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Abstract 
Neoparamoeba spp., are the causative agent of amoebic gill disease (AGD) in 

marine farmed Atlantic salmon, Salmo salar and AGD is the major problem faced by 

the salmonid industry in Tasmania.  The only effective treatment to control AGD is 

freshwater bathing; however, complete removal of the parasite is not achieved and 

under favourable conditions AGD can reoccur within 10 days.  Previous research on 

AGD suggests that gill bacteria might be one of the factors influencing colonisation 

of Neoparamoeba spp. onto Atlantic salmon gills.  Therefore, the aim of this project 

was to investigate the role of salmonid gill bacteria in AGD.   

To obtain good understanding of the bacterial populations present on Atlantic 

salmon gills, bacteria samples were collected twice during this study.  Initially, 

bacteria were cultured from AGD-affected and unaffected fish both from laboratory 

and farm.  These bacteria were characterised based on the colony morphology and 

biochemical profiles and identified using 16S rRNA gene-based approach. The 

bacteria from the genera Winogradskyella and Staphylococcus predominantly 

colonised the gills of AGD-positive Atlantic salmon; these bacteria were absent on 

AGD-negative samples. AGD-negative fish had a varied distribution of 

Gammaproteobacteria (Shewanella baltica, Idiomarina spp., Pseudomonas spp. and 

Halomonas sp.) and Cellulophaga spp., Arthrobacter rhombi, Arenibacter troitsensis 

and Flavobacterium sp..  

Further, a series of in vivo experiments were conducted to study the influence 

of bacteria in AGD.  The result showed an apparent involvement of Winogradskyella 

sp. in AGD.  Fish experimentally infected with this bacterium developed significantly 
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more filaments (51% in chapter 5; 17% and 21% in chapter 6) with AGD lesions 

following challenge with Neoparamoeba spp. compared to the group that was 

exposed to Neoparamoeba spp. alone (16% in chapter 5 and 8% in chapter 6).  

Furthermore, this study also confirmed that Neoparamoeba spp. are able to infect 

salmonid gills and cause AGD with very low levels of culturable bacteria on the gills.   

Based on the above results, it was important to verify whether bacteria such 

as Winogradskyella spp. that could exacerbate AGD conditions frequently colonise 

the gills of AGD-affected fish.  Hence, a field-based study was conducted and 

bacteria samples were collected from marine farmed Atlantic salmon gills on five 

different occasions over a period of 102 days.  The results showed that 

Winogradskyella species were not consistently present on AGD-affected fish gills.  

However, it was not possible to determine which bacteria will colonise the gills of 

AGD affected fish in a given period of time because the changes occurring within the 

gill bacterial population appeared to be complex and unpredictable and were 

influenced by several factors.   

In conclusion, this study verified that the presence of bacteria on salmonid 

gills is not necessary to induce Neoparamoeba spp. infection; which further suggests 

that Neoparamoeba spp. is the primary causative agent of AGD. However, this study 

also demonstrated that the presence of Winogradskyella sp. on the gills during the 

process of AGD infection significantly increased AGD severity.  This work forms the 

basis for future studies assessing the effect of bacteria and/or amoeba on fish and in 

investigating the role of other microorganisms that are recognized as potential factors 

influencing AGD. 
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1.1 Tasmanian salmonid industry & amoebic gill disease (AGD)  

 
 

Figure 1.1 View of Atlantic salmon seacage farming in Tasmania 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 Extensive salmonid aquaculture began in Tasmania in 1984 with an initial 

harvest of 20 tonnes of head-on, gilled and gutted (HOGG) Atlantic salmon (Salmo 

salar) during the summer of 1986/87 and by this year (2005/06) the annual 

production has attained 17,600 tonnes of HOGG (source: Tasmanian Salmonid 

Growers Association, www.tsga.com.au; figure 1.2).  Tasmanian grown salmonids 

are of very high quality due to excellent growing conditions in pristine waters.  In 

http://www.tsga.com.au/


 

terms of exports and imports, the domestic Australian market consumes most of the 

salmon produced in Tasmania (over 90%); however, there is also an important 

overseas market, particularly in Japan, Indonesia, Hong Kong and Singapore (Source: 

Dept. of Primary Industries and Water, Tasmania www.dpiwe.tas.gov.au).   
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Figure 1.2 Annual HOGG production of Atlantic salmon in Tasmania (source: 

Tasmanian Salmonid Growers Association, www.tsga.com.au)  

 

AGD is the only significant health problem confronted by the Tasmanian 

aquaculture industry.  The first case of AGD was diagnosed in 1986 (Munday 1986).  

Corresponding to the increase in farming and production, the prevalence of AGD has 

also increased and expanded.  As a result, farms where AGD was not a problem 

before, recently reported the occurrence of AGD.  For instance, previously AGD was 

not recorded in the northern part of Tasmania i.e. in Tamar River but lately this farm 
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also reported the occurrence of AGD.  Currently, Tasmania can be divided into two 

zones with regard to the AGD status, one where AGD is present (farms located in 

D’Entrecasteaux Channel, Tamar River and Huon River) and one that is free of AGD 

(Macquarie Harbour; Figure 1.3).  Several environmental factors could be responsible 

for this difference including tidal range and salinity (Douglas-Helders et al. 2005a).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Map of Tasmania showing the location of AGD-affected (circles) and 

unaffected (square) salmon farms 
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Even though Tasmania is the most severely AGD affected salmon producer, 

AGD outbreaks have also been reported in cultured Atlantic salmon from Chile, 

France, Ireland and Spain (reviewed by Munday et al. 2001); in coho salmon, 

Oncorhynchus kisutch from Washington State and California, USA (Kent et al. 

1988); in chinook salmon, Oncorhynchus tschawytscha from New Zealand (Findlay 

et al. 1998); in cultured turbot, Scophthalmus maximus from Spain (Dyková et al. 

1995); and Neoparamoeba spp. were also isolated from the gills of sea bass, 

Dicentrarchus labrax within the Mediterranean region (Dyková et al. 2000). 

1.2 Neoparamoeba spp., the aetiological agent of AGD 

Several studies on AGD have acknowledged Neoparamoeba spp. to be the 

primary causative agent of AGD (e.g. Nowak 2001; Adams and Nowak 2004).  At 

present two species of Neoparamoeba [N. pemaquidensis (see Munday et al. 1990, 

2001; Adams and Nowak 2004) and N. branchiphila (see Dyková et al. 2005)] have 

been identified as being associated with AGD.  Neoparamoeba spp. are normally 

free-living marine protozoans which becomes parasitic under certain conditions 

(Dyková et al. 1998, 2000, 2005).  These amoebae have been isolated from marine 

and estuarine sediments at various locations around Tasmania, regardless of the 

presence of salmon farms (Crosbie et al. 2005).  While the presence of AGD in 

farmed fish is common in Tasmania, wild fishes sampled from AGD affected salmon 

farm locations, were not infected with AGD (Douglas-Helders et al. 2002). Thus far, 

laboratory infection has only been established by cohabitation of AGD-affected 

Atlantic salmon with naïve Atlantic salmon (reviewed by Munday et al. 2001) or by 
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inoculation of naïve Atlantic salmon with fresh amoeba isolates obtained from AGD 

affected Atlantic salmon (Zilberg et al. 2001; Morrison et al. 2004) because the 

disease cannot be reproduced using cultured organisms (Kent et al. 1988; Howard et 

al. 1993; Morrison et al. 2005). 

1.3 AGD pathology & diagnosis  

AGD-associated mortality has been presumed to be associated with respiratory 

disturbance (Kent et al. 1988).  However, recent results suggest that mortalities in 

cultured fish are not caused by respiratory failure (Powell et al. 2000) but may be due 

to cardiovascular dysfunction (Fisk et al. 2002; Powell et al. 2002; Leef et al. 2005a, 

2005b).  Currently, presumptive AGD diagnosis is confined to the gills where focal 

or multifocal white mucoid patches and profuse mucus production may be seen as 

indicative of AGD severity (Figure 1.4; Clark and Nowak 1999).  Salmon farmers 

frequently monitor AGD progression in entire cage populations by scoring the gross 

gill lesions as light/medium/heavy infection to determine when to treat the disease. 

Although, this non-destructive method of diagnosis has proven successful in the 

control of large-scale mortalities, it is unreliable, particularly for lighter cases of 

infection (Clark and Nowak 1999).   
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Figure 1.4 Atlantic salmon gills with gross AGD lesions (arrows) 

                                                                                         

 

 

 

 

 

 

 

 

Figure 1.5 Severely infected Atlantic salmon gill showing Neoparamoeba spp. 

(black arrows) on the surface of hyperplastic interlamellar units (HL), interlamellar 

vesicles (ILV) and infiltration of the central venous sinus with leucocytes (CVS).  

Scale bar = 100 μm. 
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For AGD research and diagnostic purposes, histopathology is the only 

definitive method indicating a diseased state and its causative agent.  Therefore, 

histopathology is considered the ‘gold standard’ for confirmation of AGD.  However, 

histopathological assessment requires lethal sampling of fish.  Microscopic 

examination of histological sections of AGD-affected fish gills shows 

macroscopically visible mucoid patches as areas of epithelial cell hyperplasia (Figure 

1.5; Adams et al. 2004).  Amoebic trophozoites are commonly found closely 

associated with AGD-induced hyperplastic lesions (Kent et al. 1988; Munday et al. 

2001).  The degree of histopathology associated with hyperplastic AGD lesions 

ranges from relatively minor epithelial cell hyperplasia affecting a few lamellae to 

lesions consisting of multiple fused lamellae and even fused filaments (Zilberg and 

Munday 2000; Adams and Nowak 2004).  Hyperplastic lesions have a spongiotic 

appearance and consist primarily of hyperplastic undifferentiated epithelial cells with 

minor oedema (Kent et al. 1988; Roubal et al. 1989; Munday et al. 1990; Dyková et 

al. 1995).  Extensive epithelial cell hyperplasia often causes the formation of 

interlamellar spaces that frequently contain amoebae associated with leucocytes 

(Roubal et al. 1989; Munday et al. 1990).  As hyperplastic lesions develop, their 

morphology changes to that of a mature lesion, often developing a layer of stratified 

epithelial cells that line the lesion surface (Adams and Nowak 2003).  

The other non-destructive methods for detecting the presence of amoebae in 

gill mucus are: (1) immuno-fluorescent antibody test (IFAT), which uses a polyclonal 

antibody against a Tasmanian isolate, N. pemaquidensis strain PA027  (Howard and 

Carson 1993), (2) Differential Quick Dip® staining of gill smears enables easier 
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distinction between the different cells (Zilberg et al. 1999), (3) detection of amoeboid 

like cells in wet preparation from fish gills under a light microscope (Clark et al. 

2003).  Furthermore, a species specific PCR has been developed that provides a 

highly specific detection and identification assay for N. pemaquidensis (Wong et al. 

2004) and N. branchiphila (Dyková et al. 2005).  However, these tests are currently 

used on cultured amoebae and are yet to be optimized for routine diagnostic 

purposes.   

1.4 AGD treatment & control 

Freshwater bathing is the only available effective control for AGD infection 

in sea-farmed Atlantic salmon. The treatment involves immersing the AGD affected 

fish for 2-3 h in fresh water to remove/kill the Neoparamoeba spp. attached to the 

gills (Parsons et al. 2001; Clark et al. 2003).  Although large scale mortalities are 

generally avoided by freshwater treatment, this method is both expensive (≈ 10% of 

production costs) and production limiting due to the requirement of an unlimited 

freshwater resource to be located near the lease site.  Furthermore, complete removal 

of the parasite is not achieved and under favourable conditions, AGD can reoccur 

within 10 days (Clark et al. 2003).  Meanwhile, other alternative treatments for AGD 

has been tested in the laboratory and this includes use of feed supplements (glucans) 

(Zilberg et al. 2000; Bridle et al. 2005), chemicals such as levamisole (Findlay et al. 

2000), oxidative disinfectants such as chlorine dioxide, chloramine-T, hydrogen 

peroxide (Harris et al. 2004; Powell and Clark 2004) and mucolytic drug such as L-

cysteine ethyl ester (Roberts and Powell 2005).  However, in commercial situation 

the outcomes of these treatments i.e. use of feed supplements, chemicals or drugs 
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have been inconclusive and require further investigation (Clark and Nowak 1999; 

Zilberg et al. 2000; Harris et al. 2004).     

1.5 Factors influencing AGD 

The exact environmental conditions and health status of the fish that allow 

Neoparamoeba spp. to proliferate on fish gills are still unknown.  There are several 

factors influencing the occurrence of AGD in Tasmania.  Several research studies 

have been conducted on temperature and salinity and have identified them to be the 

major risk factor for occurrence of AGD in Tasmania (Munday 1990; Clark and 

Nowak 1999; Douglas-Helders et al. 2001).  However, the effect of other intrinsic 

and/or extrinsic factors on AGD outbreaks such as salmon stocking density, fish 

immune status, harm caused by algae, jellyfish or bacteria remains undetermined 

(Roubal et al. 1989; Lom and Dyková 1992; Nowak and Munday 1994; Findlay and 

Munday 1998; Findlay et al. 2000; Zilberg and Munday 2000; Nowak 2001; 

Bowman and Nowak 2004; Douglas-Helders et al. 2005b).   

1.6 Interactions between bacteria & amoebae 

Previous studies have reported the associations and resultant impacts between 

pathogenic amoebae and bacteria.  For example, the ability of Entamoeba histolytica 

strains to destroy monolayers of cultured cells was enhanced after incubation with 

various types of Gram negative bacteria (Bracha and Mirelman 1984).  Bottone et al. 

(1992) reported that the growth of Acanthamoeba castellanii and A. polyphaga was 

increased in the presence of bacteria and also suggested that the bacterial 

cocontaminants of contact lens care systems might have a secondary role in the 
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pathogenesis of amoebic keratitis (a vision threatening disease in humans that occurs 

due to colonisation of Acanthamoeba spp., mainly in contact lens users).  In addition, 

some case series and case reports on Acanthamoeba keratitis, have described mixed-

infection with Acanthamoeba and bacteria (Bacon et al. 1993; D’Aversa et al. 1995).  

Some amoebae-resistant-bacteria (ARB) have evolved to become resistant to the 

destruction (e.g. digestion) by free-living amoebae and are able to survive, grow and 

exit free living amoeba after internalization; these bacteria could be obligate 

intracellular bacteria or facultative intracellular bacteria  (reviewed by Greub and 

Raoult 2004).  Acanthamoeba spp. are known to provide an intracellular niche for 

spore formation and survival for several obligate bacterial endosymbionts including 

Chlamydia spp. (Amann et al. 1997; Essig et al. 1997; Fritsche et al. 1999, 2000); 

Legionella pneumophila (Berk et al. 1998); Coxiella burnetii (La Scola and Raoult 

1996); Burkholderia pseudomallei (Inglis et al. 2000); Simkania negevensis (Kahane 

et al. 2001); Mycobacterium avium (Steinert et al. 1998).  An intra-amoebal growth 

environment enhances the virulence of Legionella pneumophila (Cirillo et al. 1999) 

and coinoculation of L. pneumophila with Hartmannella vermiformis amoebae 

increases the pathogenesis of bacteria in causing a lung infection in mice (Brieland et 

al. 1996, 1997).  

Despite these extensive research highlighting the relationships between 

bacteria and pathogenic amoebae of humans, a paucity of information exists 

concerning the interactions between bacteria and Neoparamoeba spp.. Roubal et al. 

(1989) observed small foci of bacteria in the host-parasite interface on some 

Neoparamoebae infected gill filaments and therefore suggested further studies to 
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verify the role of gill colonising bacteria in AGD.  Douglas-Helders et al. (2003) 

reported a co-existing Flavobacterium infection on AGD-affected salmon gills during 

a laboratory infection trial conducted to examine the infectivity of Neoparamoeba 

spp. overtime.  Recently, Bowman and Nowak (2004) examined the gill bacterial 

communities of AGD-affected and unaffected Atlantic salmon using culture-

independent 16S ribosomal RNA analyses and suggested that gill bacteria might play 

a direct role by predisposing the fish to AGD, to exacerbate AGD, or if bacteria are 

present in increased numbers in water, might be coincident with AGD outbreaks. 

Lom and Dyková (1992) reported that amphizoic amoebae typically only colonise the 

gills of immunocompromised fishes, or individuals showing an existing bacterial 

infection, which might provide a ready food source for amoebae growth.  However, 

the association between salmonid gill bacteria and AGD is yet to be elucidated. 

1.7 Thesis aims & outline 

 
The broad aim of this thesis was to investigate the role of salmonid gill 

bacteria in AGD.  This work forms one part of several studies within the Cooperative 

Research Centre for Aquaculture (Aquafin CRC Ltd., Australia) that are undertaken 

concurrently on AGD in salmonids.  The findings from this work should form the 

basis for future work assessing the combined effect of bacteria and amoeba on fish 

and in investigating the role of other microorganisms that are recognized as potential 

factors influencing AGD.   

Firstly, as a number of procedures were developed and used continuously 

during this study they are described separately in chapter 2.  Before I began the actual 
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study it was essential to get some indication on which group of bacteria reside on 

salmon gills.  Hence, gill bacteria were isolated from AGD-affected and unaffected 

fish gills (chapter 3).  The results from chapter 3 showed that the bacteria from the 

genera Winogradskyella and Staphylococcus were predominantly present only on 

AGD-affected fish gills; as a result, it was important to verify the role of these 

bacteria in AGD.  However, prior to investigating the role of a specific bacterium in 

the development and severity of AGD it was essential to remove potentially 

confounding bacteria of normal gill microflora.  Therefore, a protocol was adapted to 

disinfect salmonid gills (chapter 4).  Subsequently, this protocol was incorporated in 

all our in vivo trials.  Chapter 5, reports an experiment that was conducted to verify 

the influence of bacteria (Staphylococcus sp. and Winogradskyella sp.) in the 

incidence and severity of AGD.  One of the important outcomes of this experiment 

(chapter 5) was that the presence of Winogradskyella sp. on salmonid gills during the 

process of Neoparamoeba spp. infection could result in severe AGD.  Therefore 

chapter 6, details an experiment that was carried out to further confirm the role of 

Winogradskyella sp. in AGD.  While it was evident that the occurrence of certain 

bacteria on gills could exacerbate AGD condition, it was also important to examine 

whether these bacteria (Winogradskyella spp.) frequently colonised salmonid gills.  

Therefore, a field based study was conducted for a period of 102 days and fish were 

sampled on five different time points to monitor the changes occurring in the 

culturable gill bacterial population in a farm environment (chapter 7).  Finally, 

considering the results and conclusions drawn from the above mentioned experiments 

and field trials, the significance of bacteria in AGD is discussed in chapter 8.    
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Chapter 2 

 

General materials & methods 
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2.1 Isolation of Neoparamoeba spp. 

AGD can only be initiated by cohabitation of AGD-affected Atlantic 

salmon with naïve Atlantic salmon or by inoculation of naïve Atlantic salmon 

with infective Neoparamoeba spp. freshly isolated from fish with AGD (Kent et 

al. 1988; Howard et al. 1993; Morrison et al. 2005).  Therefore, for all 

Neoparamoebae challenges, amoebae cells were harvested immediately prior to 

challenge from the AGD-affected Atlantic salmon held in the School of 

Aquaculture, University of Tasmania, by a method described by Morrison et al. 

(2004) modified by addition of antibiotic and antimycotic solution to eliminate 

bacteria/fungi from the amoebae inoculum (Butler and Nowak 2004).  Infected 

gills were removed from AGD affected Atlantic salmon after euthanasia 

(anaesthetic overdose at 20 ml l–1Aqui-S®).  Gills were transported to the 

laboratory in sterile seawater (SS) containing antibiotic and antimycotic solution 

(5% v/v 5000 IU ml–1 penicillin and 5 mg ml–1 streptomycin solution (Sigma), 1% 

v/v 10 mg ml–1 gentamycin (Sigma) and 0.25 mg ml–1 amphotericin B 

(Invitrogen).  The gill arches were separated and placed in sterile distilled water 

and centrifuged at 400 g for 5 min to quickly detach the amoebae from the gill 

tissue.  The supernatant was discarded and the pellets were resuspended in SS and 

diluted approximately 50 fold, lightly agitated and decanted into several Petri 

dishes (Figure 2.1).  Amoebae were left to adhere to the bottom of the Petri dish 



 

for 1 h, then the liquid and gill debris transferred into new Petri dishes to allow 

adherence of any remaining amoebae for another hour.  The fluid and gill tissue 

were removed and discarded and the Petri dishes were washed several times with 

SS to remove mucus and epithelial cells, while the amoebae remained attached to 

the bottom of the Petri dish (Figure 2.2a).  The amoebae were detached by adding 

750 µl trypsin-EDTA solution (0.025% trypsin per 1 mM EDTA; Invitrogen) and 

by gently tapping the Petri dishes for a minute (Figure 2.2b).  The suspension was 

then pooled and diluted with SS and centrifuged at 400 g for 10 min.  The pellets 

were resuspended in SS and the amoebae were assessed for viability using a 

trypan blue exclusion assay (Phillips 1973) then counted using a haemocytometer 

to give the number of viable cells in solution.  Lack of culturable bacteria in the 

amoebae inoculum was confirmed by plating the inoculum on Shieh’s and marine 

agar medium (appendix 1) and incubating at 22°C for 48 h. 
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Figure 2.1 Incubation of gill arches in Petri dishes.  Photograph by P. Crosbie 

 

b a 

 

 

 

 

 

 

 

 

Figure 2.2 Amoebae attached to the bottom of Petri dish 30-60 min after 

incubation (a) and amoebae detached from the bottom of Petri dish 2-3 min after 

addition of trypsin/EDTA (b).  Photographs by P. Crosbie 
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2.2 AGD diagnosis and assessment of severity 

Fish were sampled with an anesthetic overdose at 20 ml l–1Aqui-S®.  The 

entire gills were removed and placed in seawater Davidson’s fixative (Shaw and 

Battle 1957) and post-fixed in 70% ethanol.  The second right gill arch was 

removed and processed for routine wax histology and stained with haematoxylin 

and eosin.  All sections were viewed by a light microscope (Olympus) at 100 × 

(for diagnosing AGD lesion percentage) and 400 × (for determining AGD lesion 

size) magnification.  Quantitative analysis of disease severity was conducted by 

estimating the number and size of AGD lesion on each filament (Adams and 

Nowak 2001).  A typical AGD lesion is characterized by a single or multifocal 

epithelial hyperplasia of the gill lamellae often containing round to ovate 

interlamellar vesicles and Neoparamoeba spp. with a parasome in association 

with the lesions.  Only well oriented filaments were considered for AGD 

assessment purpose.  A well oriented filament is defined as having >3/4 of the 

filament with a central venous sinus showing and lamellae evenly sized along 

both sides of the filament (Speare et al. 1997).  The percentage of lesioned 

filaments was determined by estimating the ratio of filaments with typical AGD 

lesions to filaments with no AGD lesions.  Lesion size was analysed by counting 

the number of hyperplastic interlamellar units within each lesion.  For example, in 

figure 2.3 there are five filaments of which three (F1, F2 and F3) have AGD 

lesions; therefore AGD lesion percent would be 60% for this figure; the lesion 

size in filament F1 is ≈ 5 interlamellar units, F2 is ≈ 26 and F3 is ≈ 23 

interlamellar units.  Images of the affected tissue were taken using a Leica 

DC300f digital camera (Wetzlar). 
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Figure 2.1 A section of Atlantic salmon gills showing AGD-affected filaments 

(F1, F2 and F3) with hyperplastic lamellae (H) and vesicles (V) and unaffected 

filaments (F4 and F5) with healthy lamellae (arrows).  Scale bar = 250µm  
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2.3 Bacteria isolation and morphological characterisation 

Fish were lightly sedated with Aqui-S® and gill mucus samples were taken 

by rotating a swab three times clockwise either from the infected areas showing 

gross AGD lesions or for fish with no AGD lesions, the mucus samples were 

collected from second gill arch on the right, in order to be consistent in the 

sampling procedures.  The samples were inoculated onto marine agar and blood 

agar enriched with 7% sheep’s blood and 2% NaCl (chapter 3) or on marine agar 

alone (chapter 7).  Appendix 1 details the formulation for bacteriological 

agar/broth media used during this study.  All plates were incubated at 22oC for 24 

to 96 h.  Bacterial growth was examined on all plates and distinct bacterial 

colonies from each plate were chosen according to differences in either one of 

these morphological characteristics: outline, shape, pigmentation, diameter, 

transparency, or elevation on agar surface (Figure 2.4).  This gave an approximate 

estimation on the types of culturable bacterial colonies that were present on the 

fish gills in a given period of time. 

  

To obtain pure cultures, selected colonies from marine agar were 

inoculated onto fresh plates of Shieh’s agar (appendix 1).  The colonies selected 

from blood agar were inoculated onto Todd-Hewitt agar plates (available 

dehydrated from Oxoid Pty. Ltd., Australia).  These plates were incubated at 22oC 

for 24 to 48 h.  The pure colonies thus obtained were cryopreserved (see section 

2.4) for further characterisation purposes.      
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Figure 2.4  Colony Morphology (only sketches not photos copied from website: 

http://www.rlc.dcccd.edu/mathSci/reynolds/MICRO/lab_manual/ stored under 

title Coloniy_morph.jpg) and photographs of some of the bacterial colonies 

isolated from salmonids gills during the current study. 
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2.4 Cryopreservation of bacteria 

The pure cultures were cryopreserved using the methodology described by 

Ward and Watt (1971).  Briefly, the preservation medium (proteose peptone no.3 

(Difco) 1 g; glycerol 8 ml; distilled water 92 ml) was autoclaved at 121oC for 15 

min.  A dense suspension (100 µl) of the organism, no older than 24-48 h was 

transferred to a sterile cryotube containing 1 ml of the preservation medium and 

preserved at -80oC.  

 

2.5 Biochemical characterisation of bacteria 

The cryopreserved isolates were grown on their respective culture media 

(Shieh’s or Todd Hewitt agar).  The purity of the isolates was ensured before 

biochemical characterisation.  API 50 CH and API CHB/E medium were used to 

study the carbohydrate fermentation reactions; enzymatic activity of the isolate 

was studied using API Zym kit (bioMérieux Australia Pty. Ltd.).  All tests were 

conducted according to the protocol supplied with the kits.  Values ranging from 

0-5 were assigned, corresponding to the colours developed and the values 3, 4 or 

5 were considered as positive reactions.  API Zym test strips were incubated at 

22oC for 4 to 5 h (Figure. 2.5a).  API 50 CH test strips were incubated at 22oC for 

24 to 48 h (Figure. 2.5b). 
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Figure 2.5 API Zym (a) and API 50 CH (b) test results of Winogradskyella sp. 

strain AC1 is shown as an example.  Referring to figure 2.5a, depending on the 

intensity of the colour developed compared with control, a value of ≥ 3 was 

recorded for alkaline phosphatase, esterase lipase (C8), α-chymotrypsin, leucine 

arylamidase, valine arylamidase, acid phosphatase and napthol-AS Bl 

phosphohydrolase, indicating that Winogradskyella sp. strain AC1 could 

metabolise these enzymes.  Similarly, figure 2.5b shows that Winogradskyella sp. 

strain AC1 could form acid with glycerol, L-arabinose, ribose, D-xylose, 

galactose, glucose, mannose, manitol, sorbitol, melibiose, sucrose, trehalose, D-

fucose, D-arabitol, L-arabitol and Gluconate.  
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2.6 Determination of standard curve 

Cryopreserved samples of Winogradskyella sp. strain AC1 and 

Staphylococcus sp. strain AC8 were grown on multiple agar plates of Shieh’s and 

Todd Hewitt medium respectively for 48 h at 22oC.  The resultant bacterial cells 

were then aseptically scraped from the agar medium and were serially diluted in 

autoclaved seawater to obtain a tenfold dilution.  The viability of the cells was 

tested using trypan blue exclusion assay (Phillips 1973) and the numbers of these 

viable cells in each dilution was determined using standard haemocytometer 

counting techniques.  The corresponding absorbance of the bacterial suspension in 

each serial dilution test tubes was measured using a spectrophotometer at 

wavelength 540 nm.  Thus, a standard curve was obtained for Winogradskyella 

sp. strain AC1 and Staphylococcus sp. strain AC8 (Figure 2.6) by plotting 

absorbance against cell numbers. 

 

 Winogradskyella sp. strain AC1; y = 0.1432x - 0.1089.  R2 = 0.9822
 Staphylococcus sp. strain AC8; y = 0.2381x - 0.0563.  R2 = 0.9808 
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Figure 2.6 Standard curves for Winogradskyella sp. strain AC1 and 

Staphylococcus sp. strain AC8.  Values are mean ± SE. 
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2.7 Cultivation of bacteria for experimental purpose 

Cryopreserved samples were grown on their respective culture media 

(Shieh’s or Todd Hewitt broth).  Briefly, the bacteria were revived using starter 

cultures (4 x 500 ml broth) that were placed on an orbital mixer (Ratek 

Instruments Pty. Ltd., Australia) and rotated at 3-4 rpm for 24 h at 22°C ± 1°C 

(Figure 2.7a).  Broths containing the bacteria were then pooled and transferred to 

an aerated 3 l carboy and incubated for a further 48 h at 22°C ± 1°C (Figure 2.7b).  

A stock solution of bacteria was obtained by centrifugation at 10,000 g and by 

multiple washings with autoclaved seawater.  Based on the previously determined 

standard curve values (see section 2.6) the stock solution was then mixed with 

suitable volumes of autoclaved seawater to obtain desired challenge 

concentrations.  The viability of the cells was tested using trypan blue exclusion 

assay (Phillips 1973).  Aseptic conditions were adapted throughout the process of 

bacteria culture. 

 

 

 

 

 

 

 

 

 ba 

Figure 2.7 Bacteria were revived using starter cultures (a) and after 24 h were 

transferred into aerated 3 l carboy for large scale production (b). 
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2.8 Extraction of bacterial DNA  

The cryopreserved samples (refer to section 2.4 for details on 

cryopreservation) were revived on their respective culture medium (Shieh’s or 

Todd Hewitt agar).  Bacterial cells were scraped from the agar and suspended in 

tubes containing 400 μl of saline EDTA, 50 μl of 20% sodium dodecyl sulfate 

(SDS) and 0.1 mm zirconia/silica beads (Biospec).  The tubes were subjected 

twice to bead beating for 10 seconds at 5000 rpm, and then centrifuged at 20,817 

g for 5 min.  The aqueous top layer was transferred to a sterile tube and extracted 

with an equal volume of chloroform-isoamyl alcohol (24:1) and then centrifuged 

for 10 min at 20,817 g.  The DNA thus obtained was purified using the Ultra 

Clean DNA purification kit (Mo Bio Inc).  

2.9 Polymerase chain reaction (PCR)  

16S rRNA gene fragments of the DNA extracts were obtained by PCR, 

using bacteria-specific 16S rRNA gene primers 10F (5’-

AGTTTGATCATGGCTCAGATTG-3’) (chapter 3) (Weisburg et al. 1991) or 

519F (5’-CAGCMGCCGCGGTAATAC-3’) (chapter 7) as forward primers (Lane 

1985) and 1492R (5’-TACGGYTACCTTGTTACGACTT-3’) as reverse primer 

(chapters 3 and 7) (Lane 1991).  PCR was conducted using Hotstar PCR 

amplification kit (Qiagen) on a Mastercycler® thermocycler (Eppendorf AG).  

The reaction cycle consisted of 95oC for 15 min (initial denaturation); 30 cycles 

of a minute duration at temperatures 94oC, 52oC, 72oC; a final extension of 72oC 

for 10 min; and a hold at 4oC.  PCR products were assessed by electrophoresis in 

ethidium bromide-stained 1% agarose gels, visualised with ultraviolet light 

transillumination with comparison against base pair markers.  PCR products of 
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size, 1.5 kb were purified using the UltraClean PCR Clean-up kit (Mio-Bio Inc.).  

PCR products were sequenced using the Beckman CEQ2000 automated DNA 

sequencing system (Beckman-Coulter) using the manufacturer’s protocols, except 

that primers 10F or 519F and 1492R were added in 5 pmol quantities in the 

sequencing reactions.  

2.10 Analysis of sequences 

Sequences were manually checked using the programs Chromas v.2.0 

(Technelysium Pty.Ltd., Helensvale, Qld, Australia) and BioEdit v.7.0.4.1 (Hall 

1999) to confirm individual base positions.  Sequence data were aligned to the 

closest relative using the BLAST database algorithm (Altschul et al. 1997).  The 

sequence dataset was analysed using Clustal X v.1.83 (Thompson et al. 1997) to 

perform multiple alignments and to construct a tree by the neighbour-joining 

method.  The created trees were viewed in TreeView v.1.6.6 (Page 1996).   

2.11 Sequence identification 

The criteria established by Bosshard et al. (2003), were followed to assign 

a 16S rRNA gene sequence to a particular genus and species.  Briefly, if the 

unknown sequence had a homology value of ≥ 99% with the reference sequence 

of a classified species then the unknown isolate was assigned to this species.  

Similarly, when the homology value was < 99% and > 95%, the unknown isolate 

was assigned to the corresponding genus.  When the value was ≤ 95% the 

unknown isolate was assigned to the corresponding family/order. 
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2.12 Experimental tanks 

The in vivo trials (chapters 4, 5 and 6) were conducted in 6 identical 

recirculating systems each consisting of three 70 l tanks (n=4 fish per tank) and a 

70 l reservoir (Figure 2.8).  Seawater temperature was maintained at 16 ± 0.5°C, 

pH 8.2 ± 0.5, dissolved oxygen 7.6 ± 0.4 mg l–1, salinity 35‰ and total ammonia-

nitrogen below 0.2 mg l–1.  Sufficient air supply was maintained in the tanks 

throughout the experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sump 

70 liter tanks 

 

Figure 2.8 A single recirculating system showing three fish tanks and a sump. 
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2.13 Potassium permanganate treatment 
 

Fish were transferred from recirculation tanks (section 2.12) using dip-nets 

to individual static tanks for a short term bath (20 min) in seawater (208 l) 

containing potassium permanganate (5 mg l–1) to remove/reduce the natural 

microflora on the gills.  After the bath, fish were transferred back to their 

respective recirculation systems and were maintained for 2 days to return to 

normal conditions.  Sufficient air supply was maintained in the tanks throughout 

the treatment. 

2.14 Statistical analysis 

A one-way ANOVA using SPSS© version 11.5 was performed to test for 

significant difference between the groups (chapters 4, 5 and 6).  Homogeneity of 

variance was assessed using Levene’s test of equality of error variances.  If 

ANOVA’s results were significant, then differences between groups were 

assessed using Tukey’s HSD post-hoc test.  Differences were considered 

significant at the P ≤ 0.05 level.  Graphs were drawn using Sigma Plot 2000, 

SPSS© Inc. 
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Chapter 3 
 

A culture-dependent 16S rRNA gene-based approach 
to identify gill bacteria associated with amoebic gill 

disease in Atlantic salmon 
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3.1 Abstract 

The culturable gill bacterial populations associated with amoebic gill disease 

(AGD) in Atlantic salmon (Salmo salar) were identified using biochemical tests, 

cluster analysis and 16S rRNA gene-based approaches.  The gills of fish with clinical 

signs of AGD were dominated by isolates that had biochemical profiles similar to the 

representative strains identified as Winogradskyella spp. and Staphylococcus spp.. 

Such strains could not be cultured from the AGD-negative samples.  This study 

discusses the possibility of association of culturable salmonid gill bacteria in AGD.  

3.2 Introduction 

Amoebic gill disease (AGD) is the major health problem affecting marine 

farmed Atlantic salmon, Salmon salar L., in Tasmania, Australia.  The causative 

agent of AGD is Neoparamoeba spp. (reviewed by Munday et al. 2001; Dykovà et al. 

2005).  Amoebae infect the gills of salmon and cause lesions characterised by single 

or multifocal epithelial hyperplasia of the gill lamellae, focal fusion of secondary 

lamellae often containing round to ovate interlamellar vesicles and amoebae (Adams 

and Nowak 2004).  At present, the only effective control measure for AGD is 

freshwater bathing (Parsons et al. 2001; Clark et al. 2003).   



 

Previous studies on the microflora of fish gills of both marine and freshwater 

fishes have shown that the gills support quite high populations of a wide range of 

bacterial genera (Trust 1975; González et al. 1999; Bowman and Nowak 2004).  

Involvement of gill colonising bacteria in AGD has previously been suggested 

(Roubal et al. 1989; Douglas-Helders et al. 2003), however very few studies have 

been conducted to verify any role of bacteria in AGD.  Bowman and Nowak (2004) 

conducted a culture-independent 16S rRNA gene-based approach to examine the 

entire bacterial community on AGD-affected and unaffected salmon gills and 

proposed that the bacteria from the genus Psychroserpens may be linked to the 

disease.  However, this proposition was merely based on the predominant occurrence 

of Psychroserpens spp. on AGD-affected fish gills.  To prove the association of 

bacteria in AGD, it is necessary to conduct in vivo trials; and to conduct infection 

trials it is essential to isolate bacteria because it is not possible to use unculturable 

bacteria for experiments.  As a result, a culture-dependent study needs to be 

conducted to isolate gill bacteria from AGD-affected Atlantic salmon, in order to test 

the role of bacteria in AGD.  This study is the first attempt to characterise gill-

associated bacteria cultivated from salmon with AGD.   
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3.3 Materials and methods 

3.3.1 Fish 

Three groups of Atlantic salmon, designated as A, B and C were used in this 

experiment.  Group A fish (n=24) with clinical AGD were from commercial sea 

cages located in southern Tasmania.  Group B and C fish were reared in same farm 

environment and transported to the aquaculture facility at University of Tasmania, 

Launceston, Australia, when the smolts were ready to be transferred to sea water. At 

the time of sampling, group B fish (n=5) were located in the experimental AGD 

infection tank of 4000 L capacity filled with 2 μm filtered sea water.  These fish in 

Group B tank act as a reservoir for maintaining constant supply of fresh isolates of 

virulent Neoparamoeba spp. required for various AGD infection trials conducted in 

this facility.  AGD could not be reproduced using cultured Neoparamoeba spp. 

because the cultured amoebae are avirulent (Morrison et al. 2005).  Group C (n=18) 

comprised fish naïve to AGD housed in similar 4000 L tanks.  Seawater temperature 

was 16-18oC and salinity was 35‰ at both locations (farm and School of 

Aquaculture).  The naïve fish were selected only from laboratory, because it is not 

possible to obtain seawater reared Atlantic salmon that are naïve to AGD from 

Tasmanian aquaculture farms with similar environmental conditions to the AGD 

positive farms.  The farms situated on Macquarie Harbour are AGD negative (see 

chapter 1, section 1.2); however, environmental conditions in Macquarie Harbour are 

very unusual and Atlantic salmon farmed there are affected by pathogens specific 

only for that area.   
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3.3.2 Sample collection 

All fish were lightly sedated with Aqui-S® and gill mucus samples were taken 

by rotating a swab three times clockwise either from the infected areas showing gross 

AGD lesions (group A and B) or for group C fish that did not have any AGD lesions, 

the mucus samples were collected from second gill arch on the right, to be consistent 

in the sampling procedures.  Immediately after collection, the samples were 

inoculated onto marine and blood agars (refer to chapter 2, section 2.3 for details 

about bacteria cultivation).  Gill mucus smears were made for indirect fluorescent 

antibody testing (IFAT) to confirm AGD infection (Howard and Carson 1993).  

 3.3.3 Bacterial characterisation  

Bacterial growth was examined on all plates and distinct colonies from each 

group (A, B and C) were chosen according to differences in morphological 

characteristics (refer to chapter 2, section 2.3 for details on bacteria characterisation). 

Thus, 50 isolates were selected from Group A, 16 isolates from group B and 52 

isolates from group C.  The selected colonies were sub-cultured to ensure purity 

before biochemical characterisation (refer to chapter 2, section 2.3 for details on 

subculturing procedure).  API 50 CH kit and API 50 CHB/E medium were used to 

study the carbohydrate fermentation reactions; enzymatic activity of the isolates was 

studied using API Zym kit (bioMérieux Australia Pty. Ltd.)  All tests were conducted 

according to the protocol supplied with the kits (chapter 2, section 2.5 shows in detail 

the API test results of a single isolate, same procedure was applied for all isolates).   
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3.3.4 Cluster analysis 

The Clustan Graphics software version 5.25 (Wishart, 1999) was used to 

cluster phenotypically similar bacterial isolates from each group (A, B and C).  

Results of the 68 API tests for each analysed isolate were recorded in a binary 

system.  Proximities between each isolate were calculated using Squared Euclidean 

Distance.  A hierarchical cluster analysis was obtained using Increase in Sum of 

Squares (Ward’s Method).  Based on proximity values of the individual cases, upper 

tail significance tests created cluster partitions that were significant at the 5% level.  

From each cluster, the cluster-exemplar was selected from every group and 

cryopreserved (refer to chapter 2, section 2.4 for details on cryopreservation of 

bacteria) for subsequent 16S rRNA gene sequence analysis.  An exemplar is the most 

typical member of the cluster with highest mean similarity with all the other members 

of that cluster (Wishart, 1999). 

 

 3.3.5 16S rRNA analysis 

The cryopreserved samples were revived on their respective culture medium 

and were used for sequencing the 16S ribosomal RNA (rRNA).  Please refer to 

chapter 2, sections 2.8, 2.9, 2.10 and 2.11 respectively for details on extraction of 

bacterial DNA, polymerase chain reaction (PCR), analysis of sequences and sequence 

identification.  Sequences obtained in this study have been deposited under GenBank 

accession numbers DQ356484 to DQ356511. 
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3.4 Results 

Using IFAT, fluorescent bodies consistent in shape and size to cells of 

Neoparamoeba spp. were recorded in the gill mucus smears obtained from fish in 

groups A and B, thus confirming that these fish were AGD-positive.  No 

Neoparamoebae were detected on the gills of group C fish, the negative controls 

(data not shown).   

 

From each group (A, B and C) the bacterial isolates with most similar 

biochemical characteristics were combined to form a cluster that is significant at 5% 

level. As a result, 10 clusters were formed in group A (AC1 to AC10), 4 clusters in 

group B (BC1 to BC4) and 14 clusters in group C (CC1 to CC14) (Figures 3.1a to 

3.1c).  One representative strain of each cluster was selected for 16S rRNA gene 

sequencing (Table 3.1; Figure 3.2).  These representative strains were the cluster 

exemplars, i.e. these strains were the most typical member of the cluster with highest 

mean similarity with all the other members of that cluster (Figures 3.1a to 3.1c).  

Therefore, the biochemical profile of the representative strain would be similar to the 

rest of the members in the cluster (Table 3.2; Appendix 2).  For example, according 

to 16S rRNA analysis the strain selected from cluster AC1 had >95% and <99% 

similarity with the phylotypes present in the genus Winogradskyella.  Therefore, we 

propose that the remaining 9 isolates in this cluster (AC1) would also be closely 

related to the genus Winogradskyella (Table 3.1; Figure 3.1a).   
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Based on the above statements, it was found that Winogradskyella spp. 

(isolates from clusters AC1, AC2 and BC1) and Staphylococcus spp. (isolates from 

clusters AC6 to AC10 and BC2 to BC4) predominantly colonised the gills of AGD-

affected fish (groups A and B) regardless of fish origin i.e. group A fish were from 

farm and group B fish were from laboratory.  These bacteria were not isolated from 

AGD-negative fish gills in group C.  The gills of group C fish mainly contained 

Gammaproteobacteria [Idiomarina spp. (CC2, CC3 and CC4); Shewanella baltica 

(CC1); Pseudomonas jessenii (CC5); P. putida (CC6); Cobetia marina (CC8) and 

Halomonas sp. (CC7)]. The other bacteria isolated during this study include those 

from the genera Polaribacter (AC3 and AC4), Salegentibacter (AC5), Cellulophaga 

(CC11, CC12, and CC13) and Arthrobacter (CC9) (Table 3.1; Figure 3.2).   
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AC1 (n=10) 

AC2 (n=14) 

AC3 (n=3) 
AC4 (n=3) 

AC5 (n=7) 

AC6 (n 2) 

AC8 ( 2) 
AC9 (n 4) 

AC10 (n 3) 

AC7 ( 2) 

Figure 3.1b
  

=

n=

=

=

n=

  BC1 (n=9)

  BC2 (n=3)

  BC4 (n=2)

  BC3 (n=2)

Figure 3.1c 
 

 
CC1 (n=3) 
CC2 

 
(n=3) 

CC3 

 
(n=2) 

CC4 

 
(n=4) 

CC5 

 

(n=2) 
CC6 

 

 
(n=3) 

CC7 
 

(n=3) 

CC8 

 

 
(n=8) 

CC9 

 

 

(n=3) 

CC10 

 

 

(n=7) 

CC11 

 

 

 
(n=5) 

CC12 

 

 
(n=3) 

CC13 
 

(n=3) 
 

 CC14 (n=3)

 
 
 
Figure 3.1  Hierarchical comparison of the biochemical characteristics of bacterial 
strains isolated from AGD-affected and unaffected fish gills. Clusters are denoted by 
left braces “{” and labeled as (Group A-Cluster 1 (AC1) to Group A-Cluster 10 
(AC10); BC1 to BC4 and CC1 to CC14).  Bacterial strains isolated from fish gills are 
designated as F1, F2, F3 and so on.  Underlined strains are cluster exemplars, which 
were selected for 16S rRNA analysis.  Figure 3.1a: Group A (AGD-affected farm 
fish); figure 3.1b: Group B (AGD-affected fish from laboratory); figure 3.1c: Group 
C (AGD-negative fish from laboratory)   



 

 Table 3.1 16S rRNA gene phylotype identity of cluster representative of strains 

selected from AGD-affected (groups A and B) and unaffected (group C) Atlantic 

salmon gills  

Cluster representative 
with GenBank 
accession # 

Sequence data with GenBank 
accession # 

% identical 
16S rRNA† 

 
Group A 
 
AC1 (DQ356488) Winogradskyella eximia  (AY521225) 96.6% 
AC2 (DQ356489) Winogradskyella eximia  (AY521225) 96.9% 
AC3 (DQ356492) Polaribacter irgensii   (AY771712) 94.6% 
AC4 (DQ356493) Polaribacter irgensii  (AY771712) 95.3% 
AC5 (DQ356491) Salegentibacter salegens  (M92279) 99.7% 
AC6 (DQ356501) Staphylococcus pasteuri (AB009944) 99.8% 
AC7 (DQ356497) Staphylococcus warneri (L37603) 99.7% 
AC8 (DQ356495) Staphylococcus kloosii (AB009940) 99.2% 
AC9 (DQ356496) Staphylococcus warneri (L37603) 99.4% 
AC10 (DQ356498) Staphylococcus warneri (L37603) 99.5% 
 
Group B 
 
BC1  (DQ356490) Winogradskyella eximia  (AY521225) 96.8% 
BC2 (DQ356499) Staphylococcus pasteuri  (AB009944) 99.7% 
BC3 (DQ356500) Staphylococcus pasteuri  (AB009944) 99.9% 
BC4 (DQ356502) Staphylococcus xylosus  (D83374) 99.5% 
 
Group C 
   
CC1 (DQ356507) Shewanella baltica  (AJ000214) 97.8% 
CC2 (DQ356508) Idiomarina baltica  (AJ440214) 95.2% 
CC3 (DQ356510) Idiomarina sp.  (AB167017) 96.4% 
CC4 (DQ356509) Idiomarina loihiensis  (AE017340) 99.6% 
CC5 (DQ356504) Pseudomonas jessenii  (AY206685) 99.4% 
CC6 (DQ356503) Pseudomonas putida (AY958233) 98.9% 
CC7 (DQ356506) Halomonas sp. (U78786) 98.2% 
CC8 (DQ356505) Cobetia marina (AY628694) 99.9% 
CC9 (DQ356511) Arthrobacter rhombi (Y15885) 98.4% 
CC10 (DQ356484) Arenibacter troitsensis  (AB080771) 99.0% 
CC11 (DQ356486) Cellulophaga baltica  (AJ005972) 96.0% 
CC12 (DQ356487) Cellulophaga baltica  (AJ005972) 97.9% 
CC13 (DQ356485) Cellulophaga baltica (AJ005972) 95.5% 
CC14 (DQ356494) Flavobacterium sp. (DQ239767) 95.0% 
† obtained from  GenBank nucleotide database 
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Figure 3.2 16S rRNA gene-based phylogenetic tree indicating the location of 

bacterial isolates cultured from the gills of Atlantic salmon (isolates AC1 to AC10 

are from AGD-affected farm fish gills in group A; BC1 to BC4 are from AGD-

affected fish from laboratory and CC1 to CC14 are from AGD-negative fish from 

laboratory).  Scale bar indicates maximum likelihood evolutionary distance.  

Numbers in parenthesis are GenBank accession numbers.  Figure 3.2 shown in next 

page. 
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Table 3.2  Biochemical profiles of the cluster exemplars that were selected for 16S rRNA analysis from each cluster in group A (AGD affected fish 
from farm), group B (AGD affected laboratory fish) and group C (unaffected fish).  Cluster-exemplars from group A are denoted as AC1 to AC10; 
group B as BC1 to BC4 and group C as CC1 to CC14.  The numbers represent the percentage of isolates that showed a positive  reaction.   +  
denotes a positive reaction by cluster exemplar.
API-test AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 BC1 BC2 BC3 BC4 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 CC12 CC13 CC14
Alkaline phosphate +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +66 +100 +100 +100 +100 +100 +100 +66
Esterase C4 +100 +64 +100 +100 +100 +100 +100 +88 +100 +100 +100 +100 +100 25 +100 +100 +100
Esterase Lipase C8 +100 +100 +66 +28 +100 +100 +50 25 +100 33 +100 +100 +100 +100 +100 +100 +100 +63 +100 +100 +100 +100
Lipase +100 +100 +100 +100 +100 +100 +100
Leucine arylamidase +42 +50 50 +100 +25 33 33 +50 +100 +100 +100 +100 +100 +75 +100
Valine arylamidase +33 +66 +50 +100 +50 33 +33 +50 +100 +100 +100 +100 +100 +63 33
Cystine arylamidase +100 33
Trypsin +66 +100 +100 +100 60 +66 +100
α-chymotrypsin +100 +100 +100 +50 25
Acid phosphatase +100 +33 66 +100 +100 33 +100 +100 +100 +100 +100 +100 +100 +100 +33 +100 +100 14 +100
Napthol-AS BL 
Phosphohydrolase +100 +100 +100 +100 +100 11 +100 +100 +100 +100 +100 +100 +100 +100 +66 +100 43 +33 +100
β-galatosidase +100 +100 20 +66
β-glucuronidase 66 +50 43 20
α-glucosidase +100 50 +43
N-acetyl-β-
glucosaminidase 33 +100 +100 +50 +100 43 33 +100
α-mannosidase 33 40 33
α-fucosidase 33 33
Glycerol +100 +100 +100 50 50 +66 +100 +100 +100 +100 +100 +100 +100 +100 +100
Erythritol +100 +75 33
D Arabinose +100 +100 +100 +100 +100 +100 +100 +100
L Arabinose +100 +100 50 +50 33 +50 +100 +100 +100 +100 66 +100 +100 +100 +100
Ribose +100
D Xylose +100 25 +100 +100 +100 +40 +100
L Xylose 25 +100 40 +100
Adonitol +100 40 +100
Galactose +100 +100 +100 +100 +100 +100
Glucose +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 33 +100
Fructose +64 33 +100 +100 +100 +100 +100 +66 +100 +100 +100 +100 +100 +100 +100 +100
Mannose +40 +100 +100 +100 +100 +100 44 +100 +100 +100 +100 +100 +100 +100 +100 33 +100 +100 +100 +66
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API-test AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 BC1 BC2 BC3 BC4 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 CC12 CC13 CC14
Sorbose +100 +100 +100 +100 +50
Rhamnose +100 +100 +100 +100
Dulcitol +100 66
Inositol +50 +50 38
Mannitol +100 33 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 14 +100 +100
Sorbitol +50 +50 +75 +100 +100 33 +100
α-Methyl D Mannoside 66 33
α-Methyl D Glucoside 66
Arbutin 33
Esculin +66 +100 50 66 33
Cellobiose +100 +100 +100 +100
Maltose +100 +100 +33 66 +100 +100 +50 +100 +100 +100 +100 +100 +100 +100 +100 +100
Lactose +66 +50 +100 +100 +100 +100 +100 +100 +100 +100
Melibiose +100 +100 +100 14
Sucrose +100 +66 +28 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100 +100
Trehalose +64 33 33 28 +100 +100 +100 +100 66 +100 +100 +100 33 33 +50 +75 +100 +100 +100
Melezitose 33 22 +100 33 +100 33
Raffinose +100 +33 +100 +100
Strach +38
Glycogen +100
Xylitol 33 +100 +100
Gentiobiose +50 66 +50 +100 +66
D-Turanose 33 +100
D-Lyxose +100
D-Tagatose 33
D-Fucose +100 +50 +100 14 +100 +100 +100
L-Fucose +100 +14 +100 +100 +100
D-Arabitol +50 +50
L-Arabitol +50
Gluconate +50 +50 +100
2-KetoGluconate +100 +100 +100 33 +100
5-KetoGluconate +100 +100
No. of isolates per 
cluster 10 14 3 3 7 2 2 2 4 3 9 3 2 2 3 3 2 4 2 3 3 8 3 7 5 3 3 3
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3.5 Discussion  

The present study identified Polaribacter spp., Salegentibacter sp., 

Winogradskyella spp. and Staphylococcus spp. only on the gills of AGD-positive 

fish; these bacteria were absent on AGD-negative samples.  AGD-negative fish had a 

varied distribution of Gammaproteobacteria and Cellulophaga spp.  These results 

show that fish with AGD may have a diverse/dissimilar gill bacterial flora compared 

to fish without AGD.  

 

The current study abundantly isolated Winogradskyella spp. and 

Staphylococcus spp. only on AGD-positive fish gills (groups A and B).  This might 

suggest that the onset of AGD on Atlantic salmon gills might favour the growth of 

certain bacteria.  These bacteria might act as secondary pathogens or alternatively, 

the occurrence of these bacteria in large numbers on the gills might influence 

Neoparamoeba spp. colonisation.   

 

Additionally, several studies on human diseases (e.g. amebiasis, 

Acanthamoeba keratitis) have reported intriguing relationship between bacteria and 

amoeba.  For example, pre-incubation of E. histolytica with certain Gram negative 

bacteria markedly enhanced the virulence of amoeba and their ability to destroy 

monolayers of tissue-cultured cells (Bracha and Mirelman 1984).  Similarly, the 

growth of Acanthamoeba castellanii and A. polyphaga could significantly increase in 

the presence of certain bacteria such as Xanthomonas maltophilia (Bottone et al. 

1994).  Furthermore, some bacteria besides providing nutrition for amoebae might 
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also survive phagocytosis and are able to multiply within free-living amoebae (Horn 

et al. 2001).  In addition, various strains of Acanthamoeba spp. can maintain and 

transmit internalised pathogenic bacteria such as Salmonella sp., Legionella 

pneumophila, Micrococcus sp. (Hadaś et al. 2004).   

 

Further research is needed to verify the role of Winogradskyella spp. and 

Staphylococcus spp. in AGD.  Winogradskyella is a recently established marine 

genus within the family Flavobacteriaceae, phylum Bacteroidetes (commonly known 

as Cytophaga-Flavobacterium-Bacteroides phylum or CFB group).  Currently the 

genus Winogradskyella contains four recognised members [W. thalassicola, W. 

epiphytica, W. eximia isolated from algal frond surfaces in the Sea of Japan 

(Nedashkovskaya et al. 2005) and W. poriferorum isolated from the surface of a 

sponge in tropical water (Lau et al. 2005)].  There is no further information available 

either on the association or the pathogenic potential of Winogradskyella spp. with any 

organism.  On the other hand, Staphylococcus warneri strains Y-13-L and CECT 236 

were reported to be virulent to brown trout, Salmo trutta (Gil et al. 2000).  

Furthermore, a Staphylococcus species infection has previously been described in 

other fish species including silver carp, Hypophthalmichthys molitrix (Shah and 

Tyagy 1986); yellowtail, Seriola quinqueradiata and sea bream, Chrysophrys major 

(Kusuda and Sugiyama 1981).   

 

This study also identified a bacterial strain from cluster AC5 closely related to   

Salegentibacter salegens from AGD-affected farm fish. In contrast, the uncultured 
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Salegentibacter sp. clones were present only on AGD-negative fish gills (Bowman 

and Nowak 2004). The pathogenicity of Salegentibacter species is unknown and only 

few studies on marine fish gills report the presence of Salegentibacter sp..  Similarly, 

there is no information available on the effect of Polaribacter spp. on fish.  Bacteria 

from the genus Polaribacter were commonly isolated from Antarctic pack ice 

(Brinkmeyer et al. 2003).   

 

The culture-independent 16S rRNA gene-based approach conducted to study 

salmonid gill bacteria on AGD-affected and unaffected fish frequently detected a 

phylotype (CFB1a) closely related to the members of the genus Psychroserpens only 

on the gills of AGD-affected fish (Bowman and Nowak 2004).  However, during the 

current study, bacteria belonging to the genus Psychroserpens were not isolated from 

the AGD-affected groups A and B.  Also, some of the bacteria isolated during this 

study such as Winogradskyella spp.; Polaribacter spp.; Cellulophaga spp.; 

Arenibacter troitsensis and the Gammaproteobacteria [Idiomarina spp.; Shewanella 

baltica; Pseudomonas jessenii; P. putida; Cobetia marina and Halomonas sp.] were 

not detected by Bowman and Nowak (2004) during their culture-independent study.  

Spanggaard et al. (2000) compared the results obtained from both traditional and 

molecular identification methods and reported that dominant microflora in the fish 

intestine was generally culturable and was effectively identified by both the methods. 

One of the possible reasons for not isolating Psychroserpens spp. in the current study 

might be due to the fact that Psychroserpens spp. have fastidious growth 

requirements including a narrow salinity range, requirement of vitamins and amino 
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acids for growth (Bowman et al. 1997). The other reasons would be differences in 

fish populations, age, AGD severity and environmental factors such as temperature 

and salinity.  

 

In summary, this study identified Winogradskyella spp. and Staphylococcus 

spp. to be predominant on the gills of AGD-affected fish.  These bacteria were absent 

on AGD-negative samples.  Previous studies suggest that certain Staphylococcus spp. 

are pathogenic to fish.  There is no information available on the effects of 

Winogradskyella spp. on any organism.  Hence, considering the abundance of these 

bacteria on AGD-affected salmonid gills, the uncertainties about Winogradskyella 

spp. and the pathogenicity of Staphylococcus spp., it is worthwhile to investigate the 

role of these bacteria in AGD. 
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Please note: The published paper is slightly modified to suite the thesis format and 

also new AGD literature is incorporated to make this chapter up to date. 
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4.0 Abstract 

This study determined the efficiency of potassium permanganate (KMnO4; 5 

mg l-1) in disinfecting Atlantic salmon gills and verified the effect of this disinfection 

process on subsequent development of amoebic gill disease (AGD).  The gills of 

KMnO4 treated fish showed a significant reduction in their average bacterial colony 

forming units (CFU) compared to untreated fish.  However, there was no significant 

difference in AGD severity between KMnO4 treated and untreated groups. 

 

4.1 Introduction 

The free-living amoeba, Neoparamoeba spp., parasitizes the gills of marine 

farmed Atlantic salmon (Salmo salar) and causes amoebic gill disease (AGD) 

(Munday et al. 2001; Dyková et al. 2005).  The exact environmental conditions or 

health status of the fish that allow amoebae to proliferate on fish gills are still 

unknown (Adams and Nowak, 2004).  Previously a culture-dependent (chapter 3) and 

culture-independent (Bowman and Nowak 2004) study was conducted to examine the 

salmonid gill bacterial population on AGD-affected and unaffected fish.  Bacteria 

from the genera Psychroserpens (Bowman and Nowak 2004), Winogradskyella and 

Staphylococcus (chapter 3) were predominantly isolated only on AGD-affected fish 

gills; therefore, these studies recommended further research to determine the role of 



 

these bacteria in AGD.  However, to investigate the role of specific bacteria in the 

development and severity of AGD, it is desirable to develop a gill disinfection 

protocol that will reduce potentially confounding bacteria of normal microflora.  

Potassium permanganate (KMnO4) was chosen to experimentally disinfect salmon 

gills because it has been used as a general disinfectant for many years in various 

aquaculture settings.  This compound is an effective bactericide, fungicide and 

algaecide (Duncan 1974; Jee and Plumb, 1981; Tucker, 1984; Soriano et al. 2000).  

The aims of this experiment are to evaluate the efficacy of KMnO4 as a disinfectant 

and investigate any effect of the KMnO4 treatment on experimental induction of 

AGD in Atlantic salmon after exposure to Neoparamoeba spp. 

 

4.2 Material and methods 

4.2.1 Experimental setup and treatment groups 

Atlantic salmon (Salmo salar) (n = 72), were acclimated to seawater (35‰) 

over 7 days in 6 recirculating systems (refer to chapter 2, section 2.12 for details 

about recirculating systems setup and seawater parameters).  Following acclimation, 

fish were divided randomly into three groups of 24 and distributed to duplicate 

systems per group (n = 12 fish per system i.e. 4 fish per tank).  Fish in group 1, were 

exposed to Neoparamoeba spp. only; group 2, exposed to KMnO4 prior to amoebae 

infection; the 3rd group was exposed to neither KMnO4 nor amoebae (negative 

control).  
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4.2.2 KMnO4 treatment 

Fish from group 2 underwent a short-term bath (20 min) in seawater 

containing KMnO4 (refer to chapter 2, section 2.13 for details about KMnO4 bathing 

procedure).  Groups 1 and 3 were handled in the same way but were bathed in 

seawater for the same time period.  After the recovery period (2 days), a sub-sample 

of 6 fish from each group were euthanased by Aqui-S® (20 ml l-1) and the entire 

surface of each gill was gently swabbed to collect mucus.  Bacteria from the gills 

were enumerated using the Miles and Misra (1938) inoculation technique; briefly, 

tenfold dilutions (up to 10-4 dilution) were prepared in sterile seawater and inoculated 

onto different segments of marine agar (see appendix 1 for media formulation).  Each 

plate was replicated once.  The plates were incubated at 22oC for 24 to 48 h. Total 

gill bacteria for each sample were determined by counting the numbers of colony 

forming units (CFU) on each segment of the plate.  Results are expressed as the mean 

number of bacteria per fish.  To assess gill damage possibly caused by KMnO4 

exposure, the entire gills were fixed in Davidson’s seawater fixative (Shaw and Battle 

1957) and then transferred to 70% ethanol.  The second right gill arch was wax 

embedded and 5 μm sections were cut and stained with haematoxylin and eosin.  All 

sections were viewed under light microscope at magnifications ranging from X100 to 

X400 (Olympus, Hamburg, Germany).  To differentiate between the gill damage 

possibly caused by KMnO4 exposure or gill mucus swabbing, the gill sections from 

the KMnO4 treated fish were compared with the fish in the negative control group. 
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4.2.3. Neoparamoeba spp. isolation and infection 

Neoparamoeba spp. were harvested from the gills of AGD-affected Atlantic 

salmon held in the School of Aquaculture, University of Tasmania (refer to chapter 2, 

section 2.1 for details on amoebae isolation).  Two days post KMnO4 treatment, fish 

in groups 1 and 2 were infected with Neoparamoeba spp. at a concentration of 300 

cells l-1.  The control group (Group 3) remained uninfected. 

4.2.4 Sampling procedures: Post-amoebae infection 

Six fish from all groups were sampled on days 4, 8 and 12 post amoebae 

challenge. Fish were euthanased as previously described (see section 4.2.2).  Entire 

gills were removed and the left gill arches were placed in sterile filtered seawater to 

determine amoebae number.  Neoparamoeba spp. was harvested from the left gill 

arches using a technique described by Howard and Carson (1995).  Gill associated 

amoebae number was determined using trypan blue exclusion assay (Philips, 1973).  

Total number of viable amoebae cells per fish was calculated and divided by the 

natural log of fish mass to account for scaling differences in gill surface area with 

fish of different mass (Palzenerger and Phola 1992).  The second right gill arch from 

each fish was processed for AGD assessment (refer to chapter 2, section 2.2 for 

details on AGD diagnosis).  

4.2.5 Statistical analysis  

Significant differences between groups were assessed as described in chapter 

2, section 2.14 
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4.3 Results 

There was a significant reduction in the gill bacterial load in the fish treated 

with KMnO4.  The number of CFU in KMnO4 untreated and control fish ranged from 

3.8 x 103 to 6.3 x 103 CFU ml -1 and 4.3 x 103 to 6.8 x 103 CFU ml -1 respectively; 

whereas those exposed to KMnO4 contained between 1 x 103 and 2.3 x 103 CFU ml -1 

(Figure 4.1).  Histological examination showed that gill tissue of KMnO4 treated fish 

was normal and healthy 2 days post-KMnO4 treatment.  Both KMnO4 treated and 

untreated groups developed typical AGD lesions when infected with Neoparamoeba 

spp..  There was no significant difference in AGD severity between either groups 

(KMnO4 treated and untreated), measured in terms of percentage of filaments with 

lesions, lesion size and the number of amoebae attached to the gill surface  on days 4, 

8 and 12 (Figures 4.2 and 4.3).  In all cases, there were no significant differences 

between replicates within treatments. 
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Figure 4.1 The mean ± SE of the average number of bacterial colonies isolated from 

salmonid gills in experimental groups (group 1, no KMnO4 exposure; group 2, 

exposed to KMnO4; control, no treatment).  Separate analyses were done for each 

group and means with different letters above the bars represent groups that are 

statistically different.  n = 6 fish per group 
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Figure 4.1 The mean ± SE of percentage of filaments with AGD lesions and number 

of infected lamellae within in each lesion in KMnO4 treated and untreated groups.  

Separate analyses were done for each sampling day and the result was statistically 

insignificant.  n = 6 fish per group per sampling day.   
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Figure 4.3 The mean ± SE of average amoebae number on the entire gill surface in 

KMnO4 treated and untreated groups.  Separate analyses were done for each 

sampling day and means with similar letters above the bars represent groups that are 

statistically insignificant.  n = 6 fish per group per sampling day. 

 



 

4.4 Discussion 

There is extensive information available on use of KMnO4 for freshwater fish; 

however, much less information is known about its effect on marine fish.  The 

recommended dosage levels for short term exposure of KMnO4 as a surface 

disinfectant for fish in general are 20 mg l-1 for 1 h per 50 l of water (Herwig, 1979); 

10 mg l-1 for 30-60 min (Nowak and Munday, 1992); 10 mg l-1 for 30 min (Francis-

Floyd and Klinger 2003).  However, the reactivity of chemicals in water would vary 

with salinity and if a chemical is used as a disinfectant or treatment its activity may 

also vary depending on the target species (Masser and Jensen, 1991).  For example, 

Fathead minnows, Pimephales promelas can tolerate 12 mg l-1 of KMnO4 in pond 

water (Tucker and Boyd, 1977), whereas Lake Malawi cichlids, Metriaclima zebra 

are more sensitive to KMnO4 with the recommended dose being as low as 1 mg l-1 

(Francis-Floyd and Klinger, 2003).  Hence, to test any adverse effects of a chemical 

when an effective concentration is unknown, a simple bioassay should be conducted 

(Masser and Jensen, 1991; Francis-Floyd and Klinger, 2003). 

 

In this study preliminary exposure to a recommended concentration of 

KMnO4 of 10 mg l-1 for 20 min was detrimental to fish as they moved vigorously and 

appeared to be restless and stressed.  Adjustment to 5 mg l-1 of KMnO4 for 20 min 

showed no detrimental effect on fish behaviour.  

 

The gills of channel catfish, Ictalurus punctatus exposed for 36 h to 

therapeutic concentration of KMnO4 (0.438 mg l-1) had mild hypertrophy and 
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spongiosis in the gills when sampled during exposure; although no lesions were 

noted 2 days post exposure (Darwish et al. 2002).  However, in the current study fish 

had no signs of pathology due to KMnO4 exposure.  Also, histological analysis 

conducted two days post KMnO4 treatment confirmed the gills of fish in each group 

to be normal and healthy. 

 

Jee and Plumb (1981) reported that KMnO4 (4 mg l-1) is an effective 

bactericide for Fathead minnows infected with Flexibacter columnaris. Researchers 

in other fields have reported that washing lettuce samples with KMnO4 (25 ppm) 

reduced aerobic microorganisms by more than two log units and total coliforms by at 

least one log (Soriano et al. 2000).  Similarly, fumigation of eggs with formaldehyde 

(372 g l-1) and KMnO4 (20g m-3) eliminated contaminating bacteria from the egg 

shells (Furuta and Maruyama, 1980).  In the current experiment, the number of 

bacterial colonies on the KMnO4 treated fish was reduced by approximately 2 x 103 

CFU ml-1 compared to untreated fish. 

 

These results indicate that short-term exposure (20 min) of Atlantic salmon to 

KMnO4 (5 mg l-1) can reduce gill bacterial load without altering the ability of 

salmonid to become infected with Neoparamoeba spp. 
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5.1 Abstract  

The relationship between salmonid gill bacteria and Neoparamoeba spp., the 

aetiological agent of amoebic gill disease (AGD) was determined in vivo.  Fish were 

divided into 4 groups and were subjected to following experimental infections: Group 

1, amoebae only; Group 2, Staphylococcus sp. and amoebae; Group 3, 

Winogradskyella sp.  and amoebae; Group 4, no treatment (control).  Fish (Groups 1, 

2 and 3) were exposed to potassium permanganate to remove/reduce the natural gill 

microflora prior to either bacterial or amoebae exposure.  AGD severity was 

quantified by histological analysis of gill sections to determine the percentage of 

lesioned filaments and the number of affected lamellae within each lesion.  All 

amoebae infected groups developed AGD, with fish in Group 3 showing significantly 

more filaments with lesions than other groups.  Typically, lesion size averaged 

between 2 to 4 interlamellar units in all AGD infected groups.  The results suggest 

that the ability of Neoparamoeba spp. to infect filaments and cause lesions might be 

enhanced in the presence of Winogradskyella sp..  The possibility is proposed that the 

prevalence of more severe AGD is due to the occurrence of Winogradskyella sp.  at 

high concentrations on the gills. 
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5.2 Introduction 

Amoebic gill disease (AGD) is one of the most significant health problems 

confronted by the salmon aquaculture industry in Tasmania (Munday et al. 2001).  

Even though Neoparamoeba spp. is presumed to be the causative agent of AGD 

(Munday et al. 2001; Dyková et al. 2005), the exact environmental conditions or 

health status of the fish that allow Neoparamoeba spp. to proliferate on fish gills are 

still unknown and Koch’s postulate is yet to be fulfilled for the disease (Howard et al. 

1993). Until now AGD infection has always been established by cohabiting naïve 

fish with infected fish (Howard et al. 1993, Akhlaghi et al. 1996), or by exposing fish 

to isolated, gill-associated Neoparamoeba spp. (Zilberg et al. 2001, Morrison et al. 

2004, Morrison et al. 2005) as the disease cannot be reproduced using cultured 

organisms (Kent et al. 1988, Howard et al. 1993, Findlay et al. 2000, Morrison et al. 

2005).  According to previous studies, AGD outbreaks may be influenced by factors 

such as immune status, stocking densities, temperature and salinity (Nowak and 

Munday 1994, Findlay and Munday 1998, Findlay et al. 2000, Zilberg and Munday 

2000, Nowak 2001).  Lom and Dyková (1992) also suggest that amphizoic amoebae 

might typically only colonize the gills of partially immunosuppressed fish where 

bacterial growth and mucus provide a ready food source.  Furthermore, Bowman and 

Nowak (2004) identified a series of bacteria representing a range of distinct ecotypes 

from the gills of healthy and AGD infected marine farmed Atlantic salmon.  These 

authors suggested that gill bacteria might play a direct role by predisposing the fish to 

AGD, to exacerbate AGD, or if bacteria are present in increased numbers in water, 

might be coincident with AGD outbreaks (Bowman and Nowak 2004).  The culture-
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dependant study frequently isolated Winogradskyella and Staphylococcus species 

bacteria only on AGD-affected fish gills and therefore, suggested that these bacteria 

might be linked to AGD (chapter 3).  The aim of this research is to determine the role 

of these bacteria (Winogradskyella and Staphylococcus species) in the incidence and 

severity of AGD. 

 

5.3 Materials and methods 

5.3.1 Experimental tanks and treatment groups 

Atlantic salmon Salmo salar L. (n = 72; mean weight = 88 g) were 

acclimatised to sea water (35‰, 1 µm filtered) over a week in 6 identical 

recirculating systems (refer to chapter 2, section 2.12 for details about recirculating 

systems setup and seawater parameters).  A sentinel population (n = 12) of the same 

body weight was acclimatised in a static tank (210 l).  Following acclimatisation, fish 

in the recirculating systems were divided into 3 treatment groups (n = 12 fish per 

treatment i.e. 4 fish per tank).  Each treatment was duplicated.  The 4th group was the 

sentinel population (n = 12).  Fish in Group 1 were exposed to amoebae only 

(positive control); Group 2, Staphylococcus sp. and amoebae; Group 3, 

Winogradskyella sp. and amoebae; Group 4 did not receive any treatment.  
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5.3.2. Neoparamoeba spp. isolation  

 
Neoparamoeba spp. were harvested from the gills of AGD-affected Atlantic 

salmon held in the School of Aquaculture, University of Tasmania (refer to chapter 2, 

section 2.1 for details on amoebae isolation). 

 

5.3.3 Bacteria cultivation 

 
Staphylococcus sp. strain AC8 and Winogradskyella sp. strain AC1 bacteria 

were selected from previously isolated and characterised gill bacteria strains from 

AGD affected Atlantic salmon from commercial farms in Tasmania (refer to chapter 

3 for details on bacteria identification).  The same strains are used through out this 

experiment.  Winogradskyella sp. bacteria were cultured in Shieh’s broth (Song et al. 

1988) and Staphylococcus sp. bacteria were cultured in Todd Hewitt broth (Oxoid, 

Australia) as previously described (refer to chapter 2, section 2.7 for details on 

bacterial cultivation).  

 

5.3.4 Bacteria characterisation 

 
The colony morphology and biochemical profiles (API 50 CH and API Zym, 

bioMérieux Australia Pty. Ltd.) of Winogradskyella sp. and Staphylococcus sp. were 

noted for identification purposes (refer to chapter 2, section 2.5 for details on API 

tests).  Gram strain reactions were conducted based on the methodology described by 

Hendrickson (1994).  The bacterial cells were viewed by a light microscope 

(Olympus) at 1000 x magnification and the cell length was measured by using a 
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Leica DC300f digital camera (Wetzlar) attached to the microscope and sigma scan 

pro, image analysis software version 5.0.0.  

 

5.3.5 Potassium permanganate (KMnO4) treatment 

 
Prior to inoculation with Winogradskyella sp. and Staphylococcus sp., fish 

from groups 1, 2 and 3 were treated with KMnO4 as previously described (refer to 

chapter 2, section 2.13 for details about KMnO4 bathing procedure); this treatment 

was shown to reduce the gill bacterial levels with no adverse effects to Atlantic 

salmon (chapter 4).  The sentinel fish (Group 4) were handled in the same way but 

were bathed in a tank containing sea water only.  Two days after the KMnO4 bath, i.e. 

when the fish returned to normal conditions, 2 fish from each group were euthanised 

(anaesthetic overdose at 20 ml l–1Aqui-S®).  Gill mucus and kidney samples were 

collected from the euthanised fish and inoculated onto a range of media including 

Shieh’s medium (Song et al. 1988), Marine Agar (Difco), Tryptone Soya Agar 

(Oxoid), Todd Hewitt (Oxoid) to establish baseline community structure.  The agar 

plates were incubated at 22°C for 24 to 48 h.  

 

5.3.6 Bacteria inoculation 

 
The remaining fish in Groups 2 and 3 were inoculated with Staphylococcus 

sp.  and Winogradskyella sp. respectively by transferring fish using individual nets 

into 2 static tanks containing either Staphylococcus sp. or Winogradskyella sp.  

bacterium at a density of 1 × 108 cells l–1 and bathed for 1 h. Groups 1 and 4 were 

handled in the same manner but were bathed in sea water only.  After transferring 
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back to their respective systems, fish were maintained for 4 days to allow the 

development of inoculated colonies on the gills. All the groups, with the exception of 

Group 4 were then infected with Neoparamoeba spp. at a concentration of 300 cells 

l–1. 

5.3.7 Sampling procedures 

 
The experiment was terminated and fish from all groups sampled on Day 8 

post amoebae challenge when white mucous patches (consistent with AGD gross 

pathology) were observed on the gills of the treatment groups.  Fish were euthanised 

and swabs of gill mucus and anterior kidney were taken and inoculated onto bacterial 

media as previously described (see section 5.3.5) and incubated at 22°C for 48 h. 

Colonies were then examined and confirmed as either Staphylococcus sp. (Group 2) 

or Winogradskyella sp. (Group 3) by comparing the morphology (shape, 

pigmentation colour, size and appearance on culture plates) and the biochemical 

profiles with the previously recorded data.  Immediately after swabbing for 

bacteriology, all gills were removed for AGD assessment (refer to chapter 2, section 

2.2 for details on AGD diagnosis). 

 

5.3.8 Statistical analysis 

Significant differences between groups were assessed as described in chapter 

2, section 2.14. 
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5.4 Results 

All groups infected with gill amoebae showed gross gill lesions by Day 8 of 

the experiment.  The negative control (Group 4) did not have gill pathology 

consistent with AGD at any time during the experiment. 

 

5.4.1 Histopathology 

 
All amoebae infected fish (Groups 1, 2 and 3) had AGD.  However, fish 

exposed to Winogradskyella sp. (Group 3) had significantly more filaments (51%) 

with lesions than the other groups (F = 21.9, df = 3, 73, p < 0.001; Figure 5.1).  The 

majority of histological sections in this group showed the presence of large numbers 

of Winogradskyella sp. bacterium on the filaments (Figure 5.2A) whereas in Group 2, 

(pre-exposed to Staphylococcus sp.) only small numbers of bacteria were observed.  

There was no difference in percentage of affected filaments in Group 2 compared to 

Group 1 (no bacteria); both groups of fish had approximately 16% of gill filaments 

with lesions.  Despite the significant increase in the percentage of lesions on each 

filament in Group 3, there was no difference in the size of lesions (interlamellar 

units) between treatment groups.  Typically, lesions size averaged between 2 to 4 

interlamellar units (Figure 5.1).  In addition, there were no apparent differences in 

lesion structure.  A thorough investigation of the gill sections revealed that all the 

treatment groups had severe lesions consisting of completely fused secondary 

lamellae and an almost continuous layer of amoebae was observed on the surface of 

hypertrophic tissue.  Lesions were typified by epithelial desquamation, filamental and 

lamellar oedema, interlamellar vesicles containing amoebae, infiltration of the central 
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venous sinus with leucocytes and severe hyperplasia of the epithelium (Figure 

5.2B,C). The control group had healthy gills free from AGD infection.  In all cases, 

there were no significant differences between replicates within treatments. 

 

5.4.2 Bacterial recovery 

 
No bacterial growth was detected on the culture plates from the gill and 

kidney swabs collected from fish 2 d post-KMnO4 bath.  At Day 8 post-amoebae 

infection gill bacteria were very low in number, absent or non-culturable from the 

gills of Groups 1 and 4 and from the kidney of all the groups. Inoculated bacteria 

were recovered from the fish gills in Groups 2 and 3 on Day 8 post-amoebae 

infection.  In each case the majority of the recovered colonies were of a single species 

with morphological and biochemical characteristics consistent with previously 

recorded data of Staphylococcus sp. (Group 2) and Winogradskyella sp. (Group 3).  

Briefly, Winogradskyella sp. were Gram negative, rod shaped cells, with a cell length 

of ≈ 0.86 μm and cell width ≈ 0.39 μm. The colonies were yellow pigmented, entire 

and translucent with low convex elevation and 2 mm in length.  The results from API 

tests showed that Winogradskyella sp. metabolised alkaline phosphatase, esterase 

lipase (C8), α-chymotrypsin, leucine arylamidase, valine arylamidase, acid 

phosphatase and napthol-AS Bl phosphohydrolase and formed acid with glycerol, L-

arabinose, ribose, D-xylose, galactose, glucose, mannose, manitol, sorbitol, 

melibiose, sucrose, trehalose, D-fucose, D-arabitol, L-arabitol and Gluconate. 

Likewise, Staphylococcus sp. were Gram positive, coccus shaped cells arranged in 

clusters. The cell length was ≈ 0.9 µm and width was ≈ 0.39 µm.  The colonies were 
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yellow pigmented, entire and opaque with low convex elevation and 2 mm in length. 

Staphylococcus sp. formed acid with glucose, fructose, manitol, maltose and sucrose. 

It also metabolised esterase (C4) and napthol-AS Bl phosphohydrolase. 
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Figure 5.1 Salmo salar.  The mean ± SE of percentage of filaments with lesions and 

number of infected lamellae within in each lesion in experimental groups: (Group 1, 

Neoparamoeba spp.; Group 2, Staphylococcus sp.  and Neoparamoeba spp.; Group 3, 

Winogradskyella sp. and Neoparamoeba spp.). Separate analyses were done for 

lesion percentage and lesion size (lamellar units).  Different letters above error bars 

indicate groups are significantly different.  n = 22 for all treatment groups 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Salmo salar.  (A) Gram stained gill of AGD-infected salmon.  

Winogradskyella sp. (arrows) were present in large numbers on the surface of the 

lamellae (LM) and were free within the interlamellar space. Scale bar = 10 μm.  (B) 

Severely infected gill consisting of a continuous row of Neoparamoeba sp. (black 

arrows) on the surface of hyperplastic interlamellar units (H).  Oedematous (O) gill 

tissue showing epithelial spongiosis (S), interlamellar vesicles (ilv) and infiltration of 

the central venous sinus with leucocytes (cvs). Scale bar = 100 μm.  (C) AGD 

affected gill showing interlamellar vesicles (ilv) containing Neoparamoeba sp. 

(arrows).  Scale bar = 50 μm  
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5.5 Discussion 

Roubal et al. (1989) were the first to suggest a role for gill colonising bacteria 

in AGD and considered that management strategies aimed at reducing bacterial levels 

could in turn reduce AGD.  Similarly Bowman and Nowak (2004) provided 

discussion on the presence of Neoparamoeba spp. and high bacterial populations that 

may lead to more pronounced incidence of AGD. The present study is the first 

experimental attempt to determine a relationship between some gill-associated 

bacteria and AGD. 

 

This study showed an apparent involvement of the Gram negative bacterium 

Winogradskyella sp. in AGD. Fish experimentally infected with this bacterium 

showed increased numbers of gill lesions following Neoparamoeba spp. infection, 

whilst those exposed to Gram positive Staphylococcus sp. did not show gill 

pathology that was different from the positive control (Group 1).  Positive control 

animals were previously treated with KMnO4 and gill bacteria were very low in 

number, absent or non-culturable during subsequent AGD infection. These fish did 

however develop the disease at a rate comparable to those infected with 

Staphylococcus sp. and consistent with the typical pattern of AGD initiated by 

experimental infection. All fish for this study were from the same source and same 

handling procedures were followed for all groups during the entire period of the 

experiment except for the treatment.  Therefore, despite the fact that the gill bacterial 

status at the beginning of the infection is unknown, the difference in AGD lesion 
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severity between the treatment groups is exclusively due to experimental addition of 

bacteria.  

Roubal et al. (1989) observed the association of bacteria with amoebae during 

infection of salmon gills.  Similarly, Douglas-Helders et al. (2003) reported a co-

existing Flavobacterium infection on AGD infected salmon gills.  Bowman and 

Nowak (2004) showed a higher proportion of Gram negative bacteria on the gills of 

marine farmed AGD infected Atlantic salmon.  In the present study, a high 

percentage of hyperplastic lesions on each filament were noted on the gills in the 

presence of the Gram negative bacterium Winogradskyella sp..  Phylogenetic analysis 

of 16S rRNA sequences revealed the bacteria from the genus Winogradskyella are 

closely related to Psychroserpens burtonensis with a 93.5 to 93.8% similarity 

(Nedashkovskaya et al. 2004).  Further corroborating evidence by Bowman and 

Nowak (2004) indicated that a Psychroserpens sp. phylotype dominated the bacterial 

community in AGD infected salmon gill samples.  

 

The nourishment for Neoparamoeba spp. survival and growth, once it has 

gained access to salmon gills, has not been clearly identified.  Previous researchers 

suggest that other infectious amoebae may feed on gill bacteria (Noble et al. 1997) 

and perhaps attain bloom populations in the presence of abundant food organisms 

(Kent et al. 1988).  In vitro growth of trophozoites of a Platyamoeba strain isolated 

from the diseased gill tissues of cultured turbot increased considerably in the 

presence of Aeromonas hydrophila, Vibrio natriegens, Pseudomonas nautica and 

Escherichia coli (Paniagua et al. 2001).  Similarly, the number of Acanthamoeba 
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castellanii and A. polyphaga were enhanced by cocultivation with the Gram negative 

bacteria, Xanthomonas maltophilia, Flavobacterium breve and Pseudomonas 

paucimobilis (Bottone et al. 1992).  Based on the above findings, it is tempting to 

suggest that bacteria might provide a food source to Neoparamoeba spp. during 

initial stages of colonisation and infection.  However, recent research on AGD has 

suggested that Neoparamoeba spp. isolated from AGD infected fish gills are not 

bacterivorous (Dyková and Lom 2004). Despite this, during the present study the fish 

inoculated with Winogradskyella sp. and amoebae showed an increased number of 

gill lesions.  Therefore, some interaction exists between bacteria and amoebae, which 

needs to be characterised.  Bracha and Mirelman (1984) reported that co-incubation 

of Entamoeba histolytica with various types of Gram-negative bacteria increased the 

virulence and ability of amoebae to destroy monolayers of baby hamster kidney 

cultured cells.  Therefore, one explanation for the increased number of AGD lesions 

noted in this study might be the presence of Winogradskyella sp.  on the gills which 

possibly enhanced the ability of Neoparamoeba spp. to infect filaments and cause 

AGD lesions.  

 

The current study also showed that Neoparamoeba spp. can infect gills and 

cause AGD in salmonids (Group 1) after KMnO4 disinfection and with very low 

levels of culturable bacteria. Therefore, in agreement with other authors we have 

shown that the amoeba can be a primary pathogen and cause AGD in salmon (Kent et 

al. 1988, Roubal et al. 1989, Munday et al. 1990, Dyková et al. 1995, Zilberg and 

Munday 2000, Adams and Nowak 2003, 2004). 
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We propose that the ability of Neoparamoeba spp. to infect filaments and 

cause lesions might be enhanced in the presence of Winogradskyella sp. strain AC1.  

However, further research is needed to determine whether an increase in the 

concentration of Winogradskyella sp. on the gills increases the rate of incidence and 

severity of AGD. The effect of Winogradskyella sp. alone on the fish gills should 

also be determined.  In addition, it is essential to find the effect of other gill-

colonising organisms on AGD.  If bacteria are found to influence the progression and 

severity of AGD then the knowledge may be useful for designing alternative control 

strategies. 
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6.1 Abstract 

To study the concentration effects of Winogradskyella sp. bacterium on 

amoebic gill disease (AGD), Atlantic salmon (Salmo salar) were pre-exposed to two 

different doses (108 or 1010 cells 1-1) of Winogradskyella sp. before challenging with 

Neoparamoeba spp..  Exposure of fish to Winogradskyella sp. caused a significant 

increase in the percentage of AGD affected filaments compared to controls 

challenged with Neoparamoeba only; however these percentages did not increase 

significantly with an increase in bacterial concentration.  The results show that the 

presence of Winogradskyella sp. on salmonid gills can increase the severity of AGD.  

 
 

6.2 Introduction 

Amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L. is one of the 

significant problems faced by the south eastern aquaculture industries in Tasmania.  

The causative agent of AGD is Neoparamoeba spp. (reviewed by Munday et al. 

2001; Dykovà et al. 2005).  Although extensive research has been conducted to study 

either bacterial (Sawyer 1978; Rintamaeki and Valtonen 1991; Cipriano et al. 1992; 

Ford et al. 1998; Valheim et al. 2000) or amoebic disease in Atlantic salmon 

(reviewed by Munday et al. 2001; Adams and Nowak 2004; Dykovà et al. 2005) only 

a few studies have attempted to examine the association between salmonid gill 



 

bacteria and AGD.  Bowman and Nowak (2004) assessed the bacterial communities 

of salmon gills using culture-independent 16S ribosomal RNA analyses and 

suggested that the bacteria from the genus Psychroserpens which were only detected 

on AGD-affected fish gills, might be linked to AGD.  A recent 16S rRNA gene-based 

study, identifying the culturable gill bacteria in AGD-affected salmonids showed that 

the gills were predominantly colonised by bacteria that had biochemical profiles 

similar to Winogradskyella spp. (clusters AC1, AC2 and BC1; chapter 3).  In 

addition, recent experiments conducted to study the influence of bacteria in the 

development and severity of AGD showed that fish experimentally infected with 

Winogradskyella sp. strain AC1 developed increased numbers of gill lesions 

following Neoparamoeba spp. infection (chapter 5).  Therefore, the current 

experiment aims to study the concentration effects of this bacterium on AGD. 

 

6.3 Materials and methods 
 
6.3.1 Experimental setup 

Atlantic salmon Salmo salar L. (n = 72; mean weight = 115 g) were 

acclimatised to seawater (30‰, 2 µm filtered) over two weeks in 4000 l tanks 

connected to individual biofilters. Subsequently, fish were treated with potassium 

permanganate, KMnO4 to reduced natural microflora on the gills (refer to chapter 2, 

section 2.13 for details about KMnO4 bathing procedure); this treatment was shown 

to reduce the gill bacterial levels with no adverse effects to Atlantic salmon (chapter 

4).  Following KMnO4 treatment, fish were transferred to 6 identical recirculating 

systems for further acclimation to salinity 35‰ over a period of 2 days (refer to 
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chapter 2, section 2.12 for details about recirculating systems setup and seawater 

parameters).  

6.3.2 Treatment groups 

Following acclimatisation, fish in the recirculating systems were divided into 

3 treatment groups (n = 12 fish per treatment i.e. 4 fish per tank).  Each treatment was 

duplicated.  Fish in group 1 were exposed to Neoparamoeba spp. only (positive 

control); group 2, Winogradskyella sp. (108 cells 1-1) and Neoparamoeba spp.; group 

3, Winogradskyella sp. (1010 cells 1-1) and Neoparamoeba spp..  

6.3.3 Neoparamoeba spp. isolation 

Neoparamoeba spp. were harvested from the gills of AGD-affected Atlantic 

salmon held in the School of Aquaculture, University of Tasmania (refer to chapter 2, 

section 2.1 for details on amoebae isolation). 

6.3.4 Bacteria cultivation and characterisation 
 

Cryopreserved samples (refer to chapter 2, section 2.4 for details on 

cryopreservation of bacteria) of Winogradskyella sp. strain AC1 previously isolated 

from AGD-affected fish gills (refer to chapter 3 for details on bacteria identification) 

were cultured in Shieh’s broth (Song et al. 1988) (refer to chapter 2, section 2.7 for 

details on bacterial cultivation).  For identification purposes, the cells were grown on 

Shieh’s agar (Song et al. 1988) and the colony morphology and enzymatic activity of 

Winogradskyella sp. strain AC1 were recorded (refer to chapter 2, section 2.5 for 

details on API Zym test procedure).  Gram strain reactions were conducted based on 
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the methodology described by Hendrickson (1994).  The bacterial cells were viewed 

by a light microscope (Olympus) at 1000 x magnification and the cell length was 

measured by using a Leica DC300f digital camera (Wetzlar) attached to the 

microscope and sigma scan pro, image analysis software version 5.0.0.  

 
6.3.5 Bacteria and amoebae exposure 

Fish in groups 2 and 3 were inoculated with Winogradskyella sp. by means of 

a bath treatment for 1 h.  Briefly, fish were transferred using individual nets from the 

recirculating systems into 2 static tanks filled with seawater (salinity 35‰) and 

containing bacteria at concentrations of 108 cells 1-1 and 1010 cells 1-1 respectively.  

Group 1 fish were handled in the same manner but were bathed in seawater only.  All 

fish were returned to their respective systems and were maintained for 4 days to 

allow the development of inoculated colonies on the gills.  All the groups were then 

infected with Neoparamoeba spp. at a concentration of 300 cells l–1. 

 
6.3.6 Day 0 sampling 
 

Immediately prior to Neoparamoeba spp. inoculation a sub-sample of 6 fish 

from each group were euthanased by Aqui-S® (20 ml l-1) and the second left gill arch 

and anterior kidney were gently swabbed and inoculated onto Shieh’s agar (Song et 

al. 1988) and incubated at 22°C for 48 h.  After swabbing for bacteriology, all gills 

were removed and placed in seawater Davidson’s fixative (Shaw and Battle 1957) for 

12 h then post-fixed in 70% ethanol to assess gill damage possibly caused by 

Winogradskyella sp. exposure.  The second right gill arch was wax embedded, 5 µm 
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sections were cut and Gram stained.  All sections were viewed under light 

microscope at magnifications ranging from X10 to X1000 (Olympus, Germany).   

6.3.7 Day 8 sampling  

The experiment was terminated and fish from all groups were sampled on day 

8 post amoebae challenge.  Fish were euthanased and gill swabs were collected for 

bacteriology and histology as described above (section 6.3.6).  To diagnose AGD, 5 

µm section of second right gill arch was stained with haematoxylin and eosin (refer 

to chapter 2, section 2.2 for details on AGD assessment).   

6.3.8 Winogradskyella sp. retrieval 

To confirm the presence of Winogradskyella sp. strain AC1, culture plates 

were examined and the colonies that had similar morphology (i.e. colonies are yellow 

pigmented, entire and translucent with low convex elevation and 2 mm in length), 

Gram characteristics (i.e. Gram negative rod shaped cells) and size (i.e. cell length of 

≈ 0.86 μm and cell width ≈ 0.39 μm) to Winogradskyella sp. strain AC1 were 

selected and API Zym profiles (i.e. ability to metabolise alkaline phosphatase, 

esterase lipase (C8), α-chymotrypsin, leucine arylamidase, valine arylamidase, acid 

phosphatase and napthol-AS Bl phosphohydrolase) matched with those of 

Winogradskyella sp. strain AC1.   

6.3.9 Statistical analysis    

Significant differences between groups were assessed as described in chapter 

2, section 2.14. 
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6.4 Results 

6.4.1 Bacteriology 

Winogradskyella sp. strain AC1 was successfully retrieved from all fish in 

bacteria treated groups (group 2, exposed to Winogradskyella sp. at 108 cells 1-1 and 

group 3, exposed to 1010cells 1-1 prior to amoebae challenge) on both sampling days 

i.e. on day 0 (before Neoparamoeba spp. exposure) and day 8 (8 days post 

Neoparamoeba spp. exposure).  In addition, fish from both these groups had clusters 

of bacteria in their interlamellar space, which could be seen in histological sections 

(Figure 6.1a).  Despite the fact that some bacteria were isolated from group 1, which 

was not exposed to Winogradskyella sp., the colony morphology, cell shape and size 

and enzymatic profiles of these bacteria were not consistent with those of 

Winogradskyella sp. strain AC1.  None of the fish exposed to Winogradskyella sp. 

had signs of pathology prior to AGD as histological examination conducted four days 

post exposure to the bacterium confirmed the gills of group 2 and 3 fish to be normal 

and healthy.  No bacterial growth was detected on the culture plates from the kidney 

swabs collected from groups 1, 2 and 3 on all sampling days. 

 

6.4.2 Assessment of AGD  

Histological examination of gill sections showed that the fish in groups 1, 2 

and 3 displayed typical AGD lesions characterised by diffusion of primary and 

secondary lamellae often containing Neoparamoebae on the surface of hyperplastic 

lamellae and presence of interlamellar vesicles, multifocal necrosis and mononuclear 
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cell infiltration (Figure 6.1b).  There were no apparent differences in AGD lesion 

structure between the three treatment groups.  A significant difference in the 

percentage of filaments with lesions was noted between the fish previously exposed 

to Winogradskyella sp. (group 2 and 3) compared to the fish with no 

Winogradskyella sp. exposure (group 1) prior to Neoparamoeba spp. infection (F = 

10.6, df 2, 51, p < 0.001; Figure 6.2).  However, there was no significant difference 

between the percentage of affected filaments in groups that were exposed to 

Winogradskyella sp. at concentrations 108 cells l-1 and 1010 cells 1-1 (Figure 6.2); 

group 2 had approximately 21% and group 3 had 17% of gill filaments with lesions.  

In addition, there was no significant difference in the lesion size between all groups 

(1, 2 and 3); the lesion size averaged from 18 to 24 interlamellar units (Figure 6.2).  

In all cases, there were no significant differences between replicates within 

treatments.   
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Figure 6.1 (a) Gill section of AGD-affected Atlantic salmon.  Winogradskyella sp. 

(arrows) appears scattered in the interlamellar space adjacent to gill lamellae (L).  

Scale bar = 10 µm. (b) Gill section showing severe AGD infection characterised by a 

row of amoebae (arrow heads) on the hyperplastic lamellar (H) surface and 

occurrence of interlamellar vesicles (ilv).  Scale bar = 50 µm. 
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Figure 6.2 The mean ± SE of percentage of filaments with lesions and number of 

infected lamellae within in each lesion in treatment groups: (Group 1, Neoparamoeba 

sp.; Group 2, Winogradskyella sp. (108 cells l-1) & Neoparamoeba sp.; Group 3, 

Winogradskyella sp. (1010 cells l-1) & Neoparamoeba sp.).  Separate analyses were 

done for lesion percentage and lesion size.  Different letters above error bars indicate 

groups are significantly different.  



 

6.5 Discussion 

This study demonstrates that fish previously exposed to Winogradskyella sp. 

at concentrations 108 cells l-1 and 1010 cells l-1 prior to Neoparamoeba spp. infection 

had significantly higher percentage of filaments with lesions compared to the fish 

with no Winogradskyella sp. exposure.  Similarly our previous study (chapter 5) 

recorded a significant increase in the percentage of affected filaments in the fish that 

were inoculated with 108 cells l-1 of Winogradskyella sp. prior to amoebae exposure 

compared to fish with no Winogradskyella sp. inoculation.  Furthermore, both studies 

showed no significant difference in the lesion size (number of interlamellar units 

within each lesion) between the treatment groups.  However, in spite of these 

similarities, the percentage of affected filaments and the lesion sizes were not the 

same in both experiments.  In the current experiment the group that was exposed to 

108 cells l-1 of Winogradskyella sp. had approximately 21% of the filaments with 

AGD lesions compared to the previous study where the number of AGD affected 

filaments was approximately 51% in the fish exposed to the same concentration of 

Winogradskyella sp. (chapter 5).  At the same time, the AGD lesion size averaged 

between 2 to 4 interlamellar units in the previous study (chapter 5), while it averaged 

between 18 to 24 interlamellar units in the current study.  Thus, even though we 

noted a similar trend, the numbers were not identical.  We suppose that the reasons 

for these differences might be due to dissimilarity in fish population, since the 

previous experiment (chapter 5) was conducted with winter smolts while the current 

experiment was conducted with summer smolts; furthermore, due to unavailability of 

fish from the same farm, the smolts for the current experiment were procured from a 
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different farm.  In addition, the disparity might also be due to difference in amoebae 

isolates; because variation in AGD pathology induced by amoebae isolated at 

different times has been noted previously (unpublished data).   

 

There was no significant difference in the percentage of AGD affected 

filaments between fish treated with either concentration of Winogradskyella sp. prior 

to amoebae infection.  A similar lack of dose-related response was reported in a study 

involving experimental induction of bacterial kidney disease in Chinook salmon by 

immersing the fish in various concentrations of Renibacterium salmoninarum cells 

(104 to 106 ml-1) (Murray et al. 1992).  We did not determine whether there were 

more Winogradskyella on 1010 group than on the 108 group at 4 days post 

inoculation, we have assumed it to be different and therefore hypothesised four 

possible reasons for the lack of a dose-related response: firstly, the difference in 

bacterial concentration ranges (which is 100 times) selected for the bath exposure 

was probably not big enough to cause a noticeable difference in the severity of AGD; 

secondly, the increase in the concentration of Winogradskyella in group 3 might have 

increased the number of Winogradskyella on the gills and this perhaps restricted the 

gill surface area required for amoebae colonisation; thirdly, maybe a limit is 

applicable to the rate of progression of AGD further to which the disease cannot 

develop any faster and fourthly, it is possible that 4 days after inoculation, the 

difference in Winogradskyella sp. numbers is much less substantial (i.e. proliferation 

of the lower population and growth limits on the higher) than at the time of 

inoculation. 
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In conclusion, this study found that the severity of AGD does not increase 

with an increase in concentration of Winogradskyella sp. i.e. exposure of Atlantic 

salmon to either 108 or 1010 cells 1-1 do not cause a significant difference in the 

percentage of AGD-affected filaments.  Nevertheless, this study reconfirmed that the 

presence of Winogradskyella sp., strain AC1 on the salmonid gills may result in more 

severe AGD.  This suggests that Winogradskyella sp. has some effect on Atlantic 

salmon and AGD.  Meanwhile, this study recorded that Winogradskyella sp. strain 

AC1 does not cause any pathology in Atlantic salmon during the first 4 days of its 

exposure.  However, we do not know the pathogenicity of this strain beyond these 4 

days, as this experiment did not contain a group that was exposed to Winogradskyella 

alone.  Furthermore, the physiological effect of this bacterium on Atlantic salmon is 

unknown.  Therefore, further research is required to examine the pathogenic effect of 

Winogradskyella sp. on Atlantic salmon over a prolonged incubation period.  In 

addition, it is also important to study the influence of Winogradskyella sp. on the 

physiological condition of Atlantic salmon. 
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Chapter 7  

 
Taxonomy of culturable bacteria isolated over 
time from marine farmed Atlantic salmon gills 

during a typical occurrence of amoebic gill 
disease  
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7.1 Abstract 

Previous research determining the influence of bacteria in amoebic gill 

disease (AGD) reported that the presence of Winogradskyella sp. on the gills during 

the process of AGD infection could increase AGD severity (chapters 5 and 6).  

Therefore, this study examines the diversity and community structure of culturable 

gill bacteria of seawater reared Atlantic salmon during the typical occurrence of AGD 

and verifies whether bacteria such as Winogradskyella spp. that could exacerbate 

AGD conditions, frequently colonise the gills.  In addition, this study attempts to 

relate any changes in the gill bacterial community to freshwater treatments and AGD 

status of fish.  Bacteria samples were collected from salmonid gills on five different 

occasions over a period of 102 days.  The cultured bacteria were identified using 16S 

ribosomal RNA gene analysis.  The results showed that Winogradskyella spp. might 

not be consistently present on AGD-affected fish gills.  Bacteria closely related to 

Pseudoalteromonas species were the most commonly isolated species; the other more 

frequently isolated species included Planococcus, Alphaproteobacterium, Bizionia 

and Cobetia.  The changes occurring to the gill bacterial community were complex 

and not easily predictable and several factors including freshwater treatments, 

fluctuations in salinity and temperature, AGD severity might have influenced these 

changes.   



 

7.2 Introduction 
 

In Tasmania, amoebic gill disease (AGD) is generally associated with 

salmonids, most notably Atlantic salmon, Salmo salar.  The causative agent of AGD 

is Neoparamoeba spp. (reviewed by Munday et al. 2001; Dykovà et al. 2005).  

Approximately 10% of the production cost is spent on AGD treatment, which 

includes exposing the fish to freshwater for 2 to 3 h.  Previous AGD research has 

reported that freshwater bathing does not cause serious side effects (Powell et al. 

2001).  However, complete removal of the parasite is not achieved and under 

favourable conditions, AGD can reoccur within 10 days (Parsons et al. 2001; Clark et 

al. 2003).  Many factors seem to favour invasion by amoebae and among them 

salinity and temperature are the most important environmental factors influencing the 

prevalence of AGD (Munday et al. 1990; Clark and Nowak 1999; Douglas-Helders et 

al. 2001).  Roubal et al. (1989) were the first to suggest a role for gill colonising 

bacteria in AGD.  Likewise, several studies have reported the interactions between 

human pathogenic amoebae and bacteria (Bracha and Mirelman 1984; Bottone et al. 

1992; Brieland et al. 1997; Fritsche et al. 2000).  Previously a culture-independent 

study examining the relationship between salmonid gill bacteria and AGD, detected 

the phylotypes from the genus Psychroserpens to be predominantly present on the 

gills of AGD-affected fish (Bowman and Nowak 2004).  A similar study using the 

culture-dependent techniques frequently isolated bacteria that had biochemical 

profiles similar to the representative strains identified as Winogradskyella sp. from 

AGD positive fish gills (chapter 3).  Furthermore, the in vivo trials determining the 

influence of bacteria in AGD reported that the presence of Winogradskyella sp. strain 
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AC1 during the development of AGD could increase the disease severity (chapters 5 

and 6).  Based on the above results, it is important to verify whether bacteria such as 

Winogradskyella spp. that could exacerbate AGD conditions frequently colonise the 

gills of AGD-affected fish present on farms.  Therefore, the current study was 

conducted over a period of time (102 days) and samples were collected on five 

different occasions from marine farmed Atlantic salmon gills during a typical 

occurrence of AGD  aiming to get a snapshot of the bacteria that regularly colonise 

salmonid gills.  In addition, this study will examine whether the changes occurring in 

the gill bacterial population is related to the bathing events and AGD status of fish.    

 

7.3 Materials and methods 

7.3.1 Fish 

Fish were housed in a 5x5x5 m net-pen (125m3 volume) located at Aquatas 

Pty, Ltd, Tasmania, Australia at a stocking density of 2.8 kg m-3 (500 fish per pen; 

for fish size refer to Table 7.1).  The seawater temperature at the farm site was 

continuously recorded and the mean water temperature 14 days preceding the 

sampling days is shown in Table 7.1.  During the experimental period, fish were 

exposed twice to freshwater for a period of 2-3 h, a method to control AGD.  Cages 

of fish were towed from their grow-out location to a bathing site.  Freshwater was 

obtained from a dam situated near the farm.  The fish were transferred by dip nets 

from their holding cage to a tarpaulin bathing liner containing up to 9000 l of 

freshwater (stocking densities of 30-45 kg m-3 during bathing).  The oxygen level 

was either maintained throughout the bath or allowed to slowly decline to levels 
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approaching those of ambient (90-100%) by the end of the bath.  After bathing, the 

tarpaulin liner was pulled away and the fish were released into the cage, which was 

then towed back to its original grow-out location.  The freshwater quality parameters 

are shown in Table 7.2 (Powell et al. 2005).  

7.3.2 Sample collection  

Gill mucus samples were collected on five occasions (D0-PB, D49, D49-PB, 

D58 and D102) from March 2004 to July 2004 (Table 7.1).  Day-zero samples were 

collected approximately after 2 h following the freshwater bath and it was considered 

day 0-post bath samples i.e. D0-PB.  Similarly, 49 days after D0-PB sampling, D49 

samples were collected.  Immediately after D49 sample collection, the fish were 

exposed to freshwater and D49-PB samples were collected 2 h after the bath i.e. on 

the same day.  D58 and D102 samples were collected on day 58 and day 102 of 

sampling respectively.  At each time, 10 fish were euthanased with Aqui-S® 

anesthetic and gill mucus swabs were collected for bacteriology using sterile swabs 

(Medical Wire and Equipment Co. (Bath) Ltd., Wiltshire, England).  Thus, at every 

sampling 10 swabs were collected, i.e. one swab per fish.  Immediately after 

sampling for bacteriology, entire gills were collected for AGD assessment (results 

presented elsewhere by Powell et al. 2005; summarized in Table 7.1) and this 

included (1) scoring the gross AGD lesions, which are characterised by macroscopic 

focal or multifocal white mucoid patches on the gills using a method described by 

Clark and Nowak (1999); (2) estimating the number of amoeba on the gills using the 

method developed by Howard and Carson (1993); (3) recording the percentage of 

filaments with AGD lesions by viewing the histological sections of gills under a light 
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microscope  using a method described by Adams and Nowak (2001). If a fish had 

gross AGD lesions and amoebae on the gills then the fish was considered AGD-

positive regardless of the presence or absence of AGD lesions in the histological 

sections of the gill filaments.  This study did not include any negative controls 

because it is not possible to find a fish in farm environment that are naïve to AGD.   

7.3.3 Bacteriology 

After collection, the swabs were placed at 0oC to 4oC and transported to the 

laboratory and were inoculated within 24 to 36 h of collection onto marine agar (refer 

to appendix 1 for media formulation), one swab per plate.  The plates were incubated 

at 22oC for 24 to 96 h. Bacterial growth was examined on all plates and distinct 

colonies from each plate was subcultured to obtain pure colonies (refer to chapter 2, 

section 2.3 for details on bacteria isolation and morphological characterisation).  The 

pure colonies were cryopreserved at -80oC for subsequent 16S rRNA analysis (refer 

to chapter 2, section 2.4 for details on cryopreservation procedure).   

7.3.4 16S rRNA analysis 

The cryopreserved samples were revived on their respective culture medium 

and were used for sequencing the 16S ribosomal RNA (rRNA).  Please refer to 

chapter 2, sections 2.8, 2.9, 2.10 and 2.11 respectively for details on extraction of 

bacterial DNA, polymerase chain reaction (PCR), analysis of sequences and sequence 

identification.  Sequences obtained in this study have been deposited under GenBank 

accession numbers DQ873735 to DQ873806. 
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7.4 Results 

This study was conducted to obtain an approximate inference on the types of 

culturable bacterial colonies that were found on the fish gills in a given period of time 

and the frequency of its occurrence.  A total of nine morphologically distinct bacterial 

phylotypes were identified during D0-PB sampling; similarly 10 isolates from D49, 

19 each from D49-PB and D58 and 15 from D102 were identified on the gills of 

marine farmed Atlantic salmon gills during this study (Table 7.3).  These bacteria are 

broadly classified into five groups based on their phyla/order (Gammaproteobacteria, 

Cytophaga-Flavobacterium-Bacteroides (CFB) phylum, Firmicutes, 

Alphaproteobacteria and Actinobacteria) and the numbers of isolates from each 

group are represented in the form of stacked graph for easy interpretation (Figure 

7.1).   

 
7.4.1 Gammaproteobacteria and Alphaproteobacteria 

Gammaproteobacteria were commonly found on the gills during all sampling 

days (D0-PB to D102) (Figure 7.1).  Majority (≈ 48% i.e. 14/29) of these 

Gammaproteobacteria grouped separately and belonged to the Pseudoalteromonas 

clade in the phylogenetic tree (Figure 7.2).  The other Gammaproteobacteria that 

were sporadically isolated included Cobetia sp. (D0-PB, D49-PB, D102); Halomonas 

ventosae (D58); Marinobacter sp. (D102); Psychrobacter sp. (D102); Pseudomonas 

sp. (D102); Enterobacter sp. (D49-PB); Vibrio splendidus (D49); Alteromonas sp. 

(D0-PB) (Table 7.3).  Among the Alphaproteobacteria, isolates closely related to 

Alphaproteobacterium sp. (D0-PB, D49-PB and D102) and Paracoccus sp. (D49-PB) 

were isolated (Figure 7.2).   
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7.4.2 Cytophaga-Flavobacterium-Bacteroides (CFB) phylum  

CFB bacteria were identified on fish from D49, D49-PB, D58, and D102 

samples (Figure 7.1).  Two isolates from D49 and five from D49-PB fish were 

distantly related to Mesonia algae, a moderately halophilic marine bacterium.  Fish 

from D49-PB also had an isolate closely related to Salegentibacter mishustinae.  

Further, six isolates from D58 samples branched in the psychrophilic, Polaribacter 

group while four of the D58 isolates and an isolate from D102 belonged to the 

recently described marine genus Bizionia.  Two phylotypes from D102 and one from 

D58 sampling were located in the Winogradskyella group (Figure 7.2; Table 7.3). 

 

7.4.3 Firmicutes and Actinobacteria 

Among the Gram-positives, D49 and D49-PB had both Firmicutes and 

Actinobacteria on the gills, while D58 samples had only Firmicutes (Figure 7.1). 

Majority of the phylotypes from these sampling points (D49 = 2 isolates; D49-PB = 3 

isolates and D58 = 3 isolates) grouped in the genus Planococcus.  The other 

Firmicutes less frequently isolated were Staphylococcus spp. (D49-PB and D58), 

Salinicoccus sp. (D49-PB) and Planomicrobium (D58).  Actinobacteria from D49 

and D49-PB samples were closely related to the genera Kocuria and Microbacterium 

respectively (Table 7.3; Figure 7.2).   

 

7.4.4 Comparison of pre (D49) and post (D49-PB) bathed samples 

Both D49 and D49-PB samples were collected on the same day i.e. 49 days 

after D0-PB sampling; however, D49 samples were collected before freshwater 
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exposure and D49-PB samples were collected after freshwater exposure.  Isolates 

closely linked to Pseudoalteromonas, Mesonia algae and Planococcus spp. were 

common to D49 and D49-PB samples. D49 samples also had a Vibrio splendidus and 

a Kocuria sp., while a phylotype closely linked to Enterobacter amnigenus and 

another showing 99% similarity to Salegentibacter mishustinae were detected only 

on D49-PB samples.  Further, two isolates closely related to halotolerant Cobetia sp. 

and an isolate each from the genera Salinicoccus, Staphylococcus and 

Microbacterium were isolated only from D49-PB fishes.  

7.4.5 Comparison of post bath samples (D0-PB and D49-PB) 

D0-PB and D49-PB samples were collected on day 0 and day 49 respectively 

following a freshwater bath event.  Both groups had Pseudoalteromonas sp., Cobetia 

sp. and Alphaproteobacterium sp. in common.  Alteromonas sp. was only isolated 

from D0-PB samples; similarly an isolate closely linked to Enterobacter sp. was only 

present on D49-PB samples. D49-PB samples had bacteria belonging to CFB group 

such as Mesonia sp. and Salegentibacter sp.; however, none of the gill mucus 

samples obtained from D0-PB fish had CFB group bacteria.  In addition, Gram-

positives were absent in D0-PB samples, while D49-PB fish had three Planococcus 

spp., a Staphylococcus sp. and a Salinicoccus sp..  The main reason for the 

dissimilarity in the gill bacterial community in D0-PB and D49-PB samples might be 

the difference in freshwater temperature and salinity used during AGD treatment 

(Table 7.2), in addition to the variation in AGD severity and seawater temperature 

(Table 7.1). 
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Table 7.1 A summary table showing sampling details, freshwater treatment time, seawater 

temperature (temp.), AGD severity and amoebae number.  

 
Sampling 
time 

Sampling 
date  
 

Treatment Average 
fish 
weight (g) 

Temp. 
(oC) 

Mean % of 
filaments 
with AGD-
lesions  
(±SE) 

Gross 
AGD 
lesions 

No. of 
amoeba on 
the entire 
gill surface  

 
D0-PB 
D49 
D49-PB 

 

D58 
D102 
 

 
03/03/2004  
20/04/2004  
20/04/2004  
04/05/2004  
15/06/2004  

 
Freshwater  
- 
Freshwater  
- 
- 
 

 
717 
906 
964 
1132 
1385 

 
16.8 
14.8 
14.8 
14.0 
10.9 

 
10 (3.66) 
0.62 (0.62) 
1.65 (0.90) 
1.60 (0.98) 
0 (0.00) 
 

 
1.3 
1.7 
1.8 
0.6 
0.3 

 
3x105 
40x105 
30x105 
50x105 
60x105 

 

 

 
Table 7.2 Mean (± SE) water quality parameters 

for freshwater bathing.  ND = not determined 

 

Bathing event Water quality  
parameter 
 

 
D0-PB 
03/03/2004 

 
D49-PB 
20/04/2004 

Hardness (mg l-1) 259.8 ND 
Temperature (oC) 19.6 (0.00) 14.5 (0.01) 
Salinity (g l-1) 1.24 (0.01) 8.25 (0.40) 
DO (% air saturation) 163.1 (1.6) 116.4 (0.7) 
DO (mg l-1) 14.9 (0.1) 11.4 (0.1) 
pH 7.54 (0.00) 8.36 (0.02) 
ORP (mV) 50.4 (0.02) 41.3 (0.1) 
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Table 7.3 Phylogenetic affiliations and frequency of isolates  

Phylogenetic grouping 
D0-
PB D49 

D49-
PB D58 D102 Nearest phylogenetic relative

*
 

% identical 
16S rRNA

† 
 

Gammaproteobacteria        
Cobetia  1  2  1 Cobetia sp. SB J92 (AB167062) 98.5–98.8 
Halomonas      1  Halomonas ventosae (AY268080) 99.4 
Marinobacter       1 Marinobacter sp. DG979 (AY258112) 99.0 
Psychrobacter      1 Psychrobacter glacincola (AJ430829) 96.2 
     2 Psychrobacter nivimaris (AJ313425) 96.7, 98.1 
Pseudomonas       1 Pseudomonas mendocina (AY870674) 99.5 
     1 Pseudomonas sp. (AB021318) 99.1 
Enterobacter    1   Enterobacter amnigenus (AB004749) 97.2 
Vibrio   1    Vibrio splendidus (AJ874367) 99.1 
Alteromonas   2     Alteromonas sp. No. 57 gene (AB180388) 97.8, 99.1 
Pseudoalteromonas  3 3 1  2 Pseudoalteromonas atlantica (AB049728) 95.4–99.5 
 1   2 1 Pseudoalteromonas haloplanktis (CR954246) 97.0–99.7 
  1    Pseudoalteromonas sp. (DQ219365) 98.8 
CFB group         
Polaribacter       6  Polaribacter sp. AC4 (DQ356493) 96.1–98.6 
Mesonia   2 5   Mesonia algae KMM 3909 (AF536383) 96.3–99.5 
Bizionia      4  Bizionia paragorgiae (AY651070) 97.4–99.0 
     1 Bizionia saleffrena (AY694005) 96.1 
Winogradskyella     1 1 Winogradskyella thalassocola (AY771720) 96.2–96.3 
     1 Winogradskyella sp. BC1 (DQ356490) 95.5 
Salegentibacter   1   Salegentibacter mishustinae (AY576653) 99.1 
Unaffiliated lineages   1   Salegentibacter sp. 18III/A01/068i (AY576719) 93.7 
Alphaproteobacteria         
Alphaproteobacterium  1  1  2 Alpha proteobacterium Med4c1:1 (AF493974) 98.0–99.6 
Paracoccus    1   Paracoccus sp. HZ04 (AY690705) 99.1 
Unaffiliated lineages 1     Alpha proteobacterium GMD29E5 (AY162072) 92.3 
 Firmicutes        
Planococcus    2 3 3  Planococcus maritimus TF-9 (AF500007) 95.6–98.8 
Salinicoccus    1   Salinicoccus sp. (AJ717731) 97.8 
Staphylococcus     1   Staphylococcus pasteuri U523B6 (DQ298130)  100.0 
    1  Staphylococcus equorum (AY741060) 98.0 
Planomicrobium     1  Planomicrobium okeanokoites (AY730709) 96.6 
Actinobacteria         
Kocuria   1    Kocuria sp. S26-8 (DQ060377) 96.6 
Microbacterium    1   Microbacterium keratanolyticum  (Y14786) 96.8 
Total # of distinct strains 
isolated 9 10 19 19 15     

 

Unaffiliated lineages means isolates which cannot be assigned to an established genus due to 
homology value of <95% with the reference sequence (Bosshard et al. 2003). * and † obtained 
from  GenBank nucleotide database 
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Figure 7.1 Composition of distinct bacterial species isolated from salmonid gills.  

Bars represent the abundances of different prokaryote groups (Firmicutes, 

Actinobacteria, Cytophaga-Flavobacterium-Bacteroidetes (CFB) group, 

Alphaproteobacteria, and Gammaproteobacteria) during various sampling times 

(D0-PB, D49, D49-PB, D58 and D102).   
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Figure 7.2 16S rRNA gene-based phylogenetic tree indicating the location of distinct 

bacterial isolates cultured from AGD-affected Atlantic salmon gills on five (D0-PB, 

D49, D49-PB, D58 and D102) different occasions over a period of 102 days.  Scale 

bar indicates maximum likelihood evolutionary distance.  Numbers in parenthesis are 

GenBank accession numbers.  Figure 7.2 is shown in next page. 
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7.5 Discussion 

A culture-based study was conducted to obtain a snapshot of the bacterial 

species present on Atlantic salmon gills during a typical occurrence of amoebic gill 

disease in a farm environment over a period of 102 days.  The 16S rRNA analysis 

identified Gammaproteobacteria to be commonly found on the gills during all 

sampling days.  Bacteria from other phyla/order were also isolated during this study 

and included CFB group bacteria, Alphaproteobacteria, Firmicutes, and 

Actinobacteria.  

 

Winogradskyella species were not consistently isolated from AGD-affected 

fish gills during this study.  Only D58 and D102 samples had Winogradskyella spp. 

on the gills, this genus was not isolated from other samples (D0-PB, D49 and D49-

PB), suggesting that these bacteria may not be frequently present on AGD-affected 

fish gills at least at this farm.  One of the possible reasons for not isolating these 

species during D0-PB and D49-PB sampling might be due to rapid lysis of 

Winogradskyella cells when exposed to low salinity water i.e. during freshwater 

bathing; because these species require Na+ for growth (Nedashkovskaya et al. 2005).  

Perhaps, Winogradskyella spp. may have the capacity to recolonise the gills from the 

surrounding seawater following exposure to low salinity as evident from D58 (i.e. 9 

days after freshwater treatment) and D102 (i.e. 53 days post freshwater treatment) 

samples.  However, Winogradskyella spp. were not isolated from D49 samples (i.e. 

49 days post freshwater treatment); the main reason for this might be the difference in 

freshwater salinity used for bathing the fish preceding the sampling day i.e. during 
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D0-PB.  The freshwater salinity was lower during D0-PB (1.24 g l-l) compared to the 

salinity used during D49-PB (8.25 g l-l) bathing.  Hence, this difference in salinity of 

freshwater during D0-PB might have delayed the recolonisation of Winogradskyella 

spp. onto D49 fish gills.  Perhaps, the number of amoebae on the gills could also 

influence the presence of Winogradskyella spp. on the gills because D58 and D102 

had more number of Neoparamoeba spp. on the gills compared to D0-PB, D49 and 

D49-PB samples.  In addition, there are several other factors that could have 

delayed/prevented the growth on Winogradskyella spp. on D49 samples; some of 

these factors can be noted from Tables 7.1 and 7.2.  Nevertheless, further research is 

required to determine the correlation between these factors and the occurrence of 

Winogradskyella spp. on the gills. 

 

Bacteria from the genus Pseudoalteromonas were predominantly isolated 

during this study.  Members of the genus Pseudoalteromonas are widely distributed 

in the marine environment (Skovhus et al. 2004).  Bacteria closely related to the 

genus Pseudoalteromonas were detected from the sediment samples obtained from 

the salmon sea cage sites in Tasmania (Bissett et al. 2006a).  A culture-independent 

study detected two phylotypes closely related to a Pseudoalteromonas species (P. 

antarctica) only on the gills of AGD-affected Atlantic salmon (Bowman and Nowak 

2004).  Some Pseudoalteromonas species are reported to cause disease in fish and 

produce potent toxins, while others appear less virulent and may even be beneficial to 

their hosts (Holmström and Kjelleberg 1999).  Furthermore, a study examining the 

antifouling activities of 10 different Pseudoalteromonas species reported that P. 
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tunicate and P. ulvae displayed the highest level of antifouling activity and prevented 

the settlement of invertebrate larvae, algal spores, bacteria and fungi on the marine 

surfaces (Holmström et al. 2002).  Based on these results, it is evident that 

Pseudoalteromonas species could exhibit a diverse range of roles.  Therefore, it 

might be worthwhile to verify the role of Pseudoalteromonas species in AGD.   

 

Some of the bacteria isolated during this study have been identified to have 

pathogenic potential.  For instance, a Vibrio splendidus isolate was obtained during 

D49 sampling.  These species are reported to cause haemorrhages in turbot, 

Scophthalmus maximus (Angulo et al. 1994).  Similarly, isolates closely related to 

Alteromonas spp. (D0-PB), Planococcus spp. (D49, D49-PB, D58), Staphylococcus 

spp. (D49-PB, D58) were cultured from AGD-affected fish gills during this study.  

Previous research reported that some Alteromonas species could cause necrosis and 

septicemia in oysters (Buller 2004).  Planococcus spp. were presumed to cause 

mortalities in rainbow trout fry (Austin and Stobie 1992).  Staphylococcus epidermis 

is pathogenic to Rea sea bream, Chrysophrys major and yellow tail, Seriola 

quinqueradiata (Kusuda and Sugiyama 1981) and S. warneri is pathogenic to 

rainbow trout (Gil et al. 2000).  
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Among CFB-group bacteria, Mesonia algae, a moderately halophilic marine 

bacterium was isolated from D49 and D49-PB samples; and 6/19 (32%) isolates from 

D58 samples were closely related to the genus Polaribacter.  Previous studies on 

salmonid gill bacteria did not report the presence of Mesonia spp. (Trust 1975; 

Bowman and Nowak 2004; chapter 3).  However, species closely related to 

Polaribacter irgensii were isolated from AGD-affected farm fish in our previous 

study (chapter 3).  Additionally, bacteria from the genus Polaribacter were reported 

to be one of the predominant members among other CFB bacteria in the sediment 

samples obtained from the salmon sea cage sites in Tasmania (Bissett et al. 2006a).  

Likewise, the diversity of the CFB group was clearly reduced and concentrated 

within the Polaribacter group from the samples collected from Antarctic pack ice 

compared to Arctic pack ice isolates (Brinkmeyer et al. 2003).  These results suggest 

that bacteria from the genus Polaribacter might be common in marine environment 

particularly in the southern ocean.   

 

Alphaproteobacteria displaying a wide diversity were observed in marine 

sediment samples obtained from salmon farms located in Tasmania (Bissett et al. 

2006a).  Likewise, Alphaproteobacteria were the most numerous both in terms of the 

number of isolates cultured and were also the most abundant type of bacteria 

associated with the dinoflagellate Gymnodinium catenatum isolated from various 

locations including Tasmania (Green et al. 2004).  However, Alphaproteobacteria 

were only sporadically isolated on salmonid gills during this study.  
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The majority of the Firmicutes from D49, D49-PB, and D58 sampling points 

grouped in the genus Planococcus.  The other Firmicutes less frequently isolated 

included Staphylococcus sp. (D49-PB and D58), a Planomicrobium sp. (D58) and a 

Salinicoccus sp. (D49-PB).  Actinobacteria closely related to the genera Kocuria 

(D49), and Microbacterium (D49-PB) were isolated.  Similarly, the culture-

independent study conducted by Bowman and Nowak (2004) identified a diverse 

range of Firmicutes and Actinobacteria including bacteria from the genera 

Streptococcus, Staphylococcus, Kocuria, Arthrobacter, Frankia, Corynebacterium on 

AGD-affected and unaffected fish gills.  In addition, Staphylococcus spp. were 

frequently isolated from AGD-affected Atlantic salmon gills during the culture-

dependent study identifying bacteria on salmonid gills (chapter 3). 

 

In conclusion, during this study a diverse range of bacteria were isolated from 

Atlantic salmon gills.  Winogradskyella spp., which is known to exacerbate AGD 

were not frequently isolated from AGD-affected fish gills.  However, some of the 

bacteria (e.g. Pseudoalteromonas spp., Vibrio sp., Staphylococcus spp. and 

Planococcus spp.) isolated during this study are identified as potential fish pathogens.  

This might suggest that the onset of AGD in Atlantic salmon might favour the growth 

of any of these bacteria as secondary pathogens.  However, it is not possible to 

determine which bacteria will colonise the gills of AGD affected fish in a given 

period of time because fish gills are in close contact with water and therefore the 

development of gill bacterial population is also dependent on various environmental 

factors affecting the aquatic ecosystem apart from the changes due to freshwater 
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bathing and AGD status of fish.  Therefore, it appears that the trends/changes 

occurring within the bacterial community are complex and unpredictable.  As a 

result, it could be stated that the bacterial community structure on the gills is 

determined by the environment and random succession events rather than proceeding 

in an easily predictable manner, which is same as the bacterial communities in marine 

sediments (Reice 1994; Bissett et al. 2006a).   
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Chapter 8 
 

General Discussion 
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This thesis investigated the role of bacteria in amoebic gill disease (AGD).  

The main findings of this study are that AGD can occur at low levels of bacteria on 

the gills and that the disease could be exacerbated in the presence of Winogradskyella 

sp. strain AC1 (chapters 5 and 6).  In addition, this study found that the bacteria 

belonging to Cytophaga-Flavobacterium-Bacteroides (CFB), Firmicutes and 

Gammaproteobacteria groups frequently colonise the gills of AGD-affected Atlantic 

salmon located in a farm (chapters 3 and 7).  

 

This study demonstrated that Neoparamoebae are able to colonise disinfected 

gills i.e. gills containing low levels of bacteria due to potassium permanganate 

treatment (chapter 4, 5 and 6), signifying that the presence of large numbers of 

bacteria on the gills is not a prerequisite for Neoparamoeba spp. infection.  This 

finding suggests that Neoparamoeba spp. is the primary causative agent of AGD.  In 

addition, several laboratory based AGD trials (e.g. Munday et al. 2001; Adams and 

Nowak 2003, 2004) including the in vivo trials conducted during this study (chapters 

4, 5 and 6) have confirmed that challenging fish exclusively with Neoparamoeba spp. 

could generate characteristic AGD lesions on the gills, similar to those lesions 

observed on the histological gill sections obtained from AGD-affected farm fish.  In 

accordance with all the AGD research undertaken in Tasmania, a fish is diagnosed 

with AGD, if the histological section of the gills is characterized by a single or 

multifocal epithelial hyperplasia of the lamellae often containing round to ovate 



 

interlamellar vesicles and Neoparamoeba spp. with a parasome.  On the contrary, 

Bermingham and Mulcahy (2006) have suggested that not only Neoparamoeba spp. 

but also other organisms including other amoebae and protozoans are associated with 

AGD.  However, the histological evidence provided by Bermingham and Mulcahy 

(2006) in their farm based study conducted in Ireland do not agree with the AGD 

pathology described in Tasmania, and the authors have not proved the identity or 

pathogenicity of the amoebae isolated in their study (Bermingham and Mulcahy 

2006).  Therefore, it appears that the disease described in Ireland is probably a mixed 

protozoan infection rather than AGD.  In another case, an in vitro study examining 

the cell-pathogen interactions between a Neoparamoeba pemaquidensis strain and 

rainbow trout gill cell line suggested that the cytopathic effect of Neoparamoeba 

might be due to the extruded bacteria that the amoebae might have carried (Lee et al. 

2006).  On the other hand, these authors have not provided any histology or electron 

microscopic evidence to prove that the extruded bacteria caused the pathology; their 

proposition was exclusively based on the observation made through a phase contrast 

microscopy (Lee et al. 2006).  In summary, the results presented in this thesis and 

other available evidence strongly suggest that Neoparamoeba spp. is the primary 

causative agent of AGD.   

 

The current study also found that the fish experimentally infected with 

Winogradskyella sp. strain AC1 showed increased numbers of gill lesions following 

Neoparamoeba spp. infection (chapters 5 and 6), compared to those exposed to 

Staphylococcus sp. strain AC8 and Neoparamoeba spp. or infected with 

Neoparamoeba spp. alone (chapter 5).  A previous study examining the interactions 
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between Entamoeba histolytica (an intestinal parasite and the causative agent of 

amoebiasis in humans) and bacteria has reported a similar outcome.  Pre-incubation 

of E. histolytica with some Gram negative bacteria enhanced the virulence of 

amoebae and their ability to destroy monolayers of tissue-cultured cells (Bracha and 

Mirelman 1984).  It was suggested that for the stimulation to be noted, Entamoeba 

trophozoites need to ingest bacteria and the ingested bacteria contribute a 

proteinaceous ingredient or enzymatic activity that rapidly activates a virulent 

response in the trophozoites (Bracha and Mirelman 1984; reviewed by Mirelman 

1987).  However, in case of Neoparamoeba and Winogradskyella species the 

interaction is not obvious because the ultrastructural studies using electron 

microscopy show that Neoparamoeba trophozoites fixed in situ, when attached to gill 

tissue do not contain bacteria (Dyková and Lom 2004).  In addition, the histological 

examination of Atlantic salmon gills 4 days post exposure to Winogradskyella sp. 

strain AC1 showed that this bacterium is not detrimental to the fish (chapter 6).  In 

other words, these findings suggest that the gill attached amoebae are not 

bacterivorous and Winogradskyella sp. may not be pathogenic to Atlantic salmon.  

Therefore, further research is required to determine the reasons for the increase in 

AGD severity in the presence of Winogradskyella sp..  Perhaps, Winogradskyella sp. 

has some physiological effect on Atlantic salmon, which makes the fish more 

vulnerable to Neoparamoeba sp. infection.  Therefore, future research should also 

investigate the influence of Winogradskyella sp. on the physiological condition of 

Atlantic salmon.   
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During this study, a diverse range of bacteria were isolated from Atlantic 

salmon gills (chapters 3 and 7).  Among these, the bacteria belonging to Cytophaga-

Flavobacterium-Bacteroides (CFB), Gammaproteobacteria and Firmicutes groups 

were frequently isolated from AGD-positive farm fish (chapters 3 and 7).  However, 

this study could not investigate the culturable bacteria on the gills of AGD-negative 

farm fish, because it is not possible to find a fish naïve to AGD in a farm 

environment.  At all Tasmanian salmonid farms except Macquarie Harbour (see 

chapter 1, section 1.2), Neoparamoeba spp. have been consistently isolated from the 

nets, seacages and in nearby sediments (see Tan et al. 2002; Crosbie et al. 2005), 

therefore, it is not possible to find a fish which definitely had no exposure to 

Neoparamoeba spp..  On the other hand, it was possible to compare the culturable 

gill bacteria on AGD-negative and positive Atlantic salmon that were reared in 

separate seawater filled tanks located in a laboratory and the results showed that the 

bacteria commonly isolated from AGD-negative lab fish were Gammaproteobacteria 

and the culturable bacteria on AGD-positive fish belonged to Firmicutes and CFB 

group (chapter 3).  Based on these findings, it appears that the occurrence of AGD 

might mainly favour the growth of CFB group bacteria on Atlantic salmon gills 

(Figure 8.1).  The presence of Gammaproteobacteria on both AGD-negative lab fish 

(chapter 3) and AGD-positive farm fish (chapter 7) may indicate that these bacteria 

are part of the normal gill flora and are independent of AGD status of a fish.  

Nevertheless, whatever bacteria are present in the water column is likely to be present 

on fish (Shotts and Teska 1989).  In this study, it was not possible to know if water-

borne bacteria are just incidentally present or actually colonising the fish.  Hence, 

there is always a possibility that the bacteria found in the water could also be on the 
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gills.  Therefore, it is not possible to determine which bacteria commonly colonise 

the gills of AGD-affected fish.  There is a strong association of CFB group bacteria 

with the marine water column, marine aggregates and with marine sediment 

communities around salmon farms (Ravenschlag et al. 2001; Bissett et al. 2006a) and 

perhaps, this is the reason for the presence of these bacteria on the fish gills.  CFB 

group bacteria play a key role in the initial degradation of complex organic 

substrates, supplying hydrolysis and fermentation products for further mineralization 

(Rossello Mora et al. 1999; Kirchman 2002).  In addition, CFB and 

Gammaproteobacteria have been identified to have a wide range of virulence and 

have been identified as opportunistic fish pathogens; but only a few studies have 

reported the bacteria from the phylum Firmicutes as disease causing agents in fish 

(see Austin and Austin 1993).   
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Figure 8.1 Composition of gill bacteria cultured during this study from AGD-

affected Atlantic salmon (chapters 3 and 7). 



 

The Firmicutes isolated from AGD-affected fish during this study mostly 

belonged to the genus Planococcus (chapter 7) and Staphylococcus (chapters 3 and 

7).  Planococcus spp. are presumed to cause mortalities in rainbow trout fry (Austin 

and Stobie 1992).  Staphylococcus warneri is pathogenic to rainbow trout (Gil et al. 

2000).  The current study also isolated Vibrio splendidus (a Gammaproteobacteria), a 

pathogen reported to cause haemorrhages in turbot, Scophthalmus maximus (Angulo 

et al. 1994) from an AGD-positive fish (chapter 7).  In addition, bacteria from the 

genus Winogradskyella (chapter 3) and Psychroserpens (Bowman and Nowak 2004) 

belonging to CFB group were detected in abundance only on the gills of AGD-

affected Atlantic salmon.  The genus Psychroserpens was established by Bowman et 

al. (1997) and contains P. burtonensis as the type species.  P. burtonensis was first 

isolated from Burton Lake, Antarctica.  There is no further information available on 

the association of Psychroserpens spp. with any organism.  Meanwhile, the in vivo 

trials showed that the presence of a Winogradskyella sp. strain on salmonid gills 

during the development of AGD infection could result in a more severe AGD 

condition (chapters 5 and 6).  Furthermore, the culture-independent study detected 

two Tenacibaculum maritimum (a CFB group bacterium) clones only on AGD-

positive samples (Bowman and Nowak 2004).  T. maritimum is the causative agent of 

flexibacteriosis in many marine fish species (Shotts and Teska 1989).  In addition, 

bacteria from the genus Pseudoalteromonas (a Gammaproteobacteria) were more 

frequently isolated on AGD-positive fish gills (chapter 7).  Some Pseudoalteromonas 

species are reported to cause disease in fish and produce potent toxins (Holmström 

and Kjelleberg 1999).  Hence, considering the pathogenic potential of the above 

mentioned bacteria that were isolated from the gills of AGD-affected fish gills, it is 
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possible that the onset of AGD in Atlantic salmon might predispose the fish to 

colonisation by these bacteria as secondary opportunistic pathogens.  Perhaps, similar 

to Winogradskyella sp., the presence of these bacteria on the gills during the process 

of AGD development may exacerbate the condition.  However, further research is 

required to investigate the effect of other gill colonising bacteria isolated during this 

study in AGD.   

Recently, a study examining the changes occurring in the sediment bacterial 

communities due to salmon farming in seacages in Tasmania reported that the 

sediment bacterial numbers including the CFB bacteria under salmon cages did not 

return to pre-stocking levels by the end of 3 months fallowing period, but the 

bacterial numbers returned to the same as at the reference site (reference sites were 

locations with similar sediment characteristics, but without the organic 

loading/salmon-farming) levels over the following 12 months (Bissett et al. 2005; 

2006b).  CFB bacteria play a fundamental role in the initial degradation of organic 

matter, therefore their (CFB bacteria) numbers increase with increase in organic 

loading at the salmon farming sites (Bissett 2005).  Furthermore, even though the 

ultrastructural studies conducted by Dyková and Lom (2004) suggested that gill 

attached Neoparamoebae may not be bacterivorous, the same study observed bacteria 

multiplying in the cytoplasm of trophozoites isolated from the nets and sediments in 

areas of salmon cages; thus, indicating that amoebae present on the nets and 

sediments might feed on bacteria.  In addition, a significant association was found 

between Neoparamoebae densities and the number of bacteria during a spatial and 

temporal study assessing the distribution of amoeba in the water column around 
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salmon farm (Douglas-Helders et al. 2003).  Further to this, the in vitro cultivation of 

Neoparamoeba strains has demonstrated that the amoebae could grow and multiply 

by feeding on live or heat-killed bacteria (Dyková et al. 2000, 2005; Morrison et al. 

2005).   

These findings have led to propose the following hypotheses:   

• The primary diet of environmental strains of Neoparamoeba spp. could be 

bacteria.  

• The increase in organic loading at salmon farming sites might increase bacterial 

numbers, which in turn may increase the amoebae numbers. 

• Therefore, a prolonged fallowing period may reduce the bacterial numbers 

including the CFB group bacteria around the farm site.  Consequently, this would 

lower the amoebae numbers because of lack of availability of food (bacteria).  

• The presence of a CFB group bacterium (Winogradskyella sp. strain AC1) on 

AGD-affected fish gills was shown to intensify AGD severity (chapters 5 and 6) 

in laboratory condition.  Therefore assuming that Winogradskyella sp. has similar 

effect on farmed fish, it is suggested that the absence or decrease in CFB bacteria 

numbers around the farm might decrease the possibility of occurrence of severe 

AGD outbreaks.  

• Accordingly, the decrease in AGD severity could increase the time between fresh 

water bathing (a method to control AGD), which in turn will reduce the overall 

management costs spent towards controlling AGD.  Corroborating this, Douglas-

Helders et al. (2004) reported that rotation of stocked cages onto fallowed sites 
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significantly increased the time between freshwater baths compared to the bathing 

frequency requirements of the fish reared in stationary cages.  

 

This study opted for culture-dependent methods (chapters 3 and 7) to identify 

salmonid gill bacteria instead of culture-independent approach.  It is known that in 

the culture-dependent studies only a sub-population of bacteria is described.  

However, the culture-independent approach also has its own limitations; this method 

(culture-independent method) does not provide any information on the functions and 

interactions of the identified bacterium with other biota in the community (Carson et 

al. 2006).  Therefore, when it comes to choosing an appropriate method, it all 

depends on the individual project and its aims.  In the context of this project, using a 

culture method was most appropriate.  For instance, in chapter 3, the cultivation 

method was adopted to obtain bacterial isolates from AGD-affected fish gills, so that 

these isolates could be used during in vivo trials to determine the role of bacteria in 

AGD.  In chapter 7, the culture-dependent approach was applied in an attempt to 

verify whether Winogradskyella spp., previously shown to exacerbate AGD, 

frequently colonise the gills of sea-farmed Atlantic salmon.  This was appropriate 

because results obtained from chapter 3 have shown that Winogradskyella spp. were 

culturable.    

 

The isolated bacteria from this study were primarily grouped into respective 

clusters based on their biochemical characteristics and then from each group a typical 

isolate was selected for 16S ribosomal RNA (rRNA) analysis (see chapter 3).  The 

disadvantage in using this method, is the assumption that all isolates in a cluster with 
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similar biochemical properties could have the same 16S rRNA identity as the 

representative isolate chosen for 16S rRNA analysis; however, there is an uncertainty 

whether every bacteria in a cluster is actually same as the representative isolate.  This 

problem could be overcome by choosing every isolate from each cluster for 16S 

rRNA analysis.  However, conducting both phenotypic and genotypic 

characterisation for each isolate could be a very time-consuming and expensive 

procedure.  Several authors have reported that identification of bacteria using 

molecular techniques has provided reliable results (e.g. Wiik et al. 1995; Spanggaard 

et al. 2000; Bosshard et al. 2003, 2004; García-López et al. 2004).  Therefore, instead 

of firstly classifying the bacteria phenotypically and then conducting the 16S rRNA 

analysis, it is proposed to use only genotypic identification for initial characterisation 

of bacteria.  As a result, all the isolated bacteria were identified using 16S rRNA 

analysis alone in chapter 7.  Nevertheless, for description of a novel species or for 

further studies it is necessary to use both phenotypic and genotypic procedures.     

 

Overall, this study not only revealed the role of bacteria in AGD, it also lead 

to few other important findings.  This study has created a library for culturable 

bacteria present on AGD-affected salmonid gills (chapters 3 and 7).  This research 

has also contributed more knowledge towards the recently established marine genus 

Winogradskyella.  For example, we now know that short term exposure (4 days) of 

salmonids to Winogradskyella sp. strain AC1 at concentrations 108 or 1010 cells 1-1 is 

not pathogenic; and presence of this bacterium on the Atlantic salmon gills could 

enhance the severity of AGD (chapter 5 and 6).  In addition, this study has developed 

a protocol for disinfection of salmonid gills using potassium permanganate.  This is 
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significant because the effect of this disinfection process has not been previously 

tested in conjunction with further disease challenge experiments (chapter 4).  

Furthermore, the results from this project indicate that further research could 

investigate the physiological effect of Winogradskyella sp. on Atlantic salmon, 

examine the relationship between Winogradskyella sp. and Neoparamoeba spp. and 

determine the possible reasons for the increase in AGD severity in the presence of 

this bacterium.  Additionally, it would be interesting to examine the effects of pre-

exposure of fish to much lower concentrations of Winogradskyella sp. (i.e. lower than 

108 or 1010 cells 1-1) on AGD infection.  Contamination of gills with very fine fish 

food particles may also affect the manifestation and severity of AGD.  Furthermore, 

previous research has demonstrated that cultured gill-derived N. pemaquidensis are 

avirulent and therefore fails to elicit AGD in Atlantic salmon (Kent et al. 1988; 

Howard et al. 1993; Morrison et al. 2005); one of the reasons suggested for the down 

regulation of virulence in cultured amoebae was the absence of key nutritional factors 

required for virulence (Morrison et al. 2005).  Therefore, it would be interesting to 

culture amoeba in the presence of Winogradskyella sp. and determine whether this 

has any effect on amoebae virulence.  It is also intriguing to verify whether other gill 

colonising bacteria isolated during this study from AGD-affected Atlantic salmon 

gills has similar effect as Winogradskyella sp. has in exacerbating the AGD condition 

in Atlantic salmon. 
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Appendix 1 
 

Formulae of bacterial culture media (chapter 2) 
 

Marine agar 
 
Bacteriological peptone: 5 g 

Yeast Extract: 2 g 

Ferric pyrophosphate: 10 mg 

Natural sea water (salinity 35‰): 1000 ml 

pH 7.3-7.5 

Autoclave 121oC for 15 min 

Shieh’s medium  

(Song YL, Fryer JL, Rohovec JS (1988) Comparison of six media for the cultivation 

of Flexibacter columnaris. Fish Pathology 23:91-94) 

Peptone (Oxoid L37): 5 g 

Sodium acetate: 0.01 g 

Sodium pyruvate: 0.1 g 

Citric acid: 0.01 g 

Yeast extract: 0.5 g 

Agar: 12.0 g 

Distilled water: 100 ml 

Natural sea water (salinity 35‰): 900 ml 

pH 7.5-7.8 

Autoclave at 121oC for 15 min 
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Sheep blood agar with 2% NaCl 

Blood agar base No. 2 (Oxoid, CM0271): 40 g 

NaCl: 15 g 

Distilled water: 1000 ml 

pH: 7.4±0.2 

Autoclave at 121oC for 15 min and cool to 50oC; aseptically add 70 ml of 

defibrinated sheep’s blood. Mix gently and pour as plates. 
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Appendix 2 
 
 

Biochemical profiles of gill bacteria isolated from AGD-

affected and unaffected salmonid gills (chapter 3) 
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Appendix 2  Biochemical profiles of the bacterial isolates obtained from group A (AGD affected fish from farm), group B (AGD affected laboratory fish) and group C (unaffected fish) fish.  The isolates from 
group A are denoted as AC1 to AC10; group B as BC1 to BC4 and group C as CC1 to CC14.  The cluster exemplars that were selected for 16S rRNA analysis are highlighted in grey.

Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
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AC1 + + + + + + + +
AC1 + + + + + + +
AC2 + + + + + +
AC2 + + + + + +
AC2 + + + + + +
AC2 + + + + + + +
AC2 + + + + + + + +
AC2 + + + + +
AC2 + + + + +
AC2 + + + + + +
AC2 + + + + + + + +
AC2 + + + + + + +
AC2 + + + + + +
AC2 + + + + + + +
AC2 + + + + + +
AC2 + + + + +
AC3 + + + + + + + + +
AC3 + + + + + + + + + + + + +
AC3 + + + + + + + + + + + + +
AC4 + + + + + + +
AC4 + + + + + + + + + + + + +
AC4 + + + + + +
AC5 + + + + + + + + +
AC5 + + + + + + + + + +
AC5 + + + + + + + + + +
AC5 + + + + + + + + + + + +
AC5 + + + + + + + + + + + +
AC5 + + + + + + + + + +
AC5 + + + + + + + + +
AC6 + + + + + + + + + + + + +
AC6 + + + + + + + + + + + + + + + +
AC7 + + + + + + + + +
AC7 + + + + + + + + + + +
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Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
AC8 + + + + + + + + + +
AC8 + + + + + + + + + +
AC9 + + + + + + + +
AC9 + + + + + + + + + +
AC9 + + + + + + + + + + +
AC9 + + + + + + + + + +
AC10 + + + + + +
AC10 + + + + + + + +
AC10 + + + + + + + + + + +
BC1 + + + + +
BC1 + + + + + + +
BC1 + + + + + + + + +
BC1 + + + + + +
BC1 + + + + + + + +
BC1 + + + + + + + +

BC1 + + + + + + +
BC1 + + + + + + + +

BC1 + + + + + + + +
BC2 + + + + + + + + + + + + + + +
BC2 + + + + + + + + + + + + + + + + +
BC2 + + + + + + + + + + + + + + + + +
BC3 + + + + + + + + + + + +
BC3 + + + + + + + + + + + + + + + +
BC4 + + + + + + + + + + + + + + + + + + + + + + +
BC4 + + + + + + + + + + + + + + + + + + + + + + + + + +
CC1 + + + + + + + + + + + + + + + + + + + + + +
CC1 + + + + + + + + + + + + + + + + + + + +
CC2 + + + + + + + + + + + + + + + + + +
CC2 + + + + + + + + + + + + + + + + + + + +
CC2 + + + + + + + + + + + + + + + + + + + +
CC3 + + + + + + + + + + + + +
CC3 + + + + + + + + + + + + + + + + +
CC4 + + + + + + + + + + + + + +
CC4 + + + + + + + + + + + + + + + +
CC4 + + + + + + + + + + + + + + + + + +
CC5 + + + + + + + + + + + + +
CC5 + + + + + + + + + + + + + + +
CC6 + + + + + + +

CC6 + + + + + + + + +
CC6 + + + + + + + + + +
CC7 + + + + + + + + + + + + + + + + + + + + + + + +
CC7 + + + + + + + + + + + + + + + + + + + + + + + + + +
CC7 + + + + + + + + + + + + + + + + + + + + + + + +
CC8 + + + + + + + + + + + + + + + + +
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Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
CC8 + + + + + + + + + + + + + + + + + + +
CC8 + + + + + + + + + + + + + + + + + + +
CC8 + + + + + + + + + + + + + + + + + + + +
CC8 + + + + + + + + + + + + + + + + + + + + +

CC8 + + + + + + + + + + + + + + + + + + + + + + +
CC8 + + + + + + + + + + + + + + + + + + + +

CC8 + + + + + + + + + + + + + + + + + + +
CC9 + + + + + + +
CC9 + + + + + + + + + + + +
CC9 + + + + + + + + + + + +
CC10 + + + + + + + + + +
CC10 + + + + + + + + + +
CC10 + + + + + + + + + + + +
CC10 + + + + + + + + + + + +
CC10 + + + + + + + + + +

CC10 + + + + + + + + + + + +
CC10 + + + + + + + + + + + + +

CC11 + + + + + + + + + + + + + +
CC11 + + + + + + + + + + + + + + + + +
CC11 + + + + + + + + + + + + + + +
CC11 + + + + + + + + + + + + + + + + +

CC11 + + + + + + + + + + + + + + + +
CC12 + + + + + + + + + + + + + + +

CC12 + + + + + + + + + + + + + +
CC12 + + + + + + + + + + + + + +

CC13 + + + + + + + + + + + + + + + + + + +
CC13 + + + + + + + + + + + + + + + + + + +

CC13 + + + + + + + + + + + + + + + + + + +
CC14 + + + + + + + + + + +

CC14 + + + + + + + + + + + + +
CC14 + + + + + + + + + + + + +

1, Alkaline phosphate; 2, Esterase (C4); 3, Esterase Lipase (C8); 4, Lipase; 5,c Leucine arylamidase; 6, Valine arylamidase; 7, Cystine arylamidase; 8, Trypsin; 9, α-chymotrypsin; 10, Acid phosphatase; 
11, Napthol-AS BL Phosphohydrolase; 12, β- galatosidase; 13, β-glucuronidase; 14, α-glucosidase; 15, N-acetyl-β-glucosaminidase; 16, α-mannosidase; 17, α-fucosidase; 18, Glycerol; 19, Erythritol; 20, D
Arabinose; 21, L Arabinose; 22, Ribose; 23, D Xylose; 24, L Xylose; 25, Adonitol; 26,Galactose; 27, Glucose; 28, Fructose; 29, Mannose; 30, Sorbose; 31, Rhamnose; 32, Dulcitol; 33, Inositol; 34, 
Mannitol; 35, Sorbitol; 36, α-Methyl D Mannoside; 37, α-Methyl D Glucoside; 38, Arbutin; 39, Esculin; 40, Cellobiose; 41, Maltose; 42, Lactose; 43, Melibiose; 44, Sucrose; 45, Trehalose; 46, Melezitose; 
47, Raffinose; 48, Starch; 49, Glycogen; 50, Xylitol; 51, Gentiobiose; 52, D-Turanose; 53, D-Lyxose; 54,D-Tagatose; 55, D-Fucose; 56, L-Fucose; 57, D- Arabitol; 58, L-Arabitol; 59,Gluconate; 60, 2-
KetoGluconate; 61, 5-KetoGluconate;  All isolates showed negative reaction to β-galatosidase; α-mannosidase; Fructose; Maltose; Lactose;Trehalose; Melezitose; D-Turanose.
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