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Abstract 

Hydrogen sulphide (H2S), an important physiological gaso-neurotransmitter involved in 

neuronal long-term potentiation, is a mediator of cerebral ischemic injury. Previous study 

has identified H2S neuropathological implication in aggravation of ionotropic glutamate 

receptors (iGluRs) -induced excitotoxicity injury. Excitotoxicity is one of the earliest 

events in stroke, a leading cause of adult permanent disability globally. Despite extensive 

efforts to deduce effective therapeutic interventions, the only clinically approved stroke 

treatment yields limited efficacy and potential risk to intracranial hemorrhage. The 

purpose of my project is to formulate screening platforms and define potential 

manipulative targets for stroke intervention via comparative global transcriptional 

profiling of in vitro and in vivo models. This facilitates identification of common 

mechanistic pathways governing ischemic progression.  

 

Cultured primary cortical neurons treated with selective iGluRs agonists were used as in 

vitro cerebral ischemia representations. Comparative microarray analysis revealed 

occurrence of inflammation, oxidative stress and particularly cell cycle re-activation 

during excitotoxicity. Since cerebral ischemia does not limit at excitotoxicity but also 

involves critical focal hypoperfusion to a localized brain region causing oxygen-glucose 

deprivation that leads to further complications (e.g. microvascular injury, blood-brain 

barrier impairment and post-ischemic inflammation), microarray analysis was performed 

on in vivo cerebral ischemia rodent models (hypoxic ischemia, transient and permanent 

focal ischemia). Again, oxidative stress and neuroinflammation were confirmed as 

primary events. Transient cerebral ischemia induces a secondary damage called 



 

 
 

ischemia/reperfusion (I/R) injury, mediated by release of oxidative stressors into the 

bloodstream upon perfusion to the occluded artery. In order to accentuate the significance 

of oxidative stress during I/R injury, transgenic glutathione peroxidase-1 (a major 

antioxidant enzyme)-knockout mice were subjected to transient middle cerebral artery 

occlusion with observed downplay of Nrf2 (a cytoprotective transcription factor)-

mediated anti-oxidative response, ubiquitin-proteasomal dysfunction and recruitment of 

additional cell death pathways mediated by p53 and Fas ligand.  

 

As observed in the in vitro models, cell cycle re-activation is a major upstream signaling 

pathway in neuronal injury mediation, and in particular a group of cell cycle protein 

kinases known as aurora kinases (AURKs), has been identified to be up-regulated for the 

first time in stroke. A selective AURKs inhibitor was applied to permanent focal 

ischemia model to determine if cell cycle impediment could abrogate ischemic 

progression. Unprecedentedly, AURKs inhibition successfully attenuated infarct damage 

via down-regulation of the neuroinflammation particularly the chemokine signaling 

pathway. Overall, my research facilitates a tremendous step in understanding stroke 

pathogenesis and identified a novel target which manipulation has achieved promising 

therapeutic efficacy. 
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1.1 L-glutamate (Glu): A crucial excitatory neurotransmitter in the mammalian 

brain 

Glu is the major excitatory neurotransmitter in the mammalian central nervous system 

(CNS). It is involved in the stimulation of specific receptors resulting in regulation of 

basal excitatory synaptic transmission and numerous forms of synaptic plasticity such as 

long-term potentiation (LTP) and long-term depression, which are believed to underlie 

learning and memory. Glutaminergic pathways are widespread throughout the brain 

accounting for synaptic transmission in approximately half of the synapses in the 

forebrain (McDonald and Johnston, 1990). Upon secretion from the presynaptic 

membranes, Glu attaches to both ionotropic and metabotropic receptors to mediate fast, 

slow, and persistent physiological effects on synaptic transmission and integrity. Under 

physio-pathological settings over-expression or hyper-activation of Glu receptors (GluRs) 

can result in neuronal injury and a variety of neurologic disorders (e.g. stroke, epilepsy, 

Alzheimer‘s disease (AD), amyotrophic lateral sclerosis (ALS)) (Simeone et al., 2004). 

 

1.2 Mechanistic action of Glu via Glu receptors (GluRs) 

GluRs are a superfamily of receptors that are activated upon Glu application and divided 

into two broad categories: ionotropic and metabotropic, with the former comprising N-

methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) and kainate (KA) subtypes based on their intrinsic ligand-gated ion channel 

activity that allows passage of Na+ and Ca2+ ions through a pore, and the latter being G-

protein coupled receptors and are further subdivided. The former are so named upon their 

high affinity to the respective synthetic agonists that specifically activate each subtype. 
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Metabotropic GluRs (mGluRs), on the other hand, are themselves not ionophores but are 

G protein-coupled receptors that trans-activate secondary messenger enzymes, conveying 

signals that can regulate a variety of cellular activities, including phosphorylation of 

voltage-gated and ligand-gated ion channels and gene transcription. Activities of these 

receptors are predominantly linked to CNS and each serves a distinct function. 

 

1.2.1 Ionotopic GluRs (iGluRs) 

1.2.1.1 N-methyl-D-aspartate receptors (NMDARs) 

1.2.1.1.1 Structure and distribution of NMDARs 

Functional NMDARs require the typical hetero-tetrameric assembly of both NR1, and 

NR2 subunits (occasionally NR3A-B subunits), which comprise any one of the four 

separate gene products (NR2A-D). The essentiality for the expression of both subunits 

arises from the formation of the Glu-binding domain at the junction of NR1 and NR2 

subunits. Full activation of the NMDARs is achieved by the binding of Glu and glycine, a 

co-agonist binding on a site on the NR1 subunit. The glycine usually potentiates the Glu 

response by lowering the magnitude of desensitization of NMDARs (Aoshima et al., 

1992; Chen et al., 1997; Mayer et al., 1989). In addition, the receptor complex also 

possesses binding sites for a variety of endogenous modulators, such as polyamines, zinc, 

and protons. The binding site for polyamines on the NR2 subunit is responsible for the 

regulation of the activity of NMDARs. NMDARs are permeable to influx of Na+ and 

Ca2+ and efflux of K+ ions (Simeone et al., 2004). NMDARs are intrinsically inhibited by 

Mg2+ binding-induced voltage-dependent block within the channel pore which can be 

alleviated by depolarization (MacDermott et al., 1986). 
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Each subunit comprises of a large extracellular NH 2-terminal; four transmembrane 

domains (M1-M4), of which the M2 segment forms a reentrant loop surrounding the 

pore; and an intracellular C-terminal (Kutsuwada et al., 1992).  Although NR1 and NR2 

share similar basic structure, they showed only ~ 20% homology to each other. A major 

distinguishing component of subunit identity is based on the observation that the NR2 

subunits possess large intracellular C-terminal domains with various regions of conserved 

sequences. However as abovementioned, the four NR2 isoforms share considerable 

homology. NR2A, NR2B, and NR2C are 55% to 70% homologous (Monyer et al., 1992). 

Similarly, the NR3A and NR3B subunits shared - 50% sequence homology but have only 

~27% and ~20% identity respectively with other NMDARs subunits (Chatterton et al., 

2002; Ciabarra et al., 1995; Nishi et al., 2001; Sucher et al., 1995).  The molecular 

biology of the NR1 subunit is significantly more complicated than that of the NR2 

subunit. There are eight different NR1 subunit isoforms coming from the alternative 

splicing of three different exons: exon 5 in the N-terminus and the adjacent exons 21 and 

22 in the C-terminus (Durand et al., 1993; Hollmann et al., 1993; Sugihara et al., 1992). 

 

With the possible heteromeric combinations of NMDARs, it would not be difficult to 

deduce that the functional and pharmacological properties of NMDARs are governed by 

the NR1 and NR2 splice variants (Feldmeyer and Cull-Candy, 1996; Momiyama et al., 

1996; Rumbaugh et al., 2000; Stern et al., 1992; Vicini et al., 1998), which determine Glu 

and glycine affinities (Buller and Monaghan, 1997; Ishii et al., 1993; Kutsuwada et al., 

1992; Matsui et al., 1995; Woodward et al., 1995a; Woodward et al., 1995b) and 

NMDARs sensitivity for exogenous inhibitory compounds (Donevan and McCabe, 2000; 
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White et al., 2000; Williams, 1993). This in turn provides variation of age-dependent and 

regionally specific differences in NMDARs function and pharmacology. 

 

NR1 subunit is expressed throughout all regions of the CNS (Danysz and Parsons, 1998). 

Accordingly, NR2A subunit is also ubiquitously distributed, with the highest expression 

level in the hippocampus, cerebral cortex, and cerebellar granule cells. NR2B subunit, on 

the other hand, is expressed selectively in the forebrain (cerebral cortex, hippocampus, 

thalamus, septum, caudate-putamen, and olfactory bulb) while the expression of the 

NR2C subunit is limited to cerebellar granule cells, with weak expression in the olfactory 

bulb and thalamus, and NR2D subunit is weakly expressed in the hippocampus, 

thalamus, brain stem, and olfactory bulb (Akazawa et al., 1994; Ishii et al., 1993; 

Kutsuwada et al., 1992; Meguro et al., 1992; Monyer et al., 1994; Moriyoshi et al., 1991; 

Watanabe et al., 1992; Watanabe et al., 1993a; Watanabe et al., 1993b; Watanabe et al., 

1994a; Watanabe et al., 1994b). Last of all, NR3A subunit is highly localized in the brain 

stem, hypothalamus, thalamus, CA1, and amygdala (Ciabarra and Sevarino, 1997) 

whereas the NR3B subunit exists predominantly in motoneurons (Chatterton et al., 2002; 

Nishi et al., 2001). 

  

Most NMDARs subtypes are distributed at glutaminergic synapses and concentrated at 

the center (Somogyi et al., 1998) or evenly distributed within the synaptic specialization 

(Clarke and Bolam, 1998). NMDA subtype of iGluRs is the principal mediator of Glu 

trophic activity (Balazs et al., 1988). NMDARs are permanently anchored on the plasma 

membrane. Activation of NMDARs has been demonstrated to exert survival-death 
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continuum effect with increasing concentrations of Glu (Cheung et al., 1998). It is 

suggested that this is a consequence of differential recruitment of diverse NMDARs 

subtypes stimulated by moderate and high doses of Glu respectively (Hardingham and 

Bading, 2002). This is observed in cortical neurons where NMDARs that contained the 

NR2A suppressed staurosporine-induced apoptosis, whereas those that comprised of the 

NR2B subunit led to excitotoxic cell death (Hardingham and Bading, 2002). However, a 

recent study by (Habas et al., 2006) demonstrated neuroprotection offered by NR2B 

against phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. As such, the 

significance of the relative ratio of NR2A to NR2B and their individual functions remain 

yet to be elucidated and may prove to be vital to the cell fate at any one time. 

 

1.2.1.1.2 Physiological roles of NMDARs 

In the past, it was perceived that NMDARs contributed less to basal synaptic 

transmission than AMPARs due to its voltage-dependent block by Mg2+ even though the 

NMDARs have an affinity for Glu that is - 500 times higher than that of AMPARs (Deisz 

et al., 1991; Patneau and Mayer, 1990). However, upon sufficient stimuli (e.g. intense 

activation of AMPARs and KARs) causing membrane depolarization, NMDARs can 

contribute significantly to synaptic transmission (Mayer and Westbrook, 1984; Mayer et 

al., 1984; Nowak et al., 1984). As such, NMDARs slower gating kinetics relative to 

AMPARs and KARs hold them accountable for the slow component of excitatory post-

synaptic potentials (Lester et al., 1990). 

 

NMDARs act as ―plasticity gates‖ by enabling cells to possess an enhanced ability to 
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undergo plastic changes due to prolonged currents as a result of higher Ca2+ influx (Fox 

et al., 1999). The induction of LTP results in a delayed and transient increase in NR1 and 

NR2B subunit expression (Thomas et al., 1996; Thomas et al., 1994). Functional 

importance of NMDARs is highlighted by its involvement in cell migration, neuritic 

outgrowth, and neuronal survival [for a review, see (McDonald et al., 1990) and 

(Vallano, 1998)]. This is underscored by transgenic knockout and mutated mice studies 

where NR1-/- mice completely devoid of functional NMDARs or carrying a single-point 

mutation at Aspargine 598 in the M2 segment of the NR1 subunit (an amino acid as a 

critical determinant of the ion selectivity of the channel) have reduced NMDARs-

mediated Ca2+ permeability and Mg2+ block and showed embryonic lethality (Forrest et 

al., 1994; Single et al., 2000). Death of these transgenic mice at P0 emphasizes the 

criticality of Ca2+ permeability of NMDARs in mammalian development [for further 

review, see (Sprengel and Single, 1999)]. However, upon ectopic expression of a 

transgene encoding a NR1 splice variant, NR1-/- mice survival is restored (Iwasato et al., 

1997). 

 

Initial reports demonstrated that basal or moderate activation of NMDARs offers 

neuroprotection in cultured cerebellar granule neurons (CGN). Exogenously administered 

NMDA inhibits death of CGN upon exposure to suboptimal KCl concentration media 

(Balazs et al., 1988), and pretreatment with NMDA further enhance protection against 

Glu-mediated excitotoxic neuronal death (Marini et al., 1998). 
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Modest NMDARs activation also promotes neuronal survival in the forebrain neurons. 

Application of exogenous NMDA attenuates neuronal death induced by staurosporine 

(Hardingham and Bading, 2002) or ethanol (Takadera and Ohyashiki, 2004)  in cortical 

neurons. On the other hand, addition of antagonists of NMDARs trigger apoptosis in 

cultured rat primary cortical neurons (Takadera et al., 1999) and aggravates death 

induced by serum withdrawal (Hetman et al., 2000)  or by a DNA-damaging agent, 

cisplatin (Gozdz et al., 2003). Induction of apoptosis in hippocampal, thalamic and 

cortical neurons in vivo is also seen in rats of post-natal day 7 and 8 upon blockade of 

NMDARs (Ikonomidou et al., 1999). These suggest that homeostatic activation of 

NMDARs is vital for neuronal survival and proliferation. 

 

1.2.1.1.3  NMDARs association with CNS diseases 

NMDARs playing a major role in the mediation of massive Ca2+ influx upon GluRs over-

stimulation since it displays the highest Ca2+ permeability (Hara and Snyder, 2007). 

Excessive NMDARs activation induces Ca2+ influx and Ca2+ release from intracellular 

stores resulting in the activation of cytoplasmic proteases such as Ca2+-dependent 

cysteine proteases [calpains; (Simpkins et al., 2003)] which hydrolyze cytoskeletal and 

other cellular proteins [e.g. alpha-fodrin; (Posner et al., 1995; Siman et al., 1989)]. 

NMDARs activation can also result in the destabilization of lysosomes and release of 

lysosomal proteases [cathepsins; (Graber et al., 2004; Tenneti et al., 1998)] resulting in 

cell death. Similarly, NMDARs activation also induces caspase-3 activation and 

apoptosis (Graber et al., 2004; Tenneti et al., 1998). Not surprisingly, over-stimulation of 

the NMDARs by Glu is implicated in neurodegenerative disorders including AD  
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(Doraiswamy, 2003a; Doraiswamy, 2003b; Hynd et al., 2004a; Hynd et al., 2004b), 

dementia associated with Down syndrome (Scheuer et al., 1996) and ischemic and 

traumatic brain injury (Arundine and Tymianski, 2004). Similarly, calpain activation 

(reviewed in (Carragher, 2006; Zatz and Starling, 2005)) and lysosomal dysfunction 

(Bahr and Bendiske, 2002; Nixon et al., 2000) are consistently observed in 

neurodegenerative diseases. 

 

1.2.1.2 Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 

(AMPARs)  

1.2.1.2.1 Structure and distribution of AMPARs 

The AMPARs subfamily consists of four members: GluRs1-4 (Hollmann and 

Heinemann, 1994). These subunits demonstrated ~70% structural homology. AMPARs 

have a 5 to 10 -fold decreased elementary conductance (< 10picoSiemen) relative to 

NMDARs and desensitize rapidly on application of Glu and AMPA but not to KA 

(Doble, 1999). Various homo- or hetero-tetrameric assemblies derived from these four 

different subunits give rise to functional AMPARs (Rosenmund et al., 1998). AMPARs 

travel in and out of the post-synaptic membrane, thus allowing regulation of synaptic 

strength through dynamic changes in synaptic AMPARs count (Malinow and Malenka, 

2002). AMPARs are involved in the generation of fast excitatory post-synaptic potentials 

(EPSP) in the CNS of vetebrates. Homomeric and heteromeric AMPARs deprived of the 

GluRs2 subunit are porous to Ca2+ and zinc and exhibit voltage-dependent block by 

intracellular polyamines (Burnashev et al., 1992; Donevan and Rogawski, 1995; 

Hollmann et al., 1991; Verdoorn et al., 1991). In contrast, heteromeric receptors 
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harbouring both GluR2 and other AMPARs subunits are relatively impermeable to Ca2+ 

and are less responsive to voltage-dependent polyamine block (Bowie and Mayer, 1995; 

Geiger et al., 1995; Hollmann et al., 1991). 

 

AMPARs subunits have extensive expression profiles scattered across brain regions and 

are mainly localize in principal neurons, interneurons, oligodendrocytes, and astrocytes 

(Bahr et al., 1996; Martin et al., 1993; Petralia and Wenthold, 1992). A prevalence of 

heteromeric AMPARs composed of GluR1 and GluR2, or GluR2 and GluR3 subunits, 

with a small population of homomeric GluRl present in hippocampal CA1 and 2 neurons 

(Wenthold et al., 1996), whereas in CA3 principal neurons, AMPARs are mainly made 

up of GluRl and GluR2 subunits (Geiger et al., 1995). Co-expression of the GluRsl and 

GluR2 or GluR3 subunits is observed in the dendritic spines of cultured hippocampal 

neurons (Craig et al., 1993) and the physio-functional properties of dendritic Glu 

receptors of CA1 and CA3 pyramidal neurons are comparable (Spruston et al., 1995). 

AMPARs subunit assembly in glia is distinct from that of neurons. The brain 

oligodendrocytes express GluR2, GluR3, and GluR4 subunits (Craig et al., 1993) while 

the hippocampal astrocytes express GluRl, GluR2, and GluR4 (Seifert et al., 1997; Seifert 

et al., 2003). 

 

1.2.1.2.2 Physiological roles of AMPARs 

AMPARs play a crucial role in maintenance of developmental and mature CNS 

plasticity. Ca2+-permeable AMPARs are important in early development and especially 

critical to processes such as synaptogenesis (Durand and Zukin, 1993). Explicitly, 
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AMPARs are important in LTP (Bliss and Collingridge, 1993; Lledo et al., 1998; 

Madison and Schuman, 1991; Song and Huganir, 2002). Though exhibiting normal 

development, life expectancy, and neuronal cytoarchitecture, mice lacking the GluR1 

subunit demonstrated an altered GluR2 immunoreactivity in the somata of hippocampal 

CA1 pyramidal cells with greatly reduced somatic AMPA currents. However, these mice 

continue to maintain normal miniature excitatory post-synaptic currents and fast 

excitatory post-synaptic potentials (Zamanillo et al., 1999). This indicates that GluRl 

subunit might contribute to a large population of extrasynaptic AMPARs that could be 

delivered and inserted to specific synapses under certain conditions, thus increasing the 

potential of these synapses (Zamanillo et al., 1999). 

 

1.2.1.2.3 AMPARs association with CNS diseases 

AMPARs are involved not only in neuronal plasticity but also in excitotoxicity, mediated 

largely by the influx of Ca2+ (Choi et al., 1988). Their implication has been highlighted in 

animal models of ischemia and epilepsy. Studies of ischemic rodent models featured that 

prior to cell death, hippocampal CA1 pyramidal cells exhibit an increased AMPARs-

mediated Ca2+ influx and decreased GluR2 and GluR3 mRNA and protein levels (Gorter 

et al., 1997; Heurteaux et al., 1995; Pellegrini-Giampietro et al., 1994; Pellegrini-

Giampietro et al., 1992; Pollard et al., 1993; Tsubokawa et al., 1994). Interestingly, 

pharmacological prevention of GluRs2 subunit down-regulation in the CA1 region 

offered neuroprotection (Heurteaux et al., 1995). Correspondingly in KA model of 

epileptogenesis, during the cellular injury prior to significant cell loss, lower GluR2 and 

GluR3 mRNA and protein expressions were detected in hippocampal CA1 and CA3 
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pyramidal neurons (Friedman et al., 1994; Friedman et al., 1997; Grooms et al., 2000; 

Pollard et al., 1993). GluR2 subunit level was also decreased in the hippocampal 

pyramidal cells of hypoxia-induced seizure rodent model (Sanchez et al., 2001) and in the 

piriform cortex and limbic forebrain of amygdala-kindled rats (Prince et al., 2000). 

 

On the other hand, in a mouse model of fragile X syndrome (a hereditary form of mental 

retardation associated with hyperactivity, anxiety, seizures, and mild autism), decreased 

GluRs1 immunoreactivity with correlating reduced LTP occurred in cortical synapses but 

not in the hippocampus or cerebellum (Li et al., 2002). As such, it is hypothesized that 

the repression of cortical GluRs1 subunit level and LTP may have a patho-physiological 

association with fragile X mental retardation protein deficiency resulting in the cognitive 

and behavioral impairments observed in this syndrome (Li et al., 2002). 

 

1.2.1.3 Kainate receptors (KARs) 

1.2.1.3.1 Structure and distribution of KARs 

KARs are tetrameric assemblies of GluRs5-7 and KA1-2 subunits. GluRs5-7 subunits 

have an approximately 10-fold lower affinity for KA than KA1-2 subunits. Each subunit 

contains four membrane segments (M1-M4), three of them transmembrane (M1, M3 and 

M4), and the remaining M2 segment comprising hydrophobic residues, which form a 

unique hairpin-like structure in the membrane. The M2 segment assists in the formation 

of pore of the receptor channel. Each monomer is approximately 900 amino acids long 

(MW = ~100 kDa) with the amino-terminal domain orientating towards the extracellular, 

and the carboxy-terminal end facing the intracellular side. Splice variants account for 
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GluR5 and GluR7 subunit formation, while post-transcriptional editing is present in 

GluR5 and GluR6 subunits. Physiological role in KARs in the CNS is still understated, 

but they are classically implicated in epileptogenesis where intraperitoneal injection of 

KA has long been used as a model for temporal lobe seizures. KARs activation, as 

opposed to that of AMPARs, results in inhibition of EPSP or the excitatory post synaptic 

current in the hippocampus (Vignes et al., 1998) via inhibitory post-synaptic current 

which can be abolished upon application of KARs antagonist  (Clarke et al., 1997). 

 

GluR5 mRNA expression is predominantly present in the subiculum, septal nuclei, 

piriform, and cingulate cortice and in cerebellar Purkinje cells while GluRs subunit is 

abundant in cerebellar granule cells and in the dentate gyrus and CA3 subfield of the 

hippocampus. On the contrary, GluR7 mRNA is generally expressed at low levels 

throughout the brain. KA1 is distinctively localized to the CA3 region of the 

hippocampus, whereas KA2 is distributed throughout the nervous system (Simeone et al., 

2004). 

 

1.2.1.3.2 Physiological roles of KARs 

KARs activation triggers a fast-onset, rapidly desensitizing response. As rapid 

desensitization is one of the most notable attributes of non-NMDARs, it is of critical 

physiological regulation to ensure these receptors remain in inactive states. Relative to 

AMPA-evoked responses, KA-activated currents have slower onset and decay kinetics, as 

well as diminished peak amplitude (Simeone et al., 2004). 
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Post-synaptic KARs are responsible for the excitatory post-synaptic current in response 

to Glu release (Castillo et al., 1997; Vignes and Collingridge, 1997). This establishes an 

important role for KARs in activity-dependent synaptic plasticity (Lerma, 2003). KARs 

are evidently involved in frequency-dependent synaptic facilitation (a type of short-term 

plasticity in which the strength or integrity of synaptic transmission increases with 

repetitive stimulation) and LTP (Contractor et al., 2001; Schmidt and Hollmann, 2008). 

Apart from its actions on post-synaptic receptors, KA has long been postulated to 

modulate neurotransmitter release by a presynaptic mechanism (Represa et al., 1987). As 

such, KARs reside in a subset of both inhibitory and excitatory terminals. 

 

1.2.1.3.3 KARs association with CNS diseases 

It has long been established that in neurological disease models, KA is a potent 

excitotoxin, mediating acute limbic seizures and long-term morphologic changes in the 

hippocampus, which are hallmark characteristics seen in temporal lobe epilepsy (i.e. 

mossy-fiber sprouting, neuronal loss, and reactive gliosis) (Ben-Ari and Cossart, 2000). 

Persuasive clinical evidence employing KARs agonists further substantiate the 

detrimental effects of KA. For instance, domoic acid (a structural analogue of KA) has 

been found to inflict detrimental damage to the hippocampus through a real-life outbreak 

incident of toxic encephalopathy caused by ingestion of mussels contaminated with 

domoic acid (Perl et al., 1990). Common symptoms among those affected consisted of 

vomiting, cramps, diarrhea, and short-term memory loss; however, one-fifth of the 

patients developed intractable seizures or lapsed into coma, and 3% died. 
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1.2.2 Metabotropic GluRs (mGluRs) 

1.2.2.1 Structure and distribution of mGLuRs 

mGluRs, unlike iGluRs, are G-protein-coupled receptors. They are subdivided into three 

categories which are further differentiated into 8 subtypes: Group I – mGluRs1 and 5, 

group II – mGluRs2 and 3, group III – mGluRs4, 6, 7, 8 (Simeone et al., 2004). 

Functional diversity is generated via the heterogeneity of the eight molecular mGluRs 

subtypes. They are made up of a heterogeneous family of receptors that are linked to 

numerous signal transduction pathways via guanine nucleotide or guanosine 

triphosphate-binding proteins (i.e. G-proteins). Unlike the molecular intrinsic function of 

iGluRs, Glu binding to mGluRs do not activate their intrinsic ionic channel, but rather 

indirectly modulates synaptic transmission and neuronal excitability through the 

activation or suppression of various G-protein-coupled effector systems (Conn and Pin, 

1997). In the light of this signaling mechanism, mGluRs-mediated cellular outcomes are 

considerably slower in onset and longer lasting relative to that of the iGluRs activation 

(Simeone et al., 2004). Thus, mGluRs provide an alternative regulatory option for Glu to 

modulate neuronal activity over a longer time course in addition to its role as a fast-

signaling neurotransmitter. They are involved in the regulation of neuronal excitation and 

synaptic transmission (Ossowska et al., 2007). Furthermore, the presence of mGluRs in 

the basal ganglia indicates their involvement in the nigrostriatal dopamine system (Feeley 

Kearney and Albin, 2003). 

 

mGluRs are divided into group I, II and III based on the activation by their respective 

agonists. Group I mGluRs (mGluRs1/5) are selectively activated by 3,5-
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dihydroxyphenylglycine (DHPG) (Schoepp et al., 1994); Group II mGluRs (mGluRs2/3) 

by (+)-1S,25,5R,65-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740) 

(Monn et al., 1997) and (2S,1 R,2 R,3 R)-2-(2,3-dicarboxycyclopropyl) glycine (DCG-

IV) (Hayashi et al., 1993). The remaining mGluRs (mGluRs4/6/7/8) belongs to group III 

and are selectively activated by L-2-amino-4-phosphonobutyrate(L-AP4) (Conn and Pin, 

1997). 

 

Group I mGluRs are located primarily in somatodendritic domains. Group III mGluRs 

are predominantly localized in axon terminal domains, with group II mGluRs being 

found in both somatodendritic and axon terminal domains (Shigemoto and Mizuno, 

2000). Prominently, among those mGluRs located presynaptically, group III mGluRs 

(except for mGluRs6) are found at axon terminal domains only in the presynaptic active 

zone, whereas group II mGluRs are found at extrasynaptic sites (Shigemoto et al., 1997; 

Wada et al., 1998). 

 

1.2.2.2 Physiological roles of mGluRs 

Group I mGluRs activation stimulates phosphoinositide hydrolysis via phospholipase C, 

which, in turn, leads to Ca2+ release from intracellular stores (Abe et al., 1992; Masu et 

al., 1991). On the contrary, activation of group II and group III mGluRs inhibits 

adenylate cyclase-mediated cyclic adenosine monophosphate production (cAMP) 

(Duvoisin et al., 1995; Nakajima et al., 1993; Okamoto et al., 1994; Saugstad et al., 1994; 

Tanabe et al., 1992; Tanabe et al., 1993). The downstream consequences of native 

mGluRs activation are dependent on the brain region and the specific cells studied. As a 
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general rule of thumb, group I mGluRs seem to be primarily involved in the increase of 

neuronal excitability through the inhibition of various voltage-gated and Ca2+-activated 

K+ channels. It is observed that in hippocampal pyramidal neurons, group I mGluRs 

activation decreases the resting leak K+ conductance (Guerineau et al., 1994) and 

impedes Ca2+-dependent after-hyperpolarization (Charpak et al., 1990; Desai and Conn, 

1991) and a gradually inactivating voltage-dependent K+ current (Luthi et al., 1996), all 

of which contribute to increased neuronal excitability. On the other hand, mGluRs 

negatively coupled to adenylate cyclase activity typically inhibit synaptic transmission by 

preventing neurotransmitter release at presynaptic terminals through indirect modulation 

of voltage-gated Ca2+ channels (Takahashi et al., 1996). 

 

As group III mGluRs are typically located in the presynaptic active zone, they can serve 

as autoreceptors that specifically react to synaptic Glu release, whereas group II mGluRs 

at the extrasynaptic sites could counteract excessive Glu accumulation or spillover and 

play a more homeostatic protective role against excitotoxicity (Simeone et al., 2004). 

Presynaptic mGluRs not only modulate synaptic release of Glu but also can regulate that 

of GABA and decrease synaptic inhibition (Gereau and Conn, 1995; Hayashi et al., 1993; 

Salt and Eaton, 1995; Salt et al., 1996). 

 

1.2.2.3 mGluRs association with CNS diseases 

The ontogeny of mGluRs and their role in brain development are less well studied as 

compared to the iGluRs. Nevertheless, expression and function of mGluRs are crucial in 

developmental stages of the mammalian nervous system, with promotion of neuronal 
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excitability predominating in early life (Simeone et al., 2004). mGluRs have been 

involved in the pathogenesis of  neurological and psychiatric disorders such as AD, 

Parkinson's disease (PD), anxiety, depression, and schizophrenia. 

 

Group II mGluRs have recently been implicated in the pathogenesis of AD by inducing 

the synaptic activation of alpha-, beta- and gamma-secretases which are known to 

generate a family of released peptides, including Abeta40 (Aß40) and Abeta42 (Aß42) and 

stimulating the release of Aß42 from isolated intact nerve terminals (Kim et al., 2010). 

Post-synaptic group I mGluRs, on the other hand, induced a rapid accumulation of 

amyloid precursor protein C-terminal fragments in the synaptoneurosomes, a family of 

membrane-bound intermediates generated from amyloid precursor protein metabolized 

by alpha- and beta-secretases (Kim et al., 2010). 

 

Group I mGluRs have also been implicated in the pathogenesis of Huntington‘s disease 

(HD) through their interactions with the Huntingtin protein resulting in alteration of the 

mGluRs-mediated signaling pathways (Ribeiro et al., 2010). Dysfunctional glutaminergic 

signaling cascades have also been observed in the pathogenesis of L-DOPA-induced 

dyskinesia, a long-term motor complication of dopamine replacement in the treatment of 

PD. Selective mGlu5 inhibitors have been demonstrated to be successful in the 

amelioration of dyskinesia (Johnston et al., 2010). 
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1.3 Excitotoxicity in CNS due to GluRs over-stimulation 

Induction of massive release of Glu from injured neurons is frequently observed during 

ischemic insults such as cardiac arrest, stroke, and head and spinal cord injury. 

Glutaminergic neurotransmission requires intricate regulatory management as otherwise 

improperly modulated will not only impair its physiological signaling properties, but also 

result in cell death via excitotoxicity. Excitotoxic death occurs as a result of excessive 

release of Glu from damaged neurons into the extracellular space, resulting in the over-

stimulation of GluRs on the neighbouring cell surfaces and subsequently neuronal death. 

Over-stimulation of iGluRs triggers massive influx of extracellular Ca2+, which together 

with release of Ca2+ intracellular stores from ruptured organelles e.g. lysosomes, into the 

cytosol results in activation of Ca2+-dependent proteases calpains and protein 

phosphatase, calcineurin. 

 

Excitotoxicity is one of the major mechanisms of cell death in numerous CNS diseases 

including stroke, brain trauma, epilepsy and chronic neurodegenerative disorders (Wang 

and Qin, 2010). The ―excitotoxicity‖ theory was first formulated in 1969 by Dr Olney as 

an undesirable cytotoxic side-effect of excessive or prolonged activation of receptors by 

excitatory amino acids (EAAs) (Olney, 1969). Much research efforts have been attributed 

to the mechanistic elucidation of excitotoxicity with current understanding summarized 

as follow: iGluRs over-stimulation triggers multiple adverse effects comprising impaired 

intracellular calcium ion homeostasis, organellar dysfunctions, elevated nitric oxide (NO) 

and reactive oxygen species (ROS) production, unregulated persistent activation of 

proteases and kinases, and transcriptional activation of pro-death transcription factors and 
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immediate early genes (Wang and Qin, 2010). It has been demonstrated that in the event 

of excitotoxic neuronal death, all three subtypes of iGluRs (NMDARs, AMPARs and 

KARs) are actively involved, with the NMDARs playing a major role due to its abundant 

expression and highest Ca2+ permeability (Hara and Snyder, 2007). 

 

Upon excess Glu application in experimental models, heterogeneity of neurodegenerative 

signaling cascades is observed. In neuronal cultures, an apoptotic-autophagic-necrotic 

continuum cell death is induced depending on the severity of NMDA insult (Berman and 

Murray, 1997). In vivo, cell death morphology is determined by GluRs subunit 

composition in neurons (Lev et al., 1995). This heterogenous population of cell death is 

evident in whole animal models of stroke (Panikashvili et al., 2005; Uberti et al., 2004) 

and traumatic brain injury (Panikashvili et al., 2005). At one extreme end of the 

spectrum, neurons display unregulated necrotic morphology upon intense glutaminergic 

insult (Berman and Murray, 1997). The mechanisms underlying neuronal necrosis are 

similar to those governing other cell types and include loss of cellular homeostasis with 

acute mitochondrial dysfunction leading to massive energy failure. Milder glutaminergic 

insults, however, have been shown to cause cell death ascribed to mechanistically 

regulated cell death pathways. These cell death pathways work coherently in excitotoxic 

neurodegeneration and include an array of molecular players such as cysteine proteases, 

mitochondrial endonucleases, poly(ADP-ribose) polymerase 1 (PARP-1) and 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; (Wang and Qin, 2010). 
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1.3.1 Calcium ion homeostasis 

Ca2+ influx was demonstrated to be an early event essential for trigger of Glu 

excitotoxicity (Choi, 1985). It was shown that in Ca2+-rich extracellular solution, Glu 

excitotoxicity in neuronal cultures was potentiated whereas a Ca2+-free extracellular 

solution attenuated neurodegeneration. Further studies verified that the induction of Ca2+ 

influx by NMDARs, but not the Ca2+ load, was important in the GluRs-mediated 

neurodegenerative process (Choi, 1987; Tymianski et al., 1993), and that lower Ca2+ 

influxes via NMDARs evoked higher lethality as compared to higher Ca2+ influxes via 

other Ca2+-permeable channels (Sattler et al., 1998). Majority of elevated cytosolic Ca2+ 

is sequestered into mitochondria, which can lead to mitochondrial toxicity resulting in 

metabolic acidosis and free radical generation (Thayer and Wang, 1995; Wang and 

Thayer, 1996). 

 

1.3.2 Nitric oxide (NO) generation 

Early study by Dawson et al. (1991) demonstrated the abrogation of Glu-induced 

neurodegeneration in vitro upon application of NO synthase (NOS) inhibitors, suggesting 

a prominent role of NO in Glu-induced excitotoxicity. NO once generated, can react with 

the heme group of guanylate cyclase (GC), triggering a conformational change in GC and 

the catalysis of guanosine-5‘-triphosphate (GTP) to cyclic guanosine 3‘,5‘-

monophosphate [cGMP; (Ignarro, 1991)] and protein phosphorylation. GC activation is 

believed to be the main nitrergic signal transduction pathway. cGMP acts as a second 

messenger that activates protein kinase G (PKG) 1 and 2, with the former involved in 

intracellular Ca2+ control and the latter regulating anionic influx e.g. Cl- ion (French et al., 
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1995; Lau et al., 2003).  This transduction pathway can affect a broad range of proteins 

directly, e.g. phosphodiesterases of cyclic nucleotides and indirectly, e.g. protein kinase 

A, thus increasing the level of cAMP with activation of proteins involved in the cAMP 

downstream pathway (Ono and Trautwein, 1991; Whalin et al., 1991).  

 

Furthermore, NO is also capable of affecting other cellular signaling pathways 

independent of GC activation. As NO is thermodynamically unstable, it is able to 

undergo various chemical reactions with gaseous molecules, anions and reactive oxygen 

species (ROS) to form nitrites, nitrates and peroxynitrites (ONOO-). NO reacts quickly 

with the superoxide anion (O2•-) to form ONOO- to avoid its elimination by the 

antioxidant systems. ONOO- has an action radius of 100µm and even shorter half-life of 

1-2s, tending to generate multiple toxic products in its degradation (Beckman et al., 1990; 

Whiteman et al., 2002). During the process of these chemical reactions, intermediate- 

products such as ROS and other free radicals are produced. These nitrergic intermediate- 

and end-products can induce modifications of cellular molecules (lipids, proteins and 

DNA) through oxidation (Poon et al., 2004), nitration (Souza et al., 1999) or nitrosylation 

(Stamler et al., 1997). For proteins, these modifications have special importance as they 

can modify protein conformation and affect their physiological functions. NO-mediated 

nitrosylation can alter the normal activity of a wide array of proteins by inducing 

conformational changes, which can hinder protein phosphorylation leading to a loss of 

function and/or gain-of-function, or affect signal transduction pathways of the growth 

factors (Amici et al., 2003; Cassina et al., 2000; Jonnala and Buccafusco, 2001; Newman 

et al., 2002). NO itself can also induce reversible inhibition of cytochrome c oxidase, thus 
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resulting in decreasing oxygen consumption and impeding energetic metabolism. 

Interestingly, NO also promote mitochondrial synthesis via enhancing the transcriptional 

activity of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-

1(Nisoli et al., 2003; Scarpulla, 2002). 

 

Recently, a novel cell death pathway implicating GAPDH and seven in absentia homolog 

1 (SIAH1) has been linked to NO (Hara et al., 2005). GAPDH is an omnipresent 

housekeeping enzyme that, under physiological conditions, participates in glycolysis. 

However, with increasing intracellular levels, NO can nitrosylate GAPDH allowing it to 

bind SIAH1, an ubiquitin ligase. The newly formed duo can then translocate to the 

nucleus by virtue of the SIAH1 nuclear translocation domain and enhances p300/CBP-

associated acetylation of nuclear proteins (Sen et al., 2008). The downstream activation 

of nuclear proteins including p53 causes pyknotic nuclei and morphological features 

suggestive of apoptosis. 

 

1.3.3 Free radical generation 

Free radical formation has been observed in CGN (Lafon-Cazal et al., 1993) and cortical 

cultures (Dugan et al., 1995; Reynolds and Hastings, 1995) upon excitotoxic stimulus. 

Pharmacological application of various antioxidant compounds including nitrone-based 

scavengers, free radical spin traps and 21-aminosteroids/lazaroids and/or over-expression 

of anti-oxidative enzyme overexpressing SOD showed successful attenuation of Glu and 

ischemia-induced neurotoxicity (Gonzalez-Zulueta et al., 1998). It is believed that rise in 

intracellular Ca2+ via Ca2+ influx is responsible for the trigger of free radical production 
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(Dykens, 1994) particularly by mitochondria. Mitochondria exposed to escalating Ca2+ 

and Na+ concentrations activate a feed-forward system enhancing free radical production, 

which can be abolished by removal of extracellular Ca2+ but not NOS antagonists (Dugan 

et al., 1995). Similar dependence on NMDARs-mediated Ca2+ entry was substantiated by 

findings from Reynolds and Hastings (Reynolds and Hastings, 1995). In summary, it can 

be deduced that free radical generation in mitochondria is a secondary event to Ca2+ 

influx via NMDARs. Subsequently, these free radicals, particularly O2•-, can interact with 

other radicals e.g. NO to form powerful oxidants (Huie and Padmaja, 1993). 

 

1.3.4 Caspase activation 

Caspases, a family of well-studied cysteine proteases notable for their role in classical 

apoptosis, was first demonstrated to be implicated in persistent excitotoxic injury in 

cerebrocortical (Tenneti et al., 1998) and cerebellar cultures (Du et al., 1997). Pre-

treatment with caspase inhibitors showed neuroprotective efficacy in NMDA-mediated 

neurodegeneration. However, Ca2+ influx and mitochondrial dysfunction were not 

inhibited, indicating caspase activation occurs downstream of these events. Other than 

promoting cleavage of cytosolic proteins, nuclear caspase activation facilitates ICAD (a 

protein inhibiting the activity of caspase-3-activated DNase) truncation, resulting in DNA 

fragmentation and cell death (Enari et al., 1998). 

 

1.3.5 Calpains involvement  

Escalating intracellular Ca2+ level activates Ca2+-dependent cytoplasmic proteases namely 

calpains. Proteolytic activation of one calpain isoform, µ-calpain, is necessary for the 
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cleavage and release of apoptosis-inducing factor (AIF) from mitochondria (Polster et al., 

2005). Calpain/AIF pathway importance in excitotoxicity is further underscored by 

neuronal culture studies subjected to oxygen–glucose deprivation showing that calpain 

suppression attenuated AIF translocation and subsequent neuronal death (Cao et al., 

2007). Mitochondrial AIF re-localization to the nucleus causes chromatin condensation, 

DNA fragmentation and cell death (Susin et al., 1999). An alternative route to 

excitotoxicity is via activation of PARP-1, a nuclear DNA repair enzyme, which 

incidentally also triggers the release of AIF and which involvement is highlighted by 

cortical cultures derived from PARP-1 knockout mice exhibiting reduced AIF 

translocation and neurodegeneration after NMDA treatment (Yu et al., 2002). 

 

1.3.6 Organellar destabilization 

1.3.6.1 Mitochondrial dysfunction 

The mitochondrial network plays a vital role in the supply of cellular energy currency in 

the form of adenosine triphosphate (ATP) to ensure the proper functioning of a variety of 

metabolic processes within a cell. Simpler molecules resulting from the cellular cyclic 

processing of macromolecular nutrients transfer electrons to carrier proteins such as 

nicotinamide and flavin adenine dinucleotides (NAD+ and FAD+) producing NADH and 

FADH2, which transfer the electrons to the electron transport chain (ETC) localized at the 

inner mitochondrial membrane (Saraste, 1999). Due to the constitutive cyclic fluctuation 

of the redox status between ETC enzymatic protein complexes with consequent high 

consumption of cellular oxygen in the oxidative phosphorylation process, mitochondria 

are assumed to be the main cellular producers of ROS (Orrenius et al., 2007). Escaping 
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electrons from the ETC can potentially reduce oxygen to form the highly reactive O2•-, 

which can undergo further Fenton reaction to generate hydroxyl radical (OH•) and 

hydrogen peroxide (H2O2) which similarly can cause detrimental cellular damages 

(Boveris et al., 1972). 

 

As a result of this pivotal physiological function of mitochondria, which if not properly 

managed can have adverse effects on cell survival, mitochondrial functionality has been 

proposed to be a crucial regulator and indicator of cellular homeostasis. Indeed, decline 

in mitochondrial functionality has been closely linked to increasing age of mammalians. 

This age-correlated respiratory chain deficiency is especially prevalent in only a subset of 

mammalian tissues, such as heart, skeletal muscle, colonic crypts and neurons (Dufour et 

al., 2008). A recent study by Dufour et al., 2008 demonstrated that the co-existence of 

functional respiratory chain-deprived and normal neurons accelerated the 

neurodegenerative process of the adjacent normal cells through a trans-neuronal signaling 

mechanism.  

 

1.3.6.2 Lysosomal rupture  

Calpain activation has been reported to associate with lysosomal rupture leading to the 

death of post-ischemic CA1 neurons (Yamashima et al., 2003). A ―calpain-cathepsin 

hypothesis‖ was formulated by Yamashima et al. (1998) on the basis of the experimental 

paradigm of global brain ischemia in primates. The calpain-cathepsin cascade mechanism 

of cell death involves Ca2+ mobilization through the uptake of extracellular Ca2+ and/or 

the release from internal Ca2+ stores. Ca2+ mobilization can lead to the activation of 
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calpains which induces lysosomal rupture, possibly aided by ROS. The released 

lysosomal proteases, mainly the cathepsins, will then degrade the cell constituent 

proteins, ultimately leading to cell death. Cytoplasmic activation of cathepsin B (CTSB) 

upon lysosomal rupture mediates activation of pro-inflammatory caspase-1 and -11 upon 

focal cerebral ischemic induction and Aß42-induced neurotoxicity (Benchoua et al., 2004; 

Gan et al., 2004). However, recent finding by (Mueller-Steiner et al., 2006) suggested 

CTSB by its endogenous proteolytic activity reduced amyloid plaque accumulation 

through increased protein turnover.  

 

1.3.6.3 Endoplasmic reticulum (ER) stress 

ER, with a pivotal pleiotropic physiological role in cellular biogenesis, metabolism, 

signaling and survival, is also a vital homeostatic organellar regulator of cellular stress 

(Travers et al., 2000). It is the site for the proper synthesis, folding and post-translational 

modification of cellular proteins (Ron and Walter, 2007) as well as production of 

steroids, cholesterol and other lipids (Chang et al., 2006). It also serves as a major 

intracellular Ca2+ ion store (Verkhratsky, 2005).  

 

Presence of ER stress has been reported in AD (Hoozemans et al., 2005), PD (DeGracia 

and Montie, 2004) and ischemic stroke (Kitao et al., 2007). ER stress, characterized by 

the accumulation of unfolded proteins in the ER lumen, is frequently manifested upon 

presence of oxidative stress. This stress induction can occur upon perturbation of any of 

ER cellular functions, i.e. via protein oxidation, disturbance of Ca2+ signaling, and 

alteration of the homeostatic redox balance (Chakravarthi et al., 2006; Gorlach et al., 
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2006). An intimate communicative, functional coupling relationship between ER and 

mitochondria has also been established on the basis of these cellular functions. One 

instance would be the maintenance of Ca2+ equilibrium, crucial for the proper functioning 

of both organelles (Csordas et al., 2006). Mitochondria act as an emergency Ca2+ store 

upon sudden transient surge in cytosolic Ca2+ level, to buffer the ER against any 

functional disruption. Furthermore, several members of the B-cell lymphoma 2 (BCL2) 

family prominent for their roles in regulation of mitochondrial-mediated apoptosis, also 

seem to participate in ER-induced cell death and Ca2+ signaling between the ER and 

mitochondria (Breckenridge et al., 2003; Gorlach et al., 2006; Rao et al., 2004; Szegezdi 

et al., 2006; Wu and Kaufman, 2006). Initiation of ER stress has been demonstrated to 

occur upon mitochondrial energy deficits (Flores-Diaz et al., 2004; Xu et al., 2004). 

 

Extensive ER damage can trigger cell death via the production of unfolded proteins, the 

release of Ca2+ into the cytoplasm or altered redox homeostasis (Breckenridge et al., 

2003) resulting in either classical programmed cell death (PCD) or other mitochondrial 

cell death pathways (Jimbo et al., 2003). As such, dysfunctional Ca2+ regulation arising 

from ER stress and increased molecular oxidative damage further potentiates activation 

of programmed necrotic pathway involving calpains, forming a positive feedback 

regulatory loop (Crocker et al., 2003; Nakagawa and Yuan, 2000).  
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Figure 1.1 A simplified diagram summarizing the major biological processes implicated 

during neuronal excitotoxicty. 

 

1.4 Ischemia 

Stroke, a cerebro-vascular disease/accident, occurs when blood supply to the brain is 

disrupted in the event of occlusion or rupture of blood vessels, resulting in the loss of 

neurological function. As such, stroke can be subdivided into two types: ischemic stroke 

(lack of blood flow due to thrombosis or arterial embolism) and hemorrhagic stroke 
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(vascular leakage). It has been shown that majority of stroke cases (accounting for ~85%) 

is attributed to acute ischemic cause with the rest categorized as hemorrhage (Lakhan et 

al., 2009). Ischemic stroke is a general term with reference to a heterogenous group of 

etiologies e.g. embolism, relative hypoperfusion and thrombosis. Nevertheless, ischemic 

stroke is ubiquitously caused by atherothrombosis of large cervical and intracranial 

arteries and embolism from the heart. 

 

1.4.1 Types of cerebral ischemic stroke: 

As a general rule of thumb, adult cerebral ischemia can be categorized into two 

mechanistically distinct modes namely, global and focal ischemia respectively. A third 

type of cerebral ischemia, known as hypoxic ischemia (HI), is commonly known to occur 

in neonates. 

 

1.4.1.1 Global ischemia 

Global ischemia, which occurs at a significantly lower incidence in human beings, takes 

place after transient circulatory arrest with resuscitation (e.g. hypoxic-ischemic 

encephalopathy secondary to a cardiac or pulmonary arrest), traumatic brain injury or 

after near-drowning incidents. In the event of circulatory arrest, absolute cerebral blood 

flow falls off from 0.8 ml/g/min to zero within seconds with the subsequent loss of 

consciousness that ensues after approximately 10s. Electroencepholography activity stops 

after 30 to 40s. The few minutes of global ischemia are sufficient to inflict irreversible, 

widespread brain damage that potentiates over days. Under normothermic conditions, 

10min of global ischemia are lethal in man. The representative histological picture after 
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global ischemic insults is represented by delayed neuronal death sparing glial cells 

(sometimes even associated with astrogliosis). It is estimated that solely in the United 

States, approximately 500,000 people/year die because of circulatory arrest leading to 

global ischemia (NCBI » Bookshelf » Madame Curie Bioscience Database » 

Neurodegenerative Disease » Neuroprotective Strategies in Animal and in Vitro Models 

of Neuronal Damage: Ischemia and Stroke: 

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=A2331). 

 

1.4.1.2 Focal ischemia 

Focal ischemia is triggered by the sudden significant reduction of blood supply to the 

brain, as a result of either the rupture or occlusion by thrombus/embolism of a blood 

vessel in the brain. The inhibition of normal cerebral blood flow can be transient or 

permanent. This impairs the supply of oxygen and nutrients, particularly glucose to a 

specific part of the brain, resulting in cerebral ischemia. As opposed to global ischemia, 

focal ischemia has an additional pathological feature called the ischemic penumbra. The 

penumbra defines the brain tissue representing the ischemia border-zone which is 

metabolically active but functionally silent, i.e. injured but alive. It is observed when 

absolute regional blood flow in the ischemic core is diminished to levels <0.1ml/g/min, 

blood flow in the penumbra typically remains at 0.2-0.4ml/g/min. Histological image 

identifying focal ischemia is defined by pan-necrosis that includes all cell types in the 

brain (neurons, astrocytes, oligodendrocytes, endothelial cells). (NCBI » Bookshelf » 

Madame Curie Bioscience Database » Neurodegenerative Disease » Neuroprotective 

Strategies in Animal and in Vitro Models of Neuronal Damage: Ischemia and Stroke: 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Books
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=part41.xml
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=A2331
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Books
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=part41.xml
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http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=A2331). Focal 

ischemia can be further subdivided ino transient and permanent subtypes depending on 

the duration of occlusion. In transient focal ischemia, the temporary occlusion of cerebral 

blood flow to a particular part of the brain is restored via reperfusion. On the other hand, 

the occlusion in the cerebral artery is not relieved, impeding the blood supply to that 

specific part of the brain. 

 

1.4.1.3 Hypoxic ischemia (HI)  

HI brain damage is one of the most common causes of neonatal brain injuries, amidst 

other conditions such as intrauterine infection and perinatal cerebral hemorrhage (Bracci 

et al., 2006). HI, occurring during the perinatal period, severely affects brain integrity 

resulting in detrimental long-term neurological morbidity in terms of motor, intellectual, 

educational and neuropsychological performance deficits (e.g. cerebral palsy, mental 

retardation, learning disability and epilepsy), and even neonatal mortality (Cowan et al., 

2003; Ferriero, 2004; Shalak and Perlman, 2004; van Handel et al., 2007). HI has been 

demonstrated to produce brain damages of differential severity comprising focal necrotic 

cell death, diffused white matter injury, and cystic/cavitary infarction resulting in 

intraventricular-periventricular hemorrhage and periventricular lesions (Leonardo and 

Pennypacker, 2009). 

 

 

 

 

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=A2331
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1.5 Focal ischemic stroke 

1.5.1 Epidemiology, symptoms and effects of focal cerebral ischemia 

Based on the World Health Organization 2007 health report, approximately 15 millions 

people globally suffer from stroke yearly. Of these, an estimation of 5.7 millions die 

(http://www.who.int/chp/steps/stroke/en/index.html), while another 5 millions suffer 

from permanent disability (http://www.strokecenter.org/patients/stats.htm). Stroke is the 

second global leading cause of death (http://www.who.int/chp/steps/stroke/en/index.html) 

and most common induction of adult permanent disability worldwide (Donnan et al., 

2008).  Solely in developed countries, stroke occupies the third position in the rank of 

human diseases which lead to mortality (Lo et al., 2003). The high incidence of stroke 

inflicts severe financial strain on the healthcare budgets for countries globally, as 

statistical analyses demonstrated three months after a stroke episode, 15-30% of the 

survivors are permanently disabled and 20% in need of institutional care (American Heart 

Association). 

 

It is estimated that a typical large-vessel acute ischemic stroke results in the loss of 120 

million neurons each hour. Relative to the rate of neuron loss during normal aging 

process, the ischemic brain suffers an ageing of 3.6 years for every hour the stroke is left 

untreated which explains why majority of stroke patients exhibit certain levels of motor 

weakness and sensory impairments [reviewed in Lakhan et al. (2009)]. 

 

The most commonly reported symptoms prior to stroke episode is sudden weakness or 

numbness of the face, arm or leg, most often on one side of the body. Other symptoms 

http://www.who.int/chp/steps/stroke/en/index.html
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comprise of: confusion, difficulty in speaking or understanding speech; difficulty seeing 

with one or both eyes; difficulty walking, dizziness, loss of balance or coordination; 

severe headache with no known cause; fainting or unconsciousness. 

 

Occurrence of stroke, a cerebro-vascular disease, can significantly impair one‘s quality of 

life by causing physiological deficits such as motor impairments (hemiplegia, 

hemiparesis and dysphagia) and cognitive dysfunctions (apraxia and agnosia).  

Definitions: 

-Hemiplegia: One-sided paralysis. 

-Hemiparesis: One-sided body weakness. 

-Dysphagia: Problem with eating and swallowing as a result of damage to the part of the 

brain controlling the muscles to swallow. 

-Apraxia: Inability to plan the steps involved in a complex task, carry the steps out in the 

proper sequence and/or follow a set of instructions. 

 

1.5.2 Current approved focal cerebral ischemia treatment 

Despite major steps achieved in the elucidation of the patho-physiology of cerebral 

ischemia, the available therapeutic avenues for acute ischemic stroke remain scarce 

(Donnan et al., 2008). The current approved clinical treatment of thrombolytic ischemic 

stroke is the intravenous injection of recombinant tissue plasminogen activator (rt-PA), 

which efficacy is reliant on the time of delivery (preferably 3 hours after symptoms 

onset) and comes with the risk of increased incidence of symptomatic intracranial 

hemorrhage (Furlan et al., 2003). 
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1.5.3 Post-ischemic physiological-response recovery 

In most stroke cases regardless of fast or slow, patients will show signs of functional 

recovery as a results of brain reorganization and brain plasticity. Brain plasticity refers to 

the brain's dynamic modulation of its structure and function during development, 

learning, and pathology (Lakhan et al., 2009). For instance, within minutes following 

ischemia, the number and length of dendritic spines of the neurons in the penumbra 

region decreased rapidly. The initial deficit is then followed by the restoration of the 

dendritic spine synapses several months after the initial ischemic episode as part of the 

functional improvement processes (Brown et al., 2008). 

 

Studies in experimental stroke models reveal that upon focal cerebral ischemia, 

neurogenesis is promoted in the subventricular zone (SVZ) and subgranular zone (SGZ) 

of the dentate gyrus and induces SVZ neuroblast migration towards the ischemic 

boundary. This phenomenon has further been verified to occur in the adult human brain, 

even in advanced age patients (Macas et al., 2006; Minger et al., 2007; Yamashita et al., 

2006). Functional Magnetic Resonance Imaging studies have also reported that the 

injured adult brain has the ability to re-assemble to reduce motor impairment (Calautti 

and Baron, 2003; Eliassen et al., 2008). The major driving force behind this restoration of 

motor abilities seemingly is due to the energized activity in pre-existing networks. These 

reports shed a light of hope in the feasibility of usage of neuronal cell regenerative 

technique in stroke treatment which aims to influence endogenous neurogenesis and 

thereby promoting brain repair. 
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1.6 Patho-physiology of focal cerebral ischemia 

The degree of brain ischemic damage is dependent on several factors, namely the severity 

and duration of ischemia and regenerative capability of the brain (Dirnagl et al., 1999). 

Cerebral ischemia activates the pathological ischemic cascades, resulting in almost 

instantaneous severe, irreversible neuronal damage to the primary site of blood supply 

blockage, known as the ischemic core (Dirnagl et al., 1999). A much larger viable but 

functionally impaired volume of the brain tissue encompassing the ischemic core, called 

the penumbra, though also sustaining certain degree of neuronal injury, can be rescued 

when the cerebral blood flow is promptly resumed (Lakhan et al., 2009). 

 

 

Figure 1.2 Diagram depicting the core and penumbra regions upon the infliction of focal 

cerebral ischemia in a localized brain region. 

 

During focal cerebral ischemia, multiple undesirable cell signaling cascades are activated, 

aggravating the ischemic damage to the primary and surrounding sites of blood flow 

occlusion. Initial arterial occlusion results in oxygen/glucose deprivation causing a loss of 

function to the mitochondrial respiratory chain with a concomitant drop in ATP 

generation in neurons. This leads to neuronal depolarization and increase in extracellular 
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K+ and Glu concentrations.  Elevated Glu level in the extracellular matrix stimulates 

GluRs on neighbouring neurons, promoting excitotoxicity with increased oxidative load 

and inflammation, eventually causing cell demise. Elevated free radical production and 

pro-inflammatory molecules inflict microvascular injury and blood-brain barrier 

dysfunction, all in all contributing to irreversible cerebral damage. These processes 

occurring during focal cerebral ischemia are summarized in the Figure 1.3. 

 

Figure 1.3 A summary of the major processes at work during the pathogenesis of focal 

cerebral ischemia. 
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Despite these mechanisms at work, residual perfusion from the collateral blood vessels 

slows down the progression of the ischemic cascade. As such, neuronal regeneration is 

still possible for several hours from the stroke onset even when blood supply drops to 

(30ml/100g/min; 20-40% of basal values) via prompt blood flow restoration (Hossmann, 

1988b). This observation forms the foundation for the exploration of stroke therapeutic 

options directed at alleviating the cerebral blood flow blockage. The desired outcome is 

to achieve functional restoration of majority of the brain tissue subjected to ischemic 

condition and minimize post-stroke disability (Lakhan et al., 2009). 

 

1.6.1 Excitotoxicity and ischemia 

Initiation of ischemic stroke occurs via critical focal hypoperfusion in a localized brain 

region, which subsequently progresses to oxidative and excitotoxic damages that 

exacerbate to further complications such as microvascular injury, blood-brain barrier 

impairment and post-ischemic inflammation, aggravating the initial physical damage to 

the primary site of occlusion (Lakhan et al., 2009). Within the centre of the ischemic 

region, the cells are subjected to irreversible anoxic depolarization, whereas in the 

penumbra, the cells still retain ability to repolarize through increased energy consumption 

and depolarize in response to rising levels of extracellular Glu and K+ ion. These 

persistent, rapid discharging of depolarization stimuli, also known as peri-infarct 

depolarizations, further promotes Glu release into the extracellular cell matrix (ECM), 

worsening excitotoxic damage (Hossmann, 1988a).  
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As previously mentioned, Glu is an excitatory neurotransmitter within the mammalian 

CNS. Over-activation of GluRs, especially the ionotropic receptor subtypes, has been 

demonstrated to result in excitotoxicity, characterized by increased influx of Ca2+ from 

extracellular matrix and release of intracellular Ca2+ store. This phenomenon is 

commonly noted in HI and focal cerebral ischemic stroke injury (Hara and Snyder, 2007; 

Simpkins et al., 2003). In HI injury, occlusion of cerebral blood flow lowers oxygen and 

glucose supplies to the brain. This slows down mitochondrial respiration considerably 

with concomitant drop in ATP production, eventually resulting in energy crisis (Nicholls 

et al., 1999). Membrane ionic pump dysfunction with concerted elevation cytosolic Ca2+ 

due to GluRs over-stimulation which overloads the mitochondrial Ca2+ buffering capacity 

resulting in mitochondrial permeability transition (Soane et al., 2007; Tsujimoto and 

Shimizu, 2007) which accelerates ROS production, NAD+ exhaustion and PARP-1 

(Moroni, 2008) and calpains (Siman et al., 1989) induction. 

 

Even though this phenomenon has been ubiquitously detected in post-mortem brains of 

these neurological disorders, the significance of its implication during neuronal death 

progression remains unclear. As such, experimental models become an attractive avenue 

for deciphering the pathological mechanisms upstream and/or downstream of oxidative 

stress (Lakhan et al., 2009). As oxidative stress is a central dogma in numerous 

neuropathological conditions, novel insights into the signaling transduction pathways 

modulated upon its occurrence would form a foundation in the identification of potential 

biological targets useful in the area of therapeutic management. 
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1.6.2 Programmed cell death (PCD) in focal ischemia 

Neurons are morphologically unique and functionally sophisticated mammalian cells. 

They possess the characteristic morphology of a cell body, with extensively elongated 

processes (axons and dendrites) that posed consequential problems for intracellular 

trafficking. In addition, the plethora of surface ion channels in neurons increases their 

vulnerability to injury and death through energy deprivation (ATP deficit) or via hyper-

excitation by neurotransmitters leading to excitotoxicity by inducing elevation of 

intracellular and mitochondrial Ca2+ as previously mentioned, which forms one of the key 

determinants of PCD through various mechanisms (Chinopoulos and Adam-Vizi, 2006; 

Nicholls, 2008). Other crucial factors include ROS generation and presence of 

mitochondrial permeability transition (MPT) and/or outer mitochondrial membrane 

permeability (OMMP). Recent substantiation in non-neuronal cells indicates elevated 

Ca2+ in mitochondria to be a crucial signal in ROS-mediated apoptosis (Baumgartner et 

al., 2009). Finally, neurons function and are maintained in an adaptive cellular milieu 

made up of mainly glial cells such as astrocytes (Maragakis and Rothstein, 2006; Pekny 

and Nilsson, 2005). As such, neuronal exposure to glial cells-secreted cytokines during 

the inflammatory phase of injury in the CNS (Hanisch and Kettenmann, 2007; Pekny and 

Nilsson, 2005) can detrimentally activate extrinsic pathways to cell death. 

 

Mitochondria in neurons have been recognized as a key crucial organelle under numerous 

pathological settings, playing the key regulatory roles in death processes in the affected 

cells [Reviewed extensively in Higgins et al. (2010)]. It is vital to cellular homeostatic 

and energy-yielding activities. The definition of PCD has broadened over the recent years 
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to incorporate more complex, distinctive cell death signaling cascades. Mitochondrial 

implication in PCD has been extensively studied (Reviewed by Nagley et al., 2010). 

Other than its prominent, well-explored effect on apoptosis (PCD-Type I), it also 

influences the progression of programmed necrosis (PCD-Type III), an alternative death 

pathway signified by the absence of caspase involvement (Clarke, 1990). Autophagy 

(PCD-Type II), perceived as a routine homeostatic mechanism for renewal and clearance 

of cellular constituents, has but recently been identified as a mode of PCD whose 

activation has been reported to lead to death under certain stress conditions (Boland and 

Nixon, 2006; Clarke, 1990; Mizushima et al., 2008). With the expansion in the subtypes 

of PCD, numerous cell death markers have been employed to distinguish the mechanistic 

mode of cellular injury or neurodegeneration under various pathological conditions in the 

nervous system. 

 

To further add complexity to the picture, all these diverse signaling pathways are able to 

cross-regulate each other at both upstream and downstream of mitochondria. As a result, 

activation of one pathway may positively or negatively impact the development of other 

pathways instantaneously. The existence of these cross-talks can result in two cell death 

scenarios where firstly, in one initially homogeneous population of cultured neurons 

exposed to a given treatment, a heterogeneous set of responses between different cells of 

that population is likely to occur; Secondly, individual cells may display a subset of 

markers characteristic of explicitly defined cell death paradigms (e.g. PCD Types I, II or 

III) (Nagley et al., 2010). The former is reflective of the pathological features observed in 

ischemic stroke brains subjected to a single cellular insult. In stroke-affected and HI 
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brains, distinct necrotic features are concentrated in the core of the injury site. On the 

other hand, the penumbra surrounding this core is occupied by cells showing apoptotic 

features such as caspase activation and nuclear DNA fragmentation (Dirnagl et al., 1999). 

 

1.6.2.1 Apoptosis 

Apoptosis (PCD-Type I), dependent on caspase activation, is composed of two main 

pathways, the extrinsic (death receptor pathway) and intrinsic pathways (Reviewed 

extensively by Nagley et al., 2010). The stark difference lies in that the extrinsic pathway 

can occur independent of mitochondria while the intrinsic pathway is characterized by 

mitochondrial involvement. In the intrinsic pathway, apoptogenic proteins translocate 

from the mitochondrial intermembrane space (IMS) to the cytoplasm, leading to caspase 

activation that directly activates cell death. The occurrence of OMMP is regulated by the 

BCL2 protein family which is divided into pro-apoptotic and anti-apoptotic (pro-survival) 

subfamilies. The anti-apoptotic BCL2 proteins form the bridging intermediaries between 

the BH3-only proteins and the pro-apoptotic BCL2 family members, which include BAX 

and BAK. One postulation of this mechanistic association is that the anti-apoptotic BCL2 

proteins inactivate BAX and BAK for as long as the pro-survival proteins remained 

uninhibited by the BH3-only proteins. The other view is that some BH3-only proteins 

may also act as facilitators, directly interacting with BAX and BAK to initiate their 

activation (reviewed by (Youle and Strasser, 2008)). BAX and BAK, upon activation, 

change conformation, oligomerise and form pores in the outer mitochondrial membrane 

(OMM). The ―pore‖ is likely to be lipidic in nature, thus allowing transit of proteins from 

the IMS to the cytosol and vice versa (Smith et al., 2008). 
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The key executioners that re-localize from the IMS to the cytosol (reviewed in 

Hengartner, 2000; Kroemer et al., 2007) include cytochrome c (CYTC), antagonists of 

inhibitor of apoptosis (IAP), ―second mitochondria-derived activator of caspases/direct 

inhibitor of apoptosis-binding protein with low pI‖ (Smac/DIABLO) and HTRA2/OMI 

that activate the caspase-signaling cascade, and the caspase-independent proteins, AIF 

and endonuclease G (Endo G) (Beart et al., 2007; Diwakarla et al., 2009b; Higgins et al., 

2009; Kroemer et al., 2007). CYTC forms an apoptosome complex with APAF-1 and 

ATP in the cytosol to activate caspase-9. Caspase-9 then in turn activates its downstream 

effector caspase-3, caspase-6 and caspase-7, which consequently lead to chromatin 

condensation and DNA fragmentation (reviewed in Hengartner, 2000). The re-

localization of AIF and Endo G during apoptosis frequently occurs much later than that 

of CYTC and Smac/DIABLO (Beart et al., 2007; Diwakarla et al., 2009b). Activation of 

both AIF and Endo G alone is able to result in nuclear degradation and DNA cleavage 

independent of caspases (Takano et al., 2005). As such, in an apoptotic process, AIF and 

Endo G are believed to be involved in a feed-forward mechanism whereby their 

redistribution from mitochondria is triggered by downstream caspase activation 

(reviewed in Hansen and Nagley, 2003). 

 

BID, another BH3-only protein accountable for the Bax activation during OMMP in 

neurons, is also regulated by p53 (Desagher et al., 1999). For BID to becom functional, it 

requires cleavage by active caspase-8 or caspase-2 to form truncated BID (tBID) (Konig 

et al., 2007; Niizuma et al., 2008). During focal cerebral ischemia and oxygen/glucose 
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deprivation in neurons, tBid presence is critical for apoptosis to proceed (Plesnila et al., 

2001; Yin et al., 2002). Once migrated to the mitochondria, tBid participates in the direct 

redistribution of AIF to the nucleus in cultured neurons (Culmsee et al., 2005; 

Landshamer et al., 2008). However, it is recently reported that full length BID is involved 

in inducing caspase-independent cell death in neurons, implying the BID truncation is not 

crucial for the activation of the cell death signaling cascade and it may have an important 

role in AIF redistribution during cell death in the absence of caspase activity (Konig et 

al., 2007; Ward et al., 2006).  

 

1.6.2.2 Autophagy 

Autophagy is part of a cell‘s routine cellular homeostatic process to remove molecules 

and organelles via lysosomal clearance/degradation pathway (Nagley et al., 2010). Its 

importance in CNS is gaining increasing recognition (Jaeger and Wyss-Coray, 2009). 

Autophagy can be classified into several pathway subtypes (reviewed in (Todde et al., 

2009)), namely macroautophagy (MA; most commonly associated with mitochondria and 

cell death), microautophagy (autophagy without vesicles) and chaperone-mediated 

autophagy. As such, we will focus on the discussion of MA involvement in neuronal 

death and the term ―Autophagy‖ will be used to refer to MA. Autophagy requires the 

formation of a double membrane vesicle called an autophagosome which is involved in 

the sequestration and engulfment of organelles or molecules and target them for 

lysosomal clearance. Microtubule-associated protein 1-light chain 3 (LC3), an essential 

protein component of the autophagosome membrane, has been adopted as an autophagic 

biomarker for the localization studies of these vesicles (Kabeya et al., 2000). There is a 
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widely accepted belief that autophagy is essential for the homeostatic maintenance of 

functional organelles, such as mitochondria due to the post-mitotic nature of neurons 

(Terman et al., 2006). Due to the lack of cellular division in neurons, autophagy is 

essential for turnover of dysfunctional mitochondria and protein aggregates (i.e. β-

amyloid or α-synuclein in AD and PD, respectively, believed to be detrimental to 

neuronal survival (reviewed in Klionsky, 2006; Terman et al., 2006). There are at least 

two situations in which autophagy come into play to induce neuronal death: in the first 

instance, when the autophagic process is insufficient to remove the toxic protein 

aggregates, as possibly occurs in AD and PD (reviewed in Kroemer and Levine, 2008); 

and secondly, autophagy is up-regulated as a direct contributor to cell death as in PCD 

Type II. 

 

Existence of autophagic neuronal cell death was first proposed when an alternative death 

pathway independent of apoptosis was activated in sympathetic neurones (Xue et al., 

1999).  Subsequent similar studies reported multiple vesicles formation (Gomez-Santos et 

al., 2003), increase autophagic protein levels (Kanno et al., 2009) and cell death 

attenuation with autophagic inhibitors (Gomez-Santos et al., 2003; Xue et al., 1999). As 

the autophagic inhibitors such as 3 methyladenine or wortmannin used in these studies 

are non-specific and can also block apoptotic pathways (Canu et al., 2005), most did not 

classify the death explicitly as autophagic. Furthermore, cooperative signaling coupling 

between autophagy and apoptosis makes it even more difficult to distinctively classify 

cell death as belonging exclusively to a certain PCD type. 
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Another example of this signaling interplay implicating mitochondrial regulation, 

autophagic players and cell death is demonstrated by Beclin-1 function. This protein is 

not only a central component of the autophagic pathway, but also contains a BH3-only 

domain which can be negatively regulated by interacting with the anti-apoptotic BCL2 or 

BCL-xL proteins (Oberstein et al., 2007).  Interference of these BCL2 family/Beclin-1 

interactions by mutation of the BH3-only domain within Beclin-1 led to active 

autophagic death (Pattingre et al., 2005). Functional importance of Beclin-1 in PCD-Type 

II is further substantiated by over-expression studies that it induces massive autophagy 

which progresses to cell death (Pattingre et al., 2005). Suppression of the autophagic 

process by Beclin-1/BCL2(BCL-XL) interactions is alleviated through competitive 

disruption by BH3-only proteins such as BAD (Maiuri et al., 2007a). With the 

establishment of these molecular associations, Beclin-1 involvement in autophagy is 

much more prominent than in apoptosis. This is because current perspective is that the 

cross-talk is unidirectional (Ciechomska et al., 2009; Maiuri et al., 2007a), such that 

BCL2 family regulates autophagy but Beclin-1 does not affect apoptosis. However, these 

interactions do not necessary lead to cell death but can be beneficial to cellular 

homeostasis in other conditions such as starvation. For instance, during starvation in 

HeLa cells, ABT737 (a BH3- only peptide mimetic) triggered mitophagy rather than 

reticulophagy (also known as ERphagy), yet only ER-localized BCL2/BCL-xL (not 

mitochondrially-targeted BCL2/BCL-xL) was capable of inhibiting starvation-evoked 

autophagy, implying a significant importance of ER-stress/autophagic cross-talk (Maiuri 

et al., 2007b).  
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Further pathway interlocks between the apoptotic and autophagic signaling cascades can 

be illustrated via the roles of death signaling molecules such as the autophagy protein 

ATG5, as well as the BH3-only proteins BNIP3 and BIK. ATG5, an autophagy protein 

essential for autophagosome formation, can undergo truncation by calpains, transforming 

it to an effective apoptotic inducer (Mizushima et al., 2001). Once cleaved, ATG5 is able 

to freely translocate from the cytosol to mitochondria, where it binds to BCL-xL, 

triggering CYTC redistribution and downstream caspase activation (Yousefi et al., 2006). 

Hypoxia in HEK293 cells triggers BNIP3 up-regulation resulting in cell death (Azad et 

al., 2008). BNIP3 over-expression promotes autophagy, while knockdown diminishes 

hypoxia-induced autophagy and cell death. Similarly, silencing of Beclin-1 and ATG5 

under the same cellular condition also inhibits hypoxia-induced cell death, indicating that 

all three proteins participate in the same autophagic cell death cascade. This postulation is 

further verified by BIK over-expression -induced cell death in BCL2-/- murine embryonic 

fibroblasts which could be abrogated by autophagic inhibitors and knockdown of Beclin-

1 and ATG5 (Rashmi et al., 2008). Autophagy triggered by relevant BCL2 family 

members during cell death may be used as an alternative resort to provide additional 

supply of energy to fulfill the apoptotic process.  

 

1.6.2.3 Programmed necrosis 

Severe, massive cellular or tissue damages frequently lead to unregulated, accidental 

necrosis, when cells are subjected to drastic cellular ionic and osmotic perturbations 

leading to rapid swelling with consequential gross cellular debilitation (Blomgren et al., 

2007; Boujrad et al., 2007; Gill and Perez-Polo, 2008; Kroemer et al., 2009; Nicotera and 
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Melino, 2004). This aberrant cytotoxic outcome differs from programmed necrosis (PCD-

Type III) which is dependent on distinct regulated pathways (distinct from both apoptosis 

and autophagy). Cells undergoing PCD-Type III though possessing some morphological 

resemblance to truly necrotic cells, they on the other hand undergo a discrete loss of 

permeability of the plasma membrane (Boujrad et al., 2007). In both cases, mitochondrial 

energisation and ATP production were also inhibited.  

 

Similar to PCD-Type I and PCD-Type II, mitochondria are also a central component to 

cell death regulation in programmed necrosis. However, as opposed to PCD-Type I, 

PCD-Type III does not rely on caspase activation (Kroemer et al., 2009). Instead, 

programmed necrosis triggers the MPT and is dependent on AIF and Endo G re-

localization (Boujrad et al., 2007; Higgins et al., 2009). Calpains, a family of Ca2+-

dependent cysteine proteases, frequently form the hallmark of PCD-Type III (Golstein 

and Kroemer, 2007; Kroemer et al., 2009). While calpains have been implicated in all 

PCD subtypes in an apoptosis-necrosis continuum (e.g. calpains activation during 

apoptosis in motor neurons (Momeni and Kanje, 2006; Samantaray et al., 2006; Sribnick 

et al., 2007), their involvement in programmed necrosis has been especially highlighted 

due to elevation of intracellular Ca2+ in programmed necrosis (Diwakarla et al., 2009a; 

Pang et al., 2003; Yamashima et al., 2003). Calpains are categorized into tissue-specific 

isoforms (n-calpains), and two constitutively and ubiquitously expressed isozymes 

calpain I (μ-calpain) and calpain II (m-calpain), that are activated in vitro by micromolar 

and millimolar concentrations of Ca2+, respectively (Polster et al., 2005). Unlike 

caspases, calpains do not recognize specific substrate cleavage sites and their activities 
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are tightly modulated by cofactors, such as the endogenous inhibitor, calpastatin, and 

phospholipids (Huang and Reichardt, 2001). 

 

Cross-regulation between caspase-dependent and caspase-independent PCD pathways is 

evident from observations that calpastatin can be cleaved by caspase-3 to facilitate 

calpains activation in PCD-Type I (Porn-Ares et al., 1998; Wang et al., 1998) and that 

calpains too are able to activate endogenous caspases such as caspase-3, -7, -8 and -9 

(Chua et al., 2000). It is demonstrated in a hypoglycemia model that neuronal death is 

dependent on both MPT and redistribution of CYTC and AIF triggered by both caspase-3 

and calpain activation (Ferrand-Drake et al., 2003). Calpain I is directly accountable for 

the redistribution of AIF from intact mitochondria, and calpains inhibition is able to 

suppress AIF release, emphasizing calpains role in caspase-independent cell death 

(Polster et al., 2005). As such, AIF-dependent death (in the absence of caspase activation) 

associating with calpains activation has been classified as programmed necrosis (Boujrad 

et al., 2007). This emphasis is further highlighted by the significant reduction of damage 

induced by KA-mediated excitotoxicity in vivo upon calpastatin over-expression, 

demonstrated to be caused by a decrease in cleavage of BID to tBID and the 

redistribution of AIF and Endo G from mitochondria (Takano et al., 2005).  

 

1.6.3 Oxidative stress 

Neuronal oxidative stress is a prominent phenomenon frequently observed in chronic 

neurodegenerative disorders such as AD (Sultana and Butterfield, 2009) and PD (Jenner, 

2007) and acute neurological disorders such as stroke (Niizuma et al., 2009). Oxidative 
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stress results from the aberrant disruption of the physiological balance between the pro-

oxidants and anti-oxidants in favour of the former (Lakhan et al., 2009). It is 

characterized by a substantial rise in intracellular ROS level that is disruptive to cellular 

homeostatic balance through infliction of DNA, protein and lipid damages, release of 

Ca2+ from intracellular stores and chemotaxis which explains the accumulation of 

oxidized protein aggregates seen in numerous neuropathological conditions (Evans and 

Cooke, 2004; Halliwell, 2006; Lennon et al., 1991; Liu et al., 1996). Severe oxidative 

stress triggers cell death through necrosis while at moderate level can induce apoptosis 

(Evans and Cooke, 2004; Lennon et al., 1991; Liu et al., 1996). 

 

Oxidative stress is one of the two main patho-physiological mechanisms frequently 

implicated in ischemic stroke as the formation of ROS/reactive nitrogen species (RNS) is 

significantly enhanced through numerous injury cascades e.g. mitochondrial inhibition, 

Ca2+ overload, reperfusion damage and inflammation (Coyle and Puttfarcken, 1993). 

Mitochondria, as the main cellular site for energy production, offer a rich primary source 

of ROS through its respiratory electron transport chain which constantly undergoes 

fluctuations in redox states (Halliwell, 2006). Other secondary cellular processes 

contributing to ROS production include lipid peroxidation, cation-associated Fenton 

reactions, NO-mediated protein nitrosylation and matrix enzymatic interactions 

(Chinopoulos and Adam-Vizi, 2006; Halliwell, 2006; Zundorf et al., 2009). 

 

Brain ischemia generates O2•-, a highly reactive primary radical, through xanthine 

oxidase and subsequently responsible for H2O2 formation and finally OH• generation (a 
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short-lived but most reactive type of oxygen species), thus activating a chain reaction 

cascade of ROS production after leakage from the mitochondrial electron transport chain 

(Lakhan et al., 2009). H2O2 is lipid-soluble and readily tranverses cell membranes. 

Concurrently, O2•- crosses cell membrane via anionic channels (Kontos, 2001). On the 

other hand, NO, a water- and lipid-soluble free radical that is produced from L-arginine 

by NOS, forms the basis for RNS formation. As NO itself is highly reactive due to its 

thermodynamic instability, it undergoes various chemical reactions with gaseous 

molecules, anions and ROS readily to form NO2
-, NO3

- and ONOO-. Elevated NOS type -

I and -III activities have been observed in neurons and vascular endothelium respectively 

upon cererbral ischemic onset. As time progresses, elevated NOS type II (iNOS) activity 

is also detected in other cell types within the brain including glia and infiltrating 

neutrophils (Lakhan et al., 2009). 

 

Besides inflicting cerebral cellular damage, oxidative stress also elevates blood–brain 

barrier permeability through induction of matrix metalloproteinases (MMPs), especially 

MMP-9 (Montaner et al., 2003; Rosenberg et al., 1998), and endothelial cell injury 

(Chan, 2001; Kontos, 1985; Siesjo et al., 1989). Free radicals regulate cerebral blood 

flow by being strong cerebral vasodilators (Wei et al., 1985). However, further 

interaction between NO and O2
- alters vascular reactivity to CO2 triggering an opposing 

effect of vasoconstriction (Kontos, 2001). Moreover, ROS promotes platelet aggregation 

(Love, 1999). 

 

As a result, free radicals are considered as a potential therapeutic target for improving the 
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prognosis of an ischemic stroke. Compounds possessing strong intrinsic antioxidant 

properties such as ebselen (a mimic of glutathione peroxidase; (Yamagata et al., 2008)) 

and resveratrol (a natural phytoalexin found in some dietary sources such as grapes and 

red wine; (Ozkan et al., 2009)), have been demonstrated to reduce stroke-associated brain 

infarcts in animal models. 

 

1.6.4 Neuroinflammation 

The CNS has been misunderstood over the years to be an immune-privileged organ. 

However recent studies have uncovered the CNS to be engaging in substantial crucial, bi-

directional crosstalk with the immune system. Emerging data from neuro-pathological 

studies further revealed that inflammatory cells participate in tissue remodeling after 

brain injury. Post-ischemic neuroinflammatory modulations cause dysfunction of the 

blood-brain barrier, cerebral edema, and neuronal cell death (Lakhan et al., 2009).  

 

Microglial cells, as the resident macrophages of the brain, play a critical role as 

phagocytic scavengers to the immuno-competent CNS. Ekdahl and colleagues (2009) 

commented a two-hour middle cerebral artery occlusion (MCAO) in rats triggered an 

increase in the number of activated microglial cells that persists up to 16 weeks after 

(Ekdahl et al., 2009). Upon ischemia stimulation, microglias evolve into phagocytes 

secreting a variety of substances, many of which are cytotoxic and/or cytoprotective. 

These activated microglial cells are also capable of releasing several pro-inflammatory 

cytokines such as tumour necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and 

interleukin-6 (IL-6), as well as other potential cytotoxic molecules including NO, ROS, 
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and prostanoids (Lucas et al., 2006).  Similarly to microglia, astrocytes can also secrete 

inflammatory factors such as cytokines, chemokines, and NO (Swanson et al., 2004). 

Interestingly, microglia may induce neuroprotection by secreting neurotrophic molecules 

such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor I (IGF-I), 

and several other growth factors. 

 

Cytokines promote the expression of cell adhesion molecules (CAMs), facilitating 

adherence of circulating leukocytes to vessel walls transmigrate into the brain with 

further release of additional pro-inflammatory mediators and secondary injury in the 

penumbra. This typically occurs within four to six hours after ischemia onset. Neutrophils 

are the earliest leukocyte subtype to infiltrate the ischemic brain and demonstrate 

substantial up-regulation in gene expression studies. Recently, Shichita et al. (2009) 

reported production of IL-23 from infiltrating macrophages attracts infiltrating γdT cells 

three days after the onset of ischemia along side with IL-17 generation which amplify the 

inflammatory cascade (Shichita et al., 2009). Antibody-mediated inhibition of a γdT cell 

receptor subtype effectively limited the infarct volume, even when delayed treatment was 

initiated at 24 hours after ischemic onset. As such, these γdT cells may pose as potential 

clinical target providing a longer therapeutic window to inhibit secondary inflammatory 

expansion of cerebral damage after stroke (Lakhan et al., 2009). 

 

1.6.5 Microvascular disruption 

Maintenance of cerebrovascular autoregulation is important to retain the intrinsic ability 

of the cerebrovascular bed to buffer any changes in blood pressure by withstanding a 
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stable, constant perfusion (Paulson et al., 1990). When cerebral blood flow pressure 

drops, arteriolar vasodilation triggered by metabolic factors (hypoxia, adenosine, carbon 

dioxide (CO2) and acidosis), myogenic processes (smooth muscle relaxation in response 

to drop in intravascular pressure) and endothelial mechanisms (NO, prostacyclin and 

endothelin-1) takes place to maintain cerebral perfusion pressure (Andresen et al., 2006). 

Focal and global dysfunction of cerebral autoregulation in reperfused ischemic brain have 

been observed, though its exact physio-pathological significance remains to be elucidated 

(Dawson et al., 2003; Eames et al., 2002; Reinhard et al., 2005). 

 

Ischemia induces enhanced endothelial cell permeability, matrix degradation and loss of 

autoregulation. This in turns facilitates leukocyte-endothelial cell adhesion. Endothelial 

injury suppresses NO and prostacyclin release, and promotes endothelin-1 generation, 

resulting in elevated vascular tone limiting blood in the tissue and collateral vessels in the 

infarct area, inflicting a greater degree of ischemic injury. Endothelin-1 a highly potent 

vasoconstrictor when elevated in ischemic stroke has been found to be associated with 

cerebral edema (Estrada et al., 1994; Moldes et al., 2008). Further to the undesirable 

effects of vasoconstriction, systemic breakdown of autoregulation leaves the vulnerable 

ischemic penumbra exposed to potentially damaging blood pressure fluctuations induced 

during ischemia and post-ischemic thrombolytic treatment (Leonardi-Bee et al., 2002; 

Oliveira-Filho et al., 2003; Zazulia et al., 2007). 

 

Apart from the structural microvascular damage, dynamic changes also occur at the 

molecular level that includes the presentation of leukocyte adhesion receptors on 
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endothelial cells (del Zoppo and Mabuchi, 2003; del Zoppo et al., 1991; Mori et al., 

1992). This is an essential step towards a post-ischemic inflammatory response, further 

caused undesirably the obstruction of the downstream microvascular bed after 

reperfusion of the occluded supply arteries, an observation known as the ―no-flow‖ 

phenomenon. All in all, this phenomenon is a result of extrinsic compression from 

edema, endothelial swelling and intravascular obstruction due to local activation of 

leukocytes, platelets and coagulation (Brouns and De Deyn, 2009).  

 

Endothelial cell injury also causes the leakage of tissue factor to blood, where it interacts 

with coagulation factors to activate thrombin-mediated cleavage of fibrinopeptides from 

fibrinogen resulting in the fibrin molecules to aggregate, thus trapping platelets, clotting 

factors and erythrocytes to form the clot. Cleavage of procarboxypeptidase U, 

alternatively known as thrombin activatable fibrinolysis inhibitor, to its active form 

carboxypeptidase U by thrombin, plasmin or the thrombin/thrombomodulin complex 

abrogates fibrin resolution (Bjorkman et al., 2005; Bouma and Meijers, 2003; Leurs and 

Hendriks, 2005; Willemse and Hendriks, 2007). Substantial decrease in 

procarboxypeptidase U activity occurs in the first 72 h after ischemic stroke (Brouns et 

al., 2010) and in patients with poor response to thrombolytic therapy, is a probable 

indication of a stronger activation of the procarboxypeptidase U/carboxypeptidase U 

pathway and thrombus propagation (Brouns et al., 2009; Willemse et al., 2008). 

 

Platelets activation has been observed in circumstances of ischemia and high shear stress 

(Gawaz, 2004; Zeller et al., 1999). Activated platelets accumulate within microvessels as 
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early as 2h of vascular occlusion (Fisher and Francis, 1990; Lip et al., 2002). They 

secrete a variety of biochemical mediators, thus permitting interactions between 

coagulation factors and contribute to the ―no-reflow‖ phenomenon by adhering to both 

leukocytes and microvascular endothelial cells (Chong et al., 2001; Htun et al., 2006; 

Zeller et al., 2005). Furthemore, platelets also induce temporary vasospasm by releasing 

thromboxane A2 and free radicals and propagate inflammatory cascade by releasing 

chemotactic mediators necessary for leukocyte transendothelial migration (Okada et al., 

1994b; Zeller et al., 2005). In acute ischemic stroke, it is frequently observed that the 

endogenous fibrinolysis is usually outweighed by ongoing activation of the coagulation 

cascade and platelet activation (Eddleston et al., 1993). Coagulation is further enhanced 

by elevated levels of hemostatic indicators including D-dimer, fibrin monomer, 

thrombin–antithrombin III complex and fibrinopeptide 1.2 (Barber et al., 2006; Chong et 

al., 2001; Haapaniemi et al., 2004; Tanne et al., 2006). 

 

1.6.6 Blood-brain-barrier (BBB) impairment 

Uphold of blood–brain-barrier (BBB) integrity is important in the protection of the 

neuronal microenvironment. Upon cerebral ischemia onset, endothelial basal lamina 

dissolution occurs as rapid as 2h after the onset of ischemia, resulting in an increase in 

BBB permeability (Hamann et al., 1995). Ischemic damages inflicted to the BBB 

occurred in a biphasic manner, especially after blood reperfusion to the ischemic region 

(Belayev et al., 1996; Huang et al., 1999; Kuroiwa et al., 1985). Although early 

reperfusion may temporarily limit BBB modifications, use of thrombolytic rt-PA 

treatment and delayed reperfusion may on the contrary aggravate the endothelial injury 
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(Bang et al., 2007; Hjort et al., 2008; Kastrup et al., 1999; Kidwell et al., 2008). 

Oxidative stress initiates BBB injury and aggravates the extent of damage though 

promotion of digestion of the endothelial basal lamina by inducing MMP-9 release by 

neurons, glia and endothelial cells (Gasche et al., 2001; Gidday et al., 2005; Heo et al., 

2005). Other players involved in mediation of BBB injury include accumulation of 

bradykinin (Aschner et al., 1997; Kamiya et al., 1993), vascular endothelial growth factor 

(Abumiya et al., 1999), thrombin (Okada et al., 1994a), active matrix metalloproteinases 

and other protease activities (Gasche et al., 2001; Gidday et al., 2005; Heo et al., 2005; 

Hosomi et al., 2001; Opdenakker et al., 2001; Rosell et al., 2008). With the infliction of 

the first wave of BBB damage, a second stage of severe BBB injury occurred within 24–

72 h after infarction (Kastrup et al., 1999; Lorberboym et al., 2003). Its etiology is more 

complex and results in greater tissue damage via leukocyte infiltration and marked MMP-

9 release from neutrophils that transmigrated to the ischemic region (Gidday et al., 2005; 

Rosell et al., 2008). 

 

BBB impairment allows non-selective leakage of blood components into the brain 

parenchyma (Brouns and De Deyn, 2009). Inflammatory cells transmigrate into the 

ischemic region, potentiating post-ischemic inflammation (del Zoppo and Hallenbeck, 

2000). By means of osmosis, high molecular weight molecules followed by water is 

extravasated into the brain leading to vasogenic edema, which subsequently progresses to 

intracranial hypertension. Furthermore, red blood cell entry into the brain leads to 

hemorrhagic transformation of the infarcted area.  
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1.7. Inadequacy in knowledge of stroke pathogenesis: Missing pieces from the puzzle 

A quick search from PubMed easily revealed an enormous number of publications 

providing molecular mechanistic insights into the pathogenesis of stroke. These 

invaluable research works are like pieces of clue to a puzzle, providing multiple angle 

glimpses to the molecular signaling cascades at work in cerebral ischemia. Even then the 

etiology still calls for more research effort to be elucidated, as demonstrated by the 

current presence of only yet a single clinically approved therapeutic treatment (i.e. rt-PA) 

with inconsistent efficacy, short therapeutic window and high risk to detrimental side 

effects. This is further complicated by the multifunctionality of most cellular proteins, 

making the timing of manipulation of their expression levels a critical task under 

neuropathological conditions. As such, it is crucial and beneficial to develop screening 

platforms for identification of more novel primary cellular players governing the 

progression of the ischemic cascade, whose manipulations can achieve therapeutic 

interventions. 

 

1.8 Global transcriptomic profiling studies: An overview 

Traditional molecular research tools for gene expression studies e.g. Reverse 

Transcriptional Polymerase Chain Reaction (RT-PCR), in situ hybridization, Northern 

blotting and RNase protection assays, only permit a low-throughput analysis of one or a 

small group of genes at any one time. As such, it becomes critical with respect to the 

availability and selection of the probes of interest by the commercial companies and 

researchers respectively to dictate the genes to be studied in a research project, a huge 
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limitation to the elucidation of functional and biological significance of a gene with 

respect to its interactions with other partners.  

 

However, with the complete sequence of the human genome in 2001 by the Human 

Genome Project Consortium (Lander et al., 2001) in concurrence with Celera Genetics 

(Venter et al., 2001), it also marks the revolution in biomedical technological 

development. Microarray technology allows a simultaneous high-throughput 

identification of many novel genes, and bettering the understanding of their biological 

and functional significance, sparking off the ‗post-genomic era‘ (Lockhart and Winzeler, 

2000). These high-throughput and efficiently -generated vast sequencing data contributed 

to ‗functional genomics‘ screening which aims to determine the function of genes and 

their interactions/modulations eventually contributing to the large paradigms of 

biological functions.  

 

Microarrray technology started its humble beginning in 1995 where it is used to 

determine the gene expression of 45 genes in Arabidopsis (Schena et al., 1995) and 

gained vast popularity in 2001 with its successful implementation in the sequencing of 

the human genome. Since then, it has been also been employed for various research 

purposes including differential gene expression, single nucleotide polymorphism 

genotyping, splice-variant analysis, novel gene identification, protein-RNA interaction, 

DNA mapping and epigenetics (reviewed in Hheisel, 2006). These all in all contribute to 

development of diagnostic tools for diseases (Gershon, 2005), and drug discovery 

(Marton et al., 1998; Geschwind, 2003). In accordance with my current Ph.D. project, we 

will focus on the molecular biology behind its use in gene expression profiling, 
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facilitating a short period efficient elucidation of the temporal patterns of expression and 

generation of large transcriptional profiles of different disease models. 

 

Due to the thousands of distinct gene reporters on a single array, each microarray 

experiment is therefore equivalent to the same number of genetic tests carried out in 

parallel. Since microarrays have the possibility to incorporate tens of thousands of gene 

probes, it becomes feasible to screen the entire genome of a particular organism, thus 

enabling a complete comparison of the expression levels of almost all transcribed genes 

on a genomic scale (Brown and Botstein, 1999). The influence of microarray analysis has 

been powerful in both basic and applied biology. This technology has substantially 

accelerated many scientific investigations by clearing the path biologists approach 

complex problems. Processing of incredibly large amount of microarray data also 

quickens the development of bioinformatics as a new science area (Schulze and 

Downward, 2001; Gershon, 2002). 

 

1.8.1 Microarray technique: differential gene expression studies 

Global gene expression profiles in cells or tissues assist in the elucidation of the 

molecular basis of disease pathology, drug treatment or phenotype. Microarray analysis 

facilitates the detection of global changes of gene expression in samples derived from 

normal and diseased tissues, treated and non-treated time courses, or different stages of 

differentiation and development (Schulze and Downward, 2001). Significant data on gene 

expression profiles under different conditions can be obtained with the addition of 

appropriate controls and repeated experiments. Computational analysis of all microarray 
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data further permits reliable interpretation after the classification of known and unknown 

genes based on their expression patterns (Armstrong and van de Wiel, 2004). 

 

1.8.2 Mechanistic concept behind microarray technology 

Microarray technology is formulated on the basis of three major design criteria: firstly the 

probe type employed on the array, secondly the assembly of the arrays and thirdly the 

number of samples (single or double-channel) which can be concurrently determined on 

the same array (Tarca et al., 2006). Conventional microarray offered by Affymetrix is 

made up of probe attachment via surface engineering to a solid surface (e.g. glass or 

silicon chip) by a covalent bond to a chemical matrix such as epoxy-silane, amino-silane, 

lysine, polyacrylamide Later developed microarray platforms by Illumina employed 

microscopic beads, as opposed to the large solid support. Nevertheless, microarrays from 

different companies are typically made up of an arrayed series of thousands of 

microscopic spots of DNA oligonucleotides, called features, each containing picomoles 

(10−12 moles) of a specific DNA sequence, known as probes (or reporters). Each of these 

probes was repeated tens of times on the same array. These can be a short section of a 

gene or other DNA element that are used to hybridize a cDNA or cRNA sample (called 

target) under high-stringency conditions. Probe-target hybridization is usually detected 

and quantified by detection of fluorophore- (Cy3 or Cy5) labeled targets to determine 

relative abundance of nucleic acid sequences in the target. 

 

The basic principle behind microarray technology is the high specificity hybridization 

between first DNA strand (target sequence) and the second DNA strand (probe on 

http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/DNA
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microarray) (Southern et al., 1999). This is dependent on the property of complementary 

nucleic acid sequences to exclusively pair with each other via hydrogen bonds between 

corresponding nucleotide base pairs. The higher the degree of base pair complementation 

in a nucleotide sequence, the stronger and tighter the non-covalent bonding between the 

two strands. After removal of non-specific bonding sequences by repeated washings, only 

DNA strands specific to the probes will remain hybridized. As such, fluorescently labeled 

(Cy3 or Cy5) target sequences that bind to a probe sequence emit a signal that is 

subjected to the strength of the hybridization (determined by the number of paired bases), 

the hybridization conditions (temperature and duration), and washing after hybridization. 

Total strength of the signal, from a spot (feature), is quantitated by the amount of target 

sample binding to the probes present on that spot. Microarrays use relative quantitation in 

which the intensity of a feature is compared to the intensity of the same feature under a 

different condition (e.g. treatment and diseased state), and the identity of the feature is 

known by its position. A simplified workflow of a microarray experiment is shown in 

Figure 1.4. 

 

Fluorescently labeled target sequences could be DNAs, RNAs or cDNAs. Microarray 

analysis of mRNA samples required the mRNAs to be reversed transcribed using a oligo-

d(T) primers to form cDNAs. The cDNA templates are then amplified using RNA 

polymerase to form cRNAs using fluorescently labeled nucleotides. These target 

sequences can be hybridized onto the arrays in a single (one sample) or dual (two 

samples) -channel array formats. Single-channel arrays, employing only one flurophore 

for detection, commonly used oligonucleotides as probes, although in some cases cDNA 

http://en.wikipedia.org/wiki/Nucleotide


Chapter 1: Introduction 

63 
 

or PCR fragments are adopted. Employing this array layout implies that only one sample 

can be hybrized per array, and differential gene expression data is obtainable through 

comparative normalization with other arrays upon completion of whole microarray 

experiment. The single-channel array format is depicted in Figure 1.5. 

 

Similarly, dual-channel arrays also adopt oligonucleotides, cDNA or PCR fragments as 

probes. The distinct differenece is that this array format highly relies upon the 

competitive hybridization between two samples (target and control reference), each 

differentiated by different fluorophore labeling, on a single array. Advantage of this 

technique is that relative gene expression differences between the two samples are 

observedly simultaneously. Its difference in layout from single-channel format is shown 

in Figure 1.6. 

 

Three key points need to be taken into consideration when designing a microarray 

experiment: Firstly, the number of biological samples to ensure the reliability of the 

conclusions drawn from the experimenty; secondly, technical replicates (two RNA 

samples obtained from each experimental unit) to ensure precision by the handler and 

allow for testing differences within treatment groups. The technical replicates may be two 

independent RNA extractions or two aliquots of the same extraction; and lastly, the 

number of replicates of each cDNA clone or oligonucleotide presented as replicates (at 

least duplicates) on the microarray slide, to provide a measure of technical precision in 

each hybridisation. It is important to formulate a good and meticulous microarray 

experimental design so that high quality results can be yielded in conjunction with valid 
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and sound conclusions. As such, guidelines on microarray designs have been published in 

MIAME (minimum information about a microarray experiment) standards 

(http://www.mged.org/Workgroups/MIAME/miame.html).  

 

 

 

Figure 1.4 A schematic diagram of the major steps in a microarray experiment. 

http://www.mged.org/Workgroups/MIAME/miame.html
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Figure 1.5 A schematic diagram depicting a single-channel (one sample) microarray 

experiment layout. 
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Figure 1.6 A schematic diagram depicting a dual-channel (two samples: Target and 

Reference) microarray experiment layout. 
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1.8.3 Assignment of functional-biological pathway definition to significantly-

modulated genes using online database tool 

Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.7 is a high-

throughput and integrative data-mining bioinformatics environment, which is able to 

identify and assign biological pathway significance associated with large gene lists 

through classification of co-functioning genes to biological annotations and statistically 

highlight those enriched (over-represented) annotations (Dennis et al., 2003; Huang et al., 

2009). This exploratory, computational-cum-statistical instrument of clustering and 

enrichment is crucial in the identification of biological processes most pertinent to the 

biological phenomena of interest. 

 

Differentially modulated, statistically significant gene probes identified from 

biostatistical software (e.g. GeneSpring® and Partek®) were input onto the functional 

classification interface on DAVID for functional genomic analysis. The results emergent 

from this stepwise DAVID analysis suggested gene functional classification based on 

their biological-function annotations (setting the background to the respective microarray 

platform and array type use i.e. companies and species) and clustering annotation was 

carried out to rank the importance of the overall annotation term groups through 

enrichment and statistically validation by gene-term enrichment score through modified 

Fisher‘s exact test and Benjamini correction.  
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1.8.4 Relevance of global gene profiling to elucidation of pathogenesis of 

neuropathological disorders 

The study of gene expression on a global scale using microarrays has significantly 

accelerated the analysis of diseases and the unraveling of cellular signaling pathways. 

One area in which microarray analysis has received significant attention is in 

neurobiology (Geschwind, 2000; Lockhart and Barlow, 2001). Differential gene 

expression mapping in multiple brain regions has been used to determine the genetic 

etiologies and molecular mechanisms accountable for the neurobehavioral differences in 

mice (Sandberg et al., 2000). Studies using microarrays to determine gene expression 

changes occurring in the neocortex and cerebellum of aging mice have shown that brain 

aging in the mice might be comparable to changes in human neurodegenerative disorders 

at the transcriptional level (Lee et al., 2000). Similarly, microarrays have been 

extensively used to measure transcript expression profiles or search for molecular 

markers and pathways involved in the pathogenesis of AD, multiple sclerosis and stroke 

(Colangelo et al., 2002; Emilsson et al., 2006; Ginsberg et al., 2000; Rink et al., 2010; 

Tseveleki et al., 2010). Studies for the development of new therapies for diseases without 

suitable animal models, such as schizophrenia, also involved microarray analysis of gross 

brain samples to reveal alterations in specific metabolic pathways (Hakak et al., 2001; 

Middleton et al., 2002; Mirnics et al., 2000). 
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1.9 Aims of my Ph.D. project 

The objective of my Ph.D. project is to lay the foundation for development of screening 

platforms for stroke using comparative global transcriptional profiling anlyses of in vitro 

and in vivo models to define novel biological target, and via pharmacological 

manipulation to determine its effectiveness in neuronal injury abrogation. My aims are as 

follow: 

1. To identify common signaling pathways in vitro stroke models of excitotoxicity 

2. To verify and correlate the occurrence of common signaling pathways also in different 

in vivo stroke subtypes animal models 

3. Using transgenic knockout animals to further illustrate the importance of primary 

mechanistic events during stroke  

4. To ascertain if manipulation of the expression level of an identified novel biological 

target would attenuate ischemic-induced infarct damage 

5. To determine if the identified signaling pathways in stroke are universal to other 

neurodegenerative disorders 
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Global gene profiling of stroke has been reported in several recent literatures (Rink et al., 

2010; Tseveleki et al., 2010) to identify genes which influence the pathological and 

clinical changes during focal cerebral ischemia. In my current project, a more in-depth 

and extensive microarray approach was adopted to facilitate a comprehensive elucidation 

of the pathogenesis of cerebral ischemia, which subsequently facilitated the identification 

of a novel family of biological targets (Auora kinase A (AURKA) and B (AURKB)). 

Functional genomics study of cerebral ischemia is made more detailed in two ways: 

firstly, temporal global transcriptomic profiling over a 24h-period is conducted and 

secondly, both in vitro and in vivo cerebral ischemia models are adopted for microarray 

analyses. Furthermore, a concurrent comparative microarray analysis of various in vitro 

neurodegenerative models offers unprecedented novel mechanistic insights common to 

numerous neurodegenerative disorders. In this Ph.D. study, great emphasis is placed on 

over-represented biological processes related to neuronal injury. For the purpose of clear 

distinction during reference to proteins and genes, gene symbols in the text are denoted in 

sentence case, while that with reference to proteins are in uppercase. 

 

Temporal microarray analysis of in vitro ischemia models using specific iGluRs agonists 

on cultured murine primary cortical neurons elucidates the significance of excitotoxicity, 

an upstream process during cerebral ischemia. This provides invaluable insights into 

significantly modulated biological processes triggered by excitotoxicity (discussed in 

Chapter 3), and thereby facilitates the identification of novel biological targets which 

would theoretically show promising efficacy in the abrogation of infarct damage due to 

their implications in the pathogenesis of cerebral ischemia (Discussed in Chapter 6). 
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As focal cerebral ischemia can be subdivided into more specific disorder categories 

depending on the etiology, the age of the affected and the duration of ischemia, my 

present study has for the first time looked into the temporal global transcriptomic 

profiling of three subtypes: neonatal hypoxic ischemia, transient and permanent cerebral 

ischemia (Discussed in Chapter 4 -6). Oxidative stress is one of the two main physio-

pathological mechanisms in cerebral ischemia in addition to inflammation. The 

importance of intact functional anti-oxidant mechanisms to combat oxidative stress 

during cerebral ischemia is accentuated by the employment of glutathione peroxidase 1 –

knockout (Gpx-1-/-) transgenic mice, and its temporal microarray analysis is conducted in 

parallel with and compared against that of the wild-type mice (Discussed in Chapter 5). 

 

A novel biological target, AURKs family, has been identified to be involved in cell cycle 

re-activation during excitotoxicity in in vitro cerebral ischemia models. Functional 

translational study involving administration of AURKs inhibitor in in vivo permanent 

cerebral ischemia model demonstrated substantial attenuation of infarct volume and this 

neuroprotective effect has been attributed to the suppression of the neuro-inflammatory 

cascades as shown by comparative temporal microarray analysis (Discussed in Chapter 

6). 

 

To ascertain the common pathways of neurodegeneration in the pathogeneses of different 

neurodegenerative diseases, unprecedented comparative microarray analysis of in vitro 

models of cerebral ischemia against that of other neurpathological conditions mainly AD, 

PD and ALS induced by pharmacological agents rotenone, lactacystin, hypochlorous acid 
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(HOCl) and NO is conducted (Discussed in Chapter 7). Invaluable mechanistic 

modulatory insights from as general as biological processes down to specific gene 

regulation aids the identification of more novel biological targets whose manipulations 

would provide even more effective therapeutic intervention across the neurodegenerative 

disease spectrum. 
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2.1 Buffers/Solutions and Consumables 

Distilled water passed through a purification system (Milli-Q water; Millipore 

Corporation, Bedford, MA, USA) was used for all purposes. Most stock solutions were 

purchased from Sigma-Aldrich-Aldrich: phosphate-buffered saline (PBS) was supplied as 

10× stock solution, Tris-HCl stock solutions were supplied as 1M, sodium chloride 

(NaCl) stock solution was supplied as 5M, ethylenediaminetetraacetate (EDTA) stock 

solution was supplied as 0.5M, and sodium dodecyl sulfate (SDS) stock solution was 

supplied as 10% (w/v), Stock 5× electrophoresis buffer and 10× Tris-acetate-EDTA 

(TAE) buffer. Multiwell plates for cell culture were from Nunc (Roskilde, Denmark). 

Disposable 15ml and 50ml centrifuge tubes (FALCON), and disposable 3ml syringes 

with 22½-gauge needles were from Becton Dickinson (Franklin Lakes, NJ, USA). 

Disposable 1.5ml and 2ml microfuge tubes were from Eppendorf (Hamburg, Germany). 

Nalgene® disposable filter units for sterile filtration were from Nalgene Nunc 

International (Rochester, NY, USA). Cell scrapers were from Techno Plastic Products 

(TPP; Zollstrasse, Schweiz). 

 

2.2 Immunocytochemistry 

 H2O2 solution 

 Normal goat serum 

 0.1% Triton X-100 

 Tris buffered saline (TBS) 

 3,4-diaminobenzidine (DAB) substrate solution 
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Fixed cells were quenched in 1% H2O2 and non-specific binding was subsequently 

blocked with 10% normal goat serum and 0.1% Triton X-100 in TBS for 1h at 4°C. Cells 

were incubated with polyclonal antibody to microtubule associated protein 2 (MAP2) 

(1:10000) overnight at 4°C and then secondary antibody for 3 h in solution with 2% 

normal goat serum and 0.1% Triton X-100 in TBS. Detection of immunoreactive cells 

was carried out using DAB substrate solution (0.5mg/ml DAB and 0.01% H2O2 in TBS). 

Immunoreactive cells were visualized under bright-field microscopy. 

 

2.3 Infarct volume assessment 

 2,3,5-Triphenyl- 2H- tetrazolium chloride (TTC) stain 

 

The whole brains were cut into 2-mm coronal sections and immediately stained by 2% 

TTC (Sigma Aldrich) at 37°C for 30min. The infarct volume was calculated by Image J 

1.42q and corrected for brain edema and contraction of infarct tissues.  

 

2.4 Total RNA extraction and isolation from plated neuronal cultures 

 RNeasy Mini Kit (50) (Qiagen Cat. No. 74104) 

 Filtered pipette tips 

 Pipetman 

 Eppendorf tubes 
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RNA from samples was extracted using RNeasy Mini Kit according to the 

manufacturer‘s instructions. All pipette tips used for RNase-free and filtered. The 

following procedures were suited for 1 million cultured cells per sample.  

 

2.5 Total RNA extraction from animal brain cortice 

 Trizol reagent (Sigma-Aldrich-Aldrich Cat. No. 15596-018) 

 RNeasy Mini Kit (50) (Qiagen Cat. No. 74104) 

 Filtered pipette tips 

 Pipetman 

 Eppendorf tubes 

 

At selected time-points post-reperfusion, animals were deeply anesthetized and then 

decapitated. Brains were reperfused with ice-cold PBS, removed quickly and the infarct 

cortex was dissected. Cortex from the same hemisphere was removed from the sham 

control animals. The whole cortex was frozen immediately in liquid nitrogen, and stored 

at –80C. Brain samples were ground and homogenized as described in (Bozinovski et 

al., 2002). Total RNA from homogenized cortex samples was extracted using the 

conventional phenol-chloroform extraction method with Trizol reagent. The obtained 

RNA samples were further purified using RNeasy Mini Kit according to the 

manufacturer‘s instructions. All pipette tips used were RNase-free and filtered. 

 

 

 



Chapter 2:  
Methodology 

77 
 

2.6 Determination of RNA Concentration 

 Distilled-treated water 

 Total RNA samples 

 Nanodrop ND-1000 Version 3.2.1 

 

RNA concentration was determined by adding 1.5µl of the RNA sample on the pedestal 

of the equipment. The pedestal was thoroughly cleaned with distilled water using 

laboratory wipe before usage and measurement was blanked with water. It was necessary 

to ensure that the RNA solution was mixed well. Absorbance reading was taking at 

260nm and 280nm. One unit of OD260nm was equivalent to 40µg/ml RNA content. In this 

case, concentration of RNA was obtained by multiplying 40 to the absorbance reading at 

260nm and then to 50 (dilution factor). Ratio of OD260nm:OD280nm would give the purity 

of the RNA sample. 

 

2.7 Checking of RNA Quality 

 RNA loading buffer (Sigma-Aldrich Cat. No. 1486) 

 RNA dilution buffer 

 Heat block 

 E-gene HDA-GT12 genetic analyzer 

 

1µl of total RNA sample was mixed with 1µl RNA loading buffer in 0.2ml tube. The 

mixture is heated at 70ºC for 4min on a heat block and then spun down to collect any 

condensation. The total volume of the mixture was topped up to 10μl with the RNA 
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Dilution buffer and mix by gently pipetting up and down a few times. Sample mixtures 

were analyzed immediately on the E-gene HDA-GT12 System. Two bands, both 18S and 

26S ribosomal RNA, should be observed at a ratio of 1:2 respectively. 

 

2.8 cDNA Synthesis/ Reverse transcription 

 Taqman reverse transcription reagents (Applied Biosystems) 

 DEPC-treated water 

 MicroAmp Optical Reaction tubes 

 Filtered pipette tips 

 Pipetman 

 Thermal cycler 

 

Reverse transcription was carried out according to steps specified by the manufacturer. In 

a 0.2ml microcentrifuge tube, a reaction mix was prepared for total RNA to be reversed 

transcribed. The following volumes were recommended for each sample.  

Component Per Sample (ul) 
10X RT-buffer 1 
25 mM MgCl2 2.2 
deoxyNTPs Mixture 2 
Random Hexamers 0.5 
Rnase Inhibitor 0.2 
Reverse Transcriptase (50 U/µl) 0.625 
Total 6.525 

 

In labelled microcentrifuge tube (MicroAmp Reaction Tube), volume corresponding to 

200µg of each RNA sample was added to the reaction mix corresponding to one sample 

(6.525µl), and the volume of RNase-free water used was 3.475 – RNA sample volume in 
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a 10-µl reaction (µl). The tube was capped and centrifuged to eliminate any bubbles and 

force the solution to the bottom. All the reaction tubes were loaded into a thermal cycler.  

 

The thermal cycler was set to the following conditions: 

Step 
Hexamer 

Incubation 
Reverse 

Transcription 

Reverse 
Transcription 
Inactivation 

HOLD HOLD HOLD 
Temperature 25°C 37°C 95°C 
Time 10min 60min 5min 
Volume 10µl 

 

A primer incubation step of 25°C for 10min is necessary to maximise primer-RNA 

template binding when using random hexamers for first strand cDNA synthesis. 37°C for 

60min in the reverse transcription step is necessary for reverse transcribing 18S only. 

After thermal cycling, all cDNA samples were stored at -15 to -25°C. 

 

2.9 Real-time Polymerase Chain Reaction (Real-time PCR) 

 Taqman Probes (Applied Biosystems) 

 18S Taqman Probe 

 Taqman Master Mix 

 DEPC-treated water 

 cDNA 

 96-well optical reaction plates and adhesive cover 

 Eppendorf tubes 

 Pipetmans 

 Filtered Pipette tips 
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 Benchtop microcentrifuge 

 

Each sample was triplicated with three No Template Control (NTC) for each probe used. 

The PCR reaction master mix was prepared for No. of reactions × 20 µl (excluding the 

cDNA).  

Reaction component Per reaction (ul) 
Taqman Universal Master Mix (2X) 12.5 
20X Assay Mix of Gene of Interest 1.25 
20X 18S RNA Assay Mix 1.25 
cDNA (total 100 ng) 5 
DEPC-treated Water 5 
Total 25 

 

20µl of the master mix was pipetted to the bottom of each well of the optical 96-well fast 

reaction plate. 5µl of cDNA or water (NTC) was added to the designated reaction well. 

The reaction plate was sealed with an Optical Adhesive Cover. The plate was then 

centrifuged at 4000rpm for 5min using the eppendorf centrifuge to eliminate air bubbles 

and force all solution to the bottom of well.  

 

The plate was then read by the 7000 Fast Real-Time PCR System with the following 

conditions: 

PCR Setup Carryover 
decontamination 

via UNG 

AmpliTag 
Gold Pre-
activation 

Melting  

Point 

Anneal/Extend 
Step 

(Combined) 

Temperature 50°C 95°C 95°C 60°C 
Time 2min 10min 15s 1min 
No. of cycles 1 1 40 
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2.10 Microarray analysis 

2.10.1 Microarray experiment using Illumina® Mouse Ref8 V1.1 / V2 and Rat Ref12 

V1 hybridization beadchips 

 Illumina® TotalPrep RNA Amplification Kit (Ambion) 

 Total RNA 

 RNase-free water 

 Streptavidin-Cy3 

 Hybridization and blocking buffers 

 Streptavidin-Cy3 

 

500ng total RNA sample was brought up to an initial start volume of 11µl. RNA was 

reverse transcribed to form first strand cDNA with the T7 Oligo(dT) Primer to synthesize 

cDNA containing a T7 promoter sequence., which was subsequently used for the second 

strand cDNA synthesis (employs DNA polymerase and Rnase H to simultaneously 

degrade the RNA and synthesize second strand cDNA). The cDNA were purified to 

remove RNA, primers, enzymes, and salts that would inhibit in vitro transcription. 

Finally in vitro transcription is employed to generate multiple copies of biotinylated 

cRNA from the double-stranded cDNA templates. All the previously mentioned 

procedures were performed using Illumina® TotalPrep RNA Amplification Kit. The 

yield of cRNA was quantitated using the NanoDrop ND-1000. 

 

750ng cRNA in a total volume of 5µl RNase-free water was mixed with 10µl 

hybridization buffer and preheated to 65°C for 5min. The assay sample was then fully 
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loaded onto the large sample port of each array on the beadchip. After loading of all 

assay samples had been completed, the beadchip contained in the humified hybridization 

chamber was placed in the 58°C oven for 17h. The following day, the IntelliHyb seal on 

the beadchip was removed to expose all the arrays. The arrays underwent different buffer 

wash, blocked, labeled with streptavidin-Cy3 and dried. The beadchip was then ready for 

scanning on the Illumina scanner using Bead Studio software at Scan Factor = 0.8 for 

mouse arrays and 0.65 for rat arrays. 

 

The Illlumina beadchips adopted in this Ph.D. study employ the single-channel (one-

sample) format. For Mus musculus beadchip arrays, each array contains multiple 

replicates of gene-specific probes which enable the detection of transcriptional regulatory 

change for a total of 24,613 and  25,697 well-annotated RefSeq transcripts pooled from 

the NCBI, Meebo and RIKEN databases for V1.1 and V2 respectively. On the other 

hand, a pool of 22,523 RefSeq transcripts was observed for Rattus norvegicus beadchip 

arrays. 

 

2.10.2 Microarray data collection and analysis 

Initial analysis of the scanned images was performed using BeadScan (Illumina®). For 

absolute analysis, each chip was scaled to a target intensity of 1000-2000, and probe. The 

absolute data (signal intensity, detection call and detection P-value) were exported into 

GeneSpringGX 7.3 (Agilent Technologies, CA, USA) software for analysis by 

parametric test based on crossgene error model (PCGEM). One-way ANOVA approach 

is been used to identify differentially expressed genes.  
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Array data were globally normalized using GeneSpring® V7.3 software. Firstly, all of 

the measurements on each chip were divided by the 50th percentile value (per chip 

normalization). Secondly, each gene was normalized to the baseline value of the control 

samples (per gene normalization) using median. Then genes were filtered on fold change 

1.5 fold against controls in at least one of total number of time-points or conditions to 

facilitate observation of gene regulatory trend, one-way ANOVA (p <0.05) and 

Benjamini-Hochberg false discovery rate (FDR) Correction were used to seek 

differentially expressed genes. Genes which were differentially expressed are annotated 

according to Gene Ontology-Biological process provided by the online bioinformatics 

resources Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.7 

(http://david.abcc.ncifcrf.gov/) (Dennis et al., 2003; Huang da et al., 2009). All 

microarray data reported here are described in accordance with MIAME guidelines, and 

has been deposited in the NCBIs Gene Expression Omnibus (GEO; http://www. 

ncbi.nlm.nih.gov/geo/). 

 

2.11 Statistical analysis 

All experiments were repeated at least three times. Data were analyzed using Tukey test 

with one-way analysis of variance (ANOVA) to assess significant differences in multiple 

comparisons. Values of *p < 0.05, ** p < 0.01, ***p < 0.001 were considered as 

statistically significant. Microarray data was expressed as mean ± sem. 

 

 

http://david.abcc.ncifcrf.gov/
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3 Description of in vitro excitotoxicity models using cultured murine primary 

cortical neurons 

Mouse Neocortical Neuronal Cell Culture Preparation 

Neocortical neurons (gestational days 15 or 16) obtained from foetal cortices of Swiss 

albino mice were used to prepare the primary cultures employing previous described 

procedures with modifications (Cheung et al., 1998). Microdissected cortices were 

subjected to trypsin digestion and mechanical trituration. Cells were collected by 

centrifugation and resuspended in NB medium containing 2.5% B-27 supplement, 1% 

penicillin, 1% streptomycin, 0.25% GlutaMAX-1 supplement and 10% dialyzed FCS.  

24-well plates previously coated with poly-D-lysine (100µg/ml) were seeded with cells to 

a density of 2 × 105 cells/cm2 and used for subsequent experiments. The cultures were 

maintained in a humidified 5% CO2 and 95% air incubator at 37°C. Immunocytochemical 

staining of the cultures at day 5 in vitro for microtubule-associated protein 2 and glia 

fibrillary acidic protein revealed  95% of the cells were neurons with minimal 

contamination by glia (Cheung et al., 1998).  All experiments involving animals were 

approved by the National University of Singapore, and were in accordance with the US 

Public Health Service guide for the card and use of laboratory animals.  
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Figure 3.1 Immunohistochemistry assay employing the neuronal marker, microtubule-associated 

protein 2 (MAP2), demonstrated an increase in neurite outgrowths with increasing days of culture. 
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Figure 3.2 Double immunohistocytochemistry labeling using MAP2 (neuronal marker; 

Green) and glial fibrillary acidic protein (GFAP; astrocyte marker; Red) demonstrated 

more than 95% of the cultures comprises of neurons. (Published in Yew et al., 2005) 
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Drug preparation for application on neuronal cultures over a 24h period 

All pharmacological drugs listed in the table below were freshly prepared individually in 

their respective solvent before each neuronal culture treatment. Desired concentrations 

were achieved via dilution with NB medium. EC50 for each drug has been previously 

ascertained in our laboratory via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) colorimetric reduction cell viability assay, and this concentration is 

employed to induce neuronal injury over a 24-hour incubation period in day 7 cultured 

neurons. Total RNA was harvested at 5h, 15h and 24h post-treatment, and subjected to 

microarray analysis using Illumina Mouse Ref8 V1 gene chips. For each treatment 

analysis via microarray, the arrays were assigned as follow: Control (n=6) and Treatment: 

5h (n=3), 15h (n=3) and 24h (n=3). n represents the number of biological replicates. All 

microarray data reported here are described in accordance with MIAME guidelines, and 

has been deposited in the NCBIs Gene Expression Omnibus (GEO; http://www. 

ncbi.nlm.nih.gov/geo/) and are accessible through the following GEO Series accession 

number. 

Drug Treatment Solvent Stock 
Concentration 

Treatment 
concentration 

GEO Accession 

Sodium hydrosulphide 
(NaHS) Water 100mM 200uM GSE16035 

Glu 
100mM sodium 

hydroxide 
(NaOH) 

100mM 250uM GSE19936 

NMDA 100mM NaOH 100mM 200uM GSE16035 
KA 100mM NaOH 100mM 100uM GSE22994 
 AMPA 100mM NaOH 55mM 300uM GSE22993 

All drugs were purchased from Sigma-Aldrich. 
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NaHS have been widely adopted in many research studies as a convenient, water-soluble 

H2S donor. NaHS dissociates to Na+ and HS– in solution, then HS– associates with H+ to 

produce H2S. In physiological saline (pH 7.4) at 37°C, approximately 18.5 - 33% of the 

H2S exists as the undissociated form (H2S), and the remaining exists as HS- at 

equilibrium with H2S of a molar concentration of NaHS (Dombkowski et al., 2004; Zhao 

and Wang, 2002). 
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3.1.1 Background information 

A previous study in our laboratory had ascertained that the expression of iGluRs plays a 

pivotal role in the determination of H2S-mediated neuronal effects (Cheung et al., 2007). 

Immunoblotting analysis was carried out to assess the expression of iGluRs in our in vitro 

primary neuronal cultures. From day 5 cultures, neurons showed initial expression of 

AMPARs and NMDARs with maximum expression optimized at day 7 and 8. In order to 

attribute the bi-functional effect of H2S is a result of GluRs expression, day 3 (with no 

GluRs expression) and day 7 (stable GluRs level) were used for treatment-effect 

comparison. 

 

Figure 3.3 Differential expressions of GluRs (GluR2/4 - AMPARs; NMDAR1 -

NMDARs) in cultured mouse primary cortical neurons from day 1-8 in vitro.  Cultures of 

mouse embryonic day 15-16 cortical neurons were cultured in NB medium with B-27 and 

GlutaMAX supplements for up to 8 days in vitro. During this time cells were lysed and 

analyzed by western blotting for GluR 2/4 and NMDAR1 receptor expression. 10µg of 

proteins was loaded per lane. Data are representative of 3 or more immunoblots. Data 

published in Cheung et al., (2007). 
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As shown in Figure 3.4, NaHS, a H2S donor, induced a contrasting cell survival effect 

between day 3 and day 7 cultured neurons after 24h. Day 3 neurons treated with 

escalating doses of NaHS demonstrated consistent cell viability comparable to control, a 

phenomenon which occurred irrespective of NaHS treatment. Instead, in sharp contrast, 

NaHS induced a dose-dependent reduction in cell viability as revealed by the MTT 

reduction assay with an EC50 of 200µM (Figure 3.4A). Concurrently, day 7 neurons when 

treated with NaHS concentrations less than or equal 200µM showed no significant 

occurrence of accidental necrosis as determined by lactate dehydrogenase (LDH) release. 

Upon treatment with NaHS doses above 200µM, LDH release was significantly elevated, 

an indication of neurons undergoing necrotic cell death (Cheung et al., 2007). 
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Figure 3.4 Concentration-dependent decrease in cell viability observed NaHS-treated day 

7 neurons.  Cells were exposed for 24h to NaHS at the stated concentrations and cell 

viability analyzed by (A) MTT and (B) LDH assays. Data are expressed as Mean ± S. D. 

of 6 or more separate determinations. ***p < 0.001 compared to control neurons. Data 

published in Cheung et al., (2007). 
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After having ascertained that sole application of NaHS induced neuronal death in day 7 

neurons but not that of day 3 neurons, the present author then moved on to determine if 

co-application of NaHS would confer any effects on Glu-induced neuronal excitotoxicity. 

As demonstrated in Figure in day 3 neurons, 100µM Glu treatment was unable to cause 

any significant cell death due to lack of functional GluRs in trigger excitotoxicity. 

Instead, 25uM NaHS offers neuroprotection to day 3 neurons against oxidative stress-

induced neuronal injury triggered by 100uM Glu. 

 

On the contrary, in day 7 neurons, sole and co- administration of 100µM Glu with 25uM 

NaHS demonstrated a significant reduction of cell viability (Figure 3.5). This suggested 

that H2S was capable of potentiating neuronal death when administered with Glu, by 

working synergistically with GluRs to induce neuronal death (Cheung et al., 2007). 
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Figure 3.5 Potentiation of Glu-mediated neurotoxicity by NaHS application was seen 

only in day 7 neurons.  Neurons were exposed to the stated conditions for 24h and cell 

viability assessed by MTT reduction assay. Data are expressed as Mean ± S. D. of 6 or 

more separate determinations. ***p < 0.001 compared to Glu-treated neurons. Data 

published in Cheung et al., (2007). 
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To determine which GluR subtypes were involved in the mediated of H2S-induced 

neurotoxicity, various GluR subtype antagonists were employed to assess their 

effectiveness in attenuating H2S-mediated neuronal death (Figure 3.6). Selective AMPAR 

antagonists, kyneurate, GYKI52466 and CYZ20, were ineffective in the abrogation of 

H2S-mediated neuronal death. Only application of pharmacological NMDAR antagonists, 

MK801 and APV, and KAR antagonist, CNQX was the neurotoxic effect of 200µM 

NaHS treatment able to be substantially attenuated, suggesting the importance of 

NMDARs and KARs activation in the triggering of H2S-mediated receptor-dependent 

signaling pathway. 
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Figure 3.6 Successful attenuation of H2S-induced neuronal death by NMDARs and 

KARs antagonists, which highlights the crucial role of NMDARs and KARs in the 

mediation of H2S-induced receptor-dependent neurotoxicity. Day 7 neurons were treated 

with respective antagonists (10μM) for 1h prior to the addition of 200µM NaHS and 

incubated 24h. Data are expressed as Mean ± S. D. of 6 or more separate determinations. 

***p < 0.001 compared to NaHS (200μM) treated neurons. Data published in Cheung et 

al., (2007). 
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From these published observations in Cheung et al., (2007), two conclusions can be 

drawn. 

Conclusion 1: H2S-mediated receptor-dependent signaling cascade is dependent on 

GluRs-activated signaling cascade. 

Conclusion 2: H2S-mediated neuronal injury revolves around iGluRs, particularly 

NMDARs and KARs, -induced excitotoxicity. 
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3.1.2 Introduction 

Endogenous hydrogen sulphide (H2S) expression has been detected in the brains of 

humans, rats and cattle (Goodwin et al., 1989; Savage and Gould, 1990; Warenycia et al., 

1989) via the quantification of its release from acid-labile sulfur (Ishigami et al., 2009), 

indicating its physiological functions in the mammalian nervous system. In vitro 

quantification employing tissue homogenates indicated that H2S is present in highest 

concentrations (three-folds of normal tissue level; 50-160μM) in the mammalian brain, 

liver and kidneys (Richardson et al., 2000). H2S is produced intrinsically from the activity 

of key transsulfuration enzymes, cystathionine--lyase (CSE), cystathionine--synthetase 

(CBS) and the recently discovered 3-mercaptopyruvate sulfurtransferase (3MST; 

reviewed in (Kimura, 2010)), all of which are expressed in the brain. CBS, whose activity 

is enhanced by a CBS activator, S-adenosyl methionine in the brain, plays a major role in 

the generation of H2S.  

 

It has been established under physiological condition, H2S mediates NMDAR-triggered 

hippocampal LTP, an important cellular mechanism in regulation of synaptic plasticity 

and memory-building (Abe and Kimura, 1996). The underlying signaling process of H2S-

mediated NMDARs-dependent potentiation is unclear, but it has been suggested that 

redox modulation of thiol groups scattered along the extracellular domains of neuronal 

NMDARs, which are sensitive to oxidizing/reducing agents may be responsible. An 

identified likely redox modulatory site is the Cysteine pair (Cys744 and Cys798) located 

on the extracellular domains of the NR1 subunit (Sullivan et al., 1994).  

 

Abnormal biosynthesis of H2S has been implicated in the pathogenesis of several 
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neurodegenerative diseases such as stroke (Qu et al., 2006), PD (Hu et al., 2010; Hu et 

al., 2009; Yin et al., 2009) and AD (Beyer et al., 2004; Clarke et al., 1998). Brains of AD 

patients possess substantially lower H2S level, and higher levels of brain protein nitration 

by ONOO- than normal subjects, without any change in L-cysteine level or CBS disease 

(Beyer et al., 2004; Clarke et al., 1998). In PD models, H2S is reported to confer 

neuroprotection through attenuation of elevated ROS level, prevention of mitochondrial 

membrane potential loss, inhibition of microglial activation and accumulation of pro-

inflammatory factors (e.g. TNF-α and NO) via the nuclear factor-kappaB (NF-κB) 

pathway (Hu et al., 2010; Hu et al., 2009; Yin et al., 2009). On the contrary, H2S is 

involved in the aggravation of cerebral ischemic damage (Qu et al., 2006). As such, the 

role of H2S under different neuropathological conditions still remains elusive. 

 

The role of H2S under patho-physiological conditions in the brain remains equivocal. H2S 

has previously been shown to confer neuroprotection mouse primary cortical neurons by 

acting as a free radical scavenger in the event of oxidative stress mediated by radical 

species such as H2O2, NO, ONOO- and HOCl (Kimura et al., 2010; Whiteman et al., 

2004; Whiteman et al., 2005a; Whiteman et al., 2006) and toxins such as rotenone (a 

commonly used toxin to establish PD models; (Hu et al., 2009)), and against oxidative 

Glu-mediated receptor-independent toxicity through elevation of intracellular glutathione 

levels and opening of K+
ATP and Cl- channels (Kimura and Kimura, 2004). However, 

evidence from our previous study strongly favoured H2S increasing Glu-induced cell 

death through a NMDAR-dependent pathway involving calpains rather than caspase-3 

activation, with concomitant lysosomal rupture in GluRs-expressing cultured cortical 
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neurons (Cheung et al., 2007). These apparently divergent results could well be explained 

through the existence of two forms of Glu toxicity; ionotropic receptor-initiated 

excitotoxicity and receptor-independent oxidative Glu toxicity (Murphy et al., 1989), 

which upon H2S stimulates distinctive downstream signaling cascades. H2S role as a 

neuroprotectant in Glu oxidative stress-mediated programmed cell death pathway 

occurring independent of iGluRs and thus, its cell death induction is not attenuated by 

antagonists of iGluRs (Murphy et al., 1989). It is triggered by high extracellular Glu 

concentrations in cultures of neurons lacking functional iGluRs where Glu competes with 

cystine (a major source of intracellular cysteine essential for glutathione biosynthesis) for 

cellular entry via the same amino acid transporter, resulting in decreased production of 

glutathione (a major antioxidant tripeptide made up of cysteine, Glu and glycine) and 

increased vulnerability to oxidative stress (Bannai and Kitamura, 1980). This observation 

has been consistently reported in primary cultures of neuronal cells (Kimura and Kimura, 

2004), neuronal cell lines (Kimura et al., 2006; Murphy et al., 1989), and brain slices. 

H2S-mediated neuroprotective effect is also extended to other oxidative stress agents, 

such as H2O2 (Kimura et al., 2010), NO (Whiteman et al., 2006), ONOO- (Whiteman et 

al., 2004), myeloperoxidase-derived oxidant hypochlorous acid (HOCl) (Whiteman et al., 

2005a) and rotenone (a commonly used toxin to establish Parkinson‘s disease models; Hu 

et al., 2009 (Hu et al., 2009)).  

 

On the other hand, research work from our group provided evidence of H2S involvement 

in the positive regulation of neuronal death in an iGluRs-expressing neuronal model 

which more closely resembles the adult mammalian brain (Cheung et al., 2007). This is 
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in consistent with the report by Qu et al., (2006) that demonsrated in an in vivo adult 

rodent stroke model (i.e. functional GluRs), H2S is a mediator of cerebral ischemic 

injury. Thus in presence of high levels of extracellular Glu during neuropathological 

conditions such as ischemia leads to constitutive activation of the iGluRs leading to 

excitotoxicity. This underscores the bi-directional neuromodulator role of H2S 

determined by the presence/absence of iGluRs. 

 

As a continuation of previous research findings, a comparative microarray strategy was 

employed to define the mechanistic significance of NMDARs and KARs involvement in 

H2S-mediated neuronal death and hence to elucidate the consequent patterns of 

recruitment of cellular signaling. 
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3.1.3 Results 

Previous data from our laboratory (Cheung et al., 2007) demonstrated that H2S-mediated 

neuronal injury is highly dependent on the GluRs, particularly NMDARs and KARs, -

induced excitotoxic pathways. In this current chapter, with particular emphasis placed on 

the importance of excitotoxicity in H2S-mediated signaling pathway through employment 

of comparative analysis of H2S, NMDA and KA global transcriptomic profiles using day 

7 cultured murine primary cortical neurons as the basis of an in vitro model. Microarray 

analyses using Illumina® Mouse Ref8 V1.1 beadchips revealed differential, time-

dependent global gene regulation in NaHS (a H2S donor), NMDA and KA -treated 

cortical neurons. All differentially expressed genes in this study were selected based on 

the criteria of a minimum of  1.5 fold change in at least one out of three time-points and 

has passed statistical testing of one-way ANOVA, p <0.05 and Benjamini-Hochberg 

FDR. 

 

Cell viability assay conducted previously in our laboratory ascertained the EC50 

concentrations in cultured murine primary cortical neurons to be 100uM for KA and 

200uM for NaHS and NMDA. These selected pharmacological dosages were employed 

respectively for neuronal culture treatment over a 24-hour period (5h, 15h and 24h) in 

preparation of total RNA samples for microarray study. 

 

 



Chapter 3.1:  
GluRs in H2S neuronal injury 

104 
 

3.1.3.1 A high degree of global transcriptomic association between H2S and 

NMDA/KA profiles: indication of high reliance of NMDARs and KARs –induced 

signaling transduction in H2S-mediated neuronal injury 

Out of a total of 24,613 well-annotated RefSeq transcripts, NaHS treatment generated a 

differentially regulated gene profile of 3,395 RefSeq transcripts, while NMDA and KA 

induced a significant transcriptional regulation in 2,309 and 3,800 transcripts. A Venn 

diagram comparison of the commonality of the gene probes regulated in all three profiles 

provided a total 1,510 transcript candidates. This figure amounted to a reasonably high, 

44.4% overlapping transcriptional regulatory occurrence of H2S profile attributed to that of 

NMDA and KA. Bi-model commonality comparison demonstrated a stunningly overlap of 

82.7% (1,911 out of 2,309 RefSeq transcripts; Figure 3.7A) of NMDA profile, and a slightly 

lower, of 57.2% (2176 out of 3,800 RefSeq transcripts; Figure 3.7B) of KA profile being 

present in that of H2S respectively.  

 

As previous pharmacological inhibitor study has demonstrated AMPARs antagonists 

inability to inhibit H2S-mediated neuronal injury, it would be important to verify if this 

observation was a result of receptor abundance or the diversity/minimal participation of the 

downstream signaling cascade contributing to excitotoxicity. As such, global gene profiling 

of specific AMPARs agonist, AMPA, was performed, generating a gene profile of 1,563 

significantly differentially regulated RefSeq transcripts. This was followed by a bi-model 

comparison to that of H2S. As shown in Figure 3.7C, 55.9% (842 out of 1,563 RefSeq 

transcripts) of AMPARs-mediated signaling cascade at the transcriptional level was present 

in H2S-mediated neuronal injury. This implies that AMPARs also play a major role in H2S-
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mediated neuronal damage, and as such the inability of AMPARs antagonists to attenuate 

neuronal death is most likely a result of physiological distribution of AMPARs, i.e. low 

receptor abundance coupled with the decreased in number of AMPARs with free 

permeability to Ca2+ on the post-synaptic membrane. Under physiological condition, 

NMDARs and KARs are present in greater abundance than AMPARs, explaining the 

effectiveness of selective NMDARs and KARs antagonists from previous pharmacological 

findings, thus concluding that NMDARs and KARs –triggered signaling cascades play a 

major role in H2S-mediated neuronal damage. 

 

To determine the downstream mechanistic implications that NMDARs and KARs activation 

played in H2S induction of neuronal injury, the 1,510 RefSeq transcripts common to all three 

profiles were subjected to functional-gene ontology classification using DAVID 6.7 analysis 

(Figure 3.8). DAVID 6.7 provides a high-throughput and integrative data-mining 

bioinformatics environment, which is able to identify and assign biological definition through 

classification of co-functioning genes to biological annotations and statistically highlight 

those enriched (over-represented) annotations (Dennis et al., 2003; Huang et al., 2009). This 

exploratory, computational-cum-statistical instrument of clustering and enrichment is crucial 

in the identification of biological processes most pertinent to the biological phenomena of 

interest. DAVID interpretation recognized 1,215 biologically- and functionally-reported 

genes from various biological databases respectively for differentially regulated RefSeq 

transcripts common to all three treatments. 
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Figure 3.7 Bi-model global transcriptomic profile analysis of individual iGluRs agonists 

against H2S-mediated neuronal injury model. Venn diagrams demonstrating the number 

of gene probes common and mutually exclusive to both models [A] H2S against NMDA 

[B] H2S against AMPA and [C] H2S against KA. 

A 

 

 

 

 
 

 

B 

 

 

 

 

 

 

C 



Chapter 3.1:  
GluRs in H2S neuronal injury 

107 
 

 

Figure 3.8 Venn diagram demonstrating the number of commonly occurring RefSeq 

transcripts overlapping across all three treatment profiles which have been subjected to 

the microarray analysis criteria of demonstrating at least 1.5 fold-change in one out of 

the three-points and passed statistical testing. 
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3.1.3.2 Functional-gene ontology classification revealed several key biological 

processes, crucial to neuronal survival/death 

Since H2S-mediated neuronal injury depends largely on NMDARs and KARs, which 

both simultaneously participate in the damage-inflicting excitotoxicity process, it could 

be deduced that excitotoxicity might be a primary, major upstream event assisting in H2S 

induction of neuronal death. Indeed, functional clustering of the differentially expressed 

gene probes common to all three profiles demonstrated several significantly enriched 

biological pathways relevant to the progression of excitotoxicity. They are discussed in 

greater details below. 

 

- CALCIUM ION BINDING AND INTERACTION 

Cellular Ca2+ level is a key index for the progression of neuronal injury (Nagley et al., 

2010) and majority of the genes encoding proteins involved in and/or required Ca2+ 

binding and interaction were significantly up-regulated between 5h and 15h post-

treatment in all three neuronal injury models (Table 3.1).  

 

- ENDOPLASMIC RETICULUM (ER) / LYSOSOMAL STRESS 

Organellar stress, particularly that of the ER and lysosomes, was particularly prominent 

in H2S, NMDA and KA profiles with significant transcriptional up-regulation of ER and 

lysosomal housing enzymatic (e.g. Retsat, Cln5 and Ctsz) and membrane (e.g. Lamp2, 

Laptm4b and Laptm5) proteins, and ER stress inducible genes (Cebpb and Notch1) 

(Table 3.1) taking place throughout the whole 24h profiling period. A recent article by 

Inoue et al., (2009) reported lysosomal-associated protein transmembrane 5 (LAPTM5) 
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accumulation induces a non-apoptotic cell death with autophagic vacuoles and lysosomal 

destabilization with lysosomal-membrane permeabilization in a caspase-independent 

fashion (Inoue et al., 2009). On the other hand, lysosomal Atp6v0a1 and Ap1 which are 

respectively involved in the acidification of organellar compartment for generation of 

proton gradient and endocytotic synaptic vesicle recycling demonstrated significant 

down-regulation, a further indication of functional impairment of lysosomes. 

 

- ANTI-OXIDANT RESPONSE 

The elevation of cytosolic Ca2+ during excitotoxicity mediated by over-activation of 

iGluRs can inflict oxidative and electrophilic stresses (Higgins et al., 2010; McCullough 

et al., 2001). In response to the heightened cellular stress, substantial increase in the 

number of anti-oxidant enzymes with significant transcriptional up-regulation was 

induced, as a counteractive measure to suppress any oxidative and free radical stress-

mediated damages (Table 3.1). These genes which encode for molecular chaperones and 

heat shock proteins (HSPs) were up-regulated from the 15h phase, and comprised of 

Bag3, ApoE, Hspb8, Hmox1, Serpinh1 (Hsp47) and metal ion chaperones, 

metallothioneins (Mt1 and Mt3). Up-regulation of the oxidative stress-inducible 

cytoprotective transcription factor, Nuclear factor, erythroid derived 2, like 2 (Nrf2), of 

which one of its downstream targets is Hmox1, was also observed.  Prominently, 

numerous genes encoding for members of the major anti-oxidant glutathione (GSH) 

pathway, namely Gst (b1 and m6), mGst (1 and a4), Gsr and Idh2, demonstrated 

significant up-regulation from 15h.  
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- CELL DEATH  

Majority of cell death cascade-involving genes such as Angpt4, Casp6, Dap, Tnfrsfs and 

Adamtl4 showed initial up-regulation at 15h post-treatment in all three neuronal injury 

models (Table 3.1). Interestingly, members of the intrinsic mitochondrial-dependent 

apoptotic pathway (Casp3, Bok and Cidea) and its endogenous inhibitor Bcl-XL all 

demonstrated a down-regulatory trend. 

 

- CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

Most of the pro-survival players including mitogenic factors (Spp1, Nr2e1, Igf2, Cntf and 

Birc7) demonstrated significant gene up-regulation across all three pharmacological types 

of neuronal death (Table 3.1). 

 

- MITOTIC CELL CYCLE REGULATION 

As shown in Table 3.1, microarray analysis revealed most genes that protect genome 

integrity, promote DNA repair and impede cell cycle re-activation, such as Gadd45g, 

Ccng1, Cdk2 and Ink4c gene expression showed an up-regulatory role in NaHS, NMDA 

and KA treatment models.  
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Table 3.1 Gene expression profiles of neuronal death-related families in cultured day 7 mouse primary 
cortical neurons treated with 200µM NaHS, 200µM NMDA and 100µM KA respectively. All expression 
values (given as fold-changes) were selected based on having at least minimum of 1.5 fold change in at 
least one out of three time-points subjected to one-way ANOVA analysis and Benjamini Hochberg FDR 
correction, and were significant at p < 0.05. Values are given as mean  sem. 
Genbank Gene Title Symbol Time-points 

 200 M NaHS 200 M NMDA 100 M KA 
5 h 15 h 24 h 5 h 15 h 24 h 5 h 15 h 24 h 

Calcium ion binding and interaction 

NM_011309 
S100 calcium 
binding protein 
A1 

S100a1 
1.35         

±          
0.23 

1.57         
±             

0.31 

2.01     
±       

0.36 

1.24     
±       

0.31 

1.92     
±       

0.40 

1.63     
±       

0.37 

1.33     
±       

0.26 

1.77     
±       

0.36 

1.53     
±       

0.34 

NM_011313 
S100 calcium 
binding protein 
A6 (calcyclin) 

S100a6 
1.74     

±       
0.33 

2.12     
±       

0.43 

3.48     
±       

0.62 

-1.02     
±       

0.18 

1.93     
±       

0.38 

1.91     
±       

0.37 

1.35     
±       

0.24 

2.12     
±       

0.39 

1.66     
±       

0.30 

NM_009113 
S100 calcium 
binding protein 
A13 

S100a13 
1.04     

±       
0.26 

1.28     
±       

0.39 

1.81     
±       

0.53 

1.09     
±       

0.36 

1.50     
±       

0.43 

1.16     
±       

0.32 

1.23     
±       

0.47 

1.51     
±       

0.44 

1.57     
±       

0.47 

NM_007585 Annexin A2 Anxa2 
1.22     

±       
0.26 

1.57     
±       

0.43 

2.50     
±       

0.37 

1.52     
±       

0.25 

1.93     
±       

0.31 

2.05     
±       

0.43 

2.31     
±       

0.45 

1.98     
±       

0.34 

1.48     
±       

0.35 

NM_013470 Annexin A3 Anxa3 
1.59     

±       
0.40 

2.00     
±       

0.70 

4.98     
±       

1.00 

1.18     
±       

0.31 

3.64     
±       

0.81 

3.23     
±       

0.63 

1.01     
±       

0.23 

1.95     
±       

0.43 

1.61     
±       

0.42 

NM_009673 Annexin A5 Anxa5 
1.23     

±       
0.26 

1.43     
±       

0.34 

2.42     
±       

0.48 

1.15     
±       

0.20 

1.69     
±       

0.29 

1.61     
±       

0.38 

-1.02     
±       

0.19 

1.50     
±       

0.33 

1.10     
±       

0.21 

NM_008861 Polycystic kidney 
disease 2 Pkd2 

1.04     
±       

0.25 

1.28     
±       

0.35 

1.57     
±       

0.30 

1.14     
±       

0.27 

1.54     
±       

0.28 

1.48     
±       

0.31 

1.39     
±       

0.24 

1.65     
±       

0.30 

1.23     
±       

0.25 

NM_007616 Caveolin, 
caveolae protein 1 Cav1 

1.07     
±       

0.26 

1.12     
±       

0.28 

1.55     
±       

0.37 

1.48     
±       

0.37 

1.04     
±       

0.19 

-1.31     
±       

0.19 

1.69     
±       

0.46 

-1.21     
±       

0.18 

-1.96     
±       

0.15 

NM_012056 FK506 binding 
protein 9 Fkbp9 

1.23     
±       

0.30 

1.54     
±       

0.47 

2.40     
±       

0.42 

1.43     
±       

0.30 

2.24     
±       

0.43 

1.44     
±       

0.30 

1.20     
±       

0.23 

1.98     
±       

0.39 

1.40     
±       

0.31 

NM_016863 FK506 binding 
protein 1b Fkbp1b 

-1.11     
±       

0.25 

-1.20     
±       

0.26 

-2.77     
±       

0.11 

-1.25     
±       

0.23 

-1.80     
±       

0.15 

-1.27     
±       

0.22 

-1.02     
±       

0.33 

-1.81     
±       

0.15 

-1.68     
±       

0.16 

NM_008855 Protein kinase C, 
beta 1 Pkcb1 

-1.26     
±       

0.19 

-1.38     
±       

0.29 

-3.45     
±       

0.05 

-1.03     
±       

0.28 

-2.76     
±       

0.16 

-2.61     
±       

0.12 

-1.04     
±       

0.20 

-1.82     
±       

0.10 

-2.38     
±       

0.08 
Endoplasmic reticulum/lysosomal stress 

NM_009883 

CCAAT/enhancer 
binding protein 
(C/EBP) beta 
(Cebpb) 

Cebpb 
-1.24     

±       
0.17 

-1.06     
±       

0.18 

1.88     
±       

0.34 

1.79     
±       

0.39 

1.41     
±       

0.23 

1.84     
±       

0.48 

4.79     
±       

0.95 

2.26     
±       

0.40 

2.14     
±       

0.40 

NM_026159 Retinol saturase Retsat 
1.28     

±       
0.25 

1.66     
±       

0.65 

2.05     
±       

0.39 

1.31     
±       

0.29 

2.55     
±       

0.50 

1.30     
±       

0.21 

-1.25     
±       

0.21 

2.26     
±       

0.38 

1.46     
±       

0.80 

NM_008714 
Notch gene 
homolog 1 
(drosophilia) 

Notch1 
1.13     

±       
0.25 

1.55     
±       

0.52 

2.51     
±       

0.50 

1.32     
±       

0.26 

2.25     
±       

0.43 

1.66     
±       

0.38 

-1.09     
±       

0.19 

2.39     
±       

0.44 

1.68     
±       

0.37 
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Table 3.1 (continued) 
Genbank Gene Title Symbol Time-points 

 200 M NaHS 200 M NMDA 100 M KA 
5 h 15 h 24 h 5 h 15 h 24 h 5 h 15 h 24 h 

Endoplasmic reticulum/lysosomal stress (continue) 

NM_009906 Tripeptidyl 
peptidase i Cln2 

1.15     
±       

0.28 

1.45     
±       

0.47 

1.67     
±       

0.40 

1.24     
±       

0.36 

1.70     
±       

0.40 

1.31     
±       

0.31 

1.52     
±       

0.40 

1.95     
±       

0.53 

1.65     
±       

0.54 

XM_127882 
Ceroid 
lipofuscinosis, 
neuronal 5 

Cln5 
1.09     

±       
0.26 

1.44     
±       

0.55 

2.82     
±       

0.53 

1.83     
±       

0.43 

2.25     
±       

0.45 

1.61     
±       

0.30 

1.29     
±       

0.32 

1.90     
±       

0.41 

1.37     
±       

0.35 

NM_019972 Sortilin 1 Nltr3 
1.11     

±       
0.33 

1.29     
±       

0.38 

2.03     
±       

0.55 

1.52     
±       

0.45 

3.71     
±       

0.81 

2.47     
±       

0.64 

1.21     
±       

0.38 

1.71     
±       

0.50 

1.56     
±       

0.53 

NM_022325 Cathepsin Z  Ctsz 
1.13     

±       
0.30 

1.35     
±       

0.45 

1.98     
±       

0.62 

1.35     
±       

0.43 

1.79     
±       

0.44 

1.44     
±       

0.40 

1.34     
±       

0.50 

1.65     
±       

0.48 

1.57     
±       

0.52 

NM_001017
959 

Lysosomal-
associated 
membrane protein 
2 

Lamp2 
1.63     

±       
0.30 

2.23     
±       

0.41 

1.54     
±       

0.34 

1.44     
±       

0.31 

2.31     
±       

0.41 

1.77     
±       

0.43 

1.63     
±       

0.30 

2.23     
±       

0.41 

1.54     
±       

0.34 

NM_033521 

Lysosomal-
associated protein 
transmembrane 
4B 

Laptm4b 
1.08     

±       
0.38 

1.61     
±       

0.50 

1.70     
±       

0.47 

1.37     
±       

0.50 

1.84     
±       

0.47 

1.45     
±       

0.48 

1.38     
±       

0.54 

1.86     
±       

0.68 

1.56     
±       

0.68 

NM_010686 
Lysosomal-
associated protein 
transmembrane 5 

Laptm5 
1.46     

±       
0.26 

1.47     
±       

0.27 

3.95     
±       

0.71 

1.71     
±       

0.46 

2.31     
±       

0.98 

2.13     
±       

0.34 

-1.52     
±       

0.18 

1.81     
±       

0.34 

1.36     
±       

0.50 

NM_016920 

ATPase, H+ 
transporting, 
lysosomal V0 
subunit A1 

Atp6Voa1 
-1.24     

±       
0.20 

-1.24     
±       

0.29 

-2.29     
±       

0.08 

-1.28     
±       

0.17 

-1.99     
±       

0.10 

-1.21     
±       

0.26 

1.54     
±       

0.36 

-1.36     
±       

0.16 

-1.50     
±       

0.24 

NM_007457 
Adaptor protein 
complex AP-1, 
sigma 1 

Ap1 
-1.16     

±       
0.22 

-1.12     
±       

0.23 

-2.18     
±       

0.13 

-1.25     
±       

0.23 

-1.58     
±       

0.16 

-1.47     
±       

0.21 

1.01     
±       

0.31 

-1.67     
±       

0.15 

-1.69     
±       

0.19 
Anti-oxidant response 

NM_013863 Bcl2-associated 
athanogene 3  Bag3 

1.18     
±       

0.19 

1.59     
±       

0.48 

2.62     
±       

0.41 

2.28     
±       

0.47 

2.65     
±       

0.36 

2.44     
±       

0.48 

2.52     
±       

0.37 

2.49     
±       

0.37 

2.09     
±       

0.31 

NM_009696 Apolipoprotein E  ApoE 
1.25     

±       
0.20 

1.58     
±       

0.54 

2.19     
±       

0.40 

1.15     
±       

0.27 

2.28     
±       

0.52 

1.75     
±       

0.27 

1.31     
±       

0.28 

2.36     
±       

0.43 

1.98     
±       

0.36 

NM_029688 
Sulfiredoxin 1 
homolog (S. 
cerevisiae)  

Npn3 
1.14     

±       
0.36 

1.59     
±       

0.78 

3.73     
±       

0.63 

1.91     
±       

0.39 

1.62     
±       

0.28 

1.02     
±       

0.19 

2.68     
±       

0.80 

1.73     
±       

0.43 

1.21     
±       

0.38 

NM_030704 Heat shock 27kDa 
protein 8  Hspb8 

1.35     
±       

0.35 

1.97     
±       

1.33 

4.00     
±       

0.75 

1.98     
±       

0.46 

3.85     
±       

0.80 

1.83     
±       

0.46 

1.42     
±       

0.37 

2.61     
±       

0.59 

1.60     
±       

0.38 

NM_013602 Metallothionein 1  Mt1 
1.15     

±       
0.19 

1.56     
±       

0.72 

2.19     
±       

0.35 

1.58     
±       

0.25 

1.97     
±       

0.34 

1.47     
±       

0.24 

1.97     
±       

0.40 

2.29     
±       

0.38 

1.92     
±       

0.38 

NM_013603 Metallothionein 3  Mt3 
1.16     

±       
0.20 

1.58     
±       

0.52 

1.94     
±       

0.32 

1.35     
±       

0.27 

1.90     
±       

0.27 

1.77     
±       

0.55 

2.34     
±       

0.48 

1.90     
±       

0.34 

2.01     
±       

0.49 
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Table 3.1 (continued) 
Genbank Gene Title Symbol Time-points 

 200 M NaHS 200 M NMDA 100 M KA 
5 h 15 h 24 h 5 h 15 h 24 h 5 h 15 h 24 h 

Anti-oxidant response (continue) 

NM_016892 
Copper chaperone 
for superoxide 
dismutase  

Ccs 
1.17     

±       
0.22 

1.45     
±       

0.31 

1.63     
±       

0.27 

1.47     
±       

0.32 

1.90     
±       

0.33 

1.46     
±       

0.26 

1.27     
±       

0.27 

1.69     
±       

0.30 

1.43     
±       

0.34 

NM_009825 

Serine (or 
cysteine) 
proteinase 
inhibitor clade H 
member 1  

Serpinh1 
1.04     

±       
0.19 

1.44     
±       

0.55 

2.23     
±       

0.46 

1.69     
±       

0.31 

2.02     
±       

0.39 

1.12     
±       

0.24 

1.27     
±       

0.23 

1.58     
±       

0.27 

1.08     
±       

0.23 

NM_016764 Peroxiredoxin 4 Prdx4 
1.11     

±       
0.25 

1.33     
±       

0.25 

1.79     
±       

0.28 

1.31     
±       

0.31 

1.65     
±       

0.31 

1.40     
±       

0.27 

1.66     
±       

0.31 

1.53     
±       

0.26 

1.24     
±       

0.24 

NM_010902 
Nuclear factor, 
erythroid derived 
2, like 2 

Nrf2 
1.22     

±       
0.33 

1.37     
±       

0.39 

2.66     
±       

0.77 

1.65     
±       

0.49 

2.00     
±       

0.45 

1.26     
±       

0.33 

1.59     
±       

0.53 

1.70     
±       

0.66 

1.25     
±       

0.40 

NM_010442 Heme oxygenase 
(decycling) 1  Hmox1 

-1.05     
±       

0.19 

1.45     
±       

0.77 

4.40     
±       

0.67 

2.70     
±       

0.58 

3.11     
±       

0.48 

1.59     
±       

0.29 

2.34     
±       

0.39 

2.17     
±       

0.39 

2.04     
±       

0.37 

NM_145079 

Udp 
glucuronosyltrans
ferase 1 family, 
polypeptide a6a 

Ugta6a 
1.39     

±       
0.37 

1.52     
±       

0.39 

2.53     
±       

0.57 

1.07     
±       

0.35 

1.93     
±       

0.45 

2.03     
±       

0.46 

1.38     
±       

0.42 

2.19     
±       

0.56 

1.92     
±       

0.54 

NM_010358 Glutathione S-
transferase, mu 1 Gstb1 

1.37     
±       

0.25 

1.88     
±       

0.60 

2.57     
±       

0.51 

1.45     
±       

0.32 

2.23     
±       

0.46 

1.43     
±       

0.30 

1.57     
±       

0.33 

2.12     
±       

0.40 

1.42     
±       

0.40 

NM_008184 Glutathione S-
transferase, mu 6 Gstm6 

1.25     
±       

0.42 

1.86     
±       

0.55 

2.11     
±       

0.54 

1.45     
±       

0.45 

2.09     
±       

0.63 

1.34     
±       

0.35 

1.52     
±       

0.50 

1.89     
±       

0.52 

1.18     
±       

0.36 

NM_013541 Glutathione S-
transferase, pi 1 Gstp1 

-1.23     
±       

0.15 

-1.04     
±       

0.19 

-1.66     
±       

0.12 

-1.13     
±       

0.20 

-1.41      
±       

0.14 

-1.71     
±       

0.11 

1.19     
±       

0.23 

-1.51     
±       

0.15 

-1.79     
±       

0.14 

NM_019946 
Microsomal 
glutathione s-
transferase 1 

mGst 
1.52     

±       
0.39 

2.14     
±       

1.12 

3.68     
±       

0.72 

1.71      
±       

0.42 

2.96     
±       

0.60 

1.67     
±       

0.37 

1.41     
±       

0.44 

2.55     
±       

0.53 

1.91     
±       

0.51 

NM_025569 
Microsomal 
glutathione S-
transferase 3 

mGst3 
-1.28     

±       
0.13 

-1.33     
±       

0.21 

-3.87     
±       

0.06 

-1.39     
±       

0.17 

-2.15     
±       

0.11 

-1.99     
±       

0.11 

-1.03     
±       

0.23 

-2.27     
±       

0.08 

-2.31     
±       

0.09 

NM_010357 
Glutathione s-
transferase, alpha 
4 

mGsta4 
1.74     

±       
0.34 

2.35     
±       

1.05 

3.83     
±       

0.93 

1.29     
±       

0.39 

3.05     
±       

0.70 

2.14     
±       

0.52 

1.14     
±       

0.31 

2.30     
±       

0.60 

2.03     
±       

0.48 

NM_010344 Glutathione 
reductase 1 Gsr 

1.24     
±       

0.33 

1.57     
±       

0.40 

1.90     
±       

0.42 

1.42     
±       

0.38 

1.62     
±       

0.42 

1.18     
±       

0.30 

1.69     
±       

0.49 

1.31     
±       

0.36 

1.12     
±       

0.36 

NM_010497 
Isocitrate 
dehydrogenase 1 
(NADP+), soluble 

Idh1 
-1.10     

±       
0.17 

1.00     
±       

0.18 

-1.76     
±       

0.09 

1.12     
±       

0.27 

-1.46     
±       

0.13 

-1.75     
±       

0.10 

1.11     
±       

0.23 

-2.08     
±       

0.09 

-2.69     
±       

0.10 

NM_173011 

Isocitrate 
dehydrogenase 2 
(NADP+), 
mitochondrial 

Idh2 
1.03     

±       
0.25 

1.51     
±       

0.77 

1.79     
±       

0.50 

1.59     
±       

0.48 

2.23     
±       

0.62 

1.43     
±       

0.34 

1.60     
±       

0.46 

2.22     
±       

0.62 

1.86     
±       

0.66 
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Table 3.1 (continued) 
Genbank Gene Title Symbol Time-points 

 200 M NaHS 200 M NMDA 100 M KA 
5 h 15 h 24 h 5 h 15 h 24 h 5 h 15 h 24 h 

Cell death 

NM_020581 Angiopoietin-like 
4  Angptl4 

2.20     
±       

0.84 

3.44     
±       

3.73 

9.33     
±       

1.72 

1.52     
±       

0.44 

2.50     
±       

0.66 

1.49     
±       

0.38 

4.74     
±       

0.84 

11.98     
±       

2.14 

10.21     
±       

2.28 

NM_009811 Caspase 6 Casp6 
1.28     

±       
0.29 

1.58     
±       

0.56 

2.44     
±       

0.49 

1.52     
±       

0.39 

2.42     
±       

0.48 

1.74     
±       

0.27 

1.29     
±       

0.30 

2.08     
±       

0.35 

1.59     
±       

0.36 

NM_009810 
Caspase 3 
apoptosis related 
cysteine protease 

Casp3 
-1.13     

±       
0.21 

-1.19     
±       

0.28 

-2.33     
±       

0.09 

1.17     
±       

0.31 

-2.03     
±       

0.18 

-2.01     
±       

0.09 

1.13     
±       

0.26 

-1.62     
±       

0.14 

-2.33     
±       

0.13 

NM_146057 Death-associated 
protein  Dap 

1.30     
±       

0.28 

1.63     
±       

0.43 

1.97     
±       

0.44 

1.34     
±       

0.27 

1.93     
±       

0.38 

1.39     
±       

0.27 

1.23     
±       

0.34 

1.81     
±       

0.39 

1.41     
±       

0.38 

NM_009818 
Catenin (cadherin 
associated 
protein), alpha 1 

Ctnna1 
1.28     

±       
0.24 

1.63     
±       

0.41 

2.68     
±       

0.40 

1.55     
±       

0.28 

2.39     
±       

0.33 

1.78     
±       

0.32 

1.29     
±       

0.23 

2.09     
±       

0.29 

1.43     
±       

0.27 

NM_013749 

Tumor necrosis 
factor receptor 
superfamily, 
member 12a 

Tnfrsf12
a 

-1.02     
±       

0.22 

1.12     
±       

0.26 

3.20     
±       

0.59 

1.72     
±       

0.46 

1.53     
±       

0.31 

1.21     
±       

0.27 

3.05     
±       

0.63 

2.05     
±       

0.48 

1.31     
±       

0.28 

NM_011609 

Tumor necrosis 
factor receptor 
superfamily, 
member 1a 

Tnfrsf1a 
1.16     

±       
0.30 

1.51     
±       

0.52 

2.59     
±       

0.57 

1.70     
±       

0.55 

2.09     
±       

0.58 

1.30     
±       

0.29 

1.13     
±       

0.27 

1.53     
±       

0.33 

1.03     
±       

0.30 

NM_144899 Adamts-like 4 Adamtl4 
1.30     

±       
0.32 

1.35     
±       

0.29 

1.63     
±       

0.34 

1.02     
±       

0.28 

1.77     
±       

0.35 

1.65     
±       

0.37 

-1.07     
±       

0.25 

1.77     
±       

0.41 

1.39     
±       

0.35 

NM_009743 Bcl2-like 1 
 

Bcl2l1/ 
Bcl-XL 

-1.06     
±       

0.20 

-1.20     
±       

0.35 

-1.89     
±       

0.12 

-1.38     
±       

0.18 

-1.62     
±       

0.15 

-1.21     
±       

0.22 

1.26     
±       

0.22 

-1.77     
±       

0.16 

-1.83     
±       

0.15 

NM_016778 
BCL2-related 
ovarian killer 
protein 

Bok 
-1.09     

±       
0.16 

-1.05     
±       

0.24 

-2.10     
±       

0.08 

1.02     
±       

0.19 

-1.57     
±       

0.12 

-1.74     
±       

0.12 

-1.08     
±       

0.14 

-1.47     
±       

0.12 

-1.65     
±       

0.12 

NM_001025
296 

Cell death-
inducing DNA 
fragmentation 
factor, alpha 
subunit 

Cidea 
-1.14     

±       
0.21 

-1.18     
±       

0.24 

-1.81     
±       

0.14 

-1.12     
±       

0.25 

-1.63     
±       

0.19 

-1.53     
±       

0.17 

1.45     
±       

0.21 

-1.52     
±       

0.19 

-1.58     
±       

0.21 

Cell homeostasis, survival and proliferation 

NM_009263 Secreted 
phosphoprotein 1 Spp1 

2.07     
±       

0.42 

1.80     
±       

0.96 

5.52     
±       

1.40 

1.85     
±       

0.83 

3.35     
±       

3.20 

4.30     
±       

1.17 

-1.01     
±       

0.32 

2.43     
±       

0.68 

2.23     
±       

0.67 

NM_010234 Fbj osteosarcoma 
oncogene c-Fos 

-1.69     
±       

0.16 

-1.58     
±       

0.14 

1.56     
±       

0.41 

2.81     
±       

0.72 

7.73     
±       

2.49 

13.41     
±       

9.70 

53.97     
±       

10.04 

27.35     
±       

4.76 

19.53     
±       

3.89 

NM_152229 

Nuclear receptor 
subfamily 2, 
group e, member 
1 

Nr2e1 
1.12     

±       
0.21 

1.57     
±       

0.58 

1.67     
±       

0.32 

1.37     
±       

0.35 

1.94     
±       

0.32 

1.56     
±       

0.50 

1.86     
±       

0.40 

2.25     
±       

0.42 

1.68     
±       

0.35 
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Table 3.1 (continued) 
Genbank Gene Title Symbol Time-points 

 200 M NaHS 200 M NMDA 100 M KA 
5 h 15 h 24 h 5 h 15 h 24 h 5 h 15 h 24 h 

Cell homeostasis, survival and proliferation (continued) 

NM_010514 Insulin-like 
growth factor 2  Igf2 

1.15     
±       

0.25 

1.66     
±       

1.04 

1.74     
±       

0.38 

1.56     
±       

0.36 

1.72     
±       

0.41 

1.24     
±       

0.28 

1.78     
±       

0.35 

2.06     
±       

0.43 

1.56     
±       

0.39 

NM_010053 Distal-less 
homeobox Dlx1 

1.20     
±       

0.27 

1.31     
±       

0.28 

1.52     
±       

0.31 

1.40     
±       

0.37 

1.92     
±       

0.57 

1.98     
±       

0.71 

1.50     
±       

0.32 

1.47     
±       

0.26 

1.33     
±       

0.34 

NM_053007 Ciliary 
neurotropic factor Cntf 

1.11     
±       

0.24 

1.18     
±       

0.32 

1.43     
±       

0.30 

1.18     
±       

0.27 

1.50     
±       

0.41 

1.24     
±       

0.29 

1.57     
±       

0.52 

1.51     
±       

0.39 

1.37     
±       

0.52 
NM_001025
250 
 

Vascular 
endothelial 
growth factor A  

Vegfa 
-1.80     

±       
0.16 

-1.40     
±       

0.21 

-1.01     
±       

0.25 

1.15     
±       

0.46 

-1.47     
±       

0.16 

-1.69     
±       

0.13 

-1.23     
±       

0.17 

-1.74     
±       

0.16 

-2.41      
±       

0.13 

XM_283820 
Baculoviral IAP 
repeat-containing 
7 (livin) 

Birc7 
1.14     

±       
0.31 

1.45     
±       

0.48 

1.76     
±       

0.46 

1.08     
±       

0.44 

1.59     
±       

0.43 

1.39     
±       

0.40 

1.15     
±       

0.45 

1.90     
±       

0.59 

1.56     
±       

0.49 
Mitotic cell cycle regulation 

NM_007891 E2F transcription 
factor 1  E2f1 

-1.09     
±       

0.19 

-1.01     
±       

0.25 

-1.52     
±       

0.13 

1.15     
±       

0.27 

-1.53     
±       

0.14 

-1.50     
±       

0.14 

1.35     
±       

0.24 

-1.60     
±       

0.14 

-1.77     
±       

0.14 

NM_007631 Cyclin D1  Ccnd1 
-1.31     

±       
0.21 

-1.20     
±       

0.24 

-1.80     
±       

0.14 

-1.04     
±       

0.33 

-1.96     
±       

0.12 

-1.98     
±       

0.12 

1.55     
±       

0.46 

-1.04     
±       

0.27 

-1.67     
±       

0.16 

NM_009831 Cyclin G1 Ccng1 
1.26     

±       
0.23 

1.43     
±       

0.31 

2.75     
±       

0.58 

1.30     
±       

0.34 

1.55     
±       

0.33 

1.25     
±       

0.34 

1.53     
±       

0.33 

1.35     
±       

0.25 

-1.01     
±       

0.22 

NM_016756 Cyclin-dependent 
kinase 2 Cdk2 

1.08     
±       

0.19 

1.24     
±       

0.31 

1.62     
±       

0.32 

1.60     
±       

0.28 

1.48     
±       

0.26 

1.33     
±       

0.29 

1.55     
±       

0.39 

1.31     
±       

0.29 

1.16     
±       

0.30 

NM_007668 Cyclin-dependent 
kinase 5  Cdk5 

-1.24     
±       

0.15 

-1.26     
±       

0.20 

-2.92     
±       

0.08 

-1.29     
±       

0.46 

-2.25     
±       

0.10 

-1.86     
±       

0.15 

-1.11     
±       

0.15 

-2.58     
±       

0.08 

-2.57     
±       

0.10 

NM_009668 Bridging 
integrator 1  Bin1 

1.04     
±       

0.30 

-1.08     
±       

0.30 

-1.76     
±       

0.14 

-1.48     
±       

0.21 

-1.66     
±       

0.17 

-1.35     
±       

0.19 

1.14     
±       

0.27 

-1.50     
±       

0.18 

-1.59     
±       

0.19 

NM_008179 
G1 to phase 
transition 2 
(Gspt2) 

Gspt2 
-1.02     

±       
0.18 

-1.07     
±       

0.26 

-1.92     
±       

0.08 

-1.25     
±       

0.15 

-1.60     
±       

0.11 

-1.37     
±       

0.12 

-2.44     
±       

0.07 

-1.87     
±       

0.10 

-1.98     
±       

0.10 

NM_011817 

Growth arrest and 
DNA-damage-
inducible 45 
gamma  

Gadd45g 
-1.04     

±       
0.25 

1.30     
±       

0.48 

2.50     
±       

0.64 

1.64     
±       

0.48 

3.16     
±       

0.75 

4.04     
±       

0.96 

13.29     
±       

3.83 

16.58     
±       

3.90 

16.21     
±       

3.59 

NM_007569 

B-cell 
translocation gene 
1 anti-
proliferative 

Btg1 
1.62     

±       
0.38 

1.64     
±       

0.34 

2.00     
±       

0.44 

1.05     
±       

0.33 

1.83     
±       

0.49 

1.53     
±       

0.37 

1.89     
±       

0.61 

1.38     
±       

0.44 

1.12     
±       

0.31 

NM_007671 

Cyclin-dependent 
kinase inhibitor 2c 
(p18, inhibits 
cdk4) 

Ink4c 
1.16     

±       
0.28 

1.38     
±       

0.33 

1.74     
±       

0.46 

1.61     
±       

0.46 

1.80     
±       

0.42 

1.33     
±       

0.30 

1.54     
±       

0.48 

1.85     
±       

0.44 

1.61     
±       

0.49 
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Table 3.1 (continued) 
Genbank Gene Title Symbol Time-points 

 200 M NaHS 200 M NMDA 100 M KA 
5 h 15 h 24 h 5 h 15 h 24 h 5 h 15 h 24 h 

Mitotic cell cycle regulation (continued) 

NM_008316 Hus1 homolog  mHus 
-1.11     

±       
0.19 

1.04     
±       

0.26 

1.38     
±       

0.36 

1.49     
±       

0.34 

1.95     
±       

0.42 

1.46     
±       

0.33 

1.22     
±       

0.20 

1.59     
±       

0.28 

1.05     
±       

0.24 

NM_21356 

Growth factor 
receptor bound 2-
associated protein 
1 

Gab1 
1.35     

±       
0.25 

1.67     
±       

0.40 

3.06     
±       

0.43 

1.50     
±       

0.25 

2.58     
±       

0.46 

1.81     
±       

0.30 

1.06     
±       

0.17 

2.03     
±       

0.23 

1.42     
±       

0.24 

NM_010754 MAD homolog 2 
(Drosophila) Mad2 

-1.36     
±       

0.16 

-1.22     
±       

0.17 

-1.59     
±       

0.13 

-1.25     
±       

0.17 

-1.55     
±       

0.13 

-1.31     
±       

0.16 

-1.36     
±       

0.18 

-1.86     
±       

0.12 

-2.12     
±       

0.10 
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3.1.3.3 Validation of H2S, NMDA and KA global transcriptomic profiles via real-time 

PCR 

Microarray data was validated via real-time PCR using on the same total RNA samples 

previously employed in microarray analyses. These selected gene probes demonstrated 

identical transcriptional regulatory trend at 15h and 24h (Table 3.2).  

 

Table 3.2 Validation of microarray data using real-time PCR technique on day 7 cultured murine 
primary cortical neurons treated with 200uM NaHS. Data are expressed as fold-change ± sem. All fold-
change expressions are statistically significant at p<0.05. Each expression data is representative of 3 
independent replicates. Data are expressed as fold-change ± sem. 

   200 M NaHS 
GenBank Gene Title Symbol 15h 24h 

 Microarray Real-time 
PCR Microarray Real-time 

PCR 

NM_007837 DNA damage-inducible 
transcript 3 Ddit3 -1.26 ±0.19 -1.89 ± 0.65 1.59 ± 0.41 3.24 ± 0.83 

NM_011817 Growth arrest and DNA-
damage-inducible 45 gamma Gadd45g 1.30 ± 0.48 1.70 ± 0.88 2.50 ± 0.64 1.64 ± 0.66 

NM_030704 Heat shock protein 8 Hspb8 1.97 ± 1.33 2.77 ± 0.82 4.00 ± 0.75 3.10 ± 0.76 
NM_010442 Heme oxygenase 1 Hmox1 1.45 ± 0.77 2.00 ± 0.72 4.40 ± 0.67  

NM_029688 Sulfiredoxin 1 homolog (S. 
cerevisiae) Npn3 1.59 ± 0.78 3.91 ± 0.86 3.73 ± 0.63  

NM_013743 Pyruvate dehydrogenase 
kinase, isoenzyme 4 Pdk4 2.44 ± 1.51 2.55 ± 0.90 2.09 ± 0.53 7.28 ± 0.82 
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Table 3.3 Validation of microarray data using real-time PCR technique on day 7 cultured murine primary 
cortical neurons treated with 200uM NMDA. Data are expressed as fold-change ± sem. All fold-change 
expressions are statistically significant at p<0.05. Each expression data is representative of 3 independent 
replicates. Data are expressed as fold-change ± sem. 
 200M NMDA 
GenBank Gene Title Symbol 15h 24h 

 Microarray Real-time 
PCR Microarray Real-time 

PCR 

NM_153553 Neuronal PAS domain 
protein 4 Npas4 4.77 ± 1.80 2.89 ± 0.68 6.72 ± 3.23  

NM_011817 Growth arrest and DNA-
damage-inducible 45 gamma Gadd45g 3.16 ± 0.75  4.04 ± 0.96 6.65 ± 0.75 

NM_030704 Heat shock protein 8 Hspb8 3.85 ± 0.80  1.83 ± 0.46 4.52 ± 0.82 
NM_010442 Heme oxygenase 1 Hmox1 3.11 ± 0.48 4.39 ± 0.63 1.59 ± 0.29 4.00 ± 0.71 

NM_029688 Sulfiredoxin 1 homolog (S. 
cerevisiae) Npn3 1.95 ± 0.53 3.69 ± 0.88 1.11 ± 0.21 -1.28 ± 0.68 

NM_013743 Pyruvate dehydrogenase 
kinase, isoenzyme 4 Pdk4 5.15 ± 1.34 3.94 ± 0.65 3.34 ± 0.61  

NM_023556 Mevelonate kinase Mvk -2.35 ± 0.13 -6.88 ± 0.68 -2.37 ± 0.14 -11.16 ± 0.78 
 

 

Table 3.4 Validation of microarray data using real-time PCR technique on day 7 cultured murine primary 
cortical neurons treated with 100uM KA. Data are expressed as fold-change ± sem. All fold-change 
expressions are statistically significant at p<0.05. Each expression data is representative of 3 independent 
replicates. Data are expressed as fold-change ± sem. 
 100M KA 
GenBank Gene Title Symbol 15h 24h 

 Microarray Real-time 
PCR Microarray Real-time 

PCR 

NM_013743 Pyruvate dehydrogenase 
kinase, isoenzyme 4 Pdk4 4.53 ± 1.22 3.93 ± 0.54 2.97 ± 1.02 5.65 ± 0.86 

NM_023556 Mevalonate kinase Mvk -3.42 ±0.08 -4.51 ± 0.80 -3.73 ± 0.09 -12.73 ± 0.54 

NM_029688 Sulfiredoxin 1 homolog (S. 
cerevisiae) Npn3 1.93 ± 0.36  1.38 ±0.30  

NM_010442 Heme oxygenase 1 Hmox1 2.17 ± 0.39  2.04 ± 0.37 1.74 ± 0.67 

NM_011817 Growth arrest and DNA 
damage-inducible 45 gamma Gadd45g 16.58 ± 3.90 8.69 ± 0.59 16.21 ± 3.59  

NM_153553 Neuronal PAS domain 
protein 4 Npas4 14.85 ± 3.18 19.63 ± 0.64 12.38 ± 3.11  

NM_030704 Heat shock protein 8 Hspb8 2.61 ± 0.59 1.53 ± 0.82 1.60 ± 0.38  
 
 
 

 

 
 



Chapter 3.1:  
GluRs in H2S neuronal injury 

119 
 

3.1.4 Discusssion 
 

3.1.4.1 Significance of iGluRs (NMDARs and KARs) activation in H2S-mediated 

neuronal injury 

From the simultaneous comparative analysis of the transcriptomic profiles of H2S, NMDA 

and KA –mediated neuronal injuries which demonstrates a 44.4% commonly occurring, 

differentially regulated genes of the former attributed to both latter, it can be inferred that 

there is a relatively high dependency of the iGluRs, namely NMDARs and KARs -

transduced signaling cascade in H2S-mediated neuronal injury. This is further supported 

by bi-model comparisons which indicate an overwhelming 82.7% of NMDA profile, and 

concurrently a still considerably high 57.2% transcriptomic incidence of KA profile in that 

of H2S (Figure 3.7A and B).  This is unsurprising as NMDARs are the major iGluRs 

subtype in terms of abundance in the mammalian brain, and demonstrate the highest 

intrinsic Ca2+ permeability which explains the numerous research findings that report the 

physiological association between NMDARs and H2S role as a neuromodulator. 

 

H2S is able to induce NMDAR activation via two possible pathways. H2S has the ability to 

reduce disulfide bonds or make bound sulfane sulfur (one of the endogenous H2S storage 

form) with free thiols in NMDARs. In the case of the former scenario, it is worthy to 

appreciate that disulfide bonds play a role in the functional regulation of many proteins, 

including NMDARs (Aizenman et al., 1989). Recent studies have demonstrated H2S-

mediated S-sulphydration of key sulphydryl groups regulating NMDAR activity alter Ca2+ 

influx through the receptor and/or indirectly activate cAMP-dependent protein kinase 
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known to regulate NMDAR-mediated signaling (Gadalla and Snyder, 2010; Tang et al., 

2010).  

 

Up-to-date, no literature has clearly addressed the neuromodulator role of H2S under 

patho-physiological conditions in association with KARs. As such, our previous and 

existing findings have unprecedentedly established the relationship of H2S-mediated 

neuronal injury with KARs via pharmacological inhibition study (Cheung et al., 2007) and 

comparative global transcriptomic profiling. It is possible that H2S triggers the activation 

of KARs via the same mechanism as that of NMDARs, i.e. S-sulphydration of key 

sulphydryl groups. Even though the overall average sequence identity in the entire iGluRs 

family is only about 20-30%, with NMDARs subunits demonstrating the highest degree of 

distinction from the closely-related AMPARs and KARs, all the three subtypes generally 

exhibit the same topology, thus making them concurrently unique and similar. 

 

3.1.4.2 Significance of enriched biological processes in H2S- mediated neuronal injury 

Based on time-course of global transcriptomic profiling, we are able to devise an overview 

of H2S-mediated neuronal injury formulated from the pattern of gene expression changes. 

 

 Early- and medium-term events (5h -15h processes)  

1. Application of exogenous H2S induces iGluRs activation, and while taking into 

account NMDAR high Ca2+-permeability, a massive Ca2+ influx from the ECM 

would be effected, which would in turn stimulate release from intracellular ER 

store. Together these sources contribute to drastic rise in Ca2+ concentration, which 
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is evident from the transcriptional up-regulation of Ca2+-binding proteins (e.g. 

Anxs and S100bp; Table 3.1: Calcium ion binding and homeostasis). 

 

2.  Perturbed Ca2+ regulation elicited early activation of Ca2+-dependent proteases 

calpains, demonstrated previously to occur 5h after NaHS treatment with 

subsequent destabilization of the lysosomal membrane (Cheung et al., 2007). 

 

3. In addition, triggering of extrinsic apoptotic mechanism was also evident from the 

H2S global transcriptomic profile. Members involved in the Fas/FasL-mediated 

cell death cascade (e.g. Tnfrsfs and Casp6) demonstrated significant up-regulation 

at 15h (Table 3.1: Cell death). Tumor necrosis factor receptor superfamily, subtype 

1 (Tnfrs1) has been implicated in the early establishment of inflammatory response 

and elevated neuronal damage upon neurotrauma induction. Tnfrs1, capable of 

induction of both apoptosis and necrosis via intracellular signaling has been 

reported to enhance expression of cell death-related genes, MMPs and their 

inhibitors (Quintana et al., 2005). On the contrary, the classical intrinsic 

mitochondrial-dependent cytochrome c-induced cell death mechanism was not 

triggered in H2S-mediated neuronal injury. This observation is in agreement with 

our previous immunoblot analysis which revealed a lack of caspase-3 activation 

but extensive activations of calpains (Cheung et al., 2007).  

 

4. Activation of the cell death signaling cascade concurrently triggered the cellular 

pro-survival response. Only a handful of the pro-survival candidates including Igf2 
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and Nre1 demonstrated significant transcriptional up-regulation at 15h. Insulin 

growth-like factor 2 (IGF2) is a potent mitogen which possess growth-promoting 

ability mediated via the Igf type 1 and type 2 receptors as well as through the 

insulin receptors, all of which are widely expressed throughout the brain (Silva et 

al., 2009). In this case, its gene expression showed significant elevation at 15h in 

NaHS-treated neurons. Ciliary neurotropic factor (CNTF) functions as a survival 

factor for numerous neuronal cell types through transcriptional modulation. In the 

event of oxidative stress commonly observed in neurodegenerative diseases, ROS 

has been reported to inhibit CNTF activation of Jak/STAT pathway in neurons 

resulting in increased neuronal damage (Kaur et al., 2005). Together this evidence 

suggested that the cell survival cascades were suppressed at the intermediate stage 

of H2S-mediated neuronal injury. 

 

 Late processes (15h-24h)  

5. Disruption of homeostatic balance imposed by elevated level of H2S results in 

organellar (e.g. ER and lysosomes) oxidative stress and disruption:  

a) A ―calpain-cathepsin hypothesis‖ was formulated by (Yamashima et al., 1998) 

on the basis of the experimental paradigm of global brain ischemia in primates. 

The calpain-cathepsin cascade mechanism of cell death involves Ca2+ mobilization 

through the uptake of extracellular Ca2+ and/or the release from internal Ca2+ 

stores. Ca2+ mobilization can lead to the activation of calpains which induces 

lysosomal rupture, possibly aided by ROS. The released lysosomal proteases, 

cathepsins, will then degrade the cell constituent proteins, ultimately leading to cell 
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death. Indeed, a significant increase in gene expression of lysosomal cathepsin Z 

(Ctsz; Table 3.1) was observed at 24h of H2S-mediated neuronal injury.  

 

b) The ER is an important organelle with the capability to regulate cellular stress 

through modulation of protein synthesis and metabolism (Travers et al., 2000). 

Extensive ER damage can trigger cell death via the production of unfolded 

proteins, the release of Ca2+ into the cytoplasm or altered redox homeostasis 

(Breckenridge et al., 2003) resulting in either classical programmed cell death or 

other mitochondrial cell death pathways (Jimbo et al., 2003). As such, 

dysfunctional Ca2+ regulation arising from ER stress and increased molecular 

oxidative damage further potentiates activation of programmed necrotic pathway 

involving calpains, forming a positive feedback regulatory loop (Crocker et al., 

2003; Nakagawa and Yuan, 2000).  

 

Significant transcriptional elevation of severe ER stress-induced pro-apoptotic 

gene, CCAAT/enhancer binding protein (C/EBP) beta (Cebpb) was observed at 24 

h in H2S-mediated neuronal death (Table 3.1: ER/Lysosomal stress). CEBPB 

together with its binding partner DNA-damage-inducible transcript 3 (DDIT3; also 

known as CHOP) forms a dimerized repressor complex which inhibits transcription 

of survival-promoting genes, facilitating the development of PCD (Hayashi et al., 

2005; Zinszner et al., 1998). The increase in Ddit3 protein expression 

(demonstrated in Figure 3.2) is believed to lead to the suppression of the BCL2 

family expression in the cells, which make them more susceptible to apoptosis 
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(McCullough et al., 2001).  This is consistent with the observed down-regulation of 

Bcl-xl. 

 

6. Presence of ER stress, lysosomal rupture, activated pro-apoptotic protein 

members and elevated Ca2+ level contributes to elevated production of ROS in 

H2S-mediated neuronal death (Eghbal et al., 2004). Cells under oxidative stress 

would be more predisposed to their death fate as ROS have the ability to react with 

and modify any cellular molecules (e.g. DNA, proteins and lipids), and thus in the 

process affect their physiological functions and disrupt the cellular homeostatic 

balance (Higgins et al., 2010). Hsps and molecular chaperones are crucial in the 

alleviation of oxidative stress through facilitation of the refolding of misfolded 

proteins to avoid their aggregation and accumulation in the cell (Meriin and 

Sherman, 2005). In addition, HSP27 (HSPB8) can also suppress the activity of the 

pro-apoptotic member of the BCL2 family, BID, thus preventing cytochrome c 

release (Franklin et al., 2005). In H2S-induced neuronal injury, substantial mRNA 

expression up-regulation of HSPs and chaperones generally demonstrated at 15h 

(Table 3.1).  

 

Similarly, genes encoding for proteins involved in the anti-oxidant GSH pathway 

were also significantly up-regulated from 15h. H2S has been demonstrated to 

confer neuroprotective effect through elevation of GSH level, a major and effective 

cellular antioxidant in the concentration range of 1–8mM (Kimura and Kimura, 

2004). This is induced through H2S-mediated potentiation of cystine/Glu antiporter 
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activity to promote production of cysteine, a substrate for GSH synthesis, whose 

effect is especially important in offering neuroprotection upon injury induced by 

Glu–mediated non-receptor oxidative stress where transport of cystine is impeded 

by high extracellular level of Glu. This is because Glu competes with cystine for 

the same amino acid transporter to enter the cells (Bannai and Kitamura, 1980). 

Furthermore, H2S also facilitates effective translocation of cysteine (reduced form 

of cystine) into cells for glutathione production (Kimura et al., 2010). In addition, 

the reducing property of H2S facilitates sequestration of reactive oxygen species 

and hydrogen peroxide which is frequently up-regulated in the mitochondria under 

oxidative stress, since the mitochondria play a pivotal role in cell death induction 

via multiple converging signaling cascades (Higgins et al., 2010). The 

transcriptional up-regulation of these genes is clearly an indication of an attempt to 

buffer neurons against any oxidative and ER stress, consequentially averting 

cellular death. 

 

7. Raised oxidative stress increases the vulnerability of cellular DNA to damage.  

A study by Baskar et al., (2007) reported the ability of H2S to induce DNA damage 

in cultured human lung fibroblasts, thus triggering a p53 response to guard the 

genome integrity of the cell. Downstream targets of p53 which demonstrated 

increased transcriptional expression during H2S-mediated neuronal injury include, 

growth arrest and DNA-damage-inducible 45 gamma (Gadd45g), cyclin G1 

(Ccng1) and cyclin-dependent kinase 2 (Cdk2). GADD45G impedes CDC2/cyclin 

B1 kinase complex formation and thus cell cycle progression in the S and G2/M 
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cell cycle phases upon genotoxic stress (Vairapandi et al., 2002), and its activation 

of downstream signaling cascade strongly potentiates cell death (Mak and Kültz, 

2004). Simultaneously, GADD45G also mediates activation of stress-responsive 

gene MEKK (expression fold-change data under cell survival), thus explaining 

parallel up-regulation in both at 24h after NaHS treatment. CCNG1, a 

transcriptional p53 target whose expression is induced upon DNA damage, 

regulates p53 function through modulation of p53 stability (Kimura and Nojima, 

2002; Okamoto et al., 2002). Cell cycle arrest can also occur via a p53-independent 

pathway through cyclin-dependent kinase inhibitor 2c (INK4C), which in H2S-

mediated neuronal injury demonstrated significant transcriptional up-regulation at 

24h, and whose activity has a strong correlation with activities of the 

retinoblastoma protein and other retinoblastoma family members (p107 and p130) 

at the G1 phase. INK4C is able to inhibit the enzymatic activities of cyclin D-

dependent kinases through interaction with CDK4 and CDK6, thus negatively 

regulating cell growth and proliferation and at the same time control the production 

of diffusible mitogens and chemokines which affects post-natal development of 

neurons (Zindy et al., 2003).  

 

This is the first time that the H2S neuropathological implication with NMDARs 

and particularly, KARs has been established in the context of iGluRs-mediated 

excitotoxicity, a major neuropathological mechanism (summarized in Figure 3.9). 

As H2S and NMDARs cooperate to mediate physiological function under regulated 

homeostasis, it cannot be ruled out that upon hyper-stimulation of this pathway 
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could be detrimental to cell survival. Indeed in an in vivo adult rodent stroke model 

expressing functional GluRs, Qu et al., (2006) reported that H2S is a mediator of 

cerebral ischemic injury. Concurrently, we cannot eliminate the possibility of H2S-

induced iGluRs-independent neuroprotective effect, especially pertaining to 

stimulation of glutathione production. It can be postulate that H2S-induced 

neuronal injury takes place when the balance between H2S-triggered GluRs-

dependent pro-death and receptor-independent anti-death stimuli is disrupted in 

favour of the former. 

 

In conclusion, it can be deduced that excitotoxicity plays a major role in H2S-

mediated neuronal death, and based on the physiological neuronal expression of 

different iGluRs subtypes, both NMDARs and KARs played a much substantial 

role as compared to AMPARs due to the higher in abundance of the former two. 

Since H2S and Glu have been concurrently implicated in many neuropathies, this 

suggests a possibility of a synergistic relationship between these two signaling 

pathways, evoking an addictive detrimental effect which sends the neurons to 

demise. Findings of this subchapter in relation to H2S-mediated neuronal injury 

have been summarized in the following illustration. 
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Figure 3.9 Summary of the prominent biological processes affected during H2S-mediated 

neuronal injury. 
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Excitotoxicity involving all three iGluRs subtypes has been reported to be a central dogma 

event in many neurodegenerative conditions. However, it remains to be elucidated what is 

their mechanistic contribution as an iGluRs subfamily during Glu–mediated neuronal 

injury, which would theoretically also simultaneously trigger mGluRs activation. Due to 

the differential cellular expression of iGluRs subtypes on the post-synaptic membrane as 

well the selectivity of Ca2+ permeability in AMPARs governed by subunit assembly, it 

would be unjustifiable to eliminate AMPARs contribution in excitotoxicity during Glu–

mediated neuronal injury due to its probable low receptor expression. Furthermore, under 

physiological condition, AMPARs activation is crucial to facilitate activation of Ca2+ 

channel activity in NMDARs by indirectly inducing repulsion of Mg2+ out of the latter‘s 

gate during LTP. As such, it would be worthwhile to assess in details the overall 

mechanistic involvement of the iGluRs subfamily in mediation of excitotoxicity during 

Glu –mediated neuronal injury. 
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3.2.1 Introduction 

Excitotoxicity is one of the earliest cellular processes commonly detected in the 

pathogenesis of neurodegenerative diseases such as AD (Hynd et al., 2004a), dementia 

associated with Down syndrome (DS; (Scheuer et al., 1996)) and acute neurological 

deficits like traumatic brain injury (TBI) and stroke (Arundine and Tymianski, 2004). It is 

believed to be one of the upstream primary events at work to induce neuronal injury at 

cellular level. It is believed to be triggered by the rise of Glu concentration in the micro-

environment of the brain, as a result of conditions such as hypoglycemia or status 

epilepticus. Hypoglycemia is commonly observed during stroke or TBI episode where 

ischemic reduction in blood flow limits supply of oxygen and glucose to a localized region 

of the brain. This leads to an inadequacy of ATP production which abolishes the 

electrochemical gradients of ions required to be maintained to ensure functionality of the 

Glu transporters on the astrocytes to uptake Glu from the extracellular matrix, leading to a 

buildup of extracellular Glu. To further complicate matter, the loss of electrochemical 

gradients reverses the transporters, causing them to release Glu and aspartate into the 

extracellular space. This promotes an accelerated accumulation of Glu, leading to 

enhanced activation of GluRs. 

 

In excitotoxic neuronal death, it has been suggested that iGluRs particularly NMDARs 

play a major role in the mediation of a large Ca2+ influx upon over-stimulation as a 

consequence of its high Ca2+-permeability and abundance (Hara and Snyder, 2007; 

Takahashi et al., 2010). This consequential influx of extracellular Ca2+, together with 

release of Ca2+ intracellular stores from ruptured organelles (e.g. lysosomes) into the 
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cytosol, results in activation of Ca2+-dependent proteases, calpains, and the protein 

phosphatase, calcineurin resulting in hydrolysis of cytoskeletal and other cellular proteins 

[e.g. -fodrin; (Siman et al., 1989; Simpkins et al., 2003)]. Glu-induced excitotoxicity has 

been associated with simultaneous calpain activation (Zatz and Starling, 2005) and 

lysosomal dysfunction (Bahr and Bendiske, 2002) consistently observed in these 

neurodegenerative diseases. 

 

It is important to keep in mind that in the mammalian brain, Glu is the only physiological 

excitatory neurotransmitter agonist for GluRs activation, be it metabotropic or ionotropic, 

even though the GluRs superfamily has been extensively categorized based on their 

subunit composition and sequence homology, which are determinants of their downstream 

signaling mechanisms as well as intrinsic activities. As such, Glu–mediated neuronal death 

comprises of two concurrent branching signaling components mediated by ionotropic and 

metabotropic GluRs respectively. Unlike iGluRs which possess intrinsic ionic channel 

activity, metabotropic GluRs are G-protein coupled receptors. It is believed that Glu is 

able to mediate the differential multi-GluRs activation by adoption of different 

conformations when interact with different types of GluRs. Since individual GluRs also 

demonstrate differential expression pattern in different parts of the brain as well as 

selective orientation in local region (i.e. pre- or post-synaptic membranes), this further 

provides the opportunity for differential temporal activation of receptors, permitting 

regulation of basal excitatory synaptic transmission and numerous forms of synaptic 

plasticity such as LTP and long-term depression, which are believed to underlie learning 

and memory. Concurrently, under patho-physiological conditions where excitotoxicity is 
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triggered, this structured hierarchy may promote a synchronized temporal activation of 

different GluRs, leading to a simultaneously converged, as well as diverse downstream 

cellular events, eliciting differential cellular outcome.  

 

Excitotoxicity is a general term that defines a damage-inflicting cellular process that is 

signified by the rise in cytosolic Ca2+ level as a result of a constitutive and hyper-

activation of ion channel-gated iGluRs subfamily. It is commonly demonstrated that all 

three iGluRs subtypes are involved, and that NMDARs play the pivotal role due to its 

highest intrinsic permeability to Ca2+ and its abundance. However, it is important to 

remember that during neuropathological state when marked elevation of extracellular Glu 

was released by damaged neurons and astrocytes, Glu not only activates iGluRs resulting 

in excitotoxicity, but also mGluRs. In addition, much remains to be elucidated with 

regards to the amplification and divergence of downstream signaling pathways with 

respect to the concerted iGluRs activation triggered during excitotoxicity. In this 

subchapter, microarray technique is applied on four excitotoxicity representations induced 

by a) the general GluRs agonist Glu, b) AMPAR agonist, AMPA, c) NMDAR agonist, 

NMDA and, d) KARs agonist, KA. Comparative global gene profile analysis is performed 

to elucidate the major primary biological processes regulated by iGluRs in the trigger of 

excitotoxicity during Glu-mediated neuronal injury. This is the first time that global gene 

profiling of this type and scale to elucidate pathogenesis of excitotoxicity has been 

performed.   
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3.2.2 Results 

Employing D7 murine primary cortical neurons, cultures were treated with the following 

previously reported EC50 concentrations of iGluRs agonists for 24 h: 200uM NMDA 

(Chen et al., 2010b), 100uM KA (Moldrich et al., 2000; Moldrich et al., 1999) and 300uM 

AMPA (Larm et al., 1997), and the intrinsic general GluRs activator 250uM Glu (Cheung 

et al., 1998). 

 

Overall cellular transcriptional regulation was assessed in Glu, NMDA, AMPA and KA 

excitotoxicity models respectively over a 24-hour period using Illumina Mouse Ref8 

V1.1 genechips. The raw transcriptional signal data from individual arrays was then 

subjected to statistical filtering using one-way ANOVA, p <0.05 and Benjamini-Hochberg 

FDR (FDR), and gene probes were considered to be significantly regulated when they 

demonstrated gene expression of at least  1.5 in a minimum of one out of the three time-

points (5h, 15h and 24h). All gene probes that passed these selection criteria were put 

together to form the global transcriptomic data for each excitotoxicity model. Glu (1,842 

gene probes), NMDA (2,309 gene probes), AMPA (1,863 gene probes) and KA (3,800 

gene probes) neuronal treatments induced transcriptomic profiles that were lined up side-

by-side in Figure 3.10 and partitioned to different fold-change categories. Clearly 

demonstrated in Figure 3.10, substantial number of gene probes demonstrated greater than 

1.5 fold-change in gene expression over the 24-hour assessment period, with KA 

treatment generating the largest transcriptomic profile. 
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3.2.2.1 Bi-model analyses of individual iGluRs profiles against that of Glu revealed 

the following decrease ordering of GluRs activation dependence 

NMDARs>KARs>AMPARs during excitotoxicity 

Since Glu is involved in the activation of all GluRs, including both ionotropic and 

metabotropic subtypes, it would be interesting to determine the relative contribution of 

each iGluR-triggered signaling cascade attributing to Glu-induced neurotoxicity. Bi-model 

global transcriptomic profile comparisons using Glu model as the basis of analysis 

demonstrated that in order of highest to lowest degree of overlap, i.e. commonly 

occurring, differentially regulated gene probes, NMDA > KA > AMPA were observed 

(Figure 3.11). NMDA (Figure 3.11A) and KA (Figure 3.11C) profiles respectively 

demonstrated comparable and nearly double the number of with-Glu commonly occurring 

genes relative to AMPA profile (Figure 3.11B). This signifies a greater reliance of 

NMDARs and KARs -mediated signaling pathways to induce excitotoxicity during Glu-

mediate neurotoxicity. A more in-depth analysis into the consistency in the transcriptional 

regulatory trend demonstrated that majority of the gene probes were similarly regulated at 

15h and 24h respectively in all three iGluRs models (Figure 3.12). 

 

However, AMPARs involvement cannot be neglected as it may play a crucial role in the 

upstream initiation of excitotoxicity, as seen in during LTP under physiological state, 

promoting activation of NMDARs and KARs. This is because during LTP, AMPARs open 

their intrinsic ionic pores directly upon Glu ligand binding, facilitating Na+ influx into the 

post-synaptic neurons resulting in depolarization. This promotes the opening of ionic 

channel acitivty within NMDARs as depolarization from the AMPAR activation leads to 
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repulsion of the Mg2+ out into the extracellular space, allowing the pore to pass current. 

The pores of NMDARs are occluded at resting membrane potential by Mg2+. As opposed 

to AMPARs which demonstrated selective permeability to Ca2+ depending on its subunit 

composition, NMDARs are freely permeable to Ca2+ and Na+. The Ca2+ that enters the cell 

promotes AMPARs on the plasma membrane, resulting in a long-lasting increase in 

(EPSP) size underlying LTP. The Ca2+ entry also phosphorylates calcium/calmodulin 

kinase 2 (CAMK2), which phosphorylates AMPARs, increasing their single-channel 

conductance. As such, AMPARs activation is crucial for activation of NMDARs intrinsic 

channel activity in addition to Glu ligand binding, and NMDARs in turn amplify 

AMPARs signaling cascade by promoting its plasma membrane localization, further 

facilitating Ca2+ influx mediated by selected AMPARs with permeability to Ca2+ channels. 
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Figure 3.10 Classification of individual global transcriptomic profiles of Glu, NMDA, 

AMPA and KA in cultured murine primary cortical neurons. The genes in these catagories 

passed microarray selection criteria: gene expression of at least 1.5 in a minimum of one 

out of the three time-points (5h, 15h and 24h) and statistical examination using one-way 

ANOVA, p<0.05 and FDR) according to specific time-points and fold-change expression 

up/down-regulated.  
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Figure 3.11 Bi-model global transcriptomic profile analysis of individual iGluRs agonists 

against Glu excitotoxicity model. Ve nn diagrams demonstrating the number of gene 

probes common and mutually exclusive to both models [A] Glu against NMDA [B] Glu 

against AMPA and [C] Glu against KA. 

 

A 
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Figure 3.12 Consistency in the transcriptional regulatory trend of the commonly occurring 

gene probes in individual iGluRs against Glu excitotoxicity models. 

 

 

 

 

 

 

 

 

 



Chapter 3.2:  
iGluRs in excitotoxicity 

140 
 

3.2.2.2 Simultaneous comparision of all four excitotoxicity models identified several 

major common biological processes 

In order not to miss the overall contributory effect of iGluRs in Glu–mediated 

excitotoxicity, a comparative microarray analysis of all four excitotoxicity models was 

performed. A total of 583 g ene probes have been identified. The consistency of the 

transcriptional regulatory trend from the individual time-point –specific and inter-time-

point perspective across all four models was studied. As shown in Figure 3.13 , high level 

of consistency was demonstrated for within time-point –limiting analyses particularly at 

15h and 24h. However, inter-time-point comparison (5h -24h) of the commonly occurring 

gene probes in all four models demonstrated a decreased degree of consistency. 

 

Figure 3.13 Overall consistency in the transcriptional regulatory trend of the commonly 

occurring gene probes in all four excitotoxicity models. 
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Gene ontology-functional classification of these 583 RefSeq transcripts, which 

corresponded to 485 biologically-annotated genes, facilitated identification of several 

important and over-represented biological pathways imminent to the progression of 

excitotoxicity (Table 3.5). These include calcium ion homeostasis and binding, anti-

oxidant response, cell death and cell survival processes. Prominently, an overwhelming 

number of candidates involved in the promotion of mitotic cell cycle progression were 

transcriptionally elevated in all four models of excitotoxicity. Consistently, all members of 

these over-represented biological processes were significantly modulated at the expression 

level between the 5h and 15h time-points, implying the reported pathways constitute the 

early upstream cellular events in excitotoxicity. 

 

-CALCIUM ION HOMEOSTASIS AND BINDING 

In all four excitotoxicity models, genes encoding for Ca2+-dependent proteins and 

receptors (Gpcr12, Pkcb and Rln3r1) were significantly down-regulated, indicating the 

occurrence of aberrant calcium ion homeostasis (Table 3.5). On the contrary, genes 

encoding for Ca2+-binding proteins (Cacy and Anx(A2, A3 and A5) showed increase in 

gene expression, a further evidence of elevation of cytosolic Ca2+ level during 

excitotoxicity due to activation of iGluRs which open up the intrinsic Ca2+ channels. 

 

-LYSOSOMAL STRESS 

Aberrant elevation of cytosolic Ca2+ level and overproduction of ROS imposes organellar 

stresses through disruption of the delicate balance of cellular ionic gradients and 

unregulated modifications of cellular proteins resulting in detrimental loss/gain-of 
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function, all contributing to disturbance of normal cellular signaling. Analysis of the 

profiles of genes common to all four excitotoxicity models revealed significant 

transcriptional activation of lysosomal resident proteins, indication of some form of 

disorientation and/or stress imposed on the normal functioning of the lysosomes (Table 

3.5). 

 

- ANTI-OXIDANT RESPONSE 

- Heat shock proteins (Hsps) and molecular chaperones 

Organellar (endoplasmic reticulum and lysosomal) stress is especially prominent in 

excitotoxicity and evokes the cellular counteractive response to minimize electrophilic and 

oxidative burdens. Interestingly, comparative microarray analysis demonstrated that in the 

specific iGluRs excitotoxic models up-regulation of majority of genes encoding for HSPs 

and molecular chaperones (Hmox1, Npn3, Hspa2, and Hspb8) and metal chaperones 

(Mt3) occurred at the 5h time-point, much earlier than that of Glu at 15h (Table 3.5). 

 

- Glutathione metabolism 

Genes transcribing for members of the GSH anti-oxidative pathway were significantly up-

regulated in all four models (Table 3.5). However, AMPA and Glu models demonstrated 

significant elevation of GSH pathway genes at 15h, while NMDA and KARs 

demonstrated earlier transcriptional response at 5h. 
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-CELL DEATH 

Majority of the genes encoding for proteins directly/indirectly involved in promotion of 

cell death (Notch1, Angptl4, Casp6 and Catna1) were transcriptionally up-regulated as 

demonstrated in Table 3.5. Cell death was further accelerated by the down-regulation of 

anti-cell death protein (Bcl11b). 

 

-CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

In all four excitotoxicity models, genes encoding for pro-survival/mitogenic proteins 

(Spp1 and Birc5 (also known as Survivin)) and growth factors (Igf2, Ilgfbp7 and Igfbp5) 

were up-regulated between the 5h and 15h time-points, a cellular response to suppress the 

cell death mechanisms (Table 3.5). 

 

-MITOTIC CELL CYCLE 

Numerous genes encoding for cell cycle proteins that promote cell cycle re-entry were up-

regulation in all four excitotoxicity models between 5h and 15h. This was an 

unprecedented observation made during excitotoxicity. Under physiological condition, 

neurons were in the post-mitotic and differentiated state. Aberrant cell cycle re-entry has 

been implicated in the pathogenesis of several neurological conditions such as AD, DS, 

HD, Niemann-Pick‘s disease and stroke (Camins et al., 2008; Pelegri et al., 2008). Recent 

studies on AD suggested that this cellular event is a part of the neuronal death process 

(Lopes et al., 2009a; Lopes et al., 2009b). p53, the main keeper of genome integrity, 

demonstrated a significant pursuing down-regulation (denoted as Trp53 in the table), 
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indicating a failure in the cell cycle checkpoint system, further making the re-activation of 

cell cycle process easier.
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Table 3.5 Gene expression profiles of neuronal death-related families in cultured day 7 mouse primary cortical neurons treated with Ec50 
of AMPA, KA, NMDA and Glu over a 24-hour period respectively. All expression values (given as fold-changes) were selected based on 
having at least minimum of 1.5 fold change in at least one out of three time-points, subjected to one-way ANOVA analysis and 
Benjamini Hochberg FDR correction, and were significant at p < 0.05. Values are given as mean  sem. 
Genbank Gene Title Symbol Time-points 

 300uM AMPA 100uM KA 200uM NMDA 250uM Glu 
5h 15h 24h 5h 15h 24h 5h 15h 24h 5h 15h 24h 

Calcium ion homeostasis and binding 

NM_008151 G-protein coupled receptor 
12 Gpcr12 

-2.40 
± 

0.09 

-1.70 
± 

0.15 

-1.70 
± 

0.14 

-2.10 
± 

0.13 

-2.66 
± 

0.12 

-2.89 
± 

0.11 

-1.50 
± 

0.19 

-2.20 
± 

0.11 

-2.00 
± 

0.13 

-1.50 
± 

0.19 

-1.80 
± 

0.17 

-1.40 
± 

0.18 

NM_007587 Calcitonin/calcitonin-related 
polypeptide, alpha Calc1 

1.10 
± 

0.36 

1.50 
± 

0.47 

1.20 
± 

0.34 

1.20 
± 

0.40 

2.30 
± 

0.47 

2.20 
± 

0.67 

1.10 
± 

0.35 

1.90 
± 

0.54 

1.70 
± 

0.43 

-1.10 
± 

0.31 

2.30 
± 

0.66 

2.80 
± 

0.71 

NM_008855 Protein kinase C, beta 1 Pkcb 
-1.10 

± 
0.21 

-1.60 
± 

0.16 

-2.00 
± 

0.12 

1.20 
± 

0.27 

-2.00 
± 

0.12 

-2.40 
± 

0.12 

-1.20 
± 

0.26 

-2.80 
± 

0.09 

-2.50 
± 

0.09 

-1.10 
± 

0.23 

-1.90 
± 

0.12 

-1.60 
± 

0.18 

NM_178717 Relaxin family peptide 
receptor 3 Rln3r1 

-2.30 
± 

0.13 

-2.10 
± 

0.13 

-1.90 
± 

0.14 

-2.80 
± 

0.10 

-2.95 
± 

0.11 

-3.52 
± 

0.10 

-1.50 
± 

0.16 

-2.40 
± 

0.10 

-2.20 
± 

0.10 

-1.20 
± 

0.21 

-1.50 
± 

0.22 

-1.30 
± 

0.22 

NM_011313 S100 calcium binding 
protein A6 (calcyclin) Cacy 

1.10 
± 

0.23 

1.60 
± 

0.36 

1.10 
± 

0.19 

1.30 
± 

0.24 

2.12 
± 

0.39 

1.66 
± 

0.30 

1.50 
± 

0.29 

2.80 
± 

0.51 

2.30 
± 

0.35 

1.00 
± 

0.18 

2.00 
± 

0.38 

1.90 
± 

0.37 

NM_007585 Annexin A2 Anxa2 
1.90 

± 
0.38 

1.80 
± 

0.42 

1.30 
± 

0.31 

2.30 
± 

0.45 

1.98 
± 

0.34 

1.48 
± 

0.35 

1.90 
± 

0.38 

2.30 
± 

0.43 

1.60 
± 

0.31 

1.60 
± 

0.25 

2.00 
± 

0.31 

2.10 
± 

0.43 

NM_013470 Annexin A3 Anxa3 
1.30 

± 
0.30 

1.80 
± 

0.48 

1.60 
± 

0.58 

1.00 
± 

0.23 

1.95 
± 

0.43 

1.61 
± 

0.42 

1.50 
± 

0.45 

3.20 
± 

0.77 

2.60 
± 

0.58 

1.20 
± 

0.31 

3.60 
± 

0.81 

3.20 
± 

0.63 

NM_009673 Annexin A5 Anxa5 
-1.00 

± 
0.23 

1.50 
± 

0.31 

1.10 
± 

0.24 

-1.00 
± 

0.19 

1.50 
± 

0.33 

1.10 
± 

0.21 

1.40 
± 

0.27 

2.00 
± 

0.40 

1.80 
± 

0.35 

1.20 
± 
0.20 

1.70 
± 

0.29 

1.60 
± 

0.38 
Lysosomal stress 

NM_017372 Lysozyme Lys 
1.70 

± 
0.40 

1.50 
± 

0.36 

-1.20 
± 

0.24 

-1.10 
± 

0.29 

1.50 
± 

0.36 

1.40 
± 

0.43 

1.60 
± 

0.61 

2.10 
± 

0.69 

2.10 
± 

0.48 

1.20 
± 

0.30 

1.60 
± 

0.40 

1.50 
± 

0.44 

NM_010686 Lysosomal-associated 
protein transmembrane 5 Laptm5 

1.70 
± 

0.31 

1.40 
± 

0.34 

-1.10 
± 

0.19 

-1.50 
± 

0.18 

1.80 
± 

0.34 

1.40 
± 

0.50 

1.80 
± 

0.46 

2.40 
± 

0.98 

2.20 
± 

0.34 

1.20 
± 

0.25 

1.80 
± 

0.37 

1.70 
± 

0.40 



Chapter 3.2:  
iGluRs in excitotoxicity 

146 
 

Table 3.5 (continue) 
Genbank Gene Title Symbol Time-points 

 
300uM AMPA 100uM KA 200uM NMDA 250uM Glu 

5h 15h 24h 5h 15h 24h 5h 15h 24h 5h 15h 24h 
Lysosomal stress (continue) 

NM_010685 Lysosomal-associated 
membrane protein 2 Lamp2 

1.60 
± 

0.39 

1.70 
± 

0.41 

1.30 
± 

0.32 

1.90 
± 

0.39 

2.10 
± 

0.50 

1.40 
± 

0.37 

1.50  
± 

0.36 

2.00 
± 

0.41 

1.50 
± 

0.30 

1.10 
± 

0.30 

2.10 
± 

0.51 

1.70 
± 

0.38 

NM_019972 Sortilin 1 Nltr3 
1.20 

± 
0.35 

1.70 
± 

0.50 

1.50 
± 

0.54 

1.50 
± 

0.51 

2.40 
± 

0.56 

1.80 
± 

0.46 

1.50 
± 

0.45 

3.70 
± 

0.81 

2.50 
± 

0.64 

1.50 
± 

0.45 

2..00 
± 

0.63 

1.40 
± 

0.44 

NM_009906 Tripeptidyl peptidase i Cln2 
1.20 

± 
0.29 

1.70 
± 

0.53 

1.10 
± 

0.30 

1.50 
± 

0.40 

2.00 
± 

0.53 

1.70 
± 

0.54 

1.20 
± 

0.36 

1.70 
± 

0.40 

1.30 
± 

0.31 

-1.10 
± 

0.32 

1.60 
± 

0.41 

1.60 
± 

0.40 
Anti-oxidant response 
-Heat shock proteins and molecular chaperones 

NM_010442 Heme oxygenase (decycling) 
1 Hmox1 

1.90 
± 

0.45 

1.40 
± 

0.29 

1.10 
± 

0.51 

1.90 
± 

0.39 

2.17 
± 

0.39 

2.04 
± 

0.37 

2.90 
± 

0.58 

3.30 
± 

0.48 

1.70 
± 

0.29 

1.40 
± 

0.34 

2.10 
± 

0.41 

1.30 
± 

0.38 

NM_029688 Sulfiredoxin 1 homolog (S. 
cerevisiae) Npn3 

2.60 
± 

0.56 

1.70 
± 

0.34 

1.30 
± 

0.41 

3.10 
± 

0.54 

1.93 
± 

0.36 

1.38 
± 

0.30 

2.00 
± 

0.39 

1.70 
± 

0.28 

1.10 
± 

0.19 

-1.30 
± 

0.21 

2.30 
± 

0.46 

1.10 
± 

0.30 

NM_007453 Peroxiredoxin 6 Prdx6 
1.20 

± 
0.41 

1.60 
± 

0.55 

1.10 
± 

0.37 

1.80 
± 

0.54 

2.34 
± 

0.76 

1.95 
± 

0.61 

1.20 
± 

0.36 

1.70 
± 

0.47 

1.20 
± 

0.28 

-1.10 
± 

0.27 

2.10 
± 

0.60 

1.80 
± 

0.56 

NM_008301 Heat shock protein 2 Hspa2  
1.50 

± 
0.44 

3.00 
± 

0.76 

2.30 
± 

0.64 

1.60 
± 

0.44 

2.77 
± 

0.65 

2.26 
± 

0.64 

1.00 
± 

0.26 

2.10 
± 

0.52 

2.10 
± 

0.47 

-1.30 
± 

0.19 

1.70 
± 

0.36 

1.60 
± 

0.39 

NM_030704 Heat shock protein 8 Hspb8 
1.80 

± 
0.45 

2.20 
± 

0.63 

1.40 
± 

0.59 

1.50 
± 

0.37 

2.70 
± 

0.59 

1.60 
± 

0.38 

2.00 
± 

0.46 

3.90 
± 

0.80 

1.90 
± 

0.46 

1.30 
± 

0.31 

4.40 
± 

1.06 

2.60 
± 

0.70 

NM_013602 Metallothionein 1 Mt1 
1.40 

± 
0.28 

1.60 
± 

0.28 

1.10 
± 

0.17 

1.80 
± 

0.40 

2.29 
± 

0.38 

1.92 
± 

0.38 

1.60 
± 

0.25 

2.00 
± 

0.34 

1.50 
± 

0.24 

1.10 
± 

0.16 

1.80 
± 

0.26 

1.80 
± 

0.39 

NM_013603 Metallothionein 3 Mt3 
1.60 

± 
0.26 

1.80 
± 

0.69 

1.10 
± 

0.20 

2.40 
± 

0.48 

2.00 
± 

0.34 

2.10 
± 

0.49 

1.40 
± 

0.27 

2.00 
± 

0.27 

1.80 
± 

0.55 

-1.10 
± 

0.17 

1.60 
± 

0.28 

1.60 
± 

0.30 
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Table 3.5 (continue) 
Genbank Gene Title Symbol Time-points 

 
300uM AMPA 100uM KA 200uM NMDA 250uM Glu 

5h 15h 24h 5h 15h 24h 5h 15h 24h 5h 15h 24h 
-Glutathione metabolism 

NM_010357 Glutathione S-transferase, 
alpha 4 mGsta4 

1.10 
± 

0.29 

1.90 
± 

0.44 

1.40 
± 

0.33 

1.20 
± 

0.31 

2.30 
± 

0.60 

2.10 
± 

0.48 

1.30 
± 

0.39 

3.20 
± 

0.70 

2.20 
± 

0.52 

-1.20 
± 

0.18 

2.60 
± 

0.63 

2.10 
± 

0.59 

NM_008184 Glutathione S-transferase, 
mu 6 Gstm6 

1.20 
± 

0.40 

1.50 
± 

0.53 

-1.00 
± 

0.35 

1.50 
± 

0.50 

1.90 
± 

0.52 

1.20 
± 

0.36 

1.50 
± 

0.45 

2.10 
± 

0.63 

1.40 
± 

0.35 

-1.20 
± 

0.22 

2.10 
± 

0.58 

1.70 
± 

0.52 

NM_173011 Isocitrate dehydrogenase 2 
(NADP+), mitochondrial Idh2 

1.30 
± 

0.38 

1.70 
± 

0.47 

1.20 
± 

0.38 

1.60 
± 

0.46 

2.22 
± 

0.62 

1.86 
± 

0.66 

1.60 
± 

0.48 

2.30 
± 

0.62 

1.50 
± 

0.34 

1.00 
± 

0.26 

1.80 
± 

0.51 

1.90 
± 

0.62 

NM_019946 Microsomal glutathione S-
transferase 1 mGst 

1.10 
± 

0.30 

1.80 
± 

0.46 

1.30 
± 

0.42 

1.40 
± 

0.44 

2.55 
± 

0.53 

1.91 
± 

0.51 

1.80 
± 

0.42 

3.20 
± 

0.60 

1.80 
± 

0.37 

1.00 
± 

0.27 

3.20 
± 

0.87 

2.90 
± 

0.90 

NM_025569 Microsomal glutathione S-
transferase 3 mGst3 

-1.20 
± 

0.19 

-1.50 
± 

0.15 

-1.40 
± 

0.16 

-1.20 
± 

0.20 

-2.26 
± 

0.09 

-2.14 
± 

0.12 

-1.30 
± 

0.18 

-2.00 
± 

0.10 

-1.70 
± 

0.12 

-1.20 
± 

0.14 

-1.70 
± 

0.11 

-1.60 
± 

0.12 

NM_010358 Glutathione S-transferase, 
mu 1 Gstb1 

1.30 
± 

0.26 

1.60 
± 

0.27 

1.10 
± 

0.18 

1.50 
± 

0.33 

2.12 
± 

0.40 

1.42 
± 

0.40 

1.50 
± 

0.32 

2.30 
± 

0.46 

1.50 
± 

0.30 

-1.10 
± 

0.14 

1.90 
± 

0.37 

1.70 
± 

0.35 
Cell death 

NM_008714 Notch gene homolog 1 
(Drosophila) Notch1 

1.00 
± 

0.20 

1.50 
± 

0.29 

1.30 
± 

0.29 

-1.10 
± 

0.19 

2.40 
± 

0.44 

1.70 
± 

0.37 

1.30 
± 

0.26 

2.30 
± 

0.43 

1.70 
± 

0.38 

-1.30 
± 

0.18 

1.80 
± 

0.44 

2.10 
± 

0.48 

NM_020581 Angiopoietin-like 4 Angptl4 
2.70 

± 
0.59 

5.20 
± 

1.14 

2.30 
± 

0.63 

4.60 
± 

0.84 

11.98 
± 

2.14 

10.21 
± 

2.28 

4.20 
± 

0.65 

9.80 
± 

1.61 

6.60 
± 

1.00 

1.90 
± 

0.46 

7.90 
± 

1.62 

7.90 
± 

1.58 

NM_009811 Caspase 6 Casp6 
1.10 

± 
0.28 

1.60 
± 

0.33 

1.20 
± 

0.32 

1.30 
± 

0.30 

2.10 
± 

0.35 

1.60 
± 

0.36 

1.50 
± 

0.39 

2.50 
± 

0.48 

1.80 
± 

0.27 

1.20 
± 

0.31 

2.00 
± 

0.37 

1.70 
± 

0.46 

NM_009818 Catenin (cadherin associated 
protein), alpha 1 Catna1 

1.30 
± 

0.21 

1.60 
± 

0.24 

1.20 
± 

0.18 

1.30 
± 

0.23 

2.20 
± 

0.29 

1.50 
± 

0.27 

1.60 
± 

0.28 

2.40 
± 

0.33 

1.80 
± 

0.32 

1.20 
± 

0.20 

1.90 
± 

0.34 

1.80 
± 

0.36 

NM_021399 B-cell leukemia/lymphoma 
11B Bcl11b 

-1.00 
± 

0.17 

-1.80 
± 

0.11 

-1.60 
± 

0.12 

-1.30 
± 

0.16 

-1.53 
± 

0.12 

-1.82 
± 

0.11 

-1.00 
± 

0.21 

-2.20 
± 

0.09 

-1.90 
± 

0.11 

1.00 
± 

0.17 

-1.70 
± 

0.10 

-1.50 
± 

0.12 
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Table 3.5 (continue) 
Genbank Gene Title Symbol Time-points 

 
300uM AMPA 100uM KA 200uM NMDA 250uM Glu 

5h 15h 24h 5h 15h 24h 5h 15h 24h 5h 15h 24h 
Cell homeostasis, survival and proliferation 

NM_010835 Homeo box, msh-like 1 Msh 
1.10 

± 
0.35 

1.60 
± 

0.48 

1.00 
± 

0.29 

1.90 
± 

0.63 

2.02 
± 

0.54 

1.82 
± 

0.46 

1.30 
± 

0.33 

1.60 
± 

0.34 

1.50 
± 

0.36 

-1.30 
± 

0.25 

1.90 
± 

0.57 

1.80 
± 

0.47 

NM_152229 Nuclear receptor subfamily 
2, group E, member 1 Nr2e1 

1.40 
± 

0.28 

1.80 
± 

0.38 

1.30 
± 

0.29 

1.90 
± 

0.40 

2.30 
± 

0.42 

1.70 
± 

0.35 

1.40 
± 

0.35 

2.00 
± 

0.32 

1.60 
± 

0.50 

1.00 
± 

0.21 

2.00 
± 

0.48 

2.10 
± 

0.47 

NM_009263 Secreted phosphoprotein 1 Spp1 
1.60 

± 
0.40 

1.40 
± 

0.38 

1.00 
± 

0.28 

1.00 
± 

0.32 

2.43 
± 

0.68 

2.23 
± 

0.67 

1.90 
± 

0.83 

3.50 
± 

3.20 

4.50 
± 

1.17 

1.30 
± 

0.30 

2.00 
± 

0.44 

2.00 
± 

0.45 

NM_009129 Secretogranin II SgII 
6.80 

± 
2.32 

7.90 
± 

2.39 

6.20 
± 

1.77 

7.40 
± 

2.47 

14.06 
± 

2.73 

12.03 
± 

1.93 

2.50 
± 

0.44 

3.20 
± 

0.82 

5.30 
± 

0.85 

1.00 
± 

0.22 

-3.80 
± 

0.07 

-3.50 
± 

0.08 

NM_009696 Apolipoprotein E Apoe 
1.00 

± 
0.23 

1.70 
± 

0.29 

1.30 
± 

0.24 

1.30 
± 

0.28 

2.36 
± 

0.43 

1.98 
± 

0.36 

1.20 
± 

0.27 

2.40 
± 

0.52 

1.80 
± 

0.27 

-1.20 
± 

0.14 

1.70 
± 

0.32 

1.70 
± 

0.37 

NM_009689 Baculoviral IAP repeat-
containing 5 Birc5 

1.70 
± 

0.50 

1.10 
± 

0.37 

1.00 
± 

0.26 

1.80 
± 

0.59 

1.39 
± 

0.35 

1.21 
± 

0.31 

2.00 
± 

0.56 

1.40 
± 

0.33 

-1.00 
± 

0.22 

1.40 
± 

0.36 

1.70 
± 

0.50 

1.20 
± 

0.30 

NM_013863 Bcl2-associated athanogene 
3 Bag3 

1.80 
± 

0.24 

2.40 
± 

0.39 

2.40 
± 

0.48 

2.50 
± 

0.37 

2.49 
± 

0.37 

2.09 
± 

0.31 

2.30 
± 

0.47 

2.70 
± 

0.36 

2.50 
± 

0.48 

1.60 
± 

0.34 

2.00 
± 

0.38 

1.80 
± 

0.45 

NM_010514 Insulin-like growth factor 2 Igf2 
1.40 

± 
0.28 

1.50 
± 

0.30 

1.00 
± 

0.21 

1.80 
± 

0.35 

2.10 
± 

0.43 

1.60 
± 

0.39 

1.60 
± 

0.36 

1.70 
± 

0.41 

1.30 
± 

0.28 

1.40 
± 

0.32 

2.20 
± 

0.52 

1.90 
± 

0.52 

NM_133662 Immediate early response 3 Ier3 
1.40 

± 
0.32 

1.40 
± 

0.37 

1.80 
± 

0.45 

-1.00 
± 

0.26 

1.60 
± 

0.31 

1.60 
± 

0.35 

1.20 
± 

0.32 

1.70 
± 

0.31 

1.60 
± 

0.27 

1.90 
± 

0.48 

1.10 
± 

0.34 

1.00 
± 

0.21 

NM_008048 Insulin-like growth factor 
binding protein 7 Ilgfbp7 

1.20 
± 

0.27 

1.50 
± 

0.32 

1.30 
± 

0.27 

1.40 
± 

0.30 

2.20 
± 

0.41 

1.70 
± 

0.45 

1.30 
± 

0.27 

2.20 
± 

0.44 

1.70 
± 

0.35 

1.10 
± 

0.27 

2.20 
± 

0.43 

2.20 
± 

0.58 

NM_008520 Latent transforming growth 
factor beta binding protein 3 Ltbp2 

1.10 
± 

0.25 

1.80 
± 

0.43 

1.60 
± 

0.32 

1.30 
± 

0.33 

1.98 
± 

0.41 

1.94 
± 

0.41 

1.20 
± 

0.26 

1.60 
± 

0.34 

1.80 
± 

0.35 

1.00 
± 

0.22 

1.50 
± 

0.25 

1.90 
± 

0.41 
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Table 3.5 (continue) 
Genbank Gene Title Symbol Time-points 

 
300uM AMPA 100uM KA 200uM NMDA 250uM Glu 

5h 15h 24h 5h 15h 24h 5h 15h 24h 5h 15h 24h 
Cell homeostasis, survival and proliferation (continue) 

NM_010518 Insulin-like growth factor 
binding protein 5 Igfbp5 

-1.10 
± 

0.25 

1.60 
± 

0.32 

1.10 
± 

0.26 

1.30 
± 

0.26 

2.20 
± 

0.38 

1.70 
± 

0.40 

1.10 
± 

0.25 

2.00 
± 

0.40 

1.80 
± 

0.39 

-1.20 
± 

0.12 

1.70 
± 

0.28 

1.90 
± 

0.40 

NM_021099 Kit oncogene Kit 
-2.30 

± 
0.10 

-1.30 
± 

0.20 

-1.30 
± 

0.18 

-2.00 
± 

0.11 

-3.20 
± 

0.07 

-2.60 
± 

0.10 

-1.50 
±  

0.13 

-2.10 
± 

0.10 

-1.20 
± 

0.18 

-1.70 
± 

0.12 

-1.90 
± 

0.12 

-1.70 
± 

0.17 
Mitotic cell cycle 

NM_025565 
SPC25, NDC80 kinetochore 
complex component, 
homolog (S. cerevisiae) 

Spbc25 
1.60 

± 
0.52 

1.36 
± 

0.52 

-1.00 
± 

0.32 

2.10 
± 

0.81 

1.83 
± 

0.57 

1.34 
± 

0.45 

2.10 
± 

0.48 

1.80 
± 

0.49 

1.20 
± 

0.32 

1.50 
± 

0.41 

1.60 
± 

0.65 

1.30 
± 

0.63 

NM_028390 
Anillin, actin binding protein 
(scraps homolog, 
Drosophila) 

Anilin 
1.80 

± 
0.51 

1.20 
± 

0.28 

-1.00 
± 

0.19 

1.80 
± 

0.48 

1.60 
± 

0.35 

1.19 
± 

0.32 

1.80 
± 

0.41 

1.50 
± 

0.33 

1.20 
± 

0.26 

1.50 
± 

0.40 

1.60 
± 

0.51 

1.40 
± 

0.41 

NM_011497 Aurora kinase A Aurka 
1.90 

± 
0.56 

1.20 
± 

0.36 

1.00 
± 

0.25 

1.90 
± 

0.55 

1.46 
± 

0.37 

1.07 
± 

0.29 

1.70 
± 

0.40 

1.30 
± 

0.32 

1.10 
± 

0.26 

1.50 
± 

0.42 

1.60 
± 

0.50 

1.30 
± 

0.44 

NM_028109 
TPX2, microtubule-
associated protein homolog 
(Xenopus laevis) 

Tpx2 
1.60 

± 
0.46 

1.20 
± 

0.41 

-1.00 
± 

0.26 

1.70 
± 

0.49 

1.49 
± 

0.45 

1.06 
± 

0.35 

1.80 
± 

0.49 

1.50 
± 

0.33 

1.10 
± 

0.25 

1.40 
± 

0.42 

1.70 
± 

0.55 

1.30 
± 

0.46 

NM_007659 Cell division cycle 2 
homolog A (S. pombe) Cdc2 

2.20 
± 

0.62 

1.30 
± 

0.45 

-1.00 
± 

0.26 

2.60 
± 

0.71 

1.74 
± 

0.38 

1.18 
± 

0.32 

2.10 
± 

0.51 

1.70 
± 

0.39 

1.20 
± 

0.26 

1.80 
± 

0.42 

1.70 
± 

0.47 

1.30 
± 

0.39 

NM_023223 Cell division cycle 20 
homolog (S. cerevisiae) Cdc20 

2.00 
± 

0.50 

1.30 
± 

0.38 

1.00 
± 

0.24 

1.90 
± 

0.55 

1.88 
± 

0.50 

1.46 
± 

0.46 

2.00 
± 

0.39 

1.50 
± 

0.31 

-1.10 
± 

0.24 

1.40 
± 

0.41 

1.80 
± 

0.50 

1.20 
± 

0.36 

NM_013538 Cell division cycle 
associated 3 Cdca3 

1.80 
± 

0.65 

1.20 
± 

0.45 

1.00 
± 

0.28 

1.60 
± 

0.55 

1.96 
± 

0.56 

1.34 
± 

0.41 

2.30 
± 

0.62 

1.80 
± 

0.42 

1.10 
± 

0.26 

1.40 
± 

0.39 

1.80 
± 

0.48 

1.30 
± 

0.39 

NM_026410 Cell division cycle 
associated 5 Cdca5 

1.70 
± 

0.38 

1.00 
± 

0.32 

-1.10 
± 

0.22 

1.60 
± 

0.34 

1.20 
± 

0.30 

-1.03 
± 

0.23 

1.90 
± 

0.44 

1.30 
± 

0.22 

-1.10 
± 

0.20 

1.60 
± 

0.45 

1.30 
± 

0.35 

1.10 
± 

0.33 

NM_172301 Cyclin B1 Ccnb1 
2.20 

± 
0.63 

1.30 
± 

0.40 

1.00 
± 

0.30 

3.00 
± 

0.82 

1.85 
± 

0.60 

1.32 
± 

0.43 

2.10 
± 

0.50 

1.60 
± 

0.41 

1.20 
± 

0.29 

1.50 
± 

0.42 

1.80 
± 

0.54 

1.30 
± 

0.51 
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Table 3.5 (continue) 
Genbank Gene Title Symbol Time-points 

 
300uM AMPA 100uM KA 200uM NMDA 250uM Glu 

5h 15h 24h 5h 15h 24h 5h 15h 24h 5h 15h 24h 
Mitotic cell cycle (continue) 

NM_009831 Cyclin G1 Ccng1 
1.30 

± 
0.32 

1.60 
± 

0.49 

1.10 
± 

0.23 

1.80 
± 

0.47 

1.40 
± 

0.36 

-1.20 
± 

0.27 

1.30 
± 

0.34 

1.60 
± 

0.33 

1.30 
± 

0.34 

1.40 
± 

0.34 

1.60 
± 

0.43 

1.30 
± 

0.35 

NM_031166 Inhibitor of DNA binding 4 Idb4 
1.30 

± 
0.38 

1.60 
± 

0.48 

1.10 
± 

0.28 

1.60 
± 

0.47 

2.20 
± 

0.65 

1.70 
± 

0.59 

1.50 
± 

0.41 

2.00 
± 

0.53 

1.20 
± 

0.34 

-1.40 
± 

0.21 

2.00 
± 

0.56 

2.10 
± 

0.76 

NM_010578 Integrin beta 1 (fibronectin 
receptor beta) Fnrb 

1.50 
± 

0.33 

1.20 
± 

0.23 

1.10 
± 

0.22 

1.50 
± 

0.30 

1.64 
± 

0.31 

1.13 
± 

0.23 

1.60 
± 

0.31 

1.50 
± 

0.29 

1.10 
± 

0.20 

1.30 
± 

0.22 

1.60 
± 

0.28 

1.40 
± 

0.32 

NM_023317 Nuclear distribution gene E 
homolog 1 (A nidulans) Nude 

1.30 
± 

0.39 

1.60 
± 

0.45 

1.00 
± 

0.27 

1.50 
± 

0.42 

1.89 
± 

0.47 

1.57 
± 

0.45 

1.30 
± 

0.32 

1.60 
± 

0.35 

1.30 
± 

0.30 

1.10 
± 

0.30 

1.80 
± 

0.43 

1.30 
± 

0.35 

NM_133851 Nucleolar and spindle 
associated protein 1 Nusp1 

1.90 
± 

0.58 

1.10 
± 

0.30 

1.00 
± 

0.24 

2.00 
± 

0.52 

1.93 
± 

0.47 

1.24 
± 

0.37 

2.20 
± 

0.51 

1.90 
± 

0.37 

1.10 
± 

0.21 

1.50 
± 

0.30 

1.80 
± 

0.44 

1.50 
± 

0.42 

NM_007595 
Calcium/calmodulin-
dependent protein kinase II, 
beta 

Camk2d 
-1.10 

± 
0.16 

-1.60 
± 

0.13 

-1.50 
± 

0.11 

1.00 
± 

0.16 

-2.10 
± 

0.08 

-2.30 
± 

0.10 

-1.30 
± 

0.13 

-2.50 
± 

0.06 

-1.70 
± 

0.11 

-1.20 
± 

0.13 

-2.40 
± 

0.09 

-1.80 
± 

0.11 

NM_008913 
Protein phosphatase 3, 
catalytic subunit, alpha 
isoform 

Pp3ca 
1.00 

± 
0.23 

-1.40 
± 

0.25 

-1.90 
± 

0.09 

1.40 
± 

0.25 

-1.74 
± 

0.10 

-2.12 
± 

0.10 

-1.00 
± 

0.23 

-2.20 
± 

0.09 

-1.80 
± 

0.21 

1.00 
± 

0.20 

-1.70 
± 

0.11 

-1.40 
± 

0.12 

NM_023396 Reprimo, TP53 dependent 
G2 arrest mediator candidate Trp53 

-1.30 
± 

0.15 

-1.50 
± 

0.16 

-1.50 
± 

0.13 

-1.40 
± 

0.17 

-1.80 
± 

0.12 

-1.80 
± 

0.11 

-1.20 
± 

0.18 

-1.80 
± 

0.10 

-1.60 
± 

0.10 

1.00 
± 

0.18 

-2.00 
± 

0.09 

-1.90 
± 

0.11 
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3.2.2.3 Singular profile analysis highlight cell cycle re-activation as a prominent 

biological process during excitotoxicity 

Demonstrated in Table 3.6, majority of the proteins involved in mitotic cell cycle process 

demonstrated significant transcriptional modulation across all four profiles. Gene expression 

of proteins promoting positive regulation of mitosis occurred at the 5-15h post-treatment 

interval but predominantly at the earlier 5h time-point, a strong advocate of an early 

occurrence of cell cycle re-entry upon iGluRs induction. Fold-change expression of individual 

cell cycle genes for respective treatments (AMPA, KA, NMDA and Glu) was demonstrated in 

Table 3.7, 3.8, 3.9 and 3.10 accordingly due to page size constraint. 
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Table 3.6 Genes encoding for proteins involved in mitotic cell division in individual excitotoxicity global transcriptomic profiles. Genes 
were selected on the basis of demonstrating at least ±1.5 fold-change expression in at least one out of three time-points (5h, 15h and 24h) 
and passed statistical testing of one-way ANOVA, p <0.05 and FDR correction. The genes were classified in the table according to the 
first time-point where significant regulation above or below 1.5 is detected. 

 300uM AMPA 200uM NMDA 100uM KA 250uM Glu 

Up-regulation (5h) 

 Anillin, actin binding protein 
 Aurora kinase A 
 baculoviral IAP repeat-

containing 5 
 Buninhibited by 

benzimidazoles 1 homolog, 
beta (S. cerevisiae) 

 Cell division cycle 2 homolog 
A (S. pombe) 

 cell division cycle 20 
homolog (S. cerevisiae) 

 cell division cycle associated 
2 

 cell division cycle associated 
3 

 cell division cycle associated 
5 

 cyclin D1 
 cyclin D2 
 DBF4 homolog (S. 

cerevisiae) 
 E4F transcription factor 1 
 integrin beta 1 (fibronectin 

receptor beta) 
 neural precursor cell 

expressed, developmentally 
down-regulated gene 9 

 non-SMC condensin I 
complex, subunit H 
 

 Anillin, actin binding protein 
 Aurora kinase A 
 Baculoviral IAP repeat-

containing 5 
 Budding uninhibited by 

benzimidazoles 1 homolog, 
beta (S. cerevisiae) 

 Cell division cycle 2 homolog 
A (S. pombe) 

 Cell division cycle 20 
homolog (S. cerevisiae) 

 Cell division cycle associated 
2 

 Cell division cycle associated 
3 

 Cell division cycle associated 
5 

 Cell division cycle associated 
8 

 Cyclin B1 
 Cyclin-dependent kinase 2 
 DBF4 homolog (S. cerevisiae) 
 Integrin beta 1 (fibronectin 

receptor beta) 
 Kinesin family member C1  
 MAD2 mitotic arrest deficient-

like 1 (yeast) 
 Microtubule-associated 

protein, RP/EB family, 2 

 Anillin, actin binding protein 
 Asp (abnormal spindle)-like, 

microcephaly associated 
(Drosophila) 

 AT hook containing 
transcription factor 1 

 Aurora kinase A 
 Baculoviral IAP repeat-

containing 5 
 Budding uninhibited by 

benzimidazoles 1 homolog, 
beta (S. cerevisiae) 

 Cell division cycle 2 homolog 
A (S. pombe) 

 Cell division cycle 20 
homolog (S. cerevisiae) 

 Cell division cycle 6 homolog 
(S. cerevisiae);  

 Cell division cycle associated 
3 

 Cell division cycle associated 
5 

 Coiled-coil domain 
containing 99 

 Cyclin D1 
 Cyclin D2 
 Cyclin G1 
 Cyclin B1 
 Cyclin-dependent kinase 2 

 Anillin, actin binding protein 
 Aurora kinase A 
 Baculoviral IAP repeat-

containing 5 
 Cyclin B1 
 Cell division cycle 2 homolog 

A (S. pombe) 
 Cell division cycle associated 

2 
 Cell division cycle associated 

3 
 Cell division cycle associated 

5 
 Cell division cycle associated 

8 
 E4F transcription factor 1 
 Nucleolar and spindle 

associated protein 1 
 Polo-like kinase 1 

(Drosophila) 
 Pescadillo homolog 1, 

containing BRCT domain 
(zebrafish) 

 SPC24, NDC80 kinetochore 
complex component, homolog 
(S. cerevisiae) 

 SPC25, NDC80 kinetochore 
complex component, homolog 
(S. cerevisiae) 

 Sperm associated antigen 5 
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Table 3.6 (continue) 
 300uM AMPA 200uM NMDA 100uM KA 250uM Glu 

Up-regulation (5h)  

(continue) 

 polo-like kinase 1 
(Drosophila) 

 predicted gene 8416; 
predicted gene 5593; cyclin 
B1; similar to cyclin B1; 
predicted gene 4870 

 regulator of chromosome 
condensation 2; hypothetical 
protein LOC100047340 

 SPC25, NDC80 kinetochore  
complex component, 
homolog (S. cerevisiae) 

 Neural precursor cell 
expressed, developmentally 
down-regulated gene 1 

 Non-SMC condensin I 
complex, subunit H 

 Nucleolar and spindle 
associated protein 1 

 Pituitary tumor-transforming 
gene 1 

 Polo-like kinase 1 
(Drosophila) 

 SPC24, NDC80 kinetochore 
complex component, homolog 
(S. cerevisiae) 

 SPC25, NDC80 kinetochore 
complex component, homolog 
(S. cerevisiae) 

 Sperm associated antigen 5 

 DBF4 homolog (S. 
cerevisiae) 

 E4F transcription factor 1 
 Inhibitor of DNA binding 4 
 Integrin beta 1 (fibronectin 

receptor beta) 
 Microtubule-associated 

protein, RP/EB family, 
member 2 

 Neural precursor cell 
expressed, developmentally 
down-regulated gene 9 

 Non-SMC condensin II 
complex, subunit G2 

 Nuclear distribution gene E 
homolog 1 (A nidulans) 

 Nucleolar and spindle 
associated protein 1 

 ribosomal protein S6 
 SET domain containing 

(lysine methyltransferase) 8 
 Kinesin family member C1 
 MAD2 mitotic arrest 

deficient-like 1 (yeast) 
 SPC25, NDC80 kinetochore 

complex component, homolog 
(S. cerevisiae) 

 sperm associated antigen 5 
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Table 3.6 (continue) 
 300uM AMPA 200uM NMDA 100uM KA 250uM Glu 

Up-regulation at 15h 
(continue) 

 Nuclear distribution gene E 
homolog 1 (A nidulans) 

 Nucleolar and spindle 
associated protein 1 

 Nuclear distribution gene E 
homolog 1 (A nidulans) 

  Integrin beta 1 (fibronectin 
receptor beta) 

 Neural precursor cell 
expressed, developmentally 
down-regulated gene 1 

 Non-SMC condensin I 
complex, subunit H 

 Nuclear distribution gene E 
homolog 1 (A nidulans) 

 Nuclear factor of activated T-
cells, cytoplasmic, calcineurin-
dependent 1 
Pituitary tumor-transforming 
gene 1 

Down-regulation at 
5h 

 NIMA (never in mitosis gene 
a)-related expressed kinase 3 

 Calcium/calmodulin-
dependent protein kinase II 
alpha 

 CDK5 and Abl enzyme 
substrate 1 

 NIMA (never in mitosis gene 
a)-related expressed kinase 3 

 SAC3 domain containing 1 
 tubulin, gamma 1 
 

 

Down-regulation at 
15h 

 Calcium/calmodulin-
dependent protein kinase II, 
beta 

 Tubulin, beta 3 

 Calcium/calmodulin-
dependent protein kinase II, 
beta 

 Cyclin D1 
 Fibronectin type 3 and SPRY 

domain-containing protein 
 Protein phosphatase 3, 

catalytic subunit, alpha 
isoform 

 Ras homolog gene family, 
member U 

 Budding uninhibited by 
benzimidazoles 3 homolog (S. 
cerevisiae) 

 Calcium/calmodulin-
dependent protein kinase II 
alpha 

 Calcium/calmodulin-
dependent protein kinase II, 
beta 

 Centromere protein V 
 

 Amyloid beta (A4) precursor 
protein 

 Calcium/calmodulin-
dependent protein kinase II 
alpha 

 Calcium/calmodulin-
dependent protein kinase II, 
beta 

 Microtubule-associated 
protein, RP/EB family, 
member 2 
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Table 3.6 (continue) 
 300uM AMPA 200uM NMDA 100uM KA 250uM Glu 

Down-regulation at 
15h (continue) 

  Stathmin 1 
Tubulin, beta 3 

 Protein phosphatase 3, 
catalytic subunit, alpha 
isoform  

 Ras homolog gene family, 
member U 

 Regulator of chromosome 
condensation 2; hypothetical 
protein LOC100047340 

 Calcium/calmodulin-
dependent protein kinase II 
gamma gamma 

 Stathmin 1 

 Polo-like kinase 2 
(Drosophila) 

 Protein phosphatase 3, 
catalytic subunit, alpha 
isoform 
Ras homolog gene family, 
member U 

Down-regulation at 
24h 

 Centrin 2 
 Protein phosphatase 3, 

catalytic subunit, alpha 
isoform 

 Tubulin, gamma 1  ADP-ribosylation factor-like 
8A 

 Activating transcription factor 
6 beta 

 Centrin 2 
 Centrin 3 
 Checkpoint with forkhead and 

ring finger domains 
 Chromatin modifying protein 

1A; predicted gene 8515 
 Thioredoxin-like 4B 
 Tubulin, beta 3 
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Table 3.7 Significantly expressed genes (with fold-change of at least 1.5 in a minimum 
one out of three time-points and passed One-way ANOVA, p<0.05 and Benjamini 
Hochberg FDR correction) encoding for proteins involved in mitotic cell cycle upon 
300uM AMPA-mediated excitotoxicity in cultured primary cortical neurons. 
Genbank Title Symbol 300uM AMPA 

 5h 15h 24h 
Mitotic cell cycle 
NM_172301 Cyclin B1 Ccnb1 2.75 ± 0.63 1.66 ± 0.40 1.03 ± 0.30 

NM_007659 Cell division cycle 2 
homolog A (S. pombe) Cdc2 2.58 ± 0.62 1.54 ± 0.45 -1.10 ± 0.26 

NM_011121 Polo-like kinase 1 
(Drosophila) Plk 2.40 ± 0.52 1.19 ± 0.42 -1.08 ± 0.20 

NM_013726 DBF4 homolog (S. 
cerevisiae) Dbf4 2.32 ± 0.55 1.76 ± 0.45 1.25 ± 0.35 

NM_011497 Aurora kinase A AurkA 2.31 ± 0.56 1.48 ± 0.36 1.04 ± 0.25 
NM_009829 Cyclin D2 Ccnd2 2.22 ± 0.61 1.50 ± 0.33 1.01 ± 0.18 

NM_133851 Nucleolar and spindle 
associated protein 1 NuSap1 2.18 ± 0.58 1.35 ± 0.30 -1.04 ± 0.24 

NM_013538 Cell division cycle 
associated 3 Cdca3 2.17 ± 0.65 1.45 ± 0.45 1.01 ± 0.28 

NM_009773 

Budding uninhibited by 
benzimidazoles 1 
homolog, beta (S. 
cerevisiae) 

Bubr1 2.15 ± 0.62 1.34 ± 0.54 -1.09 ± 0.26 

NM_028390 Anillin, actin binding 
protein Anl 1.97 ± 0.51 1.28 ± 0.28 -1.10 ± 0.19 

NM_009689 Baculoviral IAP repeat-
containing 5 Birc5 1.94 ± 0.50 1.25 ± 0.37 -1.03 ± 0.26 

NM_175384 Cell division cycle 
associated 2 Cdca2 1.92 ± 0.42 1.12 ± 0.29 -1.12 ± 0.19 

NM_173867 Regulator of chromosome 
condensation 2 Td60 1.90 ± 0.59 1.92 ± 0.55 1.64 ± 0.47 

NM_026410 Cell division cycle 
associated 5 Cdca5 1.86 ± 0.38 1.10 ± 0.32 -1.21 ± 0.22 

NM_144818 Non-SMC condensin I 
complex, subunit H Nsc1h 1.83 ± 0.69 1.32 ± 0.63 1.02 ± 0.46 

NM_025565 

SPC25, NDC80 
kinetochore complex 
component, homolog (S. 
cerevisiae) 

Spc25 1.79 ± 0.52 1.50 ± 0.52 -1.08 ± 0.32 

NM_017464 

Neural precursor cell 
expressed, 
developmentally down-
regulated gene 9 

Npcdr9 1.72 ± 0.47 1.97 ± 0.56 1.31 ± 0.36 

NM_023223 Cell division cycle 20 
homolog (S. cerevisiae) Cdc20 1.65 ± 0.52 1.14 ± 0.34 1.03 ± 0.33 

NM_010578 Integrin beta 1 (fibronectin 
receptor beta) Fnrb 1.58 ± 0.33 1.29 ± 0.23 1.13 ± 0.22 

NM_007893 E4F transcription factor 1 E4f1 1.53 ± 0.45 1.42 ± 0.41 1.28 ± 0.38 
NM_007631 Cyclin D1 Ccnd1 1.46 ± 0.45 -1.00 ± 0.25 -1.63 ± 0.18 
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Table 3.7 (continue) 
Genbank Title Genbank 300uM AMPA 
 5h 15h 24h 
Mitotic cell cycle 

NM_023317 Nuclear distribution gene 
E homolog 1 (A nidulans) Nude 1.40 ± 0.39 1.74 ± 0.45 1.11 ± 0.27 

NM_009831 Cyclin G1 Ccng1 1.28 ± 0.32 1.58 ± 0.49 1.05 ± 0.23 

NM_023813 
Calcium/calmodulin-
dependent protein kinase 
II, delta 

Camk2 1.28 ± 0.38 1.57 ± 0.41 1.24 ± 0.29 

NM_031166 Inhibitor of DNA binding 
4 Idb4 1.27 ± 0.38 1.65 ± 0.48 1.07 ± 0.28 

NM_008913 
Protein phosphatase 3, 
catalytic subunit, alpha 
isoform 

Ppca3 1.01 ± 0.23 -1.45 ± 0.25 -1.93 ± 0.09 

NM_007595 
Calcium/calmodulin-
dependent protein kinase 
II, beta 

Camk2d -1.04 ± 0.16 -1.56 ± 0.13 -1.52 ± 0.11 

NM_019405 Centrin 2 Calt -1.07 ± 0.24 -1.33 ± 0.24 -1.83 ± 0.21 
NM_023279 Tubulin, beta 3 Tubb3 -1.39 ± 0.23 -1.82 ± 0.18 -1.75 ± 0.19 

NM_011848 
NIMA (never in mitosis 
gene a)-related expressed 
kinase 3 

Nek3 -1.78 ± 0.13 -1.12 ± 0.16 -1.30 ± 0.13 
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Table 3.8 Significantly expressed genes (with fold-change of at least 1.5 in a minimum 
one out of three time-points and passed One-way ANOVA, p<0.05 and Benjamini 
Hochberg FDR correction) encoding for proteins involved in mitotic cell cycle upon 
100uM KA-mediated excitotoxicity in cultured primary cortical neurons. 

Genbank Gene title Symbol 100uM KA 
 5h 15h 24h 

Mitotic cell cycle 
NM_172301 Cyclin B1 Ccnb1 3.13 ± 0.75 1.85 ± 0.39 1.42 ± 0.37 

NM_007659 Cell division cycle 2 homolog 
A (S. pombe) Cdc2 3.02 ± 0.71 1.74 ± 0.38 1.18 ± 0.32 

NM_013726 DBF4 homolog (S. cerevisiae) Dbf4 2.63 ± 0.59 1.76 ± 0.41 1.36 ± 0.32 

NM_025565 
SPC25, NDC80 kinetochore 
complex component, homolog 
(S. cerevisiae) 

Spc25 2.38 ± 0.81 1.83 ± 0.57 1.34 ± 0.45 

NM_009773 
Budding uninhibited by 
benzimidazoles 1 homolog, 
beta (S. cerevisiae) 

Bubr1 2.33 ± 0.58 1.67 ± 0.50 1.27 ± 0.51 

NM_017464 
Neural precursor cell 
expressed, developmentally 
down-regulated gene 9 

Npcdr9 2.31 ± 0.74 1.58 ± 0.48 1.38 ± 0.36 

NM_011497 Aurora kinase A AurkA 2.30 ± 0.55 1.46 ± 0.37 1.07 ± 0.29 

NM_133851 Nucleolar and spindle 
associated protein 1 NuSap1 2.30 ± 0.52 1.93 ± 0.47 1.24 ± 0.37 

NM_023223 Cell division cycle 20 
homolog (S. cerevisiae) Cdc20 2.22 ± 0.55 1.88 ± 0.50 1.46 ± 0.46 

NM_009829 Cyclin D2 Ccnd2 2.18 ± 0.33 1.26 ± 0.25 1.01 ± 0.34 

NM_009689 Baculoviral IAP repeat-
containing 5 Birc5 2.09 ± 0.59 1.39 ± 0.35 1.21 ± 0.31 

NM_028390 Anillin, actin binding protein Anl 1.96 ± 0.48 1.60 ± 0.35 1.19 ± 0.32 

NM_009791 
Asp (abnormal spindle)-like, 
microcephaly associated 
(Drosophila) 

Asp 1.95 ± 0.61 1.39 ± 0.45 1.22 ± 0.49 

NM_013538 Cell division cycle associated 
3 Cdc3 1.94 ± 0.55 1.96 ± 0.56 1.34 ± 0.41 

NM_173867 Regulator of chromosome 
condensation 2 Td60 1.88 ± 0.64 2.00 ± 0.56 1.97 ± 0.51 

NM_053173 Kinesin family member C1 Kifc5a 1.88 ± 0.50 1.41 ± 0.38 1.17 ± 0.34 
NM_007893 E4F transcription factor 1 E4f1 1.84 ± 0.46 1.83 ± 0.47 1.91 ± 0.51 

NM_026410 Cell division cycle associated 
5 Cdca5 1.82 ± 0.34 1.20 ± 0.30 -1.03 ± 0.23 

NM_009096 Ribosomal protein S6 S6 1.75 ± 0.45 1.29 ± 0.41 1.23 ± 0.47 

NM_133762 Non-SMC condensin II 
complex, subunit G2 Nsc2g2 1.66 ± 0.45 1.17 ± 0.41 -1.03 ± 0.34 

NM_010578 Integrin beta 1 (fibronectin 
receptor beta) Fnrb 1.59 ± 0.30 1.64 ± 0.31 1.13 ± 0.23 

NM_023317 Nuclear distribution gene E 
homolog 1 (A nidulans) Nude 1.58 ± 0.42 1.89 ± 0.47 1.57 ± 0.45 

NM_019499 MAD2 mitotic arrest 
deficient-like 1 (yeast) Mad2 1.58 ± 0.58 1.15 ± 0.41 -1.13 ± 0.40 

NM_017407 Sperm associated antigen 5 Mastrin 1.57 ± 0.49 1.63 ± 0.39 1.10 ± 0.28 
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Table 3.8 (continue) 
Genbank Gene title Symbol 100uM KA 

 5h 15h 24h 
Mitotic cell cycle (continue) 
NM_031166 Inhibitor of DNA binding 4 Idb4 1.57 ± 0.47 2.19 ± 0.65 1.72 ± 0.59 
NM_016756 Cyclin-dependent kinase 2 Cdk2 1.55 ± 0.39 1.31 ± 0.29 1.16 ± 0.30 

NM_026375 AT hook containing 
transcription factor 1 At1 1.55 ± 0.38 1.27 ± 0.29 1.07 ± 0.29 

NM_027411 Coiled-coil domain containing 
99 Ccd99 1.54 ± 0.52 1.10 ± 0.29 1.07 ± 0.38 

NM_011799 Cell division cycle 6 homolog 
(S. cerevisiae) Cdc6 1.53 ± 0.42 1.06 ± 0.27 1.10 ± 0.34 

NM_009831 Cyclin G1 Ccng1 1.53 ± 0.33 1.35 ± 0.25 -1.01 ± 0.22 
NM_007631 Cyclin D1 Ccnd1 1.51 ± 0.42 1.06 ± 0.31 -1.28 ± 0.24 

NM_030241 SET domain containing 
(lysine methyltransferase) 8 Sdc8 1.51 ± 0.43 -1.07 ± 0.25 -1.14 ± 0.24 

NM_153058 
Microtubule-associated 
protein, RP/EB family, 
member 2 

Eb2 1.50 ± 0.49 1.44 ± 0.42 1.08 ± 0.39 

NM_008682 
Neural precursor cell 
expressed, developmentally 
down-regulated gene 1 

Nedd1 1.43 ± 0.33 1.67 ± 0.33 1.23 ± 0.34 

NM_008913 
Protein phosphatase 3, 
catalytic subunit, alpha 
isoform 

Ppca3 1.41 ± 0.25 -1.74 ± 0.10 -2.12 ± 0.10 

NM_019641 Stathmin 1 Stamn1 1.40 ± 0.39 -2.29 ± 0.13 -1.60 ± 0.27 
NM_019405 Centrin 2 Calt 1.36 ± 0.39 -1.41 ± 0.23 -1.91 ± 0.17 

NM_009774 
Budding uninhibited by 
benzimidazoles 3 homolog (S. 
cerevisiae) 

Bub3 1.17 ± 0.31 -1.59 ± 0.14 -1.66 ± 0.16 

NM_007684 Centrin 3 Cen3 1.16 ± 0.32 -1.25 ± 0.19 -1.61 ± 0.19 

NM_008569 Anaphase promoting complex 
subunit 1 Apc1 1.16 ± 0.25 1.61 ± 0.39 1.31 ± 0.35 

NM_026823 ADP-ribosylation factor-like 
8A Arfl8a 1.15 ± 0.23 -1.37 ± 0.18 -1.78 ± 0.14 

NM_145606 Chromatin modifying protein 
1A Cmp1a 1.11 ± 0.26 -1.43 ± 0.13 -1.59 ± 0.12 

NM_178597 
Calcium/calmodulin-
dependent protein kinase type 
II gamma chain  

Camkg 1.10 ± 0.24 -1.69 ± 0.12 -1.71 ± 0.17 

XM_203393 Centromere protein V Cenv 1.03 ± 0.28 -1.52 ± 0.15 -1.36 ± 0.18 

NM_007595 
Calcium/calmodulin-
dependent protein kinase II, 
beta 

Camk2d 1.01 ± 0.16 -2.09 ± 0.08 -2.25 ± 0.10 

NM_017406 Activating transcription factor 
6 beta Atf6b -1.01 ± 0.21 -1.38 ± 0.14 -1.76 ± 0.14 

NM_023279 Tubulin, beta 3 Tubb3 -1.13 ± 0.33 -2.22 ± 0.15 -2.58 ± 0.13 

NM_177407 
Calcium/calmodulin-
dependent protein kinase II 
alpha 

CaMKII -1.15 ± 0.31 -1.62 ± 0.20 -1.54 ± 0.20 
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Table 3.8 (continue) 
Genbank Gene title Symbol 100uM KA 

 5h 15h 24h 
Mitotic cell cycle (continue) 

NM_172717 Checkpoint with forkhead and 
ring finger domains Frfd -1.16 ± 0.30 -1.42 ± 0.25 -1.67 ± 0.22 

NM_133955 Ras homolog gene family, 
member U Rasu -1.32 ± 0.16 -1.98 ± 0.10 -2.18 ± 0.09 

NM_175646 Thioredoxin-like 4B Trxl4b -1.41 ± 0.21 -1.29 ± 0.20 -1.68 ± 0.16 

NM_022021 CDK5 and Abl enzyme 
substrate 1 Cables -1.56 ± 0.14 -1.87 ± 0.12 -2.11 ± 0.12 

NM_133678 SAC3 domain containing 1 Shd1 -1.58 ± 0.26 -1.55 ± 0.23 -1.80 ± 0.17 
NM_134024 Tubulin, gamma 1 Tubg -1.66 ± 0.13 -1.52 ± 0.13 -1.70 ± 0.15 

NM_011848 NIMA (never in mitosis gene 
a)-related expressed kinase 3 Nek3 -1.79 ± 0.14 -1.20 ± 0.17 -1.68 ± 0.13 
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Table 3.9 Significantly expressed genes (with fold-change of at least 1.5 in a 
minimum one out of three time-points and passed One-way ANOVA, p<0.05 and 
Benjamini Hochberg FDR correction) encoding for proteins involved in mitotic cell 
cycle upon 200uM NMDA-mediated excitotoxicity in cultured primary cortical neurons. 

Genbank Genbank Symbol 200uM NMDA 
 5h 15h 24h 

Mitotic cell cycle 

NM_013538 Cell division cycle 
associated 3 Cdca3 2.18 ± 0.62 1.78 ± 0.42 1.04 ± 0.26 

NM_133851 Nucleolar and spindle 
associated protein 1 NuSap1 2.18 ± 0.51 1.83 ± 0.37 1.11 ± 0.21 

NM_025565 
SPC25, NDC80 kinetochore 
complex component, 
homolog (S. cerevisiae) 

Spc25 2.11 ± 0.48 1.82 ± 0.49 1.21 ± 0.32 

NM_007659 Cell division cycle 2 
homolog A (S. pombe) Cdc2 2.10 ± 0.51 1.66 ± 0.39 1.20 ± 0.26 

NM_172301 Cyclin B1 Ccnb1 2.07 ± 0.50 1.62 ± 0.41 1.19 ± 0.29 

NM_009689 Baculoviral IAP repeat-
containing 5 Birc5 1.96 ± 0.56 1.41 ± 0.33 -1.02 ± 0.22 

NM_011121 Polo-like kinase 1 
(Drosophila) Plk 1.90 ± 0.38 1.44 ± 0.21 -1.10 ± 0.20 

NM_019499 MAD2 mitotic arrest 
deficient-like 1 (yeast) Mad2 1.87 ± 0.62 1.09 ± 0.34 -1.12 ± 0.25 

NM_023223 Cell division cycle 20 
homolog (S. cerevisiae) Cdc20 1.87 ± 0.39 1.43 ± 0.31 -1.02 ± 0.24 

NM_026410 Cell division cycle 
associated 5 Csca5 1.85 ± 0.44 1.26 ± 0.22 -1.11 ± 0.20 

NM_144818 Non-SMC condensin I 
complex, subunit H Nsc1h 1.85 ± 0.64 1.28 ± 0.45 1.10 ± 0.34 

NM_028390 Anillin, actin binding protein Anl 1.84 ± 0.41 1.50 ± 0.33 1.18 ± 0.26 

NM_008682 
Neural precursor cell 
expressed, developmentally 
down-regulated gene 1 

Nedd1 1.71 ± 0.42 1.85 ± 0.40 1.36 ± 0.27 

NM_011497 Aurora kinase A AurkA 1.65 ± 0.40 1.31 ± 0.32 1.11 ± 0.26 
NM_016756 Cyclin-dependent kinase 2 Cdk2 1.60 ± 0.28 1.48 ± 0.26 1.33 ± 0.29 

NM_009773 
Budding uninhibited by 
benzimidazoles 1 homolog, 
beta (S. cerevisiae) 

Bubr1 1.60 ± 0.41 1.28 ± 0.39 -1.06 ± 0.26 

NM_053173 Kinesin family member C1 Kifc5a 1.59 ± 0.44 1.19 ± 0.26 1.01 ± 0.21 

NM_026560 Cell division cycle 
associated 8 Cdc8 1.58 ± 0.48 1.22 ± 0.32 1.01 ± 0.27 

NM_175384 Cell division cycle 
associated 2 Cdca2 1.57 ± 0.30 1.32 ± 0.25 -1.01 ± 0.20 

NM_013917 Pituitary tumor-transforming 
gene 1 Pttg1 1.57 ± 0.62 1.09 ± 0.29 -1.23 ± 0.21 

NM_026282 
SPC24, NDC80 kinetochore 
complex component, 
homolog (S. cerevisiae) 

Spc24 1.55 ± 0.50 1.29 ± 0.37 -1.06 ± 0.25 

NM_017407 Sperm associated antigen 5 Mastrin 1.54 ± 0.37 1.43 ± 0.32 1.02 ± 0.22 

NM_010578 Integrin beta 1 (fibronectin 
receptor beta) Fnrb 1.54 ± 0.31 1.45 ± 0.29 1.10 ± 0.20 
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Table 3.9 (continue) 
Genbank Genbank Symbol 200uM NMDA 

 5h 15h 24h 

Mitotic cell cycle (continue) 

NM_013726 DBF4 homolog (S. 
cerevisiae) Dbf4 1.51 ± 0.40 1.11 ± 0.23 1.28 ± 0.35 

NM_033270 E2F transcription factor 6 E2F6 1.41 ± 0.32 1.50 ± 0.24 1.15 ± 0.23 
NM_031166 Inhibitor of DNA binding 4 Idb4 1.36 ± 0.41 1.89 ± 0.53 1.15 ± 0.34 

NM_027985 MAD2 mitotic arrest 
deficient-like 2 (yeast) Mad2b 1.33 ± 0.29 1.50 ± 0.37 1.05 ± 0.27 

NM_009831 Cyclin G1 Ccng1 1.30 ± 0.34 1.55 ± 0.33 1.25 ± 0.34 

NM_023317 Nuclear distribution gene E 
homolog 1 (A nidulans) Nude 1.28 ± 0.32 1.56 ± 0.35 1.24 ± 0.30 

NM_019641 Stathmin 1 Stamn1 1.19 ± 0.39 -1.80 ± 0.16 -1.34 ± 0.22 
NM_023279 Tubulin, beta 3 Tubb3 1.02 ± 0.31 -1.77 ± 0.17 -1.66 ± 0.17 
NM_007631 Cyclin D1 Ccnd1 1.02 ± 0.31 -1.61 ± 0.15 -1.65 ± 0.15 

NM_008913 
Potein phosphatase 3, 
catalytic subunit, alpha 
isoform 

Ppca3 -1.00 ± 0.23 -2.14 ± 0.09 -1.82 ± 0.21 

NM_134024 Tubulin, gamma 1 Tubg1 -1.04 ± 0.18 -1.34 ± 0.15 -1.76 ± 0.13 

NM_153058 
Microtubule-associated 
protein, RP/EB family, 
member 2 

Eb2 -1.29 ± 0.16 -1.63 ± 0.11 -1.27 ± 0.25 

NM_183178 Fibronectin type 3 and SPRY 
domain-containing protein Fsd1 -1.30 ± 0.15 -1.72 ± 0.12 -1.69 ± 0.11 

NM_007595 
Calcium/calmodulin-
dependent protein kinase II, 
beta 

Camk2d -1.31 ± 0.13 -2.47 ± 0.06 -1.71 ± 0.11 

NM_133955 Ras homolog gene family, 
member U Rasu -1.53 ± 0.14 -1.50 ± 0.12 -1.22 ± 0.20 

NM_177407 
Calcium/calmodulin-
dependent protein kinase II 
alpha 

Camk2 -1.62 ± 0.18 -1.68 ± 0.16 -1.43 ± 0.17 
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Table 3.10 Significantly expressed genes (with fold-change of at least 1.5 in a minimum one 
out of three time-points and passed One-way ANOVA, p<0.05) encoding for proteins involved 
in mitotic cell cycle upon 250uM Glu-mediated excitotoxicity in cultured primary cortical 
neurons. 
Genbank Gene Symbol 250uM Glu 

 5h 15h 24h 

Mitotic cell cycle 
NM_011121 Polo-like kinase 1 (Drosophila) Plk 2.08 ± 0.32 2.06 ± 0.37 1.62 ± 0.30 

NM_007659 Cell division cycle 2 homolog A (S. 
pombe) Cdc2 2.06 ± 0.42 1.91 ± 0.47 1.50 ± 0.39 

NM_011497 Aurora kinase A AurkA 1.91 ± 0.42 1.98 ± 0.50 1.59 ± 0.44 
NM_026410 Cell division cycle associated 5 Cdca5 1.88 ± 0.45 1.60 ± 0.35 1.35 ± 0.33 
NM_175384 Cell division cycle associated 2 Cdca2 1.82 ± 0.37 1.70 ± 0.35 1.52 ± 0.34 
NM_028390 Anillin, actin binding protein Anl 1.80 ± 0.40 1.86 ± 0.51 1.67 ± 0.41 

NM_026282 SPC24, NDC80 kinetochore complex 
component, homolog (S. cerevisiae) Spc24 1.71 ± 0.32 1.67 ± 0.55 1.18 ± 0.33 

NM_172301 Cyclin B1 Ccnb1 1.68 ± 0.42 2.09 ± 0.54 1.48 ± 0.51 

NM_025565 SPC25, NDC80 kinetochore complex 
component, homolog (S. cerevisiae) Spc25 1.66 ± 0.41 1.85 ± 0.65 1.47 ± 0.63 

NM_133851 Nucleolar and spindle associated 
protein 1 NuSap1 1.66 ± 0.30 2.09 ± 0.44 1.67 ± 0.42 

NM_023223 Cell division cycle 20 homolog (S. 
cerevisiae) Cdc20 1.61 ± 0.41 2.03 ± 0.50 1.32 ± 0.36 

NM_026560 Cell division cycle associated 8 Cdca8 1.61 ± 0.57 1.43 ± 0.48 1.06 ± 0.36 
NM_013538 Cell division cycle associated 3 Cdca3 1.57 ± 0.39 2.03 ± 0.48 1.43 ± 0.39 
NM_009689 Baculoviral IAP repeat-containing 5 Birc5 1.54 ± 0.36 1.88 ± 0.50 1.34 ± 0.30 
NM_017407 Sperm associated antigen 5 Mastrin 1.52 ± 0.38 1.85 ± 0.46 1.55 ± 0.48 
NM_007893 E4F transcription factor 1 E4f1 1.52 ± 0.40 1.09 ± 0.33 1.03 ± 0.35 

NM_008682 
Neural precursor cell expressed, 
developmentally down-regulated gene 
1 

Nedd4 1.40 ± 0.29 1.84 ± 0.42 1.65 ± 0.42 

NM_009831 Cyclin G1 Ccng 1.36 ± 0.31 1.52 ± 0.39 1.31 ± 0.29 

NM_010578 Integrin beta 1 (fibronectin receptor 
beta) Fnrb 1.34 ± 0.22 1.64 ± 0.28 1.46 ± 0.32 

NM_013917 Pituitary tumor-transforming gene 1 Securin 1.29 ± 0.44 1.71 ± 0.72 1.27 ± 0.45 

NM_144818 Non-SMC condensin I complex, 
subunit H Nsc1h 1.24 ± 0.49 1.71 ± 0.55 1.53 ± 0.49 

NM_033270 E2F transcription factor 6 E2f6 1.22 ± 0.24 1.68 ± 0.42 1.53 ± 0.39 

NM_023317 Nuclear distribution gene E homolog 1 
(A nidulans) Nude 1.13 ± 0.30 1.77 ± 0.43 1.35 ± 0.35 

NM_022889 Pescadillo homolog 1, containing 
BRCT domain (zebrafish) Pes1 1.12 ± 0.22 1.49 ± 0.33 1.31 ± 0.28 

NM_007471 Amyloid beta (A4) precursor protein Abeta 1.06 ± 0.20 -1.64 ± 0.12 -1.56 ± 0.14 

NM_008913 Protein phosphatase 3, catalytic 
subunit, alpha isoform Pp3ca 1.03 ± 0.20 -1.71 ± 0.11 -1.48 ± 0.12 
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Table 3.10 (continue) 
Genbank Gene Symbol 250uM Glu 

 5h 15h 24h 

Mitotic cell cycle (continue) 

NM_007595 Calcium/calmodulin-dependent protein 
kinase II, beta Camk2b -1.18 ± 0.13 -2.33 ± 0.09 -1.74 ± 0.11 

NM_198429 Nuclear factor of activated T-cells, 
cytoplasmic, calcineurin-dependent 1 Nfat2 -1.29 ± 0.23 1.50 ± 0.41 1.61 ± 0.45 

NM_153058 Microtubule-associated protein, 
RP/EB family, member 2 Eb2 -1.29 ± 0.15 -1.51 ± 0.14 -1.27 ± 0.17 

NM_133955 Ras homolog gene family, member U Ras -1.30 ± 0.16 -1.62 ± 0.15 -1.31 ± 0.14 
NM_152804 Polo-like kinase 2 (Drosophila) Snk -1.37 ± 0.18 -1.82 ± 0.12 -1.46 ± 0.20 
NM_031166 Inhibitor of DNA binding 4 Id4 -1.41 ± 0.21 1.93 ± 0.56 2.11 ± 0.76 

NM_177407 Calcium/calmodulin-dependent protein 
kinase II alpha Camk2a -1.42 ± 0.19 -1.67 ± 0.21 -1.44 ± 0.24 
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3.2.2.4 Validation of Glu global transcriptomic profiles via real-time PCR 

Microarray data was validated via real-time PCR using on the same total RNA samples 

previously employed in microarray analysis. Similar temporal transcriptional regulatory 

trend was observed for the following genes (Table 3.11).  

 

Table 3.11 Validation of microarray data using real-time PCR technique on D7 murine primary cortical 
neuronal cultures treated with 250uM Glu. All fold-change expressions are statistically significant at p<0.05. 
Each expression data is representative of 3 independent replicates. Data are expressed as fold-change ± sem. 

GenBank Gene Title Symbol 5h 15h 24h 
   Microarray Real-time 

PCR Microarray Real-time 
PCR Microarray Real-time 

PCR 

NM_030704 Heat shock 
protein 8 Hspb8 1.29 ± 0.31 1.42 ± 0.69 4.40 ± 1.06 9.29 ± 0.55 2.63 ± 0.70 2.24 ± 0.72 

NM_010442 Heme 
oxygenase 1 Hmox1 1.59 ± 0.34  2.37 ± 0.41 1.78 ± 0.62 1.51 ± 0.38  

NM_029688 Sulfiredoxin 1 
homolog Npn3 -1.20 ± 

0.29  2.16 ± 0.73 2.99 ± 0.55 1.17 ± 0.43  

NM_011121 Polo-like kinase 
1 Plk 2.08 ± 0.32  2.06 ± 0.37 1.64 ± 0.59 1.62 ± 0.30  

NM_007585 Annexin A2 AnxA2 1.52 ± 0.25  1.93 ± 0.31  2.05 ± 0.43 8.25 ± 0.61 

NM_020581 Angiopoietin-
like 4 Angptl4 2.00 ± 0.46 3.28 ± 0.66 8.27 ± 1.62  8.24 ± 1.58 5.63 ± 0.58 

NM_011497 Aurora kinase 
A Aurka 1.91 ± 0.42 3.31 ± 0.69 1.98 ± 0.50 1.95 ± 0.72 1.59 ± 0.44 2.97 ± 1.11 

NM_028109 

TPX2, 
microtubule-
associated 
protein 
homolog 

Tpx2 1.70 ± 0.42 5.78 ± 0.47 2.09 ± 0.55 4.79 ± 0.78 1.57 ± 0.46 4.21 ± 0.60 
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3.2.3 Discussion 

Comparative global transcriptomic profile analysis of iGluRs-specific agonists (AMPA, 

KA and NMDA) and the general GluRs agonist, Glu revealed several enriched biological 

processes pivotal to the progression of excitotoxicity. Temporal global gene profiling 

study revealed that AMPA and Glu –mediated neuronal injury evoke a delayed activation 

of downstream signaling cascade as compared to that of NMDA and KA. This temporal 

discrepancy arises probably as a result of surface receptor abundance and voltage 

conductance ability of individual iGluRs in the situation of the later transcriptional 

modulation of signaling cascades in AMPA model, and an additional factor of 

metabotropic GluRs activation in Glu model.  

 

Lending further support from H2S-mediated neuronal death where only selective 

NMDARs and KARs antagonists have the ability to evoke attenuation, it implies that 

NMDARs and KARs have a greater surface expression on the post-synaptic membrane for 

activation as compared to AMPARs. Furthermore, AMPARs limitation in the conductance 

of Ca2+ influx is imposed by its selective permeability to Ca2+ governed by the GluR2 

subunit, even though they are still freely permeable to other cations such as Na+ and K+. 

NMDARs and KARs do not demonstrate selective permeability to Ca2+. The presence of a 

GluR2 subunit has the ability to occlude the channel conductance of Ca2+ influx as a result 

of its post-translational modification that alters the uncharged amino acid glutamine to the 

positively-charged arginine in the receptor's ion channel. The positively-charged amino 

acid at the critical point makes it energetically adverse for Ca2+ to enter the cell through 

the pore. Majority of the GluR2 subunits in CNS undergoes this single amino acid 

http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Arginine
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alteration, implying the main ions gated by AMPARs are Na+ and K+. As such, it has been 

postulated that activation of GluR2-containing AMPARs guards against excitotoxicity 

through inhibition of Ca2+ entry into the neuron (Kim et al., 2001). However, it is 

important to keep in mind, that given sufficient time for influx of Ca2+ into the cytosol via 

non- GluR2-containing receptors, AMPARs still have the ability to initiate excitotoxicity 

as reported in literature. 

 

Oxidative stress is a prominent patho-physiological mechanism during excitotoxicity as 

demonstrated by the significant transcriptional activation of anti-oxidative enzymes such 

as HSPs and molecular chaperones, and GSH metabolic pathway. Mitochondria has been 

shown to be the primary source of ROS in excitotoxicity-mediated neuronal injury, where 

an overproduction of ROS leads to an inactivation of anti-oxidant enzymes thus fast 

consuming the cellular antioxidant ability, eventually causing a dysfunction of the natural 

defense mechanisms to protect the neurons. ROS, being thermodynamically active, modify 

cellular proteins, lipids and DNA in a detrimental way, thereby disrupting normal cellular 

signaling and gene regulation. Frequently, oxidative stress, a crucial component of 

neurodegeneration seen in AD, ALS and PD, with increasing participation in their 

pathogeneses has been identified as concordant with markers of unregulated cell cycle re-

entry and its aberrations (Wang et al., 2009; Zhu et al., 2007). 

 

Temporal global transcriptomic profiles of models of excitotoxicity demonstrated 

significant modulation of mitotic cell cycle process, with an up-regulation observed for 

majority of the cell cycle-promoting proteins. Over the years, the precise origins of mitotic 
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dysfunction have not been fully understood. Cell cycle re-activation association to 

excitotoxicity has previously been reported on numerous occasions in models of 

excitotoxicity and stroke, amidst models of other neurodegenerative diseases such as the 

MPTP model of PD and superoxide dismutase (SOD)-1 mouse model of ALS (Hoglinger 

et al., 2007; Nguyen et al., 2003; Verdaguer et al., 2004a; Verdaguer et al., 2003), 

indicating a similar neuropathological incidence between two cellular events which may 

not be a coincidence. For the first time, employing comparative temporal microarray 

technique, the present project has demonstrated that iGluRs activation plays an important 

role in the trigger of cell cycle re-activation during Glu-mediated excitotoxicity, and that 

iGluRs may promisingly be the origin of mitotic dysfunction.  

 

Aberrant expression of neuronal cell cycle proteins with resultant neuronal loss has been 

observed in the central nervous system of patients with neurodegenerative diseases such as 

AD, PD, ALS, Niemann-Pick‘s disease, DS and progressive supranuclear palsy 

(Nunomura et al., 2007; Woods et al., 2007) and acute neurological disorder such as stroke 

and traumatic brain injury ((Byrnes and Faden, 2007; Timsit and Menn, 2007)). 

Accumulating evidence from postmortem studies has demonstrated aberrant expression of 

cell-cycle-related molecules in the neurons of the hippocampus, subiculum, locus 

coeruleus and dorsal raphe nuclei. This is further substantiated by proof of DNA 

replication in brains of patients with AD (Busser et al., 1998; McShea et al., 1997; Vincent 

et al., 1997; Yang et al., 2001), epilepsy (Nagy and Esiri, 1998), PD (Jordan-Sciutto et al., 

2003)  and ALS (Ranganathan and Bowser, 2003).  
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Neurons in the adult central nervous system exist in the quiescent state, i.e. a non-dividing, 

silent phase, called G0. Cells in this state are designated as terminally differentiated as they 

do not have the ability to re-enter cell cycle (McShea et al., 1999). Increasing evidence 

from neurodegenerative diseases studies demonstrate frequently these mitotically inactive 

neurons formed the vulnerable targets of aberrant cell cycle re-entry (Lee et al., 2009; 

McShea et al., 2007; Zhu et al., 2007; Zhu et al., 1999). Re-entrant cells that proceed 

beyond the late G1, or even enter and complete S-phase, cannot return to G0. As a result of 

some undefined cellular constraints of terminally differentiated neurons, the cell cycle re-

entrant cells being neither able to return to quiescent state or complete mitosis, induced 

their own deaths via the PCD pathways (Meikrantz and Schlegel, 1995; Wang et al., 

2009). 

 
 
During cell transitions from S-phase to M-phase in mitosis, cyclins and their associated 

CDKs fluctuate in their expression and activity as the (Grana and Reddy, 1995). In 

particular, the expression and activation of cyclin D (CCND)/CDK4,6 complex, triggered 

by the presence of mitotic growth factors, facilitates the passing from resting (G0) cells 

into the G1 phase of cell cycle (Sherr, 1994; Sherr, 1995). Similarly, the G1/S transition is 

governed by the activation of the cyclin E/CDK2 complex (Sherr, 1994), such that the 

absence of cyclin E and/or the inhibition of the cyclin E/CDK2 complex by p21, p27 and 

p53 would impose cell cycle arrest at the G1 checkpoint. 

 

From Table 3.6 of the genes involved in mitotic cell division for individual excitotoxicity 

profiles, it is apparent that numerous cell cycle-promoting proteins were transcriptionally 
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up-regulated from 5h and 15h, in concurrent with an increase in gene expression of pro-

mitogenic signals from growth factors. Interestingly, transcriptional up-regulation of 

Ccnd1 and Ccnd2 was observed in AMPA and KA models, but not that of NMDA and 

Glu models. This discrepancy in temporal modulation of CCND could be explained by the 

earlier occurrence of cell cycle re-activation before the selected 5h time-points in NMDA 

and Glu profiles as a result of the highest physiological abundance and Ca2+ permeability 

of NMDARs out of the three iGluRs subtypes, which leads to the failure of capturing the 

timeframe of Ccnd transcriptional modulation. As such, NMDA profile demonstrated 

basal fold-change (~1.0) at 5h, followed by significant pursuing down-regulation at 15h 

and 24h. On the other hand, Ccnd transcriptional regulation was not present in Glu profile, 

indicating an overall close to basal (between -1.50 to 1.50 fold) expression due to a 

neutralizing effect from the up- and down -regulation of Ccnd in AMPA/KA and NMDA 

profiles respectively upon all iGluRs activation. 

 

While activation of iGluRs during excitotoxicity may be the answer to the initiation of cell 

cycle reactivation, oxidative stress may further facilitate and promote the latter‘s 

progression (Bonda et al., 2010). Indeed, significant oxidative load, represented by the 

substantial transcriptional activation of Hsps, molecular chaperones and GSH pathway, 

was observed across all four excitotoxicity models. A ―two-hit‖ hypothesis, originally put 

forward for neurodegeneration in AD and implicating both oxidative stress and cell cycle 

malfunctioning, seemingly also apply to neuronal excitotoxicity (Zhu et al., 2001;2007) . 

In the current study, the two conditions that must be met in order for aberrant cell cycle re-

entry to occur in neurons namely, (a) an elevation in cell cycle proteins and (b) an increase 
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in pro-mitogenic signals, have been fulfilled. This is because even though mature neurons 

may express some cell cycle proteins, the amount produced is not sufficient to produce a 

substantial pro-mitogenic signal to drive the mature neurons to re-enter the cell cycle. 

Furthermore, some cell cycle proteins demonstrates diverse post-mitotic multi-functions 

that span various developmental stages of a neuron, including neuronal migration, axonal 

elongation, axonal pruning, dendrite morphogenesis and synaptic maturation and plasticity 

(Frank and Tsai, 2009; Kim et al., 2009). As such, final ingredient to put neurons to their 

demise most likely requires the stimulus of additional pro-mitogenic molecules, such as 

thrombin, Aβ42, ROS, NO and others, which elevation will trigger the mitogenic signal 

cascades in the injured neurons. Once mitogenic signaling is stimulated beyond a certain 

threshold, neurons appear to exit their quiescent state and re-enter the cell cycle (Bonda et 

al., 2010). 
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Figure 3.14 A summarized diagram depicting the major role of cell cycle re-entry in the 

exacerbation of neuronal injury in concurrence with the simultaneous occurrence of 

oxidative stress and neuroinflammation during excitotoxicity in cerebral ischemia. Cell 

cycle re-activation is highly dependently on the presence of pro-mitogenic stimuli (growth 

factors) and cell cycle proteins (CDKs and cyclins) 

 

In conclusion, this subchapter reported that activation of iGluRs induces cell cycle re-

activation during excitotoxicity, in addition to tremendously heightened oxidative stress.  

The two aforementioned processes with concomitant transcriptional activation cooperate 

as per the ―two-hit‖ hypothesis to inflict cellular damages and eventually death 
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As such, cell cycle abnormalities potentially define a target for finding new therapeutic 

possibilities treatment of neurodegenerative disorders where excitotoxicity is causative, 

which would be addressed in Chapter 6.2. Current in vitro models of excitotoxicity were 

inadequate in providing insights into the role of excitotoxicity under patho-physiological 

conditions within the mammalian brain which comprises of a heterogeneity of cell type 

populations (cell-cell interactions that play an important role in neuropathological cell 

communication) and a complex structural-biological architecture (e.g. vasculature 

structure and blood-brain barrier). Furthermore, pharmacological activation of iGluRs 

would be insufficient to mimic the upstream patho-physiological events triggering the 

accumulation of extracellular Glu. As Glu –mediated excitotoxicity is commonly defined 

in cerebral ischemia commonly known as stroke, and the pathogenesis of the latter has not 

been fully elucidated, employment of in vivo models of cerebral ischemia for microarray 

analyses (Chapter 4, 5 and 6) would provide the opportunity to understand the significance 

of excitotoxicity, and simultaneously provide insights into the mechanistic regulation in 

this acute neurological disorder. 
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4 Description of neonatal hypoxic ischemia (HI) model 

All animal work conducted in this study was approved by the University of New South 

Wales (UNSW) Animal Ethics and Experimentation Committee and performed in 

accordance with the guidelines of the National Health and Medical Research Council 

(Australia). C57 Black 6(C57/Bl6) mouse pups were obtained from Animal Resources 

Centre (Perth, WA) and were housed under standard housing conditions in the UNSW 

Biological Resources Centre animal facility throughout experiments. 

 

HI was carried out as previously described in (Jones et al., 2008). Pups were anesthetized 

with 1.5% isoflurane in 30% O2/70% N2 mixture and underwent unilateral HI. The right 

common carotid artery was exposed through a ventral midline neck incision and 

permanently occluded by electrocoagulation (Aaron Medical Industries Inc, Florida, 

USA), where the occlusion was verified The wound was sutured and mouse pups were 

returned to their mother for 1.5–2h. Sham control mice underwent the identical 

procedure, without carotid artery occlusion.  Pups were then placed in an 8% O2/92% N2 

humidified chamber at 37°C for 1h. This combined procedure results in select neuronal 

damage or infarction in the hemisphere ipsilateral to the carotid occlusion, whereas 

hypoxia alone (contralateral hemisphere) does not produce any significant brain injury 

(originally described by (Levine, 1960; Levine and Klein, 1960) and later refined by 

(Rice et al., 1981)). Following the HI or sham surgery procedure, all pups were returned 

to their dam and kept under standard housing conditions for the remainder of the study. 
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Neonatal mice were randomly decapitated at 3h and 24h post 1-hour exposure to HI, 

along with their respective time-point specific sham controls. Assessment of the volume 

of the infarct lesion (n=6) was performed with Nissl stain (cresyl violet). Global gene 

profiling was performed on the right infarct cortice. Four biological replicates from each 

time-point/condition (sham control or HI) were used for microarray analysis. The 

schematic microarray experimental design is demonstrated as follow: 
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4.1 Introduction 

Unregulated hyper-activation of GluRs has been demonstrated to play a detrimental role 

in the initial phase of injury infliction during HI especially in term neonates where 

extracellular Glu accumulates to cytotoxic level, leading to a condition known as hypoxic 

encephalopathy commonly characterized by cortical infarction. On the other hand, HI 

insults in preterm neonates frequently results in selective white matter injury called 

periventricular leukomalacia with insignificant or absence of cortical pathology. This is 

because the perinatal age window represents a dynamic development period of alterations 

of neuronal and glial structure and function, which in turn translates into differential 

vulnerability to age-specific patterns of injury. This means that even though HI can occur 

in both term and pre-term neonates, the pattern of response is highly dependent on the 

age of the infant, which in turn is correlated to the expression profile and functionality of 

the GluRs, in this case the iGluRs (Reviewed in Jensen, 2002a; b). Since excitotoxicity 

played a substantial role in term neonates, current study in the chapter would focus on the 

termporal global transcriptomic profiling of HI in term mouse neonates. 

 

HI brain damage is one of the most common causes of neonatal brain injuries, amidst 

other conditions such as intrauterine infection and perinatal cerebral hemorrhage (Bracci 

et al., 2006). HI, occurring during the perinatal period, severely affects brain integrity 

resulting in detrimental long-term neurological morbidity in terms of motor, intellectual, 

educational and neuropsychological performance deficits (e.g. cerebral palsy, mental 

retardation, learning disability and epilepsy), and even neonatal mortality (Cowan et al., 

2003; Ferriero, 2004; Shalak and Perlman, 2004; van Handel et al., 2007). HI has been 
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demonstrated to produce brain damages of differential severity comprising of focal 

necrotic cell death, diffused white matter injury, and cystic/cavitary infarction resulting in 

intraventricular-periventricular hemorrhages and periventricular lesions (Leonardo and 

Pennypacker, 2009). 

 

Oxidative stress is the main injurious trigger component of different cell death 

phenotypes in HI (Gill and Perez-Polo, 2008). Oxidative stress-induced cell deaths can be 

divulged into apoptotic (i.e. caspase-dependent and programmed tightly) under chronic 

conditions and necrotic (i.e. caspase-independent and unregulated) under more acute 

oxidative insults. However, with the revelation of existence of alternate cell death routes, 

PCD, originally an alternative name for apoptosis (PCD-I), has revolutionized its 

definition to include further two cell death subtypes namely the caspase-independent 

autophagy (PCD-II) and programmed necrosis (PCD-III) (Nagley et al., 2010). 

 

Heterogeneous modes of cell death (apoptosis and necrosis) were consistently observed 

in the neuronal population in the cortex, hippocampus, thalamus and striatum after HI 

(Malinak and Silverstein, 1996). Recently, autophagy was also demonstrated to play a 

pivotal role in the infliction of neonatal HI injury (Carloni et al., 2008; Higgins et al., 

2010). Autophagy has been actively involved in numerous neuronal processes such as 

development, starvation, neurodegeneration and excitotoxic stimulation (Boland and 

Nixon, 2006; Matyja et al., 2005; Shacka et al., 2007; Wang et al., 2008). More 

specifically in neurological disorders context, an increase in autophagosome formation 

suggestive of an enhancement of the autophagic flux during cerebral HI in rodent 
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neonates and adults has been identified (Adhami et al., 2006; Koike et al., 2008; Wen et 

al., 2008; Zhu et al., 2005).  

 

Current therapeutic interventions fail to provide substantial reversal of HI brain injuries 

and improvement in overall cognitive function. Recent clinical studies demonstrated that 

post-HI hypothermia provide moderate neuroprotection but fail to show any significant 

reduction in neonatal morbidity and mortality (Shankaran et al., 2005). Concurrently, 

erythropoietin therapy is only found to be effective against neurological deficits when use 

in high dose upon induction of a moderate degree of HI (Juul et al., 2008; Zhu et al., 

2009). This is due to the multiplicity of cell death mechanisms induced by neonatal HI, 

occurring in different cells or even as a continuum in the same cell, which makes 

neuroprotective treatment against neonatal HI more difficult to achieve. As such, 

temporal global gene profiling of neonatal hypoxic ischemia would provide worthy 

mechanistic insights into the disease pathogenesis. 
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4.2 Results 

HI was induced in post-natal day 7 C57/Bl6 pups via unilateral carotid artery ligation 

with a subsequent 1-hour exposure to a hypoxic environment (8% oxygen). This model 

inflicts a unilateral infarct in the hemisphere ipsilateral to the ligation as hypoxia 

induction alone at this age is sub-threshold for injury. The area of damage is typically 

restricted to the periventricular regions of the brain, particularly the cortical and 

hippocampal areas. This is reminiscent of hypoxic encephalopathy in term babies where 

cortical infarction is commonly observed (Jensen, 2002). Previous study had 

demonstrated substantial infarct damage occurred in the cortical and hippocampal regions 

in the neonates upon HI (Jones et al., 2008). As such, the infarct cortice along with its 

sham controls were chosen for temporal microarray analysis to understand the patho-

physiological mechanisms at work during neonatal HI. 

 

4.2.1 Hypoxic ischemia induced significant global transcriptional modulation 

Right infarct cortice were harvested at 3h and 24h post-hypoxic ischemia, concurrently 

with their respective time-point sham controls. Four biological replicates were collected 

at each time-points. Their RNAs were extracted and subjected to microarray analysis 

using Illumina Mouse Ref8 V2 beadchip arrays (the latest version at the time of 

experiment as V1.1 has been discontinuedl It comprises of the initial RefSeq transcripts 

in Ver 1.1 and additional added sequences from newly identified genes). Raw signal data 

from the arrays were analyzed using GeneSpring V7.3 and normalized against their 

respective sham control. Only gene probes with a) fold-change of at least 1.5 in a 

minimum of one out of the two time-points and b) passed statistical testing of one-way 
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ANOVA, p<0.05 and Benjamini-Hochberg FDR correction. 342 differentially expressed 

RefSeq transcripts passed these parameters and they were subjected to functional-gene 

ontology classification using DAVID 6.7. They corresponded to 314 DAVID-identifiable 

genes. 

 

Functional clustering revealed several over-represented biological processes broadly 

categorized as follow: a) inflammatory response, b) cell homeostasis, survival and 

proliferation, c) cell cycle regulation and d) response to oxidative stress and e) cell death. 

 

-INFLAMMATORY RESPONSE 

-Chemokine signaling pathway 

Chemokines are involved in the guidance of leukocytes to the ischemic site of 

inflammation by creating a concentration gradient in the extracellular matrix. Majority of 

genes encoding for chemokines of the C-C and the C-X-C motifs (Ccl3, Ccl9, Ccl12 and 

Cxcl1) demonstrated significant transcriptional up-regulation particularly at the early 3h 

post-HI time-point (Table 4.1).  

 

-Toll-like receptor (TLR) signaling pathway 

TLR signaling cascade is part of the innate immunity response to initiate inflammation 

via promotion of cytokine production and immune cell activation. As shown in Table 4.1, 

members implicated in the TLR transduction pathway (Cd68, Cd86, c-Fos, c-Jun ad 

Spp1) showed early substantial early increase in gene expression at 3h. Interestingly, Tlr2 

demonstrated a late (24h) elevation in transcriptional expression. 
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-Leukocyte mediated cytotoxicity 

Genes encoding for Fc receptors (Cd16, Cd23, Cd68 and Fcrl3) expressed on the surface 

of leukocytes demonstrated significant transcriptional up-regulation between 3h and 24h 

post-HI (Table 4.1). 

 

-VASCULATURE DEVELOPMENT 

Early vasculature disruption was evident from the transcriptional up-regulation of 

proteins involved in the maintenance of vasculature homeostasis and integrity (Agpt2, 

Serpina8, Cys61, Cx30, Lcn2 and Socs3) at 3h post-HI. 

 

-CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

Genes encoding for proteins involved in the pro-survival pathway (MAPK signaling 

cascade), pro-mitogenic factors (Igfbp3) and transcription factors (Egr2 and Egr4) 

demonstrated early transcriptional elevation at 3h post-HI. However, Bdnf, a 

physiological important neurotropic factor that promotes cell survival showed a pursuing 

down-regulatory trend prominent at 24h post-HI. 

 

-CELL CYCLE REGULATION 

Only a handful of genes involved in the positive regulation of cell cycle process (Hls7 

and Myd116) showed transcriptional up-regulation at 3h post-HI. On the contrary, 

numerous genes involved in the cell cycle checkpoints triggered by p53 (Gadd45(a,b and 

g), p21 and Ink4b) demonstrated increased expression concurrently at the same time-

point (Table 4.1). 
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-RESPONSE TO OXIDATIVE STRESS 

Oxidative and electrophilic stresses characterized by aberrant ionic homeostasis and 

elevated ROS, reactive nitrergic species and free radical production triggered the cell‘s 

innate anti-oxidant response via transcriptional induction of Hsps (Hspb1, Hsp90 and 

Dnajb), endoplasmic reticulum stress-inducible cytoprotective transcription factor (Aft4) 

and metal ion chaperones (Mt1 and Mt2) between 3h and 24h post-HI (Table 4.1). 

 

-CELL DEATH 

Cell death induced via extrinsic stimulus was apparent with the transcriptional up-

regulation of the Fas ligand-mediated pathway (Litaf, Traf7, Tnfrsf12a). Fas ligand-

mediated extrinsic apoptotic pathway is triggered in the hippocampus and thalamus after 

HI in neonatal rat brain, and its incidence associated with extent of HI damage 

(Northington et al., 2001).  Simultaneously, endogenous cytoprotective antagonist of Fas 

ligand-induced cell death, Ier3, also demonstrated similar temporal up-regulation at 3h 

post-HI. Further, lysosomal stress was evident with the increase in mRNA expression of 

lysosomal enzymes Lys and Ctsz at 24h post-HI. Genes encoding for proteins involved in 

intracellular signaling pathways which suppress cell survival and promote cell death 

(Met, Axud1, Nfkbia, Lys and Lapf) showed transcriptional activation also at the later 

time-point (Tsble 4.1). 
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Table 4.1 Selected differentially-expressed gene profile of over-represented neuronal death-
related biological processes in the infarct cortice of neonatal HI mice. All fold-change 
expressions were subjected to one-way ANOVA analysis and Benjamini Hochberg FDR 
correction , and significant at p<0.05. Data are expressed as fold-change ± sem. 
Genbank Gene Title Symbol Hypoxic ischemia 
 3h 24h 

Inflammatory response 
-Chemokine signaling pathway 

NM_011337 Chemokine (C-C motif) ligand 3 Ccl3 3.89 ± 2.39 1.97 ± 0.66 
NM_011338 Chemokine (C-C motif) ligand 9 Ccl9 2.03 ± 0.48 1.98 ± 1.03 
NM_011331 Chemokine (C-C motif) ligand 12 Ccl12 1.44 ± 0.22 2.40 ± 0.99 
NM_008176 Chemokine (C-X-C motif) ligand 1 Cxcl1 1.65 ± 0.44 2.18 ± 1.70 
NM_013655 Chemokine (C-X-C motif) ligand 12 Cxcl12 -1.38 ± 0.12 -1.51 ± 0.13 
NM_009142 Chemokine (C-X3-C motif) ligand 1 Cxc3 1.22 ± 0.18 -1.54 ± 0.13 
-TLR signaling pathway 
NM_009853 CD68 antigen Cd68 1.22 ± 0.18 1.57 ± 0.49 
NM_019388 CD86 antigen Cd86 1.51 ± 0.38 -1.05 ± 0.09 
NM_010234 FBJ osteosarcoma oncogene c-Fos 17.63 ± 2.98 1.15 ± 0.63 
NM_010591 Jun oncogene c-Jun 1.83 ± 0.23 1.21 ± 0.18 
NM_009263 Secreted phosphoprotein 1 Spp1 1.87 ± 0.16 4.13 ± 3.36 
NM_011905 TLR 2 Tlr2 1.20 ± 0.23 1.59 ± 0.31 
-Leukocyte mediated cytotoxicity 
NM_010188 Fc receptor, IgG, low affinity III Cd16 1.57 ± 0.24 1.85 ± 0.81 

NM_010185 Fc receptor, IgE, high affinity I, gamma 
polypeptide Cd23 1.55 ± 0.34 1.64 ± 0.59 

NM_144559 Fc receptor, IgG, low affinity IV Fcrl3 1.25 ± 0.10 1.92 ± 0.76 
Vasculature development 
NM_008416 Jun-B oncogene Junb 1.86 ± 0.37 -1.10  ±  0.09 
NM_007426 Angiopoietin 2 Agpt2 2.25 ± 0.25 1.18 ± 0.19 

NM_007428 Angiotensinogen (serpin peptidase inhibitor, 
clade A, member 8) Serpina8 1.64 ± 0.43 1.50 ± 0.67 

NM_010516 Cysteine rich protein 61 Cyr61 1.67 ± 0.52 -1.00 ± 0.15 

NM_008128 Gap junction membrane channel protein 
beta 6 Cx30 1.75 ± 0.58 1.62 ± 0.53 

NM_008491 Lipocalin 2 Lcn2 5.05 ± 2.65 7.33 ± 19.87 
NM_194054 Reticulon 4 Rtn4 1.06 ± 0.09 1.66 ± 0.25 
NM_007585 Annexin A2 Anxa2 1.72 ± 0.14 1.47 ± 0.23 
NM_007707 Suppressor of cytokine signaling 3 Socs3 2.74 ± 1.18 1.85 ± 0.77 
NM_009373 Transglutaminase 2, C polypeptide Tg2 1.53 ± 0.36 1.48 ± 0.46 

NM_183261 Nuclear receptor subfamily 2, group F, 
member 2 Nr2f2 -1.60 ± 0.09 1.02 ± 0.29 
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Table 4.1 (continue) 
Genbank Gene Title Symbol Hypoxic ischemia 
 3h 24h 
Cell homeostasis, survival and proliferation (continue) 
NM_001048141 Brain derived neurotrophic factor Bdnf 1.32 ± 0.17 -1.52 ± 0.09 
NM_008343 Insulin-like growth factor binding protein 3 Igfbp3 1.23 ± 0.29 1.80 ± 0.42 
NM_010118 Early growth response 2 Egr2 1.78 ± 0.27 -1.13 ± 0.14 
NM_020596 Early growth response 4 Egr4 1.54 ± 0.36 -1.71 ± 0.22 
NM_007498 Activating transcription factor 3 Atf3 2.30 ± 0.97 -1.09 ± 0.07 
NM_010495 Inhibitor of DNA binding 1 Idb1 1.29 ± 0.13 1.58 ± 0.24 
NM_013642 Dual specificity phosphatase 1 Dusp1 1.52 ± 0.64 1.17 ± 0.26 
NM_019819 Dual specificity phosphatase 14 Dusp14 1.72 ± 0.13 1.12 ± 0.25 
NM_008927 Mitogen activated protein kinase kinase 1 Mek1 1.51 ± 0.33 1.36 ± 0.70 
Cell cycle regulation 
NM_001039543 Myeloid leukemia factor 1 Hls7 1.82 ± 0.27 -1.22 ± 0.14 

NM_008654 Myeloid differentiation primary response 
gene 116 Myd116 1.75 ± 0.22 -1.04 ± 0.06 

NM_011750 Splicing factor 1 Spf1 1.12 ± 0.31 -1.72 ± 0.03 

NM_007836 Growth arrest and DNA-damage-inducible 
45 alpha Gadd45a 1.71 ± 0.34 1.14 ± 0.16 

NM_008655 Growth arrest and DNA-damage-inducible 
45 beta Gadd45b 2.47 ± 0.62 1.02 ± 0.13 

NM_011817 Growth arrest and DNA-damage-inducible 
45 gamma Gadd45g 2.18 ± 0.95 1.25 ± 0.26 

NM_007669 Cyclin-dependent kinase inhibitor 1A (P21) p21 1.62 ± 0.08 1.01 ± 0.18 

NM_007670 Cyclin-dependent kinase inhibitor 2B (p15, 
inhibits CDK4) Ink4b 1.78 ± 0.25 -1.07 ± 0.14 

Response to oxidative stress 
XM_139474 Activating transcription factor 4 Atf4 1.51 ± 0.15 1.04 ± 0.21 
NM_013560 Heat shock protein 1 Hspb1 1.78 ± 1.28 1.13 ± 0.38 

NM_010480 Heat shock protein 90kDa alpha (cytosolic), 
class A member 1 Hsp90 1.65 ± 0.17 1.19 ± 0.44 

NM_001037941 DnaJ (Hsp40) homolog, subfamily B, 
member 6 Dnajb -1.06 ± 0.18 1.52 ± 0.16 

NM_013602 Metallothionein 1 Mt1 2.10 ± 0.29 2.17 ± 0.97 
Cell death 
NM_013863 Bcl2-associated athanogene 3 Bag3 2.13 ± 0.17 -1.06 ± 0.23 
NM_019980 LPS-induced TN factor Litaf 1.52 ± 0.28 1.29 ± 0.32 
NM_153792 Tnf receptor-associated factor 7 Traf7 1.09 ± 0.10 1.81 ± 0.43 

NM_013749 Tumor necrosis factor receptor superfamily, 
member 12a Tnfrsf12a 3.47 ± 0.26 1.28 ± 0.42 

NM_133662 Immediate early response 3 Ier3 2.28 ± 0.61 2.26 ± 1.11 
NM_025690 SAFB-like, transcription modulator Met 1.02 ± 0.07 1.64 ± 0.29 
NM_153287 AXIN1 up-regulated 1 Axud1 2.28 ± 0.82 1.22 ± 0.17 
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Table 4.1 (continue) 
Genbank Gene Title Symbol Hypoxic ischemia 
 3h 24h 
Cell homeostasis, survival and proliferation (continue) 

NM_010907 Nuclear factor of kappa light chain gene 
enhancer in B-cells inhibitor, alpha Nfkbia 1.51 ± 0.27 1.19 ± 0.24 

NM_017372 Lysozyme Lys 1.16 ± 0.08 1.61 ± 0.39 
NM_022325 Cathepsin Z Ctsz 1.06  ±  0.14 1.68 ± 0.37 

NM_024413 Pleckstrin homology domain containing, 
family F (with FYVE domain) member 1 Lapf 1.52 ± 0.22 1.07 ± 0.12 
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4.2.2 Validation of neonatal HI profile via real-time PCR 

Microarray data was validated via real-time PCR on the same HI-induced cortical RNA 

samples used in microarray analysis. Two time-points namely 3h and 24h were selected 

for validation. The selected gene probes demonstrated identical transcriptional regulatory 

trend (Table 4.2).  

 
Table 4.2 Validation of microarray data using real-time PCR technique on the HI-induced neonatal 
murine cortice. Data are expressed as fold-change ± sem. 
GenBank Gene Title Symbol 3h 24h 

   Microarray Real-time 
PCR Microarray Real-time 

PCR 

NM_007498 Activating transcription factor 
3 Atf3 2.38 ± 1.00 4.16 ± 0.70   

NM_008491 Lipocalin 2 Lcn2 5.27 ± 2.76 18.25 ± 0.48   

NM_011817 Growth arrest and DNA 
damage-inducible 45gamma Gadd45g 1.95  ± 0.99 2.06 ± 0.71   

NM_007585 Annexin A2 AnxA2 1.53 ± 0.12 5.62 ± 0.72   
NM_009263 Secreted phosphoprotein 1 Spp1 1.83 ± 0.16 4.39 ± 0.60 4.13 ± 3.36 6.61 ± 0.84 
NM_133662 Immediate early response 3 Ier3 2.12 ± 0.57 5.15 ± 0.92 2.26 ± 1.11 3.08 ± 1.20 
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4.3 Discussion 

The immature developing brain is just as susceptible to hypoxic-ischemic encephalopathy 

and focal arterial stroke as an adult brain. This is evidenced by the comparable incidence 

of arterial stroke between the newborns and elderly, about 1/4,000 term babies (deVeber 

et al., 2000). 

 

Temporal global transcriptomic profiling revealed that inflammation and oxidative stress 

were two main patho-physiological mechanisms at work in neonatal HI. These two 

processes are closely correlated in babies manifesting asphyxic insult and hypoxic-

ischemic encephalopathy (Perrone et al., 2010). During neuro-inflammation, intrinsic 

vulnerability of developing oligodendroglia to excitotoxic, oxidative and inflammatory 

forms of injuries coupled with activated microglia and astrogliosis are major 

determinants to the pathogenesis of HI-induced white matter (cortical) injury (Deng, 

2010). Microglias, the only resident macrophages in the brain, are main cell type 

providing immunosurveillance by stimulus-dependent activation when triggered upon 

brain insults (Kreutzberg, 1996; Raivich et al., 1999). Activated microglial cells and 

macrophages can potentially inflict damages on various cell types comprising of 

endothelial cells, oligodendrocytes, astrocytes and neurons (Flavin et al., 1997; Li et al., 

2005; Yenari et al., 2006), thereby aggravating injury. However, it is still uncertain 

whether microglial activation is beneficial or harmful after stroke (Imai et al., 2007; 

Lalancette-Hebert et al., 2007). During birth, microglia would have established a 

stronghold population in the brain which is eventually ramified after the first 2 post-natal 

weeks, in accordance with a diminishing of PCD at this developmental stage (Carson and 
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Sutcliffe, 1999). However, during neonatal HI, substantial macrophage activation and 

accumulation at the site of injury is evident and faster along with the elevated production 

of inflammatory cytokines and NO as compared to adult models (Bona et al., 1999; 

Cowell et al., 2002; Ivacko et al., 1996; McRae et al., 1995; Tsuji et al., 2000). This 

phenomenon can continue to persist even after several weeks (Benjelloun et al., 1999; 

Fox et al., 1999). Activation of macrophages, derived from resident microglia, is evident 

from the significant transcription up-regulation of Cd68 macrophage surface antigen at 

24h post-HI in the injured cortex (Table 4.1: TLR signaling cascade). 

 

Chemoattractant cytokines, or chemokines, regulate an array of physiological functions 

including cell migration, proliferation, differentiation and angiogenesis (Gerard and 

Rollins, 2001). They bind and activate G-protein-coupled receptors and are classified as 

C, CC, CXC, and CX3C based on the positions of key cysteine residues (Gerard and 

Rollins, 2001). CXCL12 is suggested to play a crucial role in homing stem cells to 

regions of ischemic injury (Hill et al., 2004). CXCL12 expression is especially enhanced 

in reactive astrocytes in the ischemic penumbra (a region of functionally impaired but 

viable cells) promoting stem cell migration (Wang et al., 2002b). In stark contrast, in our 

current temporal microrray study of neonatal HI employing infarct cortex, which 

corresponded to the penumbra, a decrease in transcriptional expression of Cxcl12 is 

observed. This could be accounted for by findings from a previous study which 

demonstrated a brief upregulation of CXCL12 by reactive astrocytes following neonatal 

HI injury, suggesting that the timeframe of endogenous CXCL12-mediated chemotaxis 

and recruitment of reparative cells may be narrow (Miller et al., 2005). As such, the 
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chosen 3h time-point for our current neonatal HI microarray study is not early enough to 

detect the transcriptional peak of Cxcl12. 

 

Acceleration of the inflammatory response was accelerated by vascular injury as 

demonstrated by the transcriptional up-regulation of vasculature-related proteins, leading 

to increased blood vessel permeability that permits leukocyte transendothelial migration 

from the blood-brain-barrier. The significance of inflammation in HI was accentuated by 

the transcriptional activation of chemokine-mediated chemotaxis, TLR signaling pathway 

and leukocyte-mediated cytotoxicity. 

 

Oxidative stress and inflammation are tightly associated during cerebral ischemia. Once 

induced, the inflammatory cells generate ROS which in turns positively potentiate the 

inflammatory response through a postive feedback loop while concurrently induces 

cellular oxidative stress. Oxidative stress experience was denoted mainly by the upheaval 

in gene expression of ER-stress inducible transcription factor Atf4, Hsps (Hspb1, Hsp90 

and Dnajb) and metal ion chaperones (Mt1) as shown in Table 4.1: Response to oxidative 

stress. The neonatal brain, particularly, is especially susceptible to HI as compared to a 

mature adult brain. This is because it contains high concentrations of unsaturated fatty 

acids coupled with accelerated rate of oxygen consumption, and unfavorably paralleled 

with low levels of anti-oxidants and redox-active iron, thus putting the neonatal brain at a 

―pro-oxidant‖ state when subjected to HI (Halliwell, 1992). As such, a recent study using 

sulforaphane, an isothiocyanate involved in the induction of cytoprotective transcription 

factor Nrf2-mediated anti-oxidant response, demonstrated efficacy in the protection 
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against HI (Ping et al., 2010). Furthermore, genes encoding for pro-mitogenic proteins 

(Egr2, Egr4, Atf3 and Mek1; in Table 4.1 under Cell homeostasis, survival and 

proliferation) demonstrated significant transcriptional elevation at early 3h time-point, 

indication of an increased pro-survival response. MEK1, commonly known as 

extracellular signal-regulated kinase 1 (ERK1), has been reported to demonstrate 

neuroprotection in both adult and neonatal brain injury (Kyriakis and Avruch, 2001). 

However, genes involved in mitotic cell cycle checkpoints (Gadd45(a, b and g), p21 and 

Ink4b) showed substantial increase in gene expression at the early 3h time-point, 

indicating a counteractive impediment to cell cycle re-activation, which might occur at 

earlier hours preceding the 3h selected time-point, explaining why not many mitosis-

related proteins were detected at significant mRNA level by microarray. Instead only a 

handful of mitosis-associated candidates (Hls7, Myd116 and Spf1) demonstrated 

enhanced mRNA expression. 

 

In conclusion, neuro-inflammation and oxidative stress are two potential 

neuropathological mechanisms responsible for the high incidence of morbidity and 

mortality in infants and children sustaining HI injury during prenatal and perinatal stages 

and often resulting in mental retardation, seizures and motor dysfunction (cerebral palsy) 

(Vannucci, 1990). . 
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5 Description of transient focal cerebral ischemia model in adult mice 
 
All animal procedures used in this project were approved by The University of 

Melbourne Animal Ethics Committee. The mice used in the present studies were of 

C57BL/6 background at eight to ten weeks of age (body weight 25 ± 32 g) with their 

specific genotype being either wild-type (WT) or Gpx-1-/-. The Gpx-1 null mutant mice 

were previously generated in Dr. Peter J. Crack‘s laboratory (Centre of Functional 

Genomics and Human Disease, Monash Institute of Medical Research) and the method 

was outlined in de Haan et al. (1998). 

 

Anaesthesia 

In preparation for surgery, eight to ten week old male WT and Gpx-1-/- mice were 

anaesthetised by intraperitoneal injection of a cocktail consisting of ketamine 

hydrochloride (200mg/kg, Pfizer, West Ryde, NSW, Australia) and xylazine (10mg/kg, 

Troy Laboratories, Smithfield, NSW, Australia). 

 

Mouse Transient Focal Cerebral Ischemia (tMCAO) Model 

Mice underwent tMCAO model of cerebral ischemia-reperfusion injury as previously 

described (Connolly et al., 1996). Briefly, mice were anaesthetised intraperitoneally as 

described in previously. Experiments examining biochemical end-points and infarct size, 

a 2-hour ischemic period was used. After ligation of the right proximal common carotid 

artery, a 6-0 nylon monofilament with a silicone rubber coating tip diameter of 0.21 - 

0.23mm (Doccol Co., NM, USA) was introduced into the distal internal carotid artery 

and was advanced 12mm distally to the carotid bifurcation where it occluded the mid-
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cerebral artery (see illustration below). The wound was closed and the animal returned to 

its cage. Uninjured control (sham) animals were subjected to the initial anesthetic and 

neck incision only. The animals were then allowed to recover from anesthetic. Body 

temperature was monitored and maintained at 37 ± 0.5 °C via a heating pad.  

 
 
 
 
 

To ensure effective occlusion of the middle cerebral artery, cerebral blood flow was 

monitored throughout the surgical procedure via a laser Doppler (Perimed PX5010, 

Stockholm, Sweden). After a skin incision, CBF measurements were conducted with the 

probe holder placed at the level of the skull, directly above the infarct region after 
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MCAO. The arbitrary Doppler flow units were recorded every second before, during and 

2h after MCAO. The baseline Doppler arbitrary values for each mouse varies thus to 

examine relative changes in blood flow throughout an experiment, CBF of each mouse 

was normalised to its own baseline value and expressed as a percentage. At the end of the 

2-hour ischemic period, the mouse was re-anaesthetised and the neck incision reopened 

allowing the suture to be withdrawn from the carotid artery. The animals were then 

returned to the heating pad until euthanized at designated time-points of 2h, 8h and 24h 

for right infarct cortex total RNA collection for microarray analysis (microarray setup 

demonstrated on below).  
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5.1.1 Introduction 

Minutes after the onset of focal cerebral ischemia, severe hypoperfusion to the primary 

site of blockage leads to the formation of an ischemic core, a region of severe, 

irreversible neuronal damage. Encompassing this core is a border of brain tissue which is 

barely viable and functionally and metabolically impaired due to the infliction of certain 

degree of neuronal injury. This region is known as the penumbra, and its formation 

occurs as a result of the residual perfusion from the collateral blood vessels deterring the 

progression of the ischemic cascade. Unlike the core, the damage it sustained is still 

reversible to a certain extent if the blood flow is promptly restored (Hossmann, 1988b). 

 

Paradoxically, even though restoration of blood flow to the ischemic tissue is critical for 

recovery of normal neurological function, it can result in secondary damage, known as 

ischemia/reperfusion (I/R) injury. This can be explained as a deterioration of ischemic 

but salvageable brain tissue after blood flow restoration and has a multifactorial etiology 

(Aronowski et al., 1997; Dietrich, 1994). Early recanalisation in patients with severe 

ischemia faces an increased susceptibility of reperfusion-related brain hemorrhage, 

believed to the result of microvascular injury (Albers et al., 2006). The ischemic cascade 

does not cease progression even after blood reperfusion. A number of biochemical 

cascades including the production and release of ROS (Love, 1999), inflammatory 

changes (Wong and Crack, 2008), and necrotic and apoptotic cell death pathways (Ferrer 

and Planas, 2003) have been documented in this penumbra area of infarction (Dirnagl et 

al., 1999). 

 

The pathophysiology of I/R injury still awaits further elucidation. However, leukocyte-
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mediated signaling cascades appear to be centered in reperfusion injury through its 

infiltration into the brain tissue via disruption of the endothelium, obstruction of the 

microcirculation and destruction of the blood–brain barrier where they release cytokines 

and promote inflammation (Pan et al., 2007). Oxidative stress mediators such as ROS 

released by inflammatory cells e.g. leukocytes around the I/R injured areas evokes the 

expression of several pro-inflammatory genes by inducing the synthesis of transcription 

factors, including NF-κB, hypoxia inducible factor 1, interferon regulator factor 1 and 

Stat3 (Wong and Crack, 2008). This in turn leads to cytokine up-regulation in the 

cerebral tissue with consequential expression of adhesion molecules on the endothelial 

cell surface e.g. intercellular adhesion molecule 1 (Icam1), P-selectin and E-selectin, 

which promotes leukocyte adhesion to the endothelia in the periphery of the infarct 

(Yilmaz and Granger, 2008). Leukocyte migration to the ischemic site promotes the 

activation of the complement cascade with generation of active fragments such as C3a 

and C5a anaphylatoxins (D'Ambrosio et al., 2001). Induction of MCAO in mouse is 

demonstrated to elevate C3a and complement 5a receptors expressions significantly and 

inhibition of the complement cascade offers neuroprotection, highlighting an active role 

of the complement system in cerebral ischemic injury (Arumugam et al., 2009). 

 
 
Platelets work synergistically with leukocytes in reperfusion injury via the release of a 

variety of biochemical mediators that can progress to vasospasm and exacerbation of 

oxidative stress and the inflammatory cascade (Chong et al., 2001; Wong and Crack, 

2008; Zeller et al., 2005). Finally, the disintegration of the blood–brain barrier integrity 

and post-ischemic hyperperfusion can further induce vasogenic brain edema and 

hemorrhage (Rosenberg et al., 2001). 
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5.1.2 Results 

From the comparative global transcriptomic analysis of in vitro excitotoxic models, 

oxidative stress and neuroinflammation have been demonstrated to be the primary patho-

physiological upstream events facilitating the propagation of the ischemic cascades that 

further aggravate cellular damages and thus promote cell demise. As previously 

mentioned, though restoration of blood flow at the primary site of occlusion is critical for 

recovery of neurological function, continued propagation of the ischemic cascade causes 

reperfusion to the focal ischemic site (in the case of cerebral transient ischemic stroke) to 

induce secondary I/R injury. It has been demonstrated that free radical (ROS/RNS) 

production and NO generation are especially pronounced upon reperfusion of ischemic 

tissue (Hallenbeck and Dutka, 1990). As such, employment of in vivo mouse transient 

focal ischemic model would be ideal and extremely useful in the elucidation of patho-

physiological significance of oxidative stress and the inflammatory cascades during 

excitotoxic stimulation. The approach adopted to achieve this objective is to perform a 

global transcriptomic profiling of the temporal recruitment of cell death signaling 

cascades in the brain cortex upon tMCAO induction. During I/R injury, an apoptotic-

necrotic continuum sparked off by the significant escalated free radical production and 

release promotes apoptosis, and ended with pan-necrosis in the territory supplied by the 

occluded artery with glial and endothelial cell death is observed (Hara et al., 1996; Leist 

et al., 1997; Murakami et al., 1997). 

 

Two-hour ischemic period was induced via the intraluminal suture method on the WT 

C57/Bl6 male adult mice, followed by simultaneous cortical tissue collection after 2h, 8h 

and 24h of reperfusion respectively. Previous reported infarct measurement based on 



Chapter 5.1: 
Wild-type transient-MCAO  

200 
 

brain slices (area in mm2) collected at 24h after reperfusion confirmed successful 

induction of focal ischemia in the brains (Crack et al., 2001). Only the cortex tissues were 

collected for microarray analysis because the global transcriptomic data collected would 

complement that of the in vitro which utilized primary mouse cortical neurons, and 

furthermore, it has been reported that in the intraluminal suture-induced tMCAO model, 

the occlusion typically spares striatum and primarily involves the neocortex (Hara et al., 

1996; Leist et al., 1997; Murakami et al., 1997). 

 

The technique of intraluminal suture (also known as endovascular filament) as a 

representative animal model of ischemic stroke was first introduced by Koizumi et al. 

(1986) and subsequently modified by Longa et al. (1989). It is applied to rats and mice. 

In my current study, the modified intraluminal suture method is employed to induce 

tMCAO. A strand of surgical filament is inserted via the external carotid artery, channel 

to the internal carotid artery and advanced until the tip occludes the origin of the middle 

cerebral artery, causing a cessation of blood flow and subsequent brain infarction in its 

area of supply. Insertion via the external carotid artery facilitates closure of the access 

point with preserved blood supply via the common and internal carotid artery to the brain 

after the removal of the filament. Withdrawal of the suture results in reperfusion, thus 

achieving a tMCAO model.  

 

Global gene profiling of cortical tissues from tMCAO-induced WT mouse brain was 

performed using arrays on Illumina® Mouse Ref8 V2 beadchips. All differentially expressed 

genes in this chapter were selected based on the following parameters: 1) a minimum of 1.5 

fold change in at least one out of three time-points and 2) passed the statistical screening test 
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of one-way ANOVA, p <0.05 and Benjamini-Hochberg FDR Correction. The GeneSpring 

v7.3 software-generated genelists were then classified according to their involvement in 

reported biological processes employing DAVID 6.7.  

 

5.1.2.1 tMCAO induced neural inflammation and oxidative stress, contributing to 

neuronal death in WT-mice 

Only 572 gene probes were significantly regulated in the cortex for WT mice undergoing 

tMCAO, with most of them undergoing up-regulation (Figure 5.1). Among these gene 

probes, majority of them were involved in the mediation of inflammatory and immune 

defense responses. These include the complement and coagulation cascades, cytokine-

cytokine receptor interaction, natural killer cell-mediated cytotoxicity, TLR signaling 

pathway and leukocyte transendothelial migration. Significant signs of the activation of the 

inflammatory signaling cascades occurred at 8h after tMCAO reperfusion, with subsequent 

remarkable elevated gene expression of nearly all inflammatory-participating players at 24h. 

Apart from the activation of the immune system, other prominent pathways significantly 

over-represented in the WT-tMCAO global gene profile comprise of those involved in the 

anti-oxidative stress response, pro-survival pathway, cell death cascade and calcium ion 

binding and homeostasis etc. 

 

- INFLAMMATORY RESPONSE 

-Cytokine-cytokine receptor interaction 

Numerous chemokine ligands (Ccl and Cxcl families) and receptors (Ccr5) , as well as 

interleukins (Il11) and their receptors (Il1r2, Il8rb, Il13ra1 and Il17rb), and cytokine tumour 
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necrosis factor (TNF)-receptors (Tnfrsh1a and Tnfrsf12a) demonstrated increase in gene 

expression between 8h and 24h post-reperfusion after tMCAO induction (Table 5.1). It is 

worthy to take note of the transcriptional up-regulation of interferon gamma receptor 2 

(Ifngr2) and LPS-induced TN factor (Litaf) at 8h and 24h post-reperfusion respectively. 

Mitogen-induced interferon-gamma (IFN-), and intracellular tumour necrosis factor-alpha 

(TNF-), which are major T-helper 1 cell pro-inflammatory cytokines, has been reported to 

demonstrate decrease production in model of focal ischemia and in whole blood cell 

preparation a day after stroke onset, contributing to acute immunodeficiency in ischemic 

stroke (Klehmet et al., 2009; Young and Bream, 2007). In our study, the increase in gene 

expression of Ifngr2 may present a cellular effort to increase the brain immuno-resistance to 

infections after ischemic stroke. 

 

-Facilitation of leukocyte transendothelial migration 

It has been reported that within hours after the onset of ischemia, circulating leukocytes 

migrate from the blood into the brain, inducing further pro-inflammatory factors release and 

secondary damages. During this diapedesis, the leukocytes bind to endothelial CAMs and 

then migrate across the vascular endothelium. Transcriptomic analysis revealed majority of 

the mediators involved in the facilitation of leukocyte adherence and diapedesis 

demonstrated up-regulation at 24h post-reperfusion (Table 5.1). 

 

-Immune cell mediated-cytotoxicity 

As it is known that the brain is poorly infiltrated by the mammalian immune system, the 

resident glial cells, namely microglial cells and astrocytes, play an especially important role 
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as the immuno-competent and phagocytic macrophages and secretion of inflammatory 

factors (e.g. cytokines, chemokines and NO), even neurotropic molecules such as brain-

derived neurotropic factor (Bdnf) and insulin-like growth factor 1 (Igf1) in the CNS (See 

Table 5.1: Cell homeostasis, survival and proliferation) (Ekdahl et al., 2009; Lucas et al., 

2006; Swanson et al., 2004). As shown in WT-tMCAO model, elevated transcriptomic 

response of majority of the genes involved in glial cell-mediated cytotoxicity (Prf1, Fc 

receptors (Fcgr4 and Fcer1g) and Ifngr2) took place at 8h post-reperfusion. Ca2+-dependent 

granule exocytosis and intracytoplasmic granular release of cytotoxic proteins, namely 

perforin (Prf1) and granzymes, together with Tnfrsfs which possess an intrinsic conserved 

intracytoplasmic "death domain" lead to the activation of the caspase enzymatic cascade and 

ultimately apoptotic mechanisms in numerous cell types through interaction with distinct 

intermediary adaptor molecules (Zamai et al., 1998). Other than mediating the release of pro-

inflammatory cytokines, activated microglial cells have also been shown to be able to induce 

generation of other cytotoxic products such as prostanoid, ROS and nitric oxide (NO), of 

which the enzyme responsible for the latter production, Nos3, demonstrated transcriptional 

up-regulation at 24h. 

 

-TLR signaling pathway 

Transcriptional up-regulation of the TLRs (Tlr2 and Tlr13), which play an important role in 

the elimination of foreign and microbial pathogens through activation of the innate 

immunity, occurred just 2h after tMCAO, with consistent increment in gene expression over 

the whole time-course study (Table 5.1). Stimulation of Tlr7 gene expression occurred 

slightly later at 8h, with subsequent down-regulation at 24h. On the other hand, 

lipopolysaccharide binding protein (Lbp) and myeloid differentiation primary response 88 
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(Myd88) with a specific role in TLR signaling pathway demonstrated a late increase in gene 

expression at 24h. 

 

-Complement and coagulation signaling cascade 

Complements, which form the non-adaptive component of the innate immunity system, are 

involved in the osmotic lysis of cells through formation of transmembrane channels 

(membrane-attack complexes) upon activation. Activation of the complement cascade has 

been demonstrated to be crucial in inducing an inflammatory response in I/R injury through 

production of the active components such as C3a and C5a anaphylatoxins after tMCAO in 

mouse model (D'Ambrosio et al., 2001). Concurrently, its inhibition exhibits a 

neuroprotective effect in in vivo models (Arumugam et al., 2009). As demonstrated from the 

WT-tMCAO global gene profile in Table 5.1, various complement components such as 

C1qa, C1qb, C1qc, C3 and C4b were transcriptionally up-regulated at 24h post-reperfusion. 

 

The coagulation signaling cascade plays a pivotal role in the haemostasis process to impede 

blood loss from a ruptured blood vessel through formation of a fibrin- and platelet-derived 

blood clot. As it has been previously established that tMCAO-induced vascular leakages in 

the brain (Crack et al., 2001), it is reasonable to propose the existence of damages to the 

blood vasculature network. Analysis of the WT-tMCAO transcriptional profile identified 

several pro-coagulant players (Vwf, Plaur, F10 and F13a1) being significantly up-regulated 

at the 24h time-point (Table 5.1). Infliction of damages to blood vessel walls revealed 

subendothelium proteins, especially von Willebrand factor (vWF), a protein secreted by 

healthy endothelium localized between the endothelium and underlying basement membrane. 

When the endothelium is ruptured, the normally unexposed vWF is exposed to the flowing 
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blood which further recruits additional clotting factors such as collagen and factor VIII. 

Particular attention is paid to the transcriptional up-regulation of the plasminogen activator, 

urokinase receptor (Plaur), as the current thrombolytic therapeutic treatment to acute cerebral 

ischemic stroke is only limited to the intravenous injection of recombinant tissue 

plasminogen activator (Donnan et al., 2008; Furlan et al., 2003). On the other hand, 

thrombomodulin (Thbd), an anti-coagulant protein involved in activation of protein S (Pros1) 

to prevent excessive thrombin formation (thrombosis), showed a substantial up-regulation at 

the 2h time-point which is followed by a corresponding transcriptional up-regulation of its 

downstream target Pros1. This is an additional piece of evidence of infliction of damage to 

the brain vasculature in the event of tMCAO. 

 

- VASCULATURE DEVELOPMENT 

During I/R injury, the vasculature integrity is compromised with increase in vascular 

permeability to facilitate leukocytes migration from the bloodstream to the ischemic region. 

As demonstrated in Table 5.1, genes encoding for proteins primarily involved in the 

maintenance of vasculature homeostasis (Angpt2, Angptl4, Lox, Pdpn and Emcn) showed 

increase in mRNA expression from 8h post- reperfusion. 

 

- RESPONSE TO OXIDATIVE STRESS 

During I/R injury, elevation of oxidative mediators particularly ROS surrounding the 

damaged core induce aberrant modifications to biological components including proteins, 

DNA and lipids resulting in further cellular stress. The experienced stress in turns triggers 

anti-oxidant response to buffer against the rising oxidative pressure through up-regulation of 

anti-oxidant proteins such as Hsps and chaperones which promote correct folding and 
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clearance of misfolded proteins and for certain members (Hsp27 and70) inhibit the pro-

apoptotic signaling cascade. Hspb1 (also known as Hsp27), Hspb6, Dnajb1 and Srxn1 were 

significantly transcriptionally up-regulated individually throughout the whole temporal 

course of reperfusion study (Table 5.1). Further, dual role transcription factors such as Stat3 

could be activated to induce the transcriptional elevation of numerous pro-survival and –

apoptotic biological targets. Indeed, as demonstrated from the microarray data (Table 5.1), 

Stat3 showed increased gene expression at 24h post-reperfusion respectively.  

 

- CALCIUM ION BINDING AND HOMEOSTASIS 

Oxidative stress arising from I/R injury can inflict multiple mechanistic cell death-

contributing signaling cascades. One of them would be intracellular Ca2+ overload which 

occurs as a result of excess Ca2+ influx from the extracellular matrix through iGluRs in the 

event of excitotoxicity with subsequent Ca2+-induced Ca2+ release from endoplasmic 

reticulum as a result of organellar stress. Temporal transcriptomic profiling suggested the 

presence of elevated intracellular Ca2+ level through the increase in gene expression of Ca2+-

dependent proteins such as the S100 calcium binding protein family and annexins family 

throughout the whole time-course study (Table 5.1). 

 

- CELL DEATH 

The oxidative stress-activated transcription factor NF-B has been reported to be induced, 

both expression and binding activity, in the glial cells of the penumbra after cerebral 

ischemia and in vivo MCAO models, and whose main role is in the transcription of 

downstream death-promoting and pro-inflammatory protein targets (Clemens et al., 1997; 

Terai et al., 1996). Zhang and Peng (2005) on the other hand reported NF-B localisation and 
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activation occurred in neurons instead during cerebral ischemia. Our transcriptomic profiling 

tMCAO data on WT mice demonstrated prominent Nfkbiz gene up-regulation, an inhibitor of 

NF-B, from the early onset (2h) of I/R injury which might be a cellular mechanism to 

counteract the cell machinery under oxidative stress.  Increased in gene expression of the 

endoplasmic reticulum stress-responsive pro-apoptotic proteins, Cebpb and Ddit3 at 2h and 

8h respectively were also observed, where both of which form a repressor complex to inhibit 

the transcription of pro-survival genes. Lysosomal enzymes, cathepsin c and z (Ctsc and 

Ctsz), also showed increase in mRNA levels at 24h post-reperfusion, indicative of lysosomal 

rupture (Table 5.1). 

 

Cell proliferative response, i.e. in the case of aberrant cell cycle re-entry (which is unfeasible 

under physiological condition due to the post-mitotic differentiated state of the adult brain 

neurons), is impeded by the transcriptional up-regulation of Mlf1 and Atf3, and members of 

the growth arrest and DNA-damage-inducible 45 (Gadd45) family. Myeloid leukemia factor 

1 (Mlf1) and activating transcription factor 3 (Atf3) have recently been identified as stress-

induced upstream positive regulators of p53 activity and stability thereby maintaining 

genome integrity (Yan et al., 2005; Yoneda-Kato et al., 2005). Gadd45 members, on the 

other hand, are p53-transcribed downstream transcriptional targets which play an important 

role in preventing unregulated cell cycle re-entry and promoting of DNA repairs upon 

genotoxic insults, highly probable under heightened oxidative stress condition. Other death-

promoting players (Btg1, Uvrag and Uaca) also showed increase in gene expression during 

the temporal course of tMCAO study (Table 5.1). Uveal autoantigen with coiled-coil 

domains and ankyrin repeats (Uaca) is involved in the regulation of stress-induced apoptosis 

through modulation of Apaf-1 nuclear localisation, resulting in apoptosome up-regulation, 



Chapter 5.1: 
Wild-type transient-MCAO  

208 
 

LGALS3/galectin-3 down-regulation and NF-B inactivation. On the other hand, UV 

radiation resistance associated gene (Uvrag) participates in the activation of the Beclin1-

PI3KC3 complex, promoting autophagy and suppressing cell proliferation. 

 

- CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

Cellular survival-promoting protein-encoding genes, particularly growth factors e.g. 

Bdnf, Hbegf and Fgf12, and their related binding partners and receptors e.g. Tgfbr2 and 

Igfbp3 showed elevated gene expression throughout the whole-course of I/R injury 

(Table 5.1). Transcription factors such as Jun oncogenes (Jun and Junb) which target pro-

survival genes demonstrated substantial transcriptional up-regulation at 2h post-

reperfusion.  
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Figure 5.1 Time-course profiling revealed a significant increase in number of up/down-

regulated genes with transcriptional expression of a minimum of 1.5-fold change from 8h to 

24h timeframe. Only genes with transcriptional fold-change of at least ±1.5 in at least one out 

of three time-points and had passed stringent statistical analyses were included into WT (572 

gene probes) –MCAO global gene profiles. Genes were then segregated into fold-change 

categories at respective time-points. 
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Table 5.1 Selected differentially-expressed gene profile of neuronal death-related families in the infarct 
cortice of WT-MCAO male adult mice. All fold-change expressions are subjected to one-way ANOVA 
analysis and significant at p<0.05. Data are expressed as fold-change ± sem. 

Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
Cytokine-Cytokine receptor interaction 

NM_011609 Tumor necrosis factor receptor superfamily, 
member 1a Tnfrsf1a 1.10 ± 0.10 1.34 ± 0.20 1.71 ± 0.54 

NM_013749 Tumor necrosis factor receptor superfamily, 
member 12a Tnfrsf12a 1.57 ± 0.32 1.53 ± 0.80 2.84 ± 3.22 

NM_023785 Pro-platelet basic protein Ppbp 1.01 ± 0.10 1.06 ± 0.11 1.50 ± 1.26 
NM_001013365 Oncostatin M Osm 1.66 ± 0.47 1.45 ± 0.34 1.87 ± 1.12 
NM_011333 Chemokine (C-C motif) ligand 2 Ccl2 1.29 ± 0.13 2.28 ± 0.83 2.48 ± 2.03 
NM_013653 Chemokine (C-C motif) ligand 5 Ccl5 1.17 ± 0.06 1.33 ± 0.26 1.94 ± 1.19 
NM_013654 Chemokine (C-C motif) ligand 7 Ccl7 2.32 ± 1.23 2.68 ± 1.46 3.25 ± 3.80 
NM_011330 Small chemokine (C-C motif) ligand 11 Ccl11 1.08 ± 0.13 1.86 ± 0.92 1.77 ± 1.26 
NM_009140 Chemokine (C-X-C motif) ligand 2 Cxcl2 1.26 ± 0.08 1.34 ± 0.35 1.81 ± 1.14 
NM_019932 Chemokine (C-X-C motif) ligand 4 Cxcl4 1.43 ± 0.38 1.50 ± 0.31 2.46 ± 1.59 
NM_021274 Chemokine (C-X-C motif) ligand 10 Cxcl10 1.28 ± 0.13 1.88 ± 0.77 2.63 ± 2.26 
NM_023158 Chemokine (C-X-C motif) ligand 16 Cxcl16 1.19 ± 0.15 1.62 ± 0.58 2.15 ± 1.04 
NM_009917 Chemokine (C-C motif) receptor 5 Ccr5 1.37 ± 0.15 1.69 ± 0.37 2.11 ± 0.85 
NM_008361 Interleukin 1 beta Il1b 1.50 ± 0.33 1.91 ± 0.73 2.17 ± 1.87 
NM_010555 Interleukin 1 receptor, type II Il1r2 1.03 ± 0.04 1.29 ± 0.07 1.64 ± 1.00 
NM_009909 Interleukin 8 receptor, beta Il8rb 1.01 ± 0.07 1.13 ± 0.06 1.64 ± 1.02 
NM_008350 Interleukin 11 Il11 1.12 ± 0.09 1.73 ± 0.30 5.85 ± 12.87 
NM_133990 Interleukin 13 receptor, alpha 1 Il13ra1 1.14 ± 0.17 1.41 ± 0.23 1.70 ± 0.63 
NM_019583 Interleukin 17 receptor B Il17rb 1.21 ± 0.10 1.58 ± 0.62 1.31 ± 0.37 
Facilitation of Leukocyte Transendothelial Migration 
NM_008677 Neutrophil cytosolic factor 4 Ncf4 1.05 ± 0.06 1.34 ± 0.20 2.18 ± 0.91 
NM_027102 Endothelial cell-specific adhesion molecule Esam1 -1.26 ± 0.06 1.11 ± 0.10 1.61 ± 0.65 
NM_010493 Intercellular adhesion molecule Icam1 1.47 ± 0.52 1.83 ± 0.58 1.68 ± 0.58 
NM_010494 Intercellular adhesion molecule 2 Icam2 -1.19 ± 0.11 1.39 ± 0.11 1.50 ± 0.40 
NM_008816 Platelet/endothelial cell adhesion molecule 1 Pecam1 -1.13 ± 0.09 1.03 ± 0.15 1.73 ± 0.74 
NM_007806 Cytochrome b-245, alpha polypeptide Cyba 1.15 ± 0.19 1.44 ± 0.07 2.71 ± 1.33 
NM_009510 Villin 2 Vil2 1.27 ± 0.11 1.68 ± 0.05 1.39 ± 0.40 
NM_010833 Moesin Msn 1.07 ± 0.10 1.45 ± 0.08 2.23 ± 1.15 
NM_033268 Actinin alpha 2 Actn2 -1.19 ± 0.08 1.33 ± 0.21 -1.72 ± 0.15 
Immune Cell-Mediated Cytotoxicity 

NM_013545 Protein tyrosine phosphatase, non-receptor 
type 6 Ptpn6 1.11 ± 0.11 1.10 ± 0.06 1.86 ± 0.70 

NM_011073 Perforin 1 (pore forming protein) Prf1 -1.77 ± 0.09 1.86 ± 0.12 -1.27 ± 0.27 
NM_144559 Fc receptor, IgG, low affinity IV Fcgr4 -1.09 ± 0.06 1.80 ± 0.56 3.47 ± 2.85 

NM_010185 Fc receptor, IgE, high affinity I, gamma 
polypeptide Fcer1g 1.15 ± 0.14 1.48 ± 0.16 2.20 ± 1.30 

NM_008338 Interferon gamma receptor 2 Ifngr2 -1.55 ± 0.04 1.60 ± 0.10 -1.18 ± 0.19 

NM_011662 TYRO protein tyrosine kinase binding 
protein Tyrobp 1.04 ± 0.14 1.05 ± 0.12 1.64 ± 0.49 

NM_008713 Nitric oxide synthase 3 Nos3 1.08 ± 0.17 1.02 ± 0.06 1.75 ± 0.51 
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Table 5.1 (continue) 
Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
Immune Cell-Mediated Cytotoxicity (continue) 

NM_011368 Src homology 2 domain-containing 
transforming protein C1 Shc1 1.01 ± 0.11 1.52 ± 0.14 1.54 ± 0.55 

TLR signaling pathway 
NM_008489 Lipopolysaccharide binding protein Lbp 1.17 ± 0.40 1.32 ± 0.18 1.61 ± 0.26 
NM_019388 CD86 antigen Cd86 1.37 ± 0.16 1.86 ± 0.63 1.73 ± 0.77 
NM_011905 TLR 2 Tlr2 1.89 ± 0.72 2.33 ± 0.98 2.93 ± 1.76 
NM_133211 TLR 7 Tlr7 1.40 ± 0.03 1.50 ± 0.05 1.21 ± 0.32 
NM_205820 TLR 13 Tlr13 1.54 ± 0.21 1.89 ± 0.48 2.02 ± 0.98 

NM_010851 Myeloid differentiation primary response 
gene 88 Myd88 -1.02 ± 0.06 1.31 ± 0.26 1.83 ± 0.99 

Complement and coagulation cascades 

NM_008878 Serine (or cysteine) peptidase inhibitor, 
clade F, member 2 Serpinf2 1.20 ± 0.04 1.58 ± 0.31 1.37 ± 0.10 

NM_009776 Serine (or cysteine) peptidase inhibitor, 
clade G, member 1 Serping1 1.14 ± 0.16 1.29 ± 0.18 2.02 ± 0.68 

NM_007572 Complement component 1, q subcomponent, 
alpha polypeptide C1qa 1.07 ± 0.08 1.13 ± 0.11 1.51 ± 0.41 

NM_009777 Complement component 1, q subcomponent, 
beta polypeptide C1qb 1.14 ± 0.08 1.49 ± 0.09 1.79 ± 0.56 

NM_007574 Complement component 1, q subcomponent, 
C chain C1qc 1.14 ± 0.13 1.21 ± 0.17 1.70 ± 0.36 

NM_009778 Complement component 3 C3 -1.05 ± 0.05 1.05 ± 0.14 1.60 ± 0.65 

NM_009780 Complement component 4B (Childo blood 
group) C4b -1.13 ± 0.18 1.07 ± 0.09 1.54 ± 0.47 

NM_011708 Von Willebrand factor homolog Vwf -1.44 ± 0.02 1.37 ± 0.10 2.20 ± 0.22 
NM_009929 procollagen, type XVIII, alpha 1 Col18a1 -1.01 ± 0.11 1.06 ± 0.13 1.56 ± 0.53 
NM_007972 Coagulation factor X F10 1.04 ± 0.10 1.01 ± 0.05 1.51 ± 0.48 
NM_028784 Coagulation factor XIII, A1 subunit F13a1 1.04 ± 0.12 1.18 ± 0.04 1.87 ± 0.35 
NM_011113 Plasminogen activator, urokinase receptor Plaur 1.28 ± 0.20 1.30 ± 0.17 1.68 ± 0.59 
NM_011173 Protein S (alpha) Pros1 1.16 ± 0.15 1.57 ± 0.15 2.04 ± 0.72 
NM_009378 Thrombomodulin Thbd 1.75 ± 0.66 1.68 ± 0.44 2.26 ± 1.13 
Vasculature development 
NM_007426 Angiopoietin 2 Angpt2 1.14 ± 0.05 1.90 ± 0.33 2.38 ± 1.75 
NM_020581 Angiopoietin-like 4 Angptl4 1.18 ± 0.11 1.76 ± 0.20 1.50 ± 0.47 
NM_009263 Secreted phosphoprotein Spp1 1.15 ± 0.23 2.07 ± 0.51 6.98 ± 12.94 
NM_198724 EGF-like domain 7 Egfl7 1.04 ± 0.01 1.00 ± 0.07 1.62 ± 0.37 
NM_205536 ELK3, member of ETS oncogene family Elk3 1.05 ± 0.06 1.05 ± 0.10 1.90 ± 0.57 

NM_009022 Aldehyde dehydrogenase family 1, 
subfamily A2 Aldh1a2 1.17 ± 0.17 1.58 ± 0.23 1.94 ± 0.87 

NM_010516 Cysteine rich protein 61 Cyr61 2.64 ± 2.26 1.46 ± 0.42 1.82 ± 1.20 
NM_010728 Lysyl oxidase Lox 1.20 ± 0.05 1.54 ± 0.06 2.01 ± 1.47 

NM_008608 Matrix metallopeptidase 14 (membrane-
inserted) Mmp14 1.01 ± 0.17 1.16 ± 0.08 1.62 ± 0.22 

NM_010329 Podoplanin Pdpn 1.39 ± 0.29 1.70 ± 0.25 2.38 ± 1.69 
NM_011451 Sphingosine kinase 1 Sphk1 1.16 ± 0.13 2.03 ± 0.67 1.89 ± 1.19 
NM_009373 Transglutaminase 2, C polypeptide Tgm2 1.17 ± 0.23 1.75 ± 0.30 2.94 ± 2.34 
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Table 5.1 (continue) 
Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
Vasculature development (continue) 
NM_007564 Zinc finger protein 36, C3H type-like 1 Zfp36l1 1.33 ± 0.59 1.53 ± 0.32 1.96 ± 0.41 
NM_009929 Procollagen, type XVIII, alpha 1 Col18a1 1.01 ± 0.11 1.10 ± 0.13 1.56 ± 0.53 
NM_016885 Endomucin Emcn 1.13 ± 0.10 1.10 ± 0.16 1.63 ± 0.69 
NM_015768 Prokineticin 2 Prok2 1.03 ± 0.25 1.50 ± 0.26 1.39 ± 0.66 
Response to oxidative stress 

NM_011486 Signal transducer and activator of 
transcription 3 Stat3 1.09 ± 0.17 1.26 ± 0.21 1.74 ± 1.00 

NM_173011 Isocitrate dehydrogenase 2 (NADP+), 
mitochondrial Idh2 1.00 ± 0.23 1.22 ± 0.17 1.60 ± 0.18 

NM_021491 Sphingomyelin phosphodiesterase 3, neutral Smpd3 -1.31 ± 0.11 1.27 ± 0.12 -1.87 ± 0.18 
NM_013560 Heat shock protein 1 (Hsp27) Hspb1 1.70 ± 1.27 2.14 ± 1.40 3.07 ± 3.82 

NM_001012401 Heat shock protein, alpha-crystallin-related, 
B6 Hspb6 1.30 ± 0.15 1.74 ± 0.17 2.85 ± 0.94 

NM_013863 Bcl2-associated athanogene 3 Bag3 1.63 ± 0.56 1.67 ± 0.73 1.57 ± 0.57 

NM_018808 DnaJ (Hsp40) homolog, subfamily B, 
member 1 Dnajb1 1.53 ± 0.89 1.21 ± 0.26 -1.19 ± 0.07 

NM_011451 Sphingosine kinase 1 Sphk1 1.16 ± 0.13 2.03 ± 0.67 1.89 ± 1.19 

NM_010931 Ubiquitin-like, containing PHD and RING 
finger domains, 1 Uhrf1 1.11 ± 0.12 1.12 ± 0.09 1.87 ± 0.38 

NM_029688 Sulfiredoxin 1 homolog (S. cerevisiae) Srxn1 1.25 ± 0.17 1.72 ± 0.27 1.58 ± 0.45 
Calcium ion binding and homeostasis 
NM_010809 Matrix metallopeptidase 3 Mmp3 1.05 ± 0.07 1.70 ± 0.43 4.03 ± 4.27 
NM_008605 Matrix metallopeptidase 12 Mmp12 -1.04 ± 0.06 1.46 ± 0.69 1.68 ± 0.68 
NM_011313 S100 calcium binding protein A6 (calcyclin) S100a6 1.13 ± 0.14 1.37 ± 0.16 2.27 ± 0.96 

NM_016740 S100 calcium binding protein A11 
(calgizzarin) S100a11 1.07 ± 0.18 1.76 ± 0.18 3.82 ± 3.06 

NM_009113 S100 calcium binding protein A13 S100a13 1.18 ± 0.16 1.27 ± 0.10 1.50 ± 0.31 
NM_007585 Annexin A2 Anxa2 1.25 ± 0.22 1.94 ± 0.25 3.22 ± 2.57 
NM_013470 Annexin A3 Anxa3 -1.18 ± 0.13 1.15 ± 0.16 2.05 ± 0.83 
NM_016789 Neuronal pentraxin 2 Nptx2 2.44 ± 0.41 1.64 ± 1.17 1.07 ± 0.22 

NM_146118 Solute carrier family 25 (mitochondrial 
carrier, phosphate carrier), member 25 Slc25a25 1.63 ± 0.33 1.37 ± 0.16 -1.05 ± 0.08 

NM_016745 ATPase, Ca++ transporting, ubiquitous Atp2a3 -1.19 ± 0.07 1.81 ± 0.08 -1.34 ± 0.16 
Cell death 

NM_030612 Nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, zeta Nfkbiz 2.22 ± 1.08 1.84 ± 0.51 1.57 ± 0.54 

NM_009883 CCAAT/enhancer binding protein (C/EBP), 
beta Cebpb 1.60 ± 0.39 1.95 ± 0.31 1.87 ± 1.10 

NM_007837 DNA-damage inducible transcript 3 Ddit3 1.36 ± 0.17 1.52 ± 0.31 1.43 ± 0.55 
NM_001039543 Myeloid leukemia factor 1 Mlf1 1.86 ± 0.52 1.49 ± 0.54 1.07 ± 0.16 
NM_007498 Activating transcription 3 Atf3 4.06 ± 3.68 3.22 ± 2.64 3.00 ± 3.68 

NM_007836 Growth arrest and DNA-damage-inducible 
45 alpha Gadd45a 1.39 ± 0.25 1.34 ± 0.18 1.54 ± 0.76 

NM_008655 Growth arrest and DNA-damage-inducible 
45 beta Gadd45b 2.72 ± 0.97 2.09 ± 1.19 2.20 ± 1.96 

NM_011817 Growth arrest and DNA-damage-inducible 
45 gamma Gadd45g 2.36 ± 1.79 1.55 ± 0.79 1.55 ± 1.41 
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Table 5.1 (continue) 
Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
Cell death (continue) 
NM_178635 UV radiation resistance associated gene Uvrag 1.54 ± 0.11 1.62 ± 0.11 1.37 ± 0.28 
NM_009982 Cathepsin C (Ctsc) Ctsc -1.17 ± 0.10 1.14 ± 0.15 2.27 ± 0.83 
NM_022325 Cathepsin Z (Ctsz) Ctsz 1.27 ± 0.14 1.32 ± 0.18 1.91 ± 0.66 
NM_007569 B-cell translocation gene 1, anti-proliferative Btg1 1.32 ± 0.47 1.26 ± 0.18 1.71 ± 0.50 

NM_028283 Uveal autoantigen with coiled-coil domains 
and ankyrin repeats Uaca 1.21 ± 0.20 1.08 ± 0.09 1.90 ± 0.57 

Cell homeostasis, survival and proliferation 
NM_153553 Neuronal PAS domain protein 4 Npas4 6.39 ± 12.48 1.74 ± 0.92 1.38 ± 0.26 

NM_019713 Ras association (RalGDS/AF-6) domain 
family 1 Rassf1 1.66 ± 0.37 1.56 ± 0.24 1.64 ± 0.59 

NM_207246 RAS, guanyl releasing protein 3 Rasgrp3 -1.23 ± 0.08 1.65 ± 0.09 -1.15 ± 0.10 

NM_011368 Src homology 2 domain-containing 
transforming protein C1 Shc1 1.01 ± 0.11 1.52 ± 0.14 1.54 ± 0.55 

NM_011691 Vav 1 oncogene Vav1 -1.04 ± 0.07 1.25 ± 0.05 1.65 ± 0.68 

NM_026014 Chromatin licensing and DNA replication 
factor 1 Cdt1 1.38 ± 0.08 1.51 ± 0.54 1.38 ± 0.39 

NM_008885 Peripheral myelin protein Pmp22 1.86 ± 0.17 1.67 ± 0.19 1.69 ± 0.75 
NM_008416 Jun-B oncogene Junb 2.42 ± 1.20 1.12 ± 0.24 1.17 ± 0.46 
NM_007557 Bone morphogenetic protein 7 Bmp7 1.22 ± 0.05 1.42 ± 0.19 1.91 ± 0.81 
NM_009371 Transforming growth factor, beta receptor II Tgfbr2 -1.03 ± 0.06 1.04 ± 0.06 1.53 ± 0.29 
NM_007540 Brain derived neurotrophic factor Bdnf 1.65 ± 0.29 1.17 ± 0.24 -1.30 ± 0.10 
NM_008343 Insulin-like growth factor binding protein 3 Igfbp3 1.01 ± 0.06 1.54 ± 0.28 2.77 ± 2.62 
NM_010415 Heparin-binding EGF-like growth factor Hbegf 1.27 ± 0.19 1.30 ± 0.22 1.70 ± 0.71 
NM_010199 Fibroblast growth factor 12 Fgf12 -1.33 ± 0.08 1.58 ± 0.09 -1.54 ± 0.17 

NM_054051 Phosphatidylinositol-4-phosphate 5-kinase, 
type II, beta Pip5k2b -1.33 ± 0.07 -1.77±0.06 -2.19 ± 0.09 

NM_173370 CDP-diacylglycerol synthase 1 Cds1 -1.05 ± 0.05 -1.24±0.09 -1.69 ± 0.10 
NM_138306 Diacylglycerol kinase zeta Dgkz -1.05 ± 0.09 -1.36±0.05 -1.84 ± 0.13 
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5.1.2.2 Validation of WT-tMCAO profiles via real-time PCR 

Microarray data was validated on the same tMCAO-induced WT cortical RNA samples 

used in microarray analysis via real-time PCR. These selected gene probes demonstrated 

identical transcriptional regulatory trend at 2h, 8h and 24h post-reperfusion (Table 5.2).  

Table 5.2 Validation of microarray data using real-time PCR technique on tMCAO-induced cortex RNA 
samples from WT mice respectively. All fold-change expressions are statistically significant at p<0.05. Each 
expression data is representative of 3 independent replicates. Data are expressed as fold-change ± sem. 

Genbank Gene Title Symbol 
WT-tMCAO 

2h 8h 24h 

Microarray Real-time 
PCR Microarray Real-time 

PCR Microarray Real-time 
PCR 

NM_153553 Neuronal PAS 
domain protein 4 Npas4 6.39 ± 12.48 4.17 ± 0.43 1.74 ± 0.92  1.38 ± 0.26  

NM_007498 Activating 
transcription 3 Atf3 4.06 ± 3.68 8.80 ± 0.38 3.22 ± 2.64 5.39 ± 0.44 3.00 ± 3.68  

NM_011905 Toll-like receptor 2 Tlr2 1.89 ± 0.72 7.85 ± 0.95 2.33 ± 0.98 9.09 ± 0.97 2.93 ± 1.76  

NM_009263 Secreted 
phosphoprotein Spp1 1.15 ± 0.23  2.07 ± 0.51 2.68 ± 0.97 6.98 ± 12.94  

NM_007585 Annexin A2 AnxA2 1.25 ± 0.22  1.94 ± 0.25  3.22 ± 2.57 7.57 ± 0.95 

NM_020581 Angiopoietin-like 
4 Angptl4 1.18 ± 0.11  1.76 ± 0.20  1.50 ± 0.47 1.96 ± 1.05 

NM_011817 

Growth arrest and 
DNA-damage-
inducible 45 
gamma 

Gadd45g 2.36 ± 1.79 3.84 ± 0.84 1.55 ± 0.79 1.61 ± 0.87 1.55 ± 1.41 2.36 ± 0.91 
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5.1.3 Discussion 

Ischemic stroke is triggered off with severe focal hypoperfusion i.e. a reduction in blood 

flow with concomitant oxygen-glucose deprivation, resulting in excitotoxicity and 

oxidative injury which manifested as microvascular damage, blood-brain barrier 

dysfunction and post-ischemic inflammation (Lakhan et al., 2009).  Unlike focal 

ischemia, transient focal cerebral ischemia which is followed by restoration of blood flow 

to the affected infarct region usually results in secondary I/R injury frequently incurred 

through two main patho-physiological mechanisms namely, oxidative stress and 

neuroinflammation. The cerebral ischemic core usually underwent the most severe 

irreversible neuronal injury through simultaneous activation of pathological cascades 

(Dirnagl et al., 1999). Injured brain tissue surrounding this ischemic core, known as 

penumbra, would be subjected to lesser neuronal damages if cerebral blood flow is 

restored promptly, a process known as reperfusion. However, despite the immediate re-

delivery of blood to the affected brain region, the ischemic cascade usually remains 

active for hours to days post-reperfusion.  

 

The brain being poorly equipped with anti-oxidative cytoprotective mechanisms is 

especially susceptible to oxidative stress as it is unable to buffer detrimental elevation of 

ROS level and other forms of free radicals and/or oxidants produced by inflammatory 

cells. Within a short period of time after the trigger of ischemia, resident macrophages 

(microglial cells) transformed into phagocytes releasing pro- (e.g. prostanoids, NO, TNF-

, interleukins; latter two-associated receptors demonstrated increased mRNA 

expression) and anti- (e.g. neurotropic factors: Bdnf and insulin-like growth factor; 

transcriptional up-regulation evident from Table 1: Cell survival and proliferation) 
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inflammatory molecules, thus playing a pivotal role in neuronal survival and post-injury 

tissue remodeling (Lucas et al., 2006; Madinier et al., 2009). Furthermore, microglia have 

also been reported to neuroprotect against excitotoxicity through the uptake of 

extracellular Glu (Nakajima et al., 2008), the removal of dying neurons and cell debris 

(Stoll and Jander, 1999) and direct sequestration of infiltrating neutrophil granulocytes 

(Neumann et al., 2008). Astrocytes residing in the brain also contribute to the 

inflammation process via secretion of inflammatory molecules including NO, cytokines 

and chemokines (Swanson et al., 2004). 

 

Occurrence of neuroinflammation is particularly prominent in experimental stroke 

models and acute ischemic stroke patients, where a decrease in cell count and an 

impaired functioning of innate T lymphocytes and natural killer (NK) cells in peripheral 

blood were bein observed, implying an immunity alteration which manifested into an 

increased susceptibility to brain infections after stroke (Haeusler et al., 2008; Klehmet et 

al., 2009; Peterfalvi et al., 2009; Urra et al., 2009; Vogelgesang et al., 2008). This opens 

up a new perspective of the immune system playing a vital role in tissue remodelling 

after neuronal injury, even though it has been initially perceived that the CNS to be an 

immuno-privileged region (Lakhan et al., 2009). 

 

5.1.3.1 Neuroinflammation 

- Complement and coagulation cascade 

The present temporal transcriptomic profiling of transient cerebral ischemia in the cortex 

of WT mouse revealed substantial and credential evidence of activation of 

neuroinflammatory cascades. Temporal recruitment of the immune system via infiltrating 
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leukocytes through the blood-brain-barrier and resident glial cells (microglias and 

astrocytes) was observed to occur from as early as 2h and majority at 8h post-reperfusion 

(Table 5.1: Complement and coagulation cascades). The complement and coagulation 

pathways play important role in the induction of immunity-mediated neuronal death and 

occlusion of the cerebral artery, aggravating the degree of severity of I/R injury. 

Expression of active complement fragments such as C3a and C5a receptors have been 

reported to increase significantly after MCAO induction in mouse (Arumugam et al., 

2009). Interestingly, a transcriptional up-regulation of the anti-thrombolytic factor-

associated receptor, plasminogen activator urokinase receptor (Plaur), is observed. This 

verifies the only current intravenous usage of recombinant tissue plasminogen activator 

for the thrombolytic therapeutic treatment of acute ischemic stroke, which demonstrated a 

short efficacy window timeframe of three hours after the trigger of ischemic stroke 

(Furlan et al., 2003). 

 

-Cytokine-cytokine receptor interaction 

Cytokine-cytokine receptor interactions are crucial in the regulation of innate and 

adaptive immune systems in a variety of inflammatory-related diseases including stroke. 

In the mammalian brain, expression and secretion of cytokines are not limited to blood-

circulating peripherally-derived leukocytes (T lymphocytes, NK cells, phagocytes), but 

also to the neurons and glia (Barone and Feuerstein, 1999; Ferrarese et al., 1999). 

Reperfusion-mediated accentuation of chemokine expression has been suggested to 

evoke an intense inflammatory reaction. ELR motif-containing CXC chemokines are 

implicated in neutrophil infiltration in the ischemic area, while CXCR3 ligands serve as 
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chemoattractants to recruit T-helper 1 cells. Similarly, CC chemokines, promotes 

mononuclear cell infiltration and macrophage activation (Frangogiannis, 2007). 

 

 Transcriptional up-regulation of interleukins (Ils) and tumour necrosis factor receptors 

(Tnfrsfs) indicates an activation of pro-inflammatory cytokines-mediated signaling 

cascade, playing a role in the increase in brain infarct and edema volumes (Table 5.1: 

Cytokine-cytokine receptor interaction) (Acalovschi et al., 2003; Boutin et al., 2001). 

Concurrently, chemokines, a group of leukocyte chemoattractant proteins which are 

involved in inflammatory cell recruitment, demonstrated significant transcriptional 

activation, exacerbating I/R injury by increasing leukocyte infiltration (Kim et al., 1995). 

On the other hand, neuroprotection is exerted via the increase in gene expression of 

transforming growth factor beta receptor (Tgfbr2) (Zhu et al., 2002). Upon immune cell 

chemokines-guided migration to site of ischemia, CAMs promote leukocyte rolling and 

adherence to the endothelial surface of the vascular endothelium (Yilmaz and Granger, 

2008). In particular, Icam1 had been reported to demonstrated high protein expression in 

patients with acute ischemic stroke and correlated with poor prognosis (Rallidis et al., 

2009). In the present transient in vivo cerebral ischemic stroke model, significant gene 

expression was observed at 8h post-reperfusion (Table 1: Facilitation of leukocyte 

transendothelial migration). Upon arrival at target cell, immune cell activation triggered 

cytotoxicity via transcriptional elevation of perforin (Prf1; Table 5.1: Immune cells-

mediated cytotoxicity). Perforin, enveloped in cytotoxic granules with serine esterase 

molecules and exocytosed by immune cells, induced target cell lysis via pore formation 

in the cell membrane (Griffiths and Mueller, 1991; Podack et al., 1991). Innate immune 

system activation is further evident from the transcriptional activation of the TLR 
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pathway at 2h post-reperfusion (Table 5.1: TLR pathway). On the contrary, IFN- whose 

associated interferon gamma receptor 2 (Ifngr2; Table 5.1: Immune cells-mediated 

cytotoxicity) demonstrated as primarily secreted by T helper and NK cells, is suggested 

that it plays an important role in the protection against complications caused by post-

ischemic infections with observations of its significant decrease in stroke patients 

(Klehmet et al., 2009; Urra et al., 2009). The decrease in IFN- secretion occurred in 

conjunction with an early decrease in T cell frequencies in peripheral blood of patients 

with acute ischemia stroke (Urra et al., 2009; Vogelgesang et al., 2008). 

 

5.1.3.2 Oxidative Stress 

Oxidative stress is a potential mediator of ischemic injury through the generation of 

plenty of reactive free radicals including ROS, reactive nitrogen species and electrophiles 

during acute ischemic stroke, leading to mitochondrial dysfunction, Ca2+ overload, 

aggravation of I/R injury and inflammation (Coyle and Puttfarcken, 1993; Cuzzocrea et 

al., 2001). As demonstrated in Table 5.1: Immune cell-mediated cytotoxicity, nitric oxide 

synthase 3 (Nos3), with a reported increase in activity in vascular endothelium upon 

ischemia, demonstrated transcriptional up-regulation at 24h post-reperfusion. Aberrant 

calcium ion homeostasis is reflected from the transcriptional elevation of Ca2+-binding 

proteins and Ca2+-associated transporters throughout the temporal course of I/R injury 

(Table 5.1: Calcium ion binding and homeostasis). Oxidative stress induced lysosomal 

disruption and endoplasmic reticulum stress, further exacerbating Ca2+ overload through 

release of its intracellullar store, and simultaneously induced the expression of pro-

apoptotic genes and transcription factors such as Cebpb, Ddit3 and Atf3 (Table 5.1: Cell 

death). Brain infarct regional susceptibility to oxidative stress damage is increased via the 
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transcriptional down-regulation of members of the PI3K-Akt pathway (Pip5k2b, Cds and 

Dgkz; Table 5.1: Cell survival and proliferation). Increased Akt phosphorylation has been 

detected and critical for survival in transient cerebral ischemia (Noshita et al., 2001). 

Elevated cellular oxidative load evoked a counteractive anti-oxidative response through 

immediate early activation of Hsps and chaperones (Hspb1, Hspb6, Bag3 and Dnajb1), 

and transcriptional factor (Stat3) induction of neuroprotective downstream targets to 

diminish oxidative damages such as aberrant protein accumulation and neutralization of 

reactive free radicals (Table 5.1: Response to oxidative stress). The cellular pro-survival 

and proliferative mitogens-induced signaling pathways were also triggered with the 

increase in mRNA expression of growth factors (Bdnf, Hbegf and Fgf12) and mitogenic 

proteins (Rassf1, Rasgrp3, Shc1 and Vav1; Table 5.1: Cell survival and proliferation).  
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5.2.1 Introduction 

Oxidative brain damage is considered to be the most significant contributor to ischemic 

brain injury (Love, 1999). Deregulated excess production of ROS, derived from cellular 

oxygen metabolism and exogenous sources, can result in oxidative stress and even cell 

death. ROS levels within cells are modulated by synergistic action of enzymatic and non-

enzymatic antioxidants. Gpx is a selenium-containing enzyme that catalyses the reduction 

of a variety of ROS e.g. H2O2 at the expense of reduced GSH. There are at least five 

isoforms of Gpx found in mammalian cells. Of these, the cytosolic and mitochondrial 

Gpx-1 is most abundant and localises in most tissues (de Haan et al., 1998). Role of Gpx-

1 has been implicated in neurodegenerative disorders such as PD and dementia with 

Lewy bodies tissue (DLB) (Power and Blumbergs, 2009) and traumatic brain injury 

(Tsuru-Aoyagi et al., 2009). It has been shown in PD and DLB models, Gpx-1 surrounds 

Lewy bodies rich in alpha-synuclein in an effort to promote their degradation as alpha-

synuclein proved to be capable of H2O2 generation (Power and Blumbergs, 2009). 

Furthermore, Gpx-1 role in aided recovery of spatial memory after traumatic brain injury 

possibly through its early response to oxidative stress and selective, long-term sparing of 

neurons in the dentate nucleus has been reported (Tsuru-Aoyagi et al., 2009). 

 

Due to its high abundance, mutation of the Gpx-1 allele would lower overall Gpx activity 

in the brain significantly. Gpx-1 knockout (Gpx-1-/-) mice do not show overt phenotypic 

differences, all indications suggest that these mice are in a chronic ―pro-oxidant‖ state 

(Cheng et al., 1999; de Haan et al., 2004). Indeed, a recent study illustrated that the 

absence of Gpx-1 exacerbated stroke injury via increased ROS production and vascular 



Chapter 5.2: 
Gpx-1-/--transient MCAO 

223 
 

permeability (Wong et al., 2008). Furthermore, Gpx-1-/- mice demonstrated an increase in 

caspase-3 activation and greater infarct volume (Crack et al., 2001). As such, it has been 

proposed that selenium dietary supplementation may provide cytoprotection against 

neurodegenerative and cardiovascular disorders through the maintenance of Gpx-1 

activity and other detoxifying seleno-enzymes such as thioredoxin reductase and 

selenoprotein (Steinbrenner and Sies, 2009). 
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Background information of Gpx-1-/- mouse 
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5.2.2 Results 

In order to further in-depth highlight the role of augmented free radical species generation in 

infliction of oxidative cellular damage during cerebral ischemia and assign importance of 

functional anti-oxidant enzymes and proteins, a global gene profiling analysis was performed 

on Gpx-1-/- transgenic male C57/Bl6 mice with identical ischemic/reperfusion surgical 

procedures. 

 

5.2.2.1 Gpx-1-/- mice displayed a distinct cortical global gene profile when compared to 

that of WT at physiological basal state 

Previous study by Crack et al. (2001) has reported a deletion of Gpx-1 expression 

increased the vulnerability to cerebral ischemia-reperfusion injury as a result of 

significant reduction in post-ischemic microvascular perfusion. A significantly greater 

infarct was observed in the Gpx-1-/- (area in mm2) when compared with the WT mice 

(Crack et al., 2001). This highlights the essentiality of Gpx-1, as an anti-oxidant enzyme, 

in the alleviation of the increased oxidative stress resulting from accelerated reactive 

oxygen species (ROS) production which imposed detrimental cellular effects such as 

microvascular and tissue damages in the post-ischemic brains (Crack et al., 2001; 

Gursoy-Ozdemir et al., 2004; Weisbrot-Lefkowitz et al., 1998). As such, it can be 

inferred that Gpx-1 plays a major role in the protection of the mammalian brain against 

cerebral I/R injury.  

 

It has been shown previously that there exist no cerebral vasculature abnormalities in 

Gpx-1-/- transgenic mouse brain which might predispose these mice to increased 
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susceptibility to focal cerebral ischemia (Crack et al., 2001). Also, it has been verified 

there is no obvious difference in ROS generation between uninjured WT and Gpx-1-/- 

mice (Crack et al., 2001). As such, the other objective of the present study is to decipher 

the impact on tMCAO induction on the temporal activation/inhibition of the cellular 

signaling pathways upon deletion of Gpx-1 functional expression. Identical TMCAO 

surgical experimental technique, cortical tissue collection and microarray analysis were 

imposed on the Gpx-1-/- transgenic mice. 

 

In order to ensure valid, unbiased transcriptomic profiling comparison between WT and 

Gpx-1-/- upon I/R injury, it is crucial to ascertain the global gene expression at the basal 

physiological state between both mouse types. Upon bioinformatics and statistical 

analyses, the present author discovered a total of 662 gene probes which demonstrated 

significant gene expression of at least 1.5 fold change in at least one out of three time-

points in Gpx-1 -/- condition when normalized against that of the WT.  

 

-RESPONSE TO OXIDATIVE STRESS 

Genes encoding for proteins involved in the alleviation of cellular oxidative and/or 

electrophilic stresses (Prdx5, Txnrd2, Mt3, Hsp90b1 and Dnajc2) demonstrated 

heightened transcriptional elevation in Gpx-1-/- mice cortex (Table 5.3). Hsps and 

chaperones play a pivotal role in conferring cytoprotection through the delicate control of 

aberrant and misfolded protein accumulation through promotion of correct formation and 

maintenance of native conformation of cytosolic proteins and stabilization of actin 

filaments and in some cases, in the negative regulation of programmed cell death 

progression (Meriin and Sherman, 2005). Peroxiredoxins (Prdxs), though indirectly 
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involved in the anti-oxidative response through sequestration of peroxides, play an 

important part in cellular redox state regulation (Egler et al., 2005; Wang et al., 2003). 

Oxidized peroxiredoxins are then subsequently reduced via the action of the thioredoxin 

reductase family (Txnr). Electrophilic stress which usually concurrently with oxidative 

stress is counteracted by metallothioneins (Mt) which bind to heavy metal ions. Mt3 with 

a unique localisation pattern in the brain has been involved in tissue repair and protection 

under neuronal injuries (Ono et al., 2007). 

 

- CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

Mitogenic cellular signal transduction pathways such as MAPK/ERK and Wnt signaling 

cascades, which promote cellular growth and survival demonstrated transcriptional 

activation through the observed elevation in gene expression of majority of its pathway 

members (Table 5.3). The Wnt pathway plays an important role in the developmental 

growth of organisms through association of the Wnt protein with -catenin (Ctnnb1) and 

upon Wnt ligand stimulation (Wnt5a) leading to subsequent transcriptional activation of 

pro-proliferative Wnt-regulated genes (Axin2, Celsr2, Tle1 and Wnt5a) (Table 5.3). Wnt-

associated pathway players demonstrated significant up-regulation in gene expression in 

Gpx-1-/- mouse cortice. Similarly, majority of genes encoding for proteins involved in 

MAPK/ERK pathway showed transcriptional activation. 

 

- CELL DEATH 

Multiple cell death signaling transduction cascades are present within the mammalian 

cells which can be triggered via intrinsic and/or extrinsic stimuli. As demonstrated from 
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the global transcriptomic profile of Gpx-1-/- mouse cortex, genes involved in promotion 

of cell death demonstrated down-regulation, while those involved in its suppression 

showed opposing elevated expression (Table 5.3). 

 

- CELLULAR PROTEIN CATABOLISM VIA UBIQUITIN-PROTEASOME 

SYSTEM 

The mammalian ubiquitin-proteasome system (UPS) is a coordinated multiple-step 

degradation pathway of misfolded and unfolded proteins, primarily involves mainly the 

molecularly marking with proteins and/or polypeptides with poly-ubiquitins for targeted 

degradation in the proteasome(Schroder and Kaufman, 2005; Sherman and Goldberg, 

2001). The genes encoding ubiquitins and proteasome subunits were highly up-regulated 

in Gpx-1-/- mouse cortex under basal condition (Table 5.3). These genes include those 

encoding for the proteasome subunits (Psma4, Psmd1, Psmd6, Psme3), ubiquitin 

carboxyl-terminal esterases (Uchl3 and Ubchl5), ubiquitin-conjugating enzyme E2 

(Ube2a and Ube2g1) and ubiquitin-specific proteases (Usp14). 

 

- CELL CYCLE CHECKPOINT RESPONSE  

Cellular DNA is susceptible to damages upon induction of various stress stimuli such as 

UV irradiation, heat shock insult and oxidative and/or electrophilic stress. In the event of 

genotoxic injury, initial phase of p53 response is triggered to guard the genome integrity 

by initiation of the DNA repair machinery. p53 activation is evident from the 

transcriptional up-regulation of to the p53-inducible cell survival factor Traip1 (Table 

5.3: Cell death). Various cell cycle checkpoints are in place to detect and repair DNA 



Chapter 5.2: 
Gpx-1-/--transient MCAO 

229 
 

damages such as single/double strand breaks. In the Gpx-1-/- mouse cortex, the genes 

encoding for these proteins (Rad17, Rad23b, Obfc2b and Smc1a) demonstrated increase 

in gene expression (Table 5.3). 

 

- MITOTIC CELL CYCLE 

Cell cycle re-activation has been identified as a central component of genotoxic injury 

response of post-mitotic neurons which eventually lead to neuronal death instead of 

survival (Kruman et al., 2004). With the increase in vulnerability of the cellular DNA to 

genotoxic damages upon oxidative and/or electrophilic stresses in Gpx-1-/- mouse, global 

transcriptomic profiling revealed a significant increase in mRNA expression of cell cycle 

progression promoting proteins which comprise of Nek9, Mapk6, Ccnd2, Mapre2, Mcm6 

and Sep(3,5,9) (Table 5.3). However, this aberrant cell cycle re-entry is kept in check and 

impeded by the transcriptional activation of cell cycle point proteins mentioned 

previously. 

 

- MITOCHONDRIAL RESPIRATORY CHAIN 

Imbalance of mitochondrial dynamics has been suggested to play a major role in the 

physio-pathogenesis of neurological disorders where oxidative stress is consistently 

noted. Oxidative phosphorylation is primarily dependent on the proper coordinated 

functioning of a series of electron carriers (ubiquinone, flavoproteins, iron-sulfur proteins 

and cytochromes) that are spatially organized on the basis of their redox potentials into 

four complexes, creating a rich potential energy pool through a proton electrochemical 

gradient which is harnessed by the fifth complex (ATP synthase) (Darley-Usmar et al., 
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1994). As demonstrated in Gpx-1-/- profile, several main players of the mitochondrial 

electron transport chain, namely complexes I (Ndufb9 and Ndufs4), and IV (Cox6c), 

demonstrated significant up-regulation (Table 5.3). 

 

- DEFENSE AND INFLAMMATORY RESPONSE 

Transcriptomic profiling revealed a transcriptional activation of majority of the proteins 

[Chst2, Ccl(17, 21a, 21b and 21c), Mlf2 and H47] involved in immune response through 

cytokine and/or chemokine production, participation in lymphocyte homing, 

transendothelial migration and adhesion and subsequently activation of the inflammatory 

cascade (Table 5.3). 
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Table 5.3 Selected biological process-associated genes that were differentially expressed in 
Gpx-1-/- mouse cortex when normalized against that of the WT strain at physiological basal 
condition. All fold-change expressions were subjected to one-way ANOVA analysis and 
Benjamini-Hochberg FDR correction, and were significant at p<0.05. Data are expressed as 
fold-change ± sem. 
Genbank Gene Title Symbol Gpx-1-/- 
Response to oxidative stress 
NM_012021 Peroxiredoxin 5 Prdx5 1.61 ± 0.08 
NM_013711 Thioredoxin reductase 2 Txnrd2 -1.54 ± 0.07 
NM_013603 Metallothionein 3 Mt3 2.03 ± 0.20 
NM_011631 Heat shock protein 90kDa beta (Grp94), member 1 Hsp90b1 1.56 ± 0.14 
NM_009584 DnaJ (Hsp40) homolog, subfamily C, member 2 Dnajc2 1.50 ± 0.14 
NM_030206 Cytoglobin Cygb -1.52 ± 0.07 
Cell homeostasis, survival and proliferation 
-MAPK/ERK signaling cascade 

NM_008306 N-deacetylase/N-sulfotransferase (heparan 
glucosaminyl) 1 Ndst1 1.50 ± 0.19 

NM_001008533 Adenosine A1 receptor Adora1 1.64 ± 0.15 

NM_011162 Mitogen-activated protein kinase 8 interacting 
protein 1 Mapk8ip1 -1.85 ± 0.09 

NM_021921 Mitogen-activated protein kinase 8 interacting 
protein 2 Mapk8ip2 -1.51 ± 0.07 

NM_010897 Neurofibromatosis 1 Nf1 1.70 ± 0.16 

NM_013612 Solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 1 Slc11a1 -1.69 ± 0.19 

NM_013881 Unc-51 like kinase 2 (C. elegans) Ulk2 1.53 ± 0.07 
NM_010216 c-fos induced growth factor Figf 1.61 ± 0.10 
NM_009506 Vascular endothelial growth factor C Vegfc 1.74 ± 0.07 
-Wnt receptor signaling pathway 
NM_172815 R-spondin 2 homolog (Xenopus laevis) Rspo2 1.60 ± 0.23 
NM_015732 Axin2 Axin2 1.65 ± 0.11 

NM_017392 Cadherin, EGF LAG seven-pass G-type receptor 2 
(flamingo homolog, Drosophila) Celsr2 1.85 ± 0.18 

NM_026192 Calcium binding and coiled coil domain 1 Calcoco1 1.49 ± 0.22 
NM_009974 Casein kinase 2, alpha prime polypeptide;  Csnk2a2 -1.75 ± 0.07 
NM_007614 Catenin (cadherin associated protein), beta 1 Ctnnb1 1.74 ± 0.14 

NM_011599 Transducin-like enhancer of split 1, homolog of 
Drosophila E(spl) Tle1 1.60 ± 0.14 

NM_009524 Wingless-related MMTV integration site 5A Wnt5a 1.95 ± 0.25 
NM_009528 Wingless-related MMTV integration site 7B Wnt7b -1.59 ± 0.12 
Cell death 
NM_026933 TP53 regulated inhibitor of apoptosis 1 Triap1 1.61 ± 0.09 
NM_007537 BCL2-like 2 Bcl2l2 1.78 ± 0.14 
NM_134131 Tumor necrosis factor, alpha-induced protein 8 Tnfaip8 1.50 ± 0.24 
NM_011632 TNF receptor-associated factor 3 Traf3 1.69 ± 0.16 

NM_025816 Tax1 (human T-cell leukemia virus type I) binding 
protein 1 Tax1bp1 1.82 ± 0.12 

NM_013556 Hypoxanthine guanine phosphoribosyl transferase 1 Hprt1 1.58 ± 0.20 
NM_008410 Integral membrane protein 2B Itm2b 1.59 ± 0.13 
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Table 5.3 (continue) 
Genbank Gene Title Symbol Gpx-1-/- 
Cell death (continue) 
NM_009402 Peptidoglycan recognition protein 1 Pglyrp1 2.32 ± 0.60 

NM_009344 Pleckstrin homology-like domain, family A, member 
1 Phlda1 2.06 ± 0.53 

NM_011221 Purine rich element binding protein B Purb 2.33 ± 0.52 
NM_007483 Ras homolog gene family, member B Rhob 1.71 ± 0.09 

NM_019812 Sirtuin 1 (silent mating type information regulation 
2, homolog) 1 (S. cerevisiae) Sirt1 1.54 ± 0.23 

NM_009472 Unc-5 homolog C (C. elegans) Unc5c 1.52 ± 0.18 
NM_009517 Zinc finger matrin type 3 Zmat3 2.00 ± 0.18 
NM_029083 DNA-damage-inducible transcript 4 Ddit4 -1.60 ± 0.13 
NM_001013829 Src homology 2 domain containing F Shf -1.75 ± 0.08 
NM_019567 Apoptotic chromatin condensation inducer 1 Acin1 -2.19 ± 0.10 
NM_133882 Complement component 8, beta polypeptide C8b -1.66 ± 0.10 

NM_011817 Growth arrest and DNA-damage-inducible 45 
gamma Gadd45g -1.64 ± 0.10 

NM_011073 Perforin 1 (pore forming protein) Prf1 -2.18 ± 0.15 
NM_176833 Protein phosphatase 1F (PP2C domain containing) Ppm1f -1.60 ± 0.07 
NM_011361 Serum/glucocorticoid regulated kinase 1 Sgk -1.55 ± 0.13 
Cellular protein catabolism via ubiquitin-proteasome system 
NM_016877 CCR4-NOT transcription complex, subunit 4 Cnot4 1.72 ± 0.28 
NM_172637 HECT domain containing 2 Hectd2 1.59 ± 0.11 

NM_025745 Mus musculus endoplasmic reticulum lectin 1 
(Erlec1) Erlec1 1.81 ± 0.17 

NM_026402 Autophagy-related 3 (yeast) Atg3 1.59 ± 0.18 
NM_144859 Praja 2, RING-H2 motif containing Pja2 1.53 ± 0.23 

NM_011931 Predicted gene 6206; ring finger and WD repeat 
domain 2 Rfwd2 1.76 ± 0.30 

NM_027314 Predicted gene 7684; membrane-associated ring 
finger (C3HC4) 5 Rnf153 1.69 ± 0.08 

NM_011966 Proteasome (prosome, macropain) subunit, alpha 
type 4; predicted gene 6542 Psma4 1.50 ± 0.11 

NM_027357 Proteasome (prosome, macropain) 26S subunit, non-
ATPase, 1 Psmd1 1.53 ± 0.29 

NM_025550 Proteasome (prosome, macropain) 26S subunit, non-
ATPase, 6 Psmd6 1.63 ± 0.17 

NM_011192 Proteaseome (prosome, macropain) 28 subunit, 3 Psme3 1.93 ± 0.28 

NM_016723 Ubiquitin carboxyl-terminal esterase L3 (ubiquitin 
thiolesterase) Uchl3 1.87 ± 0.18 

NM_019562 Ubiquitin carboxyl-terminal esterase L5 Uchl5 2.27 ± 0.18 
NM_021522 Ubiquitin specific peptidase 14 Usp14 1.59 ± 0.10 
NM_021323 Ubiquitin specific peptidase 29 Usp29 -1.63 ± 0.07 

NM_019668 Ubiquitin-conjugating enzyme E2A, RAD6 homolog 
(S. cerevisiae) Ube2a 1.86 ± 0.07 

NM_025985 Ubiquitin-conjugating enzyme E2G 1 (UBC7 
homolog, C. elegans) Ube2g1 1.50 ± 0.10 

Cell cycle checkpoint response to DNA damage stimuli 
NM_001044371 RAD17 homolog (S. pombe) Rad17 1.52 ± 0.20 
NM_009009 RAD21 homolog (S. pombe) Rad21 -1.54 ± 0.04 
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Table 5.3 (continue) 
Genbank Gene Title Symbol Gpx-1-/- 
Cell cycle checkpoint response to DNA damage stimuli (continue) 
NM_009011 RAD23b homolog (S. cerevisiae) Rad23b 1.63 ± 0.29 
NM_026933 TP53 regulated inhibitor of apoptosis 1 Triap1 1.61 ± 0.09 
NM_027355 Ring finger protein 168 Rnf168 1.53 ± 0.06 

NM_027257 Oligonucleotide/oligosaccharide-binding fold 
containing 2B Obfc2b 1.66 ± 0.13 

NM_019710 Structural maintenance of chromosomes 1A Smc1a 1.80 ± 0.06 
NM_025372 Timeless interacting protein Tipin 1.51 ± 0.09 
NM_025613 EP300 interacting inhibitor of differentiation 1 Eid1 2.00 ± 0.18 
NM_009517 Zinc finger matrin type 3 Zmat3 2.00 ± 0.18 
Cell cycle 

NM_145138 
NIMA (never in mitosis gene a)-related expressed 
kinase 9 Nek9 1.56 ± 0.15 

NM_027418 Mitogen-activated protein kinase 6 Mapk6 1.71 ± 0.23 
NM_009829 Cyclin D2 Ccnd2 1.61 ± 0.25 
NM_009831 Cyclin G1 Ccng1 1.52 ± 0.22 
NM_009833 Cyclin T1 Ccnt1 1.55 ± 0.12 

NM_153058 Microtubule-associated protein, RP/EB family, 
member 2 Mapre2 1.58 ± 0.09 

NM_008567 Minichromosome maintenance deficient 6 (MIS5 
homolog, S. pombe) (S. cerevisiae) Mcm6 1.60 ± 0.19 

NM_011889 Septin 3 Sep3 1.50 ± 0.18 
NM_213614 Septin 5 Sep5 1.74 ± 0.18 
NM_017380 Septin 9 Sep9 1.52 ± 0.15 
NM_021884 Tumor susceptibility gene 101 Tsg101 1.58 ± 0.06 
Mitochondrial respiratory chain 
NM_016920 ATPase, H+ transporting, lysosomal V0 subunit A1 Atp6v0a1 1.52 ± 0.27 

NM_009729 
ATPase, H+ transporting, lysosomal V0 subunit C, 
pseudogene 2; ATPase, H+ transporting, lysosomal 
V0 subunit C 

Atp6v0c -1.73 ± 0.10 

NM_023172 NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex, 9 Ndufb9 1.77 ± 0.41 

NM_010887 NADH dehydrogenase (ubiquinone) Fe-S protein 4 Ndufs4 1.53 ± 0.10 
NM_053071 Cytochrome c oxidase, subunit VIc Cox6c 1.81 ± 0.12 
NM_146141 Pyrophosphatase (inorganic) 2 Ppa2 1.75 ± 0.15 
Defense and inflammatory response 

NM_008306 N-deacetylase/N-sulfotransferase (heparan 
glucosaminyl) 1 Ndst1 1.50 ± 0.19 

NM_018763 Carbohydrate sulfotransferase 2 Chst2 1.76 ± 0.43 
NM_011332 Chemokine (C-C motif) ligand 17 Ccl17 1.60 ± 0.27 
NM_011335 Chemokine (C-C motif) ligand 21a Ccl21a 4.43 ± 0.31 
NM_011124 Chemokine (C-C motif) ligand 21b Ccl21b 6.70 ± 0.28 
NM_023052 Chemokine (C-C motif) ligand 21c (leucine) Ccl21c 5.52± 0.51 
NM_145385 Myeloid leukemia factor 2 Mlf2 1.60 ± 0.08 
NM_024439 Histocompatibility 47 H47 1.64 ± 0.06 
NM_010895 Neurogenic differentiation 2 Neurod2 1.55 ± 0.12 
NM_009402 Peptidoglycan recognition protein 1 Pglyrp1 2.32 ± 0.60 
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Table 5.3 (continue) 
Genbank Gene Title Symbol Gpx-1-/- 
Defense and inflammatory response (continue) 
NM_009780 Complement component 4B (Childo blood group) C4b -1.55 ± 0.08 
NM_133882 Complement component 8, beta polypeptide C8b -1.66 ± 0.10 
NM_011486 Signal transducer and activator of transcription 3 Stat3 -1.57 ± 0.06 
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5.2.2.2 Gpx-1-/- mice induced a substantially larger global gene profile as compared 

to WT mice upon tMCAO induction 

Interestingly, Gpx-1-/- mice demonstrated a promisingly larger group of gene probes 

(1,456) significantly modulated, but majority being down-regulated. Shown in Figure 5.2, 

a comparative graphical representation of the number of genes partitioned and clustered 

accordingly to their time-specific transcriptional expression. It could be generally 

inferred that deletion of Gpx-1 induced substantially more transcriptional down-

regulation of genes upon tMCAO induction. The larger global transcriptomic profile from 

the Gpx-1-/- mice upon tMCAO induction could be accounted by the heightened cellular 

response to elevated predisposition to cerebral injury following a localized ischemic 

event, attributed by atypical responses within the microvasculature, including 

inflammation, diminished endothelial barrier function (increased vascular permeability), 

endothelial activation, and reduced microvascular perfusion (Wong et al., 2008). 

 

A comparative examination of the gene probes common to both mouse types 

demonstrated a reasonably high level of overlap (422 probe sets), which accounted for 

over 70% and 28% of the WT and Gpx-1-/- global gene profiles respectively (Figure 

5.3A). Within this subset of 422 common probe sets, more than 75% demonstrated 

identical regulatory trend over the time-course of 2h, 8h and 24h with majority showing 

further up/down-regulatory fold-changes in gene expression in Gpx-1-/- condition (Figure 

5.3B). Sequential time-point comparisons of the common up- and down-regulated genes 

respectively did not reveal significant difference in level of gene expression (fold-

change) between mouse types upon tMCAO induction, as shown in Figure 5.4. This is 
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further confirmed by the in-depth analysis of the regulatory trend of genes common to 

both tMCAO-induced mouse models as demonstrated in Table 5.4.  Genes classified 

under the respective biological processes did not show marked difference in 

transcriptional fold-changes between WT and Gpx-1-/- mice upon tMCAO treatment, 

implying that the deletion of Gpx-1-/- did not affect the regulation of the originally 

activated/inhibited cellular signaling cascades seen in the WT mice. Interestingly, 

deletion of Gpx-1-/- induced differential gene expression regulation of substantially 

additional more genes, implying the modulation of supplementary pathways affected by 

the absence of Gpx-1 expression and activity. As such, the author proceeded to focus on 

the remaining 1,034 genes exclusive to Gpx-1-/--tMCAO global transcriptome (Table 

5.5). 
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Figure 5.2 Time-course profiling revealed a significant increase in number of up/down-

regulated genes with transcriptional expression with a minimum of 1.5-fold change 

from 8h to 24h timeframe. Only genes with transcriptional fold-change of at least ±1.5 in 

at least one out of three time-points and had passed stringent statistical analyses were 

included into WT (572 gene probes) and Gpx-1-/- (1,456 gene probes) –tMCAO global 

gene profiles. Genes were then segregated into fold-change categories at respective time-

points. The excess differentially expressed genes in Gpx-1-/- -tMCAO profile were 

accounted in the transcriptionally down-regulated category. 
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Figure 5.3 (A) Venn diagram illustrated 422 DAVIDS-recognizable genes with significant 

regulation of at least 1.5 fold-change in a minimum of one out of three time-points were 

common to WT- and Gpx-1-/-–tMCAO global gene profiles. (B) Stacked bar-chart depicted a 

high degree of consistency in regulatory trend of genes (at least 1.5 fold-change in at least 

one out of three time-points in individual treatment) common to both WT- and Gpx-1-/-–

tMCAO global gene profiles. 

A 

 

 

 

 

 

 

B 
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Figure 5.4 Sequential time-point comparisons (2-8h and 8-24h) of the 422 common up- 

and down-regulated genes did not reveal significant difference in gene expression 

increment/decrement (fold-change) between WT and Gpx-1-/- mouse strains upon 

tMCAO induction. Sequential time-point fold-change variation was assigned to various 

fold-change categories and summarized on a plotted chart. Genes with fold-difference 

<0.1 between time-points were omitted from the count. 

 



Chapter 5.2: 
Gpx-1-/--transient MCAO 

240 
 

Table 5.4 Gene expression profiles of neuronal death-related families in genes common to the infarct 
cortice of WT and Gpx-1-/--tMCAO models. All fold-change expressions are subjected to one-way 
ANOVA analysis and Benjamini-Hochberg FDR correction, and significant at p<0.05. Data are 
expressed as fold-change ± sem. 

Genbank Gene Title Symbol Time-points 
 WT-tMCAO Gpx-1-/--tMCAO 

2h 8h 24h 2h 8h 24h 
 Calcium ion binding and homeostasis 

NM_008597 Matrix glia protein Mgp 
-1.10 

± 
0.06 

1.20 
± 

0.23 

1.77 
± 

0.31 

-1.55 
± 

0.14 

-1.04 
± 

0.10 

1.04 
± 

0.16 

NM_011313 S100 calcium binding protein A6 
(calcyclin) S100a6 

1.13 
± 

0.14 

1.37 
± 

0.16 

2.27 
± 

0.96 

-1.02 
± 

0.17 

1.41 
± 

0.17 

3.35 
± 

2.37 

NM_009114 S100 calcium binding protein a9 
(calgranulin b) S100a9 

1.73 
± 

0.41 

1.86 
± 

0.59 

8.05 
± 

36.86 

2.56 
± 

1.36 

1.82 
± 

1.02 

4.42 
± 

16.41 

NM_007585 Annexin A2 Anxa2 
1. 25 

± 
0.22 

1.94 
± 

0.25 

3.22 
± 

2.57 

1.33 
± 

0.29 

2.29 
± 

1.41 

3.35 
± 

2.37 

NM_011607 Tenascin C Tnc 
1.17 

± 
0.12 

1.16 
± 

0.08 

2.12 
± 

1.58 

1.17 
± 

0.10 

1.20 
± 

0.35 

1.87 
± 

0.91 
Cell death 

NM_030612 
Nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 
inhibitor, zeta 

Nfkbiz 
2.22 

± 
1.08 

1.84 
± 

0.51 

1.57 
± 

0.54 

1.73 
± 

0.05 

1.93 
± 

0.16 

1.40 
± 

0.62 

NM_007837 DNA-damage inducible transcript 3 
(Ddit3) Ddit3 

1.36 
± 

0.17 

1.52 
± 

0.31 

1.43 
± 

0.55 

1.53 
± 

0.17 

2.00 
± 

0.77 

1.53 
± 

0.34 

NM_009883 CCAAT/enhancer binding protein 
(C/EBP) beta (Cebpb) Cebpb 

1.60 
± 

0.39 

1.95 
± 

0.31 

1.87 
± 

1.10 

1.72 
± 

0.24 

1.88 
± 

0.77 

1.41 
± 

0.95 

NM_028283 Uveal autoantigen with coiled-coil 
domains and ankyrin repeats Uaca 

1.21 
± 

0.20 

1.08 
± 

0.09 

1.90 
± 

0.57 

1.07 
± 

0.07 

1.27 
± 

0.17 

1.65 
± 

0.55 

NM_007498 Activating transcription 3 Atf3 
4.06 

± 
3.68 

3.22 
± 

2.64 

3.00 
± 

3.68 

3.09 
± 

1.03 

4.04 
± 

5.10 

2.29 
± 

1.57 

NM_007836 Growth arrest and dna-damage-
inducible 45 alpha Gadd45a 

1.39 
± 

0.25 

1.34 
± 

0.18 

1.54 
± 

0.76 

1.28 
± 

0.07 

1.64 
± 

0.73 

1.54 
± 

0.48 

NM_008655 Growth arrest and dna-damage-
inducible 45 beta Gadd45b 

2.72 
± 

0.97 

2.09 
± 

1.19 

2.20 
± 

1.96 

2.50 
± 

0.28 

2.67 
± 

1.82 

1.71 
± 

1.02 

NM_011817 Growth arrest and dna-damage-
inducible 45 gamma Gadd45g 

2.36 
± 

1.79 

1.55 
± 

0.79 

1.55 
± 

1.41 

3.02 
± 

1.83 

2.95 
± 

2.10 

1.90 
± 

1.32 

NM_007669 Cyclin-dependent kinase inhibitor 1a 
(p21) Cdkn1a 

1.84 
± 

0.14 

2.68 
± 

0.82 

1.66 
± 

1.18 

1.80 
± 

0.05 

2.92 
± 

0.66 

1.62 
± 

0.92 
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Table 5.4 (continue) 
Genbank Gene Title Symbol Time-points 

 WT-tMCAO Gpx-1-/--tMCAO 
2h 8h 24h 2h 8h 24h 

 Cell death (continue) 

NM_009982 Cathepsin C (Ctsc) Ctsc 
-1.17 

± 
0.10 

1.14 
± 

0.15 

2.27 
± 

0.83 

-1.25 
± 

0.07 

-1.05 
± 

0.29 

1.91 
± 

0.61 

NM_022325 Cathepsin Z (Ctsz) Ctsz 
1.27 

± 
0.14 

1.32 
± 

0.18 

1.91 
± 

0.66 

1.21 
± 

0.14 

1.29 
± 

0.22 

1.59 
± 

0.42 
Cell homeostasis, survival and proliferation 

NM_153553 Neuronal PAS domain protein 4 Npas4 
6.39 

± 
12.48 

1.74 
± 

0.92 

1.38 
± 

0.26 

3.31 
± 

8.58 

1.26 
± 

1.06 

-1.24 
± 

0.46 

NM_020581 Angiopoietin-like 4 Angptl4 
1.18 

± 
0.11 

1.76 
± 

0.20 

1.50 
± 

0.47 

2.03 
± 

0.30 

3.95 
± 

0.76 

2.72 
± 

1.23 

NM_008343 Insulin-like growth factor binding 
protein 3 Igfbp3 

1.01 
± 

0.06 

1.54 
± 

0.28 

2.77 
± 

2.62 

-1.17 
± 

0.09 

1.27 
± 

0.19 

2.14 
± 

1.60 

NM_016693 Mitogen-activated protein kinase 
kinase kinase 6 Map3k6 

1.39 
± 

0.15 

1.99 
± 

0.20 

1.48 
± 

0.40 

1.30 
± 

0.10 

1.66 
± 

0.34 

1.47 
± 

0.61 

NM_011368 Src homology 2 domain-containing 
transforming protein c1 Shc1 

1.01 
± 

0.11 

1.52 
± 

0.14 

1.54 
± 

0.55 

-1.05 
± 

0.11 

1.51 
± 

0.21 

1.59 
± 

0.44 

NM_010851 Myeloid differentiation primary 
response gene 88 Myd88 

-1.02 
± 

0.06 

1.31 
± 

0.26 

1.83 
± 

0.99 

1.29 
± 

0.19 

1.84 
± 

0.41 

2.42 
± 

1.19 

NM_010234 Fbj osteosarcoma oncogene Fos 
4.37 

± 
4.85 

1.64 
± 

1.19 

1.36 
± 

1.29 

3.24 
± 

2.03 

1.41 
± 

1.38 

1.07 
± 

0.48 

NM_010591 Jun oncogene Jun 
1.54 

± 
0.80 

1.22 
± 

0.20 

1.04 
± 

0.24 

1.73 
± 

0.16 

1.94  
± 

0.61 

1.48 
± 

0.42 

NM_009263 Secreted phosphoprotein 1 Spp1 
1.15 

± 
0.23 

2.07 
± 

0.51 

6.98 
± 

12.94 

-1.26 
± 

0.17 

1.80 
± 

1.22 

4.73 
± 

6.48 

NM_013614 Ornithine decarboxylase, structural 1 Odc1 
1.34 

± 
0.26 

1.43 
± 

0.22 

1.70 
± 

0.86 

1.12 
± 

0.09 

1.43 
± 

0.45 

1.66 
± 

0.83 

NM_009929 Procollagen, type xviii, alpha 1 Col18a1 
-1.01 

± 
0.11 

-1.06 
± 

0.13 

1.56 
± 

0.53 

1.02 
± 

0.08 

1.22 
± 

0.17 

1.53 
± 

0.55 

NM_011451 Sphingosine kinase 1 Sphk1 
1.16 

± 
0.13 

2.03 
± 

0.67 

1.89 
± 

1.19 

-1.05 
± 

0.12 

2.12 
± 

1.21 

1.75 
± 

1.54 

NM_027253 Ras interacting protein 1 Rasip1 
1.02 

± 
0.09 

1.21 
± 

0.23 

1.57 
± 

0.61 

1.33 
± 

0.04 

1.76 
± 

0.53 

1.34 
± 

0.59 
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Table 5.4 (continue) 
Genbank Gene Title Symbol Time-points 

 WT-tMCAO Gpx-1-/--tMCAO 
2h 8h 24h 2h 8h 24h 

 Cell homeostasis, survival and proliferation (continue) 

NM_010415 Heparin-binding egf-like growth 
factor Hbegf 

1.27 
± 

0.19 

1.30 
± 

0.22 

1.70 
± 

0.71 

1.17 
± 

0.04 

1.53 
± 

0.63 

1.61 
± 

0.80 
Response to oxidative stress 

NM_013863 Bcl2-associated athanogene 3 (Bag3) Bag3 
1.63 

± 
0.56 

1.67 
± 

0.73 

1.57 
± 

0.57 

1.55 
± 

0.08 

2.11 
± 

1.43 

1.47 
± 

0.69 

NM_013560 Heat shock protein 1 Hspb1 
1.70 

± 
1.27 

2.14 
± 

1.40 

3.07 
± 

3.82 

2.10 
± 

0.50 

3.75 
± 

3.11 

3.61 
± 

4.78 

NM_001012401 Heat shock protein, alpha-crystallin-
related, b6 Hspb6 

1.30 
± 

0.15 

1.74 
± 

0.17 

2.85 
± 

0.94 

1.01 
± 

0.12 

1.57 
± 

0.36 

2.49 
± 

0.91 

NM_009825 
Serine (or cysteine) proteinase 
inhibitor clade H member 1 
(Serpinh1) 

Serpinh1 
-1.01 

± 
0.10 

3.82 
± 

0.61 

6.93 
± 

7.71 

1.04 
± 

0.25 

2.79 
± 

1.44 

7.36 
± 

6.77 

NM_018808 DnaJ (Hsp40) homolog, subfamily B, 
member 1 Dnajb1 

1.53 
± 

0.89 

1.21 
± 

0.26 

-1.19 
± 

0.07 

1.37 
± 

0.19 

1.70 
± 

0/90 

-2.09 
± 

0.29 
Inflammatory response 

NM_023065 Interferon gamma inducible protein 30 Ifi30 
-1.04 

± 
0.06 

1.03 
± 

0.07 

1.64 
± 

0.49 

1.12 
± 

0.05 

1.22 
± 

0.10 

1.55 
± 

0.33 

NM_001013365 Oncostatin m Osm 
1.66 

± 
0.47 

1.45 
± 

0.34 

1.87 
± 

1.12 

1.77 
± 

0.32 

1.59 
± 

0.41 

1.72 
± 

0.77 

NM_009841 Cd14 antigen Cd14 
3.37 

± 
1.79 

5.96 
± 

5.65 

5.10 
± 

9.25 

3.72 
± 

0.80 

6.54 
± 

10.56 

4.58 
± 

7.73 

NM_019980 Lps-induced tn factor Litaf 
1.49 

± 
0.39 

1.27 
± 

0.38 

1.83 
± 

1.03 

1.76 
± 

0.02 

1.96 
± 

0.69 

2.35 
± 

1.43 

NM_011157 Proteoglycan 1, secretory granule Srgn 
1.13 

± 
0.13 

1.78 
± 

0.38 

2.27 
± 

1.53 

1.28 
± 

0.22 

1.66 
± 

0.49 

1.91 
± 

0.72 

NM_009780 Complement component 4b (childo 
blood group) C4b 

-1.13 
± 

0.18 

1.07 
± 

0.09 

1.54 
± 

0.47 

1.01 
± 

0.15 

1.15 
± 

0.11 

1.95 
± 

0.44 

NM_013749 Tumor necrosis factor receptor 
superfamily, member 12a Tnfrsf12a 

1.57 
± 

0.32 

1.53 
± 

0.80 

2.84 
± 

3.22 

2.31 
± 

0.35 

3.03 
± 

2.20 

3.06 
± 

1.06 

NM_011905 Toll-like receptor 2 Tlr2 
1.89 

± 
0.72 

2.33 
± 

0.98 

2.93 
± 

1.76 

1.30 
± 

0.17 

1.87 
± 

1.17 

1.93 
± 

1.05 

NM_205820 Toll-like receptor 13 Tlr13 
1.54 

± 
0.21 

1.89 
± 

0.48 

2.02 
± 

0.98 

1.13 
± 

0.09 

1.54 
± 

0.48 

1.85 
± 

0.63 



Chapter 5.2: 
Gpx-1-/--transient MCAO 

243 
 

Table 5.4 (continue) 
Genbank Gene Title Symbol Time-points 

 WT-tMCAO Gpx-1-/--tMCAO 
2h 8h 24h 2h 8h 24h 

 Inflammatory response (continue) 

NM_010185 Fc receptor, ige, high affinity i, 
gamma polypeptide Fcer1g 

1.15 
± 

0.14 

1.48 
± 

0.16 

2.20 
± 

1.30 

1.18 
± 

0.17 

1.51 
± 

0.44 

2.14 
± 

1.13 

NM_011333 Chemokine (c-c motif) ligand 2 Ccl2 
1.29 

± 
0.13 

2.28 
± 

0.83 

2.48 
± 

2.03 

1.77 
± 

0.48 

2.24 
± 

1.31 

2.55 
± 

2.13 

NM_011330 Small chemokine (c-c motif) ligand 11 Ccl11 
1.08 

± 
0.13 

1.86 
± 

0.92 

1.77 
± 

1.26 

1.09 
± 

0.11 

1.94  
± 

0.90 

2.24 
± 

1.53 

NM_011331 Chemokine (c-c motif) ligand 12 Ccl12 
1.29 

± 
0.24 

2.15 
± 

0.85 

7.03 
± 

8.91 

1.47 
± 

0.51 

2.19 
± 

1.39 

7.00 
± 

10.57 

NM_008176 Chemokine (c-x-c motif) ligand 1 Cxcl1 
3.50 

± 
2.61 

7.35 
± 

6.41 

6.05 
± 

11.39 

5.07 
± 

1.71 

7.07 
± 

8.91 

5.41 
± 

12.72 

NM_021274 Chemokine (c-x-c motif) ligand 10 Cxcl10 
1.28 

± 
0.13 

1.88 
± 

0.77 

2.63 
± 

2.26 

1.08 
± 

0.06 

1.48 
± 

0.58 

2.62 
± 

2.06 
 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5.2: 
Gpx-1-/--transient MCAO 

244 
 

5.2.2.3 Deletion of Gpx-1 induced transcriptional regulation of additional novel 

pathways, resulting in exacerbation of cerebral post-ischemic injury 

It has been previously reported that Gpx-1 deficiency resulted in an elevated oxidant 

production, causing an aggravation of post-ischemic cerebral injury (Crack et al., 2001), 

which can be abrogated through transgenic overexpression of functional Gpx-1 (Weisbrot-

Lefkowitz et al., 1998). Previous studies from our laboratory also revealed that tMCAO 

induced a significant increase in infarct size and vascular permeability in Gpx-1-/- brains as 

compared to that of WT (Crack et al., 2001; Wong et al., 2008). Neuronal deficit scores 

showed close association to histological data, and caspase-3 activation occurred much early 

in Gpx-1-/- mice upon tMCAO induction (Crack et al., 2001). Current global gene profiling 

study further substantiated Gpx-1-/- mice increased susceptibility to neuronal damage and 

subsequently death during I/R process. Biological pathway assignment of the 1,034 genes 

having exclusive significant transcriptional regulation to Gpx-1-/- -tMCAO condition 

identified several cellular signaling pathways which play a prominent role in the regulation 

of cell death and survival (Table 5.5). 

 

-INDUCTION OF CELL DEATH: FAS/FASL AND P53 –MEDIATED PRO-

APOPTOTIC PATHWAYS 

It is evident from the microarray analysis of tMCAO-induced Gpx-1-/- mouse cortex that 

genes encoding for proteins involved extrinsic (Fas/FasL) and intrinsic p53 –triggered pro-

apoptotic pathways were transcriptionally up-regulated (Table 5.5). The Fas/FasL-mediated 

extrinsic apoptotic pathway is evident at the early 2h time-point upon tMCAO induction in 

Gpx-1-/- mice (Table 5.5: Induction of cell death). RCHY1 is an ubiquitin-protein E3 ligase 
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that promotes p53 degradation demonstrated down-regulation allowing up-regulation of p53 

expression, and contributing to its activity. The increase in Ddit3/CHOP protein expression 

facilitates the suppression of the BCL2 expression making them more susceptible to 

apoptosis (McCullough et al., 2001). Previously we have reported an increase in protein 

expression of the transcription factor NF-B in Gpx-1-/- after transient ischemic stroke whose 

up-regulation exacerbated neuronal death (Crack et al., 2006). This is further verified in the 

present study which demonstrated an elevated transcriptional up-regulation of the p65 

subunit of NF-B (Rela) in Gpx-1-/- mouse cortex. Interestingly, endogenous inhibitor of NF-

B transcription activity (IB), Nfkbia, also demonstrated an increasing regulatory trend 

(Table 5.5). 

 

- CELLULAR CALCIUM ION BINDING AND HOMEOSTASIS 

Genes encoding for both intrinsic and extrinsic Ca2+ ionotropic receptors (Gpr12, Grin1, 

Ryr3) and ion channels (Atp2a2, Cacnb4, Slc24a3) demonstrated substantial down-regulation 

in Gpx-1-/- mouse cortex (Table 5.5). 

 

- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) SIGNALING PATHWAYS 

MAPK pathways, which can be further divided into three types (p38 MAPK, SAPK/JNK, 

MAPK/ERK and BMK-1/ERK5, are involved in the transduction of a large variety of 

external signals, (e.g. growth factors, cytokine, Fas) leading to a variety of cellular responses, 

including growth, differentiation, inflammation and apoptosis. The former two are important 

in pathways controlling T cell differentiation, production of inflammatory cytokines and 

eicosanoids (Ichijo et al., 1997), and apoptotic cell death, whereas the latter two are 
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implicated in pro-proliferative, mitogenic and cell cycle progression cascades (Kato et al., 

1998; Xia et al., 1995). As shown in Table 5.5: MAPK signaling pathway, majority of the 

players involved in MAPK signaling pathways showed substantial transcriptional down-

regulation. On the other hand, dual specificity phosphatase (Dusp) 1(Dusp1) and 3(Dusp3) 

demonstrated significant up-regulation at the early time-point of 2h. Dusps, an emerging 

subclass of the protein tyrosine phosphatase (PTP) gene superfamily which are selective for 

dephosphorylating the critical phosphothreonine and phosphotyrosine residues within 

MAPKs, are strongly transcriptionally induced by various growth factors and/or cellular 

stresses, resulting in a sophisticated transcriptional regulatory mechanism for targeted 

inactivation of MAPK activities (Camps et al., 2000). 

 

- CYTOPROTECTIVE RESPONSE TO OXIDATIVE STRESS: SUPPRESSION OF 

NRF2-INDUCED PATHWAY 

Deletion of functional Gpx-1 induced a mixed transcriptional anti-oxidative response, with 

Hsps and chaperones such Mt3 and Hsp90b1 being down-regulated while Hmox1, Hspa1a 

and Naprt1 up-regulated. Nrf2, a recently acknowledged protective-survival transcription 

factor induced upon oxidative and electrophilic stresses, plays a pivotal role in the 

transcriptional activation of antioxidant-response element (ARE) -harbouring genes encoding 

detoxifying enzymes and cytoprotective antioxidant proteins including superoxide 

dehydrogenase, NAD(P)H dehydrogenase quinone-1 (Nqo1) and heme oxygenase-1 

(Hmox1) (reviewed in Higgins et al.  2010). In the event of cellular stress, Nrf2 normally 

kept inactive through interaction with its inhibitory partner (Nrf2)-Kelch-like ECH-

associated protein 1 (Keap1) dissociates and migrates to the nucleus upon its phosphorylation 
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by protein kinases such as protein kinase C (PKC), ERK, and MAPK (Buckley et al., 2003; 

De Long et al., 1987). Nrf2 DNA-binding activity is conferred by a heterodimer consisting of 

an ubiquitous small v-maf musculoaponeurotic fibrosarcoma (Maf) protein (Maff and Mafg) 

the tissue-restricted protein p45 Nrf2. Transcriptomic profiling revealed up-regulation of 

Hmox1 and Maff and down-regulation of Mafg, Prkcb1 and Mapk4 (Table 5.5: MAPK 

signaling pathway and oxidative stress induced gene expression via NRf2). Thioredoxin 

interacting protein (Txnip), an Nrf2 negatively regulated target, also showed transcriptional 

elevation at 2h. Further, FBJ osteosarcoma oncogene (Fos) reported to exert antagonistic 

effect on the ARE element Nqo1 (Venugopal and Jaiswal, 1996) demonstrated significant 

up-regulation at 2h (Table 5.5). 

 

- UBIQUITIN-PROTEASOME SYSTEM (UPS) -DEPENDENT PROTEIN 

CATABOLISM 

The UPS function is impaired in Gpx-1-/- mouse cortex with the decrease in mRNA level of 

its associated pathway players (Psmd1, Uchl(3,5) and Usp(2,11), eventually resulting in 

accumulation of cellular proteins (Table 5.5). 

 

- MITOTIC CELL CYCLE 

Majority of genes encoding for mitogenic proteins involved in the mediation of cell 

proliferation (Cyclin(d2, t1), Rhob, Src, and Foxg1) demonstrated pursuing down-regulation 

with a concurrent correlated increase in mRNA level for inhibitor of cell cycle (Cdkn1a) 

(Table 5.5). 
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Table 5.5 Selected differentially-expressed gene profile of neuronal death-related families in Gpx-1-/- -
tMCAO infarct cortice. All fold-change expressions were subjected to one-way ANOVA analysis and 
Benjamini Hochberg FDR correction, and were significant at p<0.05. Data are expressed as fold-
change ± sem. 

Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
Cell death 

NM_007987 Fas (TNF receptor superfamily 
member) Fas 1.56 ± 0.18 1.81 ± 0.35 1.61 ± 0.20 

NM_021897 
 

Transformation related protein 53 
inducible nuclear protein 1 

Trp53inp1 
 1.25 ± 0.15 1.56 ± 0.32 1.20 ± 0.13 

NM_021451 Phorbol-12-myristate-13-acetate-
induced protein 1 Pmaip1 1.24 ± 0.10 1.78 ± 0.42 1.19 ± 0.15 

NM_007837 DNA-damage inducible transcript 3 Ddit3 1.57 ± 0.18 1.89 ± 0.67 1.51 ± 0.24 

NM_009045 v-rel reticuloendotheliosis viral 
oncogene homolog A (avian) Rela 1.18 ± 0.07 1.46 ± 0.27 1.51 ± 0.43 

NM_007915 Etoposide induced 2.4 mRNA Ei24 -1.52 ± 0.03 -1.54 ± 0.04 -1.37 ± 0.04 
NM_011931 Ring finger and WD repeat domain 2 Rfwd2 -1.24 ± 0.08 -1.39 ± 0.08 -1.77 ± 0.05 

NM_026557 Ring finger and CHY zinc finger 
domain containing 1 Rchy1 -1.29 ± 0.14 -1.53 ± 0.10 -1.15 ± 0.11 

NM_174991 Brain-specific angiogenesis inhibitor 1 Bai1 -1.16 ± 0.20 -1.30 ± 0.06 -1.99 ± 0.07 
NM_009517 Zinc finger matrin type 3 Zmat3 -1.42 ± 0.06 -1.76 ± 0.03 -2.23 ± 0.10 

NM_009370 Transforming growth factor, beta 
receptor I Tgfbr1 -1.06 ± 0.09 -1.08 ± 0.18 -1.59 ± 0.12 

Calcium ion binding and homeostasis 

NM_009722 ATPase, Ca++ transporting, cardiac 
muscle, slow twitch 2 Atp2a2 -1.23 ± 0.04 -1.40 ± 0.04 -1.57 ± 0.07 

NM_008151 G-protein coupled receptor 12 Gpr12 -1.18 ± 0.06 -1.54 ± 0.13 -1.21 ± 0.15 

NM_146123 Calcium channel, voltage-dependent, 
beta 4 subunit Cacnb4 -1.23 ± 0.07 -1.44 ± 0.10 -1.68 ± 0.18 

NM_010104 Endothelin 1 Edn1 1.81 ± 0.22 2.11 ± 1.04 1.72 ± 0.67 

NM_008169 Glu receptor, ionotropic, NMDA1 (zeta 
1) Grin1 -1.11 ± 0.09 -1.42 ± 0.08 -1.65 ± 0.08 

NM_177652 Ryanodine receptor 3 Ryr3 -1.45 ± 0.04 -1.42 ± 0.12 -1.52 ± 0.22 

NM_053195 
Solute carrier family 24 
(sodium/potassium/calcium exchanger), 
member 3 

Slc24a3 -1.29 ± 0.04 -1.39 ± 0.09 -1.70 ± 0.11 

MAPK Signaling Pathway 
NM_013642 Dual specificity phosphatase 1 Dusp1 1.69 ± 0.60 1.29 ± 0.24 1.17 ± 0.48 

NM_028207 Dual specificity phosphatase 3 (vaccinia 
virus phosphatase VH1-related) Dusp3 1.80 ± 0.68 1.32 ± 0.23 1.32 ± 0.18 

NM_026268 Dual specificity phosphatase 6 Dusp6 1.26 ± 0.23 -1.32 ± 0.25 -1.59 ± 0.21 
NM_008748 Dual specificity phosphatase 8 Dusp8 -1.00 ± 0.05 -1.31 ± 0.14 -1.96 ± 0.16 
NM_172632 Mitogen-activated protein kinase 4 Mapk4 1.04 ± 0.04 -1.12 ± 0.11 -1.67 ± 0.09 

NM_008854 Protein kinase, cAMP dependent, 
catalytic, alpha Prkaca -1.35 ± 0.10 -1.77 ± 0.06 -2.11 ± 0.05 

NM_021420 Serine/threonine kinase 4 Stk4 -1.38 ± 0.02 -1.62 ± 0.16 -1.67 ± 0.11 
NM_011697 Vascular endothelial growth factor B Vegfb -1.13 ± 0.09 -1.33 ± 0.08 -1.53 ± 0.10 
NM_009506 Vascular endothelial growth factor C Vegfc -1.35 ± 0.06 -1.63 ± 0.06 -1.42 ± 0.14 
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Table 5.5 (continue) 
Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
MAPK Signaling Pathway (continue) 
NM_010216 c-Fos induced growth factor Figf -1.55 ± 0.08 -1.46 ± 0.04 -1.32 ± 0.05 
NM_145452 RAS p21 protein activator 1 Rasa1 -1.24 ± 0.09 -1.54 ± 0.12 -1.36 ± 0.10 
NM_010592 Jun proto-oncogene related gene d1 Jund1 -1.04 ± 0.11 -1.05 ± 0.27 -1.51 ± 0.13 

NM_007581 Calcium channel, voltage-dependent, 
beta 3 subunit Cacnb3 -1.19 ± 0.05 -1.34 ± 0.10 -1.51 ± 0.04 

NM_008855 Protein kinase C, beta 1 Prkcb1 -1.11 ± 0.05 -1.38 ± 0.11 -1.61 ± 0.17 

NM_133189 Calcium channel, voltage-dependent, 
gamma subunit 7 Cacng7 -1.45 ± 0.07 -1.60 ± 0.03 -1.65 ± 0.13 

NM_009785 Calcium channel, voltage-dependent, 
alpha2/delta subunit 3 Cacna2d3 -1.09 ± 0.03 -1.42 ± 0.13 -1.53 ± 0.24 

NM_010897 Neurofibromatosis 1 Nf1 -1.10 ± 0.06 -1.61 ± 0.06 -2.42 ± 0.11 

NM_019430 Calcium channel, voltage-dependent, 
gamma subunit 3 Cacng3 -1.09 ± 0.08 -1.48 ± 0.15 -1.61 ± 0.19 

NM_013643 Protein tyrosine phosphatase, non-
receptor type 5 Ptpn5 -1.19 ± 0.07 -1.34 ± 0.07 -1.68 ± 0.08 

NM_011102 Protein kinase C, gamma Prkcc -1.33 ± 0.04 -1.52 ± 0.13 -1.79 ± 0.12 
NM_010838 Microtubule-associated protein tau Mapt 1.04 ± 0.09 -1.18 ± 0.13 -1.61 ± 0.08 
Response to oxidative stress 
NM_010442 Heme oxygenase (decycling) 1 Hmox1 1.67 ± 0.61 2.76 ± 1.86 4.01 ± 3.64 
NM_010479 Heat shock protein 1A Hspa1a 11.50 ± 1.85 8.74 ± 26.80 2.47 ± 2.64 

NM_172607 Nicotinate phosphoribosyltransferase 
domain containing 1 Naprt1 1.07 ± 0.10 1.12 ± 0.10 1.62 ± 0.14 

NM_010755 
v-Maf musculoaponeurotic 
fibrosarcoma oncogene family, protein 
F (avian) 

Maff 1.63 ± 0.07 1.53 ± 0.25 1.32 ± 0.36 

NM_001009935 Thioredoxin interacting protein Txnip 2.02 ± 0.45 2.45 ± 0.28 1.90 ± 0.73 
NM_133662 Immediate early response 3 Ier3 2.51 ± 0.44 2.12 ± 0.53 2.24 ± 1.29 
NM_007742 Collagen, type I, alpha 1 Col1a1 -1.19 ± 0.14 -1.36 ± 0.04 -1.55 ± 0.05 
NM_010137 Endothelial PAS domain protein 1 Epas1 -1.14 ± 0.16 -1.41 ± 0.12 -1.56 ± 0.04 
NM_013603 Metallothionein 3 Mt3 -1.12 ± 0.10 -1.47 ± 0.23 -2.21 ± 0.15 

NM_011631 Heat shock protein 90, beta (Grp94), 
member 1 Hsp90b1 -1.06 ± 0.07 -1.26 ± 0.09 -1.73 ± 0.05 

NM_009221 Synuclein, alpha Snca -1.42 ± 0.13 -1.52 ± 0.11 -1.13 ± 0.17 

NM_010756 
v-Maf musculoaponeurotic 
fibrosarcoma oncogene family, protein 
G (avian) 

Mafg -1.31 ± 0.04 -1.33 ± 0.08 -1.50 ± 0.07 

Ubiquitin-proteasome system -dependent protein catabolism 

NM_027357 Proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 1 Psmd1 -1.35 ± 0.05 -1.36 ± 0.09 -1.58 ± 0.11 

NM_028774 Ring finger protein (C3H2C3 type) 6 Rnf6 -1.42 ± 0.06 -1.24 ± 0.07 -1.52 ± 0.09 

NM_016723 Ubiquitin carboxyl-terminal esterase L3 
(ubiquitin thiolesterase) Uchl3  -1.44 ± 0.06 -1.60 ± 0.20 -1.67 v 0.07 

NM_019562 Ubiquitin carboxyl-terminal esterase L5 Uchl5 -1.52 ± 0.09 -1.67 ± 0.04 -1.70 ± 0.08 
NM_198091 Ubiquitin specific peptidase 2 Usp2 -1.12 ± 0.04 -1.31 ± 0.08 -1.58 ± 0.05 
NM_145628 Ubiquitin specific peptidase 11 Usp11 -1.30 ± 0.02 -1.45 ± 0.10 -1.66 ± 0.16 
NM_025745 Endoplasmic reticulum lectin 1  Erlec1 -1.49 ± 0.06 -1.68 ± 0.01 -1.75 ± 0.13 
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Table 5.5 (continue) 
Genbank Gene Title Symbol Time-points Genbank Gene Title 

 2h 8h 24h 
Mitotic Cell cycle 
NM_007631 Cyclin D1 Ccnd1 1.25 ± 0.21 1.16 ± 0.14 1.54 ± 0.29 
NM_009829 Cyclin D2 Ccnd2 -1.23 ± 0.12 -1.36 ± 0.25 -1.63 ± 0.08 
NM_009833 Cyclin T1 Ccnt1 -1.13 ± 0.03 -1.21 ± 0.16 -1.71 ± 0.08 

NM_153058 Microtubule-associated protein, RP/EB 
family, member 2 Mapre2 -1.26 ± 0.06 -1.44 ± 0.05 -1.59 ± 0.09 

NM_010021 Deleted in azoospermia-like Dazl -1.37 ± 0.04 -1.51 ± 0.03 -1.56 ± 0.06 
NM_010329 Podoplanin Pdpn 1.11 ± 0.16 1.47 ± 0.44 2.05 ± 1.33 
NM_007483 Ras homolog gene family, member B Rhob -1.14 ± 0.08 -1.17 ± 0.14 -1.75 ± 0.05 
NM_008552 MAS1 oncogene Mas1 -1.27 ± 0.04 -1.78 ± 0.05 -1.76 ± 0.07 
NM_001003920 ER serine/threonine kinase 1 Brsk1 -1.24 ± 0.11 -1.58 ± 0.10 -1.80 ± 0.11 

NM_021491 Sphingomyelin phosphodiesterase 3, 
neutral Smpd3 -1.25 ± 0.09 -1.29 ± 0.18 -1.71 ± 0.18 

NM_015732 Axin2 Axin2 -1.40 ± 0.06 -1.55 ± 0.07 -2.00 ± 0.12 

NM_009703 v-Raf murine sarcoma 3611 viral 
oncogene homolog Araf -1.01 ± 0.07 1.03 ± 0.09 1.51 ± 0.23 

NM_010436 H2A histone family, member X H2afx -1.13 ± 0.07 -1.20 ± 0.03 -1.58 ± 0.07 
NM_008241 Forkhead box G1 Foxg1 -1.38 ± 0.12 -1.56 ± 0.14 -1.59 ± 0.09 
NM_007591 Calreticulin Calr -1.19 ± 0.17 -1.44 ± 0.10 -1.87 ± 0.03 
NM_148930 RNA binding motif protein 5 Rbm5 -1.54 ± 0.08 -1.56 ± 0.14 -1.32 ± 0.16 
NM_133833 Dystonin Dst -1.06 ± 0.20 -1.31 ± 0.04 -1.51 ± 0.06 
NM_007668 Cyclin-dependent kinase 5 Cdk5 -1.19 ± 0.02 -1.34 ± 0.04 -1.56 ± 0.13 

NM_147151 Euchromatic histone lysine N-
methyltransferase 2 Ehmt2 -1.11 ± 0.05 -1.41 ± 0.08 -1.50 ± 0.11 

NM_008583 Multiple endocrine neoplasia 1 Men1 -1.25 ± 0.02 -1.36 ± 0.05 -1.55 ± 0.13 
NM_001025395 Rous sarcoma oncogene Src -1.50 ± 0.01 -1.51 ± 0.08 -1.90 ± 0.07 
NM_008036 FBJ osteosarcoma oncogene B Fosb 4.07 ± 1.18 1.21 ± 0.89 -2.05 ± 0.06 

NM_025613 EP300 interacting inhibitor of 
differentiation 1 Eid1 -1.45 ± 0.15 -1.64 ± 0.10 -1.74 ± 0.09 

NM_007669 Cyclin-dependent kinase inhibitor 1A 
(p21) Cdkn1a 2.02 ± 0.16 3.40 ± 0.85 2.01 ± 1.15 

NM_019710 Structural maintenance of chromosomes 
1A Smc1a -1.38 ± 0.03 -1.61 ± 0.02 -1.65 ± 0.07 

NM_148952 E2F transcription factor 4 E2f4 -1.15 ± 0.08 -1.12 ± 0.15 -1.55 ± 0.07 
Immune response 
NM_018770 Cell adhesion molecule 1 Cadm1 -1.41 ± 0.09 -1.62 ± 0.04 -1.83 ± 0.06 
NM_053202 Forkhead box P1 Foxp1 -1.10 ± 0.09 -1.39 ± 0.04 -1.69 ± 0.12 
NM_019654 Suppressor of cytokine signaling 5 Socs5 -1.22 ± 0.06 -1.46 ± 0.05 -1.63 ± 0.11 
NM_010789 Meis homeobox 1 Meis1 -1.63 ± 0.08 -1.64 ± 0.08 -1.74 ± 0.08 
NM_001024458 Adducin 1 (alpha) Add1 -1.08 ± 0.11 -1.38 ± 0.08 -1.73 ± 0.09 

NM_007614 Catenin (cadherin associated protein), 
beta 1 Ctnnb1 -1.40 ± 0.12 -1.33 ± 0.04 -1.62 ± 0.06 

NM_010137 Endothelial PAS domain protein 1 Epas1 -1.14 ± 0.16 -1.41 ± 0.12 -1.46 ± 0.04 
NM_001077696 Histone deacetylase 5 Hdac5 -1.28 ± 0.11 -1.83 ± 0.06 -1.77 ± 0.10 
NM_016713 Misshapen-like kinase 1 (zebrafish) Mink1 -1.43 ± 0.05 -1.55 ± 0.12 -1.61 ± 0.07 
NM_008583 Multiple endocrine neoplasia 1 Men1 -1.24 ± 0.05 -1.36 ± 0.08 -1.62 ± 0.12 
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Table 5.5 (continue) 
Genbank Gene Title Symbol Time-points 

 2h 8h 24h 
Immune response (continue) 

NM_008783 Rre B-cell leukemia transcription factor 
1 Pbx1 -1.34 ± 0.04 -1.60 ± 0.11 -1.77 ± 0.07 

NM_021344 Tescalcin Tesc -1.14 ± 0.05 -1.26 ± 0.14 -2.03 ± 0.02 
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5.2.2.4 Validation of Gpx-1-/- profile via real-time PCR 

Microarray data was validated on the same tMCAO-induced Gpx-1-/- cortical RNA 

samples used in microarray analysis via real-time PCR. These selected gene probes 

demonstrated identical transcriptional regulatory trend at 2h, 8h and 24h post-reperfusion 

(Table 5.6).  

Table 5.6 Validation of microarray data using real-time PCR technique on tMCAO-induced cortex RNA 
samples from Gpx-1-/- mice respectively. All fold-change expressions are statistically significant at p<0.05. Each 
expression data is representative of 3 independent replicates. Data are expressed as fold-change ± sem. 

Genbank Gene Title Symbol 
Gpx-1-/--MCAO 

2h 8h 24h 

Microarray Real-time 
PCR Microarray Real-time 

PCR Microarray Real-time 
PCR 

NM_153553 Neuronal PAS 
domain protein 4 Npas4 3.31 ± 8.58 6.71 ± 0.32 1.26 ± 1.06  -1.24 ± 0.46  

NM_008491 Lipocalin 2 Lcn2 1.46 ± 0.45  6.20 ± 4.42 3.26 ± 1.05 5.67 ± 6.74  

NM_009263 Secreted 
phosphoprotein Spp1 -1.26 ± 0.17  1.80 ± 1.22 1.54 ± 1.09 4.73 ± 6.48 16.19 ± 0.12 

NM_020581 Angiopoietin-like 4 Angptl4 2.03 ± 0.30  3.95 ± 0.76 2.33 ± 1.14 2.72 ± 1.23 1.96 ± 1.05 
NM_007585 Annexin A2 AnxA2 1.33 ± 0.29 1.72 ± 0.56 2.29 ± 1.41  3.35 ± 2.37 5.08 ± 0.89 

NM_007498 Activating 
transcription 3 Atf3 3.09 ± 1.03 10.11 ± 0.61 4.04 ± 5.10  2.29 ± 1.57  

NM_010479 Heat shock protein 
1A Hspa1a 11.50 ± 1.85 5.74 ± 0.68 8.74 ± 26.80 12.33 ± 1.12 2.47 ± 2.64  

NM_010442 Heme oxygenase 1 Hmox1 1.67 ± 0.61 2.18 ± 0.66 2.76 ± 1.86 1.71 ± 0.75 4.01 ± 3.64  
NM_011905 Toll-like receptor 2 Tlr2 1.30 ± 0.17 1.67 ± 0.63 1.87 ± 1.17 2.47 ± 1.15 1.93 ± 1.05 7.91 ± 0.99 

NM_011817 
Growth arrest and 
DNA-damage-
inducible 45 gamma 

Gadd45g 3.09 ± 1.95 6.07 ± 0.42 1.26 ± 1.06  -1.24 ± 0.46 2.36 ± 0.91 

NM_133662 Immediate early 
response 3 Ier3 2.51 ± 0.44 3.93 ± 0.60 6.20 ± 4.42 3.26 ± 1.05 5.67 ± 6.74 3.10 ± 0.96 
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5.2.3 Discussion 

Spontaneous surge in ROS and free reactive radicals in the brain during ischemic stroke 

trigger a chain reaction of signaling cascades that converge to apoptosis, necrosis and 

inflammation, manifesting into neuronal loss, memory and motor deficits (Dirnagl et al., 

1999). As neurons do not have sufficient intrinsic anti-oxidative enzymes e.g. catalase 

installed to combat with dramatic oxidative stress, they rely primarily on Gpx-1 to control 

the levels of H2O2 and OH•, and SOD to lower O2 (Chan, 1996; de Haan et al., 1998). 

Gpx-1, predominantly localized in the mitochondria and cytoplasm, catalyzed the 

reduction of H2O2 to alcohols and water. Overexpression of Gpx-1 in transgenic mice 

have demonstrated a greater neuronal resistance to I/R injury in transient cerebral 

ischemic model induced by MCAO which occurred as a result of the its regulatory 

function in oxidative stress progression such as delayed caspase-3 activation (Crack et al., 

2001; Weisbrot-Lefkowitz et al., 1998).  

 

5.2.3.1 Gpx-1-/- increases susceptibility to I/R injury via predisposition to oxidative 

stress 

The present study attempts to address the effects of Gpx-1 knockdown expression on the 

global transcriptional profile of tMCAO I/R injury in transgenic mice. Prior to this, a 

microarray analysis of Gpx-1-/- sham control cortex at physiological basal state before 

tMCAO treatment was performed and normalized against that of WT. Intriguingly, the 

present data revealed that a significant transcriptional up-regulation of anti-oxidative 

proteins (Hsps and chaperones), and members of several distinct mechanisms associating 

with cell survival, death, UPS, cell cycle, DNA damage response, mitochondrial 
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respiratory chain (oxidative phosphorylation) and defense and inflammatory response 

(Table 5.3). Previously, we have demonstrated no cerebral vasculature abnormalities and 

significant difference in ROS generation between WT and Gpx-1-/- mouse brains which 

would increase the latter‘s susceptibility to I/R injury (Crack et al., 2001). This is highly 

suggestive of a compensatory cellular response induced by Gpx-1-/- absence to maintain 

physiological balance by combating against rise in ROS level.  As such, it can be inferred 

from our current microarray comparison that Gpx-1 not only plays an important role in 

homeostatic regulation not only under heightened oxidative stress condition during I/R 

injury as previously demonstrated (Crack et al., 2001), but also under physiological basal 

condition.  

 

5.2.3.2 Absence of Gpx-1 modulates additional biological processes during I/R 

injury 

A step further into the temporal transcriptomic profile comparison of WT and Gpx-1-/- 

cortice during I/R injury unraveled an overwhelming 70% of gene probes with significant 

transcriptional regulation from MCAO-induced WT condition also being present in that 

of Gpx-1-/- transgenic mice (accounting for only 28%), within which three-quarter of 

these common gene probes demonstrated similar regulatory trend and expression (Table 

5.4). However, this implied that absence of Gpx-1 does not affect the existing activated 

and inhibited signaling pathways already triggered upon I/R cortex injury. However, 

what is noteworthy to mention is the identification of several cellular pathways from the 

remaining 72% of MCAO-induced Gpx-1-/- transgenic mice, which can be classified into 

two groups: a) exclusive to Gpx-1-/- model, b) transcriptional regulation of additional 
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genes already revealed in MCAO-induced WT cortex and having opposing regulatory 

trend to that of WT. Distinct cellular pathways exclusive to I/R injury in MCAO-induced 

Gpx-1-/- cortex  which were transcriptional regulated include the activation of pro-

apoptotic p53 and Fas ligand (CD95/Apo1)-mediated pathways, downplay of Nrf2 anti-

oxidative cascade, UPS dysfunction, inhibition of MAPK and cell cycle pathways, and 

finally repression of the immunity response (Table 5.5). All these pathways, all in all, 

revealed the patho-physiological mechanisms behind the increased neuronal damages, i.e. 

increased infarct size and exacerbated cell death, of Gpx-1-/- transgenic mice to transient 

cerebral ischemic stroke.  

 

In conclusion, the present temporal transcriptomic profiling provides a comprehensive in-

depth summary of the cellular pathways being regulated in the cortex upon I/R injury in 

an in vivo transient cerebral ischemic stroke mediated in the presence and absence of 

Gpx-1. The present data further signifies a crucial regulatory role of Gpx-1 in the 

protection of brain against oxidative stress and inflammation unleashed during I/R injury. 

Furthermore, the present report for the first time that absence of Gpx-1 elevates the 

heightened redox status of cortex by pre-conditioning the brain cells in a pro-oxidant 

state at physiological condition through activation of an anti-oxidant response to uphold 

cellular homeostasis, thus increasing the vulnerability of the brain cells to subsequent 

neuronal traumas (such as ischemic stroke). 
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6 Description of permanent focal cerebral ischemia model in adult rats 

All experiments involving animals were approved by the National University of 

Singapore, and were in accordance with the US Public Health Service guide for the care 

and use of laboratory animals. Selective Aurora kinase inhibitor, ZM447439 (Cat. No. 

2458) was purchased from Tocris, Bristol, UK), and prepared in 100% di-methyl 

sulfoxide (DMSO) as 100mM stock. Desired concentration of 30mM was achieved via 

dilution with 80% DMSO in normal saline. 

 

Anaesthesia 

In preparation for surgery, male Wistar rats of 260 – 300g were anaesthetised by 

intraperitoneal injection of a cocktail consisting of ketamine hydrochloride (37.5mg/ml) 

and xylazine (5mg/ml) purchased from the Animal Holding Unit of National University 

of Singapore. 

 

Rat Permanent Focal Cerebral Ischemia Model 

Modified transcranial permanent middle cerebral artery occlusion (pMCAO) is carried 

out as previously described (Qu et al., 2006). Young adult male Wistar rats were allowed 

free access to food and water before and after all procedures. Rats were weighed and 

anesthetized intraperitoneally with rat anaesthesia cocktail as previously mentioned at 

1ml/kg body weight, and supplemented as necessary during the procedures. Body 

temperature was monitored and maintained within normal limits with a 37  0.5C 

heating pad. Under the operating microscope the left middle cerebral artery (MCA) was 

exposed transcranially without damage to the zygomatic bone. Transection of the facial 
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nerve was avoided during exposure of the temporalis muscle, which was divided caudally 

and retracted inferiorly to avoid compression of the orbital contents. The circle of Willis 

and the origin of the MCA was exposed in all rats by gently retracting the brain with a 

spatula on a flexible arm. The MCA was occluded with micro-bipolar coagulation using a 

low power setting and continuous saline irrigation, and then transected to avoid 

recanalization. Temporalis muscle and skin were closed in layers, and rats were allowed 

to recover from anesthesia on a heating pad. 30min post-pMCAO surgery, rats were 

subjected to a 5ul i.c.v. injection of either vehicle (80% DMSO) or 30mM ZM447439 (in 

80% DMSO) at the following coordinates from the Bregma: AP =   0.9mm, ML = + 

1.4mm, VD =  3.8mm. They were returned to their cages for the remainder of the 

period.  
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Rats were randomized into six groups namely: Sham, pMCAO + Vehicle (80% DMSO), 

pMCAO + 30mM ZM447439 (in 80% DMSO) for 8h and 24h post-injection, with 

consequent euthanization, removal and perfusion of brain with saline for TTC staining (n 

= 6) and removal of brain for microarray analysis (n= 4) for each condition/time-point. 

TTC staining was used to ascertain the infarct volume induced upon pMCAO (detailed 

methodology can be found in Chapter 2). Individual rat cortex sample was loaded for 

each gene array using Illumina Rat Ref12 V1 genechips in microarray analysis. A 

schematic diagram for the experimental layout is shown below. 
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6.1.1 Introduction 

Permanent focal cerebral ischemia results when blood flow to the hypoperfused ischemic 

region is not promptly restored upon onset or period of ischemia is too long resulting in 

incomplete reperfusion due to microvascular occlusion, an observation coined as ―no-re 

flow phenomenon‖ back in the sixties (Ames et al., 1968). The eventual outcome is the 

consumption of the penumbra region, an initially functionally impaired but viable region 

surrounding the ischemic centre, by the ischemic cascade, resulting in the expansion of 

the infarct core. 

 

At the site of ischemic injury, heterogeneity in mode of cell death is present. Occurrence 

of necrosis, an unregulated form of cell death commonly associated with rupture of the 

plasma membrane and cytotoxic uncontrollable swelling of both the cell and internal 

organelles, is especially prominent due to the physical mechanical damage to the cells 

e.g. neurons, endothelial cells and glia at the immediate site of hypoperfusion (Johnson 

and Deckwerth, 1993; Martin et al., 1998). Necrotic neuronal death results in the release 

of high level of Glu and toxins into the extracellular matrix, causing de-regulated 

mechanistic stimulation of surrounding uninjured neurons via GluRs activation. 

Concurrently, many brain cells undergo apoptosis, a genetically regulated mechanism 

that commit cell to its demise with minimal disruption to surrounding micro-environment 

via diminished level of inflammation or release of genetic materials (Choi, 1996; Hara et 

al., 1997; Lee et al., 1999; Namura et al., 1998). Several determinants govern the 

predominating form of neuronal death at the ischemic site. These include the local degree 

of ischemia, cell maturity, the concentration of free intracellular Ca2+ and the cellular 
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microenvironment (Choi, 1995; Lee et al., 1999; Leist and Nicotera, 1998b). Activation 

of GluRs induces excitotoxicity, leading to the manifestation of apoptosis and/or 

programmed necrosis, both of which activate downstream signaling cascades that cross-

regulate each other (Choi, 1995; Choi, 1996; Leist and Nicotera, 1998a; Leist and 

Nicotera, 1998b; Leist et al., 1997; Namura et al., 1998; Thornberry and Lazebnik, 1998).  

For instance, calpains, Ca2+-dependent proteases involved in programmed necrosis, have 

been implicated in the mediation of the apoptosis in neurons (Crocker et al., 2003) and 

cleavage endogenous caspases such as caspase-3, -7, -8 and -9 (Chua et al., 2000; 

McGinnis et al., 1999). In addition or alternatively, early mitochondrial ROS generation 

(Yu et al., 1997), depletion of intracellular K+ (Yu et al., 1997), and potentiation of toxic 

Zn2+ influx (Koh, 2001) may trigger apoptosis. 

 

Activated caspases are cysteine-dependent aspartate-directed proteases that modify 

crucial homeostasis and repair proteins. Caspase -1 and -3 has been suggested to play a 

pivotal role in ischemia-mediated apoptosis amidst the participation of the other members 

of the caspase family in the late stages of cell death (Leist et al., 1997; Namura et al., 

1998; Thornberry and Lazebnik, 1998). Caspase-mediated apoptosis is triggered by 

release of cytochrome c from mitochondria, through assembly of the apoptosome 

complex, which in turn activates caspase 3 (Green and Reed, 1998). Programmed 

necrosis, on the other hand, plays a significant role in delayed neuronal death following 

ischemic stroke through mitochondrial proteins such as apoptosis-inducing factor and 

BCL2/adenovirus E1B—interacting protein (Cho and Toledo-Pereyra, 2008). Typically, 

necrosis is the overwhelmed mechanism that follows acute, permanent vascular 
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occlusion, whereas milder injury, often results in apoptosis especially within the ischemic 

penumbra. 

 

Permanent focal cerebral ischemia is commonly observed in patients who seek medical 

attention after prolong period of time upon onset, allowing the prognosis of stroke to 

progress from mild to severe. Current available therapeutic treatment for focal cerebral 

ischemic stroke is through intravenous delivery of rt-PA exerting a thrombolytic effect on 

the site of occlusion. Two rationales exist behind this treatment: firstly, to target the insult 

itself by lysing the arterial thrombus in order to restore focal cerebral blood flow; 

secondly, to decrease the intrinsic vulnerability of the penumbra thus enhancing 

neuroprotection of the penumbra (Brouns and De Deyn, 2009). The shortfall of the rt-PA 

treatment is that it is only effective within a short therapeutic window of 3 hours after 

stroke symptom onset, to facilitate significant improvement in neurological deficits and 

functional outcome of stroke patients (Lakhan et al., 2009). However, when focal 

cerebral ischemia is left medically unattended for long duration, even upon blood 

reperfusion to the ischemic region is attempted, microvascular occlusion would already 

have formed, resulting in partial reperfusion and unwanted increased risk of symptomatic 

intracranial hemorrhage (which occurs in ~6 % of patients) from the use of rt-PA. 

Furthermore, since a large percentage of patients with acute ischemic stroke do not have 

gain access to appropriate medical help within three hours of stroke onset, most do not 

receive rt-PA treatment (Furlan et al., 2003). This presents a challenge in the successful 

treatment rate of acute ischemic stroke and a deficiency of therapeutic option with a 

longer therapeutic window. In order to make up for the latter shortfall, it is important to 
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elucidate the pathogenesis of permanent focal cerebral ischemia, a comparative 

equivalent to acute and/or chronic ischemic stroke left untreated for long duration, so that 

foundation can be laid for the search of suitable novel biological targets in such cases. 
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6.1.2 Results 

In the etiology of permanent focal cerebral ischemia, the blood flow in the occluded 

artery is not relieved, resulting in prolonged and constitutive propagation of the ischemic 

cascades particularly at the penumbra. This leads to the functionally impaired but viable 

cells in the penumbra to subside with a consequential expansion of the ischemic core. In 

the present pMCAO adult rat model, the middle cerebral artery is coagulated and 

transected, resulting in irrevocable blood flow occlusion. To reflect the extensiveness of 

the infarct damage inflicted upon pMCAO, TTC staining was carried out. TTC is a 

tetrazolium compound commonly employed as a germinator indicator that in the presence 

of viable cells, is reduced by metabolic processes e.g. mitochondrial respiratory chain, to 

form a water-insoluble deep red pigment by oxidizing aldoses and ketoses. Figure 6.1 

shows TTC-stained 2-mm transverse sections (From anterior to posterior [1 - 6]) of a rat 

brain upon pMCAO. The white area indicates the infarct region of dead brain tissue, 

which covered both the striatum and the cortex.  
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Figure 6.1 TTC-stained 2mm- brain sections from anterior to posterior [1 – 6] of a male 

Wistar rat brain upon pMCAO induced on the left infarct hemisphere. The white area 

indicates the dead cells (Infarct region) while the red area refers to viable tissues. 
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6.1.2.1 pMCAO induces significant global transcriptional regulation 

To facilitate an extensive understanding of the pathogenesis of permanent focal cerebral 

ischemia, temporal global transcriptomic profiling (8h and 24h) was performed on 

pMCAO adult rat model. For genes to be considered significant in their differential 

expressions, they need to firstly pass stringent statistical analyses: One-way ANOVA, 

p<0.05 and Benjamini Hochberg FDR, and secondly demonstrating a fold-change of at 

least  1.5 in at least one out of the two time-points (8h and 24h). These criteria 

generated a genelist of 1,201 differentially-expressed RefSeq trancripts which was then 

subjected to functional gene-ontology classification using the online bioinformatics 

database DAVID 6.7 and corresponded to 1,140 biologically-annotated genes. 

Particularly in pMCAO, reminiscent of the global gene profile of tMCAO model, 

occurrence of inflammation and oxidative stress, and disruptionof vasculature 

development were observed, with a yet even more pronounced i.e. evoke a higher 

transcriptional response, than the latter. Activation of the inflammatory response is 

prominent from the significant transcriptional regulation of the cytokines, chemokines, 

CAMs and interleukins which all promote leukocyte (neutrophils) infiltration. In 

addition, vasculature disruption, DNA damage infliction and cell death pathway 

induction were also demonstrated from the microarray analysis. Detailed transcriptional 

regulation of these biological processes during pMCAO will be discussed in this chapter. 

 

-VASCULATURE DEVELOPMENT 

Microvascular injury is evident from the transcriptional up-regulation of genes encoding 

for proteins involved in promoting angiogenesis (Angptl2, Ctgf, Cysr61, Hif1a, Sphk1 
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and Vegfa) at 24h after pMCAO initiation, indicative of disruption to the vasculature 

structure (shown in Table 6.1). Hypoxia-inducible factor-1 (HIF1), a heterodimer made 

up of HIF1A and HIF1B is involved in the regulation of several key genes under hypoxic 

condition during cerebral ischemia (Chen et al., 2009). HIF1A elicits neuro-protective as 

well as –toxic functions (reviewed in (Fan et al., 2009)). It is known to regulate the 

transcription of erythropoietin (EPO), which induces several pathways related to 

neuroprotection and vascular endothelial cell growth factor (VEGF), which facilitates 

neovascularization in hypoxic-ischemic brain areas. On the contrary, HIF1A induces 

activation of the apoptotic and programmed necrosis by increasing the stability of the 

tumor suppressor protein p53 and encouraging interaction between calcium ion and 

calpains respectively. HIF1A can also exacerbate brain edema via increasing the 

permeability of the BBB. Indeed, neurotoxic role of HIF1A has been reported in focal 

ischemia where its elevated protein expression in ischemic brain tissues, correlated to an 

increase hemorrhage conversion of cerebral infarction, which could be abrogated by its 

inhibitor (Chen et al., 2010a). Increase in blood vessel permeability was further implied 

by the transcriptional up-regulation of anti-thrombolytic proteins, Plat and Plau, with the 

former taking place earlier at 8h post-pMCAO (Table 6.1). 

 

-INFLAMMATORY RESPONSE 

-Chemokine signaling pathway 

Proteins closely associated and participated in chemokine signaling pathway, which 

eventually contribute to leukocyte chemotaxis (members of CCL and CXCL families and, 

Jak2 and Rock2) demonstrated substantial increase in gene expression from 8h after 
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pMCAO initiation. With the transcriptional elevation of these inflammatory markers, this 

implied the presence of an intense inflammatory response to cerebral ischemic injury. 

Ccl2 and Ccl12, also known as monocyte chemoattractant protein 1 (Mcp1) and 5 (Mcp5) 

respectively, have been reported to be downstream transcriptional targets of HIF1, with 

HIF1A playing a significant role in the induction of the other heterodimeric partner 

HIF1B to form HIF1 functional transcriptor complex (Mojsilovic-Petrovic et al., 2007). 

This would explain the heightened transcriptional up-regulation of Ccl2 and Ccl12 which 

correlated to that of Hif1a as shown in Table 6.1. 

 

-Leukocyte transendothelial migration 

Majority of the proteins involved in the promotion of leukocyte transendothelial 

migration (adhesion, rolling and infiltration) showed significant transcriptional up-

regulation at 24h post-pMCAO (evident from Table 6.1), in accordance with that 

observed in vasculature development and chemokine signaling pathway. These three 

biological processes worked in coordinated and concerted effort to facilitate leukocyte 

infiltration to the site of ischemia to mediate deleterious effects on the progression of 

tissue damage or beneficial roles during post-ischemia recovery and repair. Particularly 

Icam1 and Mmp9 were substantially up-regulated as compared to other genes. ICAM1 

protein expression on the vascular endothelium is enhanced upon TNFα and IL-1 

stimulations, and serves as a bridge for stabilizing endothelial cell and leukocyte 

adhesion through binding to its receptor integrin(transcriptional up-regulation of Itgb1 

shown in Table 6.1) on the leukocytes (Rothlein et al., 1986). On the other hand, MMP9, 

a member of the MMPs family facilitates propagation and regulation of 
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neuroinflammatory responses to ischemic brain injury via enzymatic digestion of protein 

components of the extracellular matrix such as collagen, proteoglycan and laminin, as 

well as cell-surface and soluble proteins, including receptors and cytokines (Amantea et 

al., 2009). 

 

-TLRs signaling pathway 

TLRs signaling pathway has consistently been implicated in the pathogenesis of cerebral 

ischemia to remove cell debris and start regenerative process (Brea et al., 2009; Kriz and 

Lalancette-Hebert, 2009; Marsh et al., 2009), and indeed, genes encoding for players in 

this pathway (Il1b, Il6, Tlr2) demonstrated significant transcriptional up-regulation 

between 8-24h post-pMCAO (Table 6.1). A recent article by Tu et al., 2010 reported a 

prominent role of TLR2/4 signaling pathway in aggravation of ischemic brain injury 

through mediating the inflammatory reaction (Tu et al., 2010). As shown in Table 6.1, 

Tlr2 is significantly up-regulated at 24h time-point. Origin of TLRs activation has 

recently been attributed to damage-associated molecular pattern molecules (DAMPs) that 

are released during conditions of oxidative stress (Gill et al., 2010). 

 

-CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

Recent studies have demonstrated that neurotrophic factors are critical in neurogenesis 

promotion after cerebral ischemia (Kernie and Parent, 2010; Leker et al., 2009). As 

shown in Table 6.1, numerous genes encoding for neurotrophic and pro-mitogenic factors 

were significantly up-regulation over the 24-hour profiling period: c-Fos, Jun, Dtr, Bdgf, 

Fgf2 and Myc showed early up-regulation at 8h, and Birc2/3, Igfbp3, Fgf2, Ngfb and 
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Tgfb2 transcriptional activation occurred at 24h post-pMCAO (Table 6.1). Amist all, Dtr, 

also known as heparin-binding epidermal growth factor-like growth factor (Hb-egf), 

demonstrated the highest transcriptional elevation. HB-EGF is a potent neurotropic factor 

whose post-administration has been reported to reduce infarct size, thus playing an 

important role in the stimulation of neurogenesis and angiogenesis after cerebral ischemia 

(Jin et al., 2004; Kawahara et al., 1999; Sugiura et al., 2005). 

 

-MITOTIC CELL CYCLE REGULATION 

Genes encoding for proteins which impede mitotic cell cycle re-activation (Cank1d, 

Gadd45 (a,b and g) and Inbba) showed transcriptional elevation prominently from 8h 

post-pMCAO. Accodingly, transcriptional down-regulation was seen in cell cycle-

promoting proteins (Camk2(a, b, and g) and Clasp2) (Table 6.1). Paradoxically, Mdm2, 

endogenous p53-inhibitory binding partner also demonstrated increase in gene 

expression. Taken together with the transcriptional modulation of p53 downstream target 

Gadd45, this indicates that the p53 signaling pathway plays an important role during 

focal cerebral ischemia, indirectly implying an attempt at cell cycle re-activation. 

 

-RESPONSE TO OXIDATIVE STRESS 

Anti-oxidant response was strongly evoked during pMCAO as represented by the 

transcriptional activation of genes encoding for molecular chaperones (Hmox1, Ptgs2, 

Serpine1, Sod2 and Txndr1) and heat shock proteins (Hsp1b and Hsp2a), especially 

taking place at 8h (Table 6.1). 
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-CELL DEATH 

Proteins involved directly (Cflar, Casp3 and Casp7) and indirectly (Cebpb, Ddit3 and 

Nfkbia) in promotion of cell death were transcriptionally up-regulated at 24h and 8h post-

pMCAO respectively (Table 6.1). DDIT3 is an endoplasmic reticulum stress-inducible 

protein which dimerizes with its partner CCAAT/enhancer-binding protein beta (CEBPB) 

to form a transcription factor to induce expression of downstream pro-death proteins 

expression, whereas NFKBIA, an inhibitor to the transcription factor NF-κB, is 

implicated in the suppression of the pro-survival and proliferative pathways. Since Ddit3 

and Nfkbia transcriptional activation preceded that of the caspases (Cflar, Casp3 and 

Casp7), and taken together with the presence of oxidative stress and cell survival pathway 

activation at 8h post-pMCAO (as implicated by the early initiation of anti-oxidant 

response and neurotrophic response), this implied that organellar stress due to 

overwhelming oxidative burden might be responsible for the activation of caspases-

mediated cell death. 
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Table 6.1 Selected differentially-expressed temporal gene profile of neuronal death-related 
families in vehicle (i.c.v. injection of 80% DMSO 30min after surgery) pMCAO-induced 
adult male Wistar rat cortice. All fold-change expressions are subjected to one-way ANOVA 
analysis and significant at p<0.05 with Benjamini Hochberg FDR correction. Data are 
expressed as fold-change ± sem. 
Genbank Gene Title Symbol Vehicle (80% DMSO) 

 8h 24h 
Vasculature development 
XM_001065522 Angiopoietin 2 Agpt2 1.43 ± 0.26 2.82 ± 1.44 
NM_022266 Connective tissue growth factor Ctgf -1.19 ± 0.11 1.76 ± 0.38 
NM_031327 Cysteine rich protein 61 Cyr61 1.97 ± 0.41 6.33 ± 0.49 
NM_012548 Endothelin 1 Edn1 1.23 ± 0.32 1.59 ± 0.35 

NM_021654 Gap junction membrane channel protein 
alpha 4  Gja4 1.29 ± 0.28 2.68 ± 0.23 

NM_024359 Hypoxia inducible factor 1, alpha subunit  Hif1a 1.09 ± 0.29 2.20 ± 0.22 
NM_013151 Plasminogen activator, tissue  Plat 2.06 ± 0.81 2.56 ± 0.58 
NM_013085 Plasminogen activator, urokinase  Plau 1.00 ± 0.12 1.75 ± 0.17 
NM_013114 Selectin, platelet  Selp 1.03 ± 0.08 2.20 ± 0.31 
NM_133386 Sphingosine kinase 1 Sphk1 2.23 ± 0.69 5.55 ± 1.79 
NM_173116 Sphingosine phosphate lyase 1 Sgpl1 1.09 ± 0.24 1.60 ± 0.06 
NM_053565 Suppressor of cytokine signaling 3 Socs3 1.37 ± 0.23 1.99 ± 0.19 
NM_031836 Vascular endothelial growth factor A  Vegfa 1.44 ± 0.31 1.88 ± 0.52 
Inflammatory response 
-Chemokine signaling pathway 

NM_024145 Gardner-Rasheed feline sarcoma viral 
(Fgr) oncogene homolog Fgr -1.00 ± 0.03 1.84 ± 0.28 

NM_031514 Janus kinase 2  Jak2 1.50 ± 0.38 2.21 ± 0.39 

NM_013022 Rho-associated coiled-coil forming kinase 
2  Rock2 1.07 ± 0.25 1.83 ± 0.10 

NM_019285 Adenylate cyclase 4  Adcy4 -1.00 ± 0.18 1.80 ± 0.29 
NM_031530 Chemokine (C-C motif) ligand 2  Ccl2 2.94 ± 1.40 12.52 ± 3.18 
XM_213425 Chemokine (C-C motif) ligand 12  Ccl12 -1.12 ± 0.07 2.00 ± 0.61 
NM_019233 Chemokine (C-C motif) ligand 20  Ccl20 1.48 ± 1.22 6.50 ± 2.63 
NM_053858 Small inducible cytokine A4  Ccl4 3.74 ± 1.69 2.52 ± 0.84 
NM_001007612 Chemokine (C-C motif) ligand 7  Ccl7 2.81 ± 1.18 8.86 ± 2.61 
NM_030845 Chemokine (C-X-C motif) ligand 1 Cxcl1 2.14 ± 0.34 6.62 ± 2.42 
NM_053647 Chemokine (C-X-C motif) ligand 2  Cxcl2 2.39 ± 0.81 4.96 ± 9.38 
NM_001017478 Chemokine (C-X-C motif) ligand 16  Cxcl16 1.52 ± 0.66 3.51 ± 1.59 

NM_013106 Guanine nucleotide binding protein, alpha 
inhibiting 3  Gnai3 1.21 ± 0.30 1.63 ± 0.23 

NM_133307 Protein kinase C, delta Prkcd 1.29 ± 0.31 2.37 ± 0.77 

NM_022380 Signal transducer and activator of 
transcription 5B Stat5b 1.22 ± 0.17 1.52 ± 0.16 

XM_001071741  RAS guanyl releasing protein 2 (calcium 
and DAG-regulated)   Rasgrp2 -1.08 ± 0.15 -2.25 ± 0.05 
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Table 6.1 (continue) 
Genbank Gene Title Symbol Vehicle (80% DMSO) 

 8h 24h 
-Chemokine signaling pathway (continue) 
NM_012776 Adrenergic receptor kinase, beta 1  Adrbk1 -1.18 ± 0.34 -1.69 ± 0.05 

NM_024138 Guanine nucleotide binding protein, 
gamma 7  Gng7 -1.21 ± 0.20 -2.83 ± 0.03 

XM_342524  Phospholipase C, beta 1  Plcb1 -1.21 ± 0.45 -1.96 ± 0.11 
-Leukocyte transendothelial migration 
NM_022205 Chemokine (C-X-C motif) receptor 4  Cxcr4 1.12 ± 0.12 2.15 ± 0.60 

NM_013106 Guanine nucleotide binding protein, alpha 
inhibiting 3  Gnai3 1.21 ± 0.30 1.63 ± 0.23 

NM_012711 Integrin alpha M  Itgam 1.12 ± 0.18 1.68 ± 0.35 
NM_017022 Integrin beta 1 (fibronectin receptor beta) Itgb1 1.18 ± 0.23 1.65 ± 0.31 
NM_012967 Intercellular adhesion molecule 1  Icam1 1.89 ± 0.31 4.47 ± 0.51 
NM_031055 Matrix metallopeptidase 9  Mmp9 1.13 ± 0.20 2.95 ± 0.49 
NM_030863 Moesin  Msn 1.24 ± 0.16 3.30   ± 0.50 
NM_017318 Protein tyrosine kinase 2 beta Ptk2b -1.12 ± 0.27 -1.77 ± 0.10 
XM_214499  Actinin alpha 2   Actn2 1.02 ± 0.21 -1.96 ± 0.05 
XM_215659  Ras homolog gene family, member C  Rhoc 1.30 ± 0.30 1.94 ± 0.09 
NM_012628 Protein kinase C, gamma  Prkcc -1.14 ± 0.28 -1.60 ± 0.07 
XM_001074876  Claudin 10   Cldn10 -1.31 ± 0.23 -4.68 ± 0.07 
-TLR signaling pathway 
NM_021744 CD14 antigen Cd14 1.94 ± 0.52 7.30 ± 1.42 
NM_031512 Interleukin 1 beta  Il1b 1.55 ± 0.13 3.86 ± 4.08 
NM_012589 Interleukin 6  Il6 1.60 ± 0.56 2.08 ± 0.58 
XM_239239 Mitogen activated protein kinase kinase 3  Map2k3 1.32 ± 0.31 2.25 ± 0.59 
NM_012881 Secreted phosphoprotein 1  Spp1 5.14 ± 3.62 5.02 ± 1.97 
XM_001063419 Toll interacting protein  Tollip 1.01 ± 0.09 1.64 ± 0.27 
NM_198769 Toll-like receptors 2  Tlr2 1.35 ± 0.16 2.34 ± 0.55 
NM_053703 Mitogen-activated protein kinase kinase 6  Map2k6 -1.14 ± 0.06 -3.90 ± 0.04 
Cell homeostasis, survival and proliferation 
NM_022197  c-Fos oncogene c-fos 3.92 ± 2.29 4.34 ± 1.16 

NM_021835 v-Jun sarcoma virus 17 oncogene 
homolog (avian)  Jun 1.73 ± 0.29 1.93 ± 0.19 

NM_012945 Diphtheria toxin receptor Dtr 1.89 ± 0.69 4.96 ± 0.44 
NM_021752 Baculoviral IAP repeat-containing 2 Birc2 1.15 ± 0.19 1.84 ± 0.13 
NM_023987 Baculoviral IAP repeat-containing 3 Birc3 1.42 ± 0.30 1.98 ± 0.61 

NM_012588 Insulin-like growth factor binding protein 
3  Igfbp3 1.28 ± 0.40 3.33 ± 0.63 

NM_012513 Brain derived neurotrophic factor  Bdnf 1.56 ± 1.11 2.30 ± 0.93 
NM_019305 Fibroblast growth factor 2 Fgf2 1.62 ± 0.18 1.60 ± 0.28 
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Table 6.1 (continue) 
Genbank Gene Title Symbol Vehicle (80% DMSO) 

 8h 24h 
Cell homeostasis, survival and proliferation (continue) 

NM_012603 Myelocytomatosis viral oncogene 
homolog (avian) Myc 1.61 ± 0.27 3.61 ± 0.49 

XM_227525 Nerve growth factor, beta  Ngfb -1.08 ± 0.48 1.75 ± 0.29 

XM_001061815  Nuclear factor of activated T-cells, 
cytoplasmic, calcineurin-dependent 4   Nfatc4 1.58 ± 0.62 3.05 ± 0.86 

NM_031131 Transforming growth factor, beta 2 Tgfb2 1.00 ± 0.34 2.19 ± 0.30 
NM_053429 Fibroblast growth factor receptor 3 Fgfr3 -1.56 ± 0.10 -1.44 ± 0.05 

XM_235565  Mitogen-activated protein kinase 8 
interacting protein 2   Mapk8ip2 -1.14 ± 0.20 -1.58 ± 0.09 

NM_012513 RAS guanyl releasing protein 2 (calcium 
and DAG-regulated)  Rasgrp2 -1.08 ± 0.15 -2.25 ± 0.05 

NM_022185 Phosphatidylinositol 3-kinase, regulatory 
subunit, polypeptide 2  Pik3r2 -1.19 ± 0.17 -1.77 ± 0.09 

Mitotic cell cycle regulation 
NM_139060 Casein kinase 1, delta  Csnk1d 1.22 ± 0.28 1.52 ± 0.27 

XM_001080981 Transformed mouse 3T3 cell double 
minute 2   Mdm2 1.21 ± 0.33 2.00 ± 0.60 

NM_017128 Inhibin beta-A  Inhba 1.54 ± 0.49 2.91 ± 1.32 

NM_024127 Growth arrest and DNA-damage-
inducible 45 alpha  Gadd45a 1.84 ± 0.66 3.72 ± 1.20 

NM_001008321 Growth arrest and DNA-damage-
inducible 45 beta  Gadd45b 2.33 ± 0.52 3.28 ± 1.02 

XM_001053888 Growth arrest and DNA-damage-
inducible 45 gamma  Gadd45g 2.89 ± 0.97 5.94 ± 2.31 

NM_012920 Calcium/calmodulin-dependent protein 
kinase II alpha subunit  Camk2a -1.21 ± 0.30 -1.81 ± 0.02 

NM_021739 Calcium/calmodulin-dependent protein 
kinase II beta subunit  Camk2b -1.20 ± 0.20 -2.05 ± 0.13 

NM_133605 Calcium/calmodulin-dependent protein 
kinase II gamma  Camk2g -1.31 ± 0.15 -2.40 ± 0.10 

NM_053722 CLIP associating protein 2  Clasp2 -1.13 ± 0.31 -1.97 ± 0.09 
Response to oxidative stress 
NM_012580 Heme oxygenase (decycling) 1  Hmox1 2.31 ± 0.49 4.47 ± 1.54 
NM_017232 Prostaglandin-endoperoxide synthase 2  Ptgs2 2.77 ± 1.04 4.44 ± 1.61 

NM_012620 Serine (or cysteine) proteinase inhibitor, 
clade E, member 1 Serpine1 1.73 ± 0.63 6.85 ± 1.04 

NM_017051 Superoxide dismutase 2, mitochondrial Sod2 1.44 ± 0.28 2.04 ± 0.52 
NM_031614 Thioredoxin reductase 1  Txnrd1 1.15 ± 0.12 1.95 ± 0.05 
NM_031970 Heat shock 27kDa protein 1  Hspb1 2.54 ± 1.15 3.38 ± 0.95 
NM_021863 Heat shock protein 2  Hspa2 1.37 ± 0.38 1.78 ± 0.44 
Cell death 

NM_024125 CCAAT/enhancer binding protein 
(C/EBP), beta Cebpb 1.69 ± 0.68 2.23 ± 0.85 
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Table 6.1 (continue) 
Genbank Gene Title Symbol Vehicle (80% DMSO) 

 8h 24h 
Cell death (continue) 
NM_024134 DNA-damage inducible transcript 3 Ddit3 1.62 ± 0.22 1.93 ± 0.38 

XM_343065 Nuclear factor of kappa light chain gene 
enhancer in B-cells inhibitor, alpha  Nfkbia 1.61 ± 0.42 2.37 ± 0.88 

NM_057138 CASP8 and FADD-like apoptosis 
regulator  Cflar 1.12 ± 0.31 4.33 ± 1.09 

NM_012922 Caspase 3, apoptosis related cysteine 
protease  Casp3 1.23 ± 0.28 2.80 ± 0.46 

NM_022260 Caspase 7  Casp7 1.07 ± 0.22 1.90 ± 0.36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6.1: 
Permanent-MCAO 

277 
 

6.1.2.2 Validation of pMCAO global transcriptomic profile via real-time PCR 

Global gene profile of pMCAO model was verified using quantitative real-time PCR 

which demonstrated similar transcriptional regulation, indicating the high reliability in 

data interpretation from the microarray analysis. 

 

Table 6.2 Validation of microarray data using real-time PCR technique on pMCAO-induced adult 
male Wistar rat infarcted cortice treated with 80% DMSO (vehicle). Data are expressed as fold-
change ± sem. 
 Vehicle (80% DMSO) 
GenBank Gene Title Symbol 8h 24h 
   Microarray Real-time 

PCR Microarray Real-time 
PCR 

NM_031970 Heat shock 27kDa protein 1  Hspb1 2.54 ± 1.15 5.10 ± 0.55 3.38  ± 0.95 6.43 ± 0.71 
NM_053612 Heat shock 22kDa protein 8 Hspb8 1.88 ± 0.65 1.95 ± 0.74 2.69 ± 0.87 4.84 ± 0.73 

NM_017232 Prostaglandin-
endoperoxide synthase 2 Ptgs2 2.77 ± 1.04 6.19 ± 0.83 4.44 ± 1.61 6.59 ± 0.72 

NM_031530 Chemokine (C-C motif) 
ligand 2  Ccl2 2.94 ± 1.40 5.45 ± 0.48 12.52 ± 3.18  

NM_030845 Chemokine (C-X-C motif) 
ligand 1 Cxcl1 2.14 ± 0.34 4.26 ±0.71 6.62 ± 2.42  

NM_021744 CD14 antigen  Cd14 1.94 ± 0.52 2.93 ± 0.89 7.30 ± 1.42 16.06 ± 0.76 
NM_012924 CD44 antigen Cd44 1.25 ± 0.30  3.60 ± 0.29 6.34 ± 0.94 

NM_053819 Tissue inhibitor of 
metalloproteinase 1 Timp1 2.84 ± 1.42 10.13 ± 0.95 6.30  ± 1.22 10.02 ± 0.73 
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6.1.3 Discussion 

Permanent focal cerebral ischemia occurs when timely reperfusion to the occluded region 

is not provided, resulting in the penumbra region succumbing to irreversible cellular 

injury and subsequent demise, with consequential expansion of the ischemic core. As 

such, it represents the highest degree of severity in terms of infarct damage. During 

permanent focal ischemia, prolonged period of oxygen/glucose deprivation as a result of 

no blood flow enhances Glu accumulation in the extracellular space and inflict 

microvascular injury, aggravating excitotoxicity and BBB impairment respectively. 

These two aforementioned neuropathological processes eventually contribute to oxidative 

stress and neuroinflammation. 

  

As permanent focal cerebral ischemia presents a rapid and severe disease progression, 

global gene profiling of its pathogenesis would provide useful temporal transcriptional 

information pertaining to its downstream biological outcomes. Furthermore, the pMCAO 

model adopted in the present study involved the removal of a section of the middle 

cerebral artery, which implies that the blood flow to the affected brain region was 

instantaneously dropped to zero, and the detrimental impact of ischemia was experienced 

at most intense, with immediate cutoff of oxygen and glucose supply. This rapidly 

accelerated the ischemic cascade progression. This is unlike that of the suture-induced 

transient cerebral ischemia model where there is still a 20-30% residual blood supply to 

the occluded region to slow down the transduction of ischemic cascade signaling. This 

would explain why neuroinflammation and oxidative stress are the two major patho-

physiological mechanisms demonstrated in these models, as both constitute the 
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downstream cellular outcomes of cerebral ischemia. 

 

Occurrence of neuroinflammation as a result of leukocyte infiltration into the brain 

during BBB dysfunction is especially prominent from the transcriptional activation of 

proteins involved in the inflammatory and defense cascades: chemokine signaling, 

leukocyte transendothelial migration and TLR cascade. Within hours after the ischemic 

insult, enhanced circulating level of cytokines and chemokines promotes elevation of 

CAMs on cerebral endothelial cells to enable attachment and transendothelial migration 

of activated neutrophils and monocytes. Undesirable buildup and aggregation of these 

immune cells may further diminish cerebral blood flow, or extravasate into the brain 

parenchyma. Extensive release of the pro-inflammatory mediators such as cytokines, 

chemokines and ROS/RNS from infiltrating leukocytes and resident brain cells, including 

neurons and glia, accelerates the progression of tissue damage (Reviewed in (Amantea et 

al., 2009)). 

 

TLRs, critical components of the innate immune system, play an important role in 

cerebral ischemia through mediation of inflammatory response that could inflict 

secondary ischemic damage, and simultaneously remove cell debris to pave the route for 

post-ischemia regeneration. A recent study by marsh et al. (2009) suggested that systemic 

administration of TLR ligands induces a state of tolerance to subsequent ischemic injury 

via suppression of pro-inflammatory molecules expression and induction of numerous 

anti-inflammatory mediators that concertedly confer robust neuroprotection (Marsh et al., 

2009). 
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Similarly, oxidative stress is apparent from the strong transcriptional up-regulation of 

anti-oxidative pathways made up of Hsps and molecular chaperones, Nrf2-mediated 

transcriptional anti-oxidant response and GSH metabolic pathway. A recent article by 

Gill et al. (2010) associated oxidative stress with neuroinflammation through the 

activation of TLRs by DAMPs. In conclusion, current global gene profiling of permanent 

focal cerebral ischemia further highlights the significant implications of oxidative stress 

and neuroinflammation and their coordinated cooperation in inducing neuronal demise 

during the disease pathogenesis, which are consistent with the observations made in 

transient model (Gill et al., 2010). 
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6.2 .1 Introduction 

Global transcriptomic profiles of in vivo models of cerebral ischemia (hypoxic, transient 

and permanent focal ischemia) demonstrated elevation in gene expression of pro-

mitogenic proteins such as growth factors and cell cycle proteins. Specifically, no 

significant or down–regulation of Ccnd (Ccnd1 and Ccnd2) or cyclin-dependent kinase 4 

or 6 (Cdk4 and Cdk6) was observed. The proteins of these encoding genes form a 

complex [CCND/CDK(4 or 6)] crucial to initiate mitotic cell cycle entry from quiescent 

G0 state to G1 state. This discrepancy could be a result of the rapid occurrence of cell 

cycle re-entry much earlier before the 5h studied time-point, causing a miss in the 

timeframe for detection of their transcriptional peak. As such, in order to verify that cell 

cycle re-activation was indeed triggered during cerebral ischemia as a result of iGluRs-

induced excitotoxicity, a specific cell cycle protein kinase family, aurora kinases 

(AURKs) was chosen as the biological target for pharmacological inhibition study to 

determine its efficacy in abrogation of cerebral infarct damage. 

 

De-regulated, aberrant expression of neuronal cell cycle proteins have been consistently 

reported in the CNS of patients with neurodegenerative pathologies such as AD, PD and 

ALS, neurological disorders including stroke, Niemann Pick‘s disease, DS and 

progressive supranuclear palsy as well as schizophenia (Camins et al., 2008; Camins et 

al., 2007; Nunomura et al., 2007; Woods et al., 2007). Its extensive prevalence in the 

pathogenesis of numerous CNS-associated pathological conditions suggested that its 

involvement in the mediation of neuronal death could not be undermined. Existing 

evidence supporting the occurrence of cell cycle re-entry in post-mitotic, differentiated 
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neurons upon neuronal insults includes the activation of cyclin-dependent kinases 

(CDKs) and cyclins, inhibition of cell cycle checkpoint proteins e.g. p27 and 

retinoblastoma protein and the expression of the transcription factor E2F-1 (Akashiba et 

al., 2008; Camins et al., 2007; Krantic et al., 2005; Lopes and Casares, 2010).  

 

In in vivo models, cell cycle re-activation has been suggested to play a pivotal role in the 

mediation of neuronal loss in excitotoxicity induced by kainic acid, models of stroke, 

MPTP-induced PD model, 3-nitropropionic acid-induced HD model, and the SOD-1 

mouse model of ALS (Hoglinger et al., 2007; Nguyen et al., 2003; Pelegri et al., 2008; 

Verdaguer et al., 2003). Similar observation has been reported in in vitro neuronal culture 

models challenged with apoptotic stimuli such as K+ deprivation in cerebellar granule 

cells (Yeste-Velasco et al., 2007), treatment with excitatory amino acid Glu and KA 

(Gendron et al., 2001; Smith et al., 2003; Verdaguer et al., 2004a; Verdaguer et al., 

2003), A treatment (Iqbal and Grundke-Iqbal, 2008; Majd et al., 2008) and 

camptothecin treatment (Park et al., 2000). These studies consistently report that neuronal 

insults elevate cell cycle-involved proteins and the pro-apoptotic transcription factor E2F-

1, and that cell cycle re-activation may be a central event to the initiation of neuronal 

death in numerous neurodegenerative diseases and disorders. This theory is supported by 

evidence that inhibition of CDKs by drugs such as flavopiridol and roscovitine offer 

neuroprotection in neuronal cell cultures (Verdaguer et al., 2004a). This is because CDK5 

and E2F-1 can be regulated by calpain activation during neuronal loss in the pathogenesis 

of neurodegenerative diseases (Crespo-Biel et al., 2007).  
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6.2.1.1 Aurora kinases (AURKs): A recently acknowledged family of crucial cell 

cycle protein kinases  

Successful facilitation of normal cell division is governed by the physiological role of 

key regulatory protein kinases which comprise of CDKs, polo-like kinases (PLKs) and 

aurora kinases (AURKs). These protein kinases regulate mitotic entry and coordinates 

chromosomal and cytoskeletal events, ensuring correct separation of identical genetic 

material into the two daughter cells. Compromised function and deregulated expression 

of these players frequently result in aneuploidy and have been closely associated with 

tumourigenesis, highlighting them as potential targets for anti-cancer therapeutic 

treatments. 

 

In particular, AURKs, a conserved family of Serine/Threonine kinases consisting of three 

family members (AURKA, AURKB and AURKC), has been gaining increasing 

recognition for their critical roles in mitosis and cytokinesis. The occurrence of AURK 

members differs from species to species: Only a single aurora gene is found in fungi, 

while in majority of higher eukaryotes, the incidence of AURK members increases with 

AURKA and AURKB adopting distinct localizations and functions. The third member, 

AURKC primarily expressed in the testis only occurs in mammals. In our current study 

we will focus on AURKA and AURKB implication in the excitotoxicity, a major event in 

the pathogenesis of cerebral ischemia, as evident from their transcriptional up-regulation 

from in vitro models (discussed later in Results section 6.2.2.1) 
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Figure 6.2 An overview of AURKA and AURKB involvements in the various phases of 

mitotic cell cycle process. 

 

Even through AURKA and AURKB share high degree of sequence and structural 

homology with 70% identity in the catalytic domain, they adopt unique subcellular 

localization and diverse functions during mitosis due to their specific association with 

distinct cofactors, and temporal expression and pathway-specific degradation. AURKA is 

essential for mitotic entry via spindle pole association, centrosome maturation and 

separation, G2 to M transition and spindle bipolarity (Barr and Gergely, 2007; Fu et al., 

2007; Hirota et al., 2003; Vader and Lens, 2008). AURKA functions are attributed to its 

ability to bind to microtubules coupled with its location at the spindle poles. Aberrant 
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AURKA over-expression has been identified in the pathogenesis of a variety of human 

cancer types such as breast, colorectal, bladder, pancreatic, esophageal, lung and ovarian 

as well as leukemia (Comperat et al., 2007; Lassmann et al., 2007; Li et al., 2003; 

Nishida et al., 2007; Tanaka et al., 1999; Tong et al., 2004).  

 

The most well known AURKA cofactor is TPX2, a microtububle-associated protein 

(MAP) that directs the kinase to the mitotic spindle, but not the centrosome, and activates 

it (Kufer et al., 2002). TPX2 has a dual role in AURKA activation. Its N-terminus binds 

the kinase, inducing a conformational change that facilitates auto-phosphorylation of 

Thr288 in AURKA T-loop (Bayliss et al., 2003; Eyers et al., 2003). Bound TPX2 then 

shields this residue from dephosphorylation by protein phosphatase 1 (PP1) on entry into 

mitosis (Bayliss et al., 2003; Eyers et al., 2003).  

 

Other activating cofactors comprising of Ajuba, Bora, inhibitor-2, integrin-like kinase 

and PAK1 co-localise with, and seemingly positively regulate, AURKA at the 

centrosome and/or microtubule asters. On the contrary, protein phosphatase 1 (PP1) and 

2A (PP2A) attach and inhibit AURKA via dephosphorylation of Thr288, keeping 

AURKA inactive at interphase by stabilizing PTTG1 (pituitary tumor transforming gene 

1; a mammalian securing protein that inactivates AURKA) (Tong et al., 2008). 

Particularly, the most prominent in vivo protein that may inhibit AURKA activity directly 

and/or indirectly is p53, where itself and its downstream target GADD45a co-localize at 

the centrosome to inhibit AURKA (Shao et al., 2006). TPX2 binding harbours AURKA 

T-loop from p53 inactivation (Eyers and Maller, 2004). 
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Figure 6.3 A simple signaling pathway demonstrating the most prominent transduction 

cascade of AURKA in the positive regulation of mitotic cell division. 

 

On the other hand, AURKB being the enzymatically active member of the chromosomal 

passenger complex (CPC) amidst other protein components which include the scaffolding 

protein INCENP and the target subunits Survivin and Borealin/Dasra B. Up to the 

metaphase stage, CPC interacts with the inner centromere and subsequently progresses to 

the spindle midzone, equatorial cell cortex and midbody in the late mitosis and 

cytokinesis (Ruchaud et al., 2007; Vader and Lens, 2008). AURKB plays a pivotal role in 

the regulation of chromosomal interactions with microtubules, chromatid cohesion, 

spindle stability and cytokinesis (Ruchaud et al., 2007). 
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Figure 6.4 The main regulators of (A) Aurora A and (B) Aurora B kinases. Protein 

kinases are indicated in red and phosphorylation events by red arrows. Protein 

phosphatases are indicated in blue. (Image adapted from Carmena et al. 2009) 
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6.2.2 Results 

6.2.2.1 Cell cycle re-activation is an early upstream event during excitotoxicity in 

vitro: Significant role of AURKs 

Comparative microarray analysis of Glu and specific iGluR agonists (NMDA, AMPA 

and KA) demonstrated the occurrence of cell cycle re-activation in excitotoxicity during 

the early 5h time-point post-treatments. This is in consistent with existing literature 

reports and that pharmacological application of CDKs inhibitors is able to successfully 

attenuate excitotoxicity-induced neuronal death (Smith et al., 2003; Verdaguer et al., 

2004a; Verdaguer et al., 2003). Taken together, all observations are directed to cell cycle 

re-activation being an early upstream process during excitotoxicity, and highlighting that 

its occurrence is crucial to the mediation of downstream neuronal injury and death. 

Furthermore, what is interesting is that the present in vitro excitotoxicity models for the 

first time identified AURKs involvement in excitotoxicity. 

 

Specifically, AurkA, and its activating cofactor Tpx2 and downstream effector Plk 

demonstrated significant early transcriptional up-regulation as shown in Table 6.3. 

Concurrently and interestingly, AurkB and its activating cofactor Survivin also showed 

elevated gene expression at 5h post-treatment in all excitotoxicity-induced treatments 

except Glu (demonstrated in Table 6.3). Other than activating iGluRs, Glu can also 

trigger G-protein coupled mGluRs. This slight discrepancy is probably attributed to 

AURKB distinct functions from AURKA, resulting in its transcriptional downplay by the 

metabotropic subtype of GluRs, an effect as opposed to that of ionotropic subtype. This is 
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then reflected by the absence of significant differential expression in the Glu global 

transcriptomic profile.  

 

Table 6.3 Transcriptional profiles of Aurks and associated cofactors in in vitro excitotoxicity 
models. All fold-change expressions are subjected to one-way ANOVA analysis and significant at 
p<0.05. Data are expressed as fold-change ± sem. 

Genbank Gene Title Symbol Time-points 
 5h 15h 24h 
Glu 
NM_011497 Aurora kinase A AurkA 1.91± 0.42 1.98 ± 0.50 1.59 ± 0.44 
NM_011121 Polo-like kinase 1 (Drosophila) Plk 2.08 ± 0.32 2.06 ± 0.37 1.62 ± 0.30 

NM_028109 TPX2, microtubule-associated 
protein homolog (Xenopus laevis) Tpx2 1.70 ± 0.42 2.09 ± 0.55 1.57 ± 0.46 

NMDA 
NM_011497 Aurora kinase A AurkA 1.65 ± 0.40 1.31 ± 0.32 1.11 ± 0.26 
NM_011121 Polo-like kinase 1 (Drosophila) Plk 1.90 ± 0.38 1.44 ± 0.21 -1.10 ± 0.20 

NM_028109 
TPX2, microtubule-associated 
protein homolog (Xenopus laevis) Tpx2 1.79 ± 0.49 1.48 ± 0.33 1.11 ± 0.25 

XM_181344 Aurora kinase B AurkB 1.61± 0.45 1.33 ± 0.43 1.02 ± 0.36 
NM_009689 Baculoviral IAP repeat-containing 5 Survivin 1.99 ± 0.47 1.34 ± 0.31 -1.07 ± 0.22 
AMPA 
NM_011497 Aurora kinase A AurkA 2.31 ± 0.56 1.48 ± 0.36 1.04 ± 0.25 
NM_011121 Polo-like kinase 1 (Drosophila) Plk 1.80 ± 0.46 1.27 ± 0.41 -1.08 ± 0.26 

NM_028109 TPX2, microtubule-associated 
protein homolog (Xenopus laevis) Tpx2 2.40 ± 0.52 1.19 ± 0.42 -1.08 ± 0.20 

XM_181344 Aurora kinase B AurkB 1.74 ± 0.62 1.05 ± 0.40 -1.24 ± 0.24 
NM_009689 Baculoviral IAP repeat-containing 5 Survivin 1.94 ± 0.50 1.25 ± 0.37 -1.03 ± 0.26 
KA 
NM_011497 Aurora kinase A AurkA 2.30 ± 0.55 1.46 ± 0.37 1.07 ± 0.29 
NM_011121 Polo-like kinase 1 (Drosophila) Plk 1.75 ± 0.41 1.55 ± 0.26 1.15 ± 0.37 

NM_028109 TPX2, microtubule-associated 
protein homolog (Xenopus laevis) Tpx2 1.90 ± 0.49 1.49 ± 0.45 1.06 ± 0.35 

XM_181344 Aurora kinase B AurkB 2.01 ± 0.73 1.09 ± 0.43 1.10 ± 0.46 
NM_009689 Baculoviral IAP repeat-containing 5 Survivin 2.09 ± 0.59 1.39 ± 0.35 1.21 ± 0.31 
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6.2.2.2 Inhibition of AURKs attenuates infarct damage upon pMCAO 

Supposedly if AURKs play a pivotal role in cell cycle re-entry as that of CDKs during 

excitotoxicity, it would be worthwhile to ascertain in parallel the patho-physiological 

importance of AURKs in in vivo ischemic stroke model where excitotoxicity is causative. 

As such, a selective AURKs (particularly AURKA and AURKB) pharmacological 

inhibitor, ZM447439 has been employed to determine its efficacy in reduction of infarct 

damage during pMCAO. As ZM447439 is only soluble in organic solvent e.g. DMSO 

and not polar solvents e.g. water, much attention has been focused on reducing DMSO 

solvent concentration during drug preparation to prevent physiological disturbance by 

DMSO presence yet achieve complete solubilization of the compound. As it turns out, 

80% DMSO in normal saline is the most optimal solvent composition attained. 5ul 

volume of the desired concentration of ZM447439 was designed to be injected intra-

cerebroventricularly (i.c.v) into the left hemisphere of the rat brain 30min post-pMCAO 

surgery so as to mimic real-life re-enactment of stroke episode. A randomized pilot study 

to ascertain the concentration-dependent effect of ZM447439 upon pMCAO was 

conducted using n = 4 for each condition. As shown in Figure 6.5, the area of infarct 

diminishes with escalating doses of ZM447439 from 10mM up to 30mM. Furthermore, 

80% DMSO did not induce any change to the infarct volume induced by pMCAO. Much 

higher concentrations of ZM447439 were not performed, as the pharmacological 

specificity of the drug would be altered, resulting in inhibition of other protein kinases 

such as protein kinase C and phosphatidylinositol-3-kinase.  
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Based on the concentration-effect observations from Figure 6.5, 30mM ZM447439 

seemingly appeared to be effective in abrogation of infarct injury induced by 30min. As 

such, a repeated experiment employing 30mM ZM447439 together with its 

corresponding vehicle control was conducted (n = 8 each) to validate its effect 30min 

post-pMCAO. Quantitative analysis using Image J software on the infarct volume which 

has been corrected for brain edema and brain tissue contraction demonstrated a 

significant decrease in the infarct damage upon 5ul i.c.v. injection of 30mM ZM447439 

as shown in Figure 6.6.  
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Figure 6.5. TTC staining of 2mm sections of rat brain demonstrated a concentration-

dependent reduction in infarct volume during pMCAO upon escalating dose application 

of selective pharmacological AURK inhibitor ZM447439 [1 – 6: anterior – posterior]. 
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Figure 6.6 Quantitative analysis of the infarct volume corrected for brain edema and 

infarct tissue contraction demonstrated that 5ul i.c.v. injection of 30mM ZM447439 

30min post-pMCAO successfully attenuated infarct damage. Data generated here is 

representative of 6 replicates. Data is statistically significant at **p<0.01. 
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6.2.2.3 AURKs inhibition significantly modulates pMCAO global transcriptomic 

profile 

In order to understand the mechanistic influence behind AURKs inhibition on the 

attenuation of infarct damage, a temporal global transcriptomic profiling of 30mM 

ZM447439 treatment after pMCAO was conducted in complement to that of the 

microarray data analysis of pMCAO alone using Illumina Rat Ref12V1 genechips. The 

schematic experimental layout is identical to that of vehicle-pMCAO and demonstrated 

previously on Page 259. Four biological replicates were used for each time-point (8h and 

24h post-i.c.v. injection). As a refresher, significantly/differentially-expressed genes refer 

to those demonstrating at least ±1.5 fold-expression in at least one out of the two time-

points and have passed statistical testing of one-way ANOVA with p<0.05 and 

Benjamini-Hochberg FDR correction. As before, the significantly-modulated list of genes 

was subjected to DAVID analysis which through gene enrichment classified genes 

according to their respective biological processes. 

 

30mM AURK inhibitor treatment after pMCAO generated a genelist of 652 statistically 

significant differentially expressed candidates. DAVID-processed functional gene 

ontology clustering of these genes (corresponding to 612 biologically-annotated genes) 

demonstrated that majority of them were related to the inflammation cascades from 

chemotaxis and facilitation of leukocyte infiltration to activation of an immune response.  

 

In order to determine the signaling pathways affected when 30mM ZM447439 was post-

administered to pMCAO and that consequentially lead to infarct reduction, a comparative 
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microarray analysis of significantly-expressed genes between vehicle-pMCAO and 

AURKs inhibitor treatment-pMCAO was performed. The result of this bi-model 

comparison was demonstrated in a Venn diagram shown in Figure 6.7. It yielded gene 

counts of 448 differentially expressed RefSeq transcripts common to both models and, 

753 and 204 gene probes exclusive to the vehicle and treatment conditions respectively. 

Functional annotation and clustering using DAVID 6.7 was performed on all three 

distinct genelists to determine the effects of AURKs inhibition on the 

inhibition/activation of signaling cascades and if additional pathways were recruited. 

Several enriched biological processes were recognized from the lists of differentially-

expressed gene probes common to vehicle and treatment conditions and exclusive to the 

former. On the other hand, functional-gene ontology classification of the 204 

differentially-expressed gene probes significantly modulated only in AURKs inhibitor 

treatment-pMCAO condition (correspond to 192 DAVID-recognizable genes) did not 

yield any over-represented biological signaling pathways, demonstrating that AURKs 

inhibition did not recruit additional downstream biological processes to aid in its 

abrogation of infarct damage. 
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Figure 6.7 Venn diagram illustrating number of differentially-expressed annotated genes 

common and exclusive to both pMCAO + Vehicle and pMCAO + 30mM ZM447439 

treatment global gene profiles at 8h and 24h. Gene count is made up of genes with 

significant regulation of at least 1.5 fold-change in one out of two time-points in each 

condition and have passed one-way ANOVA, p<0.05. 
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6.2.2.4 Comparative microarray analysis of differentially-expressed genes common 

to vehicle and treatment groups revealed AURKs inhibition induces a diminished 

transcriptional-amplitude response 

Functional clustering of commonly-occurring genes in both vehicle and treatment 

conditions revealed vasculature disruption, and inflammation (chemokine signaling 

pathway, transendothelial migration, complement and coagulation cascade and TLR 

signaling pathway) and cell death and survival as the main over-represented biological 

processes being modulated upon pMCAO (Table 6.4).  

 

-VASCULATURE DEVELOPMENT 

Majority of the genes involved in regulation of the blood vessel structural integrity and 

permeability demonstrated up-regulation, indication of microvascular injury leading to 

increase vascular leakage to permit infiltration of leukocytes and other molecules. 

However, a smaller-amplitude but similar transcriptional response was demonstrated 

upon AURKs inhibition (Table 6.4). Interestingly, Mmp14 and Nos3 demonstrated an 

opposing trend i.e. AURKs suppression promotes their expression at 24h time-point. 

 

-INFLAMMATORY RESPONSE 

Majority of the genes encoding for proteins involved in initiation and propagation of an 

inflammatory response demonstrated significant transcriptional regulation at 8h for the 

chemokine signaling pathway, and at 24h for those involved in facilitation of leukocyte 

transendothelial migration, complement and coagulation cascade and TLR signaling 

pathway (Table 6.4). However, upon fold-expression between vehicle and AURKs 
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inhibitor treatment, it becomes apparent that a lower transcriptional response was 

observed in the latter, a probable indication of less degree of neuroinflammation when 

AURKs were functionally inhibited. 

 

-Chemokine signaling pathway 

Vehicle and treatment conditions demonstrated difference in transcriptional modulation 

of the chemokine signaling pathway prominently at 24h post-i.c.v. injection, where the 

latter demonstrated a reduced increase in gene expression of implicated members upon 

AURKs inhibition (Table 6.4). This is especially true for members of the C-C (Ccls) and 

C-X-C (Cxcls) motifs chemokine families, particularly Ccl2, Ccl7, Cxcl1 and Cxcl2.  

 

-Leukocyte transendothelial migration 

Similar lower expression-amplitude observation in AURKs inhibitor treatment condition 

than that of vehicle was observed for the cell adhesion molecules (F11r, Ecam, Igam and 

Icam1), all of which promote leukocyte migration into ischemic region (Table 6.4). 

Similar trend is observed for matrix metalloproteinase-9 (Mmp9) and its endogenous 

inhibitor, Timp.  

 

-Complement and coagulation cascade 

While majority of the genes encoding for proteins in the complement and coagulation 

cascade demonstrated significant up-regulation in the vehicle condition, the contrary is 

observed in the treatment condition with most of the genes showing close to basal and 
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insignificant regulation, indicative of an absence of this biological process occurring 

during AURKs inhibition (Table 6.4). 

 

-TLRs signaling pathway 

Transcriptional up-regulation of members involved in the TLRs signaling pathway was 

observed throughout the 8 - 24h profiling period, with the direct players (Tlr2 and Tollip) 

showing increase in expression at the later time-point (Table 6.4). In accordance with the 

observations made in other inflammation-related processes, a smaller transcriptional 

response was evoked upon AURKs inhibition. 

 

-CELL HOMEOSTASIS, SURVIVAL AND PROLIFERATION 

Genes encoding for growth factors (Bdgf, Ngfb and Igfbp3) and pro-mitogenic proteins 

(Birc3 and Birc5) demonstrated lower heightened transcriptional regulation upon AURKs 

inhibition, a probable indication of reduced cellular death stimuli from decreased degree 

of inflammation and oxidative stress (Table 6.4). 

 

-MITOTIC CELL CYCLE 

Cell cycle proteins involved in the impediment of cell cycle re-activation (Gadd45a 

Gadd45g and Inhba) were significantly up-regulated while those promoting mitosis 

(Camk2(a and g), Csnk1d and Mdm2) were up-regulated especially in the vehicle 

condition. On the contrary, an insignificant or lower transcriptional response was 

demonstrated for these genes in the AURKs inhibitor treatment condition after pMCAO 

(Table 6.4). This is expected as AURKs are involved in mitosis, and their inhibition 
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would be translated to a decreased stimulation in cell cycle re-entry, indicative of 

successful inhibition of this family of cell cycle protein kinases. 

 

-RESPONSE TO OXIDATIVE STRESS 

Genes encoding for heat shock proteins (Hsps) and molecular chaperones (Ptgs2, Sod2, 

Txnrd1, Hsp(a2, b1 and b8) and Hmox1) demonstrated comparable up-regulation in 

vehicle and treatment conditions, an indication that AURKs inhibition did not suppress 

oxidative stress (Table 6.4).  

 

-CELL DEATH 

As shown in Table 6.4, Cebpb and Ddit3, endoplasmic reticulum stress-inducible pro-

apoptotic genes, demonstrated comparable transcriptional up-regulation with or without 

AURKs inhibition, further suggesting that oxidative stress was not affected by the 

pharmacological suppression of AURKs. On the other hand, a lower transcriptional 

activation of the caspase family has been observed, especially with Cflar and Casp3 after 

AURKs inactivation. 

 

 

 

 
 
` 
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Table 6.4 Functional annotation of genes common to vehicle (80% DMSO) and 30mM ZM447439 
treatment conditions induced via i.c.v. administration 30min post- pMCAO. All fold-change expressions 
were subjected to one-way ANOVA analysis and Benjamini-Hochberg correction, and significant at 
p<0.05. Data are expressed as fold-change ± sem. 
Genbank Title Symbol Vehicle-pMCAO Treatment-pMCAO 

 8h 24h 8h 24h 
Vasculature development 
 
NM_012924 CD44 antigen  Cd44 1.25 ± 0.30 3.60 ± 0.29 -1.06 ± 0.12 2.21 ± 0.53 

NM_139104 EGF-like domain 7  Egfl7 -1.05 ± 0.20 1.79 ± 0.25 1.02 ± 0.15 1.68 ± 0.76 
XM_001065522 Angiopoietin 2  Agpt2 1.43 ± 0.26 2.82 ± 1.44 1.24 ± 0.07 2.13 ± 0.46 
NM_022266 Connective tissue growth factor Ctgf -1.19 ± 0.11 1.76 ± 0.38 -1.49 ± 0.17 1.59 ± 0.38 
NM_031327 Cysteine rich protein 61  Cyr61 1.97 ± 0.41 6.33 ± 0.49 1.50 ± 0.38 4.35 ± 1.59 

NM_001004228 Endomucin  Emcn -1.79 ± 0.07 -1.04 ±0.41 -1.73 ± 0.20 -1.17 ± 
0.26 

NM_021654 Gap junction membrane 
channel protein alpha 4  Gja4 1.29 ± 0.28 2.68 ± 0.23 1.15 ± 0.13 2.04 ± 0.58 

NM_024359 Hypoxia inducible factor 1, 
alpha subunit  Hif1a 1.09 ± 0.29 2.20± 0.22 -1.18 ± 0.08 1.63 ± 0.12 

NM_031056 Matrix metalloproteinase 14 
(membrane-inserted)  Mmp14 -1.03 ± 0.34 1.48 ± 0.26 -1.01 ± 0.09 1.92 ± 0.61 

NM_021838 Nitric oxide synthase 3, 
endothelial cell Nos3 1.07 ± 0.24 1.77 ± 0.60 1.18 ± 0.29 2.03 ± 0.56 

NM_013114 Selectin, platelet  Selp 1.03 ± 0.08 2.20 ± 0.31 1.06 ± 0.24 1.61 ± 0.49 
NM_133386 Sphingosine kinase 1  Sphk1 2.23 ± 0.69 5.55 ± 1.79 1.75 ± 0.52 4.54 ± 1.35 

NM_053565 Suppressor of cytokine 
signaling 3  Socs3 1.37 ± 0.23 1.99 ± 0.19 1.26 ± 0.05 1.71 ± 0.10 

Inflammatory response 
-Chemokine signaling pathway 

NM_031514 Janus kinase 2 Jak2 1.50 ± 0.38 2.21 ± 0.39 -1.03 ± 0.15 1.75 ± 0.32 

NM_019285 Adenylate cyclase 4  Adcy4 -1.00 ± 0.18 1.80 ± 0.29 1.04 ± 0.17 1.69 ± 0.39 

NM_031530 Chemokine (C-C motif) ligand 
2  Ccl2 2.94 ± 1.40 12.52±3.18 2.09 ± 0.60 7.02 ± 3.08 

NM_013025 chemokine (C-C motif) ligand 
3 (Ccl3),  Ccl3 3.36 ± 1.69 4.51 ± 4.33 3.53 ± 2.66 2.14 ± 1.11 

NM_053858 Small inducible cytokine A4  Ccl4 3.74 ± 1.69 2.52 ± 0.84 3.96 ± 2.03 2.27 ± 0.74 

NM_001007612 Chemokine (C-C motif) ligand 
7 Ccl7 2.81 ± 1.18 8.86 ± 2.61 1.86 ± 0.97 5.95 ± 2.08 

XM_213425 Chemokine (C-C motif) ligand 
12  Ccl12 -1.12 ± 0.07 2.00 ± 0.61 -1.11 ± 0.06 2.21 ± 0.35 

NM_020542 Macrophage inflammatory 
protein-1 alpha receptor gene  Ccr1 1.02 ± 0.20 3.55 ± 2.39 -1.02 ± 0.36 1.99 ± 0.62 

NM_030845 Chemokine (C-X-C motif) 
ligand 1  Cxcl1 2.14 ± 0.34 6.62 ± 2.42 3.19 ± 0.80 3.80 ± 1.55 

NM_053647 Chemokine (C-X-C motif) 
ligand 2 Cxcl2 2.39 ± 0.81 4.96 ± 9.38 2.62 ± 0.67 1.96 ± 1.15 

NM_001017478 Chemokine (C-X-C motif) 
ligand 16   Cxcl16 1.52 ± 0.66 3.51 ± 1.59 1.63 ± 0.40 2.86 ± 0.55 
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Table 6.4 (continue) 
Genbank Title Symbol Vehicle-pMCAO Treatment-pMCAO 

 8h 24h 8h 24h 
-Chemokine signaling pathway (continue) 

NM_022205 Chemokine (C-X-C motif) 
receptor 4 Cxcr4 1.12 ± 0.12 2.15 ± 0.60 1.10 ± 0.14 1.62 ± 0.06 

NM_133307 Protein kinase C, delta  Prkcd 1.29 ± 0.31 2.37 ± 0.77 -1.30 ± 0.11 2.23 ± 1.26 

XM_215659 Ras homolog gene family, 
member C  Rhoc 1.30 ± 0.30 1.94 ± 0.09 1.07 ± 0.15 1.82 ± 0.32 

XM_001071741 RAS guanyl releasing protein 2 
(calcium and DAG-regulated)  Rasgrp2 -1.08 ± 0.15 -2.25 ± 0.05 -1.06 ± 0.16 -1.56 ±0.17 

-Leukocyte transendothelial migration 
NM_053796 Junctional adhesion molecule 1 F11r -1.05 ± 0.21 1.81 ± 0.76 -1.14 ± 0.07 1.58 ± 0.32 

NM_001004245 Endothelial cell adhesion 
molecule  Ecam 1.11 ± 0.38 1.51 ± 0.51 1.19 ± 0.27 1.59 ± 0.27 

NM_012967 Intercellular adhesion molecule 
1  Icam1 1.89 ± 0.31 4.47 ± 0.51 1.65 ± 0.22 2.72 ± 0.65 

NM_031055 Matrix metallopeptidase 9  Mmp9 1.13 ± 0.20 2.95 ± 0.49 -1.10 ± 0.15 2.06 ± 0.79 

NM_053819 Tissue inhibitor of 
metalloproteinase 1 Timp1 2.84 ± 1.42 6.30 ± 1.22 1.58 ± 0.80 4.75 ± 1.19 

NM_030863 Moesin  Msn 1.24 ± 0.16 3.30 ± 0.50 1.14 ± 0.08 1.85 ± 0.70 

-Complement and coagulation cascade 

NM_001008515 
Complement component 1, q 
subcomponent, alpha 
polypeptide  

C1qa -1.19 ± 0.17 -1.13 ±0.16 -1.52 ± 0.09 1.15 ± 0.45 

NM_013151 Plasminogen activator, tissue  Plat 2.06± 0.81 2.56 ± 0.58 1.73 ± 0.27 2.40 ± 0.51 

NM_012620 Serine (or cysteine) proteinase 
inhibitor, clade E, member 1  Serpine1 1.49 ± 0.29 7.02 ± 1.48 1.37 ± 0.14 4.60 ± 2.04 

NM_031771 Thrombomodulin Thbd 1.63 ± 0.97 2.32 ± 0.68 1.42 ± 0.28 1.89 ± 0.24 

TLR signaling pathway 
NM_021744 CD14 antigen  Cd14 1.94 ± 0.52 7.30 ± 1.42 1.47 ± 0.49 4.95 ± 1.70 

NM_022197 c-Fos oncogene  c-Fos 3.92 ± 2.29 4.34 ± 1.16 2.32 ± 0.91 4.75 ± 3.45 

NM_021835 v-Jun sarcoma virus 17 
oncogene homolog (avian)  Jun 1.73 ± 0.29 1.93 ± 0.19 1.41 ± 0.26 1.94 ± 0.09 

NM_012589 Interleukin 6 Il6 1.60 ± 0.56 2.08 ± 0.58 1.56 ± 0.48 1.86 ± 0.35 

XM_239239 Mitogen activated protein 
kinase kinase 3   Map2k3 1.32 ± 0.31 2.25 ± 0.59 1.20 ± 0.12 2.15 ± 0.13 

NM_053703 Mitogen-activated protein 
kinase kinase 6  Map2k6 -1.14 ± 0.06 -3.90 ± 0.04 -1.29 ± 0.16 -2.34 ± 

0.13 

NM_198130 Myeloid differentiation primary 
response gene 88  Myd88 1.44 ± 0.58 1.72 ± 0.52 1.24 ± 0.15 1.94 ± 0.44 

NM_012881 Secreted phosphoprotein 1  Spp1 5.14 ± 3.62 5.02 ± 1.97 3.28 ± 1.68 4.52 ± 1.78 

NM_198769 Toll-like receptor 2  Tlr2 1.35 ± 0.16 2.34 ± 0.55 1.30 ± 0.32 1.83 ± 0.30 

 

 



Chapter 6.2: 
AURKs inhibitor on permanent-MCAO 

304 
 

Table 6.4 (continue) 
Genbank Title Symbol Vehicle-pMCAO Treatment-pMCAO 

 8h 24h 8h 24h 
Cell homeostasis, survival and proliferation 
 
NM_012513 

Brain derived neurotrophic 
factor  Bdnf 1.56  ± 1.11 2.30 ± 0.93 1.03 ± 0.70 1.68 ± 1.02 

NM_019216 Growth differentiation factor 15 Gdf15 1.81 ± 0.62 1.62 ± 0.90 2.17 ± 0.78 1.97 ± 0.67 

NM_021752 Baculoviral IAP repeat-
containing 2  Birc2 1.15 ± 0.19 1.84 ± 0.13 -1.13 ± 0.11 1.72 ± 0.16 

NM_198130 Myeloid differentiation primary 
response gene 88  Myd88 1.44 ± 0.58 1.72 ± 0.52 1.24 ± 0.15 1.94 ± 0.44 

XM_227525 Nerve growth factor, beta Ngfb -1.08 ± 0.48 1.75 ± 0.29 -1.10 ± 0.16 1.74 ± 0.51 

NM_012588 Insulin-like growth factor 
binding protein 3  Igfbp3 1.28 ± 0.40 3.33 ± 0.63 -1.16 ± 0.09 2.43 ± 0.42 

Mitotic cell cycle 

NM_012920 Calcium/calmodulin-dependent 
protein kinase II alpha subunit  Camk2a -1.21 ± 0.30 -1.81 ±0.02 -1.33 ± 0.05 -1.61 ±0.06 

NM_133605 Calcium/calmodulin-dependent 
protein kinase II gamma  Camk2g -1.31 ± 0.15 -2.40 ±0.10 -1.26 ± 0.12 -1.51 ±0.17 

NM_024127 Growth arrest and DNA-
damage-inducible 45 alpha  Gadd45a 1.84 ± 0.66 3.72 ± 1.20 1.40 ± 0.09 3.06 ± 0.82 

XM_001053888 Growth arrest and DNA-
damage-inducible 45 gamma  Gadd45g 2.89 ± 0.97 5.94 ± 2.31 1.99 ± 0.29 5.92 ± 0.71 

XM_001080981 Transformed mouse 3T3 cell 
double minute 2  Mdm2 1.21 ± 0.33 2.00 ± 0.60 1.01 ± 0.07 1.65 ± 0.27 

Response to oxidative stress 

NM_017232 Prostaglandin-endoperoxide 
synthase 2 Ptgs2 2.77 ± 1.04 4.44 ± 1.61 1.71 ± 0.58 3.09 ± 1.56 

NM_017051 Superoxide dismutase 2, 
mitochondrial  Sod2 1.44 ± 0.28 2.04 ± 0.52 1.07 ± 0.15 1.56 ± 0.28 

NM_031614 Thioredoxin reductase 1  Txnrd1 1.15 ± 0.12 1.95 ± 0.05 1.00 ± 0.27 2.42 ± 0.23 

NM_031970 Heat shock 27kDa protein 1  Hspb1 2.54 ± 1.15 3.38 ± 0.95 2.04 ± 0.74 3.73 ± 1.24 

NM_021863 Heat shock protein 2 Hspa2 1.37 ± 0.38 1.78 ± 0.44 1.06 ± 0.14 1.86 ± 0.35 

NM_053612 Heat shock 22kDa protein 8 Hspb8 1.88 ± 0.65 2.69 ± 0.87 1.17 ± 0.28 1.86 ± 0.29 

NM_012580 Heme oxygenase (decycling) 1  Hmox1 2.31 ± 0.49 4.47 ± 1.54 2.10 ± 0.59 4.01 ± 1.23 

Cell death 

NM_024125 CCAAT/enhancer binding 
protein (C/EBP), beta  Cebpb 1.69 ± 0.68 2.23 ± 0.85 1.41 ± 0.16 2.63 ± 0.55 

NM_024134 DNA-damage inducible 
transcript 3  Ddit3 1.62 ± 0.22 1.93 ± 0.38 1.22 ± 0.20 1.95 ± 0.35 

NM_057138 CASP8 and FADD-like 
apoptosis regulator (Cflar),  Cflar 1.12 ± 0.31 4.33 ± 1.09 -1.15 ± 0.11 2.55 ± 0.62 

NM_012922 Caspase 3, apoptosis related 
cysteine protease  Casp3 1.23 ± 0.28 2.80 ± 0.46 -1.04 ± 0.11 2.04 ± 0.09 

NM_022260 Caspase 7  Casp7 1.07 ± 0.22 1.90 ± 0.36 -1.14 ± 0.10 1.68 ± 0.16 

XM_343065 
Nuclear factor of kappa light 
chain gene enhancer in B-cells 
inhibitor, alpha  

Nfkbia 1.61± 0.42 2.37 ± 0.88 1.52 ± 0.24 2.08 ± 0.27 
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Table 6.4 (continue) 
Genbank Title Symbol Vehicle-pMCAO Treatment-pMCAO 

 8h 24h 8h 24h 
Cell death (continue) 
NM_012904 Annexin A1  Anxa1 1.40 ± 0.54 2.79 ± 0.99 1.16 ± 0.21 2.20 ± 0.60 
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6.2.2.5 AURKs inhibition suppresses the activation of several inflammation-related 

signaling cascades 

Comparative microarray analysis on the consequential transcriptional effect of AURKs 

inhibition of pMCAO revealed an overwhelming 753 gene transcripts being significantly 

modulated in vehicle condition. Functional clustering of these differentially-expressed 

gene probes which corresponded to 722 annotated genes on DAVID 6.7 presented 

additional candidates involved in enriched biological processes already identified in the 

commonly-occurring genes. The transcriptionally activated processes included 

inflammatory responses (leukocyte chemotaxis, coagulation and complement signaling 

pathway, and TLR-mediated cascade), vasculature development, and promotion of cell 

homeostasis, survival and proliferation (Table 6.5). Taking note that the differentially-

expressed genes in this vehicle-MCAO exclusive category were simultaneously absent 

from the treatment-pMCAO condition (due to their insignificant modulation), this implies 

that AURKs inhibition evokes a less intense neuro-inflammation and vasculature 

disturbance which consequentially translated to a weaker pro-injury/death stimuli, thus 

counteracted with a diminished pro-survival transcriptional response.  
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Table 6.5 Functional annotation of significantly-modulated genes demonstrating at least ±1.5 
fold-change in a minimum of one out of two time-points (8h and 24h) exclusive to vehicle 
(80% DMSO) condition induced via i.c.v. administration 30min post- pMCAO. All fold-
change expressions were subjected to one-way ANOVA analysis and Benjamini-Hochberg 
correction, and significant at p<0.05. Data are expressed as fold-change ± sem. 
Genbank Gene title Symbol Vehicle-pMCAO 

 8h 24h 
Inflammatory response 
NM_024131. D-dopachrome tautomerase Ddt -1.20 ± 0.08 -1.72 ± 0.04 
NM_012896 Adenosine A3 receptor  Adora3 -1.38 ± 0.05 -1.55 ± 0.08 
NM_019233 Chemokine (C-C motif) ligand 20 Ccl20 1.48 ± 1.22 6.50 ± 2.63 
NM_022924 Coagulation factor 2 F2 1.01 ± 0.05 1.57 ± 0.25 
NM_013057 Coagulation factor III  F3 1.68 ± 0.10 1.30 ± 0.13 
NM_031019 Corticotropin releasing hormone  Crh -1.21 ± 0.18 1.50 ± 0.29 
NM_019143 Fibronectin 1 Fn1 1.19 ± 0.13 2.10 ± 0.48 
NM_031512 Interleukin 1 beta  Il1b 1.55 ± 0.13 3.86 ± 4.08 
XM_001071294 Interleukin 1 receptor antagonist  Il1rn 1.10 ± 0.09 3.10 ± 1.64 

XM_001059899  ADP-ribosyltransferase (NAD+; poly 
(ADP-ribose) polymerase)-like 1  Adprtl1 1.01 ± 0.25 1.46 ± 0.16 

NM_012704 Prostaglandin E receptor 3 (subtype EP3)  Ptger3 1.01 ± 0.06 1.59 ± 0.33 

NM_022380 Signal transducer and activator of 
transcription 5B  Stat5b 1.22 ± 0.17 1.52 ± 0.16 

NM_053757 Small inducible cytokine subfamily E, 
member 1 Scye1 -1.07 ± 0.21 1.52 ± 0.16 

XM_001063419 Toll interacting protein Tollip 1.01 ± 0.09 1.64 ± 0.27 
Vasculature development 
NM_139104 EGF-like domain 7 Egfl7 -1.05 ± 0.20 1.79 ± 0.25 
NM_001004228 Endomucin Emcn -1.79 ± 0.07 -1.04 ± 0.41 
NM_012548 Endothelin 1 Edn1 1.23 ± 0.32 1.59 ± 0.35 
NM_019305 Fibroblast growth factor 2 Fgf2 1.62 ± 0.18 1.60 ± 0.28 
NM_021836 Jun-B oncogene Junb 2.27 ± 1.02 2.14 ± 0.72 
NM_017061 Lysyl oxidase Lox 1.58 ± 0.58 3.72 ± 1.01 
NM_013085 Plasminogen activator, urokinase Plau 1.00 ± 0.12 1.75 ± 0.17 
NM_022669 Secretogranin 2  Scg2 1.04 ± 0.48 2.35 ± 0.58 
NM_013114 Selectin, platelet Selp 1.03 ± 0.08 2.20 ± 0.31 
NM_173116 Sphingosine phosphate lyase 1 Sgpl1 1.09 ± 0.24 1.60 ± 0.06 
XM_575397 Wingless-related MMTV integration site 2 Wnt2 -1.11 ± 0.08 1.60 ± 0.32 

Cell homeostasis, survival and proliferation 
-MAPK signaing pathway 

XM_001071741  RAS guanyl releasing protein 2 (calcium 
and DAG-regulated) Rasgrp2 -1.08 ± 0.15 -2.25 ± 0.05 

NM_012513 Brain derived neurotrophic factor Bdnf 1.56 ± 1.11 2.30 ± 0.93 

NM_053851 Calcium channel, voltage-dependent, beta 
2 subunit Cacnb2 1.06 ± 0.20 -1.55 ± 0.09 
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Table 6.5 (continue) 
Genbank Gene title Symbol Vehicle-pMCAO 

 8h 24h 
-MAPK signaing pathway (continue) 

NM_012828 Calcium channel, voltage-dependent, beta 
3 subunit Cacnb3 -1.09 ± 0.23 -2.26 ± 0.12 

NM_053769 Dual specificity phosphatase 1 Dusp1 1.98 ± 0.69 1.96 ± 0.49 
NM_133578 Dual specificity phosphatase 5 Dusp5 1.45 ± 0.29 2.03 ± 0.92 
NM_053883 Dual specificity phosphatase 6 Dusp6 1.38 ± 0.51 1.54 ± 0.25 
XM_001063880 Dual specificity phosphatase 8 Dusp8 -1.21 ± 0.24 -1.56 ± 0.05 
XM_340861 Dual specificity phosphatase 14  Dusp14 1.18 ± 0.09 1.62 ± 0.31 

XM_235565 Mitogen-activated protein kinase 8 
interacting protein 2  Mapk8ip2 -1.14 ± 0.20 -1.58 ± 0.09 

XM_227525.3 Nerve growth factor, beta  Ngfb -1.08 ± 0.48 1.75 ± 0.29 

XM_001061815 Nuclear factor of activated T-cells, 
cytoplasmic, calcineurin-dependent 4 Nfatc4 1.58 ± 0.62 3.05 ± 0.86 

NM_053306 P21 (CDKN1A)-activated kinase 2 Pak2 1.14 ± 0.11 1.48 ± 0.26 
NM_012628 Protein kinase C, gamma Prkcc -1.14 ± 0.28 -1.60 ± 0.07 
TGF-beta signaling pathway 

NM_013022 Rho-associated coiled-coil forming kinase 
2 Rock2 1.07 ± 0.25 1.83 ± 0.10 

XM_001053727 Bone morphogenetic protein 7 Bmp7 1.25 ± 0.30 2.54 ± 0.96 
NM_017128 Inhibin beta-A Inhba 1.54 ± 0.49 2.91 ± 1.32 

NM_021587 Latent transforming growth factor beta 
binding protein 1  Ltbp1 -1.01 ± 0.19 2.12 ± 0.56 

XM_001081231  Noggin Nog -1.24 ± 0.18 -1.69 ± 0.05 
NM_031131 Transforming growth factor, beta 2  Tgfb2 1.00 ± 0.34 2.19 ± 0.30 
Pro-mitogenic/Anti-apoptotic signaling pathways 

NM_133416 B-cell leukemia/lymphoma 2 related 
protein A1 (Bcl2a1) Bcl2a1 1.54 ± 0.25 2.92 ± 1.27 

NM_031345 Delta sleep inducing peptide, 
immunoreactor Dsipi -1.14 ± 0.22 -1.76 ± 0.10 

NM_023987 Baculoviral IAP repeat-containing 3  Birc3 1.42 ± 0.30 1.98 ± 0.61 
XM_001060919 Death associated protein kinase 1  Dapk1 -1.04 ± 0.37 -1.62 ± 0.08 
NM_001004279 Peptidylprolyl isomerase D (Ppid) Ppid 1.17 ± 0.08 1.52 ± 0.25 

NM_033539 Eukaryotic translation elongation factor 1 
alpha 1 Eef1a1 1.27 ± 0.38 1.97 ± 0.37 

NM_001024800 Thioredoxin domain containing 1  Txndc1 1.30 ± 0.27 2.00 ± 0.31 
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6.2.2.6 Validation of AURKs inhibitor –treated pMCAO global transcriptomic 

profile via real-time PCR 

Global gene profiles of AURKs inhibitor-treated pMCAO model was verified using 

quantitative real-time PCR which demonstrated similar transcriptional regulation, 

indicating the high reliability in data interpretation from the microarray analysis (Table 

6.6). 

 
Table 6.6 Validation of microarray data using real-time PCR technique on pMCAO-induced adult male 
Wistar rat infarcted cortice treated with 30mM AURKs inhibitor (ZM447439; treatment). Data are 
expressed as fold-change ± sem. 
 Treatment (30mM AURKs inhibitor in 80% DMSO) 
GenBank Gene Title Symbol 8h 24h 
   Microarray Real-time 

PCR Microarray Real-time 
PCR 

NM_031970 Heat shock 27kDa protein 1  Hspb1 2.04  ± 0.74 3.05 ± 1.52 3.73 ± 1.24 3.84 ± 1.02 
NM_053612 Heat shock 22kDa protein 8 Hspb8 1.17  ± 0.28  1.86  ± 0.29 4.76 ± 0.83 

NM_017232 Prostaglandin-endoperoxide 
synthase 2 Ptgs2 1.71  ± 0.58 2.63 ± 0.52 3.09  ± 1.56 2.41 ± 0.89 

NM_031530 Chemokine (C-C motif) 
ligand 2  Ccl2 2.09 ± 0.60 4.50 ± 0.61 7.02 ± 3.08 9.88 ± 0.95 

NM_030845 Chemokine (C-X-C motif) 
ligand 1 Cxcl1 3.19 ± 0.80 7.04 ± 0.68 3.80 ± 1.55 4.04 ± 1.14 

NM_021744 CD14 antigen  Cd14 1.47 ± 0.49  4.95 ± 1.70 4.14 ± 0.67 
NM_012924 CD44 antigen Cd44 -1.06 ± 0.12  2.21 ± 0.53 6.23 ± 0.94 
NM_031055 Matrix metallopeptidase 9  Mmp9 -1.10 ± 0.15  2.06 ± 0.79 8.88 ± 0.80 

NM_053819 Tissue inhibitor of 
metalloproteinase 1 Timp1 1.58 ± 0.80 2.41 ± 0.89 4.75 ± 1.19 7.44 ± 0.95 
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6.2.3 Discussion 

In vivo animal works on cerebral ischemia demonstrated employment of antioxidants, 

NMDAR modulators, cytokine inhibitors, i/eNOS inhibitors, cyclo-oxygenase 2 (COX-2) 

inhibitors very often showed fairly well efficacy in the abrogation of disease progression, 

but with majority subsequently failed to pass clinical trials (Abe, 2008; Richardson et al., 

2000; Robinson and Keating, 2006). Many of these clinical evaluations took place before 

cell cycle re-entry was implicated as a mechanism for neuronal death. 

 

Current available therapeutic treatment using rt-PA, developed on the basis of its 

thrombolytic effect to remove the occlusion, is only effective within a short 3 hours 

window after ischemic onset, and the potential risk of continuous thrombolysis resulting 

in intracranial hemorrhage is high even after treatment. This reveals a substantial shortfall 

in the availability of therapeutic options for cerebral ischemia, and call for more 

promising treatment methods.  

 

Treatment with an inhibitor of cell cycle protein kinase family, AURKs, i.e. ZM447439 

which is selective for AURKA and AURKB, showed significant therapeutic efficacy 

towards the reduction of infarct damage during acute, permanent cerebral ischemia (the 

most severe form of focal ischemia). Generally, genes involved in cell death-associated 

processes showed a reduced transcriptional amplitude response after AURKs inhibition. 

Particularly, significant differential temporal modulation was observed in the 

inflammatory cascades involved in chemokine signaling, leukocyte transendothelial 

migration, complement and coagulation cascade, and TLRs signaling. Comparable anti-
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oxidant response was observed with and without AURKs suppression. All in all, these 

differential transcriptional responses contributed to a lower cell death stimulus, as 

verified by the decreased transcriptional activation of cell death molecules e.g. caspases. 

Even though cell cycle re-entry has not been identified as an enriched biological process 

in pMCAO model, but based on ability of AURKs inhibitor to attenuate ischemic infarct 

damage, it could be interpreted that cell cycle re-activation is a primary event in the acute 

disorder pathogenesis and plays a prominent upstream role in the induction of neuronal 

death; and furthermore, AURKs functionality is important in the initiation of cell cycle 

re-entry. The inability to detect cell cycle re-activation via microarray in the vehicle 

process could be attributed to this process occurring earlier than the first profiling time-

point (8h). 

 

This is the first time that AURKs inhibition has been demonstrated to be effective against 

infliction of ischemic damage, and this neuroprotective effect might be closely associated 

with the modulation of inflammatory response. AURKs have been identified to be a 

promising biological target in the intervention of acute cerebral ischemia. This is because, 

the expression of cell cycle proteins is not at all time associated with cell cycle re-entry 

by neurons. Some core cell cycle proteins possess postmitotic functions that span across 

various developmental phases of a neuron, including neuronal migration, axonal 

elongation, axonal pruning, dendrite morphogenesis and synaptic maturation and 

plasticity (Frank and Tsai, 2009; Kim et al., 2009). Numerous studies have reported that 

sporadic expression of CCND in unperturbed normal primary neurons without the 

presence of active CDK4, indicative of other physiological role of CCND (Liu et al., 
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2008; Rao et al., 2007). Furthermore, in addition to cell cycle protein expression, pro 

mitogenic stimuli are also required to initiate cell cycle re-entry. When normal neurons 

with elevated CCND expression are subjected to a mitogenic stimulus like thrombin, the 

neurons re-activate cell cycles resulting in their demise (Liu et al., 2008; Rao et al., 

2007). Up-to-date, AURKA and AURKB roles have only been pertained to mitotic cell 

cycle. As such, much work still needs to be performed to establish the relationship 

between AURKs function in cell cycle re-entry and its relation to neuro-inflammation.  
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7 Description of in vitro neurodegenerative models using cultured murine primary 

cortical neurons 

Mouse Neocortical Neuronal Cell Culture Preparation 

Neocortical neurons (gestational days 15 or 16) obtained from foetal cortices of Swiss 

albino mice were used to prepare the primary cultures employing previously described 

procedures with modifications (Cheung et al., 2000). Microdissected cortices were 

subjected to trypsin digestion and mechanical trituration. Cells were collected by 

centrifugation and resuspended in NB medium containing 2.5% B-27 supplement, 1% 

penicillin, 1% streptomycin, 0.25% GlutaMAX-1 supplement and 10% dialyzed FCS.  

24-well plates previously coated with poly-D-lysine (100 µg/ml) were seeded with cells 

to a density of 2 × 105 cells/cm2 and used for subsequent experiments. The cultures were 

maintained in a humidified 5% CO2 and 95 % air incubator at 37 °C. 

Immunocytochemical staining of the cultures at day 5 in vitro for microtubule-associated 

protein 2 and glia fibrillary acidic protein revealed  95% of the cells were neurons with 

minimal contamination by glia (Cheung et al., 1998).  All experiments involving animals 

were approved by the National University of Singapore, and were in accordance with the 

US Public Health Service guide for the care and use of laboratory animals.   

 

Drug preparation for application on neuronal cultures over a 24h period 

All pharmacological drugs listed in the table below were freshly prepared individually in 

their respective solvent before each neuronal culture treatment. Desired concentrations 

were achieved via dilution with NB medium. EC50 for each drug has been previously 

ascertained in our laboratory via MTT cell viability assay, and this concentration is 
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employed to induce neuronal injury over a 24h incubation period in day 5 or 7 cultured 

neurons. Total RNA was harvested at over at designated time-points over the 24h post-

treatment period, and subjected to microarray analysis. All microarray data reported here 

are described in accordance with MIAME guidelines, and has been deposited in the 

NCBIs Gene Expression Omnibus (GEO; http://www. ncbi.nlm.nih.gov/geo/) and are 

accessible through the following GEO Series accession number. 

Drug Treatment Solvent Stock 
Concentration 

Treatment 
concentration 

GEO Accession 

NOC-18 [Nitric oxide (NO) 
donor] 
[DETA-NONOate, (Z)-1-[2-
(2-Aminoethyl)-N-(2-
ammonioethyl)amino]diazen-
1-ium-1,2-diolate] 

10mM Sodium 
hydroxide 
(NaOH) 

100mM 0.5mM GSE22087 

Hypochlorous acid (HOCl)* Water 300mM 250uM - 
Rotenone DMSO 10mM 10nM GSE22997 
Lactacystin DMSO 100mM 1mM GSE23155 
Glu 100mM NaOH 100mM 250uM GSE19936 

 

*The HOCl stock solution was aliquoted into small quantities and stored at 4°C in the 

dark for up to 1h prior to use due to its instability and susceptibility to dissociate into free 

oxygen and HCl. HOCl concentration was quantified spectrophotometrically at 290nm 

(pH 12.0, ε = 350M-1cm-1) prior to use (Morris, 1996). HOCl was diluted in cold water to 

a concentration of 300mM and stored on ice for no longer than 1min (Whiteman et al., 

2005b). HOCl was diluted in Earle‘s balanced salt solution (EBSS) warmed to 37˚C to 

desired concentration.  
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7.1 Introduction 

Several patho-physiological mechanisms such as oxidative stress, neuroinflammation, 

cell cycle re-entry and excitotoxicity are not exclusive to any one neurodegenerative 

disease or neurological disorder, but are frequently found to occur concurrently in several 

neuropathies. Particularly, oxidative stress can be considered to be a universal patho-

physiological phenomenon consistently observed in chronic neurodegenerative disorders 

such as AD (Sultana and Butterfield, 2009) and PD (Jenner, 2007) and acute neurological 

disorders such as stroke (Niizuma et al., 2009). Even though this phenomenon has been 

ubiquitously detected in post-mortem brains of these neurological disorders through its 

consequential effects, the significance of its implication during neuronal death 

progression remains unclear. As such, comparative microarray analysis of specific 

neuropathy-representing models becomes an invaluable avenue to decipher the 

pathological mechanisms upstream and/or downstream of oxidative stress. From there, 

novel insights into the signaling transduction pathways modulated upon its occurrence 

would form the foundation for screening platform in the identification of potential 

universal biological targets useful in the area of therapeutic management. 

 

Adopting cultured murine primary cortical neurons as the basis of the in vitro model, 

focus on the commonality of the signaling pathways regulated upon individual time-

course neuronal treatments with four well-characterized oxidative stressors: HOCl, NO, 

Glu and rotenone. They are most appropriately selected as they either have been 

implicated in the pathogenesis of several neurological dysfunctions, or are well-
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represented agents of neurodegenerative models through reproduction of pathological 

morphological characteristics of the disease state. 

 

Involvement of HOCl has been documented in numerous inflammatory and oxidative 

stress–related diseases namely atherosclerosis (Hazell et al., 1996), cystic fibrosis (Kettle 

et al., 2004) and neurodegenerative disorders such as PD (Choi et al., 2005) and AD 

(Green et al., 2004). As compared to other fields of disease study, the role of HOCl in 

neurodegenerative disorders is still lacking. In the mammalian brain, HOCl is produced 

predominantly by concerted activations of NADPH oxidase and myeloperoxidase (MPO) 

in activated microglia and infiltrated neutrophils and monocytes during inflammatory 

pathological conditions (Bianca et al., 1999; Gonzalez-Scarano and Baltuch, 1999). 

However, expression of NADPH oxidase and MPO in neurons has also been reported 

(Green et al., 2004; Noh and Koh, 2000; Tammariello et al., 2000; Vallet et al., 2005). In 

PD, an up-regulation of MPO with a corresponding elevation of HOCl-modified proteins 

has been demonstrated in the ventral midbrain of post-mortem brains and disease mouse 

models. Further, in AD brains, 3-chlorotyrosine, a biomarker of HOCl, existed at three-

fold that of control brains (Green et al., 2004).  

 

Similarly, excessive endogenous NO production has been identified in neurological 

disorders linked to oxidative stress such as ischemia (Cuzzocrea et al., 2001), ALS 

(Cookson and Shaw, 1999), AD (Good et al., 1996) and PD (Good et al., 1998). Apart 

from its conformational activation of GC, NO, due to its extreme thermodynamic 

instability, is able to undergo vigorous chemical reactions with gaseous molecules, anions 
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and ROS to form NO2
-, NO3

- and particularly ONOO-. Under physiological conditions, 

these electrophilic reactions are important in the modulation of protein activity through 

selective post-translational modifications such as nitrotyrosination (Ischiropoulos and 

Beckman, 2003) and S-nitrosylation (Broillet, 1999), and alteration of mitochondrial 

energy metabolism (Brown and Cooper, 1994; Cleeter et al., 1994) and synthesis (Nisoli 

et al., 2003). However, upon physio-pathological state, excess NO reacts quickly with 

O2·- to form ONOO- to escape its sequestration by the antioxidant systems, of which the 

latter decomposes further into multiple toxic products (Beckman et al., 1990). During this 

transformation process, intermediate products such as ROS and free radicals are being 

produced. Abundant presence of NO-originated intermediates and byproducts induces 

dysregulated modifications of cellular molecules (lipids, proteins and DNA) through 

oxidation (Butterfield, 1997), nitration (Souza et al., 1999) or nitrosylation (Stamler et al., 

1997).  

 

Rotenone, a specific mitochondrial complex I inhibitor, is well known for its ability to 

mimic the pathological characteristics of PD (e.g. presence of Lewy bodies) within 

dopaminergic neurons. Mitochondrial complex I is involved in the superoxide formation 

during physiological respiration and its dysfunction is denoted as a hallmark feature of 

PD identified in the substantia nigra par compacta of disease patients (Lin and Beal, 

2006; Mancuso et al., 2006). It has been further suggested that partial inactivation of the 

complex activity observed in PD would enhance ROS production as compared to that of 

full inhibition, aggravating the extent of cellular damages (Pitkanen and Robinson, 1996; 

Votyakova and Reynolds, 2001). 
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Pharmacological proteasomal inhibitor, lactacystin, can trigger oxidative stress indirectly 

via the promotion of aberrant, toxic protein buildup as a result of UPS dysfuction, and 

thus induce apoptosis in cultured mouse cortical neurons (Cheung et al., 2004; Yew et al., 

2005). With specific regard to the CNS, proteasomal inhibition has been linked to the 

cellular toxicity and pathology observed in the brain during normal aging, in 

neurodegenerative diseases such as PD and AD as well as cerebral ischemia (Ding and 

Keller, 2001; Grune et al., 2004; Keller et al., 2004; Keller et al., 2000b).  Incidentally, 

proteasomal inhibition is most severe in the brain region that exhibits the largest amount 

of pathology (Keller et al., 2000a; McNaught et al., 2001).  Proteasomal inhibition is also 

reported to mediate deleterious alterations in cell cycle regulation, inflammatory 

processes, protein aggregation and trigger the cell death pathway (Demasi and Davies, 

2003; Rideout et al., 2003; Rockwell et al., 2000; Yew et al., 2005).  Recently, studies 

have shown that the inhibition of proteasome using a proteasomal inhibitor such as PS-

341 induced apoptosis through the induction of ER stress-reactive oxygen species 

(Fribley et al., 2004).   

 

Collectively these agents are appropriately selected as each has been implicated in the 

pathogenesis of numerous inflammatory and oxidative stress–related neurological 

dysfunctions. Furthermore, they are well-represented agents of neurodegenerative models 

through recapitulation of various pathological or morphological characteristics of the 

diseased state. Major biological pathways that are activated by the four stressors were 

monitored, to provide information on the detailed signal transduction processes and to 

enhance our understanding of the mechanisms invoked. 
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7.2 Results  

Even with a focus on the elucidation of pathogenesis of cerebral ischemia, it is beneficial 

to identify signaling pathway commonality of this neurological deficit condition to the 

other neurodegenerative diseases such as PD, AD and ALS. Four in vitro oxidative 

stressor models namely, NO, HOCl, rotenone and lactacystin representative of the 

neuropathological characteristics of these common neurodegenerative diseases were 

employed for comparative global transcriptomic comparison to that of Glu. 

 

7.2.1 Generation of NO global gene profile 

On day 7 in vitro, the cultured neurons were treated with escalating concentrations of 

NOC-18 in NB medium. MTT cell viability assay revealed the IC50 for NO was 0.5mM 

(51.2  4.0% cell viability). Morphological analysis of 0.5mM NOC-18 treated neurons 

by Hoffman modulation contrast imaging demonstrated cell shrinkage into round 

apoptotic cell bodies with absence of neuritic outgrowths and when compared to the 

healthy control neurons (Peng et al., 2008). There was an absence of rapid swelling 

indicating that accidental necrosis was not involved (Nagley et al., 2010). In addition, 

Hoescht stain illustrated the presence of chromatin condensation in these round cell 

bodies as opposed to that of control cells, further confirming induction of neuronal death 

predominantly by apoptotic-like injury by 0.5mM of NOC-18 (Peng et al., 2008). In the 

present study, 0.5mM of NOC-18 was chosen for subsequent time-course experiments. 

 

Microarray analysis was carried out on day 7 neuronal cultures treated with 0.5mM 

NOC-18 post-24h using 14 GeneChip Mouse Genome 430 2.0 array (Affymetrix, Santa 
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Clara, CA), which contain 45,000 probe sets and can analyze the expression level of over 

39,000 transcripts and variants from over 34,000 well-characterized mouse genes. The 

assignment of the arrays (GeneChip) was as follows: vehicle-treated control (n=5); NOC-

18-treatment for 8h, 15h and 24h NOC-18 treatment (n=3 for each time point). Out of a 

total of 45,000 probe sets representing over 34,000 well-characterized mouse genes, 

3,672 probe sets were profiled after 0.5mM NOC-18 treatment. DAVID interpretation 

recognized 3,484 biologically- and functionally-reported genes from various biological 

databases for NO treatment. 

 

7.2.2 Generation of HOCl global gene profile  

Neurons at day 5 in vitro were treated with 0.5ml of HOCl in EBSS culture medium. The 

addition of HOCl did not significantly alter the pH of the reaction mixture. After 3h, 

EBSS was removed and followed by the addition of 0.3ml of Dulbecco‘s modified Eagle 

medium (DMEM)/F-12 culture medium to allow neuronal injury to proceed for a further 

8h and 24h respectively. Appropriate vehicle controls were run in parallel. 

 

Previous data have shown that HOCl induced a concentration-dependent apoptotic-

necrotic continuum cell death in cultured murine cortical neurons (Yap et al., 2006). The 

focus of the present study was on the transcriptomic regulatory response of neurons upon 

apoptotic injury mediated by HOCl. HOCl concentrations lower than 300μM induced 

apoptosis in cultured cortical neurons (Yap et al., 2006). Cell viability of 250μM HOCl-

treated neurons decreased to approximately 70% after 24 h of exposure (data not shown), 

reminiscent of our previous work (Yap et al., 2006). HOCl-induced apoptosis of cortical 
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neurons was evaluated by morphological changes and Hoechst/propidium iodide (PI) 

staining (Yap et al., 2006). Morphological photomontage demonstrated HOCl induced 

neuronal shrinkage and loss of neuritic networks when viewed. After 24h of treatment, 

cell bodies of HOCl-treated neurons shrink when viewed under light microscopy. Those 

injured neurons still preserve their plasma membrane integrity as demonstrated by PI 

staining. Nuclear changes were examined by Hoechst stain. Both revealed chromatin 

condensation in HOCl-treated neurons. As such, 250μM HOCl was the concentration of 

choice for microarray analysis. 

 

HOCl global transcriptional profile was previously conducted in our laboratory and has 

been published (Yap et al., 2006). Ten Affymetrix murine genome array U74A 

(Affymetrix, Santa Clara, CA) containing probe sets presenting all known mouse genes 

and 6000 ESTs were used. The controls/treatments were carried out as followed: control 

(n=5), 8h (n=2), and 24h post-HOCl treatment (n=3). 2,203 probe sets were profiled to be 

significantly regulated. DAVID interpretation recognized 2,016 biologically- and 

functionally-reported genes from various biological databases for HOCl treatment. 

 

7.2.3 Generation of rotenone global gene profile 

Previous study in our laboratory on rotenone-mediated neuronal injury demonstrated 

significant loss of cell survival and major apoptotic morphological changes characterized 

by cell shrinkage and membrane blebbing in cortical neurons at rotenone concentrations 

at 5nM and 10nM, respectively (Chen et al., 2006). Morphological observations of the 

neurons treated with rotenone concentrations of more than 50nM showed rapid cell 
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swelling, indicating that cells died primarily via necrosis (Chen et al., 2006). 

Furthermore, morphological evaluation using Hoechst 33258 staining and fluorescence 

microscopy revealed DNA condensation and fragmentation in primary cortical neurons 

treated with 25nM rotenone for 24h, a major morphological characteristic of apoptosis 

(Chen et al., 2006). This indicates that rotenone induces an apoptotic-necrotic continuum 

cell death. IC50 value for rotenone from cell viability assay was revealed to be 10nM, and 

was subsequently employed for microarray analysis over a 24h period. 

 

A total of 13 arrays from the Illumina® Mouse Ref8 Ver.1.1 hybridization beadchips was 

used for rotenone global gene profiling purpose in my Ph.D. study: Control (n=4); 

exposure to 10nM lactacystin for 8h (n=3), 15h (n=3) and 24 h (n=3). 5,935 gene probes, 

which corresponded to 4,629 DAVID-recognizable candidates with reported up-to-date 

biological functions, were found to be significantly regulated. 

 

7.2.4 Generation of lactacystin global gene profile 

Previous study from our laboratory demonstrated a time-dependent decrease of neuronal 

cell viability after treatment with 1M of lactacystin with a significant decrease 24h after 

lactacystin treatment (Choy et al., 2010). Fluorometric analysis of caspase activities 

demonstrated that CASP- 2, 3, 6, 8 and 10 are pro-apoptotic caspases, suggesting that up 

to 15h is needed to trigger the activation of the pro-apoptotic proteases after lactacystin 

treatment in cultured cortical neurons (Choy et al., 2010). Morphological study revealed 

that nucleus condensation and chromatin fragmentation were obvious in cells 24 h after 

the lactacystin treatment (Choy et al., 2010). 
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Transcriptomic profiling adopting the Illumina Mouse Ref8 V1.1 Beadchips was carried 

out on lactacystin-treated neuronal RNA samples harvested over a period of 24h. A total 

of 18 arrays was used in this experiment: Control (n=6); exposure to 10nM lactacystin for 

5h (n=3), 8h (n=3), 15h (n=3) and 24 h (n=3). A genelist of 4,292 gene probes, were 

statistically significantly regulated. Upon online DAVID classification, 3,424 genes with 

known biological functions were demonstrated. Part of this lactacystin global gene profile 

(24h lactacystin versus control) generated in my Ph.D. project has been published in 

(Choy et al., 2010). 

 

7.2.5 Comparative global transcriptomic analysis across all five distinct oxidative 

stressor models (Common genes perspective) 

As several microarray platforms were adopted in this comparative bioinformatics study, 

to avoid differences in degree of sensitivity and specificity resulting in loss of potential 

significantly regulated genes, differentially expressed genes common to the five 

treatments (NO, HOCl, rotenone, lactacystin and Glu) were defined on the criteria of a 

minimum of 1.5 fold change in each of the treatment time-point and passed statistical 

testing by one-way ANOVA, p<0.05 and Benjamini-Hochberg FDR Correction. Genes 

which were differentially expressed were annotated using DAVID 6.7 and PubMed 

search. Due to the limitation of the paper size and the vast amount of microarray data 

from all five transcriptomic profiles, comparative profile analysis in this chapter seeks to 

focus on the identification of the common genes and signaling pathways found to be 

potentially modulated, and in doing so, comparing their overall temporal regulatory 
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trends. This is crucial and informative in the elucidation of the universal signaling 

mechanisms at work during neurodegeneration.  

 

59 gene probes, corresponding to 51 DAVID-identifiable IDs, were identified as 

commonly differentially regulated across all five oxidative stressor models.  Functional 

cluster of these genes only provided two enriched biological processes (Table 7.1). 

Oxidative stress was clearly experienced by neurons subjected to oxidative insults with 

potential modulation of the anti-oxidant Nrf2-inducible transcription and GSH pathway. 

Genes that were involved in promoting cell survival demonstrated a generally down-

regulatory transcriptional response. 
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Table 7.1 Selected enriched biological processes consisting of common differentially regulated genes common to five oxidative 
stressors-induced neuronal injury models. Cultured mouse primary cortical neurons (dissected from brains of gestation day 15-16 
Swiss white albino embryos; Cheung et al., 1996) were treated with 250M HOCl, 0.5mM NOC-18, 10nM rotenone, 1uM lactacystin 
and 250µM Glu respectively and RNA collected over a 24h timeframe. The first significant numerical fold-change value exceeding  
1.5 up or down –regulated  sem, with their respective time-point (in bracket) was presented. Up () or Down () arrow after gene 
symbol denotes the overall regulatory trend over a 24h time-course transcriptomic study for each oxidative stressor model, i.e. a 
specific gene which show early up-regulation at the initial phase, with subsequent down-regulation at a later time-point is assigned with 
a  arrow and vice versa. If the latter up/down-regulation is in a fold-change of opposite mathematical sign (+ or -) and above 1.5 
expression level, it would also be demonstrated in the table. 

Genbank Gene Title Symbol HOCl NOC-18 Rotenone Lactacystin Glu 
Oxidative stress 
- Oxidative stress induced gene expression via Nrf2 

NM_010234 FBJ osteosarcoma oncogene c-Fos 20.94  3.01 
(8h)  

31.00  1.08 
(8h)  

3.29  0.21 (8h) 
 

2.70  0.86 (5h) 
 

3.95  0.86 (5h) 
 

NM_009716 Activating transcription factor 4 
Atf4 1.80  0.49 (8h) 

 
1.59  0.31 (5h) 

 
2.36  0.16 

(15h)  
1.50  0.56 (8h) 

 

-1.67  0.24 
(15h) 
  

NM_010442 Heme oxygenase (decycling) 1 
Hmox1 5.14  0.50 (8h) 

 
18.03  8.04 

(5h)  
14.26  2.29 

(24h)  
1.87  0.49 (5h) 

 
1.59  0.34 (5h) 

 

NM_010902 
Nuclear factor erythroid-related 
factor 2 Nrf2 1.82  0.45 

(24h) 
2.66  0.31 

(5h)  
3.55  0.42 

(15h)  
1.56  0.51 (24h) 

 
1.61  0.58 

(5h)  
- Glutathione metabolism 

NM_010357 Glutathione S-transferase, alpha 4 Gsta4 3.25  0.45 
(24h)  

5.78  0.48 
(15h)  

2.91  0.32 
(15h)  

-1.68  0.13 (5h) 
1.63  0.36 (24h) 

 

2.58  0.63 
(15h)  

NM_019946 Microsomal glutathione S-
transferase 1 mGst1 1.93  0.41 

(24h)  
2.65  0.48 
(15h)  

2.56  0.35 
(15h)  

-1.68  0.19 
(8h)  

3.21  0.87 
(15h)  

NM_009104 Ribonucleotide reductase M2 Rrm2 -1.56  0.50 -1.65  0.48 
(15h)  

-1.85  0.07 
(24h)  

-2.51  0.14 
(15h)  

1.80  0.46 (5h) 
 

Cell survival 

NM_153547 Guanine nucleotide binding 
protein-like 3 (nucleolar) Gnl3 2.10  0.50 

(8h)  
1.54  0.48 

(15h)  
1.78  0.11 

(24h)  
2.03  0.48 (8h) 

 
1.72  0.40 (5h) 

 

NM_021099 Kit oncogene Kit -2.74  0.49 
(8h)  

-2.09  0.48 
(15h)  

-4.13  0.06 
(15h) 

-1.53  0.17 
(8h)  

-1.55  0.12 (5h) 
 

NM_009129 Secretogranin II Scg2 1.95  0.49 
(8h)  

1.79  0.31 (5h) 
 

-1.86  0.07 (8h) 
 

1.76  0.43 
(8h)  

-4.09  0.07 (5h) 
 
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7.2.6 Comparative global transcriptomic analysis across all five distinct oxidative 

stressor models (Common pathway perspective) 

As demonstrated from Table 7.1, through functional classification of genes common to 

all five models, there is not much useful information extracted with regards to the 

understanding of the commonality of the signaling pathway. As such, another approach 

was derived. Gene functional classification and biological process clustering were 

performed on the global transcriptomic profile of individual model. Enriched biological 

processes were generated and compared for identification of common pathways. This 

prevents the potential of eliminating potential genes related to a particular significant 

pathway that were not universally significantly regulated in all models, and which could 

otherwise be filtered off if selection of genes common to all models was to be done. 

Furthermore, this approach is plausible as it allows a more affirmative conclusion of the 

overall regulatory trend of the signaling pathways through evaluation of all genes 

encoding for members of a particular signaling cascade. 

 

Table 7.2 displayed genes (in their gene symbols due to the limitation of space) that were 

significantly modulated according to the microarray parameters previously mentioned 

with the up () or down () arrows to demonstrate their overall temporal regulatory trend 

in a 24h treatment timeframe. In this case, several promising and cell injury-associated 

signaling pathways were identified. 
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Table 7.2 Selected enriched biological processes consisting of significantly up-regulated genes common to four oxidative stressors-
induced neuronal injury models. The genes demonstrated in the table were chosen based on the criteria of having at least 1.5 fold 
transcriptional expression in a minimum of one times-point and passed statistical testing, one-way ANOVA, p <0.05 in each oxidative 
stressor transcriptomic profile. Cultured mouse primary cortical neurons (dissected from brains of gestation day 15-16 Swiss white albino 
embryos; Cheung et al., 1996) were treated with 250M HOCl, 0.5mM NOC-18, 10nM rotenone and 250µM Glu respectively and RNA 
collected over a 24h timeframe. Individual transcriptomic profile was subjected to functional-gene ontology classification using the 
online bioinformatics database DAVID 2008. Selected biological processes (shown in table below) were generated through gene 
enrichment and statistically validated by gene-term enrichment score through modified Fisher‘s exact test and Benjamini correction 
(Huang et al., 2009; Dennis et al., 2003). Up () and/or Down () arrow after gene symbol denotes the overall regulatory trend over a 
24h time-course transcriptomic study for each oxidative stressor model, i.e. a specific gene which show early up-regulation at the initial 
phase, with subsequent down-regulation at a later time are indicated with opposed arrows (). 

Biological Processes Oxidative Stressors 
HOCl NOC-18 Rotenone Lactacystin Glu 

Response to oxidative 
Stress 
 Oxidative stress-induced 

expression via Nrf2 

 Nrf2, Gst (alpha) 
 

 

 Nrf2, Gst (alpha), 
Hmox1, Atf4, Pkc, Fos, 
Jun, Ugt  

Nrf2, Gst (alpha), 
Hmox1, Atf4, Fos, Ugt 

Nrf2, Gst (alpha), 
Hmox1, Atf4, Fos, Ugt  

Nrf2, Hmox1, Gst 
(alpha), Fos, Ugt 

 Heat shock proteins 
(Hsps) and molecular 
chaperones 

ApoE, Nqo1, Txnl2, 
Prdx(1, 6) 
 

 Nqo1, Ptgs2, Npn3, 
Prdx (1, 6) 

Nqo1, Gab1 / Gab3, 
Ptgs2, Npn3, Prdx6, 
Sesn3 

Npn3, Txnl1, Ptgs2 
 
ApoE, Prdx (2, 3, 5, 
6) 
 

 ApoE, Nqo1, Gab1, 
Npn3, Prdx (1, 6), Mt (1, 
2, 3), Sesn3 

 Glutathione (GSH) anti-
oxidant pathway 

 Gst (alpha, mu, pi), 
mGst1, Gsr1, Gcl 

 

Gst (alpha, mu, theta), 
mGst1, Gpx1, Gss, 
Gsr1, Gcl, Idh2  

 

Gst (alpha, mu, pi), 
mGst1, Gpx1 / Gpx7, 
Gss, Idh2 

 

Gst (alpha), Gsr1, 
Gcl 
 
Gst (mu, theta, zeta), 
mGst, Idh2 
 

Gpx1, Gst (alpha, mu, 
theta), mGst1, Idh2 
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Table 7.2 (continue) 

Biological Processes 
Oxidative Stressors 

HOCl NOC-18 Rotenone Lactacystin Glu 
Endoplasmic reticulum 
(ER) stress via unfolded 
protein response (UPR) 

Serpinh1 
 
Hspa1a, Hsp (ca, 
cb), Hsp105, 
Chaperonin 10, Hsp 
(a2, a8), Txdc4 ↑ 
 

Hspa8, Hspb8, 
Hspa9a, Hsp14, 
Serpinh1, Txdc4, Perk, 
Derl1, Ero1l, Herpud1 

 

Hsp (a1, a8), Hspa9a, 
Txdc4, Ern2 

Hspa1a, Hsp (a5, a8), 
Hspa9a, Hspb1, Hspd1, 
Hspe1, Hsp (ca, cb), 
Chaperonin 10, 
Hsp105, Serpinh1, 
Perk, Ero1l, Herpud1 

 

Hsp (a2, a8), Serpinh1, 
Perk 

Ubiquitin-Proteasome 
System (UPS) 

Ube2a,  
 
Ube2e, Usp (5, 19, 
22), Psma (1, 7), 
Psmd8 

Usp (2, 36) 
 
Ube2c, Ube2n, Ube3c, 
Psma1 

 

Ube1x, Ube2d, Ube2n, 
Ube3b, Psma (1, 3) 

 

Ubc, Ube2g2, Ube3a, 
Ufd1l, Usp (8, 16, 40), 
Psma (1, 7), Psmb (3, 
7), Psmc1 
 
Usp (3, 30), Psmb1, 
Psmc (2, 3, 4, 5) 
 
Usp (29, 36, 43), 
Psmb10 

 

Usp3 
 
Psma1 
 
Ube1x, Ube2n 
 

Mitochondrial respiratory 
chain 

Acad, Cyp7b1, 
Cyp4v3 
 
Gpd2, ETC 
complex-I (Ndufa3),  
ETC complex-III 
(Uqcr), ETC complex-
IV (Cox4i1, Cox7b, 
Cox7c)  

Acad, Idh2, ETC 
complex-IV (Cox6a2, 
Cox7c) 
 
 ETC complex-IV 
(Cox7a1), Gpd1 

 
 

Acad, Idh2, ETC 
complex-IV (Cox7b), 
Cyp1b1, Cyp4v3, 
Cyp4a14, Cyb5r1, 
Cyb5r2 
 
 ETC complex-I (Nduf), 
ETC complex-II (Sdhb, 
Sdhd), ETC complex-III 
(Uqcr), ETC complex-IV 
(Cox5b, Cox6a2) 

 

Acad, Cyp26b1, 
Cyp4b1, Cyp7b1, Etfb 

 
 ETC complex-I 
(Ndufa6), ETC 
complex-III (Uqcr), 
ETC complex-IV 
(Cox5b, Cox6a2, 
Cox6b, Cox6c, Cox7b), 
Idh2, Cyb561, Cyb5 

Acad, Idh2, Etf (a, d), 
ETC complex-IV 
(Cox6b, Cox8b), ETC 
complex-IV (Cox6a) 
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Table 7.2 (continue) 
Biological Processes Oxidative Stressors 

HOCl NOC-18 Rotenone Lactacystin Glu 
Calcium ion binding and 
homeostasis 

Trpc4, S100A (1, 6, 
10, 11), Fah, Cib2 
AnxA (2, 3) 
 
Gpd2, Lman 

 

Trpm7, S100A (1, 4), 
S100b, Atp2c, Pkca, 
Fk506bp (9, 10), Lamc1, 
AnxA (2, 3, 4, 5)  

 

S100A (1, 6, 10, 11), 
Fk506bp (9, 10), AnxA 
(2, 3, 5) 

S100A (10, 13), 
AnxA2 
 
 Fk506bp (2, 4, 8) 

S100A (6, 11), 
FK506bp (9, 10), 
Calml4, Lamb2, AnxA 
(2, 3, 5), Capn2 

Programmed cell death 
 

Bax, Bad  
 
Casp (3, 8, 9), Cytc 
 
 

Tnfrsf (1a, 12a ), 
Pawr, Dap, Btg, Siva, 
Puma, Noxa 
 
 Dapk2 

 

Tnfrsf (1a, 10b, 12a), 
Traf1, Pawr, Dap, Casp8, 
Fas 

 

Fas, Puma, Noxa Casp6, Dap, Pawr, Aif 
 
Tnfrsf12a 
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7.3 Discussion 

7.3.1 RESPONSE TO OXIDATIVE STRESS 

- Oxidative stress-induced expression via Nrf2 

Various endogenous and exogenous sources contribute to the increase in oxidative load. 

Mitochondria being the primary cellular factory for energy production are a rich 

endogenous source of ROS through its respiratory electron transport chain which 

constantly undergoes fluctuations in redox states (Halliwell, 2006). Other cellular 

processes leading to ROS formation include lipid peroxidation, metal ion-associated 

Fenton reactions, NO-mediated protein nitrosylation and matrix enzymatic interactions 

(Chinopoulos and Adam-Vizi, 2006; Haliwell, 2006). Cellular oxidative stress can trigger 

two opposing cellular responses: pro-survival and pro-death reactions. Pro-survival 

response to oxidative stress can be implemented at two different molecular stages, 

targeting at the transcriptional and post-translational modification levels respectively.  

 

NRF2, a pro-survival transcription factor primarily localized in the cell nucleus, is 

ubiquitously expressed in a wide variety of tissue and cell types (McMahon et al., 2001). 

Neuroprotective role of NRF2 has been demonstrated in in vitro and in vivo models of 

neuropathy (Johnson et al., 2008), amidst its assertive anti-cancerous and anti-

inflammatory functions in tumor growth and tissue injuries (Reddy et al., 2009; Ramoz-

Gomez et al., 2001). It is involved in the transcriptional activation of ARE-containing 

genes encoding detoxifying enzymes and cytoprotective antioxidant proteins (e.g. 

superoxide dehydrogenase, Nqo1, and glutathione S-transferase (Gst) upon oxidative and 

electrophilic stresses (Zhao et al., 2007). Under physiological basal conditions, induction 
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of NRF2 target gene expression is inhibited by NRF2 retention in the cytoplasm by its 

interacting inhibitory partner, KEAP1 which targets it for degradation by the UPS 

(Reviewed in Kaspar et al., 2009). In the event of cellular stress, rise in intracellular ROS 

and electrophiles induce the activation of several protein kinases, including PKC, ERK, 

MAPK, and PKR-like ER kinase (PERK) (Buckley et al., 2003). These protein kinases 

induce the phosphorylation of NRF2, releasing it from KEAP1 sequestration and 

facilitating its translocation into the cell nucleus where it binds to ARE sequence, leading 

to transcriptional activation of antioxidant enzymes (Nguyen et al., 2000; Buckley et al., 

2003) (Bloom and Jaiswal, 2003; Huang et al., 2002; Zipper and Mulcahy, 2000; 

Cullinan et al., 2003).  

 

Individual analytical results from the time-course global expression profiles of HOCl-, 

NO-, rotenone-, lactacystin- and Glu-treated neurons revealed a strong NRF2-mediated 

transcriptional elevation of oxidative stress-responsive neuroprotective genes. NRF2-

targeted pro-survival genes (e.g. Pkc, activating transcription factor 4 (Atf4), Gst 

subunits, Hmox1 and Hsps (categorized under Endoplasmic reticulum stress via unfolded 

protein response in Table 7.2) demonstrated consistent transcriptional up-regulation with 

concomitant along with Nrf2 elevated gene expression in all five oxidative stressor 

models. It is worthy to note that proteins encoded by Nrf2-induced transcriptional target 

genes also have prominent roles in the unfolded protein response (UPR) triggered upon 

ER stress, establishing the intimate regulatory feedback relationship between processes 

activated upon cellular oxidative and ER tensions. 

 



Chapter 7: 
In vitro oxidative stressor models 

333 
 

-Hsps and molecular chaperones 

Oxidative damages to existing cellular proteins can also be mitigated at the post-

translational stage through the mobilization and activation of HSPs and metal ion 

molecular chaperones. HSPs and molecular chaperones are crucial in the facilitation of 

the refolding of misfolded proteins to avoid their aggregation and accumulation in the 

cell (Meriin and Sherman, 2005). They cooperate with the ubiquitin-proteasome system 

(UPS) to prevent intracellular buildup of aberrant toxic proteins, and regulate the 

degradation of excess cytoplasmic proteins. HSPs confer cellular protection mainly 

through two mechanisms: firstly, as mentioned, HSPs act as molecular chaperones to 

ensure correct formation and maintenance of native conformation of cytosolic proteins 

and stabilization of actin filaments; secondly, suppression of the pro-apoptotic member of 

the BCL2 family, BID, by HSP70 (HSPA8) and HSP27 (HSPB8) prevents cytochrome c 

(CYTC) release (reviewed in Franklin et al., 2005).  

 

The present comparative gene expression profiling study demonstrated a generally 

similar elevation in gene expression trend of several Hsps such as Hspb1, Hsp2, Hspa8, 

Hsp9a and Serpinh1 (Hsp47) (categorized under Endoplasmic reticulum stress via 

unfolded protein response in Table 7.2). The same phenomenon is observed for 

peroxiredoxins (Prx1 and Prx6), prostaglandin-endoperoxide synthase 2 (Ptgs2; also 

known as cyclo-oxygenase 2) and neoplastic progression 3 (Npn3; also known as 

sulfiredoxin) and members of the metal ion chaperones, metallothionein family (Mt1, 

Mt2 and Mt3) in all models with the exception of lactacystin. 
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- Glutathione (GSH) anti-oxidant pathway 

Further to the cytoprotective effects offered by the HSPs and chaperones, the GSH 

pathway also serves to be a major effective mean to reduce oxidative stress via 

sequestration of NO, ONOO- and ROS. Genes related to GSH biosynthesis induced in the 

presence of oxidative stress acts as a cellular defense mechanism. During oxidative stress, 

increased NADP+ concentration will lead to activation of glucose-6-phosphate 

dehydrogenase, an enzyme that catalyses the first rate-limiting step in the oxidative 

branch of pentose phosphate pathway (PPP), and subsequently stimulation of PPP (Ursini 

et al., 1997). Studies have showed that stimulation of PPP in neurons and astrocytes 

conferred protection against ROS-induced toxicity by producing NADPH (Ben-Yoseph 

et al., 1996). The induction of detoxification enzymes such as GST, NQO1, 

mitochondrial aldehyde dehydrogenase (ALDH), and Aldh dehydrogenase/reductase 8 

(DHRS8) which use GSH and NADPH as co-factors are important in detoxifying 

quinines and maintaining the cellular redox balance. One common feature of these 

proteins is that they use GSH and NADPH as co-factor. So, for efficient detoxification 

and maintenance of cellular redox status, it would be beneficial to increase these proteins 

together with GSH and NADPH. Hsps genes were also regulated in a GSH-dependent 

manner (Calabrese et al., 2003). Fratelli et al., 2005 showed that HSP40 and HSP70 are 

strongly induced by GSH depletion.  

 

Indeed, from the microarray analyses, initiation and persistent activation of the GSH anti-

oxidative pathway were evident from the concerted transcriptional up-regulation of its 

pathway members (Gcl, Gst, Gsr and Gpx1) and associated detoxifying enzymes (Nqo1 



Chapter 7: 
In vitro oxidative stressor models 

335 
 

and Npn3) and Hsps (Serpinh1 and Hspa8) in HOCl, NO, rotenone and Glu models 

(Table 7.2). Intriguingly, lactacystin-mediated neuronal injury demonstrated a mixed 

transcriptional response within the different Gst subunits. 

 

Altogether, the transcriptional up-regulation of detoxification enzymes, antioxidant 

proteins and Hsps upon oxidative stress is a result of activation by NRF2 via the ARE 

motif found in their promoters followed by alteration of thiol redox state (Wasserman and 

Fahl, 1997). Thus, the coordinate up-regulation of these genes can have a synergistic 

effect in the maintenance of GSH levels as well as detoxification of reactive 

intermediates. It can be inferred that NRF2-induced pathway plays a crucial role in 

propagating a strong anti-oxidative, pro-survival response against oxidative stress. 

 

7.3.2 ENDOPLASMIC RETICULUM (ER) STRESS VIA UNFOLDED PROTEIN 

RESPONSE (UPR) 

ER, with a pivotal pleiotropic physiological role in cellular biogenesis, metabolism, 

signaling and survival, is also a vital homeostatic organellar regulator of cellular stress 

(Travers et al., 2000). It is the site for the proper synthesis, folding and post-translational 

modification of cellular proteins (Ron et al., 2007) as well as production of steroids, 

cholesterols and other lipids (Chang et al., 2006). It also serves as a major intracellular 

Ca2+ store (Verkhratsky, 2005).  

 

Presence of ER stress has been reported in AD (Hoozemans et al., 2005), PD (Kitao et 

al., 2007) and ischemic stroke (DeGracie and Montie, 2004). ER stress, characterized by 
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the accumulation of unfolded proteins in the ER lumen, is frequently inflicted upon by 

the presence of oxidative stress. This stress induction can occur upon perturbation of any 

of ER cellular functions, i.e. via protein oxidation, disturbance of Ca2+ signaling, and 

alteration of the homeostatic redox balance (Gorlach et al., 2006). An intimate 

communicative, functional coupling relationship between ER and mitochondria has also 

been established on the basis of these cellular functions. One instance would be the 

maintenance of Ca2+ equilibrium, crucial for the proper functioning of both organelles 

(Csordás et al., 2006). Mitochondria act as an emergency Ca2+ store upon sudden 

transient surge in cytosolic Ca2+ level, to buffer the ER against any functional disruption. 

Furthermore, several members of the Bcl2 family prominent for their roles in regulation 

of mitochondrial-mediated apoptosis also participate in ER-induced cell death and Ca2+ 

signaling between the ER and mitochondria (Gorlach et al., 2006; Rao et al., 2004). 

Initiation of ER stress has been demonstrated to occur upon mitochondrial energy deficits 

(Flores-Diaz et al., 2004). 

 

Upon ER stress, UPR is triggered to restore homeostatic balance (Schröder, 2008). UPR 

serves as a double edge sword inducing resultant pro- and anti-apoptotic effects. During 

the initial phase of oxidative stress when incurrence of cellular oxidative damage is still 

within ER tolerable threshold, UPR activates two signaling pathways mediated by two 

ER-resident kinases, PERK and inositol-requiring enzyme (IRE1), and transcription 

factors Atf4 and Atf6 which promote cell survival through the alleviation of ER burden. 

Mitigation of ER stress is achieved via two cellular routes: firstly, ER dynamic capacity 

to process unfolded and/or misfolded proteins is increased through elevated expression of 
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ER chaperones via IRE1-induced expression of Xbp1, a transcription factor that activates 

transcription of genes coding for proteins needed for the ER protein folding and 

processing reactions (Schroder, 2008), and inhibition of cellular protein translation to 

decrease the buildup of newly synthesized, unassembled proteins by PERK-mediated 

inhibitory phosphorylation of the eukaryotic initiation factor (eIF2α)  (Harding et al., 

1999).  

 

However, once ER stress proceeds beyond the tolerable limit and homeostasis cannot be 

restored, UPR evokes a detrimental effect to send the cell to its demise. Programmed cell 

death pathways originating from ER stress responses can occur dependent and/or 

independent of mitochondria (Li et al., 2006). Prolonged extensive ER damage triggers 

apoptosis via the production of unfolded proteins or the release of Ca2+ into the 

cytoplasm (Rao et al., 2004). ER stress can activate its resident protease, caspase-12 and 

Atf6-induced CHOP expression, causing mitochondrial membrane permeabilization 

which eventually leads to either classical apoptosis or other mitochondrial cell death 

pathways (van der Sanden et al., 2003). In addition, the Ca2+ release from ER can induce 

calpains which are normally kept inactive by their endogenous inhibitor calpastatin, 

eventually leading to programmed necrosis (Wang, 2000). Excessive calpain activation in 

vitro can lead to non-specific degradation of constituent proteins, including cytoskeletal 

proteins, and growth factor receptors. 

 

Substantial ER stress is prominent from the gene expression profiles of all five oxidative 

stressor models with significant increase in gene expression of Atf4, Nrf2 and Perk, an 
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indication of UPR activation (Table 7.2). The increase expression of these UPR-related 

genes can occur as a consequence of Nrf2 transcriptional activation, as previously 

mentioned. Furthermore, ER-stress inducible chaperones (Txdc4 and Hsps) and pro-

apoptotic proteins (Puma and Noxa) (discussed in details Cell Death section) also showed 

transcriptional up-regulation. This is a clear inference of the occurrence of ER stress upon 

cellular oxidative tension, resulting in trigger of UPR to counteract the accumulation of 

aberrant oxidized proteins and dysregulated intracellular ionic concentrations. 

 

7.3.3 UBIQUITIN-PROTEASOME SYSTEM (UPS) 

The UPS is a complex system which plays a primary role in eukaryotic protein clearance 

and quality control, where misfolded and/or excessively produced proteins are 

molecularly marked with poly-ubiquitins and dedicated for degradation by the 

proteasome system (Schroder and Kaufman, 2005). Compromise in UPS efficiency has 

been reported in the aging process (reviewed in Gaczynska et al., 2001) and 

neurodegenerative disorders where aberrant protein inclusions have been observed 

(Mandel et al., 2005). A down-regulation of genes encoding proteasome subunits in the 

substantia nigra pars compacta of PD brain has been reported by Mandel et al., 2005, 

indicating the essentiality of maintenance of functional proteasomal expression for 

neuronal survival under stress conditions. UPS can be segregated into two distinct 

processes which starts off with ubiquitinylation of the proteins mediated by three 

enzymes namely, ubiquitin-activating enzyme E1 (UBE1), ubiquitin-conjugating enzyme 

E2 (UBE2) and ubiquitin protein ligase E3 (UBE3), followed by the targeting of the 

ubiquitin-linked protein/polypeptide to the proteasome for clearance. 
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Observations based on the temporal regulatory trend of UPS-related genes in the 

transcriptomic profiles of all oxidative stressor models with the exception of HOCl and 

lactacystin suggested the occurrence of an UPS dysfunction based on a general down-

regulation of genes encoding ubiquitinylation enzymes and certain proteasome subunits 

(Table 7.2). These genes include those encoding for the proteasome subunits (Psma1 and 

Psma3), Ube1 (Ube1x), Ube2 (Ube2c, Ube2a, Ube2d2 and Ube2n) and Ube3 (Ube3b and 

Ube3c). On the other hand, ubiquitin-specific peptidases (Usp2, Usp3, Usp22, Usp36), 

which function as deubiquitinylating enzymes, demonstrated significant up-regulation, a 

further evidence of the decreased efficiency of UPS function.  

 

An early initial up-regulation of UPS genes that eventually falters with time is especially 

prominent in HOCl-mediated neuronal injury (Table 7.2), suggestive of a regulatory 

feedback mechanism in an attempt to reverse the detrimental effects of proteasomal 

inhibition in the event of a proteasome dysfunction-induced cell death (Yew et al., 2005). 

This mirrors a partial regulatory trend of the UPS genes (Usp3, Usp30, Psmb1, Psmc(2-

5)) in lactacytin-mediated neuronal injury. On the other hand, the remaining genes were 

up-regulated in lactacystin profile.  These include genes that encode for the proteasome 

subunits (Psma1, Psma7, Psmb3 and Psmb7), ubiquitins (Ubc), ubiquitin-conjugating 

enzyme E2(Ube2g2), ubiquitin protein ligase E3 (Ube3a) and ubiquitin fusion 

degradation 1 like (Ufd1l). This is consistent with report by Meiners et al, 2003 that 

remarked that proteasomal inhibition triggered a transient and concerted up-regulation of 

all 26S proteasome subunit mRNAs and enhanced synthesis of all proteasomal subunits, 

and increase in the number of proteasomes. 
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7.3.4 MITOCHONDRIAL RESPIRATORY CHAIN / NON-RESPIRATORY 

CHAIN ENZYMES 

The mitochondrial network plays a vital role in the supply of cellular energy currency in 

the form of ATP to ensure the proper functioning of a variety of metabolic processes 

within a cell. Simpler molecules resulting from the cellular cyclic processing of 

macromolecular nutrients transfer electrons to carrier proteins such as NAD+ and FAD+ 

producing NADH and FADH2, which transfer the electrons to the ETC localized at the 

inner mitochondrial membrane (Saraste, 1999). Due to the constitutive cyclic fluctuation 

of the redox status between ETC enzymatic protein complexes with consequent high 

consumption of cellular oxygen in the oxidative phosphorylation process, mitochondria 

are assumed to be the main cellular producers of ROS (Orrenius et al., 2007). Escaping 

electrons from the ETC can potentially reduce oxygen to form the highly reactive free 

radical superoxide anion, which can undergo further Fenton reaction to generate hydroxyl 

radical and hydrogen peroxide which similarly can cause detrimental cellular damages 

(Boveris et al., 1972). 

 

As a result of this pivotal physiological function of mitochondria which if not properly 

managed can have adverse effects on cell survival, mitochondrial functionality has been 

proposed to be a crucial regulator and indicator of cellular homeostasis. Indeed, decline 

in mitochondrial functionality has been closely linked to increasing age of mammals. 

This age-correlated respiratory chain deficiency is especially prevalent in only a subset of 

mammalian tissues, such as heart, skeletal muscle, colonic crypts and neurons (Dufour et 

al., 2008). A recent study by Dufour et al., 2008 demonstrated that the co-existence of 
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functional respiratory chain-deprived and normal neurons accelerated the 

neurodegenerative process of the adjacent normal cells through a trans-neuronal signaling 

mechanism. 

 

Transcriptomic analysis revealed substantial differential regulation in gene expression of 

majority of the mitochondrial enzymatic proteins involved in the oxidative 

phosphorylation and ETC processes. Main players of the mitochondrial ETC, namely 

complexes I to IV, demonstrated primarily significant down-regulation scattered across 

five oxidative stressor models, with the rotenone treatment being especially prominent 

with all four complexes being transcriptionally affected (Table 7.2).  Mitochondrial 

complex IV demonstrated significant transcriptional regulation across all five oxidative 

stressor models.  

 

On the contrary, other non-mitochondrial microsomal electron transferring pathways such 

as the cytochrome p450 family (Cyp), and cytochrome b5 reductase (Cyb5) demonstrated 

up-regulation, a probable compensatory attempt to make up for the cellular energy deficit 

(Table 7.2). Similarly, other proteins also involved in oxidative phosphorylation (e.g. 

glycerol-3-phosphate dehydrogenase (Gpd), acetyl-coenzyme A dehydrogenase (Acad) 

and isocitrate dehydrogenase (Idh)) also showed elevated gene expression. 
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7.3.5 CALCIUM ION BINDING AND HOMEOSTASIS 

Delicate management of calcium ion homeostasis is critical to cellular wellbeing due to 

the presence of a variety of Ca2+-activated protein families which can evoke two 

antagonizing outcomes: survival and proliferation, or cell death. These opposing 

consequences are mediated by Ca2+ released from specific Ca2+ compartments through 

different calcium channel subtypes, which stimulate Ca2+-dependent proteins at 

differential subcellular localizations. As such, cells have an intrinsic fail-safe system 

implemented by the mitochondria to combat sudden and temporary surge in intracellular 

Ca2+ level as a result of oxidative stress (reviewed in Chinopoulos and Adam-Vizi, 2006). 

Mitochondria regulate cellular Ca2+ signals by acting as a temporary Ca2+ buffer and 

respond to Ca2+ elevations by increasing the cell energy supply (Santo-Domingo and 

Demaurex, 2010). However, upon abnormal calcium ion homeostasis arising from 

prolonged ER stress and increase ROS production, a series of intracellular signaling 

cascades is activated which can lead to apoptosis through the activation of Ca2+-activated 

calpains (Crocker et al., 2003).  

 

Detailed analysis of the transcriptomic profiling of all five oxidative stressor models in 

the present study demonstrated significant up-regulated gene expression of proteins 

involved in calcium ion binding and homeostasis which comprised of Ca2+-activated 

proteins such as S100A and FK506 Ca2+-binding protein families and annexins (Anxs) 

(Table 7.2). Further, a transcriptional up-regulation of the Ca2+-activated protease 

calpain-2 (Capn2), prominently implicated in programmed necrosis (discussed in details 

in Cell Death), was observed in the Glu-mediated neuronal injury model. This is a 
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probable indication of the presence of atypical, high intracellular Ca2+ level which 

enhanced Ca2+ signaling resulting in an increased demand for elevated expression of its 

Ca2+-dependent members. 

 

7.3.6 CELL DEATH 

PCD as previously mentioned in Chapter 1: Introduction has broaden its definition, other 

than apoptosis (PCD-I), to include further two cell death subtypes namely autophagy 

(PCD-II) and programmed necrosis (PCD-III). Due to the increased complexity and 

overlapping in processes across the 3 modes of PCD, it is difficult to distinctively assign 

which PCD type is at work for each individual cell death occurrence. This is because all 

three PCD modes can consecutively or simultaneously be involved in an apoptotic-

necrotic continuum in a cell. Alternatively, within a homogenous population of cell type 

subjected to a single cytotoxic insult, there can be a co-existence of heterogenous PCD 

types in operation among neighbouring cells. 

 

It is evident from the microarray analysis that the apoptotic mechanisms, both 

mitochondrial-dependent and –independent, were at work in the facilitation of neuronal 

death in the four distinct oxidative stressor models. However, the up-regulated set of 

PCD genes differs across models even though the genes encode for proteins involving in 

the same pathway. Transcriptional up-regulation of the main players in mitochondrial-

dependent pathway, comprising of cytochrome c (Cytc), caspase 3 (Casp3), BH3 

interacting domain death agonist (Bid), Bcl2-associated x protein (Bax) and apoptosis-

inducing factor (Aif), and that of the extrinsic apoptotic pathway, including the tumour 
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necrosis factor receptors (Tnfrsf1), Fas, caspase 8 (Casp8) and death associated protein 

(Dap), were detected (Table 7.2).  

 

- Intrinsic mitochondrial-dependent apoptosis 

Activation of the intrinsic mitochondrial apoptotic pathway as a response to elevated 

ROS production and mitochondrial DNA damage facilitates outer membrane 

permeabilization and mitochondrial-cytoplasmic translocation of CYTC, AIF, or 

SMAC/DIABLO, which induce downstream caspase-dependent or -independent 

cytosolic signaling events (Ryter et al., 2007). In the event of the occurrence of former, 

CYTC interacts with APAF1 to form the apoptosome complex which further recruits and 

activates the zymogen of CASP9. The fully assembled apoptosome then proceeds to 

induce cleavage of downstream effectors CASP3 and CASP7. In the form of positive 

feedback mechanism, activated CASP3 promotes CASP2 and CASP6 activation that 

further promote CASP9 processing (Slee et al., 1999). Concurrently, the antagonistic 

effect of Smac/Diablo on the inhibitors of apoptotic proteins (IAPs) enhances caspase 

activation. On the other hand, AIF mediates caspase-independent signaling through 

cytoplasmic-nuclear translocation to mediate nuclear chromatin condensation and DNA 

fragmentation (Sussin et al., 1999). From Table 7.2, it is apparent that HOCl and Glu –

mediated neuronal injuries engaged the mitochondrial-dependent apoptotic pathway as 

demonstrated by the transcriptional up-regulation of Cytc, Bax, Bad, Casp (3, 6 and 9) 

and Aif in both models. 
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-Extrinsic tumour necrosis factor receptors (TNFRs)-mediated apoptosis 

The extrinsic apoptotic pathway is triggered by the activation of death receptors present 

on the exterior of plasma membrane through ligand-receptor interactions resulting in the 

eventual activation of the initiator caspases through protein-protein interactions. These 

death receptors include Fas, TNFRSF, and TNF-related apoptosis-inducing ligand 

(TRAIL) receptors (Ashkenazi and Dixit 1999), of which the former two demonstrated 

transcriptional up-regulation in all five oxidative stressor models (Table 7.2). The Fas/Fas 

ligand (FasL) pathway is one of the extensively studied mechanisms in extrinsically 

stimulated death receptors-mediated apoptosis (Reviewed in Circu and Aw, 2010). With 

the binding of Fas/FasL, the Fas-associated death domain (FADD) and procaspase 8 are 

recruited to form the death-inducing signaling complex (DISC) which is then 

endocytosed (Watanabe et al., 1988). The accumulation of cytoplasmic DISC after its 

release from the endosomes and detachment from the receptors promotes activation of the 

initiator CASP8 (Lee et al., 2006). The relative degree of CASP8 activation determines 

the types of downstream signaling courses being induced: substantial CASP8 activation 

can directly activates CASP3, whereas low CASP8 activation adopts intrinsic 

mitochondrial-dependent pathway as previously to activate CASP3 (Barnhart et al., 

2003). The extrinsic pathways mediated by the plasma membrane integrated death 

receptors (TNFRs) play a major role in cell death promotion in all five oxidative stressor 

models by demonstrating transcriptional up-regulation over the 24h gene profiling period 

(Table 7.2). 
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- p53-mediated apoptosis 

p53 (alternatively known as transformation-related p53 (Trp53)) is a well-known 

transcription factor for its physiologic role in guarding the integrity of the DNA genome 

by keeping the cell cycle process in check. However, recent discoveries have shifted the 

research attention onto its role in cell death induction through activation of ER stress-

responsive apoptotic genes such as p53-unregulated modulator of apoptosis (PUMA; 

BCL2 binding component 3 (Bbc3)) and phorbol-12-myristate-13-acetate-induced 

protein 1 (NOXA; phorbol-12-myristate-13-acetate-induced protein 1 (Pmaip1)) (Yu and 

Zhang, 2003) as well as its non-transcriptional-dependent mediation of cell death through 

its non-nuclear localization (Yee and Vorsden, 2004). p53 has also been demonstrated to 

associate with and inactivate the anti-apoptotic/pro-survival members of the BCL2 

superfamily such as BCL2 and BCL-xL (Erster and Moll, 2005). On the other hand, 

PUMA and NOXA are BH3-containing proteins which have the ability to displace BCL2 

and BCL-xL inhibitory interactions with the pro-apoptotic proteins BAX and/or BAK 

(also members of the BCL2 superfamily), thus leading to the latter duo activation, 

resulting in mitochondrial outer membrane permeabilization and release of apoptogenic 

factors such as CYTC (Kim et al., 2009). Interestingly, BCL-xL has been reported to be 

involved in the inhibition of cytoplasmic p53 activity, and that transcriptional activation 

of Puma by nuclear p53 is required for the PUMA protein to release cytoplasmic p53 

from BCL-xL to activate BAX (Chipuk et al., 2005). Only in NO and lactacystin -

mediated neuronal death models did PUMA and NOXA demonstrated significant 

transcriptional up-regulation, indicative of the activation of p53 signaling pathway 

induced by ER stress (Table 7.2).  
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7.3.7 Summary of the comparative microarray analysis across the five oxidative 

stressors models 

Elaboration of the type of data obtained by transcriptional analysis, as shown above, will 

shed further light on specific details of the apoptosis-necrosis continuum of neuronal 

death, which takes place consequential to induction of oxidative stress. As such, with the 

presence of regulatory feedback loops existed among different modes of PCD, it is 

impossible to distinctly dissect one mode from the other.  Furthermore, adding on to the 

equation is each player having concurrent functions in different modes, complicating the 

whole PCD process. This can be an advantage when identifying potential biological 

targets within the PCD cascades, as there is the possibility of inhibiting multiple pro-

death pathways through single target suppression. As such, it is important that PCD be 

viewed as a single complex, multi-pathways process. 

 

In conclusion, comparative analysis of the global transcriptomic profiles of HOCl, NO, 

rotenone, lactacystin and Glu, all of which are prominent oxidative stressors of 

neurological disorders such as AD, PD and ischemic stroke models, enable us to achieve 

novel insights into neuronal oxidative stress. This would greatly facilitates downstream 

experimental works via identification of novel biological targets which singular effects 

through manipulative means (e.g. suppression or over-expression) would prove to be 

effective in the impediment of neurodegeneration in a variety of neuropathies. The 

enriched biological processes discussed here centralized and highlighted the significant 

implication of mitochondria and other organelles including ER, in a multi-process 

aggravation of neuronal injury. Furthermore, in the context of most oxidative stress-
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related neurodegenerative diseases such as AD, PD, ALS and even in ischemic stroke, 

which are also recognized as protein aggregation disorders, the presence of these 

aggregates provide an additional aspect aggravating the cellular stresses leading to 

neurodegeneration and cell death. While studies at the cellular level have limitations in 

terms of understanding the detailed pathophysiological process leading to disease in the 

intact organism (humans or animal models of particular diseases), they do provide the 

key underpinnings of molecular and cellular pathways, on the basis of which the 

behaviors of cells, tissues and organs in the more complex milieu of the mammal can be 

deciphered. 
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8.1 Conclusion 

8.1.1 Summary of major findings from in vitro models 

Previous pharmacological studies employing selective iGluRs antagonists demonstrated 

that H2S-mediated neuronal injury involved iGluRs (namely NMDARs and KARs) -

mediated excitotoxicity resulting in lysosomal rupture (Cheung et al., 2007). By 

employing functional GluRs-expressing cultured primary cortical neurons as the 

foundation of in vitro model, it would be worthy to determine the significance of 

NMDARs and KARs –activated signaling cascade in H2S-mediated neuronal injury by 

employing their specific agonists. As such, microarray analysis was conducted on H2S, 

NMDA and KAR-mediated neuronal injury models to elucidate this dependence of the 

excitotoxicity pathways during H2S-mediated neuronal injury. Comparative global gene 

profiling of these three models demonstrated a significant overlap of NMDA and KA 

profiles against that of H2S, indicating a high degree of reliance of the iGluRs, i.e. 

NMDARs and KARs in the infliction of excitotoxicity-mediated cellular damage, which 

constitute a significant contribution to the overall H2S-mediated neuronal injury.  

 

Excitotoxicity is primarily initiated by aberrant rise in cytosolic Ca2+ level through 

activation of iGluRs and ionic channels on plasma membrane. It has become an 

increasing hallmark in several neurodegenerative diseases such as AD, PD, HD and ALS, 

as well as acute neurological disorders as such as cerebral ischemia and TBI. Since 

excitotoxicity has been frequently documented as an upstream cellular event with great 

emphasis placed on its role in induction of neuronal loss, it would be of great research 

importance and relevance to ascertain the mechanistic impact of the iGluRs subtype in 
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excitotoxicity during Glu-mediated neuronal injury. This is because Glu is a major 

excitatory neurotransmitter in the mammalian brain, and an agonist to a huge GluRs 

superfamily that comprises of ionotropic and metabotropic (G-protein-coupled) subtypes 

which initiate very distinct signaling cascades with diverse cellular outcomes. Under 

neuropathological conditions, Glu in the extracellular matrix is accumulated to high 

cellular toxic concentrations as a result of its release from damaged neurons and the 

reversal action of Glu pumps on astrocyte plasma membrane. This high level of Glu then 

proceeds to induce activation of all its interacting GluRs, be them ionotropic or 

metabotropic subtypes resulting in neuronal death. As such, Glu –mediated neuronal 

injury involves a mixed cellular response from two different subtypes of GluRs. Even 

though excitotoxicity is frequently associated with hyper and constitutive activation of 

iGluRs, it has not been ascertained quantitatively in terms of the signaling pathways the 

whole subfamily transduced, and the main cellular processes potentially being the culprits 

for neuronal demise.  

 

iGluRs subfamily is made up of three members, AMPAR, KAR and NMDAR, all named 

after their specific pharmacological agonists. Simultaneous comparison of the global 

transcriptomic profiles of AMPA, KA, NMDA and Glu –mediated excitotoxicity injuries 

revealed a higher degree of correlation in terms of number of similarly-regulated genes 

for KA and NMDA rather than AMPA profiles against that of Glu as background. This 

may signify a higher amplification of signaling transduction from KARs and NMDARs 

activation as a result of greater surface expression as in the case of the latter, intrinsic 

receptor ionic conductance and/or divergence of elicited downstream pathways. Other 
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than not being as highly expressed as NMDARs, AMPARs demonstrate differential Ca2+ 

permeability which is governed by the GluR2 subunit, as such the ratio of GluR2 –

present to absence ratio would play a role in its regulatory response time to rise in Glu 

stimulus. Furthermore, in the case of Glu, the delayed in cellular process activation may 

be accounted for by the dilution of the effective concentration of the agonist to activate 

iGluRs, due to concurrent sequestration of Glu molecules by metabotropic GluRs. 

 

Functional annotation revealed oxidative stress and cell cycle re-activation as the main 

cellular components triggered by excitotoxicity. This is the first time that the origin of 

cell cycle-reactivation has been defined and clearly linked to iGluRs activation. 

Simultaneous transcriptional upheaval of both processes supported the ―two-hit‖ 

hypothesis originally formulated for AD pathogenesis, suggesting that oxidative stress 

and cell cycle dysregulation contribute hand-in-hand to neuronal loss during 

neurodegeneration. 

 

8.1.2 Summary of major findings from in vivo models 

As the mammalian brain comprises of heterogeneity of brain cell populations and blood 

vasculature, sole employment of the in vitro models allow would not suffice the 

understanding of excitotoxicity implication under disease pathogenesis as it does not 

entirely mimic the in vivo interactive brain environment. Stroke, commonly known as 

cerebral ischemia, has been well associated to excitotoxicity being one of its most 

prominent downstream cellular processes. Together with its pathogenesis still not fully 

elucidated coupled with the seriously deprivation of available therapeutic options, in vivo 
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cerebral ischemia rodent models from neonatal to adult brains, and transient to permanent 

occlusion, were adopted to extensively study the main injury-governing processes.  

 

Two main patho-mechanisms namely, oxidative stress and inflammation, were 

consistently observed in vivo in all three forms of cerebral ischemia, in accordance with 

current up-to-date literature. Presence of oxidative stress is defined by the transcriptional 

upregulation of organellar (ER/lysosomal) stress-inducible genes and anti-oxidant 

proteins such as Hsps, molecular chaperones and GSH enzymes. The detrimental role of 

oxidative stress is further accentuated by the employment of Gpx1-/- transgenic mouse, 

which demonstrated higher vulnerability to pro-oxidants, indicative of the need of 

functional anti-oxidative mechanisms in place to combat rise in oxidative burden. 

Inflammation is also evident by the increase in gene expression of inflammatory 

molecules such as chemokines, cytokines, interleukins and CAMs which serves to 

facilitate leukocyte chemotaxis and infiltration into the ischemic region. 

 

Interestingly, cell cycle re-entry is not significantly over-represented in the in vivo 

models, even though up-regulation of pro-mitogenic and some cell cycle proteins were 

observed. Few Cdks and cyclins were significantly modulated. Oxidative stress and 

inflammation are downstream outcomes of cerebral ischemia, and occurrence of 

excitotoxicity, a rapid process, preceded these two events. The inability to 

transcriptionally detect cell cycle re-activation might be due to the much earlier 

occurrence of this event, resulting in even the early profiling time-point (5h) to only 

capture the aftermath of its regulation.  In order to confirm that excitotoxicity-induced 
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cell cycle re-activation was present physiologically in the mammalian brain, inhibitor of a 

cell cycle protein kinase family, AURKs (selective for AURKA and AURKB), whose 

transcriptional up-regulation has been observed in all four in vitro models was post-

administered into the rodent brain after induction of permanent focal cerebral ischemia. 

Promisingly and unprecedentedly, AURKs inhibitor demonstrated significant abrogation 

of ischemic damage with substantial reduction in infarct volume. 

 

Up-to-date, preclinical experiments employing inhibitors (Flavopiridol, Olomoucine or 

Roscovitine) of another cell cycle protein kinase family, CDKs, demonstrated improved 

behavioral outcomes and increased neuronal survival in a series of CNS disease models 

such as AD (Copani et al., 2001; Jorda et al., 2003; Verdaguer et al., 2004b), PD 

(Kruman and Schwartz, 2006), stroke (Osuga et al., 2000; Wang et al., 2002a) and TBI 

(Hilton et al., 2008). However, it is worried that these beneficial effects may be ousted by 

the potential side-effects arise from the non-specificity of those CDK inhibitors, and 

furthermore, may also imply the possibility of the neuroprotection conferred by other 

unknown molecules inhibited by the drugs (Bain et al., 2003; Bain et al., 2007; Sridhar et 

al., 2006). 

 

All in all, the combined microarray findings from in vitro excitotoxicity and in vivo 

cerebral ischemia models serve their purpose as a screening platform to on one hand, 

facilitate the understanding of the pathogenesis of stroke, and on the other hand, identify 

a novel biological target (AURKs) which would be promising in the development of 

therapeutic interventions not just for stroke, but for other neurodegenerative diseases 
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where cell cycle re-entry is prominent, as in the case for CDKs. 
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8.2 Future Directions 

My current study has established the origin of cell cycle re-entry to be attributed iGluRs 

activation during excitotoxicity. Futher, AURKs, a cell cycle protein kinase family, 

appeared to play a substantial role in the initiation and propagation of the cell cycle re-

entry process, through firstly, the significant transcriptional up-regulation of AurkA/B 

interacting partners in in vitro models and secondly, selective AURKA/B protein 

inhibition demonstrating successful abrogation of cerebral ischemic infarct damage in in 

vivo rat brain. However, there still exist a missing link between these two processes 

which requires urgent addressing with particular focus on AURKs, mainly A and B, 

involvement since these two members though being have been well documented to be 

involved in cell cycle division especially pertaining to cancer oncology field, their roles 

under neuropathological conditions which in most cases excitotoxicity is causative 

remains to be elucidated. 

 

First, it is important to identify the relative neuronal survival influence of AURKA/B in 

cell cycle re-entry in relation to excitotoxicity, and determine if their individual role in 

this neuropathological process is attributed to their intrinsic phosphorylation activation of 

their downstream targets. This is important as AURKA and AURKB functions have been 

assigned to different stages in the cell cycle. This can be achieved via knockdown and 

over-expression functional studies of AURKA/B in in vitro cultured primary cortical 

neurons which are subsequently subjected to excitotoxic insults. Consequentially, overall 

outcome of AURKA/B can be concluded via cell viability assays (e.g. MTT reduction 

assay, LDH release assay, Annexin V labelling and Hoescht stain) to determine their 
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respective influence on cell survival and the mode of cell death they each induces. 

Manipulation of AURKA/B protein expression can be achieved by lentiviral transduction 

techniques, which yields high level of targeted and controllable manipulative efficiency 

(that can be quantitated via immunoblotting or microscopic techniques through the use of 

green fluorescence tags), as compared to the employment of pharmacological inhibitors. 

A step further, it would be worthy to ascertain if the intrinsic phosphorylation ability of 

AURKA/B is crucial in mediation of excitotoxicity-induced cell cycle re-activation via 

the over-expression of AURKA/B kinase-dead mutants. 

 

As AURKA and AURKB are relatively newly discovered proteins as compared to CDKs, 

and their relevance to neuropathy has been recently established, much research work still 

remains underway to fully elucidate their up/downstream interactive pathways and 

endogenous regulatory mechanisms in the cell cycle process under neurodegenerative 

conditions. As such, the second proposed future study would involve the dissection of 

AURKA/B up/downstream signaling pathways at the transcriptional and translational 

levels would prove to be of utmost relevance in the understanding of AURKA/B 

signaling mechanistic activation and regulation. At the transcriptional level, miRNA 

global expression profiling from the present project has identified several 13 miRNAs 

significantly modulated upon AURKs inhibitor administration after permanent focal 

cerebral ischemia. As miRNAs are endogenous transcriptional repressors with each 

controlling a handful of downstream target genes, the present miRNA global expression 

data provides us an advantage in the identification of the miRNA responsible for the 

transcriptional modulation of AURKA/B expression. This can be facilitated through the 
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application of miRNA mimetics to in vitro neuronal cultures prior to excitotoxicity 

insults, with subsequent determination of their effects on neuronal viability. At the 

translational level, literature has reported several AURKA (PKC, PLK and TPX2) and 

AURKB (BIRC5 and INCEP) interacting partners during mitotic cell division. 

Manipulative elevation and/or silencing of protein expression of these interacting partners 

would provide insights into the criticality of these interacting partners on AURKA/B 

functionality (in terms of activation and phosphorylation ability) and/or expression. 

These insights could mean the unravelling of a positive/inhibitory feedback loop and 

substitution of an interacting partner with another. Apart from existing reported protein 

partners, a yeast-two-hybrid screening can be conducted to identify new interacting 

partners of AURKA/B to elicit cell cycle re-entry or other cellular processes which all in 

all contributed to neuronal damage under neuropathological conditions. All approaches 

towards the uncovering of AURKA/B-mediated signaling cascade are advantageous as 

they concurrently also permit identification of additional biological targets, i.e. 

AURKA/B interacting partners whose inhibitions showed better efficacy as well as other 

cell cycle-related signaling roles of AURKA/B if present, which all in all contribute to 

exacerbation of excitotoxicity-triggered cerebral ischemic damage. 

 

Lastly, one may ask if the significant role of AURKA/B during excitotoxicity-mediated 

cell cycle re-activation as seen in the in vitro model also applies to the in vivo situation 

which comprises of heterogeneity of brain cell populations and complex architectural 

interactions such as the blood-brain barrier. This can be verified indirectly through the 

application of AURKA and AURKB –specific inhibitors to induce functional suppression 
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in neuropathological (focal cerebral ischemia) model where excitotoxicity is causative. 

The efficacy of each AURK-type specific inhibitor can be accessed through animal 

behavioural studies to determine cognitive dysfunction as well as biochemical tests on the 

post-mortem rodent brains. Further work can also be set up to determine the therapeutic 

window of these inhibitors that can be administered post-stroke episode. 
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