 91 final species were identified, 20 of which were common. In 

the few cases in which the morphological and molecular analyses gave conflicting 

results, both sets of data were revisited. In cases where the sequence information 

was similar but the morphology markedly different, isolates were considered to be 
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different species. The reverse was also true; if culture morphology was similar but 

sequence information was very different (>3%), isolates were considered different 

species. The determination of final species for each species is shown on Table 3.3.3. 

The relationships between ITS sequences of the main species are shown in 

Appendix 3.2. 

For example, M01 was considered a discrete morphological group based on the 

presence of single clamps, a distinctive brown and white aerial mycelium and 

predominantly positive tests for both laccase and tyrosinase. An examination of 

DNA sequences grouped a number of ungrouped isolates with M01, resulting in two 

similar, yet distinct putative ITS species. Thus two ITS groups were recognised: 

Postia-like sp.1 and Postia-like sp.2 (Figure 3.3.1). The majority of isolates in 

Postia-like sp.2 were originally morphologically ungrouped isolates. A further 

examination of the morphology isolates in Postia-like sp.1 identified a few isolates 

(originally morphologically ungrouped) which had markedly different morphology 

from the majority of isolates in Postia-like sp.1. Thus these were determined to be 

separate species and designated Postia-like sp.6 and Postia-like sp.7 in the final 

species grouping. From the DNA sequence and dendrogram information, it was 

unclear whether Postia-like sp.2 was comprised of one or two species. The 

morphology of isolates within these putative species was revisited and two distinct 

morphologies were identified which coincided with slight sequence variation. These 

were designated Postia-like sp.4 and Postia-like sp.5 in the final species grouping. 

Another putative morphological species, M07 was also found to have approximately 

90% sequence similarity to Postia-like sp.1, however this group falls into a distinct 

clade in the ML tree, a distinction supported by the morphological data. It was 

designated as Postia-like sp.3. Each of the final Postia-like species groups, except 

for Postia-like sp.1, was a monophyletic group in the ML tree, even though, for 

example species 1, 6 and 7 together or species 4 and 5 together also form 

monophyletic groups.  
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Table 3.3.3. A diagrammatic representation of the process of determining the final species 

groupings. 

Morphological 

species  

 ITS species   Final Species  

M01  Postia-like sp.1  Postia pelliculosa
*
 

Ungrouped     Postia-like sp.6 

isolates    Postia-like sp.7 

  Postia-like sp.2  Postia-like sp.4 

    Postia-like sp.5 

M07  Postia-like sp.3  Postia-like sp.3 

M02  Fistulina-like sp.1  Fistulina-like sp.1 

M03  Coniophora-like 

sp.1 

 Coniophora-like sp.1 

  Coniophora-like 

sp.2 

 Coniophora-like sp.2 

Ungrouped 

isolates 

 Coniophora-like 

sp.3 

 Coniophora-like sp.3 

M04  Hymenochaetaceae 

sp.1 

 Hymenochaetaceae 

sp.1 

M05  Basidiomycete 

sp.1 

 Basidiomycete sp.1 

  Basidiomycete 

sp.2 

 Basidiomycete sp.2 

M06  Hymenochaetaceae 

sp.2 

 Hymenochaetaceae 

sp.2 

Xylariaceae  Xylariaceae sp.1  Xylariaceae sp.1 

Ungrouped 

isolates 

    

Ungrouped  Ascomycete sp.1  Ascomycete sp.1 

isolates  Ascomycete sp.2  Ascomycete sp.2 

M08  Basidiomycete 

sp.3 

 Basidiomycete sp.3 

Ungrouped   Athelia-like sp.1  Athelia-like sp.1 

isolates  Basidiomycete 

sp.4 

 Basidiomycete sp.4 

  Hypholoma 

fasciculare 

 Hypholoma 

fasciculare 

  Phlebia-like sp.1  Phlebia-like sp.1 

  Stereum-like sp.1  Stereum-like sp.1 

  Trametes 

versicolor 

 Trametes versicolor 

* In the final species analysis, the largest division of Postia-like sp.1 was re-named Postia 

pelliculosa due to a strong match with ITS sequences from a Postia pelliculosa fruitbody in 

the reference collection. 
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Figure 3.3.1. Maximum likelihood tree from analysis of ITS sequences of all Postia-like 

isolates. The Postia subcaesia outgroup is a sequence downloaded from GenBank 

(Accession No. AY599577). The initial molecular designation is shown on the left-hand 

side of the dendrogram while the final species groups are shown on the right-hand side of 

the dendrograms. The bar represents an expected sequence variation of 10%. The columns 

on the right-hand side of the graph show a few of the characters used to discriminate the 

isolates morphologically. Mycelial colours are W=white, B=brown, Y=yellow. The 

presence or absence of the wood decay enzymes laccase and tyrosinase is indicated by + or 

– with +/- indicating a variable result. The presence of terminal swellings in the mycelium is 

also indicated by + or -. In the final species analysis, Postia pelliculosa was named due to a 

strong match with ITS sequences from a Postia pelliculosa fruitbody in the reference 

collection (AH436). 
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Identifying the fungi: Matches with public databases 

Blast searches using all 167 sequences were carried out on public databases (e.g. 

GB, EMBL, DDBJ). One of the 20 species showed very high similarity to a 

sequence from a known species (Hypholoma fasciculare, Table 3.3.4, Appendix 1), 

giving a good indication of the identity of the fungus (based on percentage similarity 

and length of matching region). Of the remaining 19 species, 14 had lower sequence 

similarity (87-97%) to sequences of fungi lodged on GenBank, giving a good 

indication of genus or family. Five of the species did not have successful matches to 

family level, however their identity as fungal sequences was confirmed to division, 

usually by high similarity of the 5.8S region. A number of singletons also showed 

good matches with sequences from GenBank (Table 3.3.5). 

Table 3.3.4. Results of searches for sequences matches in GenBank with main species 

groups. Sequence match quality indicates the value of the taxonomic information obtained 

from the Blast search, based on percentage similarity and length of matching region. 

Sequences are shown in Appendix 1. 

Final Species 

Group 

Closest Blast 

Match 

Number 

of bases 

matched
1
 

% Match Origin of 

Closest 

Match 

Sequence 

Match 

Quality 

Ascomycete sp.1 Assorted 

Ascomycete 

species 

478/513 94-96% Canada, 

USA 

Poor 

Xylariaceae sp.1 Xylaria sp. 493/561 98-100% USA, 

Spain 

Moderate 

Athelia-like sp.1 Athelia 

arachnoidea, A. 

epiphylla 

581/690 96-97% USA Moderate 

Basidiomycete sp.1 Phlebia 

brevispora, and 

assorted 

Aphyllophorales 

170/623 99%  Japan Poor 

Basidiomycete sp.2 Assorted 

unspecified fungi 

   Poor 

Basidiomycete sp.3 Antrodia, 

Oligoporus, 

Fomitopsis rosea 

240/602 91-100% France, 

Germany 

Poor 

Basidiomycete sp.4 Stereum 

sanguinolentum 

193/506 99% Sweden Poor 

Coniophora-like 

sp.1 

Coniophora 

marmorata 

522/670 94-96% Germany Moderate 

Fistulina-like sp.1 Fistulina 

hepatica 

502/761 95% USA Moderate 

Hymenochaetaceae 

sp.1 

Hymenochaete 

adusta, Inonotus 

hispida 

427/687 91-94% South 

Korea 

Moderate 

Hymenochaetaceae 

sp.2 

Inonotus hispida 396/687 86-89% South 

Korea 

Moderate 
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Final Species 

Group 

Closest Blast 

Match 

Number 

of bases 

matched
1
 

% Match Origin of 

Closest 

Match 

Sequence 

Match 

Quality 

Hypholoma 

fasciculare 

Hypholoma 

fasciculare 

579/592 97% Sweden Good 

Phlebia-like sp.1 Phlebia radiata 476/550 88-89% USA Moderate 

Postia pelliculosa Postia subcaesia 309/632 88-96% China Moderate 

Postia-like sp.3 Oligoporus 

rennyi, Postia 

spp. 

460/681 87-89% UK Moderate 

Postia-like sp.4 Postia balsamea, 

Postia subcaesia  

355/640 90-93% UK, USA Moderate 

Postia-like sp.5 Oligoporus 

rennyi, Postia 

spp. 

334/623 90-91% UK Moderate 

Postia-like sp.6 Postia subcaesia 299/601 91% China Moderate 

Postia-like sp.7 Postia balsamea, 

Postia caesia 

254/590 90% China Moderate 

Stereum-like sp.1 Stereum 

annosum, 

S. hirsutum 

395/556 97% Tunisia Moderate 

1
Length of matching sequence/full length of sequence 

Table 3.3.5. Results of searches for sequences matches in Genbank with singleton species 

groups. Sequence match quality indicates the value of the taxonomic information obtained 

from the Blast search, based on percentage similarity and length of matching region. Only 

Moderate or Good matches shown. Sequences are shown in Appendix 1. 

Final Species 

Group 

Closest Blast 

Match 

Number 

of bases 

matched 

Percentage 

Match 

Origin of 

Closest 

Match 

Sequence 

Match 

Quality 

Ascocoryne sp.1 Ascocoryne 

sarcoides 

482/544 92% USA Moderate 

Metarhizium 

flavoviride 

Metarhizium 

flavoviride  

502/536 97% Australia Good 

Nectria 

radicicola 

Nectria radicicola 454/476 97% Sweden Good 

Xylaria sp.1 Xylaria arbuscula 463/500 93% USA Moderate 

Athelia sp.2 Fibulorhizoctonia/

Athelia spp. 

422/495 92% USA Moderate 

Coniophora-like 

sp.2 

Coniophora 

marmorata 

522/670 94% Germany Moderate 

Fomitopsis-like 

sp.1 

Fomitopsis rosea 411/461 92% Norway Moderate 

Gymnopilus 

allantopus 

Gymnopilus 

allantopus 

418/415 99% Australia Good 

Hypholoma sp.1 Hypholoma 

fasciculare 

371/430 95% Sweden Moderate 

Hypholoma sp.2 Hypholoma 

fasciculare 

289/297 96% Germany Moderate 

Peniophora 

aurantiaca 

Peniophora 

aurantiaca 

513/525 97% Sweden Good 

Peniophora 

cinerea 

Peniophora cinerea 290/294 99% Sweden Good 

Phanerochaete Phanerochaete 569/584 97% Korea Good 
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Final Species 

Group 

Closest Blast 

Match 

Number 

of bases 

matched 

Percentage 

Match 

Origin of 

Closest 

Match 

Sequence 

Match 

Quality 

sordida sordida 

Polyporus 

gayanus 

Polyporus gayanus 436/442 98% Sweden Good 

Psathyrella-like 

sp.1 

Psathyrella 

gracillis 

539/578 93% Canada Moderate 

Steccherinum-

like sp.1 

Steccherinum 

litschaueri 

463/527 93% Sweden Moderate 

Trametes 

ochracea 

Trametes ochracea 539/540 99% Russia Good 

Trametes 

versicolor 

Trametes versicolor 573/575 99-100% USA Good 

Typhula-like sp.1 Typhula spp. 189/438 97% USA Moderate 

 

Comparison to reference isolates 

There were only three matches between the study isolates and the reference 

collection for either culture morphology or ITS sequence information. A significant  

ITS sequence match (>97% similarity) was found between Postia-like sp.1 and  

Postia pelliculosa from the reference collection of Gates and Ratkowsky (see 

Chapter 2). In addition, two species which were previously identified through 

sequence matches on Genbank, also matched the same species found within the 

reference collection. These were Trametes versicolor and Hypholoma fasciculare. 

No other useful information was obtained from the reference collection data that was 

not already known from searches of public databases. 

Final species  

A total of 91 fungal species were determined from the 18 living trees examined. Of 

these 91 species, 20 species were isolated more than once and are herewith referred 

to as the main species. Two of the main species were ascomycetes and 18 were 

basidiomycetes (Table 3.3.6). Of the ascomycetes, one species group was in the 

Xylariaceae while the other was of uncertain family. Four of the basidiomycetes 

were of uncertain family while the remainder showed ITS sequence matches with 

members of a range of families within the Polyporales, Agaricales, 

Hymenochaetales, Boletales and Russulales. The singleton species groups showed 

similar taxonomic patterns: Four were ascomycetes and 67 were basidiomycetes. 

Fifty-three of the basidiomycetes remained un-named even to order. This is either 

due to difficulty obtaining a sequence or due to there being no sequence matches on 
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public databases. Of the 14 singleton basidiomycetes which returned a reasonable 

match in sequence searches, seven were in the Polyporales, five in the Agaricales, 

and one in each of the Russulales and Boletales.  

Table 3.3.6. Final species (follows taxonomy of Kirk et al.(2001)). 

Fifty-three of the un-named basidiomycete singletons are not 

included. Isolation frequency refers to the number of cut faces from 

which a species was isolated.  

SPECIES ISOLATION FREQUENCY 

ASCOMYCOTA  

  

Incertae sedis  

Ascomycete sp.1 9 

  

Helotiaceae  

Ascocoryne sp.1 1 

  

Nectriaceae  

Metarhizum flavoviride Sorokïn. 1 

Nectria radicicola Gerlach & L. Nilsson 1 

  

Xylariaceae   

Xylariaceae sp.1 

Xylaria sp.1 

11 

1 

BASIDIOMYCOTA  

  

Incertae sedis  

Basidiomycete sp.1 14 

Basidiomycete sp.2 3 

Basidiomycete sp.3 2 

Basidiomycete sp.4 2 

  

Coprinaceae  

Psathyrella-like sp.1 1 

  

Cortinariaceae  

Gymnopilus allantopus (Berk.) Pegler 1 

  

Fistulinaceae  

Fistulina-like sp.1 4 

  

Strophariaceae  

Hypholoma fasciculare (Huds.) P. Kumm. 6 

Hypholoma sp.1 1 

Hypholoma sp.2 1 

  

Typhulaceae  

Typhula-like sp.1 1 

  

Coniophoraceae  

Coniophora-like sp.1 7 

Coniophora-like sp.1 1 
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SPECIES ISOLATION FREQUENCY 

Hymenochaetaceae  

Hymenochaetaceae sp.1 5 

Hymenochaetaceae sp.2 3 

  

Atheliaceae  

Athelia-like sp.1 

Athelia-like sp.2 

4 

1 

  

Fomitopsidaceae  

Fomitopsis-like sp.1 1 

Postia pelliculosa (Berk.) Rajchenb. 30 

Postia-like sp.3 4 

Postia-like sp.4 

Postia-like sp.5 

Postia-like sp.6 

Postia-like sp.7 

5 

4 

2 

2 

  

Meruliaceae  

Phlebia-like sp.1 2 

  

Phanerochaetaceae  

Phanerochaete sordida (P. Karst.) J. Erikss. 
& Ryvarden 

1 

  

Polyporaceae  

Polyporus gayanus Lév. 1 

Trametes-like sp.1 1 

Trametes versicolor (L.) Lloyd 1 

  

Steccherinaceae  

Steccherinum-like sp.1 1 

  

Peniophoraceae  

Peniophora aurantiaca (Bres.) Bourdot & 
Galzin 

1 

  

Stereaceae  

Stereum-like sp.1 2 
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3.4 Discussion 

This study demonstrates the high fungal species richness of living eucalypts, with 91 

different species of fungi isolated from the wood of just 18 E. obliqua trees. Of these 

91 species, 20 were considered to be common. Using a wood cutting method similar 

to that used in this study, Hood et al. (2004) identified just 6 common species of 

fungi (along with an unspecified number of rare species) on 16 freshly felled 

podocarp stems in New Zealand. In Sweden, 25 fungal species were isolated from 

10 recently dead Norway spruce logs (Gustafsson 2002) and in Japan, 10 species of 

fungi were isolated from five Japanese beech logs (Fukasawa et al. 2005).  

Few studies have examined the species of wood decay fungi present within living 

eucalypt trees. Tamblyn (1937) found Polyporus eucalyptorum (now Laetiporus 

portentosus (Berk.) Rajchenb.) to be commonly present in mature E. marginata and 

Refshuage (1938) described eight fungi in mature E. regnans. In this study, a 

number of taxa of commonly recognised wood decay fungi were found, including 

closely related relatives of Coniophora, Fistulina, Fomitopsis, Inonotus, Xylaria, 

Stereum and  Postia and the cosmopolitan species Hypholoma fasciculare and 

Trametes versicolor. Interestingly, many of the isolates were closely related to fungi 

with corticioid fruitbodies such as Coniophora, Phlebia and Athelia. Of the 27 final 

species with a tentative identification, 12 are closely related to corticioid genera. 

Corticioid basidiomycetes accounted for more than one-third of the 277 species of 

fungi observed fruiting in Danish beech forests (Heilmann-Clausen 2003).  

Where fungi were able to be identified, this study has found new species records for 

several fungi. This study is thought to be the first record of Peniophora aurantiaca 

and Polyporus gayanus in Australia, both previously known only from the northern 

hemisphere (I. Hood, pers. comm. 2006). Gymnopilus allantopus has been 

commonly described from soil and rotten logs (Rees 2001) but this is likely to be the 

first record of this species isolated from within a living tree stem. It is important to 

remember, however, that these species have been identified primarily based on 

matches between their ITS sequences and those on GenBank. Without either finding 

a fruitbody for traditional taxonomic study or matching the sequences of further 

gene regions, it is not completely certain that they are exactly the same species. 

Metarhizium flavoviride is a hyphomycete commonly found on insects (Lawrence 

and Milner 1996) so it is unusual that it was isolated directly from wood. It is 
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probable that this fungus was present in the wood as a result of insect activity within 

adjacent wood or even grew from an insect from within the wood samples 

themselves. 

One of the surprising outcomes of this study was the lack of matches between the 

study isolates and those in the reference collection. The reference collection 

contained a wide variety of material collected both locally and internationally and 

included many of the species considered as important wood decay fungi. Species 

from genera such as Fomes, Hyphodontia, Phellinus and Poria are thought to be 

common stem decay species in eucalypts (Kile and Johnson 2000; May and Simpson 

1997) and, despite forming part of the reference collection, were not isolated from 

living trees in this study. While this is probably a reflection of the diversity of wood 

decay fungi in Australia and the lack of detailed studies previously published in this 

area, there are a number of other reasons. The reference collection contained very 

few corticioid species; however, sequence matches with public databases indicate 

that a number of the fungi found in this study were corticioid. Corticioid fungi are 

often overlooked in fruitbody surveys due to their cryptic habit and their difficult 

taxonomy (Buchanan 2001). Also, although two of the reference collections used in 

this study targeted living trees, the fungi from the CSIRO Clayton collection were 

primarily isolates from fruitbodies found on wood in service or rotten wood, not 

living trees and thus may reflect an entirely different suite of fungi. The low 

matching between the reference collection and study isolates also reinforces the 

findings of Johannesson and Stenlid (1999) that the fungi commonly fruiting on 

wood do not necessarily accurately portray the fungal taxa within. 

In comparing the use of morphological and molecular techniques for grouping and 

identifying isolates, it is clear that neither technique is superior, each providing 

distinct advantages and disadvantages. The morphological analysis of fungal isolates 

proved a very effective method of grouping isolates into putative morphological 

species for isolates with sufficient distinctive features. For at least five of the 

morphological species, the isolates had similar sequences within morphological 

species and so these morphological species became accepted as final species. This 

was especially the case where isolates had a highly distinctive macromorphology, 

such as colour or texture of the aerial mycelium as in M02, M04 and M06. Where 

morphological species groupings did not hold as well, they were usually split further 
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into one or more closely related species based on their ITS sequences. 

Morphological group M03, for example, was a white-cream culture with several 

distinctive features such as multiple clamp connections in the marginal hyphae, 

chlamydospores and arthroconidia. Despite little apparent morphological difference, 

two distinct species groups with greater than 5% ITS sequence variation were 

identified by DNA sequence analysis. The other common disadvantage of the 

morphological analysis was when it failed to recognise similarities between 

singletons, when later ITS sequence analysis showed that they were probably the 

same species. This was especially the case for isolates with less distinctive 

morphology, such as white or hyaline aerial mycelium, a lack of clamp connections 

or features like chlamydospores, cystidia and specialised hyphae. In a number of 

cases, sequence analysis revealed relationships between otherwise morphologically 

indistinct isolates (e.g. Postia-like sp.2, Hypholoma fasciculare, Phlebia-like sp.1). 

Overall though, the morphological study was concluded to be a useful way of 

grouping fungal isolates into species as more than 65% of isolates were correctly 

grouped based on morphology alone. 

The morphological study was much less useful in determining species identities. 

Only two morphological species (M04 & M06) were identified to a possible family 

and the rest remained unidentified. This highlights one of the major pitfalls of 

morphological identification of fungal cultures in Australia: the lack of taxonomic 

knowledge of cultures of Australian wood decay fungi (Simpson 1996). As 

previously discussed, there are few keys which can be used to describe cultures of 

wood decay fungi in Australia, making identification extremely difficult. In 

addition, identification of cultures requires highly specialised knowledge and there 

is a general lack of expert knowledge of cultures of Australian wood decay fungi. Of 

the dozen professional mycologists working in Australia, very few are expert in 

wood decay culture identification (Buchanan 1989; May and Pascoe 1996; Simpson 

1996). At university undergraduate level, few courses provide more than a limited 

amount of fungal taxonomy (Simpson 1996). 

PCR and DNA sequence analysis proved a very fast, efficient and relatively 

inexpensive way for confirming the morphological species. In comparison with the 

morphological study, it was very time-efficient, alleviating the need for detailed 

morphological identification, a process requiring a minimum of 6-8 weeks to 



Chapter 3-Identification of Wood Decay Fungi 

 58 

describe isolates completely at different growth stages (Hoff et al. 2004; Simpson 

1996). Molecular studies also avoid the need for large amounts of temperature-

controlled storage space for living culture herbaria and regular subculturing and 

maintenance of isolates. The molecular work alone grouped approximately 85% of 

the fungal isolates correctly, according to the final consensus, making it a very 

efficient way of determining species groupings. The sequence information was also 

particularly useful in providing possible species identifications by comparisons with 

sequences in other databases. While these comparisons may give some idea of the 

taxonomy of the species involved, they should be treated with caution, as the 

reliability of identification of species lodged in public databases is not always 

known (Bridge et al. 2003). Similar to problems encountered with the 

morphological keys, the low number of Australian or even southern hemisphere 

species on public sequence databases also makes identification difficult. Despite 

these difficulties, the use of public databases did help to target appropriate species 

for collection and sequencing in the reference collection.  

Using only molecular studies would have been more time consuming and more 

expensive as all 312 isolates would have had to have been sequenced, rather than a 

subset of ~170 cultures which represented the morphological diversity of the 

isolates. The opportunity to examine the morphology of all the isolates provided an 

opportunity to examine the functional properties of the isolates (such as wood decay 

enzyme tests) and also helped to confirm the reliability of possible sequence 

matches from the database searches. For example, M04 showed 91-94% ITS 

sequence similarity to Hymenochaete adusta and Inonotus hispida. The morphology 

of this morphological species confirmed these taxonomic relationships through 

mycelial characters such as the presence of setae and setal hyphae (Stalpers 1978).  

Based solely on the molecular data it would also be difficult to determine the 

intraspecific sequence variation and thus the differentiation into final species. While 

most authors suggest sequence variation of up to 2% within species (e.g. 

Johannesson and Stenlid 1999) Russula clelandii is known to have intraspecific 

variation of up to 15% in the ITS region while some groups of Cortinarius species 

are known to have extremely low interspecific variation combined with intraspecific 

variation (Glen et al. 2001a). Without a detailed knowledge of the level of 

intraspecific variation in a particular genus or species, it is impossible to determine 
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the cut-off point between species without the ability to refer to differences in 

morphology, particularly fruitbody morphology. For example, without being able to 

re-examine the morphological characteristics of the Postia-like isolates, the six 

species identified in the final species list may only have been three. A better 

taxonomic understanding of the species relationships in this study may be obtained 

by comparing the DNA sequences of more than one DNA region (Glen et al. 2002; 

Horton and Bruns 2001; Yao et al. 2005). For the purposes of this study however, 

the use of the ITS region, as the most commonly sequenced region for fungi (Hoff et 

al. 2004), makes a much wider range of sequences available for matching on public 

databases. 

This study demonstrates the benefits of using a combination of morphological and 

molecular techniques to group and identify cultures of wood decay fungi. 

Advocation of combined morphological and molecular studies is not new (Bougoure 

and Cairney 2005; Hagerman et al. 1999; Hoff et al. 2004); however, it is of 

particular significance in Australia where it is not possible to draw on the wealth of 

taxonomic and ecological knowledge of wood decay fungi that is available in some 

other countries. While both methods can be used individually with some success, 

together they provide a much more robust analysis of both the species groups 

present and the taxonomic affiliations of these species groups. As the knowledge 

and taxonomy of Australia wood decay fungi becomes more developed, it may be 

possible to use more sophisticated molecular methods to identify wood decay fungi 

from cultures or even directly from wood (e.g. Adair et al. 2002; Johannesson and 

Stenlid 1999; Oh et al. 2003; Vainio and Hantula 2000). Until this time however, a 

more conservative approach is advocated which takes into account as many of the 

characteristics of each fungal isolate as is possible. 
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Appendix 3.1 Descriptions and photographs of all main species groups found in 

Study 1 (Table 3.3.4). Growth rate indicates colony radius. Species codes come from 

Stalpers (1978).  

 

Ascomycete sp.1 

Mats hyaline-white, cottony, margins appressed, dense, even at 2 weeks, by 6 weeks, 

cottony or absent. No odour. Reverse remains unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Hyphae 3-5.5 µm diameter, thin-walled, hyaline, simple 

septate. Intercalary swellings sometimes present. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 24 hours 

Growth rate: 15-25 mm after 14 days. 

 

Closest Blast match: Assorted ascomycete species (reliability: poor) 

  

  

 

 

Plate 3.1.1 Ascomycete sp.1 showing mycelium of a six week old culture. 

 

 

Athelia-like sp.1 

Mats hyaline-white, silky sometimes plumose, margins raised-appressed, dense, even 

at 2 weeks, by 6 weeks, white, silky. No odour. Reverse remains unchanged, not 

fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae with frequent clamp connections in 

marginal hyphae, 2-5 µm diameter, thin-walled, hyaline, branching often inequivalent. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 3 hours 

Growth rate: 14-20 mm after 14 days. 

 

Closest Blast match: Athelia arachnoidea, A. epiphylla (reliability: moderate) 
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Plate 3.1.2 Athelia-like sp.1 showing a) mycelium of  six week old culture, and b) clamp 

connections.  

 

 

Basidiomycete sp.1 

Mats hyaline, silky, margins submerged, dense, even at 2 weeks, by 6 weeks, hyaline-

orange or reddish, felty to absent. No odour. Reverse remains unchanged, not fruiting 

by 6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae (1.5)-2-5-(6) µm 

diameter, thin-walled, hyaline, single clamps rare, equivalent branching. Aerial 

hyphae: generative hyphae similar to that in margin, clamps frequently present, often 

medallion, hyphae can be encrusted with calcium oxide, rarely containing oil drops, 

crystals often present. Submerged hyphae: generative hyphae 1-4 µm diameter, 

similar to that in aerial hyphae. Thick-walled generative hyphae present in submerged 

zone, 5-8 µm diameter, walls 1-2-(3) µm thick. Gloeocystidia in marginal and aerial 

hyphae usually terminal, rarely intercalary, 6-10µm diameter, 20-25 µm long rare in 

aerial and submerged hyphae, clamped at base, thin-walled, darkly staining. 

Chlamydospores rare in submerged hyphae, thick-walled, 10-18 µm diameter. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 3 hours 

Growth rate: 17-40 mm after 14 days. 

 

Species Code: 1,8,9,13,20,25,32,39,(40),45,48,52,53,54,57,(60),73,82,85,89. 

 

Closest Blast match: Phlebia brevispora (reliability: poor) 

  

 

 

B A 

10 µm 
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Plate 3.1.3 Basidiomycete sp.1 showing a) mycelium of  two week old culture with a positive 

enzyme reaction to laccase, and b) gloeocystidia. 

 

Basidiomycete sp.2 

Mats hyaline-slightly orange, silky-submerged, margins appressed-submerged, dense, 

even at 2 weeks, by 6 weeks, hyaline-orange to brown, felty to absent. No odour. 

Reverse remains unchanged, not fruiting by 6 weeks.  

 

Microscopic characters: Generative hyphae 2-5-(6) µm diameter, thin-walled, hyaline, 

single clamps rare, equivalent branching. Chlamydospores frequently present 16-20 

µm diameter, thick-walled. Thick-walled generative hyphae occasionally present      

6-8 µm diameter, walls 2.5-3 µm diameter. Gloeocystidia rare, 8 µm diameter, darkly 

stained. Crystals often present in medium. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 3 hours 

Growth rate: 30-40 mm after 14 days. 

 

Closest Blast match: Assorted unspecified basidiomycete species (reliability: poor) 

  

 

 

  
Plate 3.1.4 Basidiomycete sp.2 showing (a,b) variation of aerial mycelium of  six week old 

cultures. 

 

 

B A 
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Basidiomycete sp.3 

Mats white, woolly, margins appressed, dense, even at 2 weeks, by 6 weeks, white, 

woolly. No odour. Reverse remains unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae 2-6 µm diameter, thin-

walled, hyaline, single clamps present at every septum, equivalent branching. Aerial 

hyphae: generative hyphae similar to that in margin, clamps frequently present, 

crystals often present, hyphae occasionally monilioid. Submerged hyphae: generative 

hyphae similar to that in aerial hyphae. Chlamydospores in marginal and aerial 

hyphae, thick-walled. Arthroconidia present in aerial and submerged hyphae. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: negative after 72 hours 

Growth rate: 22-28 mm after 14 days. 

 

Species Code: 8,9,13,22,30,39,45,53,75,82,84,85,89. 

 

Closest Blast match: Antrodia, Oligoporus, Fomitopsis rosea (reliability: poor) 

  

 

 

  

  
Plate 3.1.5 Basidiomycete sp.3 showing a) aerial mycelium of six week old culture, b) clamp 

connections, c) chlamydospores, d) monilioid hyphae. 
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Basidiomycete sp.4 

Mats hyaline-white, almost submerged-felty, margins appressed-submerged, dense, 

even at 2 weeks, by 6 weeks, white, felty. No odour. Reverse remains unchanged, not 

fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae 2-6 µm diameter, simple septate, thin-

walled, hyaline, equivalent branching. Hyphal strand present. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: negative after 72 hours 

Growth rate: 12-15 mm after 14 days. 

 

Closest Blast match: Stereum sanguinolentum (reliability: poor) 

  

 

 

 

 

Plate 3.1.6 Basidiomycete sp.4 showing aerial mycelium of six week old culture. 
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Coniophora-like sp.1 

Mats white to cream, woolly, margins raised-appressed, distant, even at 2 weeks, by 6 

weeks, cream to pale yellow, silky, margins appressed. No odour. Reverse remains 

unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae 2-10 µm diameter, thin-

walled, hyaline, multiple clamps frequent, often in whorls of 3-4, branching 

inequivalent, occasionally branching from clamps, hyphae rarely encrusted with 

calcium oxide crystals, septa often ampullate. Aerial hyphae: generative hyphae 

usually simple septate, sometimes with multiple clamps/pseudoclamps on wider 

hyphae, 2-10 µm diameter, hyaline, branching inequivalent, septa can be 

ampullate/constricted, hyphal bundles present, crystals present. Early binding hyphae 

rare. Submerged hyphae: generative hyphae similar to aerial hyphae, can be highly 

branched. Intercalary swellings (possibly early chlamydospores) often present in 

marginal hyphae, 10-15 µm long, thin-walled. Arthroconidia often present in 

marginal, rarely aerial or submerged hyphae, 2-4 µm long, square or rectangular, 

becoming rounded at edges.  

 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: negative after 72 hours 

Growth rate: 20-45 mm after 14 days. 

 

Species Code: 

(7),8,(9),(12),13,14,20,(22),31,39,41,(42),45,(47),50,52,53,54,55,(57),65,78,80,82,84,

(85),89. 

 

Closest Blast match: Coniophora marmorata (reliability: moderate) 

  

 

 
Plate 3.1.7 Coniophora-like sp.1 showing mycelium of  two week old culture. 
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Fistulina-like sp.1 

Mats white, woolly, margins appressed, dense, even at 2 weeks, by 6 weeks, pale 

yellow-yellow, felty. No odour. Reverse darkens slightly with age. Not fruiting by 6 

weeks but can produce small brown mushroom primordia.  

 

Microscopic characters: Marginal hyphae: generative hyphae 2-6 µm diameter, thin-

walled, hyaline, can be oil filled, single clamps at every septum, equivalent branching, 

occasionally branching from clamps. Aerial hyphae: generative hyphae similar to that 

in margin. Submerged hyphae: generative hyphae 1-4 µm diameter, thin-walled, 

hyaline, single clamps at every septum, equivalent branching, often multi-branched. 

Some thick-walled generative hyphae also present, 4-8 µm diameter, clamps at every 

septum, hyaline. Allocysts/terminal swellings common in marginal and aerial hyphae, 

less common in submerged hyphae, 9-12 µm diameter, clamped at base, thin-walled, 

oil filled.  

 

Enzyme reactions: Tyrosinase: positive after 3 hours 

         Laccase: negative after 72 hours 

Growth rate: 10-12 mm after 14 days. 

 

Species Code: 2,9,13,22,30,39,(42),44,45,(50),52,53,80,89. 

 

Closest Blast match: Fistulina hepatica (reliability: moderate) 

  

 

  
Plate 3.1.8 Fistulina-like sp.1 showing a) mycelium of two week old culture, b) mushroom 

primordia on six week old culture. 
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Hymenochaetaceae sp.1 

Mats white, felty-cottony, margins appressed (-submerged), distant, even to fringed at 

2 weeks, by 6 weeks, brown to dark brown, silky to absent. No odour. Reverse 

darkened, not fruiting by 6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae simple septate, 1-5 µm 

diameter, thin-walled, hyaline, branching equivalent, hyphae often pigmented light 

brown, septa can be ampullate or constricted. Early binding hyphae rare, 1 µm 

diameter, thickened walls. Aerial hyphae: generative hyphae similar to marginal 

hyphae. Submerged hyphae: generative hyphae similar to marginal hyphae. Setal 

hyphae and setae present in marginal and aerial hyphae, rare at 2 weeks, frequent at   

6 weeks. Setae walls thickened, pigmented brown, 38-50 µm long, 4-7 µm diameter at 

base. Thick-walled chlamydospores present in aerial and submerged hyphae. Hyphae 

with many short branches and hyphal bundles can be present in aerial hyphae. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 3 hours 

Growth rate: 6-9 mm after 14 days. 

 

Species Code: 1,10,13,15,23,30,34,38,52,53,69,70,72 or 73,75 or 80,85,89. 

NB. Using Stalpers (1978), this species keyed out to Inonotus sp. This is inconclusive, 

however, as it did not match the species code of any isolates described.  

 

Closest Blast match: Hymenochaete adusta, Inonotus hispida (reliability: moderate) 

  
 

 

 

 

 

 

Plate 3.1.9 Hymenochaetaceae sp.1 showing a) mycelium of two week old culture, b) 6-8 

week old cultures, and c) setae and simple septate hyphae. 
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Hymenochaetaceae sp.2 

Mats white-yellow, woolly, margins appressed, dense, even at 2 weeks, by 6 weeks, 

yellow-brown, felty. No odour. Reverse becoming greenish-yellow, not fruiting by     

6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae 2-5 µm diameter, thin-

walled, hyaline, simple septate hyphae, inequivalent branching rare. Aerial hyphae: 

generative hyphae similar to that in margin, simple septate, hyphae often appears very 

curly/ highly branched and can be pigmented slightly yellow-brown. Submerged 

hyphae: generative hyphae similar to that in aerial hyphae, also some highly branched, 

thin-walled hyphae 1-2 µm diameter present. Thick-walled terminal and intercalary 

chlamydospores frequent in aerial and submerged hyphae 5-8 µm diameter. Conidia 

rarely present in submerged hyphae. Possible setal hyphae rarely present. 

 

Enzyme reactions: Tyrosinase: negative 

         Laccase: positive 

Growth rate: 8-10 mm after 14 days. 

 

Species Code: 1,(2),10,13,22,30,35,38,(47),50,52,53,67,85,(86),89. 

 

Closest Blast match: Inonotus hispida (reliability: moderate) 

  

 

  

  
Plate 3.1.10 Hymenochaetaceae sp.2 showing a) variation in aerial mycelium of six week old 

cultures, b) chlamydospores present throughout mycelium, c) possible setal hyphae, d) 

conidia. 
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Hypholoma fasciculare 

Mats white, woolly, at times almost farinaceous, margins appressed, very dense, even 

at 2 weeks, by 6 weeks, white, woolly. No odour. Reverse remains unchanged, not 

fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae with clamp connections usually at every 

septum, hyaline, 1-4 µm diameter, thin-walled, inequivalent branching, can be crystal 

encrusted. Arthroconidia common in marginal hyphae, 2-3 µm diameter, 3-10 µm 

long.  

 

Enzyme reactions: Tyrosinase: variable after 72 hours 

         Laccase: positive after 24 hours 

Growth rate: 8-15 mm after 14 days. 

 

Closest Blast match: Hypholoma fasciculare (reliability: good) 

  

  
Plate 3.1.11 Hypholoma fasciculare showing a) aerial mycelium of six week old culture, b) 

arthroconidia present throughout mycelium. 
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Phlebia-like sp.1 

Mats hyaline, aerial hyphae absent or rare, margins submerged, dense, even at 2 

weeks, by 6 weeks, hyaline, silky-absent. No odour. Reverse remains unchanged, not 

fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae 1-2.5 µm and 5-7 µm diameter, thin-

walled, hyaline, simple septate, equivalent branching. Thick-walled chlamydospores 

present in submerged hyphae, crystals in medium.  

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 24 hours. 

Growth rate: 15-30 mm after 14 days. 

 

Closest Blast match: Phlebia radiata (reliability: moderate) 

  

 

 

 

Plate 3.1.12 Phlebia-like sp.1 showing aerial mycelium of a six week old culture. 
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Postia pelliculosa:  

Mats white to cream, silky-cottony, then becoming raised-appressed, dense, even at 

margins at 2 weeks, by 6 weeks, cream and brown, silky to felty, margins appressed. 

No odour. Reverse remains unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae 2-9-(10) µm diameter, 

thin-walled, hyaline, single clamps at every septum, equivalent branching, 

occasionally branching from clamps. Aerial hyphae: generative hyphae similar to that 

in margin rarely pigmented light brown. Submerged hyphae: generative hyphae        

2-7 µm diameter, thin-walled, hyaline, single clamps at every septum, equivalent 

branching, often multi-branched. Allocysts/terminal swellings frequently present in 

aerial and submerged hyphae, 20-25 µm long, 6-8 µm diameter at head, clamped at 

base, thin-walled, oil filled.  

 

Enzyme reactions: Tyrosinase: positive after 3 hours 

         Laccase: positive after 24 hours 

Growth rate: 8-15 mm after 14 days. 

 

Species Code: 1,2,10,13,16,20,30,38,39,45,53,54,75,89. 

 

Closest Blast match: Postia subcaesia (reliability: moderate) 

NB. High sequence match with Postia pelliculosa fruitbody from reference collection. 

  

 

  

  
Plate 3.1.13 Postia-like sp.1 showing a) mycelium of three week old culture, b) positive 

enzyme reactions to laccase and tyrosinase, c) sprouting clamp connection, and d) terminal 

swelling (arrowed) with basal clamp connection. 
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Postia-like sp.3 

Mats white, silky, margins appressed, dense, even at 2 weeks, by 6 weeks, white-pale 

yellow, silky with yellow circles. No odour. Reverse remains unchanged, not fruiting 

by 6 weeks. 

 

Microscopic characters: Marginal hyphae: generative hyphae 2-6 µm diameter, thin-

walled, hyaline, equivalent branching, single clamps at every septum, clamps can be 

medallion and can sprout. Aerial hyphae: generative hyphae similar to that in margin, 

clamps always present, often medallion. Submerged hyphae: similar to that in aerial 

hyphae. Some thick-walled generative hyphae present in marginal zone, 6-8 µm 

diameter, walls 1-1.5 µm thick. Intercalary chlamydospores common in aerial and 

submerged hyphae, thick-walled, ovoid, 10-12 µm diameter, 12-14 µm long. Early 

binding hyphae rarely present in submerged zone 1-2 µm diameter, 

 

Enzyme reactions: Tyrosinase: can show weak positive but usually negative 

         Laccase: weak positive after 24 hours 

Growth rate: 9-15 mm after 14 days. 

 

Species Code: (1),(2),10,13,20,30,(35),39,42,45,(47),48,52,53,54,83,85,89. 

 

Closest Blast match: Oligoporus rennyi, Postia spp. (reliability: moderate) 

  

 

  
Plate 3.1.14 Postia-like sp.3 showing (a,b) variation of aerial mycelium of six week old 

cultures. 
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Postia-like sp.4 

Mats white, woolly-cottony, margins appressed, dense, even at 2 weeks, by 6 weeks, 

white, woolly. No odour. Reverse remains unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae with clamps at every septum, hyphal 

strands rare, irregular-shaped, terminal swellings or allocysts common, crystals 

present in aerial hyphae. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours, rarely positive. 

         Laccase: positive after 3 hours 

Growth rate: 16-20 mm after 14 days. 

 

Closest Blast match: Postia balsamea, Postia subcaesia (reliability: moderate) 

  

 

 

 

Plate 3.1.15 Postia-like sp.4 showing aerial mycelium of a six week old culture. 

 

Postia-like sp.5 

Mats white, woolly-floccose, margins appressed, dense, even at 2 weeks, by 6 weeks, 

white, woolly. No odour. Reverse remains unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae simple septate, hyaline, thin-walled, 

branching equivalent, 1.5-8 µm diameter. Hyphae can be ampullate/constricted at 

septa. Hyphal strands present in aerial hyphae. Irregular-shaped, terminal and 

intercalary swellings or allocysts common,7-10 µm long, 5-7 µm diameter, could be 

leptocystidia. Crystals present in aerial hyphae and medium. 

 

Enzyme reactions: Tyrosinase: variable after 72 hours 

         Laccase: variable after 72 hours 

Growth rate: 28-36 mm after 14 days. 

 

Closest Blast match: Oligoporus rennyi, Postia spp. (reliability: moderate) 
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Plate 3.1.16 Postia-like sp.5 showing (a) aerial mycelium of six week old culture and (b) 

terminal swelling. 

 

 

Postia-like sp.6 

Mats white, woolly-cottony, margins appressed, dense, even at 2 weeks, by 6 weeks, 

white-brown, felty, sometimes woolly or plumose. No odour. Reverse remains 

unchanged, not fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae 3-6 µm diameter, thin-walled, hyaline, 

small single clamps present at every septum, equivalent branching. Terminal and 

intercalary allocysts present in submerged and aerial hyphae. Hyphal tips often 

encrusted. 

 

Enzyme reactions: Tyrosinase: positive after 24 hours 

         Laccase: negative after 72 hours 

Growth rate: 10-22 mm after 14 days. 

 

Closest Blast match: Postia subcaesia (reliability: moderate) 

  

 

 

 

 

Plate 3.1.17 Postia-like sp.6 showing aerial mycelium of a six week old culture. 
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Postia-like sp.7 

Mats white, cottony, margins appressed, dense, even at 2 weeks, by 6 weeks, white, 

yellow in patches, cottony. No odour. Reverse develops yellow flecks with time, not 

fruiting by 6 weeks. 

 

Microscopic characters: Generative hyphae thin-walled, hyaline, single clamps at 

every septum, equivalent branching. Thick-walled chlamydospores and large 

intercalary swellings present. Hyphal tips often encrusted, crystals present in medium. 

 

Enzyme reactions: Tyrosinase: weak positive after 24 hours 

         Laccase: positive after 24 hours 

Growth rate: 35-40 mm after 14 days. 

 

Closest Blast match: Postia balsamea, Postia caesia (reliability: moderate) 

  

 

 

  
Plate 3.1.18 Postia-like sp.7 showing a) mycelium of two week old culture, b) mycelium of a 

six week old culture showing deepening colour change to yellow. 

 

 

Stereum-like sp.1 

Mats hyaline, sparse-absent, margins submerged, dense, even at 2 weeks, by 6 weeks, 

hyaline-white, cottony to absent. No odour. Reverse remains unchanged, not fruiting 

by 6 weeks. 

 

Microscopic characters: Generative hyphae simple septate, thin-walled, hyaline with 

inequivalent branching, 2-6 µm diameter. Laticiferous branched hyphae with slightly 

thickened walls present in marginal zone. Hyphal strands and knots can be present. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: negative after 72 hours 

Growth rate:8-11 mm after 14 days. 

 

Closest Blast match: Stereum annosum, Stereum hirsutum (reliability: moderate) 

  

 

A B 
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Plate 3.1.19 Stereum-like sp.1 showing aerial mycelium of a six week old culture. 

 

 

 

 

 

Xylariaceae sp.1 

Mats hyaline-white, silky, sometimes slightly woolly, margins appressed, dense, 

bayed at 2 weeks, by 6 weeks, white often with black patches. No odour. Reverse 

remains unchanged, often produce small black fruitbodies after 6 weeks. 

 

Microscopic characters: Generative hyphae thin-walled, hyaline, simple septate. Septa 

can sometimes be ampullate. Thick-walled intercalary swellings often present in aerial 

hyphae, hyphal knots or coils rare. 

 

Enzyme reactions: Tyrosinase: negative after 72 hours 

         Laccase: positive after 24 hours 

Growth rate: 26-30 mm after 14 days. 

 

Closest Blast match: Xylaria sp. (reliability: moderate) 

  

 

  
Plate 3.1.20 Xylariaceae sp.1 showing a) mycelium of two week old culture and b) mycelium 

of a three month old culture. 
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Appendix 3.2. ML dendrograms used to determine the final species grouping within 

similar molecular species groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.2.1 Maximum likelihood tree from analysis of ITS sequences of all Xylariaceae-

like isolates. The outgroup Hypoxylon fragiforme, as well as Xylaria arbuscula and 

Rosellinia arcuata are sequences downloaded from GenBank (Accession Nos. AY616690, 

AY183369 and AB017660 respectively). AH160 is the ITS sequence from an isolate of 

Xylaria sp. from the reference collection. The final species designations are shown on the 

right-hand side of the dendrogram. The bar represents an expected sequence variation of 

10%.  
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Figure A3.2.2 Maximum likelihood tree from analysis of ITS sequences of all Hypholoma-

like isolates. The outgroup Stropharia ambigua, and sequence Hypholoma fasciculare are 

sequences downloaded from GenBank (Accession Nos. AY818350 and AY354216 

respectively). The final species designations are shown on the right-hand side of the 

dendrogram. The bar represents an expected sequence variation of 1%.  
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Figure A3.2.3 Maximum likelihood tree from analysis of ITS sequences of all Athelia-like 

isolates. The outgroups Athelia epiphylla, Fibulorhizoctonia carotae and Athelia 

arachnoidea are all sequences downloaded from GenBank (Accession Nos. U85793, 

U85791 and U85789 respectively). The final species designations are shown on the right-

hand side of the dendrogram. The bar represents an expected sequence variation of 1%.  
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Figure A3.2.4 Maximum likelihood tree from analysis of ITS sequences of all 

Hymenochaetaceae isolates. The outgroups Hymenochaete adusta and Inonotus hispida are 

sequences downloaded from GenBank (Accession Nos. AY558594 and AY251309 

respectively). The final species designations are shown on the right-hand side of the 

dendrogram. The bar represents an expected sequence variation of 10%.  
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Figure A3.2.5 Maximum likelihood tree from analysis of ITS sequences of all Coniophora-

like isolates. The outgroups Coniophora puteana, C. arida and  C. marmorata are sequences 

downloaded from GenBank (Accession Nos. AJ419199, AJ345007 and AJ518880 

respectively). The final species designations are shown on the right-hand side of the 

dendrogram. The bar represents an expected sequence variation of 10%.  
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Figure A3.2.6 Maximum likelihood tree from analysis of ITS sequences of all 

morphospecies M05 isolates. The outgroup, Cortinariaceae sp. (Hebeloma), is a sequence 

downloaded from GenBank (Accession No. AJ549967). The final species designations are 

shown on the right-hand side of the dendrogram. The bar represents an expected sequence 

variation of 10%.  

 

0.1 

Cortinariaceae sp. 

AH980r 

AH940r 

AH956f 

AH162f 

AH572f 

AH822fr 

AH1016fr 

AH1002Bf 

AH954f 

AH945fr 

AH1006f 

Basidiomycete sp.1 

Basidiomycete sp.2 



Chapter 4-Wood Decay Fungi and Tree Age 

 83 

CHAPTER 4: EXAMINING THE EFFECT OF TREE AGE ON THE 

ASSEMBLAGE COMPOSITION OF WOOD DECAY FUNGI IN 

LIVING EUCALYPTUS OBLIQUA TREES 

4.1 Introduction  

Large, old, living trees, otherwise known as veteran or mature trees, are important 

structural and function components of the forest landscape (Franklin et al. 2002; 

Lindenmayer and Franklin 1997; Mazurek and Zielinski 2004), accounting for a 

large proportion of the forest biodiversity. As trees age, they develop a multitude of 

features including dead tops, hollows, decayed wood, crevices, sloughed bark and 

large diameter branches, each with important functional roles and habitat values 

(Franklin et al. 2002; Grove 2002; Groven et al. 2002; Lindenmayer and Franklin 

1997). Many studies in the northern hemisphere have found mature trees to be 

important for a wide range of organisms including arboreal, hollow dwelling 

mammals and birds through to more cryptic fungi, lichens, bryophytes and 

invertebrates (e.g. Andersen and Ryvarden 2001; Berg et al. 1994; Hanula et al. 

2000; Heilmann-Clausen 2003; Nilsson et al. 2002; Nordén and Paltto 2001; 

Penttilä et al. 2004; Ranius and Jansson 2000; Virkkala et al. 1994; Zack et al. 

2002). The important biological values of mature trees are clearly recognised in the 

United Kingdom and northern Europe where they are well studied and important 

considerations in biodiversity conservation (Andersson and Östlund 2004; Kaila et 

al. 1997; Nilsson et al. 2002; Reid 1996). In addition, mature trees give rise to other 

components of coarse woody debris, such as large stags, large diameter logs and 

large dead branches on the forest floor, which are also known to be important for 

housing biodiversity (Edman and Jonsson 2001; Grove 2002; Heilmann-Clausen 

and Christensen 2004; Lindenmayer and Franklin 1997 ; McClelland and Frissell 

1975; Samuelsson et al. 1994; Schiegg 2001).  

Australian literature highlighting the importance of mature trees as habitat for 

arboreal mammals and birds is plentiful (e.g. Abbott 1998; Gibbons and 

Lindenmayer 2002; Gibbons et al. 2002; Lindenmayer et al. 1993; Mackowski 

1987; Whitford and Williams 2001). The importance of mature trees for more 

cryptic organisms such as bryophytes (Jarman and Kantvilas 2001), saproxylic 

beetles (Grove 2002; Grove and Bashford 2003) and other arthropods (Bar-Ness 
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2005) has also been demonstrated in a limited number of systems. Despite this 

apparent focus on hollow dwelling fauna, little attention has been focussed on the 

importance of mature trees as habitat for wood decay fungi and the role these fungi 

may play as habitat creators. These fungi are of particular interest not simply in 

their own right as extremely diverse organisms (Hawksworth 1991; Heilmann-

Clausen 2003), but because they may be crucial to the creation of decayed wood 

habitat for other organisms and for nutrient and carbon cycling (Edmonds and 

Marra 1999; Lewis and Lindgren 1999; Lindhahl 2001; Mackowski 1987; Rayner 

and Boddy 1988; Simpson and Eldridge 1986; Swift 1977). 

Few studies have examined the ecology of fungal colonisation and decay of 

eucalypts in Australia. Those that have done so have generally been in the context 

of reducing decay to improve commercial forest management in native forests (e.g. 

Greaves et al. 1967; Marks et al. 1986; Parkin 1942; Refshuage 1938; Tamblyn 

1937; Wardlaw 2003). Mackowski (1987) examined the ontogeny of hollows in 

Eucalyptus pilularis in dry sclerophyll forests and found that fungi, along with 

termites, play a role in hollow formation, although his investigations were not 

extensive. Other studies have found fungi to be associated with decayed wood 

defects in plantation eucalypts (Barry et al. 2002; Wardlaw et al. 2004; Wardlaw 

1996; Wardlaw and Neilsen 1999; White and Kile 1991). Despite these early 

studies, we still do not have a good understanding of how assemblages of wood 

decay fungi develop with tree age (Wardlaw 2003), particularly from the 

perspective of habitat creation.  

Wood decay fungi observed fruiting on living eucalypts include species of 

Armillaria, Fistulina, Gymnopilus, Hymenochaete, Inonotus, Phellinus, and 

Piptoporus (Kile and Johnson 2000; May and Simpson 1997). A few common 

pathogenic species have been quite extensively studied (e.g. Armillaria 

luteobubalina (Kile 1981; Shearer and Tippett 1988)) however for the vast majority 

of wood decay fungi on eucalypts little is known about their ecology. This may be 

partially due to the historically low numbers of ecological and taxonomic 

mycologists working in Australia (see Chapter 3.1 and May and Pascoe 1996). 
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This chapter explores the relationship between wood decay fungi and living 

E. obliqua trees in three different tree ages classes, including mature (greater than 

150 year old) trees. Specifically, the chapter aims to address the following 

questions: 

• What fungi are found in living E. obliqua trees of different tree age classes?  

• Is there a change in the number of wood decay fungi with tree age? 

• Does the community structure of fungi change with tree age? i.e. is there a 

succession of wood decay fungi with tree age? 

 

4.2 Methods 

Sample Collection 

A total of 18 E. obliqua trees, taken from three age classes (69, 105 and 150 years 

old) and two adjacent sites in southern Tasmania, were felled and examined for 

decayed wood as described in Section 2.2. Briefly, the stem of each tree was cut at 

three standard points. These were within the main stem at 11-12 m height, 

immediately below the crown, and within the live crown. At each standard point, 

the stem was cut into two 50 cm billets, creating three cut faces. The cut face of 

each billet was photographed and the number of patches of decay (i.e. decay 

columns) labelled and recorded. A sample of decayed wood from each decay 

column was taken back to the laboratory for further examination. Control samples 

of clear heartwood and sapwood were also collected from each cut face. 

Isolation and Determination of Wood Decay Fungi 

In the laboratory, subsamples (1 cm3 pieces) of wood from the edge of each decay 

column and control wood sample were surface sterilised and incubated for one 

month on specialised fungal media to isolate associated wood decay fungi (Hopkins 

et al. 2005). Fungal cultures were maintained at 20 ºC on MEA for the duration of 

the study and subcultured regularly.  

The two methods were used to group and identify the fungal species present are 

described in detail in chapter 3. Fungal species names follow those of Kirk et al. 

(2001). 
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Species richness 

To look for variation in species richness between tree age classes, one-way analysis 

of variance (ANOVA) was undertaken in SAS 9.1 (Anon. 2002), using age class as 

a random effect on the number of species of wood decay fungi per tree. Presence-

absence data were used, pooled from the three standard sampling sections from 

each tree. A follow up multiple comparison test (Ryan-Einot-Gabriel-Welsch 

Multiple Range Test: REGW test) was used to determine the nature of the 

differences.  

Indicator Species Analysis was run in PC-ORD for Windows 4.25 (McCune and 

Mefford 1999) and was used to investigate whether particular species were 

significantly associated with specific tree age classes. A cut-off value of IndVal 

≥25, p<=0.05 was used. Untransformed species abundance data were used, where 

frequency data (i.e. the number of cut faces a species was isolated from) was used 

as a surrogate measure of abundance. 

Adjustments for sampling effort 

The effect of sampling effort on the species richness of biological assemblages has 

received much attention recently (Gotelli and Colwell 2001; Grove and Bashford 

2003; Heilmann-Clausen and Christensen 2004; Schiegg 2001). In this study, two 

different methods were used to determine whether differences in species richness 

between tree age classes were confounded by sampling effort: rarefaction curves 

and abundance-based richness estimators.  

Rarefaction computes the expected number of species for a sub-sample of the 

pooled total species richness based on the number of samples or individuals 

collected (Gotelli and Colwell 2001). This technique was used to compare species 

richness among tree age classes, calibrated for sampling effort. Rarefaction curves 

were calculated against two different variables: the frequency of individuals 

collected, and the cumulative cross-section area of wood faces examined. For each 

variable, rarefaction curves were calculated using frequency data for all species of 

fungi. Rarefaction curves were calculated using EstimateS (Colwell 2001) and 

graphs plotted in Microsoft Excel.  

Total species richness was also estimated using the abundance-based coverage 

estimators ACE and Chao 1 in EstimateS (Colwell 2001). This was based on 
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frequency data for all species of fungi, pooled within each tree. Since Chao’s  

estimated CV for abundance distribution was >0.5, it was recommended to report 

the larger of Chao 1 and ACE as the best estimate for abundance-based richness, 

using the classic rather than the bias-corrected option in the diversity settings for 

EstimateS (Colwell 2001).   

Community composition 

Both unconstrained and constrained ordinations were used to explore community 

composition of fungi in relation to tree age class. Log transformed frequency data 

from each tree were used, pooled from the three standard sampling sections. One 

tree greater than 150 years old (Tree 4) did not group well with the other mature 

trees. On closer examination, this tree was found to have very few fungal species in 

common with any of the other trees sampled. Instead, Tree 4 was dominated by a 

number of species only found in that tree. Tree 4 also had very different tree 

architecture to all the other trees in that it was dominated by a very large number of 

concave fire scars. The species of saproxylic beetles found in this tree were also 

very different to those in any of the other trees (K. Harrison, pers. comm., 2006). 

For these reasons, Tree 4 was considered to be an outlier and was removed from all 

analyses of community composition.  

Non-metric Multidimensional Scaling (NMS), an unconstrained ordination, was 

used to explore fungal species assemblage variation between the three tree age 

classes. NMS was performed using a Sorensen (Bray-Curtis) distance measure in 

PC-ORD (McCune and Mefford 1999) choosing the slow and thorough autopilot 

method. Multi-Response Permutation Procedures (MRPP) were then applied to 

statistically test fungal assemblage differences among tree age classes. MRPP was 

carried out in PC-ORD using a Sorensen (Bray-Curtis) distance measure and using 

the natural group weighting of n/sum(n). 

A constrained ordination method, Canonical Analysis of Principal coordinates 

(CAP) analysis (Anderson and Willis 2003), was then used to explore fungal 

assemblage structure correlated with the three tree age classes. CAP was performed 

in CAP12 (Anderson 2004) using 9999 unrestricted random permutations.  

The distribution of individual species between age classes and their location within 

the tree was also examined qualitatively. 
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4.3 Results 

Species richness 

A total of 312 fungal isolates were obtained from the 18 trees examined in this 

study. These were sorted into 91 species groups of which 20 were found frequently 

and 71 were only found once (singletons). A species list can be found in Table 

4.3.1. With no adjustment for sampling effort, mature trees (those greater than 150 

years old) had a significantly higher number of species of fungi per tree than trees 

in either of the younger age classes (Figure 4.3.1, p<0.001). The two younger age 

classes (69 and 105 years old) had very similar species richness. There was a total 

of 56 species in the mature trees, 21 species in the 105 year old trees and 26 species 

in the 69 year old trees. 
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Figure 4.3.1. Average number of fungal species found in individual trees of each age class. 
Error bars denotes standard error, with letters a and b representing significantly different 
means from ANOVA. 
 

Adjustment for sampling effort 

The sample-based rarefaction curves showed that species richness for all tree age 

classes was very similar; although species richness was marginally greater for 69 

year old trees compared with the mature trees within the comparable range (Figure 

4.3.2). This pattern was further emphasised when examining the rarefaction curves 

for cumulative cross-sectional area (Figure 4.3.3). Species richness was markedly 

greater per unit area for trees in the 69 year-old age class than for trees in either of 

a 
a 
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the other age classes. In contrast, species richness was almost identical for 105 year 

old and mature trees within the comparable range. 

Neither of the abundance-based coverage estimators, ACE or Chao 1, showed stable 

species richness estimates across the available range (Figure 4.3.4) and thus the 

results are not considered here. The richness estimators remained unstable even 

when the cut-off point for rare species was reduced as low as 2 (the recommended 

level for EstimateS is 10). 

Community composition  

Unconstrained ordinations (NMS and MRPP) showed that fungal assemblage 

differed between different tree age classes (Figure 4.3.5; p=0.004, T= -3.15). Trees 

greater than 150 years old seemed to have particularly distinct fungi associated with 

them. An exception to this was Tree 4 (a mature tree) which appeared to have a 

more similar fungal community to trees in the younger age classes. The patterns of 

fungal community composition for the two younger tree age classes were less clear, 

yet some of the 69 year-old trees appeared to show similar fungal community 

structure and some of the 105 year-old trees were also similar.  

An overlay of the fungal species groups on the ordination showed that two of the 

Postia-like species (4 and 6) and Postia pelliculosa were strongly influencing the 

grouping of trees greater than 150 years old. Xylariaceae sp.1, Hymenochaetaceae 

sp.2 and Athelia-like sp.1 were partially correlated with the mature trees. Athelia-

like sp.2, Phlebia-like sp.1 and Stereum-like sp.1 correlated with a number of the 

younger trees.  
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Figure 4.3.2. Rarefaction curve for all fungi in relation to tree age class. Error bars denote 
standard error for each age class.  
 

 
Figure 4.3.3. Rarefaction curve for all fungi based on the cumulative cross sectional area of 
billets examined for fungi in relation to tree age class. Error bars denote standard error. 
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Figure 4.3.4. Graphical representation of results of the abundance-based species richness 
estimators Chao 1 and ACE for each tree age class. Note that none of the estimators have 
stabilised with the low number of trees sampled.  
  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.3.5. NMS ordination of fungal community structure with respect to tree age. The 
ordination is based on log transformed frequency data. Driver species are shown on the 
right-hand side.  
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The constrained ordination showed similar patterns (Figure 4.3.6) with a much 

stronger separation between trees greater than 150 years old and the younger age 

classes (along x axis). Some similarity in assemblage was also indicated within the 

69 year old trees and the 105 year old trees although there was some overlap 

between the two age classes. Fungal species which appeared to be strongly 

correlated with mature trees were Postia pelliculosa, Ascomycete sp.1, Postia-like 

spp.6 and 4, Basidiomycete sp.1 and Hypholoma fasciculare. Basidiomycete sp.2 

was well correlated with 105 year old trees and Basidiomycete sp.4 was correlated 

with 69 year old trees. 
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Figure 4.3.6. Constrained ordination (CAP analysis) of fungal community structure with 
respect to tree age class. N=91 species, and frequency data were log transformed. 
 

Indicator species analysis found only one species, Postia pelliculosa, to be a 

significant indicator for mature trees (p=0.002). Indicator species analysis found no 

other fungal species to be significantly correlated with any specific tree age class. A 

number of main species of fungi were restricted to one tree age class, although 

found in very low numbers (Table 4.3.1). These include Basidiomycete sp.4 for the 

69 year old trees, Basidiomycete sp.2 and Postia-like sp.7 for the 105 year old trees 

and Basidiomycete sp.3, Coniophora-like spp.1 and 2, Fistulina-like sp.1, 

Hymenochaeteaceae sp.1 and Postia-like spp. 3, 4, and 6 for the mature trees. Three 

species of fungi Basidiomycete sp.1, Xylariaceae sp.1 and Hypholoma fasciculare 

Age Class 
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were found in trees in all three tree age classes. A further three species Phlebia-like 

sp.1, Postia-like sp.5 and Stereum-like sp.1 were found in both 69 year old and 105 

year old trees. Only one species (Ascomycete sp.1) was found in both 69 year old 

trees and mature trees, while two species (Athelia-like sp.1 and Hymenochaeteaceae 

sp.2) were shared between the 105 year old trees and the mature trees. 

Table 4.3.1. Species of fungi found in living Eucalyptus obliqua trees showing the 
frequency of species in each tree age class.  
Species 69 105 >150 

Basidiomycete sp.1 2 2 10 

Hypholoma fasciculare
#
 1 1 4 

Xylariaceae sp.1 1 3 7 

Phlebia-like sp.1 1 1  

Postia-like sp.5 1 3  

Stereum-like sp.1# 1 1  

Basidiomycete sp.4 2   

Athelia-like sp.2# 1   

Neonectria radicicola
#
 1   

Peniophora aurantiaca 1   

Phanerochaete sordida 1   

Psathyrella-like sp.1# 1   

Trametes versicolor
#
 1   

Ascomycete sp.1 1  8 

Athelia-like sp.1#  2 2 

Hymenochaete-like sp.2  1 2 

Basidiomycete sp.2  3  

Fomitopsis-like sp.1  1  

Postia-like sp.7  2  

Steccherinum-like sp.1  1  

Trametes-like sp.1  1  

Xylaria sp.1  1  

Ascocoryne sp.1   1 

Basidiomycete sp.3   2 

Coniophora-like sp.1   7 

Coniophora-like sp.2   1 

Fistulina-like sp.1   4 

Gymnopilus allantopus   1 

Hymenochaete-like sp.1   5 

Hypholoma sp.1#   1 

Hypholoma sp.2#   1 

Metarhizium flavoviride   1 

Polyporus gayanus   1 

Postia pelliculosa   30 

Postia-like sp.3   4 
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Postia-like sp.4   5 

Postia-like sp.6   2 

Typhula-like sp.1   1 

Additional Records* 13 7 34 

*Additional Records are those singleton species which were unable to be named. 
#Species isolated from healthy sapwood  
 

Sapwood species 

A number of species of fungi were consistently isolated from undecayed, healthy 

sapwood (Table 4.3.1). Although these species demonstrated an ability to produce 

wood decay enzymes in culture, they were clearly not associated with decay in the 

living trees and were thus considered to be latently present within the tree in the 

sense that they were not actively growing and decaying the wood (Boddy 1994; 

Chapela and Boddy 1988). These included the commonly found species Hypholoma 

fasciculare, Athelia-like sp.1 and Stereum-like sp.1 as well as the singletons 

Hypholoma spp.1 and 2, Athelia-like sp.2, Trametes versicolor, Polyporus gayanus, 

Neonectria radicicola, Trametes-like sp.1 and Psathyrella-like sp.1 along with 13 

un-named singletons. 

4.4 Discussion 

This study is the first to systematically examine the relationship between wood 

decay fungi and tree age in living Eucalyptus obliqua trees. While the data reported 

here are only preliminary (in terms of sample size), some clear patterns are present. 

A large number of species of wood decay fungi were isolated from living E. obliqua 

trees. Sixty-nine year old trees were the most species rich age class when equal 

sample sizes were compared and trees of different ages supported different 

assemblages of wood decay fungi. The community composition of wood decay 

fungi found in mature trees (those greater than 150 years old) was particularly 

distinct. A number of species of wood decay fungi were restricted to particular tree 

age classes. Given the intensive sampling methods used in this study, it is 

unrealistic to compare the species richness of wood decay fungi found here with 

previous studies on eucalypts in Australia. For instance, Tamblyn (1937) identified 

only three species of wood decay fungi from decay and fruitbodies associated with 

12 mature E. marginata, while Refshuage (1938) described eight different species 

of fungi causing decay in E. regnans. These differences give an indication of the 
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advantages of intensive sampling (as in the present study) if the aim is to assess 

species richness in this habitat.  

Adjustments for sampling effort indicate that within the comparable range, the 69 

year old trees were in fact more species rich than the 105 year old and mature trees. 

This is despite the mature trees supporting a much greater number of species on an 

individual basis. The high species richness of the 69 year old trees could be related 

to their small tree diameter. Although large diameter logs and trees are generally 

considered  to host greater numbers of species than their small diameter 

counterparts (e.g. Kolstrom and Lumatjarvi 2000), several studies have found the 

reverse to be true (e.g. Heilmann-Clausen and Christensen 2004; Schiegg 2001; Yee 

2005). Schiegg  (2001) suggested that the high species richness in large limbs of 

Fagus sylvatica compared with larger diameter felled logs of the same species on 

the forest floor may be due to the range of microclimates present across limbs in 

different locations. Limbs spread throughout the forest would demonstrate a high 

degree of variation in humidity and light intensity which would impact upon the 

species able to colonise them. As limbs are of smaller diameter than logs, they 

would be more susceptible to changes in forest microclimate. This could also be the 

case with young trees of small diameters. This theory is reinforced by the fact that 

majority of species of fungi found in the 69 year old trees in this study were only 

isolated from individual trees. A collection of small diameter trees also involves 

more separate trees than the same volume of large diameter trees. Therefore given 

the same volume, small diameter trees represent more colonisation events (branch 

stubs, dead branches etc) and a greater surface area to volume ratio than large 

diameter trees (Heilmann-Clausen and Christensen 2004). So despite their smaller 

size, the 69 year old trees in this study would represent more potential for 

colonisation than the same volume/size of trees in the older age classes which were 

of greater diameter. 

There are a number of other reasons why the 69 year old trees may be the most 

species rich. For example, the sampling method used may have favoured faster 

growing, less aggressive, less specialised early colonisers found in the young trees, 

rather than the slower growing more aggressive decay species present in the mature 

trees. Attempts were made to circumvent this possibility: the media used were 

selected to specifically target basidiomycetes (i.e. the majority of decay species) 
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and the wood chips were grown on the isolation media for up to 6 weeks to allow 

for slow growing species. Despite this, the growth of Australian wood decay fungi 

in culture has not been well studied (Simpson 1996), so the influences of the 

isolation method are not clear. It is interesting that the 69 year old trees in the 

present study harboured a considerable number of species of decay fungi relative to 

the 105 year old trees. It is possible that in the mixed age forest sampled in the 

present study, the growth of these younger trees was suppressed by the surrounding 

older, dominant trees, making them more susceptible to colonisation by decay 

fungi. This idea is reinforced by relative tree height: all 69 year old trees were much 

shorter than 105 and >150 year old trees. In addition, their canopy was much less 

developed, in the sense that they had much lower numbers of branches. Perhaps 

these 69 year old trees actually represent a different developmental pathway 

compared with the 105 year old trees, and will maintain a greater species richness 

throughout their lifetime. 

This study highlights the importance of accounting for sampling effort when 

examining species richness in objects of different sizes (Gotelli and Colwell 2001; 

Heilmann-Clausen and Christensen 2004; Schiegg 2001). Although mature trees 

initially appeared to be the most species rich, this was greatly affected by sampling 

effort. It is important to treat these results with caution however, as the current data 

set does not indicate the point at which species saturation would occur for the 69 

year old trees. This study has only sampled a small proportion of the expected 

diversity of wood decay fungi in living E. obliqua so it is important not to 

extrapolate too much. That is, when the data from the rarefaction curves are 

extrapolated out to the point of species saturation, it is quite possible, that the young 

trees may have much fewer species than the mature trees. In a study of the 

saproxylic beetle assemblages in the same trees, Harrison found that the 69 year old 

trees were most species rich using rarefaction, as was found for the fungi in this 

study (Figures 4.3.2 and 4.3.3). However, when the data were extrapolated to 

consider the total volume of the trees, using four different models, the mature trees 

were consistently more species rich than trees in either of the two younger age 

classes (K. Harrison, pers. comm. 2006). Thus, simply increasing the number young 

trees sampled, may still not result in the large numbers of species isolated from the 

mature trees (Yee 2005).  
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It is unfortunate that this data set was unable to support the species richness 

indicator models attempted. This is probably due to the small size of the current 

dataset and the large number of  singleton and doubleton species (Magurran 1988).  

Many species of wood decay fungi demonstrated a preference for trees in a 

particular age class. In addition, the assemblages of wood decay fungi associated 

with particular age classes were different. These changes in fungi with tree age class 

may represent a succession of fungal assemblages similar to that described by 

Boddy (2001). She described a succession of wood decay fungi with tree decay 

moving from pioneer fungi, able to develop rapidly in an otherwise hostile 

environment, through to secondary colonisers with better combative and decay 

ability. Genera of commonly described pioneer fungi from the northern hemisphere 

include Peniophora, Stereum, Phlebia, Nectria, Ascocoryne, Xylaria and 

Phanerochaete (Boddy 2000; Boddy 2001; Coates and Rayner 1985; Muller and 

Hallaksela 2000). With the exception of Ascocoryne, fungi related to these genera 

were all isolated from 69 year old trees and were rarely found mature trees. In 

contrast, species of fungi isolated from the mature trees were generally related to 

well known decay genera and secondary colonisers such as Coniophora, Polyporus, 

Fistulina, Hymenochaete and Postia (Boddy 2001; Kile and Johnson 2000).  

Boddy (2001) also recognised that some species of fungi, especially pioneer fungi, 

can colonise living sapwood and remain there as spores or mycelial fragments until 

there is some favourable change in condition such as the moisture content in the 

wood. These fungi are described as latently present in the sapwood and are able to 

remain dormant in the sapwood for long periods of time. Well-recognised latent 

fungi include a number of pioneer species such as Stereum, Nectria, Phlebia and 

Peniophora, as well as Coniophora. A number of potential decay fungi were 

isolated from undecayed sapwood in this study and may be considered as latent 

species. The majority of these species are from or related to genera of well known 

decay fungi such as Trametes, Stereum, Polyporus, Nectria and Hypholoma (Hood 

2003; Schwarze et al. 2000), a number of which are recognised as latent fungi in the 

northern hemisphere (Boddy 2001). In this study, the vast majority of these fungi 

were isolated from clear wood in 69 or 105 year old trees, indicating that these 

fungi are acting as latent pioneer fungi. One is exception to this is Hypholoma 

fasciculare. This fungus has been intensively studied and well described in the 



Chapter 4-Wood Decay Fungi and Tree Age 

 98 

northern hemisphere as a highly combative decay species (Boddy 1993; Harold et 

al. 2005; Kampichler et al. 2004). In the present study, it was isolated from intact 

sapwood in all tree age classes thus, it appeared to be acting as a latent pioneer 

species rather than a combative secondary coloniser as would be expected.  

A second explanation for the succession of fungi which appears to be associated 

with tree age could be related to changes in physical and chemical tree structure. 

These changes may be the result of tree age, tree size or natural disturbance events 

such as fire or extreme wind events. The mature trees in this study have been 

exposed to at least two wildfires (1898 and 1934) and this may have affected the 

fungal species able to colonise them. Fire scars are well recognised as infection 

points for fungi in Australian eucalypts (Perry et al. 1985; Simpson and Eldridge 

1986; Tamblyn 1937), however it is unknown how their presence changes the 

assemblage of wood decay fungi present in the living tree. In this study, Tree 4 had 

quite different assemblages of fungi compared with all other trees and this may 

have been related to its extensive number of individual fire scars (pers. obs) or to 

other changes related to extreme exposure to fire. Other factors which may 

influence the assemblage of fungi present within the tree are branch stub diameter 

(Wardlaw 1996; Wardlaw 2003) which increases with increasing tree age (Table 

2.2.1) or exposure to attack by fungi over a longer period of time (i.e. the older the 

tree, the longer it has been exposed to fungal attack). These points are discussed 

further in Chapter 5. 

4.4.1 Conclusions 

This study is the first to illustrate a successional relationship between wood decay 

fungi and tree age in living E. obliqua trees. Three categories of fungi appear to be 

present in the living trees: latent early colonisers, pioneer species and secondary 

colonisers. The assemblages of fungi present in the 69 and 105 year old trees are 

dominated by latent fungi and pioneer species while the fungi found in mature trees 

are mostly secondary colonisers. This demonstrates the importance of trees greater 

than 150 years old as habitat for secondary coloniser wood decay fungi within the 

sites assessed. Further studies, incorporating a wider range of sites and tree age 

classes should be undertaken to determine the wider applicability of these results. 

While this study has provided important baseline data on the species of fungi found 

in living eucalypts, there is a vast amount of work which remains to be done. 
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Ecological studies of fungi in Australia are hampered by the low numbers of 

identified fungi. Just as the identity of many of these species of fungi remains 

unclear (Chapter 3), their ecological role and habitat requirements within the tree 

are still largely unknown.  
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CHAPTER 5: THE RELATIONSHIP BETWEEN TREE AGE, 

ROTTEN WOOD AND WOOD DECAY FUNGI IN LIVING 

EUCALYPTUS OBLIQUA TREES 

5.1 Introduction 

The decomposition of wood is an important component of forest ecosystem 

functioning (Butler et al. 2002; Edmonds and Marra 1999; Franklin et al. 2002; 

Käarik 1974; Kirk and Cowling 1984; Swift 1977). The decay of living trees, stags, 

fallen branches and logs are critical for the recycling of nutrients, and decayed 

wood within these structures houses a large portion of forest biodiversity (Berg et 

al. 1994; Butler et al. 2002; Franklin et al. 1987; Grove 2002; Kruys et al. 1999; 

Samuelsson et al. 1994). Many fungi, bacteria, insects and other invertebrates 

contribute to the process of wood decomposition or use decayed or rotten wood for 

habitat (e.g. Berg et al. 1994; Boddy 2001; Edman and Jonsson 2001; Heilmann-

Clausen and Christensen 2003; Jonsell and Weslien 2003; Nordén 2000; Renvall 

1995; Schiegg 2001; Siitonen 2001). Numerous species of lichens and bryophytes 

are also known to utilise decayed wood substrates (Jarman and Kantvilas 2001; 

Kantvilas and Jarman 2004; Kruys et al. 1999; Soderstrom 1988). Decayed wood 

contributes to the formation of hollows, critical for the nesting and denning of many 

species of mammals and birds and an important habitat for many invertebrates 

(Crampton and Barclay 1998; Lindenmayer et al. 1997; Lindenmayer et al. 2000a; 

Ranius 2001; Virkkala et al. 1994). This is particularly apparent in Australia where 

there are no primary vertebrate excavators such as wood peckers (Lindenmayer et 

al. 1993; Mackowski 1987; Wormington and Lamb 1999). Species known to be 

dependent on decayed wood are known as saproxylic (Speight 1989).  

Decayed wood has a dual importance in relation to wood decay fungi. Decayed 

wood is known to support an extremely diverse range of fungi (e.g. Andersen and 

Ryvarden 2001; Boddy 2001; Buchanan et al. 2001; Heilmann-Clausen and 

Christensen 2005; Vasiliauskas and Stenlid 1998). At the same time, wood decay 

fungi, in conjunction with other insects and microorganisms, are central to the 

formation of the decayed wood habitat utilised by other organisms (Käarik 1974; 

Kirk and Cowling 1984; Lewis 1996; Simpson and Eldridge 1986; Worrall et al. 
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1997). This chapter focuses on the second of these relationships: the contribution of 

wood decay fungi to the formation of decayed wood habitat.  

Wood decay fungi fall into three primary categories, dependent on the type of wood 

decay they cause (Dix and Webster 1995; Rayner and Boddy 1988): soft rot, brown 

rot or white rot (Käarik 1974; Kirk and Cowling 1984; Tanesaka et al. 1993; 

Worrall et al. 1997). Soft rot is primarily associated with Ascomycete fungi and 

bacteria although some Basidiomycetes also have the ability  to cause soft rot 

(Schwarze et al. 2000). Soft rot causes limited degradation of the lignified wood 

cell walls giving the wood a softened texture and a dull grey or brown appearance 

(Käarik 1974; Kirk and Cowling 1984). Brown rot fungi are Basidiomycetes that 

degrade cellulose and hemicellulose in the cell wall, while lignin remains only 

slightly modified (Rayner and Boddy 1988; Worrall et al. 1997). Only 6% of all 

known wood decay fungi are able to cause brown rot (Schwarze et al. 2000). Brown 

rot fungi cause cross-factures of the wood and a blocky, crumbly structure. White 

rot fungi are also predominantly Basidiomycetes but include some Ascomycetes in 

the Xylariales (Rayner and Boddy 1988; Schwarze et al. 2000). They can be 

separated from brown rotters by their ability to degrade lignin. White rot is 

characterised by bleached, stringy or fibrous wood and two types of white rot are 

recognised: selective delignification that only removes lignin and hemicellulose 

from the wood; and simultaneous white rot which removes all three of lignin, 

cellulose and hemicellulose (Schwarze et al. 2000; Worrall et al. 1997). Selective 

delignification includes white pocket rot, where the preferential lignin degradation 

leaves pockets of lighter, pure cellulose. These three rot types can then be broken 

down further depending on the morphological and chemical characteristics of the 

decaying wood (e.g. Refshuage 1938; Swift 1977; Yee 2005). 

The amount of decay present, the type of decay and the stage of decay can influence 

the suitability of a decayed wood substrate for habitat. A larger amount of decay 

obviously means an increased volume of colonisable habitat. In living trees, studies 

in the northern hemisphere have generally found an increase in decay volume with 

tree age (Aho 1977; Basham 1958; Basham 1991). The change in the amount of 

decay was not generally related to a particular disturbance event, rather to an 

increase in the number of stem wounds and large diameter branches with tree age 

which provide more access to the heartwood. Aho (1977) found a strong correlation 
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between tree age and the amount of decay resulting from large branches, wounds 

and fire scars on grand fir (Abies grandis: Pinaceae).  The distribution of rot types 

within decayed wood substrates, such as living trees, can also be important for 

habitat as some organisms prefer specific types of decayed wood over others. 

Brown rot may be a better habitat for invertebrates than white rot, for example, due 

to its lower moisture content (Edmonds and Marra 1999).  

This study follows on from the work of Yee (2005; Yee et al. 2001) that examined 

the types of decayed wood found in Eucalyptus obliqua logs in southern Tasmania. 

Yee described eleven rotten wood types from large (>100 cm) and small (30-60 cm) 

diameter logs. One of the specific questions raised by this work was whether 

differences in decay patterns between large and small diameter logs resulted from 

different decay pathways in the stems prior to tree fall. This chapter begins to 

address this question by examining the types of decay found in living E. obliqua 

trees in three different age classes to determine any relationships between the rotten 

wood types found in living trees and those found in fallen logs of similar size. In 

addition, this chapter examines the relationship between decay type, amount of 

decay and tree age and looks at the fungi which may be associated with these rotten 

wood types. 

5.2 Methods 

Sample collection 

Eighteen E. obliqua trees, six from each of three age classes (69, 105 and 150 years 

old) and from two adjacent sites in southern Tasmania, were felled and examined 

for decayed wood as described in Section 2.2. To examine the decay present in each 

tree, the cut face of each billet at each standard sampling point was photographed 

and the number of patches of decay (i.e. decay columns) were labelled and recorded 

(Chapter 2, Figure 2.3.1). Samples of the different types of rotten wood from each 

decay column was taken back to the laboratory for further examination. Samples of 

clear heartwood and sapwood were also collected from each cut face. 

 



Chapter 5-Rotten Wood, Fungi and Tree Age 

 103 

Classification and description of rotten wood types 

Decay samples from all trees were assigned to a preliminary grouping based on 

similarities in colour, texture and wetness of the wood and the presence of hyphae 

or other fungal markings such as zone lines. In this preliminary grouping, colour 

and texture were used as the main indicators of wood decay type (white, brown  or 

soft rot). The texture of the decayed wood was described as blocky, stringy, 

pocketed or crumbly. The preliminary rotten wood types were directly compared 

with samples collected and described by Yee (2005), from decaying E. obliqua logs 

in the southern forests of Tasmania. This gave a much better indication of the 

variability of textures and colours within and between rotten wood types and 

allowed a final consensus of rotten wood types to be obtained by visually 

comparing samples in the preliminary groupings with samples from Yee (2005). 

Measuring decay area 

The amount of decay in each tree was measured by digital interpretation of 

photographs of the three cut faces at each standard sampling point using SigmaScan 

Pro 4.0 (Jandel Scientific 1987-1996). The scale of each photograph was calibrated 

with reference to a 10 x 20 cm white board included in the photograph. A 

representation of the average amount of decay in each tree was calculated by 

determining an average of the amount area of decay for the three cut faces at each 

of the three standard sampling points. This was then expressed as a proportion of 

the surface area at each standard sampling point (%). This proportional measure 

was used to compare decay between trees by adjusting for differences in sampling 

effort between tree age classes. Differences in proportion of decay between tree age 

classes were compared using one-way analysis of variance (ANOVA) and a follow-

up multiple comparison tests (Ryan-Einot-Gabriel-Welsch Multiple Range Test: 

REGW test) in SAS 9.1 (Anon. 2002). Differences among age classes were tested 

both at the whole tree level and at the three standard sampling heights. 

Correlations between rotten wood type and tree age 

For the purposes of this study, one-way analyses of variance (ANOVA) were 

undertaken in SAS 9.1 (Anon. 2002), using age class as a random effect on the 

number of rotten wood types per tree. Presence-absence data from each tree were 

used for all analyses, pooled from the three standard sampling sections. A follow up 
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multiple comparison test (REGW test) was used to determine the nature of the 

differences.  The difference in the proportion of different rotten wood types 

between tree age classes was tested using Chi-square analysis. 

To determine the effect of sampling effort on the number of rotten wood types in 

each tree age class, rarefaction curves (Gotelli and Colwell 2001) were calculated 

against two different variables: the number of individuals collected, and the 

cumulative cross-section area of wood faces examined. For each variable, 

rarefaction curves were calculated using incidence data for all rotten wood types 

including discoloured and solid wood. Rarefaction curves were calculated using 

EstimateS (Colwell 2001) and graphs plotted in Microsoft Excel.  

Non-metric Multidimensional Scaling (NMS), an unconstrained ordination, was 

used to explore variation in rotten wood type assemblage between the three tree age 

classes. NMS was performed using a Sorensen (Bray-Curtis) distance measure in 

PC-ORD (McCune and Mefford 1999) choosing the slow and thorough autopilot 

method. Multi-Response Permutation Procedures (MRPP) were then applied to 

statistically test fungal assemblage differences among tree age classes. MRPP was 

carried out in PC-ORD using a Sorensen (Bray-Curtis) distance measure and using 

the natural group weighting of n/sum(n). 

Isolation and determination of wood decay fungi 

Fungi were isolated from the decayed wood samples as described in chapter 4 and 

identified as described in chapter 3. Fungal species names follow those of Kirk  et 

al.(2001). 

Production of wood decay enzymes by isolates  

Enzyme tests were carried out on all fungal isolates to detect the production of the 

wood degrading enzymes laccase and tyrosinase (Stalpers 1978) and thus reinforce 

any associations between fungi and rot types. One drop test of each of two solutions 

was applied to the culture margin of each isolate. The presence of laccase (a lignin-

degrading enzyme) was indicated by a purple colour change after the application of 

0.1M solution of α-naphthol dissolved in ethanol. The presence of tyrosinase (a 

cellulose-degrading enzyme) was indicated by a brown colour change after the 

application of 0.1M solution of ρ-cresol dissolved in ethanol. Isolates were 
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monitored for enzyme colour changes after 3 hours, 24 hours and 72 hours (Stalpers 

1978). Each drop test was performed at least twice on each isolate to test for 

reliability. The final results presented here only indicate the presence or absence of 

each enzyme, not the time the reaction took to appear, as this was not known to be a 

reliable indicator of the decay capacity of the fungal isolate (T. Wardlaw, pers. 

comm. 2004). Fungi were divided into four decay type, depending on the results of 

the enzyme tests (Table 5.2.1). Soft rot fungi are included with the white rotters as 

the enzyme tests used could not separate them (Worrall et al. 1997). 

Table 5.2.1. Classification of fungal isolates into decay types, as measured by the 
production of laccase and tyrosinase enzymes in culture. 
Decay Types Laccase Tyrosinase 

None (No enzymes produced) x x 

Selective White √ x 

Simultaneous White √ √ 

Brown x √ 

 

Correlations between decay and fungi 

The isolation success rate for both brown rot and white rot fungi was calculated, 

based on the isolation rates determined in Chapter 3.  

Indicator Species Analysis was run in PC-ORD for Windows 4.25 (McCune and 

Mefford 1999) and was used to investigate whether particular species of fungi were 

significantly associated with specific rotten wood types. A cut-off value of IndVal 

≥25, p<=0.05 was used. Untransformed species abundance data were used, where 

frequency data (i.e. the number cut faces a species was isolated from) was used as a 

surrogate measure of abundance. 

Correlation between fungal communities, decay and beetles 

Mantel tests were performed in PC-ORD for Windows 4.25 (McCune and Mefford 

1999) to determine whether the patterns of fungal assemblage distribution were 

similar to the patterns of community distribution of rotten wood types and 

saproxylic beetles in the same trees. Non-metric Multi-dimensional Scaling (NMS) 

ordinations prepared in PC-ORD for Windows 4.25 (McCune and Mefford 1999) 
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were compared for each group. NMS was performed using a Sorensen (Bray-Curtis) 

distance measure in PC-ORD (McCune and Mefford 1999) choosing the slow and 

thorough autopilot method. The fungal data were based on log transformed 

frequency data (see Chapter 4), while for the rot type data, the NMS was based on 

presence-absence data (this Chapter, see previous section). The saproxylic beetle 

data were based on the collaborative work with Katherine Harrison (University of 

Tasmania) and the NMS was performed using log-transformed abundance data. The 

Mantel tests gave p values based on Randomisation (Monte Carlo) tests using 1000 

randomised runs. 

5.3 Results 

Classification and description of rotten wood types 

The decayed wood from 18 living Eucalyptus obliqua trees was classified into eight 

different rotten wood types (Table 5.3.1). A more detailed description of each decay 

type, including photographs to demonstrate colour and texture, is provided in 

Appendix 5.1. All decayed wood was found in the heartwood; none of the sapwood 

was decayed. Three of the rotten wood types were thought to be white, three brown 

and one a combination of brown and white. No soft rot types were identified. Two 

of the rotten wood types from living trees were similar to those found in logs by 

Yee (2005): discoloured wood, and red brown blocky fibrous decay. Two other 

rotten wood types, dry brown cubic decay and wet brown cubic decay, were similar 

to Yee’s brown cubic rot, however given the striking difference between the 

apparent moisture content in the two rotten wood types found in living trees, they 

were retained as two separate rotten wood types in this study. The three white rotten 

wood types and the combination decay were not related to any of the rotten wood 

types described by Yee (2005) from logs. 

Rotten wood type and tree age 

With no adjustment for sampling effort, mature trees (those greater than 150 years 

old) had a significantly higher number of rotten wood types per tree than trees in 

either of the younger age classes (Figure 5.3.1, p<0.001). 
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Table 5.3.1. Types of decayed wood found in 18 living E. obliqua trees.  
Rotten wood 
type 

Suspected main 
decomposition 
agent* 

Rot type Brief description Related rotten 
wood type in Yee 
(2005) 

Discoloured 
wood 

Fungi, possibly 
bacteria 

N/A  Discoloured wood 

Stringy Rot Fungi White  Brown and very fibrous. - 
White Spongy 
Rot 

Fungi White  Very bleached, soft but 
also quite stringy in 
places. 

- 

Small Pocket 
Rot 

Fungi White  Pockets very small and 
dispersed. Mycelium 
often visible in wood 
grain. 

- 

Combination 
Pocket and 
Brown Rot 

Fungi White and 
brown 
together  

Looks like a pocket rot 
and a brown cubical rot 
both growing together.  

- 

Dry Brown 
Cubic Rot  

Fungi Brown  Crumbly, cubical decay, 
consistently very dry 
and light coloured even 
in newly fallen trees. 

Brown cubic rot 

Wet Brown 
Cubic Rot  

Fungi Brown  As above but 
consistently wetter even 
in newly fallen trees. 

Brown cubic rot 

Red Brown 
Blocky Fibrous 
Rot  

Insects, fungi Brown  Blocky and fibrous, 
often very wet with a 
reddish colour 

Red Brown Blocky 
Fibrous Rot 

*Adapted from Yee (2005). 
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Figure 5.3.1. Average number of rotten wood types found in individual trees of each age 
class. Error bars denotes standard error, with letters a and b representing significantly 
different means from ANOVA. 
 

The rarefaction curves based on number of individuals sampled showed that the 

number of rotten wood types for all tree age classes was very similar within the 

comparable range (Figure 5.3.2). The rarefaction curves for cumulative cross-
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sectional area showed a different pattern (Figure 5.3.3). The number of rotten wood 

types was markedly greater per unit area for trees in the 69 year-old age class than 

for trees in either of the other age classes. The 105 year old trees showed fewer 

rotten wood types than the mature trees however this difference was minimal. 
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Figure 5.3.2. Rarefaction curve for all rotten wood types in relation to tree age class. Error 
bars denote standard error for each age class.  
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Figure 5.3.3. Rarefaction curve for all rotten wood types based on the cumulative cross 
sectional area of billets examined for decay in relation to tree age class. Error bars denote 
standard error. 
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Discoloured wood was found in all 69 year old and >150 year old trees, and in four 

of the six 105 year old trees (Figure 5.3.4). Two of the rotten wood types were 

confined to just one tree. Red brown blocky fibrous rot was only found in Tree 44 

and combination brown and pocket rot was confined to Tree 4. Wet brown cubic rot 

was the only rotten wood type found in more than one tree which was confined to 

trees greater than 150 years old, however both dry brown cubic rot and stringy rot 

were both predominantly found in trees greater than 150 years old. White spongy 

rot was only found in two trees; one 69 year old and one 105 year old tree. 
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Figure 5.3.4. Frequency of occurrence of rotten wood types found in six trees in each of 
three age classes (69, 105 and >150 years old). Rotten wood types which differed 
significantly in occurrence (p<0.05, Chi-square analysis) between the three tree age classes 
are shown by *, and rotten wood types exclusive to a particular age class are denoted by **.  

 

Decay area and tree age 

The proportion of decay was highly variable both between trees and between 

sample sections within trees. One 69 year old tree and four 105 year old trees were 

completely free of decay at the standard sampling points. On average, mature trees 

(those greater than 150 years old) had a significantly greater proportion of decay at 

all three standard sampling points compared with the trees in the two younger age 

* 

** 

** 

* ** 

* 

** 

Age Class 



Chapter 5-Rotten Wood, Fungi and Tree Age 

 110 

classes (p<0.001). Similarly, 105 year old trees had significantly less decay than 69 

year old trees and mature trees. The proportion of decay was relatively consistent 

between sample heights for each age class, except for the mature trees where the 

proportion of decay 2 m within the crown was significantly greater than at any other 

height (Figure 5.3.5, p=0.0062). Due to their much larger diameter and their high 

proportion of decay, mature trees contained a much greater amount of decay per 

tree than trees in either of the younger age classes. 
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Figure 5.3.5. Proportion of decayed cross-sectional area per cut face at three different 
standard sampling heights. Averages are shown for each tree age class. Error bars denote 
standard error. Letters a, b, and c indicate means significantly different from ANOVA 
(p=0.0062).  

 

Rot type assemblages and tree age 

Mature trees had distinct communities of rotten wood compared with trees in the 

two younger age classes (Figure 5.3.6). The assemblage in the mature trees was 

particularly driven by the presence of the two types of brown cubic decay and the 

white stringy decay. There was little similarity in decay communities within the 69 

year old tree age class and within the 105 year old age class; the majority of these 

trees appeared to contain quite different communities of decay from each other. 
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Figure 5.3.6. Non-metric Multidimensional Scaling ordination of 18 living E. obliqua trees 
based on eight rotten wood types showing axes 1 and 2 with tree age class overlaid. Rotten 
wood type vectors with an r2  value >0.2 are shown. Tree numbers relate to those listed in 
Table 2.2.1. 
 

Production of wood decay enzymes by fungal isolates 

Of the 91 species of fungi found in this study, more than half (48) were determined 

as selective white rot fungi, showing a positive enzyme reaction for laccase only 

(Table 5.3.2). Of the remainder, 18 were simultaneous white rot fungi (positive for 

both laccase and tyrosinase) and just six species were brown rotters (positive for 

tyrosinase only). Sixteen species showed no positive enzyme reactions at all and a 

further three were not tested for enzyme production in culture due to contamination. 

All Ascomycota were selective white rot species. 
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Table 5.3.2. Species of fungi found in living Eucalyptus obliqua trees showing response of 
each species to wood decay enzyme tests for laccase and tyrosinase.  
Species Selective 

White 
Simultaneous

White 
Brown No Enzymes 

Produced 

ASCOMYCOTA     

Ascocoryne sp.1 x    

Ascomycete sp.1 x    

Metarhizium flavoviride x    

Neonectria radicicola x    

Xylaria sp. x    

Xylariaceae sp.1 x    

     

BASIDIOMYCOTA     

Athelia-like sp.1 x    

Athelia-like sp.2 x    

Basidiomycete sp.1 x    

Basidiomycete sp.2 x    

Basidiomycete sp.3    x 

Basidiomycete sp.4 x    

Coniophora-like sp.1    x 

Coniophora-like sp.2 x    

Fistulina-like sp.1   x  

Fomitopsis-like sp.1    x 

Gymnopilus allantopus  x   

Hymenochaeteaceae sp.1 x    

Hymenochaeteaceae sp.2  x   

Hypholoma fasciculare  x   

Hypholoma sp.1  x   

Hypholoma sp.2  x   

Peniophora aurantiaca    x 

Phanerochaete sordida x    

Phlebia-like sp.1 x    

Polyporus gayanus    x 

Postia pelliculosa  x   

Postia-like sp.3  x   

Postia-like sp.4  x   

Postia-like sp.5  x   

Postia-like sp.6   x  

Postia-like sp.7  x   

Psathyrella-like sp.1  x   

Steccherinum-like sp.1  x   

Stereum-like sp.1 x    

Trametes ochracea x    

Trametes versicolor x    
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Typhula-like sp.1    x 

Additional Records* 30 6 4 10 

Total 48 18 6 16 

*Additional Records are those singleton species which were unable to be named. 
 

Trees in the two youngest age classes (69 and 105 year old trees) were clearly 

dominated by selective white rot fungi (78% and 63% respectively, Figure 5.3.7). 

The proportion of selective white rot species in the mature trees (trees greater than 

150 years old) was much lower, accounting for only 39% of decay species. The 

proportion of simultaneous white rot fungi ranged from 15% in the 69 year old trees 

to 39% in the mature trees. The mature trees were the only age class to contain any 

brown rot fungi and these were relatively rare (8% of species in that age class).  

Fungal isolations from wood classified as white rot had a 53% success rate, while 

67% of wood chips thought to be brown rot gave rise to isolates of wood decay 

fungi.  

Correlation between fungal communities, decay and beetles 

Indicator species analysis revealed no significant correlations between specific 

rotten wood types and particular species of fungi. 

Mantel tests indicated that there was a highly significant positive relationship 

between the patterns of distribution of decayed wood and fungal communities 

(p=0.0025), yet the relationship was not well correlated (r=0.278). Fungal 

assemblage structure was not significantly related to saproxylic beetle assemblage 

structure (p=0.15, r=0.2); however, saproxylic beetle assemblage structure was 

significantly related to the distribution of decayed wood in the living trees (K. 

Harrison, personal communication 2005).  
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Figure 5.3.7. Proportion of fungi producing wood decay enzymes in one of four categories: 
brown rot, (simultaneous) white rot, selective white rot and none (no enzymes produced) 
for the three tree age classes a) 69 year old trees N=26, b) 105 year old trees N= 21, and c) 
tree greater than 150 years old N=56. 
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 5.4 Discussion 

This study is the first to examine the association between decayed wood, wood 

decay fungi and tree age in living E. obliqua. Seven rotten wood types were 

collected and described from 18 living trees. Table 5.4.1 compares the rotten wood 

types collected in this study with those collected from eucalypts in previous studies. 

Aside from the rotten wood types described by Yee (2005) which were described 

photographically and have been directly compared with decay from this study, the 

relationships in this table should be treated with caution. The patterns of decay and 

decomposition in eucalypts are not yet well understood (May and Simpson 1997; 

Simpson and Eldridge 1986; Wilkes 1982; Yee 2005), and many studies provide but 

a brief description of their rotten wood types, making comparisons difficult. 

Importantly, this study has built on the work of Yee (2005) to add four new, well-

described rotten wood types to her study of decay in E. obliqua (Appendix 5.1). 

Decayed wood can be found in young trees 

In contrast with the findings of Basham (1991) and Aho (1977), this study showed 

no clear relationship between tree age and amount of decay. While mature trees had 

the most decay in terms of volume and percentage area, the heartwood of the 69 

year old trees was proportionally more decayed than that of the 105 year old trees. 

This was unexpected, particularly considering the distinct lack of decay in the 105 

year old trees. Adjustments for sampling effort also indicate that within the 

comparable range, the 69 year old trees had marginally more types of decay present 

than the 105 year old and mature trees. This is despite the mature trees supporting a 

much greater number of rotten wood types on an individual basis. It is possible that 

in the mixed age forest sampled in the present study, the growth of these younger 

trees was suppressed by the surrounding older, dominant trees, making them more 

susceptible to colonisation by decay fungi. This idea is reinforced by relative tree 

height: all 69 year old trees were much shorter than 105 and >150 year old trees 

(see Chapter 2). In addition, their canopy was much less developed, in the sense that 

they had much lower numbers of branches. Perhaps these particular 69 year old 

trees actually represent a different developmental  
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Table 5.4.1. Classification of the seven rotten wood types from this study compared with classifications from other studies. Rotten wood types in the same 
rows are thought to be the same. Adapted from Yee (2005). The Australian state where each study took place is shown in line two. 
This study, 
E. obliqua trees 

Yee (2005) E. obliqua 
logs 

Meggs (1996) Eucalyptus 

spp. 
Refshuage (1938)                 
E. regnans trees 

Tamblyn (1937) 
E. marginata trees 

Parkin (1942) 
E. regnans,E. viminalis  

trees & logs 
Tasmania Tasmania Tasmania Victoria Western Australia Victoria 
Discoloured wood Discoloured wood     
Stringy Decay      
White Spongy 
Decay 

   Yellow straw rot White spongy rot 

Small Pocket 
Decay 

  Small white pocket rot  Small white pockets 

 Fibrous surface rot Soft yellow fibrous rot   Yellowish stringy rot 
 White jelly surface rot Other (including wet jelly 

rot and blue stain fungi) 
   

 White pocket rot  Large white pocket rot  
Small brown pocket rot 
Brown stain associated with small 
white pocket rot 

White pocket rot White pocket rot 

 White stringy rot  White spongy rot 
Large white pocket rot of stringy type 

 White stringy rot 

 Yellow dry slatey rot     
Combination 
Pocket and Brown 
Decay 

     

 Brown cubic friable rot     
Dry Brown Cubic 
Decay and Wet 
Brown Cubic 
Decay 

Brown blocky crumbly 
rot 

Orange/red/brown crumbly 
rot 

Brown cubical rot Brown trunk rot 
Xylostroma heart rot 

Brown cubical rot 

Red Brown 
Blocky Fibrous 
Decay 

Red brown blocky 
fibrous rot 

Red blocky rot 
Red blocky rot with white 
fungal hyphae 

  Yellow brown spongy 
rot 

 Brown mudgut rot Orange/red clayey rot    
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pathway compared with the 105 year old trees, and will maintain a greater amount 

of decay throughout their lifetime. The unusual levels of decay in the 69 year old 

trees are partly confirmed by the findings of Yee (2005) who observed that the 

majority of small diameter E. obliqua logs in the Warra region had very little decay 

prior to tree fall. Wardlaw (2003) found that only 14.1% of 1070 20-50 year old 

regrowth eucalypts were free of decay between 6 and 12m bole height, while 25.3% 

of trees had >5% of their bole volume decayed. Despite the different measures used 

(volume rather than cross-sectional area), very few trees appeared to contain the 

high levels of decay found in the 69 year old trees in this study. This finding clearly 

demonstrates the importance of site variation when examining decay in living 

E. obliqua trees.  

Mature trees have more decay 

The greater proportion of decay in the mature trees (greater than 150 years old) 

could be related to a greater number of entry points in older trees for fungi. In this 

study, large dead branches were predominantly found in the mature trees (see Table 

2.2.1, Chapter 2) while fire scars were only found in mature trees. It is probable that 

the presence of these features increased the opportunities for colonisation in the 

trees, creating more chances for fungal colonisation within the stem. Other tree 

features such as hollows and dead or broken tops were also only found in the 

mature trees and may have acted as colonisation pathways. Bar-Ness (2005) found 

similar patterns in E. obliqua, with stem hollows, fire scars and dead tops restricted 

to trees greater than 150 years old. Both large diameter branches and fire scars have 

been demonstrated as potential colonisation points for wood decay fungi and 

invertebrates in eucalypts (Marks et al. 1986; Parkin 1942; Perry et al. 1985; 

Simpson and Eldridge 1986; Tamblyn 1937; Wardlaw 1996; Wardlaw and Neilsen 

1999) and other hardwoods (e.g. Basham 1958; Basham 1991; Boddy 2001). For 

example, Wardlaw (2003) found that almost 85% of fungal decay in young 

regrowth eucalypts in Tasmania was associated with dead branches and poorly 

occluded branch stubs, a factor which increased when branches were larger than 2.8 

cm in diameter. In addition, large diameter branch stubs can be associated with 

colonisation by wood boring insects, providing a pathway to the central heartwood 

(Wardlaw 1996). Fire scars are also considered important for fungal colonisation 

(Parkin 1942), and may provide good colonisation points for wood boring beetles 
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(Simpson and Eldridge 1986). Large wound areas (as large branch stubs or fire 

scars) also provide opportunities for more than one species of fungus or invertebrate 

to coexist, thereby increasing the chance of successful entry of appropriate wood 

decay organisms.  

The greater surface area and volume of wood of the larger diameter trees did mean 

there was more wood available for fungal colonisation. This might reduce the 

chances of competition among colonisers, resulting in a greater number of 

successful colonisation events. In a study in north-east Queensland, Grove (2002) 

considered that local tree basal area (a parameter correlated with stem diameter of 

component trees) was a good correlate of saproxylic beetle species richness. In 

addition, older trees would have had a greater time period over which colonisation 

could occur, again increasing the chances of a successful colonisation event. As a 

result of their older age, mature trees would also have been exposed to more natural 

disturbance events such as fires and strong winds which may make them more 

susceptible to infection by fungi or invertebrates (Gill 1997; Greaves et al. 1967; 

Perry et al. 1985). Together, these factors may begin to account for the greater 

amount of decay in the mature trees. 

Brown rot is only found in mature trees 

In addition to having a greater area and proportion of decay, mature trees also had 

different rotten wood types to trees in the younger age classes. Both brown rotten 

wood types and brown rot fungi were only found in mature trees and always at very 

low numbers. The low number of brown rot fungi must be related to the lower 

quantity of brown rot present in all trees, as the isolation success rate for brown and 

white rot fungi was similar.  

Little is known about the relationship between tree age and rotten wood type in 

Eucalyptus, however, Wardlaw (2003) suggested that brown rot may be more 

common in old growth eucalypts. Similarly, surveys by Parkin (1942) found brown 

rot to be more common in mature eucalypt trees and logs than young trees and 

branches. In European systems, the brown rot fungus Lopadostoma turgidum is 

known to be a late coloniser of logs (Chapela et al. 1988) and brown rots are 

common at mid-late stages of log decay (Bader et al. 1995; Renvall 1995) although 

there is much variation between tree species (e.g. Renvall 1995). Yee (2005) 
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suggested that the brown rot characteristic of inner heartwood decay in large 

diameter E. obliqua logs was due to different successional processes in large and 

small diameter trees prior to tree fall. Given that brown rot was only found in 

mature (ie large diameter) trees in this study, this suggestion may well be correct. 

The stringy rot was also only found in mature trees in the present study and could 

also be a late stage successional decay type.  

Associations between fungi and rot types 

The majority of fungi isolated in this study showed a positive enzyme reaction for 

laccase, indicating they were selective or simulataneous white rotters or soft rotters. 

Given that over 90% of Basidiomycete wood decay fungi are thought to be white 

rotters (Kirk and Cowling 1984), this is not unusual. These results should be treated 

with caution however as many mycorrhizal and litter decay species have also been 

found to respond positively for laccase (Gramss et al. 1998). All of the Ascomycete 

fungi also showed positive reactions to laccase, although it was rarely very strong 

(personal observation). With the exception of the Xylariales, these Ascomycetes are 

likely to be soft rotters if they do indeed decay wood (Kirk and Cowling 1984; 

Schwarze et al. 2000; Worrall et al. 1997). Few browns rot fungi were identified by 

enzyme testing, but that is as expected since only 6% of wood decay fungi are 

capable of causing brown rot (Schwarze et al. 2000). Worrall (1997) found that 

only five of 98 isolates of fungi responded positively to tyrosinase. 

Where neither laccase nor tyrosinase enzyme was produced, it does not necessarily 

indicate that the isolate had no decay capacity. Fungi can be known to lose their 

decay capacity over time in culture (Tanesaka et al. 1993) and many fungi, 

particularly brown rots, do not respond well to enzyme tests (Worrall et al. 1997). 

Coniophora species, for example, are known to cause brown rot on buildings (Dix 

and Webster 1995), however Coniophora-like sp.1 in this study showed no positive 

reaction to tyrosinase. This is also true for fungi from well-known decay species 

and genera isolated in this study such as Fomitopsis-like sp.1, Peniophora 

aurantiaca and Polyporus gayanus. This may also be because some brown rot fungi 

have non-enzymatic oxidative mechanism for initial break-down of carbohydrates 

and thus do not produce tyrosinase (Worrall et al. 1997).  
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A number of fungal species normally associated with brown rot genera showed 

positive reactions to laccase. This was particularly true of the majority of Postia-

like species, generally considered to be brown rot fungi (Breitenbach and (Eds) 

1986) that gave strong positive reactions to tyrosinase and laccase. There may be 

several reasons for this. Firstly, the isolates may be brown rot fungi either with a 

limited Klason lignin degrading capacity (Blanchette 1991) or they may respond to 

laccase for some other reason. Some brown rot fungi have a limited ability to 

degrade lignin and have previously been shown to respond positively to laccase (1 

species Kirk and Cowling 1984; 1 species Worrall et al. 1997). Alternately, the 

placement of these isolates in Postia may be incorrect. The taxonomy of wood 

decay fungi in Australia is not well known and the placement of these isolates in 

Postia is based only on comparison of the sequences of rDNA Internal Transcribed 

Spacer region with sequences of overseas fungi (see Chapter 3).  

Despite Mantel tests indicating a similar distribution pattern for decay and fungi, no 

clear relationships were found between individual species of wood decay fungi and 

types of decayed wood. This is consistent with the suggestion that it is difficult to 

show clear causal relationships between individual species of fungi and specific rot 

types (Wagener and Davidson 1954). One species of fungus can sometimes cause 

more than one rot type and one morphologically distinct rot type is often caused by 

the action of several different fungi (Parkin 1942; Rayner and Boddy 1988). For 

example, Inonotus hispidus is known to cause both white rot and soft rot (Schwarze 

et al. 2000). The lack of relationships between rotten wood types and specific wood 

decay fungi may also be due to a lack of statistical power. This is supported by the 

findings of Harrison in her study of the saproxylic beetles in the same living trees. 

Harrison’s study, based on over 200 species of beetles from 18 trees, found strong 

relationships between specific saproxylic beetles and rotten wood types 

(K. Harrison, pers. comm. 2006). Assemblages of wood decay fungi are extremely 

complex (Rayner and Boddy 1988) and it may be that only sampling 18 trees did 

not capture enough information to draw specific conclusions about the fungi 

causing decay. Another possibility is that the primary causal fungi for a particular 

rot type may only be present early in the decay process. Thus, by the time isolations 

were carried out in this study, the causal fungi may well have already disappeared.  
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Mature trees are important for habitat 

This study provides an example of the importance of large diameter, mature trees as 

habitat in forest ecosystems. Mature trees, as individual units, had a greater volume 

of decay, meaning that on an individual basis they would provide a greater amount 

of habitat for saproxylic organisms than younger trees. The type of habitat in mature 

trees was also different to that in the younger trees in that it contained a number of 

different rotten wood types. In her study of decaying E. obliqua logs, Yee (2005) 

found that certain species of beetles were specifically associated with different rot 

types. Brown rotten wood types in particular, appeared to be an important habitat 

for saproxylic beetles. For example, four beetles species, Cossonus simsoni, 

Prostomis atkinsoni, Dryophthorus TFIC sp01 and Pycnomerus TFIC sp02, were 

associated with brown decayed heartwood. This may be the result of lower water 

content characteristic of  brown rot types compared with white rot types (Edmonds 

and Marra 1999). All of the mature trees surveyed in this study contained 

significant portions of brown rot and no brown rotten wood types or brown rot fungi 

were found in trees in the younger tree age classes.  

Assemblages of both wood decay fungi and saproxylic beetles were strongly linked 

to the rotten wood types present in the living trees. This demonstrates the 

importance of decay as habitat for organisms other than fungi and reinforces the 

importance of fungi in creating this decay. Further, the patterns of assemblage 

distribution for fungi, decay and beetles all indicate that mature trees are an 

important habitat, different to that supported by trees in younger age classes (this 

study; K. Harrison, pers. comm. 2006).  

5.4.1 Conclusions 

This study has demonstrated the importance of mature trees (those greater than 150 

years old) for decayed wood habitat in a Eucalyptus obliqua stand in southern 

Tasmania. Mature trees were found to contain a significantly greater area of decay 

than 69 and 105 year old trees and, given their larger size, had a much greater 

volume of decay available for use as habitat. Mature trees were the only tree age 

class to contain brown rot types and brown rot fungi, thought to be particularly 

important as habitat for invertebrates. Trees in the 69 year old age class also 

contained considerable proportions of decay, particularly in comparison to 105 year 
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old trees. These 69 year old trees may also be important for providing habitat for 

those species that prefer white rot habitats. Finally, this study has added to 

knowledge of the successional processes of wood decomposition in E. obliqua by 

describing four new rotten wood types to add to those already described by Yee 

(2005) and identifying the presence of a further three rotten wood types in living 

trees, previously only known from logs.  
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Appendix 5.1.  

Detailed descriptions of the rotten wood types categorised from the rotten wood of living 

Eucalyptus obliqua trees in wet eucalypt forest in southern Tasmania (Study 1). 

 

Discoloured wood 

Description taken from Yee (2005), Appendix 4.6.4. 

‘Discoloured wood comprises any wood that has been slightly discoloured, but still 

has the apparent physical structure of sound wood. Discolouration can vary from 

light pink, to yellow, or brown. The wood can have a grainy appearance.’ 

This discoloured wood type was found in all three living tree age classes in this 

study. 

 
 

Plate 5.1.1 Discoloured wood. Arrows indicate edge of discoloured patches in (A) a 69 year 

old tree and, (B) and 105 year old tree. 
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Stringy Rot 

Stringy rot has a coarse stringy texture, with the colour ranging from light brown 

through to dark reddish-brown. The rotten wood appears to consist of long stringy, 

wool-like fibres. It differs from the white stringy rot described by Yee (2005) as 

stringy rot lacks the bleached-white colour and softer, spongy texture of the white 

stringy rot. This rotten wood type was found in trees in all age classes but was most 

commonly associated with mature trees. 

  

 

 

Plate 5.1.2. Stringy rot, showing colour variation from (A) dark brown, to (B) red-brown, 

through to (C) light brown. The fibrous texture of this rot is especially evident in (B). 
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White Spongy Rot 

White spongy rot is characterised by continuous long, spongy, wool-like, bleached 

fibres. The colour can range from white through to a straw-like yellow colour. The 

rotten wood has a very soft texture and appears to have a very low density, making 

it very light. This rotten wood type was found in only two trees: one in the 69 year 

old age class and one in 105 year old age class. 

 

 

 

 

 

Plate 5.1.3. White spongy rot showing close-up view of the (A) bleached wood, (B) fibrous 

wood texture and (C) colour variation from bleached white through to straw-like yellow. 
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Small Pocket Rot 

Small pocket rot is characterised by 2-5 mm elliptical pockets. These pockets are 

usually empty but are very occasionally filled with white mycelium. Pockets are 

separated by thin areas of seemingly intact wood. The rotten wood can range in 

colour from a light tan to dark reddish-brown. This rotten wood type is often 

associated with black ‘zone’ lines. It can be distinguished from the white pocket rot 

described by Yee (2005) as the pockets are much smaller (2-5 mm as opposed to 5-

20 mm) and are often dry, rather than filled with gelatinous material or mycelium. It 

was only found in living trees in the 69 year old age class.  

 
 

Plate 5.1.4. Small pocket rot showing small pocket size and colour variation. (A) Dark red-

brown coloured rotten wood with occasional pockets filled with mycelium; and (B) light 

tan rot with empty pockets. 
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Combination Pocket and Brown Rot 

Combination pocket and brown rot appears to be a rot type formed from the action 

of two different rots: a pocket rot and a brown rot. It is characterised by irregularly 

spaced 5-20 mm elliptical pockets. These pockets are generally empty but are 

occasionally filled with white mycelium. In contrast with other pocket rots 

described, the rotten wood is blocky (i.e. the wood breaks into regular blocks), 

rather than fibrous, and the wood in between the pockets is soft. The rotten wood is 

a light brown to red-brown colour. This rotten wood type was only encountered in 

one tree, a mature tree. 

  

 

Plate 5.1.5 Combination pocket and brown rot showing (A), (B) large pockets and (C) 

blocky nature of the rotten wood. (C) Also shows pockets filled with white mycelium. 
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Dry Brown Cubic Rot 

Dry brown cubic rot is characterised by brittle wood that breaks off in regular 

blocks and can be crumbled by hand to a powder. This rotten wood type ranges in 

colour from very dry tan to light brown. It is consistently very dry in texture. 

Distinguishing features include thin sheets of mycelium, with a chamois-like 

texture, progressing along the rays. This rotten wood type is very similar to the 

brown cubic rot described by Yee (2005)
1
. Dry brown cubic rot was found in all the 

mature trees examined as well as one of the 69 year old trees.  

 

 

 
Plate 5.1.6. Dry brown cubic rot, showing (A) dry, brittle wood and (B) cubic nature of the 

rot with thin sheets of mycelium. 

 

                                                 

1
 Yee’s brown cubic rot included both wet and dry cubic rots; however in this study, they were 

deemed different as they were consistently found to be either wet or dry. 
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Wet Brown Cubic Rot 

Wet brown cubic rot is very similar to dry brown cubic rot except that it is 

consistently wet in texture. It is characterised by brittle wood that breaks off in 

regular blocks and can be crumbled by hand to a wet paste. This rotten wood type 

ranges in colour from red-brown to dark brown. Distinguishing features include thin 

sheets of mycelium, with a chamois-like texture, progressing along the rays. This 

rotten wood type is very similar to the brown cubic rot described by Yee (2005). 

Wet brown cubic rot was found in all the mature trees examined.  

 

 
 

 

 

Plate 5.1.7 Wet brown cubic rot showing (A) cross-section view with blocky texture, (B) 

wet condition of the wood, and (C) dark, wet blocky wood sections with mycelial flecks. 
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Red-Brown Blocky Fibrous Rot 

Description taken from Yee (2005), Appendix 4.6.4. 

‘Red-brown, blocky, fibrous rot has a distinctive red-brown colour. It is different 

from brown cubic rot in that it breaks into irregular blocks, and maintains a soft, 

fibrous, often relatively moist texture, rather than a crumbly, brittle one. In less 

decomposed wood, the wood is hard, yet the intact wood fibres can be teased apart. 

In more decomposed wood, the fibres are more moist and soft, giving the wood a 

spongy texture. This rotten wood type was mostly found in the central area of the 

log, but also occurred in localised patches, and occasionally in areas adjacent to the 

brown blocky crumbly rot.’ 

In living trees in this study, this rotten wood type was only found in a single mature 

tree (greater than 150 years old). 

 

 

Plate 5.1.8. Red-brown blocky fibrous rot showing (A) soft, fibrous, moist wood with 

crumbly texture and no mycelium; and (B) spongy, more advanced rot with visible 

mycelium. 
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CHAPTER 6: WOOD DECAY FUNGI IN LOGS: IDENTIFICATION 

AND ASSOCIATIONS WITH ROTTEN WOOD HABITAT 

6.1 Introduction 

Logs on the forest floor are more than just decaying fallen trees; they are key 

functional resources which support a vast range of forest organisms (Franklin et al. 

1987; Grove et al. 2002; Lindenmayer et al. 1999a; Nordén et al. 2004). Logs can 

be important nesting and denning sites for a wide range of hollow-dwelling 

mammals and reptiles (Butler et al. 2002; Gibbons and Lindenmayer 2002; 

Lindenmayer et al. 1999a; Williams and Faunt 1997), can support numerous species 

of bryophytes and lichens (Andersson and Hytteborn 1991; Jarman and Kantvilas 

2001; Kruys et al. 1999), invertebrates (Ehnström 2001; Jonsell and Weslien 2003; 

Kaila et al. 1997) and fungi (Edmonds and Lebo 1998; Høiland and Bendiksen 

1996; Lumley et al. 2000; Nakasone 1993; Nordén and Paltto 2001) and can act as a 

carbon, nutrient and moisture source for seedlings of vascular plants (Harmon and 

Franklin 1989; Swift 1977). In forests in Finland, almost a quarter of the 5000 

known forest dwelling species may depend on dead-wood habitats to some extent 

(Siitonen 2001) and logs are one of the most important elements supporting red-

listed forest species in Sweden (Berg et al. 1994).  

The relationship between logs and wood decay fungi is complex, as wood decay 

fungi are thought to have two different types of relationships within logs. Fungi can 

be thought of as habitat creators which support or create habitat for other species, or 

they can be a diverse group of organisms in their own right. Studies in the northern 

hemisphere have shown that logs support an extremely diverse range of fungi (e.g. 

Andersen and Ryvarden 2001; Boddy 2001; Edmonds and Lebo 1998; Heilmann-

Clausen and Christensen 2005; Høiland and Bendiksen 1996; Lumley et al. 2000; 

Nakasone 1993; Nordén and Paltto 2001). In Fennoscandia, for example, 1500 

species of macrofungi are known to be associated with dead wood habitats such as 

logs (Siitonen 2001). At the same time, wood decay fungi are central to the 

formation of the decayed wood habitat utilised by other organisms such as 

saproxylic invertebrates and hollow-dwelling mammals (Ausmus 1977; Käarik 

1974; Kirk and Cowling 1984; Lewis 1996; Simpson and Eldridge 1986; Worrall et 
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al. 1997). The type of decayed wood habitat formed, the community composition of 

wood decay fungi within the decayed wood, and the fruitbodies growing on the 

outside of logs can profoundly influence the other organisms present within the log 

habitat (Jonsell et al. 2005; Muller et al. 2002). Just as different types of fungi are 

thought to be associated with a particular rot type (see Chapter 5; Dix and Webster 

1995; Käarik 1974; Kirk and Cowling 1984; Rayner and Boddy 1988; Tanesaka et 

al. 1993; Worrall et al. 1997), saproxylic beetles and other wood-dwelling 

organisms can also show preferences for particular rot types (Edmonds and Marra 

1999; Yee 2005).  

Recent changes in Australian forest management requirements have resulted in 

increased consideration of biodiversity conservation issues. This, in turn, has lead to 

an increased interest in research  examining the broader biological diversity 

associated with forest ecosystems (e.g. Brown et al. 2001; Hickey et al. 2001; 

Lindenmayer and Franklin 1997; McCarthy and Lindenmayer 1998). Previously, the 

majority of studies of Australian wood inhabiting fungi were conducted from the 

perspective of the economic impact of decay on timber products (e.g. Barry et al. 

2003; Shearer and Tippett 1988; Tamblyn 1937; Wardlaw 2003) and logs were 

largely ignored as substrates for fungi. In Tasmania, logs are clearly established as 

important habitat for mammals (Gibbons and Lindenmayer 2002), invertebrates 

(Grove et al. 2002; Grove and Bashford 2003; Meggs 1996; Yee 2005) and 

bryophytes (Jarman and Kantvilas 2001) yet their importance for fungi is less well 

known. 

This chapter describes a study conducted in collaboration with Yee (2005), that 

examines some of the more cryptic biota associated with Eucalyptus obliqua logs in 

southern Tasmania. Yee (2005) described 11 rotten wood types and 360 species of 

saproxylic beetles from large (>85 cm) and small (30-60 cm) diameter logs in 

mature and regenerating wet sclerophyll forests. This chapter builds on work by Z-Q 

Yuan who isolated the wood decay fungi associated with these same logs 

(Mohammed and Yuan 2002; Yee et al. 2001). It takes Yuan’s work a step further 

by attempting to identify these fungi using molecular methods. In addition, this 

study looks at the relationship between wood decay fungi and rotten wood type in an 

attempt to better understand the complex processes of habitat creation and 

development within log substrates.   
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6.2 Methods 

Sample collection (prior to this study) 

This study is based on fungal isolates collected by Yee and Yuan (Yee 2005; Yee et 

al. in press; Yee et al. 2001) from logs in the wet sclerophyll forests in southern 

Tasmania. For detailed site and collection descriptions refer to Section 2.2. Yee and 

Yuan (Yee 2005; Yee et al. 2001) collected these fungi from logs at six sites in two 

different forest types; three sites in mature, unlogged forest and three sites in forest 

regenerating from logging 20-30 years ago. At each site, three small diameter logs 

(30-60 cm) and three large diameter logs (>85 cm diameter) were examined for 

fungi. Thin disks were cut from each log at six points along its length and the cut 

face of each disc was examined for decay. To adjust for differences in disc size, only 

one quarter of each disc was examined for the large diameter logs, taken from a 

standard location on each disc. Where decay was found, samples of decayed wood 

were obtained and incubated on specialised media to isolate any associated 

Basidiomycetes and Ascomycetes (Section 2.3.2). The 758 isolates of wood decay 

fungi obtained were sorted into 63 major morphospecies and 77 ungrouped isolates, 

based on their macro-and microscopic characteristics (Mohammed and Yuan 2002). 

Only those 60 morphospecies which occurred on more than one log section are 

considered in this chapter. 

Molecular determination of wood decay fungi 

The morphospecies of fungi, as determined by Yuan (Mohammed and Yuan 2002; 

Yee et al. 2001), were assessed in this study by sequencing the internal transcribed 

spacer region of the ribosomal DNA. Between two and ten isolates from each 

morphological group were selected for sequencing, chosen to represent the full 

range of log/site variation within each group. If sequence variation was found, 

further isolates were sequenced to enable the determination of multiple species. For 

all but four of the morphological groups, sequence alignments confirmed the 

morphological groupings of fungi. Where sequence variation was observed within a 

morphological group, the morphology of the original cultures (now dried plates) was 

re-examined to look for morphological variation which matched the sequence 

variation. The origin of each isolate (forest type, log size, site and rot type) was also 

compared to determine whether sequence variation was related to isolate source. For 
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more details of this process refer to Section 2.2. The resultant 60 putative species are 

used for the remainder of this study. Public databases were searched for the best 

match to consensus sequences from the final fungal species groupings using Blast 

(Altschul et al. 1997) to assist in providing tentative identifications. 

Mycelial cultures from identified fungal fruitbodies from a number of sources to 

form a reference collection of named cultures were also obtained. These included 

collections carried out concurrently with the study, collections of additional 

Tasmanian material and access to reference collections within Australia (Section 

2.4.3). The sequence information from the identified fungi in the reference 

collections was compared to those of the isolates in this study. Similarly, sequence 

information of isolates obtained as part of study 1 (see Chapters 2 and 3) was 

compared with sequences of these fungi isolated from logs. Sequences were aligned 

using ClustalW (Thompson et al. 1994) and dendrograms were created with DNAml 

of the Phylip package (ANGIS; Felsenstein 1989) and viewed in TreeView (Page 

2001). Sequences were considered likely to belong to the same species if there was 

less than 1-2% variation between them, however this variation did depend on the 

species involved (for more information see Section 3.4 or Glen et al. 2001a). Fungal 

species names follow those of Kirk et al.(2001). 

Correlations between decay and fungi 

The rot types found in the logs in this study had been previously determined and 

described by Yee (2005). Indicator Species Analysis was run in PC-ORD for 

Windows 4.25 (McCune and Mefford 1999) and was used to investigate whether 

particular species of fungi were significantly associated with the specific rot types. A 

cut-off value of IndVal ≥25, p<=0.05 was used. Untransformed species abundance 

data were used, where frequency data (i.e. the number cut faces a species was 

isolated from) was used as a surrogate measure of abundance. 

Enzyme tests were carried out on all fungal isolates to detect the production of the 

wood degrading enzymes laccase and tyrosinase (Stalpers 1978) and thus help to 

confirm any relationships between fungi and rot types. For each fungal isolate, the 

presence of laccase (a lignin-degrading enzyme) and the presence of tyrosinase (a 

cellulose-degrading enzyme) were determined by applying one drop of each of two 

solutions to the culture margin. Isolates were monitored for enzyme colour changes 
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after 3 hours, 24 hours and 72 hours (Stalpers 1978). Each enzyme test was 

performed at least twice to test for reliability (Section 2.4.1). The final results 

presented here only indicate the presence or absence of each enzyme, not the time 

the reaction took to appear nor the intensity of the colour change, as this is not 

known to be a reliable indicator of the decay capacity of the fungal isolate 

(T. Wardlaw, pers. comm. 2004). Fungi were divided into four rot types, depending 

on the results of the enzyme tests (Table 6.2.1). Soft rot fungi are included with the 

white rotters as the drop tests used could not separate them (Worrall et al. 1997). 

Table 6.2.1. Classification of fungal isolates into rot type, as measured by the production of 
laccase and tyrosinase enzymes in culture. 
Rot Type Laccase Tyrosinase 

None (No enzymes produced) x x 

Selective White √ x 

Simultaneous White √ √ 

Brown x √ 

 

Correlation between fungal communities, decay and beetles 

Mantel tests were performed in PC-ORD for Windows 4.25 (McCune and Mefford 

1999) to determine whether the patterns of fungal community distribution were 

similar to the patterns of community distribution of saproxylic beetles in the same 

logs described by Yee (2005). Non-metric Multi-dimensional Scaling (NMS) 

ordinations prepared in PC-ORD were compared for each group. NMS was 

performed using a Sorensen (Bray-Curtis) distance measure choosing the slow and 

thorough autopilot method. The fungal data were based on log transformed 

frequency data, while for the saproxylic beetle data were based on the collaborative 

work of Marie Yee (University of Tasmania) and the NMS was performed using 

log-transformed abundance data (Yee 2005). The Mantel tests gave p values based 

on randomisation (Monte Carlo) tests using 1000 randomised runs. 
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6.3 Results 

Comparing molecular and morphological groups 

More than 150 isolates were sequenced in this study, representative of 42 of the 60 

common or most abundant species of wood decay fungi. The remaining 18 

morphological species described by Yuan (Mohammed and Yuan 2002) were not 

sequenced due to contamination of stored isolates prior to the commencement of this 

study. Blast searches using all 150 isolate sequences were carried out on public 

databases (e.g. GB, EMBL, DDBJ) and a good indication of species identity was 

obtained for 24 of the 60 species (Table 6.3.1). Six of these species showed very 

high similarity to sequences from known species, giving a high degree of confidence 

of the identity of the fungus (e.g. Armillaria hinnulea, Hypholoma fasciculare). A 

further 12 species were able to be identified to family/genus, while the remaining six 

could be reliably matched only to division. Sequence identifications were not 

obtained for the remainder of the species either due to low sequence matches with 

public databases (4 species) or difficulty obtaining reliable sequences (14 species).  

Five of the sequenced species produced strong matches with sequences obtained 

from cultures of wood decay fungi from the living trees described in Chapter 3. 

These were Fomitopsis-like sp. 1, Xylariaceae sp. 1, Postia pelliculosa and Postia-

like species 4 and 5.  No useful information was obtained from the reference 

collections beyond that achieved with searches of public databases.  

Table 6.3.1. Results of searches for sequences matches in GenBank with putative species. 
Sequence match quality indicates the value of the taxonomic information obtained from the 
Blast search, based on percentage similarity and length of matching region. Sequences are 
shown in Appendix 1. 
Final Species 
Group 

Closest Blast 
Match 

Number of 
bases 
matched1 

Percentage 
Match 

Origin of 
Closest 
Match 

Sequence 
Match 
Quality 

Armillaria 

hinnulea 

Armillaria 

hinnulea 

448/456 99% Australia Good 

Ascomycete sp.2 Ascomycete 
from solid wood 

443/463 96% Sweden Moderate 

Athelia-like sp.3 Athelia 

decipiens, 
Fibulorhizoctonia 

centrifuga, 

A. epiphylla 

541/571 94% USA Moderate 

Basidiomycete 
sp.5 

Laetiporus 

sulphureus 

195+22 
/478 

97% Germany Low 

Basidiomycete Diplomitoporus 566/610 92% UK Low 
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Final Species 
Group 

Closest Blast 
Match 

Number of 
bases 
matched1 

Percentage 
Match 

Origin of 
Closest 
Match 

Sequence 
Match 
Quality 

sp.6 lindbladii, 

Veluticeps 

fimbriata, Poria 

subvermispora 

Basidiomycete 
sp.7 

Tyromyces 

chioneus 

392 + 
101/553 

96% India Moderate 

Basidiomycete 
sp.8 

Laetiporus 

sulphureus 

195/402 97% Germany Low 

Basidiomycete 
sp.9 

Hyphoderma 

setigerum, 

Phlebia radiata 

167/371 100% Sweden Low 

Ceriporiopsis 
sp.1 

Ceriporiopsis 

sp., 

Ceriporiopsis 

gilvescens 

543/555 98% Sweden Good 

Coniophora-like 
sp.3 

Coniophora 

olivacea, 

C. marmorata 

435/460 95%  Sweden Moderate 

Fomitopsis-like 
sp.1 

Fomitopsis 

rosea 

534/584 91% Norway Low 

Ganoderma 

applanatum/ 

adspersum 

Ganoderma 

applanatum, 

G. adspersum 

620/622 100% Indonesia Good 

Ganodermataceae 
sp.1 

Amauroderma 

subresinosum 

337/540 92% Indonesia Low 

Hypocrea 
pachybasioides 

Hypocrea 

pachybasioides 

565/568 99% Austria Good 

Hypholoma 

fasciculare 

Hypholoma 

fasciculare 

291/301 99% Spain Good 

Phialophora-like 
sp.1 

Phialophora 
spp. 

303/360 96% Sweden Moderate 

Phlebia-like sp.2 Phlebia 

tremellosa, 

Ceriporiopsis 

sp. 

351/546 93% Sweden Low 

Postia pelliculosa Postia 
pelliculosa, 

P. subcaesia, 

P. caesia 

530/533 100% Tasmania Good2 

Postia-like sp.4 Oligoporus 

rennyi 

300/497 94% UK Low 

Postia-like sp.5 Postia 

balsamea, 

Postia subcaesia 

348+78 
+29/622 

91% UK Low 

Postia-like sp.8 Postia 

balsamea, 

P. subcaesia 

346/476 91% UK Low 

Postia-like sp.9 Postia 

balsamea, 

Postia caesia 

452/528 91% UK Low 
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Final Species 
Group 

Closest Blast 
Match 

Number of 
bases 
matched1 

Percentage 
Match 

Origin of 
Closest 
Match 

Sequence 
Match 
Quality 

Postia-like sp.10 Postia 

subcaesia, 

P. balsamea 

470/565 87-90% UK Low 

Xylariaceae sp.1 Xylariaceae sp. 463/468 99% USA Good 
1Length of matching sequence/full length of sequence  
2Sequence match with P. pelliculosa sequence from reference database. 
NB. Species names correspond to those used in Chapter 3. 
 

Species richness   

In this study, 60 species of wood decay fungi were examined, based on their 

isolation from 36 logs sampled as part of a previous study by Yuan (Mohammed and 

Yuan 2002; Yee et al. 2001). Of the 28 species which were able to be identified, 

four were Ascomycetes, one of which fell within the wood rotting Xylariaceae. The 

remaining 24 species, all Basidiomycetes, matched sequences from a range of 

genera including six Postia-like species, two Ganodermataceae and nine species of 

uncertain family (Table 6.3.2). Only 16 of the 60 species occurred in more than 10% 

of logs and six occurred in more than 25% of logs. 

Table 6.3.2. Final species (following taxonomy of Kirk (2001)) correspond to the species 
names used in Chapter 3. Basidiomycete species 10-13 are Basidiomycete species for 
which a poor sequence match was found. The 32 un-named log decay species are not 
included in this table. Isolation frequency refers to the number of individual cut faces from 
which a species was isolated.  
SPECIES ISOLATION 

FREQUENCY 
ENZYME TESTING 

ASCOMYCOTA   
   
Incertae sedis   
Ascomycete sp.2 3 Selective white rot 
Phialophora-like sp.1 10 No enzymes produced 
   
Hypocreaceae   
Hypocrea pachybasioides Yoshim. Doi 33 No enzymes produced 
   
Xylariaceae    
Xylariaceae sp.1 8 Selective white rot 
BASIDIOMYCOTA   
   
Incertae sedis   
Basidiomycete sp.5 19 No enzymes produced 
Basidiomycete sp.6 80 Selective white rot 
Basidiomycete sp.7 14 Selective white rot 
Basidiomycete sp.8 14 No enzymes produced 
Basidiomycete sp.9 25 Selective white rot 
Basidiomycete sp.10 10 No enzymes produced 
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Basidiomycete sp.11 23 No enzymes produced 
Basidiomycete sp.12 6 No enzymes produced 
Basidiomycete sp.13 16 No enzymes produced 
   
Marasmiaceae   
Armillaria hinnulea Kile & Watling 48 Selective white rot 
   
Strophariaceae   
Hypholoma fasciculare (Huds.) P. Kumm. 2 Selective white rot 
   
Coniophoraceae   
Coniophora-like sp.3 2 No enzymes produced 
   
Atheliaceae   
Athelia-like sp.3 4 Selective white rot 
   
Fomitopsidaceae   
Fomitopsis-like sp.1 81 Brown rot 
Postia pelliculosa (Berk.) Rajchenb. 9 Simultaneous white rot 
Postia-like sp.4 13 Simultaneous white rot 
Postia-like sp.5 
Postia-like sp.8 
Postia-like sp.9 
Postia-like sp.10 

28 
11 
7 
25 

Brown rot 
Brown rot 
Brown rot 

Simultaneous white rot 
   
Ganodermataceae   
Ganoderma applanatum /adspersum 20 Selective white rot 
Ganodermataceae sp.1 5 Selective white rot 
   
Hapalopilaceae   
Ceriporiopsis sp.1 25 Simultaneous white rot 
   
Meruliaceae   
Phlebia-like sp.2 52 Simultaneous white rot 

 

Enzyme testing  

Ten of the 28 species listed in Table 6.3.2 were selective white rotters, five were 

simultaneous white rot species and four species showed brown rot enzyme activity. 

The remaining nine species showed negative responses for both tyrosinase and 

laccase. 

Correlations between fungi and rot types 

Of the sixty species of wood decay fungi isolated from logs in this study, more than 

half of the species (32) were found to be isolated at least once from discoloured 

wood. The most species rich decay type was the fibrous surface rot with 28 species, 
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while red-brown blocky, fibrous rot housed 21 species of fungi. Only six species 

were isolated from the yellow dry, slatey rot.  

Table 6.3.3. The number of species of fungi associated with each rot type found in 36 
E. obliqua logs. The rot types and rotted wood region are those described by Yee (2005). 
Rotten wood regions are: SF-surface, OH-outer heartwood, H-heartwood, IH-inner 
heartwood. The total number of species of fungi found was 60. 
Rot Type Rotted Wood Region Number of Associated 

Fungal Species 

Fibrous surface rot SF 28 

White jelly surface rot SF 12 

White stringy rot OH/H 19 

White pocket rot OH 14 

Yellow dry slatey rot OH 6 

Brown cubic spongy rot OH 14 

Discoloration H 32 

Brown blocky crumbly rot IH 15 

Brown mudgut rot IH 12 

Red brown blocky fibrous rot IH 21 

 

Indicator species analysis found five species to be significantly associated with five 

of the specific rot types categorised in Yee (2005, Table 6.3.4). Armillaria hinnulea 

was significantly correlated with surface white jelly rot. Phlebia-like sp.2 and 

Ganoderma applanatum/adspersum were associated with the outer heartwood rot 

types white pocket rot and white stringy rot respectively. Two inner heartwood rots, 

red-brown blocky, fibrous rot and brown blocky, crumbly rot were found to be 

indicated by the fungi Basidiomycete sp.5 and Postia-like sp.5 respectively. The 

relationship between the five species of fungi and the rot types was predominantly 

confirmed by the enzyme tests of the fungi. For Basidiomycete sp.5, neither 

tyrosinase nor laccase was produced in culture, despite the fungus being associated 

with a brown rot type.  
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Table 6.3.4. Relationship between fungi and rot types in logs. The rot types and rotted wood 
(RW) region are those described in Yee (2005). Rotten wood regions are: SF-surface, OH-
outer heartwood, H-heartwood, IH-inner heartwood. Enzyme production related to the 
results of enzyme drop testing undertaken in this study. Only those species which showed 
significant associations with particular rot types (using indicator species analysis) are 
shown. 
Indicator Species  Rot type RW 

Region 
Enzyme 
Production 

Rot Description P* 

Armillaria hinnulea White 
jelly rot 

SF Selective 
white rot 

Surface (bark) jelly 
pocket rot often with 
black zone lines. 

0.001 

Phlebia-like sp.2 White 
pocket 
rot 

OH Simultaneous 
white rot 

Hard pockets, with 
white cellulose 
(sometimes yellow 
mycelium) in pockets 
lined with hard wood 

0.003 

Ganoderma 

applanatum/adspersum 

White 
stringy 
rot 

OH/H Selective 
white rot 

Soft pockets, almost  
indistinguishable, very 
fibrous, soft and 
spongy, pure 
celluloses, looks like 
fine wool 

0.007 

Basidiomycete sp.5 Red-
brown-
blocky 
fibrous 
rot 

IH No enzymes 
produced 

Red-brown hard 
fibrous rot 

0.046 

Postia-like sp.5 Brown 
blocky 
crumbly 
rot 

IH Brown rot  Light brown to dark 
brown cubic rot, dry 
chalky brittle often 
with white mycelium 
seams or flecks 

0.043 

*the p value obtained from indicator species analysis 

Correlation between fungal communities, decay and beetles 

A Mantel test indicated that there was a highly significant positive correlation 

between the patterns of distribution of fungal communities and the saproxylic beetle 

assemblages found in the same logs by Yee (2005; p=0.001), yet the relationship 

was weakly correlated (r=0.201).  

6.4 Discussion 

This study is the first to use molecular techniques to attempt to identify the wood 

decay fungi present within E. obliqua logs. Sixty species of wood decay fungi were 

isolated more than once from just 36 logs. This number of species is within the 

range of the values found in many other studies of wood decay fungi on logs (e.g. 

Allen et al. 2000; Andersen and Ryvarden 2001; Chapela et al. 1988; Gustafsson 

2002; Heilmann-Clausen and Christensen 2003; Renvall 1995). Comparisons of 
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species richness with other studies are not meaningful, however, as there are many 

factors that are known to influence the species richness of fungi in logs including 

decay stage, log species, and log size (Heilmann-Clausen and Christensen 2003; 

Høiland and Bendiksen 1996; Niemelä et al. 1995; Pyle and Brown 1999; Renvall 

1995; Vasiliauskas 1998). In addition, the results of this study are based on 

isolations of fungi from decayed wood rather than fruitbody surveys. The sampling 

method has a large influence on the species detected (as discussed later Hunt et al. 

2004). Using a wood cutting method similar to that used in this study,  Fukasawa et 

al. (2005) isolated 10 common species of fungi from five Japanese beech logs and in 

Sweden, 25 fungal species were isolated from 10 recently dead Norway spruce logs 

(Gustafsson 2002). However, these studies were not based on Eucalyptus logs and 

their isolation techniques and media were not identical to those used here.  

The majority of species which were able to be identified at least to family or genus 

level showed strong similarities to well-known decay species, mostly polypore and 

corticioid species. These include the common decay species Armillaria hinnulea, 

Ganoderma applanatum/adspersum, Hypholoma fasciculare, Postia pelliculosa and 

putative species of Athelia, Coniophora, Fomitopsis, Phlebia, Ceriporiopsis and 

Postia (Kile 1981; Kile 2000; Kile and Johnson 2000; Schwarze et al. 2000). In a 

study of fungal fruitbodies in the wet forests in southern Tasmania, Packham et al. 

(2002) found A. hinnulea, H. fasciculare, Xylaria spp. and an unidentified resupinate 

species to be common in mature forests. Similarly, A. hinnulea, H. fasciculare and 

Postia spp. were also commonly found on wood in a fruitbody survey at Warra 

LTER (Gates et al. 2005) and throughout Tasmania (Ratkowsky and Gates 2005). 

Genera such as  Athelia, Coniophora,  Phlebia and Ceriporiopsis have also been 

previously recorded on Eucalyptus logs, although are reported less frequently from 

fruitbody surveys, perhaps due to their more cryptic habit (Buchanan 2001; Gates et 

al. 2005). Interestingly, no species of Stereum, Trametes, Gymnopilus or 

Hymenochaetaceae were recorded in the current study, despite being commonly 

recorded as fruitbodies on dead wood substrates in Tasmania (Gates et al. 2005; 

Packham et al. 2002; Ratkowsky and Gates 2005) and forming part of the reference 

collection.  

One of the surprising outcomes of this study was the lack of matches between the 

study isolates and those in the reference collection. The reference collection 
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contained a wide variety of material collected both locally and within other states in 

Australia and included many of the species considered as important wood decay 

fungi. While this is probably a reflection of the diversity of wood decay fungi in 

Australia and the lack of detailed studies previously published in this area, there are 

a number of other possible reasons. The reference collection contained very few 

corticioid species, yet sequence matches with public databases indicate that a 

number of the fungi found in this study were corticioid. Corticioid fungi are often 

overlooked in fruitbody surveys due to their cryptic habit and their difficult 

taxonomy (Buchanan 2001). Also although two of the reference collections used in 

this study targeted logs, the fungi from the CSIRO Clayton Collection were 

primarily isolates from fruitbodies on wood in service, not wood in natural systems 

and thus may reflect an entirely different suite of fungi. The isolates from the 

Clayton Collection were also collected internationally not within Australia. The low 

matching between the reference collection and study isolates also reinforces the 

findings of Johannesson and Stenlid (1999) that the fungi commonly fruiting on 

wood do not necessarily accurately portray the fungal taxa within. 

Strong relationships were found between five species of fungi and five of the rot 

types described by Yee (2005). The strong relationship between Armillaria hinnulea 

and white jelly surface rot is quite likely to be a causal relationship. Armillaria 

hinnulea is a commonly described wood decay fungus in Australia, known to cause 

white rot in the roots and butt of living E. obliqua (T. Wardlaw, pers. comm. in Kile 

2000 ) in the wet sclerophyll forests of south eastern Australia (Kile et al. 1991). 

The strong relationship between A. hinnulea and white jelly rot found in this study is 

highly likely to be causal, since Armillaria species are known to cause white rot, 

with characteristic black zonation and mycelial strands (Garraway et al. 1991). In 

addition, isolates of A. hinnulea from this study produced strong positive reactions 

for the presence of laccase, a lignin-degrading enzyme. As a fungus which primarily 

spreads above ground using rhizomorphs (Redfern and Filip 1991), or into the tree 

stem via the roots (Wardlaw 2003), it is likely to colonise from the outside of the log 

in, once the log has fallen, as has been proposed for the white surface jelly rot (Yee 

2005). In contrast with other species of Armillaria (such as A. luteobubalina) A. 

hinnulea is considered only weakly pathogenic or saprotrophic and will only affect 
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trees which are already stressed or damaged (Kile 2000), indicating that it is also 

likely to colonise logs.  

Similarly, it is highly plausible that Ganoderma applanatum/adspersum is the 

primary fungus causing white stringy rot. Like Armillaria species, Ganoderma 

species are recognised world-wide as the cause of root rot and the cause of a soft 

white rot in the butt and sapwood of their hosts (Kile 2000). Ganoderma 

applanatum has been described causing white rot in plantation eucalypts in Portugal 

and the USA (in Kile and Johnson 2000) and in tropical Acacia species in Indonesia 

(Glen et al. 2006a). In this current study, G. applanatum/adspersum was strongly 

correlated with a white stringy rot which was described as having soft, almost 

indistinguishable pockets, being very fibrous, soft and spongy with the appearance 

of fine wool (Yee 2005); potentially similar to the rot previously identified as caused 

by G. applanatum above and Ganoderma species in general (Schwarze et al. 2000). 

Enzymatic evidence also supports this case. The stringy white rot in this current 

study was found primarily in the heartwood region of the log, indicating that it could 

either have been present in the log prior to tree fall (as a root or butt rot species) or 

could have colonised following tree fall from the surface of the log inwards. Either 

case is a possibility for Ganoderma species as they have been previously observed 

on both living trees and coarse woody debris (Kile 2000; Kile and Johnson 2000; 

Schwarze et al. 2000).  

It is difficult to draw conclusions about the relationships between the three 

remaining fungi and their rot types, since the sequence identifications were not 

conclusive. In all three cases, the results of the enzyme tests provide some support 

for a causal relationship between the fungi and their rot types and these are further 

confirmed where the species were identified to putative genera. Species of Phlebia 

are known to cause white rot in living oaks (Quercus species, Berry and Lombard 

1978), Picea abies logs (Bader et al. 1995; Renvall 1995; Rolstad et al. 2004), Pinus 

sylvestris logs (Sippola and Renvall 1999) and Corylus avellana logs (Nordén and 

Paltto 2001) although the type of white rot has never been thoroughly described. In 

the current study, enzyme testing suggests that Phlebia-like sp.2 is capable of 

causing white rot. The presence of yellow mycelium associated with this rot type 

supports this case, as Phlebia-like sp.2 has “duckling-yellow” mycelium in culture 

(Mohammed and Yuan 2002).  
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Both Basidiomycete sp.5 and Postia-like sp.5 were found to be strongly associated 

with brown rot types from the inner heartwood of logs. That Basidiomycete sp.5 did 

not produce any enzymes when tested in culture does not mean it does not have 

brown rot capacity. It is relatively common for brown rot species not to respond 

positively for tyrosinase (Worrall et al. 1997) and some isolates can lose their decay 

capacity once in culture (Chapter 5 Tanesaka et al. 1993). Postia species are 

generally considered to be brown rotters (Breitenbach and Kranzlin 1986; Yao et al. 

2005) and are commonly found on living trees and coarse woody debris in Europe 

and North America (Yao et al. 2005). Enzyme testing of Postia-like sp.5 confirmed 

its brown rot ability by showing an unusually strong positive reaction for tyrosinase.  

Postia-like sp.5 had white mycelium which could account for the flecks of white 

mycelium in the brown blocky crumbly rot. The ITS sequence and morphology of 

Postia-like sp.5 were identical to those of Postia-like sp.5 isolated from the 

heartwood of the mature living trees in study 1 (Chapters 3 and 4). In study 1, this 

species was not found to be strongly associated with a particular rot type, however it 

was only found in very low numbers. Given that this species was found in the 

heartwood of mature living trees, it is quite plausible that it would also be associated 

with rot in the inner heartwood of logs. 

That there is some correlation between the distribution of wood decay fungi and 

saproxylic beetles is not surprising given the close relationship both groups of 

organisms have with dead and decaying wood (Anderson 2001; Boddy 2001; 

Rayner and Boddy 1988; Speight 1989) and with each other (Anderson 2001; 

Lawrence 1989; Lawrence and Milner 1996; Muller et al. 2002). Yee (2005) found 

that a number of beetle species displayed preferences for specific rotten wood types 

and this preference for rotten wood types has now also been shown for several 

species of fungi. For the majority of fungi the details of these specific relationships 

are not entirely clear, as little is known about the biology and ecology of the 

organisms involved. It is possible that the rotten wood type is created by the fungi 

and that the physical conditions of the rotten wood are highly favourable to 

particular beetles (Yee 2005). Alternatively, the beetles and fungi may be much 

more closely linked; many species of beetles are known to be mycophagous and a 

few of these, such as the ambrosia beetle, are known to form close associations with 

specific fungi which break down the wood into a more palatable food source 
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(Gilbertson 1984; Lawrence 1989; Lawrence and Milner 1996; Speight 1989). Aside 

from direct associations between beetles and fungi, it is possible that both organisms 

are similarly affected by environmental conditions; where changes in environmental 

conditions occur, the community composition of fungi and beetles also changes (see 

Chapter 7).  

6.4.1 Conclusions 

This study used a destructive sampling method to examine the wood decay fungi in 

logs in the wet sclerophyll forests of southern Australia. It has recorded the diversity 

of wood decay fungi present in these habitats and, by highlighting gaps in our 

knowledge, has illustrated the need for more taxonomic and ecological study in this 

area. Strong, credible relationships were found between different species of wood 

decay fungi and rotten wood types within the study logs. Critically, this study has 

built on the work of  Yee (2005) on the saproxylic beetle fauna present in the same 

logs and has lent considerable weight to the contention that there is a strong 

association between fungi, rotten wood and insects in decaying logs. 
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CHAPTER 7: THE EFFECT OF LOG SIZE AND FOREST TYPE 

ON THE WOOD DECAY FUNGI INHABITING EUCALYPTUS 

OBLIQUA LOGS 

7.1 Introduction 

In Australia, the relative importance of coarse woody debris for biodiversity has 

only recently been recognised (e.g. Grove et al. 2002; Lindenmayer et al. 1999a; 

Meggs 1996; Turner and Pharo 2005; Yee et al. 2001) and few studies are yet to 

thoroughly document it. Moreover, knowledge of the taxonomy and ecology of 

wood-inhabiting organisms in Australia is severely lacking in comparison with 

European and North American systems (Grove et al. 2002; Hopkins et al. 2005). 

This is particularly the case with fungi where less than 5% of the predicted number 

of species have been named (Hawksworth 1991; May and Pascoe 1996). 

Coarse woody debris (CWD), such as logs and large diameter branches on the forest 

floor, is a key structural and biological resource in forest ecosystems (Franklin et al. 

1987; Grove et al. 2002; Lindenmayer et al. 1999a; Nordén et al. 2004). Coarse 

woody debris provides important nesting and denning sites for a wide range of 

hollow-dwelling mammals and reptiles (Butler et al. 2002; Gibbons and 

Lindenmayer 2002; Lindenmayer et al. 1999a; Williams and Faunt 1997) and adds 

to the amount of physical habitat structure on the forest floor by increasing the 

range of microclimates and microhabitats available for exploitation by ground 

dwelling organisms such as  mammals, fungi and invertebrates (Evans et al. 2003; 

Grove et al. 2002; Siitonen 2001; Sippola et al. 2004; Tedersoo et al. 2003). In 

forests in Finland, at least 20% of all known forest dwelling species depend on 

dead-wood habitats to some extent, with one of the most speciose groups being 

macrofungi with about 1500 dead wood dependent species (Siitonen 2001).  

In the northern hemisphere, forest management practices such as logging and the 

removal of woody debris, have greatly reduced the volume of CWD within 

managed forest systems (Acker et al. 1998; Jonsson et al. 2006; Rudolphi and 

Gustafsson 2005) to an average of 10% the volume found within old growth stands 

(Fridman and Walheim 2000; Siitonen 2001). Clearfelling interrupts the continuous 

availability of logs in different stages of decay and can alter the initial volume and 
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reduce future accumulation of dead wood in regenerating stands (Fridman and 

Walheim 2000; Ranius et al. 2003). Removal of woody debris or logging residue 

from the forest system also reduces the amount of CWD in managed systems 

(Rudolphi and Gustafsson 2005). Given the large number of organisms which are 

known to depend on CWD for some part of their lifecycle, it is not surprising that a 

large number of species reliant on CWD are now red-listed in countries where 

industrial forestry predominates, such as Sweden (Berg et al. 1994). Current 

estimates in Sweden suggest that approximately 90% of red-listed saproxylic 

species are confined to CWD (Dalhberg and Stockland 2004 in Jonsson et al. 2006). 

In the northern hemisphere, increasing the volume of CWD within managed stands 

is now a research and management priority (e.g. Acker et al. 1998; Jonsson et al. 

2006; Ranius and Kindvall 2004; Thomas 2002). 

These examples from the northern hemisphere point out the effect that intensive 

forest management may have on wood-inhabiting organisms in Australia over time. 

Australia has a comparatively short history of intensive forest management, making 

the Australian research environment very different from that in many parts of the 

northern hemisphere. In Tasmania for example, clearfelling only began in the early 

1960s, so most forests are in their first silvicultural rotation period of 80-100 years 

(Hickey and Wilkinson 1999). As a result, CWD is still well represented in these 

forests (Meggs 1996) and there is still time to alter forest management practices to 

retain CWD in managed stands, should this be required. In many parts of Australia 

too, large areas of unlogged (oldgrowth) forests are maintained (National Forest 

Inventory 2005) and so can be easily used as a real time comparison with managed 

forests.  

This study investigates how the current planned 80-100 year silvicultural rotation 

may affect the diversity of wood decay fungi present in the wet sclerophyll forests 

in southern Tasmania. Specifically, it investigates the differences in fungal 

assemblage structure between large diameter logs (>85 cm, representative of mature 

trees) and small diameter logs (30-60 cm, representative of trees at first rotation 

age) to examine the potential effects of reduced CWD size on fungal biodiversity. 

Logs were examined in both mature forest and 20-30 year old forest regenerating 

from clearfelling to further elucidate the effect of changing forest conditions on 

fungal assemblage composition. Fungi, as key agents of wood decay and key 
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components of biodiversity in CWD, are central to understanding and managing 

coarse woody debris (Heilmann-Clausen and Christensen 2005) and so are the focus 

of this study. 

7.2 Methods 

Sample collection (prior to this study) 

This study is based on fungal isolates collected by Yee and Yuan (Mohammed and 

Yuan 2002; Yee 2005; Yee et al. 2001) from logs in the wet sclerophyll forests in 

southern Tasmania. For detailed site and collection descriptions refer to Section 

2.2.2. These fungi were collected from logs at six sites in two different forest types: 

three sites in mature, unlogged forest and three sites in forest regenerating from 

logging 20-30 years ago. At each site, three small diameter logs (30-60cm) and 

three large diameter logs (>85cm diameter) were examined for fungal decay. Thin 

discs were cut from each log at six points along its length and the cut face of each 

disc was examined for decay. To adjust for differences in disc size, only one quarter 

of each disc was examined for the large diameter logs. Where decay was found, 

samples of decayed wood were obtained and incubated on specialised media to 

isolate any associated Ascomycetes and Basidiomycetes (Section 2.3.2). From the 

758 isolates obtained, 60 common species of wood decay fungi were identified, 

based on examination of their macro-and microscopic characteristics by Yuan 

(Mohammed and Yuan 2002:Yee, 2001 #37) and their ITS sequences (this study, 

Chapter 6). These 60 species of wood decay fungi are used for all analyses 

throughout the rest of this chapter unless otherwise specified. 

Species richness 

To look for variation in species richness between log size classes and between 

forest types, both one-way and two-way analyses of variance (ANOVA) were 

undertaken in SAS 9.1 (Anon. 2002), using log size and forest type as random 

effects on the number of species of wood decay fungi per log. Presence-absence 

data were used, pooled from the six standard sampling sections from each log. A 

follow up multiple comparison test (Ryan-Einot-Gabriel-Welsch Multiple Range 

Test: REGW test) was used to determine the nature of the differences.  
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Adjustments for sampling effort 

In addition to the reducing sample size of the large logs, rarefaction (Gotelli and 

Colwell 2001) was used to compare species richness among log size classes, 

calibrated for sampling effort. Rarefaction curves were calculated against two 

different variables: the frequency of individuals collected, and the cumulative cross-

sectional area of wood faces examined. For each variable, rarefaction curves were 

calculated using frequency data for all species of fungi. Rarefaction curves were 

calculated using EstimateS (Colwell 2001) and plotted in Microsoft Excel.  

Assemblage composition  

Both unconstrained and constrained ordinations were used to explore assemblage 

composition of fungi in relation to log size and forest type. Log transformed 

frequency data from each log were used, pooled from the six standard sampling 

sections. Log transformation was used to reduce the weight given to common 

species in the analysis (McCune and Mefford 1999). All ordination techniques were 

performed using the same parameters as described in Chapter 4. In summary, Non-

metric Multidimensional Scaling (NMS) was used to explore fungal species 

assemblage variation between the log size classes and among forest types. Multi-

Response Permutation Procedures (MRPP) were then applied to statistically test 

fungal assemblage differences between log size and among forest type.  

Canonical Analysis of Principal coordinates (CAP) (Anderson and Willis 2003), 

was then used to explore fungal assemblage structure correlated with the two log 

size classes and two forest types. A similar statistical approach was used to that of 

Willis and Anderson (2003) where two canonical analyses were conducted. One 

investigated the effect of forest type, while the other was the used to investigate the 

effect of log size on fungal assemblages. Since both treatments were binary (i.e. 

mature versus regenerating forest; large versus small logs) the CAP ordination 

resulted in a single canonical discriminant axis for each treatment. These canonical 

axes scores were then plotted against each other to give a multivariate position of 

each log (Willis and Anderson 2003). 

Indicator Species Analysis was run in PC-ORD for Windows 4.25 (McCune and 

Mefford 1999) and used to investigate whether particular species were significantly 

associated with specific log size classes or forest types. A cut-off value of IndVal 
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≥25, p<=0.05 was used. Untransformed species frequency data were used, where 

frequency was defined as the number cut faces a species was isolated from, as a 

surrogate for abundance. 

7.3 Results 

Comparing large and small diameter logs 

In this study, 60 species of wood decay fungi were isolated from the 36 logs 

sampled. Thirty-seven species of fungi were isolated from large diameter logs and 

46 from small diameter logs; 23 species were common to both. Of the 16 most 

abundant species (i.e. those occurring in more than 10% of logs) Basidiomycete 

sp.9 and Postia-like sp.10 were found exclusively in large logs, while 

Ceriporiopsis-like sp.1 was only found in small diameter logs (Figure 7.3.1).  
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Figure 7.3.1. Frequency of common (>10% of logs) fungi found in 18 large and 18 small 

diameter logs at an intermediate decomposition stage.  

 

Indicator species analysis found only one species, Postia-like sp.10, to be a 

significant indicator for large diameter logs (p=0.0110). Indicator species analysis 

found no fungal species to be significantly associated with small diameter logs 
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(Table 7.3.1). Three species were correlated with each of the canonical axis for 

large diameter and small diameter logs. 

Table 7.3.1 Combined results of correlation analyses based on the canonical axis derived 

from CAP analysis for log size (Figure 7.3.9), and Indicator Species Analysis for the effect 

of log size. Species shown in bold also showed a preference for a particular forest type 

(Table 7.3.2). DSF is the code used for unidentified species. 

 Species name Indicator species analysis 

  

Correlation coefficient 

with canonical axis IndVal p value 

Postia-like sp.10 -0.5312  33.3 0.0110 

Phialophora-like sp.1 -0.3996    
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Basidiomycete sp.9 -0.3503    

 

DSF169 

 

0.421 

  

Ceriporiopsis-like sp.1 0.3494   

S
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g
s 

DSF70 0.3168   

 

The sample-based rarefaction curves showed that species richness for large and 

small diameter logs was very similar; although species richness was marginally 

(although not significantly) greater for the small diameter logs compared with the 

large diameter logs within the comparable range (Figure 7.3.2a). Separation was 

enhanced when examining the rarefaction curves for cumulative cross-sectional 

area (Figure 7.3.2b), with small diameter logs showing significantly more species 

than large logs.  

Unconstrained ordinations (NMS and MRPP) showed that fungal assemblage only 

differed slightly between log size classes (Figure 7.3.3; p=0.045, T= -1.900). Large 

diameter logs appeared to have particularly distinct fungi associated with them, 

while the patterns of fungal assemblage composition for the small diameter logs 

were less clear.  
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Figure 7.3.2. Rarefaction (Mao Tao) curves for species of wood decay fungi in large and 

small diameter logs compared by a) number of individuals and b) cumulative cross-

sectional area of examined disc.  
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Figure 7.3.3. Non-metric multidimensional scaling (NMS) ordination plot of log 

transformed species abundance for the 60 most common species of wood decay fungi from 

36 logs at six study sites. Only axes 1 and 3 are shown, axis 2 did not add any further 

information. Symbols denote log size class. Vectors are defined by fungal species 

abundance data; for greater clarity, these are displayed adjacent to the ordination. Stress = 

0.18. Only vectors with r
2
>0.2 are shown.  

 

Comparing logs in regenerating and mature forests 

Forty-two species of fungi were isolated from logs in mature forest and 35 from 

logs in regenerating forests; 17 species were common to both. Of the common 

species (i.e. those occurring in more than 10% of logs) Phialophora-like sp.1 was 

found exclusively in logs in regenerating forests and Basidiomycete sp.5 was 

significantly more prevalent in mature forests using a Chi
2
 test (p=0.019; Figure 

7.3.4).  
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Figure 7.3.4. Frequency of common (>10% of logs) fungi found in 18 logs in mature, 

unlogged forest and 18 logs in regenerating forest 40 years post-logging. Logs are in an 

intermediate stage of decomposition. 

 

This was confirmed by indicator species analysis which identified Basidiomycete 

sp.5 to be a significant indicator for logs in mature forest (p=0.0110). Phlebia-like 

sp.2 and Basidiomycete sp.11 were also found to be associated with logs in mature 

forest types (p=0.0670, p=0.0710 respectively; Table 7.3.2). Basidiomycete sp.6 

was identified as a significant indicator species for logs in regenerating forest 

(p=0.0080). Three species were correlated with the canonical axis for mature forest 

and six species correlated with the canonical axis for regenerating forest. 
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Table 7.3.2 Combined results of correlation analyses based on the canonical axis derived 

from CAP analysis for forest type (Figure 7.3.9). Result of Indicator Species Analysis for 

the effect of forest type are also shown for these species. Species shown in bold also 

showed a preference for a particular log size (Table 7.3.1). DSF is the code used for 

unidentified species. 

 Species name Indicator species analysis 

  

Correlation coefficient 

with canonical axis IndVal p value 

Phlebia-like sp.2 -0.4407 41.2 0.0670 

DSF70 -0.3263   

M
at
u
re
 

fo
re
st
 

DSF75 -0.3076   

 

Basidiomycete sp.6 0.6552 

 

54.1 

 

0.0080 

Basidiomycete sp.12 0.5086   

Phialophora-like sp.1 0.4866   

Ganoderma-like sp.1 0.3532   

Basidiomycete sp.9 0.3334   R
eg
en
er
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g
  

fo
re
st
 

DSF22 0.3237   

 

No significant difference in fungal species richness was found between mature and 

regenerating forests using sample-based rarefaction curves comparing both number 

of individuals and the cross-sectional log area examined for fungi (Figure 7.3.5).  

Unconstrained ordination (NMS) and MRPP showed that fungal assemblage 

differed with forest type (Figure 7.3.6; p=0.0034, T= -3.59), with logs in mature 

forests showing a more consistent composition. An overlay of the fungal species 

groups on the ordination showed that the presence of Postia-like sp.4 was strongly 

influencing the grouping of logs in mature forests. Basidiomycete spp.6 and 12 and 

Hypocrea pachybasioides were strongly influencing the grouping of many of the 

logs in regenerating forest. 
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Figure 7.3.5. Rarefaction (Mao Tao) curves for species of wood decay fungi in logs in 

mature, unlogged forest and logging regenerated forest compared by a) number of 

individuals and b) cumulative cross-sectional area of examined disc.  
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Figure 7.3.6. Non-metric multidimensional scaling (NMS) ordination plot of log 

transformed species abundance for the 60 most common species of wood decay fungi from 

36 logs at six study sites. Only axes 2 and 3 are shown as axis 1 gave no further useful 

information. Symbols denote forest type. Vectors are defined by fungal species abundance 

data; for greater clarity, these are displayed adjacent to the ordination. Stress = 0.16. Only 

vectors with r2>0.2 are shown.  

 

Comparing the effects of log size and forest type 

In mature forest, 24 species of fungi were isolated from large logs and 26 species 

from small logs. In regenerating forests, 26 species of fungi were isolated from 

large diameter logs while 30 species were isolated from small diameter logs. A 

summary of the distribution of named species can be seen in Table 7.3.3. 

Basidiomycete sp.6 and 9 were found to be indicator species for large logs in 

regenerating forest (p=0.0490 and p=0.0460 respectively). None of the other 14 

most common species (i.e. those occurring in more than 10% of logs) were 

significantly more common in any particular forest type/ log size treatment. 
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Indicator species analysis found three less common species, DSF61, DSF70 and 

DSF75 to be significant indicators for small logs in mature forest (p=0.0450 for all).  

Table 7.3.3. Incidence of named species of wood decay fungi found in large and small 

diameter logs in regenerating and mature forest types.  

Species Regenerating Forest Mature Forest 

 Large Small Large Small 

Armillaria hinnulea 8 11 16 12 
Basidiomycete sp.5 0 3 9 6 

Basidiomycete sp.6 29 25 6 1 

Basidiomycete sp.9 23 0 2 0 

Basidiomycete sp.10 1 1 5 3 

Basidiomycete sp.11 5 0 8 10 

Basidiomycete sp.12 3 2 1 0 

Basidiomycete sp.13 7 0 7 2 

Ceriporiopsis-like sp.1 0 7 0 12 

Fomitopsis-like sp.1 15 16 29 13 

Ganoderma applanatum/ 

adspersum 

0 20 0 0 

Ganoderma-like sp.1 0 5 0 0 

Hypocrea pachybasioides 2 23 5 2 

Phialophora-like sp.1 8 2 0 0 

Phlebia-like sp.2 3 6 22 20 

Postia pelliculosa 8 1 0 0 

Postia-like sp.4 0 3 3 7 

Postia-like sp.5 6 0 0 16 

Postia-like sp.8 0 7 2 0 

Postia-like sp.9 7 0 0 0 

Postia-like sp.10 12 0 9 0 

 

The sample-based rarefaction curves showed that species richness for all forest 

type/ log size treatments was very similar within the comparable range (Figure 

7.3.7). When species richness was compared against cumulative-cross sectional area 

of wood examined, small logs from mature forest showed a markedly greater 

number of species per unit area than large diameter logs in both mature and 

regenerating forest. In contrast, species richness for small diameter logs in 

regenerating forest was very similar to that of all large diameter logs within the 

comparable range. 
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Figure 7.3.7. Rarefaction (Mao Tao) curves for species of wood decay fungi in large and 

small logs in mature, unlogged forest and logging regenerated forest compared by a) 

number of individuals and b) cumulative cross-sectional area of examined disc. 

 

Unconstrained ordination (NMS) and MRPP showed that fungal assemblage 

differed between forest type/ log size treatments (Figure 7.3.8; p=0.013, T= -2.56) 

although the patterns were not entirely clear. Small logs in mature forest had 

particularly distinct fungal assemblages, while small logs in regenerating forest 

appeared to have highly variable fungal assemblages. Some large logs in mature 

forest and large logs in regenerating forest appeared to have similarities in fungal 

assemblage.   
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Figure 7.3.8. Non-metric multidimensional scaling (NMS) ordination plot of log 

transformed species abundance for the 60 most common species of wood decay fungi from 

36 logs at six study sites. Only axes 1 and 2 are shown, as axis 3 provided no further useful 

information. Symbols denote forest type and log size. Vectors are defined by fungal species 

abundance data; for greater clarity, these are displayed adjacent to the ordination. Only 

vectors with r2>0.2 are shown.  

 

An overlay of the fungal species groups on the ordination showed that Postia-like 

sp. 4 was strongly influencing the grouping of small logs in mature forest. 

Basidiomycete sp.6 was strongly correlated with regenerating logs of both large and 

small diameter. Ganoderma applanatum/adspersum was correlated with a number 

of the small logs in regenerating forest and Hypocrea pachybasioides was 

correlated with large logs in regenerating forest. 

As shown by the constrained ordination, fungal assemblage structure was 

significantly related to forest type (δ
2
 = 0.58, p = 0.0065; Table 7.3.4). Fungal 

assemblage was also significantly influenced by log size (δ
2
 = 0.57, p = 0.0160; 

Table 7.3.4). A graphical representation of the logs on canonical axes corresponding 
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to the two main effects showed that components of the fungal assemblages were 

distinct among the four treatments (Figure 7.3.9).  Logs grouped by mature forest 

type had a much higher allocation success rate than those grouped as regenerating 

forest. This indicates that logs in mature forest were more similar to each other than 

those in regenerating forest, but with a much stronger separation between small logs 

in mature forest, small logs in regenerating forest and all large logs.  

Table 7.3.4. Results of the two canonical axes of principal coordinates (CAP), examining 

the effects of forest type and of log size. %Var is the percentage of the total variation 

explained by the first m principal coordinate axes. Allocation success is the percentage of 

points correctly allocated to each group. δ
2
 is the squared canonical correlations. 

Factor m % Var --------------Allocation success (%)-------------------- δ
2
 p 

   Group 1 Group 2 Total   

Forest Type 10 85.00 66.67 (regenerating) 83.33 (mature) 75.00 0.58 0.0065 

Log Size 11 88.08 83.33 (small) 72.22 (large) 77.78 0.57 0.0160 
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Figure 7.3.9. Constrained ordination (CAP analysis) of fungal assemblage structure with 

respect to forest type and log size class. N=60 species, and frequency data were log 

transformed. 
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7.4 Discussion 

This study clearly demonstrates that the assemblage composition of wood decay 

fungi in the wet sclerophyll forests in southern Tasmania is affected by differences 

in log size and forest type. The broad ecological implications of these results are 

discussed here, and the results are revisited in the final chapter with a more specific 

focus on their implications for forest management. The patterns of assemblage 

composition and species richness identified for fungi in this study mirror those 

found by Yee (2005) for saproxylic beetles in the same logs. The significance of 

this finding is discussed in detail in the final chapter. 

7.4.1 The effect of log size  

One of the central foci of this study was to examine the role played by large 

diameter logs in the forest landscape, as they are considered to play an important 

ecological role in many forest systems (e.g. Edman and Jonsson 2001; Heilmann-

Clausen and Christensen 2004; Lindenmayer et al. 1999a; Renvall 1995). In this 

study, small diameter logs were more species rich for wood decay fungi than large 

diameter logs when equal sample area were compared, however large diameter logs 

had distinct assemblages of wood decay fungi associated with them, irrespective of 

forest type. A number of species of wood decay fungi were specifically associated 

with large diameter logs.  

Small diameter logs are more species rich 

In this study, small diameter logs supported more species of wood decay fungi than 

large diameter logs when equal sampling areas were compared. This is consistent 

with the findings of Study 1 (Chapter 4), as well as several other studies (Heilmann-

Clausen and Christensen 2004; Kruys and Jonsson 1999; Nordén et al. 2004; 

Schiegg 2001). It is likely to be the result of a number of factors. As discussed in 

relation to small diameter trees in Chapter 4, small diameter logs would be more 

susceptible to changes in forest microclimate than large diameter logs as a result of 

their smaller size. Small diameter logs spread throughout the forest floor would 

therefore show a higher degree of variability in light intensity and humidity than 

large logs, and this would impact upon the fungi able to colonise them (Boddy 

1992; Renvall 1995). This is reinforced by the fact that small diameter logs in 

regenerating forest (the treatment with the most potential microclimatic variation) 
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had the greatest number of species of all treatments for a given sample area. 

Another possible explanation is that for a given volume of wood, small diameter 

logs represent more possible colonisation events and competitive exclusion (e.g. 

branch stubs, bark fissures), more surface area for colonisation and a greater surface 

area to volume ratio than large diameter logs of the same volume (Heilmann-

Clausen and Christensen 2004). Thus, it is highly plausible that small diameter logs 

contain more species of wood decay fungi than large diameter logs at the range of 

volumes present in a small patch of forest. 

In considering these results, it is important to bear two points in mind. Firstly, only 

one quarter of the volume of each large diameter log was examined for wood decay 

fungi to make the volumes comparable with the small diameter logs. That is, only 

one quarter of each cross-sectional disc removed from the large diameter logs was 

examined for fungi, meaning the total species richness given for the large diameter 

logs potentially only represents a quarter of the true species richness. Therefore, on 

an individual log basis, the species richness of large diameter logs is potentially 

much greater than that of the small diameter logs. In addition, the distribution of 

wood decay fungi across a disc sample is unlikely to be uniform, meaning that the 

quarter sampled may not represent a quarter of the fungi present on the disc. This is 

especially relevant for logs resting on the ground. The majority of quarter discs 

removed from the large diameter logs were taken from the upper half of the log. 

This means species of fungi which colonise large diameter logs through soil 

contact, such as the cord forming Armillaria species (Kile et al. 1991), may 

concentrate on the lower half of the log and not have been sampled from the large 

diameter logs. Since the entire surface of the small diameter logs was sampled, 

fungi colonising logs through soil contact would have been included in their species 

richness. Perhaps potential variation in the spatial distribution of fungi in large logs 

could have been better accounted for by sampling the entire disc and then 

comparing the number of species in large logs with small diameter logs using 

rarefaction curves. This is recommended for future studies of this nature.  

The second point, discussed previously in Chapter 4, is that the rarefaction curves 

displayed in this chapter do not necessarily represent the full range of species 

potentially present in each log size class as the sampling was not exhaustive. It is, 

therefore, impossible to determine at what point species saturation will occur. Thus, 
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simply increasing the number of small diameter logs may not result in the 

accumulation of the same number of species present in large diameter logs.  

 Assemblage composition changes with log size 

The assemblage composition of fungi in large and small logs was significantly 

different, with both log size classes containing unique species. This pattern 

appeared to be particularly driven by similarity of species within the large logs, 

especially those in mature forest, with greater variation among the small diameter 

logs. As with species richness, this greater variation in species within the small 

diameter logs may be due greater variation in microclimate of the logs; or the 

similarity in large logs may be the result of large diameter logs coming from similar 

origins, regardless of forest type, or from chiefly sampling their upper halves.  

Differences in assemblage composition of fungi may be the result of different 

successional pathways between large and small diameter logs as previously 

suggested by Yee (2005) when examining decay and saproxylic beetle species. It is 

probable that the colonisation of large diameter logs by wood decay fungi would 

have started prior to tree fall, while the tree was still alive (Rayner and Boddy 1988; 

Renvall 1995). It is even possible that the weakening of the tree structure through 

the colonisation of fungi within the tree could have been responsible for tree fall in 

the mature forests (Franklin et al. 1987; Lewis and Lindgren 1999). Thus, wood 

decay fungi would have been well established within the large diameter logs 

/mature trees prior to tree fall. Assuming that large diameter logs in both mature and 

regenerating forests were mature trees in mature forest prior to tree fall, it follows 

that their fungal assemblage composition would have been similar.  

In contrast, small diameter logs, represented by small diameter/young trees, would 

perhaps have few wood decay fungi present within the tree prior to tree fall, 

meaning the decay processes present in small diameter logs would be largely 

dependent on the colonisation processes taking place once the tree was on the 

ground. For example, in her study of large and small diameter logs, Yee (2005) 

found that large diameter logs were dominated by decay, especially brown rot types, 

within the central heartwood of the log and that these were likely to be the result of 

colonisation events while the sapwood (and tree) was alive. Small diameter logs had 

a predominance of rot types in the sapwood and outer heartwood of the log, 
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suggesting they were the result of fungi colonising after the death of the sapwood, 

from the outside inwards. The high proportion of decay, including brown rot types, 

and the large number of wood decay fungi reported in large old living trees in Study 

1 (Chapters 4 and 5) supports this suggestion. 

Due to the lack of knowledge of the taxonomy and ecology of wood decay fungi in 

Australia, it is difficult to draw any conclusions about the colonisation pathways of 

most of the species found in this study and their relationship to log size. Based on 

data from better studied ecosystems (Boddy 1992; Boddy 2001; Gustafsson 2002; 

Nordén 2000), it is probable that the fungi found in logs use one of five main 

strategies to arrive in or on a log. Two of these strategies relate to fungi already 

present in the log at the time of fall, while the other three relate to different 

dispersal methods employed by fungi.  

Fungi present in logs at the time of tree fall would be either actively decaying wood 

(such as heartrot species) or latently present within the living sapwood (Boddy 

1994; Boddy 2001). The former would primarily be present in large diameter trees 

(Chapter 4) and thus large diameter logs, while the latter could be present in logs of 

any size. Dispersal mechanisms employed by wood decay fungi include arrival of 

airborne particles such as spores, colonisation from soil by mycelial cords and 

rhizomorphs and transport of particles by vectors such as saproxylic invertebrates 

(Boddy 1992; Boddy 1993). All three of these mechanisms potentially increase with 

larger surface area to volume ratio and thus for a given overall volume, may favour 

small diameter logs. However, as these dispersal strategies are not determined by 

the condition of the log prior to tree fall, they are equally likely to be found in large 

and small diameter logs. For example, Armillaria hinnulea is well studied in 

Australia and is known to colonise substrates by means of specialised rhizomorphs 

(Kile et al. 1991). This species was found equally in both large and small diameter 

logs as a species which initially colonises the sapwood of the log through contact 

with the soil (Chapter 6). 

7.4.2 The effect of forest type 

Similar numbers of wood decay fungi were found in the regenerating forests and the 

mature, unlogged forests, demonstrating that fungi can successfully colonise 

Eucalyptus obliqua logs in 20-30 year old first rotation logging residue following 
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CBS treatment. The fungal assemblage composition of logs in mature and 

regenerating forests was, however, significantly different. These differences can 

most likely be attributed to two primary factors: differences in current and recent 

forest condition and differences in log recruitment processes.  

The effect of forest condition 

Both forest age and successional processes can influence the composition of wood 

decay fungi in natural and managed forests (Bader et al. 1995; Edman et al. 2004a; 

Edman et al. 2004b; Nordén and Paltto 2001; Rolstad et al. 2004; Stokland and 

Kauserud 2004; Vasiliauskas and Stenlid 1998). Many studies, particularly those 

focussing on individual species, have found species richness or number of 

individuals to increase with increasing forest age (e.g. Bader et al. 1995; Edman et 

al. 2004a; Edman et al. 2004b; Stokland and Kauserud 2004); however other 

studies have found a decrease in species richness with forest age (Nordén and Paltto 

2001), perhaps as a result of increased competition between late stage combative 

fungal species (Boddy 2000; Boddy 2001). Whether increasing forest age leads to 

increased or decreased species richness, the assemblage composition of fungi is 

clearly different at different forest successional stages. What is not apparent is 

whether this is purely a result of forest age or whether it also relates to other factors 

such as microclimate.  

The two forest types examined in this study are likely to be at very different 

successional stages. They have a difference in time since disturbance of more than 

35 years (Alcorn et al. 2001; Hickey 1993; Hickey et al. 1998) and the type of 

disturbance was arguably very different. The mature, unlogged forest was subjected 

to a moderate fire which was not stand replacing, while the regenerating forest 

underwent the stand replacing process of clearfell, burn and sow. Therefore, even if 

the forest types were the same age, it is not certain that they would be undergoing 

identical successional pathways. Furthermore, the structure and composition of 

vascular plants in the two forest types indicate that they are at different successional 

stages (Hickey 1994) and that the regenerating forest has a more open canopy (Yee 

2005).  

Given the different successional and environmental conditions present in the two 

forest types it is not surprising that their fungal species composition is different. 
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Fungi found in logs in the regenerating forest are likely to have a much greater 

tolerance to fluctuating temperature and moisture extremes as a result of the more 

open forest structure. These may include some of the ruderal, disturbance 

opportunistic fungi described by Boddy (1992) but would also include some stress-

tolerant species. In contrast, the mature forests would provide a much more stable 

habitat for some of the less stress-tolerant fungal species. This variation in 

microclimate would be particularly apparent when examining the combined effects 

of log size and forest type. Small diameter logs in regenerating forest would be 

much more susceptible to changing microclimates than large logs in mature forest 

which are protected from environmental conditions both by virtue of their size and 

habitat. This is clearly demonstrated by differences in fungal assemblage 

composition for large and small diameter logs in regenerating forest types. 

Differences in log recruitment 

Logs in mature and logging regenerated forest could also have different fungal 

species composition as a result of the different recruitment processes they have 

undertaken. Many of the study logs in the logging regenerating forest were probably 

the result of clearfelling and left on site as logging residue, felled before natural 

recruitment processes took place. This is especially true for those logs which 

contained a high proportion of rotten wood as they would not have been useful for 

pulp or sawlog production. Following felling, these logs would also have been 

subjected to a high intensity burn followed by open, sun-exposed conditions for 

some time. In contrast, logs in the mature forest would have been recruited by 

natural processes of tree fall into a relatively closed forest canopy; some may have 

been killed by fire but many would also have fallen as the result of rot and/or strong 

winds.  

These different recruitment pathways are likely to favour different fungal species or 

species complexes. For example, wood decay fungi present in forests regenerating 

from logging would be more tolerant of isolation, burnt wood, desiccation and sun-

exposure and these factors have been shown to strongly influence fungal 

assemblage composition (Lindhe et al. 2004; Penttilä and Kotiranta 1996; Renvall 

1995). The burning of wood or the presence of charcoal on a substrate can strongly 

influence the fungal species able to colonise it, favouring ruderal species able to 

benefit from the flush of nutrients and food resources after fire (Penttilä and 
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Kotiranta 1996; Renvall 1995). Lindhe et al. (2004) described a number of species 

of fungi which were dependent on the amount of sun-exposure of their host logs in 

coniferous forests in Sweden. Four species, Lenzites betulinus, Daedalea quercina, 

Fomitopsis pinicola and Calocera cornea were more common in sun-exposed 

conditions while Phlebiopsis gigantea and Peniophora incarnata preferred shade. 

As wet eucalypt forests in Tasmania have evolved with fire as a major disturbance 

(Hickey et al. 1998), the effect of burnt wood on the fungal assemblage structure 

may not be as great as it would in less fire-prone environments; however 

differences in the intensity of the fires in the regenerating forest (stand replacing) 

and the mature forest (not stand replacing) may have had an effect. The 

combination of differences in fire intensity and sun-exposure would have created 

logs under different climatic conditions which are likely to result in different fungal 

communities.  

As previously discussed, the fungi sampled from the logs at the present time may 

have been influenced by the fungal assemblage composition prior to log 

recruitment, and this in turn may have been affected by log recruitment processes. 

As logs in regenerating forests were primarily recruited as the result of logging 

practices, they may not have been in the same stage of fungal succession at the time 

of recruitment as those logs recruited through natural tree fall.  

Are large logs in mature and regenerating forests similar? 

One interesting result from this study was the similarity in assemblage composition 

between some of the large logs in mature forest and large logs in regenerating 

forest, as shown by NMS. Further studies would be needed to provide strong 

evidence that there are similarities in fungal assemblage between large logs in 

regenerating and mature forests, however, evidence from this study indicates it is 

worth exploring. This is particularly the case since large diameter logs have been 

suggested as legacy habitats in disturbed forests. The regenerating forests examined 

in this study are examples of forests in their first silvicultural rotation. In future 

rotations, large diameter logs may be phased out due to a lack of large diameter 

trees needed for their recruitment. The importance of large diameter logs in this 

context is discussed  in Chapter 8. 
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There are several factors which may contribute towards similar fungi being present 

in large diameter logs in mature and regenerating forests. First, the composition of 

fungi in the large logs may have been partially driven by fungal species present in 

the logs prior to tree fall (and therefore prior to logging in the regenerating sites). 

This is reinforced in part by large diameter logs containing a number of mature tree 

specialist species sampled in Study 1 including Postia pelliculosa and Fomitopsis-

like sp.1 (see Chapter 6). Second, large diameter logs are a more stable resource 

than small diameter logs with increased buffering capacity due to their size, and are 

therefore less susceptible to changes in forest microclimatic conditions. In 

comparison with small diameter logs, large diameter logs have greater moisture 

holding capacity (Bader et al. 1995), slower rates of decay (Mackensen et al. 2003) 

and are less affected by fire damage (Michaels and Bornemissza 1999). Large 

diameter logs also have the potential for more internal decay present at recruitment 

as previously discussed (and see Yee 2005). As a result, the conditions present in 

the large diameter logs may be similar in both mature and regenerating forests, 

accounting for congruence of fungal species assemblages.  

If further study does show similar fungal assemblage composition in regenerating 

and mature forests, large diameter logs could provide an important biological link 

between disturbed forests and undisturbed forests. In disturbed landscapes, this type 

of legacy habitat may be an important way of maintaining dependent species 

throughout the forest matrix (Lindenmayer and Franklin 1997), especially those 

species with poor long-range dispersal. More than half of the large diameter logs 

from regenerating and mature forest had similar assemblages (as shown by the 

NMS; Figure 7.3.3). This could suggest that, given a big enough population of large 

diameter logs, the concept of legacy habitats in logging disturbed forests may 

indeed hold. Small diameter logs appeared to be much more susceptible to forest 

type, most likely as a result of the greater influence of microclimate on log 

conditions within the log (refer to previous discussion in Section 7.4.1). The 

importance of log size in this context indicates that microclimatic factors, such as 

changes in temperature and water content, are not the only important drivers of the 

fungal species composition of logs.  



Chapter 7-Log Size and Forest Type 

 171 

7.4.3 Conclusions 

This study is the first to undertake detailed examination of the effect of log size and 

forest type on wood decay fungi in logs in southern Australia. Many of the patterns 

of fungal species distribution discussed in this chapter are similar to those found by 

Yee (2005) for saproxylic beetles and decay in the same sample logs, indicating 

similar or linked habitat preferences. 

This study has demonstrated that wood decay fungi are capable of colonising 

logs/logging residue in forests regenerating from CBS logging 30-35 years 

previously. Despite similar species richness, the assemblage composition of wood 

decay fungi is different in mature forests and forests regenerating from logging. 

This is likely to be due to the different microclimatic conditions present in each 

forest type, as well as differences in forest succession and log recruitment 

processes.  

This study also found that large and small diameter logs have different communities 

of wood decay fungi. This was again thought to be particularly driven by 

differences in log recruitment patterns as well as log microclimates. While the 

habitat and biology of most species of fungi are poorly understood, it is suggested 

that assemblage similarities in large logs in mature and regenerating forests 

indicates that large logs may play an important role as legacy structures in the 

maintenance of species of wood decay fungi in disturbed forests.  
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CHAPTER 8: TOWARDS THE CONSERVATION OF WOOD 

DECAY FUNGI IN TASMANIAN WET EUCALYPT FORESTS 

8.1 Introduction 

This thesis contributes new data, knowledge and understanding to the limited 

knowledge of wood decay fungi in the wet sclerophyll forests in southern Australia. 

This chapter reiterates the main findings of the thesis and discusses them in the 

context of the biodiversity values of wood decay fungi and their conservation within 

the managed forest matrix. Areas requiring further research are highlighted 

throughout the chapter.  

8.2 Wood decay fungi in the wet eucalypt forest 

This thesis has added to the taxonomic and molecular knowledge of Australian 

wood decay fungi, providing baseline data in a relatively undeveloped area of 

research. It provides descriptions of the cultural morphology and ITS sequences of 

20 species of wood decay fungi (Chapter 3). Sequences of the ITS region for a 

further 36 species of wood decay fungi were also determined from cultures (Chapter 

6). Critically, work from this thesis has initiated the creation of a reference 

collection of sequences and fungal cultures matched to identified fruitbodies. This 

reference collection currently contains more than 140 species of fungi and is 

specifically tailored for ecological work on wood decay fungi in southern Tasmania. 

It will be housed and maintained at the CSIRO/ensis laboratories in Hobart, 

Australia and will be able to be used for further ecological and taxonomic work 

with wood decay fungi in Australia.  

In total, 151 species of wood decay fungi were collected over the two studies in this 

thesis. This result highlights the importance of using a destructive sampling or 

wood cutting method to study fungi in Australian eucalypts. Had fruitbody surveys 

been carried out alone in Study 1, for example, only three species of wood decay 

fungi would have been found in the 18 living trees examined, as opposed to 91 

species found by culturing from wood samples.  

There is a critical need to improve our understanding of the taxonomy of Australian 

wood decay fungi, because it improves the documentation of the biodiversity values 
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of these forests and, more particularly in this case, because it underpins the ability 

to answer ecological questions. And, as in this study, knowledge of fungal ecology 

may have important implications for the management of eucalypt forest systems.  

This study demonstrates the benefits of using a combination of morphological and 

molecular techniques to group and identify cultures of wood decay fungi for use in 

ecological studies. Advocacy of combined morphological and molecular studies is 

not new (Bougoure and Cairney 2005; Hagerman et al. 1999; Hoff et al. 2004); 

however, it is of particular significance in Australia where it is not possible to draw 

on the wealth of taxonomic and ecological knowledge of wood decay fungi that is 

available in some other countries. While both methods can be used individually 

with some success, together they provide a much more robust analysis of both the 

species groups present and the taxonomic affiliations of these species groups. 

 As the knowledge and taxonomy of fruitbodies and cultures of Australian wood 

decay fungi becomes more developed, it may be possible to use more sophisticated 

molecular methods to identify wood decay fungi from cultures or even directly from 

wood (e.g. Adair et al. 2002; Allmér et al. 2006; Johannesson and Stenlid 1999; Oh 

et al. 2003; Vainio and Hantula 2000). Studies currently underway at the University 

of Tasmania, have successfully sequenced fungi directly from decayed eucalyptus 

wood (Glen et al. 2006b). Until these molecular methods are better developed and 

until our understanding of the taxonomy of Australian wood decay fungi is much 

improved, a more conservative approach is advocated which takes into account as 

many of the characteristics of each fungal isolate as is possible. 

8.3 Maintaining habitat structural complexity for specific fungal communities 

Tasmanian wet eucalypt forests are characteristically heterogeneous systems, both 

spatially and temporally, often with a wide variety of trees of different sizes and 

ages, in different states of growth and decay (e.g. Duncan 1999; Jackson and Brown 

1999; Lindenmayer et al. 1999b; Lindenmayer et al. 1991). The structural 

characteristics of importance to fungi can range from different diameter living trees 

to standing dead trees (stags) and different diameter logs and branches on the forest 

floor in different phases of decay (Lindenmayer et al. 2000a; Lindenmayer et al. 

1999a; Woodgate et al. 1996). The patchwork of natural fire histories characteristic 
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of wet eucalypt forests in particular, can lead to the formation of structurally 

complex multi-aged forests (Wells and Hickey 1999).  

Many of the 151 species of fungi examined in this thesis demonstrated a specific 

preference for one of a wide range of habitat structures (Chapters 4 and 7), 

supporting the principle that maintaining structural diversity in wet eucalypt forests 

is important for species conservation (Lindenmayer and Franklin 1997; 

Lindenmayer et al. 2006). Living trees (Study 1) and decomposing logs on the 

forest floor (Study 2) were both found to support a rich flora of wood decay fungi 

within a diverse range of habitats. Some species, such as Hypholoma fasciculare, 

Postia pelliculosa, Postia-like sp.4 and 5 and Xylariaceae sp.1, were dead wood 

habitat generalists, found in both the heartwood of living trees and in logs; while 

other species preferred more specific habitats. In Study 1, only three species of 

fungi, Basidiomycete sp.1, Hypholoma fasciculare and Xylariaceae sp.1, were 

found in all tree age-classes. In contrast, more than 80 of the 91 species found in 

living trees demonstrated an apparent preference for one particular tree age, 

although most were found in very low numbers (Chapter 4). Three of the 60 species 

examined in Study 2 were apparently adapted to the long-unburnt, relatively 

protected logs in mature forest while six species of fungi appeared to prefer burnt, 

exposed logs in forest regenerating from wildfire (as demonstrated by indicator 

species and CAP analyses, Chapter 7). Six species of wood decay fungi also 

showed preferences for particular log diameters (Chapter 7) and five species were 

associated with specific rotten wood habitats in logs (Chapter 6). This rotten wood 

habitat appeared to be affected by tree age/size (Chapter 5). This is the first time 

that such specific associations between wood decay fungi and the structural 

complexity of dead wood habitat have been demonstrated in Australian eucalypt 

systems. 

8.4 Adequacy of the current forest management practices for the conservation 

of wood decay fungi 

This thesis has built on the work of Yee (2005) on saproxylic beetle communities in 

the same Eucalyptus obliqua logs used in Study 2. Yee’s work indicated that current 

off-reserve management of forests in areas subject to timber harvesting was 

unlikely to adequately maintain saproxylic beetle diversity. In particular, timber 
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harvesting was likely to lead to a reduction in mature habitat structures, particularly 

large diameter logs; a cumulative reduction in dead wood volumes over time; and a 

temporal disruption to dead wood recruitment processes during forest regeneration 

(Yee 2005). All three of these factors were found to impact negatively on 

populations of saproxylic beetles.  

The patterns of wood decay in E. obliqua  logs reported in this study (Chapter 6 and 

7) are very similar to those reported by Yee (2005) for the saproxylic beetles. It is 

reasonable to suggest therefore that the implications for forest management arising 

from this study will be similar too. 

Loss of mature habitat structures 

In Study 2, large diameter logs were found to provide an important ecological 

habitat for wood decay fungi (Chapter 7). The reduction or absence of these large 

logs from sites after successive short timber harvesting rotations will negatively 

impact on those fungi which show a preference for large diameter logs. Although 

little is known about the ecology of these species of fungi, a preference for large 

logs may relate to their more stable habitat, or be the result of recruitment processes 

which began in the large living tree prior to log recruitment (Chapter 7). In order to 

capture these recruitment processes, Yee (2005) also advocated the retention of 

large living trees in the landscape for large log production. This thesis takes Yee’s 

work one step further by demonstrating that large living trees are important 

ecological habitat for biodiversity in their own right (Chapter 4). Thus, large 

diameter trees appear to be critical for fungal diversity and as a component of the 

successional processes leading to the recruitment of large diameter logs on the 

forest floor. Together, the work by Yee (2005) and the studies described in this 

thesis provide strong evidence supporting the retention of both large diameter living 

trees and logs in the forest landscape.  

Although this discussion focuses on large diameter or mature habitat substrates, the 

importance of small diameter substrates for wood decay fungi should not be 

overlooked. In both Studies 1 and 2, small diameter substrates (20-60 cm diameter) 

contained a number of specialised species of fungi and had a higher species richness 

than large diameter substrates when equal sample volumes were compared 

(Chapters 4 and 7). In the production forestry landscape, small diameter substrates 
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are likely to remain frequent over successive short (<100 year) silvicultural 

rotations (Grove et al. 2002). As a result, the conservation of small diameter 

substrates is not of such critical importance for consideration by forest managers. 

Despite this, the high species richness of small diameter substrates does raise many 

potential questions which should be considered for future studies. For example, is 

the high species richness in small diameter trees and logs really a reflection of the 

diversity of microclimates present in these substrates, as suggested in Chapters 4 

and 7? If so, what aspects of microclimatic change are driving changes in fungal 

species, as evidenced in Chapters 4 and 7? What are the colonisation strategies of 

the fungi inhabiting small diameter trees and logs? Are they, for example, 

responding to the increased opportunities for colonisation afforded by the greater 

surface area to volume ratio of small diameter substrates? In the managed forest 

landscape, changes in microclimate will inevitably occur as the result of changes in 

forest management patterns and forest structure (Lindenmayer and Franklin 1997). 

What effect these changes will have on wood decay fungi and other saproxylic 

organisms should form the basis of future studies.  

Reduction in dead wood volumes 

Modelling by Grove et al. (2002) shows that harvesting wet eucalypt forests at 

successive 100-year intervals would lead to a two-fold reduction in dead wood 

volumes, as compared with forests subjected to stand-replacing wildfires of the 

same frequency. This reduction in dead wood volumes would be exacerbated with 

any proposed fuel wood harvesting (Grove et al. 2002). These reductions in dead 

wood volumes will increase average distances between similar dead wood substrate 

types, potentially leading to fragmentation effects throughout the forest matrix. 

This, in turn, could lead to coupe-scale population extinctions for species dependent 

on specific dead wood substrates, particularly those with only short-range dispersal 

capabilities. European forestry provides many examples of the effect of decreasing 

dead wood volumes, or increasing distance between dead wood type, on reducing 

populations of fungi at the coupe-scale (e.g. Pentillä et al. 2006; Sippola et al. 2004) 

and of other saproxylic species (e.g. Jonsell and Nordlander 2002). 

Future studies of Australian wood decay fungi should focus on understanding the 

dispersal capabilities of these fungi, giving priority to rare species and those fungi 
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with a high degree of habitat specialisation (e.g. Lindhe et al. 2004; Renvall 1995) 

as they are thought to be more susceptible to fragmentation (Pentillä et al. 2006). 

This will assist in determining how these fungi may respond to changes in dead 

wood volumes within the forest as a result of timber harvesting.  

Temporal disruption to dead wood recruitment processes 

Dead wood recruitment from current timber harvesting in wet eucalypt forests 

differs substantially from the natural recruitment patterns resulting from wildfire 

(Grove et al. 2002). In managed stands subjected to clearfelling, the majority of 

dead wood arises from the initial harvesting event, and it is mostly then burnt to 

remove this harvesting debris and to provide an ash bed for regeneration. This 

treatment results in a pulse of mostly severely burnt harvest debris mostly in similar 

early decomposition stages. Following this pulse, there is little continual dead wood 

recruitment (Grove et al. 2002). In contrast, not all wildfires in Tasmanian wet 

eucalypt forests are stand replacing; many wildfires are low-medium intensity and 

cause only partial stand replacement (Hickey et al. 1998). This results in multi-aged 

forests with a number of different cohorts of trees originating from separate wildfire 

events (Hickey and Wilkinson 1999), and a source of dead trees of different sizes. 

These dead trees, together with their limbs, may fall to the ground soon after fire or 

add gradually to the dead wood pool (Grove et al. 2002). 

Many species of wood decay fungi are known to display preferences for wood at 

different stages of decomposition (Chapter 1; Renvall 1995). If most dead wood 

substrates within a forest stand are at a similar decomposition stage, as would be the 

case following clearfell timber harvesting (Grove et al. 2002), fungi reliant on 

specific stages of decomposed wood may ultimately have to disperse further to find 

new suitable habitat. For species with short-range dispersal, this is likely to be 

difficult. Log size is also an important factor here. Large diameter substrates are 

often the main components of dead wood, dominating the dead wood pool. Stands 

subjected to timber harvesting tend to lack large diameter trees so, over time, the 

proportion of large diameter substrates decreases (Grove 2001b). In addition, small 

diameter logs tend to decay much faster than large diameter logs (Harmon et al. 

1986) and this can result in even lower levels of dead wood over time.  
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This lack of temporal continuity in dead wood substrates could have a profound 

effect on assemblages of wood decay fungi. This may be especially the case for 

fungi specifically associated with particular rotten wood types, such as those 

examined in Chapter 6. Given the importance of maintaining temporal continuity of 

dead wood substrates in various stages of decay for fungal habitat, simply extending 

logging rotation periods is not likely to conserve wood decay fungi. Other 

mechanisms, such as retaining habitat patches within stands, retaining habitat trees, 

retaining dead wood on the ground and the use of low and medium intensity burns 

should be investigated as ways to maintain temporal continuity of dead wood. 

8.5 Recommendations for forest management 

The outcomes of this thesis highlight the importance of maintaining habitat for 

wood decay fungi throughout the production forest matrix. This section focuses on 

the temporal aspect of dead wood continuity, rather than the spatial components, as 

this was the primary management focus of both Studies 1 and 2. This thesis 

provides supporting evidence for the recommendations of Yee (2005), in 

advocating the retention of living trees within stands managed for timber production 

to maintain diversity of wood decay fungi at scales appropriate for their long-term 

persistence. The retention of living trees in harvested coupes will improve stand 

structural complexity and continuity of dead wood supply, helping to mitigate many 

of the impacts mentioned in Section 8.4. Adoption of a living tree retention strategy 

should be immediately considered by forest managers, as the restoration of 

particular dead wood habitats may take some time. For example, mature living trees 

were found to provide important habitat for wood decay fungi (Chapter 4); some of 

these trees may take 150-300 years to develop habitat features suitable to support 

these fungi (Alcorn et al. 2001; Lindenmayer et al. 2000b). Temporal continuity of 

dead wood habitats is important, as any break in continuity may result in local 

extinctions of specific wood decay fungi. Although these fungi are important 

components of biodiversity in their own right, they also contribute significantly to 

the creation of habitats, such as rotten wood types, which are critical for the survival 

of many other organisms (Mackowski 1987; Simpson and Eldridge 1986). In 

recommending the adoption of living tree retention, there are a number of key 

factors which must be considered in order to successfully preserve the diversity of 

dead wood substrates inhabited by wood decay fungi. These include: retaining a 
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range of trees of different ages, sizes and states of decay; retaining trees in 

aggregates; and the size of aggregates and coupes. These issues are discussed 

further below. 

The practice of retention of living trees within harvested coupes should incorporate 

trees in a range of age classes including old, mature and young regrowth trees. This 

is important not only for maintaining structural diversity within the harvested coupe 

(thus spatial connectivity within the production forest matrix), but also for 

maintaining temporal continuity of dead wood habitats. Mature trees will provide 

immediate habitat for those wood decay fungi that prefer this habitat (Chapter 4). 

Mature trees will help to provide continuity of downed wood substrates through 

dropping of large branches while they are still alive and eventually lead to the 

recruitment of large diameter logs, critical habitat for specific wood decay fungi 

(Chapter 7). At the same time, it is also important to retain small regrowth trees as 

they provide habitat for fungi which are young tree specialists. These young trees 

will also assist in providing temporal continuity of dead wood habitat: during the 

course of the silvicultural cycle, they will grow and, if left untouched, may become 

large diameter trees. Retaining trees in a range of age-classes and sizes may also 

mimic the effect of wildfire in the wet sclerophyll forests as fires leave trees in a 

range of age classes (such as those examined in Study 1; Chapter 2). This range of 

tree age classes also provides potential for the recruitment of both large and small 

diameter logs on the forest floor.  

In addition to retaining trees of different ages in harvested coupes, it is also 

important to consider the state of decay of the retained trees. In some silvicultural 

systems, such as those in the karri forests of Western Australia, seed-trees are 

retained throughout harvested coupes to provide natural seed fall for the 

regenerating coupe (Department of Conservation and Land Management 2005; 

Hickey et al. 2001). Healthy, dominant trees are frequently selected for seed-trees 

as they are thought to have less genetic predisposition to decay and damage by 

insects and will therefore supply healthy seed (Department of Conservation and 

Land Management 2005). In contrast, retention of living trees for biodiversity, as 

recommended here, should include the retention of trees in a variety of states of 

health and decay, so as to increase spatial continuity in habitat types between trees 

and provide trees for habitat recruitment later in the silvicultural cycle.  
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Current silvicultural trials at the Warra LTER site in the wet sclerophyll forests in 

southern Tasmania are investigating the use of a range of alternatives to the current 

clearfell, burn and sow harvesting practices used in Tasmania. These alternatives 

have been developed with reference to the alternative silvicultural methods 

currently being investigated in North America (e.g. Franklin et al. 1997). The 

majority of these methods incorporate some level of living tree retention and 

include trees dispersed throughout the harvested area, aggregated or concentrated in 

strips (Hickey et al. 2001). Among the range of options investigated in Tasmania, 

aggregated retention (i.e. retaining 15-40% of the coupe area in aggregates) has 

been nominated as the most promising in combining the criteria of worker safety, 

timber yield, maintaining biodiversity values and social acceptability (Forestry 

Tasmania 2004; Hickey et al. 2001).  

The findings of this thesis provide support for the use of aggregated retention 

throughout the production forest matrix as an alternative to clearfell, burn and sow 

which will help to maintain biodiversity. Maintaining portions of the harvested 

coupe as aggregates with minimal disturbance will help to protect the retained trees 

and will allow some of the natural forest processes, such as dead wood recruitment, 

to continue. Importantly, retaining aggregates of living trees will maintain logs on 

the forest floor within the aggregates under shaded, protected conditions, much 

more similar to those of unlogged, mature forest. As discussed in Chapter 7, there 

are a number of species of wood decay fungi which show a preference for logs in 

mature forest and these species should be catered for in aggregates in the harvested 

coupes. 

If aggregated retention systems are widely adopted as an alternative to clearfelling 

in Tasmania (not just for old growth forests as is currently envisaged), further 

research into the size and spatial arrangement of aggregates is required. The current 

trials at Warra retain approximately 30% of coupe area as 5-6 individual aggregates 

of 0.5-1 hectare in area (Hickey et al. 2001). Very little is known about the impact 

of edge effects on wood decay fungi and how changes in microclimate from mature 

forest to aggregates (due to exposure of the edge of aggregates) may impact on the 

viability of fungi. Research in southern Tasmanian forests by Baker et al. (2006) 

suggests that edge effects for litter beetles can reach up to 10-25 m into the 

undisturbed forest habitat. On average beetle assemblages were 95% similar to 
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mature forest in areas greater than 22 m from the disturbed edges. Given that 

microclimate effects are likely to impact on wood decay fungi (Chapters 4 and 7 

and Section 8.4) it is probably important to consider the size of the aggregates 

retained for conservation and how much they may be influenced by edge effects. In 

addition, the size of harvested coupes is important; smaller coupes will have a 

greater perimeter to area ratio, potentially facilitating more dispersal of wood decay 

fungi from mature forest into harvested coupes.  

Although aggregated retention is suggested as a forest harvesting tool which may 

help to maintain wood decay fungal assemblages, this thesis advocates an adaptive 

environmental management approach (Holling 1978) in its adoption. Very little is 

known about the biology and ecology of wood decay fungi in Tasmania and without 

further investigation, it is difficult to predict whether a ‘one-size fits all’ approach to 

aggregated retention may have any adverse impacts on wood decay fungi or on any 

other poorly understood forest organisms. As a result, an approach to forest 

management is recommended, which chooses a range of promising silvicultural 

techniques across the production forest matrix, incorporating harvesting coupes and 

aggregates of a range of different sizes. The efficacy of these various different 

silvicultural techniques can then be tested in situ, allowing forest managers to 

continually examine and adapt their forest management techniques as further 

research is undertaken. This process of adaptive management will provide managers 

with the opportunity to observe, study, understand and develop forestry practices 

that better meet the goals of ecologically sustainable forestry.  

8.6 The importance of interrelated studies 

This thesis forms part of a number of interrelated studies examining the effect of 

timber harvesting on dead-wood dependent organisms in the wet eucalypt forests of 

southern Tasmania. The studies described here were both closely linked to other 

doctoral research: Study 1 was carried out in collaboration with K. Harrison who 

examined the saproxylic beetles in the same living trees (Hopkins et al. 2005); and 

Study 2 was based on work carried out in collaboration with M.Yee who examined 

the saproxylic beetles in the same logs and rotten wood types (Yee 2005; Yee et al. 

2001). Both Study 1 and Study 2 tried to find links between fungi and beetles 

through their associations with rotten wood type. Other closely related studies have 
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examined the canopy arthropod fauna in mature and regenerating trees (Bar-Ness 

2005), the saproxylic beetles present in newly recruited large and small diameter 

logs (Grove and Bashford 2003) and fungi present on logs at sites with different fire 

histories (G. Gates, pers. comm. 2006). The collaborative nature of these studies, 

and their similar focus, has allowed a clearer insight into the complex ecological 

processes that occur in wet eucalypt forests.  

Gaining a thorough understanding of the ecology of wet eucalypt systems is 

important. Australian eucalypt forests are thought to differ substantially from some 

of the better studied northern hemisphere systems such as the Scandinavian boreal 

forests. In Australian wet eucalypt forests, for example, there are no woodpeckers 

or other vertebrate primary wood excavators. The creation of hollows and decay 

features in eucalypts appears to rely much more heavily on decay organisms such as 

fungi and saproxylic invertebrates, and on fire (Gibbons and Lindenmayer 2002, A 

Koch, pers. comm. 2005). In addition, Australian forests have a much shorter 

history of intensive forest management in comparison with many forests in the 

northern hemisphere. Most studies in northern Europe, for example, take place in 

forests which are already drastically altered by human activity (reviewed in Siitonen 

2001). Intensive silviculture only began in Tasmanian eucalypt systems in the early 

1960s (Gilbert and Cunningham 1972); consequently most forests are still in their 

first silvicultural rotation. Thus, large diameter trees and logs are still well 

represented in these forests (Meggs 1996), and this provides an unusual opportunity 

to investigate their importance as habitat before irretrievable long-term effects of 

forest management are evident.  

8.7 Conclusions 

The studies described in this thesis are the first to intensively examine the wood 

decay fungi present in the wet eucalypt forests in southern Australia. The 

morphological and molecular taxonomic work which has arisen from this thesis 

provides a sound basis for further investigations of wood decay fungi, either as 

cultures or sequences extracted directly from wood. New insights into the 

relationship between tree age and wood decay fungi have highlighted the 

importance of large, mature trees as habitat for fungi and rotten wood habitat; and 

in addition have demonstrated the variety of wood decay fungi found in suppressed, 
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small diameter trees. Logs are also identified as important habitats for wood decay 

fungi, with assemblage composition affected by both log size and forest type. 

Timber harvesting practices which lead to reductions in stand structural complexity, 

cumulative reductions in dead wood volumes over time and a disruption to dead 

wood recruitment processes have been identified as potentially threatening 

processes for wood decay fungi in wet eucalypt forests. An adaptive environmental 

management approach is advocated for Tasmanian wet eucalypt forestry, which 

includes the retention of large diameter trees and logs within otherwise harvested 

stands to maintain forest biodiversity.  
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Appendix 1. Sequences of the internal transcribed spacer region for all wood decay 

fungi identified in Studies 1 and 2. 

Armillaria hinnulea 

Primer: ITS1F  

TGCAATCATAGCATTGAGAACTGTTGCTGACCTGTTAAAGGGTATGTGCACGTTCGAAGTGTTGCGTT

CTATTCTTTCCACCTGTGCACCTTTGTAGACTTGGTTAACTTTCGCTCTCGAGCGGTTAGAAGGGTTG

CTTTCGAGCTCCCTTTGTCTACCAAGTCTATGTCTATATAATCTCTTGTATGTCTAGAATGTCTTGTT

TATGGGACGCAAGTCCTTTAAATCTTATACAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATG

AAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGAACG

CACCTTGCGCCCTTTGGTATTCCGAAGGGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCTCCCCT

TCTTTTACTAGGAGTGTGGTGGATTGGACATGGGGGTTGCTGGTTTCT 

Ascocoryne sp.1 

Primer: ITS1F 

AACCTGCGGAAGGATTCATTACAGAAGGAGGAGTCTCCTACCGTAGCAGTAGGTCCGCCTGCTGCTCG

ACGATCACGGCTCCCTCCGGGGGGTGTCCCCTCACCCTTGTGTACCCTACCTTTGTTGCTTTGGCGGG

CCGCGTTTAGCCACCGGCTCATGCTAGTGAGTGTCCGCCAGAGGCCCCAACTCTTGATTTTATAATGT

CTGAGTACTATATAATAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGC

AGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGC

GCCCTGTGGTATTCCGCGGGGCATGCCTGTTCGAGCGTCATTATGACCCAATCACGCCCCCGGCGTGG

TCTTGGGGCTGGCAGCTCTGCCGCCCTCAAATGCAGTGGCAGCGCCATTAGGCTCTTAGCGTAGTAAT

ACTCCTCGCTATAGGGTCCTGTGGTTGCCGCCAGCAACCCCCTATTTTCTAGGTTGACCTCGGATCAG 

Ascomycete sp.1 

Primers: ITS1F & ITS4 

GAACCTGCGGAGGGATCATTACAGAGTTCAAGCCCTCGCGGGCAGATCTCCCACCCTTGTGTATTCAT

ACTTTTGTTGCTTTGGCAGGCCGCTGGGCTTCGGCCTGGCCACCGGCTCTAGAGCTGGTGTGCGCCTG

CCAGAGGACCCCCAAACTCTGGTTATCAGTGTCGTCTGAGTATTATACAATCGTTAAAACTTTCAACA

ACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGAGAATTGCAGAA

TTCAGTGGATCATCGAATCTTTGAACGCACATTGCGCCCTTTGGTATTCCGAAGGGCATGCCTGTTCG

AGCGTCATTTCAACCCTCAAGCTCTGCTTGGTCTTGGGCTCGGCCGTGATGGCCGGCCTTAAAATCAG

TGGCGGTGCCGTCGTAGGCTCTAAGCGTAGTACATTTCTCGCTCTGGAAGCCTGGCGGTGCCTGCCAG

ACAACCCCTAATTGTCTCTTACGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATAC

AATAAGC 
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Ascomycete sp.2 

Primer: ITS1F  

CGGGCAGATCTCCCACCCTTGTGTATTCATACTTCTGTTGCTTTGACAGGCCGCTGGGCTTCGGCCTG

GCCACCGGCTCTAGAGCTGGTGTGCGCCTGCCAGAGGACCCCCAAACTCTGGTTATCAGTGTCGTCTG

AGTATTATACAATCGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGC

GAAATGCGATAAGTAATGAGAATTGCAGAATTCAGTGGATCATCGAATCTTTGAACGCACATTGCGCC

CTTTGGTATTCCGAAGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCTCTGCTTGGTCTTGGG

CTCGGCCGTGATGGCCGGCCTTAAAATCAGTGGCGGTGCCGTCGCAGGCTCTAAGCGTAGTACATTTC

TCGCTCTGGAAGCCTGGCGGTGCCTGCCAGACAACCCTTAATTGTCTCTTACGGT 

Athelia-like sp.1 

Primers: ITS1F  

AACCTGCGGAAGGATCATTATTGAATTATAAGGCTTTGGCTGTGCTGGCCCCTCGGGGCATGTGCACG

TCTCTGCCCGTTAATCCCAACCACCCCTGTGAACCGACCGTGTGAGGCGCTCTGTAACGGAGCCGTCT

CATGCTTTATCATAAACACCGTATGTCTTCGAATGTAAAATCTATATCTTCGCCTTAAAACAGCGTCG

GTAAAAAAAAATTAATATAACTTTCAACAACGGATCTCTTGGCTCTAGCATCGATGAAGAACGCAGCG

AAATGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCT

CCCTGGTATTCCGGGGAGCATGCCTGTTTGAGTATCATTAAATTCTCAACCCCGATCGGATTTGTTTT

CGCATTCGGAGGCTTGGATTGTGGAGCGTGCTGGCCCCCTCTCATGGGTCGGCTCCTCTTAAATGCAT

TCGCGGAATCGACTTTGGTCCGTTTCGGTCATCAGTGTGATAAATGTTGCGCTGTTGGCTAGGATCGA

GGTGCCGCATACAATGGTCTTCGGACAATTTTATAACCATTTGATCTCAAATCAGGTAGGA 

Athelia-like sp.2 

Primer: ITS1F 

AACCTGCGGAAGGATCATTATCGAATTATAAGGCTCTGGCTGTGCTGGCCCCTCGGGGCATGTGCACG

TCTCCGCCCGTTAATCCAACCAACCCCTGTGAACCAACCGTGGGCCGGCTCTGTGATGGAGTCGTCCC

ATGCTTTATCATAAACACTTGTATGTCTCAGAATGTAAAACGTCAATGCCTTCGCCTTAAAAACGTGA

ACGGTAATAAAATTAATACAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAAACGCAG

CGAAATGCGATAAGTAATGTGAATTGCAGAATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTGC

GCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCCCGATCGGATTCGT

TTCTGATTCGGAGGCTTGGATCGTGGAGCGTGCTGGCCCCTGCCCGGGTCGGCTCCTCTCAAATGCAT

TCGCGGAATCGACTTTGGTCCGTTTCGGTCATCAGTGTGATAATACGTTGCG 

Athelia-like sp.3 

Primer: ITS1F 

ACCTGCGGAAGGATCATTATTGAATTATAAGGCGGTTGGTTGTGCTGGCCCCTCGGGGCATGTGCACG

CCTCCGCCGTTTAATCCCAACCCACCCCTGTGAACCAAACGTCGTGAGGCGCTCTGTGATGGAGCCGT

CTTGTGCCATTTATCATAAACACCGTATGTCTTCAGAATGTAAATCTATTGCCTTCGCCTTAAAAACG

TGTCGGTAAAAAAAATGAATACAACTTTCAACAACGGATCTCTTGGCTCTAGCATCGATGAAGAACGC
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AGCGAAATGCGATAAGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTGAACGCACCTTG

CGCTCCCTGGTATTCCGGGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCCCGATCGGATTTG

TTTTCGATTCGGAGGCTTGGATTGTGGAGCGTGCTGGCCCCTCACCATGGGTCGGCTCCTCTCAAATG

CATTCGCGGAATTGACTTTGGTCCGTTTCGGTCATCGGTGTGATAAATGTTACGCCGTTGGCTAGGAT

CGAGGTGCCGCATACAATGGTCTTCGG 

Basidiomycete sp.1 

Primers: ITS1F & ITS4 

ACCTGCGGAAGGATCATTATCGAGTTTTTAAATGGGGAGCGGGTTGTATTAAGCTGGCCTTTGAAAGT

AACGAAAGTAAAAAACGATATTTTTGAAGGCATGTGCACGCCTAGCTTTTCCCATACACACTCTCTCA

CAAATAAACCCCTTTTGTGCRCCTTATAGTAGAACTCGGTGTCGAGGAAGAGACTCGATTGCCGTATG

TGGCGGTCAGTCTCGGAAAAAGAACCGTGGTCTATGTATTTTGTTTTTGTCACATACGCTTTCAGTCG

AGAATGTATTTAAATTAAATAAAAAACCCTTGAGAAAGGGGGAAAATATGTGAATACACAACTTTCAG

CAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAG

AATTCAGTGAATCATCGAATTTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTT

TGAGTGTTATGAAATTCTCAACCTTTCGAAAGATTGTCATGATTTTTtCGTAAAGGATTGGACTTGGA

GGTTGTGTGTCGGCGAGCATAATACAGATAAATAACGATTCGTCGTTTATTATCTTTGTGTCGACTCC

TYTGAAATGCATTAGCGCGAAACGATTTAATAAACGGGATCGCCTTCGGTGTGATAAATTATTTACGC

CGCAGTCGTGAAGTTTTGAAGGAAAAAACGTAACGGACGTTTGCGCTTACGAATCGTCCTCCTCGTAC

GAGGACAAAAAAAAATCAATTAGTAACTGATTGACAAGAAACCTAACCTCAAATCAGGTAGG 

Basidiomycete sp.2 

Primers: ITS1F & ITS4 

ACCTGCGGAAGGATCATTATCGAGTTTTTAAATGGGGAGCGGGTTGTATTAAGCTGGCCTTTGAAAGT

AACGAAAGTAAAAAACGATATTTTTGAAGGCATGTGCACGCCTAGCTTTTCCCATACACACTCTCTCA

CAAATAAACCCCTTTTGTGCRCCTTATAGTAGAACTCGGTGTCGAGGAAGAGACTCGATTGCCGTATG

TGGCGGTCAGTCTCGGAAAAAGAACCGTGGTCTATGTATTTTGTTTTTGTCACATACGCTTTCAGTCG

AGAATGTATTTAAATTAAATAAAAAACCCTTGAGAAAGGGGGAAAATATGTGAATACACAACTTTCAG

CAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAG

AATTCAGTGAATCATCGAATTTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTT

TGAGTGTTATGAAATTCTCAACCTTTCGAAAGATTGTCATGATTTTTtCGTAAAGGATTGGACTTGGA

GGTTGTGTGTCGGCGAGCATAATACAGATAAATAACGATTCGTCGTTTATTATCTTTGTGTCGACTCC

TYTGAAATGCATTAGCGCGAAACGATTTAATAAACGGGATCGCCTTCGGTGTGATAAATTATTTACGC

CGCAGTCAAAAAACGTGAACGGAAGTGTTGGGGCTTAACGAATTGTTCCTTCCTTCGTAACGAGGACA

CAAAAAAAAAACAATTAGTAACTGATTGAACAAGAAACCTAACCTCAAATTCAGGTAG 

Basidiomycete sp.3 

Primers: ITS1F & ITS4 

TCATTATCGAATTCACTTTGAACGTTGGGTTGTAGCTGGCCCCTCACCGGGCATGTGCACGCCTCGTT

CAATTTTATTTTAAACCCCTGTGCACAACCTGTAGGTCGGTCTGAGGTCTCGCGGCTTCTGCCTTCCT



Appendix 1-Sequences 

 213 

ATGTATATTATAAACACCAAGTAAGGTCTAAAGAATGTCTGTCGCGTTTTACACGCATATATATATAC

ATATAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA

ATGTGAATTGCAGAATTCAGTGAATCATCGAATcTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAG

GAGCATGCCTGTTTGAGTGTCATGGAATTCTCAACCCCATCCACCTTTGCCGGTGAATGCGGGCTTGG

ACTTGGAGGTTTCTGTCGGACGTTCACGTTCGACTCCTCTTGAATGCATTAGCTCGAAACCTTTGTGT

GATCGGCTCATCCGGTGTGATAGTATTGTCTGCGCCGGGGGCT 

Basidiomycete sp.4 

Primer: ITS1F 

GAACCTGCGGAAGGATCATTAGAGAAAACTCAAAGATCGAGGTTGTAGCTGGCCCTCCGGGGCATGTG

CACGCCTCTTTCGCCCATCCATCTCACACCTGTGCACCTCCGCGTGGGCTGGGCTTCACGGCTCGGCC

TGCGTCTTTTCACAAACTCTTTGTATGTCYTCAGAATGTAACTTACCGATGTAATAAAAACGCATCTA

ATACAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA

ATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCTTTGGTATTCCGAA

GGGCACACCTGTTTGAGTGTCGTGAAATTCTCAACCCTACCGGCTTTGTTGTCGGGAGGTGTTTGGAC

TTGGAGGTTCTTGCCGGCCTAGGTCGGCTCCTCTCAAATGCATCAGTGCGTACCGTTGCGTCGCTTTG

CCTTTGGTGTGATAGATATCTACGCCGCTG 

Basidiomycete sp.5 

Primer: ITS1F 

TTAATAGAACGAGAGACTGCGAGATTGGCTAGAGGGGGAGAGAGCTCTCTCTCGCTAGCTTGTTGAGT

GGTTCTTTACTTCATTTGCACCCTCATGTGATACCTCTGCGCGAGTTGGTACTAGGTCTCTGTGGCCT

GGAAGGCTCGCGGCTTCTATATACACCCCTTGACAAGTTGTAGAATGTACCCTTGTGCGTTTAACCGC

ATCCTAATTACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCG

ATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCAACTTGCGCCCCTTGGTA

TTCCGAGGGGCACGCCTGTTTGAGTGTCGTGAATTCCTCCACTCGCCAATCCTTTTGTGACTGGTTGA

GCTGGGACTTGGGGGTTTTTGTGGGTCCTTTCTCTGGTCCACTCCCCTTGAATGCATGAGTGA 

Basidiomycete sp.6 

Primer: ITS1F 

CTGCGGAAGGATCATTATCGAATCTTGAAAGGGGTTGTAGCTGGTCTTTCACGAGGCATGTGCACACC

CTGCTCATCCACTTCACACCTGTGCACACTATGTAGGATAGACGAGGATCGGGGCCCTTGGTCTCGGT

GCGAGTCTCCCCTATGTCTTTACATACTCTGTTCAGTCAATGAATGTATCTGCGATAAACGCATTTAA

TACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAA

TGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTCCGAGG

GGCACACCTGTTTGAGTGTCGTGAAATTCTCAACTCAAATGCCTTTGTTGGTCATTTGGGCTTGGACT

TGGGGGCTTGCCGGCTTGCGTCGGCTCCCCTTGAATGTATTAGCTCGAACCCTTGCGGATCAGCTATC

GGTGTGATAATTGTCTACGCCGTGGTTGTGATGCCACCTCCGGGTGTTGAGGTGTTCGGCTTCCAATC

GTCCCTCTGGGACAATTTCTTTTTGAAATCTGACCTCAAATCAGGTGGGACTACCCGCTGAACTTA 
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Basidiomycete sp.7 

Primer: ITS1F  

AACCTGCGGAAGGATCATTATCTGAGTTTTGAAAGGGGTTGTAGACTGGCCTTTTGGGGCATGTGCAC

GCCTCGCTCATTTCCAACTCTAACACCTGTGAACTAGCTGTAGGTCGGTTTCAAAATGGGCTCTTATT

GAGTCTGTTTGTGCCTTCCTATGTCTTTAACAAACTCTTGTCGTATCAGAATGTATTCGCGCTTTATT

AAACGCATCAATATAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAAT

GCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCATCTTGCGCCCTTTG

GTATTCCGAAGGGCATGCCCGTTTGAGTGTCATTGTATTCTCAAATCCCTTCATTTTTGTGAAGTCGA

TTTGGATTTGGAGGTTGTGCGGGTAACTCGTTGTCCGCTCCTCTTGAATGCATTAGCTGGAACCTTTT

GCTAGACCGGCTTCGGTGTGATAATTATCTGCGCCGTGGTCGTAAGGCGACTTTGTTGAGGATCCGCT

TCTAATCGTCTCTTGCAGACAAACTTATCTGAC 

Basidiomycete sp.8 

Primer: ITS1F  

ACAATGGGGTGAGAGGTTTAGTTCATGTGACTGACCGCCGCCCCTCACCAATTTATCACTCCTGTGCA

CACTAGGCTGGCTTGTGAACGGGGGGGAAGGTTTCCCCTCGGAATCATGCCTTGCCGCATCCTTATAC

AAACCCCAGAGTATAACAGAATGTGCTTGCGTTCAACGCATCGTATCACAACTTTCAGCAACGGATCT

CTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGA

ATCATCGAATCTTTGAACGCACCTTGCGCTCCTCGGCATTCCGAGGAGCATGCCTGTTTGAGTGTCAT

GAAACCCTCAACCCTGTCATCTTTGCGGATGTAAGCAGGGCTTGGATCCTGGAGGTTTTTT 

Basidiomycete sp.9 

Primer: ITS1F 

CATTCATAATAAGTGTTTTACTGCACTTTTTAAAAAATAGTACTCACCTTGTGTGCAATGTTGTGTTG

GRAGRAGGGTTTTTTACRAAACTTTTCCTCCCACACCTACACCAACCTAATAACCTTGAACCTCTTTG

TCTGAAAAACTATTATGAATACTTAATTCAAAATACAACTTTCAACAACGGATCTCTTGGCTCTCGCA

TCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT

TGAACGCACATTGCACTCTCTGGTATTCCGGAGAGTATGCTTGTTTGAGTATCAGTAAACACCTCAAG

TCTCTTTGTCTTTGTGACAAGGAGAGTTGGACTTGAGCAATCCCAACTCTTTTGYAAAAAAGGGGCGG

GTTGCTTGAAATGCAGGTGCAGCTGGACATTCTTCTGAGCTAAAAGCATATTTATTTAGTCCCGTCAA

ACGGATTATTACTTTTGCTCTAGCTAATATAAAGgTCAAATGGACGCGATGCTGACTGATGCAAGATT

ACCAAGTTTTT 

Ceriporiopsis sp.1 

Primer: ITS1F  

AGGGTTGTTGCATGGGGTCCCTAACCGGGATTCAAAGTGCACGCCCTGTGTCTATTCTCAAACCCCTG

TGCACTTATTGTAGGCTCGGTGGAAAGACCGACTTCGGTTGGTCTGAAAGCCTTGCCTATGCTTTAAC

ACACGCTTCAGTCTATGAATGTAACTTTGCGGATAACGCATTAAATACAACTTTCAACAACGGATCTC

TTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAA
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TCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATG

GAATTCTCAACCTTCAACACTTTTGTGAAGAAGGCTTGGACTTGGAGGTCGTGTTGGCTTGCAAAAGT

CGACTCCTCTGAAATACATTAGTGCGAACCTTACGGATCGCTTCGGTGTGATAATTGTCTACGCCGTG

GTGTTGAAAGTATAGCAGTGTTCGAGCTTCTAACCGTCCGCAAGGACAACTTTCTGACAATCTGACCT

CAAATCAGGTAA 

Coniophora-like sp.1 

Primers: ITS1F & ITS4 

GAACCTGCGGAAGGATCATTATCGATTCAAACAAATGAGAAGGGAGTTGCTTGTAGTTGTGCTGGCTT

TCTAACCAAGGCATGTGCACGCTCGACTTCTCTTTTTCTTCATTTACACACCTGTGAACCTGTTGTAG

GGCGTCTCGCAAGAGATGCTCTATGTATTTTCATATACTCCATTGATAGTCTTAGAATGTACCTTTTT

GTTCTCGTCAGAGATCAAAATAAAAGCCTTTATAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCG

ATGAAGAACGCAGCGAATTGCGATATGTAATGTGAATTGCAGATTTTCAGTGAATCATCGAATCTTTG

AACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAAATTCTCAACTCC

CTTTGATTTCTTCAAAGGTGAGCTTGGATTGTGGAGGTCTGCCGGCTGCAAAGTCGGCTCCTCTGAAA

TGCATTGGCAAAGGYGTGTGCATTAATCGGCCTTTCGGTGTGATAATGATCACCGTGGCTGGCTTGCT 

Coniophora-like sp.2 

Primer: ITS1F 

AACCTGCGGAAGGATCATTATTGAATTTTTGAAGGAGCTGTTTGCTGGCCCTTGACGCGGGCATGTGC

ACGCTTCGTTTCAAATCTCCAACCTTCTTCATACCCCTGTGCATCTTTTGTAGGGTCGTGTCGGTCGA

AAGGCCGGTGCGCTCTATGTCATATCATAAACTCTCGTATGTGTAGAATGTTCAATGCGCACGACGCA

TCTTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGAT

AAGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATT

CCGAGGAGCATGCCTGTTTGAGTGTCATGGAATCATCAACTCTTGTTTTTTTCTATCGAAGGAATGAG

GGCTTGGACTTGGAGGCTCGTGCTGGCCCTGTTTGGGGTCAGCTCCTCTTGAATGCATTAGCTTGAAC

CTTCTGCTGTATCGGCTGCTCGGTGTGATAATTATCTACACCGTGGCTGTGAGGCTT 

Coniophora-like sp.3 

Primer: ITS1F  

ACCTGCGGAAGGATCATTATCGATTCAACACAGAGATGAGAAGGGAGTTGTTTGTAGCTGTGCTGGCC

TCCGACAAAGGGGTATGTGCACGCTCGACTTCTCTTTTTCTTCATTGTGACACACGCTGTGAACCCGT

ATTGTAGGGTGTCTCGCAAGGGATGCTCTATGTCTATTTTCATATACCCCATTGTATGTTTTTAGCAA

TGTATCTTTTTGCTCTCGTCAGAGAACAAAAGTAAAGCCTTTATAACTTTCAGCAACGGATCTCTTGG

CTCTCGCATCGATGAAGAACGCAGCGAATTGCGATATGTAATGTGAATTGCAGATTCTTCAGTGAATC

ATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATTAA

GATTCTCAACTCCCTTGTGATTTCTTCAAGGGTGAGCTTGGACCGTGGAGGCT 
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Fistulina-like sp.1 

Primers: ITS1F & ITS4 

TAGGTGAACCTGACGGAAGGATCATTAACGAATAGACCCAGAGGGGTTCGTTGCTGCCGTCTCGGTGT

GCACGCCCTTCTGATTCATTCAACCATTCATCCACCTGTGAACCTTCTGCGTGATTGGGAGTCCTTCG

ACGAAGTCGCGAAGGTCGCATCTGTCTCAGCTCTGCGGCCTCGTGGCTGAGGAGCCTGACTTCCCTTC

ACGTCTCATAAACACACCTTTAAAAAAACAGTCTCAGAAAGTCAACGGTCGTAGCGGACCATAAACGT

GTCTATACAACTTTTGACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATA

AGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTC

CGAGGGGCATGCCTGTTTGAGTGTCATTAAATTCTCAACCGCTCTCGGTTCGTCATTCGAGCTGACGA

GTTGCGTTGGATCGTGGGGGTCTCTCTTTGCCGGCTGTTCGCGGTCGGCTCCCCTCAAATGCATTAGC

GACCGTCCTCTGCTGGATCGTGCACTCGGTGTGATAGTGTTCTCATACGTCTACGCCGTCGTTGCCAT

CCCGGGGCCACATGTGGCCTCAAGGAGGTGATCACAAAAGCTTTGTCGCTCACAAATCGTCCCTATAT

GCGCGCATATATGCGCCCATTTCGTTTGGGACAGCGCTTCGGCGCTCGTTGATCATGACTTGACCTCA

AATCAGGTAGAC 

Fomitopsis-like sp.1 

Primer: ITS1F 

AACCTGCGGAAGGATCATTAATGAATTTTGAAAGGGGTTGTAGCTGGCCTTTTCGTTTGAGAGGCATT

TTTGTGCACACCCTGATCATCATCCATCTCACACCTGTGCACATCCTGTAGGTCGGTTTGTGAGGTGA

RGCCTTCATTGGCTTCGCTTTGTGGACCTTCCTATGTTTTAATTACAAACTACTAGTTTAAAGAATGT

CTCTGCGTTTAACGCATTTAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAA

CGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCT

TGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAATTCTCAACTCTGTTCRCTTT

TGTGGGTGGAGTTTGGACTTGGGGGACACTGCTGAATGCATTAGYGTTTGGCTCCCCTTAAATGCATT

AGCTCGAACCTTTGTGGATCAGCTTCGGTGTGATAATTGTCTACGCCGTTCTGTTGAAGCATAATTCT

ATGGGTTTCGGCTTCCAATTGTCCTTTGCTGGACAAATRTTTCTTTGACcTTTGAcCTCAGATCARGT

AGGATTACCCGCTGAACTTAGCATAT 

Ganoderma applanatum/adspersum 

Primer: ITS1F  

TGAACCTGCGGAAGGATCATTATCGAGTTTTGACTGGGTTGTAGCTGGCCTTCCGAGGCACGTGCACG

CCCTGCTCATCCACTCTACACCTGTGCACTTACTGTGGGTTTACGGGTCGCGAAACGGGCTCGTTTAT

TCGGGCTTGTGGAGCGCACTTGTTGCCTGCGTTTATCACAAACTCCATAAAGTATTAGAATGTGTATT

GCGATGTAACGCATCTATATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGC

AGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGC

GCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGAAATCTTCAACTTACAAGCTCTTTGC

GGGGTTTGTAGGCTTGGACTTGGAGGCTTGTCGGCCTTTAATGGTCGGCTCCTCTTAAATGCATTAGC

TTGATTTCCTTGCGGATCGGCTGTCGGTGTGATAATGTCTACTCCGCGACCGTGAAGCGTTTGGCAAG
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CTTCTAACCGTCTCGTTACAGAGACAGCTTTATGACCTCTGACCTCAAATCARGTAGGACTACCCGCT

GAACTTAAGC 

Ganodermataceae sp.1 

Primer: ITS1F  

GATCATTAACGAGTTTTGAAACGGGTTGTAGCTGGCCTTCCGAGGCATGTGCACGCCCTGCTCATCCA

CTCTACCCCTGTGCACTTACTGTAGGTTTCGAGTTTGATGAGTGTCGTCCGCGGCGCTTGGATTCTCG

GGGCTTACGTTTATTACAAACTATTTAAAGTATCAGAATGTGTATTGCGATATAACGCATCTATATAC

AACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGT

GAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGC

ATGCCTGTTTGAGTGTCATGAAATTCTCAACCTACAAGCCTTTGCGGGTTCTGTACGTGTTGGATTTG

GAGGATTATCATTGTCGGCGCAAGTCGGCTCCTCTCAAATGCATTAGCTTGATTCCTTGCGGATCGGC

TCTCGGTGTGATAATTGTCTACGCCGCGACCGTTGAAGCGTATTGGCAAGCTTACAATCGTCTCTAGA

GACAGCTTACTTTGACATCTG 

Gymnopilus allantopus 

Primer: ITS1F 

AACCTGCGGAAGGATCATTATTGAATAAACTTGATGTGGTTGTAGCTGACTCTCTCGAGAGTATGTGC

TCGCCCGTCATCTTTATCTTTCCACCTGTGCACTTCTTGTAGATTTGGATGTAGCTTTCCGAGGTAAC

TCGGTCGGGAGGAATGTCAACTCTTGTTGACTTTCCTTGTATGTCCAAGTCTATGTTTTTATATACTC

CAATGAATGTAACAGAATGTATCACTGGGCCTTGTGCCTATAAACTATATACAACTTTCAGCAACGGA

TCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAAGAATTCA

GTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTACCGAGGGGCATGCCTGTTCTGAG

TGTCATT 

Hymenochaetaceae sp.1 

Primers: ITS1F & ITS4 

GATCAtTACTGAGGTTACCCGGGGTGAGTTTGTTGGGTGCTTGCTGCTGGCGTTCTCTCAGAGCGCAT

GTGCACGGCTCCTCTTCTCGCCTTCGTTCCTTTTATCAACCCCCTGTGCACTACATAGGATTAGAGAG

AAGCGTGATGCTTTAAGTTAGATTAGCATTAACCTAGTAGTCGTGGGTCCGCGACCTTCGGCGAAAGG

GGAGTTCATTTTGATCGACGTCGCGTGGTACCTCGAAGTCCTTGATTATCACAAACCACTATATATGT

CTTGTCAGAATGATCAGTCCCTTGTTGGACGCTAAATATAATACAACTTTCAACAACGGATCTCTTGG

CTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCAT

CGAATCTTTGAACGCACCTTGCGCCCTTTGGTATTCCGAAGGGCACGCCTGTTTGAGTGTCATGTTCA

CCTCAATCCATCAGCTTTTGCGGCTGACTTGAATTGGATTTGGGAGCCTGCTGGGCCCTTCGTGGCTC

GGCTCTCCTTGAATGCATGAGTGAGCTTCTGGCTCGCGTTGCTGGTGTGATAGTCTTTCATCATTGGC

GACGCTTGCTTAATGGGCTTGCTTTCGAACCGTCTTTTCAACGGAGACAACTATTGACATATTTGACC

TCAAATCAG 
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Hymenochaetaceae sp.2 

Primers: ITS1F & ITS4 

GAACCTGCGGAAGGATCATTACTGAGGTTACCGGGGGTGGGCTGCTCGAGTGGCTTAGTGCTGGCGCC

CTAGGCGCATGTGCACGGCTCTCCTTCTCACCTTCGTTCCTTCTATCAACCCCTGTGCACTATATTAG

GATTAGAGAGAAGCGCGTCGTTTCAGGGATTAACGTAGTAGTTGTGGGTCCGCCCGTGGCAAAAGGTT

AATCTGTGATCGGCGACGCGTGGTACCTCGAAGTCCTTAATTACAAACCACAATACATGTCTTGTCAG

AATGTTCAGTCCCTCGTTGGACGCTAAATACAATACAACTTTCAACAACGGATCTCTTGGCTCTCGCA

TCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTT

TGAACGCACCTTGCGCCCTTTGGTATTCCGAAGGGCACACCTGTTTGAGTGTCATTTTCACCTCAATC

CATCAGCTTTGCGGCTTGACTGGGTTGGATTTGGGAGGTTCTGCTGGTTCCTTAACGGGGTTCGGCTC

TCCTTGAATGCATGAGTGGGCATCTAGCTCGCACTGCCGGTGTGATAGTTTTTCATCAT 

Hypholoma-like sp.1 

Primer: ITS1F 

CCTGCGGAAGGATCATTATTGAATAAACCTGGCTTGCGTTGCTGCTGGTCTTTTCGAAGGCATGTGCA

CACCTTGTTCATCTTTATATCTCCACCTGTGCACCTTTTGTATGACCTGGATTGCAACTTTCCGAGGC

AACTCGGTTGTGAGGAATTGCTTAATCAGTCTTTCCTTGTTATGTTTCCAGGGCTATGTTTTCATATA

CACCCTACGAATGTAACAGAATGTCATTATTAGGCTTAATTGCCTTATAAACTATATACAACTTTCAG

CAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGTAAATGCGATAAGTAATGTGAATTGCA

GAATTCAGTGAATCATCCAATCTTTAGAACTGCATCCTTGCGCTCCTTGGTATTCCGAGGAGCATGCC

TGTTTGAGTGTCATTAAAATTC 

Hypholoma-like sp.2 

Primer: ITS1F 

AACCTGCGGAAGGATCATTATTGAATAAACCTGGCTTGGTTGCTGCTGGTCTTTTCGAAGGCATGTGC

ACACCTTGTCATCTTTATATCTCCACCTGTGCACCTTTTGTAGACCTGGATTCAACTTTCCGAGGCAA

CTCGGTTGTGAGGAATTGCTTAACAGCTTTCCTTGTTAGTTTCCAGGGCTATGTTTTCATATACACCC

TACGAATGTAACAGAATGTCATTATTAGGCTTAATTGCCTTATAAACTATATACAACTTTCAGCAACG

GATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTC

AGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGT

GTCATTAAATTCTCAACCTTTATTAGCTTTTTGGTTAGTAAATGGATTGGAAGTGGGGGTATGTTGGT

TTCTTTATTGAAATGAACTCCCCTGAAATGCATTAGCTGGTTGCCTTGTGCAAACATGTCTATTGGTG

TGATAATTATCTACGCCGTGGACTATTTGCCGTTTATAGCACTGCTTATAATCGTCTG 

Hypholoma fasciculare 

Primers: ITS1F & ITS4 

AACCTGCGGAAGGATCATTATTGAATAAATCTGGCTTGGTTGATGCTGGTCTTTTCGAAGACATGTGC

ACACCTGGTCATCTTTATATCTCCACCTGTGCACCTTTTGTAGACCTGGATTCAACTTTCCGAGGAAA

CTCGGTTGTGAGGAGTTGCTTAATAGGCTTTCCTTGTTCGTTTCCAGGGCTATGTTTTCATATACACY
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TTACGAATGTAACAGAATGTCATTATTAGGCTTAATTGCCTTATAAACTATATACAACTTTCAGCAAC

GGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATT

CAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAG

TGTCATTAAATTCTCAACCTTTATTAACTTTTTGGTTAGTAAGTGGATTGGAAGTGGGGGCATGTTGG

TTTCTTCATTGAAATAAACTCCCCTGAAATGCATTAGCTGGTTGCCTTGTGCAAACATGTCTATTGGT

GTGATAATTATCTACGCCGTGGGCTACTTGCCGTTTATAGCACTGCTTATAATCGTCTGTTCATTCAG

A 

Hypocrea pachybasioides 

Primer: ITS1F 

TGTTGCCTCGGCGGGGAATTTATTCTTGCCCCGGGCGCGTCGCAGCCCCGGACCAAGGCGCCCGCCGG

AGGACCAACCAAAACTCTTTTGTATGTCCCCTCGCGGACTTTTATAATTCTGAACCATCTCGGCGCCC

CTAGCGGGCGTTTCGAAAATGAATCGAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAG

AACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCAC

ATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGG

GGGTACGGCGTTGGGGATCGGCCCTT 

Metarhizium flavoviride 

Primer: ITS1F 

GTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCCTGTGAACTTATACCTTT

ACTGTTGCTTCGGCGGGTCCGCCCCGGAACAGGTTCGCGAGAGCCGCCCCGGAACCAGGCGCCCGCCG

GGGGACCAAAACTCTTGTATTTTTTATTTGCATGTCTGAGTGGAATCATATAAAATGAATCAAAACTT

TCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATT

GCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTACTCTGGCGGGCATGCC

TGTTCGAGCGTCATTTCAACCCTCAAGCCCCAGCGGTTTGGTGTTGGGGACCGGCGATGGCGCCTGCT

CCGGCAGGCGCGCGCCGCCCCCGAAATGAATTGGCGGTCTCGTCGCGGCCTCCTCTGCGTAGTAGCAC

AACCTCGCAACAGGAGCGCGGCGCGGCCACTGCCGTAAAACGCCCAACTTTTTTTTCAGA 

Nectria radicicola 

Primer: ITS1F 

GGTGAACCAGCGGAGGGATCATTACCGAGTTTACAACTCCCATAACTCCCTGTGAACATACCATTTAG

TATGCCTCGGCGGTGCCTGCTTCGGCAGCCCGCCAGAGGACCCAAACCCTTGTATTTTATACTAGTAT

CTTCTGAGTAAATGATTAATATAAATCAAAACTTTCAACAACGGATCTCTTGTGTTCTGGCATCGATG

AAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCTGAATCTTTGAAT

CGCACTATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCTAAGTC

CCCCGGGCTTGGTGTTGGAGATCGGCGTGCCCTCCGGGGCGCGCCTGGCTCCCAATATATAGTGGCGG

TCTCGCTGTAGCTTCCTCTGCGTAGTATGCACACCTCGACACTGGAAAAACACGCGTGGCCACGCC 

CG 
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Peniophora aurantiaca 

Primer: ITS1F 

GTAGGTGAACCTGCGGAAGGATCATTAGCGAAGCTCGGAATGCGTGTTCGGTCTGATGCTGCCCAGCG

ATGGGATGTGCTCGTCCGGATGCGTGTCCCTTCTCCGTTCCACCCCTTTGTGAACCAAGTGTGCGAGC

CGAAGAGAGATCGGAGGCTCGCATGCAACCCTTAACATACCCCAACGAAGTATCAGAATGTACCTTGC

GTTAACTCGCACAAATACAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCG

AAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCC

CTTGGCATTCCGAGGGGCACGCCTGTTTGAGTGTCGTGAACTCCTCCACCCTCCACCTTTTTCGGAAG

GCGTTGGGCTGGGATTTGGGAGCTTGCGGGTCCCTGGCCGATCCGCTCTCCTTGAATGCATTAGCGAA

GCCCTTGCGGCCTTGGTGTGATAGTCATCTACGCCTCGGTTTAGCGAAC 

Peniophora cinerea 

Primer: ITS1F 

AATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCC

TTGGCATTCCGAGGGGCACGCCTGTTTGAGTGTCGTGAACTCCTCCACCCTCCACCTTTTTCGGAAGG

CGTTGGGCTGGGATTTGGGAGCTTGCGGGTCCCTGGCCGATCCGCTCTCCTTGAATGCATTAGTGAAG

CCCTTGCGGCCTTGGTGTGATAGTCATCTACGCCTCGGTTTAGCGAACATACGGGCATCGCTTCCAAC

CGTCTCGTCAAGAGACAATCAC 

Phanerochaete sordida 

Primer: ITS1F 

GAACCTGCGGAAGGATCATTAACGAGTAACTGAACGGGTTGTAGCTGGCCTCTCGGGGCATGTGCACA

CCTGGCTCATCCACTCTTCAACCTCTGTGCACTTGTTGTAGGTCGGCGGAAGGGCGAGTCTCTTAAAA

ACAGGCTCGCTTGGAAGCCTTCCTATGTTTTACCACAAACGCTTCAGTTTAAGAATGTAACCTGCGTA

TAACGCATTTATATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAA

ATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCC

TGGTATTCCGGGGAGCATGCCTGTTTGAGTGTCATGGTATTCTCATCCTTCATAACTTTTTGTTATCG

AAGGCATGGACTTGGAGGTCGTGCTGGTTCCTCGTTGAATCGGCTCCTCTTAAATGTATTAGCGTGAG

TGTAACGGATCGCTTCGGTGTGATAATTATCTGCGCCGTGGTCGTGAAGTAACATAAGCTTGCGCTTC

TAACCGTCCTTAAGTTGGACAAATCACTTTGACATCTGAC 

Phialophora-like sp.1 

Primer: ITS1F 

ACAGAGTTCTAAAAGACTCCCAAAACCATTGTGAACGTACCCGTCAGCGTTGCCTCGGCGGGCGGCCC

CTCCCTGGGGCCGCTGCCTCCCTCGGGGGGTGCCCGCCGGCGTACCAAAACTATTTTGTATTTTAGTG

GCCTCTCTGAGAAAACAAGCAAATAAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGAT

GAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCGAATTCAGTGAATCATCGAATCTTTGAACG

CCCATTGCGCCCGCCAGTACTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCGCCCTCGNAGCCCTGC

TTGGTGTTGGGGTCCTACGGGCTGGC 
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Phlebia-like sp.1 

Primers: ITS1F & ITS4 

GAACCTGCGGAAGGATCATTATCGAGTTTTGAAACGGGTTGTAGCTGGTCTTCGATCGCGGAGGCATG

TGCACGCCTGACTCATCCACTCTCAAACCCCTGTGCACTTATTGTAGGCTCGGTGGGAGAGGCTGACT

TTCATCGGTCGGTTTCGAAAGCCTCGCCTATGTTCATCACATACGCTTCAGTTTAGAATGTAACGCTT

GCGCATGACGCAAATTAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGC

AGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGC

GCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCGTGAAATTCTCAACTTTCAAAACTTTTTT

GTTTCGAAAGCTTGGACTTGGAGGCCGTGTCGGTGCGTTTCGCGTCGACTCCTCTCAAATGCATTAGC

GTGAATCTTACGGATCGCCTTCGGTGTGATAATTACTGCGCCGTCGTCGTGAAGTATAACAGCGTTCG

CGCTTA 

Phlebia-like sp.2 

Primer: ITS1F  

ACCTGCGGAAGGATCATTATCKGAGTTTTGAAACGGGTTGTCGCTGGTCCCTGCAACATGGGACATGT

GCACGCCTGGCTCATCCACTCTTCAACCCCTGTGCACTTTTTGTAGGTTCAGGCCGGACGGGTCGACT

TTGTTGTCGGCTCGAAAGCGCTTGGCCTATGTTTTCTTACAAACGCTTCAGTCACAGAATGTAAAAAC

ATTGCGGATAACGCATTTTAAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAA

CGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCT

TGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAATTCTCAACCTTTGAAAGCTT

CTTCTTGAGGGTTTTTAAAGGCTTGGACTTGGAGGTCGTGTCGGCTTGCAAAGGTCGACTCCTCTGAA

ATGCATCAGTGTGAACCTTTACGGATCGCCTTCGGTGTGATAAATGTCTACGCCGTAGTCGTGAAGTA

TGATTGCGTTCGTGCT 

Polyporus gayanus 

Primer: ITS1F 

ATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCT

TTGAACGCACCTTGCGCCCTCTGGTATTCCGGAGGGCATGCCTGTTTGAGTGTCAGTAAATTCTCAAC

CTCTCATGCTTTGTTGGCATTGAGTGGATTGGATATGGAGGCTTGCTGGATTTTATTCAGCTCCTCTA

AAATATATTAGCAGAAACCATTGCTAAGGTTTACTGCAGCCGTGTGATAATTATCTTACGGTTGAAGT

AAATGTTTAGTTTGTCTCACATTTGGTTTGAAGAGATGCTTTTCGTAAGCTCCCTTTGCTTTTCTCTC

TTCGGAGTGATACTTATCCAAGTGTAGATTTTAATGGGTCTTATTCAGCTTCTAATCATCTGGAAACA

GATAATACTTGACCATTTGGCCTCAAATCAGGTA 

Postia pelliculosa 

Primer: ITS1F  

GAACCTGCGGAAGGATCATTATCGAACCTTTGAAGGAGCTGTTTGCTGGCCCTTGACCCGGGGCATGT

GCACGCTCCATTCAAACTCCAACCTCTTCATACCCCTGTGCATCGTTTGTAGGGTGGCGTCGGTCGAA

AGGCCGGTGCGCTCTATGTCCATTGTAAACTCTTGTATGTATGGAATGTTCAATGCGCATGACGCATC
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TTCAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATA

AGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTC

CGAGGAGCATGCCTGTTTGAGTGTCATGGAACCATCAACTCTTACTTCTTTTCTCAAGGAAGTGAGGG

CTTGGACTTGGAGGCTTGTGCTGGCTCTGTTTTGTGGGTCCGGCTCCTCTTGAATGCATTAGCTTGAA

CCTTCTGCTGTATCGGCTGTTCGGTGTGATAGTTATCTATGCCGTGGCTGTGAGGCT 

Postia-like sp.3 

Primers: ITS1F & ITS4 

AACCTGCGGAAGGATCATTATTGAATCTTTGAAGGGTGAGCTGTTTGCTGGCCTCTTGCAGGCATGTG

CACGCYCCCTTCAAAATCCAACCTTCTATACACCTGTGCACTGTTTGTAGGGTCGCGGTCGAAAGGCT

CGCGCTCCTATGTTCATCATAAACCCTGTAGTACGTGAGGAATGTCATTGCGTGTAACGCATCTTTAT

ACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAAT

GTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGA

GCATGCCTGTTTGAGTGTCGTGGAACCCTCAACTCTTGTCTTTTCTTTGCTTTGCTGAAGGGATGAGG

GCTTGGACTTGGAGGCTTTTGCTGGCTCCTCTGTGATGTCGGCTCCTCTTGAATGCATTAGCTTGAAC

CTCTGCTGTATCGGCTGTTCGGTGTGATAATTGTCTACGCCGTGGCTGTGAAGCTTCTGAATATGGGG

CTTGGCTTCCAACTGTCTCTTGGAC 

Postia-like sp.4 

Primers: ITS1F & ITS4 

AGCTGTTTAGCTGGCCCTTGGACGGGGCATGTGCACGCTTCGTTGTCAAATCTCCAACCTCTTCATAC

CCCTGTGCATCTTTTGTAGGGTCGCATCGGTCGAAAGGCCGGTGTGCTCTATGTCATATCACAAACTC

TTGTATGTGTAGAATGTTCAATGCGCACGACGCATCTTTATACAACTTTCAGCAACGGATCTCTTGGC

TCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATCCAGTGAATCATC

GAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAATC

ATCAACTCTTATTCTTTCTATTGAAGGAACGAGGGCTTGGACTTGGAGGCTCATGCTGGCCCCGTTGG

GGTCGGCTCCTCTTGAATGCATTAGCTTGAACCTTCTGCTGTATCGGCTGTTCGGTGTGATAATTATC

TACGCCGTGGCTGTGAGGCTTTAAACTGGTGGGCTCAGCTTCTCAACCGTCCTTTCGAACGAGGACTA

CCCGCAAAGGGTACCATTGACCTCTGA 

Postia-like sp.5 

Primers: ITS1F & ITS4  

ACCTGCGGAAGGATCATTATTGAATTTTTGAAGGAGCTGTTTGCTGGCCCTTGGACGGGGCATGTGCA

CGCTTCGTTTCAAATCTCCAACCTTCTTCATACCCCTGTGCATCTTTTGTAGGGTCGTGTCGGTCGAA

AGGCCGGTGCGCTCTATGTCATATCATAAACTCTCGTATGTGTAGAATGTTCAATGCGCACGACGCAT

CTTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATA

AGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTC

CGAGGAGCATGCCTGTTTGAGTGTCATGGAATCATCAACTCTTGTTTTTTTCTATCGAAGGAATGAGG

GCTTGGACTTGGAGGCTCGTGCTGGCCCTGTTTGGGGTCAGCTCCTCTTGAATGCATTAGCTTGAACC

TTCTGCTGTATCGGCTGCTCGGTGTGATAATTATCTACGCCGTGGCTGTGAGGCTTTGAAACTCGTGG
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GCTCAGCTTCTAACTGTCCTTTTGAACGARGACTACCTGCGAAGGTACCATTGACCTCTGACCTCAAA

TCAGGTAGGA 

Postia-like sp.6 

Primers: ITS1F & ITS4 

TAGGTGAACCTGCGGAAGGATCATTATCGAACCTTTGAAGGAGCTGTTTGCTGGCCCTTGACCCGGGG

CATGTGCACGCTCCATTCAAACTCCAACCTCTTCATACCCCTGTGCATCGTTTGTAGGGTGGCGTCGG

TCGAAAGGCCGGTGCGCTCTATGTCCATTGTAAACTCTTGTATGTATGGAATGTTCAATGCGCATGAC

GCATCTTCAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATG

CGATAAGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGG

TATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAACCATCAACTCTTACTTCTTTTCTCAAGGAAGT

GAGGGCTTGGACTTGGAGGCTTGTGCTGGCTCTGTTTTGTGGGTGCTGCTGCTCTTGCATGCATGCAT

TAAACTTGAAACCTTCTGCTGTATCGGCTGTTCGGTGTGATAGTTATCTATGCCGTGGCTGTGAGGCT

T 

Postia-like sp.7 

Primer: ITS1F 

GTAGGTGAACCTGCGGAAGGATGCATTATGCGAACCTTTGAAGGAGCTGTTTGCTGGCCCTTGACCCG

GGGCATGGTGCACGCTCCATTCAAACTCCAACCTCTTCATACCCCTGTGCATCGTTTGTAGGGTGGCA

TCGGTCGAAAGGCCGGTGCGCTCTATGTCCATTGTAAACTCTTGTATGTATGGAATGTTCAATGCGCA

TGACGCATCTTCAATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGA

AATGCGATAAGTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCC

TTGGTATTCCGAGGAGCATGCCTGTTTGAGTGTCATGGAACCATCAACTCTTACTTCTTTTCTCAAGG

AAGTGAGGGCTTGGACTTGGAGGCTTGTGCTGGCTCTGTTTTGTGGGTCCGGCTCCTCTTGAATGCAT

TAGCTTGAACCTTCTGCTGTATCGGCTGTTCGGTGTGATAGTTATCTATGCCGTGGCTGTGAGGCTTC

AAACTTGTGGGGGCTCAGCTTCTAACCGTCC 

Postia-like sp.8 

Primer: ITS1F  

CCTGCGGAAGGATCATTATTGAATTTTTGAAGGAGCTGTTTGCTGGCCCTTGGACAGGGCATGTGCAC

GCTTCGTTTCAAATCTCCAACCTTCTTCATACCCCTGTGCATCTTTTGTAGGGTCGTGTCGGTCGAAA

GGCCGGTGCGCTCTATGTCATATCATAAACTCTCGTATGTGTAGAATGTTCAATGCGCACGACGCATC

TTTATACAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAA

GTAATGTGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCC

GAGGAGCATGCCTGTTTGAGTGTCATGGAATCATCAACTCTTATTTTTTTCTATCGAAGGAATGAGGG

CTTGGACTTGGAGGCTCGTGCTGGCCCTGTTTGGGGTCAGCTCCTCTTGAATGCATTAGCTTGAACCT

TCTGCTGTA 
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Postia-like sp.9 

Primer: ITS1F  

CCTGCGGAAGGATCATTATCGAATCTTTGAAGGAGCTGTTTGCTGGCCCTTGGACGGGGCATGTGCAC

GCTTCGCTCAAATCCTCCATTCATACCCCTGTGCATCGTTTGTAGGGTCGCGTCGGTCGAGAGGCCGC

ACGCGCTCTATGTCTATCATAAACTCTTGTATGTGTAGAATGTTCAATGCGTCCGACGCATCTTTATA

CAACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG

TGAATTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAG

CATGCCTGTTTGAGTGTCATGGAATCATCAACTCTTTGTTTCTTTTTCGAGAGAAACCGAGAGCTTGG

ACTTGGAGGCTTGTGCTGGCTCTGTTTTTATGGGGTCGGCTCCTCTTGAATGCATTAGCTTGAACCTT

CTGCTGTATCGGCTGTTCGGTGTGATAATTATCTACGCCGTGGCTGTGAGGCTTTAAATCTGTGGGCT

CAGCTTCTAACCGTCCTTTGAACGAGGACTGCCGTGTAAAGGTATC 

Postia-like sp.10 

Primer: ITS1F 

TCATTATTTCGAACCTTTGAAGGAGCTGTTTAGCTGGCCCTTGACCCGGGGCATGTGCACGCTCCTAT

TCAAACTCCAACCTCTTCATACCCCTGTGCATCGTTTGTAGGGTGGTGTCGGTCGAAAGGCCGGTGCG

CTCTATGTTCATTGTAAACTCTTGTATGTATGGAATGTTCAATGCGCATGACGCATCTTCAATACAAC

TTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAA

TTGCAGAATCCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATG

CCTGTTTGAGTGTCATGGAACCATCAACTCTTACTTCTTTTCTCAAGGAAAGTGAGGGCTTGGACTTG

GAGGCTTGTGCTGGCTCTGTTTTGTGGG 

Psathyrella-like sp.1 

Primer: ITS1F 

GTAGGTGAACCTGCGGAAGGATCATTAATGAAATAACTATGGCGTTGGTTGTAGCTGGCTTCTAGGAG

CATGTGCACACCCGTCATTCTTATCTTTCCACCTGTGCACTTAATGTAGATCTGGATAACCCTCGCTC

ACACCGAGCGGATACAGAGATTGCCGTGTCGCAAGGCCGGCTCTCTTTGAATTTCCAGGTCTATGTAC

CTTTACAAACCCCAATTGTATGATAATGAATGTAGTCAATGGGCTTTCAAGCCTATAAAACAAAATAC

AACTTTCAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGT

GAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGC

ATGCCTGTTTGAGTGTCATTAAATTCTCAACTTCATCAGTTTTGTTATGGAACTGTGTGAAGCTTGGA

TGTGGGGGTTTATGCAGAACGCGTAACAGCTGTCTGCTCCCCTGAAATGAATTAGCGAGTTCAAACTG

GGCTCCGTCTATTGGTGTGATAATTATCTACGCC 

Steccherinum-like sp.1 

Primer: ITS1F 

AACCTGCGGAAGGATCATTAATGAATGAAATTGAGTGGGGTTGTAGCTGGCCTTTTACCGGGCATGTG

CACACCGTCATTGCAACCACCTTCTATACCTCTGTGCACTTGCTCATGAGTTGGACCGCGTCTGAAAT

ACGACAGGAGTCCGGCTCATGTGCTTTATACATAACAAATTATGTTCATATGAATGTCATTACCATGC
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TTTAAAGCATATAATACAACTTTCAACAACGGATCTCTTGAGCTCTCGCATCGATGAAGAACGCAGCG

AAATGCGTATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCT

CCTTGGTATTCCGAGGAGCATGCTTGTTTGAGTGTCATGGTCTTCTCAACCCTTCTGTCTTTTTTGTT

AAAGGCAGCTGGGCTTGGACTTGGAGGTCTTGCCGGCGTCCGAATTTGTAATTCAGAAGTCGGCTCCT

CTGAAATGCATTAGCTTGAATAGAACCAAGCATGATTCAGCGTGATAATTG 

Stereum-like sp.1 

Primer: ITS1F 

CCGTAGGTGAACCTGCGGAAGGATCATTAATGAAAATTATGACTGGAGTTGTAGACTGGCCTTTAAAA

ACGGCATGTGCACGCTCCTTTCACAATCCACACACACCTGTGCACCTTCGCGGGGGTCTCTCTGATCG

ACCTTCTGGTCTTTTGGAGAGGCTCGCGTCCCTTTACACACCCTTTGTATGTCTTAAGAATGTCTACT

CGATGTAATAAAAAACGCATCTAATACAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAG

AACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCAC

CTTGCGCCCTTTGGTATTCCGAAGGGCACACCTGTTTGAGTGTCGTGAAATTCTCAACCCTCTTCACT

TTCGTGAACGTAGGGATTGGACTTGGAGGCTTTGCCGGGCGGGCTTCACCGCTCGGCTCCTCTCAAAT

GCATTAGTGCGTCTTGTTGCGACGTGCGCCTCGGTGTGATAATTATCTACGCTGTGGTGCGCTGCTTC

TGTGGAGACGCG 

Trametes ochracea 

Primer: ITS1F 

TGCGGAAGGATCATTAACGAGTTTTGAAACGAGTTGTAGCTGGCCTTCCGAGGCATGTGCACGCTCTG

CTCATCCACTCTACCCCTGTGCACTTACTGTAGGTTGGCGTGGGCTCCTTAACGGGAGCATTCTGCCG

GCCTATGTATACTACAAACACTTTAAAGTATCAGAATGTAAACGCGTCTAACGCATCTATAATACAAC

TTTTAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAA

TTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAGCATG

CCTGTTTGAGTGTCATGGAATTCTCAACTTATAAATCCTTGTGATCTATAAGCTTGGACTTGGAGGCT

TGCTGGCCCTCGTTGGTCGGCTCCTCTTGAATGCATTAGCTCGATTCCGTACGGATCGGCTCTCAGTG

TGATAATTGTCTACGCTGTGACCGTGAAGTGTTTTGGCGAGCTTCTAACCGTCCATTAGGACAA 

Trametes versicolor 

Primer: ITS1F 

AACCTGCGGAAGGATCATTAACGAGTTTTGAAACGAGTTGTAGCTGGCCTTCCGAGGCATGTGCACGC

TCTGCTCATCCACTCTACCCCTGTGCACTTACTGTAGGTTGGCGTGGGCTCCTTAACGGGAGCATYCT

GCCGGCCTATGTATACTACAAACACTTTAAAGTATCAGAATGTAAACGCGTCTAACGCATCTATAATA

CAACTTTTAGCAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG

TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTATTCCGAGGAG

CATGCCTGTTTGAGTGTCATGGAATTCTCAACTTATAAATCCTTGTGATCTATAAGCTTGGACTTGGA

GGCTTGCTGGCCCTTGCGGTCGGCTCCTCTTGAATGCATTAGCTCGATTCCGTACGGATCGGCTCTCA

GTGTGATAATTGTCTACGCTGTGACCGTGAAGTGTTTTGGTGAGCTTCTAACCGTCCATTAGGACAAT

TTTTAACATCTGACCTCA 
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Typhula-like sp.1 

Primer: ITS1F 

AACCTGCGGAAGGATCATTAACGAATTCAAACCTGGGTTGTAGCTGGCCTCTCGAGGCACGTGCACAC

CCTCGTCCTAGATTCATCCCTGTGCACCCTCTGTAGGCCGGATTCGTTTCTGGCCTATGTCTTCACAC

ACCCTTTAGAAATACCGTGAACGTCTTGCGCAGCTCGACCTTAAACAAGTCGGGCTCGATATCGTACA

ACTTTTAGCAATGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAATTGCGATATGTAATGTG

AATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCTTTGGTATTCCGAAGGGCA

TGCCTGTTTGAGTGTCATTAAATCATCAACTCCAATCGATTCGTTTCGGGCCGTTGGAGCTTGGACTT

TGAGGGTGTGCTGGCGCGAACGTCTCGCGT 

Xylaria sp.1 

Primer: ITS1F 

TTGGTGAACCAGCGGAGGGATCATTAAAGAGTTATTACAACTCCCAAACCCATGTGAATATACCTTCT

GTTGCCTCGGCAGGTCGCACCTACCCCGTAAGGTCTTACCCTGTAAGACACTACCCGGTAGACGCGGG

TACCCCTGCCGATGGCCCATGAAACTCTGTTTAGTATGTTATTCTGAACCTATAACTAAATATGTTAA

AACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGT

GAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGC

ATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCCCTGTTGCTTAGTGTTGGGAGCCTACAGCCTTTG

TAGCTCCTCAAAGTTAGTGGCGGAGTCGGTTCACACTCTAGGACGTAGTAAACTTTATTCTCGTCTGT

AGTTGCGCCGGTCCCTTGCCGTAA 

Xylariaceae sp.1 

Primer: ITS1F  

AGTGTAATAACTCCACAAACCCATGTTGAACATACCTCATGTTGCCTCGGCAGGTCTGCGCCTACCCC

GCAGACCCCTACCCTGTAGGGCCTACCCGGAAGGCGCGGGTAACCCTGCCGGCGGCCCACGAAACTCT

GTTTAGTATTGAATTCTGAACCTATAACTAAATAAGTTAAAACTTTCAACAACGGATCTCTTGGTTCT

GGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAA

TCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCT

TAAGCCCCTGTTGCTTAGCGTTGGGAGCCTACAGCACTGTAGCTCCCCAAAGTTAGTGGCGGAGTCGG

CTCACACTCTAGACGTAGTAAATCTTTCACCTCGTCTGTAGTTGGACCGGTCCCCTGCCG 
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