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Abstract

Adaptive fuzzy control has been an active research area in the past decade.
Fundamental issues such as stability, robustness, and performance analysis have been
solved. However, one main drawback is the generally fixed structure of the fuzzy
controllers, which are normally chosen by trial-and-error in practice. Few attempts to
develop self-structuring AFC have been reported, and important issues such as
stability, computational efficiency, and implementability have not been investigated
thoroughly. In particular, the stability of the system when the structure changes has
not been proven. Thus, a more effective self-structuring AFC scheme is desirable.

The main objective of the research is to develop a stable self-structuring AFC
scheme for continuous-time single-input-single-output (SISO) uncertain nonlinear
systems.

A novel online self-structuring adaptive fuzzy control scheme that is applicable
for a number of classes of continuous SISO nonlinear systems is proposed. The
applicable classes include affine nonlinear systems, non-affine nonlinear systems, and
nonlinear systems in triangular forms. The main features of the proposed control
scheme are:

« It needs less restriction on the controlled plants and no restriction on the
design parameters.

« It employs a modified adaptive law that guarantees explicit boundedness of
adaptive parameters and control action.

« The self-structuring algorithm is relatively simple and guarantees explicit
boundedness of the number of rules generated.

o Only triangular membership functions are generated and only 2
membership functions are allowed to overlap to increase the
interpretability of generated fuzzy controllers.

« High-gain observers are used when not all the states are measurable and
the design of observers is completely separated from the design of
controllers.

« For nonlinear systems in triangular forms, only one fuzzy system is needed
(unlike the back-stepping approach where one fuzzy system is needed at

each step).



. An approximation error estimator and an automatic switching mechanism
can be used to further increase the robustness and computational
efficiency.

The stability of the overall system, especially when the structure changes, is
guaranteed using the Lyapunov stability technique. The overall system is stable in the
sense that all the variables are bounded (including number of rules generated) and the
tracking error is uniformly ultimately bounded. The proposed control algorithms are
implemented in Matlab and Simulink for ease of simulation and practical application.
Numerous simulation examples are performed to demonstrate the theoretical results.

The proposed control scheme makes practical application of AFC easier.
Designers need to specify only a few design parameters and no longer have to specify
the controller structure by trial and error. A simulation or application can be quickly

and easily implemented using the developed controllers in Simulink.
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1. Chapter 1
INTRODUCTION

1.1. Introduction

This chapter introduces the thesis and adaptive fuzzy control (AFC), giving a
formal definition of AFC and its advantages, then the motivations and objectives of
the research. Finally, the outline of the thesis is given, including how the thesis will be

organised, what will be presented in each chapter and how they are linked together.

1.2. Adaptive fuzzy control

The early 1990s have witnessed a rapid growth of successful applications of
fuzzy logic to automatic control. Examples of such applications are washing
machines, electronically stabilized camcorders, auto-focus cameras, air conditioners,
automobile transmissions, and subway trains [1]. Indeed, Fuzzy Logic Controllers
(FLCs) offer an alternative to the control of complex nonlinear systems that are not
easily controlled by conventional automatic control methods as they provide a
framework to incorporate linguistic fuzzy information from human experts while not
requiring a mathematical model of the plant. However, there is lack of mathematical
analysis of stability, robustness, and systematic design procedure. This substantially
restricts the application domain of FLCs.

On the other hand, adaptive control has a long history of intense activities
involving stability proof, robustness design, and performance analysis [2]. The
advances in stability theory and the progress of control theory in the 1960s have
improved the understanding of adaptive control. In the mid 1980s, research of
adaptive control mainly focused on robustness in the presence of unmodeled
dynamics and bounded disturbances. Motivated by the early success of adaptive
control of linear systems, the extension to nonlinear systems has been investigated
from the end of 1980s to early 1990s. Thus, adaptive control offers powerful
mathematical tools to the analysis of stability and robustness of nonlinear control
systems.

Thus, it is logical to think that combining fuzzy control and adaptive control may
give a better control methodology. The result is adaptive fuzzy control (AFC).
Understandably, AFC possesses the advantages of both methodologies. It has the

linguistic knowledge representability and parallel computing of fuzzy systems, and
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the stability and robustness of conventional adaptive controllers. Formal definition of

adaptive fuzzy control is given next.

1.2.1. What is adaptive fuzzy control?

Wang defines an adaptive fuzzy system as a fuzzy logic system equipped with a
training algorithm, where the training algorithm adjusts the parameters (and the
structures) of the fuzzy logic system based on numerical information. According to
this definition, neuro-fuzzy systems, in which fuzzy systems are represented by neural
networks, are also adaptive fuzzy systems.

An adaptive fuzzy controller can be defined as a controller, in which adaptive
fuzzy systems are employed and adaptive control theory is used to derive training
algorithms such that stability and performance of the closed-loop system are
guaranteed.

Lyapunov stability techniques play a critical role in the design and stability
analysis of the adaptive systems [2]. A Lyapunov function candidate is a
mathematical function designed to provide a simplified scalar measure of the control
objectives. The control objectives are met when the chosen Lyapunov function is
driven to zero. More details about Lyapunov stability are given in chapter 2. In
adaptive fuzzy control systems, stability is investigated by studying the behaviour of
some Lyapunov function candidates.

In summary, a controller is called an adaptive fuzzy controller if it possesses both
of the following features:

. Adaptive fuzzy systems are employed

« Lyapunov stability technique is used to derive training algorithms to guarantee

the stability of the closed-loop system.

1.2.2. Why adaptive fuzzy control?

The advantage of AFC, combining both fuzzy control and adaptive control,
includes the followings.

« Fuzzy control allows incorporating linguistic fuzzy information from human

operators. The operators can describe how they control the system under control

(or how the system behaves) in term of fuzzy If-Then rules. This information is

easily captured by fuzzy systems.
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« Fuzzy control provides universal nonlinear approximators. Fuzzy systems are
nonlinear universal approximators. In conventional linear robust adaptive control
studies, linear approximators are used to approximate some unknown functions
that are assumed to be linear. Using fuzzy systems in adaptive control relaxes the
assumption that the unknown function must be linear. Thus, it provides an
extension to create nonlinear robust control schemes where there is no need to
assume that the plant is a linear parameterization of known nonlinear functions
[3].

« Fuzzy control is easy to understand. Because fuzzy control emulates human
control strategy, its principle is easy to understand for noncontrol specialists.
During the past two decades, conventional control theory has been using more and
more advanced mathematical tools. This results in fewer and fewer practical
engineers who can understand the theory. Therefore, practical engineers tend to
use approaches which are simple and easy to understand. Fuzzy control is such an
approach [1].

o Fuzzy control is simple to implement. Fuzzy logic systems, which are the
heart of fuzzy control, possesses a high degree of parallel implementation. Many
fuzzy VLSI chips have been developed, which make the implementation of fuzzy
controllers simple and fast.

« Fuzzy control is cheap to develop. Because fuzzy control is easy to understand
and simple to implement, the software and hardware cost is low. Also, there are a
wide range of software tools available for designing fuzzy controllers (e.g.
Matlab).

« Adaptive control is a model-free approach. It does not require a mathematical
model of the system. Adaptive algorithms are used to adjust the parameters online
in such a way that the control objectives are met. Thus, a mathematical model of
the plant is not needed.

« Adaptive control guarantees stability and robustness. Stability and robustness
are the most important issues in control theory. Stability means that for any
bounded input over any amount of time, the output will also be bounded.
Robustness refers to the ability of the control system to maintain stability even in
the presence of unmodeled dynamics or external disturbances. Traditional fuzzy

control cannot guarantee stability and robustness of the control system. In
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adaptive control, Lyapunov stability technique provides the mathematical
framework to establish adaptive algorithms that guarantee stability and robustness.
. Adaptive control provides a systematic design approach. There is no standard
systematic design procedure in traditional fuzzy control. The tuning of parameters
is mostly based on trial and error approach. Thus, it is a time consuming and ill-
defined process. Adaptive control provides a systematic design approach, in which

parameters and adaptive laws can be chosen explicitly using Lyapunov technique.

1.2.3. Relationship between adaptive fuzzy control and adaptive neural

network control

Adaptive neural network control (ANNC) is a control method, in which neural
networks are employed and adaptive control theory is used to derive training
algorithms such that stability and performance of the closed-loop system are
guaranteed. Thus, compared to AFC, the main difference is that neural networks are
used, instead of fuzzy systems, as approximators.

Moreover, it is well known that a fuzzy system can be realized by a neural
network. Many ANNC schemes can be converted to AFC schemes and vice versa.
Therefore, it would be inadequate to survey only AFC and ignore ANNC.

In subsequent chapters, ANNC is also considered and is mentioned when it is
relevant. The term “adaptive intelligent control” (AIC) will be used to refer to both

AFC and ANNC.

1.3. Motivation and Objectives

With the advantages mentioned above, AFC is a very good candidate for control
of uncertain nonlinear dynamic systems. However, there are still some drawbacks that
obstruct the practical application of AFC.

One main drawback is the generally fixed structure of the fuzzy controllers,
which are normally chosen by trial-and-error in practice. Few attempts to develop
self-structuring AFC have been reported, and important issues such as stability,
computational efficiency, and implementability have not been investigated
thoroughly. In particular, the stability of the system when the structure changes has

not been proven. Thus, a more effective self-structuring AFC scheme is desirable.
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Other drawbacks include restrictions on the classes of applicable nonlinear
systems, constraints on the design parameters that are hard to determine in practice,
the complexity of controllers for nonlinear systems in triangular forms, etc.

With the desire to make AFC easier for practical application, the objectives are as
follows.

Objectives:

i. Develop a novel online self-structuring AFC scheme that is applicable for a

wide range of continuous SISO nonlinear systems.
ii. Propose solutions to overcome drawbacks such as:
* Improve computational efficiency by proposing 2-mode adaptive fuzzy
control
= Relax the extra restrictions of the direct adaptive fuzzy control
* Reduce the complexity of the control of nonlinear systems in triangular
form
iii. Develop implementation software in order to make simulation and practical
application of the proposed AFC scheme fast and easy.

To achieve these objectives, the rest of the thesis is carried as follows.

1.4. Outline of the thesis

Chapter 2 provides a general literature review and mathematical preliminaries.
First, we give a brief survey about the development of AFC. Then, some required
mathematical preliminaries are given. Finally, basic concepts of AFC (such as ideal
control, minimum approximation error, ideal parameters, etc. and how the stability
analysis and adaptive laws are derived using Lyapunov stability theorem) are
introduced through a simple AFC scheme, basic indirect adaptive fuzzy control for
affine nonlinear systems. The shortcomings of this basic AFC scheme are also
discussed.

In addition to a general literature review in chapter, there is a separate literature
review for each major topic (chapters 3, 4, 5, 6, 7).

One shortcoming of basic AFC is the effect of the approximation error, which
can de-stabilize the closed-loop system. In chapter 3, we propose a novel 2-mode
indirect AFC scheme, in which an approximation error estimator is used to
compensate for the approximation error. Moreover, the control scheme can switch

between learning mode and operating mode using a switching mechanism. The
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switching mechanism improves the computational efficiency in cases where the
controlled plants satisfy certain conditions.

Direct AFC is simpler than indirect AFC but it normally requires more
restrictions on the control gain than the indirect one. This limits the application of
direct AFC in practice. In chapter 4, we propose a direct AFC scheme with less
restriction. By using an extension of the approximation theorem, we show that direct
AFC actually requires the same restrictions as the indirect one. Also, the proposed
control scheme employs a modified adaptive law that guarantees explicit boundedness
of adaptive parameters and control action.

In chapter 5, based on the direct AFC scheme proposed in chapter 4, we propose
a self-structuring direct AFC scheme for SISO affine nonlinear systems. Compared to
some existing algorithms, the proposed self-structuring algorithm is relatively simpler
and also guarantees explicit boundedness of the number of rules generated. Only
triangular membership functions are generated and only 2 membership functions are
allowed to overlap to increase the interpretability of generated fuzzy controllers.

In chapter 6, we extend the result of chapter 5 to a class of non-affine nonlinear
systems. By using the implicit function theorem and an extension of the
approximation theorem, we show that the AFC scheme proposed in chapter 5 can also
be applied to non-affine nonlinear systems.

In chapter 7, we further extend the result to larger classes of nonlinear systems.
By using the concepts of Lie derivative and strong relativity, a wider class of non-
affine nonlinear systems and a class of nonlinear systems in triangular systems can be
transformed to the form in chapter 6. Thus, the AFC scheme proposed in chapter 5
can also be applied to these classes of nonlinear systems. For the class of nonlinear
systems in triangular systems, this approach requires only one fuzzy system (unlike
the back-stepping approach where one fuzzy system is needed at each step). The
approach requires the output and its derivatives, which sometimes are not available
for measurement. In this case, high-gain observers are proposed to estimate the
derivatives. The design of observers is completely separated from the design of
controllers.

In chapter 8, the software implementation of the proposed control algorithms is
presented. Using Mathworks, we develop a self-structuring AFC library, which

includes some control blocks that are ready to be used. By simple click-and-drag
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mouse operations, a simulation or real-time application of self-structuring AFC can be
performed quickly and easily.

Chapter 9 presents discussion and conclusions.

1.5. Conclusion

An introduction to the thesis is given in this chapter. The main objectives of the
thesis are to develop a novel online self-structuring AFC scheme, improve results of
existing AFC schemes, and to develop software to implement the developed AFC

scheme.
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2. Chapter 2
GENERAL LITERATURE REVIEW AND PRELIMINARIES

2.1. Introduction

This chapter provides background for the thesis. First, a review is presented in
section 2.2 to give a general picture about the development of AFC in the past decade.
Then, important mathematical background such as stability concept and Lyapunov
stability technique is presented in section 2.3. Finally, the basic framework of AFC is
introduced in section 2.4 through a simple example of indirect AFC of affine

nonlinear systems.

2.2. A review about the development of adaptive fuzzy control

From the early 1990s, adaptive fuzzy control has been an active research area.
Many researchers have contributed their work to the field. A great number of different
control approaches, methods, schemes, and control applications have been published
in various books, journals, and conferences. Thus, providing a complete description of
adaptive fuzzy control in a single context is impossible. In this section, a brief review
is given in order to demonstrate the wide range of adaptive fuzzy control schemes
available in the literature, from different configuration structures, applicable classes of

nonlinear systems, to adaptive mechanisms of fuzzy systems.

2.2.1. Structure
In their simplest forms, adaptive fuzzy controllers are constructed only by
adaptive fuzzy systems. They can be classified into two categories: direct and indirect

adaptive fuzzy control.

2.2.1.1. Direct AFC
Direct adaptive fuzzy controllers use adaptive fuzzy systems as controllers [1].
The adaptive mechanism is then designed to adjust the adaptive fuzzy system in such
a way that will stabilize the plant and make the closed-loop system achieve its
performance objectives. Direct adaptive fuzzy controllers have been proposed in [1, 4,

51.
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2.2.1.2. Indirect AFC

Unlike direct adaptive fuzzy controllers, indirect adaptive fuzzy controllers use

adaptive fuzzy logic systems to model the plant and construct the controllers

assuming that the fuzzy logic systems represent the true plant. Indirect adaptive fuzzy

controllers have been presented in [4-9].

2.2.1.3. AFC combined with other controllers

Pure direct and indirect adaptive fuzzy controls are simple, but they also have

disadvantages. Thus, in the later years, it is often that adaptive fuzzy control is

combined with other control techniques.

Direct AFC combined with indirect AFC: [10-13] propose hybrid direct
and indirect adaptive fuzzy control schemes in which the control output is
the weighted average of a direct and an indirect adaptive fuzzy controllers.
This combination provides a framework to incorporate both linguistic
knowledge describing the plant behaviour and the control actions.

AFC combined with another controller to compensate for approximation
error: In general, there exist approximation errors when approximating
nonlinear functions by fuzzy systems. These approximation errors may
effect and deteriorate the stability and performance of adaptive fuzzy
control systems. To overcome this problem, previous researchers have
proposed combining AFC with another controller. [14] proposes a control
scheme in which an indirect adaptive fuzzy controller is combined with a
fuzzy sliding mode controller. The fuzzy sliding mode controller is
designed to compensate for the approximation errors. [15-20] propose
adaptive fuzzy control with a variable structure control term. The variable
structure control term is designed using some known bounds of
approximation errors. The term is then added to the control output to
compensate for the effect of approximation errors. However, the bounds of
approximation errors are normally hard to obtain in practice. Thus, they
take a step further by proposing some adaptive mechanisms to estimate
these bounds online [21, 22].

AFC combined with output feedback control: In many applications, it is
impossible or too expensive to measure all the state variables of the system

under control. Output feedback control is an approach to overcome this
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difficulty. The only variable needed to be measured is output of the
system. Many adaptive fuzzy control schemes based on output feedback
control have been proposed in the literature: [16, 23].

AFC combined with /7, control: External disturbances play an important
role in real control applications. They not only deteriorate control
performance but also may cause instability. A, optimal control is a
technique used in traditional control theory to minimize the effect of
external disturbances. [24-30] use adaptive fuzzy control combined with

H,, control technique to attenuate the effect of disturbances.

AFC combined with a supervisory control: An adaptive fuzzy controller
sometime does not adapt fast enough. It leads to the state variables of the
controlled system moving outside of a desired constraint set. This problem
can be solved by increasing adaptive gains. However, adaptive gains
cannot be too large. Increasing adaptive gains increases sensitivity to
noise, leading to chattering of control output. Thus, to keep the state
variables of the system under control in a desired constraint set without the
need of large adaptive gains, some researchers [1, 13, 31, 32] propose
adaptive fuzzy control combined with a supervisory control. This
supervisory control is also a variable structure control term, which is
designed using knowledge of the bounds of the unknown nonlinear
functions. When the state variables are well inside the constraint set, the
supervisory control is zero. When the state variables tend to move outside
of the desired boundaries, the supervisory control begins to operate to
force the states to stay in the constraint set.

AFC combined with more than one other control techniques: [12] proposes
an adaptive fuzzy control scheme, in which the control output is a
combination of a direct adaptive fuzzy controller, an indirect adaptive
fuzzy controller, and a variable structure control term to compensate for
approximation errors. The bounds used in the variable structure control
term are estimated online, thus no prior knowledge about the bounds is
required. [13] proposes hybrid direct and indirect adaptive fuzzy control
with a supervisory controller. [17] proposes an adaptive fuzzy control

scheme combined with variable structure control and H_ control such that
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both the effects of approximation errors and external disturbances can be
attenuated to any prescribed level.

In general, adaptive fuzzy control combined with other control schemes
overcome disadvantages existing in pure direct and indirect adaptive fuzzy control.
However, they are more complicated in both theoretical analysis and implementation.
Thus, for a particular application, it is up to control designers to decide when it is

necessary to combine adaptive fuzzy control with another control technique.

2.2.2. Different classes of nonlinear systems

In the theory of nonlinear control, the control of different classes of nonlinear
systems has been considered. Different classes of nonlinear systems have different
characteristics, and thus require different control techniques. Some well-established
techniques are available for different classes of nonlinear systems. For example,
linearizable nonlinear systems can be treated using feedback linearization techniques.
Nonlinear systems in strict-feedback forms can be treated using backstepping design.
Nonlinear systems, in which not all the state variables are measurable, can be dealt
with using output feedback control, etc. These results in nonlinear control have
inspired researchers to propose a number of adaptive fuzzy control schemes for these
classes of nonlinear systems based on the available techniques.

Here, we review AFC schemes in terms of the nonlinear classes that they can be

applied to.

2.2.2.1. Affine and non-affine nonlinear systems
e Affine nonlinear systems
Under some geometric conditions, the input-output response of a class of single
input-single-output (SISO) nonlinear systems can be rendered to the following

Brunovsky form [2]:

X, =x,,,,i=1..n-1
i, = fx)+glxh+d(r) (2.1)
y=x

where )_c=[xq,x2,...,x” ]T €R", ueR, yeR are the state variables, system
input and output, respectively; f(x) and g(x) are smooth functions; and d(¢) denotes

the external disturbance bounded by a known constant d, >0, i.e. |d(t)|§d0.



21

Nonlinear systems that can be represented in this form are also known as affine
nonlinear systems as the systems are linear in the input variables.
If f(x) and g(x) are known, the feedback linearization technique can be used to

design a controller. The most common control structure is

L xX)+v .
“‘g(z)[ f(_) ] (22)

where v is a new control variable. In cases where f ()_c) and g(g) are unknown,

adaptive fuzzy control has been proposed.

[1, 4-7] propose indirect adaptive fuzzy control schemes for affine nonlinear
systems, in which two adaptive fuzzy systems f (E‘Q f) and g(g‘Qg) are used to

approximate f(x) and g(x) respectively. Lypapunov stability analysis is used to

derive the adaptive laws and to guarantee the control objectives. In these approaches,

it should be noted that additional precautions are required to avoid possible

singularities of the controllers (i.e., g(;\gg):oy For instance, in Wang [1], a
projection algorithm is proposed for adjusting ¢, to avoid singularities.

[24, 25, 32] propose direct adaptive fuzzy control schemes for nonlinear affine

systems. In these schemes, only one adaptive fuzzy system 12({, v|Q) is used to

1
g(x)

avoid control singularity problem completely. However, compared to indirect

approximate the control u = [~ £(x)+v]. Direct adaptive fuzzy control schemes

schemes, more restrictions on g()_c) are normally required. More discussion on the
restrictions of direct AFC will be given in chapter 4.
e Non-affine nonlinear systems

Non-affine nonlinear systems is a broader class of nonlinear systems, whose
input variables may not be expressed in an affine form. A SISO non-affine nonlinear
system is defined as:

X, =x,,i=1....n-1

%, = flau) (2.3)
y=x
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where x= [xq,xz,...,xn ]T €R", ueR, yeR are the state variables, system input

and output, respectively; f(x,u) is a unknown smooth function. It can be seen that
affine nonlinear systems are a special case of this class of nonlinear systems.

In the past five years, researchers have proposed different AFC schemes [2, 33-
38] for non-affine nonlinear systems. Because the control input does not appear
linearly, the well-known feedback linearization technique is not applicable. Adaptive
fuzzy control of non-affine nonlinear systems is more difficult and challenging. In

general, more advanced mathematical techniques are required.

2.2.2.2. Strict-feedback and pure-feedback nonlinear systems
e Strict-feedback nonlinear systems
A large number of practical nonlinear systems can be expressed in or transformed

into a special state-space form called strict-feedback form:

X; zfz()_ci)"'gz(fz)xm’ I<i<n-1

X
%, =f,(%)+g, (%) n>2 (2.4)
Yy =X

where X, :[x,,xQ,...,xl.]T €R',i=1,...,n, ueR, yeR are state variables, system
input and output, respectively. fl.(O) and g, (0), i=1...n, are smooth unknown
functions. The control objective is to determine the control input » such that output
v tracks a reference signal r as close as possible.

In the past decade, adaptive backstepping has become one of the most popular
design methods for systems in triangular form (2.4) because it can guarantee global
stabilities, tracking, and transient performance for the broad class of strict-feedback
systems (2.4) with unknown parameters [2]. The idea behind backstepping design is
that some appropriate functions of state variables are selected recursively as virtual
control inputs for lower dimension subsystems of the overall system. Each
backstepping stage results in a new virtual control design, expressed in terms of the
virtual control designs from the preceding stages. When the procedure terminates, a
feedback design for the true control input results, which achieves the original design
objective by virtue of a final Lyapunov functions associated with each individual

design stage [39].
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However, a major constraint of traditional adaptive backstepping technique is that

unknown functions f;(%,) and g,(¥,), i=1...n must be “linear in the unknown

parameters”. With the use of neural networks and adaptive fuzzy systems, this
assumption can be relaxed.

Adaptive neural network backstepping control has been proposed in [39-42].
Neural networks are used in each step to approximate the unknown functions. A
drawback of these adaptive neural network backstepping control schemes is the
problem of “explosion of complexity”, the complexity of controllers grows drastically
as the order » of the system increases.

This explosion of complexity is caused by the need to estimate derivatives of
certain nonlinear functions [43]. At each step, to estimate this derivative, partial
derivatives are need to be computed and they are also need to be used as inputs to
neural networks. The number of partial derivatives increases drastically after each
step, and thus increases drastically the complexity of controllers. To overcome this
problem, [43] proposes a dynamic surface control technique, in which a first-order
filter is introduced at each step to avoid the need to estimate derivatives of certain
nonlinear functions.

Recently, adaptive intelligent control has also been developed for discrete strict-
feedback systems. [44] proposes a state-feedback adaptive NN control scheme using
backstepping, and an output-feedback adaptive NN control scheme using a
diffeomorphism transformation. The MIMO case has also been considered in [45, 46].

e Pure-feedback nonlinear systems

Pure-feedback systems are a broader class of low-triangular-structured nonlinear

systems, which is given in a general form as:
X, =fl.()?i,xi+, ), i=1....n—1
%, = 1,(%,.u) (2.5)
y=x

where X, =[x1,x2,...,xi]T €R', i=1,...,n, ueR, yeR are state variables,

system input and output, respectively. f;(x,,x,,,), i =1...n, are smooth functions.

It can be seen that pure-feedback systems (2.5) do not have affine variables as

virtual controls, or as the actual control u. Thus, control of pure-feedback systems
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(2.5) is more difficult than control of strict-feedback systems (2.4). Few results of

controlling pure-feedback systems have been reported in the literature [34, 47].

[47] proposes adaptive neural control of pure-feedback systems by combining
backstepping, input-to-state stability analysis, and the small-gain theorem. The
proposed control scheme, however, also suffers from the problem of “explosion of
complexity”. [34] proposes adaptive neural network control using Nussbaum-Gain
functions and the idea of backstepping. A drawback of this approach is the closed-

loop system has wild transient performance.

2.2.23. SISO and MIMO nonlinear systems

Inspired by the results for SISO nonlinear systems, researchers have also
developed adaptive intelligent control for uncertain MIMO nonlinear systems.

Control of uncertain MIMO nonlinear systems, in general, is more difficult. It is
due to the difficulties in dealing with the couplings in input matrices and
interconnections between subsystems.

[48] proposes adaptive fuzzy control for a class of MIMO nonlinear systems,
which consists of affine subsystems. And it is assumed that there is no input coupling
and the system interconnections are bounded with known constants.

[49-53] present adaptive fuzzy/neural control for a class of MIMO square
nonlinear plants, in which the bounding restrictions on the system interconnections
are relaxed. However, it is required that the number of inputs equals the number of
outputs and the inputs are also in affine forms.

In [54, 55] adaptive neural network controllers were proposed for some special
classes of MIMO nonlinear robotic systems, using several nice properties of the
robotic systems.

In [56], an adaptive neural control approach was proposed for a class of MIMO
nonlinear systems with a triangular structure in control inputs.

In [57], adaptive neural control is proposed for two classes of uncertain MIMO
nonlinear systems in block-triangular forms, which consists of couplings in the inputs
as well as in the system interconnections without any bounding restrictions.

Most results available in the literature assume that inputs appear in the affine
forms. Control of uncertain MIMO nonlinear systems with nonaffine inputs is still an

open problem.
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2.2.24. State-feedback and output feedback nonlinear systems

State-feedback control deals with systems in which it is assumed that all the state
variables are available for measurement. In practice, it is sometime difficult or
impossible to measure all the state variables. Output-feedback control is the control of
systems in which only outputs are required to be available for measurement.

For affine and nonaffine SISO nonlinear systems, [44, 58] propose adaptive NN
output feedback control using high gain observers to estimate the required derivatives
of the outputs. Due to the use of high gain observers, a peaking phenomenon in the
transient behaviour may occur. To overcome such a problem, saturation methods
introduced in [59, 60] may be used. [61, 62] propose using linear observers to observe
the error dynamics. [38] proposes a non-observer approach, in which input/output
history are used as inputs to NNs instead of the derivatives of the system output.

Adaptive intelligent output feedback control for wider classes of nonlinear
systems has also been considered. MIMO cases are considered in [46, 63, 64].

Systems with zero dynamics are treated in [65, 66].

2.2.2.5. Continuous and discrete systems

Since most controllers are implemented using digital computers, control in
discrete time domain is an important topic. Adaptive intelligent control for discrete-
time nonlinear systems has also received attention from researchers. Due to the
difficulties in discrete-time systems, such as the noncausal problem in backstepping
design, discrete-time domain methods are much less common than those in the
continuous domain [46].

For SISO discrete time systems, [67, 68] propose adaptive intelligent control for
a class of discrete affine nonlinear systems. [69] proposes both state and output
feedback controls for a class of discrete-time systems with general relative degree and
bounded disturbances. For a class of discrete-time systems in strict feedback form, an
effective backstepping design method was proposed in [70].

For MIMO discrete time systems, [71] presents adaptive neural network control
for affine MIMO nonlinear systems. [45] proposes a state feedback NN control
scheme for a class of discrete-time nonlinear MIMO systems with triangular form
inputs and bounded disturbances. The authors then present an output feedback control
scheme for the same class of MIMO discrete-time systems, in which only input and

output sequences are used to construct stable control.
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2.2.3. Adaptive mechanism of fuzzy systems

2.2.3.1. Only parameters are tuned

In adaptive intelligent control, intelligent systems (i.e. neural networks, neural-
fuzzy systems, or adaptive fuzzy systems) are employed to approximate some
unknown functions. To guarantee the stability, parameters of intelligent systems are
tuned online.

In an intelligent system, there are two type of parameters: linear parameters and
nonlinear parameters. For example, consequents of a fuzzy system are linear
parameters, whereas input membership function parameters (centers and variances)
are nonlinear parameters. For a multi-layer neural network, synaptic weights of the
output layer are linear parameters, whereas weights of the hidden layers are nonlinear
parameters.

Most of the work reported in the literature employs intelligent systems with linear
tuneable parameters. Fewer results are available for intelligent systems with nonlinear
tuneable parameters. [2] proposes adaptive control using multi-layer neural networks,
in which the weights of hidden layers are nonlinear parameters. [3, 72, 73] propose
adaptive fuzzy control, in which the input membership function parameters are also
tuned.

Linear parameterized intelligent systems are simpler to tune and to analyze. They,
however, suffer “the curse of dimensionality”, their size tend to increase
exponentially with the dimension of the input space. Nonlinear parameterized
intelligent systems are normally smaller (in term of size) to achieve the same
approximation accuracy and they are global approximators. However, the learning
speed is slower and analysis is more difficult. Thus, it normally depends on a

particular application to decide which type is more suitable.

2232, Both parameters and structure are adjusted

Most intelligent systems used in adaptive control have fixed structures. That is
the number of membership functions ( in fuzzy systems) or the number of nodes (in
neural networks) are fixed. Choosing the right structure is an important aspect as it
affects the approximation capability of the intelligent system. It is difficult to choose a
suitable structure for a particular application. Normally, a designer needs to try

several structures to find a suitable one.
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Few attempts to develop self-structuring intelligent systems for adaptive control
have been reported. Park et al [37, 74] proposes using self-structuring adaptive fuzzy
control, in which rules are added to the rule base as the input space is explored. Gao
[51] proposes using self-organising adaptive fuzzy neural control, which is able to add
or delete rules from the rule base. Park et al [36] proposes self-structuring adaptive
neural network control , in which a neuron in the hidden layer splits into two if a
certain condition is satisfied.

However, there exist some limitations in the above methods. Even if self-
structuring algorithms are presented, stability analysis is only performed for the fixed-
structured case. There is no discussion on the effect of the self-structuring algorithms
on the stability. [36, 37, 74] do not propose any algorithm to limit the size of the
intelligent systems. Thus, there is a risk that the intelligent systems will exceed the
hardware capability if initial performance is poor. Gao [51] uses large matrix
manipulation and an Error Reduction Ratio technique to prune rules. Thus, the
approach is complicated and computationally inefficient. Self-structuring adaptive

intelligent control is, therefore, still an open research topic.
2.3. Preliminaries

2.3.1. Fuzzy system and neural network
The required knowledge includes basic topics such as:
« Fuzzy set theory
« Fuzzy systems ( Mandani and Takagi-Sugeno types)
. Fundamentals of neural networks
« Backpropagation and related training algorithms
There are numerous books in the literature that cover these areas such as [75-77].

Thus, we will not re-present these areas here.

2.3.2. Concepts of stability and boundedness

[2, 3, 78] Consider the autonomous nonlinear system described by

i=f(x).xfeR" (2.6)
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2.3.2.1. Stability definitions

Definition 2.1 A state x* is an equilibrium state (or equilibrium point) of the
system (2.6), if once g(t) is equal to x, it will remain equal to x  forever. In
mathematical terms, that means the vector x~ satisfies:

f')=0

Without the loss of generality, we may assume the origin x =0 is an
equilibrium point.

Definition 2.2 The equilibrium point x* =0 is said to be Lyapunov stable if, for

any given & > 0, there exists a positive o (g) such that if

|x(0) < 5(e).

then ||§(t)|| <&, Vt=0.

Otherwise, the equilibrium point is unstable.

Definition 2.3 The equilibrium point x* =0 is said to be asymptotically stable
if it is Lyapunov stable and there exists ¢ such that if

[x(0) <5,

then limx(¢)=0.

—>0
Definition 2.4 The equilibrium point x™ =0 is said to be exponentially stable if

it is asymptotically stable and there exist &, £, > 0 such that if
[x(O) <&,
then ||§(t)| < a||)_c(0)||e’ﬂ’ ,fort>0.

Conceptually, the meanings of the above terms are the following:

« Lyapunov stability of an equilibrium point means that solutions
starting “close enough” to the equilibrium point (within the
distance § from it) remain “close enough” forever. Note that this
must be true for any ¢ that one may want to choose.

. Asymptotic stability means that solutions that start close enough
not only remain close enough but also eventually converge to the

equilibrium.
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. Exponential stability means that solutions not only converge, but in

fact converge faster than or at least as fast as a particular known

rate a||i0)||e*”” )

2322, Boundedness definitions

Definition 2.5 A solution x(¢) is bounded if there exists a >0, that may
depend on each solution, such that

|x(¢)]< B forall £>0.

Definition 2.6 The solutions x(¢) are uniformly bounded if for any o >0, there
exists f(a) such that if

[x(0) <a,

then |x(¢)| < Ala) forall £>0.

Definition 2.7 The solutions g(t) are uniformly ultimately bounded if for any
a >0, there exist f and T(, x(0)) such that if

[x(0) <a.,

then [x(¢)| < B for all ¢ > T(8,x(0)).

Definition 2.8 The solutions g(t) are semi-globally uniformly ultimately

bounded if for any Q, a compact subset of R”, there exist # and T(/,x(0)) such
that if

[xO) e €.

then |x(¢)| < B forall ¢ > T(8, x(0)).

2.3.3. Lyapunov stability theorem

Definition 2.9 A continuous function y : R — R" is said to belong to class K if

. «a(0)=0.

e alr)>wasr—>wo.

. a(r) >0 Vr>0.

. a(r) is non-decreasing, i.e. a(r,)>alr,) Vr, >r,.

Definition 2.10 A continuous function ¥ (x,7): R" xR* — R is
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locally positive definite if there exists a class K function a(O)
such that

V(x.1)2 o)
all 1>0 and ||| in the neighbourhood N of the origin ®".
positive definite if N =R".
(locally) negative definite if —J is (locally) positive definite.
(locally) decrescent if there exists a class K function A(e) such
that

V(x)< Alla)
all £>0 and ||§|| in (the neighbourhood N of the origin) R".

Conditions for stability

Lyapunov Theorem

Given the non-linear dynamic system

i=f(x1), x(0)=x,

with an equilibrium point at the origin, and let N be a neighbourhood of

the origin, i.e. N = {g : ||§|| <&, withe > O}, then the origin 0 is

stable in the sense of Lyapunov if for x € N, there exists a scalar
function V(x,t) such that V(x,t)>0 and V(x,1)<0, Vx#0.
uniformly stable if for x € N, there exists a scalar function V@, t)
such that V(g,t) >0 and decrescent and V(g, t) <0, Vx#0.
asymptotically stable if for xe N, there exists a scalar function
V()_c,t) such that V(g,t)> 0 and V(g, t)< 0, Vx#0.

globally asymptotically stable if for x e R", there exists a scalar
function V(x,t) such that V(x,t)>0 and V(x,1)<0, Vx#0.
uniformly asymptotically stable if for x € N, there exists a scalar
function V(x,t) such that V(x,t)>0 and decrescent and

V(x,t)<0, Vx#0.
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o globally, uniformly, asymptotically stable if x € R", there exists a
scalar function V(x,t) such that V(x,t)>0 and decrescent and
V(g,t)< 0, Vx=0.

. exponentially stable if there exist positive constants «, f, y such
that Vx e N, 05||§||2 < V(z,t)s ,8||§||2 and V(g,t)s —7”5"2.

o globally exponentially stable if there exist positive constants o,

B, v such that VxeQR", 06||£||23V(£,f)3,3”£"2 and

Viat) <7l

2.3.3.2. Conditions for boundedness

Uniform ultimate boundedness (UUB) If there exists a function V(x) with
continuous partial derivatives such that for xe S < R":
. V(x) is positive definite: ¥'(x)>0, Vx| =0
. Time derivative of ¥(x) is negative definite outside of S:
P(x)<0, ¥al> 4, (1] < B)= (xe5)

Then the system is UUB and |x|< B, V21, +T.

2.34. Universal approximation properties

2.34.1. Universal approximation property for zero-order Takagi-Sugeno fuzzy

systems

Consider zero-order Takagi-Sugeno fuzzy systems with point fuzzification

method, product-type inference, and center-average defuzzifier.

For each a<b, a,beR, let a(a,b): R —[0,1] be a membership function such
that a(a,b)x)=0 if x(a,b) and a(a,b)x)=0 if x ¢ (a,b). The fuzzy system has
the If-Then rule base of the following form:

RY: IF x, is 4/, and x, is 4, and ...and x, is A,

THENyis 6,
where x=(x,,x,,...,x,) eUcR" and yeV cR are the crisp input and

output of the fuzzy system. A; are fuzzy sets with membership functions
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A;(xj):a(aj.l,ajZXxj) for some @y <a},, i=1,...,M where M is the number of
rules, j=1,...,n. @, is the system output due to rule R?.

Then, the output of a Takagi-Sugeno fuzzy system is a weighted average of 6, :

ZZI 0,1, (x)

J=f(x]0) ===
D (%)

=204/ (2.7)

in which ,ul.(g):li[A;.(xj), £, (x)>0 and i{i(g)zl.

Theorem 2.2: Universal approximation theorem
For any given real continuous function g on a compact set U c ‘R" and
arbitrary € > 0, if a large enough number of rules is used, there exists a

fuzzy logic system f in the form of (2.7) such that
fla)-glx)<e

Sup xeU
Proof

The proof of this theorem can be found in [1, 3].

Remark 2.1 This theorem justifies that Takagi-Sugeno fuzzy systems with either
triangular membership functions or Gaussian membership functions are universal
approximators. Thus, in this thesis, we will use both Takagi-Sugeno fuzzy systems
with triangular membership functions and the ones with Gaussian membership
functions as our fuzzy controllers.

Remark 2.2 This theorem is just an existence theorem. How to determine the
sufficient number of rules or how to find such a fuzzy logic system are different
questions. We are more interested in answer the question “ How to find a fuzzy logic
controller such that the closed-loop system is stable and the tracking error converge
to a small neighbourhood of zero?”.

Remark 2.3 The importance of this theorem should not be overemphasized
because many other types of functions are also universal approximators (polynomials,
neural networks, etc.). What should be emphasized is the capability of the fuzzy logic

systems to incorporate linguistic information in a natural and systematic way.
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2.4. Basic indirect adaptive fuzzy control for SISO affine nonlinear systems

As an example, this section shows how the above mathematical tools are used to
construct a simple adaptive fuzzy controller for SISO affine nonlinear systems.
Consider SISO affine nonlinear systems in the following form:

X, =X,

X, =X,
(2.8)
X, = f(x)+gx)u
y=X
where u is the control input; y is the output; f(x) and g(x) are unknown
continuous functions; x = (xl,,xz,...,xn)T is the state vector of the system which is

assumed available for measurement.

Control objective is to design an adaptive fuzzy controller such that the output
y(t) of the system follows a continuous reference signal (1) c C".

Assumptions
To design a controller satisfying the above control objective, the following
assumptions are made:

« Assumption 2.1: g(x) is continuous and the sign of g(x) is known for

xeQ_,where Q_ is the controllability region.

Since g(x) # 0 (controllable condition of system (2.8) )and g(x) is

continuous for x in the controllability region Q , without loss of generality, it
can be assumed that g(x) >0 for xeQ .
« Assumption 2.2: Define r =[7,#,7...,r" "] . We assume that ||K|| <r,

and “r(”)

<r, with known constants r,,7, >0.

Ideal control

Let e=r—y, gz(e,é,é,...,e(”’l))r, and l_c=(k1,k2,...,kn)T be such that the
polynomial s" +k,s"" +...+k, is Hurwitz stable. If the functions f(x) and g(x)

are known, then the control law

u =—)(—f(£)+krg+r(”)) (29)
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applied to (2.8) results in

" =k e=—ke—ky...~ ke (2.10)

which implies that lim e =0. The control u” is called ideal control.

t—>+o0

Certainty equivalent control, direct and indirect AFC

However, f(x) and g(x) are unknown. Thus, we need to employ fuzzy systems
to approximate the unknown functions. If we use one fuzzy system to approximate
u”, we have direct AFC. If we use two fuzzy systems to model f(x) and g(x), we
have indirect AFC. Direct AFC will be discussed in the next chapter. Here, we
consider the indirect case.

Employ two fuzzy systems j} (x|0,) and g(x|€,) in the form (2.7) to
approximate f(x) and g(x) respectively. The resulting control law is

1
T awle,)

is the so-called certainty equivalent control.

Cilo)+k e r) (2.11)

Ideal parameters and minimum approximation error

The ideal parameters @', and @, are defined as:

0, =argminfsup,., |7(x12,)~ /(x)] (2.12)
0 =argminfsup,., |8(x10,) - g(x)] (2.13)
The minimum approximation error is defined as:

o, =(fx10)-1() (2.14a)
o, =(6(x16)-¢()) (2.14b)

Stability analysis and adaptive laws

Substituting u =u,_, adding and subtracting g(x)u" to (2.8), we obtain the error

equation
" =k e+(f(x10,)- fW)+(ex10,) - glx)l, (2.15)
or in the matrix form
e=Acerbc|f10,)- 1)l aexl0,)- e (2.16)

where
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0 0 0 0

0 1 0

Ac = : ybe=|:
0 0 0 1 0

-k, -k, -k; - -k, 1

From (2.14), (2.16) becomes

e=Acevbo|fx10,)-Fx1070)+(ex10,)-2x |0k, [+bew  (2.17)

where the total approximation error w =@, + @, u, .

From (2.7), (2.17) can be written as

e=Acerblp’ C()+ g Ll [+ beo (2.18)
where ¢ =0, -0, ¢ =0, -0,

Since A, is a stable matrix, there exists a unique positive definite symmetric
nx n matrix P which satisfies the Lyapunov equation:

A.P+PA.=-Q (2.19)
where Q is an arbitrary n x n positive definite matrix.

To perform the stability analysis, consider the Lyapunov function candidate

1 T 1 T 1 T
V=—e Pet+— +— 2.20
2= = 27/f ?f?f 2}/g ?g?g ( )

where y, and y, are positive constants. The time derivative of J' along the

trajectory of (2.18) is

V= —%QTQg +e' Pbow

— ) - ) (2.21)
s 6, +7, ¢ Po c(x)]+ P 6, +7,¢" P ()
where we used (2.19) and § =0, ¢ =0, . If we choose the adaptive laws
0,=-y,¢ Pb, (2.22)
6,=-r.¢e Pb. (2.23)

then from (2.21) we have

V=—%§TQ§+§TPQCW (2.24)
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From the universal approximation theorem (theorem 2.2), if a sufficient number

of rules is selected, @ should be small if not equal to zero. If @ =0, (2.24) becomes
V:—%gngSO. (2.25)

Since V' is lower bounded (2 O) and ¥ is uniformly continuous, using the

Barbalat’s Lemma (lemma 2.1), we have lim ¥/ = 0, therefore lim|g(t)| =0.

t—+0 t—o
This completes the design of the basic indirect AFC of affine nonlinear systems.

It has been shown that, for system (2.8), if the controller is chosen as (2.11),adaptive
laws (2.22), (2.23), and sufficient number of rules for fuzzy systems J} (x|€,) and
g(x|8,) are selected, then the system output will follow the reference signal.

In summary, the design procedure of an AFC system consists of the following
steps:

« Show the existence of an ideal control: assume all functions are known,
show that there exists a control such that the control objectives are met.

o Show that there exist fuzzy systems to approximate the unknown
functions.

« Define the ideal parameters and approximation errors

« Choose a suitable Lyapunov function to derive adaptive laws such that the
control objectives are met.

The presented controller is one of the simplest forms of AFC, which was
proposed in the early 1990s [1]. Some of its main limitations are discussed in the
remarks bellows.

Remark 2.4 The above analysis assumes that the approximation error is small
and can be neglected. It is often in practice that the approximation error cannot be
ignored. Thus, extra efforts are normally needed to account for the approximation
error. In [1, 5, 13, 30, 79], the analysis of stability is only valid under the assumption
that the approximation error is square integrable. Some researchers suggested an
addition of a variable structure control term to the control law [3, 17, 18, 62, 80]. A
number of researchers propose some approaches to estimate the upper bound of the

approximation errors [4, 12, 33, 81, 82].
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Remark 2.5 Adaptive laws (2.22), (2.23), do not guarantee the boundedness of
the fuzzy parameters. To overcome this problem, modified adaptive laws such as
projection algorithms [1, 17], & -modified and o -modified adaptive laws [3, 55] have
been proposed in the literature.

Remark 2.6 The singularity problem may occur, i.e. the control (2.11) is
indefinite if fuzzy system g(x|6,) approaches zero. In practice, extra attentions are

2(x)

ox

n

needed to prevent this. Ge et al [2, 55] assumes =0 to design novel adaptive

controllers while avoiding the singularity problem. Chen and Liu [83] suggest that the
initial values of the NN weights need to be chosen sufficiently close to the ideal
values. Thus, offline pre-training is needed. Other methods include using projection
algorithms [1, 3, 17], a smooth projection algorithm [17], and introducing switching
control portions to keep the control magnitudes bounded [55].

Remark 2.7 Even it is shown that the state vector converges to zero, the state

vector x is not guaranteed to stay in the desired set U . To keep the state variables of

the system under control in a desired constraint set without the need of large adaptive
gains, some researchers [1, 13, 31, 32] propose adaptive fuzzy control combined with
a supervisory control. When the state variables are well inside the constraint set, the
supervisory control is zero. When the state variables tend to move outside of the
desired boundaries, the supervisory control begins to operate to force the states stay in

the constraint set.

2.5. Conclusion

A general review of AFC has been given in this chapter. The review has shown
the rapid development of AFC in the past decade, which results in the diversity and
variety of AFC schemes available in the literature. It also shown that there are still
limitations and areas that need to improve.

Stability concepts and Lyapunov stability techniques are the main mathematical
tools that are use throughout the thesis. These mathematical tools have also been
presented in section 1.3.

Finally, the basic framework of an AFC scheme has been presented through an
indirect AFC of affine nonlinear systems. Basic concepts such as ideal control, ideal

parameters, minimum approximation error, and adaptive laws have been introduced.
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A main drawback of the presented indirect AFC is the effect of the approximation
error. In the next chapter, we will present how to compensate this by utilising an

approximation error estimator and an automatic switching mechanism.
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3. Chapter 3
TWO-MODE INDIRECT ADAPTIVE FUZZY CONTROL WITH

APPROXIMATION ERROR ESTIMATOR'

3.1. Introduction

One limitation of the indirect AFC scheme presented in section 2.4 is the effect of
the approximation error. In this chapter, a two-mode indirect adaptive fuzzy control
with approximation error estimator is proposed. Equipped with a switching
mechanism, the controller is also able to automatically switch between two modes,
learning mode and operating mode, to reduce the number of parameters needed to be
tuned online.

In section 3.2, a short survey about the effect of the approximation error in AFC
is given first. Then, the two-mode indirect AFC scheme is presented in section 3.3.
Section 3.4 shows application to an inverted pendulum and a Chua’s chaotic circuit to
demonstrate the proposed control scheme. Finally, some conclusions are drawn in
section 3.5.

For the continuity of reading, all figures are displayed at the end of the chapter.

3.2. Literature review

The result in section 2.4 assumes that the approximation error is small and can be
neglected. It is often the case that in practice the approximation error cannot be
ignored. In [1, 5, 13, 30, 79], the analysis of stability is only valid under the
assumption that the approximation error is square integrable. Some researchers
suggest adding a variable structure control term to the control law [3, 17, 18, 62, 80].
Other researchers [2, 12, 33, 81, 82] propose to estimate the upper bound of the
approximation errors.

Park [81] solves this problem by estimating these bounds using fuzzy inference.
This requires manual tuning of fuzzy estimators. Er [12] propose using a non-negative
adaptive law to update the estimators. Thus, the estimated bounds are unbounded. Sun

et al [82], Park [33], and Ge [2] also present solutions in which they propose using a

1 . . . .
The content of this chapter has been published in IEEE Transactions on Fuzzy Systems :

P.A. Phan, and T.J. Gale, “Two-mode adaptive fuzzy control with approximation error estimator”, IEEE Transactions on Fuzzy
Systems, volume 15 (5), pp 943-955, Oct. 2007.
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o -modification adaptive law to update the estimators. This guarantees the
boundedness of the estimated bounds.

In [42, 84, 85] bound estimators are also proposed but it is assumed that fuzzy
models of the plants are already available. No algorithm to tune fuzzy system
parameters is provided. Designers need to design fuzzy systems manually. The
advantage of these controllers is that they need only a few adaptive parameters
regardless of the complexity of the controlled plant, and thus, they are more
computationally efficient.

To distinguish the above two cases, we refer to a controller as being in learning
mode when its fuzzy parameters are tuned online and as being in operating mode
when its fuzzy parameters are fixed.

One may wonder whether it is possible to design an adaptive fuzzy controller
that can operate in the aforementioned modes, learning mode and operating mode.
Obviously, this controller would be better since it has the advantages of both modes:
learning ability and computational efficiency. And if the answer is yes, how can one
decide which mode the controller should be in? This motivates us to propose a 2-

mode adaptive fuzzy controller with approximation error estimator.

3.3. Two-mode adaptive fuzzy control with approximation error estimator

We consider the same control problem as in section 2.4. The nonlinear system is

given as:
X =X,
Xy = X3

(3.1)

X, = f(x)+g(x)u
=X
with the control objective and two assumptions given in section 1.4. The following

two additional assumptions are also required:

« Assumption 3.3: We can determine parameter vectors Q; , Ql;, Q; and
0, such that f(x0})2 f(x)2 /(x0}) and §(x07)2 f(x) 2 §(xl0}).

VxeQ, .
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. Assumption 3.4: The considered plant is slow time-varying and there are
small disturbances so that, during the operation time, there exist Q_(;, QZ

such that:

o' = |1~ F )+ 2 - 0D M < 0. vreQ,.

We employ zero-order Takagi-Sugeno fuzzy systems with Gaussian membership
functions for input, center-average defuzzifier, and product-type inference. From
(2.7), the output of a fuzzy system of this type is:

M
Z«, Ou(x) U
22 S g

M
i=1 /’li (E) i=1

J=f(x|0)=

in which x,(x) are product of Gaussian membership functions ,i.e.

2o

.\ 2
. L[x, —¢ i i .
M (x)= H exp| — - , Where ¢ and o are the centers and widths of the
j=1
membership functions for the jth input and the i" rule.

The two-mode indirect adaptive fuzzy control is proposed as follows.
The control signal

u=u, +ug

T A
1 (_];(J_C|Qf)+,£r‘g+r<n>)+ 1 d)tanh[o.zms.g Plgca)J (3.2)

£(:40,) 2(:40,) £
where & is a small constant specified by designers, @ is the variable used to
estimate the approximation error, and other parameters are defined as in section II.
The adaptive laws
- ys€ Pbed,(x) if (Q/Lv <0, < 9%)
or(0, =0 and y, " Pb.¢ ,(x)<0)
o - or(Hﬁ =0, and;/ngPbcgﬁ(g)ZO)

(3.3)
0 if(p, =0%andy, e’ Pbs ,(x)>0)
or(6, =0V andy ,e” Pb ¢ ,(x) <0)

in which y, is the adaptive gain of the fuzzy system f (E‘Qf ), ¢, 1s the center of it

rule, i=1,...M ,, M, is the number of rules of J}()_C‘Qf).
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—y, €' Pbos,(x) if (0 <6, <6Y)
or (Hgi =0’ andy,e' Pb.{  (x)< 0)
6 — or (Hg]. = 49;]. andy, gTPbCé’g/. (x)> 0) (3.4)

g
0 if(p, =6 andy,e" Pbs, (x)>0)
or (Gg]. :ng andy e Pbcé’g/(g)<0)

in which y, is the adaptive gain of the fuzzy system §(4|Q ¢)» ¢, 1s the center of jth

rule, j=1,...M,, M, is the number of rules of g”(>_c|Qg)

_yWQgTPbC|—0 (o-0,)) if (&<, )
b= or((?) and|e Pb |<a (- a)o)) (3'5)
0 if (a) = 0, and e’ Pb | > 0, (-0, ))

in which y is the adaptive gain of the estimator &. And o, @,,and o, (>W)

are design parameters specified by designers.
The stability of the controller is stated in two theorems below.
Theorem 3.1 Stability in the learning mode
Consider the system (3.1). If assumptions 3.1-3.3 are satisfied, then an

adaptive fuzzy controller with control signal (3.2) and the adaptive laws (3.3), (3.4),

(3.5) guarantees that:

(a) The closed-loop system is stable in the sense that all the variables are

bounded. In particular,

i) 0;<0,<0,,i=1..M,and 0<0,<0,<0_, j=1..M,
ii) @y < @<
2 V(0),V.
iii) |e| \/ ma; ((P)) ) , where A_. (P) is the minimum eigen value of

P. V(0) and V. are bounded positive constants.

r

2max(V(0),7,)

iv) |)_c| < |K| +|§| <7, +\/ 7 (P

v) The bound of |u| is
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A

(mxwg;], i ol PO j ceo,

X0, Apwin (P)

g

(b) The tracking error converges to a small neighborhood D, of zero:

De={|e|:|e|§/ 2, }
ﬂ’min(P)

(c) The Root Mean Square (RMS) of the tracking error is bounded by

t
RMS = 1im1je2dz < |2
oo f ﬂ’min (Q)

where d is a bounded positive constant.

Proof: the proof is given in appendix 3.A0
Theorem 3.2 Stability in the operating mode
Consider the system (1). If assumptions 3.1-3.4 are satisfied, then an adaptive
fuzzy controller with control signal (3.2) and the adaptive law (3.5) guarantees that:
(@)  The closed-loop system is stable:
) o, <d<Lo,, .

I L ACKA)
ER NG

in which V,(0) and V,, are bounded positive constants.

iii) x| < r, + \/ 2max(?,(0).7,,)
ﬂ’min (P)

iv) The bound of |u| is

. 1 O [‘J}()_C|Q°f]+r, +|]_€|\/2ma;(l/l(;)))’l/lr)+a)max\]’ xeU,.
g[:xgg) min( )

(b) The tracking error converges to a small neighbourhood D, of zero

D; ={|e|:|e|£ L}
//?’min(P)

(c) The RMS error is bounded by:

RMS < | 2d .
//imin(Q)

Proof: the proof is given in appendix 3.B0
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Switching mechanism The switching between two modes is performed
automatically by the following mechanism
. Step 1: parameter initialising.

Using available linguistic knowledge, we construct initial fuzzy
systems f (E‘Q s (O)) and g”(g‘g ¢ (O)).

. Step 2: learning mode

Use the controller described by theorem 1.
Switch to the learning phase when e’ Pb,. is smaller than a pre-defined value
E, for a specified time interval AT, .
« Step 3: operating mode
Turn off the parameter update algorithm. Use the controller described by theorem

2 with only one adaptive parameter, which is the estimator value @ .
Go back to step 2 if e’ Pb ¢ 1s larger than E .

The flow chart is given in figure 3.1.

Remark 3.1 Theorems 3.1 and 3.2 show that the performance of the controller
depends on positive constants V' (0), V., d, Vl(O), and V.. Even though we cannot
determine these values exclusively, their definitions (defined in appendix 3.A and
3.B) suggest that we can make them arbitrarily small by tuning appropriate
parameters. Therefore, desired performance can be achieved by these parameters. The
intuitive ways to tune the controller are summarized in table 3.1. Often, the choice of
which parameters to adjust is dictated by the control problem.

Remark 3.2 An advantage of the 2-mode controller is the reduction of
implementation cost. In the learning mode, if the fuzzy system has s inputs and at
most two membership functions overlap in each input dimension, there are 2’
adaptive parameters needed to be tuned online. Whereas, in the operating mode, the
controller requires only one adaptive parameter no matter what the number of inputs
s is. This computational advantage becomes apparent if the controlled plant is a high-
order system, in which fuzzy systems with large numbers of inputs are required to
represent it.

Remark 3.3 So far, the affect of noise has not been included for clarity. If we

consider system (3.1) with bounded noise:
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Action Parameters tuned
To reduce the bound on the
T ﬂmin (P)’y_f‘57g57w’lmin(Q)
error vector |€|
= L0 ,,6W, A (P),V(0)
To reduce the bound on the ¢ Yo | §|
state vector |)_C|
To reduce the bound on the N max(r (n) ), |]£|’ |§|
control signal |g|
To reduce the bound on Similar to how to reduce the bound
lim |€| on |§| , except to reduce V'(0)
t—>+©
To reduce the RMS error
Y T j'min (Q)
lo,,e,W
Table 3.1: methods to tune the controller’s parameters
X =X,
X, = X5

(3.6)

i, = f(x)+gxu+d()
y=x

in which |d (t] <D, D is a bounded positive constant, it can be seen that d(¢) can be

considered as a part of the approximation error when approximating f° (g) Thus, the
analysis can be performed as above.

Remark 3.4 One limitation of our proposed 2-mode adaptive fuzzy controller is
that it does not have the ability to automatically adjust its structure. In further
chapters, we will develop self-structured AFC that are able to automatically adjust

their structure.

3.4. Applications

To demonstrate how the proposed 2-mode controller can reduce the number of
adaptive parameters, its applications to an inverted pendulum and a Chua’s chaotic

circuit are presented.

3.4.1. Control of an inverted pendulum
The controlled variable is the angular position of the pendulum (Fig 3.2). The

control input is the force applied on the cart. The dynamics of the system is given by:
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X =X,
, . m.l.x;.cos x,.sin x, 1
X, =|g.sinx, — . -
m,+m lﬂ_mcos X
3 m.+m
cosx,_ ! u (3.7)
m,+m / ﬂ_mcosle
3 m.+m
=)+ g(x)u
y=x

in which x, is the angular position of the pendulum. x, is the angular velocity of the
pendulum. m_ is mass of the cart. m is mass of the pendulum and / is half-length of
the pendulum. For simulation purpose,m_, =1kg, m =0.1kg,and / =0.5m .

The initial state is [x, (0),x,(0)]" =[-7/60,—7 /60]".

The control objective is to make the output y =x, track the reference signal
r(t) =0.5sin(?).

Now, we construct the controller as follow

o step 1:let @, = {(x, x| < Ll <1}

. step 2: construct f&‘gf )

Define 5 fuzzy sets each for x,, x, as shown in Fig 3.3. We assumed that all the

possible rules were used. Thus, there are 5x5=25 rules. Examining f(x), we observe
that -10< f(x)<10,VxeQ_ . Thus, it is safe to set f@‘g‘,’): 10 and
S (z

0,(0)=0,i=1...25.

Qj):—m, VxeQ, . Then, all the consequences ¢, were initially chosen as

« step 3: construct g?(g‘g < )
Use the same fuzzy sets for x;, and x, as used in f (g‘Qf). Examining g(x), we
S U A L
note that 1< g(x) <2,VxeQ , Therefore, we set g()_c‘Qg ): 2 and g(g‘Qg ): 1. All

the consequences 6,; are chosen as &, (0)=1,i=1...25.

« step 4: choose the controller’s parameters.

The controller’s parameters are chosen as follow:
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2 10 0 15 5
k=17 o= P=
1 0 10 55
7f=(fU_fL):3O 7/g=(gU_gL):1~5
V,=05 o0,=005 ,=01 o,=1 =001
All the parameters are chosen by using the methods given in table 3.1 in order to
achieve the desired performance.

. step 5: design the switching mechanism.

To design the switching mechanism, we need to choose E, and AT,. In this
application, we choose £, =0.1 and Az, =10s.

The simulation results are shown in Fig 3.4. It can be seen that the controller
successfully controls the angular position of the inverted pendulum. After about 20s,

the tracking error is smaller than 0.01rad. Fig 3.4c shows that the state vector x stays
in the control region Q_ for all time. Fig 3.4d shows that the control output is quite

smooth and there is no chattering. Fig 3.4f shows the control mode, 1 indicates
learning mode and 0 indicates operating mode. From Fig 3.4f, we observe that the
controller switches from learning mode to operating mode at around 26.8s. Thus, the
number of adaptive parameters reduces from 50 (learning mode) to 1 (operating
mode). In some cases, the controller may switch between the two modes a few times
before actually stay in the operating mode. Whatever the mode the controller is in, the
stability is always guaranteed.

Fig 3.4e shows the value of the estimator and demonstrates its typical behaviour.
From the start of the simulations, the estimated bounds increase quickly (and is

bounded by @_, ) to compensate for the large approximation errors. Later on, when

max
the errors are smaller, the estimated bounds decreases so that no unnecessary

excessive control occurs.

3.4.2. Control of a Chua’s chaotic circuit

A typical Chua’s chaotic circuit consists of one linear resistor, two capacitors,
one inductor, and one piecewise-linear resistor. And the original dynamic equations of
a Chua’s are not in the standard canonical form. However, using a linear

transformation, we can transform the dynamic equations into the canonical form. For
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simplicity, here we only show the transformed dynamic equations of a Chua’s system

described in [13] as follow

X =X,
X2 =% (3.8)
iy = flx)+ g
y=x
in which
14 168 1 2 (28 7 :
f(z): @xl —ﬁxz +§x3 _E(ﬁxl +§x2 +x3j and g(£)=1 The

initial states are chosen randomly as x,(0)=—-0.8, x,(0)=0.2, x, (0)=0.9.

The control objective is to control the state x, to follow the reference desired
signal r(¢)=1.5sin(¢).

We construct the controller as follow

« steplilet Q = {(xl,xz,x3)||x1| < 1,|x2| < 1,|x3| Sl}
. step 2: construct j‘()_c‘gf )

Define 3 fuzzy sets each for x,, x,, and x; as shown in Fig 3.5. We assumed
that all the possible rules were used. Thus, there are 3x3x3=27 rules. Examining
f(x), we observe that —2 < f(x) <2,Vx € Q . Thus, it is safe to set f@g‘,’ ): 2 and
7

0,(0)=0,i=1..27.

Q;)z—Z, VxeQ, . Then, all the consequences &, were initially chosen as

« step 3: construct g?(g‘g p )
Use the same fuzzy sets for x,, x,, and x, as used in j‘ (I‘Q f). We note that
S U A L
g(x)=1LVxeQ_ , Therefore, we can set g&‘gg )=1.1 and g(ﬁ‘Qg)z 0.9. All the

consequences 6, are chosen as 6, (0)=1,i=1...27

. step 4: choose the controller’s parameters.

The controller’s parameters are chosen as follow:

1 500 11.5 105 25
k=|2 0=10 5 0 P=[105 23 65
3 0 05 25 65 3
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v, =15x(fY - f,)=6 7, =15x(g" —g,)=03

7,=01 o0,=03 ,=001 o, =02 &=0.01

max

. step 5: design the switching mechanism.

In this application, we choose £, =0.2 and A¢, =10s.

The simulation results are shown in Fig 3.6. It can be seen that the controller

successfully controls the state x, of the transformed Chua’s system. After 15s, the
tracking error is smaller than 0.01. Fig 3.6¢ also shows that the state vector x stays in
the control region Q  for all time. Fig 3.6d shows that there is no chattering in the

control signal. Moreover, it is interesting to note that the magnitude of the control
signal of the proposed controller is much smaller than the one in [13]. From Fig 3.6f,
we observe that the controller switches from learning mode to operating mode at
around 22s. The number of adaptive parameters reduces from 54 (learning mode) to 1
(operating mode). After 22s, there is no significant degenerate in the tracking

performance even that there is only 1 adaptive parameter updated online.

3.5. Conclusion

This chapter has presented an indirect AFC scheme, in which an estimator is used
to compensate the approximation error. To increase the computational efficiency, a
mechanism has also been proposed to automatically switch the controller from
learning mode to operating mode to reduce the number of online adaptive parameters.
The stability analysis and required conditions of the proposed control scheme has
been derived. Application to an inverted pendulum and a Chua’s chaotic circuit shows
good tracking result in both modes and the number of online adaptive parameters
eventually reduces to 1 in operating mode.

Only indirect AFC has been discussed so far. In next chapter, direct AFC will be

discussed and solutions to its limitation will be proposed.



Parameter Initializing

¢ Construct fQ‘Qf (0))and

&llo, )

¢ Choose controller parameters.

el

»

A 4

Learning Mode

¢ Use the controller (6).

¢ Update the controller’s parameters
using the adaptive laws (7), (8).

¢ Update the estimator using (9).

€TP12c <E,
for AT, ?

|-

A 4

Operating Mode

¢ Use the controller (6)
¢ Update the estimator using (9)

Fig 3.1: The flowchart of the switching mechanism
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Fig 3.2. The inverted pendulum

Fig 3.3. Membership functions for x,, x, in application 1

Fig 3.5. Membership functions for X Xyo Xy in application 2
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4. Chapter 4
DIRECT ADAPTIVE FUZZY CONTROL WITH LESS

RESTRICTION ON THE CONTROL GAIN’

4.1. Introduction

In chapters 2 and 3, we have investigated indirect AFC, in which two fuzzy

systems are used to model unknown functions f(x) and g(x) of the affine nonlinear

plant (3.1). Direct AFC, on the other hand, needs only one fuzzy system to

approximate the whole ideal control u" = (— f (§)+k Tg+r(")). Thus, the main

RS
g(x)
advantage of direct AFC is that its structure is simpler than the one of indirect AFC.
However, direct AFC generally requires more restrictions on the control gain. The
goal of this chapter is to relax the extra restrictions of direct AFC.

First, section 4.2 gives a survey about the required restrictions and some existing
solutions in the literature. Then, a direct AFC scheme with less restriction is proposed
in section 4.3 using a simple extension of the universal approximation property.
Follow that, application to an inverted pendulum and a magnetic levitation system is
given in section 4.4 to demonstrate the proposed control scheme. Finally, some

conclusions are summarized in section 4.5

4.2. Literature review

While direct AFC results in a less complicated structure than indirect AFC as it
employs only one fuzzy system, the singularity problem in indirect AFC is also
completely avoided. However, a literature survey shows that direct AFC schemes
usually require more restrictions on the control gain g(x).

In addition to the controllability condition, some extra restrictions on g(x) are

needed for stability and convergence analysis. [51, 86] require that the control gain

2(x) is known. In [3], g(g) is assumed to be in the form g()_c)z—g()_c) in which
¢

2 The content of this chapter has been published in International Journal of Control, Automation, and Systems:

P.A. Phan, and T.J. Gale, “Direct adaptive fuzzy control with less restrictions on the control gain”, International Journal of
Control, Automation, and Systems, Vol 5 No 6 Dec 2007, in press.
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¢ >0 is an unknown scalar constant and g(z) is known. The authors of [1, 5, 12, 31]

require that g(x) is an unknown constant. In [35, 73], the bounds of g(g) and its first

2(x)

ox

n

derivative need to be known. In [2], it is assumed that =0, i.e. the control gain

does not depend on the state variable x,.

Recently, some researchers have proposed a number of different approaches to
relax the extra constraints on g(z). Wang CH et al [13, 32] propose a solution, in
which the control law does not require extra constraint on g(g). However, g()_c) still
needs to be known to implement the adaptive law. Ge et al [2] propose an approach,
in which the extra constraints on g(g) are relaxed by using a novel integral-type
Lyapunov function. The authors later comment that due to the integral operation, this
approach is complicated and difficult to use in practice [87]. Leu et al [62] propose a
solution in which the nonlinearity of g(x) is treated as a component of the overall
uncertainty and is cancelled using a variable structure control term. Thus, the bound
of g(g) is still needed. Park et al [36] propose an approach in which the implicit

function theorem is used to solve the problem. A critical step in their design is to
. 1
determine a constant ¢ such that ¢ > 5 g()_c), thus knowledge of the upper bound of

g(x) is still necessary.

These constraints present difficulties in practice. For instance, the requirement of
constant g(g) restricts the number of plants that direct AFC can be applied to. The
requirement of known g(g) normally requires tests carried on plants to estimate it.
Moreover, it cancels out the main advantage of AFC, that is no mathematical model
of plants are required. Even the requirement of known bound of g()_c) is a
disadvantage. If a too conservative bound value is chosen, it usually results in
undesired control action. Thus, experiments are also needed to determine the bound.
These extra experiments add complexity, time and cost to the design of direct AFC.

Why does direct AFC require more restrictions than indirect AFC in the stability
analysis? Are those extra restrictions really necessary conditions? Or are they used
simply to overcome obstacles in the stability analysis? We identify that the obstacle
lies in the statement of the approximation property of fuzzy logic systems. In this

chapter, using a simple extension of the universal approximation property, we show
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that those extra constraints are actually not needed. Based on this property, the
stability analysis of direct AFC can be performed very much like its indirect

counterpart.

4.3. Direct adaptive fuzzy control with less restriction

Consider nonlinear system (3.1). Control objective is to design an adaptive

fuzzy controller such that the closed-loop system must be stable in the sense that all

the variables in the closed-loop system must be bounded. And the output y(¢) of the
system follows a continuous reference signal (1) c C".

Assumption 4.1: g(x) is continuous and the sign of g(x) is known for x € Q ,
where Q  is the controllability region.

Since g(x)# 0 (controllable condition of system (4.1)) and g(x) is continuous
for x in the controllability region €, without loss of generality, it can be assumed
that g(x)>0 for xe Q.

Assumption 4.2: Define r=[r,#7...,r""]". We assume that ||K|| <r, and

r™ | <7, with known constants 7,,7 >0.

The ideal control can be chosen as:

w =)k e ) (4.1)
g(x)

Let v=k' e+r™. (4.1) becomes

v ()= 1@ ) 42)

in which Kz(gT,v)T €Q,,Q, = &‘EEQI,"KHS Yy, r(”)“érl}.

To approximate »*(X), we employ a fuzzy logic controller in the form (2.7)
M
u=i(X]0)=) 0,¢,(X) (4.3)
j=1
in which adaptive parameters are the rule consequents 6, j=1...M, and
0=0,,0,,...0, ) .

Adding and subtracting g(x)u" (X) to (3.1), and after some simple manipulation,

we have the error dynamics equation:
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e =~k e+ [gou’ (X) - g)i(X[0)] (44)
To continue, we introduce lemma 4.1, which is inspired by the proof of universal
approximation property given in [88].

Lemma 4.1. Given arbitrary &" >0, there exist

c(X)=(&,(X) ¢, (X),...¢, (X)) and an ideal parameter vector

0 =(0.6;....0,,) such that

ol” (X)- g()i(x]0)= 3¢/ (0; -0, ) (x)+ 2 (45)

Jj=1

~.

where |g| <¢&" and ¢’ are some positive constants.

Proof: is given in appendix 4.A0
Applying lemma 4.1 to (4.4), the error dynamic becomes:

iS00
Jj=1

In the vector form,

where
1 0 0
0 0 1 0
Ac = : : s be =
0 0 0 1 0
-k, -k, -k; - -k, 1

Since A is a stable matrix, there exists a unique positive definite symmetric
nxn matrix P which satisfies the Lyapunov equation:

ALP+PA.=-0 (4.7)
where Q is an arbitrary n x n positive definite matrix chosen such that 4, (Q)>1.

Assumption 4.3 We can determine the upper and lower bounds of the ideal

control signal:
u, <u'(X)<u,, VX eQ,.

This assumption is not a restriction to the plant. It is a reasonable assumption as,

in practice, it is essential to choose an actuator that is capable of performing the
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required control action. Later, this assumption will be used to keep the adaptive

parameters bounded.

Theorem 4.1 Given system (3.1) satisfying assumptions 4.1, 4.2, and 4.3, a

controller (4.3) with the following adaptive law

_7€TPQC§;'(£) if (“L < 9_/‘ < “U)

or (6?]. =u, and ygTPlgcé’j (X)< O)
9_- = or\¢, =u, and 7/QTPZ_7C§’_i (£)> 0 (4-8)
0 if (0, =u, andye' Pb ¢, (X)>0

or (Hj =u, andy/gTPl_acg’j(X)s O)

where y is the adaptive gain, will guarantee that:

i.  The adaptive parameters are bounded:

Su,, j=1..M.

ii.  The tracking error e(t) is bounded by:
2]}
,Vi>0,

in which o = %Q&;)l) , V(O) is a positive constant dependent on the initial

*
&

2a

2o 01 (€|
"Q(t )|| < 2 (P)

conditions, and c is a bounded positive constant.

iii. ~ The system is Uniformly Ultimately Bounded (UUB), i.e. g(t)
converges to compact set ., in finite time:

2

[Poc| e

ﬂ’min (Q) -1

Q, = elt)ele)] <

Y

Proof

L u, <0, <u, j=1..M.

From (4.8), it is obvious that u, < 0, <u,,vtz0, j=1..M.
ii.
Consider the Lyapunov function candidate

L per LS eifpr—o V
V—2g Pg+27/;c (¢9j Bj). (4.9)
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and

The time derivative of ¥ along the trajectory of (4.6) is

V:——e 0c- LS /(07 -0, + ¢ P [Zc (0:-6,),(x }

7/11
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'=——e Qe+~ Zc 0° -0, \re Pbos (X)-0,)+¢" Phec. (4.10)
If we choose the adaptive law (4.8), we have:
o If (u, <0, <uy)or (0, =u, and ye" Pb ¢ ,(X)<0)

or (0, =u, andye” Pb.¢,(X)>0):
©; -6, fre"Poog (x)-6,)=0.

If (0, =u, and ye' Pb.¢ ,(X)>0):
0,=0.Andas 0’ <u, =0, ( 0,)<0.
Thus, (07 -0, \ye' Pbog,(X)-6,)=(0: -0, e’ Pb ¢ (X)<0

If (0, =u, and ye Pbcg’( )<0): similarly, we have
0; -0, \re" Poeg,(X)-6,)=(0; -0, bre" Pbo¢  (x) <
Therefore, adaptive law (4.8) leads to
(07 -0, \re" Pboc (X)-6,)<0 (4.11)
Substituting to (4.10) gives:
VS—%gTQg+gTP12C8. (4.12)

Using the fact that
1

- %gng < —Elmm (Q)"g”2 where A_. (Q) is the minimum eigen value of Q,

1 1 1 1 «||?
& Phoe < e + 2 [Po [l < 2" + Lpb [l

b

we have

V<

S V<-

—gzm (©)el +§||g||2 e 1Pl

(40 0)- 1) + ||pz_)c||2||g*||"‘. (4.13)
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Then, the bound of e(t) can be derived as follows. As u, <0; <u,, and
<0, <u,,we have:
M
5200 f <35 e, —u,)
7/1 2 Jj=1

/4
Multiplying by MQ()_)D and substituting to (4.13) gives:

7 mm ) 1)LM ilp* _ 2
g m'" 1]| || //l’max (P) 27/ .i=lc (01 01)
(ﬁ )
min Pb
* zmu») zy?” Qasiig]
< ﬂ/max(P) 2’mln(F>l|€|| + zlc (ej 9})
(lmln( 1 < 1 2 «||?
e il 3l
Let
/’i M
e O S ) =
ﬂ“max(P)
we have:

7 s-ar (e len o

o 1)z V0 Selrn e |t T)

1

Thus, V()< maX{V(O)’z_[E+”P12c||2||€*||2J}’W > 0. From the definition of
a\y

V (4.9), the tracking error vector e(¢), is bounded by:

O e i)

Vt>0 4.14
ﬂ’min (P) , ' ( )

iil.
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Since 4,,(0)>1, equation (4.13) implies that ¥ is negative when

*. This implies that the system is UUB, i.e. g(t)

"
&

1 1
L G0)- 0l > 2P

converges to compact set €2, in finite time:

Q, =qelt)elt) < (4.15)

End of proof ¢

Remark 4.1 To compensate for the approximation error ¢°, some authors have
proposed different approaches such as using supervisory control, and error bound
estimation, etc. We have proposed use of an approximation error estimator in chapter
3. In this chapter, for clarity, we assume that the approximation error ¢ is sufficiently
small. This assumption becomes more likely with the use of the self-structuring fuzzy
system presented in next chapter.

Remark 4.2 It should be noted that, in the literature, there are other modified
adaptive laws to guarantee the boundedness of adaptive parameters. One of the most
popular approaches is using the o -modification adaptive law:

0,=ye Pbel (X)-00,. (4.16)

However, the design parameter o does not have a clear physical meaning. It is
often chosen as “a small value”, which is ambiguous. The relationship between o
and the bounds of adaptive parameters is not explicit. Even if the adaptive parameters
are bounded, it does not guarantee the control signal will stay in the desired range.
Here, by utilizing assumption 4.4 and adaptive law (4.8), we guarantee that adaptive
parameters are bounded and the control action stays in an explicit range specified by
designers.

Remark 4.3 From theorem 4.1.iii, the tracking error can be made arbitrarily

small by tuning k (to adjust ||PQC|| )y Ain (Q) and choosing a good approximation

s Ain (Q) will lead to a smaller tracking

structure to keep & small. Larger ||Pl_)c

error. However, too large ||P12C||, A, (Q) will result in chattering and high gain

control. Therefore, in practical applications, the design parameters should be adjusted

carefully for achieving suitable tracking performance and control action.
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Remark 4.4 Since the controller is only valid when the state vector x is in the

desired compact set Q) , it is necessary to keep x in Q  Vz>0. From theorem 4.1.ii,

this can be done by choosing sufficiently large », small initial condition V(O), and
suitable reference signal r(¢).

Remark 4.5 Even though the control performance can be tuned intuitively as
shown in remarks 4.3 and 4.4, the bounds from theorem 4.ii and 4.iii are very
conservative and have no practical wuse. These bounds depend on

c= wic’(uu —u, ), which in turn depends on ic’(&’;)z : f:cj(é’;)z is
A (P) = 7ol 7=l

max

unknown and can be arbitrarily large. Therefore, design parameters chosen using the

M
bound of Zc»" (0,)2 are very conservative and have no practical use. A survey shows
J=

that existing AFC has the same limitation. A future research would be to derive
tighter bounds so that design parameters can be selected explicitly to keep system

signals in desired compact sets.

4.4. Applications

To demonstrate the theoretical results, we present two applications to an inverted

pendulum and a magnet levitation system.

4.4.1. Inverted pendulum

The inverted control problem is given in section 3.4.1. The control objective is to
make the angular position y =x, track the reference signal »(¢) = 0.5sin(z).

The operating input ranges are chosen as follows:

x, e[-L1]; x, e[-11]; ve[-L1].

The membership functions of each input variable x,, x,, and v are chosen as
shown in figure 3.3. All possible rules are used. Thus, there are 5x5x5 =125 rules.
All the consequent values are initially chosen as zero.

From remarks 4.3 and 4.4, the design procedure can be:

» choose k,and Q.

» estimate P.

* tune y until satisfied performance is obtained.

In this application, the controller parameters are chosen as follows:
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- 1]T;Q{zo 0} P{zs 10} ,=50:
0 10 10 15
u, =-10; u, =10;
The results are shown in figures 4.1-4.3. It can be seen that the inverted
pendulum is successfully controlled by the direct adaptive fuzzy controller. From an

initial tracking error of —7z /6, it converges quickly to the range [— 0.02,0.02]. The
control signal is always in the range [u, ,u, |=[-10,10] as shown in figure 4.3.

The same application is also controlled successfully in [32, 51]. However, Gao
[51] requires the determination of g(g)f1 . In Wang [32], g(g) needs to be known to
implement the adaptive algorithm (equation 28). Also, the bounds of f (5) and g(g)
are required.

Here, we have shown that the only requirement on the control gain is its sign.

This simplifies the design process and eliminates the time and cost of determining

those extra requirements.

4.4.2. Magnetic levitation system

In this application, the control objective is to control the position of a magnet
suspended above an electromagnet, where the magnet is constrained so that it can
only move in the vertical direction (figure 4.4). The equation of motion of this system
is:

‘) B ()

we) M

$(e)=-¢g +%sgn(i)

where y(t) is the distance of the magnet above the electromagnet, i() is the current
flowing in the electromagnet, M is the mass of the magnet, and g is the gravitational
constant. The parameter £ is a viscous friction coefficient that is determined by the

material in which the magnet moves, and « is a field strength constant that is
determined by the number of turns of wire on the electromagnet and the strength of

the magnet. In this application, we choose M =3kg, o =15, and f =12. The desired

position y, (¢) is taken randomly in the range [0.5cm,4cm]. The reference trajectory is

vls) 4
vals) (s+2)s+2)

generated using a reference model with transfer function
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Let x, = (), x,=y(t), and u=sgn(i)i*(). Thus, the current i can be

calculated as i = sgn(u)\/absiu ). The dynamic equations become

X, =X,

X, =—g—ﬁx2 +—u
M X,

y=X

which is in the affine form (3.1). Therefore, we can apply our proposed direct AFC to
control this system.

The range of the inputs are:

x, €[0,5]; x, e[-5,10]; ve[-10,10].

The membership functions of the three input variables are in figure 4.5-4.7. All
the consequent values are initially chosen as zero.

Using the same design procedure in application 1, the controller parameters are:

, 20 0 25 10
k=[1 1] ;Q{ }P{ }y=25;

0 10 10 15

u, =-25; u, =25 (this implies that current i is in the range [-54,54]).

The results are shown in figures 4.8-4.10. It can be observed that the actual
output tracks closely the reference trajectory. Figure 4.9 shows that the tracking error
is maintained in the range [— 0.lcm,0.lcm], and the set-point error converges to a very
small neighbourhood of zero. Similar to the first application, the only requirement for
the control gain g(g) is its sign, which is positive in this case. Further knowledge of

g(x) or its bounds are not necessary.

4.5. Conclusion

This chapter has proposed a direct AFC scheme, which requires less restriction.
As a result, direct AFC becomes superior compared to indirect AFC as it is simpler in
structure, the singularity problem is completely avoided, and no extra restrictions are
required. Also, we have proposed a modified adaptive law that not only has more
physical meaning than the well-known o -modification adaptive law, but also

guarantees the control action stays in an explicit range.
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5. Chapter 5
SELF-STRUCTURING DIRECT ADAPTIVE FUZZY COTROL

5.1. Introduction

In the literature, most AFC schemes employ fuzzy systems with fixed structures.
Thus, a designer must specify the number of membership functions and the rule base
by trial and error. In many cases, this task is not trivial as exact mathematical models
of plants are generally not known. Thus, it is often that the structure used is
unnecessarily large or too small to adequately represent the plant. One main objective
of the research is to develop an online self-structuring adaptive fuzzy control
(SSAFC) scheme.

In this chapter, a SSAFC scheme for affine nonlinear systems is proposed. As a
result of the previous chapter, a direct scheme is chosen over an indirect one. First,
section 5.2 gives a short survey. Then, section 5.3 presents the direct SSAFC scheme
for affine nonlinear systems. This section covers both the description of the self-
structuring algorithm and the stability proof. Section 5.4 presents application to an
inverted pendulum and a magnetic levitation system. Finally, some conclusions are

given in section 5.5.

5.2. Literature review

Self-structuring fuzzy systems require clustering of the input space. Clustering
mechanisms include using output error [89, 90], using distance [91, 92], using
potential of data points [93], and mountain clustering [94]. There are numerous other
algorithms for self-structuring neuro-fuzzy systems, but not all of them are suitable
for online control.

Few researchers have proposed self-structuring adaptive fuzzy control [37, 51,
74]. Park et Al [37, 74] propose using a self-structuring fuzzy system, in which rules
are added to the rule base as the input space is explored. Triangular membership
functions are used. The width of the membership function is pre-defined and
unchanged. When one of the input variables moves outside the range of the existing
membership functions, a new membership function is created. Then, all the possible
rules that are made available by the new membership functions are added to the rule

base. This approach eliminates unnecessary rules in regions where the inputs are not
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actually explored. However, as the explored input space is evenly divided by the
membership functions, there may be redundant rules in regions where the nonlinearity
is low and there may be not enough rules in regions where the nonlinearity is high.
Another disadvantage is the unrestricted growth of the number of rules.

Gao [51] proposes using a self-organising fuzzy neural system, which is able to
add or delete rules from the rule base. The rules are generated based on two criteria,
the system error and the ¢&-completeness of fuzzy rules (&-completeness of fuzzy
rules means that, for any input within the operating range, there exists at least one
fuzzy rule such that the firing strength is not less than ¢). The rules are pruned based
on an error reduction ratio (ERR) concept. Due to the use of the output error for
generation of rules, the proposed fuzzy system overcomes the undesirable even
distribution of rules in Park et al’s approach. However, in our opinion, even if the
approach is successful, it is rather complex for online computation as it involves a
large matrix calculation in every step and requires memory of all the past input-output
data pairs. Also an explicit relationship between error reduction ratio and the number
of rules cannot be obtained. Thus, in practice there is no guarantee that the size of the
fuzzy system will not exceed the hardware capability. Moreover, use of Gaussian
membership functions further adds computational complexity to the system as the
number of activated rules at a particular moment of time can not be limited (when
triangular membership functions are used, the number of activated rules is smaller or
equal to 2", in which 7 is the number of input variables).

Stability is an important aspect in control. However, in [37, 51, 74], only stability
when the structure is fixed is proved. The stability when the structure is changed has
not been shown.

In this chapter, we propose a novel self-structuring direct adaptive fuzzy control
(SSDAFC) for affine nonlinear systems, which has the following features:

« Rules are added based on the system error and the ¢-completeness of
fuzzy rules: thus, our approach overcomes the undesirable even
distribution of rules in Park et al’s approach.

« To limit the number of rules from growing indefinitely, we propose a
simple algorithm to replace membership functions (instead of adding more

membership functions) so that the number of rules never exceeds a
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predefined upper bound. Our approach avoids using the ERR concept,
thus, avoiding large matrix computation and storage of past data.

« To further reduce the computational complexity and increase the
interpretability of fuzzy systems, we employ triangular membership
functions and allow at most 2 membership functions activated in each
input dimension.

« The stability is proved both when the structure is fixed and when the

structure is changed

5.3. Self-structuring direct adaptive fuzzy control for affine nonlinear systems

Beside assumptions 4.1, 4.2, and 4.3, to propose the SSDAFC for affine

nonlinear systems (4.1), an additional assumption is needed.

Assumption 5.1 We can determine the upper bound B, , of the required number

rule
of rules that achieves the desired approximation accuracy.
This assumption is reasonable, as in practice it is important to select
computational hardware that is capable of implementing the controller. This
assumption is used to ensure that the controller does not exceed the hardware
capacity. Also, this assumption is less restrictive than the assumption required in
fixed-structured AFC that “Designers are able to construct a fuzzy rule base that

achieves the desired approximation accuracy”. Knowing the upper bound B, , of the

rule
required number of rules, the self-structuring algorithm will automatically construct a

satisfactory rule base.

Let 8 =(¢9, ,0,,...0, )T be the adaptive parameter vector of the final fuzzy

controller. From assumption 5.1, we have N <B_, . Thus, 8 = (QGTC 0! )T in which

rule in

0. = (6’1 ,0,,...0,, )T, (M <N) is the vector of adaptive parameters already

activated, and @,, = (‘9M+| 01inse- Oy )T is the vector of adaptive parameters not yet
generated (inactivated). It should be noted that &, is unknown and only required for

analytical purposes. The control signal is chosen as:

Qac’): iﬁ;?;(ﬁ) (5'1)

uzﬁ(X
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5.3.1. Description of the self-structuring algorithm
The key roles of the online self-structuring algorithm include:
« Decide when the structure needs to change.
o Decide whether a new membership function should be added or an old
membership function should be replaced.
o Determine the values of membership function parameters and initial
values of the rule consequents.

The flowchart of the algorithm is given in Fig 5.1.

START

'

Read the current input Z and the system

\ 4

T
error e” Pb .
NO
Is & -completeness
satisfied?
NO
Is the error
measurement gTPl_7C
smaller than
error _threshold 2 Y
Would the
maximum number
YES of rules be reached?
y
Replace the furthest Add one new
membership function membership
and its relative rules function and its
by the new ones relative rules

Fig 5.1: self-structuring algorithm flowchart
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5.3.1.1. Criteria for rule generation
Two criteria for rule generation are system error and ¢ -completeness:

« System error:

e’ Pb ¢ represents the system error. In the adaptive law, the rule consequents are
adjusted to reduce e’ Pb.. When e’ Pb. =0, the output error is zero, and the rule

consequents do not need to change. Therefore, when e’ Pb,. is equal to or larger than
a predefined value error _threshold , a new membership function is considered.

o The &-completeness:

In Gao [9], ¢-completeness of fuzzy rules is defined as “for any input within the
operating range, there exists at least one fuzzy rule such that the match degree (or
firing strength) is not less than &”. To guarantee the ¢-completeness, we make sure
that: for any input within the operating range, in every input dimension, there exists at

least one membership function such that the membership degree is not less than ¢,.
The relationship between ¢ and ¢, is & =¢,, where n is the number of inputs. The

value of ¢, is usually selected as &, =0.5.

If one of the two criteria for rule generation is not satisfied, a new membership
function is considered. The algorithm then checks if B, would be exceeded if the

new membership function is added. If the answer is “no”, a new membership function

will be added. It the answer is “yes”, an old membership function will be replaced.

5.3.1.2. Adding a membership function and its related rules when the & -

completeness is not satisfied

When the ¢-completeness is not satisfied, and B, , will not be reached, a new

rule
membership function will be added.

Identify the input dimension to which the new membership function is added.
Since the -completeness is not satisfied, there is an input dimension that there is no

membership function with membership degree greater or equal to &,. The new

membership function is added to this input dimension.

Determine the parameters of the new membership function. Parameters of a
triangular membership function include its center, left point, and right point. When a
new membership function is added, its center is chosen as the current value of the

input variable. The left and right points are chosen as the centers of the left and right
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0
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Figure 5.2: if & -completeness is not satisfied and B ule Will not be reached

neighbouring membership functions respectively. In cases when there is no left (or
right) neighbouring membership function, the left (or right) point is chosen such as
the distance to the center is equal to a predefined value (max_mf distance). Thus,
max_mf distance defines the maximum allowed distance between two neighbouring
membership functions.

To avoid membership functions being too close, a membership function is only
added when the distances between its center and the centers of the neighbouring
membership functions are greater than or equal to a predefined value
(min_mf_distance). Thus, min_mf_distance defines the minimum allowed distance
between two neighbouring membership functions.

To ensure that there are at most 2 membership functions activated at any time, the
neighbouring membership functions are also modified accordingly. The right point of

the left neighbouring membership function is modified to the center of new
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membership function. The left point of the right neighbouring membership function is
also modified to the center of the new membership function.

The new rules and the consequent values are determined as follows. All possible
rules made by the new membership function are generated. Since our proposed fuzzy
system is an unevenly-distributed grid-type, when a membership function is added,
2" new rules are made possible where 7 is the number of inputs. All the new rules’
consequents are, then initialized to the current output of the fuzzy system.

Fig 5.2 illustrates how a membership function is added in this case. Fig 5.2a

shows that the membership degree is less than ¢,. Thus, a membership function mf,
is added at x;, (t) as shown in fig 5.2b. It can be seen that the left point of mf, is
chosen as the center of mf;. Since there is no membership function on the right of
mf, , the right point of mf, is chosen as x; (t)+ max_mf_distance. The right point of

mf, is modified to the center of new membership function mf, .

5.3.1.3. Replacing a membership function and its related rules when the & -

completeness is not satisfied

When the &-completeness is not satisfied, and B will be reached, a

rule
membership function will be replaced.

The new membership function and its related rules are determined the same way
in section 5.3.1.2.

The membership function to be removed is determined as follows. In the input
dimension to which the new membership function is added, the algorithm searches for
the furthest membership function from the current point. That furthest membership
function is the membership function to be removed. All rules related to the removed
membership function are also deleted from the rule base.

Fig 5.3 demonstrates how an old membership function is replaced in this case.
Fig 5.3a shows the membership functions before a membership function is replaced. It

can be seen that membership function mf, is the furthest membership function from
X, (t) Thus, it will be replaced by a new one. Fig 5.3b shows the old membership
function mf, (in fig 5.3a) is replaced by the new membership function mf,. The
center of the new mf; is chosen as x,(¢). The left point of mf, is chosen as x,. Since

there is no membership function on the right of new mf,, the right point of mf, is
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mfy - mf, mfs
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b)  After a membership function is added

Figure 5.3: if gPPl_JC 2 error _threshold , distance between X, (Z ) and the closest membership function

center 2> distance_threshold ,and B, , will not be reached

rule

chosen as x,(¢)+max_mf_distance. Since there is no membership function on the

left of mf, now, its left point is modified to x,(f)— max_mf_distance.

T
5.3.14. Adding a membership function and its related rules when ¢ Pb ¢ is equal

to or larger than error _threshold

When e’ Pb. >error _threshold, and B,, will not be reached, an old

membership function will be replaced.

Identify the input dimension to which the new membership function is added.
The following procedure is used. The rule with maximum firing strength at that
moment is selected. Then, the new membership function is added to the input with the

maximum membership function degree. The reason is that the large system error
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Figure 5.4: if & -completeness is not satisfied and B3, ;, will be reached
indicates that membership functions in that input are not sufficient to represent the
nonlinearity in the region.
The rest of the procedure is the same as the one described in section 5.3.1.2.
Fig 5.4 demonstrates how a new membership function is added in this case. Fig

5.4a shows the membership functions before a new membership function is added.

Distance between x,(¢) and the closest membership function center in this case is
|xl. (t)— x2| (zmin_mf _distance). As shown in fig 5.4b, membership function mf, is
added at x;, (t) The left point of mf, is chosen as x,. The right point of mf, is
chosen as x;. The neighbouring membership functions (mf, and mf,) are also
modified. The right point of mf, and the left point of mf,, are modified to the center

of mf,.



78

mfy  mf, mfs mfs
1
0 X Xy X3 Xy
x,(¢)
a)  Before a membership function is added
mf mfy mf; mf,
1
A
0 Xy X3 Xy

%, (¢)

b) Before a membership function is added

Figure 5.5: if gPPQC > error _threshold , distance between X; (l) and the closest membership

function center > distance_threshold , and B, will be reached

rule

5.3.1.5. Replacing a membership function and its related rules when the error

T
measurement € Plzc is equal to or larger than error _ threshold

When e’ Pb,. > error _threshold , and B,,, will be reached, a new membership

function will be added.

The new membership function and its related rules are determined the same way
in the section 5.3.1.4.

The old membership function to be replaced is determined the same way as in
section 5.3.1.3.

Fig 5.5 demonstrates how an old membership function is replaced in this case.

Fig 5.5a shows the functions before a membership function is replaced. Distance

between x,(f) and the closest membership function center is |xi(t)—x3|
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(=min_mf _distance). It can be seen that mf, is the furthest membership function
from x,(). Thus, it will be replaced. Fig 5.5b shows the new membership function
mf, and the modified membership functions mf; and mf,. The center of mf, is
chosen as x,(¢). The left point of mf, is chosen as x,. The right point of mf; is
chosen as x; (t)+ max_mf_distance. The right point of mf; is modified to the center

of mf,. The left point of mf, is modified to x,(f)— max_mf_distance.

5.3.1.6. Parameters

The self-structuring algorithm has four design parameters. &, defines the
completeness of fuzzy rules, error threshold defines the minimum level of error to
trigger structure change, min_mf_ distance defines the minimum allowed distance
between two neighbouring membership functions, and max_mf_distance defines the
maximum allowed distance between two neighbouring membership functions.

Therefore, using larger values of &, or smaller values of error _threshold ,
min_mf_distance, or max_mf distance will result in more rules being generated.

However, the number of rules is always bounded by B, ,, .

5.3.2. SSDAFC
The stability of the SSDAFC is given in the following theorem.

Theorem 5.1 Given system (3.1) satisfying assumptions 4.1, 4.2, 4.3, and 5.1,
a controller (5 . 1) with the self-structuring algorithm described in section 5.3.1 and

the adaptive law

_7€TP[2C§/'(X) if (“L <0, < “U)

or (Hj =u, and }/gTPlgcgj (X)< O)
0, = or(0, =u, and ye' Pb.¢,(X)> 0
0 if (0, =u, and ye' Pb.¢ (X)20

| or(ﬁj =u, andygTPl_)Cg“j(X)é 0)

will guarantee that:

iv.  The adaptive parameters are bounded:
u, <0, <u,, j=1..M.

v.  The tracking error g(t) is bounded by:
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2 maX{V(O), 21 (C + ||P]2C ”2
a\y

A (P)

Jele)] < ]}
(A ©@)-1) ,

A (P) (0) and ¢ are bounded positive constants.

vi.  The system is Uniformly Ultimately Bounded (UUB), i.e. g(t)

V>0, (5.2)

in which o =

converges to compact set Q , in finite time:

2

Poc[ e

2’min (Q)_ 1

Q, | elr)let) =

(5.3)

Proof
In theorem 4.1, we have proved the stability of fixed-structured systems. Here,

we also need to show the stability when the structure changes. If the Lyapunov
function is chosen as in (4.9), it changes when the structure changes. Thus, it is rather

difficult to show the stability. To overcome this problem, we choose a new Lyapunov

function that also includes the not-yet-generated adaptive parameters:

>eto:-6.) . (5.4)

1 1 & (e 1
V= —gTPng—ZC’(@]. —6?])2 +—

2 2y 3 2y S
in which the values of not yet generated parameters 6, ,k = M +1,..., N, are chosen
as their initialized values (these values are unknown and only required for analytical

purpose). Since P is positive definite and ¢/ >0,j=1..M, ¢, >0, k=M +1,...,N,

it is obvious that V' >0.
The stability analysis has two steps. First, we show the stability when the
structure is fixed. Then, we show that the system is stable at the time the structure

changes.
53.2.1. When the structure is fixed
From the adaptive law (4.8), it is obvious that theorem5.1.i holds.
When the structure is fixed, M is unchanged. Using the fact that 6?; =0,
j=1...M, and 6’; =6’k =0, k=M +1,...,N, the time derivative of ¥ along the

trajectory of (4.6) is:
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J=1

.:__e Qe——Zc (0:-0), +e Pbc[fc"(@}‘—9./)4,/(1)”}

=24 ':——e Qe+— Zc 0; -0, X}/e Pbcg( )-6 )+e Pb.s.

This equation is exactly the same as (4.10). Following the same procedure as in

theorem 4.1 (equations (4.10) to (4.15)), we have theorem 5.1.ii and 5.1.iii hold.

5.3.2.2. When the structure changes
Now, to guarantee the stability of the system at all time, we need to show that the
system is stable when the structure changes.

This can be proved by showing that ¥(¢) defined in (5.4) does not change when
the structure changes. Let ¢, be the time that the structure changes and M,, M, be
the old and new numbers of rules respectively (M, <M,). We will show that

Vi )=rle).

With the proposed self-structuring algorithm, the control signal is continuous at

ule; )= ule). (5.5)
Given system (3.1), (5.5) leads to x{r, )= x(¢” ) and

et )=elr?). (5.6)
From the adaptive law (4.8), (5.6) leads to

0.)=6,), j=1..M,. (5.7)
Moreover, as we chose the values of inactivated adaptive parameters as the

values when they are activated, their values do not change at ¢, . Thus, we have:
0.(c:)=6,),j =M, +1),...,M, (5.8)

From (5.6), (5.7) and (5.8), we have:

)=yl Ve )s 3 2ol - o Setlo o)

:%( J Pelt: )+—}//Z;c (0:-0,(c7) +§k;j 0 -0, )

()

=



82

End of proof ¢

Remark 5.1 All remarks in chapter 4 are also valid for this SSDAFC scheme.

Remark 5.2 It should be noted that the structures generated by the self-
structuring algorithm are not the optimal ones. Our goal is not to find the optimal
solution, but to find a structure such that all variables are bounded (including the size
of the fuzzy controller) and the output follows the reference signal. The proposed self-
structuring algorithm satisfies this goal.

Remark 5.3 The main limitation of our approach is that it suffers from “the curse
of dimensionality”, the complexity increases exponentially with the number of inputs.
This is the trade-off for interpretability. Future research would be to develop a
SSDAFC scheme for high-order systems, in which simplicity is critical and

interpretability is less important.
5.4. Examples

5.4.1. Inverted pendulum
To demonstrate the proposed controller, its application to the inverted pendulum

given in section 3.4.1 is presented. The control objective is to make the angular
position y = x, track the reference signal »(¢) =0.5sin(?).
The operating variable ranges are chosen as follows:
X, € [— 1,1]; X, € [— 1,1]; ve [— 1,1].
The controller parameters are chosen as follows:

. 20 0 25 10
k=[1 1] ;Q{ }P{ };y=50

0 10 10 15
u, =-10; u, =10.
To test the algorithm with different parameters, we perform simulations with 3

different setups as follows. As the fuzzy system has 3 premise variables,

distance threshold and max_mf distance are vectors with 3 elements. The
maximum allowed distance between 2 membership functions is chosen as half of the

input range, i.c max_mf_distance= [l 1 1].

&, | error _threshold | min_mf_distance max_mf distance B

rule

Setupl | 0.5 0.5 [02 02 02] 1 1] 100

Setup2 | 0.5 0.5 [0.4 04 04] 11 1] 100




&3

Setup3 | 0.5 0.5 [04 04 04] 11 1] 20

The initial fuzzy system has only 1 rule (initialized to 0) with 1 membership
function in each input dimension as shown in fig 5.6.

The simulation results of setup 1 are shown in figures 5.7. A variable called self-
structuring flag is used to indicate when the self-structuring performs. When the self-
structuring flag switches from 1 to -1 or -1 to 1, it indicates a change of the fuzzy
system structure has occurred. It can be observed that the controller successfully

controls the inverted pendulum to track the sinusoidal signal r(¢)=0.5sin(¢) (Fig
5.7a). After 30s, the tracking error is as small as in the range [— 0.01,+0.01] (Fig 5.7b).
The control signal is always in the desired range [—10,+10] (Fig 5.7c). Self-
structuring happens in the first 10s (Fig 5.7d). The final fuzzy system has 96 rules,

and the bound B,, =100 is never exceeded. The final membership functions in each

input dimension are given in Figures 5.8.

The minimum allowed distance between two neighbouring membership functions
is defined by min_mf_distance. Thus, increasing min_mf distance will result in
fewer rules. This is confirmed by simulation results of setup 2. After 30s, the tracking

error has reduced to within the range [— 0.02,+0.02]. The control signal is always in
the desired range [— 10,+10]. The final fuzzy system has 36 rules.

To test how the algorithm replaces membership functions and rules, we change

B ., to 20 in setup 3. The results are shown in figures 5.9. It can be seen that the

rule
tracking performance is very good. The tracking error is in the range [— 0.02,+0.02]
after 20s. The number of rules increases quickly in the first 5s to 18 rules. After that,

the number of rules never exceeds B 1.e. 20 rules. It can be observed that the

rule ?
algorithm replaces membership functions roughly at approximately 10, 14, 17, 32.5,
36, 45 and 54s. At those moments, there is no degradation in tracking performance.
This confirms that replacing membership functions does not affect the performance of
the control system. The membership functions of the fuzzy system at ¢ =60s are
given in Figures 5.10.

The transient error shown in Fig 5.7c is better than the transient error shown in
Fig 5.9c. The reason is explained as follows. When a membership function (and its

corresponding rules) is added, the adaptive algorithm needs to make a large
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adjustment due the initial error of the newly added adaptive parameters. As a result,
the control action changes relatively quick. Thus, the control performance temporarily
deteriorates. In Fig 5.9c, a higher number of rules is allowed. Thus, at the start of the
simulation, more membership functions are added due to large initial error. As a
consequence, performance in this case deteriorates more. When the structures of the

fuzzy systems are more stable (after 50s), the errors in both cases are similar.

5.4.2. Magnetic levitation
The magnetic levitation system is given in section 4.4.2. Now, we apply the
proposed DSAFC to control this system.
The variable ranges are:
x, €[0,5]; x, e[-5,10]; ve[-10,10].
The controller parameters are:

. 20 0 25 10
k=[1 1] ;Q{ }P{ }7=50.

0 10 10 15
u, =—-25; u,, =25 (this implies that current i is in the range [— SA,SA]).
To test the algorithm with different parameters, we perform simulations with 3

different setups as follows:

&, | error _threshold | min_mf_distance max_mf_distance | B
Setupl | 0.5 2 13 4] [25 7.5 10] 125
Setup2 | 0.5 0.5 I3 4] [2.5 7.5 10] 125
Setup3 | 0.5 5 13 4] 25 75 10] 125

The initial fuzzy system has 8 rules (initialized to 0) with 2 membership functions
in each input dimension as shown in Figs 5.11.

The results of setup 1 are shown in Figures 5.12. It can be seen that the actual
output tracks the reference trajectory closely (Fig 5.12a), and thus, the controller
successfully controls the position of the magnet. The tracking error is never larger
than 0.3, and it quickly converges to near 0O after the set-point changes. The control
signal (Fig 5.12c¢) is always in the desired range [— SA,SA]. The self-structuring
activity (Fig 5.12d) occurs in the first 20s of the simulation. Following this, the
number of rules remains unchanged at 48. The resulting fuzzy system has

membership functions for each input as shown in Figures 5.13.




85

The self-structuring algorithm suggests that increasing error threshold will

result in fewer rules. This is confirmed by setups 2 and 3. Both applications produce
the desired performance. Setup 2 results in 64 rules. And setup 3 results in 36 rules
Both examples show that the desired performance can be achieved by different
sets of parameters of the self-structuring algorithm. Thus, the choice of parameters is
not critical. This gives designers the advantage of freely choosing parameters in
practice. This also demonstrates the ability of the self-structuring algorithm to

generate a satisfactory structure from different sets of parameters.

5.5. Conclusion

In this chapter, we have proposed a SSDAFC scheme for affine nonlinear
systems. The proposed control scheme has some advantages over some existing
SSDAFC schemes. It is relatively simpler and more computationally efficient. The
maximum number of rules of the fuzzy controller can be set explicitly and thus, never
exceed the hardware capacity. The stability is also proved when the structure changes.
The use of triangular membership functions increases the interpretability of the rules.
Application to an inverted pendulum system and a magnetic levitation system
demonstrate the effectiveness of the controller.

It should be noted that the structures generated by the self-structuring algorithms
are not the optimal ones. And the main limitation of our approach is that it suffers

from “the curse of dimensionality”.
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6. Chapter 6
SELF-STRUCTURING DIRECT ADAPTIVE FUZZY CONTROL

FOR NON-AFFINE NONLINEAR SYSTEMS®

6.1. Introduction

In chapter 3, 4 and 5, we have discussed AFC of affine nonlinear systems.
However, there are many practical nonlinear systems, e.g. chemical reactions and PH
neutralization, whose inputs may not be expressed in affine forms. Adaptive
intelligent control for non-affine nonlinear systems is more difficult and challenging.

Consider SISO non-affine nonlinear systems described as follows:

xl =X,
X, =X,
(6.1)
x, = f(x,u)
y=X

where u € R is the control input, y € R is the output, f(x,u) is an unknown nonlinear
continuous function, x =(x, ,x,,...,Xx, )" is the state vector of the system, which is
assumed available for measurement. In this chapter, we will investigate SSDAFC of
nonlinear systems in the form (6. 1).

A short survey about the topic is given in section 6.2. Then, the SSDAFC for
nonaffine nonlinear systems (6.1) is given in section 6.3. It is followed by application

to two nonaffine nonlinear systems. Finally, conclusion is given in section 6.5

6.2. Literature review

Because the control input does not appear linearly, the well-known feedback
linearization technique is not applicable to non-affine nonlinear systems. An explicit
expression for the ideal control cannot be obtained. Thus, more complex
mathematical tools are needed. In [33], the Taylor series expansion method is used to

transform the original system into an affine-like one. In [34], the mean value theorem

* The content of this chapter has been published in Fuzzy Sets and Systems:

P.A. Phan, and T.J. Gale, “Direct Adaptive Fuzzy Control with a Self-Structuring Algorithm”, Fuzzy Sets and Systems, in press.
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and Nussbaum-Gain functions are used. [2, 35] employ the implicit function theorem
and the mean value theorem to show the existence of ideal feedback control. [36-38]
propose a pseudo-control scheme and require the contraction condition to show that
the pseudo-error can be cancelled by an output of an adaptive neural network (or an
adaptive fuzzy system).

Also, more requirements are required. Besides the controllability condition

0

_%’u)>0, [33] requires the determination of a lower bound g, such that
u

of (x,u)
ou

> g, >0. [36-38] require the determination of a design parameter ¢ such

that ¢ > %(af (E,“)j_ [2, 35] require that the derivative of o ()—C’u) is bounded and

ou ou
that a design parameter k, is chosen such as k, >k,, where k, is an unknown

positive constant.

To our knowledge, Park et all [37] is the only online self-structuring AFC
available for non-affine nonlinear systems. As discussed in chapter 5, the draw backs
of Park’s self-structuring algorithm are the even distribution of membership functions

and the unrestricted growth of the number of rules. Moreover, in the design of the

! (@’(z,u)j_

controller, it is required to select a design parameter ¢ such that ¢ >— 5
u

of (x,u)

5 is needed, or a rather conservative
u

Thus, knowledge of the upper bound of

value of ¢ must be chosen. Thus, it is desirable to develop a more efficient AFC
scheme for non-affine nonlinear systems.

In this chapter, we propose a new SSDAFC for non-affine nonlinear systems.
First, the existence of an implicit ideal control law is shown using the implicit
function theorem. Then, using an extension of the universal property, we transform
the error dynamic to the same one as for affine nonlinear systems. Thus, theorem 5.1
can be applied. The main contributions are:

« Propose a DAFC scheme for non-affine nonlinear with less restrictions on

0 : : -
%. The only requirement of the control plant is the controllability
u
. 0(x,u) : _ .
condition ———= > 0. And there is no restriction on the design parameters.

ou
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« Propose using the self-structuring algorithm described in chapter 5 for

DAFC of non-affine nonlinear systems.

6.3. SSDAFC for non-affine nonlinear systems
Control objective is to design an adaptive fuzzy controller for non-affine
systems described by (6.1) such that:

= The closed-loop system must be stable in the sense that all the variables in the

closed-loop system must be bounded.
= The output y(¢) of the system follows a continuous reference signal r(¢) c C".

Assumption 6.1: controllability condition

oeu)_,

Ou
hold for all (g, u) € Q xR with a controllability region Q.
Assumption 6.2: Define r=[f#,7...,r""]". We assume that |r|<r, and

7

<r, with known constants r,,7, >0.

Assumption 6.3 We can determine the upper bound B, , of the required number

rule
of rules that achieves the desired approximation accuracy.

6.3.1. Existence of an ideal control law

Let e=r—y, e=(e.6.é,....,e" ), and k=(k . k,.....k,)" be such that the

polynomial s” +k,s"" +...+k, is Hurwitz stable. The ideal control law is chosen to

obtain ") = —k"e=—ke—k,e...—k ", e=r—y, which implies that lime=0.

1=+
Let v=r" +k"e. (6.2)
Adding and subtracting v to (6.1) gives

" =—k"e~ flxu)-d+v (63)
Now, we prove that there exists an ideal control signal «*(x,v) such that
f(g,u*(g, v)): v for (x,v)e R" xR.

Reintroduce lemma 2.8 that is given in [2]:

Lemma 6.1. Assume that f:R" xR — R is continuously differentiable and

>q>0 for all

. . 0
there exists a positive constant q such that Ha— f (g,u
u
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(g,u)e R" xR . Then there exists a unique continuous smooth function g:R" — R

such that f(x, g(x))=0.
Proof is given in [2]0
Let X =(x,v)eR™! and F(X,u)=f(x,u)-v. We have

oFXou)_oflau) v o oov_o @)
ou ou ou ou ou

>0 (assumption 1). Thus, we

can apply lemma 1 for F(X,u). Applying lemma 1, there exists a unique continuous
smooth function u”(X) such that F(X,u"(X))=0, i.e.
Al () =v. (6.4
6.3.2.  Stability analysis
From (6.3) and (6.4), we have
e =k e+ [flu” (1))~ £ (xu(x) (6.5)

Similar to chapter 5, we let @ =(QZC 0, )T =(9, ,0,,...0, )T be the adaptive

parameter vector of the final fuzzy controller, in which @, =(:9, ,0,,...0, )T,
(M <N) is the vector of adaptive parameters already activated, and

0, :(GMH,HM”,...HN )T is the vector of adaptive parameters not yet generated

—1in

(inactivated). We will employ a fuzzy system in the form (2.2) to approximate «*(X):

u(X)=14(xlg,, )= Zeg (6.6)

In the literature, the universal approximation property is used to show that there
exists a fuzzy controller in the form (6.6) to approximate an ideal control signal with
arbitrary accuracy. Here, an extended version of that is introduced:

Lemma 6.2. Given an arbitrary g" >0, there exist
X)=((X) &, (X)....&y (X)) and an ideal parameter vector 0" =(0,,0,,...0,,)" such
that

Flow (X)) ulx) =3 /(0 -6, (x)+ & 67)

j=1

~

where |£| <¢&" and ¢’ are some positive constants.

The proof is given in appendix 6.A0

Substituting (6.7) to (6.5) gives the error dynamics:
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— K e+ Y00, ), (x) e (6.8)

j=1

In the vector form,

g:Acgw{gc"(e; -6, (x)+ g} (6.9)

where
0 0
0 0 1 - 0 0
Ac = P s be =
0 0 0 1 0
'kl 'kz 'k3 'kn

Since A, is a stable matrix, there exists a unique positive definite symmetric
nx n matrix P which satisfies the Lyapunov equation:

ALP+PA.=-0Q (6.10)
where Q is an arbitrary n x n positive definite matrix chosen such that A . (Q) >1.

Assumption 6.4 We can determine the upper and lower bounds of the ideal
control signal:

u, gu*(g)s%, VXeQ,

As the error dynamic (6) is the same as equation (4.6), the controllers proposed
in chapter 4,5 can be applied to system (6.1). The control scheme is stated in the

following theorem

Theorem 6.1 Given system (6.1) satisfying assumptions 6.1, 6.2, 6.3, and 6.4,

a controller

M

0,)=Y0¢,(x)

Jj=1

uzﬁ(X

with the self-structuring algorithm described in section 5.1.1 and the adaptive law

_7€TP[2C§/'(X) if (ML <9, <“U)

or(ﬁ. =u, and ye' Pb.g,; (X)< 0)
0, = or(0, =u, and ye' Pb.¢,(X)> 0
0 if\@, =u, andj/gTPQC{ (K)Z 0

or (Hj =u, andygTPQCQ’j(K)S 0)

will guarantee that:
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vii.  The adaptive parameters are bounded:
u, <0, <u,, j=1..M.

viii. ~ The tracking error g(t) is bounded by:

zj}
, V>0,

in which o = %%3;)1) , V(O) is a bounded positive constant, and c is a positive

constant that can be made arbitrarily small by tuning the adaptive parameter y .

*
&

2max{V(O),l(c+||PQC||2
- 2a\y

Je(e)] < 2 (P)

ix.  The system is Uniformly Ultimately Bounded (UUB), i.e. g(t)

converges to compact set Q , in finite time:

2

*
&

[Pacl
Q, =<elt)lelt) < | ——F=—
e
Proof
As the error dynamic (6.9) is the same as equation (4.6), the proof is the same as
in theorem 5.1.

End of poof®

As the result is the same as in chapter 4 and 5, remarks given in chapters 4 and 5

apply.

6.4. Examples

6.4.1. Application 1

To demonstrate the design procedure and performance, we apply our controller to
control a nonaffine nonlinear system that are presented in [2, 35-37]. The dynamic

equations of the system are:

X =X,
X, =x; +0.15u° +0.1(1+x§>4+sin(0.lu).
Y=

We suppose that there is no prior knowledge of the system except that

F . . . .
2 ()_c,u)>0’ which can be easily checked. The initial state is x(0)=[00]". The

ou
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control objective is to make the output y(¢) follow a desired reference
r(t) =sin(¢)+ cos(0.5¢).

The operating input ranges are chosen as follows:

X, € [—5,5]; X, € [—5,5]; ve [—5,5].

The controller’s parameters are specified as follows:

k=1 1", 0 20000 p (210 100 0.05
= , = 5 = 5 = ’0: . .
= 0 10 0 15”7

The structure-learning parameters are as follows:

g, =0.5, error _threshold =5, min_mf_distance= [1 1 1],

max_mf_distance:[S 5 5], B .. =30.

rules
The initial fuzzy system has only 1 rule (initialized to 0) with 1 membership
function in each input dimension as shown in Fig 6.1.
The simulation results are shown in Fig 6.2. It can be observed that the controller
successfully controls the nonaffine nonlinear system to track the reference signal

r(t) =sin(r)+cos(0.5t) (Fig 6.2a). After 10s, the tracking error is within the range
[— 0.02,+0.02] (Fig 6.2b). The control signal is bounded (Fig 6.2¢). The chattering
phenomena can be reduced by reducing the adaptive gain y, but at the expense of
increasing the tracking error. Self-structuring happens in the first 5s (Fig 6.2d). A
variable called self-structuring flag is used to indicate when the self-structuring
performs. When the self-structuring flag switches from 1 to -1 or -1 to 1, it indicates a
change of the fuzzy system structure has occurred. The final fuzzy system has 12

rules, and the B, is never reached. The final membership functions in each input

dimension are given in Fig 6.3.
To test how the algorithm replaces membership functions and rules, we change

the error _threshold from 5 to 4, thus more rules are generated. The results are
shown in Fig 6.4. The number of rules increases in the first 15s to 24 rules (Fig 6.4d).

After that, the number of rules never exceeds B It can be observed that the

rules *
algorithm replaces membership functions at approximately 19s and 28s. At those
moments, there is no degradation in tracking performance (Fig 6.4a). This confirms
that replacing membership functions does not effect the performance of the control

system. The membership functions of the fuzzy system at # =30s is given in Fig 6.5.
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6.4.2.  Application 2

In this application, we control the nonaffine nonlinear system presented in [61,

95]. The system dynamics is:

X, =X,

. u
X, =—X; +2X2 —2)612)62 +W
ul+ 0.

y=x

o F(x, : : o
It can be seen that the controllability 0 g u)>0 is satisfied. The initial
u

condition is x(0)=[0.3 0]". The control objective is to make the output y(r) follow
a desired reference r(t)= % sin(z).

The operating input ranges are chosen as follows:
X, € [— 2,2]; X, € [— 2,2]; ve [— 2,2]

The controller’s parameters are specified as follows:

k=1 1], 0 20000 p |2 10 50 0.05
= , = , = . = ,O': . .
= 0 10 10 157

The structure-learning parameters are as follows:
g,=0.5, error _threshold =2, min_mf_distance=[0.4 0.4 0.4],

max_mf distance=[2 2 2], B

rules

=30.

The initial fuzzy system has only 1 rule (initialized to 0) with 1 membership
function in each input dimension as shown in Fig 6.6.

The simulation results are shown in Fig 6.7. It can be observed that the controller

successfully controls the nonaffine nonlinear system to track the reference signal
(1) =%sin(t) (Fig 6.7a). After 8s, the tracking error is within the range [-0.05,+0.05]

(Fig 6.7b). The control signal is bounded (Fig 6.7c). The chattering phenomena is not
severe in this application. Self-structuring happens in the first 6s (Fig 6.7d). The final
fuzzy system has 18 rules, and the B, is never reached. The final membership

functions in each input dimension are given in Fig 6.8.
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6.5. Conclusion
In this chapter, we have extended the SSDAFC proposed in chapter 5 to a class of

nonaffine nonlinear systems (6.1):

X =X,
X, =X,
xn :f(ziu)
y=x

All features of the self-structuring algorithm are still valid. Moreover, the control
scheme requires less restriction than some existing AFC schemes for nonaffine
nonlinear systems. Application to two nonaffine nonlinear systems is shown to
demonstrate the approach.

In next chapter, the SSDAFC scheme is further extended to a large class of

nonaffine nonlinear systems and a class of nonlinear systems in triangular forms.
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7. Chapter 7
EXTENSION TO THE CONTROL OF OTHER CLASSES OF SISO

NON-AFFINE NONLINEAR SYSTEMS

7.1. Introduction

In the last chapter, we have investigated SSDAFC for non-affine systems in the

normal form:

xl =X
X, =X,
(7.1)
x, = f(x,u)
y=x

where u € R is the control input, ye R is the output, f(x,u) is an unknown
nonlinear continuous function, x=(x,,x,,...,x,)" is the state vector of the system,

which is assumed available for measurement. In this chapter, we will extend the
results to two broader classes of systems.

In particular, in section 7.2, we will extend SSDAFC to SISO non-affine
nonlinear systems in the general form [2, 3, 44, 63, 65, 66]

x=f(x,u)

v =h(x)

where u € R is the control input, y € R is the output, x=(x,,x, ,...,x, )" is the state

(7.2)

vector of the system, j_’(z, u)=(f,(x,u), £, (x,u),..., £, (x,u))" is a vector of unknown

nonlinear continuous functions, and /(x) is an unknown continuous function.

Then, in section 7.3, we will consider the control of systems in triangular form [2,
34, 56]:

% = filxx,,)  i=l..,n-1
%, = f,(x,..,x,,u) (7.3)
Yy =X

where u € R is the control input, y € R is the output, x = (x, , x, ,...,xn)T is the state

vector of the system, f,(e), i=1...n are unknown continuous functions.
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As we will show later, the control of systems (7.2) and (7.3) requires knowledge

of the output y and its derivatives y(i), i=1...k, k <n. In practice, the derivatives
of y are sometimes not available for measurement. Output feedback control, in which

only the output is required, is an approach to overcome this difficulty. In section 7.4,

we will use a high-gain observer to observe the derivatives of y and thus propose an

output feedback SSDAFC scheme.

7.2. SSDAFC of systems in the form (7.2)

Fixed-structured adaptive intelligent control has been proposed for system (7.2)
in the literature [2, 3, 44, 63, 65, 66]. The key idea is to show that system (7.2) can be
transformed to the form (7.1) if certain conditions are satisfied. Then, adaptive
intelligent control for system (7.1) can be applied to system (7.2).

However, to our knowledge, no self-structuring adaptive intelligent control
approach for system (7.2) has been in the literature. Therefore, inspired by the
previous works, we first show that system (7.2) can be transformed to the form (7.1).
Then, our SSDAFC proposed in chapter 6 can be applied to system (7.2).

Definition 7.1 Lie derivative

Let L h denote the Lie derivative of the function h(x) with respect to the vector
field f (g,u):

(0

. . . . k k—
Higher-order derivatives are defined recursively as L' h=L, (L ” 'h), k>1.
Definition 7.2 Strong relative degree

For xeQ cR" and ueQ, < R, system (7.2) is said to have a strong relative

degree p in Q xQ  if there exists a positive integer 1 < p <o such that

oL h oL h
u=0, i=0,1,..,p-1, M?&o
ou ou
for all (x,u)e Q. xQ,.
To continue, we consider two cases: system (7.2) with strong relative degree

p =n,and system (7.2) with strong relative degree p<n.
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7.2.1. Control of system (7.2) with strong relative degree p=n

With p=n,system (7.2) can be transformed into a normal form (7.1) [2]

E =& i=1,..,n—1
I b(é’u) (7.4)
y=¢
whete & = 'h(x)i=1..n, leu)= L) and g2l & o g e,
sz{ﬂiegx}-

obl&,u)

From definition 7.2, 6— #0 VEeQ,,ue
» s

i.e. assumption 6.1 is

u?’

satisfied. Thus, given system (7.2) with strong relative degree p=n, the self-
structuring DAFC proposed in 6.3 applied to system (7.4) guarantees that all signal
of system (7.2) are bounded and the tracking error is uniformly ultimately bounded
(UUB).

Remark 7.1 After the transformation, the output and its derivatives
(y, Vyeurs y(”‘l) )T =(§1,§2,...,§n_1 )T are needed to construct the controller. If these

signals are not available, they need to be estimated. In section 7.4, we will present an
output feedback SSDAFC scheme, in which only the output is measurable. Its

derivatives will be estimated using observers.

7.2.2. Control of system (7.2) with strong relative degree p<n
With p <n, after the transformation, we have the system in the normal

form:

Séi =§i+1ai:15-~-,,0—1
ép zb(é’@”)
n=g(.n.u)
y=¢
where &, =L”leh(§),i:1,.‘.,p, b(g,u):L’;h(z), qi(ﬁfﬂa“):L?ph()_C),i=1,...,n—p,

(é,Q)EQﬁ XQ']’ Qf XQ'? ={§,Q|)_C€Qx},

If applying the SSDAFC scheme in section 6.3 to the & -subsystem

(7.5)
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éi :§j+1ai:13-~~ap_1

¢, =blé.n.u) , (7.6)
y= 651

the states 77 is completely unobservable. Thus, 7 is not guaranteed to be bounded.

The dynamics Q':g(i, Q,u) is called the internal dynamics. And with £=0,

Q’ = Q(O, n, u) is addressed as the zero dynamics.

To assure the boundedness of the internal dynamics, the following assumption is
required [63, 65, 66]:

Assumption 7.1 The system (7.2) is hyperbolically minimum-phase, i.e. the zero
dynamics is exponentially stable.

In [63, 65, 66], the authors show that assumption 7.1 implies that bounded ¢&

leads to bounded n.

Therefore, given system (7.2) with zero dynamics, i.e. with strong relative
degree p<n, if assumption 7.1 is satisfied, the self-structuring DAFC scheme
proposed in section 6.2 applied to the &-subsystem (7.6) guarantees all signals of

(7.2) are bounded and the tracking error is UUB.

7.3. SSDAFC of systems in the triangular form (7.3)

The class of systems in the triangular form is a very popular class of SISO
nonlinear systems. This class includes both strict-feedback systems and pure-feedback
systems. A brief review of adaptive intelligent control of systems in the triangular
form (7.3) has been given in chapter 2. Adaptive back-stepping is the main technique.
Using the adaptive back-stepping technique, we can construct a backstepping-based
SSDAFC for system (7.3), in which an adaptive fuzzy system equipped with the self-
structuring algorithm proposed in chapter 5 is used at every step to approximate the
virtual control at every step. However, a serious draw back of the backstepping
technique is that it needs at least one adaptive intelligent system at every step. This
dramatically increases the complexity of the controller as the order of the system
increases.

Therefore, here, we propose a SSDAFC for system (7.3), in which only one

adaptive fuzzy system is required no matter what the order of the system is. The idea
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is to show that we can transform system (7.3) to the form (7.1). Then, the SSDAFC
proposed in chapter 6 can applied to system (7.3).
First, we need to state the controllability condition for system (7.3) as commonly

made in the literature:

Assumption 7.2 System (7.3) satisfies:

8ﬁ(x"""x”l)¢0, i=1...n—1 and afn(xl,é..,xn,u)
u

#0 VxeQ cR". 7.7)
X

i+l
Now, we need to show that if assumption 7.2 is satisfied then system (7.3) has
strong relative degree p=n:

« The first Lie derivative of the output y of system (7.3) is:

L y:@

! x

Fls)= S )= o)

a[Lfy ]
ou

Obviously, =0 VxeQ cR".
o The second Lie derivative of the output y of system (7.3) is:

L2y= alg;ny(x,u)= 8ﬁ(x"x2)fl(xl,xz)+Mfz(xnxzax3)'

f

= ox, ox,
of (x,,x 0
From assumption 7.2, M # 0 and M;&O VxeQ cR",
ox , ox,

the right-hand side is guaranteed to depend on x,. Thus, we can let

aﬁ(x"xz)ﬁ(xl,x2)+ afl(xlaxz)

fz(xl,xz,x3)=F2(x1,x2,x3) in which
ox, ox,

6F2(x1,x2,x3)

#0, VxeQ cR".
OxX,4

G[L?y]: an(xlaxzaxs)

u ou

Obviously, =0 VxeQ cR".

o The third Lie derivative of the output y of system (7.3) is:

o|L* 2
L‘Sfy: [6jcy]£()_cau)zzan(xpxz’X3)fk(xl7---xk+1)+ aFZ(XI,xz,xs)fs(xl’---a)%)-

k=1 Xy 6x3

an(xlax29x3)¢0 an
ox, ox,

Since

#0 VxeQ_ cR", the right-

hand side is guaranteed to depend on x,. Thus, we can let
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2
wak(xw“xkﬂ)"'Mfa(xlv“’x4):Fs(xl’xz’xz’x4) in
k=1 X ox,

which 8F3(xl,x2,x3,x4)

Xy

#0 VxeQ cR".

Obviously, G[Li,y]: OF; (x,, X5, %3, %)

=0 VxeQ cR".
ou ou
« The i-th Lie derivative (i =4...n—1) of the output y of system (7.3) is:
G o ] L OF, (x,5..00x,) OF,_(x,,...,x,)
Lfy a{ Zl = lk fk(xla xk+l)++il.fi(x1"“’xi+l)
OF, cen X, of,(x,,...,x, .
Since M;ﬁO and M?&O VxeQ cR", the right-hand
axi axi+1
side is guaranteed to depend on x,,. Thus, we can let
S OF, (X505, OF, (x,...,x, .
Mfk(xﬂ'“’xkﬂ)—i_Mﬁ(xlﬂ“"xiﬂ):F;‘(xlﬂ""xiH) m
k=1 X ox,

1

M:&O VxeQ cR".
axH—l

ole,y]_orx,....

u ou

Obviously,

x’“):O VxeQ cR".

The »-th Lie derivative of the output y of system (7.3) is:

ol L oF, (x,,..., OF . (x,,...,x
Lyy= [éfz d )=Z:, 'k ”)fk(xl,---,xk+1)+ ’”(a;n ”)fn(xn---,xwu)
Since 6F"1(2" %) L0 and 6f"(xl’é"’x”’”)¢o VxeQ, cR", the right-
X, u

hand side is guaranteed to depend on wu. Thus, we can Ilet

nl [ERRE} n 5Fn, s,
Zl XI )fk(xl,... xk+1)+ 1(x1 X )

, fn(xl,...,xn,u)zFn(xl,...,xn,u)
k axn
in which aF”(xl’a'"’x”’u);tO VxeQcR". Therefore,
u
o|L",
[ y] aF xl’ > % u);to VxeQ, cR".
ou ou -

Thus, from definition 7.2, we conclude that system (7.3) has strong relative

degree p=n VxeQ cR".
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As system (7.3) belongs to class (7.2) and assumption 7.2 implies strong
relative degree p =n, system (7.3) can be transformed to the form (7.4). Thus, the
SSDAFC proposed in 6.3 applied to system (7.4) guarantees that all signals of

system (7.3) are bounded and the tracking error is UUB.

7.4. Output feedback SSDAFC

As shown in section 7.2 and 7.3, control of systems (7.2) and (7.3) requires the

output and its derivatives (y, Vyeurs y(" '1))T = (§1,§2,...,§ P )T where p is the strong

relative degree ( p<n). This section deals with the case where only the output is

available for measurement.

Output feedback adaptive intelligent control has been proposed in the literature.
Observers are the main tool to estimate the unavailable signals. [44, 58] propose using
high gain observers to estimate the required derivatives of the outputs. [61, 62]
propose using linear observers to observe the error dynamics. However, in [62], the
role of the fuzzy—neural controller is undermined as the nonlinearity of the system is
compensated by a high gain robust control term. One non-observer approach is
proposed in [38], in which linear dynamic compensators and low-pass filters are used
to generate the adaptive signal, and input/output history are used as inputs to NNs
instead of the derivatives of the system output.

In this section, we employ a high-gain observer to estimate the derivatives of the
output. The main advantage of using high-gain observers is the design of observers is
separate from the design of adaptive intelligent controllers. Thus, the design can be
divided into 2 steps. First, a SSDAFC is designed assuming all signals are available.
Then, a high-gain observer is designed to observe the unmeasurable derivatives.

The high-gain observer presented in [2] is given as follows:

Lemma 7.1. Suppose the system output y(t) and its first n derivatives are
bounded, so that ‘ y(k )‘ <Y, with positive constants Y,. Consider the following linear

system

{37'ri:7ri+1,i:1,...,n—1 a7
- "_Zn—|7f2_7f1+y(t) '

sz, =-An,— A7

n—1
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where > is any small positive constant and the parameters A, to A, are chosen such

that the polynomial s" + A,s"" +...+ A,_s+1 is Hurwitz stable. Then

(l') M_y(k):—31//(k+l)’k:1,...,n_1

3/(

where y =m, + A7, +...+ A 7.

n+l
(ii) There exist positive constants t* and h, only depending on Y,, and Z
i=1,...,n—1 such that for all t >t* we have ‘W(k)‘ <h,, k=23,...,n.
Proof: The proof is given here for completeness. From (7.7), we have:

Vs Vs — — —
2 . 2 .o . . . .
—3 —y—?—aﬂn AT, = AT, == A, T, — T

From (7.7) and the above equation yields

T, . ..
— T Y=-3y
EY
By differentiating the above equation and utilizing (7.7), item (i) follows.

The derivatives of the vector z=[z, z, ... z,|' may be computed as

follows:
z(j)(t)z %A/ exp[ﬂj[£(0)+ A™ Qy(0)+...+ 5/ A*./Qy(jfl)(o)]
E) )

| p y (7.8)
+— exp(—t]rexp(—tjlly )z, j=12,....n
5> )% 3

E)

where A4 is the matrix corresponding to the homogeneous part of (7.7), and

independent of 5, and b = [0 0 ... 1]T. Since & belongs to the compact set €,
and u is bounded, there exist constants Y, >0 such that ‘ y(i)‘é Y,. Then, for any

6 >0, we may find a constant ¢* >0 such that, for all ¢ >¢", the first term
ij A’ exp(ﬁj[g(0)+ A7 by(0)+ ...+ 5 47 byU ™ (0)]
E) E)

in (7.8) is bounded by sY; for each ;. Further, since | y(f)| <Y;, there exist constants

D, , which is independent of >, such that, for each j, the second term in (7.8)

1 exp(ﬂjrexp(ﬂjlly(j (z)dz <D Y
E) E) E)

0
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Now, fix an arbitrarily small §°. Then for ¢>¢", we have |l//(j)|Shj where

h, =B(Dj +5*)Yj with B the norm of the vector l_l I ZMJ. As D, 5", Y,
and B are independent of >, the proof is completed. ¢
It should be noted that lemma 7.1 also holds for £ =n. We need this later to

show the stability of the controller.
The output SSDAFC is proposed as follows:
Theorem 7.1 Given system (7.1) with only the output y measurable, if the

state variables are estimated as

i =22
>
s
is = _; (7.9)
>
By =2
n 3}171
where @z(izl Ty ... ﬂn)T is estimated using the observer (7.7), then a
controller
A M A
u=il¥p, )= >0, &) (7.10)

Jj=1

with the self-structuring algorithm described in section 5.1.1 and the adaptive law

ye"Pb ¢, ( ) L <6, <uy)
or( =u, and}/éTPl_)Cg“j(X)< 0)
9,- = é L =u, and;/éTPlgcé’j X3> Og (7.11)
0 =u, andyéTPl_)Cg“j X)>0
L ( =u, and J’éTPchi(X) 0)

in which X = (%,9) and é=r—x, will guarantee that

2max{V(O),2la[; + ||PQC||2||5*+ E) H”zj}

L ”9(4' < Armin (P)

+3||, ve>o0,

ii. and g(t) converges to compact set



114

|Pb.| g*+3H||2
ﬂ’min (Q)_l

Q, =qelt ||€(t)||3\/

+a] .

Proof
The proof includes 3 steps. The first step is to derive the dynamics )_2 of the
observed states x. Then, we show that a SSDAFC applied to the system of the
observed states x guarantees that the observed tracking error é=r—-x is UUB.
Finally, as x — x is bounded, the actual tracking error ¢ = r — x is also UUB.
o Step I:
From lemma 7.1(i),

ﬂ’-n (n—l) _2 (n—l) _

=yt =g, =y =y ),

Differentiate it, we have

)’én _ y(n) =—> V/(n+1) .

From system (7.1), ") = f(x,u). Substituting it to the above equation gives
%, =[x}y

Let Af = f(x,u)— f(%,u). The above equation becomes
%, = f @)+ o=y

Thus, the dynamics of the observed states can be represented as

Xy =X,

X, =X,

(7.12)

%, = f(Eu)+ A >y

le

<>

The bound of Af—> 1//(””) can be derived as follows. Since f ()_c,u) is Lipschiz,

there exists a constant L such that
£ u)= f(Ru) < Lx-2

Moreover, from lemma 7.1

e~ 5] > ] <> I (.13
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where Zz({/) p® O W(”))T,and h=(h, h, hy ... h,) . Thus,

o) o) < L~ > L]
Therefore, the bound of Af—> W(”“) is

A=y < (LA + k., )< H (7.14)

< >

n+1)

in which we have used |l//( <h,,, and H =L|h|+h

- n+

is a bounded positive

n+l

constant independent from >.
o Step 2:
From theorem 6.1, a controller (7.10) with the self-structuring algorithm

described in section 5.1.1 and the adaptive law (7.11) applied to system

X, =%,
X, = %,
x, = f(X,u)
)A’Z;Cl

will guarantee that

2oy, e |

ele) < 7 () , V>0,
|Pbel e[
d els t tset Q, =qelt)lelt) < +——F———
an g( ) converges to compact set €2, g( g( ]| P (Q)—l

n+l)

Now, for system (7.12), we can consider Af —31//( as part of the

approximation error. Thus, we have ¢, =&+ Af-> (//(”“)

and ¢, =&"+>H, in
which H is a bounded constant defined in (7.14). It is straight forward that a
controller (7.10) with the self-structuring algorithm proposed in chapter 5 and the

adaptive law (7.11) applied to system (7.12) guarantees that

2max{V(O),21(; + ||PQC”2||5*+ E) H"zj}

(04
ﬂ’min (P)

&) <

L V>0, (7.15)
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and é(t) converges to compact set

Ph| e+ > H[
Q, ={a()le()| < J ” = | 4 ‘ZQ;: | (7.16)
. Step 3:
The actual tracking error is
e=r-x=¢é-(x-%)=é->y
Thus, from lemma 7.1,
el < lel+ > ] < e+ > . (7.17)

From (7.15), (7.16), and (7.17),

2 max{V(O), 21[" +[Pbe?
aly

2
e H] j}

le( )] < @) +5 |, ve>0, (7.18)
and g(t) converges to compact set
[Pl +> ]
Q, =qelt)el?) < +3A ;. (7.19
= ele)ele) J oM )

This concludes the proof. ¢

Remark 7.1 It should be noted that the choices of the controller’s parameters are
independent from the choice of the observer’s parameters. Thus, it makes the design
of the output-feedback SSDAFC scheme two separate steps: design an observer (7.7)
for system (7.1), and design a SSDAFC for the observed system (7.10). This
preserves the main advantage of using a high-gain observer. In [2], high-gain
observers are also employed, but the design of the controller depends on the design of
the observer. Thus, the approach is more complicated and parameter tuning is more
difficult.

Remark 7.2 As the choices of the controller’s parameters are independent from
the choice of the observer’s parameters, remarks in chapters 4, 5, 6 are still valid

Remark 7.3 Theorem 7.1 shows that choosing a smaller > will result in smaller
tracking error. However, too small > will result in peaking phenomenon and

chattering in transient behaviour. Saturation methods introduced in [59, 60] have been
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suggested to overcome this problem. Here, the peaking phenomenon is completely

avoided by the use of the adaptive law (7.11).

Remark 7.4 Recently a new non-observer approach has been proposed in [96], in
which only the output error is used to generate control input and update laws for
unknown fuzzy parameters, and no state observer or low-pass filter is required. In the
future, it would be interesting to investigate the possibility to incorporate our

proposed self-structuring algorithm with this approach.
7.5. Example

7.5.1. Continuously stirred tank reactor (CSTR) system without zero

dynamics

We consider the CSTR system given in [2]. This system consists of a constant
volume reactor cooled by a single coolant stream. An irreversible, exothermic

reaction, 4 — B, occurs in the tank. The objective is to control the concentration C,
by manipulating the coolant flow rate g,. The process is described by the following

differential equations

E
(Cao - Ca )_ aOCae e

C =

a

E a
B

T, =

where C, and 7, are the concentration and temperature of the tank, respectively; the

coolant flow rate g, is the control input; and the parameters of the system are given in

table 7.1.
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Parameter Description Nominal value
q Process flow rate 100//min
Cuo Concentration of component A Lmol/l
T, Feed temperature 350K
Ty Inlet coolant temperature 350K
|4 Volume of tank 100/
h, Heat transfer coefficient 7%10% J / min K
ag Pre-exponential factor 72 %10 min~"
E/R Activation energy 1x10%K
(- AH) Heat of reaction 2% 10% cal | mol
211 P2 Liquid densities 1x10°g /1
Cp,Che Heat capacities leal /| g K
a; =1.44x10" ay =6.987x10>

az =0.01

Table 7.1: parameters of the CSTR system

Define the state variables, input, and output as
X = [xl’x2]T = [Ctl’Ta]T’ u :qc’ y:Ca

The dynamics system can be written in the form of system (7.2)

10*

X2
l-x, —ayxe

)_27 = Z(L“) = 7& _ay
350-x, +a,xe * + a3u{1 —e v J(350 -x,)

y= h(ﬁ): X

From the parameters in table 7.1 and the irreversible exothermic property of the
chemical process, we obtain the operating region of the states and control input as
follows

O<x, <1, hy2x,>350,0<5u<h,

where constant A, is the highest temperature of the reactor and constant #, is the
maximum value of the coolant flow rate.

We have

10*

%ol a)
v=L . h=1-x—-a,xe ™, S - ,
Yy f 174Xy ou

10 10"
¥y :Lih =—X, ao[)'cl + X;lxz ]6 2 ,
X,

and
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_ 4
——=10"q,a,xe
ou X5

olL2h 1, - Y o
[ u ] "2 —(xz 350) l—e v ~ %270 |50
by using the fact that 1—e™" —we ™ >0,Vw> 0. Therefore, the plant is of relative

degree 2 and assumption 6.1 is satisfied. Using the transformation given in 7.2.1, the

system can be represented as

él =<,
.fz :b@,u)
y=4¢

where & =x,, &, =X, b(é_‘,u)z szh(g). The above analysis is just to check the

validity of the assumptions made. Now, we can use the output feedback SSAFC in

theorem 7.1 to control the system without the knowledge of the mathematical model
of the CSTR.

For comparison purpose, we choose the same control objective as in [2]. The

control objective is to make the concentration C, track the set-point r(t) of
+0.02mol /! about the nominal product concentration of 0.lmol//l. The initial
T

conditions are chosen as the nominal operating conditions x, = [0. 1,438.5]

The control input is chosen as (7.10):

u=ﬁ(X

< LA . A A~ 2 A
Qac):ZHjé’j(X) in which X = [51,52,1/] .
Jj=1
The operating variable ranges are chosen as follows:
& €l0,02]; &, €[-05,05]; vel[-11].
The controller parameters are chosen as follows:

k=1 1] ;0= 20000 12 190 1600:
- 70 10 o s

u, =0; u, =500.

The structure-learning parameters are as follows:
g, =0.5, error _threshold =1.5, max_mf_distance= [0.2 2 2]
min_mf_distance=[0.2 2 2]/4, B, =50.

The initial fuzzy system has 8 rules with 2 membership functions in each input

dimension as shown in fig 7.1a-7.1c. Using the expert knowledge that at nominal
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condition, the control input is “near” 100mol//, we initialize the consequents to
100mol /1 .

Since the time derivative of output y is not available, it is estimated as proposed

in theorem 7.1 by a 2™-order high-gain observer:

SET e o
. . and — with A1 =1, 3=0.1, and the initial
g, =?2 {37%2:—/1|ﬂ2—7r1+y(t

condition [§,(0),7,(0)]" =[0.1,0]".

The simulation results are shown in Fig 7.2a-7.2e. It can be seen in Fig 7.2a that
the concentration tracks the desired reference well. The control signal is in the desired
range [0,500] (Fig 7.2b). Fig 7.2c and Fig 7.2d show the state estimation errors. Fig
7.2e shows the number of rules and structure learning flag. It can be seen that no
structure learning is required in this case.

For comparison, the results of the adaptive multi-layer NN controller and the
fixed-gain proportional plus integral (PI) controller given in [2] are shown in Fig 7.3.
It can be observed that our controller is also better than the PI controller. The multi-
layer NN controller is slightly better than ours. This is due to the addition of a PI
control term and a robust control term in the multi-layer NN controller. Our controller
is relatively simpler as it has only one control term, the output of the fuzzy system. By
incorporating expert knowledge to initialize the consequents to 100mol//, the set-
point tracking of our controller is still guaranteed during the initial period without the
use of PI and robust control terms. This demonstrates an advantage of adaptive fuzzy
control over adaptive NN control, the ability to incorporate expert knowledge to

initialize controllers.

7.5.2. Continuously stirred tank reactor (CSTR) system with zero

dynamics

We consider the CSTR system presented in [65]. A class of multi-component
isothermal reaction 4 <> B — C is taking place in the reactor. The output of the
process is the concentration of A, and the manipulated variable is the molar feed flow

rate of B, N, . A mass balance gives the modelling equations:
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dc

v dt'A :F(CA, _CA)_VkICA +W€2Cz§
dcC

V—2L=-FC,-VkCj; —-Vk,Cy + Ny,
dcC

V—C=_FC,. +Vk,C?
dt, C 3%~B

y=C,

With the dimensionless variables given in table 7.2, we can obtain the

dimensionless state-space model description:

. 2
X =1=x —cx, +c,x,

. 2 2
X, ==X, +C\X, —CyX; —C3X, +U
. 2

x3 = _x3 + C3x2

Y =%

It is easy to check that the relative degree of this system is 2. Using the

transformation given in 7.2.1, the system can be transformed into

§| =§2
52 =f0(§I’§2)+g0(§l’§2)u
n=-n+cf,

where

Ji =[(1+Cl)§l +&, _1]/62
f0(§1’§2):20102\/7[§1 _(Cl +1)§2 —202l1+(cz +c3)\/7tsz >

2,(&.&,)= 2c2\/7, . Also, the Damkholer numbers are assumed as follows: ¢, = 20,

¢, =0.1, and ¢, =10. Now, we can use the output feedback SSDAFC in theorem 7.1
to control this system.

For comparison purposes, we choose the same control objective as in [65]. The
control objective is to make the concentration C, track the set-point () of +0.02
about the nominal product concentration of0.1. The initial conditions are chosen as

the nominal operating conditions x, = [0.1,3.3,1 IO]T.

The control input is chosen as (7.10):

uzﬁ(X

0. )->.6,¢, (&) in which & =[¢.&,5]
j=1

The operating variable ranges are chosen as follows:
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& €0.05,0.15]; &, €[-0.05,0.05]; ve[-0.8,0.8].
The controller parameters are chosen as follows:

; 10 0 51 15
k=[1 10]";0= o 0P P |7 =1000;

u, =0; u, =500.
The structure-learning parameters are as follows:

g, =0.5, error _threshold =1.5, max_mf_distance=[0.1 0.1 1.6],

min_mf_distance=[0.1 0.1 1.6]/4,, B, =50.

rules
The initial fuzzy system has 8 rules with 2 membership functions in each input
dimension as shown in fig 7.4a-7.4c. Using the expert knowledge that at nominal
condition, the control input is “near” 100, we initialize the consequents to 100.
Since the time derivative of output y is not available, it is estimated as proposed

in theorem 7.1 by a 2"-order high-gain observer:

51:771 372’1:7[2
an

. with A2, =1, >=0.1, and the initial
& ==
e

37, =—117T2 -7, + W\t
condition [3,(0),7,(0)]" =[0.1,0]".

The simulation results are shown in Fig 7.5a-7.5g. It can be seen in Fig 7.5a that
the concentration tracks the desired reference well. The control signal is in the desired
range [0,500] (Fig 7.5b). Fig 7.5c and Fig 7.5d show the state estimation errors. Fig

7.5e shows the number of rules and structure learning flag. It can be seen that no
structure learning is required in this case. Fig 7.5f shows the internal dynamics. It can
be seen that the internal dynamics is stable.

The tracking performance obtained in [65] is given in Fig 7.6. It can be seen that
both Ge’s controller and our controller are successful. Ge’s controller responds faster.
This maybe due to the addition of an a priori control term based on a nominal model
and a bounding control term. Our controller is relatively simpler as it has only one
control term, the output of the fuzzy system. Also, Ge’s controller requires 500

neurons, whereas our controller requires only 8 rules.

7.5.3. Third-order system in triangular form (7.3)

A third-order system is given in [2] as:



3
. X,
X, =X +x, +—

i, = x,x, + (2 +sinx,x, )y with [x,(0).x,(0),x, (0)] =[1.4,0.3,0.1] .
Xy = X,X, +(1+xl2 +x22)u

Yy =X

123

The control objective is to make the output of the system track the desired

trajectory y, generated from the Van der Pol oscillator:

X1 =Xy
%4 =—xg + Bl=x2 b, with [x,,(0)x,,(0)] =[1.5,0.2] and g =0.2.
Ya =Xa

It can be seen that the system satisfies assumption 7.2, thus it can be transformed

to the form (7.4) :

& =6

& =4

3 zb(é”)
y=4

Now, we use the output feedback SSDAFC in theorem 7.1 to control this system.

As this is a 3"-order system, the desired output and its derivatives (y,,7,,7,,V,) are

needed. (y,,7,,¥,,¥,) can be estimated from (x,,,x,,)" as follows:

Ya = Xa1

Va = X4 =X

Vg = X4y ==Xy +ﬁ(1_x51)"d2

V, ==X, +ﬁ(l—2xd1xd2)xd2 +ﬁ(1—x§1X—xdl +,[)’(1—x§,)xd2)

Since the time derivative of output y is not available, it is estimated as proposed

in theorem 7.1 by a 3" order high-gain observer:

the initial condition [7,,,,7,]=[1.4.1.7,2.4] .

The control input is chosen as (7.10):

5= S, =7,
ézz% and <> 7, =, with 41 =42 =3, 3=0.2, and
. 7, 37, = —117r3 —Zzﬂ'z -7+ y(t)
53 =
E)
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0..)=30,6,(%) inwhich & =[2.&,.5]

Jj=1

uzﬁ()_z'

The operating variable ranges are chosen as follows:
& el-55); & e[-33];¢ e[-33] ve[-33].

The controller parameters are chosen as follows:

10 0 0 510.86 103.59 10
k=[5 50 10]';0=[0 10 0|; P=[103.59 47.58 2.17|; y=50;
0 0 10 10 217 072

u, ==50; u, =50.
The structure-learning parameters are as follows:

g, =0.5, error _threshold = 2.5, max_mf_distance= [10 6 6 6]

min_mf_distance=[10 6 6 6]/5, B, =200.

rules
The initial fuzzy system has 16 rules with 2 membership functions in each input
dimension as shown in fig 7.7a-7.7b. All the consequents are initialized to 0.
The simulation results are given in Fig 7.8. It can be seen in Fig 7.8a that the

output tracks the reference signal well. The control signal is in the range [— 50,50].

The actual states and their estimations are shown in Fig 7.8c-7.8e. the number of rules
and structuring flag is shown in Fig 7.8f. It can be seen that the final fuzzy controller

has 54 rules. The final membership functions of &, &,, &,, v are shown in Fig 7.9.

Compared to the adaptive NN controller proposed in [2], our controller has
similar performance. However, our controller requires only 1 fuzzy system with 54
rules, whereas the adaptive NN controller requires 3 neural networks (64 nodes, 256
nodes, 1024 nodes). Moreover, the adaptive NN controller also requires calculations

of some partial derivatives, which increase the complexity of the controller.

7.6. Conclusion

In this chapter, we extend the control scheme in chapter 6 to two broader classes
of nonlinear systems:

x=f(x,u)

y=h(x)

b
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% = £, 0x,) i=1..,n-1

and %, = f,(x,,...,x,,u) . We show that these classes can be
y=%

transformed to the nominal form

éi :§i+1=i:15'~'ap_1
‘fpzb(é’@“)
y=4

Thus, the control scheme proposed in chapter 6 can apply to these classes.

In case the derivatives of y are not available, we propose output feedback
SSDAFC using high-gain observers. Application to 3 nonlinear systems demonstrates
the effectiveness of the output feedback SSDAFC scheme.

In the next chapter, we will present the software implementation of control

schemes proposed so far.
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8. Chapter 8
MATLAB IMPLEMENTATION

8.1. Introduction

Matlab and Simulink are integrated software packages that maybe used for
modeling, simulating, and analyzing dynamic systems. Simulink provides a graphical
user interface (GUI) for building models as block diagrams, using click-and-drag
mouse operations. It is a powerful tool for Simulation and Model-Based Design.
Simulink applications range from control design, signal processing and
communications, image processing, etc. [97].

In control design area, designers use Simulink and add-on products to design and
create software that is used in aerospace, defense, automotive, industrial equipment,
process control, and many other applications. Thus, Simulink is a very suitable tool to
implement our control algorithms.

In this chapter, we present the software implementation of our proposed control
algorithms. Programming issues are discussed in section 8.2. Section 8.3 presents our
Adaptive Fuzzy Control simulink library, which includes a DAFC block, a SSDAFC
block, and a high-gain observer block. Then, the simulation process is explained
through an example of controlling an inverted pendulum. Real-time control is

discussed in section 8.5.

8.2. Programming

The implementation of the developed control algorithms required extensive
coding of programs and functions. All of the programs and functions were written
using M-language (Matlab script). Custom fuzzy functions also had to be developed
as the standard Matlab fuzzy toolbox is not sufficient. All Simulink blocks were built
using 2-level M-file S-function template. For clarity, details of the written programs
and blocks will not be presented here. We would like to emphasize on the practical
use of the developed software.

Next, we will describe the available controller blocks and how to use them for

simulation and real time control of dynamic systems.
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8.3. Adaptive Fuzzy Control simulink library

Fig 8.1 shows the developed Adaptive Fuzzy Control simulink library, which is
ready to be used for control applications. By dragging these blocks to a simulink
window, and connect them with a plant (represented by another simulink block), we
have a control application ready for simulation. The simulation process will be

presented in more detail in section 8.4.

E!Lihrar'r: AFC_library ;Iglil

File Edit Wiew Format Help

DSeE&| {BR| e 4|2 2 eEE

SSDAFC DAFC

high-gain obsener

Ready 100% [Loncked v

Fig 8.1: Adaptive Fuzzy Control simulink library.

8.3.1. DAFC block

Function:

This block implements the fixed-structured direct adaptive fuzzy controller
proposed in theorem 4.1.

Input:

There are two inputs: the state vector x and the desired output vector r.
E = (xlaxza"',xn): (y:y:---:y(n_l))
r= (r,f,..‘,r(”’l))

Output:

The output is the control signal generated by the controller.
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Parameters:
There are 8 parameters for this controller. These parameters are loaded to the

workspace by running the m file “parameters DAFC.m”.

The code of this file is:
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::0/0
% Parameters of the direct adaptive fuzzy controller %
%==========================================================0A)

n=2;

Y%===============|pad fuzzy controller=======================
fuzzy_u=readfis(‘fuzzy_system_1');

A=[0 1:-k(1) k()]
Q=[20 0;0 107;
bc=[0;1];

%:::::::::::::::adaptive law's para meters==================
AFS_params.gamma=25;

AFS_params.theta_U=25;

AFS_params.theta_L=-25;

The meaning of the 8 parameters are:
. n: defines the system order.
o fuzzy u: defines the initial fuzzy controller.

The initial fuzzy system is built using the Matlab fuzzy toolbox and saved to
hard-drive under the name “fuzzy system 1”. When we run the m file
“parameters DAFC.m”, “fuzzy system 1” will be loaded as the initial fuzzy
controller. By changing the name of the file to be loaded (e.g. “fuzzy system 2”, or
“fuzzy system 3”), we can specify different fuzzy systems as the initial fuzzy
controller.

« k: defines vector £ in equation (4.1).

. A: defines matrix A in equation (4.6).
o Q: defines matrix Q in equation (4.7).
. be: defines vector b, in equation (4.6).

. AFS_params.sigma: defines the adaptive gain y in equation (4.8).
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« AFS_params.theta_U: defines u, in assumption 4.3 and equation

(4.8).

o AFS_params.theta_L: defines u, in assumption 4.3 and equation

(4.8).

8.3.2. SSDAFC block

Function:

This block implements the self-structuring direct adaptive fuzzy controller
proposed in theorems 5.1 and 6.1.

Input:

There are two inputs: the state vector x and the desired output vector 7.

X = (xl,xz,...,xn)z (y,j/,...,y(”’l))
r= (r,i,...,r(”fl))
Output:
The output is the control signal generated by the controller.
Parameters:
The parameters can be loaded to the workspace by running the file

“parameters SSDAFC.m”.

The code of this file is:
% = =========================================OA)
% Parameters of the self-structuring direct adaptive fuzzy controller %
% = =========================================OA)

% System order

Y%===============|pgd fuzzy controller=======================
fuzzy_u=readfis(‘fuzzy system_1');

k=[1;1];
A=[0 1;-k(1) -k(2)];
Q=[20 0;0 107;
bc=[0;1];

AFS_params.gamma=25;

AFS_params.theta_U=25;

AFS_params.theta_L=-25;

%===========Structure Learning parameters:::::::::::::::::fyo
structure_learning_params.max_N_rules = 125;
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structure_learning_params.mf_threshold = 0.5;
structure_learning_params.error_threshold = 5;
structure_learning_params.a0 =[2.5 7.5 10];
structure_learning_params.center_distance_threshold = [1 15/5 20/5];

The first 8 parameters have the same meaning as the ones in the DAFC block.

The additional 5 parameters are for the self-structuring algorithm. Their meanings are:

8.3.3.

Function:

structure_learning_params.max_N_rules: defines B, in assumption

5.1 and assumption 6.3.
structure_learning_params.mf_threshold: defines the completeness of

fuzzy rules g, .

structure_learning_params.error_threshold: defines the minimum level

of error to trigger structure change error threshold .

structure_learning_params.a0: defines max_mf distance, ie. the
maximum allowed distance between two neighbouring membership
functions.

structure_learning_params.center_distance_threshold: defines
min_mf distance, i.e. the minimum allowed distance between two

neighbouring membership functions.

High-gain observer block

This block implements the high gain observer given in lemma 7.1.

Input:

The input is the output y of the controlled plant.

Output:

The output is the estimated state vector % = (%,,%,,...,%, ).

Paramters:

The parameters are loaded to the workspace by running the m file

“observer_parameters.m”.

The code of the file “observer parameters.m” is:\

lamda_vector = 2

; % defines vector lamda

epsilon = 0.5; % defines parameter epsilon
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Their meanings are:

« lamda_vector: defines vector A = (ﬂl,/lz,...,/infl )T in lemma 7.1.

« epsilon: defines > in lemma 7.1

8.4. AFC simulation

This section presents how an AFC simulation is created and simulated. The
simulation process has four steps. This will be presented through an example of
controlling an inverted pendulum. Assuming that the state variables are available for

measurement, we will employ the fixed-structured DAFC block.

8.4.1. Create a Simulink model for the AFC application
First, we create a new simulink model and add the block representing the inverted

pendulum as shown in Fig 8.2.

L=

File Edit Wiew Simulation Format  Tools  Help

Pendulum state vector

Fendulum

Ready |100% [ |odeds 4

Fig 8.2: The created simulink model with an inverted pendulum block.

Then, drag the DAFC block from the AFC library to the new model and connect
with the inverted pendulum as shown in Fig 8.3. The sinusoidal reference signal is

generated by the “signal generator” block.
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Fig 8.3: Simulink model after the DAFC block and Signal Generator block are added.

To observe the control signal and the output of the inverted pendulum, Scopel and

Scope2 are added as shown in Fig 8.4.

[
Secoped
oooo
fels] Cart
Signal = 1
zenerator
Pendulum state wector
DAFC Pendulum —‘

ScopeZ

Fig 8.4: Simulink model after added scopel and scope2.

8.4.2. Design the fuzzy system that is used as the initial controller

The Matlab fuzzy toolbox is used to create the initial fuzzy controller. This fuzzy
toolbox allows users to easily create a fuzzy system through its Graphical User
Interface (GUI) as demonstrated in Fig 8.5.

As all possible rules are used, it is sometime impractical to add rules one by one,
especially for a large number of rules (>50). We have created a script
“generate_rules.m” to help add all the possible rules to a fuzzy system. By using the
Matlab comment:

fuzzy systeml = generate fis(fuzzy systeml,b),

we add all the possible rules to fuzzy system1 and initialize them to value b.
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Fig 8.5: Fuzzy logic GUIs: The Membership Function Editor (top left), FIS Editor (center), Rule Editor (top right), Rule
Viewer (bottom left), and Surface Viewer (bottom right). Click on image to see enlarged view.

8.4.3. Load the controller’s parameters

Specify the controller’s parameters in the m file “parameters DAFC.m” (see

section 8.3.1) and run it to load the controller’s parameters to the workspace.

8.4.4. Perform simulation

Now, the model is ready for simulation. The simulation results are obtained by
simply running the model and observing the results through the scopes. The controller
can be tested with different parameters by repeating steps 8.4.2 to 8.4.4.

We have demonstrated the implementation process of DAFC of an inverted
pendulum using Simulink. The process is quick and easy with 4 simple steps. A
SSDAFC simulation of an inverted pendulum can be created by following the same

steps. Fig 8.6 shows a simulink model of a SSDAFC of an inverted pendulum with

the use of a high-gain observer.
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Fig 8.6 Observer-based SSDAFC of an inverted pendulum

The blocks in the AFC library not only can be used for simulation but also for
real-time control. In the next section, we will show how a real-time control

application can be easily set-up using our control simulink blocks.

8.5. Real-time AFC

Real-Time Windows Target is an add-on product of Simulink. It enables running
of Simulink and Stateflow models in real time on a desktop or laptop PC for rapid
prototyping or hardware-in-the-loop simulation of a control system. Creation, control
, and real-time execution maybe done entirely through Simulink [98].

Real-Time Windows Target includes a set of I/O blocks that provide connections
between the physical I/O board and real-time model. The real-time windows target

library is shown in Fig 8.7.
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By configuring these blocks with the physical I/O board, the adaptive fuzzy

controller can be easily connected with the real physical plant. Fig 8.8 shows the setup

of a real-time observer-based SSDAFC of an inverted pendulum.

noon
00

Signal
Generator

Simulink Envir onment

SSDAFC

Fooped

Anabg
Output

Analog Qutput

Anakeg Input

high-gain obsanier

Scope2

1/0 card

Fig 8.8 Real-time observer-based SSAFC of an inverted pendulum.
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8.6. Conclusion

In this chapter, we have presented Matlab/Simulink implementation of our
proposed control algorithms. A simulation application can be performed by only four
simple steps. A simulation can be converted to a real-time control implementation by
simply replacing the simulated plant by the I/O blocks provided in the real-time

windows target library.
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9. Chapter 9
DISCUSSION AND CONCLUSION

9.1. Discussion

9.1.1.  Main contributions

In this research, an online SSAFC scheme has been developed. The main features
of the proposed control scheme are:

. Itis applicable for a number of different classes of continuous SISO
nonlinear systems

« It needs less restriction on the controlled plants

« The stability of the overall system, especially when the structure
changes, is guaranteed using the Lyapunov stability technique.

« The overall system is stable in the sense that all the variables are
bounded (including number of rules generated) and the tracking error
is uniformly ultimately bounded.

. For nonlinear systems in triangular forms, only one fuzzy system is
needed (unlike the back-stepping approach where one fuzzy system is
needed at each step).

The proposed control scheme makes practical application of AFC easier.
Designers need to specify only a few design parameters and no longer have to specify
the controller structure by trial and error. It saves the time and cost needed to check
the extra restrictions on the controlled plants. It greatly reduces the complexity for
nonlinear systems in triangular forms that are normally controlled using the back-
stepping approach. It guarantees the stability of the system at any time and also
guarantees that the fuzzy controller never exceeds the hardware capacity.

From the practitioners’ point of view, the ability of the control scheme to control
a wide range of classes of systems is a great advantage. When understanding the
method, designers do not have to worry about choosing the right control configuration
for a particular problem. This saves practitioners both learning time and designing
time.

The Matlab and Simulink implementation of the controllers make simulations

and real-time applications of AFC easy and fast. A simulation can be performed by
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following four simple steps. Then, the simulation can be converted to a real-time

application by simply re-connecting the controller to the real-time plant.

9.1.2.  Limitations

The developed self-structuring algorithm suffers “the curse of dimensionality”.
The number of added rules will dramatically increases for high-order systems. Thus, a
much larger hardware capacity is needed for controlling high-order systems.

The control scheme guarantees that all the signals are bounded. However, similar
to other AFC schemes, the bounds can be very conservative. Thus, information
regarding these bounds is generally not useful for selecting design parameters. The

control schemes in the literature suffer the same drawback. The reason is the bounds
depend on the quantity HQ*H where " is the ideal adaptive parameter vector. HQ*H

increases with the number of rules and can be arbitrarily large.

9.1.3.  Future research
One future research direction would be to develop a self-structuring algorithm for
high-order systems. Instead of using all possible rules when a membership function is
added, we only add 1 rule at a time and all its corresponding memberships. The
change would reduce the interpretability of the fuzzy system. This is a trade-off
between computation and interpretability. However, as the system order increases, the
fuzzy rules are harder to interpret anyway.
Another future research direction would be to develop tighter bounds. The
popular way of proving the stability is to choose the Lyapunov function
v rer—fo-o)lo-0)
Thus, ¥V depends on 8", and therefore the bounds depend on 8. If we choose a
new Lyapunov function
Vi = %gTngL%(u —u*)z,

then V is much smaller than . By investigating the approximation properties of

derivatives of fuzzy systems, we may find a way to establish the stability for V

Finally, a practical control problem generally includes selecting a suitable
actuator, a reference model, and a controller. The relationship between actuator

constraints, reference model, and AFC design parameters has not been thoroughly
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investigated in the literature. It is of great practical interest to investigate how to
incorporate actuator constraints and reference signal information into the choice of
AFC design parameters. Understanding this would result in a more systematic design

procedure.

9.2. Conclusion

In conclusion, the objectives set at the beginning of the research are met. The
developed control scheme and implementation software make AFC easier. The results
also open new research challenges with the ultimate purpose being to make AFC an

easy-to-use control tool in practice.
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Appendixes

Appendix 3.A

e Proof of 3.1(a.i) and 3.1(a.ii):
From the choice of the adaptive laws (3.3), (3.4), and (3.5), it is obvious that (a.i)
and (a.ii) holds. Now, we are going to prove (a.iii).
e Proof of 1(a.iii)
Substituting control signal (3.2) to system (3.1), we have:
B, =" = f@)+ g@uc

Adding and subtracting §(§|Qg)uc gives:

0 =@~ 7 6o )+ le@ - 2o e
kT err™ +2(x0
o e =" e+ o - 1)
+(elo, ) - e he - 200, s
In the matrix form, we have:

e=Ac

e
shelliale ) - o (o (A1)

0,)- (e 20, us

The Lyapunov design approach will be used to prove the stability of the system.

Consider the following Lyapunov function

lT 1 T 1 T 1 2
V(t)=—e' Pe+— —— 3.A2
(n=7¢ §+2yfzﬁfgﬁf+2ygég£g+2y Ve ( )

[2]
in which q_ﬁf_:gf—gf, q_ﬁg =0,-0,,and y, =W —-o.

Its derivative along the solution (3.A.1) is

. o1 7 U 1o, 1
poO(1,rp,), . L 3.A3
o [29 Ej ., 9.9, . ¢.9, VoV ( )

Using the facts that (Ace)’ =e' AL, e’ Pb.=blLPe, and A" .P+PA-=-0, We

have:

0 (1 TPej — L 0ere b [ 0d0) - r)+ (60, - g he — 30, ]

—| —e
o\2" ~ 2

Substituting to (3.A.3) gives



the fact that |a|b —ab tanh

V=—%§TQ9

" Ph (70 - 0+ (6o, - g0 e - 0, s |
1 ; 1 1

+;g§gf +7¢T¢ F Vol
——LeT0e

v Pb (ﬁ<x|gf>—m|g;>)+(g<z|eg>—g()_c|e’;>>c]

1 . 1 .
+—¢ e IR
Yr Vg Yo

(f(x|9 - ) (g(x|9 ) g
—e Plgcg(g)us

+e Pb

Now, considering the second and forth terms of (3.A.4), we have:

A N . 1 .
gTPizc(f<z|Qf>—f<z|ef>)+;¢_ﬁj¢_f_,.
T T 1o
=€ Pbed 6 (D v 9,2,
Using the adaptive law (3.3), it is obvious that

T T 1 T ;
_ <
e Pheg ¢ (0)+ ) $.9,<0

148

(3.A.4)

(3.A.5)

Similarly, considering the third and fifth terms of (3.A.4), and the adaptive law

(3.4), we have

gTPéc(g(z|gg>—g(z|e*g>)+yigg 3
g

T T 1 7
- - <
e Pl_’c?ggg(ﬁ)erf Qg?g <0

(3.A.6)

Considering the last three terms of (3.A.4) and using the adaptive law (3.5) and

0.2785ab

<&, we have

|

" Po 7o) - re)lecder) -

. o
—e' Pbog(Xug +—y ¥,

(2]

G(U(W_é))(a;_a)o)""gif(a’)<a)max)
gTPbC|SO'(a3—a)O))
|gTPb w- a))+61( O ax and|gTPbC|>a(a3—a)0)

< rlo= . and
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Moreover, we have that |§T Pb. |(W — @) <0 and
o, (W —0)bd-w,) < %aw (W —w,)*. Therefore,

Q;)—g()_f))‘cj

e’ Po |7l - re)+ o

" PhE (s + Ly, (3.A.7)
Yo
1
Szam(W—a’o)z +&
From (3.A.4-3.A.7), we have
.1 1
V< —EETQ€+ZG{U (W—a)o)2 +&
Let d:%aw(W—wo)zhs. (3.A.8)
From(3.A.8),
V< —%gTQg +d
<= A Q)+
1249 2 1 2] )P ’
ST ap) ™ (Pl 27, Ao (P)Ug/' max‘?r )
1 A @O P N 4@ 2 2
2, zmax(p)(‘?g ax|f, ) 2. A (P) o —max(y2))+d
<k |La (P +L‘¢ ‘2 L @ ’ +Lw2 +V
min 2 ‘max —| 2]//_ 7/ 2]// Le 2]/01 @ r
A
in which Zm(@ _ (3.A.9)
ﬂ'max (P)
_1 2d 1 L L 2 (3.A.10)
v, = 5 A (P) ) + 2, max‘gf + 2, max‘gg + 2 max(y,,)

2

+ wl>V(t) Vt, we

2
And using the fact that l/lmax (P)|e|2 +L|¢ | L )
2 S I 2y e

2y

[

have

V<—k, V+k,V. (3.A.11)
=V <(V(0)=V, Jexp(—k,, 1) +V,

Therefore,

V(t) <max(V (0), 7, )

Since V(1) > %gTPg > %ﬂ%n (P)¢* vt , we have
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L min (Pl < max(v(0).7,)

E ‘min
o |§| < 2 max(V(O), Vr)
ﬂ’min (P)
This completes the proof of 3.1(a.iii)
e Proof of 3.1(a.iv)

Recall the definition of e:

Therefore,
] <rf +e]

2max(V(0),7,)
/Imin (P)

e Proofof3.1(a.v)

=r

From control (3.2),

|u|sm(|m|gf>|+

g

()

")

0.2758¢” Pb .cd

&

A

+ o|[tanh

ao,)

It is clear that

lde, | el )

tdot | |7let )

7] max(

0.2758¢" Pb &
tanh ———— =<1
&

Thus, 3.1(a.v) holds.
e Proof of 3.1(b)

From (3.A.11), V(1)< (V(0)=V, )exp(~k )+ V,, We have
im V(1) <V,

t—0
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. 1 1 1
Since ¥ (1) > EgTPg 2= Znin (P)le” = > /min (P)e’,

lim ~ A (P)E <V,
t—o0 2

. 2V,
< lim [¢<
(=40 j'min (P)

This completes the proof of 3.1(b).
e Proof of 3.1(c)
From (3.A.8),

V<-— 1 eTQe +d
€ Qe
Using the fact that %gT Qe > %Amin e = %ﬂmm (Q)e? , we have

V< —%xlmm (0)e* +d

Rearranging terms and integrating, we have

'[ezdts'[[— v _, Jdt
]'min (Q) }“min (Q)

Since V is bounded we find that

t
lim l e2dt < L
1o /Imin (Q)

So the RMS error is bounded by

t
RMS = 1imlje2dz < |2
1ot ﬂ'min (Q)

Appendix 3.B

e Proof of theorem 3.2(a.i)
From (3.5), it is clear that theorem 3.2(a.i) holds.
e Proof of theorem 3.2(a.ii)

Consider the following Lyapunov function

ho =€ Per——v} (3.B.1)

@

The derivative of 7; along the solution of (3.A.1) is
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= Leroere puc| 7l - o) el e
— e Phoug +——y 1,

@

Using assumption 3.4 and the same arguments in (3.A.7), we have

T 5 0 |00 T 1 ,
e P [f et - )+ (edo0) - e |- Py v
Sio-w(W—a)o)2 +e=d
Thus,
Vi< —%gTQg +d
Now, following the same procedure to prove theorem 3.1(a.iii), we can prove that
theorem 3.2(a.ii) holds

|€| < 2maX(VI (0)5 Vlr )
a ﬁ’min (P)

1 2d 1
here 7, == 2, (P)———+— 2 3.B.2
where 1r 2 max( )imin (Q) + 2}/ maX(‘/lw) ( )

e Proof of theorem 3.2(a.iii) and theorem 3.2(a.iv):
Using the same arguments to proof theorem 3.1(a.iv) and theorem 3.1(a.v), we
can show that theorem 3.2(a.iii) and theorem 3.2(a.iv) hold.

e Proof of theorem 3.2(b):

Similar to the proof of theorem 3.1(b), from ¥, < —%gTQg+d , we can show that

: 2,
lim |e| < .
[0 /lmin (P)

e Proof of theorem 3.2(c):

Using the same arguments as in the proof of theorem 3.1(c) and V, < —%gTQg +d,

we can conclude that

RMS < 2d .
ﬂ’min (Q)

Appendix 4.B

Let X/ eUy. As glx), ﬁ(ﬁg), and u«*(X) are continuous at X/, for each

i=l...n,n+1, there exists a 5ij >0 such that
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x| <) =1 ) el () - eilelg)]- fole b/ )l il o) <
o [latan () slagitela)]- el for ()il /o) < o

& et () swpallp)]-e/ e (o )-alo /o)) <. (4.41)

where ¢/ :ng)>0.

Define
0= {1||X[ -x/|< 5,.f(i=1...n+1)}

As Uy is compact, there exists a finite subfamily O, O,,..., O,, such that
Uy c0,00,0...00y

Choose

A[j(Xi)za(X[j -6/, x/ +5/XXZ~), i=1..n+1, j=1...M such that

Al\xk)=t1it k=
1 L k=1...M 4.4.2
{AI/((XIk)):Oifkij ’ (4.42)
0 =u*(x/), j=1..m (4.43)
From (A.2),
M
ﬁ&j)zzeké’k(zj):elx0+02 X0+...0; x1+...+0), x0=0; (4.A.4)
k=1

Substituting (4.A.3) and (4.A.4) to (4.A.1), we have:

et ()~ eilip)]-< /6 -6, ) < (4.45)
As ¢ (X)#0forXeO; and¢,;(X)=0for X ¢ 0,

(45)= [ls(xh* () - exnlxio)]-lo; -0, Jo, ()< ¢, (x)

Take the summation for j=1...M ,

M=

Z|[g (X" (x X)M(X|9)] (‘9;—91'141‘(1)3 ,
cf(a -0, ),f (x

e"¢;(X)

1

M
<"y ¢ (X)
Jj=1

Mi

o e ()- i X|e}§

J=1 J

Since Zg“j(g)zl, we have:
Jj=1

[so” () g )alxle)])- 3 0; -0, ), (x

J=1

(4.4.6)
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M
Thus, g(x)u"(X)-g(x)i(X]6) can be approximated by > ¢/ (H; -9, )gj (X):

J=1

olohe (1)~ gwme:f 1o -0, (x

where |e|<&* and ¢/ are some positive constants.

Appendix 6.A

Let X/ eU,. Since f(x,u(X)) is continuous with respect to u(X), according to the

Mean Value Theorem, there exists a positive constant ¢/ >0 such that

A el =)l ) (6.41)

Since f(g’,u*(g-’))—f(g’,u(gj)) is continuous at X/, for each i=1...n,n+1, there

exists 5/ >0 such that

x| <! G=1ms ) [l 00)- oulo)]- [l () b )] <o
(6.4.2)

Substituting (6.4.1) to (6.4.2) gives
x| <67 =1 [l O} @) b (67 )-ul /)] < o7

where ¢/ >0.

Define

0,= {1||Xi —X,f|s5/(i=1...n+1)}

As Uy is compact, there exist a finite subfamily 0,, O,,..., O, such that
Uy c0,00,uU..u0y

Choose

A/(Xi):a(X/—5/,X/+5inXi), i=l..n+1, j=1...M such that

(6.4.3)

A\xF)=1itk=5 .
{Aing[k;ZOifkij,J,k—l...M (6.4.4)
ot =u(x7), j=1..m (6.4.5)
From (6.A.4),
u({j)ziekgk&j)zﬁl><O+92><0+...9j><1+...+9M><O=9j (6.4.6)
k=1

Substituting (6.4.5) and (6.4.6) to (6.4.3), we have:
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|Xi —X,:j| <8/ (i=1..n+1) |[f wut (X)) ()] o7 -0, )] <t (6.4.7)
As ¢;(X)=0forXeO; and ¢;(X)=0for X ¢O;,
(6.47)= [/ (v (X))~ flxulX)]-c'(6; -0, )¢, (x) < £°¢, (x)

Take the summation for j=1...M,

[ @) s}/ 05 -0, ), ()< 3¢, )

Jj=1

o [rben (@) e ]Z F 2ok )1

Jj=1

Mk

J=

M
Since » ¢, (X)=1, we have:

Jj=1

(e @) 1)) S /o -0, ), (1) <

j:

(6.4.8)

M
Thus, f ()_c,u*(g ))— f(x,u(X)) can be approximated by ch (6']* -0, ){ S (X)

Sl (@)= s e fc’(ei—ej):j@)w

where |¢ <" and ¢/ are some positive constants.
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