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Abstract 

Adaptive fuzzy control has been an active research area in the past decade. 

Fundamental issues such as stability, robustness, and performance analysis have been 

solved. However, one main drawback is the generally fixed structure of the fuzzy 

controllers, which are normally chosen by trial-and-error in practice. Few attempts to 

develop self-structuring AFC have been reported, and important issues such as 

stability, computational efficiency, and implementability have not been investigated 

thoroughly. In particular, the stability of the system when the structure changes has 

not been proven. Thus, a more effective self-structuring AFC scheme is desirable.  

The main objective of the research is to develop a stable self-structuring AFC 

scheme for continuous-time single-input-single-output (SISO) uncertain nonlinear 

systems.  

A novel online self-structuring adaptive fuzzy control scheme that is applicable 

for a number of classes of continuous SISO nonlinear systems is proposed. The 

applicable classes include affine nonlinear systems, non-affine nonlinear systems, and 

nonlinear systems in triangular forms. The main features of the proposed control 

scheme are: 

• It needs less restriction on the controlled plants and no restriction on the 

design parameters. 

• It employs a modified adaptive law that guarantees explicit boundedness of 

adaptive parameters and control action. 

• The self-structuring algorithm is relatively simple and guarantees explicit 

boundedness of the number of rules generated. 

• Only triangular membership functions are generated and only 2 

membership functions are allowed to overlap to increase the 

interpretability of generated fuzzy controllers.  

• High-gain observers are used when not all the states are measurable and 

the design of observers is completely separated from the design of 

controllers.  

• For nonlinear systems in triangular forms, only one fuzzy system is needed 

(unlike the back-stepping approach where one fuzzy system is needed at 

each step). 
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• An approximation error estimator and an automatic switching mechanism 

can be used to further increase the robustness and computational 

efficiency. 

The stability of the overall system, especially when the structure changes, is 

guaranteed using the Lyapunov stability technique. The overall system is stable in the 

sense that all the variables are bounded (including number of rules generated) and the 

tracking error is uniformly ultimately bounded. The proposed control algorithms are 

implemented in Matlab and Simulink for ease of simulation and practical application. 

Numerous simulation examples are performed to demonstrate the theoretical results. 

The proposed control scheme makes practical application of AFC easier. 

Designers need to specify only a few design parameters and no longer have to specify 

the controller structure by trial and error. A simulation or application can be quickly 

and easily implemented using the developed controllers in Simulink. 
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1. Chapter 1  

INTRODUCTION 

 

1.1.  Introduction 

This chapter introduces the thesis and adaptive fuzzy control (AFC), giving a 

formal definition of AFC and its advantages, then the motivations and objectives of 

the research. Finally, the outline of the thesis is given, including how the thesis will be 

organised, what will be presented in each chapter and how they are linked together. 

1.2.  Adaptive fuzzy control 

The early 1990s have witnessed a rapid growth of successful applications of 

fuzzy logic to automatic control. Examples of such applications are washing 

machines, electronically stabilized camcorders, auto-focus cameras, air conditioners, 

automobile transmissions, and subway trains [1]. Indeed, Fuzzy Logic Controllers 

(FLCs) offer an alternative to the control of complex nonlinear systems that are not 

easily controlled by conventional automatic control methods as they provide a 

framework to incorporate linguistic fuzzy information from human experts while not 

requiring a mathematical model of the plant. However, there is lack of mathematical 

analysis of stability, robustness, and systematic design procedure. This substantially 

restricts the application domain of FLCs. 

On the other hand, adaptive control has a long history of intense activities 

involving stability proof, robustness design, and performance analysis [2]. The 

advances in stability theory and the progress of control theory in the 1960s have 

improved the understanding of adaptive control. In the mid 1980s, research of 

adaptive control mainly focused on robustness in the presence of unmodeled 

dynamics and bounded disturbances. Motivated by the early success of adaptive 

control of linear systems, the extension to nonlinear systems has been investigated 

from the end of 1980s to early 1990s. Thus, adaptive control offers powerful 

mathematical tools to the analysis of stability and robustness of nonlinear control 

systems. 

Thus, it is logical to think that combining fuzzy control and adaptive control may 

give a better control methodology. The result is adaptive fuzzy control (AFC). 

Understandably, AFC possesses the advantages of both methodologies. It has the 

linguistic knowledge representability and parallel computing of fuzzy systems, and 
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the stability and robustness of conventional adaptive controllers. Formal definition of 

adaptive fuzzy control is given next. 

1.2.1. What is adaptive fuzzy control? 

Wang defines an adaptive fuzzy system as a fuzzy logic system equipped with a 

training algorithm, where the training algorithm adjusts the parameters (and the 

structures) of the fuzzy logic system based on numerical information. According to 

this definition, neuro-fuzzy systems, in which fuzzy systems are represented by neural 

networks, are also adaptive fuzzy systems. 

An adaptive fuzzy controller can be defined as a controller, in which adaptive 

fuzzy systems are employed and adaptive control theory is used to derive training 

algorithms such that stability and performance of the closed-loop system are 

guaranteed. 

Lyapunov stability techniques play a critical role in the design and stability 

analysis of the adaptive systems [2]. A Lyapunov function candidate is a 

mathematical function designed to provide a simplified scalar measure of the control 

objectives. The control objectives are met when the chosen Lyapunov function is 

driven to zero. More details about Lyapunov stability are given in chapter 2. In 

adaptive fuzzy control systems, stability is investigated by studying the behaviour of 

some Lyapunov function candidates.  

In summary, a controller is called an adaptive fuzzy controller if it possesses both 

of the following features: 

• Adaptive fuzzy systems are employed 

• Lyapunov stability technique is used to derive training algorithms to guarantee 

the stability of the closed-loop system. 

1.2.2. Why adaptive fuzzy control? 

The advantage of AFC, combining both fuzzy control and adaptive control, 

includes the followings.  

• Fuzzy control allows incorporating linguistic fuzzy information from human 

operators. The operators can describe how they control the system under control 

(or how the system behaves) in term of fuzzy If-Then rules. This information is 

easily captured by fuzzy systems. 
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• Fuzzy control provides universal nonlinear approximators. Fuzzy systems are 

nonlinear universal approximators. In conventional linear robust adaptive control 

studies, linear approximators are used to approximate some unknown functions 

that are assumed to be linear. Using fuzzy systems in adaptive control relaxes the 

assumption that the unknown function must be linear. Thus, it provides an 

extension to create nonlinear robust control schemes where there is no need to 

assume that the plant is a linear parameterization of known nonlinear functions 

[3]. 

• Fuzzy control is easy to understand. Because fuzzy control emulates human 

control strategy, its principle is easy to understand for noncontrol specialists. 

During the past two decades, conventional control theory has been using more and 

more advanced mathematical tools. This results in fewer and fewer practical 

engineers who can understand the theory. Therefore, practical engineers tend to 

use approaches which are simple and easy to understand. Fuzzy control is such an 

approach [1]. 

• Fuzzy control is simple to implement. Fuzzy logic systems, which are the 

heart of fuzzy control, possesses a high degree of parallel implementation. Many 

fuzzy VLSI chips have been developed, which make the implementation of fuzzy 

controllers simple and fast. 

• Fuzzy control is cheap to develop. Because fuzzy control is easy to understand 

and simple to implement, the software and hardware cost is low. Also, there are a 

wide range of software tools available for designing fuzzy controllers (e.g. 

Matlab).  

• Adaptive control is a model-free approach. It does not require a mathematical 

model of the system. Adaptive algorithms are used to adjust the parameters online 

in such a way that the control objectives are met. Thus, a mathematical model of 

the plant is not needed. 

• Adaptive control guarantees stability and robustness. Stability and robustness 

are the most important issues in control theory. Stability means that for any 

bounded input over any amount of time, the output will also be bounded. 

Robustness refers to the ability of the control system to maintain stability even in 

the presence of unmodeled dynamics or external disturbances. Traditional fuzzy 

control cannot guarantee stability and robustness of the control system. In 
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adaptive control, Lyapunov stability technique provides the mathematical 

framework to establish adaptive algorithms that guarantee stability and robustness. 

• Adaptive control provides a systematic design approach. There is no standard 

systematic design procedure in traditional fuzzy control. The tuning of parameters 

is mostly based on trial and error approach. Thus, it is a time consuming and ill-

defined process. Adaptive control provides a systematic design approach, in which 

parameters and adaptive laws can be chosen explicitly using Lyapunov technique. 

1.2.3. Relationship between adaptive fuzzy control and adaptive neural 

network control 

Adaptive neural network control (ANNC) is a control method, in which neural 

networks are employed and adaptive control theory is used to derive training 

algorithms such that stability and performance of the closed-loop system are 

guaranteed. Thus, compared to AFC, the main difference is that neural networks are 

used, instead of fuzzy systems, as approximators.  

Moreover, it is well known that a fuzzy system can be realized by a neural 

network. Many ANNC schemes can be converted to AFC schemes and vice versa. 

Therefore, it would be inadequate to survey only AFC and ignore ANNC.  

In subsequent chapters, ANNC is also considered and is mentioned when it is 

relevant. The term “adaptive intelligent control” (AIC) will be used to refer to both 

AFC and ANNC. 

1.3. Motivation and Objectives 

With the advantages mentioned above, AFC is a very good candidate for control 

of uncertain nonlinear dynamic systems. However, there are still some drawbacks that 

obstruct the practical application of AFC. 

One main drawback is the generally fixed structure of the fuzzy controllers, 

which are normally chosen by trial-and-error in practice. Few attempts to develop 

self-structuring AFC have been reported, and important issues such as stability, 

computational efficiency, and implementability have not been investigated 

thoroughly. In particular, the stability of the system when the structure changes has 

not been proven. Thus, a more effective self-structuring AFC scheme is desirable. 
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Other drawbacks include restrictions on the classes of applicable nonlinear 

systems, constraints on the design parameters that are hard to determine in practice, 

the complexity of controllers for nonlinear systems in triangular forms, etc.  

With the desire to make AFC easier for practical application, the objectives are as 

follows. 

Objectives: 

i. Develop a novel online self-structuring AFC scheme that is applicable for a 

wide range of continuous SISO nonlinear systems. 

ii. Propose solutions to overcome drawbacks such as: 

� Improve computational efficiency by proposing 2-mode adaptive fuzzy 

control 

� Relax the extra restrictions of the direct adaptive fuzzy control 

� Reduce the complexity of the control of nonlinear systems in triangular 

form 

iii. Develop implementation software in order to make simulation and practical 

application of the proposed AFC scheme fast and easy. 

To achieve these objectives, the rest of the thesis is carried as follows. 

1.4. Outline of the thesis 

Chapter 2 provides a general literature review and mathematical preliminaries. 

First, we give a brief survey about the development of AFC. Then, some required 

mathematical preliminaries are given. Finally, basic concepts of AFC (such as ideal 

control, minimum approximation error, ideal parameters, etc. and how the stability 

analysis and adaptive laws are derived using Lyapunov stability theorem) are 

introduced through a simple AFC scheme, basic indirect adaptive fuzzy control for 

affine nonlinear systems. The shortcomings of this basic AFC scheme are also 

discussed. 

In addition to a general literature review in chapter, there is a separate literature 

review for each major topic (chapters 3, 4, 5, 6, 7). 

One shortcoming of basic AFC is the effect of the approximation error, which 

can de-stabilize the closed-loop system. In chapter 3, we propose a novel 2-mode 

indirect AFC scheme, in which an approximation error estimator is used to 

compensate for the approximation error. Moreover, the control scheme can switch 

between learning mode and operating mode using a switching mechanism. The 
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switching mechanism improves the computational efficiency in cases where the 

controlled plants satisfy certain conditions. 

Direct AFC is simpler than indirect AFC but it normally requires more 

restrictions on the control gain than the indirect one. This limits the application of 

direct AFC in practice. In chapter 4, we propose a direct AFC scheme with less 

restriction. By using an extension of the approximation theorem, we show that direct 

AFC actually requires the same restrictions as the indirect one. Also, the proposed 

control scheme employs a modified adaptive law that guarantees explicit boundedness 

of adaptive parameters and control action.  

In chapter 5, based on the direct AFC scheme proposed in chapter 4, we propose 

a self-structuring direct AFC scheme for SISO affine nonlinear systems. Compared to 

some existing algorithms, the proposed self-structuring algorithm is relatively simpler 

and also guarantees explicit boundedness of the number of rules generated. Only 

triangular membership functions are generated and only 2 membership functions are 

allowed to overlap to increase the interpretability of generated fuzzy controllers. 

In chapter 6, we extend the result of chapter 5 to a class of non-affine nonlinear 

systems. By using the implicit function theorem and an extension of the 

approximation theorem, we show that the AFC scheme proposed in chapter 5 can also 

be applied to non-affine nonlinear systems.  

In chapter 7, we further extend the result to larger classes of nonlinear systems. 

By using the concepts of Lie derivative and strong relativity, a wider class of non-

affine nonlinear systems and a class of nonlinear systems in triangular systems can be 

transformed to the form in chapter 6. Thus, the AFC scheme proposed in chapter 5 

can also be applied to these classes of nonlinear systems. For the class of nonlinear 

systems in triangular systems, this approach requires only one fuzzy system (unlike 

the back-stepping approach where one fuzzy system is needed at each step). The 

approach requires the output and its derivatives, which sometimes are not available 

for measurement. In this case, high-gain observers are proposed to estimate the 

derivatives. The design of observers is completely separated from the design of 

controllers. 

In chapter 8, the software implementation of the proposed control algorithms is 

presented. Using Mathworks, we develop a self-structuring AFC library, which 

includes some control blocks that are ready to be used. By simple click-and-drag 
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mouse operations, a simulation or real-time application of self-structuring AFC can be 

performed quickly and easily. 

Chapter 9 presents discussion and conclusions. 

1.5. Conclusion 

An introduction to the thesis is given in this chapter. The main objectives of the 

thesis are to develop a novel online self-structuring AFC scheme, improve results of 

existing AFC schemes, and to develop software to implement the developed AFC 

scheme. 
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2. Chapter 2 

GENERAL LITERATURE REVIEW AND PRELIMINARIES 

 

2.1. Introduction 

This chapter provides background for the thesis. First, a review is presented in 

section 2.2 to give a general picture about the development of AFC in the past decade. 

Then, important mathematical background such as stability concept and Lyapunov 

stability technique is presented in section 2.3. Finally, the basic framework of AFC is 

introduced in section 2.4 through a simple example of indirect AFC of affine 

nonlinear systems. 

2.2. A review about the development of adaptive fuzzy control 

From the early 1990s, adaptive fuzzy control has been an active research area. 

Many researchers have contributed their work to the field. A great number of different 

control approaches, methods, schemes, and control applications have been published 

in various books, journals, and conferences. Thus, providing a complete description of 

adaptive fuzzy control in a single context is impossible. In this section, a brief review 

is given in order to demonstrate the wide range of adaptive fuzzy control schemes 

available in the literature, from different configuration structures, applicable classes of 

nonlinear systems, to adaptive mechanisms of fuzzy systems. 

2.2.1. Structure 

In their simplest forms, adaptive fuzzy controllers are constructed only by 

adaptive fuzzy systems. They can be classified into two categories: direct and indirect 

adaptive fuzzy control. 

2.2.1.1. Direct AFC 

Direct adaptive fuzzy controllers use adaptive fuzzy systems as controllers [1]. 

The adaptive mechanism is then designed to adjust the adaptive fuzzy system in such 

a way that will stabilize the plant and make the closed-loop system achieve its 

performance objectives. Direct adaptive fuzzy controllers have been proposed in [1, 4, 

5]. 
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2.2.1.2. Indirect AFC 

Unlike direct adaptive fuzzy controllers, indirect adaptive fuzzy controllers use 

adaptive fuzzy logic systems to model the plant and construct the controllers 

assuming that the fuzzy logic systems represent the true plant. Indirect adaptive fuzzy 

controllers have been presented in [4-9].  

2.2.1.3. AFC combined with other controllers 

Pure direct and indirect adaptive fuzzy controls are simple, but they also have 

disadvantages. Thus, in the later years, it is often that adaptive fuzzy control is 

combined with other control techniques.  

• Direct AFC combined with indirect AFC: [10-13] propose hybrid direct 

and indirect adaptive fuzzy control schemes in which the control output is 

the weighted average of a direct and an indirect adaptive fuzzy controllers. 

This combination provides a framework to incorporate both linguistic 

knowledge describing the plant behaviour and the control actions.  

• AFC combined with another controller to compensate for approximation 

error: In general, there exist approximation errors when approximating 

nonlinear functions by fuzzy systems. These approximation errors may 

effect and deteriorate the stability and performance of adaptive fuzzy 

control systems. To overcome this problem, previous researchers have 

proposed combining AFC with another controller. [14] proposes a control 

scheme in which an indirect adaptive fuzzy controller is combined with a 

fuzzy sliding mode controller. The fuzzy sliding mode controller is 

designed to compensate for the approximation errors. [15-20] propose 

adaptive fuzzy control with a variable structure control term. The variable 

structure control term is designed using some known bounds of 

approximation errors. The term is then added to the control output to 

compensate for the effect of approximation errors. However, the bounds of 

approximation errors are normally hard to obtain in practice. Thus, they 

take a step further by proposing some adaptive mechanisms to estimate 

these bounds online [21, 22]. 

•  AFC combined with output feedback control: In many applications, it is 

impossible or too expensive to measure all the state variables of the system 

under control. Output feedback control is an approach to overcome this 
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difficulty. The only variable needed to be measured is output of the 

system. Many adaptive fuzzy control schemes based on output feedback 

control have been proposed in the literature: [16, 23].  

• AFC combined with ∞H  control: External disturbances play an important 

role in real control applications. They not only deteriorate control 

performance but also may cause instability. ∞H  optimal control is a 

technique used in traditional control theory to minimize the effect of 

external disturbances. [24-30] use adaptive fuzzy control combined with 

∞H  control technique to attenuate the effect of disturbances.  

• AFC combined with a supervisory control: An adaptive fuzzy controller 

sometime does not adapt fast enough. It leads to the state variables of the 

controlled system moving outside of a desired constraint set. This problem 

can be solved by increasing adaptive gains. However, adaptive gains 

cannot be too large. Increasing adaptive gains increases sensitivity to 

noise, leading to chattering of control output. Thus, to keep the state 

variables of the system under control in a desired constraint set without the 

need of large adaptive gains, some researchers [1, 13, 31, 32] propose 

adaptive fuzzy control combined with a supervisory control. This 

supervisory control is also a variable structure control term, which is 

designed using knowledge of the bounds of the unknown nonlinear 

functions. When the state variables are well inside the constraint set, the 

supervisory control is zero. When the state variables tend to move outside 

of the desired boundaries, the supervisory control begins to operate to 

force the states to stay in the constraint set. 

• AFC combined with more than one other control techniques: [12] proposes 

an adaptive fuzzy control scheme, in which the control output is a 

combination of a direct adaptive fuzzy controller, an indirect adaptive 

fuzzy controller, and a variable structure control term to compensate for 

approximation errors. The bounds used in the variable structure control 

term are estimated online, thus no prior knowledge about the bounds is 

required. [13] proposes hybrid direct and indirect adaptive fuzzy control 

with a supervisory controller. [17] proposes an adaptive fuzzy control 

scheme combined with variable structure control and ∞H  control such that 
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both the effects of approximation errors and external disturbances can be 

attenuated to any prescribed level.  

In general, adaptive fuzzy control combined with other control schemes 

overcome disadvantages existing in pure direct and indirect adaptive fuzzy control. 

However, they are more complicated in both theoretical analysis and implementation. 

Thus, for a particular application, it is up to control designers to decide when it is 

necessary to combine adaptive fuzzy control with another control technique. 

2.2.2. Different classes of nonlinear systems 

In the theory of nonlinear control, the control of different classes of nonlinear 

systems has been considered. Different classes of nonlinear systems have different 

characteristics, and thus require different control techniques. Some well-established 

techniques are available for different classes of nonlinear systems. For example, 

linearizable nonlinear systems can be treated using feedback linearization techniques. 

Nonlinear systems in strict-feedback forms can be treated using backstepping design. 

Nonlinear systems, in which not all the state variables are measurable, can be dealt 

with using output feedback control, etc. These results in nonlinear control have 

inspired researchers to propose a number of adaptive fuzzy control schemes for these 

classes of nonlinear systems based on the available techniques.  

Here, we review AFC schemes in terms of the nonlinear classes that they can be 

applied to. 

2.2.2.1. Affine and non-affine nonlinear systems 

• Affine nonlinear systems 

Under some geometric conditions, the input-output response of a class of single 

input-single-output (SISO) nonlinear systems can be rendered to the following 

Brunovsky form [2]: 

( ) ( ) ( )
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where [ ] nT

nq Rxxxx ∈= ,,, 2 K , Ru∈ , Ry∈  are the state variables, system 

input and output, respectively; ( )xf  and ( )xg  are smooth functions; and ( )td  denotes 

the external disturbance bounded by a known constant 00 >d , i.e. ( ) 0dtd ≤ . 
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Nonlinear systems that can be represented in this form are also known as affine 

nonlinear systems as the systems are linear in the input variables. 

If ( )xf  and ( )xg  are known, the feedback linearization technique can be used to 

design a controller. The most common control structure is 

( )
( )[ ]vxf

xg
u +−=

1
                                                                                        ( )2.2  

where v  is a new control variable. In cases where ( )xf  and ( )xg  are unknown, 

adaptive fuzzy control has been proposed.  

[1, 4-7] propose indirect adaptive fuzzy control schemes for affine nonlinear 

systems, in which two adaptive fuzzy systems ( )
f

xf θˆ  and ( )
g

xg θˆ  are used to 

approximate ( )xf  and ( )xg  respectively. Lypapunov stability analysis is used to 

derive the adaptive laws and to guarantee the control objectives. In these approaches, 

it should be noted that additional precautions are required to avoid possible 

singularities of the controllers (i.e., ( ) 0ˆ =
g

xg θ ). For instance, in Wang [1], a 

projection algorithm is proposed for adjusting gθ  to avoid singularities. 

[24, 25, 32] propose direct adaptive fuzzy control schemes for nonlinear affine 

systems. In these schemes, only one adaptive fuzzy system ( )θvxu ,ˆ  is used to 

approximate the control 
( )

( )[ ]vxf
xg

u +−=
1

. Direct adaptive fuzzy control schemes 

avoid control singularity problem completely. However, compared to indirect 

schemes, more restrictions on ( )xg  are normally required. More discussion on the 

restrictions of direct AFC will be given in chapter 4. 

• Non-affine nonlinear systems 

Non-affine nonlinear systems is a broader class of nonlinear systems, whose 

input variables may not be expressed in an affine form. A SISO non-affine nonlinear 

system is defined as: 
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where [ ] nT

nq Rxxxx ∈= ,,, 2 K , Ru∈ , Ry∈  are the state variables, system input 

and output, respectively; ( )uxf ,  is a unknown smooth function. It can be seen that 

affine nonlinear systems are a special case of this class of nonlinear systems. 

In the past five years, researchers have proposed different AFC schemes [2, 33-

38] for  non-affine nonlinear systems. Because the control input does not appear 

linearly, the well-known feedback linearization technique is not applicable. Adaptive 

fuzzy control of non-affine nonlinear systems is more difficult and challenging. In 

general, more advanced mathematical techniques are required.  

2.2.2.2. Strict-feedback and pure-feedback nonlinear systems 

• Strict-feedback nonlinear systems 

A large number of practical nonlinear systems can be expressed in or transformed 

into a special state-space form called strict-feedback form: 

( ) ( )
( ) ( )
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where [ ] iT

ii Rxxxx ∈= ,,, 21 K , ni ,,1 K= , Ru∈ , Ry∈  are state variables, system 

input and output, respectively. ( )•if  and ( )•ig , ni K1= , are smooth unknown 

functions. The control objective is to determine the control input u  such that output 

y  tracks a reference signal r  as close as possible. 

In the past decade, adaptive backstepping has become one of the most popular 

design methods for systems in triangular form ( )4.2  because it can guarantee global 

stabilities, tracking, and transient performance for the broad class of strict-feedback 

systems ( )4.2  with unknown parameters [2]. The idea behind backstepping design is 

that some appropriate functions of state variables are selected recursively as virtual 

control inputs for lower dimension subsystems of the overall system. Each 

backstepping stage results in a new virtual control design, expressed in terms of the 

virtual control designs from the preceding stages. When the procedure terminates, a 

feedback design for the true control input results, which achieves the original design 

objective by virtue of a final Lyapunov functions associated with each individual 

design stage [39].  
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However, a major constraint of traditional adaptive backstepping technique is that 

unknown functions ( )ii xf  and ( )ii xg , ni K1=  must be “linear in the unknown 

parameters”. With the use of neural networks and adaptive fuzzy systems, this 

assumption can be relaxed. 

Adaptive neural network backstepping control has been proposed in [39-42]. 

Neural networks are used in each step to approximate the unknown functions. A 

drawback of these adaptive neural network backstepping control schemes is the 

problem of “explosion of complexity”, the complexity of controllers grows drastically 

as the order n  of the system increases.  

This explosion of complexity is caused by the need to estimate derivatives of 

certain nonlinear functions [43]. At each step, to estimate this derivative, partial 

derivatives are need to be computed and they are also need to be used as inputs to 

neural networks. The number of partial derivatives increases drastically after each 

step, and thus increases drastically the complexity of controllers. To overcome this 

problem, [43] proposes a dynamic surface control technique, in which a first-order 

filter is introduced at each step to avoid the need to estimate derivatives of certain 

nonlinear functions.  

Recently, adaptive intelligent control has also been developed for discrete strict-

feedback systems. [44] proposes a state-feedback adaptive NN control scheme using 

backstepping, and an output-feedback adaptive NN control scheme using a 

diffeomorphism transformation. The MIMO case has also been considered in [45, 46]. 

• Pure-feedback nonlinear systems 

Pure-feedback systems are a broader class of low-triangular-structured nonlinear 

systems, which is given in a general form as: 

( )
( )
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where [ ] iT

ii Rxxxx ∈= ,,, 21 K , ni ,,1 K= , Ru∈ , Ry∈  are state variables, 

system input and output, respectively. ( )1, +iii xxf , ni K1= , are smooth functions. 

It can be seen that pure-feedback systems ( )5.2  do not have affine variables as 

virtual controls, or as the actual control u . Thus, control of pure-feedback systems 
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( )5.2  is more difficult than control of strict-feedback systems ( )4.2 . Few results of 

controlling pure-feedback systems have been reported in the literature [34, 47]. 

[47] proposes adaptive neural control of pure-feedback systems by combining 

backstepping, input-to-state stability analysis, and the small-gain theorem. The 

proposed control scheme, however, also suffers from the problem of “explosion of 

complexity”. [34] proposes adaptive neural network control using Nussbaum-Gain 

functions and the idea of backstepping. A drawback of this approach is the closed-

loop system has wild transient performance. 

2.2.2.3. SISO and MIMO nonlinear systems 

Inspired by the results for SISO nonlinear systems, researchers have also 

developed adaptive intelligent control for uncertain MIMO nonlinear systems. 

Control of uncertain MIMO nonlinear systems, in general, is more difficult. It is 

due to the difficulties in dealing with the couplings in input matrices and 

interconnections between subsystems. 

[48] proposes adaptive fuzzy control for a class of MIMO nonlinear systems, 

which consists of affine subsystems. And it is assumed that there is no input coupling 

and the system interconnections are bounded with known constants. 

[49-53] present adaptive fuzzy/neural control for a class of MIMO square 

nonlinear plants, in which the bounding restrictions on the system interconnections 

are relaxed. However, it is required that the number of inputs equals the number of 

outputs and the inputs are also in affine forms.  

In [54, 55] adaptive neural network controllers were proposed for some special 

classes of MIMO nonlinear robotic systems, using several nice properties of the 

robotic systems. 

In [56], an adaptive neural control approach was proposed for a class of MIMO 

nonlinear systems with a triangular structure in control inputs.  

In [57], adaptive neural control is proposed for two classes of uncertain MIMO 

nonlinear systems in block-triangular forms, which consists of couplings in the inputs 

as well as in the system interconnections without any bounding restrictions. 

Most results available in the literature assume that inputs appear in the affine 

forms. Control of uncertain MIMO nonlinear systems with nonaffine inputs is still an 

open problem. 
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2.2.2.4. State-feedback and output feedback nonlinear systems 

State-feedback control deals with systems in which it is assumed that all the state 

variables are available for measurement. In practice, it is sometime difficult or 

impossible to measure all the state variables. Output-feedback control is the control of 

systems in which only outputs are required to be available for measurement.  

For affine and nonaffine SISO nonlinear systems, [44, 58] propose adaptive NN 

output feedback control using high gain observers to estimate the required derivatives 

of the outputs. Due to the use of high gain observers, a peaking phenomenon in the 

transient behaviour may occur. To overcome such a problem, saturation methods 

introduced in [59, 60] may be used. [61, 62] propose using linear observers to observe 

the error dynamics. [38] proposes a non-observer approach, in which input/output 

history are used as inputs to NNs instead of the derivatives of the system output. 

Adaptive intelligent output feedback control for wider classes of nonlinear 

systems has also been considered. MIMO cases are considered in [46, 63, 64]. 

Systems with zero dynamics are treated in [65, 66].  

2.2.2.5. Continuous and discrete systems 

Since most controllers are implemented using digital computers, control in 

discrete time domain is an important topic. Adaptive intelligent control for discrete-

time nonlinear systems has also received attention from researchers. Due to the 

difficulties in discrete-time systems, such as the noncausal problem in backstepping 

design, discrete-time domain methods are much less common than those in the 

continuous  domain [46]. 

For SISO discrete time systems, [67, 68] propose adaptive intelligent control for 

a class of discrete affine nonlinear systems. [69] proposes both state and output 

feedback controls for a class of discrete-time systems with general relative degree and 

bounded disturbances. For a class of discrete-time systems in strict feedback form, an 

effective backstepping design method was proposed in [70]. 

 For MIMO discrete time systems, [71] presents adaptive neural network control 

for affine MIMO nonlinear systems. [45] proposes a state feedback NN control 

scheme for a class of discrete-time nonlinear MIMO systems with triangular form 

inputs and bounded disturbances. The authors then present an output feedback control 

scheme for the same class of MIMO discrete-time systems, in which only input and 

output sequences are used to construct stable control. 
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2.2.3. Adaptive mechanism of fuzzy systems 

2.2.3.1. Only parameters are tuned 

In adaptive intelligent control, intelligent systems (i.e. neural networks, neural-

fuzzy systems, or adaptive fuzzy systems) are employed to approximate some 

unknown functions. To guarantee the stability, parameters of intelligent systems are 

tuned online. 

In an intelligent system, there are two type of parameters: linear parameters and 

nonlinear parameters. For example, consequents of a fuzzy system are linear 

parameters, whereas input membership function parameters (centers and variances) 

are nonlinear parameters. For a multi-layer neural network, synaptic weights of the 

output layer are linear parameters, whereas weights of the hidden layers are nonlinear 

parameters.  

Most of the work reported in the literature employs intelligent systems with linear 

tuneable parameters. Fewer results are available for intelligent systems with nonlinear 

tuneable parameters. [2] proposes adaptive control using multi-layer neural networks, 

in which the weights of hidden layers are nonlinear parameters. [3, 72, 73] propose 

adaptive fuzzy control, in which the input membership function parameters are also 

tuned. 

Linear parameterized intelligent systems are simpler to tune and to analyze. They, 

however, suffer “the curse of dimensionality”, their size tend to increase 

exponentially with the dimension of the input space. Nonlinear parameterized 

intelligent systems are normally smaller (in term of size) to achieve the same 

approximation accuracy and they are global approximators. However, the learning 

speed is slower and analysis is more difficult. Thus, it normally depends on a 

particular application to decide which type is more suitable. 

2.2.3.2.  Both parameters and structure are adjusted 

Most intelligent systems used in adaptive control have fixed structures. That is 

the number of membership functions ( in fuzzy systems) or the number of nodes (in 

neural networks) are fixed. Choosing the right structure is an important aspect as it 

affects the approximation capability of the intelligent system. It is difficult to choose a 

suitable structure for a particular application. Normally, a designer needs to try 

several structures to find a suitable one. 
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Few attempts to develop self-structuring intelligent systems for adaptive control 

have been reported. Park et al [37, 74] proposes using self-structuring adaptive fuzzy 

control, in which rules are added to the rule base as the input space is explored. Gao 

[51] proposes using self-organising adaptive fuzzy neural control, which is able to add 

or delete rules from the rule base. Park et al [36] proposes self-structuring adaptive 

neural network control , in which a neuron in the hidden layer splits into two if a 

certain condition is satisfied.  

However, there exist some limitations in the above methods. Even if self-

structuring algorithms are presented, stability analysis is only performed for the fixed-

structured case. There is no discussion on the effect of the self-structuring algorithms 

on the stability. [36, 37, 74] do not propose any algorithm to limit the size of the 

intelligent systems. Thus, there is a risk that the intelligent systems will exceed the 

hardware capability if initial performance is poor. Gao [51] uses large matrix 

manipulation and an Error Reduction Ratio technique to prune rules. Thus, the 

approach is complicated and computationally inefficient. Self-structuring adaptive 

intelligent control is, therefore, still an open research topic. 

2.3. Preliminaries 

2.3.1. Fuzzy system and neural network 

The required knowledge includes basic topics such as: 

• Fuzzy set theory 

• Fuzzy systems ( Mandani and Takagi-Sugeno types) 

• Fundamentals of neural networks 

• Backpropagation and related training algorithms 

There are numerous books in the literature that cover these areas such as [75-77]. 

Thus, we will not re-present these areas here.  

2.3.2. Concepts of stability and boundedness  

[2, 3, 78] Consider the autonomous nonlinear system described by 

( )xfx =& , nRfx ∈,                                                                                            ( )6.2                                    
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2.3.2.1. Stability definitions 

Definition 2.1 A state 
∗

x  is an equilibrium state (or equilibrium point) of the 

system ( )6.2 , if once ( )tx  is equal to 
∗

x , it will remain equal to 
∗

x  forever. In 

mathematical terms, that means the vector 
∗

x  satisfies: 

( ) 0=∗
xf                                                                                                 

Without the loss of generality, we may assume the origin 0=∗x  is an 

equilibrium point. 

Definition 2.2 The equilibrium point 0=∗x  is said to be Lyapunov stable if, for 

any given 0>ε , there exists a positive ( )εδ   such that if 

( ) ( )εδ<0x , 

then ( ) ε<tx , 0≥∀t . 

Otherwise, the equilibrium point is unstable. 

Definition 2.3 The equilibrium point 0=∗x  is said to be asymptotically stable 

if it is Lyapunov stable and there exists δ  such that if 

( ) δ<0x , 

then ( ) 0lim =
∞→

tx
t

. 

Definition 2.4 The equilibrium point 0=∗x  is said to be exponentially stable if 

it is asymptotically stable and there exist 0,, >δβα  such that if 

( ) δ<0x , 

then ( ) ( ) textx βα −≤ 0 , for 0≥t . 

Conceptually, the meanings of the above terms are the following: 

• Lyapunov stability of an equilibrium point means that solutions 

starting “close enough” to the equilibrium point (within the 

distance δ  from it) remain “close enough” forever. Note that this 

must be true for any ε  that one may want to choose. 

• Asymptotic stability means that solutions that start close enough 

not only remain close enough but also eventually converge to the 

equilibrium. 
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• Exponential stability means that solutions not only converge, but in 

fact converge faster than or at least as fast as a particular known 

rate ( ) t
ex
βα −

0 . 

2.3.2.2. Boundedness definitions 

Definition 2.5 A solution ( )tx  is bounded if there exists a 0>β , that may 

depend on each solution, such that  

( ) β<tx  for all 0≥t . 

Definition 2.6 The solutions ( )tx  are uniformly bounded if for any 0>α , there 

exists ( )αβ  such that if  

( ) α<0x , 

then ( ) ( )αβ<tx  for all 0≥t . 

Definition 2.7 The solutions ( )tx  are uniformly ultimately bounded if for any 

0>α , there exist β  and ( )( )0, xT β  such that if 

( ) α<0x , 

then ( ) β<tx  for all ( )( )0, xTt β≥ . 

Definition 2.8 The solutions ( )tx  are semi-globally uniformly ultimately 

bounded if for any Ω , a compact subset of nℜ , there exist β  and ( )( )0, xT β  such 

that if 

( ) Ω∈0x , 

then ( ) β<tx  for all ( )( )0, xTt β≥ . 

2.3.3. Lyapunov stability theorem 

Definition 2.9 A continuous function +ℜ→ℜ:γ  is said to belong to class К if 

• ( ) 00 =α . 

• ( ) ∞→rα  as ∞→r . 

• ( ) 0>rα  0>∀r . 

• ( )rα  is non-decreasing, i.e. ( ) ( )21 rr αα ≥  21 rr >∀ . 

Definition 2.10 A continuous function ( ) ℜ→ℜ×ℜ +mtxV :,  is 
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• locally positive definite if there exists a class К function ( )•α  

such that  

( ) ( )xtxV α≥,  

  for all 0≥t  and x  in the neighbourhood Ν  of the origin nℜ . 

• positive definite if nℜ=Ν . 

• (locally) negative definite if V−  is (locally) positive definite. 

• (locally) decrescent if there exists a class К function ( )•β  such 

that  

( ) ( )xtxV β≤,  

for all 0≥t  and x  in (the neighbourhood Ν  of the origin) nℜ . 

2.3.3.1. Conditions for stability 

Theorem 2.1 Lyapunov Theorem  

Given the non-linear dynamic system 

   ( )txfx ,=& , ( ) 00 xx =  

with an equilibrium point at the origin, and let Ν  be a neighbourhood of 

the origin, i.e. { }0  ,: >≤=Ν εε withxx , then the origin 0 is 

• stable in the sense of Lyapunov if for Nx∈ , there exists a scalar 

function ( )txV ,  such that ( ) 0, >txV  and ( ) 0, ≤txV& , 0≠∀x . 

• uniformly stable if for Nx∈ , there exists a scalar function ( )txV ,  

such that ( ) 0, >txV  and decrescent and ( ) 0, ≤txV& , 0≠∀x . 

• asymptotically stable if for Nx∈ , there exists a scalar function 

( )txV ,  such that ( ) 0, >txV  and ( ) 0, <txV& , 0≠∀x . 

• globally asymptotically stable if for nx ℜ∈ , there exists a scalar 

function ( )txV ,  such that ( ) 0, >txV  and ( ) 0, ≤txV& , 0≠∀x . 

• uniformly asymptotically stable if for Nx∈ , there exists a scalar 

function ( )txV ,  such that ( ) 0, >txV  and decrescent and  

( ) 0, <txV& , 0≠∀x . 
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• globally, uniformly, asymptotically stable if nx ℜ∈ , there exists a 

scalar function ( )txV ,  such that ( ) 0, >txV  and decrescent and  

( ) 0, <txV& , 0≠∀x . 

• exponentially stable if there exist positive constants α , β , γ  such 

that Nx∈∀ , ( ) 22
, xtxVx βα ≤≤  and ( ) 2

, xtxV γ−≤& . 

• globally exponentially stable if there exist positive constants α , 

β , γ  such that nx ℜ∈∀ , ( ) 22
, xtxVx βα ≤≤  and 

( ) 2
, xtxV γ−≤& . 

2.3.3.2. Conditions for boundedness 

Uniform ultimate boundedness (UUB) If there exists a function ( )xV  with 

continuous partial derivatives such that for nSx ℜ⊂∈ : 

• ( )xV  is positive definite: ( ) 0>xV , 0≠∀ x  

• Time derivative of ( )xV  is negative definite outside of S: 

( ) 0<xV& , β>∀ x , ( ) ( )SxBx ∈⇒≤  

Then the system is UUB and Bx ≤ , Ttt +≥∀ 0 . 

2.3.4. Universal approximation properties 

2.3.4.1. Universal approximation property for zero-order Takagi-Sugeno fuzzy 

systems 

Consider zero-order Takagi-Sugeno fuzzy systems with point fuzzification 

method, product-type inference, and center-average defuzzifier.  

For each ba < , Rba ∈, , let ( ) ]1,0[:, →Rbaα  be a membership function such 

that ( )( ) 0, ≠xbaα  if ( )bax ,∈  and ( )( ) 0, =xbaα  if ( )bax ,∉ . The fuzzy system has 

the If-Then rule base of the following form: 

R
(i)

: IF 1x  is iA1 , and 2x  is iA2 , and …and nx  is i

nA , 

  THEN y is 
iθ  

where nT

n RUxxxx ⊂∈= ),,,( 21 K  and RVy ⊂∈  are the crisp input and 

output of the fuzzy system. 
i

jA  are fuzzy sets with membership functions 
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( ) ( )( )
j

i

j

i

jj

i

j xaaxA 21 ,α=  for some i

j

i

j aa 21 < , Mi ,,1 K=  where M is the number of 

rules, nj ,,1 K= . iθ  is the system output due to rule R
(i)

. 

Then, the output of a Takagi-Sugeno fuzzy system is a weighted average of iθ : 
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in which ( )∏
=

=
n

j

j

i

ji xAx
1

)(µ , 0)( ≥xiζ  and 1)(
1

=∑
=

M

i

i xζ . 

Theorem 2.2: Universal approximation theorem  

For any given real continuous function g  on a compact set nU ℜ⊂  and 

arbitrary 0>ε , if a large enough number of rules is used, there exists a 

fuzzy logic system f  in the form of ( )7.2  such that 

     ( ) ( ) ε<−∈ xgxfUxsup  

Proof  

The proof of this theorem can be found in [1, 3]. 

Remark 2.1 This theorem justifies that Takagi-Sugeno fuzzy systems with either 

triangular membership functions or Gaussian membership functions are universal 

approximators. Thus, in this thesis, we will use both Takagi-Sugeno fuzzy systems 

with triangular membership functions and the ones with Gaussian membership 

functions as our fuzzy controllers. 

Remark 2.2 This theorem is just an existence theorem. How to determine the 

sufficient number of rules or how to find such a fuzzy logic system are different 

questions. We are more interested in answer the question “ How to find a fuzzy logic 

controller such that the closed-loop system is stable and the tracking error converge 

to a small neighbourhood of zero?”. 

Remark 2.3 The importance of this theorem should not be overemphasized 

because many other types of functions are also universal approximators (polynomials, 

neural networks, etc.). What should be emphasized is the capability of the fuzzy logic 

systems to incorporate linguistic information in a natural and systematic way. 
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2.4. Basic indirect adaptive fuzzy control for SISO affine nonlinear systems 

As an example, this section shows how the above mathematical tools are used to 

construct a simple adaptive fuzzy controller for SISO affine nonlinear systems. 

Consider SISO affine nonlinear systems in the following form: 

1
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                                                                                            ( )8.2  

where u  is the control input; y  is the output; )(xf  and )(xg  are unknown 

continuous functions; T

nxxxx ),,,( 2,1 K=  is the state vector of the system which is 

assumed available for measurement. 

Control objective is to design an adaptive fuzzy controller such that the output 

)(ty  of the system follows a continuous reference signal nCtr ⊂)( . 

Assumptions  

To design a controller satisfying the above control objective, the following 

assumptions are made: 

• Assumption 2.1: )(xg  is continuous and the sign of )(xg  is known for 

xx Ω∈ , where xΩ  is the controllability region. 

Since 0)( ≠xg  (controllable condition of system ( )8.2  ) and )(xg  is 

continuous for x  in the controllability region xΩ , without loss of generality, it 

can be assumed that 0)( >xg  for xx Ω∈ . 

• Assumption 2.2: Define Tnrrrrr ],,,[ )1( −= K&&&&&& . We assume that 0rr ≤  

and 1

)( rr n ≤  with known constants 0, 10 >rr . 

Ideal control  

Let yre −= , ( )( )Tneeeee 1,,,, −= K&&& ,  and ( )Tnkkkk ,,, 21 K=  be such that the 

polynomial 1

1 ksks n

n

n +++ −
K  is Hurwitz stable. If the functions ( )xf  and ( )xg  

are known, then the control law  

( )
( ) ( )( )nT

rekxf
xg

u ++−=∗
1

                                                                         ( )9.2  
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applied to ( )8.2  results in 

( ) ( )1

21

−−−−=−= n

n

Tn ekekekeke K&
                                                             ( )10.2  

which implies that 0lim =
+∞→
e

t
. The control ∗u  is called ideal control. 

Certainty equivalent control, direct and indirect AFC   

However, )(xf  and )(xg  are unknown. Thus, we need to employ fuzzy systems 

to approximate the unknown functions. If we use one fuzzy system to approximate 

∗u , we have direct AFC. If we use two fuzzy systems to model )(xf  and )(xg , we 

have indirect AFC. Direct AFC will be discussed in the next chapter. Here, we 

consider the indirect case. 

Employ two fuzzy systems )|(ˆ
f

xf θ  and )|(ˆ
gxg θ  in the form ( )7.2  to 

approximate )(xf  and )(xg  respectively. The resulting control law is 

( )( )nT

f

g

c rekxf
xg

u ++−= )|(ˆ
)|(ˆ

1
θ

θ
                                                        ( )11.2  

is the so-called certainty equivalent control. 

Ideal parameters and minimum approximation error 

The ideal parameters 
∗
fθ  and 

∗
gθ  are defined as: 

( )[ ]xfxf fUxf x
−= ∈

∗
)|(ˆsupminarg θθ                                                          ( )12.2  

( )[ ]xgxg gUxg x
−= ∈

∗
)|(ˆsupminarg θθ                                                           ( )13.2  

The minimum approximation error is defined as: 

( )( )xfxf
ff −= ∗
)|(ˆ θω                                                                                 ( )a14.2  

( )( )xgxg
gg −= ∗

)|(ˆ θω                                                                                  ( )b14.2  

Stability analysis and adaptive laws 

Substituting cuu = , adding and subtracting ∗uxg )(  to ( )8.2 , we obtain the error 

equation 

( )( ) ( )( ) cgf

Tn uxgxgxfxfeke −+−+−= )|(ˆ)|(ˆ)( θθ                                    ( )15.2  

or in the matrix form 

( )( ) ( )( )[ ]cgfCC uxgxgxfxfbee −+−+Λ= )|(ˆ)|(ˆ θθ&                                   ( )16.2  

where  
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From ( )14.2 , ( )16.2  becomes 

( ) ( )[ ] ωθθθθ
CcggffCC buxgxgxfxfbee +−+−+Λ= ∗∗

)|(ˆ)|(ˆ)|(ˆ)|(ˆ&         ( )17.2   

where the total approximation error cgf uωωω += .  

From ( )7.2 , ( )17.2  can be written as 

( ) ( )[ ] ωζφζφ Cc

T

g

T

fCC buxxbee +++Λ=&                                               ( )18.2  

where 
∗−= fff

θθφ , 
∗−= ggg

θθφ . 

Since CΛ  is a stable matrix, there exists a unique positive definite symmetric 

nn ×  matrix P  which satisfies the Lyapunov equation: 

QPP C

T

C −=Λ+Λ                                                                                  ( )19.2  

where Q  is an arbitrary nn ×  positive definite matrix.  

To perform the stability analysis, consider the Lyapunov function candidate 

g

T

g
g

f

T

f
f

T
ePeV φφ

γ
φφ

γ 2

1

2

1

2

1
++=                                                     ( )20.2  

where fγ  and gγ  are positive constants. The time derivative of V  along the 

trajectory of ( )18.2  is 

 

( )[ ] ( )[ ]xbPexbPe

bPeeQeV

C

T

gg

T

g
g

C

T

ff

T

f
f

C

TT

ζγθφ
γ

ζγθφ
γ

ω

++++

+−=

&&

&

11
     

2

1

               ( )21.2  

where we used ( )19.2  and ff
θφ && = , gg

θφ && = . If we choose the adaptive laws 

 C

T

ff bPeγθ −=&                                                                                         ( )22.2  

 C

T

gg bPeγθ −=&                                                                                          ( )23.2   

then from ( )21.2  we have 

 ωC
TT

bPeeQeV +−=
2

1&                                                                            ( )24.2  
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From the universal approximation theorem (theorem 2.2), if a sufficient number 

of rules is selected, ω  should be small if not equal to zero. If 0=ω , ( )24.2  becomes 

0
2

1
≤−= eQeV

T& .                                                                                          ( )25.2   

Since V  is lower bounded ( )0≥  and V&  is uniformly continuous, using the 

Barbalat’s Lemma (lemma 2.1), we have 0lim =
+∞→
V

t

& , therefore 0)(lim =
∞→

te
t

. 

This completes the design of the basic indirect AFC of affine nonlinear systems. 

It has been shown that, for system ( )8.2 , if the controller is chosen as ( )11.2 ,adaptive 

laws ( )22.2 , ( )23.2 , and sufficient number of rules for fuzzy systems )|(ˆ
fxf θ  and 

)|(ˆ
gxg θ  are selected, then the system output will follow the reference signal.  

In summary, the design procedure of an AFC system consists of the following 

steps: 

• Show the existence of an ideal control: assume all functions are known, 

show that there exists a control such that the control objectives are met. 

• Show that there exist fuzzy systems to approximate the unknown 

functions. 

• Define the ideal parameters and approximation errors 

• Choose a suitable Lyapunov function to derive adaptive laws such that the 

control objectives are met. 

The presented controller is one of the simplest forms of AFC, which was 

proposed in the early 1990s [1]. Some of its main limitations are discussed in the 

remarks bellows.  

Remark 2.4 The above analysis assumes that the approximation error is small 

and can be neglected. It is often in practice that the approximation error cannot be 

ignored. Thus, extra efforts are normally needed to account for the approximation 

error. In [1, 5, 13, 30, 79], the analysis of stability is only valid under the assumption 

that the approximation error is square integrable. Some researchers suggested an 

addition of a variable structure control term to the control law [3, 17, 18, 62, 80]. A 

number of researchers propose some approaches to estimate the upper bound of the 

approximation errors [4, 12, 33, 81, 82].  
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Remark 2.5 Adaptive laws ( )22.2 , ( )23.2 ,  do not guarantee the boundedness of 

the fuzzy parameters. To overcome this problem, modified adaptive laws such as 

projection algorithms [1, 17], ε -modified and σ -modified adaptive laws [3, 55] have 

been proposed in the literature.  

Remark 2.6 The singularity problem may occur, i.e. the control ( )11.2  is 

indefinite if fuzzy system )|(ˆ
gxg θ  approaches zero. In practice, extra attentions are 

needed to prevent this. Ge et al [2, 55] assumes 
( )

0=
∂

∂

nx

xg
 to design novel adaptive 

controllers while avoiding the singularity problem. Chen and Liu [83] suggest that the 

initial values of the NN weights need to be chosen sufficiently close to the ideal 

values. Thus, offline pre-training is needed. Other methods include using projection 

algorithms [1, 3, 17], a smooth projection algorithm [17], and introducing switching 

control portions to keep the control magnitudes bounded [55]. 

Remark 2.7 Even it is shown that the state vector converges to zero, the state 

vector x  is not guaranteed to stay in the desired set xU . To keep the state variables of 

the system under control in a desired constraint set without the need of large adaptive 

gains, some researchers [1, 13, 31, 32] propose adaptive fuzzy control combined with 

a supervisory control. When the state variables are well inside the constraint set, the 

supervisory control is zero. When the state variables tend to move outside of the 

desired boundaries, the supervisory control begins to operate to force the states stay in 

the constraint set. 

2.5. Conclusion 

A general review of AFC has been given in this chapter. The review has shown 

the rapid development of AFC in the past decade, which results in the diversity and 

variety of AFC schemes available in the literature. It also shown that there are still 

limitations and areas that need to improve.  

Stability concepts and Lyapunov stability techniques are the main mathematical 

tools that are use throughout the thesis. These mathematical tools have also been 

presented in section 1.3. 

Finally, the basic framework of an AFC scheme has been presented through an 

indirect AFC of affine nonlinear systems. Basic concepts such as ideal control, ideal 

parameters, minimum approximation error, and adaptive laws have been introduced. 
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A main drawback of the presented indirect AFC is the effect of the approximation 

error. In the next chapter, we will present how to compensate this by utilising an 

approximation error estimator and an automatic switching mechanism. 
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3. Chapter 3 

TWO-MODE INDIRECT ADAPTIVE FUZZY CONTROL WITH 

APPROXIMATION ERROR ESTIMATOR
1
 

 

3.1. Introduction 

One limitation of the indirect AFC scheme presented in section 2.4 is the effect of 

the approximation error. In this chapter, a two-mode indirect adaptive fuzzy control 

with approximation error estimator is proposed. Equipped with a switching 

mechanism, the controller is also able to automatically switch between two modes, 

learning mode and operating mode, to reduce the number of parameters needed to be 

tuned online.  

In section 3.2, a short survey about the effect of the approximation error in AFC 

is given first. Then, the two-mode indirect AFC scheme is presented in section 3.3. 

Section 3.4 shows application to an inverted pendulum and a Chua’s chaotic circuit to 

demonstrate the proposed control scheme. Finally, some conclusions are drawn in 

section 3.5.  

For the continuity of reading, all figures are displayed at the end of the chapter. 

3.2. Literature review 

The result in section 2.4 assumes that the approximation error is small and can be 

neglected. It is often the case that in practice the approximation error cannot be 

ignored. In [1, 5, 13, 30, 79], the analysis of stability is only valid under the 

assumption that the approximation error is square integrable. Some researchers 

suggest adding a variable structure control term to the control law [3, 17, 18, 62, 80]. 

Other researchers [2, 12, 33, 81, 82] propose to estimate the upper bound of the 

approximation errors.  

Park [81] solves this problem by estimating these bounds using fuzzy inference. 

This requires manual tuning of fuzzy estimators. Er [12] propose using a non-negative 

adaptive law to update the estimators. Thus, the estimated bounds are unbounded. Sun 

et al [82], Park [33], and Ge [2] also present solutions in which they propose using a 

                                                
1
 The content of this chapter has been published in IEEE Transactions on Fuzzy Systems : 

P.A. Phan, and T.J. Gale, “Two-mode adaptive fuzzy control with approximation error estimator”, IEEE Transactions on Fuzzy 

Systems, volume 15 (5), pp 943-955, Oct. 2007. 
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σ -modification adaptive law to update the estimators. This guarantees the 

boundedness of the estimated bounds. 

In [42, 84, 85] bound estimators are also proposed but it is assumed that fuzzy 

models of the plants are already available. No algorithm to tune fuzzy system 

parameters is provided. Designers need to design fuzzy systems manually. The 

advantage of these controllers is that they need only a few adaptive parameters 

regardless of the complexity of the controlled plant, and thus, they are more 

computationally efficient. 

To distinguish the above two cases, we refer to a controller as being in learning 

mode when its fuzzy parameters are tuned online and as being in operating mode 

when its fuzzy parameters are fixed. 

 One may wonder whether it is possible to design an adaptive fuzzy controller 

that can operate in the aforementioned modes, learning mode and operating mode. 

Obviously, this controller would be better since it has the advantages of both modes: 

learning ability and computational efficiency. And if the answer is yes, how can one 

decide which mode the controller should be in? This motivates us to propose a 2-

mode adaptive fuzzy controller with approximation error estimator.  

3.3. Two-mode adaptive fuzzy control with approximation error estimator 

We consider the same control problem as in section 2.4. The nonlinear system is 

given as: 
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                                                                                            ( )1.3  

with the control objective and two assumptions given in section 1.4. The following 

two additional assumptions are also required: 

• Assumption 3.3: We can determine parameter vectors 
L

fθ , 
U

fθ , 
L

gθ  and 

U

gθ  such that )(ˆ)()(ˆ L

f

U

f xfxfxf θθ ≥≥  and )(ˆ)()(ˆ
L

g

U

g xgxfxg θθ ≥≥ , 

xx Ω∈∀ . 
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• Assumption 3.4: The considered plant is slow time-varying and there are 

small disturbances so that, during the operation time, there exist 
0

fθ , 
0

gθ  

such that: 

( ) xgf
xuxgxgxfxf Ω∈∀≤−+−=   ,)(ˆ)()(ˆ)( max

000 ωθθω . 

We employ zero-order Takagi-Sugeno fuzzy systems with Gaussian membership 

functions for input, center-average defuzzifier, and product-type inference. From 

( )7.2 , the output of a fuzzy system of this type is: 

∑
∑
∑

=
=

= ===
M

i

iiM

i i

M

i ii
x

x

x
xfy

1
1

1 )(
)(

)(
)|(ˆˆ ζθ

µ

µθ
θ                                                         

in which )(xiµ  are product of Gaussian membership functions ,i.e. 

∏
= 























 −
−=

n

j
i

j

i

jj

i

cx
x

1

2

2

1
exp)(

σ
µ ,  where i

jc  and i

jσ  are the centers and widths of the 

membership functions for the j
th

 input and the i
th

 rule. 

The two-mode indirect adaptive fuzzy control is proposed as follows. 

The control signal 

( ) 









+++−=
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ε
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ω
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θ
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ˆ.2785.0
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xg
rekxf
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       ( )2.3  

where ε  is a small constant specified by designers, ω̂  is the variable used to 

estimate the approximation error, and other parameters are defined as in section II. 

The adaptive laws 
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θ&                                             ( )3.3  

in which fγ  is the adaptive gain of the fuzzy system )(ˆ
fxf θ , ic  is the center of i

th
 

rule, fMi K,1= , fM  is the number of rules of )(ˆ
fxf θ . 
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in which gγ  is the adaptive gain of the fuzzy system )(ˆ
g

xg θ , jc  is the center of j
th

 

rule, gMj K,1= , gM  is the number of rules of )(ˆ
g

xg θ  
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in which ωγ  is the adaptive gain of the estimator ω̂ . And ωσ , 0ω , and maxω ( )W≥  

are design parameters specified by designers. 

The stability of the controller is stated in two theorems below. 

Theorem 3.1 Stability in the learning mode 

Consider the system ( )1.3 . If assumptions 3.1-3.3 are satisfied, then an 

adaptive fuzzy controller with control signal ( )2.3  and the adaptive laws ( )3.3 , ( )4.3 , 

( )5.3  guarantees that: 

(a) The closed-loop system is stable in the sense that all the variables are 

bounded. In particular,  

i) 
U

fifi

L

fi θθθ ≤≤ , fMi K1=  and 
U

gjgj

L

gj θθθ ≤≤<0 , gMj K1= . 

ii) max0
ˆ ωωω ≤≤ . 

iii) 
( )

)(

),0(max2

min P

VV
e r

λ
≤ , where )(min Pλ  is the minimum eigen value of 

P . )0(V  and rV  are bounded positive constants. 

iv)  
( )

)(

),0(max2

min

0
P

VV
rerx r

λ
+≤+≤ . 

v) The bound of u  is 
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(b) The tracking error converges to a small neighborhood eD  of  zero: 













≤=
)(

2
:

min P

V
eeD r

e λ
. 

(c) The Root Mean Square (RMS) of the tracking error is bounded by 

)(

21
lim

min

2

Q

d
dte

t
RMS

t

t λ
≤= ∫∞→

 

where d  is a bounded positive constant. 

Proof: the proof is given in appendix 3.A◊ 

Theorem 3.2 Stability in the operating mode 

Consider the system (1). If assumptions 3.1-3.4  are satisfied, then an adaptive 

fuzzy controller with control signal ( )2.3  and the adaptive law ( )5.3  guarantees that: 

 (a) The closed-loop system is stable: 

i)  
max0

ˆ ωωω ≤≤ . 

ii)  
( )

)(

),0(max2

min

11

P

VV
e r

λ
≤ . 

in which ( )01V  and rV1  are bounded  positive constants. 

iii) 
( )

)(

),0(max2

min

11

0
P

VV
rx r

λ
+≤ . 

iv) The bound of u  is  

( ) ( ) ( )( )
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(b) The tracking error converges to a small neighbourhood eD ′  of zero 













≤=′
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2
:

min

1

P

V
eeD r

e λ
. 

(c) The RMS error is bounded by: 

)(

2

min Q

d
RMS

λ
≤ . 

Proof: the proof is given in appendix 3.B◊ 
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Switching mechanism The switching between two modes is performed 

automatically by the following mechanism  

• Step 1: parameter initialising.  

Using available linguistic knowledge, we construct initial fuzzy 

systems ( ))0(ˆ
f

xf θ  and ( ))0(ˆ
g

xg θ . 

• Step 2: learning mode 

Use the controller described by theorem 1.  

Switch to the learning phase when C

T
bPe  is smaller than a pre-defined value 

0E  for a specified time interval 0T∆ . 

• Step 3: operating  mode 

Turn off the parameter update algorithm. Use the controller described by theorem 

2 with only one adaptive parameter, which is the estimator value ω̂ . 

Go back to step 2 if C

T
bPe  is larger than 0E . 

The flow chart is given in figure 3.1. 

Remark 3.1 Theorems 3.1 and 3.2 show that the performance of the controller 

depends on positive constants )0(V , rV , d , ( )01V , and rV1 . Even though we cannot 

determine these values exclusively, their definitions (defined in appendix 3.A and 

3.B) suggest that we can make them arbitrarily small by tuning appropriate 

parameters. Therefore, desired performance can be achieved by these parameters. The 

intuitive ways to tune the controller are summarized in table 3.1. Often, the choice of 

which parameters to adjust is dictated by the control problem. 

Remark 3.2 An advantage of the 2-mode controller is the reduction of 

implementation cost. In the learning mode, if the fuzzy system has s  inputs and at 

most two membership functions overlap in each input dimension, there are s2  

adaptive parameters needed to be tuned online. Whereas, in the operating mode, the 

controller requires only one adaptive parameter no matter what the number of inputs 

s  is. This computational advantage becomes apparent if the controlled plant is a high-

order system, in which fuzzy systems with large numbers of inputs are required to 

represent it. 

Remark 3.3 So far, the affect of noise has not been included for clarity. If we 

consider system ( )1.3  with bounded noise: 
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in which ( ) Dtd ≤ , D  is a bounded positive constant, it can be seen that ( )td  can be 

considered as a part of the approximation error when approximating ( )xf . Thus, the 

analysis can be performed as above.  

Remark 3.4 One limitation of our proposed 2-mode adaptive fuzzy controller is 

that it does not have the ability to automatically adjust its structure. In further 

chapters, we will develop self-structured AFC that are able to automatically adjust 

their structure. 

3.4. Applications 

To demonstrate how the proposed 2-mode controller can reduce the number of 

adaptive parameters, its applications to an inverted pendulum and a Chua’s chaotic 

circuit are presented.  

3.4.1. Control of an inverted pendulum 

The controlled variable is the angular position of the pendulum (Fig 3.2). The 

control input is the force applied on the cart. The dynamics of the system is given by: 

Action Parameters tuned 

To reduce the bound on the 

error vector e  

)(,,,),( minmin QP gf λγγγλ ω↑

)0(),(,,, max VPW λεσ ω↓  

To reduce the bound on the 

state vector x  

er ,0↓  

To reduce the bound on the  

control signal u  

( ) ekr n ,,max )(↓  

To reduce the bound on 

e
t +∞→
lim   

Similar to how to reduce the bound 

on e , except to reduce )0(V  

To reduce the RMS error  )(min Qλ↑  

W,,εσω↓  

Table 3.1: methods to tune the controller’s parameters 
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in which 1x  is the angular position of the pendulum. 2x  is the angular velocity of the 

pendulum. cm  is mass of the cart. m  is mass of the pendulum and l  is half-length of 

the pendulum. For simulation purpose, kgmc 1= , kgm 1.0= , and ml 5.0= . 

The initial state is TTxx ]60/,60/[)]0(),0([ 21 ππ −−= . 

The control objective is to make the output 1xy =  track the reference signal 

)sin(5.0)( ttr = .  

Now, we construct the controller as follow 

• step 1: let { }1,1),( 2121 ≤≤=Ω xxxxx
 

• step 2: construct ( )
f

xf θˆ . 

 Define 5 fuzzy sets each for 1x , 2x  as shown in Fig 3.3. We assumed that all the 

possible rules were used. Thus, there are 5x5=25 rules. Examining )(xf , we observe 

that xxxf Ω∈∀<<− ,10)(10 . Thus, it is safe to set ( ) 10ˆ =U

fxf θ  and 

( ) 10ˆ −=L

fxf θ , xx Ω∈∀ . Then, all the consequences fiθ  were initially chosen as 

( ) 00 =fiθ , 251K=i . 

• step 3: construct ( )
g

xg θˆ .  

Use the same fuzzy sets for 1x  and 2x  as used in ( )
f

xf θˆ . Examining )(xg , we 

note that xxxg Ω∈∀≤≤ ,2)(1 , Therefore, we set ( ) 2ˆ =U

gxg θ  and ( ) 1ˆ =L

gxg θ . All 

the consequences gjθ  are chosen as ( ) 10 =giθ , 251K=i . 

• step 4: choose the controller’s parameters.  

The controller’s parameters are chosen as follow: 
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010
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=

55

515
P  

30)( =−= L

U

f ffγ   5.1)( =−= L

U

g ggγ  

5.0=ωγ     05.0=ωσ      1.00 =ω     1max =ω      01.0=ε  

All the parameters are chosen by using the methods given in table 3.1 in order to 

achieve the desired performance. 

• step 5: design the switching mechanism.  

To design the switching mechanism, we need to choose 0E  and 0T∆ . In this 

application, we choose 1.00 =E  and st 100 =∆ .  

The simulation results are shown in Fig 3.4. It can be seen that the controller 

successfully controls the angular position of the inverted pendulum. After about 20s, 

the tracking error is smaller than 0.01rad. Fig 3.4c shows that the state vector x  stays 

in the control region xΩ  for all time. Fig 3.4d shows that the control output is quite 

smooth and there is no chattering. Fig 3.4f shows the control mode, 1 indicates 

learning mode and 0 indicates operating mode. From Fig 3.4f, we observe that the 

controller switches from learning mode to operating mode at around 26.8s. Thus, the 

number of adaptive parameters reduces from 50 (learning mode) to 1 (operating 

mode). In some cases, the controller may switch between the two modes a few times 

before actually stay in the operating mode. Whatever the mode the controller is in, the 

stability is always guaranteed. 

Fig 3.4e shows the value of the estimator and demonstrates its typical behaviour. 

From the start of the simulations, the estimated bounds increase quickly (and is 

bounded by maxω ) to compensate for the large approximation errors. Later on, when 

the errors are smaller, the estimated bounds decreases so that no unnecessary 

excessive control occurs. 

3.4.2. Control of a Chua’s chaotic circuit 

A typical Chua’s chaotic circuit consists of one linear resistor, two capacitors, 

one inductor, and one piecewise-linear resistor. And the original dynamic equations of 

a Chua’s are not in the standard canonical form. However, using a linear 

transformation, we can transform the dynamic equations into the canonical form. For 
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simplicity, here we only show the transformed dynamic equations of a Chua’s system 

described in [13] as follow 

( ) ( )
1

3

32

21

xy

uxgxfx

xx

xx

=

+=

=

=

&

&

&

                                                                                             ( )8.3  

in which 

( )
3

321321
95

7

361

28

45

2

38

1

9025

168

1805

14







 ++−+−= xxxxxxxf  and ( ) 1=xg . The 

initial states are chosen randomly as ( ) 8.001 −=x , ( ) 2.002 =x , ( ) 9.003 =x . 

The control objective is to control the state 1x  to follow the reference desired 

signal ( ) ( )ttr sin5.1= . 

We construct the controller as follow 

• step 1: let { }1,1,1),,( 321321 ≤≤≤=Ω xxxxxxx  

• step 2: construct ( )
f

xf θˆ . 

 Define 3 fuzzy sets each for 1x , 2x , and 3x  as shown in Fig 3.5. We assumed 

that all the possible rules were used. Thus, there are 3x3x3=27 rules. Examining 

)(xf , we observe that xxxf Ω∈∀<<− ,2)(2 . Thus, it is safe to set ( ) 2ˆ =U

fxf θ  and 

( ) 2ˆ −=L

fxf θ , xx Ω∈∀ . Then, all the consequences fiθ  were initially chosen as 

( ) 00 =fiθ , 271K=i . 

• step 3: construct ( )
g

xg θˆ .  

Use the same fuzzy sets for 1x , 2x , and 3x  as used in ( )
f

xf θˆ . We note that 

xxxg Ω∈∀= ,1)( , Therefore, we can set ( ) 1.1ˆ =U

gxg θ  and ( ) 9.0ˆ =L

gxg θ . All the 

consequences gjθ  are chosen as ( ) 10 =giθ , 271K=i  

• step 4: choose the controller’s parameters.  

The controller’s parameters are chosen as follow: 
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6)(5.1 =−×= L

U

f ffγ   3.0)(5.1 =−×= L

U

g ggγ  

1.0=ωγ    3.0=ωσ    01.00 =ω    2.0max =ω      01.0=ε  

• step 5: design the switching mechanism.  

In this application, we choose 2.00 =E  and st 100 =∆ . 

The simulation results are shown in Fig 3.6. It can be seen that the controller 

successfully controls the state 1x  of the transformed Chua’s system. After 15s, the 

tracking error is smaller than 0.01. Fig 3.6c also shows that the state vector x  stays in 

the control region xΩ  for all time. Fig 3.6d shows that there is no chattering in the 

control signal. Moreover, it is interesting to note that the magnitude of the control 

signal of the proposed controller is much smaller than the one in [13]. From Fig 3.6f, 

we observe that the controller switches from learning mode to operating mode at 

around 22s. The number of adaptive parameters reduces from 54 (learning mode) to 1 

(operating mode). After 22s, there is no significant degenerate in the tracking 

performance even that there is only 1 adaptive parameter updated online. 

3.5. Conclusion 

This chapter has presented an indirect AFC scheme, in which an estimator is used 

to compensate the approximation error. To increase the computational efficiency, a 

mechanism has also been proposed to automatically switch the controller from 

learning mode to operating mode to reduce the number of online adaptive parameters. 

The stability analysis and required conditions of the proposed control scheme has 

been derived. Application to an inverted pendulum and a Chua’s chaotic circuit shows 

good tracking result in both modes and the number of online adaptive parameters 

eventually reduces to 1 in operating mode.  

Only indirect AFC has been discussed so far. In next chapter, direct AFC will be 

discussed and solutions to its limitation will be proposed. 
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Parameter Initializing

♦ Construct ( )( )0ˆ
fxf θ  and

( )( )0ˆ
gxg θ .

♦ Choose controller parameters.

Learning Mode

♦ Use the controller (6).

♦ Update the controller’s parameters

using the adaptive laws (7), (8).

♦ Update the estimator using (9).

0EbPe C

T ≤

for 0T∆ ?

Operating Mode

♦ Use the controller (6)

♦ Update the estimator using (9)

?0EbPe C

T >

     
   

Fig 3.1: The flowchart of the switching mechanism 
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Fig 3.2. The inverted pendulum 
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Fig 3.3. Membership functions for 

1x , 
2x  in application 1 
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Fig 3.5. Membership functions for 
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3x  in application 2 
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Fig 3.4. Simulation results for the inverted pendulum 

a) Angular position b) Tracking error )()( trty −  

c) State variable 1x  and 2x  d) Control signal )(tu  

e) The estimator value )(ˆ tω  f) Control mode 
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Fig 3.6: Simulation results for the Chua’s system 

a) Output b) Tracking error )()( trty −  

c) State variable 1x  and 2x   d) Control signal )(tu  

e) The estimator value )(ˆ tω  f) Control mode 
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4. Chapter 4 

DIRECT ADAPTIVE FUZZY CONTROL WITH LESS 

RESTRICTION ON THE CONTROL GAIN
2
 

 

4.1. Introduction 

In chapters 2 and 3, we have investigated indirect AFC, in which two fuzzy 

systems are used to model unknown functions ( )xf  and ( )xg  of the affine nonlinear 

plant ( )1.3 . Direct AFC, on the other hand, needs only one fuzzy system to 

approximate the whole ideal control 
( )

( ) ( )( )nT
rekxf

xg
u ++−=∗

1
. Thus, the main 

advantage of direct AFC is that its structure is simpler than the one of indirect AFC. 

However, direct AFC generally requires more restrictions on the control gain. The 

goal of this chapter is to relax the extra restrictions of direct AFC. 

 First, section 4.2 gives a survey about the required restrictions and some existing 

solutions in the literature. Then, a direct AFC scheme with less restriction is proposed 

in section 4.3 using a simple extension of the universal approximation property. 

Follow that, application to an inverted pendulum and a magnetic levitation system is 

given in section 4.4 to demonstrate the proposed control scheme. Finally, some 

conclusions are summarized in section 4.5                                                                          

4.2. Literature review 

While direct AFC results in a less complicated structure than indirect AFC as it 

employs only one fuzzy system, the singularity problem in indirect AFC is also 

completely avoided. However, a literature survey shows that direct AFC schemes 

usually require more restrictions on the control gain )(xg . 

In addition to the controllability condition, some extra restrictions on ( )xg  are 

needed for stability and convergence analysis. [51, 86] require that the control gain 

)(xg  is known. In [3], ( )xg  is assumed to be in the form ( ) ( )xg
c

xg
1

=  in which 

                                                
2 The content of this chapter has been published in International Journal of Control, Automation, and Systems: 

P.A. Phan, and T.J. Gale, “Direct adaptive fuzzy control with less restrictions on the control gain”, International Journal of 

Control, Automation, and Systems, Vol 5 No 6 Dec 2007, in press. 
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0>c  is an unknown scalar constant and ( )xg  is known. The authors of [1, 5, 12, 31] 

require that ( )xg  is an unknown constant. In [35, 73], the bounds of ( )xg  and its first 

derivative need to be known. In [2], it is assumed that 
( )

0=
∂

∂

nx

xg
, i.e. the control gain 

does not depend on the state variable 
nx . 

Recently, some researchers have proposed a number of different approaches to 

relax the extra constraints on ( )xg . Wang CH et al [13, 32] propose a solution, in 

which the control law does not require extra constraint on ( )xg . However, ( )xg  still 

needs to be known to implement the adaptive law. Ge et al [2] propose an approach, 

in which the extra constraints on ( )xg  are relaxed by using a novel integral-type 

Lyapunov function. The authors later comment that due to the integral operation, this 

approach is complicated and difficult to use in practice [87]. Leu et al [62] propose a 

solution in which the nonlinearity of ( )xg  is treated as a component of the overall 

uncertainty and is cancelled using a variable structure control term. Thus, the bound 

of ( )xg  is still needed. Park et al [36] propose an approach in which the implicit 

function theorem is used to solve the problem. A critical step in their design is to 

determine a constant c  such that ( )xgc
2

1
> , thus knowledge of the upper bound of 

( )xg  is still necessary. 

These constraints present difficulties in practice. For instance, the requirement of 

constant ( )xg  restricts the number of plants that direct AFC can be applied to. The 

requirement of known ( )xg  normally requires tests carried on plants to estimate it. 

Moreover, it cancels out the main advantage of AFC, that is no mathematical model 

of plants are required. Even the requirement of known bound of ( )xg  is a 

disadvantage. If a too conservative bound value is chosen, it usually results in 

undesired control action. Thus, experiments are also needed to determine the bound. 

These extra experiments add complexity, time and cost to the design of direct AFC. 

Why does direct AFC require more restrictions than indirect AFC in the stability 

analysis? Are those extra restrictions really necessary conditions? Or are they used 

simply to overcome obstacles in the stability analysis? We identify that the obstacle 

lies in the statement of the approximation property of fuzzy logic systems. In this 

chapter, using a simple extension of the universal approximation property, we show 
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that those extra constraints are actually not needed. Based on this property, the 

stability analysis of direct AFC can be performed very much like its indirect 

counterpart.  

4.3. Direct adaptive fuzzy control with less restriction 

Consider nonlinear system ( )1.3 . Control objective is to design an adaptive 

fuzzy controller such that the closed-loop system must be stable in the sense that all 

the variables in the closed-loop system must be bounded. And the output )(ty  of the 

system follows a continuous reference signal nCtr ⊂)( . 

Assumption 4.1: )(xg  is continuous and the sign of )(xg  is known for xx Ω∈ , 

where xΩ  is the controllability region. 

Since 0)( ≠xg  (controllable condition of system ( )1.4 ) and )(xg  is continuous 

for x  in the controllability region xΩ , without loss of generality, it can be assumed 

that 0)( >xg  for xx Ω∈ . 

Assumption 4.2: Define Tnrrrrr ],,,[ )1( −= K&&&&&& . We assume that 0rr ≤  and 

1

)( rr n ≤  with known constants 0, 10 >rr . 

The ideal control can be chosen as: 

( )
( ) ( )( )nT

rekxf
xg

u ++−=∗
1

                                                                         ( )1.4  

Let )(nT
rekv += .  ( )1.4  becomes 

( ) ( )vxf
xg

Xu +−=∗ )(
)(

1
                                                                                      ( )2.4                                                                                

in which ( ) X

TT
vxX Ω∈= , , { }1

)(

0 ,, rrrrxX
n

xX ≤≤Ω∈=Ω .     

To approximate ( )Xu
∗ , we employ a fuzzy logic controller in the form ( )7.2  

( ) ( )∑
=

==
M

j

jj XXuu
1

ˆ ζθθ                                                                                  ( )3.4  

in which adaptive parameters are the rule consequents jθ , Mj K1= , and 

( )TMθθθθ K,, 21= .  

Adding and subtracting )()( Xuxg ∗  to ( )1.3 , and after some simple manipulation, 

we have the error dynamics equation: 
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[ ])(ˆ)()()()( θXuxgXuxgeke
Tn −+−= ∗                                                          )4.4(  

To continue, we introduce lemma 4.1, which is inspired by the proof of universal 

approximation property given in [88]. 

Lemma 4.1. Given arbitrary 0>∗ε , there exist 

( ) ( ) ( ) ( )( )TM XXXX ζζζζ K,, 21=  and an ideal parameter vector 

( )TM

**

2

*

1 ,, θθθθ K=∗  such that     

 ( ) ( ) ( ) ( ) ( ) ( ) εζθθθ +−=− ∑
=

∗∗
M

j

jjj

j XcXuxgXuxg
1

ˆ                                   ( )5.4  

where 
∗≤ εε  and jc  are some positive constants. 

Proof: is given in appendix 4.A◊ 

Applying lemma 4.1 to )4.4( , the error dynamic becomes: 

( ) ( ) ( ) 







+−+−= ∑

=

∗ εζθθ
M

j

jjj

jTn
Xceke

1

. 

In the vector form, 

( ) ( ) 







+−+Λ= ∑

=

∗ εζθθ
M

j

jjj

j

CC Xcbee
1

&                                                         ( )6.4  

where  























n321

C

k-k-k-k-

1000

0100

0010

=Λ

L

L

MOMMM

L

L

, 























=

1

0

0

0

MCb . 

Since CΛ  is a stable matrix, there exists a unique positive definite symmetric 

nn ×  matrix P  which satisfies the Lyapunov equation: 

QPP C

T

C −=Λ+Λ                                                                                             )7.4(  

where Q  is an arbitrary nn ×  positive definite matrix chosen such that ( ) 1min >Qλ .  

Assumption 4.3 We can determine the upper and lower bounds of the ideal 

control signal:                                 

( )
UL uXuu ≤≤ ∗ , XX Ω∈∀ . 

This assumption is not a restriction to the plant. It is a reasonable assumption as, 

in practice, it is essential to choose an actuator that is capable of performing the 
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required control action. Later, this assumption will be used to keep the adaptive 

parameters bounded.  

Theorem 4.1 Given system ( )1.3  satisfying assumptions 4.1, 4.2, and 4.3, a 

controller ( )3.4  with the following adaptive law  

( ) ( )
( )( )
( )( )
( )( )
( )( )

 

0 and or                              

0 and  if                            0

0 and or                               

0 and or                               

  if    













≤=

≥=

>=

<=

<<

=

XbPeu

XbPeu

XbPeu

XbPeu

uuXbPe

jC

T

Lj

jC

T

Uj

jC

T

Lj

jC

T

Uj

UjLjC

T

j

ζγθ

ζγθ
ζγθ

ζγθ

θζγ

θ&                                 ( )8.4  

where γ  is the adaptive gain,  will guarantee that: 

i. The adaptive parameters are bounded:  

UjL uu ≤≤θ , Mj K1= . 

ii. The tracking error ( )te  is bounded by: 

( )
( )

( )P

bP
c

V

te

C

min

22

2

1
,0max2

λ

ε
γα 
















+

≤

∗

, 0>∀t ,                           

in which 
( )( )
( )P
Q

max

min 1

λ
λ

α
−

= , ( )0V  is a positive constant dependent on the initial 

conditions, and c is a bounded positive constant. 

iii. The system is Uniformly Ultimately Bounded (UUB), i.e. ( )te  

converges to compact set eΩ  in finite time: 

( ) ( )
( ) 
















−
≤=Ω

∗

1min

22

Q

bP
tete

C

e λ

ε
                                                          

Proof 

i. UjL uu ≤≤θ , Mj K1= . 

From ( )8.4 , it is obvious that UjL uu ≤≤θ , 0≥∀t , Mj K1= . 

ii.  

Consider the Lyapunov function candidate 

( )∑
=

∗ −+=
M

j

jj

jT
cePeV

1

2

2

1

2

1
θθ

γ
.                                                                    ( )9.4  
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The time derivative of V  along the trajectory of ( )6.4  is: 

( ) ( ) ( )

        

1

2

1

11









+−+−−−= ∑∑

=

∗

=

∗ εζθθθθθ
γ

M

j

jjj

j

C

T
M

j

jjj

jT
XcbPeceQeV &&

 

( ) ( )( ) εθζγθθ
γ C

T
M

j

jjC

T

jj

jT
bPeXbPeceQeV +−−+−=⇔ ∑

=

∗

1

1

2

1 && .                    ( )10.4  

If we choose the adaptive law ( )8.4 , we have: 

• If  ( )
UjL uu <<θ  or ( )( )0 and <= XbPeu jC

T

Uj ζγθ   

           or ( )( )0 and >= XbPeu jC

T

Lj ζγθ :  

 ( ) ( )( ) 0=−−∗ jjC

T

jj XbPe θζγθθ & . 

• If ( )( )0 and ≥= XbPeu jC

T

Uj ζγθ :  

0=jθ& . And as jUj u θθ =≤∗ , ( ) 0≤−∗ jj θθ . 

 Thus, ( ) ( )( ) ( ) ( ) 0≤−=−− ∗∗ XbPeXbPe jC

T

jjjjC

T

jj ζγθθθζγθθ & . 

• If ( )( )0 and ≤= XbPeu jC

T

Lj ζγθ : similarly, we have 

( ) ( )( ) ( ) ( ) 0≤−=−− ∗∗ XbPeXbPe jC

T

jjjjC

T

jj ζγθθθζγθθ & . 

Therefore, adaptive law ( )8.4  leads to 

( ) ( )( ) 0≤−−∗ jjC

T

jj XbPe θζγθθ &                                                                    ( )11.4  

Substituting to ( )10.4  gives: 

εC
TT

bPeeQeV +−≤
2

1& .                                                                                ( )12.4  

Using the fact that 

( ) 2

min
2

1

2

1
eQeQe

T λ−≤−  where ( )Qminλ  is the minimum eigen value of Q , 

and 
222222

2

1

2

1

2

1

2

1 ∗+≤+≤ εεε CCC

T
bPebPebPe , 

we have 

( ) 2222

min
2

1

2

1

2

1 ∗++−≤ ελ CbPeeQV&  

⇔ ( )( ) 222

min
2

1
1

2

1 ∗+−−≤ ελ CbPeQV& .                                                        ( )13.4  
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Then, the bound of ( )te  can be derived as follows. As UjL uu ≤≤ ∗θ , and 

UjL uu ≤≤θ , we have: 

( ) ( )∑∑
==

∗ −≤−
M

j

LU

j
M

j

jj

j uucc
1

2

1

2

2

1

2

1

γ
θθ

γ
 

Multiplying by 
( )( )
( )P
Q

max

min 1

λ
λ −

 and substituting to ( )13.4  gives: 

( )( ) ( )( )
( )

( )

( )( )
( )

( )

( )( )
( )

( ) ( )

( )( )
( )

( ) 22

1

2

max

min

1

22

min

max

min

22

1

2

max

min

1

2

max

min2

min

2

1

2

11
      

2

1

2

11
   

2

1

2

11
      

2

11
1

2

1

∗

=

=

∗

∗

=

=

∗

+−
−

+









−+

−
−≤

+−
−

+

−
−

−−−≤

∑

∑

∑

∑

ε
γλ

λ

θθ
γ

λ
λ
λ

ε
γλ

λ

θθ
γλ

λ
λ

C

M

j

LU

j

M

j

jj

j

C

M

j

LU

j

M

j

jj

j

bPuuc
P

Q

ceP
P

Q

bPuuc
P

Q

c
P

Q
eQV&

 

Let  

( )( )
( )

( ) cuuc
P

Q M

j

LU

j =−
−
∑
=1

2

max

min 1

λ
λ

,  

and 
( )( )
( )

α
λ
λ

=
−

P

Q

max

min 1
, 

we have: 









++−≤ ∗ 22

2

1
ε

γ
α CbP

c
VV&                                                                                                             

( ) ( ) 







++
















+−≤⇔ ∗∗− 2222

2

1

2
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Since ( ) 1min >Qλ , equation ( )13.4  implies that V&  is negative when 

( )( ) 222

min
2

1
1

2

1 ∗≥− ελ CbPeQ . This implies that the system is UUB, i.e. ( )te  

converges to compact set eΩ  in finite time: 

( ) ( )
( ) 
















−
≤=Ω

∗

1min

22

Q

bP
tete

C

e λ

ε
.                                                               )15.4(  

End of proof ◊ 

Remark 4.1 To compensate for the approximation error ∗ε , some authors have 

proposed different approaches such as using supervisory control, and error bound 

estimation, etc. We have proposed use of an approximation error estimator in chapter 

3. In this chapter, for clarity, we assume that the approximation error ε  is sufficiently 

small. This assumption becomes more likely with the use of the self-structuring fuzzy 

system presented in next chapter. 

Remark 4.2 It should be noted that, in the literature, there are other modified 

adaptive laws to guarantee the boundedness of adaptive parameters. One of the most 

popular approaches is using the σ -modification adaptive law: 

jjC

T

j XbPe σθζγθ −= )(& .                                                                            )16.4(  

However, the design parameter σ  does not have a clear physical meaning. It is 

often chosen as “a small value”, which is ambiguous. The relationship between σ  

and the bounds of adaptive parameters is not explicit. Even if the adaptive parameters 

are bounded, it does not guarantee the control signal will stay in the desired range. 

Here, by utilizing assumption 4.4 and adaptive law ( )8.4 , we guarantee that adaptive 

parameters are bounded and the control action stays in an explicit range specified by 

designers.  

Remark 4.3 From theorem 4.1.iii, the tracking error can be made arbitrarily 

small by tuning k  (to adjust CbP ), ( )Qminλ  and choosing a good approximation 

structure to keep ∗ε  small. Larger CbP , ( )Qminλ  will lead to a smaller tracking 

error. However, too large CbP , ( )Qminλ  will result in chattering and high gain 

control. Therefore, in practical applications, the design parameters should be adjusted 

carefully for achieving suitable tracking performance and control action. 
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Remark 4.4 Since the controller is only valid when the state vector x  is in the 

desired compact set xΩ , it is necessary to keep x  in xΩ  0≥∀t . From theorem 4.1.ii, 

this can be done by choosing sufficiently large γ , small initial condition ( )0V , and 

suitable reference signal ( )tr . 

Remark 4.5 Even though the control performance can be tuned intuitively as 

shown in remarks 4.3 and 4.4,  the bounds from theorem 4.ii and 4.iii are very 

conservative and have no practical use. These bounds depend on 

( )( )
( )

( )∑
=

−
−

=
M

j

LU

j uuc
P

Q
c

1

2

max

min 1

λ
λ

, which in turn depends on ( )∑
=

∗
M

j

j

jc
1

2
θ . ( )∑

=

∗
M

j

j

jc
1

2
θ  is 

unknown and can be arbitrarily large. Therefore, design parameters chosen using the 

bound of ( )∑
=

∗
M

j

j
j

c

1

2
θ  are very conservative and have no practical use. A survey shows 

that existing AFC has the same limitation. A future research would be to derive 

tighter bounds so that design parameters can be selected explicitly to keep system 

signals in desired compact sets. 

4.4. Applications 

To demonstrate the theoretical results, we present two applications to an inverted 

pendulum and a magnet levitation system. 

4.4.1. Inverted pendulum 

The inverted control problem is given in section 3.4.1. The control objective is to 

make the angular position 1xy =  track the reference signal )sin(5.0)( ttr = .  

The operating input ranges are chosen as follows: 

[ ]1,11 −∈x ; [ ]1,12 −∈x ; [ ]1,1−∈v . 

The membership functions of each input variable 1x , 2x , and v  are chosen as 

shown in figure 3.3. All possible rules are used. Thus, there are 125555 =××  rules. 

All the consequent values are initially chosen as zero. 

From remarks 4.3 and 4.4, the design procedure can be: 

� choose k , and Q . 

� estimate P . 

� tune γ  until satisfied performance is obtained. 

In this application, the controller parameters are chosen as follows: 
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[ ]Tk 11= ; 







=

100

020
Q ; 








=

1510

1025
P ; 50=γ ;.  

10−=Lu ; 10=Uu ; 

The results are shown in figures 4.1-4.3. It can be seen that the inverted 

pendulum is successfully controlled by the direct adaptive fuzzy controller. From an 

initial tracking error of 6/π− , it converges quickly to the range [ ]02.0,02.0− . The 

control signal is always in the range [ ] [ ]10,10, −=UL uu  as shown in figure 4.3.  

The same application is also controlled successfully in [32, 51]. However, Gao 

[51] requires the determination of ( ) 1−
xg . In Wang [32], ( )xg  needs to be known to 

implement the adaptive algorithm (equation 28). Also, the bounds of ( )xf  and ( )xg  

are required. 

Here, we have shown that the only requirement on the control gain is its sign. 

This simplifies the design process and eliminates the time and cost of determining 

those extra requirements.  

4.4.2. Magnetic levitation system 

In this application, the control objective is to control the position of a magnet 

suspended above an electromagnet, where the magnet is constrained so that it can 

only move in the vertical direction (figure 4.4). The equation of motion of this system 

is: 

( ) ( ) ( )
( )

( )ty
Mty

ti
i

M
gty &&&

βα
−+−=

2

sgn  

where ( )ty  is the distance of the magnet above the electromagnet, ( )ti  is the current 

flowing in the electromagnet, M  is the mass of the magnet, and g  is the gravitational 

constant. The parameter β  is a viscous friction coefficient that is determined by the 

material in which the magnet moves, and α  is a field strength constant that is 

determined by the number of turns of wire on the electromagnet and the strength of 

the magnet. In this application, we choose kgM 3= , 15=α , and 12=β . The desired 

position ( )tyd  is taken randomly in the range [ ]cmcm 4,5.0 . The reference trajectory is 

generated using a reference model with transfer function 
( )
( ) ( )( )22

4

++
=

sssy

sy

d

t . 
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 Let ( )tyx =1 , ( )tyx &=2 , and ( ) ( )tiiu 2sgn= . Thus, the current i  can be 

calculated as ( )uabsui )sgn(= . The dynamic equations become 

1

1

22

21

xy

u
Mx

x
M

gx

xx

=

+−−=

=

αβ
&

&

 

which is in the affine form ( )1.3 . Therefore, we can apply our proposed direct AFC to 

control this system. 

The range of the inputs are:  

[ ]5,01 ∈x ; [ ]10,52 −∈x ; [ ]10,10−∈v . 

The membership functions of the three input variables are in figure 4.5-4.7. All 

the consequent values are initially chosen as zero. 

Using the same design procedure in application 1, the controller parameters are: 

[ ]Tk 11= ; 







=

100

020
Q ; 








=

1510

1025
P ; 25=γ ; 

25−=Lu ; 25=Uu  (this implies that current i  is in the range [ ]AA 5,5− ). 

The results are shown in figures 4.8-4.10. It can be observed that the actual 

output tracks closely the reference trajectory. Figure 4.9 shows that the tracking error 

is maintained in the range [ ]cmcm 1.0,1.0− , and the set-point error converges to a very 

small neighbourhood of zero. Similar to the first application, the only requirement for 

the control gain ( )xg  is its sign, which is positive in this case. Further knowledge of 

( )xg  or its bounds are not necessary.  

4.5. Conclusion 

This chapter has proposed a direct AFC scheme, which requires less restriction. 

As a result, direct AFC becomes superior compared to indirect AFC as it is simpler in 

structure, the singularity problem is completely avoided, and no extra restrictions are 

required. Also, we have proposed a modified adaptive law that not only has more 

physical meaning than the well-known σ -modification adaptive law, but also 

guarantees the control action stays in an explicit range. 
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Figure 4.1: angular position 
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Figure 4.2: tracking error 
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Figure 4.3: control signal 
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Figure 4.5: membership functions for 1x  
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Figure 4.6: membership functions for 2x  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
Figure 4.4: a magnet levitation system 
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Figure 4.7: membership functions for v  
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Figure 4.9: tracking error 
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Figure 4.10: control signal  
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5. Chapter 5 

SELF-STRUCTURING DIRECT ADAPTIVE FUZZY COTROL 

 

5.1. Introduction 

In the literature, most AFC schemes employ fuzzy systems with fixed structures. 

Thus, a designer must specify the number of membership functions and the rule base 

by trial and error. In many cases, this task is not trivial as exact mathematical models 

of plants are generally not known. Thus, it is often that the structure used is 

unnecessarily large or too small to adequately represent the plant. One main objective 

of the research is to develop an online self-structuring adaptive fuzzy control 

(SSAFC) scheme. 

In this chapter, a SSAFC scheme for affine nonlinear systems is proposed. As a 

result of the previous chapter, a direct scheme is chosen over an indirect one. First, 

section 5.2 gives a short survey. Then, section 5.3 presents the direct SSAFC scheme 

for affine nonlinear systems. This section covers both the description of the self-

structuring algorithm and the stability proof. Section 5.4 presents application to an 

inverted pendulum and a magnetic levitation system. Finally, some conclusions are 

given in section 5.5. 

5.2. Literature review 

Self-structuring fuzzy systems require clustering of the input space. Clustering 

mechanisms include using output error [89, 90], using distance [91, 92], using 

potential of data points [93], and mountain clustering [94]. There are numerous other 

algorithms for self-structuring neuro-fuzzy systems, but not all of them are suitable 

for online control.  

Few researchers have proposed self-structuring adaptive fuzzy control [37, 51, 

74]. Park et Al [37, 74] propose using a self-structuring fuzzy system, in which rules 

are added to the rule base as the input space is explored. Triangular membership 

functions are used. The width of the membership function is pre-defined and 

unchanged. When one of the input variables moves outside the range of the existing 

membership functions, a new membership function is created. Then, all the possible 

rules that are made available by the new membership functions are added to the rule 

base. This approach eliminates unnecessary rules in regions where the inputs are not 
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actually explored. However, as the explored input space is evenly divided by the 

membership functions, there may be redundant rules in regions where the nonlinearity 

is low and there may be not enough rules in regions where the nonlinearity is high. 

Another disadvantage is the unrestricted growth of the number of rules.  

Gao [51] proposes using a self-organising fuzzy neural system, which is able to 

add or delete rules from the rule base. The rules are generated based on two criteria, 

the system error and the ε -completeness of fuzzy rules (ε -completeness of fuzzy 

rules means that, for any input within the operating range, there exists at least one 

fuzzy rule such that the firing strength is not less than ε ). The rules are pruned based 

on an error reduction ratio (ERR) concept. Due to the use of the output error for 

generation of rules, the proposed fuzzy system overcomes the undesirable even 

distribution of rules in Park et al’s approach. However, in our opinion, even if the 

approach is successful, it is rather complex for online computation as it involves a 

large matrix calculation in every step and requires memory of all the past input-output 

data pairs. Also an explicit relationship between error reduction ratio and the number 

of rules cannot be obtained. Thus, in practice there is no guarantee that the size of the 

fuzzy system will not exceed the hardware capability. Moreover, use of Gaussian 

membership functions further adds computational complexity to the system as the 

number of activated rules at a particular moment of time can not be limited (when 

triangular membership functions are used, the number of activated rules is smaller or 

equal to n2 , in which n  is the number of input variables). 

Stability is an important aspect in control. However, in [37, 51, 74], only stability 

when the structure is fixed is proved. The stability when the structure is changed has 

not been shown.  

In this chapter, we propose a novel self-structuring direct adaptive fuzzy control 

(SSDAFC) for affine nonlinear systems, which has the following features: 

• Rules are added based on the system error and the ε -completeness of 

fuzzy rules: thus, our approach overcomes the undesirable even 

distribution of rules in Park et al’s approach.  

• To limit the number of rules from growing indefinitely, we propose a 

simple algorithm to replace membership functions (instead of adding more 

membership functions) so that the number of rules never exceeds a 
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predefined upper bound. Our approach avoids using the ERR concept, 

thus, avoiding large matrix computation and storage of past data.  

• To further reduce the computational complexity and increase the 

interpretability of fuzzy systems, we employ triangular membership 

functions and allow at most 2 membership functions activated in each 

input dimension. 

• The stability is proved both when the structure is fixed and when the 

structure is changed 

5.3. Self-structuring direct adaptive fuzzy control for affine nonlinear systems 

Beside assumptions 4.1, 4.2, and 4.3, to propose the SSDAFC for affine 

nonlinear systems ( )1.4 , an additional assumption is needed. 

Assumption 5.1 We can determine the upper bound ruleB  of the required number 

of rules that achieves the desired approximation accuracy. 

This assumption is reasonable, as in practice it is important to select 

computational hardware that is capable of implementing the controller. This 

assumption is used to ensure that the controller does not exceed the hardware 

capacity. Also, this assumption is less restrictive than the assumption required in 

fixed-structured AFC that “Designers are able to construct a fuzzy rule base that 

achieves the desired approximation accuracy”. Knowing the upper bound ruleB  of the 

required number of rules, the self-structuring algorithm will automatically construct a 

satisfactory rule base. 

Let ( )TNθθθθ K,, 21=  be the adaptive parameter vector of the final fuzzy 

controller. From assumption 5.1, we have ruleBN ≤  . Thus, ( )TT

in

T

ac θθθ =  in which 

( )TMac θθθθ K,, 21= , ( NM ≤ ) is the vector of adaptive parameters already 

activated, and ( )TNMMin θθθθ K,, 21 ++=  is the vector of adaptive parameters not yet 

generated (inactivated). It should be noted that inθ  is unknown and only required for 

analytical purposes. The control signal is chosen as: 

( ) ( )∑
=

==
M

j

jjac XXuu
1

ˆ ζθθ .                                                                              ( )1.5  
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5.3.1. Description of the self-structuring algorithm 

The key roles of the online self-structuring algorithm include: 

• Decide when the structure needs to change. 

• Decide whether a new membership function should be added or an old 

membership function should be replaced. 

• Determine the values of membership function parameters and initial 

values of the rule consequents. 

The flowchart of the algorithm is given in Fig 5.1. 
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Fig 5.1: self-structuring algorithm flowchart 
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5.3.1.1. Criteria for rule generation 

Two criteria for rule generation are system error and ε -completeness:  

• System error: 

C

T
bPe  represents the system error. In the adaptive law, the rule consequents are 

adjusted to reduce 
C

T
bPe . When 0=

C

T
bPe , the output error is zero, and the rule 

consequents do not need to change. Therefore, when 
C

T
bPe  is equal to or larger than 

a predefined value thresholderror _ , a new membership function is considered.   

• The ε -completeness: 

In Gao [9], ε -completeness of fuzzy rules is defined as “for any input within the 

operating range, there exists at least one fuzzy rule such that the match degree (or 

firing strength) is not less than ε ”. To guarantee the ε -completeness, we make sure 

that: for any input within the operating range, in every input dimension, there exists at 

least one membership function such that the membership degree is not less than 0ε . 

The relationship between ε  and 0ε  is n

0εε = , where n  is the number of inputs. The 

value of 0ε  is usually selected as 5.00 =ε . 

If one of the two criteria for rule generation is not satisfied, a new membership 

function is considered. The algorithm then checks if ruleB  would be exceeded if the 

new membership function is added. If the answer is “no”, a new membership function 

will be added. It the answer is “yes”, an old membership function will be replaced. 

5.3.1.2. Adding a membership function and its related rules when the ε -

completeness is not satisfied 

When the ε -completeness is not satisfied, and ruleB  will not be reached, a new 

membership function will be added. 

Identify the input dimension to which the new membership function is added. 

Since the ε -completeness is not satisfied, there is an input dimension that there is no 

membership function with membership degree greater or equal to 0ε . The new 

membership function is added to this input dimension. 

Determine the parameters of the new membership function. Parameters of a 

triangular membership function include its center, left point, and right point. When a 

new membership function is added, its center is chosen as the current value of the 

input variable. The left and right points are chosen as the centers of the left and right 
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neighbouring membership functions respectively. In cases when there is no left (or 

right) neighbouring membership function, the left (or right) point is chosen such as 

the distance to the center is equal to a predefined value (max_mf_distance). Thus, 

max_mf_distance defines the maximum allowed distance between two neighbouring 

membership functions. 

To avoid membership functions being too close, a membership function is only 

added when the distances between its center and the centers of the neighbouring 

membership functions are greater than or equal to a predefined value 

(min_mf_distance). Thus, min_mf_distance defines the minimum allowed distance 

between two neighbouring membership functions. 

To ensure that there are at most 2 membership functions activated at any time, the 

neighbouring membership functions are also modified accordingly. The right point of 

the left neighbouring membership function is modified to the center of new 

( )txi  

1mf  2mf  3mf  

0 

1 

4mf  

( )txi  

1mf  2mf  3mf  

0 

1 

0ε  

a) Before a membership function is added 

b) After a membership function is added 

Figure 5.2: if ε -completeness is not satisfied and ruleB  will not be reached 
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membership function. The left point of the right neighbouring membership function is 

also modified to the center of the new membership function. 

The new rules and the consequent values are determined as follows. All possible 

rules made by the new membership function are generated. Since our proposed fuzzy 

system is an unevenly-distributed grid-type, when a membership function is added, 

12 −n  new rules are made possible where n  is the number of inputs. All the new rules’ 

consequents are, then initialized to the current output of the fuzzy system. 

Fig 5.2 illustrates how a membership function is added in this case. Fig 5.2a 

shows that the membership degree is less than 0ε . Thus, a membership function 4mf  

is added at ( )txi  as shown in fig 5.2b. It can be seen that the left point of 4mf  is 

chosen as the center of 
3mf . Since there is no membership function on the right of 

4mf , the right point of 4mf  is chosen as ( )+txi max_mf_distance. The right point of 

3mf  is modified to the center of new membership function 4mf . 

5.3.1.3. Replacing a membership function and its related rules when the ε -

completeness is not satisfied 

When the ε -completeness is not satisfied, and 
ruleB  will be reached, a 

membership function will be replaced. 

The new membership function and its related rules are determined the same way 

in section 5.3.1.2. 

The membership function to be removed is determined as follows. In the input 

dimension to which the new membership function is added, the algorithm searches for 

the furthest membership function from the current point. That furthest membership 

function is the membership function to be removed. All rules related to the removed 

membership function are also deleted from the rule base. 

Fig 5.3 demonstrates how an old membership function is replaced in this case. 

Fig 5.3a shows the membership functions before a membership function is replaced. It 

can be seen that membership function 1mf  is the furthest membership function from 

( )txi . Thus, it will be replaced by a new one. Fig 5.3b shows the old membership 

function 1mf  (in fig 5.3a) is replaced by the new membership function 1mf . The 

center of the new 1mf  is chosen as ( )txi . The left point of 1mf  is chosen as 3x . Since 

there is no membership function on the right of new 1mf , the right point of 1mf  is 
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chosen as ( )+txi max_mf_distance. Since there is no membership function on the 

left of 2mf  now, its left point is modified to ( )−txi max_mf_distance. 

5.3.1.4. Adding a membership function and its related rules when C

T
bPe  is equal 

to or larger than thresholderror _  

When thresholderrorbPe C

T
_≥ , and ruleB  will not be reached, an old 

membership function will be replaced. 

Identify the input dimension to which the new membership function is added. 

The following procedure is used. The rule with maximum firing strength at that 

moment is selected. Then, the new membership function is added to the input with the 

maximum membership function degree. The reason is that the large system error 

( )txi  

1mf  2mf  3mf  

0 

1 

( )txi  

1mf  2mf  3mf  

0 

1 

4mf  

1x  2x  3x  

1x  2x  3x  

a) Before a membership function is added 

b) After a membership function is added 

Figure 5.3: if thresholderrorbPe
C

P
_≥ , distance between ( )txi  and the closest membership function 

center ≥ hresholddistance_t , and ruleB   will not be reached 
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indicates that membership functions in that input are not sufficient to represent the 

nonlinearity in the region. 

The rest of the procedure is the same as the one described in section 5.3.1.2. 

Fig 5.4 demonstrates how a new membership function is added in this case. Fig 

5.4a shows the membership functions before a new membership function is added. 

Distance between ( )txi  and the closest membership function center in this case is 

( ) 2xtxi −  (≥min_mf_distance). As shown in fig 5.4b, membership function 4mf  is 

added at ( )txi . The left point of 4mf  is chosen as 2x . The right point of 4mf  is 

chosen as 
3x . The neighbouring membership functions ( 2mf  and 

3mf ) are also 

modified. The right point of 2mf  and the left point of 3mf  are modified to the center 

of 4mf .  

( )txi  

1mf  2mf  3mf  

0 

1 

4mf  

( )txi  

1mf  2mf  3mf  

0 

1 

4mf  

0ε  

1x  2x  3x  
4x  

2x  4x  3x  

a) Before a membership function is added 

b) After a membership function is added 

Figure 5.4: if ε -completeness is not satisfied and  ruleB will be reached 
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5.3.1.5. Replacing a membership function and its related rules when the error 

measurement C

T
bPe  is equal to or larger than thresholderror _  

When thresholderrorbPe C

T
_≥ , and ruleB  will be reached, a new membership 

function will be added.  

The new membership function and its related rules are determined the same way 

in the section 5.3.1.4. 

The old membership function to be replaced is determined the same way as in 

section 5.3.1.3. 

Fig 5.5 demonstrates how an old membership function is replaced in this case. 

Fig 5.5a shows the functions before a membership function is replaced. Distance 

between ( )txi  and the closest membership function center is ( ) 3xtxi −  

( )txi  

1mf  2mf  3mf  

0 

1 

4mf  

( )txi  

1mf  2mf  
3mf  

0 

1 

4mf  

2x  1x  3x  4x  

2x  3x  4x  

a) Before a membership function is added 

b) Before a membership function is added 

Figure 5.5: if thresholderrorbPe
C

P
_≥ , distance between ( )txi  and the closest membership 

function center ≥ hresholddistance_t ,  and ruleB  will be reached 
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(≥min_mf_distance). It can be seen that 1mf  is the furthest membership function 

from ( )txi . Thus, it will be replaced. Fig 5.5b shows the new membership function 

1mf  and the modified membership functions 3mf  and 2mf . The center of 1mf  is 

chosen as ( )txi . The left point of 1mf  is chosen as 
3x . The right point of 1mf  is 

chosen as ( )+txi max_mf_distance. The right point of 3mf  is modified to the center 

of 1mf . The left point of 2mf  is modified to ( )−txi max_mf_distance. 

5.3.1.6. Parameters 

The self-structuring algorithm has four design parameters. 0ε  defines the 

completeness of fuzzy rules, thresholderror _  defines the minimum level of error to 

trigger structure change, min_mf_distance defines the minimum allowed distance 

between two neighbouring membership functions, and max_mf_distance  defines the 

maximum allowed distance between two neighbouring membership functions. 

Therefore, using larger values of 0ε  or smaller values of thresholderror _ , 

min_mf_distance, or max_mf_distance will result in more rules being generated. 

However, the number of rules is always bounded by ruleB . 

5.3.2. SSDAFC 

The stability of the SSDAFC is given in the following theorem. 

Theorem 5.1 Given system ( )1.3  satisfying assumptions 4.1, 4.2, 4.3, and 5.1, 

a controller ( )1.5  with the self-structuring algorithm described in section 5.3.1 and 

the adaptive law  

( ) ( )
( )( )
( )( )
( )( )
( )( )

 

0 and or                              

0 and  if                            0

0 and or                               

0 and or                               

  if    













≤=

≥=

>=

<=

<<

=

XbPeu

XbPeu

XbPeu

XbPeu

uuXbPe

jC

T

Lj

jC

T

Uj

jC

T

Lj

jC

T

Uj

UjLjC

T

j

ζγθ

ζγθ
ζγθ

ζγθ

θζγ

θ&  

will guarantee that: 

iv. The adaptive parameters are  bounded:  

UjL uu ≤≤θ , Mj K1= . 

v. The tracking error ( )te  is bounded by: 
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( )
( )

( )P

bP
c

V

te

C

min

22

2

1
,0max2

λ

ε
γα 
















+

≤

∗

, 0>∀t ,                           ( )2.5  

in which 
( )( )
( )P
Q

max

min 1

λ
λ

α
−

= , ( )0V  and c are bounded positive constants. 

vi. The system is Uniformly Ultimately Bounded (UUB), i.e. ( )te  

converges to compact set eΩ  in finite time: 

( ) ( )
( ) 
















−
≤=Ω

∗

1min

22

Q

bP
tete

C

e λ

ε
.                                                          ( )3.5  

 Proof 

In theorem 4.1, we have proved the stability of fixed-structured systems. Here, 

we also need to show the stability when the structure changes. If the Lyapunov 

function is chosen as in ( )9.4 , it changes when the structure changes. Thus, it is rather 

difficult to show the stability. To overcome this problem, we choose a new Lyapunov 

function that also includes the not-yet-generated adaptive parameters: 

( ) ( )∑∑
+=

∗

=

∗ −+−+=
N

Mk

kk

k
M

j

jj

jT
ccePeV
1

2

1

2

2

1

2

1

2

1
θθ

γ
θθ

γ
,                                        ( )4.5  

in which the values of not yet generated parameters kθ , NMk ,,1 K+= , are chosen 

as their initialized values (these values are unknown and only required for analytical 

purpose). Since P  is positive definite and 0>jc , Mj K1= , 0>kc , NMk ,,1 K+= , 

it is obvious that 0≥V .  

The stability analysis has two steps. First, we show the stability when the 

structure is fixed. Then, we show that the system is stable at the time the structure 

changes. 

5.3.2.1. When the structure is fixed 

From the adaptive law ( )8.4 , it is obvious that theorem5.1.i holds. 

When the structure is fixed, M  is unchanged. Using the fact that 0=∗jθ& , 

Mj K1= , and 0==∗ kk θθ && , NMk ,,1 K+= , the time derivative of V  along the 

trajectory of ( )6.4  is: 
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( ) ( ) ( )
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∗
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1 && .                     

This equation is exactly the same as ( )10.4 . Following the same procedure as in 

theorem 4.1 (equations ( )10.4  to ( )15.4 ), we have theorem 5.1.ii and 5.1.iii hold. 

5.3.2.2. When the structure changes 

Now, to guarantee the stability of the system at all time, we need to show that the 

system is stable when the structure changes.  

This can be proved by showing that ( )tV  defined in ( )4.5  does not change when 

the structure changes. Let ct  be the time that the structure changes and 1M , 2M  be 

the old and new numbers of rules respectively ( 21 MM < ). We will show that 

( ) ( )+− = cc tVtV . 

With the proposed self-structuring algorithm, the control signal is continuous at 

ct :  

( ) ( )+− = cc tutu .                                                                                                     ( )5.5  

Given system )1.3( , ( )5.5  leads to ( ) ( )+− = cc txtx  and  

( ) ( )+− = cc tete .                                                                                                )6.5(  

From the adaptive law ( )8.4 , )6.5(  leads to  

( ) ( )+− = cjcj tt θθ , 11 Mj K= .                                                                        )7.5(  

Moreover, as we chose the values of inactivated adaptive parameters as the 

values when they are activated, their values do not change at ct . Thus, we have: 

( ) ( )+− = cjcj tt θθ , ( ) 21 ,,1 MMj K+=                                                             )8.5(  

From )6.5( , )7.5(  and )8.5( , we have: 

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )
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End of proof ◊ 

Remark 5.1 All remarks in chapter 4 are also valid for this SSDAFC scheme. 

Remark 5.2 It should be noted that the structures generated by the self-

structuring algorithm are not the optimal ones. Our goal is not to find the optimal 

solution, but to find a structure such that all variables are bounded (including the size 

of the fuzzy controller) and the output follows the reference signal. The proposed self-

structuring algorithm satisfies this goal. 

Remark 5.3 The main limitation of our approach is that it suffers from “the curse 

of dimensionality”, the complexity increases exponentially with the number of inputs. 

This is the trade-off for interpretability. Future research would be to develop a 

SSDAFC scheme for high-order systems, in which simplicity is critical and 

interpretability is less important. 

5.4. Examples 

5.4.1. Inverted pendulum 

To demonstrate the proposed controller, its application to the inverted pendulum 

given in section 3.4.1 is presented. The control objective is to make the angular 

position 1xy =  track the reference signal )sin(5.0)( ttr = .  

The operating variable ranges are chosen as follows: 

 [ ]1,11 −∈x ; [ ]1,12 −∈x ; [ ]1,1−∈v . 

The controller parameters are chosen as follows: 

 [ ]Tk 11= ; 







=

100

020
Q ; 








=

1510

1025
P ; 50=γ   

 10−=Lu ; 10=Uu . 

To test the algorithm with different parameters, we perform simulations with 3 

different setups as follows. As the fuzzy system has 3 premise variables, 

thresholddistance _  and max_mf_distance are vectors with 3 elements. The 

maximum allowed distance between 2 membership functions is chosen as half of the 

input range, i.e max_mf_distance [ ]111= . 

 
0ε  thresholderror _  min_mf_distance max_mf_distance 

ruleB  

Setup1 0.5 0.5 [ ]2.02.02.0  [ ]111  100 

Setup2 0.5 0.5 [ ]4.04.04.0  [ ]111  100 
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Setup3 0.5 0.5 [ ]4.04.04.0  [ ]111  20 

 

The initial fuzzy system has only 1 rule (initialized to 0) with 1 membership 

function in each input dimension as shown in fig 5.6. 

The simulation results of setup 1 are shown in figures 5.7. A variable called self-

structuring flag is used to indicate when the self-structuring performs. When the self-

structuring flag switches from 1 to -1 or -1 to 1, it indicates a change of the fuzzy 

system structure has occurred. It can be observed that the controller successfully 

controls the inverted pendulum to track the sinusoidal signal )sin(5.0)( ttr =  (Fig 

5.7a). After 30s, the tracking error is as small as in the range [ ]01.0,01.0 +−  (Fig 5.7b). 

The control signal is always in the desired range [ ]10,10 +−  (Fig 5.7c). Self-

structuring happens in the first 10s (Fig 5.7d). The final fuzzy system has 96 rules, 

and the bound 100=ruleB  is never exceeded. The final membership functions in each 

input dimension are given in Figures 5.8.  

The minimum allowed distance between two neighbouring membership functions 

is defined by min_mf_distance. Thus, increasing min_mf_distance will result in 

fewer rules. This is confirmed by simulation results of setup 2. After 30s, the tracking 

error has reduced to within the range [ ]02.0,02.0 +− . The control signal is always in 

the desired range [ ]10,10 +− . The final fuzzy system has 36 rules.  

To test how the algorithm replaces membership functions and rules, we change 

ruleB  to 20 in setup 3. The results are shown in figures 5.9. It can be seen that the 

tracking performance is very good. The tracking error is in the range [ ]02.0,02.0 +−  

after 20s. The number of rules increases quickly in the first 5s to 18 rules. After that,  

the number of rules never exceeds 
ruleB , i.e. 20 rules. It can be observed that the 

algorithm replaces membership functions roughly at approximately 10, 14, 17, 32.5, 

36, 45 and 54s. At those moments, there is no degradation in tracking performance. 

This confirms that replacing membership functions does not affect the performance of 

the control system. The membership functions of the fuzzy system at st 60=  are 

given in Figures 5.10. 

The transient error shown in Fig 5.7c is better than the transient error shown in 

Fig 5.9c. The reason is explained as follows. When a membership function (and its 

corresponding rules) is added, the adaptive algorithm needs to make a large 
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adjustment due the initial error of the newly added adaptive parameters. As a result, 

the control action changes relatively quick. Thus, the control performance temporarily 

deteriorates. In Fig 5.9c, a higher number of rules is allowed. Thus, at the start of the 

simulation, more membership functions are added due to large initial error. As a 

consequence, performance in this case deteriorates more. When the structures of the 

fuzzy systems are more stable (after 50s), the errors in both cases are similar.  

5.4.2. Magnetic levitation 

The magnetic levitation system is given in section 4.4.2. Now, we apply the 

proposed DSAFC to control this system. 

The variable ranges are:  

[ ]5,01 ∈x ; [ ]10,52 −∈x ; [ ]10,10−∈v . 

The controller parameters are: 

[ ]Tk 11= ; 







=

100

020
Q ; 








=

1510

1025
P ; 50=γ .  

25−=Lu ; 25=Uu  (this implies that current i  is in the range [ ]AA 5,5− ). 

To test the algorithm with different parameters, we perform simulations with 3 

different setups as follows:  

 
0ε  thresholderror _  min_mf_distance max_mf_distance 

ruleB  

Setup1 0.5 2 [ ]431  [ ]105.75.2  125 

Setup2 0.5 0.5 [ ]431  [ ]105.75.2  125 

Setup3 0.5 5 [ ]431  [ ]105.75.2  125 

The initial fuzzy system has 8 rules (initialized to 0) with 2 membership functions 

in each input dimension as shown in Figs 5.11. 

The results of setup 1 are shown in Figures 5.12. It can be seen that the actual 

output tracks the reference trajectory closely (Fig 5.12a), and thus, the controller 

successfully controls the position of the magnet. The tracking error is never larger 

than 0.3, and it quickly converges to near 0 after the set-point changes. The control 

signal (Fig 5.12c) is always in the desired range [ ]AA 5,5− . The self-structuring 

activity (Fig 5.12d) occurs in the first 20s of the simulation. Following this, the 

number of rules remains unchanged at 48. The resulting fuzzy system has 

membership functions for each input as shown in Figures 5.13. 
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The self–structuring algorithm suggests that increasing thresholderror _  will 

result in fewer rules. This is confirmed by setups 2 and 3. Both applications produce 

the desired performance. Setup 2 results in 64 rules. And setup 3 results in 36 rules 

Both examples show that the desired performance can be achieved by different 

sets of parameters of the self-structuring algorithm. Thus, the choice of parameters is 

not critical. This gives designers the advantage of freely choosing parameters in 

practice. This also demonstrates the ability of the self-structuring algorithm to 

generate a satisfactory structure from different sets of parameters.  

5.5. Conclusion 

In this chapter, we have proposed a SSDAFC scheme for affine nonlinear 

systems. The proposed control scheme has some advantages over some existing 

SSDAFC schemes. It is relatively simpler and more computationally efficient. The 

maximum number of rules of the fuzzy controller can be set explicitly and thus, never 

exceed the hardware capacity. The stability is also proved when the structure changes. 

The use of triangular membership functions increases the interpretability of the rules. 

Application to an inverted pendulum system and a magnetic levitation system 

demonstrate the effectiveness of the controller.  

It should be noted that the structures generated by the self-structuring algorithms 

are not the optimal ones. And the main limitation of our approach is that it suffers 

from “the curse of dimensionality”. 
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Figure 5.6: initial membership functions for variables 1x , 

2x , and v  
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Figure  5.7a: position  
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Figure 5.7b: error  
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Figure 5.7c: control signal  
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Figure 5.8a: final membership functions for variable 1x   

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

input2

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

mf1 mf2mf3mf4

 
Figure 5.8b: final membership functions for variable 2x   
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Figure 5.8c: final membership functions for variable v   
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Figure 5.7d: number of rules and self-structuring flag 



  87 

0 10 20 30 40 50 60
-15

-10

-5

0

5

10

15

Time(second)

C
o
n
tr
o
l 
S

ig
n
a
l(
N

)

Figure 5.9c: control signal  
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Figure 5.9d: number of rules and self-structuring flag  
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Figure 5.10a: final membership functions for variable 

1x   

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

input2

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

mf1 mf2mf3

 
Figure 5.10b: final membership functions for variable 2x   
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Figure 5.9a: position  
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Figure 5.9b: error  
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Figure 5.10c: final membership functions for variable v   
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Fig 5.11a: initial membership functions for variable 1x  
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Fig 11b: initial membership functions for variable 2x  
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Fig 11c: initial membership functions for variable v  
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Figure 5.12a: position of the magnet 
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Figure 5.12b: position error 
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Figure 5.12c: control signal (amp) 
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Figure 5.12d: number of rules 
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Fig 5.13a: final membership functions for variable 1x  
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Fig 5.13b: final membership functions for variable 2x  
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Fig 5.13c: final membership functions for variable v  
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6. Chapter 6 

SELF-STRUCTURING DIRECT ADAPTIVE FUZZY CONTROL 

FOR NON-AFFINE NONLINEAR SYSTEMS
3
 

 

6.1. Introduction 

In chapter 3, 4 and 5, we have discussed AFC of affine nonlinear systems. 

However, there are many practical nonlinear systems, e.g. chemical reactions and PH 

neutralization, whose inputs may not be expressed in affine forms. Adaptive 

intelligent control for non-affine nonlinear systems is more difficult and challenging.  

Consider SISO non-affine nonlinear systems described as follows: 

1

32

21

),(

xy

uxfx

xx

xx

n

=

=

=

=

&

K

K

&

&

                                                                                                      ( )1.6  

where Ru∈  is the control input, Ry∈  is the output, ),( uxf  is an unknown nonlinear 

continuous function, T

nxxxx ),,,( 2,1 K=  is the state vector of the system, which is 

assumed available for measurement. In this chapter, we will investigate SSDAFC of 

nonlinear systems in the form ( )1.6 . 

A short survey about the topic is given in section 6.2. Then, the SSDAFC for 

nonaffine nonlinear systems ( )1.6  is given in section 6.3. It is followed by application 

to two nonaffine nonlinear systems. Finally, conclusion is given in section 6.5 

6.2. Literature review 

Because the control input does not appear linearly, the well-known feedback 

linearization technique is not applicable to non-affine nonlinear systems. An explicit 

expression for the ideal control cannot be obtained. Thus, more complex 

mathematical tools are needed. In [33], the Taylor series expansion method is used to 

transform the original system into an affine-like one. In [34], the mean value theorem 

                                                
3 The content of this chapter has been published in Fuzzy Sets and Systems: 

P.A. Phan, and T.J. Gale, “Direct Adaptive Fuzzy Control with a Self-Structuring Algorithm”, Fuzzy Sets and Systems, in press. 
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and Nussbaum-Gain functions are used. [2, 35] employ the implicit function theorem 

and the mean value theorem to show the existence of ideal feedback control. [36-38] 

propose a pseudo-control scheme and require the contraction condition to show that 

the pseudo-error can be cancelled by an output of an adaptive neural network (or an 

adaptive fuzzy system). 

Also, more requirements are required. Besides the controllability condition 

( )
0

,
>

∂

∂

u

ux
, [33] requires the determination of a lower bound Lg  such that 

( )
0

,
>≥

∂

∂
Lg

u

uxf
. [36-38] require the determination of a design parameter c  such 

that 
( )









∂

∂
>

u

uxf
c

,

2

1
. [2, 35] require that the derivative of  

( )
u

uxf

∂

∂ ,
 is bounded and 

that a design parameter vk  is chosen such as 0kkv > , where 0k  is an unknown 

positive constant.  

To our knowledge, Park et all [37] is the only online self-structuring AFC 

available for non-affine nonlinear systems. As discussed in chapter 5, the draw backs 

of Park’s self-structuring algorithm are the even distribution of membership functions 

and the unrestricted growth of the number of rules. Moreover, in the design of the 

controller, it is required to select a design parameter c  such that 
( )









∂

∂
>

u

uxf
c

,

2

1
. 

Thus, knowledge of the upper bound of 
( )
u

uxf

∂

∂ ,
 is needed, or a rather conservative 

value of c  must be chosen. Thus, it is desirable to develop a more efficient AFC 

scheme for non-affine nonlinear systems. 

In this chapter, we propose a new SSDAFC for non-affine nonlinear systems. 

First, the existence of an implicit ideal control law is shown using the implicit 

function theorem. Then, using an extension of the universal property, we transform 

the error dynamic to the same one as for affine nonlinear systems. Thus, theorem 5.1 

can be applied. The main contributions are: 

• Propose a DAFC scheme for non-affine nonlinear with less restrictions on 

( )
u

uxf

∂

∂ ,
. The only requirement of the control plant is the controllability 

condition 
( )

0
,

>
∂

∂

u

ux
. And there is no restriction on the design parameters. 
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• Propose using the self-structuring algorithm described in chapter 5 for 

DAFC of non-affine nonlinear systems.  

6.3. SSDAFC for non-affine nonlinear systems 

Control objective is to design an adaptive fuzzy controller for non-affine 

systems described by ( )1.6  such that: 

� The closed-loop system must be stable in the sense that all the variables in the 

closed-loop system must be bounded. 

� The output )(ty  of the system follows a continuous reference signal nCtr ⊂)( . 

Assumption 6.1: controllability condition 

( )
0

,
>

∂

∂

u

uxf
 

hold for all ( ) Rux x ×Ω∈,  with a controllability region xΩ . 

Assumption 6.2: Define Tnrrrrr ],,,[ )1( −= K&&&&&& . We assume that 0rr ≤  and 

1

)( rr n ≤  with known constants 0, 10 >rr . 

Assumption 6.3 We can determine the upper bound ruleB  of the required number 

of rules that achieves the desired approximation accuracy. 

6.3.1. Existence of an ideal control law 

Let yre −= , ( )( )Tneeeee 1,,,, −= K&&& ,  and ( )Tnkkkk ,,, 21 K=  be such that the 

polynomial 1

1 ksks n

n

n +++ −
K  is Hurwitz stable. The ideal control law is chosen to 

obtain ( ) ( )1

21

−−−−=−= n

n

Tn ekekekeke K& , yre −= , which implies that 0lim =
+∞→
e

t
. 

Let ( ) ekrv
Tn += .                                                                                            ( )2.6  

Adding and subtracting v  to ( )1.6  gives 

( ) ( ) vduxfeke
Tn +−−−= ,                                                                             ( )3.6  

Now, we prove that there exists an ideal control signal ( )vxu ,
∗  such that  

( )( ) vvxuxf =∗ ,,  for ( ) RRvx n ×∈, .                                                                    

Reintroduce lemma 2.8 that is given in [2]: 

Lemma 6.1. Assume that RRRf n →×:  is continuously differentiable and 

there exists a positive constant q  such that  ( ) 0, >>
∂
∂

quxf
u

 for all 
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( ) RRux n ×∈, . Then there exists a unique continuous smooth function RRg n →:  

such that ( )( ) 0, =xgxf . 

Proof is given in [2]◊ 

Let ( ) 1, +∈= nRvxX  and ( ) ( ) vuxfuXF −= ,, . We have 

( ) ( )
0

,,
>

∂
∂

−
∂

∂
=

∂
∂

u

v

u

uxf

u

uXF
 as 0=

∂
∂
u

v
 and 

( )
0

,
>

∂

∂

u

uxf
 (assumption 1). Thus, we 

can apply lemma 1 for ( )uXF , . Applying lemma 1, there exists a unique continuous 

smooth function ( )Xu ∗  such that ( )( ) 0, =∗ XuXF , i.e.  

( )( ) vXuxf =∗, .                                                                                               ( )4.6  

6.3.2. Stability analysis 

From ( )3.6  and ( )4.6 , we have 

( ) ( )( ) ( )( )[ ]XuxfXuxfeke
Tn ,, −+−= ∗                                                            ( )5.6  

Similar to chapter 5, we let ( ) ( )TN

TT

in

T

ac θθθθθθ K,, 21==  be the adaptive 

parameter vector of the final fuzzy controller, in which ( )TMac θθθθ K,, 21= , 

( NM ≤ ) is the vector of adaptive parameters already activated, and 

( )TNMMin θθθθ K,, 21 ++=  is the vector of adaptive parameters not yet generated 

(inactivated). We will employ a fuzzy system in the form ( )2.2  to approximate ( )Xu∗ :  

( ) ( ) ( )∑
=

==
M

j

jjac XXuXu
1

ˆ ζθθ .                                                                       ( )6.6  

In the literature, the universal approximation property is used to show that there 

exists a fuzzy controller in the form ( )6.6  to approximate an ideal control signal with 

arbitrary accuracy. Here, an extended version of that is introduced: 

Lemma 6.2. Given an arbitrary 0>∗ε , there exist 

( ) ( ) ( ) ( )( )TM XXXX ζζζζ K,, 21=  and an ideal parameter vector ( )TMθθθθ K,, 21=∗  such 

that  

( )( ) ( )( ) ( ) ( ) εζθθ +−=− ∑
=

∗∗
M

j

jjj

j XcXuxfXuxf
1

,,                                    ( )7.6  

where 
∗≤ εε  and jc  are some positive constants. 

The proof is given in appendix 6.A◊ 

Substituting ( )7.6  to ( )5.6  gives the error dynamics: 
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( ) ( ) ( ) εζθθ +−+−= ∑
=

∗
M

j

jjj

jTn Xceke
1

.                                                       ( )8.6  

In the vector form, 

( ) ( ) 







+−+Λ= ∑

=

∗ εζθθ
M

j

jjj

j

CC Xcbee
1

&                                                      ( )9.6  

where  























n321

C

k-k-k-k-

1000

0100

0010

=Λ

L

L

MOMMM

L

L

, 























=

1

0

0

0

MCb . 

Since CΛ  is a stable matrix, there exists a unique positive definite symmetric 

nn ×  matrix P  which satisfies the Lyapunov equation: 

QPP C

T

C −=Λ+Λ                                                                                           )10.6(  

where Q  is an arbitrary nn ×  positive definite matrix chosen such that ( ) 1min >Qλ .  

Assumption 6.4 We can determine the upper and lower bounds of the ideal 

control signal:                                 

( ) UL uXuu ≤≤ ∗ , XX Ω∈∀ . 

As the error dynamic ( ).6  is the same as equation ( )6.4 , the controllers proposed 

in chapter 4,5 can be applied to system ( )1.6 . The control scheme is stated in the 

following theorem 

Theorem 6.1 Given system ( )1.6  satisfying assumptions 6.1, 6.2, 6.3, and 6.4, 

a controller  

( ) ( )∑
=

==
M

j

jjac XXuu
1

ˆ ζθθ  

 with the self-structuring algorithm described in section 5.1.1 and the adaptive law  

( ) ( )
( )( )
( )( )
( )( )
( )( )

 

0 and or                              

0 and  if                            0

0 and or                               

0 and or                               

  if    













≤=

≥=

>=

<=

<<

=

XbPeu

XbPeu

XbPeu

XbPeu

uuXbPe

jC

T

Lj

jC

T

Uj

jC

T

Lj

jC

T

Uj

UjLjC

T

j

ζγθ

ζγθ
ζγθ

ζγθ

θζγ

θ&  

 will guarantee that: 
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vii. The adaptive parameters are  bounded:  

UjL uu ≤≤θ , Mj K1= . 

viii. The tracking error ( )te  is bounded by: 

( )
( )

( )P

bP
c

V

te

C

min

22

2

1
,0max2

λ

ε
γα 
















+

≤

∗

, 0>∀t ,                                                           

in which 
( )( )
( )P
Q

max

min 1

λ
λ

α
−

= , ( )0V  is a bounded positive constant, and c is a positive 

constant that can be made arbitrarily small by tuning the adaptive parameter γ . 

ix. The system is Uniformly Ultimately Bounded (UUB), i.e. ( )te  

converges to compact set eΩ  in finite time: 

( ) ( )
( ) 
















−
≤=Ω

∗

1min

22

Q

bP
tete

C

e λ

ε
.                                                           

 Proof 

As the error dynamic ( )9.6  is the same as equation ( )6.4 , the proof is the same as 

in theorem 5.1. 

End of poof◊ 

As the result is the same as in chapter 4 and 5, remarks given in chapters 4 and 5 

apply. 

6.4. Examples 

6.4.1. Application 1 

To demonstrate the design procedure and performance, we apply our controller to 

control a nonaffine nonlinear system that are presented in [2, 35-37]. The dynamic 

equations of the system are: 

( ) ( )
1

2

2

32

12

21

1.0sin11.015.0

xy

uuxuxx

xx

=

++++=

=

&

&

.                                                          

We suppose that there is no prior knowledge of the system except that 

( )
0

,
>

∂
∂

u

uxF
, which can be easily checked. The initial state is ( ) [ ]Tx 0 00 = . The 
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control objective is to make the output ( )ty  follow a desired reference 

( ) ( ) ( )tttr 5.0cossin += . 

The operating input ranges are chosen as follows: 

[ ]5,51 −∈x ; [ ]5,52 −∈x ; [ ]5,5−∈v . 

The controller’s parameters are specified as follows: 

[ ]Tk 11= , 







=

100

020
Q , 








=

1510

1025
P , 100=γ , 05.0=σ . 

The structure-learning parameters are as follows: 

5.00 =ε , 5_ =thresholderror , min_mf_distance [ ]111= , 

max_mf_distance [ ]555= , 30=rulesB . 

The initial fuzzy system has only 1 rule (initialized to 0) with 1 membership 

function in each input dimension as shown in Fig 6.1. 

The simulation results are shown in Fig 6.2. It can be observed that the controller 

successfully controls the nonaffine nonlinear system to track the reference signal 

( ) ( )tttr 5.0cossin)( +=  (Fig 6.2a). After 10s, the tracking error is within the range 

[ ]02.0,02.0 +−  (Fig 6.2b). The control signal is bounded (Fig 6.2c). The chattering 

phenomena can be reduced by reducing the adaptive gain γ , but at the expense of 

increasing the tracking error. Self-structuring happens in the first 5s (Fig 6.2d). A 

variable called self-structuring flag is used to indicate when the self-structuring 

performs. When the self-structuring flag switches from 1 to -1 or -1 to 1, it indicates a 

change of the fuzzy system structure has occurred. The final fuzzy system has 12 

rules, and the rulesB  is never reached. The final membership functions in each input 

dimension are given in Fig 6.3.   

To test how the algorithm replaces membership functions and rules, we change 

the thresholderror _  from 5 to 4, thus more rules are generated. The results are 

shown in Fig 6.4. The number of rules increases in the first 15s to 24 rules (Fig 6.4d). 

After that, the number of rules never exceeds 
rulesB . It can be observed that the 

algorithm replaces membership functions at approximately 19s and 28s. At those 

moments, there is no degradation in tracking performance (Fig 6.4a). This confirms 

that replacing membership functions does not effect the performance of the control 

system. The membership functions of the fuzzy system at st 30=  is given in Fig 6.5. 
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6.4.2. Application 2 

In this application, we control the nonaffine nonlinear system presented in [61, 

95]. The system dynamics is: 

1

2

2

1212

21

1.0
22

xy

u

u
xxxxx

xx

=

+
+−+−=

=

&

&

                                                                            

It can be seen that the controllability 
( )

0
,

>
∂

∂

u

uxF
 is satisfied. The initial 

condition is ( ) [ ]Tx 03.00 = . The control objective is to make the output ( )ty  follow 

a desired reference ( ) ( )ttr sin
6

π
= . 

The operating input ranges are chosen as follows: 

[ ]2,21 −∈x ; [ ]2,22 −∈x ; [ ]2,2−∈v  

The controller’s parameters are specified as follows: 

[ ]Tk 11= , 







=

100

020
Q , 








=

1510

1025
P , 50=γ , 05.0=σ . 

The structure-learning parameters are as follows: 

5.00 =ε , 2_ =thresholderror , min_mf_distance [ ]4.04.04.0= , 

max_mf_distance [ ]222= , 30=rulesB . 

The initial fuzzy system has only 1 rule (initialized to 0) with 1 membership 

function in each input dimension as shown in Fig 6.6. 

The simulation results are shown in Fig 6.7. It can be observed that the controller 

successfully controls the nonaffine nonlinear system to track the reference signal 

( )ttr sin
6

)(
π

=  (Fig 6.7a). After 8s, the tracking error is within the range [ ]05.0,05.0 +−  

(Fig 6.7b). The control signal is bounded (Fig 6.7c). The chattering phenomena is not 

severe in this application. Self-structuring happens in the first 6s (Fig 6.7d). The final 

fuzzy system has 18 rules, and the rulesB  is never reached. The final membership 

functions in each input dimension are given in Fig 6.8.   
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6.5. Conclusion 

In this chapter, we have extended the SSDAFC proposed in chapter 5 to a class of 

nonaffine nonlinear systems ( )1.6 : 

1

32

21

),(

xy

uxfx

xx

xx

n

=

=

=

=

&

K

K

&

&

 

All features of the self-structuring algorithm are still valid. Moreover, the control 

scheme requires less restriction than some existing AFC schemes for nonaffine 

nonlinear systems. Application to two nonaffine nonlinear systems is shown to 

demonstrate the approach.  

In next chapter, the SSDAFC scheme is further extended to a large class of 

nonaffine nonlinear systems and a class of nonlinear systems in triangular forms. 
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Fig 6.2b: Tracking error 
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Fig 6.4a: Desired output and actual output for the case 

4_ =thresholderror  
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Fig 6.5a: final membership functions of variable 1x  for the 
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7. Chapter 7 

EXTENSION TO THE CONTROL OF OTHER CLASSES OF SISO 

NON-AFFINE NONLINEAR SYSTEMS 

 

7.1. Introduction 

In the last chapter, we have investigated SSDAFC for non-affine systems in the 

normal form: 

1

32

21

),(

xy

uxfx

xx

xx

n

=

=

=

=

&

K

K

&

&

                                                                                                      ( )1.7  

where Ru∈  is the control input, Ry∈  is the output, ),( uxf  is an unknown 

nonlinear continuous function, 
T

nxxxx ),,,( 2,1 K=  is the state vector of the system, 

which is assumed available for measurement. In this chapter, we will extend the 

results to two broader classes of systems. 

In particular, in section 7.2, we will extend SSDAFC to SISO non-affine 

nonlinear systems in the general form [2, 3, 44, 63, 65, 66] 

( )xhy

uxfx

=

= ),(
                                                                                                       )2.7(  

where Ru∈  is the control input, Ry∈  is the output, T

nxxxx ),,,( 2,1 K=  is the state 

vector of the system, ( ) ( ) ( ) ( )( )Tn uxfuxfuxfuxf ,,,,,,, 21 K=  is a vector of unknown 

nonlinear continuous functions, and ( )xh  is an unknown continuous function. 

Then, in section 7.3, we will consider the control of systems in triangular form [2, 

34, 56]: 

( )
( )

1

1

111

,,,

1,,1,,

xy

uxxfx

nixxfx

nnn

ii

=

=

−== +

K&

KK&

                                                               )3.7(  

where Ru∈  is the control input, Ry∈  is the output, 
T

nxxxx ),,,( 2,1 K=  is the state 

vector of the system, ( )•if , ni K1=  are unknown continuous functions. 
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As we will show later, the control of systems )2.7(  and )3.7(  requires knowledge 

of the output y  and its derivatives ( )iy , ki K1= , nk ≤ . In practice, the derivatives 

of y  are sometimes not available for measurement. Output feedback control, in which 

only the output is required, is an approach to overcome this difficulty. In section 7.4, 

we will use a high-gain observer to observe the derivatives of y  and thus propose an 

output feedback SSDAFC scheme. 

7.2. SSDAFC of systems in the form )2.7(  

Fixed-structured adaptive intelligent control has been proposed for system )2.7(  

in the literature [2, 3, 44, 63, 65, 66]. The key idea is to show that system )2.7(  can be 

transformed to the form ( )1.7  if certain conditions are satisfied. Then, adaptive 

intelligent control for system ( )1.7  can be applied to system )2.7( . 

However, to our knowledge, no self-structuring adaptive intelligent control 

approach for system )2.7(  has been in the literature. Therefore, inspired by the 

previous works, we first show that system )2.7(  can be transformed to the form ( )1.7 . 

Then, our SSDAFC proposed in chapter 6 can be applied to system )2.7( . 

Definition 7.1 Lie derivative 

Let hL f  denote the Lie derivative of the function ( )xh  with respect to the vector 

field ( )uxf , : 

( )[ ] ( )uxf
x

xh
hL f ,

∂
∂

=  

Higher-order derivatives are defined recursively as ( )hLLhL k

ff

k

f

1−= , 1>k . 

Definition 7.2 Strong relative degree 

For n

x Rx ⊂Ω∈  and Ru u ⊂Ω∈ , system )2.7(  is said to have a strong relative 

degree ρ  in ux Ω×Ω  if there exists a positive integer ∞≤≤ ρ1  such that 

[ ]
0=

∂

∂

u

hLi

f
, 1,,1,0 −= ρKi , 

[ ]
0≠

∂

∂

u

hL f

ρ

 

for all ( ) uxux Ω×Ω∈, . 

To continue, we consider two cases: system )2.7(  with strong relative degree 

n=ρ , and system )2.7(  with strong relative degree n<ρ . 
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7.2.1. Control of system )2.7(  with strong relative degree n=ρ  

With n=ρ , system )2.7(  can be transformed into a normal form )1.7(  [2] 

( )








=

=

−== +

1

1

,

1,,1,

ξ

ξξ

ξξ

y

ub

ni

n

ii

&

K&

                                                                                   )4.7(  

where ( ) nixhLi

fi ,,1,1
K== −ξ , ( ) ( )xhLub n

f=,ξ , and [ ] ξξξξξ Ω∈= T

nK21 , 

{ }xx Ω∈=Ω ξξ .  

From definition 7.2, 
( )

0
,

≠
∂

∂

u

ub ξ
 uu Ω∈Ω∈∀ ,ξξ , i.e. assumption 6.1 is 

satisfied. Thus, given system )2.7(  with strong relative degree n=ρ , the self-

structuring DAFC proposed in 6.3 applied to system )4.7(  guarantees that all signal 

of system )2.7(  are bounded and the tracking error is uniformly ultimately bounded 

(UUB). 

Remark 7.1 After the transformation, the output and its derivatives 

( )( ) ( )Tn

Tnyyy 121

1 ,,,,,, −
− = ξξξ KK&  are needed to construct the controller. If these 

signals are not available, they need to be estimated. In section 7.4, we will present an 

output feedback SSDAFC scheme, in which only the output is measurable. Its 

derivatives will be estimated using observers. 

7.2.2. Control of system )2.7(  with strong relative degree n<ρ  

With n<ρ , after the transformation, we have the system in the normal 

form: 

( )
( )













=

=

=

−== +

1

1

,,

,,

1,,1,

ξ

ηξη

ηξξ

ρξξ

ρ

y

uq

ub

iii

&

&

K&

                                                                                  )5.7(  

where ( ) ρξ ,,1,1
K== − ixhLi

fi , ( ) ( )xhLub n

f=,ξ , ( ) ( ) ρηξ ρ −== + nixhLuq i

fi ,,1,,, K , 

( ) ηξηξ Ω×Ω∈, , { }
xx Ω∈=Ω×Ω ηξηξ , . 

If applying the SSDAFC scheme in section 6.3 to the ξ -subsystem 
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( )








=

=

−== +

1

1

,,

1,,1,

ξ

ηξξ

ρξξ

ρ

y

ub

iii

&

K&

,                                                                                 )6.7(  

the states η  is completely unobservable. Thus, η  is not guaranteed to be bounded. 

The dynamics ( )uq ,,ηξη =&  is called the internal dynamics. And with 0=ξ , 

( )uq ,,0 ηη =&  is addressed as the zero dynamics. 

To assure the boundedness of the internal dynamics, the following assumption is 

required [63, 65, 66]: 

Assumption 7.1 The system )2.7(  is hyperbolically minimum-phase, i.e. the zero 

dynamics is exponentially stable. 

In [63, 65, 66], the authors show that assumption 7.1 implies that bounded ξ  

leads to bounded η . 

Therefore, given system ( )2.7  with zero dynamics, i.e. with strong relative 

degree n<ρ , if assumption 7.1 is satisfied, the self-structuring DAFC scheme 

proposed in section 6.2 applied to the ξ -subsystem )6.7(  guarantees all signals of 

)2.7(  are bounded and the tracking error is UUB. 

7.3. SSDAFC of systems in the triangular form )3.7(  

The class of systems in the triangular form is a very popular class of SISO 

nonlinear systems. This class includes both strict-feedback systems and pure-feedback 

systems. A brief review of adaptive intelligent control of systems in the triangular 

form )3.7(  has been given in chapter 2. Adaptive back-stepping is the main technique. 

Using the adaptive back-stepping technique, we can construct a backstepping-based 

SSDAFC for system )3.7( , in which an adaptive fuzzy system equipped with the self-

structuring algorithm proposed in chapter 5 is used at every step to approximate the 

virtual control at every step. However, a serious draw back of the backstepping 

technique is that it needs at least one adaptive intelligent system at every step. This 

dramatically increases the complexity of the controller as the order of the system 

increases. 

Therefore, here, we propose a SSDAFC for system )3.7( , in which only one 

adaptive fuzzy system is required no matter what the order of the system is. The idea 
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is to show that we can transform system )3.7(  to the form )1.7( . Then, the SSDAFC 

proposed in chapter 6 can applied to system )3.7( . 

First, we need to state the controllability condition for system )3.7(  as commonly 

made in the literature: 

Assumption 7.2 System )3.7(  satisfies: 

( )
0

,,

1

11 ≠
∂

+

+

i

ii

x

xxf K
, 1,,1 −= ni K  and 

( )
0

,,,1 ≠
∂

∂

u

uxxf nn K
 n

x Rx ⊂Ω∈∀ .       )7.7(  

Now, we need to show that if assumption 7.2 is satisfied then system )3.7(  has 

strong relative degree n=ρ :  

• The first Lie derivative of the output y  of system )3.7(  is: 

( )[ ] ( ) ( ) ( )211211

1

1 ,,, xxfxxf
x

x
uxf

x

xy
yL f =

∂

∂
=

∂
∂

= . 

Obviously, 
[ ]

0=
∂

∂

u

yL f
 n

x Rx ⊂Ω∈∀ . 

• The second Lie derivative of the output y  of system )3.7(  is: 

[ ] ( ) ( ) ( ) ( ) ( )3212

2

211
211

1

2112 ,,
,

,
,

, xxxf
x

xxf
xxf

x

xxf
uxf

x

yL
yL

f

f ∂
∂

+
∂

∂
=

∂

∂
= . 

From assumption 7.2, 
( )

0
,

2

211
≠

∂

∂

x

xxf
 and 

( )
0

,,

3

3212 ≠
∂

∂

x

xxxf
 n

x Rx ⊂Ω∈∀ , 

the right-hand side is guaranteed to depend on 3x . Thus, we can let 

( ) ( ) ( ) ( ) ( )32123212

2

211

211

1

211 ,,,,
,

,
,

xxxFxxxf
x

xxf
xxf

x

xxf
=

∂

∂
+

∂

∂
 in which 

( )
0

,,

3

3212 ≠
∂

∂

x

xxxF
,  n

x Rx ⊂Ω∈∀ . 

Obviously, 
[ ] ( )

0
,, 3212

2

=
∂

∂
=

∂

∂

u

xxxF

u

yL f
 n

x Rx ⊂Ω∈∀ . 

• The third Lie derivative of the output y  of system )3.7(  is: 

[ ]
( ) ( ) ( ) ( ) ( )413

3

3212
2

1

11

3212

2

3 ,,
,,

,
,,

, xxf
x

xxxF
xxf

x

xxxF
uxf

x

yL
yL

k

kk

k

f

f KK
∂

∂
+

∂
=

∂

∂
= ∑

=
+ . 

Since 
( )

0
,,

3

3212 ≠
∂

∂

x

xxxF
 and 

( )
0

,,,

4

43213 ≠
∂

∂

x

xxxxf
 n

x Rx ⊂Ω∈∀ , the right-

hand side is guaranteed to depend on 4x . Thus, we can let 
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( ) ( ) ( ) ( ) ( )43213413

3

3212
2

1

11

3212 ,,,,,
,,

,
,,

xxxxFxxf
x

xxxF
xxf

x

xxxF

k

kk

k

=
∂

∂
+

∂
∑
=

+ KK  in 

which 
( )

0
,,,

4

43213 ≠
∂

∂

x

xxxxF
 n

x Rx ⊂Ω∈∀ . 

Obviously, 
[ ] ( )

0
,,, 43213

3

=
∂

∂
=

∂

∂

u

xxxxF

u

yL f
 n

x Rx ⊂Ω∈∀ . 

• The i -th Lie derivative ( 14 −= ni K ) of the output y  of system )3.7(  is: 

[ ]
( ) ( ) ( ) ( ) ( )11

11
1

1

11

11

1

,,
,,

,,
,,

, +
−

−

=
+

−
−

∂

∂
+

∂
=

∂

∂
= ∑ ii

i

ii
i

k

kk

k

ii

i

fi

f xxf
x

xxF
xxf

x

xxF
uxf

x

yL
yL K

K
K

K

 

Since 
( )

0
,,11 ≠

∂

∂ −

i

ii

x

xxF K
 and 

( )
0

,,

1

11 ≠
∂

∂

+

+

i

ii

x

xxf K
 n

x Rx ⊂Ω∈∀ , the right-hand 

side is guaranteed to depend on 
1+ix . Thus, we can let 

( ) ( ) ( ) ( ) ( )1111

11
1

1

11

11 ,,,,
,,

,,
,,

++
−

−

=
+

− =
∂

∂
+

∂
∑ iiii

i

ii
i

k

kk

k

ii xxFxxf
x

xxF
xxf

x

xxF
KK

K
K

K
 in 

which 
( )

0
,,

1

11 ≠
∂

∂

+

+

i

ii

x

xxF K
 n

x Rx ⊂Ω∈∀ . 

Obviously, 
[ ] ( )

0
,, 11 =

∂

∂
=

∂

∂
+

u

xxF

u

yL
ii

i

f K
 n

x Rx ⊂Ω∈∀ . 

• The n -th Lie derivative of the output y  of system )3.7(  is: 

[ ]
( ) ( ) ( ) ( ) ( )uxxf

x

xxF
xxf

x

xxF
uxf

x

yL
yL nn

n

nn
n

k

kk

k

nn

n

fn

f ,,,
,,

,,
,,

, 1

11
1

1

11

11

1

K
K

K
K

∂

∂
+

∂
=

∂

∂
= −

−

=
+

−
−

∑
 

Since 
( )

0
,,11 ≠

∂

∂ −

n

nn

x

xxF K
 and 

( )
0

,,,1 ≠
∂

∂

u

uxxf nn K
 n

x Rx ⊂Ω∈∀ , the right-

hand side is guaranteed to depend on u . Thus, we can let 

( ) ( ) ( ) ( ) ( )uxxFuxxf
x

xxF
xxf

x

xxF
nnnn

n

nn
n

k

kk

k

nn ,,,,,,
,,

,,
,,

11

11
1

1

11

11
KK

K
K

K
=

∂

∂
+

∂ −
−

=
+

−∑

 in which 
( )

0
,,,1 ≠

∂

∂

u

uxxF nn K
 nRx ⊂Ω∈∀ . Therefore, 

[ ] ( )
0

,,,1 ≠
∂

∂
=

∂

∂

u

uxxF

u

yL
nn

n

f K
 n

x Rx ⊂Ω∈∀ . 

Thus, from definition 7.2, we conclude that system )3.7(  has strong relative 

degree n=ρ  
n

x Rx ⊂Ω∈∀ . 
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As system )3.7(  belongs to class )2.7(  and assumption 7.2 implies strong 

relative degree n=ρ , system )3.7(  can be transformed to the form )4.7( . Thus, the 

SSDAFC proposed in 6.3 applied to system )4.7(  guarantees that all signals of 

system )3.7(  are bounded and the tracking error is UUB. 

7.4. Output feedback SSDAFC 

As shown in section 7.2 and 7.3, control of systems )2.7(  and )3.7(  requires the 

output and its derivatives ( )( ) ( )TT
yyy 121

1 ,,,,,, −
− = ρ
ρ ξξξ KK&  where ρ  is the strong 

relative degree ( n≤ρ ). This section deals with the case where only the output is 

available for measurement. 

Output feedback adaptive intelligent control has been proposed in the literature. 

Observers are the main tool to estimate the unavailable signals. [44, 58] propose using 

high gain observers to estimate the required derivatives of the outputs. [61, 62] 

propose using linear observers to observe the error dynamics. However, in [62], the 

role of the fuzzy–neural controller is undermined as the nonlinearity of the system is 

compensated by a high gain robust control term. One non-observer approach is 

proposed in [38], in which linear dynamic compensators and low-pass filters are used 

to generate the adaptive signal, and input/output history are used as inputs to NNs 

instead of the derivatives of the system output. 

In this section, we employ a high-gain observer to estimate the derivatives of the 

output. The main advantage of using high-gain observers is the design of observers is 

separate from the design of adaptive intelligent controllers. Thus, the design can be 

divided into 2 steps. First, a SSDAFC is designed assuming all signals are available. 

Then, a high-gain observer is designed to observe the unmeasurable derivatives.  

The high-gain observer presented in [2] is given as follows: 

Lemma 7.1. Suppose the system output ( )ty  and its first n  derivatives are 

bounded, so that ( )
k

k Yy <  with positive constants 
kY . Consider the following linear 

system 

( )



+−−−−−=∋

−==∋

−−

+

ty

ni

nnnn

ii

121121

1 1,,1 ,

ππλπλπλπ

ππ

K&

K&
                                             )7.7(  
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where ∋  is any small positive constant and the parameters 1λ  to 1−nλ  are chosen such 

that the polynomial 11

1

1 ++++ −
− sss n

nn λλ K  is Hurwitz stable. Then 

(i) ( ) ( ) 1,,1 ,11 −=∋−=−
∋

++ nky kk

k

k
Kψ

π
 

 where 1111 πλπλπψ −+ +++= nnn K . 

(ii) There exist positive constants ∗t  and kh  only depending on kY , and iλ , 

1,,1 −= ni K  such that for all ∗> tt  we have ( )
k

k h≤ψ , nk ,,3,2 K= . 

Proof:  The proof is given here for completeness. From )7.7( , we have: 

1212211

22 ππλπλπλπ
ππ

&&K&&&&& −−−−−∋−
∋

=−
∋ −−− nnnny  

From )7.7(  and the above equation yields 

ψ
π

&&& ∋−=−
∋

y2  

By differentiating the above equation and utilizing )7.7( , item (i) follows. 

The derivatives of the vector [ ]Tnππππ K21=  may be computed as 

follows: 

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) n,jdyb
AtAt

ybAybA
At

At

t
j

jjjj

j

j

,,21 ,expexp
1

               

000exp
1

0

111

K

K

=







∋









∋∋

+

∋+++







∋∋

=

∫

−−−−

ττ

ππ
                       )8.7(  

where A  is the matrix corresponding to the homogeneous part of )7.7( , and 

independent of ∋ , and [ ]Tb 100 K= . Since ξ  belongs to the compact set ξΩ  

and u  is bounded, there exist constants 0>jY  such that ( )
j

i Yy ≤ . Then, for any 

0>δ , we may find a constant 0>∗t  such that, for all ∗> tt , the first term 

( ) ( ) ( ) ( )[ ]000exp
1 111 −−−− ∋+++








∋∋

jjjj

j
ybAybA

At
A Kπ  

in )8.7(  is bounded by jYδ  for each j . Further, since ( )
j

j Yy < , there exist constants 

jD , which is independent of ∋ , such that, for each j , the second term in )8.7(  

( ) ( ) jj

t
j

YDdyb
AtAt

<







∋









∋∋ ∫0expexp

1
ττ  
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Now, fix an arbitrarily small ∗δ . Then for ∗> tt , we have ( )
j

j h≤ψ  where 

( ) jjj YDBh ∗+= δ  with B  the norm of the vector [ ]111 −nλλ K . As jD , ∗δ , jY , 

and B  are independent of ∋ , the proof is completed. ◊ 

It should be noted that lemma 7.1 also holds for nk = . We need this later to 

show the stability of the controller. 

The output SSDAFC is proposed as follows: 

Theorem 7.1 Given system ( )1.7  with only the output y  measurable, if the 

state variables are estimated as 

1

2

3
3

2
2

11

ˆ

ˆ

ˆ

ˆ

−∋
=

∋
=

∋
=

=

n

n
nx

x

x

x

π

π

π

π

K

                                                                                                     (7.9)  

where ( )Tnππππ K21=  is estimated using the observer )7.7( , then a 

controller 

( ) ( )∑
=

==
M

j

jjac XXuu
1

ˆˆˆ ζθθ                                                                         )10.7(  

with the self-structuring algorithm described in section 5.1.1 and the adaptive law  

( ) ( )
( )( )
( )( )
( )( )
( )( )

 

0ˆˆ and or                              

0ˆˆ and  if                            0

0ˆˆ and or                               

0ˆˆ and or                               

  if    ˆˆ













≤=

≥=

>=
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=

XbPeu

XbPeu

XbPeu

XbPeu

uuXbPe

jC

T

Lj

jC

T

Uj

jC

T

Lj

jC

T

Uj

UjLjC

T

j

ζγθ

ζγθ
ζγθ

ζγθ

θζγ

θ&                    )11.7(  

in which ( )vxX ˆ,ˆˆ =  and xre ˆˆ −= , will guarantee that  

i.  ( )
( )

( )
h

P

HbP
c

V

te

C

∋+















∋++

≤

∗

min

22

2

1
,0max2

λ

ε
γα

, 0>∀t , 

ii. and ( )te  converges to compact set  
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( ) ( )
( ) 
















∋+
−

∋+
≤=Ω

∗

h
Q

HbP
tete

C

e
1min

22

λ

ε
.                                        

Proof 

The proof includes 3 steps. The first step is to derive the dynamics x&̂  of the 

observed states x̂ . Then, we show that a SSDAFC applied to the system of the 

observed states x̂  guarantees that the observed tracking error xre ˆˆ −=  is UUB.  

Finally, as xx ˆ−  is bounded, the actual tracking error xre −=  is also UUB.  

• Step 1: 

From lemma 7.1(i), 

( ) ( ) ( )nn

n

n

n

n yxy ψ
π

∋−=−=−
∋

−−
−

11

1
ˆ . 

Differentiate it, we have 

( ) ( )1ˆ +∋−=− nn

n yx ψ& . 

From system ( )1.7 , ( ) ( )uxfy n ,= . Substituting it to the above equation gives 

( ) ( )1,ˆ +∋−= n

n uxfx ψ&  

Let ( ) ( )uxfuxff ,ˆ, −=∆ . The above equation becomes 

( ) ( )1,ˆˆ +∋−∆+= n

n fuxfx ψ&  

Thus, the dynamics of the observed states can be represented as 

( )

1

1

32

21

ˆˆ

),ˆ(ˆ

ˆˆ

ˆˆ

xy

fuxfx

xx

xx

n

n

=

∋−∆+=

=

=

+ψ&

K

K

&

&

                                                                       )12.7(  

The bound of ( )1+∋−∆ nf ψ  can be derived as follows. Since ( )uxf ,  is Lipschiz, 

there exists a constant L  such that 

( ) ( ) xxLuxfuxf ˆ,ˆ, −≤−  

Moreover, from lemma 7.1 

hxx ≤∋=∋− ψˆ                                                                                    )13.7(  
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where ( ) ( ) ( )( )Tnψψψψψ K& 32= , and ( )Tnhhhhh K321= . Thus,  

( ) ( ) hLxxLuxfuxf ≤∋−≤− ˆ,ˆ,  

Therefore, the bound of ( )1+∋−∆ nf ψ  is 

( ) ( ) ( ) HhhLLf n

nn ≤∋+≤∋∋−∋≤∋−∆ +
++

1

11 ψψψ                              )14.7(  

in which we have used ( )
1

1

+
+ ≤ n

n hψ  and 1++= nhhLH  is a bounded positive 

constant independent from ∋ . 

• Step 2: 

From theorem 6.1, a controller )10.7(  with the self-structuring algorithm 

described in section 5.1.1 and the adaptive law )11.7(  applied to system  

1

32

21

ˆˆ
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ˆˆ
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xy

uxfx

xx

xx

n

=

=

=

=
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will guarantee that 
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C
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γα 
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≤

∗

, 0>∀t ,       

and ( )tê  converges to compact set ( ) ( )
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−
≤=Ω

∗

1
ˆˆ

min

22

ˆ
Q

bP
tete

C

e λ

ε
.      

Now, for system )12.7( , we can consider ( )1+∋−∆ nf ψ  as part of the 

approximation error. Thus, we have ( )1+∋−∆+= n

new f ψεε  and Hnew ∋+= ∗∗ εε , in 

which H  is a bounded constant defined in )14.7( . It is straight forward that a 

controller )10.7(  with the self-structuring algorithm proposed in chapter 5 and the 

adaptive law )11.7(  applied to system )12.7(  guarantees that  

( )
( )

( )P

HbP
c

V

te

C

min

22

2

1
,0max2

ˆ
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ε
γα 
















∋++

≤

∗

, 0>∀t ,                 )15.7(  
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and ( )tê  converges to compact set  

( ) ( )
( ) 
















−

∋+
≤=Ω

∗

1
ˆˆ

min

22

ˆ
Q

HbP
tete

C

e λ

ε
.                                                 )16.7(  

• Step 3: 

The actual tracking error is 

( ) ψ∋−=−−=−= exxexre ˆˆˆ  

Thus, from lemma 7.1, 

heee ∋+≤∋+≤ ˆˆ ψ .                                                                        )17.7(  

From )15.7( , )16.7( , and )17.7( , 

( )
( )

( )
h

P

HbP
c

V

te

C

∋+















∋++

≤

∗

min

22

2

1
,0max2

λ

ε
γα

, 0>∀t ,      )18.7(     

and ( )te  converges to compact set  

( ) ( )
( ) 
















∋+
−

∋+
≤=Ω

∗

h
Q

HbP
tete

C

e
1min

22

λ

ε
.                                       )19.7(  

This concludes the proof. ◊ 

Remark 7.1 It should be noted that the choices of the controller’s parameters are 

independent from the choice of the observer’s parameters. Thus, it makes the design 

of the output-feedback SSDAFC scheme two separate steps: design an observer ( )7.7  

for system ( )1.7 , and design a SSDAFC for the observed system )10.7( . This 

preserves the main advantage of using a high-gain observer. In [2], high-gain 

observers are also employed, but the design of the controller depends on the design of 

the observer. Thus, the approach is more complicated and parameter tuning is more 

difficult. 

Remark 7.2 As the choices of the controller’s parameters are independent from 

the choice of the observer’s parameters, remarks in chapters 4, 5, 6 are still valid 

Remark 7.3 Theorem 7.1 shows that choosing a smaller ∋  will result in smaller 

tracking error. However, too small ∋  will result in peaking phenomenon and 

chattering in transient behaviour. Saturation methods introduced in [59, 60] have been 
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suggested to overcome this problem. Here, the peaking phenomenon is completely 

avoided by the use of the adaptive law )11.7( . 

Remark 7.4 Recently a new non-observer approach has been proposed in [96], in 

which only the output error is used to generate control input and update laws for 

unknown fuzzy parameters, and no state observer or low-pass filter is required. In the 

future, it would be interesting to investigate the possibility to incorporate our 

proposed self-structuring algorithm with this approach.    

7.5. Example 

7.5.1. Continuously stirred tank reactor (CSTR) system without zero 

dynamics 

We consider the CSTR system given in [2]. This system consists of a constant 

volume reactor cooled by a single coolant stream. An irreversible, exothermic 

reaction, BA→ , occurs in the tank. The objective is to control the concentration aC  

by manipulating the coolant flow rate cq . The process is described by the following 

differential equations 

( )

( ) ( )acf

q

a

c

TR

E

aafa

TR

E

aaaa

TTeqaeCaTT
V

q
T

eCaCC
V

q
C

ca

a

−











−++−=

−−=

−−

−

2

13

.

1

.

00

&

&

 

where aC  and aT  are the concentration and temperature of the tank, respectively; the 

coolant flow rate 
cq  is the control input; and the parameters of the system are given in 

table 7.1. 
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Define the state variables, input, and output as 

[ ] [ ]Taa

T
TCxxx ,, 21 == , cqu = , aCy =  

The dynamics system can be written in the form of system (7.2) 

( )
( )

( ) 1
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3501350
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,
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xxhy
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==
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From the parameters in table 7.1 and the irreversible exothermic property of the 

chemical process, we obtain the operating region of the states and control input as 

follows 

10 1 << x , 35021 >≥ xh , 20 hu ≤≤  

where constant 1h  is the highest temperature of the reactor and constant 2h  is the 

maximum value of the coolant flow rate.  

We have  

 2

4
10

1011
x

f exaxhLy
−

−−==& , 
[ ]

0=
∂

∂

u

hL f
, 

 2

4
10

2

2

21

4

101

2 10 x

f e
x

xx
xaxhLy

−









+−−==

&
&&&& , 

and 

Parameter Description Nominal value 
q  Process flow rate 100l/min 

0aC  Concentration of component A 1mol/l 

fT  Feed temperature 350K 

cfT  Inlet coolant temperature 350K 

V  Volume of tank 100l 

ah  Heat transfer coefficient KJ .min/107 5×  

0a  Pre-exponential factor 110 min102.7 −×  

RE  Activation energy K4101×  

( )H∆−  Heat of reaction molcal /102 4×  

21 , ρρ  Liquid densities lg /101 3×  

pcp CC ,  Heat capacities Kgcal ./1  

13
1 1044.1 ×=a  2

2 10987.6 ×=a  01.03 =a  

 
Table 7.1: parameters of the CSTR system 
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by using the fact that 0,01 >∀>−− −− wwee ww . Therefore, the plant is of relative 

degree 2 and assumption 6.1 is satisfied. Using the transformation given in 7.2.1, the 

system can be represented as 

( )








=

=

=

1

2

21

,

ξ

ξξ

ξξ

y

ub&

&

                                                                               

where 11 x=ξ , 12 x&=ξ , ( ) ( )xhLub f

2, =ξ . The above analysis is just to check the 

validity of the assumptions made. Now, we can use the output feedback SSAFC in 

theorem 7.1 to control the system without the knowledge of the mathematical model 

of the CSTR. 

For comparison purpose, we choose the same control objective as in [2]. The 

control objective is to make the concentration aC  track the set-point ( )tr  of 

lmol /02.0±  about the nominal product concentration of lmol /1.0 . The initial 

conditions are chosen as the nominal operating conditions [ ]Tx 5.438,1.00 = .  

The control input is chosen as ( )10.7 : 

( ) ( )∑
=

==
M

j

jjac XXuu
1

ˆˆˆ ζθθ  in which [ ]TvX ˆ,ˆ,ˆˆ
21 ξξ= . 

The operating variable ranges are chosen as follows: 

 [ ]2.0,01 ∈ξ ; [ ]5.0,5.02 −∈ξ ; [ ]1,1−∈v . 

The controller parameters are chosen as follows: 

 [ ]Tk 11= ; 







=

100

020
Q ; 








=

1510

1025
P ; 1000=γ ;  

 0=Lu ; 500=Uu . 

The structure-learning parameters are as follows: 

5.00 =ε , 5.1_ =thresholderror , max_mf_distance [ ]222.0=  

min_mf_distance [ ] 4/222.0= ,  50=rulesB . 

The initial fuzzy system has 8 rules with 2 membership functions in each input 

dimension as shown in fig 7.1a-7.1c. Using the expert knowledge that at nominal 
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condition, the control input is “near” lmol /100 , we initialize the consequents to 

lmol /100 . 

Since the time derivative of output y  is not available, it is estimated as proposed 

in theorem 7.1 by a 2
nd

-order high-gain observer: 









∋
=

=

2
2

11

ˆ

ˆ

π
ξ

πξ
 and 

( )



+−−=∋

=∋

ty1212

21

ππλπ

ππ

&

&
 with 11 =λ , 1.0∋= , and the initial 

condition ( ) ( )[ ] [ ]TT
yy 0,1.00ˆ,0ˆ

21 = . 

The simulation results are shown in Fig 7.2a-7.2e. It can be seen in Fig 7.2a that 

the concentration tracks the desired reference well. The control signal is in the desired 

range [ ]500,0  (Fig 7.2b). Fig 7.2c and Fig 7.2d show the state estimation errors. Fig 

7.2e shows the number of rules and structure learning flag. It can be seen that no 

structure learning is required in this case.  

For comparison, the results of the adaptive multi-layer NN controller and the 

fixed-gain proportional plus integral (PI) controller given in [2] are shown in Fig 7.3.  

It can be observed that our controller is also better than the PI controller. The multi-

layer NN controller is slightly better than ours. This is due to the addition of a PI 

control term and a robust control term in the multi-layer NN controller. Our controller 

is relatively simpler as it has only one control term, the output of the fuzzy system. By 

incorporating expert knowledge to initialize the consequents to lmol /100 , the set-

point tracking of our controller is still guaranteed during the initial period without the 

use of PI and robust control terms. This demonstrates an advantage of adaptive fuzzy 

control over adaptive NN control, the ability to incorporate expert knowledge to 

initialize controllers. 

7.5.2. Continuously stirred tank reactor (CSTR) system with zero 

dynamics 

We consider the CSTR system presented in [65]. A class of multi-component 

isothermal reaction CBA →↔  is taking place in the reactor. The output of the 

process is the concentration of A , and the manipulated variable is the molar feed flow 

rate of B , BFN . A mass balance gives the modelling equations: 
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( )

A
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C

BFBBB
B

BAAA
A

Cy

CVkFC
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NCVkCVkFC
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dC
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2
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2
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21

 

With the dimensionless variables given in table 7.2, we can obtain the 

dimensionless state-space model description: 

1

2

2333

2

23

2

221122

2

221111 1

xy

xcxx

uxcxcxcxx

xcxcxx

=

+−=

+−−+−=

+−−=

&

&

&

 

It is easy to check that the relative degree of this system is 2. Using the 

transformation given in 7.2.1, the system can be transformed into 

 ( ) ( )
tfc

ugf

3

2102102

21

,,

+−=

+=

=

ηη

ξξξξξ

ξξ

&

&

&

 

where 

 ( )[ ] 2211 11 ccf t −++= ξξ
, 

( ) ( ) ( )[ ] ttt ffccccfccf 32221121210 1212, ++−+−= ξξξξ  , 

( ) tfcg 2210 2, =ξξ . Also, the Damkholer numbers are assumed as follows: 201 =c , 

1.02 =c , and 103 =c . Now, we can use the output feedback SSDAFC in theorem 7.1 

to control this system. 

For comparison purposes, we choose the same control objective as in [65]. The 

control objective is to make the concentration AC  track the set-point ( )tr  of 02.0±  

about the nominal product concentration of 1.0 . The initial conditions are chosen as 

the nominal operating conditions [ ]Tx 110,3.3,1.00 = . 

The control input is chosen as ( )10.7 : 

( ) ( )∑
=

==
M

j

jjac XXuu
1

ˆˆˆ ζθθ  in which [ ]TvX ˆ,ˆ,ˆˆ
21 ξξ= . 

The operating variable ranges are chosen as follows: 
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 [ ]15.0,05.01 ∈ξ ; [ ]05.0,05.02 −∈ξ ; [ ]8.0,8.0−∈v . 

The controller parameters are chosen as follows: 

 [ ]Tk 101= ; 







=

100

010
Q ; 








=

15

1551
P ; 1000=γ ;  

 0=Lu ; 500=Uu . 

The structure-learning parameters are as follows: 

5.00 =ε , 5.1_ =thresholderror , max_mf_distance [ ]6.11.01.0= , 

min_mf_distance [ ] 4/6.11.01.0= , , 50=rulesB . 

The initial fuzzy system has 8 rules with 2 membership functions in each input 

dimension as shown in fig 7.4a-7.4c. Using the expert knowledge that at nominal 

condition, the control input is “near” 100 , we initialize the consequents to 100 . 

Since the time derivative of output y  is not available, it is estimated as proposed 

in theorem 7.1 by a 2
nd

-order high-gain observer: 









∋
=

=

2
2

11

ˆ

ˆ

π
ξ

πξ
 and 

( )



+−−=∋

=∋

ty1212

21

ππλπ

ππ

&

&
 with 11 =λ , 1.0∋= , and the initial 

condition ( ) ( )[ ] [ ]TT
yy 0,1.00ˆ,0ˆ

21 = . 

The simulation results are shown in Fig 7.5a-7.5g. It can be seen in Fig 7.5a that 

the concentration tracks the desired reference well. The control signal is in the desired 

range [ ]500,0  (Fig 7.5b). Fig 7.5c and Fig 7.5d show the state estimation errors. Fig 

7.5e shows the number of rules and structure learning flag. It can be seen that no 

structure learning is required in this case. Fig 7.5f shows the internal dynamics. It can 

be seen that the internal dynamics is stable. 

The tracking performance obtained in [65] is given in Fig 7.6. It can be seen that 

both Ge’s controller and our controller are successful. Ge’s controller responds faster. 

This maybe due to the addition of an a priori control term based on a nominal model 

and a bounding control term. Our controller is relatively simpler as it has only one 

control term, the output of the fuzzy system. Also, Ge’s controller requires 500 

neurons, whereas our controller requires only 8 rules.  

7.5.3. Third-order system in triangular form )3.7(  

A third-order system is given in [2] as: 
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( )( )
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 with ( ) ( ) ( )[ ] [ ]TT
xxx 1.0,3.0,4.10,0,0 321 = . 

The control objective is to make the output of the system track the desired 

trajectory 
dy  generated from the Van der Pol oscillator: 

( )
1

2

2

112

21

1

dd

dddd

dd

xy

xxxx

xx

=

−+−=

=

β&

&

 with ( ) ( )[ ] [ ]TT

dd xx 2.0,5.10,0 21 =  and 2.0=β . 

It can be seen that the system satisfies assumption 7.2, thus it can be transformed 

to the form )4.7( : 

( )
1
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ξξ
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ξξ

=

=

=

=
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ub&

&

&

  

Now, we use the output feedback SSDAFC in theorem 7.1 to control this system. 

As this is a 3
rd

-order system, the desired output and its derivatives ( )dddd yyyy &&&&&& ,,,  are 

needed. ( )dddd yyyy &&&&&& ,,,  can be estimated from ( )Tdd xx 21 ,  as follows: 
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Since the time derivative of output y  is not available, it is estimated as proposed 

in theorem 7.1 by a 3
rd

-order high-gain observer: 
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&

 with 321 == λλ , 2.0∋= , and 

the initial condition [ ] [ ]Tyyy 4.2,7.1,4.1ˆ,ˆ,ˆ
321 = . 

The control input is chosen as ( )10.7 : 
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( ) ( )∑
=

==
M

j

jjac XXuu
1

ˆˆˆ ζθθ  in which [ ]TvX ˆ,ˆ,ˆˆ
21 ξξ= . 

The operating variable ranges are chosen as follows: 

 [ ]5,51 −∈ξ ; [ ]3,32 −∈ξ ; [ ]3,33 −∈ξ  [ ]3,3−∈v . 

The controller parameters are chosen as follows: 

 [ ]Tk 10505= ; 
















=

1000

0100

0010

Q ; 
















=

72.017.210

17.258.4759.103

1059.10386.510

P ; 50=γ ;  

 50−=Lu ; 50=Uu . 

The structure-learning parameters are as follows: 

5.00 =ε , 5.2_ =thresholderror , max_mf_distance [ ]66610=  

min_mf_distance [ ] 5/66610= , 200=rulesB . 

The initial fuzzy system has 16 rules with 2 membership functions in each input 

dimension as shown in fig 7.7a-7.7b. All the consequents are initialized to 0. 

The simulation results are given in Fig 7.8. It can be seen in Fig 7.8a that the 

output tracks the reference signal well. The control signal is in the range [ ]50,50− . 

The actual states and their estimations are shown in Fig 7.8c-7.8e. the number of rules 

and structuring flag is shown in Fig 7.8f. It can be seen that the final fuzzy controller 

has 54 rules. The final membership functions of 1ξ , 2ξ , 3ξ , v  are shown in Fig 7.9. 

Compared to the adaptive NN controller proposed in [2], our controller has 

similar performance. However, our controller requires only 1 fuzzy system with 54 

rules, whereas the adaptive NN controller requires 3 neural networks (64 nodes, 256 

nodes, 1024 nodes). Moreover, the adaptive NN controller also requires calculations 

of some partial derivatives, which increase the complexity of the controller. 

7.6. Conclusion 

In this chapter, we extend the control scheme in chapter 6 to two broader classes 

of nonlinear systems: 

( )xhy

uxfx

=

= ),(
, 
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and 
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. We show that these classes can be 

transformed to the nominal form 
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Thus, the control scheme proposed in chapter 6 can apply to these classes.  

In case the derivatives of y  are not available, we propose output feedback 

SSDAFC using high-gain observers. Application to 3 nonlinear systems demonstrates 

the effectiveness of the output feedback SSDAFC scheme. 

In the next chapter, we will present the software implementation of control 

schemes proposed so far. 
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Fig 7.4a: membership functions for 

1ξ  

 
Fig 7.3: results of Ge’s adaptive multi-layer NN controller and fixed-gain proportional plus integral (PI) controller  
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8. Chapter 8 

MATLAB IMPLEMENTATION 

 

8.1. Introduction 

Matlab and Simulink are integrated software packages that maybe used for 

modeling, simulating, and analyzing dynamic systems. Simulink provides a graphical 

user interface (GUI) for building models as block diagrams, using click-and-drag 

mouse operations. It is a powerful tool for Simulation and Model-Based Design. 

Simulink applications range from control design, signal processing and 

communications, image processing, etc. [97]. 

 In control design area, designers use Simulink and add-on products to design and 

create software that is used in aerospace, defense, automotive, industrial equipment, 

process control, and many other applications. Thus, Simulink is a very suitable tool to 

implement our control algorithms.  

In this chapter, we present the software implementation of our proposed control 

algorithms. Programming issues are discussed in section 8.2. Section 8.3 presents our 

Adaptive Fuzzy Control simulink library, which includes a DAFC block, a SSDAFC 

block, and a high-gain observer block. Then, the simulation process is explained 

through an example of controlling an inverted pendulum. Real-time control is 

discussed in section 8.5. 

8.2. Programming 

The implementation of the developed control algorithms required extensive 

coding of programs and functions. All of the programs and functions were written 

using M-language (Matlab script). Custom fuzzy functions also had to be developed 

as the standard Matlab fuzzy toolbox is not sufficient. All Simulink blocks were built 

using 2-level M-file S-function template. For clarity, details of the written programs 

and blocks will not be presented here. We would like to emphasize on the practical 

use of the developed software. 

Next, we will describe the available controller blocks and how to use them for 

simulation and real time control of dynamic systems. 
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8.3. Adaptive Fuzzy Control simulink library 

Fig 8.1 shows the developed Adaptive Fuzzy Control simulink library, which is 

ready to be used for control applications. By dragging these blocks to a simulink 

window, and connect them with a plant (represented by another simulink block), we 

have a control application ready for simulation. The simulation process will be 

presented in more detail in section 8.4. 

 

 

 

8.3.1. DAFC block 

Function:  

This block implements the fixed-structured direct adaptive fuzzy controller 

proposed in theorem 4.1. 

Input:  

There are two inputs: the state vector x  and the desired output vector r . 

 ( ) ( )( )1

21 ,,,,,, −== n

n yyyxxxx K&K  

 ( )( )1,,, −= nrrrr K&  

Output: 

The output is the control signal generated by the controller. 

Fig 8.1: Adaptive Fuzzy Control simulink library. 
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Parameters: 

There are 8 parameters for this controller. These parameters are loaded to the 

workspace by running the m file “parameters_DAFC.m”.  

The code of this file is: 

%==========================================================% 
%  Parameters of the direct adaptive fuzzy controller                                          % 
%==========================================================% 
  
  
% System order 
n=2; 

 
%===============load fuzzy controller======================= 
fuzzy_u=readfis('fuzzy_system_1'); 

 
% ==============parameters k, A, Q, bc====================== 
k=[1;1]; 
A=[0 1;-k(1) -k(2)]; 
Q=[20 0;0 10]; 
bc=[0;1]; 

 
%===============adaptive law's parameters================== 
AFS_params.gamma=25;  
AFS_params.theta_U=25; 
AFS_params.theta_L=-25; 
   

The meaning of the 8 parameters are: 

• n: defines the system order. 

• fuzzy_u: defines the initial fuzzy controller. 

The initial fuzzy system is built using the Matlab fuzzy toolbox and saved to 

hard-drive under the name “fuzzy_system_1”. When we run the m file 

“parameters_DAFC.m”, “fuzzy_system_1” will be loaded as the initial fuzzy 

controller. By changing the name of the file to be loaded (e.g. “fuzzy_system_2”, or 

“fuzzy_system_3”), we can specify different fuzzy systems as the initial fuzzy 

controller. 

• k: defines vector k  in equation ( )1.4 . 

• A: defines matrix CΛ  in equation ( )6.4 . 

• Q: defines matrix Q  in equation )7.4( . 

• bc: defines vector Cb  in equation ( )6.4 . 

• AFS_params.sigma: defines the adaptive gain γ  in equation ( )8.4 . 
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• AFS_params.theta_U: defines Uu  in assumption 4.3 and equation 

( )8.4 . 

• AFS_params.theta_L: defines Lu  in assumption 4.3 and equation 

( )8.4 . 

8.3.2. SSDAFC block 

Function:  

This block implements the self-structuring direct adaptive fuzzy controller 

proposed in theorems 5.1 and 6.1. 

Input:  

There are two inputs: the state vector x  and the desired output vector r . 

 ( ) ( )( )1

21 ,,,,,, −== n

n yyyxxxx K&K  

 ( )( )1,,, −= nrrrr K&  

Output: 

The output is the control signal generated by the controller. 

Parameters: 

The parameters can be loaded to the workspace by running the file 

“parameters_SSDAFC.m”. 

The code of this file is: 

%==========================================================% 
%  Parameters of the self-structuring direct adaptive fuzzy controller                 % 
%==========================================================% 
  
  
% System order 
n=2; 

 
%===============load fuzzy controller======================= 
fuzzy_u=readfis('fuzzy_system_1'); 

 
% ==============parameters k, A, Q, bc====================== 
k=[1;1]; 
A=[0 1;-k(1) -k(2)]; 
Q=[20 0;0 10]; 
bc=[0;1]; 

 
%===============adaptive law's parameters================== 
AFS_params.gamma=25;  
AFS_params.theta_U=25; 
AFS_params.theta_L=-25; 
%===========Structure Learning parameters=================% 
structure_learning_params.max_N_rules = 125; 
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structure_learning_params.mf_threshold = 0.5; 
structure_learning_params.error_threshold = 5; 
structure_learning_params.a0 = [2.5 7.5 10]; 
structure_learning_params.center_distance_threshold = [1 15/5 20/5]; 
 

The first 8 parameters have the same meaning as the ones in the DAFC block. 

The additional 5 parameters are for the self-structuring algorithm. Their meanings are: 

• structure_learning_params.max_N_rules: defines ruleB  in assumption 

5.1 and assumption 6.3. 

• structure_learning_params.mf_threshold: defines the completeness of 

fuzzy rules 0ε  . 

• structure_learning_params.error_threshold: defines the minimum level 

of error to trigger structure change thresholderror _ . 

• structure_learning_params.a0: defines max_mf_distance, i.e. the 

maximum allowed distance between two neighbouring membership 

functions.  

• structure_learning_params.center_distance_threshold: defines 

min_mf_distance, i.e. the minimum allowed distance between two 

neighbouring membership functions. 

8.3.3. High-gain observer block 

Function:  

This block implements the high gain observer given in lemma 7.1. 

Input: 

The input is the output y  of the controlled plant. 

Output: 

The output is the estimated state vector ( )nxxxx ˆ,,ˆ,ˆˆ
21 K= . 

Paramters: 

The parameters are loaded to the workspace by running the m file 

“observer_parameters.m”.  

The code of the file “observer_parameters.m” is:\ 

%=========================================% 
%      High-gain observer parameters      % 
%=========================================% 
  
lamda_vector = 2; % defines vector lamda 
epsilon = 0.5; % defines parameter epsilon 
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Their meanings are: 

• lamda_vector: defines vector ( )T
n 121 ,,, −= λλλλ K  in lemma 7.1. 

• epsilon: defines ∋  in lemma 7.1 

8.4. AFC simulation 

This section presents how an AFC simulation is created and simulated. The 

simulation process has four steps. This will be presented through an example of 

controlling an inverted pendulum. Assuming that the state variables are available for 

measurement, we will employ the fixed-structured DAFC block. 

8.4.1. Create a Simulink model for the AFC application 

First, we create a new simulink model and add the block representing the inverted 

pendulum as shown in Fig 8.2. 

 

 

 

Then, drag the DAFC block from the AFC library to the new model and connect 

with the inverted pendulum as shown in Fig 8.3. The sinusoidal reference signal is 

generated by the “signal generator” block.  

Fig 8.2: The created simulink model with an inverted pendulum block.  
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To observe the control signal and the output of the inverted pendulum, Scope1 and 

Scope2 are added as shown in Fig 8.4. 

 

 

8.4.2. Design the fuzzy system that is used as the initial controller 

The Matlab fuzzy toolbox is used to create the initial fuzzy controller. This fuzzy 

toolbox allows users to easily create a fuzzy system through its Graphical User 

Interface (GUI) as demonstrated in Fig 8.5.  

As all possible rules are used, it is sometime impractical to add rules one by one, 

especially for a large number of rules (>50). We have created a script 

“generate_rules.m” to help add all the possible rules to a fuzzy system. By using the 

Matlab comment: 

 fuzzy_system1 = generate_fis(fuzzy_system1,b), 

we add all the possible rules to fuzzy_system1 and initialize them to value b. 

 

Fig 8.4: Simulink model after added scope1 and scope2. 

Fig 8.3: Simulink model after the DAFC block and Signal Generator block are added. 
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8.4.3. Load the controller’s parameters 

Specify the controller’s parameters in the m file “parameters_DAFC.m” (see 

section 8.3.1) and run it to load the controller’s parameters to the workspace. 

8.4.4. Perform simulation 

Now, the model is ready for simulation. The simulation results are obtained by 

simply running the model and observing the results through the scopes. The controller 

can be tested with different parameters by repeating steps 8.4.2 to 8.4.4. 

We have demonstrated the implementation process of DAFC of an inverted 

pendulum using Simulink. The process is quick and easy with 4 simple steps. A 

SSDAFC simulation of an inverted pendulum can be created by following the same 

steps. Fig 8.6 shows a simulink model of a SSDAFC of an inverted pendulum with 

the use of a high-gain observer. 

Fig 8.5: Fuzzy logic GUIs: The Membership Function Editor (top left), FIS Editor (center), Rule Editor (top right), Rule 

Viewer (bottom left), and Surface Viewer (bottom right). Click on image to see enlarged view. 
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The blocks in the AFC library not only can be used for simulation but also for 

real-time control. In the next section, we will show how a real-time control 

application can be easily set-up using our control simulink blocks. 

8.5. Real-time AFC 

Real-Time Windows Target  is an add-on product of Simulink. It enables running 

of Simulink and Stateflow models in real time on a desktop or laptop PC for rapid 

prototyping or hardware-in-the-loop simulation of a control system. Creation, control 

, and real-time execution maybe done entirely through Simulink [98].  

Real-Time Windows Target includes a set of I/O blocks that provide connections 

between the physical I/O board and real-time model. The real-time windows target 

library is shown in Fig 8.7. 

Fig 8.6 Observer-based SSDAFC of an inverted pendulum 
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By configuring these blocks with the physical I/O board, the adaptive fuzzy 

controller can be easily connected with the real physical plant. Fig 8.8 shows the setup 

of a real-time observer-based SSDAFC of an inverted pendulum. 

 

 

 

Fig 8.7 Real-time Windows Target library 

Fig 8.8 Real-time observer-based SSAFC of an inverted pendulum. 
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8.6. Conclusion 

In this chapter, we have presented Matlab/Simulink implementation of our 

proposed control algorithms. A simulation application can be performed by only four 

simple steps. A simulation can be converted to a real-time control implementation by 

simply replacing the simulated plant by the I/O blocks provided in the real-time 

windows target library. 
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9. Chapter 9 

DISCUSSION AND CONCLUSION 

 

9.1. Discussion 

9.1.1. Main contributions 

In this research, an online SSAFC scheme has been developed. The main features 

of the proposed control scheme are: 

• It is applicable for a number of different classes of continuous SISO 

nonlinear systems 

• It needs less restriction on the controlled plants 

• The stability of the overall system, especially when the structure 

changes, is guaranteed using the Lyapunov stability technique. 

• The overall system is stable in the sense that all the variables are 

bounded (including number of rules generated) and the tracking error 

is uniformly ultimately bounded. 

• For nonlinear systems in triangular forms, only one fuzzy system is 

needed (unlike the back-stepping approach where one fuzzy system is 

needed at each step). 

The proposed control scheme makes practical application of AFC easier. 

Designers need to specify only a few design parameters and no longer have to specify 

the controller structure by trial and error. It saves the time and cost needed to check 

the extra restrictions on the controlled plants. It greatly reduces the complexity for 

nonlinear systems in triangular forms that are normally controlled using the back-

stepping approach. It guarantees the stability of the system at any time and also 

guarantees that the fuzzy controller never exceeds the hardware capacity. 

From the practitioners’ point of view, the ability of the control scheme to control 

a wide range of classes of systems is a great advantage. When understanding the 

method, designers do not have to worry about choosing the right control configuration 

for a particular problem. This saves practitioners both learning time and designing 

time. 

The Matlab and Simulink implementation of the controllers make simulations 

and real-time applications of AFC easy and fast. A simulation can be performed by 



  145 

following four simple steps. Then, the simulation can be converted to a real-time 

application by simply re-connecting the controller to the real-time plant. 

9.1.2. Limitations 

The developed self-structuring algorithm suffers “the curse of dimensionality”. 

The number of added rules will dramatically increases for high-order systems. Thus, a 

much larger hardware capacity is needed for controlling high-order systems. 

The control scheme guarantees that all the signals are bounded. However, similar 

to other AFC schemes, the bounds can be very conservative. Thus, information 

regarding these bounds is generally not useful for selecting design parameters. The 

control schemes in the literature suffer the same drawback. The reason is the bounds 

depend on the quantity 
∗θ  where 

∗θ  is the ideal adaptive parameter vector. 
∗θ  

increases with the number of rules and can be arbitrarily large.  

9.1.3. Future research 

One future research direction would be to develop a self-structuring algorithm for 

high-order systems. Instead of using all possible rules when a membership function is 

added, we only add 1 rule at a time and all its corresponding memberships. The 

change would reduce the interpretability of the fuzzy system. This is a trade-off 

between computation and interpretability. However, as the system order increases, the 

fuzzy rules are harder to interpret anyway. 

Another future research direction would be to develop tighter bounds. The 

popular way of proving the stability is to choose the Lyapunov function  

( ) ( )∗∗ −−+= θθθθ
TT

ePeV
2

1

2

1
. 

Thus, V  depends on 
∗θ , and therefore the bounds depend on 

∗θ . If we choose a 

new Lyapunov function 

 ( )2
2

1

2

1 ∗−+= uuePeV
T

new ,  

then 
newV  is much smaller than V . By investigating the approximation properties of 

derivatives of fuzzy systems, we may find a way to establish the stability for newV . 

Finally, a practical control problem generally includes selecting a suitable 

actuator, a reference model, and a controller. The relationship between actuator 

constraints, reference model, and AFC design parameters has not been thoroughly 
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investigated in the literature. It is of great practical interest to investigate how to 

incorporate actuator constraints and reference signal information into the choice of 

AFC design parameters. Understanding this would result in a more systematic design 

procedure.  

9.2. Conclusion 

In conclusion, the objectives set at the beginning of the research are met. The 

developed control scheme and implementation software make AFC easier. The results 

also open new research challenges with the ultimate purpose being to make AFC an 

easy-to-use control tool in practice. 
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Appendixes 
 

Appendix 3.A 

• Proof of 3.1(a.i) and 3.1(a.ii):  

From the choice of the adaptive laws (3.3), (3.4), and (3.5), it is obvious that (a.i) 

and (a.ii) holds. Now, we are going to prove (a.iii). 

• Proof of 1(a.iii) 

Substituting control signal (3.2) to system (3.1), we have: 

C
n

n uxgxfyx )()(
)( +==&  

Adding and subtracting Cg
uxg )(ˆ θ  gives: 

( ) ( )

( )
( ) SgCg

f

Tn
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)()(ˆ
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)(ˆ)()(ˆ)(
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θ

θ
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−+−=⇔

+++

−+−=

 

In the matrix form, we have: 

( ) ( )[ ]SgCgfC

C

uxguxgxgxfxfb

ee

)(ˆ)()(ˆ)()(ˆ θθθ −−+−+

Λ=&
                                          (3.A.1) 

The Lyapunov design approach will be used to prove the stability of the system. 

Consider the following Lyapunov function 
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in which *
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θθφ −= , *

ggg
θθφ −= , and ωψ ω ˆ−=W . 

Its derivative along the solution (3.A.1) is 
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∂
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Using the facts that ( ) T
C

TT
C ee Λ=Λ , ePbbPe

T

CC

T = , and QPP C
T

C −=Λ+Λ .. , we 

have: 

( ) ( )[ ]SgCgfC

TTT
uxguxgxgxfxfbPeeQeePe

t
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1

2

1
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∂
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Substituting to (3.A.3) gives 
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Now, considering the second and forth terms of (3.A.4), we have: 
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Using the adaptive law (3.3), it is obvious that 
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Similarly, considering the third and fifth terms of (3.A.4), and the adaptive law 

(3.4), we have 
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Considering the last three terms of (3.A.4) and using the adaptive law (3.5) and 

the fact that ε
ε

≤−
ab

abba
2785.0

tanh , we have 
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Moreover, we have that 0)( max ≤−ωWbPe C
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Therefore, 

( )rVVtV ),0(max)( ≤  

Since tePePetV
T ∀≥≥  )(

2

1

2

1
)(

2

minλ , we have 



  150 

( )

( )
)(

),0(max2

),0(max)(
2

1

min

2

min

P

VV
e

VVeP

r

r

λ

λ

≤⇔

≤

 

This completes the proof of 3.1(a.iii) 

• Proof of 3.1(a.iv) 

Recall the definition of e : 
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• Proof of 3.1(a.v) 
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Thus, 3.1(a.v) holds. 

• Proof of 3.1(b) 

From (3.A.11), ( ) rr VtkVVtV +−−≤ )exp()0()( min , we have 

r
t

VtV ≤
∞→

)(lim  



  151 

Since 2
min

2

min )(
2

1
)(

2

1

2

1
)( ePePePetV

T λλ ≥≥≥ , 

)(

2
lim

)(
2

1
lim

min

2
min

P

V
e

VeP

r

t

r
t

λ

λ

≤⇔

≤

+∞→

∞→
 

This completes the proof of 3.1(b). 

• Proof of 3.1(c) 

From (3.A.8), 
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Appendix 3.B 

• Proof of theorem 3.2(a.i) 

From (3.5), it is clear that theorem 3.2(a.i) holds. 

• Proof of theorem 3.2(a.ii) 

Consider the following Lyapunov function 
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The derivative of 1V  along the solution of (3.A.1) is  



  152 

( ) ( )[ ]
ωω

ω
ψψ

γ

θθ

&

&

1
        

)()(ˆ)()(ˆ
2

1 00
1

+−

−+−+−=

SC

T

CgfC

TT

ubPe

uxgxgxfxfbPeeQeV

  

Using assumption 3.4 and the same arguments in (3.A.7), we have 
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Now, following the same procedure to prove theorem 3.1(a.iii), we can prove that 

theorem 3.2(a.ii) holds  
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• Proof of theorem 3.2(a.iii) and theorem 3.2(a.iv):  

Using the same arguments to proof theorem 3.1(a.iv) and theorem 3.1(a.v), we 

can show that theorem 3.2(a.iii) and theorem 3.2(a.iv) hold.  

• Proof of theorem 3.2(b):  

Similar to the proof of theorem 3.1(b), from deQeV
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1
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• Proof of theorem 3.2(c):  

Using the same arguments as in the proof of theorem 3.1(c) and deQeV
T +−≤

2

1
1
& , 

we can conclude that 
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Appendix 4.B 

Let X
j

UX ∈ . As ( )xg , ( )θXû , and ( )Xu∗  are continuous at j
X , for each 

1,1 += nni K , there exists a 0>jiδ  such that  



  153 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ∗∗∗ ≤−−−⇔+=<− εθθδ jjjjj
i

j
ii XuXgXuXgXuXgXuXgniXX ˆˆ11 K

                        ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )( ) ∗∗∗ ≤−−−⇔ εθθ jjj
XuXuXgXuXgXuXg ˆˆ  

                ( ) ( ) ( ) ( )[ ] ( ) ( )( ) ∗∗∗ ≤−−−⇔ εθθ jjj XuXucXuXgXuXg ˆˆ                    ( )1..4 A  

where ( ) 0>= jj Xgc . 

Define  

 ( ){ }11 +=≤−=Ο niXXX
j
i

j
iij Kδ  

As XU  is compact, there exists a finite subfamily 1Ο , 2Ο ,K , MΟ  such that 

 MXU Ο∪∪Ο∪Ο⊆ K21  

Choose 

( ) ( )( )ij
i

j
i

j
i

j
ii

j
i XXXXA δδα +−= , , 11 += ni K , Mj K1=  such that  

      
( )
( ) Mkj

jkXA

jkXA
k
i

j
i

k
i

j
i K1, ,

 if 0

 if 1
=







≠=

==
                                                               ( )2..4 A  

( )jj Xu∗∗ =θ , Mj K1=                                                                                   ( )3..4 A  

From (A.2),  

( ) ( ) jMj

M

k

j
kk

j
XXu θθθθθζθ =×++×+×+×==∑

=

0100ˆ 21

1

KK                        ( )4..4 A  

Substituting (4.A.3) and (4.A.4) to (4.A.1), we have: 

( ) ( ) ( ) ( )[ ] ( ) ∗∗∗ ≤−−− εθθθ jj
jcXuXgXuXg ˆ                                                        ( )5..4 A  

As ( ) jj XX Ο∈≠ for  0ζ  and ( ) jj XX Ο∉= for  0ζ ,  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )XXcXuXgXuXgA jjjj
j ζεζθθθ ∗∗∗ ≤−−−⇒ ˆ5.  

Take the summation for Mj K1= , 
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j
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jjjj
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1 1
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j

jjj
j XcXuXgXuXg

1

ˆ                                    ( )6..4 A  
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Thus, ( ) ( ) ( ) ( )θXuxgXuxg ˆ−∗  can be approximated by ( ) ( )∑
=

∗ −
M

j

jjj
j Xc

1

ζθθ : 

 ( ) ( ) ( ) ( ) ( ) ( ) εζθθθ +−=− ∑
=

∗∗
M

j

jjj
j XcXuxgXuxg

1

ˆ  

where ∗≤ εε  and jc  are some positive constants. 

Appendix 6.A 

Let X
j

UX ∈ . Since ( )( )Xuxf ,  is continuous with respect to ( )Xu , according to the 

Mean Value Theorem, there exists a positive constant 0>jc  such that  

( )( ) ( )( ) ( ) ( )( )jjjjjjj
XuXucXuxfXuxf −=− ∗,, *                                                  ( )1..6 A  

Since ( )( ) ( )( )jjjj
XuxfXuxf ,, * −  is continuous at j

X , for each 1,1 += nni K , there 

exists 0>j
iδ  such that  
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j
ii XuxfXuxfXuxfXuxfniXX ,,,,11 K  
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Substituting ( )1..6 A  to ( )2..6 A  gives  
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j
ii XuXucXuxfXuxfniXX ,,11 K           ( )3..6 A  

where 0>jc . 
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j
iij Kδ  

As XU  is compact, there exist a finite subfamily 1Ο , 2Ο ,K , MΟ  such that 

MXU Ο∪∪Ο∪Ο⊆ K21  
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( )jj Xu∗∗ =θ , Mj K1=                                                                                    ( )5..6 A  

From (6.A.4),  
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M

k

j
kk

j
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=

0100 21

1

KK                             ( )6..6 A  

Substituting ( )5..6 A  and ( )6..6 A  to ( )3..6 A , we have: 
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( ) ( )( ) ( )( )[ ] ( )[ ] ∗∗∗ ≤−−−⇔+=<− εθθδ jj
jj

i
j
ii cXuxfXuxfniXX ,,11 K               ( )7..6 A  

As ( ) jj XX Ο∈≠ for  0ζ  and ( ) jj XX Ο∉= for  0ζ ,  

( ) ( )( ) ( )( )[ ] ( ) ( ) ( )XXcXuxfXuxfA jjjj

j ζεζθθ ∗∗∗ ≤−−−⇒ ,,7..6  

Take the summation for Mj K1= , 
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where ∗≤ εε  and jc  are some positive constants. 
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