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ABSTRACT

This thesis provides an integrated approach to common problems with loca-
tion estimation for animal tracking. Many existing techniques confound problems
of location accuracy with simplistic track representations and under-utilization of
available data.

Traditional techniques such as speed filtering and time spent maps are illus-
trated with a software package developed by the author with examples of location
estimates from southern elephant seals. This software enables the application and
exploration of various techniques that have previously not been available in a single
solution. These include filtering, temporal gridding, projection transformation and
GIS integration.

A novel Bayesian approach is introduced for the more general problems faced
by different tagging techniques. This approach integrates all sources of data in-
cluding movement models, environmental data and prior knowledge. This general
framework is illustrated by application to satellite tag data and light-measuring tag
data. Examples are used to detail the use of movement models with a powerful track
representation model, and the application of raw light data for location estimation.
Previously under-utilized sources of data are used to inform location estimates.

A method for applying light level geo-location within the framework is presented.
This approach provides a primary location estimate for each twilight and utilizes all
of the available data from archival tags.

These model runs result in very large databases of samples from Markov Chain
Monte Carlo (MCMC) simulations and techniques for summarizing these for the
variety of analysis outputs are illustrated. This system solves issues of location
uncertainty with a full path representation and provides spatial maps of residency
for multiple animals.

The relation between archival tag data and ocean circulation is used to extend
the application of archival tag data for location estimation for diving animals in a
manner similar to commonly used SST methods. Diving profiles from elephants seals
are compared with 4D oceanographic datasets. Older tags are limited by problems
with measurement lags for temperature—this problem is addressed with a proxy
model for temperature at depth to ocean height.

This thesis provides a number of important improvements to the derivation of
location from various types of tag data by integrating disparate information sources
in a systematic way. Location estimates are produced with inherent quantification
of errors. The approach provides the variety of metrics and analysis types required
with an extensible software package. These contributions help bridge the divides
between various analytic techniques traditionally employed for animal tracking.
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Chapter 1

INTRODUCTION

Modern animal tracking analysis consists of a diverse set of techniques used by a wide
range of researchers in many disparate fields of science. There are established tra-
ditional techniques that range from very simplistic spatial representations of tracks
(Samuel et al., 1985; Bradshaw et al., 2002; Croxall et al., 2004), to powerful sta-
tistical models that rely on modern computing hardware for their solution (Jonsen
et al., 2005; Patterson et al., 2008; Breed, 2008). There are significant divides be-
tween fields in terms of the importance of certain techniques and in the access to
existing tools. Some of these differences are due to the species being studied or the
priorities of the research, and some are due simply to the established habits of a
community or their access to the necessary tools.

In terms of the available software tools, there is a divide betwen the tool users
and tool makers in that many of the problems involved with analysis do not come
to light until algorithm development is attempted (Calenge et al., 2009). The major
problems with estimates of tag location accuracy and reliability are well-understood,
but the related issues of data consistency and management are rarely seen except by
those who develop the software tools (Coyne and Godley, 2005; Halpin et al., 2006).
Somewhat paradoxically, with widespread access of modern computing hardware
and software, more researchers are exposed to the implementation details applied
to raw data and track analyses and are required to act as practioners managing and
analysing data (Block et al., 2003a; Hartog et al., 2009).

The availability of computing and visualization tools has provided the ability
to scrutinize analyses against existing knowledge or intuition. Mapping tools en-
able realistic representation of animal tracking analyses and can present insights
or problems that were not initially apparent. There is great promise for accessible
software to enable greater realism, or at least provide the representation of very
complex models involving time-developing 3D with multiple variables of interest
(Andres et al., 2009).

Animal tracking is a modern field that has seen great advances made with re-
searchers working closely with tag manufacturers to ensure that tag development
closely matches the priorities and requirements for data collection (Wilson et al.,
2002; Afanasyev, 2004). This same improvement has been occurring with software
tools as researchers “get their hands dirty” working with raw track data. The de-
velopment of techniques like MCMC for the solution of Bayesian models provides

1
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the ability to model very complex problems with spatial and temporal structure,
involving large and disparate data sets (Dennis, 1996; Dixon and Ellison, 1996).

1.1 The thesis

By the application of Bayesian methods we can utilize all information sources to
help with the variety of problems of location estimation for animal tracking. An
investigation of traditional track methods shows that the point and line model is
too simplistic and reveals a number of inherent problems. From this perspective we
see that no matter the method, approaches that deal with tracks as a time series
of points or lines are inherently limited, and that these limitations apply to data
collected by a variety of tag types. Some process that generates a time series of
locations has a deeper rawer source of data behind it and it is this that fits best in
an integrated Bayesian approach.

This thesis considers problems with animal tracking data, focussing on the es-
timation of location. There is some consideration of data handling, mostly from
an estimation and quality control perspective. One of the main goals is to take
advantage of the large collection of existing data sets, rather than attempt to design
best methods for obtaining data. Traditional techniques are presented to illustrate
the main problems involved with tag location analysis and provide a toolkit for
executing these traditional techniques. Many researchers are aware of cutting-edge
analytical techniques that are improving the outputs from tracking data, but access
to these is often difficult and there is a lack of understanding of their limitations.

1.2 Chapter outlines

Chapter 2 provides an overview of general problems with the analysis of tracking
data, assuming that we have location estimates to begin with. We look at the
common features of tracking data and some of the common problems faced when
using these data. The chapter provides a toolkit for dealing with tracking and
associated data, pointing out some of the limitations when applying simple models
to quality assurance. The chapter concludes with the need for integration of track
analysis with the derivation of location from raw data, such as from archival tags.

Chapter 3 provides a general Bayesian framework for estimating location by app-
plying any available data, prior knowledge and movement models. The theoretical
approach is provided with examples of using the framework for two different data
sets.

Chapter 4 presents the application of the Bayesian framework to an archival tag
data set in full detail. A curve method for light level geo-location is introduced that
provides the practitioner with open access to every component of the model in freely
available tools.

Chapter 5 presents methods for representing track estimates. This includes
a suite of summary tools for the model outputs, and the use of these data for
visualization and further diagnostics.
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Chapter 6 extends the application of archival tag data to use subsurface temper-
ature for diving animals. A four dimensional ocean data set is used to demonstrate
the potential for subsurface archival tag data and applying very large data sets.
Alternative methods are presented using surface temperature as an efficient mask,
as well as temperature at depth as a proxy for sea surface height.



Chapter 2

THE TAG LOCATION PROBLEM

This chapter discusses problems faced with tracking data that concern the estimation
of location and provides a flexible software environment for exploring data and
applying solutions. Examples are used to illustrate the variety of problems and
some of the limitations of the traditional techniques by which tracking data are
analysed. The trip package is a dedicated suite of tools developed by the author
in the software language R. This package integrates data handling and analytical
techniques for track data with broader GIS and spatial data tools. This makes track
data handling tools easily available, even for those without strong programming
skills. The chapter concludes by extending the concerns regarding the limitations
of traditional techniques to methods for deriving locations from raw data.

This chapter is not intended to be a critique of modern methods of dealing with
tracking data, but introduces the variety of issues encountered and tools for applying
them. Simple-to-use tools for handling spatial and temporal data are still rare and
some of the problems encountered cause difficulties for researchers before they have
an opportunity to explore sophisticated methods. The aim here is to illustrate
some classical techniques within a software toolkit that provides better control over
the details of analysis tools for those without advanced programming skills. Later
chapters present solutions for the remaining problems. Work by Patterson et al.
(2008) and Breed (2008) provide a more critical review of recent methods.

Aims of this chapter:

1. To introduce existing problems in tracking analyses presented with examples
of classical techniques.

2. To illustrate the complexity of problems and areas that require more sophis-
ticated solutions than traditional techniques. The problems presented here
illustrate the need for solutions that come later in the thesis.

3. To present a flexible and readily customized software package as a framework
for classical analyses and starting point for more sophisticated analyses.

4. To explain the compromises that are often made with regard to data rep-
resentation and storage, as dictated by traditional systems, rather than an
expressive model of the problem represented by the spatial and temporal data.

4
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5. To encourage the use of techniques for automatic data validation, spatial and
temporal data storage and integration with database and GIS technologies.

2.1 R and the trip package

The software package trip developed with this chapter provides an integrated system
for data validation and a development framework for track analyses. This can be
used as a launching point for further analysis such as validating input to Bayesian
methods, or filtering for state-space models (Patterson et al., 2010). As an extension
of the R environment, trip also provides integration with tools for data access and
output, integration with GIS and other data systems, and metadata for projections
and coordinate systems. The trip package ties together numerous tracking analysis
techniques, which previously were only available though a wide variety of disparate
tools, each having various requirements and limitations.

The trip package was developed within the freely available software platform R, a
statistical programming environment consisting of a vast community of contributing
developers and users (R Development Core Team, 2010). R is organized into modules
known as packages which provide the functionality of the language, and also the
mechanism by which it is extended1. New packages are created using the same tools
by which R itself is built and can be contributed to a public repository such as the
Comprehensive R Archive Network (CRAN2). The repository system for contributed
packages is one of the great strengths of R and is part of the reason for its ease
of use and subsequent popularity. The spatial and temporal capabilities of R are
advanced, including strong integration with other technologies such as databases,
GIS software and the wide variety of spatial and other complex data formats.

The tools provided in R for coercion between complex data types are very pow-
erful, allowing rather different packages to share data with tight integration Bivand
et al. (2008); Chambers (2008). There are some fundamental data representations
required for spatial analysis and careful organization is needed to provide coercions
between different types to get all the tools to work together. The underlying spatial
tools used to create the trip package are described in Section 2.4 with examples of
using the software.

2.2 Problems with location estimation

This section presents actual tag location estimates to illustrate common problems
associated with track data. The location data were provided by System Argos,
which is a worldwide satellite service that provides location estimates from small
mobile transmitters.

The first example is a sequence of Argos position estimates for a single elephant
seal in Figure 2.1. All raw estimates provided are shown, with the longitude and
latitude values transformed to an equal-area projection and drawn connected as a

1See http://en.wikipedia.org/wiki/Package_Development_Process.
2See http://en.wikipedia.org/wiki/Software_repository.
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        date (1999)

01 January
28 January
23 February
21 March
16 April
13 May
08 June
04 July

Macquarie
 Island

65°S

55°S

120°W 140°W 160°W 180°W 160°E

Ross Sea

Figure 2.1: Raw Argos estimates for a Macquarie Island elephant seal. The line
connecting the points is coloured from blue through purple to yellow in order relative
to the time of each position. (Macquarie Island can just be seen in black beneath
the third dark blue line segment). The outward and inward journeys are much faster
than the journey throughout the Ross Sea, as shown by the colour scale change. A
graticule is shown for scale, 10 degrees on the main plot, and 20 degrees on the inset.

line. While there is obvious noise in the track, the general sequence of events is clear:
the seal leaves Macquarie Island, swimming predominantly south-east to the Ross
Sea where it spends several weeks, and then returns via a similar path in reverse.

There are a number of problems with the location estimates, some that are very
obvious, but others that are more subtle. First, some of the dog-legs in the path seem
very unlikely. On the outward journey the blue path shows some lateral movement
to the west and east, and just before the return to Macquarie Island there is a
similar movement to the west, then east. These are obvious problems seen as noise
in the track, with positions that cannot be believed that do not otherwise obscure
the general pattern of movement. Other dog-legs in the path are less extreme, so
are more plausible.

Another problem is that there are locations that are well within the land mass
of Antarctica. For a marine animal, these locations are clearly incorrect but as
with the track dog-legs there are similar issues with levels of plausibility that are
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difficult to evaluate. A location on land may be plausible if it is near enough to the
coast, though this can interact with further issues requiring interpretation. These
include that the start and end location are not exactly at the known “release” and
“re-capture” sight, which was the isthmus at Macquarie Island. This isthmus is quite
narrow and is readily crossed by elephant seals, though regions of the island to either
side of the isthmus can only be traversed by sea. Another section of the track at the
beginning has the path of the animal crossing Macquarie Island itself. At the scale
of this image this inaccuracy seems unimportant since the island is such a small area
within the study region. However, if the region of land concerned was a much larger
peninsula then the problem of choosing which region was actually visited remains.

A scheme that proposes to remove or correct extreme positions faces the problem
of defining appropriate thresholds. “Extreme” dog-legs cannot simply be discarded
as the question of what is “too-extreme” does not have a simple answer. A simple
rule to discard any location on land will not work since these animals do actually
visit coastal regions. The distance that a seal might travel inland is not very far but
depending on the species studied and the environment the situation may not be so
clear-cut.

There are other issues of plausibility. For example, the coastline in the figure
is quite coarse and while it may be sufficient for the scale of the image it does not
represent the actual coastal boundary available to the seal. The real coastline is
far more tortuous, detailed and dynamic—and may be significantly different from a
particular data set due to the current fast- or sea-ice cover. This is a general issue
with any data set available for informing models of animal location—the assumptions
and limitations must be understood and used appropriately.

In terms of the incorrect first and last positions in Figure 2.1, these could be
updated to be the actual release and recapture sites, but it might be more correct
to actually add those locations and times to the start and end of the sequence of
records. This is a data consistency issue that leads to the next family of problems
in track data.

2.2.1 What is a trip?

There are a number of practical issues associated with the organization of track data
that can present more prosaic problems. This section discusses some terminology
and suggests the use of a “trip” as the unit of interest and that can be defined
with database-like validation restrictions. The idealization of an animal’s trip is
a continuous line in four dimensional space-time that is perfectly accurate as a
representation of the seal’s position. For practical reasons, this ideal case can only
be represented as a series of point samples of uncertain accuracy, in two or three
spatial dimensions parameterized by time.

Animal tracking can be carried out in a variety of ways, here restricted to the
broad class of data derived from “tagging”. A “tag” is a device attached to an
animal that is used to directly sense and record data or that is indirectly detected
by a remote sensing system. For the purpose of the current discussion, refer to the
first type of tag as “archival” and the second type as “remotely sensed”. Reviews of
the practical methods for tagging in the broader context of biotelemetry for marine
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and terrestrial species are provided by Cooke et al. (2004), Wilson et al. (2002) and
Kenward (1987).

Archival tags record and store data that is later retreived from the tag, while
remotely sensed tags emit an electromagnetic or acoustic signal that is detected by an
installed system of sensors, such as a satellite or acoustic array. (This categorization
is not always maintained in practice, as archival tags may be satellite-linked in order
to upload data in near real-time, but for the purpose of location estimation the
distinction holds for the types of available data).

A loose set of definitions then is:

tag the device put on the animal.

track data any temporally referenced location data resulting from a device at-
tached to an animal.

trip a specific tracking “interval” where a tag was attached, the animal is released
for a time, and the tag (or just its data) is eventually retrieved. A trip may
be represented in some way with track data that has some quality control or
modelling applied.

Data resulting from the tagging process are identified by the device ID, as well
as by the identity of the individual animal the tag is attached to. The same tag
might be put on different animals, or the same animal might have been tracked on
two or more separate occasions. For central-place foragers, a single tagging event
may involve the same animal leaving the tagging site and returning multiple times.
Once the interval of interest is defined it can be regarded as a trip. A single leave
/ return or a tag deployment / retrieval may be referred to as a trip. Whether
multiple leave / return events are considered within a single trip depends on the
research question—migratory animals usually won’t have such clear trip boundaries
as central-place foragers, for example. The difference is important as the behaviour
of interest for central-place foragers is primarily between leave / return events, and
the return event is usually the only opportunity to retrieve a tag. Finally, there
may not be data for the entirety of the trip of interest due to tag loss or memory
restrictions, and so require the inclusion of trip sections where location is uncertain
or completely unknown.

For the current discussion, define a trip to coincide with the interval of interest
for which there is useable data from the tagging process. “Tracks” or “track data”
then are just a set of location and other data, with no particular organization or
quality control.

2.2.2 Practical data issues

The minimum organization and quality control for trip data involves the ordering
and relation between data records. The ordering of records is perhaps inconsequen-
tial, as there is the inherent order of the date-time value stored for each location,
but this may reveal more basic errors in the data. There must not be occurrences of
duplicated date-time records within a single trip, although duplicated locations in
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subsequent records are acceptable. Duplicates in time do not make sense since either
they are redundant copies of a previous record, or there is an implied infinite speed.
These are common from the Argos Service, an example is found in the seal data
example given by Freitas (2010) which is used in Section 2.4.2.3 Analytical meth-
ods sometimes apply a non-zero time difference arbitrarily to avoid divide-by-zero
errors. Less serious is the issue of successive duplicate locations, but care must be
taken when calculating metrics such as speed based on inter-point distances. Each
of these cases should be investigated carefully in case they hide errors from other
causes such as mistaken data handling.

Missing values must also be handled carefully. Location and time coordinates
cannot be used if they are missing or non-finite, even if their record appears in the
correct order. Missing values can arise in a number of ways—infinities or undefined
numeric values from numeric errors, or out of bounds coordinates, transformation
errors, data missing from a regular sequence—and the exact reasons need to be
carefully understood.4 This is a different approach taken to that of Calenge et al.
(2009) who explicitly allow missing coordinates as part of “trajectories”. This is
most pertinent in the context of tracks of regular time intervals where a missing
point can be significant in terms of interpretation. The definitions here are not
intended to determine which approach is more appropriate and there is no reason the
two rationales cannot co-exist, but the current implementation in the trip package
disallows missing coordinates.

From a programming perspective, the use of rigid classes (definitions) with valid-
ity checking can significantly reduce the time wasted solving these problems (Cham-
bers, 1998). Based on the above, the minimal data-consistency preparation required
can be achieved in the following way. Read all records, sort by trip ID then date-
time, remove duplicated records or records with missing or non-numeric spatial or
temporal coordinates. (The definition of “invalid” for a coordinate may involve out
of bounds values such as those for longitude and latitude, but this step only refers
to the data values, not their interpretation). Remove or adjust any records with
duplicate date-times within a single trip ID. Up to this point no interpretation has
been applied to the data—this will provide a useable set of records that can pass
minimal validation but each step should be carefully investigated to ensure that
automated decisions are not introducing new errors.

One way to adjust duplicate times is to simply modify the values forward or back
by a small amount, but this can be problematic depending on the time differences
involved. The reason for duplicated times is more likely to be a problem with the
data itself and should be investigated.

Other problems in this regard deal with the sensibility of movements in a par-
ticular coordinate system. The most commonly used coordinate system for tracking
data is longitude and latitude on the WGS84 datum. For animals that traverse

3Another recent example of duplicated times in a GPS data set is discussed here: http://lists.
faunalia.it/pipermail/animov/2010-August/000635.html

4A natural assumption is that recorded values of date-time are correct beyond question: so
there is some information even if one of the spatial coordinate values is missing. This issue is
a corollary to the use of filtering techniques that remove locations from track data or otherwise
correct spatial positions. If there is a date-time why not interpolate or otherwise estimate missing
spatial coordinates?
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hemispheres and cross critical meridians such as the Pacific Ocean dateline (longi-
tude 180 W / 180 E) or the prime meridian (longitude 0) a continuous path must
be represented appropriately, such as longitudes in [-180, 180] or [0, 360 ] respec-
tively. Many species will cross both these critical boundaries and so representing
simple lines requires a smarter choice of map projection. All map projections have
these regions of non-optimal usage and so the focus should be on intelligent choice
of projection using tools that provide easily applied transformations.

2.2.3 Joining the dots

A further problem is the common practice of joining points with “straight lines”.
Usually the only available data are temporally referenced point locations, and lines
are artefacts introduced for visual purposes. However, using these lines is quite
artificial, and can become error prone when used quantitatively. Joining the points
imposes a specific model of behaviour, namely that the path is a straight line between
points.

This is not correct on several levels. First, the animal is moving in three spatial
dimensions not two, and the movement in this third dimension is quite significant
for diving animals, though it may be largely ignored for many flying or surface
dwelling species. Second, even if the points represent accurate positions for the
animal the line joining them most certainly does not represent the intermediate
path correctly. The animal could be traversing either side of the line, or taking a far
longer, more convoluted path. Thirdly, the coordinate system used to interpolate
the intermediate positions can have a large effect on the outcome. “Straight-line”
movement is usually assumed, but what is drawn as a straight line on a map has
a very different meaning depending on the coordinate system or map projection
used. For most coordinate systems shorter step lengths will be closer to the “great
circle” path, but the nature of the deviation will also depend on the region traversed
(Gudmundsson and Alerstam, 1998).

Joining points with a line guides the eye helpfully to show the sequence of points,
and the mind can often overlook problems of inaccuracy to see roughly what actually
happened. It is this mental capacity for reducing noise and seeing the overall picture
of events that sophisticated models of track analysis and movement aim to replicate
in an objective way. When our minds provide these ideas they do so by applying
knowledge of the physical system: an animal swimming through water over great
distances, an animal that will tend to travel quickly to an area of interest, then spend
time in localized regions, an animal that will not venture far from the coastline to
areas inland, etc. “An effective EDA [Exploratory Data Analysis] display presents
data in a way that will make effective use of the human brain’s abilities as a pattern
recognition device” (Maindonald and Braun, 2007).

There is no end to this problem when dealing with points or lines segments them-
selves as the entities of interest. If a particular position is just slightly wrong, and
its neighbouring points also a little inaccurate then any assessment of the distance
from one point to another or the intermediate path taken between points is thrown
into question.
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Treatment of spatial and temporal data in modern software

The temporal nature of track data stems from the fact that the physical process of
animal movement is a continuous path. This continuous process is only measured by
discrete samples and so the data are inherently discontinuous. However, treatment
of time in software is rarely truly continuous but rather applied as a sequence of
“time slices”. This is a legacy limitation that unfortunately matches the way in which
track records are usually measured and stored. To choose a high-profile example,
animations of tracks in Google Earth (Google, 2010) show sequences of discrete line
segments that are progressively revealed or hidden as the slider intersects the time
spans of the segments. Why is the line not represented as a continuously changing
entity, with extents that match the slider’s extent exactly? Partial line segments
could be shown, and the line shown continuously without being so bound to its
input points. This is a problem not only for Google Earth but a true limitation in
the representation of most spatial data in GIS and GIS-like visualizations.

This must be part of the reason why tracking analysis is rarely tightly coupled
with GIS—analytically (if not visually) track data is treated as continuous or near-
continuous, with more information than the static line segments joining subsequent
points. Also track data is routinely processed based on great circle travel (assuming
that’s how the animal would choose to move) but then presented visually in a simple
2D longitude by latitude plot. Map projections provide visualizations that help
prevent our brains from giving us the wrong message about distance and area on
a simple plot. Ultimately a 4D visualization on a globe may be a “truer” way to
visualize track data, but though current tools such as WorldWind and Google Earth
will draw lines along great circles they are not well suited to track data that varies
continuously in time.

GIS traditionally provides complex shapes such as multi-segment lines with mul-
tiple branches, or polygons with branched holes and islands but support for a third
coordinate value for elevation is rare, and time is usually non-existent.5 Though
routine computer graphics in games provides complex surfaces and lines composed
of primitive elements with incredibly complex representations and interactions, it is
rare to find treatment of track data as a multi-part line object, let alone with fine
control over the continuous span of a single line. Modern GIS in its most commonly
understood terms is not easily extended for temporal data, but provides an excel-
lent platform for dealing with data sources, geometry and gridded data, and map
projections.

The availability of data manipulation and analysis tools is a major factor in
the effective use of animal tracking data for ecological studies. While there are
many analytical techniques and a wide array of software applications, some lack the
flexibility required or are restricted by cost or the required expertise to use them
effectively. For some purposes track data needs to be represented as points, and for
others as lines, or even better as probability density functions. Tools for seamless
conversion between these data structures are practically non-existent for everyday
research.

5Polygons are literally incapable of representing continuous 2D topological surfaces in 3(+)D
geometric space and the special status of planar polygons that imposes this limitation surely will
eventually be transcended by future GIS technology.
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An illustrative example of the limitations of GIS data structures is seen when
attempting to represent track data. As points, the geometry is stored as X and
Y coordinates (and, rarely, with Z coordinates). Time is relegated to the attribute
table and even then is not always supported completely by common GIS interchange
formats.6 GIS supports more complex geometry than simple points requiring more
than one vertex: lines, polygons and “multipoints”. It should be simple to store a
track in either a “point” or “line” version, but for lines each line segment is composed
of two vertices so there is no longer a simple match between a point’s date-time (or
other) coordinate and those of the line. The line is represented as a single object
with multiple X and Y vertices with only a single attribute record, or as a series of
line segments composed of two X and Y vertices each. Neither version provides a
clean translation of even very simple track data to a GIS construct.

Access to the true continuous nature of track data is simply not provided by
common software tools. This is a problem that extends to a general definition of
topology versus geometry, for representing objects flexibly in a chosen space but
discussion of that is out of scope here. Hebblewhite and Haydon (2010) highlight
the need for ecologists to become more adept at matching temporally varying en-
vironmental data to animal movement data. There are emerging technologies that
allow for a separation of geometry and topology, unlimited coordinate attributes on
GIS features, and generalizations of this are permitted by general database theory
(Butler et al., 2008; Beegle-Krause et al., 2010; Pauly et al., 2009; Anderson et al.,
2010; Fledermaus, 2010).

2.2.4 Summary of problems

The main problems can be described as a set of overlapping issues:

Inaccurate sampling Position estimates are inaccurate, with some unknown re-
lation to the true position.

Irregular and incomplete sampling Position estimates represent discrete sam-
ples from an animal’s continuous path. These may be at irregular time inter-
vals with large gaps in the time series, and no ability to control this because
of practical limitations.

Incomplete paths Paths composed of too few positions, inconsistent motion and
assumptions about straight line movement.

Unlikely dog-legs There is no sense in the animal being so erratic.

Simplistic models of movement and residency Intermediate locations are shown
by joining the dots, using an assumption of direct linear motion between esti-
mates.

Many traditional analyses of modern track data deal with these problems by
chaining a series of improvements in an ad hoc way, and the need for better ap-
proaches is well understood (Breed, 2008; Patterson et al., 2008). Incorrect positions

6The obscure “measure” value for a fourth coordinate in shapefiles is sometimes used for time,
but was not designed for it and is rarely supported by software packages.
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are removed by filtering, based on speed, distance, angle, attributes on the location
data or spatial masking (McConnell et al., 1992; Austin et al., 2003; Douglas, 2006;
Croxall et al., 2004; Freitas et al., 2008). Positions are updated by correction with an
independent data source, such as sea surface temperature (SST) or the need to tra-
verse a coastal boundary (Beck and McMillan, 2002; Shaffer et al., 2005). Unlikely
dog-legs are removed by filtering, or “corrected” by smoothing the line. Smooth-
ing is also used to augment small samples, by interpolating along a smooth line,
or smoothing positions into a 3D grid partioned by time (Bradshaw et al., 2002;
Tremblay et al., 2006; Campagna et al., 2006). There are further requirements for
smoothing to estimate latent locations or to match disparate spatial and temporal
scales.

Many of these techniques have their own problems, compounded when these
operations are chained one after the other. Models of the process may be overly
simplistic (linear movement between estimates), or applied inconsistently—positions
are removed, then estimates are smoothed, or compared with other data to correct
or update them. Later chapters present new methods for incorporating these issues
in a more integrated way.

2.3 Summarizing animal behaviour from point-based
track data

This section revisits some of the problems presented previously and looks at the
details of algorithms used. The techniques are useful for first-pass summaries, or
exploring ideas, but they rely on simplistic models and are difficult to integrate
sensibly.

Putting aside the limitations mentioned earlier and the fact that there is no clear
basis for deciding which combination of tests should apply, some of the issues can
be illustrated further by proceeding with these simple to more complex filters.

2.3.1 Filtering

Filtering is used to remove or modify data in some way based on metrics available or
calculated from the track data. Destructive filters categorize locations for removal
from the trip. Non-destructive filters update the location data for some positions.
Again there is no clear distinction between these two types as a filter can be used
to discard some locations entirely, update others and interpolate new locations for
various purposes.

At the simplest level, destructive filtering involves categorizing each point for
removal or retention. An example is a “land mask” that would deal with the issue of
the points on the Antarctic continent as discussed in Section 2.2. A land mask filter
would determine any points that fall on land, mark them for removal and discard
them. The filter is very simple as it is a basic check for each point individually,
with no interaction of its relationship to other points or other data sources. All
points that fall on land can be determined and removed in one step, or they could
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be checked one after another in any order. The way the filter is applied will have
no impact on the filtered result.

A more complex case applies recursion, where once some points are removed the
status of the test for remaining points may have changed and so must be determined
again. Metrics on sucessive locations fundamentally rely on the order and relation
betweeen points, and so once points are removed the calculations must be repeated
until the desired metric is reached for all retained points. Existing filters apply
measures such as Argos location quality, distance between successive points, speed
of movement, turning angle and land masks. A classic speed filter in marine animal
tracking is a recursive rolling root-mean-square speed filter by McConnell et al.
(1992). This filter is widely used and widely cited especially in marine applications.

There is a practically endless number of metrics that can be derived from the
location data that range from the very simple to complex. However, no matter what
combination of decisions are applied, the main limitation of these methods is their
arbitrary nature. They are applied to a purely geometric interpretation of the data
that laregely ignores the physical system being modelled. Much information goes
unused, and what data is used is applied independently of other sources.

The use of destructive filters is also problematic because data is discarded and
the filter decision is based on the location itself, rather than the process used to
estimate the location. It is hardly ever mentioned, but the Argos Service estimation
process is not published and therefore not amenable to modelling.

Recursive filters are relatively complicated, but still result in a categorical deci-
sion as much simpler filters like a land mask—there is no single number that can
be calculated for a given point, and the implications of minor decisions for a given
filter can greatly affect the result.

Destructive filtering

Here the use of two types of destructive filter are demonstrated to remove points
based on a land mask, Argos quality and speed calculations. In Section 2.4 the trip
package is used to create a version of a speed-distance-angle filter.

The Argos Service is a global satellite data collection system that provides an
estimate of position based on doppler-shift signals transmitted from tags (Service
Argos, 2004). The basic location product is a time series of longitude and latitude
values with a categorical measure of location quality that is provided as a label.
There is more information available with the service and guidelines for its use, but
the scope of the following discussion is restricted to the widely used quality class
measure. Location classes take the values “Z”, “B”, “A”, “0”, “1”, “2”, or “3” in order
of increasing accuracy. The reported accuracies are > 1000 m for “0”, and that 68%
of fixes should be <1000 m for “1”, <350 m for “2”, and <250 m for “3” (Service
Argos, 2004; Goulet et al., 1999). No estimate is given for “Z”, “B” or “A” classes
although studies have shown that these can have an acceptable accuracy (Vincent
et al., 2002).

The first filter removes any points that fall on land, and then any points that
have an Argos class of “B” or worse. In Figure 2.2 the two panels show the Argos
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Figure 2.2: Land filter and Argos quality class filter. In the first panel any point
occuring on land has been removed, and in the second any point with an Argos class
of quality < “B” has been removed. In each panel the state of the track prior to
filtering is shown as a dotted line. The coloured filtered line uses the same time-
based colouring as in Figure 2.1.

track plotted in longitude and latitude coordinates.

In the first panel the original track has been filtered for points on the land area,
and the second for points that have a location quality class of “B” or “Z”. The land
filter only applies to six points in the track, but the class filter has removed 214,
which is a majority of the available 351 points. The effects that these filters have are
independent of one another and it would not matter which were performed before
the other, although the result may be quite different in combination that in the use
of either one alone.

In terms of the land mask, the filter succeeds in removing points from land but
there is still a line segment that crosses a portion of the Antarctic continent. A
filter that applies to points is quite different to one that applies to a continuous line
segment. The class filter provides a track that seems more realistic than the noisy
input track, but at the expense of discarding more than half of the available data.

The next example demonstrates a recursive speed filter applying the method of
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McConnell et al. (1992) to the Argos track. This technique specifies a running root-
mean-square (RMS) summary of speed calculated by determining the instantaneous
speeds for each point to each of its two previous and next locations. The RMS
is defined as the square root of the mean of the speeds squared. Any sequence of
locations with an RMS exceeding the maximum speed value have the peak RMS
location discarded and the RMS is recalculated. This continues until all locations
have an RMS less than the maximum speed. The threshold applied in this example
is 12 km/h. Again the track is presented as longitude/latitude coordinates with
distance measurements calculated relative to the WGS84 ellipsoid.

In the left panels of Figure 2.3 are two plots of the RMS values, for the second
iteration after some positions are removed and the sixth iteration when only a few
nearby positions remain above the threshold. The unfiltered RMS values are shown
as a grey line representing the original points, the current points that have RMS
values above the maximum are shown as crosses and the points below the maximum
are shown in faded black. The threshold speed is shown as a horizontal line. As
successive peaks of RMS values above the maximum are removed the categorization
for the remaining points changes. This filter took ten iterations to remove all of
the 73 locations that imply a speed of movement faster than the threshold, and the
resulting track is shown in the right panel.

This result seems reasonable, though there is no end to the complexity and
arbitrary nature of the decisions to be made. There are practical uses for techniques
like these however. Speed filtering can give a reasonable result and there is a need
to quantify the limits here with comparative studies of various algorithms on known
data sets.

There are more sophisticated filtering algorithms that apply a suite of tests.
A published speed-distance-angle filter first removes a minimum class (such as Z),
filters for speed with the McConnell algorithm and then recursively removes further
offending points that have a combination of acute angles and long implied distances
travelled (Freitas et al., 2008). However, the accompanying software is quite specific
and unrelated to other packages. In Section 2.4 a speed-distance-angle filter is
defined completely using tools available in the trip package.

Related filters applying a combination of metrics have been published by Douglas
(2006), Croxall et al. (2004) and Austin et al. (2003). The algorithm published by
Austin is available in the R package DiveMove (Luque, 2007) and those by Freitas
et al. (2008) and McConnell et al. (1992) in argosfilter. Freitas et al. (2008) gives an
overview of the relative merits of various techniques, and the need for hierarchical
techniques to avoid discarding good quality locations.

Another decision process is to choose between two possible locations for each
time step provided by the Argos Service in the DIAG format (Service Argos, 2004).
The Douglas Argos-Filter Algorithm applies this as part of the filter (Douglas, 2006).

2.3.2 Non-destructive filtering

Non-destructive filters aim to update track points by some mechanism without re-
moving corresponding data records. There are many examples such as algorithms
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Figure 2.3: Recursive speed filter applied using the McConnell method to the track
data shown in Figure 2.1. The small panels show the RMS speed calculated for
each point for two of the ten iterations of the filter. At each iteration any point
with an RMS speed above the required maximum threshold speed (the horizontal
line) is flagged (shown as ”x”) and removed. The RMS speed axis is logarithmic.
The resulting filtered track is shown in the larger panel on the right with the same
temporal colour scale as used in Figure 2.1.
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to modify light level geo-locations for latitude with SST (Beck and McMillan, 2002)
and interpolative techniques to smooth tracks (Tremblay et al., 2006). Many de-
structive filters can be recast in a non-destructive form using a penalty smoothing
approach in the style of Green and Silverman (1994). For example, rather than filter
the track to exclude locations that would imply an unrealistic speed of travel, the
track can be smoothed using a speed of travel penalty. The smoothed locations are
determined by minimizing the functional

Jλ(x̂) =

n∑
i=1

d(xi, x̂i)
2 + λ

n−1∑
i=1

v(x̂i, ti, x̂i+1, ti+1)
2

where {x1, . . . , xn} represent the raw (unsmoothed) locations, {x̂1, . . . , x̂n} their
smoothed counterparts, d(x, y) represents the distance from x to y, and v(x, tx, y, ty)
the speed required to travel from x at time tx to y at time ty, and λ is the smoothing
parameter. The first term is a measure of goodness of fit of the smoothed locations
x̂i to the raw locations xi, while the second is a speed penalty. Minimizing Jλ
trades off goodness of fit against speed of travel. When λ = 0 the smoothed track
reproduces the raw track exactly. Increasing λ favours tracks requiring less extreme
speeds, at the expense of reproducing the xi.

As for the more traditional application described by Green and Silverman (1994)
this process can be interpreted in a Bayesian context. Adopting a penalty based
on squared speeds is equivalent to adopting a Gaussian prior on speeds, adopting a
penalty based on the absolute values of speed is equivalent to an exponential prior
on speed.

An application of this non-destructive filter was applied to the example Argos
data set discussed earlier. Figure 2.4 shows the filtered result on a map and Fig-
ure 2.5 shows the same result with longitude and latitude plotted against time. The
result seems reasonable with a plausibility comparable to that of the recursive speed
filter with the advantage of not having removed any data from the trip.

2.3.3 Spatial smoothing—surfaces from track data

There are a number of ways of creating bivariate (surface) estimates from track
data, the most common involve a surface defined by a grid of cells or connected
points. (Regular grids are historically easy to store and to compute, and so are
applied most commonly—irregular grids and meshes are not considered here). The
most direct methods are variously called“rasterization”, “gridding”or“pixellation”—
these effectively generate a bivariate histogram from the input point or line data.
Kernel methods apply a bivariate distribution (such as a Gaussian) to the input
points or lines. Point methods are not discussed here, but can be achieved in a
similar way to the line-based examples shown in Section 2.4.

The following is a very simplified folk history of tracking techniques, but does
help explain some of the existing practices that differentiate terrestrial and marine
applications. There is an apparent difference between terrestrial and marine appli-
cations in the way that surface creation, or gridding methods are applied. Terrestrial
applications tend to ignore time or adapt data to avoid temporal auto-correlation.
VHF techniques were the original primary tool for wildlife tracking, and the metric
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Figure 2.4: Argos track filtered by penalizing by sum of squares speed. The filtered
track is shown with the same time-based colour scale as in Figure 2.1, and the
unfiltered track is shown as a dashed line. The original data was used without
resampling.
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Figure 2.5: Argos filtered longitude and latitude from Figure 2.4 by penalized sum
of squares speed. The coloured lines use the same time-based colour scale as in
Figure 2.1. The unfiltered longitude and latitude are shown as a grey line.
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of interest was pure residency—the minimal region in which the animal is present
(home range) and the animal’s core region. In this context actual “tracks” are not
the main interest. Marine applications have traditionally been explicitly interested
in tracks and the temporal relationships, perhaps because of the real and perceived
differences in the dynamics of marine environments. Modern techniques are seeing
a far greater cross-over in these originally different fields and the differences are now
out-weighed by the common goal of reliable location estimation.

Cell binning and kernel density estimation (KDE) can unproblematically con-
vert a linear geometric track representation into a 2D histogram-like smoothing of
residency, time spent map, or other utilization distribution but both must grapple
with serious problems of interpretation. Points and lines simply do not represent
the movement of an animal completely. Both methods must deal with issues of inde-
pendence, point or line interpretations and complex boundaries and environmental
relationships. If these issues can be dealt with or ignored, both cell gridding or KDE
can be used as a convenient smoother for track data.

The following combinations of methods are applied in various ways in many
existing publications (for example see Seaman et al. (1999); Wood et al. (2000);
Nel et al. (2002); Bradshaw et al. (2002); Croxall et al. (2004)). The grid surface
is generated by operating on points or on line segments. Line segments provide
a continuity through space and so they provide a natural way to connect regions
visited by the animal. Lines present a harder problem to convert to a grid than
points and so this is often approximated by providing interpolated points in place
of line segments, assuming constant travel speed.

The influence of the points or lines on the surface is calculated by binning into
the overlapping grid cells directly, or by calculating the contribution to neighbour
cells via a “kernel”. In the case of binning, the coverage provided by overlay with
cells is relatively small, and completely dependent on the chosen bin size. This leads
to compromises balancing positional accuracy and the need to match the scales of
covariate data Bradshaw et al. (2002). These limitations are the same as those for
histograms in general—the discontinuous histogram presents analytical difficulties
as it quite senstive to the chosen origin, bin size and orientation (Simonoff, 1996;
Silverman, 1998). Kernel density has the advantages that the result is smooth with-
out the blocky, discontinuous nature of a bivariate histogram. Regular or irregular
“wireframe” representations give a smoother result and have continuous analytical
and visualization counterparts via interpolation, but these data structures are more
complicated to calculate and are much less widely supported.

Finally, when the cell value is determined there are various ways in which the
contribution of a point or line can be calculated. The point or line can simply
be summed into the cell—a point is counted as present in the cell whereas the
proportional length of an overlapping line segment is added to the bin. Each bin
contribution can be multiplied by a factor, such as a point value or the time interval
available to a line segment. This is one of the natural cases for using line segments
from track data rather than points, as when the duration of time is of interest the
input points cannot represent the duration of time. Many studies approximate this
by creating a regular time series by interpolation.

When kernel density methods are applied, a weighting factor can be given for ei-
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ther dimension of the kernel, or more generally a two-dimensional correlated weight-
ing is used (Simonoff, 1996).

The following examples show the gridding of a very simple track by some different
methods.

Exact gridding

Gridding (pixellation or rasterization) methods generate a grid of cells that extend
completely over the region of input track data.

A very simple track is shown in Figure 2.6 with an underlying grid. Each line
segment has a value assigned to it, the time duration between each track point.
These values are [2, 3, 1, 7, 1, 1] and the first and last line segments are quite
long, so their contribution to the cells is small relative to the middle segments.
This is reflected in the grid, which represents the implied “time spent” in each
cell. In order to determine the contribution of each line segment’s value to a cell,
the segment is split on the boundaries of the cells that it crosses and the value
shared proportionally based on the length of the resulting segment-portion. This
computation is not simple—to describe it in GIS terms this is an overlay of the line
and the cells (“topology overlay”) with a rule to transfer values from the lines to the
cell, in this case a proportional sum. GIS can be used to perform these calculations,
but as discussed in Section 2.2.3 working with time in GIS is not well supported
and this must be done as an attribute on line objects, rather than on inherently
continuous lines that vary through time or other dimensions as well as space.

The dependence of the gridding method on bin size is easy to see. Figure 2.7
shows the same gridding process applied to a finer grid, with the same origin. The
grid again completely summarizes the contribution of the track, but the actual
regions influenced by the grid are quite different—the small grid cells snugly trace
the track and cover a much smaller overall area than in the case of the coarse grid.
The total time duration represented by the coarse and fine grid is exactly the same,
but the results are quite different.

This dependence on scale has been used explicitly to provide a compromise
between positional accuracy and spatial coverage with the need to match with envi-
ronmental data by Bradshaw et al. (2002) and Burns et al. (2004). Bradshaw et al.
(2002) also explicitly used grid size to help acccount for spatial uncertainty. As
discussed previously the assumptions made by these analyses become substantial,
involving issues such as uniform location accuracy, uniform grid scale and constant
straight line travel.

Kernel density methods

Kernel density methods are applied to overcome the dependence of the probability
density function on the origin and bin size, as it is the properties of the kernel
that dictate the contribution to each cell. (In theory every input point or line
contributes to every cell to some degree). The result is thus less related to the
data structure choices, given a sufficiently fine resolution. Figure 2.8 shows the
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Figure 2.6: Track lines binned into a coarse grid, using a line segment value to sum
into each cell. Cells are coloured from light to dark blue for increasing values. The
sum of values resulting from each smaller line segment is shown for each cell.
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Figure 2.7: Track lines binned into a fine grid. The track and grid origin is the same
as in Figure 2.6. The coarser grid outline is shown for occupied cells as thick black
lines.
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Figure 2.8: Side by side plots of line gridding and KDE gridding to a coarse grid.
The input line is shown at an arbitrary height above the cells.

same coarse simple grid with an equivalent KDE grid in a perspective plot. The
KDE result is still blocky, but the overall value of the surface is continuous, and
not restricted to regions near the line. By increasing the resolution, the continuous
nature of the KDE approach becomes more apparent—this is shown in Figure 2.9,
again equivalent to the vertical view of Figure 2.7.

Kernel methods are more commonly used in terrestrial home-range applications
than marine applications, perhaps as the measure of interest is a spatial region,
rather than the actual trajectory of the track. Explicit line-to-cell methods have
been used in marine applications because of the focus on time spent based utilization
distributions. There is a convergence of aims here that is still developing, and is
seeing resolution in modern statistical methods.

Kernel density methods are commonly applied to track data because of these
advantages, but perhaps due to implementation difficulties with using line segments
published applications use an equal-time interpolation between track points (Croxall
et al., 2004).

The trip package provides tools to produce simple and KDE grids with line or
point interpretations. The distinction here is one between discrete and continuous
representations which can be represented in the data itself, or in the visualization
technique or analysis used. The lack of clarity for these distictions in spatial software
is one of the problems faced in tracking research.

Other approaches have tended to use the locations more directly, by categorizing
them as belonging to “focal foraging areas” (Simmons et al., 2007) or with “first
passage time” analysis (Pinaud, 2007).

Attribution of point or line values

Time duration between measured locations is a common value of interest, but many
others may be used such as drift dives (e.g. Thums et al. (2008)), maximum depth,
temperatures encountered, etc. The trip package provides tools to apply arbitrary
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Figure 2.9: Side by side plots of line gridding and KDE gridding to a fine grid. The
input line is shown at an arbitrary height above the cells.

values to gridding methods by providing conversions between point and line based
interpretations and the ability to store multiple attribute values for points and lines.

2.3.4 Partitioning tracks and grids into time periods

Gridding methods are easily applied to entire tracks by binning into a single grid.
In order to partition track data into time periods the lines (or other approximation
to continuous path) must be cut into time durations. This requires that the path
be cut at a point intermediate to the input points as these will rarely coincide with
the period boundaries.

Once the trips are cut into exact time boundaries summaries derived from them
represent some form of 3D grid in order to represent each time period separately.
The track line must be cut exactly at the time boundaries, assuming constant travel
speed and the contribution of each part summed separately into two grids. The trip
package provides tools to partition sets of tracks in this way and generate collections
of spatial grids. Using the simple methods above the trip data can be partioned in
time to give temporal-based utilization distributions (Keating and Cherry, 2009).

A more general method of representing arbitrary time periods from modelled
tracks is discussed in Chapter 5.

2.3.5 Map projections

A paper published by Gudmundsson and Alerstam (1998) details the importance of
the choice of map projection for analysing migration routes. Despite the wide avail-
abity of software tools for working with map projections7 their use is still virtually
non-existent in modern tracking studies.

7See http://trac.osgeo.org/proj/, Keitt et al. (2010), http://www.eos.ubc.ca/~rich/map.
html, http://www.manifold.net, http://gmt.soest.hawaii.edu/ for general projection transfor-
mations, and Hijmans et al. (2010) for working with orthodromic and loxodromic paths.
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Figure 2.10: Raw Argos estimates and penalized smoothed track plotted in raw
longitude and latitude. Great circles are drawn as curves, from Macquarie Island
through the most distant raw Argos position (solid) and the most distant smooth
position (dashed).

Distance and direction are the most obvious metrics that are calculated and many
studies only use spherical approximations which are accurate except in polar regions
(Banerjee, 2004). These approximations will be accurate for most purposes but
visualization is still usually done using an equal-angle projection—plotting longitude
and latitide directly on the x and y axes. Other studies provide ample justification
and explanation for working with map projections, so only the importance of their
use for the line-interpretation of a track is presented here. The trip package provides
access to a full suite of projection transformations via the spatial support of the rgdal
package in R (Keitt et al., 2010). A widely used transformation library with string
codes for map projections, PROJ.4, is used to specify the required metadata and
calculations (Evenden, 1990).

Figure 2.10 shows that the perceived error in the Argos positions in the east/west
direction is far less and it is clear that intuitive ideas about straight line travel are
not easily conveyed in longitude and latitude plots. The same data in Figure 2.11
uses a projection that more accurately represent great circles as straight-lines.
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Figure 2.11: Raw Argos estimates and penalized smoothed track plotted in an equal-
area projection. Great circles (as-the-crow-flies) are shown as lines. These pass
through the Macquarie Island site to the most distant raw Argos position (solid)
and the most distant smooth position (dashed).
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2.3.6 Tools for traditional methods

Despite these limitations there is still a use for these filtering and gridding methods
for exploratory analyses. They are also used as part of more sophisticated modelling
approaches (Jonsen et al., 2005; Patterson et al., 2010). The trip package provides a
framework for running these algorithms on sets of animal tracks within the validation
requirements discussed above. As it builds on the existing spatial infrastructure the
package provides simple access to arbitrary map projections and to input and output
for commonly used GIS vector and raster formats. Extra capability is provided by
linkages to the raster package to simplify access to imagery, raster data and array
formats like NetCDF and to the spatstat package

2.4 The trip package for animal track data

The trip package developed by the author provides programming definitions and
functions for working with animal track data in the R programming environment.
The package provides convenient access to commonly used methods discussed in this
chapter. The trip package is available on CRAN: http://cran.r-project.org8.

The trip package builds on the spatial infrastructure of the sp package. The
sp package uses the S4 programming classes and methods of Chambers (2008) to
provide a coherent system for the usual spatial data types: points, lines, polygons
and grids. This system provides visualization and manipulation of spatial data,
a consistent conversion for data between the variety of spatial statistics packages
already in R, and interfaces to GIS and map projections (Pebesma and Bivand,
2005). The following description of sp objects given here is derived from Pebesma
and Bivand (2005) and Bivand et al. (2008), which should be consulted for a more
complete description.

All sp (and therefore trip) objects share the basic property Spatial which stores
only the bounding box and map projection metadata. Each new data type then ex-
tends this to the variety of spatial types with increasing specialization: coordinates
and levels of organization are added to provide SpatialPoints, SpatialLines,
SpatialPolygons and SpatialGrid. Trip objects are specializations of the Spa-

tialPoints class and so the other types are not considered further here.

The class SpatialPoints consists of a matrix of coordinates and the Spatial

metadata for their bounding box and map projection—this is sufficient to locate each
point on a map, but applying more information for each point requires a matching
attribute table. For example data such as the name, size, colour, direction and qual-
ity for each point may be stored as well as its location. The basic table component
in R is a data.frame, and this is extended by the class SpatialPointsDataFrame.
A SpatialPointsDataFrame can be considered as a table of records (a data.frame)
containing X and Y coordinates and other attributes. The coordinates are treated
specially so that they may be used to visualize or manipulate the object in a spa-
tial context9. Objects of class trip extend this class directly, by applying another

8Trip replaced the experimental package timeTrack version 1.1-6, which provided similar func-
tionality but was not integrated with sp.

9This is rather simple for points since there is only one coordinate for each record: the separation
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level of information about the identity of each trip, the temporal coordinate of each
point and ensuring that the records can be validated by the rules laid out in Section
2.2.2. This is done with a new class TimeOrderedRecords that stores the names of
the date-time and ID attribute in the records. Checks are applied for any object
aspiring to be of class Spatial and of class TimeOrderedRecords by ensuring that
time values are in order within ID and that there are no duplicate times, no missing
coordinates etc. If any of these constraints is broken then validation cannot occur
and the object creation will fail. Further discussion and illustration of the trip class
definition in the context of sp is given in Bivand et al. (2008).

By using the sp classes trip automatically gains all the available methods for
Spatial objects including plot, subset, coordinate system metadata and reprojec-
tion, summary and print. A trip object is considered as a set of “TimeOrdered”
points, rather than multi-segment lines. Some functions do assume line-interpretion
of trips, but in general the storage of attribute data on ordered points provides
greater flexibility than storage of line objects for reasons discussed in Section 2.2.3.

The trip package depends entirely on the methods and sp packages, and in part
on the spatstat and maptools packages (Baddeley and Turner, 2005; Lewin-Koh and
Bivand, 2010).

The next section demonstrates some examples using the trip package for im-
porting data, dealing with common problems and “filtering” and “gridding” track
data.

2.4.1 Generating trip objects

The following examples show the simplest means of generating a trip object from a
table of data. The function readArgos does all of this internally, as shown below.
The trip class is derived from classes in the package sp and so the first step is to
create a SpatialPointsDataFrame.

The following R code reads data from a text file, promotes the resulting table to
a Spatial object and converts dates and times from text.

> dat <- read.csv("trackfile.csv")

> names(dat)

[1] "long" "lat" "seal" "date" "local" "lq"

> library(sp)

> coordinates(dat) <- c("long", "lat")

> dat$gmt <- as.POSIXct(strptime(paste(dat$date,

dat$local), "%d-%b-%y %H:%M:%S"), tz = "GMT") -

10 * 3600

A data frame in R is read in from text file using read.csv. The column names
are printed by the names function. The sp function coordinates is used to promote

of coordinates and attribute data becomes important for more complicated spatial objects.
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a data frame to a Spatial object by specifying which columns contain the spatial
coordinates.

The dates and times in this object are still just text from the file, so these are
converted to the DateTimeClasses provided by R. An offset is applied to ensure the
correct timezone interpretation. The strptime function provides all the required
templates for parsing date-times from text—here the date stamp is a parochial
format with day, short month and short year.

The examples here use longitude and latitude data, but trip objects can be
generated using any valid coordinates. The projection metadata may be stored as
per the definition of the Spatial classes in sp.

The following code attempts to generate a trip object by assigning the time and
ID attributes. This step often presents some problems that need to be dealt with.

> library(trip)

> tr <- trip(dat, c("gmt", "seal"))

Error in validityMethod(object) : duplicated records within data

The trip function takes the SpatialPointsDataFrame and the names of the
date-time and ID columns. In this case the attempt fails as the data will not validate
in its current form. This is important as it ensures that these simple problems
are dealt with upfront so they are not propagated further to cause problems in
subsequent analyses.

The next section shows an alternative method for reading trip data from an
Argos format.

Reading data from Argos records

Argos (PRV/DAT) files can be read directly using the function readArgos and if
the defaults for basic quality control are successful this will return a trip object.10

> library(trip)

> argosfiles <- list.files(path = "G:/DATA/tracks/blackBrowed/",

pattern = ".dat", full.names = TRUE, ignore.case = TRUE)

> argosdata <- readArgos(argosfiles[1:3])

Longitudes contain values greater than 180, assuming proj.4 +over

Data fully validated: returning object of class trip

10These data were provided by the DPIWE Macquarie Island Albatross Project (Terauds et al.,
2006). Only three of the available Argos files are imported for this example.
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> summary(argosdata)

Object of class trip

tripID ("ptt") No.Records startTime ("gmt")

1 14257 445 2001-12-06 01:35:31

2 14403 479 2001-12-02 04:03:06

3 14418 684 2001-12-02 05:46:51

endTime ("gmt") tripDuration

1 2001-12-27 04:40:19 21.12833 days

2 2001-12-18 20:16:06 16.67569 days

3 2001-12-27 06:18:30 25.02198 days

Total trip duration: 5428167 seconds (1507 hours, 2967 seconds)

Derived from Spatial data:

Object of class SpatialPointsDataFrame

Coordinates:

min max

longitude 147.872 189.025

latitude -61.207 -37.800

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84 +over]

Number of points: 1608

Data attributes:

prognum ptt nlines

Min. :1807 Min. :14257 Min. : 2.000

1st Qu.:1807 1st Qu.:14257 1st Qu.: 4.000

Median :1807 Median :14403 Median : 6.000

Mean :1807 Mean :14369 Mean : 6.342

3rd Qu.:1807 3rd Qu.:14418 3rd Qu.: 8.000

Max. :1807 Max. :14418 Max. :14.000

nsensor satname class date

Min. :4 D:245 Z: 0 2001-12-09: 89

1st Qu.:4 H:316 B:234 2001-12-10: 87

Median :4 J:310 A:202 2001-12-06: 84

Mean :4 K:358 0:669 2001-12-11: 82

3rd Qu.:4 L:379 1:346 2001-12-17: 77

Max. :4 2:135 2001-12-07: 75

3: 22 (Other) :1114

time altitude transfreq

05:44:16: 2 Min. :0 Min. :401653551

06:37:59: 2 1st Qu.:0 1st Qu.:401653710

07:28:45: 2 Median :0 Median :401653830

08:38:14: 2 Mean :0 Mean :401653849

11:34:27: 2 3rd Qu.:0 3rd Qu.:401653970

17:20:03: 2 Max. :0 Max. :401654168

(Other) :1596
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gmt

Min. :2001-12-02 04:03:06

1st Qu.:2001-12-07 20:19:05

Median :2001-12-12 20:09:02

Mean :2001-12-13 13:20:02

3rd Qu.:2001-12-18 13:46:50

Max. :2001-12-27 06:18:30

In Argos PRV (DAT) files the fields longitude and latitude contain the spatial
coordinates (these have been extracted from the other data in the SpatialPoints-

DataFrame in the usual way), date and time the temporal information (these have
been combined into an R date-time column called gmt), and ptt is the ID for indi-
vidual instruments that is used as the trip ID. The function readArgos will perform
some sensible quality control corrections by default. The summary function returns a
listing of the individual trips, their ID, start and end times, and number of locations.
The remaining data are summarized in the usual way for a SpatialPointsDataFrame.

When reading data from PRV files the following coordinate system is assumed:

longitude / latitude on the WGS84 datum.

This is specified using the following PROJ.4 string:

+proj=longlat +ellps=WGS84.

If longitude values greater than 180 are present the “+over” element is applied for
the “Pacific view [0,360]” longitude convention. No further checking is done.

The function readDiag reads Argos DIAG (diagnostic) format that provides two
sets of location coordinates. This function returns a data frame with the attributes
from the files.

Dealing with common problems in track data

This section begins with the raw data frame of track data from 2.4.1.

> dat <- as.data.frame(dat)

There are a number of simple problems at this stage that the trip class auto-
matically provides validation for. Duplicated rows, such as those from overlapping
Argos files, can be safely dropped.

> dat <- dat[!duplicated(dat), ]

> head(dat)

long lat seal date local lq

1 158.9467 -54.49333 b284 21-Jan-99 13:43:51 A

2 155.2533 -54.42833 b284 21-Jan-99 15:18:53 B
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3 155.8400 -56.30833 b284 23-Jan-99 16:45:51 B

4 159.3850 -56.10167 b284 23-Jan-99 13:03:35 B

5 159.9650 -58.35333 b284 25-Jan-99 16:19:17 B

6 158.8917 -57.99000 b284 25-Jan-99 4:45:15 B

gmt

1 1999-01-21 03:43:51

2 1999-01-21 05:18:53

3 1999-01-23 06:45:51

4 1999-01-23 03:03:35

5 1999-01-25 06:19:17

6 1999-01-24 18:45:15

The discarded rows removed are exact duplicate rows, matched on every data
value for each column.

The ordering of rows in the data is assumed to follow the order of the date-time
values with a trip ID. The date-time values are not used automatically to order the
data, as this could hide deeper problems in a data set.

> dat <- dat[order(dat$seal, dat$gmt), ]

A final problem is that subsequent date-times within a single trip ID can be
duplicates. Removing duplicate rows and ordering the rows still leaves the problem
of what that can mean. If the location coordinates are different, the implication is
that the animal moved a certain distance in no time at all. If the locations are the
same then it raises the question of why the tracking system distinguishes the records
at all. A zero duration time difference results in meaningless metrics of speed of
movement, for example. There is no obvious solution for this and the issue must
be investigated in the context of the actual data used. A simplistic solution that
allows us to move on is to adjust these duplicate times by a very small amount, so
that the time difference is not zero.

> dat$gmt <- adjust.duplicateTimes(dat$gmt, dat$seal)

Further data problems are more fundamental and do not have easy fixes. The
trip class will fail to validate in the following cases and these must be dealt with
individually as appropriate.

Insufficient records for a given trip ID Each set of records must have three or
more locations to qualify as a trip. Sometimes the only available data is a
start and end location but this case is deemed inappropriate for trip.

Invalid values for critical data Missing values or otherwise non-numeric values
for locations and date-times cannot be included. The sp classes ensure this for
location coordinates, and trip adds the limitation for date-times and IDs.

Non-existent date and ID data This is somewhat obvious, but trip will not as-
sume a simple date-time value from the order of records or provide a default
ID for single-trip data. These must be explicitly provided.
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Once all of the fixes required have been applied, trip validation is possible.

> coordinates(dat) <- c("long", "lat")

> tr <- trip(dat, c("gmt", "seal"))

The location quality class is converted to an ordered factor, and the appropriate
PROJ.4 string is applied.

> tr$class <- ordered(tr$lq, c("Z", "B", "A", "0",

"1", "2", "3"))

> proj4string(tr) <- CRS("+proj=longlat +ellps=WGS84 +over")

The location quality class provided for Argos data is automatically converted
to an “ordered factor” by readArgos, here shown manually. This can be used for
simple selection of a range of records from a data set, even though the tokens used
as text have no inherent order. This allows the data to be used directly without
creating a numeric proxy for the class values.

The resulting trip object read from CSV text is now validated and equivalent
to that returned by readArgos.

2.4.2 Filtering for unlikely movement

The infrastructure provided by the trip classes allows efficient implementation of
custom filters based on a variety of metrics.

The data are from southern elephant seals from Macquarie Island. These animals
can swim up to 12 km/hr (Bradshaw et al., 2002) so that value is used to calculate
a filter, which is added as a column in the data frame. The filtering algorithm is
that of McConnell et al. (1992).

> tr$ok <- speedfilter(tr, max.speed = 12)

> summary(tr)

Object of class trip

tripID ("seal") No.Records startTime ("gmt")

1 b284 281 1999-01-21 03:43:51

2 b290 255 1999-01-29 19:30:59

3 c026 351 1999-01-01 02:27:28

4 c993 258 1999-01-07 02:59:53

endTime ("gmt") tripDuration

1 1999-06-09 04:34:22 139.0351 days

2 1999-07-02 22:52:25 154.1399 days

3 1999-05-20 18:51:27 139.6833 days

4 1999-04-24 03:04:44 107.0034 days

Total trip duration: 46644047 seconds (12956 hours, 2447 seconds)
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Derived from Spatial data:

Object of class SpatialPointsDataFrame

Coordinates:

min max

long 128.27167 198.99167

lat -78.06333 -52.85667

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84 +over]

Number of points: 1145

Data attributes:

seal date local lq

b284:281 5-Feb-99 : 20 15:29:50: 3 0:114

b290:255 10-Mar-99: 17 14:42:21: 2 1: 31

c026:351 11-Feb-99: 17 14:48:07: 2 2: 18

c993:258 21-Mar-99: 17 16:08:14: 2 3: 1

23-Feb-99: 16 16:18:30: 2 A:281

10-Apr-99: 15 16:39:55: 2 B:700

(Other) :1043 (Other) :1132

gmt class ok

Min. :1999-01-01 02:27:28 Z: 0 Mode :logical

1st Qu.:1999-02-11 06:03:36 B:700 FALSE:224

Median :1999-03-10 19:43:05 A:281 TRUE :921

Mean :1999-03-15 13:10:03 0:114 NA’s :0

3rd Qu.:1999-04-10 06:18:01 1: 31

Max. :1999-07-02 22:52:25 2: 18

3: 1

The speedfilter function assumes that speed is specified in km/hr and distance
is calculated based on the projection metadata. If the projection is specified and
not longitude and latitude then Euclidean methods are applied. If the projection is
not specified longitude and latitude is assumed and ellipsoid methods for WGS84
are used.

The summary shows that a number of locations are now classified by a boolean
value in a new “ok” column. Although the speed filter has not removed many
locations, a customized subset can be defined based on other data. Using a minimum
Argos location quality class of“A”the raw data is plotted with a default point symbol
and reduced size, with lines connecting the remaining filtered points. The plot is
shown in figure 2.12.

If this were calculated with coordinates in a different unit or projection the
speedfilter function takes this into account and calculates distance accordingly.
This integration of spatial metadata and calculation provides for a very flexible
working environment for exploratory analysis.
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> plot(tr, axes = TRUE, cex = 0.4)

> plot(world, add = TRUE, col = "grey")

> lines(tr[tr$ok & tr$class > "B", ], lwd = 2, col = bpy.colors()[seq(10,

90, length = 4)])
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Figure 2.12: Plot of Argos track data from a trip as points, with lines showing the
speed filtered tracks, coloured for each separate trip.
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Extending the trip package

One of the advantages of the infrastructure provided by the trip classes is that
simple tasks can be strung together efficiently. This example shows how the speed-
distance-angle filter of Freitas et al. (2008) can be built up from the basic tool kit.

The speed-distance-angle filter is distributed with an easily run example, and the
following is reproduced almost exactly from the documentation for argosfilter in
Freitas (2010).

> library(argosfilter)

> data(seal)

> lat <- seal$lat

> lon <- seal$lon

> dtime <- seal$dtime

> lc <- seal$lc

> cfilter <- sdafilter(lat, lon, dtime, lc)

> seal$sda <- !(cfilter == "removed")

This filter results in a column of values that specify whether the filter retains or
discards the location.

The following steps create a new version of this filter using the trip package.
Load the example data and validate as a single event trip object.

> library(argosfilter)

> library(sp)

> library(trip)

> library(maptools)

> trackAngle <- function(xy) {

angles <- abs(c(trackAzimuth(xy), 0) - c(0,

rev(trackAzimuth(xy[nrow(xy):1, ]))))

angles <- ifelse(angles > 180, 360 - angles,

angles)

angles[is.na(angles)] <- 180

angles

}

> vmax <- 2

> ang <- c(15, 25)

> distlim <- c(2500, 5000)

> coordinates(seal) <- ~lon + lat

> proj4string(seal) <- CRS("+proj=longlat +ellps=WGS84")

> seal$id <- "seal"

Perform some simple sanity checks before proceeding.

> range(diff(seal$dtime))

Time differences in secs

[1] 0 362737
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> which(duplicated(seal$dtime))

[1] 18 117 123 1009 1159 1232 1294 1301

There are some preliminary requirements to load packages and functions for
earth distances and track turning angles. The seal object is a data frame with
columns “lon”, “lat”, “dtime” and “lc”. The date-time values are already in POSIXct

format, and lc uses a numeric code for the Argos class.

The records are in order of date-time, but some of the date-time values are
duplicated, so for illustration these are dropped and then a new trip object is
created.

> seal <- seal[!duplicated(seal$dtime), ]

> seal.tr <- trip(seal, c("dtime", "id"))

First, add the filter from the sdafilter function to the trip object, and also the
basic speed filter available in the trip package (using km/hr rather than m/s).

> seal.tr$speed.ok <- speedfilter(seal.tr, max.speed = vmax *

3.6)

Perform the initial simple processing for the speed distance angle filter.

> dsts <- trackDistance(coordinates(seal.tr)) *

1000

> angs <- trackAngle(coordinates(seal.tr))

> dprev <- c(0, dsts)

> dnext <- c(dsts, 0)

> ok <- (seal.tr$speed.ok | dprev <= 5000) & (seal.tr$lc >

-9)

This creates a logical vector where the speedfilter and distance-previous pass, and
discard any location class of “Z” (coded as “-9” in this example). This is effectively
the first pass of the filter, distinguishing distance previous and distance next for
each point.

Now the remaining parts of the filter can be run—testing for angle and distance
combinations over the specified limit. Some housekeeping—create an index to keep
track while running the filter on the two distance/angle limits. A temporary copy
of the trip is used to make matching the filter easy as points are removed.

> seal.tr$filt.row <- 1:nrow(seal.tr)

> seal.tr$ok <- rep(FALSE, nrow(seal.tr))

> df <- seal.tr

> df <- df[ok, ]

> for (i in 1:length(distlim)) {

dsts <- trackDistance(coordinates(df)) * 1000
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angs <- trackAngle(coordinates(df))

dprev <- c(0, dsts)

dnext <- c(dsts, 0)

ok <- (dprev <= distlim[i] | dnext <= distlim[i]) |

angs > ang[i]

ok[c(1:2, (length(ok) - 1):length(ok))] <- TRUE

df <- df[ok, ]

ok <- rep(TRUE, nrow(df))

}

The result is now a reduced trip with missing rows discarded by the filter.
Using the row index created earlier, match the filter result to the original rows and
tabulate the filter values for the original sdafilter and the trip version. The number
of accepted points is nearly the same.

> seal.tr$ok[match(df$filt.row, seal.tr$filt.row)] <- ok

> sum(seal.tr$sda)

[1] 1135

> table(seal.tr$sda, seal.tr$lc)

-9 -2 -1 0 1 2 3

FALSE 26 302 48 17 17 6 2

TRUE 0 374 374 61 150 116 60

> sum(seal.tr$ok)

[1] 1142

> table(seal.tr$ok, seal.tr$lc)

-9 -2 -1 0 1 2 3

FALSE 26 299 49 15 16 5 1

TRUE 0 377 373 63 151 117 61

Plot the result to see that the new trip version is comparable. There are dif-
ferences since the distance and angle calculations are ellipsoid based, rather than
spherical as used by argosfilter and some locations were first discarded due to im-
possible duplicate times in the original data. There are probably also differences in
the detail of the recursive speed filter and the way that peaks are assessed.

The examples above consist of a working prototype that can be wrapped as a
function for the trip package to efficiently apply this filter to sets of tracks within
a trip object. The argosfilter example above takes at least three times as long to
complete as the code developed here. The ability to extend the functionality in this
way mirrors the development of the trip package itself, from the sp package, and in
turn the R platform.
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Figure 2.13: Original sdafilter (red) and custom trip speed distance angle filter
(thick grey line). The original raw track is shown as a thin grey line.
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> trg <- tripGrid(tr[tr$ok, ])

> image(trg, col = oc.colors(100), axes = TRUE)
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Figure 2.14: Simple image of a time spent grid for the trip object.

2.4.3 Creating maps of time spent

Assuming that the filtered locations give realistic information about position for the
animal and that motion between these positions is constant and straight, a map of
time spent, or residency can be created. The choice of grid cell size might reflect
the confidence in the accuracy of the location data, or require a specific cell size for
comparison with another data set.

Using the trip locations accepted by the speed filter attribute generate a grid of
time spent, shown in Figure 2.14.

The function tripGrid is used with the subset of the trip object accepted by the
speed filter to create a grid of time spent. The algorithm used cuts the line segments
exactly as described in section 2.3.3 by the spatstat function pixellate. If any zero-
length line segments are present a warning is issued and their time contribution is
included as points. This is because the pixellate algorithm relies on weightings that
are relative to the line length, which is another example of the subtle implications
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of point versus line interpretations.

The gridded object trg is a SpatialGridDataFrame, whose class definition is
provided by the sp package. These grids support multiple attributes and so, conve-
niently, variations on the map created can be stored in a single object.

Add three new attributes to the grid object by isolating a single animal’s trip,
and using the kernel density method with two different sigma values.

> names(trg) <- "grid.filtered"

> gt <- getGridTopology(trg)

> trg$grid.c026 <- tripGrid(tr[tr$ok & tr$seal ==

"c026", ], grid = gt)$z

> trg$kde1.filtered <- tripGrid(tr[tr$ok, ], grid = gt,

method = "density", sigma = 0.1)$z

> trg$kde3.filtered <- tripGrid(tr[tr$ok, ], grid = gt,

method = "density", sigma = 0.3)$z

> for (col.name in names(trg)) trg[[col.name]] <- trg[[col.name]]/3600

The default name for an attribute from tripGrid is “z” so first this is renamed to
“grid.filtered”. Calculation for the extra attributes requires that they share the same
origin and scale so this is stored in the GridTopology object gt and used again. The
trip object is subset on the speed filter attribute and the seal ID, and the resulting
grid attribute “z” is extracted and assigned to the grid object in one step. For the
kernel density versions two values of sigma are passed onto the density function for
each grid. The default output is in seconds, so this is converted to hours for each
grid column by division. Finally, the multi-panel spplot function in package sp

provides a conveniently scaled image for each of the four grids shown in Figure 2.15.

By default, tripGrid will provide a grid with dimensions 100x100 cells. This
can be controlled exactly using a GridTopology passed in as the grid argument to
the function. The convenience function makeGridTopology allows the user to define
a specific grid from the trip object itself.

The next examples use trip object to create grids with a different scale.

The first example shows the creation of a grid topology with dimensions of 50x50,
then another is created using a given cell size. The resulting plot from this coarser
version in an equal area map projection is shown in Figure 2.16. The grid generation
will assume kilometres for cell size as at the centre of the grid for longitude and
latitude coordinates.

For approximate methods tripGrid.interp will interpolate between positions
based on a specified time duration. A shorter period will result in a closer approxi-
mation to the total time spent, but will take longer to complete. The approximate
method is similar to that published by Croxall et al. (2004) and Bradshaw et al.
(2002).
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> require(lattice)

> library(trip)

> trellis.par.set("regions", list(col = oc.colors(256)))

> print(spplot(trg))

grid.filtered grid.c026

kde1.filtered kde3.filtered
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Figure 2.15: Four variations on a tripGrid. grid.filtered and grid.c026 use the
simple line-in-cell method for all four seals and for seal c026 alone. kde3.filtered
and kde1.filtered use the kernel density method for line segments with a sigma
of 0.3 and 0.1 respectively. Each grid has dimensions 100x100 and time spent is
presented in hours.
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> proj4string(tr) <- CRS("+proj=longlat +ellps=WGS84")

> p4 <- CRS("+proj=laea +lon_0=174.5 +lat_0=-65.5 +units=km")

> ptr <- tripTransform(tr, p4)

> gt <- makeGridTopology(ptr, c(50, 50))

> gt1 <- makeGridTopology(ptr, cellsize = c(80,

60))

> grd2 <- tripGrid(ptr, grid = gt1)

> image(grd2, col = oc.colors(256), axes = TRUE)

> library(maptools)

> data(wrld_simpl)

> plot(spTransform(wrld_simpl, p4), add = TRUE,

col = "grey")
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Figure 2.16: A relatively coarse version of fourgrids with a specific kilometre-based
cell size (80x60km), specified within an equal area map projection.
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2.5 The need for a more general framework

Previous sections presented tools for a more systematic handling of animal track
data and a variety of methods for improving track estimates and deriving spatial
summaries such as time spent. Some of the problems with animal tracking are
relatively simple and have reasonable solutions. The traditional methods above
illustrate ways of dealing with them in an extensible software toolkit. Most of these
solutions however are just “single-targets”—the easiest aspects are cherry-picked for
a first-pass answer that solves a small aspect of the larger problem.

Location estimates from methods such as archival tagging and acoustic tagging
can also be dealt with in this way, and there are many studies that apply these
techniques as well as more sophisticated models. There is an important opportunity
here though since the normal “data product” for archival tags is not location esti-
mates over time but dense temporal records of environmental values, such as light,
temperature and depth.

Importantly, different satellite methods such as the Argos Service and GPS will
be handled uniformly by a general approach. These methods ultimately rely on data
as raw as archival tags and acoustic arrays, with doppler shifts or ephemeris data
used to determine location. The practical difference of these methods from those of
archival tags is that the raw data are simply not available for research purposes, for
a variety of reasons.

Another great opportunity presented by raw data is that the concept of integra-
tion of all data sources comes very naturally. For example, determining position by
light level is plagued by environmental conditions that attenuate the ambient light,
and the movement of animals complicates the relation of environmental measure-
ments to independent data sets. The scale of measurement is another issue when
relating values such as dive depth or water temperature to synoptic data sets.

To turn attention to “raw data” methods such as those required for archival tags,
the aim is to provide a more complete solution that integrates solar information,
environmental values such as temperature and depth and applies constraints on
movement. This approach contrasts with the filters in this chapter by applying as
much information to each location estimate as possible. Also it aims to prevent
the practice of discarding “bad” data—the influence of unreliable data should be
downplayed but not ignored completely.

There are of course many existing location estimates for which there is no rawer
data. From this perspective an Argos location can be treated as a mere data point—
not an absolute position to be retained or discarded and then smoothed by some
mechanism, but simply a piece of data to help inform our models. Even completely
invalid positions have a date-time value and so at the very least it can be inferred
that the animal was “visible” to the remote sensing system. In conjunction with
other data about the environment this tiny piece of data can be valuable.

The following describes the problems specific to the two types of tags that orig-
inally motivated this work. By considering the location estimates that come from
archival tag methods we see that dealing with the points without reference to the
other available information is not going to be good enough.
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2.5.1 Location estimation from raw archival data

Earlier methods of light level geo-location rely on the determination of critical times
during the day from the sequence of raw light levels. Longitude is determined
directly from the time of local noon which, based on the symmetry between dawn
and dusk, can be easily measured. Latitude is determined by the length of the
day, measured by choosing representative times such as dawn or dusk that are
distinctive in the light record. While this is a very simplified explanation given the
range of traditional methods the thrust of the argument is basically correct, see
Chapters 3 and 4 and Metcalfe (2001) for more detail.

In effect, this approach reduces the data set of light values to a more abstract
summary with local peaks at noon and inflection points at dawn and dusk. The
majority of the light data is not used directly and only one location can be deter-
mined per day. This approach to estimation is susceptible to the movement of the
animal between twilights, to poor choices for the critical times, and to day length
at equinox periods. Hill and Braun (2001), Ekstrom (2004) and Welch and Eveson
(1999) review these methods and provide quantifications for their accuracy.

There is an opportunity for delving more deeply into the raw data available for
location estimation provided by archival tags. Considering the problems for qual-
ity testing of derived locations, studies can utilize the raw data from the archival
tag and provide an estimation that takes into account more information such as
the conditions at twilight, diving depth, water temperature, and movement in an
integrated way. The raw data is not just a single point estimate to be discarded
or corrected, but a sequence of light, a sequence of temperature and a sequence of
depths. These are all linked temporally within the main data set. In theory, this
is no different for satellite tags except in that case the raw data are not available.
Raw data in this case would be the doppler shift signals and satellite orbital details
for Argos, and satellite ephemeris and signal timings for GPS. Acoustic tagging ap-
plications similarly have a wealth of raw data for informing locations, and potential
for improving on existing techniques.

Figure 2.17 presents another example of the “obvious” problem, with archival
tracks that are very erratic and have some estimates well inland. The sorts of
inaccuracies shown tend to be easily understood by researchers, but the public per-
ception of research, so important to biological programs, can be easily undermined
by figures like this. This figure also highlights the need for uncertainty in estimates
to be integrated and represented as part of track visualizations and other summaries.

2.5.2 Filtering locations

Destructive filters that remove “erroneous” locations are susceptible to the following
problems. Data is lost, and this may be significant for a diving animal or other
situation where the opportunity for obtaining fixes is rare as was shown earlier in
Section 2.3.1. If nothing else, an “erroneous” location at least has useful information
about the time at which a fix was available. In practice techniques tend to smooth
out some filter metric across multiple locations, with no clear reason to choose
one technique over another. Speed, distance and direction all require at least two
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Figure 2.17: Light level geo-locations for black marlin in the Coral Sea. This image
is taken from Figure 3a in Gunn et al. (2003) and is reproduced with the permission
of the authors.

locations for their calculation, and so this forces the consideration of a point or line
interpretation, or perhaps a hybrid of the two. The removal of a data point changes
the relevant filter decision for its neighbours and so begs the question of whether the
first location removed is not more valid, and perhaps better than others that should
be removed in preference. An example of this can be seen with Argos diagnostic
(DIAG) data in which there are paired solutions for each locations (Service Argos,
2004). Usually the choice is obvious, but for many positions it depends on the
choice made for neighbouring locations. Updating a location to an estimate nearer
its neighbours based on some constraint may be more sensible as in Section 2.3.2,
but there is still only a point estimate. Preferably there should be a probability
distribution for the location, something that gives an indication of “how correct”.
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2.5.3 Intermediate locations

There is a need for modelling the location of the animal at times that are not
accompanied by data. As discussed in Section 2.3.3 the goals of cell gridding and
density analysis attempt to integrate this with location uncertainty, but there are
limits to the use of tracks represented by simple points and lines. In Chapter 3
an approach that distinguishes “primary” locations from “intermediate” locations is
presented. The importance of this for track representations is illustrated in greater
detail in Chapter 5.

2.6 Conclusion

This chapter has presented traditional solutions to many of the issues faced by
tracking analyses with a readily available and extensible software toolkit. The trip
package developed by the author provides an integrated environment for applying
traditional algorithms in the context of widely used spatial data tools. Seemingly
isolated problems with track data were shown to be inter-related in complicated
ways that preclude an otherwise simple chaining together of individual solutions.
The scope of these problems can be extended to include archival tag data and raw
methods like light level geo-location. This highlights the need for treating any
data, even ostensibly accurate location estimates, as only part of a larger suite of
available information. The next chapter provides an integrated statistical approach
to modelling location using these disparate types of tag data.



Chapter 3

BAYESIAN ESTIMATION OF
ANIMAL MOVEMENT FROM

ARCHIVAL AND SATELLITE TAGS

Preface

Many of the issues highlighted in the the previous chapter motivated the follow-
ing work. The combination of requirements for satellite-linked and light-measuring
archival tags led to the Bayesian framework presented here which was published as
Sumner et al. (2009).1 That document is reproduced here from the original versions
with only minor modifications, including a fix to Table 3.2, the addition of this
preface and the addition of a conclusion.

Originally, the goal of this work was to develop an improved approach to archival
tag location estimation. However, consideration of the practical needs for correcting
Argos data provided insights into the shared requirements for the modelling process
of both methods. The early estimation code for light level geo-location focussed
on the solar calculations for primary estimates with a speed constraint placed di-
rectly on the twilight locations, and the first attempts at movement modelling for
Argos estimates resulted in a distinction between the primary locations and their
intermediate (latent) intervals. Merging these goals in a single approach required
a model of the data collection process and identification of the appropriate data
sources to inform models of the true locations. This chapter presents a general
Bayesian approach that can be applied to any tracking location method.

Abstract

The reliable estimation of animal location, and its associated error is fundamental
to animal ecology. There are many existing techniques for handling location er-
ror, but these are often ad hoc or are used in isolation from each other. In this
study we present a Bayesian framework for determining location that uses all the

1Available in original form at http://dx.doi.org/10.1371%2Fjournal.pone.0007324.
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data available, is flexible to all tagging techniques, and provides location estimates
with built-in measures of uncertainty. Bayesian methods allow the contributions of
multiple data sources to be decomposed into manageable components.

We illustrate with two examples for two different location methods: satellite
tracking and light level geo-location. We show that many of the problems with
uncertainty involved are reduced and quantified by our approach.

This approach can use any available information, such as existing knowledge
of the animal’s potential range, light levels or direct location estimates, auxiliary
data, and movement models. The approach provides a substantial contribution to
the handling of uncertainty in archival tag and satellite tracking data using readily
available tools.

3.1 Introduction

Estimating the movements of animals is a fundamental requirement for many ecolog-
ical questions. These include elucidating migratory patterns, quantifying behaviour
in terms of the physical environment and understanding the determinants of for-
aging success, all of which can influence larger population processes (Nel et al.,
2002; Xavier et al., 2004; Hindell et al., 2003). Types of movement data can range
from simple mapping of positions to behavioural models that attempt to account
for unlikely estimates, provide estimates of behavioural states and predict latent
variables.

There are two common methods for obtaining position estimates, which can be
broadly categorized as remote and archival. Remote methods use techniques such as
radio or satellite telemetry to locate a tag attached to an animal. Archival methods
require the tag to record aspects of the animal’s environment over time (such as light
levels and water temperature) which are then processed to infer location (Smith and
Goodman, 1986; Hill, 1994; Nel et al., 2002).

Before any analysis can be done, position estimates require some quantification of
precision and accuracy to provide statistical confidence in results (Hays et al., 2001;
White and Sjöberg, 2002; Phillips et al., 2004). Quantification of location precision,
and crucially, the incorporation of these into synoptic spatial representations of
animal movement, is an important problem common to both methods that many
authors have attempted to address in recent studies (Matthiopoulos et al., 2005;
Royer et al., 2005; Jonsen et al., 2005; Teo et al., 2004; Nielsen et al., 2006; Bradshaw
et al., 2002).

Location precision is generally lower in archival methods due both to the the-
oretical basis and practical problems of the location estimation (Hill and Braun,
2001; Ekstrom, 2002). To overcome this limitation, archival methods routinely in-
tegrate primary location estimation with auxiliary data sets (Delong et al., 1992;
Smith and Goodman, 1986; Teo et al., 2004; Domeier et al., 2005). In principle this
enables the integration of the estimation and error estimation processes but this
remains an under-utilized opportunity: published uses of archival methods usually
separate the estimation of the quality of position estimates from their derivation.
Satellite-derived estimates provide less opportunity in this regard, as the process is
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proprietary and information regarding error is minimal. However, satellite locations
still require a modelling framework to incorporate auxiliary information and pro-
vide the best possible estimates (Jonsen et al., 2005) including a quantification of
precision.

The simplest analysis of movement data is to visualize the sequence of locations
visited by the animal. It is slightly more complex to provide a path estimate of
the animal, which requires the ability to determine position both from available
data as well as for latent times where no data were measured. An obvious simple
model is to “join the dots”, assuming that movement is both linear and regular
between measured positions. A more realistic approach demands that estimates of
an animal’s path consider both primary and latent location estimates, because in
general there are open-ended scenarios that could occur between primary estimates.
There are a multitude of methods for achieving this (Turchin, 1998; Wentz et al.,
2003; Bradshaw et al., 2002; Tremblay et al., 2006; Ovaskainen et al., 2008), but
none have been directly integrated with the estimation process from raw data.

Once an estimate of an animal’s path is obtained biologists often need to calcu-
late speed of and distance of travel, generate spatial representations of an animal’s
use of space in terms of time spent in geographic regions, metabolic effort or other
measure of resource allocation. More sophisticated analyses aim to determine be-
havioural states more exactly (Matthiopoulos et al., 2004; Jonsen et al., 2005), or to
differentiate migration from foraging behaviour. These aims are beyond the present
work, where we will be focusing on the first step in the process—description of an
animal’s path and the precision with which this can be estimated.

Earlier work has attempted to account for spatial uncertainty by choosing a scale
for interpreting location data (Bradshaw et al., 2002), or spatial smoothing (Wood
et al., 2000). These techniques fail to estimate statistical uncertainty for individual
estimates, and provide only an overall average of precision. Other techniques are
used to estimate latent position by interpolation or similar technique (Tremblay
et al., 2006), but these must assume that positions are known.

Given the diversity of questions asked of movement data, there are understand-
ably many approaches to data analysis. Many existing techniques are specific to
particular questions and species and have little scope outside the given application.
Further, each application has its own problems of scale, location error, data quality
and summarizing of behaviour. In this context, sophisticated model approaches are
seeing greater use in tracking studies (Nielsen et al., 2006), but these have only
been applied to pre-derived positions and leave the problem of location estimation
from raw data unaddressed. No study has yet provided a general approach to deal-
ing with the twin issues of estimate precision and accuracy for both archival and
satellite location data. There is a growing need for just such an approach as more
large multi-species studies are being undertaken (Croxall et al., 2004; Block et al.,
2003b; Halpin et al., 2006). Such multi-species studies inevitably utilize a range
of tracking techniques as no one method is suitable for all species. For example,
fish which rarely come to the surface are not usually suitable for satellite tracking
(Hunter et al., 1986).

Here we present a Bayesian framework for the analysis of movement data that
directly addresses the estimation of location from raw data collected by archival
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tags and can also be applied to other data sets of pre-derived position estimates
such as Argos locations. We apply the approach to both an archival tag data set
and a satellite tag data set. Our primary goal is to integrate all available sources
of information for estimating location. Using all available information may sound
obvious, but it is a missed feature of many applications. Secondarily, we aim to
integrate the location estimation and the estimation of location precision. The
approach should also be able to provide all of the desired end-uses of tracking data
as mentioned above. In the Bayesian context, each of these measures, including
appropriate confidence intervals (CI) (Gelman et al., 2004; Gilks et al., 1995), can
be determined by specifying appropriate priors and distributions for each data source
and calculating the posterior.

3.2 Materials and Methods

3.2.1 Ethics Statement

Data were collected under permits from the University of Tasmania Animal Ethics
Committee (A6790 and A6711).

3.2.2 Assumptions

We propose a Bayesian approach to the tag location problem that uses Markov
Chain Monte Carlo methods to approximate the posterior.

There are three main elements to the process of Bayesian estimation; the prior,
the likelihood and the posterior. The prior distribution p(θ) represents our knowl-
edge of the parameters θ before any data is observed. The likelihood p(y | θ) is the
probability of observing data y for a given set of parameters θ, and represents our
knowledge of the data collection process. From these we calculate the posterior
distribution p(θ | y) via Bayes’ rule

p(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ) dθ

. (3.1)

The posterior p(θ | y) represents our knowledge of the parameters after the data y
have been observed. In essence, Bayes’ rule provides a consistent mechanism for
updating our knowledge based on observed data.

The data available for forming location estimates can be classified into four broad
types.

Prior knowledge of the animal’s movements Invariably something is known
of an animal’s home range, migratory pattern or habitat preference, and any
location estimate should be consistent with this information. This information
can range from being quite specific such as the species generally stays over the
continental shelf (e.g. shy albatross (Brothers et al., 1997)) or more vague
such as the species often heads south (e.g. southern elephant seals (Bradshaw
et al., 2002)).
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Primary location data The primary location data y is data collected primarily
for the purposes of location estimation, and directly inform about the locations
x = {x1, x2, . . . , xn} of the tag at a sequence of (possibly irregular) times
t = {t1, t2, . . . , tn}. Examples include the light levels recorded by an archival
tag, or for an Argos tag the locations provided by the Argos service.

Auxiliary environmental data Many tags also record additional environmental
data q, and this data may be compared to external databases to further con-
strain location estimates (Smith and Goodman, 1986; Delong et al., 1992; Teo
et al., 2004; Domeier et al., 2005; Nielsen et al., 2006). For example, in the
marine context depth and temperature measurements can be compared to
remotely sensed or modelled sea surface temperature (SST) data to confine
locations to regions where SST is consistent with the temperatures observed
by the tag.

Movement models Movement models constrain the trajectory of the animal, re-
ducing or removing the occurrence of location estimates that correspond to
improbable or impossible trajectories. Several forms of movement models ap-
pear in the literature; at the simplest level is speed filtering which prohibits es-
timates that imply impossible speeds of travel (McConnell et al., 1992; Austin
et al., 2003), while other authors propose more complex state space approaches
that model correlation between successive legs of the trajectory (Matthiopou-
los et al., 2004; Jonsen et al., 2005).

Several authors have noted the advantages of Bayesian methods in complex
problems in ecological research (Dixon and Ellison, 1996; Dorazio and Johnson, 2003;
Roberts et al., 2004; Wintle et al., 2003; Ellison, 2004); for the tag location problem
one principal advantage is that four disparate data sources can be systematically
incorporated into a single unified estimator of location.

The novel aspect of the method we propose is the adoption of a simple yet
powerful representation of the movement model that not only constrains the animal’s
trajectory, but also allows this trajectory to be estimated. Between each pair of
successive locations xi and xi+1, introduce a new latent point zi representing the
location of the tag at a time τi uniformly distributed in the interval [ti, ti+1], and let
di be the length of the dog-leg path from xi through zi to xi+1. The movement model
then simply prescribes the joint distribution p(d | t) of the dog-leg distances d =
{d1, d2, . . . , dn−1}. For example, adopting a model where the di are independently
uniformly distributed

di ∼ U(0, s(ti+1 − ti))

implements a simple speed filter that limits the maximum speed of travel to s.
Alternately, migration and large scale consistency of motion can be modelled by
adopting a distribution that allows for more complex patterns of dependence between
the successive di.

Note there is no explicit expression for the zi, they are defined implicitly through
the dog-leg distances di. However, any choice of p(d | t) that places realistic bounds
on each di is sufficient to ensure that the zi are estimable (in a Bayesian sense),
while also constraining location estimates. Most importantly, as τi is uniformly
distributed in the interval [ti, ti+1], the posterior distribution for zi describes the
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possible paths between xi and xi+1. In a sense, zi is not intended to refer to the tag
location at one particular time in the interval [ti, ti+1], but all times in the interval
[ti, ti+1].

The second key assumption of the method is that the primary location data, the
auxiliary environmental data and the behavioural model are all independent, and
so the likelihood p(y, q, d |x, t, E) reduces to a product of contributions from each of
these three sources

p(y, q, d |x, t, E) = p(y |x, t)p(q |x, t, E)p(d | t).

Here p(y |x, t) is the likelihood of observing the primary location data y given lo-
cations x at times t, p(q |x, t) is the likelihood of observing the environmental data
q given locations x at times t and a database E of known environmental data, and
p(d | t) is the distribution of dog-leg distances between the successive locations de-
scribed above. The exact form of p(y |x, t) and p(q |x, t) will depend on the precise
nature of the data collected by the tag, and several common examples are discussed
below.

The prior for x and z reflects knowledge of the animal’s home range, habitat
preference, migratory patterns or other fundamental environmental considerations.
For example, a known home range can be modelled by adopting a prior of the form

p(x, z) ∝
n∏
i

I(xi ∈ Ω)

n−1∏
i

I(zi ∈ Ω)

where Ω is the known home range and I is the indicator function

I(x) =

{
1 if A is true

0 if A is false.

Migration can be accommodated by allowing Ω to vary with season, while habi-
tat preference can be incorporated by assigning greater probability density to more
favourable habitat. We must also supply a prior for τ that simply reflects our as-
sumption that τi U(ti, ti+1).The form of p(y |x, t) as the contribution of the primary
location data to the total likelihood depends on the nature of the tag in question.

3.2.3 Satellite tags

For satellite tracked tags, the primary location data y consists of primary esti-
mates X = {X1, X2, . . . , Xn} of the true tag locations x = {x1, x2, . . . , xn} at times
t = {t1, t2, . . . , tn} provided by a remote sensing service, possibly augmented with
some indicators of location reliability {r1, r2, . . . , rn}. In this case the contribution
p(y |x, t) to the total likelihood is determined by assuming the observed locations
Xi are bivariate Normally distributed about the true locations xi,

Xi ∼ N
(
xi, σ

2(ri)
)

with a variance σ2 that is a function of the reliabilities ri. For less consistent services,
longer tailed distributions such as the bivariate t can be used to accommodate the
occasional erroneous location (Gelman et al., 2004).
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3.2.4 Archival tags

For archival tags there are no initial estimates of tag location; the primary location
data consists of light intensities recorded by the tag at regular intervals over the
day. The tags’ location can be estimated from the light level data by the methods of
Ekstrom (2004) and Hill and Braun (2001). We use a version of the template-fitting
method (Ekstrom, 2004) to provide a location estimate for each twilight. The full
computational details are complex and will be the subject of a future publication, but
in essence the method is as follows. The time series of light levels corresponding to
each twilight recorded by the tag is extracted, and for marine applications, corrected
for attenuation due to depth. This yields a sequence of time series; one time series
li = {li1, li2, . . . , lim} for each twilight, where lik is the corrected light level recorded
at time tik. A function l(θ) that maps solar elevation θ to the (unattenuated) log light
level l recorded by the tag is determined by laboratory calibration. The contribution
p(y |x, t) to the total likelihood is determined by assuming the log corrected light
levels are distributed as

log lik ∼ N
(
log l(θ(xi, tik)) + ki, σ

2
)
,

where θ(x, t) is the Sun’s elevation at location x and time t, and ki is a constant to
allow for attenuation due to cloud. The variance σ2 is determined by the recording
error in the tag.

Similarly, the contribution p(q |x, t, E) the auxiliary environmental data q makes
to the total likelihood will depend on the nature of the data recorded by the tag
and the availability of a suitable reference database E with which to compare.

For example, for marine tags that record both water temperature and depth, for
each xi an estimate si of the SST can be derived from the temperature and depth
data recorded by the tag in some small time interval [ti−∆t, ti+∆t] surrounding ti.
This estimate might then be assumed to be Normally distributed about a reference
temperature S(xi) determined from a remotely sensed SST database E,

si ∼ N
(
S(xi), σ

2
s

)
where the variance σ2s is determined by the accuracy of both the tag and the remotely
sensed database. Alternately, a more conservative approach similar to that employed
by Hindell et al. (1991) is to suppose that the temperature si measured by the tag
is a very poor indicator of average SST, but could be no greater than an upper limit
S(xi) + ∆S and no lower than S(xi) −∆S and assume si is uniformly distributed
in this interval

si ∼ U (S(xi)−∆S, S(xi) + ∆S) .

Again ∆S is determined by both the accuracy of the tag and database.

As a second example, for marine applications the depth data recorded by a tag
can be exploited by noting that the maximum depth recorded in a time interval
[ti−∆t, ti+ ∆t] surrounding ti provides a lower bound hi for the depth of the water
column at xi. We can then refine the estimate of xi comparing hi(x) to a high
resolution topography database E and excluding regions that are too shallow by
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including in the likelihood a factor of the form

n∏
i=0

I(hi < Hh(xi))

where Hh is the bottom depth determined from the database and I is again the
indicator function.

3.2.5 Posterior estimation

Once the prior and likelihood have been defined, the posterior p(x, z, τ | y, q, t, E) is
determined by Bayes’ rule

p(x, z, τ | y, q, t, E) =
p(y, q, d |x, t, E)p(x, z)p(τ)∫

p(y, q, d |x, t, E)p(x, z)p(τ) dxdzdτ
.

Typically however, the integral in the denominator is computationally intractable,
and instead we resort to Markov Chain Monte Carlo (MCMC) to approximate the
posterior.

Appendix A provides an explanation of MCMC methods with an example.

MCMC (Gilks et al., 1995) is a family of methods that allows us to draw random
samples from the posterior distribution. Summarizing these samples approximates
the properties of the posterior, in the same way that a sample mean is an approxima-
tion to a population mean. In principle, the approximation can be made arbitrarily
accurate by increasing the number of samples drawn.

For the tag location problem we use a block update Metropolis algorithm based
on a multivariate Normal proposal distribution (Gilks et al., 1995). The Metropolis
algorithm was chosen for its simplicity and genericity – it is easily implemented and
the implementation is not strongly tied to particular choices of likelihood and prior.
We have used a block update variant of the algorithm, where each xi and each zi
are updated separately. Using a block update improves computational efficiency
provided parameters from separate blocks are not strongly correlated. For the time
intervals between locations typical of satellite and geolocation data and reasonable
choices of movement model p(d | t), we have not found the correlation between suc-
cessive locations estimates to be so great as to greatly impede the mixing of the
chain.

3.2.6 Examples

To illustrate this basic framework, we present two simple examples.

The first example is a Weddell seal tagged at the Vestfold Hills (78oE, 68oS)
tracked with a satellite tag (9000X SRDL; Sea Mammal Research Unit, St. Andrews,
Scotland) with locations provided by the Argos service (Service Argos, 2004).

The Argos service provides approximate locations X = {X1, X2, . . . , Xn} and
corresponding location qualities {r1, r2, . . . , rn} for a sequence of times t = {t1, t2, . . . , tn}.
This forms the primary location data. Each ri categorizes the corresponding Xi into
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one of seven quality classes based on the number of satellites used in its determina-
tion (Service Argos, 2004). We translate the ri into approximate positional variances
σ2(ri) based on the results of Vincent et al. (2002) and assume

Xi ∼ N
(
xi, σ

2(ri)
)
.

So that the contribution to the likelihood from the primary location data is

p(y |x, t) =

n∏
i=1

(2πσ2(ri))
−1 exp

(
−(Xi − xi)T (Xi − xi)

2σ2(ri)

)
.

This particular tag recorded no environmental data, and so the corresponding
contribution to the likelihood is p(q |x, t, E) = 1.

For this example a very simple movement model was adopted. We choose p(d | t)
so that the mean speeds di/(ti+1−ti) between successive locations are independently
log Normally distributed

p(d | t) =
n−1∏
i

(2πσ2s)
−1/2 exp

(
−(log(di/(ti+1 − ti))− µs)2

2σ2s

)
with µs = 0.25ms−1 and σs = 0.8ms−1, where these figures were chosen conserva-
tively based on an examination of Argos data of the highest quality class.

Finally, we adopted a prior p(x, z) for x and z that was uniform over the ocean,
that is

p(x, z) ∝
n∏
i

I(xi ∈ Ω)

n−1∏
i

I(zi ∈ Ω)

where Ω is the ocean. This was implemented by comparing x and z to a high
resolution land/sea raster mask generated from A Global Self-consistent, Hierar-
chical, High-resolution Shoreline Database (Wessel and Smith, 1996). Creating a
raster mask to indicate sea/land allows the prior to be computed very efficiently by
avoiding complicated point-in-polygon tests.

The second example is a mature southern elephant seal (Mirounga leonina)
tagged at Macquarie Island (158o 57’E, 54o 30’ S), with data from a time-depth-
recorder (Mk9 TDR; Wildlife Computers, Seattle, WA, USA). The data were col-
lected using methods described by Bradshaw et al. (2006). This tag provides regular
time series of measurements of depth, water temperature, and ambient light level.

In this case the primary location data consist of the time series of depth and
ambient light level. As outlined above, the depth adjusted light level is assumed to
be log Normally distributed about the log expected light level for the sun elevation
adjusted for cloud cover so that

p(y |x, t) =
n∏
i=1

ni∏
k=1

(2πσ2)−1/2 exp

(
−(log lik − log l(θ(xi, tik)) + ki)

2

2σ2

)
.

For this example, the depth and water temperatures recorded by the tag were
used to estimate sea surface temperatures that were then compared to NCEP
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Reynolds Optimally Interpolated SST. For each twilight, estimates of minimum
Li and maximum Ui SST observed in the surrounding 12 hour period were derived
from the depth and water temperature records. These estimates form the auxiliary
environmental data q, and p(q |x, t, E) was then chosen as

p(q |x, t, E) =
n∏
i=1

p(Li, Ui |xi, ti, E)

where

p(Li, Ui |xi, ti, E) =

{
1 if Li ≤ S(xi, ti) ≤ Ui
0 otherwise

and S(x, t) is the NCEP Reynolds Optimally Interpolated SST. This example shows
the great difficulty in choosing p(q |x, t, E) – typically the data from the tag and
the data from the reference database are recorded on wildly disparate spatial and
temporal scales, making it very difficult to make any reasonable comparison of the
two.

Again the movement model p(d | t) is chosen so that the mean speeds di/(ti+1−ti)
between successive locations are independently log Normally distributed

p(d | t) =
n−1∏
i

(2πσ2s)
−1/2 exp

(
−(log(di/(ti+1 − ti))− µs)2

2σ2s

)
In this case we use µs = 1.4ms−1 and σs = 0.8ms−1, and these figures were chosen
conservatively based on knowledge of elephant seal behaviour.

Finally, just as for the satellite tag example a prior p(x, z) uniform on the ocean
was adopted x and z, but in this case the land/sea raster mask generated from the
2-Minute Gridded Global Relief Data (ETOPO2).

The primary rationale behind our choices for examples was to show the appli-
cation of our approach to both satellite locations and archival tag data. Further
to this, for the satellite example we wish to demonstrate the use of our approach
for a situation involving a complex inshore coastline and the handling of existing
estimates that occur on land. We are not attempting to show the best possible
application for our examples, but demonstrating a consistent approach that is able
to use all available sources of data.

3.3 Results

For the satellite tag example an initial 10,000 samples were drawn and discarded to
allow for both burn-in and tuning of the proposal distribution (Gilks et al., 1995).
A further 300,000 samples were then drawn, and standard convergence tests applied
(Best et al., 1995). The same strategy was adopted for the archival tag example,
with 30,000 samples drawn for burn-in, and a further 800,000 samples drawn. In
neither case was there any evidence that the chains had failed to converge, but it
must be realized that these are problems of extremely high dimension, and as such
a subtle convergence problem may be difficult to detect.
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The provided Argos Service locations for the satellite tag example are displayed
in Figure 3.1a, showing the primary location data. This includes all raw positions
from Argos, including every location quality class. The time-series of locations, is
quite noisy and many of the positions fall on land. The sequence suggests that the
animal has begun in the southern region of the area, with excursions into and out
of various inlets, travelling to the north overall, but with an excursion returning to
the south somewhat offshore. The record ends in the northern region. From this
plot it is clear that there are many unlikely locations given the presence on land and
the implied tortuous path. The outputs of our modelled estimates for this data set
are discussed below. Posterior mean locations for x from the archival tag data set
may be seen in Figure 3.2a. Unlike the Argos example, there are no ’raw locations’
to present as the primary location data are light level measurements. The range of
the track estimate has no local topographic features (coastline or bathymetry) that
constrains the locations, as the area visited is for the most part deeper than -2000m
(Wessel and Smith, 1996). However, we know that these locations are consistent with
the matching sea surface temperature data, under the assumptions of our model.

3.3.1 Argos tag data set

In Figure 3.3 the posterior means for x are plotted separately for longitude and lati-
tude with the sequence of original Argos Service positions overplotted as a line. Also
shown are the individual confidence interval (CI) estimates (95% level, presented as
a range in kilometres). The sequence of estimates is clearly more realistic than the
original Argos locations in terms of likely movement, even though no time steps
have been discarded. The confidence intervals in Figure 3.3 are summarized from
their 2-dimensional versions and plotted here with longitude and latitude separated
to easily show the relative precision of each. Most of the estimates have a range of
less than 5 km, with a maximum above 30 km. This simple plotting of individual
parameters with CIs leaves out a lot more information than exists in two dimen-
sions. A supporting information file (Figure S1 in Sumner et al. (2009)) provides an
animation of the full path with the implied path of the original Argos locations to
illustrate the improvement provided by our approach.

The posterior means for x longitude and latitude are presented spatially in Fig-
ure 3.1b. The main differences with the raw estimates is that there are now no
estimates that fall on land, and the sequence of positions is far more realistic in
terms of likely movement. The 1124 original Argos locations included 179 that fell
within the bounds of the coastline data used. The overall travel to the north can be
seen in more detail, with an excursion into the main large inlet and then movement
around the bay into the region of islands to the north. There are two large excur-
sions when the animal has returned briefly to the southern region, first to the large
inlet, then to an island further south, but the more extreme outliers are no longer
present. This journey is typical for these seals, as shown by Lake et al. (2005). (We
do not present the points connected by lines as this would be visually messy and
also imply impossible trajectories based on the simplistic “join the dots” model. The
connectivity, or full-path, of estimates is provided by the intermediate estimates.)

A map of time spent per unit area is shown in Figure 3.1c. This density plot
shows the “full path” estimate using the intermediate locations, summarized by



3.3. RESULTS 61

Figure 3.1: Satellite tag data and estimates Panel A: The sequence of original
Argos estimates for an adult female Weddell seal tagged in the Vestfold Hills, with
time scale from red to blue. All location classes are shown. The different length
scale bars for north and east represent 10 kilometres. Panel B: Posterior means for
x from the Argos data set plotted spatially, with time scale from red to blue as
in panel A. The sequence is far more realistic, without the noise and positions on
land. Panel C: Map of time spent from full path estimates from the Argos data set.
The density represents a measure of time spent per area incorporating the spatial
uncertainty inherent in the model. Bin size is 150 m by 140 m.

binning the posterior and weighting each segment by the time difference between
each original Argos time step. The full track estimate is shown here providing
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Figure 3.2: Estimates and time spent for archival data set Panel A: Posterior
means for x from the archival data set plotted spatially, with time scale from red
to blue. The sequence provides a realistic trajectory for an elephant seal. The
dashed grey line shows the (approximate) position of the Southern Boundary of
the Antarctic Circumpolar Current. Panel B: Map of time spent from full path
estimates from the archival data set. Bin size is 5.5 km by 9.3 km at 54 S and 3 km
by 9.3 km at 72 S.

a single view of the entire trip. Again, this neglects a lot of information that is
available from the posterior, as any segment of the path may be interrogated, down
to the level of individual estimates. The bin size here is 150 m by 140 m, simply
chosen for convenience given the image plot size. This image portrays the areas of
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Figure 3.3: Individual longitude, latitude estimates for Argos Posterior
means for x from the Argos data set for longitude and latitude, with time scale
from red to blue as in Figure 3.1. The grey line shows the implied sequence of the
original Argos estimates. Also shown is the range of the 95 % CI of each estimate
(km), determined with the mean by directly summarizing the posterior.

most time spent by the animal, with the spatial precision of estimates implicit in the
spread of time spent density. Importantly, the transition between time in the water
and the position of land is smooth as the estimation takes the presence of land into
account as it proceeds. There is no artificial clipping of the distribution as would be
required if a simple spatial smoother was used on raw estimates. This achieves the
shared goals of smoothing techniques such as kernel density (Matthiopoulos, 2003)
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and cell gridding.

A summary of the precision of estimates for longitude and latitude for each
original Argos class estimate is presented in Table 3.1. This summary shows that
our estimates are consistent with and often better than the expected precision given
by the Argos class and, while that point is slightly circular given our use of the class
information in the model, our approach is able to combine the contribution of the
Argos class with other information and show that the precision of estimates is not
necessarily directly related to the class assigned.

Longitude

class Min. 1stQu. Median 3rdQu Max

Z 0.27 1.09 1.90 2.99 22.05

B 0.27 0.95 1.77 3.95 36.20

A 0.27 1.09 2.18 3.78 15.38

0 0.13 1.36 2.30 4.08 25.86

1 0.27 0.82 1.23 2.04 5.99

2 0.14 0.41 0.61 0.95 2.31

3 0.14 0.27 0.41 0.54 1.50

Latitude

class Min. 1stQu. Median 3rdQu Max

Z 0.45 1.21 1.97 3.79 17.13

B 0.15 1.21 2.12 4.40 37.75

A 0.30 1.52 2.27 4.40 13.64

0 0.15 1.52 2.50 4.66 19.56

1 0.15 1.06 1.67 2.73 14.86

2 0.15 0.60 0.99 1.67 5.00

3 0.15 0.45 0.61 1.06 3.03

Table 3.1: Estimate precision for Argos data set Summary of precision calculated
from the posterior for x by original Argos class (km). Each row presents a quantile
summary for the CI ranges (95 %) from each Argos class for longitude and latitude.
The seven classes are an attribute provided with the original Argos locations (Service
Argos, 2004).

Finally in Figure 3.4 we can see the relationship between the direct estimates
(plotted individually with CI ranges) and CI range of intermediate estimates (plot-
ted as a continuous band) for a short period between 23-26 February 2006. The
intermediate estimates provide a continuous path estimate, with latent times of no
data “filled in” with estimates constrained only by the movement model and the
environmental data. This figure also shows the utility of the method in terms of
providing overall full path estimates, as well as individual point estimates with a
measure of precision.

Figure 3.4 also shows a deficiency of the assumed movement model - the esti-
mated path at each ti tends to be more variable than the corresponding xi. This
is because there is no constraint on the individual legs of the dog-leg path from xi
toxi+1. So it is possible for zi to be a great distance from xi an instant after ti
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Figure 3.4: Intermediate estimates for Argos Posterior means for x of longitude and
latitude for a short period (23-26 Feb 2006) with CI ranges shown. The CI range
for intermediate estimates (full path) is shown as a continuous band.

or from xi+1 an instant before ti+1, provided the total distance traversed over the
dog-leg path is reasonable. It is difficult to resolve this issue without requiring a
much more detailed understanding of the animal’s behaviour.
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3.3.2 Archival tag data set

Posterior means for x longitude and latitude are plotted separately with accompany-
ing confidence intervals Figure 3.5. This includes a location for every local twilight,
as seen in the raw light data. The sequence seems consistent with the time steps
involved (12 hourly, on average), with no extreme or obviously problematic move-
ments. The confidence interval of each estimate is also plotted, with a spatial range
that is usually less than 30 km for longitude and 40 km for latitude. A summary of
the precision of estimates for longitude and latitude is presented in Table 3.2.

These estimated location are plotted spatially in Figure 3.2a. This animal has
left Macqurie Island (1 February, 2005) and travelled directly to the southeast to a
region north of the Ross Sea. Here it spends the period from early March to mid
September with a short excursion to the south during April. Finally the animal
reverses its outward journey, returning to Macquarie Island on 8 October 2005. The
sequence of locations seems reasonable, with no obviously extreme estimates, and
this is a fairly typical journey for these seals (Bradshaw et al., 2002).

In Figure 3.2b a density map shows more clearly the spatial precision of the
estimates and the areas where most time has been spent. It is clear that this region
south of the Southern Boundary of the Antarctic Circumpolar Current (Orsi et al.,
1995) is an important feeding area for this animal.

A summary of the precision of estimates for longitude and latitude is presented
in Table 3.2. We can see the distinction between the primary and intermediate
estimates plotted in Figure 3.6. This time the difference between the primary and
intermediate estimates is less than with the satellite tag example.

Longitude

Min. 1stQu. Median 3rdQu Max

3.74 15.52 18.51 21.42 57.03

Latitude

Min. 1stQu. Median 3rdQu Max

4.68 23.38 28.06 37.41 135.60

Table 3.2: Estimate precision for archival data set. Summary of precision calculated
from the posterior for x from the archival tag. A quantile summary for the CI ranges
for longitude and latitude.

3.4 Discussion

The flexibility provided by Bayesian methods for complex problems (Ellison, 1996;
Dorazio and Johnson, 2003; Wintle et al., 2003) proved fruitful in this study. We
have demonstrated a general approach for estimating true locations from both
archival tag data and satellite fixes, accepting either source as raw data. This
approach handles erroneous existing location estimates and other problems by incor-
porating all available sources of information in one unified process. We have shown
how this approach can be used to obtain all of the common measures of interest in
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Figure 3.5: Posterior means for archival data set Posterior means for x from
the archival data set for longitude and latitude, with time scale from red to blue
as in Figure 3.2a. Also shown is the range of the 95 % CI of each estimate (km),
determined with the mean by directly summarizing the posterior.

tracking studies by summarizing the posterior. These are path estimates, estimate
precision, latent estimates, combinations and diagnostics of location estimates.
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Figure 3.6: Intermediate estimates for archival data set Individual mean
estimates of longitude and latitude for a 10 day period in February with CI ranges
shown, as well as the CI range for intermediate estimates (full path) shown as a
continuous band.

3.4.1 Path

The likely (posterior mean) path for a basic representation of position over time.
These can be used to plot simple tracks, or to query other data sets (such as pro-
ductivity measures) for corresponding information at that location and time.
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3.4.2 Precision

For each estimate we can obtain precision estimates (CI). These probability densities
are bivariate and can be obtained separately for each time step in the sequence, or
for combined durations as required. This information can be used for more nuanced
interrogation of other data sets to obtain representative values based on the spatial
precision of the estimate.

3.4.3 Latent estimates

Estimates of latent locations can be obtained, representing the intermediate posi-
tions between those explicitly measured. These represent each period between Argos
locations or times between each twilight for archival tags: in general they represent
periods between those of (primary) data collection relevant to location estimation.
Latent estimates may also be summarized as a mean and CI, and used to provide
estimates of the full path between individual time steps. The density of intermediate
locations provides a model of the possible range of the track, similar in intention to
the spatial smoothing mechanisms employed in other studies.

While primary estimates are constrained by likely movement regimes as well as
the available data, the latent estimates represent the residual possible movement
in-between.

Unlike some studies using techniques that require subsequent clipping (Brad-
shaw et al., 2002; Croxall et al., 2004), time spent estimates can be made without
spurious presence on land or other out-of-bounds areas. Also, there is a more re-
alistic probability transition from land to marine areas even for complexly shaped
coastlines.

The use of latent estimates utilization distributions is better than either cell
gridding or kernel density as there is no dependence on the choice of grain size or
kernel. The final step to quantize values into a density grid can be done directly
from the posterior, without intermediate processing.

3.4.4 Combinations

The structure of our estimates enables us to combine estimates from different animals
for spatial measures of resource usage. This may be done for arbitrary time periods
and groups of individuals. Also raw coordinates may be projected for summaries
based on an appropriate coordinate system for particular groups or areas of interest.

3.4.5 Updating the models

Time spent maps and track summaries (mean and CI values) were generated by
summarizing the posterior for each example. The intermediate locations represent
the ’full path’ and hence are appropriate for time spent maps and similar spatial
summaries. The primary locations are estimates for each time step from the raw
location data - individual twilights for the archival tag, Argos times for the satellite
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tag. Interrogating individual x or z estimates provides feedback on the performance
of the model run that may be used to identify problems or areas that require im-
provement. An example of this feedback was discussed with Figure 3.4 where we see
how the movement model requires an improved implementation for the satellite tag.
This is one of the most powerful aspects of our approach, more important than the
results presented here as it provides a foundation from which remaining problems
with location estimates may be identified and related to deficiencies in source data,
model specification or model assumptions.

Other studies have successfully applied Bayesian methods to tracking problems
with similar success (Jonsen et al., 2003, 2005), but applied only to pre-derived
location estimates, and it is not clear how archival tag data could be incorporated in
such an approach. The quantities of data involved and the non-linear complexity of
the models involved are difficult to implement with more efficient statistical sampling
regimes such as Gibb’s sampling. Our approach enables the use of the raw archival
tag data and incorporation of independent environmental databases. High quality
location methods such as satellite tracking can also benefit from our approach. For
example: similar to the satellite example presented here, Thompson et al. (2003)
also report dealing with large numbers of Argos locations that were clearly deficient
as they place marine animals on the land. Our approach allows the systematic use
of the appropriate coastline to data account for this inconsistency.

The advantages of our approach are relevant to all users of tracking data includ-
ing tag manufacturers, ecological researchers and environmental decision makers.
The key benefits are:

1. A convenient mechanism for separating large complex problems into manage-
able components, enabling the use of all available information sources.

2. Obviously incorrect locations are avoided, and when data are absent or of poor
quality the estimates will have a lower precision.

3. Estimates are continuous in the posterior and may be summarized as required,
rather than being discretized or otherwise simplified.

While we have illustrated our approach using seals, these techniques clearly have
broader implications for the tracking of other species and other tagging methods.
This approach to location estimation better enables multi-species ecosystems com-
parisons irrespective of the methods used to collect data. A particularly important
area of application is in fishery studies, which have large quantities of archival tag
data e.g. Gunn et al. (2003) and Teo et al. (2004), or satellite data e.g. Croxall
et al. (2004); Block et al. (2003b); Halpin et al. (2006). The improvement of location
estimation will enable further research aimed at relating fisheries management to
that of other marine species and processes.

While our approach can provide location estimates with confidence intervals
based on the data model, there remains the need for independent validation of the
techniques with known locations. The assessment of accuracy of these techniques
is crucial to their use, and opportunities exist with double-tagging experiments,
recapture studies and experimental validation.
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The relationship between tag-measured temperatures in near-surface waters and
remotely sensed surface temperature remains largely unexplored in animal tracking
studies (Sumner et al., 2003). This is due to the discrepancy between traditional
physical oceanographic interests and those of biological studies. Access to hierar-
chical data sets of SST (Domeier et al., 2005), models of surface and at-depth water
temperature and sources of higher quality local environmental data will improve
the contributions from this auxiliary information. A more detailed approach would
match auxiliary data values in a probabilistic sense similar to methods employed by
Teo et al. (2004), enabling the application of distributions to account for error in all
measurements.

The use of depth and temperature at depth also remains a largely unexplored
aspect, no further work has been published since Smith and Goodman (1986) and
Hindell et al. (1991). The utility of this data source obviously depends on the envi-
ronment visited and the animal’s diving behaviour, but also highlights the breadth
of opportunities that are available for various species.

Many of our implementation decisions have been deliberately based on simplistic,
first-pass practicalities in order to demonstrate the generality of our approach to a
wide range of problems. The application of MCMC demands careful diagnosis of
model convergence (Plummer et al., 2006) and we have omitted this important but
onerous aspect from the present work in order to focus on the primary goal of
integrating all the available data. While our movement model is flexible it does not
account for movement regimes that are auto-correlated or seasonal. Auto-correlation
of speed is recognized as an important aspect of modelling movement, also missing
from our initial implementation. For example, in both examples we have assumed
that the successive di are independent. However, we can model serial correlation
in the track by choosing the joint distribution of distances so that successive di are
correlated. The impact of a variety of correlation models could be explored (Jonsen
et al., 2005; Viswanathan et al., 2000).

In this study we applied a single scheme to the derivation of location estimates
from two very different tracking data sets. Each data set was composed of separate
sources of information integrated using our four-part approach. This was used to
derive location estimates from raw archival tag data, as well as from pre-derived
location estimates from a satellite service. In each case, where limitations from a
particular source could have produced problematic estimates, this was augmented
by the strengths of others.

This method is clearly practically applicable to the real-world problem of analysing
behaviour from many large archival tag data sets employed by marine animal stud-
ies, and is appropriate for the tracking data from many species. It is also useful for
applying behavioural constraints to the latent aspects of nearly error-free location
estimation such as GPS.

Conclusion

The framework presented in this chapter provides a general Bayesian approach to
location estimation that can incorporate prior knowledge, primary location data
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from different tag types, large environmental data sets and movement models. The
work in this chapter forms the basis of a novel approach to estimating location from
disparate tagging methods. An implementation of the approach is freely available in
easily extensible form in the tripEstimation package developed by the author (Sum-
ner and Wotherspoon, 2010). No previous study has provided as broad integration
of the many issues faced by the modelling of animal movement.

This chapter has focussed on the broad structure of a general approach to loca-
tion estimation, applied to a satellite tag data set and an archival tag data set. The
following chapters deal with various aspects of these issues in greater detail. Chap-
ter 4 describes the specifics required for light level geo-location and the requirements
for tag calibration and inclusion of solar elevation information. Chapter 5 describes
the details of the track representation model given by the separation between pri-
mary locations and the estimation of intermediate intervals. The implications of this
are outlined in detail with examples to demonstrate the importance of commonly
neglected issues such as the use of a hard boundary to inform location estimates.



Chapter 4

LIGHT LEVEL GEO-LOCATION
FROM ARCHIVAL TAGS

Determining location from archival tag data, such as light level and temperature, is
an important method for the study of marine animals, particularly those that spend
time at depth and migrate over long distances. In general, locations derived from
archival tags are not as accurate as those from satellite tags but satellite methods
do not work underwater and the tags are considerably more expensive. The major
source of inaccuracy is simply that observed light levels are such an indirect indicator
of global location, but the problem is compounded by analytical approaches that
are statistically inefficient and under-utilize the tag-measured data. For example,
the evaluation of estimate accuracy is often performed as a separate process to
the estimation, with reference to secondary sources, such as maps of sea surface
temperature. These problems were described by Sibert and Nielsen (2007), who
provided a state-space approach for geo-location from raw data with a random walk
movement model. By applying the general approach adopted in Chapter 3 (Sumner
et al., 2009), we present a methodology that provides two locations per day, each
with quantified precision and estimates for intermediate locations from an integrated
movement model.

The technique of determining location from light levels relies on the relationship
of tag-measurable light to solar elevation, at particular times of day. Solar elevation
is the angle of the position of the sun relative to the horizon. “Light level” is not an
absolute measure and the actual relation between solar elevation and measured light
depends on the particular tag construction and calibration. However, the daily pat-
tern of change in solar elevation has a predictable effect on measured light levels and
methods of determing location from this pattern are referred to as “light level geo-
location” (Hill, 1994). There are two main approaches: “threshold methods” which
detect signature patterns that mark particular solar events, and “curve methods”
(or “template methods”) which use patterns in the rate of change of solar elevation
(Welch and Eveson, 1999; Hill and Braun, 2001; Musyl et al., 2001; Ekstrom, 2004,
2007). Both approaches rely on twilight as the most informative time of day when
solar motion has the greatest influence on changes in measurable light level.

Direct astronomical measurements can be used to derive location with an accu-
racy of a few kilometres or better (Bowditch, 2002). The “longitude problem” for
eighteenth century navigation was due to the lack of precise and reliable time-keeping
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machines (Sobel, 1998). With an accurate reference time, longitude is easily derived
from the sun’s azimuth and latitude from its elevation. Time-keeping in miniature
tags is now cheap and simple but given that tags cannot directly measure solar
elevation their successful use is largely hindered by the “latitude problem”.

Light data from archival tags provide only an indirect indication of angular solar
position. Light level geo-location is only possible during times when the sun actually
rises and sets, and the factors that degrade the estimation process tend to mostly
affect the estimation of latitude. Longitude is generally much simpler to determine
from light levels than latitude (Hill and Braun, 2001), but both are susceptible to a
variety of problems. In terms of modelling the data collection process they are two
dependent parameters that arguably cannot be cleanly separated.

4.1 Light-based derivation techniques

Light level geo-location has been used since the mid 1980’s, with the first work from
a collaborative study by Northwest Pacific and NOAA for tagging tuna (Smith and
Goodman, 1986; Hunter et al., 1986). Smith and Goodman (1986) gave a detailed
analysis on the limits on latitude determination by depth-specific temperatures.
Wilson et al. (1992) provided the first general application of light level geo-location,
shortly followed by Hill (1994). Together these works established the problems
of latitude determination during equinox and the use of ocean temperatures as a
way to improve otherwise problematic estimates. This largely set the context for
applications of geo-location: longitude and latitude are estimated separately, then
further work is done to correct poor estimates. Innovations in techniques for deriving
location from light data have been relatively rare and many publications state that
the limits of light derivation have been met and must be augmented by auxiliary data
(Beck and McMillan, 2002; Block et al., 2003c; Teo et al., 2004; Shaffer et al., 2005).
Published works that explore the application of light methods in detail are Wilson
et al. (1992); Welch and Eveson (1999); Musyl et al. (2001). Recently methods to
extend the use of light data in new ways have been introduced by Sibert and Nielsen
(2007); Ekstrom (2007) and Evans and Arnold (2008).

The major difference between existing methods for light-level geo-location is that
of “fixed point” methods that choose critical times and “curve” methods that use the
rate of change in light level during twilight. The classic and well-known description
is a form of threshold method that requires the definition of reference angles for solar
elevation (corresponding to noon, sunrise and sunset) inferred from identifiable light
level values. Based on the same principles used by eighteenth century mariners,
the time of local noon is determined from the mid-point of an assumed symmetric
light signal (giving longitude), and the length of day is determined from the time
between sunrise and local noon (giving latitude). The classic method effectively
assumes a fixed point that is constant over a whole day, then solves for that in the
solar equations. This threshold approach is particularly susceptible to asymmetric
weather conditions between twilight events, Solar equinoxes, the movement of the
animal, and to slight errors in the determination of sunrise, sunset and noon (Hill
and Braun, 2001; Ekstrom, 2004).
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4.1.1 Fixed point methods

In fixed point, or threshold, methods there are a number of ways that the times
of twilights or zenith values are determined. The major distinctions are between
“fixed reference”, “variable reference”and“reflection”methods (Metcalfe, 2001), with
the difference between these concerning the estimate of latitude. A fixed reference
light level is chosen as representative of the time of the definitive zenith angle,
and latitude is found by using these times in standard solar algorithms. Variable
reference methods choose a level as a relative value for each day. Reflection methods
rely on comparision of subsequent dawn/dusk light curves to define these times by
finding the best fit or match between them (Hill, 2005). In essence, these methods
estimate latitude based on the apparent day length, and so latitudinal estimates are
particularly susceptible to error near an equinox, when the day length is the same
at every latitude.

4.1.2 Curve methods

The precise rate at which the sun appears to rise or set is a function of lati-
tude. Where fixed point methods effectively estimate latitude from the apparent
day length, curve methods estimate latitude from the apparent rate of change of
light level.

Published accounts of curve methods are confined to the works of Ekstrom
(2004), Musyl et al. (2001) and Sibert and Nielsen (2007). Importantly, these meth-
ods provide a means for better utilizing the available light data and allowing for
atmospheric effects. The advantages of the curve approach depends on three major
facets: it uses the rate of change of solar elevation over time, prescribes a limit to be
applied to the range of angles used based on physical principles, and easily accounts
for effects caused by slow variations in weather. Curve methods use the actual series
of recorded light levels and its relationship to solar angles. This uses more of the
actual light data, and is less susceptible to movement of the tag between the twilight
periods and the equinox problem described above (Ekstrom, 2004).

Curve methods are still prone to physical problems that disturb the relationship
between solar elevation and measured light that would otherwise provide a solution
built purely on principles of astronomy and atmospheric physics (Ekstrom, 2007).
The animal’s movement and behaviour during twilight, and attenuation by clouds
and water depth disturb the relation between ambient light level and solar elevation
that are difficult or impossible to account for directly. Further problems such as
moonlight, atmospheric effects and depth attenuation remain incompletely explored,
with the work of Ekstrom (2007); Sibert and Nielsen (2007) and Evans and Arnold
(2008)1 providing directions for further work. The actual measured response of
the tag to light, data discretization, or further processing depend on the particular
construction and design of any given tag, presenting even more variations that need
to be accounted for in models used to derive location. This complex of problems
requires a very general and flexible approach that can be applied to a wide range of
tags and data collection scenarios.

1See the abstract by Hartog et al. in Evans and Arnold (2008).
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4.1.3 Aims of this study

There is considerable room for improvement in existing light-level geo-location esti-
mates, and in particular, from methods that separate the derivation of location from
the estimation of model uncertainty fail to fully utilize the available information.
We apply a version of a curve method within the Bayesian framework introduced in
Chapter 3 (Sumner et al., 2009).

The key component provides the likelihood of predicted light levels given the
measured light levels. A given location x at time t has a known sequence of solar
elevation providing the predicted light levels via a tag calibration. As in the previ-
ous chapter we augment the light data with auxiliary environmental data to limit
the range of locations by comparison to independent environmental databases. A
behavioural model links the estimates temporally in a physically realistic way.

The following assumptions apply to our application of light level geo-location.

1. The construction of a relationship between solar elevation and light depends
upon the existence of the calibration data.

2. This works on (log) light measured at or near the surface, allowing for an
additive offset to account for general cloud conditions and ignoring the need
for depth correction.

3. Twilight periods are identified from the raw data (ensuring that twilight occurs
within the period is sufficient) and are assumed as inputs to the model.

These assumptions will not work for all tags, but they provide a relatively simply
application to illustrate the overall approach. Indeed, implementations must be very
tag-specific as there are a wide variety of models, with different light responses,
quantization errors and onboard processing. The key component is a likelihood
function that can be defined for the data set and alternative methods, such as those
by Ekstrom (2007) or Sibert and Nielsen (2007), or methods relying on measurement
of the length of twilight could be used. We want to encourage a modular approach
to the problem in which various components can be deployed from related studies
as appropriate for particular species, environments or tags.

We present the required components of the approach: a function to calculate
solar elevation from position and time, a calibration function relating measured light-
level to solar elevation, a lookup function to provide a time-specific mask location
and a behavioural model. We present two examples of archival tags from different
species: a southern elephant seal and a Subantarctic fur seal.

The key advantages of the approach presented here are as follows.

1. The method provides two independent locations per day

2. Each location has an individual error estimate.

3. Estimation is less susceptible to equinox problems due to independence from
calculated daylength and ability to incorporate non-light data.



4.2. METHODS 77

4. The framework can admit any information that is available so that periods in
which the light data are poor or missing are automatically augmented by the
other data sources.

5. The approach is open and fairly simple so remaining problems can be addressed
by inspecting the contribution of each component to the result and modifying
the application as required.

4.2 Methods

We illustrate our method with data from two archival tags. The first from a Sub-
antarctic fur seal (Arctocephalus tropicalus) from Amsterdam Island (37o 55’S, 77o

30’E) using data collected with a Wildlife Computers Time-Depth-Recorder (TDR;
MK7) from 10 June 1999 to 19 July 1999. The data for this tag was kindly provided
by Gwen Beauplet and its collection is described in Beauplet et al. (2004). The
second tag is from a southern elephant seal (Mirounga leonina) from Macquarie
Island (158o 57’E, 54o 30’S) using data collected with a MK7 TDR from 28 January
2002 to 26 September 2002. Data collection methods for this tag are described in
Bradshaw et al. (2002).

Our method used four broad types of data for determining location.

1. Prior knowledge which prescribes a maximum range for each animal’s trip.

2. The primary location data based on the light level time series for each twilight.

3. Auxiliary environmental data which define the ocean region based on factors
such as the presence of land or known sea surface temperature.

4. A movement model applied to the representation of primary locations x and
intermediate locations z links the estimates temporally (Sumner et al., 2009).

Incorporating the contribution of light data to the likelihood requires the follow-
ing components.

Solar Elevation Function The solar elevation function θ(x, t) determines the ele-
vation θ of the sun when observed from location x at time t, and is determined
by standard astronomical formulae (Meeus, 1991).

Calibration Function The calibration function l(θ) relates the light level l recorded
by the tag for a given solar elevation θ. The calibration function can be pro-
vided by the tag manufacturer, or determined by applying semi-parametric
regression techniques to light levels recorded by the tag at a fixed location.

Likelihood Function The likelihood function p(l|x, t) is the probability of observ-
ing a light level l at a given location x and time t. In combination, the solar
elevation and calibration functions allow an expected light level l̂ to be de-
termined for a given location and time. Given the expected light level, the
probability of the observed light level is then determined based on the prop-
erties of the tag.
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The primary location data y is tag light data informing the locations x =
{x1, x2, . . . , xn} of the tag at a sequence of times of twilight t = {t1, t2, . . . , tn}.
For each twilight, the light data is extracted for the period in which the sun is rising
or setting. This yields a sequence of time series, one time series li = {li1, li2, . . . , lim}
for each twilight, where lij is the light level (corrected for depth) recorded at time
tij within the twilight period.

The contribution p(lik|xi, tik) to the total likelihood is determined by assuming
the log corrected light levels are Normally distributed

log lij ∼ N
(
log l(θ(xi, tij)) + ki, σ

2f
)
,

where θ(x, t) is the Sun’s elevation at location x and time t, and ki is a constant to
allow for attenuation due to cloud. The solar position algorithms of Meeus (1991)
used are available in the R package tripEstimation (Sumner and Wotherspoon, 2010).
For efficiency within the estimation the location-independent components of solar
declination and hour angle are precomputed from t. Following Ekstrom (2004), a
limit is applied to the elevations used by weighting the distribution for values outside
of a given range.

The posterior is approximated with Markov Chain Monte Carlo (MCMC) using a
block update Metropolis algorithm as in Chapter 3. An individual proposal provides
solar elevations for each tij using σ(x), and from these the calibration function
provides predicted light levels offset by attenuation ki. The likelihood of predicted
light levels are then calculated according to the equation above, providing the basis
for estimation.

An illustration of the effects of different locations on the expected solar elevation
(and thus expected light) is shown in Figure 4.1. The matching solar elevation plots
for locations along both curves at particular locations during a morning are shown in
Figure 4.2 (squares) and Figure 4.3 (triangles) respectively. These figures illustrate
the variation in solar elevation for different locations at a given time, and how subtle
the changes can be.

The relative line thickness in Figures 4.2 and 4.3 matches the relative point sizes
for the locations in Figure 4.1. There are very small difference in the pattern of solar
elevations for relatively large geographical differences along the axis of the morning
twilight between light and dark. This axis, and its positions later in the day are
represented by gradations in the background colour.

The band of variation for the pattern of solar elevation around sunrise2 is very
narrow, matching the relative“twilight band”that is represented by coloured regions
in Figure 4.1. Different choices of location along the sunrise great circle provide very
little variation in expected pattern of solar elevation. The pattern for locations along
the corresponding but diametrically opposite “evening twilight band” provide a lot
more differentiation. This is an alternative way of viewing the narrow “twilight
region” of information that is available during the morning and evening. The orien-
tation for each of the twilight bands switches daily, which for this time match the

2Here and elsewhere “sunrise” and “sunset” simply refer to their everyday meanings of “general
time of day” at which the sun rises and sets. The “twilight periods” are defined as the time of day
when there is a reliably recognizable change in the light levels—the input data do not need to be
exactly classified as such as long as the period between dark and light is captured.
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Figure 4.1: Locations around Macquarie Island (158o 57’E, 54o 30’ S). Square icons
indicate locations along the current twilight line, triangles indicate the corresponding
“evening” locations. Macquarie Island is at the intersection of the two curves.



4.2. METHODS 80

intersecting lines of triangles and squares in Figure 4.1.

This provides the basis for calculating the likelihood for a given location, by
comparing the difference between measured and predicted light levels. There are
many ways to determine this measure of “difference”, we use the lognormal density
as described in Section 3.2.6. Other methods could include simply the absolute dif-
ference or a correlation measure, and the data itself could be subjected to smoothing
or curve-fitting of various kinds as necessary.

Figure 4.2: Morning twilight solar elevations for locations around Macquarie Island
from Figure 4.1 (squares). The time at which the elevation is 0 (sunrise) is indicated
with a vertical line, and the horizontal lines show solar elevations -5 and 3.

Figure 4.3: Morning twilight solar elevations for location around Macquarie Island
from Figure 4.1 (triangles). The time at which the sun is at elevation is 0 (sunrise)
is indicated with a vertical line, and the horizontal lines show solar elevations -5 and
3



4.2. METHODS 81

4.2.1 Auxiliary data

For each segment, any MCMC proposal locations that do not fall within the pre-
scribed range given by environmental data are simply excluded. For efficiency, these
ranges are pre-calculated and made available as a simple lookup function for loca-
tion during a given segment. This masking approach provides a very conservative
usage of these data, to avoid potentially erroneous assumptions. We used a topo-
graphic data set to limit the estimation to areas of ocean for both examples, as well
as Reynolds OISST for the elephant seal. More discussion on the application of
these environmental data sets was provided in Section 3.2.6, and the use of masks
is revisited in Chapter 6.

4.2.2 Movement model

The model also includes a behavioural constraint. The movement model is chosen so
that the mean speeds between successive locations are independently log Normally
distributed.

4.2.3 Estimation

Initialization of the MCMC estimation requires a starting location for each primary
location x along the track. This is done using a simplistic grid search to determine
the approximate maximum likelihood estimates. The likelihood is calculated at
each point of a coarse grid of locations, using a fixed value for the attenuation ki.
Locations that are not consistent with the prior region or masks are ignored. Taking
the intersection of the current, previous and next regions for each grid provides a
location for each segment that is consistent with the light data and the movement
of the animal. Note that this result will vary for different values of ki and ignores
the behavioural model.

While this is a very coarse method for initialization, this gives rough “first pass”
locations that can seem quite reasonable. MCMC is in general not dependent upon
the actual starting points used (Gilks et al., 1995) and in theory this only affects the
time taken for eventual burn-in 3. However, this initialization can be problematic
as the behavioural model does not account for the topology of the prior space where
accepted dog-legs paths may imply an otherwise impossible journey due to the wide
variety of coastline shapes, or other irregular spaces implied by the masks. Also,
these initial points are of course not the final estimates, which must be derived from
samples from the posterior after running the full estimation model and ensuring
good mixing of the chains.

The MCMC estimation proceeds by sampling from these starting locations. Re-
sults are generated by direct summarization of the posterior, by binning the samples
for x and z. From these binned estimates, quantiles were calculated for the binned
primary x estimates to give “most probable” locations and precision, and time spent

3“Burn-in” is the early period of MCMC samples that are transient and unrepresentative of the
equilibrium distribution.



4.3. EXAMPLES 82

maps generated from the binned intermediate z estimates. A simple density esti-
mate on each segment allow us to determine a percentile range. For calculating the
location precision of estimates we first project the longitude-latitude coordinates to
a local instance of the Lambert Azimuthal Equal Area projection (Evenden, 1990)
to simplify the distance calculations.

The software used in this work is available on the R repository CRAN in the
package tripEstimation (Sumner and Wotherspoon, 2010).

4.3 Examples

For the fur seal example, only one twilight period is available during the afternoon
on the 10 June 1999 at the release site at Amsterdam Island. For the elephant seal
example, there was one appropriate twilight at the start of the trip (28 January
2002), and three at the end of the of the trip at Macquarie Island (25-26 September
2002). The solar elevation range for both examples was set at [-8, 5] chosen from
short test runs. To exclude light data outside of this range, the σ term is increased
by an order of magnitude.

The fur seal example was run for 1.4 x 105 iterations, the elephant seal example
was run for 7.8 x 105 iterations. For both the first 1 x 104 samples were discarded
to allow for burn-in.

The estimates over time for longitude and latitude are shown in Figure 4.5 for
the Subantarctic fur seal and in Figure 4.4 for the southern elephant seal. These
estimates consist of two independent locations per day, with confidence intervals for
each. The posterior mean value is plotted (red) with the 95% confidence interval.
There is no change in the overall value of the location precision at times of equinox
for either example.

The range (in kms) of each estimate is plotted for longitude and latitude in
Figure 4.7 and Figure 4.6.

Figure 4.8 and Figure 4.9 show the time spent maps derived from the entire
posterior for the intermediate locations. The fur seal has travelled directly to the
east, taking time to slowly move to the north. No data is available for this after 19
July 1999. The fur seal travels from Macquarie Island directly to the south-west to
the coast of Antarctica at 140o E where it remains for several weeks when it moves
further west. It then returned back to the east and north of Macquarie Island to
the shallower waters of the Campbell Plateau, remaining for several weeks and then
returning directly to Macquarie Island.

4.3.1 Discussion

In this work we demonstrate a systematic method for determining location from
archival tag data, with light levels as the primary data source. These results present
rich location estimates for two different diving animals from data recorded by at-
tached archival tags. The variance of location estimates is readily determined from
the posterior by calculating appropriate confidence intervals. The posterior esti-
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Figure 4.4: Mean longitude and latitude values from the posterior, plotted with
surrounding 95% confidence intervals for elephant seal example.
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surrounding 95% confidence intervals for fur seal example.
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Figure 4.6: Mean longitude and latitude values from the posterior, plotted with
the 95% confidence intervals (closed circles) and the full binned estimate boundary
(open circles) for the fur seal example.
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Figure 4.7: Mean longitude and latitude values from the posterior, plotted with
the 95% confidence intervals (closed circles) and the full binned estimate boundary
(open circles) for the elephant seal example.
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Figure 4.8: Time spent estimate for entire trip derived from all posterior samples
for Macquarie Island elephant seal.
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Figure 4.9: Time spent estimate for entire trip derived from all posterior samples for
Amsterdam Island fur seal. The zonally (east/west) oriented lines in the inset are
mean locations of Southern Ocean fronts (Orsi et al., 1995). Only the Subantarctic
front is seen in the main figure region.
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mates represent a starting point for analysis in that once calculated, the required
percentile for confidence intervals are chosen as appropriate for a given model. This
approach represents a significant improvement for the use of disparate sources of
data.

In addition, the estimation of intermediate as well as primary locations provides
a way of applying measures of behavioural resources to location estimates. Here
we have presented full-trip time spent estimates as summaries, in the next chapter
we explore the distinction between primary and intermediate locations in greater
detail.

For the Subantarctic fur seal example we did not apply any environmental data,
as the animal never dives to a depth that would provide any limit in the surrounding
bathymetry, and the difficulties with temperature matching tag and existing SST
data sets overwhelmed any clear benefit. These difficulties are the focus of on-
going work on temperature validation and use of ocean models which is presented
in Chapter 6.

Future improvements could include a more topological constraint for complicated
coastlines and environmental time series that can account for non-sensible paths
that are otherwise unable to be detected by the methods used here. The approach
presented here provides a strong foundation for improving existing methods and
developing new methods for light-based geo-location techniques.

4.4 Conclusion

We have demonstrated that light data can be used to greater potential than ex-
isting methods by incorporating it in a Bayesian approach applying environmental
data sets and integrated movement models. This chapter presented the detail and
requirements for performing light level geo-location as a component of the general
framework presented in Chapter 3. The approach was demonstrated with two exam-
ple tag data sets, one from a Subantarctic fur seal and one from a southern elephant
seal. The software used for these examples is freely available as the tripEstimation
package developed by the author (Sumner and Wotherspoon, 2010). The examples
presented here show time spent estimates of entire trips from intermediate locations
as well as primary location estimates with integrated measures of accuracy derived
from the posterior. The posterior is represented by large databases of MCMC sam-
ples for each primary and intermediate estimate.

In the next chapter we explore the track representation behind the primary
and intermediate location model, and show how it can be used to model individual
locations as well as the full path, and be used for combining estimates from multiple
trips.



Chapter 5

REPRESENTATION OF TRIP
ESTIMATES

Previous chapters introduced a general framework for modelling track locations
from tag data. The results from these models provide a rich resource for generating
reliable tracks and other summaries such as time spent maps. In previous examples
only the full path has been illustrated but the posterior can be queried arbitrarily for
different metrics for the whole track or portions of the track, and can be combined in
multi-animal estimates. This chapter illustrates the track representation of primary
and intermediate estimates, and details a system for efficiently dealing with these
model outputs.

Ecological studies involving animal tracking require metrics and summary out-
puts derived from spatial and temporal movement data. Methods used are varied,
depending on the species, region, tag method or available software and no universal
or recommended scheme exists. Location methods inherently provide estimates at
instants in time, sampled from the otherwise continuous movement of the animal.
This chapter presents a representation of tracks that distinguishes between discrete
locations and the full path that connects them. The representation is illustrated
with practical examples using a public data sample with software in the R package
tripEstimation developed by the author (Sumner and Wotherspoon, 2010). The
representation model of track data presented here provides a new perspective that
admits modern statistical methods for location estimation and track summaries.

There are many new modern statistical techniques for estimating and analysing
animal track data, but freely available software tools for efficient handling of sets
of track data and implementing modern techniques are still rare, as discussed in
Section 2.2.3. More traditional methods such as speed filters, cell binning and ker-
nel density are easily applied, but this is rarely done in a way that utilizes the
temporal aspect of the track in a flexible or interactive way. The wealth of multi-
disciplinary studies highlights an increasing need for access to the tools and tech-
niques for multi-dimensional analysis, including abstractions from real world space.
The limited support for continuous variables in GIS vector was discussed in Chap-
ter 2. The crossover of these research domains is rare partly because of this divide
in data representation, but is increasingly relevant due to multi-disciplinary studies
(de La Beaujardière et al., 2009; Veness, 2009; Beegle-Krause et al., 2010).
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This chapter presents methods for representing track data that provide greater
emphasis on the discrete versus continuous nature of the estimation involved. The
Markov Chain Monte Carlo (MCMC) model runs for the Bayesian approach pre-
sented in Chapter 3 produce long chains of samples from the posterior. A data
structure scheme for storing binned summaries of these posterior samples is pre-
sented.

The challenges for handling large databases of MCMC samples include the simul-
taneous handing of multiple individuals (even populations and species) over variable
time frames. A simple approach demands no more than to bin the required time
range of samples into a grid, but this can unnecessarily limit the analyses performed
and disregards the importance of quantifying and representing error for individual
location estimates. Supporting a flexible range of analyses requires the ability to
choose sets of tags, time periods and spatial extent in near real-time for analysis.

Here we describe an approach, implemented in tripEstimation that performs the
binning of samples for each animal trip into a spatio-temporal grid. These may be
thought of as 3D arrays stored in a sparse manner as only the spatial bins that are
visited are generated. We present a scheme for representing track estimates as a
time series of density grids derived from MCMC samples and illustrate its use for
generating metrics for track data. We also apply the scheme to more traditional
track representations and smoothing methods.

No existing study has made an explicit distinction between primary locations
that represent purpose-measured data and intermediate times between these. By
making this distinction a track estimate is more clearly representative of the data
collection process. The intermediate locations are truly continuous in that each
individual element represents the entire interval between each subsequent primary
location. Combining these estimates inherently provides a full-path estimate of the
animal, and the design easily handles sets of locations from multiple animals.

5.1 Representation of location estimates

In Chapter 2 several problems with simple representations of track data as points
and lines were identified. Points do not clearly indicate the temporal aspect of a trip,
and while lines improve on this they do not readily add clarity in terms of location
uncertainty or time spent. There are a number of requirements for improving on
this such as estimates that incorporate a measure of their uncertainty, estimates
that readily yield metrics such as mean and standard error, line summaries for path
representation, and spatial measures of residency or “time spent”.

The following design provides an efficient mechanism for handling long time
series of probabilistic estimates of track locations. Each “location” element is a
small “raster”—a matrix of values that is spatially and temporally registered. Raster
support for geo-registered 2D grids is easily available in many software packages,
and they are easily contoured, quantized, visualized and summed. Using a modern
software language, the ability to work with matrices as indexable objects provides an
efficient mechanism to store long time series of estimate densities as a sparse array.
Individual time steps are easily combined using array index functions, whether to
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visualize individual time steps as an animation, or to sum time steps from longer
intervals of a track, from multiple animals or across seasons. With quantization
functions and contouring these can be quickly summarized as vector data or other
related GIS formats.

A “parent” grid encompassing the entire region is defined with a given grain size
and offset. This is then treated as a virtual 3D array, without requiring that the
parent matrix be duplicated for every time step. (See Figure 5.3). A spatial “child”
window of each time step is stored to encompass only the samples for each estimate.
The extents in the third dimension are set by the number of time steps in the trip
estimation. The 3rd axis is defined implicitly by the tag-times and hence may be
irregular, but the first 2D axes are set by the parent.

5.2 Primary locations and intermediate locations

Chapter 3 introduced a representation of track data as a series of interleaved “pri-
mary” x and “intermediate” z location estimates. The x locations are for instants
or short intervals at which the primary location data were recorded. These corre-
spond to the times provided by a GPS or the Argos service, or to the periods of
light data collected during twilight for an archival tag. The z locations represent
the latent intervals that are intermediate between each x. These are times at which
no primary location data were collected and represent the entire interval between
each x. Distinguishing between these primary and intermediate locations provides
a number of benefits discussed below.

The design of this scheme is too complicated to show in a single diagram, so
the following illustration introduces the relevant concepts. Consider a very simple
example in Figure 5.1A, with a track of three measured locations shown in the
traditional way. As shown in Figure 5.1B each of these location estimates has
some underlying uncertainty, depending on the methods used to produce them. No
matter the location error or what methods were used these points represent the time
at which data specific to determining location was measured.

By using these data and models of the animal’s movement the aim is to improve
on this uncertainty to pin down a location to a known region, with as great a
confidence as possible. This is represented in Figure 5.1C as three densities giving
a relative measure estimate of location for the points. These densities could be
practically any shape, possibly with multiple peaks and be as steep or as flat as
required to represent what is known about the location. There is another aspect to
the uncertainty: the time periods that are intermediate to each point. No matter
how well a position estimate is known there remains a region between each estimate
that could be very narrow and directed or very sparse and wide. The regions shown
with question marks in Figure 5.1D are potentially long durations in time for which
there is no location-specific data.

Based on a model of the animal’s movement, with a distribution or limit on likely
speeds these intermediate uncertainties can be defined to more or less directed re-
gions. In Figure 5.2 A and B representations of the two intermediate zones are
shown as lines, indicating the width of region possible between the end points. Note
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Figure 5.1: (A) Simple track of three locations in a traditional representation, mov-
ing from left to right. The grey region is included to represent a boundary to the
animal’s movement, such as a coastline. (B) The points represent unknown loca-
tions with some uncertainty. (C) A representation of these location estimates which
are disconnected in time. (D) Connecting the measured locations are regions that
are again unknowns with some uncertainty.
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Figure 5.2: (A) Between the first two measured locations is a region of unknown
migration connecting the two end points, which can be rather wide. (B) The sec-
ond connected region, more constrained relative to the first in terms of possible
lateral movements. (C) Notation of xi for primary estimates. (D) Notation of zi for
intermediate estimates.

that this is less about location measurement per se, and more a measure of how far
the animal may have ranged—this is mostly constrained by the model of movement
and any remaining auxiliary data, such as the coastline or environmental data sets
that could exclude certain regions. In Figure 5.2 is corresponding notation intro-
duced in Chapter 3 for the primary estimates (C) and the intermediate estimates
(D).

Separating these primary locations (corresponding to the times at of recording
primary data) and intermediate locations (corresponding to latent times) allows for
representing the full path of the animal, as well as a series of discrete estimates.
Note that depending on the actual path of the animal subsequent x estimates may
overlap in space, and that z estimates should always overlap with the corresponding
x estimates.

The MCMC methods described in Chapters 3 and 4 produces samples from the
posterior. The samples for the primary locations x and intermediate locations z must
be binned spatially. For efficiency, this scheme defines a parent grid to encompass
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Figure 5.3: Illustration of the grid index scheme. Two child grids are shown within
the parent, with indicated index values.

all accepted samples at a chosen resolution and each separate time step is binned
into a window cut from the parent grid. This is illustrated in Figure 5.3 with the
parent grid displayed in full, with two “child” grids shown. This simple grid shows
clearly the full parent grid and the relationship of the child grid as a simple index
position within.

Figure 5.4 shows a more practical grid, with a much finer resolution. The detail
of the grid itself is shown in the inset.

At each time step, we store only as much of the parent grid as required to hold
the samples. That is, for each x and z, we record a rectangular subgrid just large
enough to contain the samples for that x/z together with an offset that locates the
subset within the large parent grid. This is in effect a three-dimensional sparse
array, where the X and Y dimensions are regularly spaced and the third dimension
corresponds to the times ti, which may represent instants or short intervals. For x
these are the times of the primary location data, such as Argos times or twilights
for archival tags, for z they represent the interval between each x.

Only the smallest required subset is stored, and so the binning is fast as we are
not handling redundant empty cells. Before the actual tabulation is performed a
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Figure 5.4: Example showing a real child grid within a parent grid. The inset
window shows the detail of the grid.
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test for out-of-bounds coordinates invokes any required expansion of the child grid
to encompass samples outside the range yet seen. The parent wil never be less
than is required as the prior bounds applied by the estimation already ensures this.
This model can also be applied to other forms of track representation such as those
discussed in Chapter 2.

5.3 Features of the representation scheme

This section describes the overall features that apply to any track represented with
this method, followed by examples.

Binning the posterior

The posterior is represented as a multi-dimensional array of samples that can be
rather large and unwieldy. There will be at least two model parameters (X and Y,
or longitude and latitude coordinates) for each time step, multiplied by the number
of samples (1 x 105 is a rough rule-of-thumb (Gilks et al., 1995)) and this nearly
doubles for the intermediate locations. With archival or satellite records of several
months this can amount to hundreds of millions of values which, while in the realm
of current day desktop computers to handle in memory, still presents difficulties for
creating summaries and visualization (Unwin, 2006).

This system we have presented is very flexible and allows for many options
that are otherwise difficult to apply or restricted by certain constraints in other
methods. These include arbitrary map projections and choice of origin and scale for
the final grid, temporal partitions, and multi-trip and multi-animal combinations.
The system can also be used for handling sets of grids from traditional track data
like that discussed in Chapter 2.

5.4 Examples

This section presents more specific outputs from a trip estimate represented with
the scheme.

A publicly available data set is used with code that can be run with some simple
preparation. The data set is of Argos satellite estimates from a ringed seal (Phoca
hispida) caught and released in New York (Luque, 2007). The description to follow
visits a cached posterior after the estimation has been run. The details for running
the estimation are found in Appendix B.

Figure 5.5 shows several Argos locations with corresponding estimated versions.
The resulting estimates are individually rich in information and have unique distri-
butions. These are discrete estimates representing the position of the animal at the
time instant of the Argos fix. The full richness of the estimate is in the raw samples
from the posterior, and these contoured estimates provide a useful summary. Each
estimate can be interrogated for a mean or mode, standard errors or confidence
intervals.
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Figure 5.5: A short region of an Argos track of a ringed seal in Newfoundland. The
primary estimates shown as contours are compared to the original Argos estimates.
All but three Argos estimates have class“B”and are marked with“+”, the others are
labelled with their classes “2” and “A”. The confidence in the “2” location is reflected
by the proximity of the estimate to it and that it is relatively localized. None of the
estimates fall on land like some of the Argos locations, and some are tightly bound
by the land—but not clipped arbitrarily to it.
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Figure 5.6: Original Argos track with sequence of modal locations from the poste-
rior. The dark line joins “X” symbols derived as the mode from estimates shown in
Figure 5.5. The modal locations are feasible for a ringed seal, but the line joining
them introduces a problem by traversing the land area. The original line of the raw
Argos track is shown as a dashed line.

A very simple summary is to calculate the modal point of each estimate—on the
face of it this provides the “most probable track” but as can be seen in Figure 5.6
this is not necessarily a useful output as it simply ignores the continuous nature of
a track, as discussed in Section 2.2.3. In Figure 5.6 the original Argos sequence is
shown, as well as the modal locations for each primary estimate also joined by a line.
This line crosses the land area, even though the estimates do not, which illustrates
another problem with the practice of joining dots.

To more accurately represent these connected parts of the “full path” we in-
terrogate samples from the posterior for the intermediate estimates. Individual
intermediate estimates are shown in Figure 5.7 with the primary estimates shown
as dark crosses. This figure is quite complicated but it does show the nature of
the intermediate estimates in connecting the otherwise discrete primary estimates.
The elongated intermediate through the strait shows the flexibility of representing
complex estimates that can be multi-modal. The MCMC for such estimates may
need to be run longer in order to ensure stability of the chain.
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Figure 5.7: Individual intermediate estimates shown as contours with modal loca-
tions from the primary estimates shown as dark “X” symbols (as in Figure 5.6). The
intermediate estimates overlap the primary estimates in space as well as connecting
them in time.

The modal location of the primary estimate and the time spent estimate suggests
the animal travelled very closely to the coastline of the Newfoundland and Labrador
region north of the Island of Newfoundland—this may not be realistic and highlights
that the input land boundary data may be too detailed. A very smooth boundary
that less tightly hugs the real coastline could provide a more realistic constraint.

These individual estimates are treated discretely here, though they represent a
continuous time-based process. A more natural way to present the intermediate
estimates is as a surface estimate of time spent, which is shown in Figure 5.8.
The likely path of the animal is seen through the more light-coloured region of the
surface. The plot shows the entire distribution for each intermediate, these could
be trimmed based on confidence intervals prior to the combination into a single
surface. This figure is weighted by the time duration for each intermediate estimate
in a way analogous to the time spent estimates presented in Chapter 2. For this
particular example the only covariate data available is the time difference between
fixes, and this has been used to calculate relative time spent per area. For different
applications on other species this could be replaced by a different variable such as the
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Figure 5.8: Time spent estimate from combination of the nine intermediate esti-
mates. This single surface is constructed by combining the separate intermediate
estimates for the time duration, each weighted by their corresponding time interval.

rate of drift dives (Thums et al., 2008), maximum depth, temperatures encountered
or any relevant covariate of interest.

Limitations of the primary and intermediate estimates

The intermediate locations represent the interval between each primary location as
a single block, with limited knowledge of their continuous connection through the
primary estimates. They provide continuity in terms of the full path of the track,
but not for the fine details between individual primary estimates. A more complex
version, perhaps by introducing multiple intermediate locations, could reflect that at
times close to the primary estimates the intermediates are closely matched to their
primary counterparts. This limitation was also discussed in regards to Figure 3.4.
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5.5 Conclusion

We have demonstrated techniques for efficient handling of summaries from a Bayesian
approach to location estimation that provide the variety of outputs required by
wildlife ecology. These include the most likely path, measures of uncertainty for in-
dividual locations, models of intermediate locations and estimates of residency that
incorporate behavioural metrics such as time spent.

This chapter presented efficient methods for summarizing samples from the pos-
terior of location estimation models. A new model for the representation of track
data was demonstrated that is integrated with a general Bayesian approach to lo-
cation estimation. The distinction between primary and intermediate location was
illustrated with simulated and real-world data using a scheme for efficient and flex-
ible summaries.

The next chapter deals with the use of environmental data as an integrated
component of location models, presenting methods for applying data as a part of
Bayesian models, and some examples demonstrating the potential for the application
of subsurface data that have not previously been exploited.



Chapter 6

AUXILIARY DATA FOR LOCATION
ESTIMATION

Recent collaborative studies have seen the use of diving animals as oceanographic
platforms for measuring ocean properties (Thys et al., 2001; Boehlert et al., 2001;
Sokolov et al., 2006). The location of the animal as it migrates is obviously a crucial
requirement for oceanographic applications of this kind and for investigating the
animal’s habitat. However, as discussed in Chapters 3 and 4, these data have been
used for location estimation for many years. Since the earliest marine tracking
studies, data from archival tags have been used to help locate animals based on the
relation of tag measured data to independent environmental data sets and models.
Using these data for location estimation remains an important component of archival
tag studies (Nielsen et al., 2006; Lam et al., 2008) and increasing knowledge of bio-
physical processes in the ocean provides opportunities for improvement and the
development of new methods.

There is potential for a convergence of the investigation into the navigation and
foraging strategies employed by marine animals with the understanding of the rela-
tion of movement to many properties of ocean circulation of interest to predators—
current speed and direction, frontal activity, water bodies, basin topography and
more. This work has concentrated on the estimation of location, but models of
“where” need to integrate with models of “why” in a much tighter way, as discussed
by Brillinger and Stewart (1998); Alerstam et al. (2001); Patterson et al. (2008) and
Schick et al. (2008). While data collected using animals cannot be used both for
oceanographic platforms and for estimating animal positions, exploratory analyses
with at-depth data can provide insights and improvements for other applications.

Here we discuss the issues faced when matching tag measurements to synoptic
environmental data and discuss some of the practical data access problems. We
present two examples showing the potential for location information to be derived
from subsurface temperatures and present the detail of the masking technique used
in Chapters 3 and 4. As a function of expected data based on location, this com-
ponent can be added to the estimation model. This is a feature of the general
framework presented in Chapter 3, as a model of the data collection process.
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6.1 A problem of scale

The main difficulty for exploiting auxiliary environmental data as a location data
source is the sheer mismatch in scales—synoptic measures are aggregated and mod-
elled based on relatively sparse samples by satellite or roving platforms. Synoptic
products tend to be provided on time scales of a week (finer temporal scales do not
have as complete coverage) and spatial scales of the order of many kilometres. These
scales are much larger than the sampling scale of the tag itself, which can measure
environmental properties directly within minutes and metres.

In Chapter 3, a method for integrating auxiliary data such as ocean temperature
or maximum depth to the modelling framework was introduced. This method differs
from more traditional approaches in that the restriction is not applied to existing
location estimates by filtering or updating point estimates, but to provide an overall
constraint that can augment deficiencies in primary location data. There are many
ways in which this information can be incorporated using a Bayesian approach, but
unfortunately these scale disparities become very important. As well as questions
of how to match the underlying scales of the synoptic and tag measurements, it is
not obvious how the natural time series of short twilight durations should be lined
up with continuous temperature measurements. Decisions made to match one time
scale (tag temperatures at seconds or hours to synoptic data on weekly or daily
scales) are compounded with the need to incorporate the primary time scale of (for
example) diurnal light variation.

6.2 Data availability

Oceanographic data are generally readily available, but can present difficulties in
terms of accessibility from some platforms and in the handling of large, multi-
dimensional data sets. The use of these data by animal movement models may
be direct, with a large array of data stored directly in memory, or otherwise queried
from database or file caches on demand. Both approaches are ideal for directly ac-
cessing “slabs” of data from an array that are then used for masking areas, querying
model likelihoods, or specifying environmental correlates. However, for arbitrary
queries of individual coordinates the commonly used tools can be inefficient. To
query a 3D array database of environmental data with an animal track requires
large data transfers of the entire section of the array that intersect. This problem
is increased for 4D arrays and again for multiple variable data. This may not be
problematic for a given track, but the methods like those used in Chapter 3 must
deal with large numbers of proposal tracks used to sample the oceanographic data.

The use of oceanographic data and models as data sources for location estimation
requires fast access to large data sets. Data interfaces generally use one of two types:
direct manipulation of“slabs”of array data, or database-like lookup of exact samples
queried by 3D or 4D track coordinates. In general terms, most applications have
used slab-like access to do a small number of heavy computations to limit locations
to a particular region, or to seek out a particular cell that has a better data match
than an existing estimate. Sampling methods used in MCMC require a large number
of small computations to be carried out in order to extract the data required for a
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single iteration.

These problems are exacerbated by further requirements such as:

1. Individual tracks that span large distances and durations with many samples.

2. Studies involving multiple tracks over multiple seasons.

3. Model likelihoods involving several environmental variables.

4. The need for interpolation to exact coordinates within an array.

If the amount of data required is too large to be held in memory in a simple
fashion the slab approach can break the analysis into a number of smaller chunks
that can be carried out sequentially. In the database approach, the data access
cannot be carried out sequentially as there may be temporal dependence in the
model. For each sample, every section of data must be available so each individual
time-step can find its matching data value. Traditionally, this problem is solved by
using database techniques but, for a variety of reasons, large environmental data
sets are rarely available in this way.

Most published examples provide their own specific method or workflow for
accessing the environmental data, and matching it to the point or line scales used
for the application. There are some notable projects that aim to cross this divide
or provide database-linkages, such as the Rasdaman project, MGET and Spatial
Analyst and STAT (Coyne and Godley, 2005)1.

There are three main types of access methods that are considered here, and
each one assumes that accessing arbitrary portions of the data and that sampling
or interpolating point values can be done efficiently.

Access data as a slab. This assumes that there is enough memory to work with
the data as a whole.

Compression for masks. Large slabs of data can be compressed into bits for very
efficient storage. This is useful when the data can be pre-processed into mini-
mum/maximum ranges, as we discuss in Section 6.4.3.

Database system. This is the ideal, providing the entire data set as a slab with
efficient overlay and access functions.

In practice the database system is simply not available, without significant ef-
fort in multiple software environments. In Section 6.5 we present an example that
provides a powerful version of this approach using memory-mapped files in a single,
readily accessible software environment.

Online servers providing access to data are an important component, but they
still rely on client-side management of data as large slabs and do not provide any
arbitrary access for point samples or interpolation. These include Reynolds online

1For Rasdaman see http://rasdaman.com/, for MGET see http://code.env.duke.edu/

projects/mget and for Spatial Analyst see http://www.spatial-analyst.net
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via kfsst (Nielsen et al., 2006), the PO.DAAC Ocean ESIP Tool (http://poet.jpl.
nasa.gov) and various OpenDAP and related services (http://www.opendap.org,
http://www.tpac.org.au/main/).

6.3 Slabs versus points

An obvious efficiency for data access is to only require the handling of the “region
of interest” or, more generally, the specific overlap in time and space for the model
being used. This is obvious in general terms, but has specific technology-based issues
that keep it at the forefront of data usage for most practitioners. Even if this aspect
is handled seamlessly, the next level provides a serious challenge that can be at odds
with the optimizations applied for the “slab” problem.

Point samples provide a direct overlay of single coordinates with an arrayed data
set. In its own right this is very simple, but include requirements for interpolation to
exact coordinates and dynamic interaction and the common slab implementations
are lacking. This is analogous to the deficiencies of topological data identified in
Chapter 2—decisions or habits established at one level have serious ramifications for
the simplest next level of generalization. The marriage of spatial and temporal data
analysis is still plagued by these problems and it is a topic of ongoing development
(Beegle-Krause et al., 2010)2.

6.4 Temperature applications

Here we present a number of issues and future directions for the use of temperature
as a location source.

Surface temperature has been used by many studies to improve the latitude
component of light level geo-location estimates, as discussed in Section 4.1. Many
papers now cite a common method of determining location from traditional light
level geo-location, with subsequent correction of the latitude component by temper-
ature matching (see Nielsen et al. (2006) for an overview). The framework presented
in Chapters 3 and 4 showed that a more systematic approach can utilize more of
the light data while simultaneously incorporating environmental data. Much of the
data collected by archival tags is currently under-utilized and could be enhanced by
comparison with ocean subsurface properties. The prospects for subsurface applica-
tions have previous been discussed by Nielsen et al. (2006), Anderson et al. (2007)
and Lam et al. (2008).

Many studies have used surface temperature-matching for improving locations,
but there is very little standardization. As discussed by Lam et al. (2008) the first
question is “Which product is most appropriate?”, and besides the availability of
data for the region of interest there are many, often arbitrary, choices required for
matching the spatial and temporal scales involved. Some studies have explored more
sophisticated relations between animal migration and gradients in ocean properties

2See relevant, albeit very different, projects at http://opengeostatistics.org/ and http:

//www.eonfusion.com
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(Gaspar et al., 2006; Campagna et al., 2006) and with bottom topography and
tidal patterns (Gröger et al., 2007; Pedersen et al., 2008). There is a need for
generalization of the problems involved and exploration of new models and data
sets as they become available.

Subsurface temperature data have been little used though some early works have
published examples. Smith and Goodman (1986) discussed the prospects for latitude
determination by depth-specific temperatures and Hindell et al. (1991) published es-
timates of the minimum regions that could have been visited based on temperature
at-depth data. The work by Hindell et al. (1991) manually compared potential loca-
tions to maps of temperature at-depth, similar to the masking approach described
later in Section 6.4.3. The scale mismatch for tag data versus synoptic environmental
data means that a masking approach can provide some arguably safer assumptions.
Below we present examples to show the use of environmental data as masks and the
potential for using subsurface temperature profiles.

Archival tag temperatures also tend to suffer from a slow response time in which
the sensor must stabilize at a constant temperature for some time before the value
can be considered reliable (Boehlert et al., 2001). To account for this problem
Sokolov et al. (2006) apply a correction by modelling the temperature response of
the unit and Shaffer et al. (2005) select water temperatures that are stable for at
least 20 minutes. Modern CTD-level tags do not suffer from this issue, and the
availability of these modern tags improves the opportunity for marine animals to
act as oceanographic-sensing platforms. The issue of matching spatial and temporal
scales remains.

Below we present an example of using sea surface height (SSH) as a location
source from a proxy relationship of at-depth temperatures from archival tags.

6.4.1 Temperature profiles

The vertical temperature and salinity structure of water masses in the South-
ern Ocean is very stable, with a very coherent spatial pattern in the meridional
(north/south) axis (Sokolov and Rintoul, 2002). Very generally, the geographic pat-
tern at the surface is of strong meridional temperature and salinity gradients. The
Southern Ocean is dominated by zonally (east/west) oriented fronts which are rel-
atively narrow regions of fast eastward flowing currents. At each of these fronts are
strong meridional gradients of temperature and salinity that extend to great depths.
These fronts, identified as sharp increases in SSH towards the north, meander north
and southward by up to 100 km periodically spinning off eddy rings.

Climatologies and models of the ocean can provide full four-dimensional repre-
sentations of ocean currents with a resolution that intersects the spatial and tem-
poral scales of interest to the location estimation of wide ranging marine animals.
Elephant seals can dive to depths of at least 2000m, and the majority of their time is
spent in water masses deeper than the mixed layer. For species of tuna the deepest
dive is not as extreme, but the time at depth is more consistent.

The 4-D Gravest Empirical Mode (GEM) model takes advantage of the highly
coherent vertical structure of water masses in the Antarctic Circumpolar Current
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(ACC) to produce a very strong empirical relationship between subsurface temper-
ature/salinity profiles and their surface expression of SSH at any given longitude
(Meijers et al., 2010). As the SSH is observable via satellite altimetry at relatively
high spatial and temporal resolutions, the observed SSH values can be used to con-
struct highly accurate estimates of the subsurface temperature and salinity. The
altimetry is provided on a 1/3◦ Mercator grid at weekly intervals, allowing the res-
olution of oceanic features around 50-100 km in size. This resolution limit, along
with other factors, means GEM temperature estimates have RMS errors of around
1◦C in the mixed layer, decreasing to below 0.2◦C RMS below about 1000 m. This
error approaches the a priori noise in the Southern Ocean, as determined from in
situ hydrography.

Figure 6.1 presents two small regions from a single elephant seal track with
nearby cell points from the 4-D GEM model (Meijers et al., 2010). The correspond-
ing temperature and salinity plots are the model temperatures over depth for these
cells and the line is the summary CTD temperatures measured by the diving seal.
The region for each plot is based on the available Argos location data. We can be
confident that the GEM sample points cover the region containing the true position
of the seal for the profile as this region is significantly larger than the underlying
Argos error. The correspondence between the GEM profiles and the CTD temper-
ature and salinity values is quite strong, with quite different patterns in the two
regions. Within localized regions of the Southern Ocean the pattern of temperature
and salinity over depth is consistent.

The combination of temperature and salinity provides a region restricted in lon-
gitude as well as latitude, provide a potentially far more informative location source
than SST alone. However, the sheer size of the GEM data set presents substantial
challenges for its use in geo-location studies. See Section 6.5 for a description of
accessing this large data set on low-end desktop computers.

6.4.2 Ocean height proxy

As discussed in Section 6.4, traditional archival tags can suffer measurement lags
that obscure the temperature signal. Newer tags offer CTD-quality measurements
(Boehme et al., 2009), but there is a rich long-term record of traditional archival
tags for many marine species. Also, subsurface temperatures from older archival
tags will often have durations at which the animal stays at a constant depth, al-
lowing for the sensor to stabilize to a constant temperature. Relating these more
reliable temperatures to other synoptic products provides another promising source
of location information.

The GEM parameterization provides a relationship between the surface ocean
height and the underlying temperature profile of the Southern Ocean. This is based
on the relation of temperature at a given depth and an integral of the density field
(Sokolov et al., 2006). By applying this relationship in reverse it is possible to predict
the surface height from temperature at-depth3. This was used to generate spatial
fields of the difference between predicted ocean height and satellite-derived ocean
height. These provide a source of location, primarily for latitude but with some

3Example code to apply this was generously provided by Sergeui Sokolov from the CSIRO.
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Figure 6.1: Temperature and salinity profiles from two regions for an elephant seal
track. Seal dive profile values are shown as a red line. The points are all data values
from the profiles taken from the GEM model for the corresponding seal depths at
the grid of locations shown. The first is near Macquarie Island, the second near
Adélie Land.
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Figure 6.2: Series of location likelihood maps based on SSH proxy from temperature
at-depth.

meridional variation based on frontal meanderings as described in Section 6.4.1.

A Mean Sea Level Anomaly gridded data set is available as a complete-coverage
product, is not susceptible to cloud cover and is available at weekly intervals since
1996 on a 1/3◦ Mercator grid4. Maps of absolute SSH were produced using the same
methods as Sokolov et al. (2006).

In Figure 6.2 a selection of these fields is shown as the absolute difference be-
tween predicted and measured ocean height with the corresponding Argos track and
current Argos position. The likely regions of the field are highlighted with contours
which neatly line up with the concurrent Argos location, and the general movement
of the trip.

6.4.3 Masks

Here we outline the process for generating a time series of masks for archival tag
temperatures compared to an SST data set for input to a location estimation model.

4This is available from http://www.marine.csiro.au/dods/nph-dods/dods-data/sat_alt_

msla/
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This requires the mask to be organized to match the time intervals of the model
locations and since it is a binary mask, the final data object can be substantially
compressed.

The first step requires that the temporal scales of the SST data be matched
to that of the archival data. Archival tag temperatures restricted to near-surface
values are summarized into a minimum and maximum value for all temperatures
measured for six hours either side of the primary time. (There are many possible
strategies here.)

By converting the original temperature data to a series of masks, each pixel can
be stored as a single bit, providing substantial compression from the temperature
data set as a whole. This is true even though many more masks are created than
there are time slices in the original data. This technique can then be used on even
low-performance computers. An example is presented in the manual page for the
function get.mask in the tripEstimation package (Sumner and Wotherspoon, 2010).

The final step is to create a lookup that can query the mask for sampled points
for the primary times. This is a function that takes a set of locations, a coordi-
nate at each time step, and returns a mask value for each. This function is the
input mechanism for applying auxiliary environmental data that was outlined in
Chapter 3.

A lookup function for the mask returns a boolean value for each location, which
is readily incorporated into the modelling framework presented in Chapter 3. A
mask lookup function that had to deal with the entire set of SST data for region
would need to do the comparison to minimum/maximum values each time in order to
return the appropriate decision for a given location. This scheme provides a very fast
lookup that uses a very small memory footprint. Another advantage of the lookup
function is that it can perform other necessary tasks, for example reprojecting a
sample of points to match the environmental data potentially avoiding the need to
warp a large array to the model coordinate system.

These masks could be extended to use more of the subsurface data, either for
improved temperatures for older archival tags or to integrate the information at
multiple depths for reliable temperature profiles from CTD tags. No matter what
information a practioner chooses to include in the creation of the mask, the final
product for the simulation model is a lookup function, the details of which can be
hidden from the running of the model itself.

Finally, in general terms these functions may sample actual data values from
the original data for more sophisticated masks or likelihood models on environmen-
tal data. The memory requirements for this kind of application is much greater
than a mask and this is increased for samples required by simulation models, for
interpolating into cells and for higher dimensional applications.

6.5 Large data set example

We describe a simple approach implemented in freely available tools that can be
used for fast arbitrary access to very large time series of oceanographic data. The
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example uses the 4-D GEM climatology described in Section 6.4.1.

The GEM data set consists of four 4-D (longitude, latitude, depth, time) ar-
rays for temperature, salinity, and current vectors totalling about 150Gb of double-
precision floating point values. The data traverses the entire meridional extent of
the Southern Ocean, between latitudes -70 and -34.74. Depth extends from the sur-
face to 5400m in 36 steps. The temporal range of the data is from 4 October 1992 to
10 September 2006 in weekly steps. Within the ocean region the data is relatively
complete with few gaps, although horizontal coverage reduces at the deepest areas
due to the ocean floor topography, and changes over time. The latitude and vertical
axes are not regular, though the geographic space can be interpreted in a regular grid
by using the Mercator projection. The vertical step length increases with increasing
depth. Land areas and missing data are identified with missing values.

These data were converted to a generic form to provide arbitrary access tools
that could overcome some memory limitations. The files were converted in Octave
from Matlab export format to generic binary arrays with a reversed index order5.
These were then used to populate memory-mapped files controlled by the R package
ff (Adler et al., 2010).

The final system consists of three memory-mapped objects for each variable, a
read function to generate new objects as a single array from subsets to the entire
4D data and lookup functions to sample point values from the field. Using this
system the entire GEM data set can be made accessible and large subsets of it (up
to 1̃6Gb each) manipulated in a single object for efficient and simple use with track
data. The data for Figure 6.1 was prepared using this system, and via the lookup
functions these data can be made available to complex location models such as the
examples presented in Chapters 3 and 4.

6.6 Conclusion

We have demonstrated that there is far greater potential for the incorporation of
large environmental data sets to location models than has been previously explored.
Computing tools and environments must be carefully chosen to acommodate the
requirements for these large-scale data sets. We have shown methods for accessing a
very large oceanographic model that can be deployed on relatively low-end desktop
computers, demonstrating that modern statistical techniques for location estimation
can incorporate large and complex data sets.

5This orientation is not necessary for the final memory-mapped system, but allowed for simple
georeferencing of the raw files for simple and efficient conversion to GIS formats via the GDAL virtual
raster format (Warmerdam and the GDAL development team, 2010). Also, there are R packages
that provide reading of Matlab files, but installation details and machine limitations meant that
this was not feasible.



Chapter 7

CONCLUSION

Location estimation for animal tracking is a developing field with a long history
of contributions for many different applications and techniques. It is impossible
to classify all of the contributions that have been made, and the great variety of
issues dealt with by different applications. This thesis presents a unification of many
disparate issues in animal tracking analysis focussed on the use of large raw data
sets.

Chapter 2 surveyed a range of problems in tracking data regarding the accuracy
of location estimates and the representation of track data. Uncertainties in loca-
tion are compounded by inconsistencies with track representations and the lack of
integrated software tools for analysing and exploring different methods. Seemingly
simple things such as track via points or lines introduce assumptions and require-
ments that are not commonly dealt with explicitly, such as the way track data are
manipulated to produce summaries of residency or time spent. The need for more
systematic representations of track data and location error was demonstrated with
examples, including easily available software. The trip package provides an inte-
grated software environment for employing traditional methods. Track data are
automatically validated as part of a formal system in order to avoid common prob-
lems, providing access to a huge range of tools required for dealing with spatial
and temporal data. Also demonstrated was the need for wider use of geographic
map projections for the representation of tracks and for simulation studies. Ac-
cess to software tools providing efficient conversion between map projections is also
made available by trip. Chapter 2 also presented traditional methods for track data
with modern software tools, providing much needed access to exploratory analyses
in a single environment. The issues discussed regarding traditional methods were
then used to put a new perspective on track estimation from data sources that are
not inherently spatial, providing the context for a general framework for location
estimation.

Chapter 3 provided a general framework for location estimation using Bayesian
methods. The approach provides a broad classification of sources of location infor-
mation that can be used for a variety of location methods. These sources are prior
knowledge, primary location data, auxiliary location data and movement models.
The framework includes a model for track representation that explicitly differen-
tiates primary locations from intermediate locations. This distinction bridges the
point and line track representations for traditional analyses and provides all the
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required metrics and measures for modelling animal movement. The framework was
applied to two example data sets: Argos Service locations and measurements from
an archival tag, demonstrating the generality of the approach. The full detail of the
light level geo-location example was omitted here in order to focus on the general
applicability of the framework.

Chapter 4 focussed on the full detail for the light level geo-location example
of Chapter 3. This provides a novel method for determining location from light
level by relating measured light to solar elevation. Extensible and freely available
software for running light level geo-location is provided to enable the application of
this approach in the R package tripEstimation.

Chapter 5 expanded on the track representation model presented in Chapter 3.
This includes an integrated data structure design and binning mechanism for efficient
visualization and analysis of individual location estimates or full-path estimates with
in-built measures of uncertainty. The data structures can be easily used for gener-
ating residency or time spent estimates from groups of individuals and visualizing,
or otherwise quantifying, changing patterns of spatial residency over time. These
provide a powerful mechanism for comparing spatial estimates consisting of prob-
ability distributions with data sets of enviromental covariates. Common problems
with requirements for data resampling by disparate scales or different map projec-
tions is reduced. For example, by binning samples from the posterior to match an
environmental data set, otherwise required warping of gridded data can be avoided.

Chapter 6 illustrated the potential for using subsurface ocean properties for esti-
mating location for marine animals. There is a largely unrecognized and unrealized
potential for the use of both surface and subsurface data and there are challenging
issues with scale and sampling disparities, data error problems and efficient access
methods to large data sets. We have demonstrated methods for exploiting subsurface
temperatures and salinity with large multi-dimensional ocean models for inclusion
in statistical models.

For the first time the wide range of data analysis techniques required for animal
tracking have been unified. This approach provides consistent data models for spa-
tial and temporal data, location estimation, track representation and flexibility for
exploring new methods.



Appendix A

MARKOV CHAIN MONTE CARLO

The computational challenge in applying Bayesian techniques is the evaluation of
complex integrals required for practical inference. Markov Chain Monte Carlo
(MCMC) techniques provide a simple and generic solution to this problem.

It is trivial to determine the posterior density to within a multiplicative constant,
as by Bayes’ rule (3.1)

p(θ | y) ∝ p(y | θ)p(θ).

But any practical inference, such as the calculation of expected values and quantiles,
requires the calculation of the normalization constant∫

p(y | θ)p(θ)dθ,

and other associated integrals of the posterior distribution. Unfortunately, the eval-
uation of the required integrals is often computationally demanding.

MCMC techniques provide a generic and simple approach to this problem through
simulation. MCMC methods allow samples from the posterior distribution when the
posterior density is known only to within a multiplicative constant. Any proper-
ties of the posterior can then be approximated by the properties of the sample—in
essence, evaluating the complex integrals required for inference by Monte Carlo
quadrature.

A.1 Metropolis Hastings

The Metropolis Hastings (MH) algorithm is the most generic form of MCMC. Given
a target distribution p from which we wish to draw samples, the Metropolis Hastings
algorithm constructs a Markov Chain that has p as its stationary distribution.

The algorithm is surprisingly simple. To generate a sequence X1, X2, X3 . . .
of draws from p, at each stage i a candidate point Y is drawn from a proposal
distribution q(. |Xi). The candidate is accepted with probability α(Y,Xi), where

α(Y,X) = min

(
1,
p(Y )q(X |Y )

p(X)q(Y |X)

)
.
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If the candidate is accepted, then Xi+1 = Y , otherwise Xi+1 = Xi.

The sample {X1, X2, X3 . . .} constructed in this way will have distribution p,
and so any property of p can be approximated from the sample.

The key feature of the Metropolis Hastings algorithm is that p occurs in both
the numerator and denominator of α, and so p need only be known to within a
multiplicative constant. This is the reason the MH algorithm is so useful for Bayesian
inference.

The choices of the initial point X1 and proposal distribution q(. | .) are effectively
arbitrary, but poor choices impact efficiency. A poor choice of X1 can result in points
in the neighbourhood of X1 being over-represented in the sample. For this reason
it is common to discard the initial segment of the chain to reduce the dependence
on X1. A poor choice of q(. | .) will result in fewer candidates being acccepted, and
it may become neccesary to draw a very large sample to obtain accurate results.

More details of the properties of the Metropolis Hastings algorithm can be found
in Gilks et al. (1995).

A.2 Example

To illustrate the Metropolis Hastings algorithm, consider a simple Binomial example.
Suppose y heads are observed from n tosses of a coin, and interest lies in estimating
θ, the probability of throwing a head in a single toss.

Adopt a uniform prior for θ

p(θ) = 1 0 ≤ p ≤ 1,

so that before any data is observed, all values of θ in the interval [0, 1] are believed
equally reasonable.

The number of heads y is Binomially distributed

y ∼ Bin(n, θ)

so the likelihood p(y | θ) is simply the Binomial mass function

p(y | θ) =

(
n

y

)
θy(1− θ)n−y.

By Bayes’s rule, the posterior density is

p(θ | y) =

(
n
y

)
θy(1− θ)n−y∫ 1

0

(
n
y

)
θy(1− θ)n−y dθ

=
Γ(n+ 2)θy(1− θ)n−y

Γ(y + 1)Γ(n− y + 1)
.
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Aficionados will recognise this as the density of a Beta distribution, and that the
posterior distribution is

θ | y ∼ Beta(y + 1, n− y + 1).

The posterior distribution encapsulates all knowledge of θ given the observed
data y, and can be summarized to yield a number of quantities of interest. For
example, the posterior mean and variance of θ—the mean and variance of θ given
the observations—-are given by

E(θ | y) =

∫ 1

0
θ p(θ | y) dθ

=
Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)

∫ 1

0
θy+1(1− θ)n−y dθ

=
y + 1

n+ 2
,

Var(θ | y) =

∫ 1

0
(θ − E(θ | y))2 p(θ | y) dθ

=
Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)

∫ 1

0

(
θ − y + 1

n+ 2

)2

θy(1− θ)n−y dθ

=
(y + 1)(n− y + 1)

(n+ 2)2(n+ 3)
.

The posterior quantile θα is given by the solution of the equation

α = Pr(θ < θα | y) =

∫ θα

0
p(θ | y) dθ

=

∫ θα

0

Γ(n+ 2)θy(1− θ)n−y

Γ(y + 1)Γ(n− y + 1)
dθ

and θ0.025 and θ0.975 form an exact confidence interval for θ.

To determine the probability that θ lies within the interval [0.4, 0.6], that is, the
probability that the coin is roughly fair, we calculate

Pr(0.4 < θ < 0.6 | y) =

∫ 0.6

0.4
p(θ | y) dθ =

∫ 0.6

0.4

Γ(n+ 2)θy(1− θ)n−y

Γ(y + 1)Γ(n− y + 1)
dθ.

To apply the Metropolis Hastings algorithm to this problem, it suffices to deter-
mine the posterior density to within a constant of proportionality independent of
θ

p(θ | y) ∝ p(y | θ)p(θ) ∝ θy(1− θ)n−y.
Choosing a Normal distribution centred on the current point as the proposal distri-
bution

q(Y |X) =
1√

2πσ2
e−(X−Y )2/(2σ2)

the Metropolis Hastings acceptance probability becomes

α(X,Y ) =

{
min

(
1, Y

y(1−Y )n−y

Xy(1−X)n−y

)
if 0 ≤ Y ≤ 1

0 otherwise.
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To generate a sequence of draws X1, X2, . . . from the posterior p(θ | y), we simply
draw proposal points from q(Y |Xi), accepting Y with probability α(Xi, Y ).

Figure A.1 show histograms of a sample of 500 draws and a sample of 5000
draws from the posterior density when n = 20 and y = 12, together with the
true posterior density. As the number of draws increases, the histogram estimates
increasingly approximate the posterior density.

Similarly, any posterior quantity can be approximated directly from the sample.
Table A.1 show both the exact values and sample estimates for the posterior mean,
variance, median, 2.5% and 97.5% quantiles and the probability that θ lies within
the interval [0.4, 0.6]. Each of these approximations improve as the number of draws
N from the posterior increases.
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0
1

2
3

4

θ

N=500

0.0 0.2 0.4 0.6 0.8 1.0

0
1
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4
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Figure A.1: Two samples drawn by the Metropolis Hastings algorithm for the Bi-
nomial example with n = 20 and y = 12. The plots show a histogram of N MCMC
samples and the exact posterior density, for N = 500 and N = 5000.
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Exact N=500 N=5000

mean 0.5909 0.584 0.5894
variance 0.01051 0.01111 0.01023
median 0.5937 0.5827 0.5916
θ0.025 0.3844 0.3899 0.3892
θ0.975 0.7818 0.769 0.782
Pr(0.4 < θ < 0.6 | y) 0.4885 0.518 0.5006

Table A.1: Comparison of exact and MCMC approximations for N = 500 samples
and N = 5000 samples for the Binomial example with n = 20 and y = 12.



Appendix B

ARGOS DATA ESTIMATION
EXAMPLE

B.1 Argos data example

library(tripEstimation)

library(diveMove)

library(trip)

##library(mapdata)

library(rgdal)

library(maptools)

## prepare source data

##locs <- readLocs(system.file(file.path("data", "sealLocs.csv"),

## package="diveMove"), idCol=1, dateCol=2,

## dtformat="%Y-%m-%d %H:%M:%S", classCol=3,

## lonCol=4, latCol=5)

locs <- readLocs(system.file(file.path("data", "sealLocs.csv"),

package="diveMove"), idCol=1, dateCol=2,

dtformat="%Y-%m-%d %H:%M:%S", classCol=3,

lonCol=4, latCol=5, sep=";")

ringy <- subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

coordinates(ringy) <- ~lon+lat

tr <- trip(ringy, c("time", "id"))

##mm <- map("worldHires", xlim = bbox(tr)[1,], ylim = bbox(tr)[2,])

## Auxiliary environmental data

## create a simple mask for land/sea from polygon data set

data(wrld_simpl)

coast <- c(grep("Canada", wrld_simpl$NAME),

grep("United States", wrld_simpl$NAME))

## US and Canada only
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wrld_simpl <- wrld_simpl[coast, ]

##plot(mm, xlim = bbox(tr)[1,], ylim = bbox(tr)[2,])

bb <- bbox(tr)

xx <- seq(bb[1,1] - 1, bb[1,2]+ 1, length = 200)

yy <- seq(bb[2,1] - 1, bb[2,2]+ 1, length = 250)

res <- overlay(SpatialPoints(expand.grid(x = xx, y = yy)), wrld_simpl)

## the topo mask

topo <- list(x = xx,

y = yy,

z = matrix(is.na(res), length(xx), length(yy)))

rm(res)

## lookup function

lookup <- mkLookup(topo)

## set up the proposal functions

xy <- coordinates(tr)

m <- nrow(xy)

## Choose parameters for proposals appropriately

## m proposals one for each time, 2 params (lon, lat), sigma for each

proposal.x <- norm.proposal(m, 2, c(0.1, 0.1))

## m-1 proposals for each intermediate, 2 params, sigma for each

proposal.z <- norm.proposal(m-1, 2, c(0.2, 0.2))

## interactive session to see if choices are "reasonable" - we want to

## jump around the neighbourhood, but not too much - later we will

## tune the proposals to aid mixing, but the choice now helps the MCMC

## initialize efficiently, especially with respect to the mask The Zs

## need greater proposals as they are generally more varied

plot(xy)

## repeat this line a few times to see what the spread is like

points(proposal.x$proposal(coordinates(xy)))

plot((xy[-m,1:2]+xy[-1,1:2])/2)

## repeat this line a few times to see what the spread is like

points(proposal.x$proposal((xy[-m,1:2]+xy[-1,1:2])/2))

## the choice of behav.mean/sd here is based on building this

## distribution, I’m assuming that the Argos locations are reasonably

## representative (in the absence of more information)

## km/hr

spd <- trackDistance(coordinates(tr), longlat = TRUE) /

diff(unclass(tr$time) / 3600)

x <- seq(0, max(spd) * 1.5, by = 0.1)

op <- par(mfrow = c(2, 1))

plot(x, dnorm(x, mad(spd), sd(spd)),

main = "likelihood of speed drops off fast with higher values")

plot(x, dnorm(x, mad(spd), sd(spd), log = TRUE),

main = "log normal as applied in the model")

par(op)
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## choose these values as required, or rewrite the behavioural

## function in the model to suit

speed.mu <- mean(spd)

speed.sd <- sd(spd)

tr$class <- ordered(tr$class,

levels = c("Z", "B", "A", "0", "1", "2", "3"))

argos.sd <- argos.sigma(tr$class, sigma = c(100, 80, 50, 20, 10, 8, 4),

adjust = 111.12)

## build the model

## Argos times and locations

## proposal functions for X and Z

## mask functions, and whether release/recapture are fixed

## (which helps pin down the start and end)

## starting positions (Zs are intermediate to the Xs)

## Argos position sigma (can pass in a single value, or a value

## based on the class)

## behavioural model function (defined for lognormal or gamma)

## mean and sd for behavioural model

d.model <- satellite.model(tr$time, xy,

proposal.x$proposal, proposal.z$proposal,

mask.x = lookup, mask.z= lookup,

fix.release = FALSE, fix.recapture = FALSE,

start.x = xy, start.z = (xy[-m,1:2]+xy[-1,1:2])/2,

posn.sigma = argos.sd, behav = "log",

behav.mean = speed.mu, behav.sd = speed.sd)

## Run initial chain to obtain values that meet mask constraints

ch <- metropolis0(d.model,iters=10,thin=10, start.x = d.model$start.x,

start.z = d.model$start.z)

while(!(all(ch$mask.x) && all(ch$mask.z))) {

ch <- metropolis0(d.model, iters=100, thin=10,

start.x = ch$last.x, start.z = ch$last.z)

plot(ch$last.x, type = "l")

plot(wrld_simpl, add = TRUE)

}

## run a short period, and check

ch <- metropolis(d.model,iters=200,thin=10,

start.x=ch$last.x,

start.z=ch$last.z)

plot(tr, pch = 1, col = "grey")

lines(coordinates(tr), col = "grey")

plot(wrld_simpl, add = TRUE)

lines(ch$last.x)

points(ch$last.x, col = "red", pch = 21, cex = 0.5)

## run for a while to settle in

for (i in 1:3) {
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ch <- metropolis(d.model,iters=2000,thin=10,

start.x=ch$last.x,

start.z=ch$last.z)

}

plot(tr, pch = 1, col = "grey")

plot(wrld_simpl, add = TRUE, col = "grey")

apply(ch$z, 3, points, pch = ".")

lines(coordinates(tr), col = "grey")

## run and tune the proposals (hopefully enough to allow for burn-in)

for (i in 1:5) {

ch <- metropolis(d.model,iters=2000,thin=10,

start.x=ch$last.x,

start.z=ch$last.z)

proposal.x$tune(ch$x, scale = 0.3)

proposal.z$tune(ch$z, scale = 0.3)

}

## run and save the results to disk, tuning as we go

xfile <- "X0.bin"

zfile <- "Z0.bin"

for (i in 1:15) {

ch <- metropolis(d.model,iters=2000,thin=10,

start.x=ch$last.x,

start.z=ch$last.z)

proposal.x$tune(ch$x, scale = 0.3)

proposal.z$tune(ch$z, scale = 0.3)

chain.write(xfile, ch$x, append = !i == 1)

chain.write(zfile, ch$z, append = !i == 1)

}

xfile <- "X1.bin"

zfile <- "Z1.bin"

for (i in 1:15) {

ch <- metropolis(d.model,iters=2000,thin=10,

start.x=ch$last.x,

start.z=ch$last.z)

proposal.x$tune(ch$x, scale = 0.3)

proposal.z$tune(ch$z, scale = 0.3)

chain.write(xfile, ch$x, append = !i == 1)

chain.write(zfile, ch$z, append = !i == 1)

}

## etc.

xfile <- "X2.bin"

zfile <- "Z2.bin"
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for (i in 1:15) {

ch <- metropolis(d.model,iters=2000,thin=10,

start.x=ch$last.x,

start.z=ch$last.z)

proposal.x$tune(ch$x, scale = 0.3)

proposal.z$tune(ch$z, scale = 0.3)

chain.write(xfile, ch$x, append = !i == 1)

chain.write(zfile, ch$z, append = !i == 1)

}
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programme de marquage de pélagiques dans le Pacifique. Oceanologica Acta, 25:255–266.

Block, B. A., Boustany, A., Teo, S., Walli, A., Farwell, C. J., Williams, T., Prince, E. D.,
Stokesbury, M., Dewar, H., Seitz, A., and Weng, K. (2003c). Distribution of western
tagged atlantic bluefin tuna determined from archival and pop-up satellite tags. Interna-
tional Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific
Papers, 55(3):1127–1139.

Boehlert, G., Costa, D., Crocker, D., Green, P., O’Brien, T., Levitus, S., and Le Boeuf, B.
(2001). Autonomous pinniped environmental samplers: Using instrumental animals as
oceanographic data collectors. Journal of Atmospheric and Oceanic Technology, 18:1882–
1893.

Boehme, L., Lovell, P., Biuw, M., Roquet, F., Nicholson, J., Thorpe, S., Meredith, M., and
Fedak, M. (2009). Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for
real-time oceanographic data collection. Ocean Sci. Discuss, 6.

Bowditch, N. (2002). The American Practical Navigator. Paradise Cay Pubns.

Bradshaw, C. J. A., Hindell, M. A., Littnan, C., and Harcourt, R. G. (2006). Determining
Marine Movements of Australasian Pinnipeds. In Merrick, J. R., Archer, M., Hickey,
G., and Lee, M., editors, Evolution and Biogeography of Australasian Vertebrates, pages
889–911. Australian Scientific Publishers, Sydney.

Bradshaw, C. J. A., Hindell, M. A., Michael, K. J., and Sumner, M. D. (2002). The optimal
spatial scale for the analysis of elephant seal foraging as determined by geo-location in
relation to sea surface temperatures. ICES Journal of Marine Science, 59:770–781.

Breed, G. (2008). State-space analyses indicate experience, prey availability, competition,
and reproductive status drive foraging behaviour in a top marine predator. PhD thesis,
Dalhousie University, Halifax, NS, Canada.

Brillinger, D. R. and Stewart, B. S. (1998). Elephant-seal movements: Modelling migration.
The Canadian Journal of Statistics, 26:431–443.

Brothers, N., Reid, T., and Gales, R. (1997). At-sea distribution of shy albatrosses Diomedea
cauta cauta derived from records of band recoveries and colour-marked birds. Emu,
97(3):231–239.

Burns, J., Costa, D., Fedak, M., Hindell, M., Bradshaw, C., Gales, N., McDonald, B., Trum-
ble, S., and Crocker, D. (2004). Winter habitat use and foraging behavior of crabeater
seals along the Western Antarctic Peninsula. Deep Sea Research Part II: Topical Studies
in Oceanography, 51(17-19):2279–2303.

Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., and Schmidt, C. (2008). The
GeoJSON Format Specification, 1.0 edition.



BIBLIOGRAPHY 127

Calenge, C., Dray, S., and Royer-Carenzi, M. (2009). The concept of animals’ trajectories
from a data analysis perspective. Ecological Informatics, 4(1):34–41.

Campagna, C., Piola, A., Rosa Marin, M., Lewis, M., and Fernández, T. (2006). Southern
elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence. Deep-Sea
Research Part I, 53(12):1907–1924.

Chambers, J. (1998). Programming with data: A guide to the S language. Springer Verlag.

Chambers, J. (2008). Software for data analysis: Programming with R. Springer Verlag.

Cooke, S. J., Hinch, S. G., Wikelski, M., Andrews, R. D., Kuchel, L. J., Wolcott, T. G., and
Butler, P. J. (2004). Biotelemetry: a mechanistic approach to ecology. Trends in Ecology
and Evolution, 19:334–343.

Coyne, M. and Godley, B. (2005). Satellite Tracking and Analysis Tool (STAT): an inte-
grated system for archiving, analyzing and mapping animal tracking data. Marine Ecology
Progress Series, 301:1–7.

Croxall, J., Taylor, F., and Silk, J., editors (2004). Tracking ocean wanderers: the global
distribution of albatrosses and petrels. Results from the Global Procellariiform Tracking
Workshop. BirdLife International, Cambridge, UK. 1-5 September, 2003, Gordon’s Bay,
South Africa.

de La Beaujardière, J., Beegle-Krause, C., Bermudez, L., Hankin, S., Hazard, L., Howlett,
E., Le, S., Proctor, R., Signell, R., Snowden, D., and Thomas, J. (2009). Ocean and
Coastal Data Management. Community White Paper for OceanObs, 9.

Delong, R., Stewart, B., and Hill, R. (1992). Documenting migrations of northern elephant
seals using day length. Marine Mammal Science, 8:155–159.

Dennis, B. (1996). Discussion: Should ecologists become bayesians? Ecological Applications,
6(4):1095–1103.

Dixon, P. and Ellison, A. M. (1996). Introduction: Ecological Applications of Bayesian
Inference. Ecological Applications, 6:1034–1035.

Domeier, M. L., Kiefer, D., Nasby-Lucas, N., Wagschal, A., and O’Brien, F. (2005). Tracking
pacific bluefin tuna (Thunnus thynnus orientalis) in the northeastern pacific with an
automated algorithm that estimates latitude by matching sea-surface-temperature data
from satellites with temperature data from tags on fish. Fishery Bulletin, 108:292–306.

Dorazio, R. and Johnson, F. (2003). Bayesian inference and decision theory—a framework
for decision making in natural resource management. Ecological Applications, 13:556–563.

Douglas, D. (2006). The Douglas Argos-Filter Algorithm. USGS Alaska Science Center,
3100 National Park Road Juneau, AK 99801, v7.02 edition.

Ekstrom, P. (2002). Blue twilight in a simple atmosphere. Proceedings of The International
Society for Optical Engineering (SPIE), 4815:paper 14.

Ekstrom, P. (2004). An advance in geolocation by light. Memoirs of the National Institute
of Polar Research (Special Issue), 58:210–226.

Ekstrom, P. (2007). Error measures for template-fit geolocation based on light. Deep Sea
Research Part II: Topical Studies in Oceanography, 54:392–403. Bio-logging Science: Log-
ging and Relaying Physical and Biological Data Using Animal-Attached Tags - Proceed-
ings of the 2005 International Symposium on Bio-logging Science, Second International
Conference on Bio-logging Science.



BIBLIOGRAPHY 128

Ellison, A. M. (1996). An introduction to Bayesian inference for ecological research and
environmental decision-making. Ecological Applications, 6(4):1036–1046.

Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters, 7:509–520.

Evans, K. and Arnold, G. (2008). Report on a geolocation methods workshop convened
by the SCOR Panel on New Technologies for Observing Marine Life. Technical report,
SCOR.

Evenden, G. (1990). Cartographic Projection Procedures for the UNIX Environment. A
User’s Manual. USGS Open-file report, pages 90–284.

Fledermaus (2010). Fledermaus. IVS 3D, Fredericton, New Brunswick.

Freitas, C. (2010). argosfilter: Argos locations filter. R package version 0.62.

Freitas, C., Lydersen, C., Fedak, M., and Kovacs, K. (2008). A simple new algorithm to
filter marine mammal Argos locations. Marine Mammal Science, 24(2):315–325.

Gaspar, P., Georges, J., Fossette, S., Lenoble, A., Ferraroli, S., and Le Maho, Y. (2006).
Marine animal behaviour: neglecting ocean currents can lead us up the wrong track.
Proceedings of the Royal Society B, 273(1602):2697.

Gelman, A., Carlin, J., and Stern, H. (2004). Bayesian data analysis. CRC press.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1995). Introducing Markov Chain
Monte Carlo. In Markov Chain Monte Carlo in Practice, pages 1–19. Chapman &
Hall/CRC, Boca Raton, FL.

Google (2010). Google Earth User Guide, 5.0 edition.

Goulet, A., Hammill, M., and Barrette, C. (1999). Quality of satellite telemetry locations
of gray seals (Halichoerus grypus). Marine Mammal Science, 15(2):589–594.

Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear
models: a roughness penalty approach. CRC Press.
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Hays, G. C., Åkesson, S., Godley, B. J., Luschi, P., and Santidiran, P. (2001). The im-
plications of location accuracy for the interpretation of satellite-tracking data. Animal
Behaviour, 61:1035–1040.



BIBLIOGRAPHY 129

Hebblewhite, M. and Haydon, D. (2010). Distinguishing technology from biology: a critical
review of the use of GPS telemetry data in ecology. Philosophical Transactions of the
Royal Society B: Biological Sciences, 365(1550):2303.

Hijmans, R. J., Williams, E., and Vennes, C. (2010). geosphere: Spherical Trigonometry. R
package version 1.2-4.

Hill, R. (2005). WC-GPE: Global Position Estimator Program Suite User’s Manual. Wildlife
Computers, Redmond, WA.

Hill, R. D. (1994). Theory of geolocation by light levels. In Boeuf, B. J. L. and Laws,
R. M., editors, Elephant seals: population ecology, behaviour and physiology, pages 227–
236. University of California Press, Berkeley.

Hill, R. D. and Braun, M. (2001). Geolocation by light level - the next step: Latitude. In
Sibert, J. and Nielsen, J., editors, Electronic Tagging and Tracking in Marine Fisheries,
pages 315–330. Kluwer, Boston.

Hindell, M. A., Bradshaw, C. J. A., Sumner, M. D., Michael, K. J., and Burton, H. R. (2003).
Dispersal of female southern elephant seals and their prey consumption during the austral
summer: relevance to management and oceanographic zones. Journal of Applied Ecology,
40:703–715.

Hindell, M. A., Burton, H. R., and Slip, D. J. (1991). Foraging areas of southern elephant
seals, Mirounga leonina, as inferred from water temperature data. Australian Journal of
Marine Freshwater Research, 42:115–128.

Hunter, J., Argue, A. W., Bayliff, W. H., Dizon, A. E., Fonteneau, A., Goodman, D., and
Seckel, G. R. (1986). The dynamics of tuna movements: an evaluation of past and future
research. Technical report, FAO Fish.

Jonsen, I., Flemming, J., and Myers, R. (2005). Robust state-space modeling of animal
movement data. Ecology, 86(11):2874–2880.

Jonsen, I. D., Myers, R. A., and Flemming, J. M. (2003). Meta-analysis of animal movement
using state-space models. Ecology, 84(11):3055–3063.

Keating, K. and Cherry, S. (2009). Modeling utilization distributions in space and time.
Ecology, 90(7):1971–1980.

Keitt, T. H., Bivand, R., Pebesma, E., and Rowlingson, B. (2010). rgdal: Bindings for the
Geospatial Data Abstraction Library. R package version 0.6-27.

Kenward, R. E. (1987). Wildlife Radio Tagging. Academic Press, San Diego, CA.

Lake, S., Wotherspoon, S., and Burton, H. (2005). Spatial utilization of fast-ice by Weddell
seals Leptonychotes weddelli during winter. Ecography, 28(3):295–306.

Lam, C., Nielsen, A., and Sibert, J. (2008). Improving light and temperature based geolo-
cation by unscented Kalman filtering. Fisheries Research, 91(1):15–25.

Lewin-Koh, N. J. and Bivand, R. (2010). maptools: Tools for reading and handling spatial
objects. R package version 0.7-34.

Luque, S. P. (2007). Diving behaviour analysis in R. R News, 7(3):8–14.

Maindonald, J. and Braun, J. (2007). Data analysis and graphics using R: an example-based
approach. Cambridge Univ Pr.



BIBLIOGRAPHY 130

Matthiopoulos, J. (2003). Model-supervised kernel smoothing for the estimation of spatial
usage. Oikos, 102:367–377.

Matthiopoulos, J., Harwood, J., and Thomas, L. (2005). Metapopulation consequences
of site fidelity for colonially breeding mammals and birds. Journal of Animal Ecology,
74:716–727.

Matthiopoulos, J., Mcconnell, B., Duck, C., and Fedak, M. (2004). Using satellite telemetry
and aerial counts to estimate space use by grey seals around the British Isles. Journal of
Applied Ecology, 41:476–491.

McConnell, B. J., Chambers, C., and Fedak, M. A. (1992). Foraging ecology of southern ele-
phant seals in relation to bathymetry and productivity of the Southern Ocean. Antarctic
Science, 4:393–398.

Meeus, J. (1991). Astronomical Algorithms. Willmann-Bell, VA.

Meijers, A., Bindoff, N., and Rintoul, S. (2010). Estimating the 4-dimensional structure
of the Southern Ocean using satellite altimetry. Journal of Atmospheric and Oceanic
Technology, in press.

Metcalfe, J. D. (2001). Summary report of a workshop on daylight measurements for geolo-
cation in animal telemetry. In Sibert, J. R. and Nielsen, J. L., editors, Electronic Tagging
and Tracking in Marine Fisheries, pages 331–342.

Musyl, M. K., Brill, R. W., Curran, D. S., Gunn, J. S., Hartog, J. R., Hill, R. D., Welch,
D. W., Eveson, J. P., Boggs, C. H., and Brainard, R. E. (2001). Ability of archival tags to
provide estimates of geographical position based on light intensity. In Electronic Tagging
and Tracking in Marine Fisheries, pages 343–367, Dordrecht. Kluwer.

Nel, D. C., Ryan, P. G., Nel, J. L., Klages, N. T. W., Wilson, R. P., Robertson, G., and
Tuck, G. N. (2002). Foraging interactions between Wandering Albatrosses Diomedea
exulans breeding on Marion Island and long-line fisheries in the southern Indian Ocean.
Ibis, 144:141–154.

Nielsen, A., Bigelow, K. A., Musyl, M. K., and Sibert, J. R. (2006). Improving light-based
geolocation by including sea surface temperature. Fisheries Oceanography, 15:314–325.

Orsi, A., Whitworth, T., and Nowlin, W. (1995). On the meridional extent and fronts of
the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research
Papers, 42(5):641–673.

Ovaskainen, O., Rekola, H., Meyke, E., and Arjas, E. (2008). Bayesian methods for analyzing
movements in heterogeneous landscapes from mark-recapture data. Ecology, 89(2):542–
554.

Patterson, T., McConnell, B., Fedak, M., Bravington, M., and Hindell, M. (2010). Using
GPS data to evaluate the accuracy of state-space methods for correction of Argos satellite
telemetry error. Ecology, 91(1):273–285.

Patterson, T., Thomas, L., Wilcox, C., Ovaskainen, O., and Matthiopoulos, J. (2008). State-
space models of individual animal movement. Trends in Ecology & Evolution, 23(2):87–94.

Pauly, T., Higginbottom, I., Pederson, H., Malzone, C., Corbett, J., and Wilson, M. (2009).
Keeping Pace with Technology Through the Development of an Intuitive Data Fusion,
Management, Analysis & Visualization Software Solution. In OCEANS 2009-EUROPE,
2009., pages 1–8.



BIBLIOGRAPHY 131

Pebesma, E. and Bivand, R. (2005). Classes and methods for spatial data in R. R News,
5(2):9–13.

Pedersen, M., Righton, D., Thygesen, U., Andersen, K., and Madsen, H. (2008). Geolocation
of North Sea cod (Gadus morhua) using hidden Markov models and behavioural switching.
Canadian Journal of Fisheries and Aquatic Sciences, 65(11):2367–2377.

Phillips, R. A., Silk, J. R. D., Croxall, J. P., Afanasyev, V., and Briggs, D. R. (2004).
Accuracy of geolocation estimates for flying seabirds. Marine Ecology Progress Series,
266:265–272.

Pinaud, D. (2007). Quantifying search effort of moving animals at several spatial scales using
first-passage time analysis: effect of the structure of environment and tracking systems.
Journal of Applied Ecology, 45:91–99.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence diagnosis
and output analysis for MCMC. R News, 6(1):7–11.

R Development Core Team (2010). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Roberts, S., Guilford, T., Rezek, I., and Biro, D. (2004). Positional entropy during pigeon
homing I: application of Bayesian latent state modelling. Journal of Theoretical Biology,
227:39–50.

Royer, F., Fromentin, J.-M., and Gaspar, P. (2005). A state-space model to derive bluefin
tuna movement and habitat from archival tags. Oikos, 109:473–484.

Samuel, M. D., Pierce, D. J., and Garton, E. O. (1985). Identifying areas of concentrated
use within the home range. JAnE, 54:711–719.

Schick, R., Loarie, S., Colchero, F., Best, B., Boustany, A., Conde, D., Halpin, P., Joppa,
L., McClellan, C., and Clark, J. (2008). Understanding movement data and movement
processes: current and emerging directions. Ecology letters, 11(12):1338–1350.

Seaman, D. E., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke, K. J., and
Gitzen, R. A. (1999). Effects of sample size on kernel home range estimates. Journal of
Wildlife Management, 63:739–747.

Service Argos (2004). User’s Manual. Collecte Localisation Satellites (CLS), France.

Shaffer, S. A., Tremblay, Y., Awkerman, J. A., Henry, R. W., Teo, S. L. H., Anderson,
D. J., Croll, D. A., Block, B. A., and Costa, D. P. (2005). Comparison of light- and SST-
based geolocation with satellite telemetry in free-ranging albatrosses. Marine Biology,
147:833–843.

Sibert, J. and Nielsen, A. (2007). State-space model for light-based tracking of marine
animals. Canadian Journal of Fisheries and Aquatic Sciences, 64(8):1055–1068.

Silverman, B. (1998). Density estimation for statistics and data analysis. Chapman &
Hall/CRC.

Simmons, S., Crocker, D., Kudela, R., and Costa, D. (2007). Linking foraging behaviour
of the northern elephant seal with oceanography and bathymetry at mesoscales. Marine
Ecology Progress Series, 346:265–275.

Simonoff, J. (1996). Smoothing methods in statistics. Springer Verlag.



BIBLIOGRAPHY 132

Smith, P. and Goodman, D. (1986). Determining fish movements from an “archival tag”:
Precision of geographical positions made from a time series of swimming temperature
and depth. Technical report, National Marine Fisheries Service, National Oceanic and
Atmospheric Administration (NOAA), Springfield, VA.

Sobel, D. (1998). Longitude. The true story of a lone genius who solved the greatest scientific
problem of his time. Fourth Estate.

Sokolov, S. and Rintoul, S. (2002). Structure of Southern Ocean fronts at 140 E. Journal
of Marine Systems, 37(1-3):151–184.

Sokolov, S., Rintoul, S. R., and Wienecke, B. (2006). Tracking the Polar Front south of New
Zealand using penguin dive data. Deep Sea Research Part I: Oceanographic Research
Papers, 53(4):591–607.

Sumner, M. and Wotherspoon, S. (2010). TripEstimation: Metropolis sampler and support-
ing functions for estimating animal movement from archival tags and satellite fixes. R
package version 0.0-33.

Sumner, M. D., Michael, K. J., Bradshaw, C. J. A., and Hindell, M. A. (2003). Remote
sensing of Southern Ocean sea surface temperature: implications for marine biophysical
models. Remote Sensing of Environment, 84:161–173.

Sumner, M. D., Wotherspoon, S. J., and Hindell, M. A. (2009). Bayesian estimation of
animal movement from archival and satellite tags. PLoS ONE, 4(10):e7324.

Teo, S. L. H., Boustany, A., Blackwell, S., Walli, A., Weng, K. C., and Block, B. A. (2004).
Validation of geolocation estimates based on light level and sea surface temperature from
electronic tags. Marine Ecology Progress Series, 283:81–98.

Terauds, A., Gales, R., Baker, G., and Alderman, R. (2006). Foraging areas of black-browed
and grey-headed albatrosses breeding on Macquarie Island in relation to marine protected
areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 16(2):133–146.

Thompson, D., Moss, S. E. W., and Lovell, P. (2003). Foraging behaviour of South American
fur seals Arctocephalus australis: extracting fine scale foraging behaviour from satellite
tracks. Marine Ecology Progress Series, 260:285–296.

Thums, M., Bradshaw, C., and Hindell, M. (2008). Tracking changes in relative body
composition of southern elephant seals using swim speed data. Marine Ecology Progress
Series, 370:249–261.

Thys, T. M., Hobson, B. W., and Dewar, H. (2001). Marine animals: the next generation
of autonomous underwater vehicle? Oceans.

Tremblay, Y., Shaffer, S. A., Fowler, S. L., Kuhn, C. E., McDonald, B. I., Weise, M. J.,
Bost, C.-A., Weimerskirch, H., Crocker, D. E., Goebel, M. E., and Costa, D. P. (2006).
Interpolation of animal tracking data in a fluid environment. The Journal of Experimental
Biology, 209:128–140.

Turchin, P. (1998). Quantitative Analysis of Movement: measuring and modeling population
redistribution in plants and animals. Sinauer Associates, Inc.

Unwin, A. (2006). Interacting with Graphics: Visualizing a Million. Springer.

Veness, A. (2009). A real-time spatio-temporal data exploration tool for marine research.
Master’s thesis, Geography and Environmental Studies, UTAS.



BIBLIOGRAPHY 133

Vincent, C., McConnell, B. J., Ridoux, V., and Fedak, M. A. (2002). Assessment of Argos
Location Accuracy from Satellite Tags Deployed on Captive Gray Seals. Marine Mammal
Science, 18:156–166.

Viswanathan, G., Afanasyev, V., Buldyrev, S., Havlin, S., da Luz, M., Raposo, E., and
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systems and seabirds: their use, abuse and potential for measuring marine environmental
variables. Marine Ecology Progress Series, 228:241–261.

Wintle, B. A., McCarthy, M. A., Volinsky, C. T., and Kavanagh, R. P. (2003). The use of
Bayesian model averaging to better represent uncertainty in ecological models. Conser-
vation Biology, 17:1579–1590.

Wood, A. G., Naef-Daenzer, B., Prince, P. A., and Croxall, J. P. (2000). Quantifying habitat
use in satellite-tracked pelagic seabirds: application of kernel estimation to albatross
locations. Journal of Avian Biology, 31:278–286.

Xavier, J. C., Trathan, P. N., Croxall, J. P., Wood, A. G., Podesta, G., and Rodhouse,
P. G. (2004). Foraging ecology and interactions with fisheries of wandering albatrosses
(Diomedea exulans) breeding at South Georgia. Fisheries Oceanography, 13:324–344.


