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IV ABSTRACT 

This research was motivated by problems in network security, where an attacker 

often deliberately changes their identifying information and behaviour in order to 

camouflage their malicious behaviour. Addressing this problem has resulted in a new 

adaption to the unsupervised machine learning technique COBWEB. 

In machine learning and data mining the aim is to extract patterns from data in order 

to discover a meaning underlying the processes that are taking place. In most cases, 

each object is observed once, and then the patterns that have been extracted can be 

used to classify newly-observed objects. Conceptual clustering aims to do this in 

such a way that the patterns that are learned are human readable. Concept drift 

algorithms allow concepts to change over time, although most undertake this in a 

supervised manner, which presents a challenge when looking for novel classes. 

This research focuses on the classification of objects that change over time across 

multiple observations. The objects may change their own characteristics (labelled as 

object drift in this research) or maintain the same characteristics, but change their 

identifier. In addition to this, it is also possible for the concept that describes a group 

of objects to itself change (known as concept drift). In addition to the possible 

application within the security domain, the method was generalised and tested across 

a range of machine learning and data mining domains. In the process it was shown 

that the method was robust in the presence of concept drift, which occurs when a 

group of objects that define a given concept change their characteristics, resulting in 

the definition of that concept having changed over time. 

The ideas of concept drift and object drift are not only relevant within the computer 

security field, but can be of significance in any knowledge domain. Therefore, any 

method presented to address this learning problem should be generalised enough to 

be applicable in many application areas. 

The new method, entitled DynamicWEB, extends the existing conceptual clustering 

method COBWEB to allow for profiles to be added and removed from the concept 

hierarchy. An index structure was implemented using an AVL tree to facilitate fast 

scalable searching of the knowledge structure. As the target objects change over time 

the profiles of each target are updated within the structure, maintaining an up-to-date 



 
 

- XIV - 
 

representation of the domain. The profiles contain derived attributes, which are 

formed across multiple observations of each object, with the aim of retaining 

knowledge of how the object has changed over time. As well as preserving context 

over time, Dynamic Web uses multiple trees and so, transforms the learner into an 

ensemble classifier.  

In addition to testing the method on the security and network based datasets, a 

number of other datasets are also examined. A new dataset (a modified version of 

Quinlan’s weather dataset) is presented in order to illustrate how Dynamic Web 

operates in the presence of object drift. The method is also tested on several well-

known machine learning datasets, some of which exhibit concept drift. Along with 

these artificial datasets, a group of real-world datasets, including several sourced 

from the Australian Bureau of Statistics, were also examined, illustrating 

DynamicWEB’s ability to adapt to change. 

This thesis describes the work done to enable DynamicWEB to adapt to both concept 

drift and object drift, both of which are characteristic of many application domains. 

DynamicWEB is also capable of profiling an object across multiple observations to 

allow for accurate prediction and inter-object relationship discovery. 
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1 Introduction 
1 

“Nothing in the world is permanent, and we're foolish when we 
ask anything to last, but surely we're still more foolish not to take 
delight in it while we have it. If change is of the essence of 
existence one would have thought it only sensible to make it the 
premise of our philosophy.” 
 

William Somerset Maugham (1874 - 1965) 
 The Razor's Edge, 1943 
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1.1 INTRODUCTION 
The world around us is changing. In effectively every domain of knowledge, in the 

realms of science and industry and in people’s personal lives, change occurs in some 

manner, over time. Weather is monitored nightly on the news; thousands of people 

are employed monitoring various parts of a nation’s economy; millions world-wide 

earn a living from changes within the stock market; and engineers monitor 

infrastructure. Some change is sudden, such as the recent Global Financial Crisis, or 

events in our lives such as the birth of a child. Others happen more slowly, such as 

Climate Change or the process of aging within the human body. Observing and 

trying to understand change is the basis for many professions and areas of 

investigation. 

From a computational perspective, observing and recording change, in an effort to 

understand it, has been carried out since the development of computers. The first 

stage in this process is to record data for later analysis. Machine learning is a field of 

computing that aims to develop methods for discovering patterns within data. Data 

mining is the process of applying these methods to large repositories of stored data 

with the aim of extracting knowledge. In the fields of machine learning and data 

mining, many researchers have examined datasets that contain change in various 

forms. 

1.2 MOTIVATION 
The work reported in this thesis was inspired by a learning problem within the field 

of computer security. The knowledge domain is one in which many observations of a 

given user’s activity are recorded over a significant time period. This information, 

when viewed in context, presents a profile of activity that can then be used to 

determine whether the user is carrying out a specific type of behaviour. The security 

sub-field that inspired this research was related to a specific type of port scanning 

reconnaissance. 

Port scanning reconnaissance involves multiple observations of users who scan a 

network, over the course of a time period. The users’ behaviour changes over the 

time period within which these observations are taken. Activity which is defined as 

malicious may change over the observed time (concept drift), while also a user’s 
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activity may go from being considered benign to that of a threat (object drift). For an 

effective comparison to be made between these activity profiles there is a need for 

the context of these multiple recorded activities to be preserved.  

Within the joint fields of machine learning and data mining there is an apparent lack 

of learning methods which observe the same objects, multiple times, over a time 

window. Across these observations, it is possible for the objects that are being 

observed to change in some way, and it is important for this change to be 

incorporated into the learning model. 

1.3 RESEARCH AIMS 
The research presented in this thesis aims to operate within the learning scenario 

outlined above. To enable this, the aims for the learner are as follows: 

1. The learner needs to be able to profile object activity over an extended time 

period. 

2. The learner needs to be able to establish relationships between these profiles. 

3. The learner needs to be able to adapt to concept drift. 

4. The learner needs to be able to adapt to object drift. 

5. The leaner needs to be able to preserve context across multiple observations. 

6. The learner needs to be able to track a large number of target objects 

simultaneously in real-time. 

These six aims outline a method that is highly adaptive with the ability to profile 

objects over time. The fundamental element of the learner is the production of a 

profile that is based on the data obtained from multiple observations of target objects 

over time (1). This data is a recorded history of behaviour exhibited by the target 

object. 

As each of these profiles is built upon data relating to individual objects within a 

group, it is highly beneficial to be able to relate these objects to one another (2). By 

discovering relationships between the different objects under examination, patterns 
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can then be extracted from the dataset, and these patterns can then be used to model 

the dataset. This dataset may not have defined classes (as with the application which 

inspired this research), and because of this, the learner needs to be an unsupervised 

technique. 

If the target objects1 are changing over time, then there are two forms of drift that the 

learner needs to be able to adjust to: concept drift and object drift (3 and 4)1. Concept 

drift occurs when the class description of a group of objects changes over time. For 

example, the definition of what is considered fashionable among a group of people 

may change over time as trends come and go. Object drift occurs when a target 

object migrates from one resultant concept to another, for example when a given 

person changes from being in one fashion clique of people to another. 

As many observations and updates occur to the profiles relating to each target object, 

there is an over-arching context that needs to be preserved (5). This context is a 

historical one representing the past behaviour of the given object. Being able to 

preserve the fact that four of the numerical attributes of a particular object have been 

decreasing in value, over time, while a fifth attribute has been increasing in value, 

provides a significant benefit when it comes to classifying an object as opposed to 

just storing the most recent observed value of each attribute. Such preservation of 

contextual information is vital if behaviour is to be profiled over time. 

The final aim listed above is for the learner to be able to profile a very large number 

of objects at once. While in many application domains the targets of interest will be 

few in number, the application that drove the need for this learner examines 

thousands of target objects simultaneously and so scalability is very important. 

Further, this knowledge domain, operates on live data and needs to operate in real-

time to respond to any threats upon the network. 

Because the machine learning method developed as part of this research will be 

operating in a learning environment that is quite different to that in which most 

methods operate it is important for it to be designed with more than just one  

                                                

1 Definitions of these terms used throughout the thesis can be found in the Appendix A 
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application in mind. One of the main aims of this research is to produce a learning 

method that is generalised and applicable to a wide range of domains. 

1.4  THESIS OUTLINE 
The following is an overview of the chapters within this thesis 

The next chapter is a brief literature review of clustering techniques within the 

machine-learning field, to provide some background to the way in which learning 

techniques extract knowledge from a dataset. This chapter will introduce the machine 

learning area of Conceptual Clustering. 

The third chapter is an examination of clustering methods that have been developed 

to examine datasets in which change occurs during the learning process. These 

methods aim to adapt to this change and learn from it. The chapter will introduce the 

topic of Concept Drift, which is one of the most active areas of research within 

machine learning for methods that adapt to change, and the most relevant to the 

research described in this thesis. 

The fourth chapter will describe two probabilistic conceptual clustering techniques. 

One of these, entitled COBWEB, has been modified in order to carry out some of the 

research described in this thesis. Research by other authors, also building upon this 

method, will be briefly examined in this chapter. 

The fifth chapter describes, in detail, the new method, entitled DynamicWEB. This 

method has been developed to carry out the research described in the thesis. It 

initially outlines the motivations and goals for the method and then explains the 

extensions that were made to the COBWEB algorithm in order to meet these goals. 

The sixth chapter examines the performance of the COBWEB implementation used 

within DynamicWEB and then examines DynamicWEB as applied to other machine 

learning datasets, one of which was created specifically for this work, while the 

others have been used by other machine learning researchers examining similar 

problems. This chapter focuses on small easily understood datasets. The remainder of 

the chapters examine larger datasets that are not real world problems. 
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The seventh chapter displays DynamicWEB’s performance upon several real-world 

datasets, including two provided by the Australian Bureau of Statistics and one 

derived from a well-known data mining contest held several years ago. 

The eighth chapter examines DynamicWEB’s performance on two network-based 

datasets. One is the scan correlation dataset that originally inspired the research and 

the other is a dataset detailing network performance on a network spread across the 

states and territories of Australia. 

Finally the conclusion chapter draws together the results that were described within 

the previous three chapters and also discusses directions for further work. 

 

 



 

 

 

 

 

 

 

 

2 Clustering Techniques 
2 

“If you leave things alone you leave them as they are. But you do 
not. If you leave a thing alone you leave it to a torrent of 
change.” 
 

G. K. Chesterton (29 May 1874 – 14 June 1936) 
Orthodoxy, 1908 
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INTRODUCTION 
In the first chapter of this thesis several goals were outlined with respect to a 

classification scenario involving behaviour profiling. This chapter will look at data 

and conceptual clustering. Data clustering is the more traditional form of clustering, 

and is the more frequently used technique in data mining. Conceptual clustering is 

however more suited to behaviour profiling, and it will be examined and contrasted 

with its more traditional counterpart. This is done as a precursor to the next chapter, 

which will examine conceptual clustering methods that adapt to change over time, 

and the chapters that follow, which introduce the new method being presented. This 

method is built upon COBWEB, an Incremental Hierarchical Conceptual Clustering 

Algorithm, which will be discussed in detail in Chapter 4.  

2.1 DATA CLUSTERING 
Clustering methods aim to discover the natural groupings of instances (items with 

multiple data attributes) within a given dataset. Clustering is a data mining approach 

in which the eventual clusters are a simplification of the data into a model. These 

clusters are effectively subsets within the population, with the grouping being 

determined by shared characteristics between instances. This model can then be 

utilised for classification or visualisation of the dataset. The clusters that are located 

are usually previously unknown, and it is through the use of these techniques that the 

relationships between instances (ie. patterns) are discovered. 

A diverse range of clustering techniques has been developed since the late 1960s. An  

 

Figure 1. a) A data series. b) The resulting clusters from a partition 
technique. c) The resulting tree from a hierarchical technique. 
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obvious and relevant division between the methods occurs between partitional and 

hierarchical methods. Hierarchical methods create a series of partitions, nested one 

within the other, in a tree structure. Conversely, partitional methods create a single 

partition between the resulting clusters. Figure 1 is a basic illustration of the 

difference between the two methods based on the dataset shown in (a). The two 

methods will now be examined separately. 

2.2 PARTITIONAL CLUSTERING 
Partitional clustering creates only a single partition within the data (as shown in 

Figure 1). The result of this is a simple structure compared to the nested partitions 

produced by a hierarchical system, thus requiring less computation per instance. This 

means that it is well suited to applications with large datasets, and is often used in 

engineering applications. This approach will now be outlined. 

 Given a dataset of n instances, or objects2, the aim is to discover a partition that 

results in the creation of K clusters, or subsets. Each instance should be most similar 

to the other instances within its assigned cluster and least similar to those in the other 

clusters. The size of K is often fixed, although this is not true in all methods. The 

choice of K is very important as it governs the output produced; too high a value of K 

results in output that is too fine or over fitted to the problem, too low a value and the 

output can be too coarse and with multiple actual clusters within a single cluster 

found by the technique. Methods for finding the ideal value of K have been the 

subject of extensive research (Dubes 1987; Tibshirani, Walther et al. 2000; Salvador 

and Chan 2004). 

The initial starting values of the cluster centres, or seed points, are associated with 

the size of K. These starting values also have a large impact on the outcome of the 

algorithm (Figure 2), and, as a result, multiple runs with different starting values are 

often trialled until the best values are discovered (ie. those seed points that most 

effectively cover the area). A common approach is to use a selection of K objects at 

random from within the dataset to be the seed points. Future runs then select other K  

                                                

2 Also referred to commonly in the literature as patterns. This term is not used within this thesis to 
avoid confusion with patterns extracted from multiple observations in methods discussed in other 
chapters. 
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Figure 2. The seed points are the coloured triangles; (a) illustrates the 
clustering that results from the ideal seed points. While (b) is the clustering that 
results from poorly chosen seed points. 

values, and runs are repeated until the best are found. An alternative option to this is 

a method in which points within the range of the object parameters are selected as the 

seed points. 

Once the initial values of the seed points have been defined the instances within the 

dataset can all be allocated to the one with which they are most similar. When all the 

instances have been assigned, a criterion function to calculate the “goodness” of the 

partition is generated. The centroid value of each cluster is calculated based upon the 

instances within each cluster (this occurs at different times within the various 

approaches). This value then replaces the seed point for each cluster. After the 

centres have been calculated, merges and cluster reassignments can occur, followed 

by a re-calculation of the criterion function and the centroid. This is repeated in a 

loop until convergence of the partition occurs. A highly important element of this 

process is the criterion function, used to measure the quality of the existing partition. 

The most frequently used criterion within partitional clustering techniques is the 

Squared Error. Squared Error will be discussed here, but many other criteria have 

been used (Milligan 1981). 

Squared Error is a cumulative measure of error across all n instances in K clusters 

and is expressed as the following: 
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 where ( )j
ix  is the ith instance (currently assigned to the jth cluster) and cj is the 

centroid of the jth cluster. Therefore for each instance the difference between it and 

the centroid of its host cluster is calculated; with the total value of Ke  being the total 

difference for all instances in all clusters. Various partitional methods treat this value 

differently: some wait for the value to converge before ending while others have a 

threshold value of change between rounds before ending. A very common partitional 

method that makes use of the Squared Error criterion is the K-Means Clustering 

Algorithm, which will now be discussed in detail. 

2.2.1 THE K-MEANS CLUSTERING ALGORITHM 
The k-Means approach was proposed by MacQueen (1967) and has since been a very 

active area of research (AnderBerg 1973; Hartigan 1975). It is still frequently used 

not only in research (with endless variants) but also in benchmarking other methods 

(Ordonez, 2003). K-Means is a very simple method that largely follows the basic 

partitional clustering structure outlined above in 2.2. It has a time complexity of O(n) 

which makes it appealing, and is not difficult to implement. MacQueen (1967) 

outlined multiple k-Means variants within his landmark paper: Some Methods of 

Classification and analysis of multivariate observations, Table 1-Table 3 detail these 

methods. 

1) Select K cluster centres; using the first instances in the dataset, or 
randomly selected instances or locations within the range of possible 
instances. 

2) Assign each instance to the nearest cluster and then re-calculate the 
centroid of the cluster. Repeat for all n instances. 

3) After all n instances have been added take the current centroids and 
fix them as new seed points. Pass back through the dataset assigning 
all n instances to the nearest seed point. 

Table 1. Simple k-Means Algorithm 

The simplest method outlined by MacQueen is the simple k-Means method in Table 

1. It is very similar to the summary method detailed in 2.2 and, other methods 

proposed by Forgy (1965) and Jancey (1966). A key difference between MacQueen’s 

method and those of Fogy and Jancy is that the centroid calculation occurs after each 

instance is added, rather than after all the instances have been added. Furthermore 

simple k-Means by MacQueen does not continue until convergence, but for just the  
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1) Select K cluster centres; using the first instances in the dataset, or 
randomly selected instances. 

2) Assign each instance to the nearest centroid and then re-calculate the 
centroid of the cluster. Repeat for all n instances 

3) Take each instance and assign it to its nearest cluster. If that cluster is 
not the one it was placed in during Stage 2 then place it in the new 
cluster and update the centroids of the new and old clusters. 

4) Repeat Stage 3 until convergence is reached, or until all n instances 
are cycled through without a change occurring. 

Table 2. Convergent k-Means Algorithm 

one cycle and one re-allocation, unlike that of Fogy and Jancy. However, 

MacQueen’s second version of k-Means is one that does implement a convergence 

process and is detailed in Table 2. 

Convergence in Forgy, Jancey and MacQueen, and indeed many other methods, can 

mean several things. The first is the simplest measure where a reallocation phase is 

completed without a single instance changing clusters. This means that all instances 

are in their nearest cluster, and further cycles through the dataset will not make any 

more changes to the partition. The second option for judging convergence is with the 

use of the Squared Error measure. If, after another reallocation phase, there has been 

a minimal change to the value of Ke , or it is low enough to be under a threshold, then 

convergence is judged to have occurred. Both methods give an assurance that the 

best partition, using those seed points, has been achieved. 

The third method outlined by MacQueen (Table 3) is similar to the first method in 

that this variant did not continue to convergence (in MacQueen’s version, other 

people have implemented this using the same methods as mentioned above). 

However, it instead introduced the possibility of a K value that changes during 

splitting and merging of clusters through the introduction of two distance thresholds 

C and R. 

The first threshold is the coarsening parameter (represented by a C). This value is the 

minimum distance that two clusters can be apart. If the distance between two 

centroids is smaller than this value then they are merged to make a single cluster. 

The provision of merging of clusters avoids two virtually identical clusters forming 
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1) Define values for K, C and R 

2) Select K cluster centres; using the first instances in the dataset, or 
randomly selected instances. 

3) Calculate the distances between the K seed points; if the distance 
between two seeds is less than the coarsening parameter C then 
merge the two seeds. Continue with this step until all seed points are 
separated by more than a distance of C. 

4) Add each of the n instances, as each instances’s nearest centroid is 
located, if the distance is greater than the refining parameter R, then 
create a new cluster with the instance as its centroid. If the distance is 
less than R then add to the nearest cluster and re-calculate the 
centroid. Calculate the distance between this centroid and all other 
clusters. If the distance is less than C then merge the two clusters. 

5) After all n instances have been added take the current centroids and 
fix them as new seed points. Pass back through the dataset assigning 
all n instances to the nearest seed point. 

Table 3. k-Means with Coarsening and Refining Algorithm 

directly beside each other due to poor initial selection of seed point. The second 

threshold is known as the refining parameter (represented by R). The refining 

parameter creates a new cluster for instances that are of a distance greater than R, the 

closest existing centroid. The aim of this is to remove the effect of an outlier on the 

centroid of a cluster. 

 MacQueen was not the first to introduce merging and splitting in partitional 

clustering: the ISODATA method by Ball and Hall (1965) predates it. Their method 

of splitting and merging is not performed as an instance is added, but rather is based 

upon the variance just prior to the instance re-allocation. However, it was similar in 

that it also used a parameter-based threshold approach to heuristically choose which 

clusters needed merging or splitting. 

This section has described the process of partitional clustering methods with a focus 

on the k-Means method. This was discussed not only because k-Means is a very 

commonly used algorithm, but also because it is referred to in 1.6.1 where a 

partitional method and a hierarchical method are hybridised.  
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2.3 HIERARCHICAL CLUSTERING 
Hierarchical clustering, as already mentioned briefly, is a clustering technique in 

which more than a single partition is constructed, but further partitions are nested 

within each other forming a tree with branches and leaves at the furthermost points. 

Each branch is in effect a cluster which is partitioned from the rest of the data. Figure 

1 (see page 8) uses a graph to illustrate a tree that was created using a hierarchical 

clustering process. However, as it may not be immediately obvious which instances 

relate to which parts of the tree on Figure 1, a modified version is now presented 

below as Figure 3. 

 

Figure 3. a) A data series; now expressed with identifier labels for each 
instance. b) The graph representation of the nested partitions produced by the 
hierarchical method c) A dendrogram displaying the identifiers for each 
instance in their resulting location. 

The dendrogram in Figure 3c shows the tree that has been created, and illustrates the 

relationships between different instances. The pairs of D and E and F and G are very 

similar to each other, and are therefore clustered together in sibling leaves. 

Conversely, the cluster that contains A, B and C has a wider variation in the 

represented values. As B and C are more similar to each other than they are to A, a 

child node, or cluster, is created to capture this. It can be seen that the resulting 

output from a hierarchical algorithm is quite human readable, and possibly more so 

than its partitional counterpart. 

Hierarchical clustering, like partitional, has several main components which 

comprise the approaches that are modified to produce the different variants. These 

are the mode of construction, and the clustering method. Two modes of construction 

are commonly used: Agglomerative and Divisive methods. Clustering methods 
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generally fall into one of the following types: single linkage, complete linkage, 

average linkage or sum of squares (Jain, Murty et al. 1999). 

Of the two main hierarchical clustering modes of construction types agglomerative is 

the more common. Table 4 outlines the way this method operates (AnderBerg 1973). 

It starts with all the n instances being grouped in their own individual cluster. Then, 

step by step, the clusters are merged until all instances are in a single node. This is 

known as the root node. 

1) Begin with n clusters; each containing one instance. Propagate the 
proximity matrix with the distance, or similarity, measures. 

2) Using one of the clustering methods (in conjunction with the 
proximity matrix) locate the two clusters that have the greatest 
similarity (labelled c1 and c2). Merge the two Clusters. 

3) Reduce the number of clusters by one; update the proximity matrix 
for c1 and delete c2 from the matrix. 

4) Repeat steps 2 and 3 until all instances are merged together into a 
single root cluster. 

Table 4. Agglomerative Clustering Method 

At each step the two clusters that are merged are the two determined to be most 

similar according to a similarity matrix developed in conjunction with a relevant 

clustering method (as discussed below). The divisive method operates in the reverse 

order (Jain, Murty et al. 1999). Instead of merging disjointed clusters together, all of 

the instances start in the root node and are split apart until all the instances are in 

their own cluster. The choices used to perform the split, as with the merges in the 

agglomerative method, are based upon the clustering method. 

2.3.1 CLUSTERING METHODS 
The most important part of a hierarchical clustering technique is the specific 

clustering method that is used. As mentioned above there are four main types used: 

single linkage, complete linkage, average linkage or sum of squares. Other methods 

are usually variations of these four. The clustering method expresses the relationship 

strength, or similarity, of clusters to one another. Within partitional clustering, 

instances are assigned to the closest cluster as they were added. In hierarchical 

methods the instances are already present, and the clustering choice is purely about 

splitting and merging the clusters. 
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The Single Linkage method is the simplest of the common methods of hierarchical 

clustering. The measure uses the distance, or correlation, between the closest two 

instances in two neighbouring clusters. In distance-based forms of the method it is 

the closest two instances within the cluster (minimum distance), while in correlation 

forms of the method it is the two instances that have the most in common (maximum 

similarity). We can generalise both forms and reduce it to the two instances that have 

the shortest distance or strongest link across the two clusters. Figure 4a illustrates 

two different pairs of comparisons in dimension space between three clusters. This 

method has one downfall: it clusters purely in relation to the closest member of the 

cluster, and so can at times result in long chain like structures when examined in 

dimension space. This means that instances which are clustered together can actually 

be quite dissimilar (AnderBerg 1973). 

 

Figure 4. a) Single Linkage Clustering Method: the closest two instances 
within each cluster are compared. b) Complete Linkage Clustering Method: the 
furthest two instances within each cluster are compared. 

The Complete Linkage Method is similar to the Single Linkage Method and is 

illustrated by comparing two single instances in neighbouring clusters in Figure 4b. 

However, unlike the Single Linkage Method where the most similar instances are 

compared, in the Complete Linkage Method the most dissimilar instances within the 

two clusters are compared. In effect, the comparison shows the full span of the 

possible merged cluster. The smaller the value, the closer the two clusters are to each 

other, and therefore the more suited to merging they are. While this overcomes the 

chaining problem present in the Single Linkage Method, it tends to be too 

conservative and results in poorly separated clusters (Hansen and Delattre 1978). 

b a 
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Both the Single Linkage and Complete Linkage methods are very simple, but each 

has drawbacks as well as benefits. The limitation with both methods is their reliance 

upon a single instance within a cluster, and that the instance used is an edge instance 

on the cluster. This causes some bias in the estimation of how close the cluster is to 

other neighbouring clusters. It is this problem which the Average Linkage Method 

aims to overcome. Instead of calculating the distance or similarity between two 

clusters by examining the distance between two instances, the Average Linkage 

method calculates the average of all pair wise distances between the two clusters. 

Using the data series in Figure 4 as an example, all the distances for each of the 5 

instances in each cluster to the 5 instances in the neighbouring cluster are calculated. 

These are all then averaged (5 measurements per instance, across 5 instances in this 

case). This value is then used to judge the distance or similarity of the two clusters. 

2.4 CONCEPTUAL CLUSTERING 
In previous sections data clustering has been discussed in relation to the partitional 

and hierarchical approaches. Both of these techniques, and indeed the vast bulk of 

other clustering approaches, focus on some form of numerical distance measure 

between the instances presented. The learning that occurs is based upon the use of 

this distance measure between instances. As such, they can be described as "learning 

by example" (Fisher (1987). These systems also tend to give equal weight to all 

attributes, and do not take into account the relevance or irrelevance of some 

attributes in a clustering outcome (Michalski 1980). Conceptual clustering differs 

quite markedly from data clustering in that each cluster has a description based upon 

the instances it is assigned. As such, the cluster has an identity based upon the 

commonality that is present within the instances at that node. As it is through these 

observations that the clustering occurs, conceptual clustering can be described as 

"learning by observation" (Fisher 1987). 

Conceptual Clustering was first outlined by Michalski (1980) and was further 

expanded upon in multiple joint publications with Stepp (1981; Michalski, Stepp et 

al. 1981; Michalski and Stepp 1983). Conceptual clustering aims to produce concept 

descriptions for each class. This then allows for clusters to have a simple conceptual 

interpretation based upon these descriptions. Data clustering methods, while often 

useful for many things such as classification, are not as simple to interpret or fully 
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understand. The goal of conceptual clustering extends beyond that of data clustering 

to not only discover the relationships within the data, but also to discover human 

readable clusters. Furthermore, the aim is for these classes to fit descriptions which 

illustrate a true “is-a” (subclass-of) relationship. To aid in achieving this, conceptual 

clustering techniques often make use of a hierarchical structure. As each of the 

descriptions, or concepts, are formed they are placed in the tree. Within this structure 

the broader concepts are located towards the root, with more specific concepts nested 

within those higher parent concepts, as children. Figure 5 is an illustration of a 

concept hierarchy showing the possible clusters that could be discovered from a 

fictitious dataset about motorised vehicles. The Car and Truck concepts are each a 

child of the broader concepts of Road Vehicle and obviously the root, Vehicle. 

 

Vehicle 

Flying Vehicle Road Vehicle Boat 

Helicopter Plane Car Truck 
 

Figure 5. A illustration of a concept hierarchy motor vehicles 

A significant amount of the work in conceptual clustering has been undertaken by AI 

researchers together with researchers from the cognitive psychology field (Gluck and 

Corter 1985; Medin, Wattenmaker et al. 1987). There has been a great deal of work 

done on the way humans learn, both in supervised and unsupervised environments, 

and so there is a natural relationship between the two fields. In psychology, 

clustering is referred to as “sorting”. Observations by psychologists have found that 

human sorting techniques differ greatly from the data clustering methods already 

outlined in this chapter. Instead of sorting based upon the differences between a 

range of attributes, humans use only a few. This results in a few attributes deciding 

the class of an instance and the remainder being largely ignored (Medin, 

Wattenmaker et al. 1987). It is these simple, and yet strangely effective, properties 

that conceptual clustering aims to model. A classic example of extracting a simple 

concept is shown in Figure 6 (Michalski 1980). 
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Figure 6. Clustering in Concepts, not pairwise distance (Michalski 1980). 

 In a data clustering paradigm the cluster membership of points A and B would be 

decided based upon their pairwise distance. However, when a human views the 

scenario they immediately see the concepts of a circle and a square. These two 

shapes could be one inside the other, or overlapping, and yet a human will simply see 

the shapes, and not be overly concerned about their colour, size or other attributes. 

This is an example of a simple concept description that still effectively joins multiple 

instances together as a single entity. 

Conceptual clustering is therefore able to undertake two different modes of learning: 

clustering and characterisation. In clustering, the goal is to produce groups of 

instances which are similar, while characterisation aims to determine useful concepts 

among the objects present, that are associated by meaning; essentially a process of 

concept formation. 

In the area of concept discovery there are both supervised and unsupervised methods. 

Some of the models produced have been the result of a direct collaboration between 

cognitive psychologists and AI researchers, as discussed above. Among the many 

models produced there are two main types of conceptual clustering methods: 

Conjunctive and Probabilistic. 

2.4.1 CONJUNCTIVE CONCEPTUAL CLUSTERING 
Conjunctive methods aim to produce a simple logic expression to serve as the cluster 

description that fits a collection of objects. This conjunctive statement is similar to 

those produced within decision trees; however, the goals and methods for producing 

these are dissimilar and they have markedly different computational complexity 

(Fisher 1987). It can be noted that ID3 (Quinlan 1986) itself also had links to the 

psychology field, having being developed from the Concept Learning System  

A B 
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(CLS) system proposed by Hunt, Marin and Stone (1966). 

The foundational work done in the conceptual clustering area by Michalski and 

Stepp (1981) made use of a conjunctive method called PAF3. This method was the 

first to join together the two subtasks of clustering and characterisation in a fully 

automated fashion. This is achieved by the way in which the concept descriptions are 

made, and the way they are represented. The main components of PAF are the 

representation scheme, representation and allocation functions, and evaluation 

criterion. A discussion of each of these components and the algorithm description 

follows. 

2.4.1.1 THE REPRESENTATION SCHEME 
The purpose of the Representation Scheme is to characterise the objects that are 

within a cluster. Within PAF there are two representation schemes: a preliminary 

scheme based upon the seed of the cluster; and a conjunctive statement that describes 

the objects within the cluster. This conjunctive statement, referred to as a logic 

complex (called VL1), is an expression derived from the earlier work by Michalski 

(1974) in the variable value logic system. 

Within a dataset of n objects each object has a set of variables x1, x2, .., xn. Each of 

the variables has a domain, d(xi), which details the range of possible values for that 

variable. The number of those values is given as di. If the domain of a variable states 

that it is numerical, it also details the range of valid numbers. Likewise, a nominal 

variable also details a list of valid values. For example a domain depicting colour 

would be represented in this way: d(xi) = {blue, red, green, orange}. Using this 

representation of a variable, xi, and its related domain information, a conjunctive 

statement can be formed. The statement, or complex, is comprised of one or more 

logic units called a selector. A selector can be represented as  

[ # ]i ix R
 

where xi is the variable of interest, Ri is a reference to one or more values from 

within the variables domain and # represents a relational operator. For example,  

                                                

3 Polish-American-French 



Chapter 2 - Clustering Techniques 

- 21 - 

1) Select K initial seeds. They can be randomly chosen or based upon 
some criterion. 

2) For each seed determine the star of m complexes that are maximally 
general, but do not cover any of the other seeds. If the number of 
complexes generated exceeds m then an evaluation criterion (LEF 
discussed on page 23) selects the best ones to remain. 

3) For each star remove all unnecessary values from each complex. i.e 
those such that when removed the complex still covers the same 
observed objects4. 

4) From each star a single complex is selected such that the resulting 
set of complexes cover the entire data range and are mutually 
disjoint.  

5) The clustering is evaluated using LEF across all n objects. On the 
first iteration the clustering is stored, every iteration after that the 
clustering is only stored if it is superior. The algorithm terminates 
after a specified number of iterations occur without improvement. 

6) From each complex a new seed is selected and the algorithm iterates 
again from step 2. 

Table 5. PAF Algorithm 

the selector [colour = blue, red] is satisfied whenever colour has the value blue or 

red. Likewise [width  < 20] is satisfied whenever the value of width is less than 20. 

Individually the selectors are quite simple, but when joined across all of xn a 

conjunctive statement can illustrate concepts quite effectively. 

[colour = blue, red] [width < 20] [weight = 2 .. 10] [length ! long] 

Within the complex the selectors are merged together with an implicit “and” between 

them. The above complex describes a concept that is either blue or red, with a size 

less than 20, weight that is between 2 and 10 and with a length that is not long.  

2.4.1.2 THE REPRESENTATION FUNCTION 
The representation function (Steps 1-3, 6) determines a set of K disjoint complexes, 

referred to as !1, !2, .. !K, for a set of K seeds, e1, e2, .. eK from the complete data set 

of E. 

                                                

4 Michalski and Stepp refer to the objects as “events” within their work. The term “objects” has been 
used here for consistency with the other algorithm descriptions earlier in the chapter. 
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1. Complex !i covers seed ei and none of the other seeds, 

2. The union of all !K covers all of the dataset to be clustered E, 

3. All of !1, !2, .. !K, maximise the evaluation criterion. 

The complexes are generated using the calculation of what is termed a star. A star is 

a set of complexes that cover a single seed to the exclusion of all the other seeds. The 

star function is represented as 

( )| ,iG e F m
 

 where G is the set of complexes, ei is the seed, F is the set of all other ek seeds 

discounting ei, and m is a integer threshold. The star is a set of no more than m 

complexes, sorted based upon the evaluation criterion. If the number of complexes in 

G exceeds m then the worst-rated complexes based upon the evaluation criterion are 

removed. Once the star has been created the highest rated complex is chosen as the 

complex to represent the seed. 

This function is a major component of the algorithm, and is itself rather 

computationally expensive. Initially the seed selection is done randomly from within 

E. However, after that, there are two seed selection methods used. Initially central 

objects that fit the maximum number of properties within !i are chosen. However, 

when cluster improvement does not occur, border objects that match only a minimum 

number of properties in a complex are selected. This occurs until the algorithm 

terminates, which takes place after a specified number of iterations occur with no 

improvement. 

2.4.1.3 THE ALLOCATION FUNCTION 
The allocation function (Step 4) is far simpler than its representation counterpart. 

Where the latter creates the complexes, !1, !2, .. !K, the allocation function uses these 

complexes to form the clustering CK = { c1, c2, .. cK}. Where ci contains all observed 

instances from E that fit !i. 
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2.4.1.4 THE EVALUATION CRITERION 
The evaluation criterion specifies, and aims to guarantee, certain qualities within the 

clusters and thus within the concepts produced. It is used throughout PAF in most 

steps, but most notably in steps 2 and 5. The method, as implemented by Michalski 

and Stepp (1980, 1981), allows the user to maximise one or more of the following 

four measures: fitness between data and clusters, inter-cluster differences, essential 

dimensionality and simplicity of representations. 

• The fitness between the clusters and the data is a measure of the sparseness of 

the clusters with the minimum sparseness as the preferred fitness. 

• The inter-cluster difference is measured by the sum of degrees of 

disjointedness between every pair of complexes in the clustering. This 

measure is a count of the number of selectors within the complexes (after 

selectors which intersect have been removed). Maximising this criterion 

promotes long descriptions covering non-intersecting variable values. 

• The essential dimensionality is defined as the numbers of variables which 

independently divide the set of complexes. i.e they are present in complexes, 

but contain different values in each selector. Such differences are enough to 

differentiate between multiple clusters. 

• The simplicity of cluster representations describes a count of the number of 

sectors that are within all complexes. 

The above criteria are combined together to form a single measure called the 

Lexicographical Evaluation Functional with tolerances (LEF) (Michalski 1980). The 

LEF is represented as follows: 

( ) ( ) ( )1 1 2 2, , , .. ,i ic c c! ! !  

 where ci is one of the four criterion (as already described) and "i is the tolerance 

threshold (0 to 100%). All clusters are first evaluated on c1, and those that score 

higher than "1 are retained, and then evaluated on each of the other criteria in turn. 

At each evaluation, those clusters that meet the threshold value are retained. This 

process continues until there is only a single cluster remaining (i.e the best one) or 
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there are no more criteria remaining. In this later case all remaining clusters are of 

acceptable quality and can be chosen. The final choice for the resultant cluster can be 

made based upon the ordering of the remaining clusters using quality measures. 

2.4.2 PROBABILISTIC CONCEPTUAL CLUSTERING 
The ground work for the area of conceptual clustering was largely carried out by 

Michaski and Stepp (1980, 1981). Other researchers have since developed a number 

of conceptual clustering methods that are probabilistic in design, and not 

conjunctional. The probabilistic method developed by Hanson and Bauer (1989), 

WITT, will be discussed here, and COBWEB and two other methods will be 

discussed in chapter four. In total four probabilistic methods are discussed in this 

thesis.  

Hanson and Bauer (1989) suggest that there are four disadvantages to using concept 

description based on logic statements.  

The first problem with using logic statement methods is that membership to a 

concept, or category, is strictly based upon meeting the given conditions. In other 

words, a value is either necessary (equality or inequality) or sufficient (within a 

given range). Hanson and Bauer argue that this creates an “Aristotelian” view of 

categories, meaning that they are characterised solely by their shared properties and 

not by their actual likeness, thus possibly failing to reflect their true similarity. 

Within human categorisation objects may be considered related without specific 

values being necessary or sufficient; this has been referred to as the concept of 

polymorphy (Wittgenstein 1953). 

Secondly, concepts that are illustrated through logic expressions have firm 

boundaries and do not contain a gradient or level of membership. However, 

categories contain members some of which are more tightly fitted to a representation 

than others. As such some objects are more suited to membership of a particular 

category than others. However, the less suited object is still a member of the 

category. 

A third problem is that a key feature of a concept is the interrelationship between the 

features within the contained objects. Logical-statement-based methods, while 

ignoring the relationships between features, can be overly focused on the 
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commonality of features belonging to each object within the concept. The cohesion 

within a concept, that is the interrelation between features, can provide for 

structuring within a concept. 

Finally, the absoluteness of a logical expression used to express a concept does not 

cater for comparisons between categories, or relative properties. Within human 

categorisation, categories arise from direct comparison with other objects and 

categories within context. As such, each category is defined relative to the others by 

comparison. 

All four of these points expressed by (Hanson and Bauer 1989) represent a common 

thread: logic expressions are not sufficiently flexible to express categories. Logic 

expressions, by definition, are finite rules, and they provide a model which does not 

completely express categorisation from the human perspective. It is this ability that 

probabilistic concept formation aims to provide. 

2.4.2.1 WITT 
WITT5 (Hanson and Bauer 1989) is a conceptual clustering system which builds 

upon the work done by Michalski and Stepp. The method is similar to PAF in that it 

generates a concept description for disjoint clusters, created utilising the attribute-

value pairs of a group of instances. However, the focus of WITT’s concept creation 

and clustering is that of the interrelatedness of features and not just the attribute 

value pairs on their own. As such the concepts are represented as co-occurrences 

between features across attribute-value pairs. WITT realises these co-occurrences 

through the use of contingency tables. A given contingency table for a group of 

instances represents the attributes within these instances in a matrix. The matrix 

counts the number of times that different attributes with certain values appear in 

conjunction with each other. WITT, unlike PAF, is probabilistic in nature and utilises 

these contingency tables to calculate how likely certain features are to be found 

together based upon how many times different attribute-value pairs have occurred 

together, in unison. WITT measures the inter-instance correlation using a metric 

called cohesion. It acts in a similar way to a distance measure in a data clustering 

                                                

5 Hanson and Bauer don’t appear to describe what WITT stands for or is named after, although it’s 
possible it is named after the philosopher Wittgenstein who is discussed in their work.  
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technique, but is used to illustrate conceptual likeness and is far more 

computationally complex. It is a measure of the distance in terms of relations 

between features, calculated from the contingency tables. The following section 

details how this cohesion metric is calculated. 

2.4.2.2 COHESION 
Hanson and Bauer (1989) defined cohesion, Cc, of a concept c as: 

c
c

c
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where Wc is the within-concept cohesion of the concept c, and Oc is the average 

cohesiveness between c and all other concepts. Categories, or concepts, are not 

usually formed in isolation from outside input or comparison to existing concepts. 

Concepts are formed utilising both knowledge within the cluster, and outside of it. A 

person will form a concept in their mind that an eagle and a hawk are both birds, 

while at the same time acknowledging that they are not fish. The concept is formed 

by maximising the closeness within the concept of birds, while also minimising the 

similarity across categories. 

The within-concept cohesion, Wc, is a measure the average variance across the co-

occurrence of attribute-pairs within c. It is defined as:  
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 where fuv is the frequency with which value u of attribute i and value v of attribute j 

co-occur. Each contingency table is a matrix comprised of n and m values, while u 

and v refer to the number of times that attribute i and j each occurred. As such Dij 

involves summing all u x and v values over the whole contingency table. Using this 

equation, if there was perfect co-occurrence within a given table, having the 

attributes always occurring together, Dij would equal 1.0. If, instead, co-occurrence 

occurred equally across all combinations then the resultant Dij would be zero. All 

other combinations fall between these two extremes, serving as a metric of 

distribution of co-occurrence within the table. Wc can be calculated using the value of 

Dij for each contingency table within concept c,. The summed values of each Dij 

within c are divided by a function of N to produce the variance within the c, thus 

demonstrating its cohesion. 

The second component required to calculate the cohesion within a concept, Cc, is Oc 

which is defined as: 

1

1

K
cki k

c

B
O

K
! ==
"

#
 

 where K is the total number of concepts, and Bck is the measure of relative cohesion 

between the concepts c and k. Bck is defined as: 
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 where Wc is the measure of within-concept cohesion of c, Wk is the measure of 

within-concept cohesion of k, and c kW !  is the measure of cohesion within a union of 

the two concepts c and k. Oc is thus the sum of cohesion measures between c and all 

other L concepts, and then divided by L-1 to calculate the average cohesion across of 

the whole set of concepts. 

2.4.2.3 THE WITT ALGORITHM 
The WITT algorithm is largely controlled by the cohesion metric and, given a set of 

N instances, the algorithm could consider all possible clusters. However, as N 
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increased so would the number of resultant concepts. The algorithm is bound by two 

thresholds to create “good” concepts, while operating as efficiently as possible.  The 

first phase of the algorithm won’t be discussed at length here, but is discussed in 

(Hanson and Bauer 1989). Basically the initial phase of the algorithm creates some 

starting clusters, utilising a simple distance metric and a strict threshold (T1) to verify 

quality. This phase is largely a data clustering technique, and is referred to as the pre-

clustering algorithm. However, once completed, the cohesion measure is then utilised 

to create a concept hierarchy. Again, this phase utilises thresholds (T2 and T3) to 

ensure quality. The algorithm continues to iterate as long as the cohesion factor 

between the two most similar clusters is greater than T3 enabling these clusters to be 

merged. Once these prospective merges score less than the threshold, the complete 

clustering has been achieved. This phase is detailed in Table 6: 

1) Compute the cohesion score C for all unclustered instances and 
existing concepts. 

2) Select the highest instance-cluster pair with score S 
3) If S is greater than T2 then add the instance to the cluster and go back 

to Step 1 
4) If not, then use the pre-clustering algorithm again to generate more 

initial clusters. 
1) For each new cluster c, if i cW ! is less than T3 for all k then 

add c. 
2) If any new clusters are added then go to Step 1. 

 

5) Else calculate the within-cluster cohesion factor c jW !  for all clusters 

and select the pair with the highest score. If the score is higher than 
T3 then merge clusters and go to Step 1, else stop. 

Table 6. The WITT Algorithm 

2.5 SUMMARY 
This chapter has given a brief overview of the topic of clustering, focusing on the 

two main forms: data clustering and conceptual clustering. Within data clustering 

partitional and hierarchical methods were explained. Conceptual clustering was then 

explored, highlighting both conceptual and probabilistic methods with in-depth 

explanations of the PAF and WITT algorithms. 



Chapter 2 - Clustering Techniques 

- 29 - 

This research examined several conceptual clustering methods, with special attention 

paid to methods that handle change over time. The next chapter will examine several 

more conceptual clustering techniques which aim to adapt to change over time. 
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"We cannot adopt the way of living that was satisfactory a 
hundred years ago. The world in which we live has changed, and 
we must change with it." 
 

Felix Adler (August 13, 1851 – April 24, 1933) 
The Religion of Duty,1906 
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INTRODUCTION 
Multiple clustering techniques were examined in the previous chapter and discussing 

them provided the basic concepts of clustering techniques. This chapter will discuss 

some further clustering techniques but will then focus on a specific problem within 

the field; that of learning over time. As the last chapter was a clustering overview, 

this chapter aims to be an overview of machine learning over time, with special 

attention paid to clustering methods. Within this area, one of the main topics that will 

be discussed is that of Concept Drift. 

3.1 TIME SERIES ANALYSIS 
Data that has been recorded within a time series is one of the more popular types of 

data that data mining research has examined over the years. This is, in part, a result 

of the sheer number of domains which are data rich and operate in a sequential or 

time-based environment. Intrusion detection and meteorology are classic examples of 

areas that operate in time-based contexts. Other domains include health science, sales 

and customer data, web and email filtering, engineering and economics (Fuller 

1996). 

With such a broad range of data sources it is unsurprising that this has been an active 

area of research. Within the field there is a clear division into two categories: time 

series clustering and online learning. The area that is of particular interest in this 

research is online learning. Online learning operates on a non-fixed-size dataset, 

clustering data as it is generated from a source, in an “always on” fashion. In contrast 

time series data mining methods operate on a given fixed-size dataset. 

3.2 TIME SERIES CLUSTERING 
Time series clustering techniques are similar to traditional clustering techniques in 

that they aim to cluster a dataset of size n into partitions based upon some form of 

similarity measure. Unlike traditional clustering however, the points are not attribute 

pairs but values within a time series. The methods that have been developed can be 

loosely grouped into two categories: whole sequence and subsequence clustering 

(Lin, Keogh et al. 2003). Both types of technique aim to cluster multiple time series 

in relation to each other and are briefly explained here. 
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Whole sequence clustering compares multiple different time sequences with one 

another. It is similar to conventional clustering methods examining discrete objects, 

but instead of an object being comprised of a range of attributes it comprises values 

within a given time series. This method is used with datasets that contain multiple 

sets of short time series, such as a patient’s heartbeat measured over a minute. 

 Subsequence clustering features only a single time series. However, this one time 

series is split up into multiple sequential time series that are then clustered. 

Clustering these sequential time series reveals differences or similarities within 

different time windows in a single time series. Whereas whole sequence clustering is 

used to compare shorter time series, subsequence clustering is useful for analysing 

much larger single time sequences. For example subsequence clustering may be used 

to analyse a year of weather data at one location, whereas whole clustering might 

analyse several days across multiple years. 

These two basic techniques are at the core of most time series clustering methods. 

Both, when used in a hierarchical system, produce dendrograms similar to Figure 7. 

The systems are predominantly implemented using methods that are derivations of 

those discussed in the Chapter 1. In a survey paper of time series methods Liao 

(2005) describes the popularity of k-Means variants and agglomerative hierarchical 

methods within this area. The methods used are obviously modified to suit the 

application area; but they are strongly grounded within general clustering theory, and 

as such they will not be discussed in any more depth here. 

 
Figure 7. Dendrogram of the “reality check” dataset (Wang, Smith et al. 
2006) 
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3.3 ONLINE LEARNING 
Online learning methods operate in a persistent fashion incorporating data on the fly 

as it is generated or received. They are intended for datasets which are dynamic in 

nature and can be of unknown size. The core feature of these methods is that the 

datasets are present within the context of time. The time series methods discussed in 

the previous section cluster the different series as the objects of interest, comparing 

one series to another. Online methods however, aim to compare objects within the 

context of time, based upon a series of attributes associated with each object. They 

operate in a way similar to the fixed size data mining algorithms discussed in the 

previous chapter.  

Most data mining techniques operate independently of the ordering of the dataset. It 

is common for a dataset to be randomised and analysed multiple times with different 

random orderings of the data. This is usually undertaken to prevent the order of the 

data adversely affecting the resulting data structure. For example when a hierarchical 

tree is being constructed several of the early braches within the tree are created as a 

result of the similarity or dissimilarity between the first few presented instances. If 

these instances are skewed in some way, compared to the remainder of the dataset, 

then the data structure created may have some bias within it. Such a scenario can 

usually be avoided through undertaking multiple runs and utilising randomisation of 

the ordering of the instances between runs. However with online learning techniques 

the ordering is part of the underlying context in which the instances occur, and is 

relevant to the data mining being undertaken upon the dataset. For example if the 

dataset is related to the stock prices within a given market over the course of a week, 

the order of the instances, and thus the order of the price fluctuations, within the 

dataset is of great importance. If the dataset is randomised then a great deal of 

information would be removed, and the knowledge that could be extracted is 

minimal. 

Further, online learning methods aim to utilise this context of time to detect what is 

termed as “concept drift”. Concept drift is the process of a class definition changing 

over time. In online learning systems, where knowledge acquisition and 

classification is occurring continually, being able to detect and respond, or merely 

adjust, to changes within the data is crucial to the accuracy of the system. For 
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example it is common for supermarket chains to monitor customer shopping habits 

based on loyalty card usage. The goods that customers buy vary greatly, but across 

the population of a town or city there are trends that can be extracted that respond to 

external variables that have a time relationship such as to pay days, inflation, 

holidays or natural disasters. All of these processes affect what goods customers are 

likely to buy, but would largely act as a hidden context within the dataset. An online 

learning system aims to learn or adjust to such events or processes. Traditional 

methods which randomise the dataset would miss this knowledge or treat it as noise 

within the dataset. 

Online learning methods aim not only to discover concept drift, but also to adjust 

with it to ensure that the current model is optimal. Concept drift occurs in two main 

forms: sudden and gradual (Stanley 2003). Within the customer shopping example a 

natural disaster would cause a sudden drift within the purchase profiles of a group of 

people. However, steep increasing inflation over the course of a year may slowly 

adversely affect the number or types of items the group of customers purchase and 

this is gradual concept drift. Spam email message filtering is a knowledge domain 

that has been the subject of a great deal of research over the last decade. The notion 

of what a spam email message is has not changed during all of the years of research. 

It still remains simply an email which is unwanted, and usually unsolicited. However 

over that time the content of spam messages has changed to avoid being filtered by 

various detection systems. Even beyond the content itself, the origins and the 

methods of sending the spam have also changed. For this reason online learning 

methods have been used in spam filtering research (Wang, Guan et al. 2006). A form 

of a spam message is the “email worm” which propagates through infected users’ 

address books. Outbreaks of this nature have gained attention, within the mainstream 

media, when virtually overnight, email systems have been overwhelmed with spam 

messages containing the virus. Unlike most spam filtering which adapts slowly, with 

time these incidents require rapid reaction by filtering systems. 

In the above two scenarios (customer tracking and email filtering) both forms of 

concept drift is apparent. If a data mining engine being employed in either case, did 

not respond to the changes that were occurring within the data, the classifications 

made would be incorrect. As such, methods that are used to detect concept drift need 

to incorporate knowledge quickly in an effort to react as quickly as possible with the 
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most accurate response possible. Therefore most online learning algorithms are 

incremental learners as opposed to batch learners. 

3.3.1 INCREMENTAL VS BATCH LEARNING 
At a fundamental level, any data mining method is a process of examining a set of 

data items, and generalising the data into a model. Incremental methods differ from 

batch methods in the way the model is updated when each instance within the dataset 

is examined. Whereas batch methods require the entire dataset to be present before 

the model can be created, model creation by incremental methods occurs as each 

portion of the data set is examined. 

Several of the clustering techniques discussed in Chapter 2 require all of the data 

series to be present at the start of the clustering process. These are batch learners: k-

means clustering, agglomerative hierarchical clustering and PAF clustering are all of 

this type. By having the entire dataset present the data can produce a model that is an 

accurate representation of the whole dataset. Further, it can be run multiple times to 

confirm the model produced. However, when the data is arriving in a stream, and all 

is not present at the beginning of the learning process, then an alternate method is 

required. Klinkenberg (2004) discusses the implementation of online algorithms 

using a batch technique. While it is online as far as data arrives over time and it is 

incorporated, it does, however, arrive in batches that are examined as they arrive and 

then integrated into the model. However, this is the exception, and even Klinkenberg 

suggested methods for converting to an incremental technique. Within incremental 

approaches, only a single data item is required at a time, with the model being built 

up with each added instance. The model that is produced is fluid and adapts to the 

data as it arrives, being incorporated into the model in an optimal way, via the 

merging and splitting of various concepts as they are formed, or by the reinforcement 

of the existing concepts.  

Within the clustering field incremental approaches are well suited to hierarchical 

methods, and particularly those that are divisive in design. However, there are 

incremental versions of many different techniques. Partitional approaches also have 

incremental models, and indeed Pham and Dimov et al (2004) describes an 

incremental k-Means method. The original publication of the WITT technique 

(Hanson and Bauer 1989) included an incremental version which only involved a 
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few minor adjustments to the basic WITT algorithm. Incremental methods are 

present within non-online learning contexts, and are often treated in the same way as 

batch methods, being run multiple times on non-fixed order problems. Incremental 

methods can suffer bias from poor ordering of data in the same way that a batch 

method can. The randomisation of the dataset across multiple runs, can avoid this 

bias, if there is no context to be taken into account. 

3.3.1.1 DATA DRIFT 
Another consideration when examining batch methods which may operate on a data 

set that has a time element is the issue of Data Drift (Quionero-Candela, Sugiyama et 

al. 2009). Data Drift is fundamentally a similar problem to that of concept drift, in 

that it involves the change of objects or the characteristics that define their resulting 

concepts, over time, and the process of adjusting to this change. However, the time 

that is being examined in data drift is the time gap between collecting the training set 

and the testing sets, whereas in online learning there is no gap between training and 

testing. The newly observed data is incorporated into the model by the learner and 

concept drift is then witnessed to take place. However, with data drift, the classes or 

objects have changed between the training phase and the learning phase. Thus the 

learner is built on data that does not represent the concepts currently in the observed 

stream. Data Drift has been an active area of research in recent years and Quionero-

Candela, Sugiyama et al (2009) have collected a range of approaches countering six 

different forms of Data Drift. 

3.4 ONLINE LEARNING METHODS 
Online learning methods examine data that arrives continually, as it is created or 

observed in the real world. However, as this can occur over significant periods of 

time, quite large data sets can be examined. To limit the computation time when 

analysing a large dataset not all of the data is stored within the algorithm at any one 

time. A key component of the work that has been done relating to these techniques 

has been the development of methods to choose which data to retain within the 

system, and which to remove or ‘forget’. Of the various methods that have been 

produced there are three main paradigms used to counter this problem while at the 

same time achieving the primary goal of adapting to concept drift. These are instance 

selection, instance weighting and ensemble learning (Tsymbal 2004). Each of these 
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three is an intermediary step between the flow of data into the system, and the 

evaluation criterion within the algorithm that is being used to extract knowledge 

from the data. Two online learning systems that are examples of these methods will 

be examined for the remainder of this chapter: STAGGER and FLORA. STAGGER 

is an example of an ensemble learner using concepts with weights and FLORA uses 

instance selection (along with some weighting of concept descriptions, similar to 

instance weighting). An example of instance weighting is the use of Support Vector 

Machines (SVM) by (Klinkenberg 2004) where instances have a weight based on 

their age. 

3.5 STAGGER 
STAGGER6 is a supervised learner created by Schlimmer and Granger (1986) and 

was one of the pioneering data mining techniques designed to react to concept drift. 

STAGGER was not only designed to adjust to concept drift, but to do so within 

environments where there was noise present. Real world datasets, generally, contain 

noise. Being able to examine datasets in a fashion that caters for this noise, while 

also allowing for concept drift to take place and to be accounted for, is of great use in 

dealing with such datasets. 

1. Initialisation: Create starting concepts within the graph based upon 
single attribute value pairs, each with starting weights. 

2. Projection: Matches a concept description to a new instance being 
examined. 

3. Evaluation: Determines how a concept is functioning and adjusts 
weights accordingly. 

4. Refinement: Creates or removes concept descriptions to improve the 
fitness of the method. 

Table 7. The Four main components of STAGGER 

STAGGER is a probabilistic data mining approach that utilises a weighted node 

clustering graph. STAGGER, being a supervised method, requires that each instance 

that is read into the system has a class identifier attached to it. This knowledge of the 

class of a given instance is used to adjust the weights of Boolean concepts as the 

                                                

6 STAGGER doesn’t appear to stand for anything, but is possibly a reference to the stepped nature of 
the graph that is produced when plotting its performance over time. 
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algorithm functions. The method of creating, searching and adding of concepts 

within the graph are founded within Bayesian statistics. Schlimmer and Granger 

outlined that the STAGGER learning process as being comprised of seven 

components, four of which are within the algorithm itself and detailed below in 

Table 7. Each of these will be discussed in full. 

3.5.1 INITIALISATION 
STAGGER operates using a graph comprised of nodes, each containing a concept 

description in the form of a Boolean statement. When the graph is created, before 

any instances are examined, the initialisation step creates a set of nodes to populate 

the graph. Each of these nodes contains a simple Boolean statement about a single 

attribute and a value. For example, using an attribute describing size, with the 

possible values small, medium and large, each of these would be a starting concept at 

a node. As such, when the algorithm starts, all the nodes are very simplistic, but as it 

progresses through the other steps more concepts are added with multiple attribute 

pairs within the concepts, increasing the complexity of the Boolean statements. 

When the initial nodes are created each has a pair of weights assigned to it. These 

weights influence the predictions during the projection stage of the algorithm. Each 

of the weights for each node initially is set to 1. This then gives each a starting value 

with no bias to any particular class or node. The two weights function as a predictive 

measure of an element, one weight is for cases that match and the other for 

unmatched cases. For example if the attribute is size and the value small one weight 

would measure how predictive of the class of the node this has been in the past, 

based upon the instances it has seen with this attribute. While the other weight stores 

how predictive it is if the attribute value pair does not match this node in respect to 

the class. These simple characterisation elements are combined by later stages to 

expand the graph by the creation of maximally general or maximally Boolean 

complexes through the use of conjunctive or disjunctive operators. 

3.5.2 PROJECTION  
Projection is the component within STAGGER that aims to match an instance to a 

concept description. The comparison between the instance and the concept 

description is completed on an element by element basis. For each element within the 

characterisation that appears in the instance the weights are reinforced to build 
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knowledge within the system. If the instance is of the positive class then the matched 

weight is incremented; if the class is that of negative then the unmatched class is 

similarly incremented. The weights represent the expectation that a given element is 

likely to be a member within the resultant class. These weights are used to compute a 

collected expectation of whether a given instance is of a class. 

The collected expectation is calculated utilising Bayesian formulae derived from the 

work completed by Duba, Gasching and Hart (1979) in mineral exploration. The 

formula represented below multiplies together the odds of a positive instance from 

those previously seen and two measures called: Logical Sufficiency (LS) and Logical 

Necessity (LN). The resulting value is that of the expectation of instance x being of 

the positive class. 

( | ) ( )
matched unmatched

Expectation x Odds LS LN
! !

+ = + " "# #  

LS and LN are both calculated for sets of elements within the instance that are either 

matched or unmatched by the characterisation. The product of each of these sets of 

values is then utilised to produce the expectation. LS and LN are briefly described 

here, but a full derivation is in the appendix to Schlimmer and Granger (1986). LS is 

estimates the likelihood of an outcome (O) for the feature (F). The value of LS 

ranges from zero to infinity. Values of 1 indicate independence, while values less 

than 1 indicate a negative correlation between the feature and the class. All other 

values above one are evidence for positive correlation. 

( | )
( | )
p F OLS
p F O

=
¬  

LN is very similar to LS except that it examines what effect the absence of a feature 

has on the likelihood of the positive class appearing. Values greater than 1 mean that 

there is negative correlation, values less than 1 mean that there is a positive 

correlation, and values of one are irrelevant to the expected outcome. 

( | )
( | )
p F OLN
p F O

¬
=

¬ ¬  
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Together, LN and LS, within the cumulative expectation equation, show the odds in 

favour of the class of the given instance being positive according to this concept 

description. The value produced is again very similar to the two produced from the 

individual LS and LN parts, in that if the value is less than 1 then it’s unlikely to be 

the case. Values of 1 illustrate uncertainty in prediction. STAGGER completes this 

process for all existing concepts in an attempt to match the instance x to as many 

nodes as possible in order to discover the highest expectation, while also 

incrementing the weights of the other nodes appropriately, to increase knowledge 

within the system. 

3.5.3 EVALUATION 
Within STAGGER the concept descriptions that are present are fluid, with new 

descriptions being created and ineffective ones being removed. The weights upon the 

characterisations are modified with each instance examined by the system, depending 

upon predictiveness of the concept description on each instance. The effectiveness of 

a given characterisation is calculated using the Evaluation method utilising these 

weights. The evaluation method is based upon research conducted in the field of 

psychology examining rats(much like the basis of COBWEB discussed in Chapter 

4), and the way they react to viewing novel stimulus and unpleasant stimulus, and the 

variations between the two (Rescorla 1968). Similar to the weights being adjusted 

within STAGGER, the research by Rescorla tallied the rat’s expectation of an 

unpleasant stimulus in the presence or absence of a novel stimulus. Across multiple 

scenarios the rat learned to associate the unpleasant stimulus (US) in the presence of 

a novel stimulus (NS) while the following was true: ( | ) ( | )p US NS p US NS> ¬ . This 

is what is referred to as contingency within classical conditioning and has been 

reinforced in related techniques with other animals (Gamzu and Williams 1971) and 

humans (Wasserman, Chatlosh et al. 1983). Across these various subject types, 

contingency learning theory states that if there is positive and negative evidence 

present for a class then the learning is impaired. It is this impairment that data mining 

systems aim to overcome. 

This research in conditioning was used by Schlimmer and Granger in the context of 

data mining to present Table 8 as a representation of the weights used in STAGGER. 

Comparisons between a characterisation and an instance can be seen to have one of 
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two outcomes: positive or negative. Using the terminology from the work of Bruner, 

Goodnow and Austin (1956) these two options in turn represent two options to the 

weight in question: confirming or infirming. A positive match confirms the positive 

predictiveness (CP) of a characterisation, while that same instance compared to a 

negative characterisation confirms (IP). The reverse is true in the case of a negative 

instance. 

Instance 
Characterisation 
Matched Unmatched 

Positive Confirming (CP) Infirming (IP) 

Negative Infirming (IN) Confirming (CN) 

Table 8. Listing of the characterisation weights 

By keeping tallies of the situation configurations illustrated within Table 8 it is 

possible to calculate the values for LS and LN simply. The Bayesian formula to 

calculate the two measures based upon these counts is: 

( )
( )

P N N

N P P

C I CLS
I C I

+
=

+  

( )
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C C I
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=
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Full derivations of these are found in the appendix of Schlimmer and Granger (1986) 

along with the logical variant discussed earlier under projection. The values that are 

returned from the evaluation process are used within the refinement method by being 

compared to threshold values set within the system. 

3.5.4 REFINEMENT 
The process of refinement aims to increase the effectiveness of the learned concepts 

as measured by the evaluation method. There are four basic outcomes of the 

refinement method: pruning, generalisation, specialisation or inversion. The latter 

three are expressed within Boolean logic as OR, AND and NOT. When STAGGER 

commences learning, after the initialisation stage, there are only single element 

characterisations (the middle of Figure 8). It is through the process of refinement that  
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Figure 8. Graph of characterisations produced by STAGGER spanning 
from maximally specific to the maximally general (Schlimmer and Granger 
1986). 

the rest of the characterisations are grown, based upon the learning and evaluation 

that occurs in the previous two stages. Figure 8 shows a section of a graph created by 

STAGGER. 

The selection within the refinement method as to whether a change in the graph 

needs to be made is based upon whether an error has been made during the projection 

process. If an error has occurred then a new characterisation is formed. The type of 

characterisation that is added depends upon the error, and whether or not it was a 

case of the existing characterisations being too general or too specific (which may 

depend on the threshold value in the system that then results in a prune). If the error 

is one of omission, a false negative, then a generalising characterisation is created. If 

it is an error of commission, a false positive, then a specialisation characterisation is 

created. In both situations a negation characterisation is also considered. The 

elements that are chosen to form the new characterisation are also decided based 

upon the error that has occurred. Related existing characterisations are drawn upon 

when deciding which elements to include. Scores from the evaluation method are 

utilised in conjunction with threshold values (to assure quality) to choose the optimal 

characterisation to be added to the system. 



Chapter 3 - Knowledge Acquisition Over Time 

- 43 - 

3.5.5 THE STAGGER ALGORITHM 
STAGGER has been described above in the various components. Table 9 illustrates 

the way in which each of these different components function together as a whole 

from an algorithmic viewpoint. The initial characterisations are formed, and these are 

then built upon as more instances are observed. The method, in a supervised fashion, 

reinforces the weights. The evaluation method then corrects the graph when an 

instance is placed incorrectly. The optimal characterisations from the refinement are 

then chosen using the threshold values. This process of stepping through the 

components of the method, adjusting the graph based upon the correctness of the 

placement, continues as each new instance is observed. The method builds a graph, 

improving as is observes more instances. But if concept drift occurs, the method 

adjusts the graph that is produced. 

1. Generate initial characterisations, initialising weights 
2. Compare instance to all of the existent nodes within the graph. 

If positive classification results then reinforce knowledge through 
weights and move on to the next instance. 
If negative classification results then reinforce weights and go to 3. 

3. Evaluate nodes within the graph. 
If error is an error of commission then propose a conjunction and a 
negation.  
If it was an error of omission then propose a disjunction and a 
negation. 
Consider a prune.  

4. Choose the optimal solution that is above the defined thresholds. 
5. Move on to the next instance at 2 until the end of the dataset. 

Table 9. The STAGGER algorithm. 

3.5.6 STAGGER CONCEPTS DATASET 
Schlimmer and Granger were pioneers in the area of concept drift, and along with the 

contribution of the STAGGER learner, they also contributed a dataset. The 

STAGGER concepts dataset is an elegant dataset that contains two sudden drifts, 

forming a dataset with three distinct goal concepts to be learnt. It has been used by 

other authors and will be examined later in this thesis. The dataset of 90 instances 

contains 3 attributes and a class label as shown in Table 10. The 3 attributes are all 

nominal in type with 3 possible alternate values; while the class is a simple Boolean. 
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# Name Values 

1 Size Small, Medium or Large 

2 Colour Red, Blue or Green 

3 Shape Square, Circular or Triangular 

4 Result True or False 

Table 10. Attribute listing of the STAGGER concepts dataset. 

The dataset commences with the positive resulting class defined as size == small 

and colour == red before the sudden drift after 30 instances into colour == green or 

shape == circular. At which point all of the positive instances that have been 

observed to date are now incorrect. So any future observations are going to be 

classified incorrectly, and require a method to adapt and relearn across more 

observations. This is the effect desired for a dataset that is designed to model sudden 

drift. A second sudden drift after another 30 instances into a third resulting concept 

defined as size == medium or large. Again requiring the method to adjust to the 

sudden drift over the final 30 instances. 

 
Figure 9. The learning response of STAGGER to concept drift within the 
STAGGER Concepts dataset (Schlimmer and Granger 1986). 
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Within Figure 9 the performance of STAGGER upon the concepts dataset is shown. 

All three concepts were learnt by STAGGER, nearing 100% predictive accuracy by 

the end of each concept within the dataset. As can be seen at 30 and 60 instances 

within the dataset, when the sudden drift occurs, the learner then struggled to predict 

the correct class, falling below 50% predictive accuracy each time. This is expected 

as the concept that was learnt by STAGGER is now incorrect and the new class 

descriptions need to be learnt. 

3.6 FLORA 
STAGGER (Schlimmer and Granger 1986) and other conceptual clustering methods 

were developed in the 1980’s. In the mid-1990s two other conceptual clustering 

algorithms that attempt to deal with concept drift were introduced. These were 

FLORA (Kubat and Pavlickova 1991; Widmer and Kubat 1996) and COBBIT 

(Kilander and Jansson 1993). These two methods both operate in a time sensitive 

environment using a time window of instances upon which to base the learner’s 

knowledge. FLORA will be described here, but COBBIT will be examined in the 

Chapter 4. 

The FLORA learning method was described by Widmer and Kubat (1996) and is a 

conceptual online learning system. FLORA is similar to STAGGER in that it also 

aims to compensate for concept drift, and to improve the model produced by 

supervising the adaption to the drift that is taking place within the data. FLORA aims 

to produce a hypothesis that is a set of concepts that describe a problem space. The 

idea that is central to FLORA and COBBIT’s ability to adapt to concept drift is that 

of having the learner function on a subset of the observed instances, comprising only 

those that have been recently observed. To do this they use a sliding window of the 

total observed instances within a dataset to work with, as shown within Figure 10. 

The motivation for the window based approach is outlined by Midmer and Kubat 

(1996) stating “only the latest examples are relevant and should be kept in the 

window, and that only the description items consistent with the examples in the 

window are retained”. As only the most recent observations are retained, any past 

variations within the dataset are forgotten, therefore, allowing for concept to drift 

over the course of a dataset. 
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Figure 10. The window examining a stream of instances, utilising only the 
instances within the window to form the current hypothesis (Widmer and Kubat 
1996). 

FLORA uses this window in conjunction with three sets of concept descriptions. The 

first set is termed the ADES (accepted descriptors) and includes those descriptions 

that match positive examples within the window. In addition to a second set, called 

the NDES (Negative descriptors) includes those descriptors that summarise the 

negative examples in the window. The final set is the PDES (potential descriptors) 

which includes those descriptions that are too general for the present examples in the 

window. Descriptors migrate between these three sets (or are totally removed) based 

on the how well they describe the instances currently within the window. This 

mogration process is partly guided using a measure of fitness that is tied to each of 

the descriptors within these sets as shown in Table 11. Each descriptor in each set 

has a counter that tracks how many of the current instancess within the window 

match this descriptor. Within the PDES set, a counter is recorded for how many 

instances match it and are positive and how many match it and are negative, while 

the ADES and NDES sets only maintain a single count each. If a counter is at 0 then 

no instances match it, and it can be removed. If it has a high number then it matches 

many instances within the current window. 

ADES = {ADes1 | AP1, ADes2 | AP2 , ..}                  // Accepted Descriptors 
PDES = {PDes1 | PP1 | PN1, PDes2 | PP1 | PN1,  ..}  // Potential Descriptors 
NDES = {NDes1 | NN1, NDes2 | NN2 , ..}                // Negative Descriptors 

Table 11. Descriptor sets and the counters associated with each set 

(instances) (instances) 
window 

Store of 
descriptions 

Current 
Description 

(Hypothesis) 
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A portion of FLORA learning method is outlined within Table 12. The Learn 

function, as shown in Table 12, shows how an observed instance is matched to an 

existing descriptor within the ADES set. If this is done the AP is incremented. If this 

match does not occur then generalising an existing descriptor from within ADES, 

NDES and PDES is tried. If a descriptor can be generalised, while not excluding any 

existing matched instances in the window, then it is adopted. If a descriptor cannot 

be found then a new descriptor is formed and added to ADES. Matched descriptors 

in the PDES set are then incremented, and any conflicting descriptors within NDES 

are promoted to ADES. Other functions, such as generalise and forget, are not 

examined here, but are covered by Widmer and Kubat (1996). However we will 

focus on their various extensions to this approach and the problems they examined 

within the concept drift domain for each of the extentions. This examination of Learn 

does however highlight how FLORA examines each instance one at a time, 

comparing it to the three sets of descriptors in turn, forming knowledge about the 

domain. The forget method operates in a similar fashion to the Learn function, 

examining which descriptors in each set are relevant to the instance being forgotten. 

However, instead of incrementing the counter on the descriptors, they are 

decremented. If a descriptor is found to have a count of 0, meaning that none of the 

instances in the window match the descriptor any longer, it is removed from the set. 

Learn(I) // Instance I which has just been observed. 
Let ADES, NDES and PDES be the three sets of descriptors. 
Let M be a Boolean with the default false meaning the Instance hasn’t been matched. 
For each Jth descriptor D in the set ADES 

If I matches D 
M becomes true 
Increment APJ 

If M is false 
Let G be a the result of attempting to generalising a descriptor in ADES, NDES 

or PDES 
If M is false and G is NULL 

Create a new descriptor for I in ADES with a AP of 1 
For each Kth descriptor D in the set PDES 

If I matches D 
Increment PPK 

For each Lth descriptor D in the set NDES 
If I matches D 

Delete D from NDES 
Add D to ADES 

Table 12. The Learn function within FLORA 



 
 

- 48 - 
 

In addition to the original version of FLORA (Kubat and Pavlickova 1991) three 

additional versions were also produced to deal with three relevant problems within 

the domain: dynamic window size, recurring contexts and noise. These three 

methods were simply termed FLORA2, FLORA3 and FLORA4 (Widmer and Kubat 

1996) and each will be briefly described here. After this the performance of these 

methods on the STAGGER concepts dataset is shown in Figure 12. 

3.6.1 FLORA 2 
An obvious difficulty with a concept drift method that operates using a window 

method is knowing how big the window should be. If there is sudden drift, such as 

that within the STAGGER concept dataset, then a small window enables this sudden 

drift to be adapted to quickly, as the old data is constantly being removed. However, 

if the window is small, then perhaps the concepts to be learned are not fully 

described by the learner. Widmer and Kubat (1996) argue that a solution to this is to 

have a window that is dynamic in size, and as such handles both portions of this 

problem, being big enough to describe the dataset when the concepts are stable, 

while also being able to shrink if the dataset has experienced a significant degree of 

drift and causing some of the older observed instances in the window to reduce the 

predictive accuracy. 

The approach to creating a dynamically sized window in FLORA2 uses three 

threshold values: lc, hc and p. The first two, lc and hc, are for measuring coverage of 

the ADES over the domain. The third, p, is a threshold of acceptable predictiveness. 

These two coverage thresholds are based on a ratio of the total number of 

descriptions to the number of instances within the window. This measures the 

complexity of the descriptions that are contained within the hypothesis. If the ratio is 

above hc and the current accuracy is above p then the set in ADES is stable, but 

possibly over-complex. So the window is then shrunk slightly. Alternately if the ratio 

is below lc, or p, then drift is expected and the window is shrunk by 20% in an effort 

to accommodate the drift. If the ratio is below hc then the system slowly grows the 

window. With these various changes to the state of the window, it is possible to 

shrink the window when drift is apparent, or grow it again after the drift has occurred 

to fully describe a domain. As an example of threshold values used, Widmer and 

Kubat  (1996) stated that on the STAGGER concepts dataset values of p=70%, 
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lc=1.4 and hc=4.0 were used. In the context of the sudden drift within the dataset, it 

is easy to see that a p below 70% is easily attained when the sudden drift occurs 

(Figure 12). 

3.6.2 FLORA3 
When examining data that changes over time it is logical to conclude that a concept 

definition, or indeed set of concept definitions, may reappear later in the dataset. 

Widmer and Kubat (Widmer and Kubat 1996), realising this, chose to add a memory 

of past stable hypotheses into FLORA3, the idea being that if the concept drifted 

back to a concept that had already been witnessed then when it reappeared, instead of 

the letting the descriptions slowly revert to the earlier version, it would be more 

efficient to adopt the earlier version as it had been previously learned.  

This process within FLORA3 is comprised of 3 main steps. Firstly, once a stable 

concept is learnt then it is stored away by the learner. Then if drift is suggested, 

through FLORA2’s detection methods, then past stored hypotheses are trialled in 

comparison to the current hypotheses. This is completed by comparing the stored 

hypotheses to the instances within the current window and scoring each of the 

hypotheses based on the ratio of correct to incorrect descriptions of the instances in 

the current window. If a past hypothesis is shown to outscore the existing hypothesis 

then it is adopted as the new current hypothesis.  

 
Figure 11. FLORA3 (solid) compared to FLORA2 (dashed) at relearning the 
same three STAGGER Concepts three times (Widmer and Kubat 1996). 
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The hypothesis is then generalised to the instances that are presently within the 

window, which may still include some members of the old concept learned prior to 

the drift in STAGGER. This is why in Figure 11 the predictive accuracy is still rather 

low directly after a sudden drift. However, as can be seen in Figure 11, FLORA3 

does perform better than FLORA2 and FLORA3 on first encountering the new 

concepts. 

3.6.3 FLORA 4 
Noise is change that is not true change but variance within the data and it can appear 

similar to concept drift in a dataset. Noise can come from various sources, whether it 

is natural variation, or inconsistencies in the way that the data within a domain is 

measured over time. The key point about noise in relation to drift, is that it is a false 

change that should not be adapted to. If a concept drift method mistakes noise for 

drift then it may take actions to adapt to a drift that is not actually present, reducing 

the effectiveness of the learner. Therefore, if a method is tolerant to noise, it is better 

equipped to handle actual drift occurring within noisy environments. 

Within FLORA each descriptor had a counter, stored along with it, that measures its 

utility within the current window. In FLORA4 this is replaced with a confidence 

measure detailing how well the given measure predicts in the current window. If a 

confidence measure falls below a set threshold level (set as 80% within the 

STAGGER Concepts trial in Figure 12) then it is removed. The main change that this 

introduces, is to allow ADES and NDES to have descriptors that in some cases cover 

positive and negative values. This results in a learner that is more tolerant of specific 

incorrect descriptors, when they are of greater value across the remainder of the 

instances in the window. PDES now stores those descriptors which have too low a 

confidence level to be contained within ADES and NDES. 

Figure 12 illustrates how FLORA2, FLORA3 and FLORA4 perform upon the 

STAGGER Concepts dataset. The dataset is slightly larger than the version used to 

illustrate STAGGER’s (Schlimmer and Granger 1986) performance above in Figure 

9. This version contains 120 instances in total, with each concept lasting 40 

instances. FLORA4 finishes each concept with the highest accuracy, but it also takes 

the longest to adjust to each concept after the drift has taken place. Both FLORA2 

and FLORA3 perform very similarly until FLORA3 learns a few past stable 
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hypotheses which it can then use to replace the existing current hypothesis. At this 

point it tends to branch away from FLORA2 as the slightly different learning method 

produces enough variation in behaviour between the two to be notable. 

 
Figure 12. The learning response to concept drift of FLORA upon the 
STAGGER Concepts dataset (Widmer and Kubat 1996). 

3.7 SUMMARY 
This chapter has examined the problem of data that changes over time. The main 

focus was on concept drift, where the definition of the target classes within a dataset 

change over time. Several related fields to this were briefly touched on before two 

concept drift methods were examined. Both of the learners that were examined, 

STAGGER and FLORA, were supervised conceptual machine learning methods. In 

addition to these two learners, the STAGGER Concepts dataset was also introduced, 

with some results on both of these methods shown. Chapter 6 will describe how the 

DynamicWEB method presented within this thesis performs when testes on this 

dataset. 

Concept drift is of primary importance to this research because it is this phenomenon 

that the research is attempting to account for in a machine learning context. 

However, while both methods discussed in this chapter are foundational to the field, 

they are both supervised approaches, making them unsuitable for meeting the aims 

outlined in the introduction. Furthermore, they are not designed with multiple 

observations of the target objects in mind. However, they have provided valuable 

insight into how to handle concept drift.    



 

 
 

 

 

 

 

 

 

4 COBWEB 
2 

“And it ought to be remembered that there is nothing more 
difficult to take in hand, more perilous to conduct, or more 
uncertain in its success, than to take the lead in the introduction 
of a new order of things.  ... [This stems partly from] fear of the 
opponents, who have the laws on their side, and partly from the 
incredulity of men, who do not readily believe in new things until 
they have had a long experience of them.” 
 

Niccolò Machiavelli (3 May 1469 – 21 June 1527) 
The Prince, 1532 
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INTRODUCTION 
The preceding chapters have described various clustering methods progressing from 

simple k-Means through to conceptual clustering and finally concept drift algorithms. 

This thesis presents a new unsupervised learner that is able to operate in the presence 

of concept drift and is built upon an existing conceptual clustering algorithm. This 

chapter describes the existing algorithm known as COBWEB. It is this method that 

has been modified to produce the technique that is presented within this thesis. 

4.1 INTRODUCTION TO COBWEB 
The COBWEB algorithm was published by Fisher in (1987). It was completed 

during an active period in conceptual clustering research during which many 

different techniques were presented. Along with the methods already discussed in 

this thesis, the other techniques drawn upon by Fisher were: CYRUS (Kolodner 

1983), EPAM (Feigenbaum and Simon 1984) and UNIMEM (Lebowitz 1986). 

UNIMEM will be briefly examined here as it is the method most similar to 

COBWEB. After this, COBWEB will be examined, followed by a review of work in 

which it has been extended by other authors to further its capabilities. 

4.2 UNIMEM 
UNIMEM, created by Lebowitz (1986; 1987), (Lebowitz 1986; Lebowitz 1987) is a 

hierarchical conceptual clustering method which is very similar to the methods 

presented in Chapter 2. Lebowitz named UNIMEM for the phrase: UNIversal 

MEMory model, with the aim of creating a system that would be applicable across a 

wide range of domains. It was trialled on nine different datasets, and this showed that 

this goal was realised. UNIMEM is built upon the Generalisation-Based Memory 

framework, which also relates to its naming; however, it is the concept formation 

portion which is of relevance for the work described in this thesis. Lebowitz outlined 

four key features that characterise UNIMEM: 

• Learning is achieved by observation in an unsupervised manner; 

• Knowledge is learnt incrementally allowing for the model to be accessed 

before the entire dataset has been examined; 
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• It handles large numbers of examples; 

• The generalisations are pragmatic and do not need to exactly cover all 

instances within the given group. 

UNIMEM aims to learn by observing instances and grouping similar instances 

together, building up a model representing the natural groups present in the dataset. 

This is not a supervised process, but is completed by the algorithm, basing its 

decisions purely upon the characteristics of the given instances. As it is implemented 

within a hierarchical structure, the model is able to represent the groups in such a 

way that the most general are towards the root, with increasing specificity towards 

the leaves.  

UNIMEM is an incremental method which takes a single instance at a time and 

searches for the best place, or places, to fit it in the existing concept hierarchy. 

Within UNIMEM (and also CYRUS, but not COBWEB) instances are able to be 

stored in more than one location, allowing for overlap. Once a location has been 

found for the instance, the concept hierarchy is updated and the next item is 

examined. 

The clusters formed within UNIMEM are based upon the presence of observed 

features within a group of instances. For each of these groups a class description is 

created that depicts the instances that are resident within the node, based upon the 

attribute-value pairs (referred to as features) which are common to those instances. 

These descriptions are located within all nodes in the structure, both at leaf and 

intermediary nodes. Each attribute-value pair also carries a numerical value 

conveying the predictiveness of the feature. This predictiveness score is adjusted 

upon the observation of features within instances, and is used in conjunction with 

several knowledge threshold parameters set when the tree is created. Table 13 details 

the main portion of the UNIMEM algorithm. Table 14 presents two methods, called 

Generalise and Evaluate, which the algorithm uses. 

When a new instance, I, with its set of features, F, is presented to UNIMEM it is 

examined at the root node. Subsequent examinations then occur of the children of the 

root recursively until all ideal locations are found. Upon examination, the features 

which match the current node, N, are placed into the set H; those features that do not  
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UNIMEM(N, I, F) // Current Node, Current Instance, Unassigned Feature Set of I 
Let S be an empty list of nodes 
Let K be the features in F that donʼt match the features at N 
Let H be the features in F that match with features at N 
If N is not the root node 

Evaluate(N, H, K), if it returns true then return the empty list S 
For each child, C, of node N 

If C is indexed by a feature in K 
S becomes the union of S and UNIMEM(C, I, K) 

If S is still an empty list  
For each instance, J, of Node N 

S becomes the union of S and Generalise(N, J, I, F) 
If S is still an empty list store I in node N with features K 

For each feature, J, in H set of features  
Increment the predictiveness score R of J by 1. 
If R crosses threshold 

Remove J as an index to N 
Return N 

Table 13. The UNIMEM Algorithm 

match are placed in K. If the current node is not the root then the Evaluate function 

(Table 14a) is called using the current node and the sets of matched and unmatched 

features.  

The Evaluate function adjusts the predictiveness score of non-permanent features 

upon the current node. These are features that have not yet made it to the class 

description of the node. For each feature, J, which is found within H to be shared 

with the feature set at N, the predictiveness score R is incremented. Likewise, if 

feature J is not found within K, the predictiveness score is decremented. After both 

of these are examined, upper and lower thresholds are checked for the retention or 

promotion of the feature. If the feature is removed, another threshold is examined in 

order to determine the minimum number of features at the node. If there are too few 

then the whole node is removed, and the function returns TRUE back to the 

UNIMEM algorithm. In all other cases FALSE is returned. 
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If the result from the Evaluate function was TRUE then UNIMEM returns an empty 

list as the current node has been removed, and the parent is the final location for the  

Evaluate(N, H, K) // Current Node, Matched Features, Unmatched Features 
For each non-permanent feature, J, in H 

Increment predictiveness score R for J on N 
If R is crosses threshold make J a permanent feature of N 

For each non-permanent feature, J, in K 
Decrement the predictiveness score R for J in N 
If R is low enough then remove J from N 

If N has too few Features remove N from the list of children in parent node 
Remove all indices to N 
Return TRUE 

Return FALSE 
 

Generalise(N, J, I, F) // Current Node, Instance at Node, Current Instance, 
Unassigned Features 
Let H be the features that match in the instances J and I 
If H contains enough features 

Create a new child C of node N 
Index and describe C by the features H 
For each feature K serving as an index to C 

Increment the predictiveness score R of K by 1 
If R crosses threshold 

Remove K as an index to C 
Remove J as an instance of N 
Store J and I as instances of C 

Table 14. The Evaluate (a) and Generalise (b) functions used by the 
UNIMEM algorithm. 

instance. When the value returned is FALSE, UNIMEM then proceeds by calling 

itself recursively upon child nodes which match with features within K. This is how 

the UNIMEM tree is searched to locate positions where the instance, I, can be 

placed. Locations that are found are then stored within the list S. If, after the 

examination of the children, the list S is empty then the Generalise (Table 14b) 

function is called upon for each instance J at N. The Generalise function compares 

the current instance to all the instances stored at the present node. If the current 
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instance and the Jth instance in the node share enough similarities then a new child 

node is created, growing the tree. The predictiveness scores for the features within 

the new node are incremented. 

If the set S still remains empty then the current instance is stored within the current 

node. Each feature at the node which matches the current instance has its 

predictiveness scores incremented. If any of the predictiveness scores cross the 

knowledge threshold then the feature is removed from the class description.  

In this way the hierarchy is grown, instance by instance, integrating new knowledge 

as it is observed. UNIMEM can examine datasets comprised of both numeric and 

nominal valued attributes. The match or non-match based method described above 

obviously can function well with nominal data, but when it comes to numeric data, 

where two values are almost identical in comparison to the remainder of the dataset, 

this poses a problem for a strict Boolean feature decision. To overcome this, 

UNIMEM allows the quality measure to produce values between 0 and 1 (where 0 is 

a total mismatch and 1 is a perfect match). Then, when comparing a set of features, 

UNIMEM uses another threshold parameter to determine the maximum distance 

allowed between two features in order for them to be considered the same. In 

addition to this, Lebowitz (1986) described a method used to calculate effective gaps 

within numerical data to serve as partitions. This improves UNIMEM’s ability to 

consider two numerical values to be the same feature value. 

UNIMEM creates useful concept hierarchies through the observation of shared 

features between instances. The process of knowledge acquisition is largely 

controlled by the use of multiple parameters that govern predictiveness thresholds 

and the minimum and maximum number of shared features required in order to 

create or delete a node within the hierarchy. 

4.3 COBWEB: THE METHOD 
COBWEB (Fisher 1987), similar to UNIMEM, aims to discover natural groups 

within datasets by establishing the presence of relationships between the different 

instances. It also learns incrementally as an unsupervised learner. COBWEB’s 

structure is hierarchical, similarly to that of UNIMEM. The COBWEB tree is grown 

instance by instance, often re-structuring sections of the tree as more data is added. 
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Each instance is only stored at a single location within the tree, and unlike 

UNIMEM, there are no parameters with which to tune the knowledge acquisition. 

The key component of the COBWEB algorithm is the measure of similarity which is 

used to establish relationships between instances. Both the addition function and the 

mechanism used to search for instances within the tree, employ a heuristic measure 

called the category utility. Category utility was described by Gluck and Corter (1985)  

(and also in Corter and Gluck (1992)) as a method for the creation of basic categories 

in a similar manner to those created by the human brain. Basic level categorisation, 

as drawn upon by Gluck and Corter, was described by Mervis and Rosch (1981). A 

basic level category is defined as one which is preferred to a more generalised or 

specific category during object recognition. For example, “a dog” in preference to 

other categories’ labels such as “animal” (more general) or “Labrador” (more 

specific). Gluck and Corter, using the category utility, were able to produce the same 

categories as those produced in human psychological testing. Fisher’s goal in using 

the category utility within COBWEB was to produce categories which are not only 

predictive, but also are easily human readable. 

Category utility is a measure of similarity between instances, and therefore acts as a 

measure of the quality of a given cluster. The category utility is represented by the 

result of a calculation which takes account of each attribute in an instance, 

comparing it to the attribute values of the other instances within a category, and 

returning the utility as a measure of how much information they all have in common. 

This research does not modify the category utility; therefore the one presented here 

as used in COBWEB is also the same as that used within the new algorithm known 

as DynamicWEB. The calculation of the category utility will now be explained 

further, before moving on to a discussion of the COBWEB algorithm. 

4.3.1 CATEGORY UTILITY  
The category utility measure can be most easily understood as a type of distance 

measure. The output from the calculation determines whether or not an instance is 

enough ‘a-like’ the other instances within (MacQueen 1967) a cluster to be made a 

member of that category itself. It is much more complex than the simple k-Means 

measure described in Chapter 2, but it serves a similar function. For a closer 

comparison within conceptual clustering the most similar measure that has been 
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examined in this thesis so far is the cohesion measure within WITT (Hanson and 

Bauer 1989) (described in Chapter 2). 

The category utility calculation takes account of each attribute in an instance, 

comparing it to the attributes of the instances already within a given cluster, and 

returning the utility as a measure of how much information they all have in common. 

The function aims to maximise the similarity between objects of the same class, 

while also maximising the dissimilarity between it and those in instances in other 

classes. Within the same class, the probability that class members share a particular 

attribute value is ( | )i ij kP A V C=  where i ijA V=  is the attribute value pair and kC  is 

the class. The greater this value, the more frequently class members share the given 

attribute-value pair. Similarly, the greater the value of ( | )k i ijP C A V=  the less 

common this value is in other classes and the more predictive it is of this class 

membership. These two probability measures for individual attributes can then be 

combined to produce a measure of overall cluster quality trading off the two values: 

( ) ( ) ( )| |i ij k i ij i ij k
k i j

P A V P C A V P A V C= = =!!!  (1) 

where k varies over classes, i over attributes and j over values. The products of the 

two probabilities are summed across all classes, attributes and values weighted by a 

third probability measure ( )i ijP A V= . This weighs the importance of individual 

values, resulting in greater worth being given to those that appear many times than to 

those that are rare. This can then be transformed using Bayes’ rule to be shown as: 

( )2( ) |k i ij k
k i j
P C P A V C=! !!  (2) 

The expected number of attribute values that will be guessed correctly (knowing the 

class) is 
2( | )i ij k

i j
P A V C=!!  assuming that the guessing strategy is probability 

modelling (Gluck and Corter 1985). In probability modelling each attribute value is 

guessed with a probability equal to the probability of it occurring. 
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Gluck and Corter (1985) define the category utility as the increase in the expected 

number of attribute values that can be correctly guessed given a set of K categories 

compared to the expected correct number of guesses achieved with no knowledge. 

The first component is equation 2, and the no-knowledge component is 
2( )i ij

i j
P A V=!! . The difference between the two measures is then divided by the 

number of categories, K. This process calculates the average increase and allows 

comparisons to be made between different sized categories. 

( ) ( ) ( )
0 0 0 02 2

1
|

K

k i ij k i ij
k i j i j
P C P A V C P A V

K
=

= ! =" "" ""
 (3) 

COBWEB(N, I) // Current Node, Current Instance 
If N is a leaf 

return leaf as final location 
Else 

Calculate the category utility X for creating a new leaf Q 
For each Child, C, of node N 

Calculate category utility for placing I in C 
Let P be the node C with the highest category utility W 
Let R be the second highest category utility 
Calculate  the category utility Y for merging P and R 
Calculate the category utility Z for splitting P 
If W is the highest score 

Place I in P with COBWEB(P, I) 
Else If X is the highest score 

COBWEB(Q, I) 
Else If Y is the highest score 

Let M be the result of Merge(P, R, N) 
COBWEB(M, I) 

Else If Z is the highest score 
Elevate the children on P with Split(P, N) 
COBWEB(N, I) 

Table 15. The COBWEB Algorithm 
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The category utility measure shown here is the version used by Fisher (1987), which 

is a slight simplification of that described by Gluck and Corter. Further, this version 

was designed with nominal values in mind; a numerical version will be discussed in 

Section 4.4. The COBWEB algorithm depends upon the category utility, and, as this 

has now been described, the algorithm itself will be discussed. 

4.3.2 THE COBWEB ALGORITHM 
COBWEB is an incremental conceptual clustering method built upon the category 

utility described in Section 4.3.1. Knowledge is grown one instance at a time as 

concepts are formed based upon the discovery of natural groups within the dataset. In 

COBWEB the concept descriptions are not a conjunctive statement such as in 

CLUSTER or UNIMEM. Instead concepts are represented by a probabilistic 

representation. This differs from the attribute-value counting that occurred within 

UNIMEM. 

When a new instance, I, is added to COBWEB, its resulting location is found by 

searching through the current tree (Table 15), and trialling four different options at 

each potential location. At each node the best option is chosen based upon the 

highest category utility, and so the search through the tree is greedy, rapidly ignoring 

the branches which did not ‘win’ comparisons.  

The first of these possible solutions is to simply create a new leaf category Q. This is 

always the case with the first item added to the tree, but in subsequent instances it 

evaluates whether or not another class should be created as a child of the node. Once 

the leaf has been created, its category utility, X, is calculated for comparison with the 

other possible solutions. 

 The second option tested, is the incorporation of the instance into an existing child 

class of the current node. Initially this is at the root, but COBWEB then recursively 

traverses down the tree to find the ideal category. During this process, at each node 

the two most suitable children (P and R) for the current instance are tracked. The 

most suitable child, P, has the score W. 

The third and fourth options are inverse operations of each other: merge and split. It 

is these two operations that optimise the tree for greater knowledge retention. The 
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Outlook Overcast (0.60), Sunny (0.20), Rainy (0.20) 
Windy True (0.60), False (0.40) 

Table 16. Probabilistic Concept Descriptions for the two nominal attributes 
within the Weather Dataset 

merge function considers merging the two children of the current node with the 

highest category utility as calculated during the incorporation stage. Conversely, the 

split function considers removing the best child and elevating its children to being 

children of the current node. After both of these computationally complex options 

have been completed, the category utility of the possible resulting placements of I is 

calculated. 

Once each trial is completed the resulting category utilities are compared (W, X, Y 

and Z) and the most favourable option is then adopted. As each instance is observed 

by COBWEB this process occurs, building the tree with each item placed in the 

categories that are most similar to it. 

 
Figure 13. A COBWEB hierarchy that has been created from 5 instances of 
the Dynamic Weather dataset (Appendix A). 
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Figure 13 details a COBWEB tree that has been created from the first five instances 

of the Dynamic Weather dataset (Appendix A) which is discussed in Chapter 6. This 

figure illustrates probabilities generated by each of the nodes for the two nominal 

attributes within the dataset: Outlook and Windy. Outlook has three possible values: 

Sunny, Overcast and Rainy; while Windy is a Boolean attribute. The probability 

listed is calculated from two integer scores stored at each node. One is the count of 

the instances which are present at that node, while the other is a count of occurrences 

of an attribute value at that node. If all instances at that node possess a certain 

attribute value pair then the probability is 1.0; if half possess the value the probability 

is 0.5. It is these values that are input into the category utility calculations. 

4.4 CLASSIT: EXTENDING COBWEB 
A short time after COBWEB was described another method was published called 

CLASSIT (Gennari, Langley et al. 1989). CLASSIT has the ability to work with 

numerical values. CLASSIT is primarily the work of Gennari, but it is worth noting 

the co-authorship of the method by Fisher. CLASSIT is an extension to COBWEB 

with the core of the technique still remaining as it was in COBWEB. The 

modification required changes to be made to the evaluation method used to calculate 

the category utility, a minor change to the concept representation and the 

introduction of two system parameters. 

The ability to use numerical attributes is an obvious extension to be made to 

COBWEB, as real world problems are commonly described with such values. 

Gennari, when deciding how to get CLASSIT to function effectively on numerical 

data, did consider the way in which UNIMEM utilises the creation of artificial gaps 

within the continuous data. However, he chose to retain the actual values within the 

instances, but to introduce the use of the average and standard deviation into the 

concept description at the node level, where numerical values were already involved. 

Another addition to CLASSIT is that of a system parameter called cutoff. This is 

used as a threshold to judge whether further progression down the tree is required, or 

whether the current location is specific enough for accurate categorisation and 

classification. The cutoff is a knowledge threshold which has some similarity to other 

thresholds in methods such as UNIMEM. Within CLASSIT the cutoff value is 
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examined when making the final decision as to which option to take. If the option 

with the highest category utility does not pass the value of the cutoff, then the option 

is not undertaken, and the current node is the best location for the instance. The 

cutoff value in effect can control the height of the tree, and the tightness of the 

clusters that are represented within it. Such an addition is argued for by Quinlan 

(1986), in order to improve the performance of decision trees for classification by 

avoiding over fitting the structure to the data observed. This occurs as a result of the 

creation of an exhaustive structure tightly based upon all values in the dataset 

whereas a tree with decreased height may more adequately describe the domain in 

general. 

To enable CLASSIT to be able to examine numeric valued attributes, the main 

change that needed to occur was to the evaluation function. The category utility that 

is used for numeric attributes is different from that which is used for nominal 

attributes. The two terms used in 1.3 (repeated below) need to be generalised for real 

valued attributes:  

2( | )
values

i ij k
j
P A V C=!  and 

2( )
values

i ij
j
P A V=!  (4) 

These two terms both involve a sum of squares of the probabilities of all j values for 

the attribute i. The first term, as within 1.3, has knowledge of the class kC  while the 

second expression does not. This means that the difference between the two 

represents the increase in the number of correct guesses of the values present within 

the category k. However, as this is now within a continuous domain, the summation 

needs to be changed to integration. In doing so, an assumption needs to be made 

about the possible distribution of the values present. Gennari argues that the best 

assumption, considering the range of possible datasets that could be examined, is that 

it is a normal distribution. For the summation of the first item the distribution is that 

of the category, while for the second item it is of the parent, and in both cases the 

integral is: 

2
2

2

1 1 1
( ) exp

2 2

values

i ij
j

x
P A V dx

µ
! " ! ! "

#$ %= & =' (
) *

+ ,  (5) 
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where # is the mean and $ is the standard deviation. As this is only used for 

comparisons, the 1
2 !

 term can be dropped, allowing it to be revised down into the 

new category utility function: 

1 1( )
K I I

k
k i iik ip

P C

K
! !

"# # #
  (6) 

where I is the total number of attributes, K is the total number of classes in the 

partition, and ik!  is the standard deviation for an attribute i in class k, and ip! for the 

attribute i in the parent node p. This resulting function is similar to the category 

utility for nominal attributes within COBWEB. 

 A problem with this function is that when there is only a single instance within a 

class the standard deviation is zero. The result of 1/" then adversely affects the tree. 

To combat this, Gennari introduced a constant called acuity to give some value of 

difference between these largely empty nodes. The value is a minimum value for $. 

This introduction of a second system parameter does have the negative effect of 

artificially broadening the tree structure, especially in the early stages, at the leaves. 

The higher levels within the structure itself are not as affected by this, as many of the 

nodes contain more than a single instance in their branch. 

Figure 14 extends upon the categories which were illustrated within Figure 13, now 

showing the " and mean for the concept descriptions. As can be seen by the value of 

" at the leaves, the acuity results in the lowest " value being 1. The " and mean 

shown above are calculated using an incremental method using a sum of squares 

(Gennari, Langley et al. 1989). 

The CLASSIT extension has become almost synonymous with COBWEB itself in 

some of the literature. This is probably due to it being of such use within datasets that 

contain numerical values, but also due to it being, in part, the work of the original 

authors. It is in this way that they are connected and seen to be the same method.  
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Figure 14. A CLASSIT hierarchy that has been created from 5 instances of 
the Dynamic Weather  dataset. 
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Of the various extensions and modifications that researchers have made to COBWEB 

there is a clear divide into two groups according to the type of modifications made. 

The first is to modify the COBWEB method itself. An example of this can be seen in 

the work completed by (Sahoo, Callan et al. 2006) where CLASSIT’s numerical 

category utility was modified from being a normal distribution to being a Katz’s 

distribution. Katz-CLASSIT and CLASSIT were then compared on the analysis of 

textual documents with Katz-CLASSIT being the superior method. 

The second type of modification made to COBWEB involved the integration of 

COBWEB with existing techniques in order to produce an ensemble learner. These 

systems are created by researchers who want to leverage the strengths of COBWEB, 

but found components in COBWEB to be detrimental within their domain of interest. 

Instead of modifying the technique itself, as in Katz-CLASSIT mentioned above, or 

COBBIT described below, they have used it in conjunction with another method 

largely as it was designed. Li, Holmes and Pfahringer (2004) combined COBWEB 

with k-means to produce a method that can scale to large datasets yet uses a smaller 

memory footprint, while still possessing a knowledge hierarchy. Within this method 

instances are first observed and categorised within COBWEB, but once within a sub 

category, they are then clustered using k-means to produce a finer grained grouping. 

The knowledge hierarchy still persists for the over arching concepts, but the smaller 

k-means built clusters are built within these. 

In a similar fashion Jungsoon et al (1996) describes an example where COBWEB is 

used after another method has examined the instances. Jungsoon et al’s method is 

designed to develop a hierarchy of knowledge, but, to reduce the effects of the order 

dependency of COBWEB, the data is pre-processed using a Genetic Algorithm (GA). 

The hierarchical GA used by Jungsoon chose which of the initial instances to observe 

first. The initial instances have a major impact upon the shape of the COBWEB tree 

produced, and the GA was able to decide which were the most suitable instances to 

be examined first. Once this stage was completed COBWEB would then continue to 

integrate new knowledge as it arrived, and produced an improved tree compared with 

that produced without the use of the GA. 

These three methods illustrate how the COBWEB method has been an active area of 

research. These methods are not of great relevance to this thesis; however, two that 
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are will now be examined in more detail. The first of these, called ARACHNE, aims 

to improve COBWEB’s control mechanism. The second, called COBBIT, equips 

COBWEB with the ability to adapt to concept drift. 

4.5.1 ARACHNE 
Following on from the work that was completed in COBWEB and CLASSIT, one of 

the collaborators on those methods produced another work called ARACHNE 

(McKusick and Langley 1991) (Langley collaborated with both Fisher (Fisher and 

Langley 1985; Fisher and Langley 1990) and Gennari (Gennari, Langley et al. 1989) 

in publications in this area discussed previously).  

The goal of ARACHNE, as described in McKusick and Langley (1991) and Iba and 

Langley (2001), was to modify COBWEB’s learning mechanisms to better handle 

two of the respects in which it was shown to perform poorly: initial ordering bias and 

noisy datasets. The first of these was caused by its heavy order dependence. The 

hierarchy produced from COBWEB can reflect the ordering in which the observed 

instances were incorporated by the learner. If a poor ordering is presented, then the 

tree may produce a less than optimal structure, and does not correct itself particularly 

well. The second is that COBWEB, while performing well as a predictor, could at 

times produce clusters that are not as clearly identifiable as concepts as would be 

desired. McKusick and Langley argue that this is particularly apparent within 

datasets that contain a sizeable amount of noise. ARACHANE aims to modify the 

COBWEB mechanisms to allow the hierarchy to have better self-maintenance 

abilities to improve its performance in the presence of a bad initial ordering or 

significant amounts of noise. This is undertaken by adding additional restructuring 

mechanisms to the learner. Similar hierarchical re-organisational work has also been 

undertaken with other learning methods by Reich and Fenves (1991) and Nevins 

(1995) in finding misplaced clusters. 

The main addition to the control mechanism in ARACHNE involves two constraints 

that verify that nodes in the hierarchy are in the correct place. The constraints 

examine the correctness of the vertical and horizontal placement of nodes in the 

knowledge hierarchy. When a new instance is placed at a node in the hierarchy it 

modifies the probabilistic description of its parent node. The constraints then ensure 

that the neighbouring nodes are still in the correct location within the structure. Once 
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an instance is added, each of the sibling nodes of the parent concept are examined to 

see if they meet the vertical constraint. Each node is compared to both its parent and 

grandparent nodes to ensure that it is still more similar to its own parent than to its 

grandparent, even though another instance has been added to the concept. If a node is 

now more similar to its grandparent node than its parent node, it is lifted up in the 

hierarchy. As this again changes the concept description of the parent, each of its 

child nodes is then again compared to enforce the vertical constraint. This process 

has enables a misplaced node to be lifted up in the hierarchy, allowing it to find a 

more correct location.  

After the vertical constraint has been satisfied for all the child nodes of the concept in 

which the newly added instance resides, the second constraint is then examined. The 

second constraint examines the sibling nodes to ensure that they are horizontally well 

placed. Each of the nodes is compared to see if any two nodes are more alike to each 

other then they are to the parent node. If this is found to be the case, then they are 

merged to produce a new child node of the parent concept. In this way differentiation 

within an existing concept is encouraged, refining the cluster quality. 

Over the course of a dataset these corrective processes allow for misplaced nodes to 

be lifted up and then lowered (through merges) to produce a tree that is more resilient 

in the scenarios mentioned above. These mechanisms extend the COBWEB merge 

and split mechanisms by focusing on the sibling nodes that were not affected by the 

addition of the new instance. McKusick and Langley (McKusick and Langley 1991) 

found that ARACHNE performed quite similarly to COBWEB on two natural 

domains (Congressional voting and Soybean), with ARACHNE reaching 

convergence a little faster. However, they did find that in datasets that were noisy 

there was a more substantial difference between the two methods and that this did 

increase as the noise level increased. Further Iba and Langley (2001) showed that 

ARACHNE could recover from a poor ordering much more rapidly then COBWEB 

could, showing that ARACHNE could perform more effectively under the two target 

scenarios. 

4.5.2 COBBIT 
COBBIT by (Kilander and Jansson 1993) is a variation of COBWEB that allows it to 

adapt to concept drift. When Kilander and Jannsson approached the problem of 
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concept drift in the context of COBWEB they found three shortfalls within Fishers 

method. These are: 

1. COBWEB does not differentiate between old and new instances, meaning 

that if drift occurs then more of the “new” instances are required to shift the 

concept. 

2. COBWEB retains all observed examples which results in a scalability 

problem in large datasets. 

3. COBWEB is order dependent, meaning that the hierarchy created can change 

depending on the order of observation of a set of instances. 

When Kilander and Jannsson approached these three problems they decided that 

there needed to be a way of removing knowledge from the hierarchy once it was no 

longer needed, or once it was out of date. If change occurs within the domain over 

time, then the knowledge that predates this change should be removed. Further, a 

method of deciding when this should occur would be needed. They discussed utility 

and predictiveness measures and instead opted for the less computationally 

expensive method of having the method function within a time window of the whole 

dataset, but only examining a portion at any given moment. This approach is very 

similar to the one undertaken by the supervised learner FLORA (Widmer and Kubat 

1996) discussed in Chapter 3. 

The window used within COBBIT is a first in first out (FIFO) approach. A least-

recently used approach was contemplated, but the FIFO approach was adopted. 

Figure 15 illustrates the way a FIFO method operates on a stream of instances being 

observed by the system. Within COBBIT this is implemented using a list that was 

 
Figure 15. The Time Window used within COBBIT 
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separate to the COBWEB structure, but when an instance was removed from the list, 

a delete operator was called upon the COBWEB tree to subtract the knowledge 

pertaining to the instance. This was done recursively to update the knowledge, at 

each parent node, of the resulting category in which the instance was stored. Other 

than the simple subtraction of the instance from the tree, the COBWEB method was 

largely unchanged from that presented by Fisher. This was possible because the 

COBBIT control structure was separate from COBWEB, treating COBWEB purely 

as a component within COBBIT.  

Testing completed by Kilander and Jannsson showed that COBBIT easily out 

performed COBWEB, in terms of accuracy, on concept drift problems. It also used 

fewer computer resources and ran faster on large datasets. As COBWEB retains all 

of the data, by removing the older instances it means that new additions are less 

computationally complex, resulting in an increase in scalability. In Chapter 6 

COBBIT will be compared with DynamicWEB on standard concept drift data.  

4.6 SUMMARY 
This chapter has examined the COBWEB conceptual clustering algorithm in the 

context of the work prior to it, and then also other work that has built upon it. Most 

notable of these post-COBWEB developments is the extension CLASSIT enabling 

the learner to operate upon numeric data. Also briefly examined was the method 

ARACHNE that aims to counter some of the suggested shortfalls of COBWEB. Then 

finally the concept drift tracking method COBBIT was introduced. This will be used 

in the work described in Chapter 6. 

The next chapter will look at a new extension to COBWEB that aims to allow it to 

profile objects over multiple observations. This method will build upon the strengths 

of COBWEB while equipping it to operate within a different learning scenario to that 

for which it was originally designed.  
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INTRODUCTION 
The previous chapters have reviewed the different conceptual clustering and concept 

drift methods presented in the literature. In particular the COBWEB conceptual 

clustering algorithm was thoroughly examined. This chapter builds upon this 

knowledge by presenting a new method entitled DynamicWEB. DynamicWEB is a 

modification of COBWEB that enables it to operate upon target subjects that are re-

sampled many times. 

5.1 INTRODUCTION TO DYNAMICWEB 
DynamicWEB is an unsupervised conceptual clustering approach which aims to 

adjust to concept drift as well as drift of a target object from one resultant class to 

another, over time. This second form of drift, which is labelled Object Drift, is 

fundamentally different from the problem focussed on by previous work within the 

area of concept drift, although it is an obvious progression within machine learning. 

This chapter will first discuss this problem of object drift and the goals which need to 

be met to deal with this problem, before then detailing the algorithms used in 

DynamicWEB and the implementation of these. 

5.2  THE PROBLEM 
Concept drift, as already discussed within Chapter 3, is the process where a class 

definition changes over the course of time within a dataset. Methods which are able 

to handle concept drift adapt to this shift within the fundamental knowledge that 

describes a given resulting class. The concept model produced to these methods is 

updated as drift occurs. This facilitates a more robust classification technique well 

suited to time-related knowledge domains. Within the datasets examined by existing 

concept drift research, and indeed a large portion of data mining research, each 

object being examined is only described once (Figure 16). It is quite common for 

identifiers for the individual objects not to be present within the dataset as it is 

accepted that they are all separate entities. These datasets can be referred to as being 

latitudinal, having a singular observation of many different objects, each referred to 

as an instance. As there is only a single observation of each object, methods of 

adapting to concept drift use techniques such as time windows, or utility measures. 

As each object only appears once, these instances are all of equal worth initially, and  
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Figure 16.  In Concept Drift each object is only observed from one instance 
in the dataset. During the creation of the hierarchy the concept descriptions are 
able to adapt to variation between instances of the same class. (Arrow heads 
indicate the number of times an object has been sampled). 

so the quality (in terms of predictiveness) of a given instance can be determined via 

age or utility quite effectively. Figure 16 illustrates how a concept hierarchy is 

formed from single observations of objects. As each instance is integrated into the 

structure the concept descriptions are able to change and adapt to the information 

being received, to reflect the shared characteristics of the instances resident in each 

concept. 

The problem being examined in this thesis is related to concept drift. However, for 

this work, the drift is that of an object of interest moving from one resultant class to 

another upon the observation of more data. Within concept drift each object is 

usually only observed once within a dataset, and as such has a single instance 

relating to it within the dataset. However, there are learning problems where a given 

object is sampled multiple times, resulting in many instances within the dataset 

relating to an individual object. Across these observations it is likely for an object to 

change characteristics and possibly the classification. If these changes are simply 

recorded as another instance being examined, and the change is not linked back to  
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Figure 17. Object drift is the change of an object across multiple 
observations as recorded within instances in the dataset. Each object is able to 
be sampled more than once. 

the original observed instance, then the knowledge that could be gained from 

examining the change is lost. For example, if the objects being examined are cars 

which were all sold around the same time and then tracked together as a group over 

their various services that occurred during the years following, the linking of these 

various observations is of more use than if each observation has been treated as a 

separate instance. Figure 17 illustrates a data set being formed from differing 

numbers of observations of disparate objects. Each object is represented within the 

dataset by several instances from different observations. A concept hierarchy has 

been formed from the dataset, and the instance-profiles listed in the tree in bold are 

those which have drifted from one resultant concept group to another when 

compared with Figure 16. These instance-profiles are the combined result of multiple 

observations of a single object. 

5.3  LEARNING GOALS  
The previous section outlined a problem type called object drift which is related to, 

although not addressed by, concept drift. A method is presented in this chapter that is 
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able to learn in the presence of both concept and object drift. This method was 

designed with the following goals: 

1. To maintain a profile of an object built from multiple observations 

2. To establish relationships between profiles of multiple different objects 

3. To adapt to concept drift within the domain of the target objects 

4. To allow a profile to migrate from one resultant concept to another when new 

data relating to the object is observed 

5. To operate in a noise tolerant fashion 

6. To enable searching for a given profile to scale to large datasets 

These goals will now be expanded upon below: 

To be able to adapt to object drift, the item which is being examined by the algorithm 

needs to be associated with all the available relevant knowledge about the target 

object.  This knowledge is stored within a profile (1) and is updated as new 

knowledge is observed. This allows for drift to be adapted to the context of past 

states of the objects’ attributes. Depending on the domain in question and the 

individual attribute value pairs, this may result in the need for derived attributes to be 

used to detect any trends taking place that may affect classification. These derived 

attributes are measures produced across multiple observations of each target object. 

Once instance-profiles have been created by the observation of multiple instances of 

each target object, they can then be compared to one another to establish what 

relationships may be present within the dataset (2). This enables the creation of a 

hierarchy that represents these relationships. As this problem space involves drift, it 

is crucial to have a method that is able to adapt to concept drift (3) and object drift 

(4).  

An important factor that needs to be considered within concept drift is noise 

tolerance (5). If noise is mistaken for drift then the model can be adversely affected 

which will then negatively affect classification accuracy. Producing a method that 

can adapt to concept drift without performing badly under noise is challenging and is 
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discussed at length in the literature, along with most authors’ descriptions of their 

methods for dealing with this (STAGGER and FLORA as discussed in Chapter 3). 

Any new method developer needs to keep this in mind. Along with noise tolerance 

another factor to plan for is scalability. Within most machine learning methods the 

structure produced has very little to do with any identifier that is attached to a given 

instance. As such, searching the produced data structure to find a previously 

observed instance is somewhat difficult to do efficiently in large datasets, as it 

basically requires each item in the structure to be examined. As the problem space 

relies upon profiles that are built across multiple observations, requiring a method for 

instance look-up and updating, the search phase needs to be efficient enough to allow 

the method to scale to real world datasets of real applicability (6). Otherwise the 

method would be of limited application. 

5.4 DYNAMICWEB 
DynamicWEB is the learning method presented within this thesis that aims to fulfil 

the goals outlined above. Most of the goals pertain to the ability to adapt to object 

drift occurring within a dataset, in the context of the dataset covering a period of 

time. As this change occurs, the aim is to adapt the resulting concepts, and to allow 

for an object to be updated and re-assigned to a concept, allowing it to drift from one 

class to another. These processes require a concept formation method to be used, but 

do not require a new one to be designed for the purpose. As this thesis focuses upon 

the problem of drift, an existing concept formation method will be incorporated into 

the method, with modifications made to it to meet the other goals discussed above. 

The following section outlines what changes need to be made to an existing method 

to allow it to achieve these goals. 

5.4.1 COBWEB: THE CHANGES REQUIRED 
COBWEB (Fisher 1987) was chosen as the existing conceptual clustering method to 

be used as the foundation of the new technique. COBWEB, as explored within 

Chapter 4, is a well respected and expanded upon method. It has also been put to use 

within real world applications, and has been previously utilised within the domain of 

concept drift (Kilander and Jansson 1993). By using an implementation of COBWEB 

that includes the CLASSIT extension (Gennari, Langley et al. 1989), the method is 

able to operate upon both numeric and nominal datasets, allowing it to handle a 
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wider range of target datasets. The manner in which numeric data is handled in 

COBWEB gives it a distinct advantage over other conceptual techniques, due to its 

probabilistic nature compared with the conjunctive conceptual techniques used in 

other methods. However, COBWEB in its original form was not intended to have 

any changes occur to the instances that were present within the tree structure. This is 

obviously a key component within a method where profiles are required to be 

updated frequently, and presents the first hurdle to overcome in allowing for 

COBWEB to function as an object drift adaptive method. 

Within Fisher’s COBWEB there is no provision for modifying or removing an 

instance once it is within the structure. Furthermore, a modification of an instance 

within the tree itself would change the category utility of the node containing it, and 

any parent nodes, thus adversely affecting the integrity of the tree. Any operators that 

are going to modify or remove an instance would need to update the utility score of 

the node and all its parents. 

In order to add operators to COBWEB that facilitate removal or modification of an 

instance, a search of the structure needs to be implemented. However, the COBWEB 

tree is sorted based on the similarity of the instances resident within it and so, to 

locate a given instance, each instance would have to be examined in turn, resulting in 

a O(n) search time (where n is the total number of observed instances). Such a search 

time severely hinders the scalability of this search mechanism to large datasets, and 

so is insufficient for the needs of this proposed learning method. 

If COBWEB is the existing technique to be used within the learning method the 

following list of shortfalls of COBWEB for this purpose would need to be addressed: 

1. COBWEB does not contain an update mechanism for an instance already 

present within the structure. 

2. COBWEB does not allow for deletion of instances already present within the 

structure. 

3. The search time for COBWEB is too high to scale effectively. 
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5.4.2 SEARCH IN DYNAMICWEB 
To achieve these goals, DynamicWEB needs to enable multiple examinations of the 

same object over time. These examinations require that the representation of the 

given object within the COBWEB tree be kept up to date. To differentiate between 

the objects being examined, the datasets must contain an identifier for each object. 

To facilitate efficient modification and deletion operations, DynamicWEB needs a 

search method to be able to locate instances within the COBWEB concept hierarchy 

based upon this identifier. The hierarchy itself is sorted based upon the similarity of 

the instances to one another, so a traversal of the tree would result in a O(n) search 

time, and is independent of the identifier. To utilise this identifier, and overcome the 

fact that the search is concept based, while not drastically modifying the COBWEB 

structure itself, an index structure was created to act in tandem with the concept 

hierarchy. When an operation upon an instance already present within the concept 

hierarchy needs to occur, this second structure uses the identifier to locate the node, 

within the COBWEB structure, where this instance is currently located. 

In deciding the type of indexing structure to use for this function two methods were 

trialled: a Hash table and an AVL tree. These two methods are both well suited to the 

role of an index, with the hash table boasting an expected search time of O(1) (under 

suitable distribution assumptions) and the AVL tree (Adelson-Velskii and Landis 

1962) a worst case search time of O(log n). With a hash table, however, to maintain a 

O(1) the ideal table size needs to be large enough relative to the dataset. As such an 

automatically sized table also with a worst case of O(log n) search time was used 

here. With each method it is possible to store data within the index, and in this 

implementation a reference to a node within the COBWEB hierarchy is stored.  

  Hash Table AVL Tree 
Insert     
66009 6250 2359 
30000 1609 984 
10000 359 328 
1000 47 47 
Insert and Lookup     
66009 11109 4265 
30000 1641 985 
10000 375 328 
1000 47 47 

Table 17. A comparison of performance a Hash table and an AVL tree. The 
metric is measured in millionths of a second 
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Table 17 shows the result of using these two different methods over a range of 

dataset sizes. The identifiers used in this table were taken from a security audit log of 

traffic probing a firewall. The 66,000 total identifiers are all unique IP addresses 

which probed the gateway. The dataset that was used to obtain these identifiers is 

examined within Chapter 8. 

The AVL tree was found to outperform a Hash table over large numbers although the 

Hash table matched it for speed while the dataset was quite small. The top half of the 

table shows the time taken, in millionths of a second, to create the index from the list 

of identifiers, while the times in the lower half of the table also include using the 

structure to lookup the value to retrieve a pointer to another data structure. For the 

vast bulk of datasets that would be likely to be examined, this table shows it would 

not matter whether a hash table or AVL tree was used due to their limited number of 

items to track, however, this research is focussed on datasets with very large numbers 

of unique identifiable objects and the AVL tree’s scalability makes it the obvious 

choice. 

With each identifier the AVL tree stores a reference to the location of the cluster 

where the instance is found in the COBWEB hierarchy. This ‘tying together’ of the  

 
Figure 18. The AVL Tree acting as an index to the COBWEB concept 
hierarchy (links for profiles 1 and 7 are not shown). Each instance stored in the 
concept hierarchy has a counter part in the AVL with a pointer to its location. 
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two tree structures is illustrated in Figure 18. The AVL structure is sorted on the 

identifiers 1 through 7, which places 4, as the middle point, at the root, while the 

COBWEB concept hierarchy is sorted on the contents of the instances, and appears 

haphazard to a human observer (or search mechanism) of the identifiers present. 

5.4.3 UPDATE MECHANISM 
The major advance on the COBWEB algorithm, provided by DynamicWEB, is the 

ability to track an object over time by building a profile from the observed instances 

relating to the object. The contents of this profile will be discussed further shortly, so 

we will just discuss it as an instance for the moment. In the COBWEB algorithm by 

Fisher there is no mechanism to modify an instance once it has been assimilated into 

the hierarchy. The probabilities which are acting as the concept descriptions 

obviously contain the relevant knowledge about all the instances below a node. There 

are scenarios where simply updating the instance in place and then flowing those 

effects through would be acceptable, and indeed, in these cases, would be also more 

efficient, but this is not true of all cases. In some instances where attributes are to be 

replaced, the variation could cause the instance to move to a new location a 

significant distance away. The migration process would then be cumbersome, and 

computationally complex. Therefore DynamicWEB adopted the approach of 

removing the profile from the tree, adjusting the surrounding area, and then re-

adding the updated profile. We will now examine this process.  

DynamicWEB(I, D) // Identifier of target object, new instance data of target object 
Let R be the root of the concept hierarchy tree 
Let V be the AVL index tree 
If I is found within V let its location in the hierarchy be L 

Call remove(I, L) returning the profile in its current form as P 
Let the result of calling updateProfile(P, D) be P 
Let L be the resulting location of adding an updated P to the concept hierarchy 
calling COBWEB(R, P) 

Else  
Add I to the index V, creating profile P 
Let L be the resulting location of adding P to the concept hierarchy calling 
COBWEB(R, P) 

Set the reference stored at I in V to being L 

Table 18. The DynamicWEB Update Mechanism 
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Table 18 above shows the highest level of the DynamicWEB update algorithm (there 

is a complexity discussion is Appendix F). This is the portion of the algorithm that 

handles interaction between the concept hierarchy formed by the COBWEB 

algorithm and the AVL tree acting as an index. When a new instance is presented its 

identifier is searched for within the index to see if it already has a profile within the 

concept hierarchy. If the object has not yet been observed the new instance is added 

directly to the hierarchy. If the object has already been observed at least once, then 

the profile is extracted from the hierarchy and all knowledge of it is subtracted from 

the node in which it was placed, as well as from all of its parents. Once the profile is  

remove(I, N) // Identifier of target object, Node where existing profile of target object 
is stored, or its parent when called recursively 
For each profile, J, at Node N 

If the identifier of the Jth profile matches I 
Let P be the Jth profile 

Remove P from N 
Recalculate the probabilistic concept description for the node N 
If current node is not the root 

If N is a leaf then call remove(I, the parent of N) else do the following 
For each Child, C, of node N 

Calculate category utility for placing P in C 
Let A be the node C with the highest category utility 
Let B be the second highest category utility 

Consider merging the nodes A and B and calculate the category utility for the 
merger 
Consider splitting the node A and calculate the category utility for the split 
If the highest category utility (of merging, splitting or current state of N) is above 
the cut off 

Set the state of N according to the relevant scenario, updating the concept 
description probabilities accordingly 
Call remove(I, the parent of N) 

Else 
Let the current state of N stand and do not consider merging or splitting in 
the future 
Call updateTree(I, the parent of N) 

return P 

Table 19. The remove function of DynamicWEB 
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removed the statistics that comprise the probabilistic concept description need to be 

updated for each parent node back to the root from the node in which the instance 

was clustered. If this does not occur the probabilities representing the concept are no 

longer correct once the profile has been removed. 

The remove function (Table 19) starts at the node which is returned by the lookup 

ofthe index. It extracts the profile that matches the current object’s identifier, which 

is returned once the concept hierarchy has had the profile removed. The concept 

description for the current node is then recalculated. If the current node is not the 

root, then the remove method is recursively called with the target node to be 

examined being the parent of the original. This occurs instead of considering a merge 

or split of its children because the children were not affected by the removal of the 

profile. All subsequent calls of the remove method up the tree repeat the extraction of 

the profile from the node, and the updating of the concept description. Merging or 

splitting the children of the node most similar to the removed profile is then 

considered. This refinement of the tree allows the clusters to be in their optimal 

fitting form after the knowledge removal has occurred. However these operations are 

not considered at every node back to the root. The operations are only considered 

until at one level the resulting category utility is less than the cut-off threshold 

utilised by the insert operation within the CLASSIT extension to COBWEB. This 

enables the removal operation to be more efficient by only considering a merge or a 

split when one is likely to actually be of consequence. Once this threshold has been 

met, the remove operation is no longer called recursively back to the root as it is 

extremely unlikely it would pass that threshold again. Instead the updateTree 

operation is called. The updateTree function (Table 20) removes the profile from  

updateTree(T, N) // Identifier of target object, a node which has knowledge of the 
node to be removed 
For each profile, J, at Node N 

If the identifier of the Jth profile matches T 
Let P be the Jth profile and then exit loop 

Remove P from N. Recalculate the probabilistic concept description for the node N 
Recalculate the category utility for N 
If N is not the root node then call updateTree(T, the Parent of N) 

Table 20. The updateTree function of DynamicWEB 
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each node from the point it is called to the root node, at each stage updating the 

concept description. Once the updateTree and remove methods have fully removed 

the profile from the concept hierarchy, it is returned back to the DynamicWEB 

function in Table 18. This profile is then modified to reflect the new information 

present within the most recent observation. This process, and more detail about the 

profiles will now be examined. 

5.4.4 PROFILE 
For DynamicWEB to be able to adapt to object drift within a dataset over time the 

observed instances need to be examined in such a way as to establish what change 

has occurred and if there is knowledge to be acquired in these changes. To do this 

DynamicWEB uses profiles of activity built across the multiple observations to adapt 

to object drift as it occurs within a dataset. The profiles need to be robust and 

customisable to allow them to function across a wide range of domains containing a 

diverse range of attributes. 

The profiles within DynamicWEB are comprised of two main types of attributes: 

most-recent attribute value pairs and derived attributes. The most-recent value allows 

for the current state of an object to be used within the learning process, while the 

derived attributes allow the history of the object to be used within the learning 

process. The former of these two is largely the same as an instance within COBWEB 

and other learning methods, being the current state of an attribute on the target 

object. However, it is kept up to date when new information about the object is 

observed within the dataset. By changing the value within a profile to the most 

recently observed value a profile is able to drift from one resultant class to another, 

or to update the concept description for a given class. However, this is only a 

representation of the object at a given point in time and does not offer any insights 

into what trends or history a given target object has been through to aid the 

knowledge acquisition within the tree. 

The derived attributes are used to capture the history of an object and are a 

combination of all the previously observed values per instance within a data set for a 

given target object. The derived attributes (Table 21) include: mode, mean, standard 

deviation, maximum, and minimum. Such attributes have a strong grounding within 

statistics and establish the historical context of the attribute value pair within the 



Chapter 5 - DynamicWEB: Learning over Multiple Observations 

- 85 - 

dataset. These derived attributes allow DynamicWEB to create groups of profiles 

that are not only similar now, but also historically. This enables a more accurate 

representation to be generated through the preservation of contextual information 

about the objects and the dataset. The result is that there is less negative influence, 

from any noise present within the dataset, upon the resultant conceptual hierarchy, 

due to the normalising effects of the mean and standard deviation. 

Derived Attribute Attribute Type Description 

Mode Nominal Most frequently observed value of this 
attribute value pair 

Count Both Count of instances seen relating to the target 
object 

Mean Numeric The average value for this attribute value 
pair across the set of observed instances. 

Standard Deviation Numeric The standard deviation within the set of 
observations. 

Maximum Numeric The highest value that has been observed of 
this attribute value pair. 

Minimum Numeric The lowest value that has been observed of 
this attribute value pair. 

Trend Numeric An indicator of the trend of values of this 
attributes value pair. 

Gap Numeric The difference between the two most 
recently observed values. 

Table 21. Listing of the derived attributes that are used within the Profiles 
in DynamicWEB 

Most of the derived attributes are based upon the observed values of the numeric 

attribute-value pairs. The derived attribute Count is the only one which operates on 

both the nominal and numerical types. It is a measure of the number of instances 

observed relating to a target object. The Mode, the most commonly seen value, is the 

only other derived attribute used with nominal values. The Mean, Standard Deviation 

and the other derived attributes are ill suited to describe discrete attributes. However, 

the mostly commonly observed discrete value (the Mode) does preserve some 

historical context of the target object. The remainder of the derived attributes are 

used with the numeric values observed about a target object. Mean and Standard 

Deviation are of obvious use in describing the historical context of a target’s attribute 

values. Minimum and Maximum further illustrate the extent of the range of observed 

values. 
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 In addition to these measures, there is a trend value for numeric attributes. If the 

most recent observation is higher in value than the previous observed value it 

increments by 1; if it is lower, then it decrements by 1. If there are many increases 

over a long period of time the trend value is high, likewise if the values are 

repeatedly decreasing the trend value becomes increasingly negative. This accounts 

for cyclical patterns of an attribute within a dataset, where a value may increase and 

contract repeatedly. It is a measure of the context of the part of the cycle a target 

object is in, in comparison with other objects. Another measure which compares the 

two most recently observed values is the Gap. The Gap is the deviation between the 

two most recently observed values for an attribute. This allows a short term deviation 

to be observed to increase the profile’s ability to track change within fast moving 

data, or within data with a wide variation of deviation which may be smoothed by the 

standard deviation. 

All of these derived attributes are stored within the profile, and are updated whenever 

a new observation occurs. The updateProfile function (Table 22) updates all the 

individual attribute-value pairs to the value that was just observed along with their 

associated derived attributes. The updateProfile method is called, as shown in Table 

18, directly after the profile has been removed from the hierarchy and before it is re-

added. The change that has occurred within the profile then allows for it to be placed 

within the hierarchy accounting for the change that has occurred, but also with the 

context preserved within the derived attributes. 

updateProfile(O, P) // Old version of the profile, Newly observed object data 
For each attribute, A, in O 

If the Ath attribute is derived then  
Recalculate the derived value including new data from P 

Else  
If the Ath value is different in O then in P  

Update the version in O with the value from P 
Return O 

Table 22. The updateProfile function of DynamicWEB 
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5.4.5 MULTIPLE-DIMENSION TREE 
One of the key goals of concept drift algorithms is for them to be resistant to noise 

that is present within a dataset (Schlimmer and Granger 1986; Widmer and Kubat 

1996). If noise is interpreted as drift, then the drift that will occur will be false and 

hinder the growth of knowledge within the tree. DynamicWEB reduces the impact of 

noise within a dataset by using derived attributes within each target object’s profile. 

These tend to have a generalising affect over multiple observations, reducing the 

impact of a noisy observation. However, as the category utility calculation results in 

a combined value across all attribute value pairs it is possible that two independent 

variables may act as noise to one another hindering knowledge growth, or over-

complicating the concept hierarchy. This is not actual noise, but change that is 

occurring within unrelated attributes, impacting on performance both 

computationally and in the resulting hierarchy. 

To combat this, and traditional noise, it is proposed to be able to compartmentalise 

the clustering into parallel trees. This acts to remove any unwanted interference. 

Furthermore, this can offer a performance boost in situations where new data is 

observed and only requires some of the attributes to be updated. These smaller trees 

work faster than the whole, and, if not all of them need to be updated for a given 

piece of new information, then computation time is saved. Each tree produces its 

own class definitions and classifications. The classification results can then be 

combined to form a final result. This approach is not without precedent, with 

ensemble-clustering being used in concept drift learning methods involving a group 

of decision trees (Stanley 2003) and another using the combination of an incremental 

decision tree and naïve Bayes (Kolter and Maloof 2003). Both systems achieved 

increased classification accuracy by using multiple clusterings when reacting to 

concept drift. However, these methods did not operate by splitting the instance into 

multiple subgroups of attribute value pairs, but were effectively time windows of 

various lengths. The most accurate tree that resulted was the structure that was 

adopted. 

While within DynamicWEB there is no promotion or removal of separate tree 

structures, the grouping of certain attribute-value pairs into different trees allows for 

similar performance gains to be made. If a group of attributes is updated frequently, 
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while others rarely change, the computation required to update a smaller tree 

comprised of only the frequently changing values is less than for the tree of all 

attributes. Obviously this does not suit all datasets, however if the context (the 

interdependence of the attributes from one another) tolerates this by producing 

accurate results when the clustering results of the trees are combined, then the 

performance gain is to be welcomed. Examples of multiple trees are examined within 

the results chapters while the implementation will be discussed now. 

5.4.5.1 IMPLEMENTING DYNAMICWEB’S MULTIPLE DIMENSIONS 
DynamicWEB operates upon multiple observations which are combined into a single 

profile within a clustering structure. The update mechanism for this involves the use 

of an index which is based on an AVL tree. To extend DynamicWEB to operate 

across multiple tree structures, each of these need to be indexed to allow for the 

updates to each tree to occur independently of each other. This allows for one tree to 

be updated, while another remains in its current form. However, it is not necessary to 

duplicate the index structure itself, but merely to extend the existing one to map out 

not just a single concept hierarchy, but several. Each entry within the index not only 

links to the existing profile within one tree, but to each of the different portions of the 

profile stored in each tree currently in use. Figure 19 illustrates an index in use across 

three different concept hierarchies, labelled C1, C2 and C3. The target object A’s 

data is stored in three part-profiles, one in each tree. Each profile can be quickly  

 
Figure 19. The index mapping out the location of the profile ‘A’ within three 
separate concept hierarchies. 
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accessed via the index and updated as new data relating to the attributes stored within 

each portion is observed. 

To facilitate this more segmented update process, the DynamicWEB algorithm listed 

in Table 18 is modified and shown as Table 23. As each new observation is observed 

by DynamicWEB, it searches the index for an object with the same identifier. If the 

identifier is not found then the profile is split up into the separate profiles and added 

to each tree, with the resulting location within each tree recorded within the index. If 

the identifier is already present within the index then the individual portions of the 

profile are updated with the newly presented information. If a profile portion is  

DynamicWEB(I, D) // Identifier of target object, new instance data of target object 
Let H be the set of root nodes for the concept hierarchies 
Let V be the index tree 
Let S be the result of splitting D into a set of part profiles for each H 
If I is found within V let its list of locations be L 

For each hierarchy, J, in H 
Let N be the Jth node in L, that for the hierarchy J 
Let K be the part profile within N with the identifier I 
Let T be the Jth value in S, that for the hierarchy J 
Let T now be the result of combining the existing data in K with the newly 
observed data within T 
If T not equal to K then 

Call remove(I, N) 
Let M be the resulting location of adding the updated profile T to the 
concept hierarchy J with COBWEB(J, T) 
Set the Jth value in L to be M 

Else  
Let L be a new node in V for the identifier I 
For each hierarchy, J, in H 

Let T be the Jth value in S 
Let M be the resulting location of adding T to the concept hierarchy J calling 
COBWEB(J, T) 
Set the Jth value in L to be M 

Table 23. The DynamicWEB Update Mechanism using multiple trees 
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unchanged then it is not updated, meaning that it is not removed and re-integrated 

into the concept hierarchy; the existing profile remains as it was. This saves on the 

computational cost of re-clustering an item which has not been changed in the update 

process. Such an occurrence results when a profile portion is comprised of attributes 

that are not derived, but are merely showing the most recent value observed. If, 

however, the profile does contain derived attributes, or the observed value from the 

profile has changed, then the profile is removed from its hierarchy and re-inserted 

into the tree from the root location. Each portion of the profile is examined, one after 

the other, with some resulting in an update while others may not. 

Once the multiple trees are established, they can then be examined and compared for 

structural differences between the concept hierarchies. By examining the dataset in 

separated portions, different patterns within the data may be discovered. 

Furthermore, the classification results produced by the different structures may also 

be different and these can be examined, or combined to form an overall classification 

across the forest. The simplest way to handle this output is to give each tree equal 

weight, and produce an overall classification value, based upon a majority of 

resultant classes as voted by each tree. This is not a new idea but is related to 

Bagging (Breiman 1996) and Boosting (Valiant 1984; Schapire 1990; Schapire 

2002). However, unlike Bagging, also known as bootstrap-aggregating, the models 

are not separate models with each formed from a slightly different set of training 

instances, but rather different parts of the one stream of instances that are observed. 

Likewise, it is not the same as Boosting, which allows for different weights to being 

applied to the different models, based on their predictive performance, in that 

DynamicWEB is a completely unsupervised method. However introducing some 

weights in a boosting approach based on performance is an extension that could be 

made. 

5.5 SUMMARY 
This chapter has outlined the DynamicWEB learning method that was built upon the 

existing machine learning technique known as COBWEB. The fundamental 

difference between the two is that DynamicWEB was built with the goal of being 

able to profile objects across multiple observations of the same objects over time. 

Allowing for both concept and object drift to take place within the learner. 
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The DynamicWEB update mechanism uses removal and profile update mechanisms 

that employ an index structure. As DynamicWEB aims to compare profiles of 

activity within a time-based context, the update mechanism involves the use of 

derived attributes that aim to preserve contextual information about the previously 

observed values of the attributes within an observation of a target object. By 

preserving this context, DynamicWEB aims to establish and track relationships 

between target objects over many observations. 

In addition to context preservation this chapter has described the use of 

DynamicWEB as an ensemble learner, utilising multiple concept hierarchies in 

parallel with each other. The aim of this is to split the learning task into smaller sub 

tasks for comparison with each other or as components of an ensemble classifier.  

DynamicWEB has been described here as an elegant modification and extension of 

the COBWEB method to allow it to adapt in learning environments which contain 

change. The chapters that follow examine DynamicWEB’s performance across a 

range of problem domains which contain change. 

 



 

 
 

 
 
 

 

 

 

 

6 Method Verification 
and Demonstration 
7. d Verification 

“Change alone is eternal, perpetual, immortal.” 
 

Arthur Schopenhauer (22 February 1788 – 21 September 1860) 
 German philosopher 
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INTRODUCTION  
The previous chapter has outlined DynamicWEB, the method being presented within 

this thesis. This chapter and the following two present results of this method when 

trialled across a range of datasets. This chapter aims to verify that DynamicWEB 

functions correctly upon several small well studied datasets. Several results are 

compared to published results of COBWEB to illustrate that the additions that have 

been made have been undertaken correctly. 

6.1 INTRODUCTION 
When a new method is proposed it is important to verify that the method functions as 

it should upon small understandable datasets and not just demonstrate it upon large 

datasets that may contain unknown patterns. The method proposed within this thesis, 

as detailed within the preceding chapters, is quite specialized compared to many 

techniques that already exist within the neighbouring areas. Further the datasets 

which inspired this work within security contain a large number of unknowns (in 

relation to the true classification results), meaning that they are not practical for fully 

verifying a method. 

A key component of verifying that DynamicWEB functions as it was designed is to 

confirm that the underlying implementation of COBWEB (Fisher 1987), and the 

CLASSIT (Gennari, Langley et al. 1989) extension, is also correct. This chapter will 

first examine the performance of DynamicWEB on a few small datasets which were 

examined within the previous work on COBWEB. Then a dataset that was created 

for testing DynamicWEB more fully will be described and examined. This dataset 

was based upon a popular dataset in machine learning, but was extended to allow for 

multiple observations of the target objects. Thirdly a dataset that has been commonly 

used within the concept drift literature is examined (Schlimmer and Granger 1986). 

This leads to a comparison between the two concept drift methods built upon 

COBWEB: DynamicWEB and COBBIT (Kilander and Jansson 1993). 

6.2  VERIFYING THE COBWEB IMPLEMENTATION 
The COBWEB implementation that is contained within DynamicWEB was 

implemented based upon the pseudo code and accompanying explanation that was 



 
 

- 94 - 
 

included within the 1987 and 1989 papers (Fisher 1987; Gennari, Langley et al. 

1989). In these papers several results were presented and these will be compared to 

the results achieved by the DynamicWEB implementation. Along with these results, 

the values for the category utility were also provided in the papers, and were 

demonstrated within a sample problem as multiple incorporation operations were 

undertaken. These results were matched to the DynamicWEB implementation in 

order to ensure that this part of the algorithm was functioning correctly. 

In the first publication of COBWEB, Fisher (1987) focused upon the Small Soybean 

dataset (Michalski 1980). His testing methodology, drawing upon Quinlan’s (1986) 

work, operated using training and testing sets. These were not separated at the 

commencement of a trial, and the same dataset was used to test and to train. 

However the training was tested at intervals during the knowledge acquisition. As 

the knowledge hierarchy was grown after every 5 instances, the structure was tested 

upon the entire remaining unseen items within the dataset (the dataset contains 47 

instances in total). There are four classes within the dataset with three of the classes 

having 10 examples, and the fourth having 17. When this testing occurred, each item 

was classified by the hierarchy without any knowledge of this item being retained by 

the structure in the process. Figure 20 illustrates the learning performance of the 

DynamicWEB implementation compared with the published performance of 

COBWEB.  

 
Figure 20. Fisher’s implementation of COBWEB vs the DynamicWEB 
implementation. 
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The implementations operate almost identically with only a minor difference 

between the two. Fisher’s results show that it reached 100 percent predictive 

accuracy after witnessing 10 instances from within the dataset across all runs that 

were undertaken, while the implementation used in DynamicWEB operated at 97.3% 

accuracy after 10 instances. This disparity may be accounted for by the difference in 

testing methodology and variation introduced by the randomness of the instance 

ordering. Fisher did not state in his 1987 paper how many runs his results were 

averaged across. The results shown for DynamicWEB were averaged over 100 runs, 

with the dataset being randomised between each run. Within those 100 runs over half 

achieved 100 percent predictive accuracy after 10 instances were witnessed, with 

another 25% only failing to correctly classify one of the remaining unseen instances. 

The Soybean dataset is a four class problem and as such it is not surprising, over 100 

runs, that all of these runs do not correctly describe all four classes perfectly within 

10 randomly chosen training instances. Further, within the Soybean dataset there is a 

bias within the classes. There is not an even distribution of classes as one class is 

represented by 70% more items than the other three classes. Thus, the initial 

instances which are used to build the hierarchy have a marked impact on how rapidly 

the method will learn the domain completely. As each trial is based upon a new 

randomisation of the dataset, some variation between one run and the next should be 

expected. 

 
Figure 21. Fishers implementation of COBWEB vs. the DynamicWEB 
implementation in predicting a missing attribute 
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Fisher, in demonstrating the effectiveness of COBWEB at learning a domain, 

extended his trials upon the Soybean dataset beyond that of predicting the resultant 

class of an instance to also predicting what an attribute value might be when in the 

presence of the other 35 attributes. Figure 21 shows the performance comparison 

between COBWEB and DynamicWEB, along with the Frequency-based approach 

also shown by Fisher. This experiment tests each of the 35 attributes in turn, where 

they have been removed and then predicted based upon the other attribute value 

present within the instance. Each of the 35 attributes was run 25 times and were then 

averaged together to produce the DynamicWEB performance graph shown. Again 

we do see some variation between the two implementations. The main difference 

between the two is that the published version of COBWEB converges at 87% 

predictive accuracy, while the implementation in DynamicWEB reaches 93% after 

25 instances while still improving. This could again be due to the reasons outlined 

above; a result of different numbers of trials being completed and then averaged. The 

attributes are all nominal with the most discrete values being seven, and with several 

attributes having only four values. In the context of this, it is quite surprising that the 

published COBWEB results so rapidly converge after 10 instances. While it’s not an 

impossible scenario, it may be the result of only running the different attributes a 

single time each, or perhaps only a few times each. 

 
Figure 22. DynamicWEB’s implementation of COBWEB operating upon the 
quadruped animal’s dataset. 
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The version of COBWEB included within DynamicWEB also includes the CLASSIT 

extension which enables it to operate upon numerical data. Figure 22 shows the 

DynamicWEB implementation of COBWEB (with CLASSIT) learning a purely 

numerical domain, the quadruped animals dataset (Gennari, Langley et al. 1989). 

This dataset was described by Gennari as an example dataset for CLASSIT, although 

it was not presented in a form illustrating its ability to learn the domain, but was 

discussed in relation to some other learning techniques not examined here. However 

the result shown above in Figure 22 does match the expected performance described 

within the text of the paper. This dataset will be examined further when 

DynamicWEB’s capabilities as an ensemble learner are illustrated in Section 6.4. 

In summary, the implementation of COBWEB within DynamicWEB functions 

effectively upon the datasets shown in Figure 20 and Figure 21. There is some minor 

variation in the performance when compared with the published results of 

COBWEB.  However these can be accounted for if we consider the effects of 

ordering upon the structure produced and several unknowns in the testing 

methodology of Fisher, and more specifically the number of runs over which his 

results were averaged. The implementation of COBWEB used within DynamicWEB 

does effectively learn the knowledge domains upon which it is tested, and, 

furthermore, does this in a comparable way to that published by Fisher (1987). This 

leads us to conclude that the implementations are suitably equivalent to one another.  

6.3 DYNAMIC WEATHER  
DynamicWEB differs from COBWEB, and most other machine learning techniques, 

in that each instance is not the only instance that relates to a target object. The two 

datasets used above on the COBWEB algorithm, Soybean and Quadrupled Animals, 

are both examples of datasets in which each instance is the only piece of data that 

relates to a object. As the bulk of methods operate on problems like this, there is a 

lack of datasets that contain multiple observations of each object to track over time. 

As such a new dataset was created to demonstrate and verify DynamicWEB. 

The dataset, entitled Dynamic Weather, which was created for this purpose, is based 

upon the well known Weather dataset by Quinlan (1986). Quinlan’s Weather dataset 

is comprised of fourteen instances each with four attributes and a class value. The  
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Name Type Values 
Outlook Nominal Sunny, Overcast, Rainy 
Temperature Numeric Numeric 
Humidity Numeric Numeric 
Windy Nominal True, False 
Class Class Yes, No 

Table 24. Listing of the attributes within the Weather dataset 

dataset describes weather conditions in which to play golf7. E.g. if it is raining and 

windy then the player does not play, whereas if it is overcast and warm then the 

player plays. The dataset contains both numeric and nominal values within simple 

concepts such as temperature, wind and humidity. It is a simple dataset which is 

easily understood and has been used widely as a research dataset and in machine 

learning textbooks (Witten and Frank 2000). 

For a dataset to be able to demonstrate DynamicWEB it needs to include multiple 

observations of a target object, monitoring change over time, allowing for an object 

to drift from one resultant class to another. Extending the Weather dataset to include 

multiple weather recordings at a range of locations is a simple and elegant concept 

Name 1st Measurement 2nd Measurement 3rd Measurement 
St Andrews No Yes Yes 
Gleneagles Yes Yes No 
Carnoustie Yes Yes Yes 
Dornoch Yes Yes Yes 
Porthrawl No No No 
St Davids No No Yes 
Nefyn Yes Yes Yes 
Pennard No No No 
County Down Yes No No 
Portrush No No No 
Bally Bunion Yes Yes Yes 
Lahinch No Yes No 
Table 25. The classes at the different points of measurement over the day; 
object drifts are shown in bold.  

                                                

7 The paper does not state that the task being decided upon is golf however Quinlan released files 
containing the dataset at the time were labeled golf.data and golf.names.  
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for a sample dataset. Dynamic Weather includes three recordings over the course of 

the day (suggested to be 9 am, noon and 3 pm) at twelve different golf courses. The 

twelve courses, listed in Table 25, are named for actual golf courses in Scotland, 

Wales and Ireland and experience different weather over the course of the day. Four 

of the golf courses allow for golf to be played all day long, three have no golf played 

all day; the remaining five migrate from one class to the other over the course of the 

day. Two of these migrate from being able to play to then not being able to play, 

another two do the reverse of this, while one object starts off not playing, then 

playing during the middle of the day, before again not being able to play at the end of 

the day. The names of the golf course act as unique identifiers within the dataset for 

each location. When an instance within the dataset is observed by DynamicWEB it is 

this name that is looked up within the index. If found, then the profile for that 

identifier is updated with the new information from the newly observed instance. 

The class labels were applied to the instances, based upon a modified decision tree 

(Figure 23) created by running Quinlan’s C4.5 (1993) decision tree learner8 on the 

original Weather dataset. The tree that was produced by C4.5 only contained the 

hierarchy with the three outlook nodes, along with the wind and humidity branches. 

The top level in the tree (shown in bold in Figure 23) was added to ensure that all 4 

attributes played an active role over the three measurements within Dynamic 

Weather, as there are three times as many instances within that dataset as in the 

original Weather dataset. The value of 50 degrees Fahrenheit was chosen as it was  

 temperature <= 50: no 
 temperature > 50 
| outlook = sunny 
| | humidity <= 75: yes  
| | humidity > 75: no  
|  outlook = overcast: yes  
| outlook = rainy 
| | windy = TRUE: no  
| | windy = FALSE: yes  
Figure 23. Modified C4.5 Decision Tree of the Weather Dataset. 

                                                

8 The implementation used is contained within the WEKA Data Mining Tool Kit  (Hall, Frank et al. 
2009) and is actually an implementation of J4.8. 
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below any value within the original weather dataset and wouldn’t therefore produce a 

different class for any instances within that dataset, while also being a value which 

represented a fairly realistic scenario. 

Dynamic Weather is a complete dataset which allows for DynamicWEB to be tested 

and verified in several ways. The full dataset can be examined in Appendix A. 

Initially DynamicWEB will be examined to verify that it updates the current weather 

over the day at each location. After this, it shall be examined in a more profile 

building scenario using derived attributes, and then finally the same problem is 

looked at in the context of multiple DynamicWEB trees. 

6.3.1 PERFORMING PROFILE UPDATES WITH DYNAMIC 
WEATHER  

The simplest way to track an object as it changes over time is to update the profile of 

that object with the most recent observed attributes values for that object. This 

obviously does not retain the context of the behaviour of the given objects in the 

past. This will be examined later. Even without this contextual information, it is still 

worthwhile to have profiles that illustrate the current state of the objects of interest, 

and in the case of Dynamic Weather the current conditions at 12 golf courses. 

Over the course of the fictitious day that is represented within the Dynamic Weather 

dataset there are three instances for each target object. The first instance will 

establish the profile within the concept hierarchy, while the other two will each 

update the attributes values within the profile to the current values as the day 

progresses. Before we look at the concept hierarchy produced by having all twelve 

objects added and updated over the day, a smaller group of just four objects will be 

examined. This will verify that the changes are occurring as they should, and  

Location Outlook Temperature Humidity Wind Play 
Porthrawl rainy 45 80 TRUE No 
Bally Bunion overcast 65 62 TRUE Yes 
County Down sunny 55 80 FALSE Yes 
Nefyn sunny 72 62 FALSE yes 
County Down overcast 50 80 TRUE No 
Table 26. Five instances from the Dynamic Weather dataset. The 5th 
instance is an instance used to update the 3rd instance. 
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Figure 24. The concept hierarchy produced from the first 4 instances shown 
within Table 26. 

examine how they are represented within the concept hierarchy. The four objects 

being considered are Nefyn, Porthrawl, Bally Bunion and County Down. For each of 

these objects there is an instance shown in Table 26. There is a single instance for 

each of the four objects, and then a fifth instance for the Countydown object which 

drifts from the positive class to the negative. Each of the other three objects are 

stable, being resident within a single class across the three observations within the 

full dataset. Having three stable objects with only a single one drifting to a different 

class was chosen for ease of understanding, and we will not examine the other 

instances at length here. The five instances in Table 26 are transformed by 

DynamicWEB into the two hierarchies shown in Figure 24 and Figure 26. The first 

of these illustrates how the hierarchy appears after the four objects have been 

observed once. County Down is shown within the positive class, within a node with 

Nefyn. Bally Bunion is not clustered within the same node as these two, seemingly 

because of the difference in wind and outlook. At this point the tree is exactly the 

same as that which would be created using COBWEB. 

P(C5) = 4/4 

Att Val/Mean P(V|C) / ! 

Outlook Sunny 0.5 

Temp 59.2 11.8 

Humid 71 10.4 

Windy True 0.5 
 

P(C5) = 1/4 

Att Val/Mean P(V|C) / ! 

Outlook Rainy 1.0 

Temp 45 1.0 

Humid 80 1.0 

Windy True 1.0 
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Figure 25. The hierarchy which occurs between the removal of County 
Down profile and its readmission after it has been updated. 

After the initial four instances are incorporated, the fifth instance is then observed 

and it is at this point that DynamicWEB takes over from COBWEB. The fifth 

instance is the second observation that relates to the County Down object. The result 

of this is that the County Down profile needs to be updated with the new 

information. The first stage of this process is to remove the existing profile from the 

hierarchy, adjusting the tree as needed to ensure that the best possible hierarchy 

remains. Figure 25 is the hierarchy that results from removing the County Down 

profile. The main difference between the hierarchies shown in Figure 24 and Figure 

25 is the merging of the Nefyn and Bally Bunion nodes. They are still represented by 

their own leaves within the node, and not by the same leaf. Thus the removal of 

County Down did not result in three nodes each with one instance at the level below 

the root, but in a binary structure which learnt the class boundaries. This merge 

operation produced a superior tree to that which would have resulted if the concepts 

were left as they were after the removal of the County Down profile. DynamicWEB 

aims to always produce the best possible tree it can at any given moment, even part  
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Figure 26. The concept hierarchy after the 3rd instance has been updated 
with the new data contained within the 5th instance. 

way through an update operation. 

Ensuring that this is the case during the update operation allows the reintegration of 

the profile to occur within a scenario that is not too biased towards the former 

existence of the profile within the concept hierarchy prior to the update operation. 

Figure 26 shows the resultant categories for the dataset once the County Down 

profile has been updated with the data from the 5th instance. Its class value has now 

migrated to the negative due to the change in its weather conditions (which can be 

viewed in detail within Table 26). The tree structure within Figure 26 is very similar 

to that within Figure 25 with the only change being the integration of the County 

Down profile into a cluster that contains Porthrawl, instead of Porthrawl being a 
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child of the root. The overall structure of the concept hierarchy remains the same 

with a binary division into the two classes directly from the root, but with each node 

now having two leaves in each; one for each object. If the remainder of the instances 

within the Dynamic Weather dataset for these 4 objects are run upon this tree, the 

structure that is produced, after all three updates to all four objects, is the same 

structure as that shown within Figure 26. This represents correct behaviour as there 

are no further changes to the classes of these four objects. 

6.3.2 TESTING THE COMPLETE DYNAMIC WEATHER 
DATASET 

The demonstration in the previous section demonstrated, in detail, what occurs 

within the DynamicWEB hierarchy when an update to a profile occurs. In this 

section we will extend this to monitoring what occurs at a higher level during an 

entire run of the Dynamic Weather dataset. Instead of only four objects being 

examined, this time the full set of twelve, shown in Table 25, will be observed. 

Across the three updates of each of the twelve instances there are six object drifts 

that produce a change in the resultant class of the object. Within all of the trees 

shown in the figures below, each leaf node is pure in class; the highest cutoff value at 

which this occurs is 0.09. 

The first hierarchy, Figure 27, illustrates the structure that is produced after each of 

the twelve objects have been observed once. The structure is quite broadly spread, 

largely due to the order of the instances. This portion of the process is identical to  

 

Figure 27. The concept hierarchy after one instance of each object has been 
observed. 
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Figure 28. The concept hierarchy after each of the objects have had another 
observation and have all been updated once. 

COBWEB and as such can suffer from its order dependency. DynamicWEB, through 

its updating, is able to largely nullify this as it examines order dependent datasets 

through multiple updates of each profile. As each profile gets updated, and in that 

process removed and re-added to the hierarchy, the structure optimises itself by 

always choosing the best option. This allows the re-addition of a profile to a 

hierarchy to build upon the knowledge that has been added to the tree since it was 

previously inserted into the tree. The result of the first twelve updates to the 

hierarchy is shown in Figure 28. The structure is now not as flat as in Figure 27 with 

much more depth present, and with some closer matching of sister leaves of the same 

class. Also four profiles of the positive class are present within the right furthermost 

leaf node.  

Within the updates that occurred between the points in time represented by the two 

structures above, three objects have drifted from one resultant class to another. The 

objects for Lahinch and St Andrews have both gone from the negative class to the 

positive, while County Down drifted from the positive class to the negative. The 

locations where these profiles are now stored within the tree are with profiles of the 

same resultant class. This shows DynamicWEB successfully allowing for the object 

drift and clustering the updated profiles in the correct location. The second round of 

updates from the third set of observations produced the hierarchy shown in Figure 

29. This hierarchy is even simpler in structure than that in Figure 28, and now has  
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Figure 29. The concept hierarchy after the second round of updates have 
been completed. 

two leaf nodes, with four or more profiles resident within them. Again, during this 

round of observations there were three objects which drifted from one concept to 

another, with Lahinch again drifting, to the negative class along with Gleneagles; 

while St Davids drifted to the positive class. 

 The tree structures that were shown within the figures above are quite useful in 

terms of visualising the knowledge structure produced. They are easily human 

readable, and do perfectly describe the structure at an exact moment within the 

timeframe being examined in the dataset. However, their main shortfall is a lack of 

being able to visually show what drifting has occurred over time. Through 

comparing two trees it is possible to garner that St Davids was clustered very near to 

Dornoch in the update between trees two and three. But knowing how much they 

changed across all three tree structures or viewing those two objects in comparison to 

the other objects is not readily apparent. In an effort to illustrate the drifting of 

objects in relation to one another, Figure 30 displays a category measure for each of 

the objects within the dataset across the three measurements. These measures allow 

for direct comparison between the different objects across the time period of the 

dataset, illustrating the changing similarity of the objects. The measure used is a 

modified category utility of a singleton node that only contains two object profiles. 

These profiles are the same as those used within the DynamicWEB knowledge 

hierarchy and as such the comparison that takes place has a direct link to the current 

state of the hierarchy. The measure taken compares each object within the dataset to 

a single object within the dataset, producing a similarity measure between the two  
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objects. Figure 30 is built upon comparing all of the object profiles to the Bally 

Bunion profile. The value of the Y-axis is an un-normalised category utility 

calculated based upon the two profiles. 

In computing this measure as a direct comparison between two objects, we 

areignoring the existing knowledge within the hierarchy, as it would bias this 

measure, meaning that it was not a pure direct comparison between the profiles as 

they currently stand. As we are not using the statistics within the hierarchy, it is only 

numeric attributes that are used within comparison. If we were to include the 

nominal attributes within the context of a one to one comparison, they would carry 

too much extra weight within the similarity measure to produce a useful metric here. 

This is a short-coming. As such it is shown here purely for a visualisation aid to 

indicate what is taking place within the Dynamic Weather dataset. 

6.3.3 PERFORMING UPDATES WITH DERIVED ATTRIBUTES 
In addition to the ability to update the profiles within the DynamicWEB hierarchy to 

contain the most recently observed value, there is also the ability for DynamicWEB 

to make use of derived attributes. Derived attributes are statistical representations of 

the current and previously observed attribute-value pairs of an object. These derived 

attributes allow the profiles to store the context of past observations of an object, and 

then to contribute this to the clustering process. The derived attributes were described 

in more depth within Chapter 5 (5.4.4). Most of the derived attributes are derived  

from attributes with numerical values. There are two numerical attributes within the 

Dynamic Weather dataset: Humidity and Temperature. Of the derived attributes, the 

two most generally recognised and easily understood statistical measures are mean 

and standard deviation, so these are used here to demonstrate the effect of derived 

attributes. 

A DynamicWEB tree was created that only observed the average and standard 

deviation of two actual attributes Temperature and Humidity. The resulting tree, 

consisting of four profiles with four attributes in each, is shown in Figure 31. The 

structure shown here is the same as that shown in Figure 26, although to achieve this 

a category utility of half (0.045) that which was previously used (0.09) was needed. 

This drop in the knowledge threshold was required to produce the correct hierarchy 

as the other attributes were ignored in the learning process, therefore leaving the  
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Figure 31. The concept hierarchy after all 12 instances of the 4 object subset 
of Dynamic Weather have been incorporated. 

domain less well defined. This change in threshold increases the computational 

overhead of the method to run upon the dataset. To take a single object as an 

example, the temperature and humidity values recorded for Nefyn were 72, 81, 76 

and 62, 60, 64 respectively. The derived result for average and standard deviation for 

the two attributes within the profile were then 76.33, 4.51 and 62, 2 respectively. 

 Obviously within a dataset only containing three samples of each object, such 

measures have limited value; however this does clearly demonstrate the way in 

which DynamicWEB works with derived attributes. Using the full Dynamic Weather 

dataset with all attributes and instances, in conjunction with these four derived 

values, a tree of the same level of correctness to that shown within Figure 29 can be 
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achieved with a slightly increased knowledge threshold (0.09 to 0.1). While again of 

little impact on a dataset of this size, improvements like this are of more benefit in 

larger datasets, as will be seen in the two chapters that follow this one. 

6.4 MULTIPLE DYNAMICWEB TREES 
In addition to the derived attributes, another extension which has been used with the 

DynamicWEB learner described in this thesis is the usage of multiple concept 

hierarchies simultaneously upon a single dataset. The goal of this is to split the 

learning problem into multiple portions and for each to be clustered in a hierarchy 

separately. When an instance of unknown class is then to be classified, it is classified 

by each hierarchy in the forest, producing a set of possible classifications. This is 

undertaken for two main reasons. The first is to reduce the complexity of the problem 

that is being examined within a single hierarchy, allowing for more subtle patterns to 

be discovered. The second is that it allows for concept hierarchies to be developed 

from a dataset based on different attributes, and then compare the impact of the 

various attributes upon the results or structure of the concept hierarchies. In addition  

 
Figure 32. The cylinder representations of the Quadruped Animals present 
within the dataset. 



Chapter 6 - Method Verification and Demonstration 

- 111 - 

to this, attributes which conflict can be utilised by one tree, but not another, to 

minimise those negatives effects. Overall, from a classification standpoint, it allows 

for datasets with many attributes, that may interact in subgroups, to be treated 

appropriately, then allowing for the knowledge of the forest to be utilised instead of 

that of a single tree. This is similar to previous techniques, such as Bagging (Breiman 

1996) and Boosting (Schapire 2002), mentioned in the previous chapter. 

Gennari et al (1989) described the Quadruped Animals dataset when demonstrating 

the CLASSIT extension to COBWEB. It contains over 500 instances, each 

describing one of the four animals shown in Figure 32. These animals are described 

within the dataset by 72 attributes. These attributes can be broken down into 8 

groups, each containing 9 attributes. The eight groups all describe the following 

different parts of the animals: Neck, Head, Torso, Tail and the 4 legs. The attributes 

define the part of the animal based on its height, width, location, radius, and texture. 

Using the DynamicWEB implementation of COBWEB (with a cut-off threshold of 

0.02) to examine this dataset, the predictive accuracy, averaged over 100 runs, of the 

dataset is shown in Figure 33. This testing was completed by randomising the 

dataset, incorporating several instances, and then testing the hierarchy produced on 

the unseen instances from the dataset. This was completed 100 times with the dataset 

 
Figure 33. Predictive accuracy of the Quadruped Animals dataset in a single 
concept hierarchy. 
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ordering being randomised before each trial and the result for all the trials being 

averaged across all runs. This establishes the baseline performance of the Quadruped 

Animals dataset within a single hierarchy. 

The Quadruped Animals dataset was then run using a forest of 8 hierarchies, one for 

each body part, the results of which are shown in Figure 34. Within this graph there 

is a very tight grouping in the performance of 5 of the hierarchies: the four legs and 

the head. These 5 all perform better as separate structures than if they are combined 

into a single tree structure. However, three of the other hierarchies (Neck, Tail and 

Torso) perform markedly worse than their counterparts or the single tree structure. 

As the data for these hierarchies is used within the single structure, it is likely that 

they are having a negative effect on the predictiveness of the structure produced. The 

hierarchy based on the Neck has a dip in accuracy at 25 instances observed due to it 

frequently restructuring the tree at that time. 

 
Figure 34. The predictive performance of the hierarchies that were each 
formed on the data of a different body part. 

Each of the trees within the forest is built using the instances in the dataset that relate 

to the body part they are tracking. As each structure that is produced is different they 

all produce their own classification for each animal instance. Using these predicted 

values, an overall classification, for a given instance, can be made. Each tree is 

treated equally in deciding the classification of an instance (although weighting some 
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trees more highly if they are shown to be more predictive is an obvious extension to 

this). The result is then decided by a majority vote of the trees (greater than 4 votes 

in agreement in this case). If no majority is established then an incorrect prediction is 

recorded. The result is shown in Figure 35 and compared with the prediction 

performance of the single tree as well as the best of the trees within the group of 5 

that were shown to perform well in Figure 34. There is a significant difference 

between the voted forest and the single hierarchy, with the former exhibiting a 2-4% 

increase in predictive accuracy over the first 20 observations. The performance of the 

voted forest is lower than some of the individual trees in the forest (such as the group 

of five) prior to 20 because of a lack of sufficient agreement between the trees to 

gain a majority. However, when guided by this simple rule, the performance was still 

greater than that of a single tree. 

 
Figure 35. Performance comparison between the single COBWEB tree and 
the voted multiple tree configuration. 

When examining the results discussed above one can see that a large portion of the 

improvement in performance of the forest over the single tree is related to the fact 

that there are 4 legs which all perform very well, while all obviously being very 

similar to each other and thus usually voting together. Whichever class the 4 legs 

agree on, only one other part of the animal with the same resultant class was required 

for a majority. While this does act to simplify the dataset, this correlation within the 

dataset is likely to be discovered within other learners (such as the single hierarchy), 
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 and only highlights that certain datasets are well suited to such learning methods. 

6.5 STAGGER CONCEPTS DATASET 
In Chapter 3 a supervised learner called STAGGER was examined. This learner was 

one of the first learners cap ble of adapting to concept drift, when publishing this 

method (Schlimmer and Granger 1986) also described a dataset that contained two 

sudden concept changes, resulting in three distinct concept descriptions over the 

course of the dataset. The instances within the dataset were made up of three 

attributes: size (small, medium, large), colour (red, green, blue) and shape (square, 

circular, triangular). The dataset posed a two class classification problem, with the 

positive class being that which changed across the three concepts. The three goal 

concept descriptions that exist within the dataset are shown within Table 27. Concept 

one is the positive class at the start of the dataset and then changes drastically to 

become concept two after a period, and then concept three takes over for the last 

portion. All instances which don’t match the current given goal concept are members 

of the negative class. The STAGGER Concepts dataset aims to test how fast a learner 

can adjust to a sudden drift in the target concepts. 

Concept One size = small and colour = red 
Concept Two colour = green or shape = circular 
Concept Three size = large or medium 

Table 27. The three concepts which are present in the STAGGER concepts 
dataset. 

Figure 36 illustrates how the STAGGER method operated upon this dataset. The 

classification accuracy of the method dropped to half each time the concept changed, 

but it then recovered and learned the new goal state over the following 30 instances. 

Schlimmer and Granger did not fully describe their testing methodology within the 

paper. However, it is assumed that they tested the learning structure upon a different 

set of instances from those used to build the structure, and tested after each new 

instance from the dataset was incorporated into the learner. 

Discussed shortly after STAGGER in Chapter 3 was another method called FLORA 

(Widmer and Kubat 1996). This method is capable of adapting to concept drift, and, 

like COBBIT (Kilander and Jansson 1993), operates upon a time-window-based 

approach. However, similar to STAGGER but not the COBWEB-based approaches, 
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Figure 36. The learning response to concept drift of STAGGER upon the 
STAGGER Concepts dataset (Schlimmer and Granger 1986). 

it is a supervised approach. Both of these supervised approaches use the class label 

information to reinforce the knowledge growth within the tree, allowing them to 

adapt to the change faster than they would have been able to without it. Figure 12 

illustrates how the three most advanced versions of the FLORA algorithm adapt to 

the STAGGER concepts dataset. Unlike the results shown in  

 
Figure 37. The learning response to concept drift of FLORA upon the 
STAGGER Concepts dataset (Widmer and Kubat 1996). 

 



 
 

- 116 - 
 

Figure 9 the dataset is slightly larger this time while still being generated upon the 

same concepts. Each concept lasts 40 instances, with 120 instances being observed in 

total. Separate from these 120 instances, there are 100 test instances of each of the 

three concepts. After each of the 120 instances is incorporated, 100 instances of the 

current class are then trialled against the method. As expected, similar to situation 

with STAGGER, the predictive accuracy of the method drops dramatically after the 

concept drifts suddenly. The three variations of the method then relearn the problem 

space achieving almost perfect prediction towards the ends of each of the sets of 40. 

DynamicWEB is quite a different learning method to the two that are shown above, 

and also markedly different from COBBIT, which will be discussed below. 

DynamicWEB is an unsupervised approach which differentiates it from the two 

listed above. It also does not operate using a time window as COBBIT and FLORA 

do. Further, it operates upon profiles, updating items that are being re-sampled. As 

such it doesn’t truly fit the mould for the type of problem demonstrated in the 

STAGGER concepts dataset, for the 120 instances are meant to stand independently 

of each other. To overcome this, and to allow the reaction time of DynamicWEB to 

be compared against the others, an identifier was added to the dataset. The identifier 

is a number  

 
Figure 38. The learning response to concept drift of DynamicWEB upon the 
STAGGER Concepts dataset averaged across 100 runs 
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between 1 and 40, which was repeated once in each of the three concept groups. The 

orders were randomised so that the identifiers are not sequential or in the same order 

in each segment. After each instance within the dataset had been assimilated into the 

concept hierarchy, a set of 100 test instances for the current goal concept was run. 

The predictive accuracies, averaged over 100 runs of the test datasets, are shown in 

Figure 38. The learning result shown in Figure 38 is comparable to those shown 

above in relation to STAGGER and FLORA. The speed of recovery from the sudden 

concept drift is slower in DynamicWEB than shown within FLORA; however this is 

largely due to the unsupervised nature of DynamicWEB. DynamicWEB’s adjustment 

to the concept drift as a result of the updating of knowledge, not from a supervised 

reaction that forces the removal of knowledge. DynamicWEB performs least 

favourably on the second concept.  However STAGGER also failed to perform in 

this case, along with all but one of the FLORA models. The one FLORA model that 

did achieve this, did so near the end of the concept, with this concept being the 

slowest of the three concepts that it learned. As we will be examining the 

performance of DynamicWEB on this dataset in a single run shortly, also included in 

Figure 38 is median of the trial, to compare with the average. DynamicWEB (using a 

0.009 category utility threshold) performed quite well on most random orders 

presented on this problem. Further these two measures show that the single ordering 

used below is fairly typical. 

The fourth method that we will examine here in relation to the STAGGER concepts 

dataset is the other COBWEB-based method, COBBIT. The same ordering of data 

used with DynamicWEB (Appendix B) was also used with COBBIT. Using a single 

order, instead of multiple runs, allows a direct comparison between the two similar 

methods’ performance on the same ordering of data and allowing that order to play a 

contextual role. The version of COBBIT being used here (built upon the same 

version of COBWEB implemented for DynamicWEB) is a purely windowed, 

unsupervised version. As discussed earlier in Chapter 4 COBBIT did have a 

supervised addition that dynamically shortened the window size but that was not 

used here. Instead a purely unsupervised comparison was chosen. The datasets which 

were examined within the Kilander and Jansson (1993) publication of COBBIT 

examined single and multiple concept drifts, with window sizes from 16% of the size 

of the dataset up to the complete dataset. Within the single drift scenario, in a dataset  
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Figure 39. The learning response of DynamicWEB and COBBIT with the 
two window sizes of 10 and 20 upon the STAGGER Concepts dataset. 

of 30 instances, the best performance was found to be with window sizes of 10 and 

15 instances. To translate this to window sizes to trial on the STAGGER concepts 

dataset, window sizes of 10 and 20 were tested and are shown in within Figure 39. 

These are similar sizes to those trialled by Kilander and Jansson, especially the quite 

small value of 10. This value, as seen in Figure 39, reacts quite quickly when drift 

occurs, being the fastest to improve the predictiveness of the model to above 75% on 

both occasions. However, 10 instances is not enough to completely describe the 

STAGGER concepts dataset and even before drift occurs it suffers from an inability 

to fully describe the problem in such a small window. This sized window never 

predicted at 100% accuracy on the second or third concept. The window size of 20 

overall performs much better than the size of 10, eventually reaching 100% accuracy 

on the 3rd concept after both drifts have taken place. It, like DynamicWEB, fails to 

fully master the second concept, although the window size of 20 was predicting at 

20-40% more accuracy for about a quarter of the second concept. Upon examination, 

this was seen to be a peculiarity of the ordering which happened suit a window size 

of 20. However as can be noted, this did not remain the case, with DynamicWEB 

overtaking in a steady learning curve. Within the third concept however the window 

size of 20 was close behind in mirroring the predictive accuracy of DynamicWEB. 

Both of the window sizes tested above were smaller than the size of each of the 

concepts, while in (Kilander and Jansson 1993) tested sizes that were larger than the 
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concept, even up to the size of the whole dataset. In Figure 40 window sizes of 40 

and 60 were trialled upon the STAGGER concepts dataset. The window size of 40 

effectively matches what DynamicWEB is doing by having 40 profiles that are 

updated, effectively removing the old knowledge irrespective of the point in the first 

concept at which it was added (compared to the first-in first-out approach used in 

COBBIT). The variation shown in the graph is purely the variation due to this 

ordering. However, the item of note within this graph is that, when you increase the 

window to a size larger than the concept size, the method’s predictiveness suffers 

greatly. This is not a surprising result, but when combined with the poor performance 

of the small window above, it does highlight the importance of having the correct 

window size for the dataset being examined. This parameter tuning is not required in 

DynamicWEB, and it is in that regard closer to the parameter free model that was in  

the original COBWEB. Within a scenario where objects are sampled multiple times 

and there are identifiers for the individual objects being sampled, being able to 

leverage these identifiers alleviates the need to tunes parameters to achieve the best 

performance within a changing stream of data. 

 
Figure 40. The learning response of DynamicWEB and COBBIT with the 
two window sizes of 40 and 60 upon the STAGGER Concepts dataset. 
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6.6 SUMMARY 
This chapter has focused on verifying two different facets of the work reported in 

this thesis. Firstly the COBWEB implementation used for this work was examined to 

ensure that it was a correct duplication of Fisher’s original implementation. This was 

done by comparing the predictive performance achieved by our implementation to 

that reported in Fisher’s publications. As this work builds upon the work previously 

carried out in COBWEB and CLASSIT, it is obviously important to make sure the 

implementation is as accurate as possible. 

 The second half of the chapter examined the various additions that comprise 

DynamicWEB. The chapter explored the update mechanism at an individual-profile 

level and at a whole-dataset level within the Dynamic Weather dataset. In addition to 

this, a multiple tree implementation was examined on a dataset contained within 

Gennari’s paper detailing CLASSIT. 

After this, the performance of DynamicWEB was compared with other learners, 

when used on the STAGGER Concepts dataset. A comparison was made with the 

published results of two unsupervised learners (STAGGER and FLORA), This 

comparison showed that DynamicWEB was able to perform reasonably effectively. 

After this, a direct comparison was then made to the related learner, COBBIT, upon a 

single ordering of the dataset, illustrating that it could perform slightly better than the 

window-based approach, without the need for tuning the window size. 

This chapter has established that DynamicWEB is a capable learner capable of 

adapting to change that may occur within a data stream. This was shown through 

using it on various simple learning problems that are easily understood. The 

remainder of this thesis uses datasets that are real world problems and not toy 

datasets. 

 



 

 
 

 
 
 

 

 

 

 

7 Examining Real World 
Datasets 

“In times of change, learners inherit the Earth, while the learned 
find themselves beautifully equipped to deal with a world that no 
longer exists.” 
 

Eric Hoffer (July 25, 1902 – May 21, 1983)  
 American social writer and Philosopher 
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INTRODUCTION  
In the preceding chapter, several artificial datasets were examined using the 

DynamicWEB conceptual clustering technique. The small size of these datasets and 

prior use by other authors mean that the content of these datasets is largely known. In 

this chapter several real-world datasets will be examined to see whether or not 

DynamicWEB can extract from them any structure or meaning that is not 

immediately obvious. The predictive ability of Dynamic Web will also be 

demonstrated on a large dataset. 

7.1 INTRODUCING THE DATA 
This chapter examines the performance of DynamicWEB on three datasets of a non-

artificial origin. The first two of these were suggested by and sourced from the 

Australian Bureau of Statistics (ABS). They were selected after discussing the style 

of problem DynamicWEB was aiming to address with an employee of the ABS 

(Edmondson 2009). These two datasets will be discussed in more depth in their 

respective sections, but in overview, they detail various economic measures relating 

to the States and Territories of Australia. The first examines economic measures of 

the national product, by state, while the second describes the labour force, by 

industry, using measures relating to both part-time and full-time employment. 

However, it is worth noting that these datasets were examined in this thesis, not by a 

demographer but by a data mining researcher, and so any structure that is found has 

been interpreted by a non-expert in the field unless otherwise stated. The datasets are 

being examined here as an example of datasets on which DynamicWEB could be 

used, and the discovery of structure within the data is goal of this chapter. The third 

dataset examined within this chapter is the Physiological Modelling dataset 

published by BodyMedia (2004). This dataset contains the measurements recorded 

by a wearable computer monitor worn by a group of human test subjects as they 

undertook a range of activities. This sizable dataset will be examined here to present 

DynamicWEB with a prediction problem for comparison with other authors’ 

performance. 
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7.2  AUSTRALIAN NATIONAL ACCOUNTS: STATE 
ACCOUNTS 

The National Accounts dataset (ABS 2009) describes various economic measures for 

the eight Australian states or territories. The measures were taken each year for 17 

years between 1990 and 2006. The measures, listed in detail in the table below, are 

measures of gross state product and income on a year-by-year basis for each state. 

All of the attributes, with the exception of the identifier and a date stamp, are 

numeric in nature. There is a total of 16 attributes for each state or territory. With 17 

measurements of each of the 8 target objects the dataset contains 128 total instances. 

This dataset does not contain any class labels.  However it does present a scenario for 

illustrating any structure that may be present within the dataset. Beyond discovering 

whether DynamicWEB can represent the structure of the dataset at any given point of  

# Type Description  

1 ID State or Territory identifier 

2 Date Date of data being recorded 

3 Numeric Gross state product: Chain volume measures 

4 Numeric Gross state product: Chain volume measures - Percentage changes 

5 Numeric Gross state product per capita: Chain volume measures 

6 Numeric Gross state product per capita: - Percentage changes 

7 Numeric Real gross state income: Chain volume measures 

8 Numeric 
Real gross state income: Chain volume measures - Percentage 
changes 

9 Numeric Real gross state income per capita: Chain volume measures 

10 Numeric 
Real gross state income per capita: Chain volume measures - 
Percentage changes 

11 Numeric Gross state product: Current prices 

12 Numeric Gross state product: Current prices - Percentage Changes 

13 Numeric Gross state product: Ratio 

14 Numeric Gross state product per capita: Current prices 

15 Numeric Gross state product per capita: Current prices - Percentage Changes 

16 Numeric Gross state product per capita: Ratio 

Table 28. A description of the attributes that are within the National 
Accounts dataset. 
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time within the length of the period it covers, there is also the question of whether 

building a profile over time can discover more structure within the dataset by 

utilising the overall context of the dataset. This is undertaken through the use of 

derived attributes. In addition to this preservation, multiple trees are also trialled, 

splitting the dataset up into portions. Each of these portions is then examined 

simultaneously in parallel trees. 

Several trials were completed using various combinations of the attributes listed in 

Table 28, together with derived attributes. The initial trials did not discover much 

structure within the dataset and are not shown here, but can be found, with 

accompanying discussion, in Appendix C. The most structure that was found in those 

trials was found in hierarchies based on the attribute groups that were weighted 

slightly more too scaled metrics. The scaled metrics are largely per-capita-based 

measures. As the task being examined involves profiling the eight state and 

territories in relation to each other, it is logical that attributes that largely reduce the 

effect of the population size of the states compared to each other would allow for a 

more meaningful comparison. With this in mind, another trial was run, grouping 

similar numerical attributes together. The first tree is comprised of the six attributes 

(Numbers 4, 6, 8, 10, 12, and 15 in Table 28) that record the percentage change 

within the measures. The second tree contains the attributes that relate the measures 

on a per capita basis (Numbers 5, 6, 9, 10, 14, 15, and 16). There are two attributes 

here, number 6 and 10, which overlap and appear in both of these structures. The 

same derived attributes, mean and standard deviation, were still included in both of 

there trees. 

The structures produced by these two trees across the whole 17 years are shown in 

Figure 41. In the tree that tracked the profiles containing the percentage change data, 

the structures produced have revealed stronger relationships than were present within 

the context-less structures in Appendix C. On several occasions, multiple profiles are 

deemed similar enough to be present at the one node, while more objects are also 

present within child nodes. The hierarchy that contained the per-capita data is also 

more structured than that obtained from the other context trials and the context-less 

benchmark, but does not exhibit as many relationships as the percentage change tree, 

which may indicate some independence between the  
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Percentage Change – Full 17 Years Per Capita – Full 17 years 

  
After 4 years (observed 32 instances) After 4 years (observed 32 instances) 

  
After 8 years (observed 64 instances) After 8 years (observed 64 instances) 

 
 

After 12 years (observed 96 instances) After 12 years (observed 96 instances) 

  
After 17 years (observed 136 instances) After 17 years (observed 136 instances) 
Figure 41. The Percentage Change and Per Capita trees with the profiles 
being based on the full set of 17 years worth of data. 

attributes being examined in the two different trees. Overall the two structures do not 

have a great deal in common, based upon their structural characteristics, beyond the 

similar overall divisions in the first and last tree. A further trial was then completed 

to examine the impact of using a 5-year trial window on the derived attributes within 

the profiles and the results of this are shown in Figure 42. These two sets of 

structures are quite different from those produced using the complete 17 years’ worth 

of data. This illustrates that the change occurring within the dataset is not uniform 

and that short term and long term results differ from one another. Therefore there is  
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Percentage Change –5 Years Per Capita –5 years 

  
After 4 years (observed 32 instances) After 4 years (observed 32 instances) 

  
After 8 years (observed 64 instances) After 8 years (observed 64 instances) 

  
After 12 years (observed 96 instances) After 12 years (observed 96 instances) 

  
After 17 years (observed 136 instances) After 17 years (observed 136 instances) 
Figure 42. The Percentage change and Per Capita trees with the profiles 
being based on a 5 year window. 

value in being able to adjust how much context is being retained by DynamicWEB, 

depending on the domain that is being examined and the requirements of the analysis 

being undertaken. On comparing the two structures, there are fewer tight clusters 

found within the second hierarchy, based upon the percentage change, although the 

profiles are still located in the same neighbourhoods of the overall structure. The per- 

capita hierarchy possibly yields slightly more structure using the time window, with 

the structure at 8 years having grouped several profiles together and with the 
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structure that is shown after 17 years having WA, NT and QLD now having been 

grouped together under a parent node instead of all being within their own child of 

the root node. 

The two hierarchy series illustrated in Figure 41 and Figure 42 were shown to Dr 

Edmondson of the ABS (2009), who has had previous experience with this dataset.  

After examining the trees, he said that DynamicWEB had found a structure that is 

comparable to those produced by other, similar learning methods. There is a clear 

division present towards the end of the dataset.  As expected, QLD, WA and NT 

were clustered together, presumably due to the recent mining boom in these states, 

while the other, larger east coast economic centres, were together. He found the 

occasional grouping of SA with other states to be of interest. It is somewhat of a 

wildcard state as, due to various historical factors, it is quite different to the others in 

an economic sense. Its similarity to other states varies over time across the different 

attributes, not remaining that much ‘alike’ another state for very long. Its higher 

mobility within the structure compared to other states illustrated that it was harder to 

cluster. Overall, Dr Edmondson was quite pleased with DynamicWEB’s performance 

using the dataset. 

The following diagrams of the knowledge hierarchies produced by DynamicWEB 

allow for relationships between the different profiles to be compared visually. The 

concept descriptions within the knowledge hierarchies can also be extracted and 

examined.  

Within Figure 43 the concept descriptions are detailed for the two nodes that are the 

children of the root note within the final Percentage Change structure illustrated in 

Figure 41. The Nation Accounts dataset is a purely numeric dataset and so the 

concept description is comprised of a set of mean and standard deviation values of 

the 18 attributes within each profile. 

Within these two descriptions there are a number of ! values equal to 1.0. This is the 

acuity value which is the minimum allowed value of deviation and 1.0 is the value 

used throughout the thesis in line with (Gennari, Langley et al. 1989) as discussed 

within Chapter 4 (CLASSIT). On this occasion it infers that this top division is fairly  
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Branch contains: QLD, NT and WA Branch contains: NSW, VIC, TAS, 
ACT, SA 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 43. The Concept Description of the two child nodes of the final 
structure shown within Figure 41. 

stable, and that there is not a great deal of diversity in attribute values within each of 

the two branches. 

These descriptions allow for the clusters created to be examined and understood. In 

this example it can be seen that the profiles with the greatest percentage increase, 

across the period of the dataset, have been separated from those with lesser 

percentage increases. Most of the description values within the concept that contains 

Queensland, the Northern Territory and Western Australia are larger than those in the 

other side of the tree. The largest differences between the two concept descriptions 

are the derived trending values for attributes 6 and 8 (Gross state product per capita 

and Real gross state income: Chain volume measures). 

In addition to the concept descriptions outlined, there are the two concept  

Att Mean ! 
#4 5.55 1.0 

#6 3.70 1.13 

#8 9.41 1.0 

#10 7.44 1.0 

#12 13.62 1.0 

#15 11.61 1.004 

STD #4 2.63 1.0 

STD #6 2.41 1.0 

STD #8 3.79 1.109 

STD #10 3.32 1.282 

STD #12 4.30 1.193 

STD #15 4.02 1.231 

Trend #4 1.22 1.301 

Trend #6 6.78 1.0 

Trend #8 5.22 2.048 

Trend #10 -13.67 1.0 

Trend #12 -9.67 1.0 

Trend #15 -2.56 6.637 

Att Mean ! 
#4 2.11 1.0 

#6 1.36 1.0 

#8 2.6 1.0 

#10 1.84 1.0 

#12 5.06 1.0 

#15 4.31 1.0 

STD #4 2.31 1.0 

STD #6 2.38 1.0 

STD #8 2.11 1.0 

STD #10 1.96 1.0 

STD #12 2.41 1.0 

STD #15 2.32 1.0 

Trend #4 0.07 2.49 

Trend #6 3.36 2.34 

Trend #8 0.64 1.08 

Trend #10 -13.36 1.0 

Trend #12 -9.36 1.0 

Trend #15 3.38 11.79 
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Branch contains: QLD, NT and WA Branch contains: NSW, VIC, TAS, 
ACT, SA 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 44. The Concept Description of the two child nodes of the final 
structure shown within Figure 42.  

descriptions shown in Figure 44, which are those for the same two child nodes of the 

root (in Figure 43) but from the windowed data shown in Figure 42. These two nodes 

contain the same profiles of states as the other concept description, but this time the 

derived attributes are only built upon the 5 most recently observed years. These two 

different sets are similar, which is to be expected since they are profiling the same 

target objects, but they also show some difference which is to be expected because 

they been built using a different number of observations of the target objects. In 

analysing these two concept descriptions to discover whether this difference was 

significant, a paired t-Test (Paired Two Sample for Means) was undertaken. The 

difference between the two concept descriptions for the branch containing QLD, NT 

Att Mean ! 

#4 5.77 1.5 

#6 3.70 1.48 

#8 9.33 1 

#10 7.73 1 

#12 14.57 1.35 

#15 12.33 1.50 

STD #4 3.22 1 

STD #6 2.84 1 

STD #8 4.5 1 

STD #10 3.63 1 

STD #12 6.4 1.15 

STD #15 5.80 1.16 

Trend #4 0.67 2.31 

Trend #6 7.33 1.15 

Trend #8 4.67 3.05 

Trend #10 -14 1 

Trend #12 -10 1 

Trend #15 1.33 11.01 

Att Mean ! 

#4 1.86 1 

#6 1.04 1 

#8 2.71 1 

#10 1.9 1 

#12 4.91 1 

#15 4.11 1 

STD #4 2.04 1 

STD #6 2.11 1.02 

STD #8 1.46 1 

STD #10 1.09 1 

STD #12 2.45 1 

STD #15 2.27 1 

Trend #4 -0.78 1.93 

Trend #6 2.92 2.16 

Trend #8 1.071 1.49 

Trend #10 -13.36 1 

Trend #12 -9.36 1 

Trend #15 5.93 9.23 
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and WA profiles was statistically significant (t (35) = -2.97, p<.001 ! 0.05). 

However, the alternate branch was not considered significant with a ! of 0.05. While 

this does split the results of the significance built upon these different structures, the 

fact that there is enough difference for one of the top level divisions within the tree to 

be considered notably different means that the concept hierarchy produced is also 

significantly different when constructed with a varied amount of the context being 

retained.  

The examination of this dataset has shown DynamicWEB was able to create and 

maintain simple profiles using a moderate number of observations of a few target 

objects. Structure could also be discovered within the National Accounts dataset 

using derived attributes preserving the context of change occurring within the 

dataset. 

7.3  LABOUR FORCE DATASET 
The second dataset to be examined here is another sourced from the Australian 

Bureau of Statistics. It is called the “Labour Force” dataset ((ABS) 2009). The 

Labour force dataset describes the numbers of persons employed in the 8 States and 

Territories of Australia based upon the industry in which they work. The data is also 

divided into the number of people who are working full time and the number 

working part time, with a total also included. A list of the industries that are recorded 

within the dataset is given in Table 29. The dataset covers a period of 24 years with 4 

measurements recorded within each year between November 1984 and August 2008. 

There is a total of 95 recordings per state within the dataset (with partial years 

recorded also counted).  

This dataset was examined briefly in its current form and the results of this are found 

in Appendix D. These results show that the dataset is very regular and also presents a 

similar learning scenario to the National Accounts dataset. As such, after this initial 

trial, the dataset was transformed so that the entities being tracked were the 

individual industries themselves. This presents a dataset with twice as many target 

objects, but still with many attributes describing each profile, as each state’s data 

items relate to an industry at one point in time. As a result there is a total of 1710 

observations of 18 target objects, each with 24 attributes (three for each state). 
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# ID Attribute 
1 AFF Agriculture, Forestry and Fishing 
2 Mining Mining 
3 Manuf Manufacturing 
4 EGWS Electricity, Gas and Water 
5 Const Construction 
6 WholeT Wholesale Trade 
7 RetailT Retail Trade 
8 ACS Accommodation 
9 Tran Transport and Storage 
10 CommS Communication and Services 
11 FinIn Finance and Insurance 
12 PropBus Property and Business Services 
13 GAD Government Administration and Defence 
14 Edu Education 
15 HealCS Health and Community Services 
16 CultRS Cultural and Recreational Services 
17 PerSer Personal and Other Services 
18 Total Total (All Industries) 

Table 29. Industries that are described by State or Territory within the 
Labour Force dataset. 

Within this dataset, which details each industry individually, the concept that is of 

most interest, apart from the comparison between each of the industries, is the 

comparison between the part time and full time jobs in each industry. Therefore, in 

examining this dataset with DynamicWEB, a two-tree forest was created with one 

tree tracking the full time employment data, while the other tracked the part time 

data. As with the previous dataset, the first trial examined is a simple profile, based 

on the mean and standard deviation of the observed attributes. The result was a set of 

profiles in each tree, with each profile containing 24 attributes: with the most 

recently observed value, the average and the standard deviation recorded for each 

attribute. Eight structures, produced by DynamicWEB over the period of a single 

year in 1995 (after having incorporated 11 years worth of observations) are shown in 

Figure 45. Four of the structures are for the full time employees and four for the part 

time employees. The structures were for the most part fairly stable with only a small 

degree of migration taking place over the course of the year. Changes produced 

within the tree rarely altered the nearest neighbours of a profile and were generally  
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Full Time Employees Part Time Employees 

 
 

 
 

 
 

 
 

Figure 45. Eight structures produced covering the four observations that 
occurred in 1995. The left set of structures represent the full time employees by 
industry, and the right set represent the part time employees. 

just the result of a split or merge operation taking place during the update process. 

The knowledge hierarchies produced (Figure 45) model the industries within the 

Labour Force dataset from an overall size perspective. Industries that are large are 

grouped together, and those that are small are grouped together. While this is useful 

for monitoring industry trends and growth, also of interest would be the changes that 



Chapter 7 - Examining Real World Datasets 

- 133 - 

are taking place that are independent of industry size. Another trial was conducted, 

this time using a forest of two trees, one for full time employees and one for part 

time employees, but where all the attributes are derived attributes. The attributes 

used are the trend, the standard deviation (as a percentage of the most recent 

observed value) and the difference between the most recent observed value and the 

second most recent value (also as a percentage of the most recent value). All three of 

these focus on the change that is taking place, with the first two tracking the change  

Full Time Employees Part Time Employees 

 
 

  

  

  
Figure 46. Eight structures formed over the year 1995. The left is formed 
upon the data relating to the Full Time Employees, while the right is the Part 
Time employees using trend instead of mean. 



 
 

- 134 - 
 

over time, while the third focuses on the scale of the most recent change. The 

structure that has been produced with this derived attribute concept hierarchy is less 

stable than the structure produced using the mean- and standard-deviation-based 

attributes. It is still reasonably stable, but several large restructures occur (for 

example in the 4th Full Time tree and in the 3rd and 4th Part Time trees). However the 

nearest neighbours of profiles are still largely constant across these changes. This 

may imply that some of the industries have undergone similar changes to each other, 

over the course of the year, resulting in them migrating, as a group, away from other 

industries. This could be due to the influence of seasonal effects on some industries. 

Retail is an obvious example of an industry that would be affected by seasonal 

factors, and an examination of the major changes that take place within the part time 

hierarchies reveals that the Retail profile does indeed move from its previous 

position in the first three tree structures to a position located further down the tree in 

the fourth tree structure. The seasonal nature of the Retail industry is not necessarily 

the underlying cause of this change in its position within the fourth tree structure, but 

it is a possibility. 

The results from this dataset were also shown to Dr Edmondson of the ABS (2009) 

and he was similarly (as with the National Accounts dataset) pleased with 

DynamicWEB’s performance. He agreed with comments outlined above in relation 

to the Retail sector’s profile within the concept hierarchies. However, he indicated 

that in its present form this dataset was harder to evaluate and extract value from, due 

to the number of profiles present compared to that of the National Accounts dataset. 

He suggested that the hierarchies would be of substantial interest if they were 

viewable in a visualisation package. This would facilitate examination of the concept 

descriptions ‘on the fly’ as the concepts are formed to enable more knowledge to be 

extracted from the hierarchy. This idea is discussed further in Chapter 9. 

7.4 PHYSIOLOGICAL DATA MODELLING CONTEST 
The two Australian Bureau of Statistics datasets discussed in the previous section 

were examined in an effort to discover structures within these datasets, and to 

establish whether the use of profiling could improve our ability to produce 

knowledge hierarchies through the preservation of context. This section examines the 



Chapter 7 - Examining Real World Datasets 

- 135 - 

predictive accuracy of DynamicWEB within a dataset which contains thousands of 

updates occurring to each profile.  

The Physiological Data Modelling Contest (PDMC) dataset is a collection of 

recordings that were gathered using a wearable body monitor produced by a 

company called BodyMedia (2004). The dataset was supplied by BodyMedia for a 

contest that was held at one of the workshops at the 2004 International Conference 

on Machine Learning (ICML). The dataset consists of the combined outputs recorded 

by wearable body monitors worn by the members of a sample group of twenty one 

people. These participants each pursued their ordinary daily routines, whilst wearing 

the monitor, and simultaneously noted down the activities that they were 

undertaking. Some of the activities recorded included sleeping, watching television, 

working at a desk, riding a bike, driving a car and using a computer. Periods of the 

day that were not recorded still remained within the dataset but are noted as being 

unlabelled. In total there are about 200,000 measurements contained within the 

dataset. 

Along with the information about the wearer’s activity during the day (listed in the  

# Attribute  Description 
1 User ID Numerical 
2 Session ID Numerical 
3 Session Time Time in seconds measured once a minute. 
4 Age Age in years 
5 Smoker Whether the person smokes or not (1, 0) 
6 Handedness Left or Right handed (0,1) 
7 Gender Male or Female (0, 1) 
8 Annotation Numeric based code 
9 Sensor 1 Galvanic Skin Response (the electrical conductivity of 

the wearers skin) 
10 Sensor 2 Heat Flux (the amount of heat that is being dissipated 

through the skin) 
11 Sensor 3 Near Body Temperature (air temperature near the skin) 
12 Sensor 4 Pedometer 
13 Sensor 5 Skin temperature 
14-17 Sensor 6-9 Accelerometer (longitudinal and transverse) 
Table 30. A description of the attributes present in the Physiological Data 
Modelling Contest (PDMC) dataset. 
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dataset as the annotation), other attributes were recorded within the dataset (Table 

30). Each individual wearing a monitor is represented by a userID, and each 

continuous period, during which they wore the monitor, is listed as a session. The 

session time attribute preserves the ordering of the data in its sequential state within 

the session. The remaining attributes describe the individual’s behaviour as recorded 

by the device’s sensors or their details such as age, gender, handedness and whether 

or not they smoke. 

In the contest that was held using this data there were several learning goals to be 

achieved. Two of these involved prediction of the annotation class within a test set 

that did not contain the annotation values. The prediction scenarios were both two-

class problems, in which a single annotated activity class is to be predicted as the 

positive class, while the remainder of the activity classes are grouped together to 

form the negative class. Several of the annotations are to be ignored in each scenario 

due to the likelihood that that the positive class may have been undertaken inside 

those time periods also. For example unlabelled time periods are one of these to be 

ignored within both scenarios. The two target classes in the contest were the 

annotated activities of watching TV and of sleeping, represented by the annotation 

values of 3004 and 5102 in the dataset respectively.  

These two learning scenarios are analysed here using DynamicWEB, with the aim of 

finding out how quickly DynamicWEB is able to learn the domain and reach 

convergence. The performance of DynamicWEB was measured multiple times and 

ten-fold cross validation used to determine the average learning capability of 

DynamicWEB within this domain. The dataset was split into multiple datasets of 

10,000 observations, roughly spanning between 50 and 120 sessions. These smaller 

portions were each then used to build a concept hierarchy, and this hierarchy tested 

by measuring the accuracy of its predictions when applied to another portion of the 

data. Not all of the splits within the dataset were used, as some of them contained no 

examples of the positive class (specifically the television watching class as it only 

makes up 2.5% of the total data); however, ten trials were completed for each 

learning scenario. Note that, while this is a sequential dataset, using ten-fold 

validation is a valid testing methodology as the sessions are largely complete within 

the sequence folds, and in their comparisons to other segments of the dataset are 

merely comparing disjoint sessions completed by different users. The overall 
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structure of the dataset is not that of a single sequential data stream, but rather a 

collection of complete data streams, each one is sequential in itself. As such, each 

fold contains a collection of complete sequences, each of which forms a complete 

profile. The folds therefore all contain complete profiles enabling them to be used in 

comparison to one another.  

 
Figure 47. Learning performance of DynamicWEB upon the Sleeping and 
Watching TV scenarios using the most recently observed value. 

The first complete run of the two learning scenarios is presented in Figure 47. In this 

trial, DynamicWEB only stored the most recently observed value of each of the 

attributes that describe each target object. This also includes the class value where it 

may have changed over time. However, this value was not used within the learning 

process because it represents the target class value that is being predicted here. One 

of the results of this is that each profile stored within the hierarchy can only be used 

in the prediction of the last class that was observed from this target object. Therefore, 

if over the observed time period a profile is a member of multiple classes, then, once 

the observations cease to occur, the only knowledge that is retained from which to 

make predictions is the last known class. This is an inherent shortfall of 

DynamicWEB in relation to the storage of past contextual information. As the goal 

of DynamicWEB is to track each object and develop a profile of its activity, if we 

were to add a mechanism that divided a profile once such an event occurred we 

would then have multiple profiles for a single given object and this conflicts with the 
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main principles of DynamicWEB. However, it is acknowledged that such a 

mechanism could be useful in some knowledge domains. 

Examining the various submissions to the ICML workshop reveals a wide range of 

results. The best predictive accuracy for “sleeping” was just over 85% and for 

“watching tv”, just over 91%9. The median of the 16 submissions for the first 

scenario was 70% and the second was 82%. DynamicWEB’s performance compares 

very favourably with this, exceeding that achieved by the best performers from the 

contest held at the workshop. It should be noted, however, that the performance 

comparison shown in Figure 47 does mask a shortfall within the DynamicWEB 

results on the Watching TV scenario. This shortfall will be discussed further shortly. 

 
Figure 48. Learning performance of DynamicWEB on the Sleeping and 
Watching TV scenarios using 2 derived attributes to store contextual data. 

The previous trial of DynamicWEB’s predictive ability only stored the most recently 

observed value relating to the wearer of the device. Within the next trial, two derived 

attributes were added to the profiles to preserve some of the contextual information 

relating to the session being undertaken. The attributes that have been added are the 

                                                

9 A lower value than this was shown in the final summary presentation for the workshop without 
explanation as to why. However these higher values are reported in the presentation and the actual 
paper submissions on the PDMC website. 
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mean and the standard deviation of each of the seven sensors. These two derived 

attributes are operating within a time window of 5 observations, representing 5 

minutes of recorded time. As some sessions recorded within the dataset extend over 

several hours and cover multiple different activities, using the complete set of the 

data for each session is counter-productive. A 10-minute window and a 20-minute 

window were also trialled.  The same results were found for the 10-minute window 

as were found for the 5-minute window, but the accuracy for the 20-minute window 

was significantly lower. Other methods (Gama and Rodrigues 2004) presented within 

the workshop were also based on a window of recently viewed observations. The 

results of the DynamicWEB windowed trial is shown in Figure 48 and illustrate a 

notable improvement in the speed of learning and final accuracy when using the 

Sleeping activity as the target class. The hierarchy was able to achieve a 90% 

predictive accuracy using 6000 fewer observations when using the most recently 

observed attribute values than when not using the derived attributes. The predictive 

accuracy for the Watching TV class appears to be slightly negatively affected by the 

usage of conserving the context within the derived attributes with a predictive 

accuracy that is 2.5% lower after observing 8000 instances. 

 
Figure 49. Comparison between the classification accuracies for just the 
positive class of the Watching TV scenario in the two trials. 
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Both of the figures above show DynamicWEB in a positive light, with the learner 

performing well when predicting the Watching TV class in both trials, and the 

Sleeping class improving markedly in the second. However, in both of these trials the 

Watching TV class predictive performance using DynamicWEB’s is being overstated 

due to the nature of the data which is being examined. The over 90% accuracy 

illustrated is the accuracy of predicting both the positive and negative class within 

the problem; however, the positive class is quite rare within the dataset, making up 

only about 2.5% of all the activity values. With such an unevenly distributed dataset, 

if all instances were simply classified as the negative class then a 97.5% accuracy 

would be attained. Obviously this would not be an acceptable model, but it does 

highlight the need to examine what the classification accuracy of the positive class is 

by itself. Within Figure 49 the predictive accuracy results of just the positive class 

for the Watching TV scenario are shown. The x-axis in this graph represents 

completely formed profiles averaging the results from 10 separate datasets that each 

had at least 100 different profiles. These vary in length from 8,000 to 12,000 total 

observations each. Even though only 2.5% of all the instances recorded in the dataset 

are for the class to be predicted here, most of these datasets actually contained 3 or 4 

objects of the goal class in their final produced hierarchy. This slight over-

representation is possibly a quirk of the dataset with the participants switching off 

their sensor while watching some television for some reason. The results for the two 

sets of attributes shown in Figure 49 illustrate a much greater difference between the 

two than that visible within Figure 47 and Figure 48. The performance for the most 

recently observed values is quite disappointing, with less than 30% accuracy 

achieved after 100 profiles have been examined. When derived attributes are 

introduced, preserving some of the context of the observations creating the profiles, 

the performance more than doubles. While this is obviously not as impressive as the 

results shown in the earlier figures, where accuracies exceeded 95%, it does 

accurately represent the true performance of DynamicWEB on the dataset. Further 

profiles were added in an attempt to improve DynamicWEB’s performance, but they 

didn’t succeed in doing so, with just over 55% being the final average accuracy 

achieved. On several runs within the 10-fold cross validation process an accuracy of 

up to 68% was attained, but again on several other runs lower accuracies were 

achieved.  



Chapter 7 - Examining Real World Datasets 

- 141 - 

This aspect of the dataset was noted by the contestants Wei-Hao Lin and Alexander 

Hauptmann (Lin and Hauptmann 2004), who stated that “the model suffers greatly 

from the scarcity of positive sequences and performs poorly” although they did not 

detail what predictive accuracy they had achieved on just the positive class. 

However, another entrant to the contest (Azé, Lucas et al. 2004) that didn’t highlight 

this issue but did detail their performance upon just the positive class by itself, 

reporting a result of 67.5%. This is better than that achieved by DynamicWEB by 

about 10%, which does highlight that the initial results for DynamicWEB shown in 

Figure 47 were covering a shortfall in predictive performance. The Sleeping activity 

class does not suffer from this same difficulty as it represents almost 50% of all of 

the observations within the dataset. Although, generally each person would only 

record one session a day of sleep, based on the percentage makeup of the activity, 

most were diligent in wearing the sensor. Overall it can be said DynamicWEB has 

performed fairly well in comparison with the contestants in the ICML contest. 

7.5 SUMMARY 
Within this chapter three non-synthetic datasets have been examined. The first 

dataset (the National Accounts dataset) was sourced from the Australian Bureau of 

Statistics. It was examined to see if a knowledge hierarchy displaying structure 

within the datasets, between the states and territories, could be produced. It was 

found that using derived attributes within the learning process enabled significant 

structure to be discovered. 

This was then followed by a second dataset (Labour Force) that was also sourced 

from the ABS. Labour Force initially presented a similar learning scenario with more 

recordings of the states and territories, but in relation to employment in 17 industries. 

This dataset was transformed to profile the industries themselves across the states. 

These were then compared with each other in the part time and full time contexts. 

Unlike the National Accounts dataset, which only contained one annual 

measurement, Labour Force contains 4 measurements per year. A single year about 

half way through the dataset was examined quite closely, showing how the structure 

drifted over the year, with some objects, or groups of objects migrating from one 

branch to another within the hierarchy. 
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The third dataset examined was one that presented a classification scenario in the 

presence of very dynamic and highly dense data containing thousands of recordings 

of multiple target objects, across many sessions. DynamicWEB showed here that it 

was able to operate within an environment of great change and to still produce 

accurate predictions. 

Within this chapter the ability of DynamicWEB to profile activity across multiple 

observations was extended beyond that which was shown in the previous chapter. 

DynamicWEB’s ability to profile activity across multiple observations, preserving 

the context of time, makes it quite a unique unsupervised learner. 
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8. 8 

“He that will not apply new remedies must expect new evils; for 
time is the greatest innovator.” 
 

Sir Francis Bacon (22 January 1561 – 9 April 1626) 
 “On Innovation," Essays, 1597 
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INTRODUCTION  
The research described in this thesis was originally inspired by a detection problem 

within the network security domain. In the previous two chapters we have examined a 

combination of small synthetic machine learning datasets and several non-synthetic data 

mining datasets, all of which were un-related to network security. This chapter will 

describe the use of DynamicWEB upon network-based data, including data related to the 

original security problem. 

8.1 INTRODUCTION TO THE DATA 
DynamicWEB was produced in response to a detection problem that was discovered 

while research into scan correlation was being under taken. This research will be 

described briefly to provide some context for the detection problem. The fundamentals 

of this problem, along with other security detection scenarios, drove the philosophical 

design principles that led to the development of DynamicWEB. Within security 

research, in the fields of intrusion detection, scan correlation, and other detection 

domains, behaviour profiling is a topic which has been subject to much investigation 

(Amoroso 1998). Developing profiles of certain activities is the foundation of anomaly 

detection. DynamicWEB, as has been outlined in previous chapters, develops profiles 

across multiple observations of the same target objects, retaining some of the context 

across these observations. This chapter will describe the construction of profiles, initially 

based on port scan activity from source IP addresses, with the objective of inferring 

relationships between different port scan profiles. After this, a dataset detailing the 

network performance of a large number of computers upon a national private computer 

network will also be examined. Both of these activities require profiles to be built, based 

upon events relating to networked computers that are sampled multiple times. These 

profiles operate within a time context, as the events are sequential through time, but are 

tracking many different individual computers which have a wide geographical spread. 
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8.2 SCAN CORRELATION 
The use of network technologies, especially the internet, has become extremely 

widespread in the last few decades. Most people now use computer networks not only 

within their working lives, but also recreationally. Ecommerce is a massive industry, 

with an online presence now seen as a necessity for businesses. However, in addition to 

these productive uses there are also networked users who wish to use these widespread 

networks for malicious reasons. Due to the sheer size of the networks that spread around 

the globe, those who wish to do harm to others have a barrier which they first must 

cross: locating targets. Over the last decade the malicious users who have had the most 

impact on a global scale through network misuse are those who have used vast numbers 

of compromised computers to accomplish some task. Worms had a large impact during 

the early 2000’s while bot-nets are currently an area of concern among security experts 

(Bailey, Cooke et al. 2009). A key component in both of these forms of attack, and 

indeed all network attacks, is knowledge of the address of possible target computers. 

This knowledge is usually obtained by the use of port scans. A port scan is basically the 

reconnaissance portion of an attack upon a given computer. It is carried out via the use 

of automated (or partially automated) port scans by which an intruder is able to discover 

populated IP addresses, together with key information about a host computer, such as the 

operating system being used, what ports are open and whether certain applications are 

being run. This information can then be used to launch an attack against the computer, 

attempting to make use of some existing vulnerability for that specific platform. The 

research described in this section aims to develop a profiling method that links multiple 

source IP addresses together as one entity. The intention of this technique is to show that 

two attacking profiles originate from the same user, who has changed his IP address to 

avoid detection.  

8.2.1 PORT SCANS 
Throughout much of the research and development of intrusion detection systems, scans 

of hosts and ports have been described as the reconnaissance portion of an intrusion (Li, 

Song et al. 2004), and only shown to be of use once further malicious activity has 

occurred. Due to the sheer number of scans that occur, it has been far too 
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computationally expensive to attempt to correlate scan data. As only a small percentage 

of scans ever translate into full blown hacking attempts this has not been seen as a 

serious concern. 

However, recent research is tackling the problem of correlating this data in an efficient 

manner (Jung, Paxson et al. 2004). If the data can be analysed and correlated, then 

further attacks may be thwarted, or scan profiles from repeat offenders constructed. The 

precursor nature of reconnaissance activity can then be used to develop defensive 

mechanisms for later use, if resultant attacks do occur. 

There has been a great deal of research conducted on the analysis of audit logs and 

network activity within the context of Intrusion Detection (ID) and much of the 

knowledge learned can be translated to scan correlation. Many challenges have been 

overcome in the past 20 years, enabling ID systems to scale to large networks while at 

the same time remaining effective. Scan correlation research now hopes to achieve these 

same twin goals. Before we examine existing scan correlation systems, it is appropriate 

to take a closer look at why scans occur. 

Every IP address gets scanned. There are a finite number of IP addresses; it is the way 

that network addressing was designed. To re-visit the often-used analogy of a hacker 

being like a burglar breaking into a computer instead of a home, imagine a burglar who 

has access to an address book of every house in the world, and can find out a few details, 

such as whether anyone lives there and what the alarm system is, without leaving the 

relative safety of his own home. This is why every computer gets scanned. Hackers have 

an address book of possible locations, and, with a handful of scans that last only a few 

seconds, they can discover whether a computer is at the address and can identify some of 

the services that it is running. Figure 50 illustrates recorded activity of a scanner probing 

250 IP addresses in less than 1 minute. 

There are many readily available tools which allow for various automated scans to be 

completed at the click of a button. The most commonly used probing utility, used both 

by system administrators and malicious users alike, is called nmap (fyodor 2005). Nmap 

allows for a wide range of different scans to be completed over various IP ranges or 
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Figure 50. A source IP recorded scanning across an entire class C IP address 
range. 

lengths of time. It comes equipped with over 700 different recognisable operating 

system finger prints to match to scan results. Furthermore, it also allows for various 

scans, such as idle scans, that guarantee anonymity. An idle scan involves using a 

second computer as an intermediary to hide the identity of the scanner (Zalewski 2005). 

The attacking PC probes the target, spoofing the source address as being from an idle 

computer, while at the same time constantly probing the idle PC. If the idle computer is 

only responding to the hacker’s activities, the ID in the header of the response packets 

coming back to the hacker will increment when the target PC responds to the spoofed 

packet. This allows the malicious user to know that the target IP and port are indeed 

present and open. 

Reconnaissance activity occurs whenever an attack is about to take place. Malicious 

computer users also probe systems well ahead of a more direct attack, looking for targets 

and then weaknesses. In this way, scans are undertaken across vast ranges of IP space, 

first mapping the locations of gateways, networks and hosts, before then probing these 

computers looking for vulnerabilities to attack. However there is also scan activity 

which is benign in nature, originating from sources such as web crawlers and proxies. 

Often these types of services appear as a scanner, but are totally benign. One of the 
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challenges facing scan correlation systems is to classify benign scan activities as well as 

malicious ones. 

8.2.2 SCAN CORRELATION SYSTEMS 
This section will briefly examine two scan correlation systems, the first of which is 

similar in some respects to previous work completed by the authors. This work was 

detailed in section 4. Both techniques operate using statistical anomaly-based methods 

involving thresholds. Existing IDS systems such as Bro (Paxson 1999) and Snort 

(SourceFire 2004) both make use of thresholds in the context of scans. These both use 

fixed values, one of 20 and one of 100, with no apparent justification for the values 

chosen. The second scan correlation system discussed in this section shares some of the 

same goals as the DynamicWEB system introduced in this thesis. 

8.2.2.1 THRESHOLD RANDOM WALK: SEQUENTIAL HYPOTHESIS 
TESTING 

At the same time as the work discussed in section 8.2 was undertaken, similar work was 

being completed and published by Jung et al (2004). Their system focused primarily on 

distinguishing between the benign scans that take place and the malicious scans. The 

question that Jung et al were answering was how to detect when a scanner is malicious 

and when it is benign. Both Jung’s and the work in 8.2, at a fundamental level, involve 

simple profiling of scan behaviour, to extract meaning from otherwise noise-laden scan 

activity.  

Jung et al (2004) proposed a detection algorithm called Threshold Random Walk 

(TRW). The algorithm is based on the mathematical technique called Sequential 

Hypotheses Testing described by Wald (1947). The basis for the algorithm is that scans 

or failed connections to unpopulated IP space are much more likely to come from a 

malicious user than an authorized user. As a possible scan takes place for each host that 

is probed, the TRW algorithm notes whether the source IP was successful or not, with 

special attention given to whether the destination IP was in use or not. For the source IP, 

a tally is kept of the results and, once that value reaches a threshold level, a decision is 

made as to whether the source IP was an unauthorised scanner or not. The method has 
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given good results, outperforming both the Bro and Snort intrusion detection systems 

when detecting scanners. In addition, web crawlers and proxies were distinguishable 

from regular scanners, largely because they rarely probed unpopulated space. 

While the system gave good results on the networks on which it was tested, it would be 

interesting to see how it would perform on a more heavily populated IP space. The best 

results occurred on a network which was only 4.47% populated, with the second 

network tested being only 42% populated. The system seems to have been built without 

considering how many companies, government departments and countries are running 

out of IP space, or are at least avoiding attaining more, using the bulk of the IP space 

they own. This problem could however be of less relevance once IPv6 is in widespread 

use. 

8.2.2.2 SPADE AND SPICE: SIMULATED ANNEALING 
One of the most ambitious projects that has been proposed to date in scan correlation is 

the Spice and Spade System by Stainford et al (2002 ). The system was being built with 

Defense Advanced Research Projects Agency (DARPA) funding in the U.S. However, 

they lost their funding because of departmental spending cuts before it was completed. 

The authors have now moved on to other projects. 

The work that had been proposed, and partially implemented, by Stainford et al (2002 ) 

was intended to correlate scan activity and would not only classify the user as a scanner, 

but would also be able to link them to past scan activity. The goal of such a connection 

would be to link users who operate over a long time, under multiple source IP addresses, 

to avoid detection. This is precisely what is required in a system that identifies and 

tracks reconnaissance activity. The system they proposed operates with two components, 

a sensor (Spade) and a correlation engine (Spice). 

The proposed system involved Spade feeding events into Spice, along with an anomaly 

score it had generated based on the source IP’s activity (the negative log of the 

probability of the event occurring). Spice then places the event in a graph, noting the 

various properties of the event, such as source IP, target IP, target and source port and 

time. The location at which the item is placed into the graph is decided by using a search 
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algorithm called Simulated Annealing. Prior to each event being added, the graph is 

searched to locate the best location for it, placing it near events of a similar nature. It is 

here that past scans and events can then be correlated to determine whether a source IP 

has been changed. It could also be used to decide on the correct response to the user’s 

activity. However for the reasons mentioned above, Spice was never implemented. 

The approach appears to have significant potential and its results would have been very 

interesting if it had been implemented. The paper which detailed the proposal mentioned 

how it could be of great interest to implement it in a distributed fashion, allowing for a 

more robust system that would scale to very large networks. While this work was not 

completed it demonstrated a possible advance in the methods for scan correlation, and is 

a relevant pre-cursor to the work reported in this thesis. It is also an example of a related 

work that was examining profile behaviour in a similar way to that which is under taken 

in this research in relation to object drift. While that is not a term that is used by these 

authors, what they describe does fit within the bounds of the definition of object drift 

laid out in Chapter 5. 

8.2.3  PREVIOUS RESEARCH 
As mentioned above, DynamicWEB was proposed in response to some previous work 

described in Scanlan et al (2004). This research investigated whether it was possible to 

detect malicious IP addresses scanning multiple gateways upon the same network. If  

 
Figure 51. The network which was examined in the research contained multiple 
gateways. The analysis log covered this range of gateways 
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detected, the source IP address would then be blocked across all the other gateways on 

the network before it actively probed each of them. By detecting the activity and pre-

emptively blocking the IP addresses, the malicious scanners were denied the opportunity 

to probe the whole network. The source IP addresses were then unable to map out 

populated IP addresses within the network, and to learn any more information, or attack 

them. Three audit logs, of varying lengths up to a month long, were analysed in this 

work. Each audit log was a centralised log covering a range of gateways, as illustrated in 

Figure 51. More details about each of the logs are shown in Table 31. 

It is a trivial process to detect whether a source IP address probes more than a single 

gateway within a network once all gateways logs are amalgamated. In Table 31 the 

number of unique IP addresses that probed the network is shown. Across the three 

different audit logs, between 11.5 and 12 percent of source IP addresses probed more 

than a single gateway within the time span of the log. The port scanners who are 

interested in multiple gateways are in the minority. Therefore the key to being able to 

detect and react in a timely fashion is to detect source IP addresses probing multiple 

gateways in a scalable fashion. 

  Single Gateway Multiple Gateway Length 
Log 1     10 Days 

Source IP 5990 776   
% of Total 88.5 11.5   

Log 2     20 Days 
Source IP 67029 8948   

% of Total 88.2 11.8   
Log 3     30 Days 

Source IP 77431 10467   
% of Total 88 12   

Table 31. The three logs covered periods of 10, 20 and 30 days. Each log 
recorded between 11.5 and 12 percent of source IP addresses probing multiple 
gateways within the network. 

To enable this to occur, it is necessary to locate a maximum threshold period of time or 

activity, in which to monitor a source IP address. If, in this time, the source IP was 

judged to be a threat across multiple gateways then it could be blocked from the whole 

network. If it wasn’t classified as such a threat in the time period then it would be  
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Figure 52. Illustrates how long multiple gateway scanning source IP’s scan a 
single gateway before moving to the next. 

assumed they the source IP was only interested in a single gateway (on which it had 

already been blocked). 

Figure 52 demonstrates how many probes were sent before a given IP address would 

then probe a second gateway within the network. As can be seen from the graph (based 

upon data from Log 1) the vast bulk of scanners interested in multiple gateways would 

only probe a single location 6 or 7 times before moving on. Ninety percent of multiple 

gateway probing sources in Log 1 had moved on by their 10th scan. Within Log 2 and 3 

the probing sources attempted one or two probes less, possibly due to the increased 

length of the datasets allowing for more time for sources to probe another gateway. A 

threshold value of 11 was chosen as an effective value to be used. After 11 probes to a 

single gateway, the analysis engine stopped following data relating to the given source 

address. Up until that point, if any sources probed multiple gateways then the action 

module was notified and the IP was blocked from accessing the whole network. Once an 

IP was blocked across the gateways it was shown that it would quickly cease its 

activities, as shown in Figure 53. This work is discussed at more length in Scanlan et al 

(2004). 
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Figure 53. Shows how long a scanner continues to scan after being blocked 
across the whole range of gateways. 

8.3  THE PROBLEM 
Most of the port probes present within the audit logs are either benign in nature, or are 

single target host probes. The latter are simply blocked and ignored, and the source 

never probes a different target IP within the log. Source IP addresses that target multiple 

gateways on the network were examined and blocked from accessing the whole network, 

including via gateways they did not probe.  

However, the authors unexpectedly found, also within the audit logs, an unusual 

scenario, which is illustrated in part in Table 32.  The table shows four different sets of 

port scans, conducted by four different source IP addresses. Each address targeted 

multiple different gateways with the timed gaps between probes shown above. The gaps 

are markedly different from the rest of the scans within the audit logs, which represent 

60 days of traffic overall. Furthermore, there are quite a few more examples which are 

also quite different from the remainder of the scans within the log. The source IP’s in 

each of these examples are all from the same Class-C address range, as are most of the 

other examples found, with only a few coming from a neighbouring Class B range. 
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Probe # IP1 IP2 IP3 IP4 Mean (sec) STD (sec) % 
1 --- --- --- ---       
2 3 3 3 3       
3 85757 85757 85789 85742 85761 19.81 0.02% 
4 3 3 3 3       
5 21527 21519 21484 21536 21517 22.75 0.11% 
6 3 3 4 4       
7 21637 21641 21682 21621 21645 25.98 0.12% 
8 3 3 3 3       
9 21564 21587 21521 21579 21563 29.42 0.14% 
10 3 3 3 4       
11 21587 21592 21586 21588 21588 2.63 0.01% 
12 3 4 3 3       
13 21619 21618 21637 21616 21623 9.75 0.05% 
14 4 3 3 3       
15 21569 21594 21596 21592 21588 12.61 0.06% 
16 3 3 3 3       
17 21591 21593 21580 21596 21590 6.98 0.03% 
18 3 4 3 4       

Table 32. Four different sets of 18 probes each originating from a different IP 
address. The gap between the probes is shown above in seconds. In addition to 
these gap times, the mean and standard deviation of these gaps are also listed. 

It is a distinct possibility that these source IP addresses all represent the same user, and 

that the user in question is systematically mapping the network from different source IP 

addresses in an attempt to avoid detection. The goal of DynamicWEB here is to discover 

any relationships between the port scan profiles of different source IP addresses. As each 

source IP conducts another scan, its profile is updated and compared with other source 

IP profiles. This problem is one where relationships between many target objects need to 

be extracted in the confines of a dataset that contains object drift and concept drift. The 

dataset is ordered over time, with many observations of each target object, requiring that 

their observation histories need to be preserved.  

8.4 PROFILING PORT SCANS 
When profiling the activity of port scanners, there is only a limited amount of data 

known about the user who is scanning a given computer. Their IP address is known, but 

this is quite possibly fraudulent, making it unreliable as a data source. Here it is used as 

a unique identifier for the profile. The port that they are probing is known, although, 
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again, most probes are of the same ports, Previous work described in this thesis 

examined whether or not a malicious user probed more than a single gateway on the 

wider network, and so we also have that information. However, the main knowledge that 

can be ascertained about an attacker, in this scenario, is that detailed in Table 32: the 

timings of their port scans. This information can be used to build a profile of each 

scanning IP within Log 3 shown in Table 31. The content of the profile is shown in 

Table 33. 

1 Source IP The Source IP address which sent the port scan. 
2 Target IP The Target IP address for the port scan. 
3 Port The Target Port. 
4 Gap The gap in seconds since the last port scan from the source IP. 
5 Mean (of gap) The mean of the gap between all scans from the source IP 
6 Standard Deviation 

(of gap) 
The standard deviation of the gap between port scans. 

7 Multiple Gateways A Boolean value indicating whether or not this host probed 
multiple gateways. 

Table 33. The Attribute value pairs within the dataset examined. Several are 
derived and are created by DynamicWEB. These are updated as new data for the 
profile is observed. 

The timing of the scans is represented within the profile as the gap (Attribute 4). These 

represent the amount of time from the previous scan to the most recent. The context of 

all of the scans is then stored, including the values of the derived attributes, Mean and 

Standard Deviation (Attributes 5 and 6). In addition to these, a Boolean derived 

attribute, indicating whether or not the scanner has previously scanner other gateways, is 

also stored. This value is updated whenever a new observation is incorporated into the 

profile. The aim here is to profile those users who behave in a strange manner, 

conducting scans over a long period of time in an attempt to hide their network mapping 

activities. 
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Shown in Figure 54, is a cluster representation generated by DynamicWEB10 from audit 

log 3. The audit log covered over 10,000 unique IP addresses, with 1200 source 

addresses targeting multiple gateways. Of those multiple gateway probing IP addresses, 

there appeared to be at least 15-20 groups of IP’s addresses that stood out as fitting a 

pattern quite different from the rest of the scans present. These were extracted from the 

database created by the previous threshold-based system and stored for manual 

comparison with the output from DynamicWEB. The individual IP addresses are not 

show here for privacy reasons. 

The tree, shown in Figure 54, displays a large cluster of 1180 unique IP addresses as a 

child of the root. The remainder of the tree contains the 57 other IP addresses in the 

dataset. The tree contains only those IP addresses that probed multiple gateways, with 

the singe target hosts having been removed heuristically. The IP addresses not present 

within the large cluster are those which differ sufficiently to be recognised as not being 

an ordinary port scan. A large proportion of the nodes in this half of the tree contain just 

two IP addresses. These IP’s are quite similar in behaviour to each other. It is these IP 

addresses that we are suggesting represent the same end user. Sibling leaf nodes are also 

usually very similar to each other, and are prime candidates to be linked together after 

more activity has been witnessed. This structure was visible within the dataset after 2000 

observations; with the smaller branch only containing 9 profiles at that point. 

This figure shows that progress has been made towards developing relationships 

between the source IP addresses which are much more meticulous in their examination 

of the network. The vast majority of the scanners who probe each of the gateways on the 

network probably carry this out in a fashion similar to that shown in Figure 50 where 

they scan vast amounts of IP space. These scanners make up the bulk of the leaf node 

with 1180 IP addresses inside it and so have been successfully separated from the IP’s of 

interest.  

 
                                                

10 Manually examining 1200 IP addresses for relationships between them is a much smaller task then the 
full 10,000 multiple gateway scanning IP addresses. 
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If DynamicWEB were to be run upon a live system now it would be possible to 

ascertain, when an update has occurred, whether the given IP has been clustered with 

another scanner IP. The administrator could easily be notified of the relationship, and 

a closer monitoring of the IP’s activities could occur. 

However, the 57 IP addresses identified by this process do not include all of the 

profiles of interest that we discovered upon manual inspection. Furthermore, some 

IP’s included in the 57 were not flagged by the manual inspection and could possibly 

be linked. This result implies that we have not extracted all of the possible linked 

profiles from within the dataset. Examining those that were discovered, we estimate 

that the method is detecting about 60-70% of the profiles. While this number is quite 

low, the process is detecting this group of 57 from within a total group of IP 

addresses numbering over 10,000, which is a little over half a percent of the dataset. 

As such this result is seen as a very positive one and a step forward in the area of 

profiling scan activity. It may be that this method requires further derived attributes 

or more input data from other network based sensors to increase its detection level. 

8.4  AUSTRALIAN BUREAU OF STATISTICS 
NETWORK PERFORMANCE 

Network monitoring can be undertaken for reasons other than just the provision of 

security from an intrusion detection or prevention perspective. For example network 

monitoring can be used to monitor the quality of a service. In addition to the dataset 

examined in the first half of this chapter, a private network performance log was 

sourced from the Australian Bureau of Statistics (ABS). This dataset includes several 

performance measures and other details for a large number of computers that reside 

on the ABS’s private network. This audit log of performance activity is not a 

publically available log, as are the two datasets presented in Chapter 7, but is a 

private log which was provided by the ABS and used with permission (Edmondson 

2009).  

The audit log covers a large number of computers located across several floors of 

buildings used by the ABS, and also across multiple locations around Australia. This 

audit data is used by the ABS IT department to identify bottlenecks and other 

performance issues on their network. If a single computer is experiencing issues, 
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then that may indicate that it has been compromised or has mis-configured 

applications or services that require attention. If a group of computers at a given 

location have displayed a change of behaviour then perhaps a router or switch that 

they share has a problem which is affecting all of them. The audit log contains an 

entry for each time that a user has logged onto a computer across the ABS network 

over a 22 day period in late 2008. There are over 36,700 recorded entries in the audit 

log, covering 3,000 computers. The attributes that are covered within the dataset are 

outlined in Table 34. 

# Name Description 
1 Record Identifier Number 
2 Global Timestamp Timestamp at the central recording location 
3 Local Timestamp Timestamp at the local computer 
4 User Identifier ID of the user logging onto the computer 
5 Workstation Identifier ID of the computer being logged into 

6 
Location Current location of the computer. There are a 

total of 23 locations in the dataset. 

7 
Operating System The Operating system in use on each computer. 

Although they are all using Windows XP. 
8 Desktop/Laptop The kind of computer: Desktop or Laptop 
9 Brand of Computer  Dell, HP, Acer, IBM, Toshiba, VMware 
10 CPU (Mhz) Ranges from 500 to over 4000. 
11 RAM (mb) Ranges from 512 to 4096. 
12 Time to Load Shell (sec) Time taken for the computer to load 
13 Time to Map Resources (sec) Time taken to map network resources 

14 
Total Login Time (sec) Time taken for the user to login on the 

computer 
Table 34. The attributes which are present within the ABS Network 
Performance dataset. 

Most of the attributes in the dataset describe either the computer that the entry is 

being recorded for, or the point in time that the recording took place. However the 

final three attributes within Table 34 specify the length of time required for three 

specific tasks to be completed. These measure the actual performance of the target 

computer. The poorer that network performance on a given computer, the larger 

these values are. The user and computer identifiers are matched to the same entity, 

but are randomised, so there is no bias within the dataset to assigning certain 

identifiers to given locations. 



 
 

- 160 - 

This dataset presents several learning goals to test DynamicWEB’s ability to extract 

structure. Within the dataset there are both laptops and desktop computers. Is 

DynamicWEB able to produce a model that can correctly predict between these two 

classes? There are also several brands of computers on the network. Is 

DynamicWEB able to differentiate between them? Lastly, the dataset covers 

computers spread across a range of geographically separate locations. Does this 

affect the results and is DynamicWEB able to extract a structure that can predict the 

location of a computer? These problems will be discussed below. 

The first learning problem to be examined here is whether DynamicWEB is able to 

learn a structure that is able to predict whether a piece of computer hardware is a 

desktop or laptop. This is a two-class prediction problem with an approximate 3:1 

split between the two classes, with desktops being the more common. In examining 

this problem the dataset was split into three, allowing for cross validation to occur to 

estimate the average performance across 6 different combinations of training and 

testing data. The division was carried out so that all records relating to a given 

computer were found in a single dataset. Furthermore, the datasets were made up of 

recorded values spread through the entire 22 day period of the audit log, to minimise 

any effects of network topology changes by ensuring that they affect all datasets 

equally. Each dataset covers just over 1000 computers, and about 12,000 records. 

 
Figure 55. The performance of DynamicWEB at predicting whether or not a 
computer is a Laptop or a Desktop. 
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The results by DynamicWEB, when learning this two-class problem, are shown in 

Figure 55. DynamicWEB learns the problem moderately well after about 50 

observations, achieving an 85% predictive accuracy across the two 12,000 strong 

testing sets, with an accuracy of over 90% being achieved after 200 observations. 

The method continues to improve slowly after that, achieving an accuracy of 93% 

after 500 observations. The is a good result considering that the individual computers 

are spread out around a large network, connecting different locations, with different 

network paths to the central location, where the recordings are being made. However, 

as it is a two-class problem with a notable class imbalance it is important to also 

examine the performance of the two classes independently. In Figure 56 the 

 

Figure 56. Comparison of the predictive performance of DynamicWEB on 
the Laptop and Desktop classes. 

predictive accuracies of the two classes are compared. As one would expect, the 

method is more effective in predicting the more populous Desktop class, with it 

being correctly predicted in over 80% of cases over the entire experiment. However, 

while the Laptop class is predicted less accurately, initially, due to the fact that there 

are few of the training observations of that class, its predicted accuracy reaches 70% 

after 100 observations, and then reaches approximately 85% by the 500th training 

observation. 
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In addition to examining whether DynamicWEB was able to predict the type of 

computer, its ability to predict the brand of computer was also examined. The dataset 

contains 7 different brands of computer (or device): Dell, Acer, IBM, Toshiba, 

VMWare, Hewlett Packard, and IPX. Figure 57 shows the accuracy achieved by 

DynamicWEB when predicting the brand of computer, based on the timings and 

computer specifications. DynamicWEB achieved an accuracy of over 90% after 10 

observations and was able to reach 95% after 250 observations. However, this 

performance, especially towards the start with both very high predictive accuracy 

and marked variability, highlights the uneven distribution of the dataset. The vast 

bulk of the dataset is actually comprised of two brands of computer: Acer and Dell. 

The other brands make up less than 1% (0.7%) of the total dataset. 

 
Figure 57. The predictive accuracy of DynamicWEB in predicting the brand 
of computer. 

The distribution ratio of the two main classes is 3:1, with Dell being the more 

common of the two classes. In the results shown in Figure 57 the other 5 classes that 

make up less than 1% of the data are all predicted incorrectly. This is due to their 

rarity and the fact that each brand is not represented in all of the folds. However, the 

predictive accuracies for the main two classes are shown in Figure 58. A comparison 

between the accuracies achieved by DynamicWEB, when predicting the two target 

classes, shows that it achieves a higher accuracy with the Dell class than with the less 

frequent Acer class. The Dell class is predicted with over 95% accuracy after only 5  
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Figure 58. Comparison of predictive accuracy of DynamicWEB on the Dell 
and Acer classes. 

observations, while the Acer class is predicted with 90% accuracy after 200 

observations. 

The third attribute to examine and then aim to predict with DynamicWEB is that of 

the location of the computers. The dataset covers a range of computers spread across 

each of the states or territories of Australia, along with 2 large multi-story buildings 

located in Canberra. When examining this dataset, however, it was found that 

DynamicWEB struggled to predict computer location to an acceptable accuracy. 

Upon finding this and then consulting with Dr Edmonson (2009) it was found that 

the time measures are standardised in a way that would allow for structure, with 

these measures occurring both interstate and locally, depending on the resources 

being requested at the given time. In addition to this, two different states, both 

communicating with a 3rd state, from which they are each a similar distance, could 

appear to be the same to each other. Due to these complications, this class can’t be 

predicted, but it is worth noting that these time measures add a significant noise 

factor to the dataset which DynamicWEB was able to handle effectively when 

predicting other classes 

Both of the examples, relating to this dataset, initially used only the most recently 

observed value within the profile. Derived attributes were trialled with near identical 
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results returned. This indicates that the knowledge domain is very regular for the two 

problems examined, even with the presence of a noisy location attribute. The next 

step with this domain would be to use DynamicWEB as a monitoring system aiming 

to detect performance anomalies on the network. The dataset that was used in this 

research did not contain any known anomalies to detect, so the next step would be to 

synthesise and examine these. To do this, more knowledge is needed to determine 

what form anomalies normally take, in order to be able to synthesise them in a 

meaningful way. While this extra research has not been completed, the research that 

has been undertaken showed that DynamicWEB did perform acceptably on the 

dataset, and that such a system would be able to return some interesting results. 

8.6 SUMMARY 
DynamicWEB has been applied to two datasets derived from computer network 

systems. The first related to the problem which inspired DynamicWEB in the first 

place: port scanning. DynamicWEB was shown to be capable of profiling scan 

activity, enabling relationships to be drawn between different port scanners. This was 

achieved by using derived attributes to preserve the history of past scans undertaken 

by each scanner. This problem presented a true profiling scenario, and 

DynamicWEB was able to separate out less than 1% of the dataset by building 

profiles over time. While it was estimated that only 60-70% target scanners were 

found, this was still seen as a positive result for the unsupervised learner to be able to 

glean from the 30 days and near eighty thousand observations in the dataset. 

Secondly, DynamicWEB examined the performance data from a large, widespread, 

computer network. In examining this dataset, DynamicWEB was able to predict the 

brand and type of computer, based on its specifications and the time it required to 

complete certain specified tasks. This showed that it was able to learn the knowledge 

domain to a point where is possible that, if it was fully applied to the knowledge 

domain in the form of a network monitor, it would be able to detect anomalies.  

In this chapter, two datasets were examined covering vast amounts of data and long 

time periods. DynamicWEB was able to examine this data and extract patterns from 

the observations. DynamicWEB has shown itself to be a capable online learner that 

is able to function on large datasets. It would however need more research on either 
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of these domains before it could be fully applied in a successful application, but it 

has shown that it does contain the potential to fulfil a role in a network security or 

network monitoring domain. 

In the context of the learning goals outlined in the introduction, this chapter has 

demonstrated that profiling of the behaviour of a target object was able to take place 

across multiple observations. In these datasets there is a sizable variation by some of 

the target objects, which could be considered to be object and concept drift. Both 

datasets also dealt with a sizable number of target objects and was able to establish 

relationships between them. 

 

 



 

 
 

 

 

 

 

 

 

 

9 Conclusions and 
Further Work 

9. 11 

“Change is the law of life. And those who look only to the past or 
present are certain to miss the future.” 
 

John F. Kennedy (May 29, 1917 – November 22, 1963) 
Address given in Frankfurt, June 25, 1963 
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INTRODUCTION 
The primary aim of this research was to develop an unsupervised machine learning 

method capable of profiling the activity of a target object across multiple 

observations over long time periods on large amounts of data in real time. This is a 

problem which is relevant across many knowledge domains and has a high 

applicability in applied machine learning. The work carried out to undertake this 

research, which resulted in the development of a new learning method, will now be 

summarised and results from tests that were conducted using this method will be 

reported. After this, the further directions that this work could take will be explored. 

9.1 RESEARCH CONTRIBUTION 
The main contribution that has been made by the research presented in this thesis is a 

new machine leaning method entitled DynamicWEB. This method was required in 

order to meet the six needs that were outlined in the introduction and provides the 

following six capabilities: 

1. The learner is able to profile object activity over an extended time period. 

2. The learner is able to establish relationships between the profiles. 

3. The learner is able to adapt to concept drift. 

4. The learner is able to adapt to object drift. 

5. The leaner is able to preserve context across multiple observations. 

6. The learner is able to be able to track a large number of target objects 

simultaneously in real-time. 

Existing methods in this area of research are largely supervised learners or are batch-

based approaches and aren’t able to build a profile over time of a single target object. 

DynamicWEB is presented as a method that builds profiles across multiple 

observations of a set of target objects and is an unsupervised learner. This online 

approach allows DynamicWEB to operate on a stream of data within time sensitive 

contexts. The method is a hierarchical probabilistic conceptual clustering learner 

built upon COBWEB (Fisher 1987; Gennari, Langley et al. 1989). COBWEB is a 
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respected method in the machine learning field and, as such, is seen as a solid 

foundation to build upon. An index structure was added to COBWEB to enable fast 

search that facilitate the addition of new operations. This index structure is an elegant 

solution to enable the learner to have a scalable search able to meet the size 

requirements of large datasets containing many objects of interest (6).  

Two new operations were added in DynamicWEB to those already present in 

COBWEB: Remove and Update. These operations were implemented with care to 

maintain the integrity of the existing concept hierarchy. As change takes place within 

the concepts over many observations, it is vitally important to maintain the quality of 

the concepts that are being learned. This allows DynamicWEB to tackle learning 

domains which COBWEB was incapable of examining, while still remaining true to 

the theoretical base on which it was founded. 

Once the hierarchy was modified to enable profiles to be added and removed, 

DynamicWEB had the capacity to update profiles, combining data from multiple 

observations. This allowed for profiles, stored within the hierarchy, to contain the 

most recently observed data, and by enabling the re-addition of profiles to the 

hierarchy, allowed the learner to adapt to any changes in any of the profile. By 

allowing for changes to take place within the concept hierarchy, concept drift or 

object drift can be accommodated by the learning process (3 and 4). It is 

DynamicWEB’s ability to operate in the presence of these twin forms of drift that 

sets it apart from other machine learning methods. 

Once DynamicWEB was provided with the ability to update profiles when new 

observations occur, it was possible to preserve past observations by using derived 

attributes to store historical context (1 and 5). This allowed the learner to become 

aware of trends occurring in relation to each observed object. DynamicWEB’s ability 

to preserve context allows it to profile the behaviour of an object over a number of 

observations. This is a simple idea for a learner to aim to undertake, however, it is an 

ability that the bulk of machine learning methods are unable to carry out. In addition 

to preserving context, the derived attributes also improve the ability of the learner to 

handle noise in the dataset because they enable the profile to contain some attributes 

that have a smoothing effect over past observations. 
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DynamicWEB, with the ability to profile objects over multiple observations, is able 

to establish relationships between the profiles created (2). The hierarchy that is 

produced relies upon the previous work carried out in COBWEB and CLASSIT, but 

builds upon this foundation to learn in a totally different environment than that in 

which these methods were intended. Using these relationships, which are constantly 

being updated, DynamicWEB’s concept hierarchy is able to be used in several many 

different learning tasks. It can be used to discover patterns between different activity 

profiles, or it can be used to make classifications in real-time. A summary of the 

results that were produced using DynamicWEB in this research will now be 

discussed. 

9.2 RESULTS SUMMARY 
After DynamicWEB was introduced in Chapter 5, the remainder of the thesis 

described the results of applying the method to a number of different knowledge 

domains. An important aim of the research was to ensure that DynamicWEB would 

be suited to a range of application domains. While its original innovation derived 

from a single application (port scanning reconnaissance profiling), for it to be truly 

useful it needs to be more broadly applicable. 

After initially confirming that the COBWEB implementation used within 

DynamicWEB produced comparable results to those produced by COBWEB itself, 

several small machine learning datasets were examined. DynamicWEB was then 

demonstrated on the Dynamic Weather dataset, which was created specifically for 

that purpose. This dataset illustrates several examples of object drift in an 

environment where the concepts are themselves not strictly defined.  

The Quadruped Animals dataset was examined to illustrate DynamicWEB’s ability 

to function as an ensemble learner. Here, using the “wisdom of the crowd”, 

DynamicWEB was able to produce improved classification accuracy by splitting the 

attributes in the dataset across eight trees, derived in parallel. The final machine 

learning dataset examined was the STAGGER Concepts dataset. This dataset 

demonstrates concept drift, with three distinct concepts being present within the 

dataset. The dataset has been used by multiple authors and was used when comparing 

the performance of DynamicWEB with that of COBBIT. DynamicWEB 
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demonstrated an improved performance compared with COBBIT on a single 

ordering of the data. DynamicWEB also performed well, in comparison with two 

supervised learners, when tested over 100 trials. 

After the validation was completed, several real world data mining datasets were 

examined (Chapters 7 and 8). These spanned several application domains, and 

included a combination of datasets from the Australian Bureau of Statistics (ABS) as 

well as a data mining workshop dataset (Chapter 7). All of these datasets are real 

world datasets and most have not been examined using machine learning techniques 

prior to this research. 

Several of the datasets did not have existing class labels so DynamicWEB was used 

to examine them to see if any structure could be extracted from within the dataset. In 

some cases this was not possible and the results relating to those are recorded in the 

appendices. In cases where DynamicWEB was able to discover structure, it had been 

assisted by the use of derived attributes which, preserving the context over time, thus 

allowed for trends within the data to be discovered. 

Real world datasets were also used to evaluate DynamicWEB’s predictive ability. 

DynamicWEB demonstrated an acceptable level of success when predicting the class 

distribution in the “watching TV” class of the BodyMedia dataset (2004). On the 

ABS network performance dataset, attribute values for some nominal classes (type 

and brand) were predicted reasonably accurately. It was concluded that 

DynamicWEB could potentially be applied within the domain in order to locate 

computers that were behaving abnormally. 

The original inspiration for this research was the port scanning problem, in which 

users change IP address whilst undertaking scan activities, in order to avoid 

detection. Examination of the port scanning dataset (Chapter 8) showed that groups 

of similar port scan profiles, with scans stretching across large time periods, could be 

revealed by the unsupervised learner and then compared with each other to establish 

relationships between them. A key complication of this problem which aided in 

focuses the research that was undertaken was that these scan profiles change over 

time; with profiles being built and being considered benign to then being of interest 

(object drift) or the possibility of behaviours changing over time (concept drift). The 
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method described here, as demonstrated first on the smaller datasets earlier is able to 

adapt under these learning difficulties. The scan dataset was also shown to be able to 

extract relationships between profiles further illustrating DynamicWEB’s ability to 

meet these challenges. 

9.3 FUTURE DIRECTIONS 
This thesis described DynaimicWEB and discussed the needs of the application for 

which it was originally designed. However, this thesis does not detail a full testing on 

that knowledge domain, instead opting to confirm that DynamicWEB is a useful 

approach across a broad range of domains. Therefore, more work could be completed 

evaluating the method not only for port scanning, but also for dealing with other 

security problems. The eventual goal is for it to be used in a live system.  

Indeed DynamicWEB could be applied across a range of different domains, as it has 

shown itself as a very capable learner. In discussions about the performance of 

DynamicWEB, Dr Edmondson of the Australian Bureau of Statistics (Edmondson 

2009) stated that it would be highly useful if DynamicWEB was integrated with a 

visualisation package that allowed for the concept descriptions to be easily read and 

monitored over time. Such an extension would be of significant interest because it 

would enable people to use DynamicWEB across a range of learning domains, 

simply and easily. 

In addition to these application-specific advances, from a theoretical machine 

learning direction, it could also be worthwhile to examine further improvements to 

DynamicWEB. For example it could be interesting to incorporate the ARCHANE 

(McKusick and Langley 1991) control structure advances to see if any learning gains 

are achieved. In addition to this, some work was carried out, although not completed, 

which aimed to use multiple DynamicWEB hierarchies in a layered manner. 

Different knowledge thresholds in each tree then produce increasingly more specific 

relationships between profiles, acting as a multiple stage filter. Similar work to this 

has been carried out by other authors (Bala, DeJong et al. 1995; Li, Holmes et al. 

2004) previously. 

This research has highlighted a gap in the machine learning field, and DynamicWEB 

is the first learner to attempt to address this gap. There is scope for other methods to 
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be produced to attempt to profile objects across multiple observations, allowing for 

the target objects to drift from one resultant class to another. There is also scope for 

other applications to be examined in the context of object drift,. This thesis has 

attempted to describe the problem broadly, to act as a platform not only for 

DynamicWEB to be used in multiple applications, but also to inspire other 

researchers to develop machine learning approaches that adapt in real-time to 

changes in input data. . 
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APPENDIX A – GLOSSARY OF TERMS 
The following glossary of terms defines several of the key words which are used 

throughout this thesis. Most of these words are known in the field of data mining, 

while a few of them are either new, or perhaps taken on added meaning in the 

problem space being investigated in this thesis. 

 

Concept 

 A concept is basically the resultant class trying to be predicted by a machine 

learning method in a given dataset. However, as described in Chapter 2 

(Section 4), it is comprised of a description based on the shared values that 

are present in the instances that are in that concept. It was first described by 

Michalski (1980) and his work has been built on by many authors whose 

work has been described in Chapters 2, 3 and 4. 

 

Instance (or item) 

 An instance is a collection of data about a given object (a description of the 

state of that object); i.e a group of attribute-value pairs. Each of the methods 

described in the early chapters of this thesis examine datasets that are 

comprised of instances that are all independent of each other. Each instance 

stands alone as the only description of the target object in question. As 

DynamicWEB is introduced, the concept of having multiple instances 

(multiple recordings of attribute value pairs) of a single target within a dataset 

is also introduced. This is fundamentally different from most other methods 

described in the thesis. These multiple instances, or observations of a target 

object, are combined into a profile. This profile is actually then treated as a 

single instance when it is added to the DynamicWEB concept hierarchy. 

 

Target Object 

 The problem that motivated the work in this thesis was in the area of network 

security, and involved developing behaviour profiles based on recorded audit 

log data of unknown IP addresses. As such the target objects are malicious 

users on a computer network. DynamicWEB was produced responding to this 

problem, and is a method that allows the tracking of target objects in a given 
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dataset across multiple observations. In this thesis the objects that are spoken 

of are the entities that are described within the multiple datasets examined. In 

each of these datasets there are multiple recorded behaviours for each object. 

 

Concept Drift 

 As described within the thesis several authors (Schlimmer and Granger, 

1986; Widmer and Kubat, 1996) have completed research in the area of 

concept drift and have defined the concept quite well. It is fundamentally the 

idea that the basic values defining a given resultant class in a dataset change 

over time. The concept drifts because the definition of what defines that 

concept changes over time within the period covered by a dataset.  

 

Object Drift 

 As defined on the previous page, an object is an entity, which is being 

represented within a dataset by instances that describe its state. In this thesis 

several datasets are examined where there are multiple instances describing 

the state of an object over a period of time. The change of that state is what 

we refer to as object drift. Over multiple observations of that target object it 

may be that it changes its resultant class. In the example of network security 

it may be the case that a given IP goes from being considered benign to being 

considered malicious over multiple observations describing its behaviour.  

Object drift is a new concept that was first described in this way in this 

research and its associated publications (Scanlan, 2008). 
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APPENDIX B – DYNAMIC WEATHER DATASET 
The following is a dataset that was created as part of this research to demonstrate 

object drift occurring across multiple observations. It is discussed in Chapter 6. 

% Top 4 in Scotland, Wales, Ireland 
% Stay Y: 4 
% Stay N: 3 
% N -> Y: 2 
% Y -> N: 2 
% N -> Y -> N: 1 
% temperature <= 50: no (4.0) 
% temperature > 50 
% |   outlook = sunny 
% |   |   humidity <= 75: yes (2.0) 
% |   |   humidity > 75: no (3.0) 
% |   outlook = overcast: yes (4.0) 
% |   outlook = rainy 
% |   |   windy = TRUE: no (2.0) 
% |   |   windy = FALSE: yes (3.0) 
@relation weather 
@attribute location {standrews, gleneagles, carnoustie, 
dornoch, porthrawl, stdavids, nefyn, pennard, countydown, 
portrush, ballybunion, lahinch} 
@attribute outlook {sunny, overcast, rainy} 
@attribute temperature real 
@attribute humidity real 
@attribute windy {TRUE, FALSE} 
@attribute play {yes, no} 
@data 
standrews,overcast,45,81,TRUE,no 
gleneagles,overcast,56,80,FALSE,yes 
carnoustie,sunny,85,50,FALSE,yes 
dornoch,overcast,65,60,TRUE,yes 
porthrawl,rainy,45,80,TRUE,no 
stdavids,rainy,50,75,TRUE,no 
nefyn,sunny,72,62,FALSE,yes 
pennard,sunny,45,75,FALSE,no 
countydown,sunny,55,80,FALSE,yes 
portrush,sunny,90,90,FALSE,no 
ballybunion,overcast,65,62,TRUE,yes 
lahinch,overcast,49,78,FALSE,no 
standrews,overcast,55,78,TRUE,yes 
gleneagles,rainy,58,79,FALSE,yes 
carnoustie,sunny,90,45,FALSE,yes 
dornoch,sunny,70,58,FALSE,yes 
porthrawl,rainy,49,80,FALSE,no 
stdavids,rainy,55,75,TRUE,no 
nefyn,sunny,81,60,TRUE,yes 
pennard,rainy,49,81,TRUE,no  
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countydown,overcast,50,80,TRUE,no 
portrush,sunny,100,90,TRUE,no 
ballybunion,sunny,72,61,FALSE,yes 
lahinch,overcast,52,75,FALSE,yes 
standrews,sunny,60,74,TRUE,yes 
gleneagles,rainy,54,81,TRUE,no 
carnoustie,sunny,87,45,FALSE,yes 
dornoch,sunny,72,55,FALSE,yes 
porthrawl,rainy,50,80,TRUE,no 
stdavids,overcast,58,70,FALSE,yes 
nefyn,rainy,76,64,FALSE,yes 
pennard,rainy,46,85,TRUE,no 
countydown,rainy,48,85,TRUE,no 
portrush,sunny,98,90,TRUE,no 
ballybunion,sunny,75,60,FALSE,yes 
lahinch,overcast,50,75,TRUE,no 
 
 



 

 
 

 
 

 

 

13 Appendix C – 
STAGGER Concepts 

Dataset Listing 
12. 12 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 

13  



 
 

- 186 - 

APPENDIX C – STAGGER CONCEPTS DATASET 
LISTING 
The following is the listing of the data that was used in Chapter 6 where a direct 

comparison was made between DynamicWEB and COBBIT. The impact of the order 

upon the two different methods of adjusting to concept drift was the primary reason 

for that examination and so the order is shown here. 

 
@relation Stagger 
@attribute id real 
@attribute size {small, medium, large} 
@attribute colour {red, blue, green} 
@attribute shape {square, circular, triangular} 
@attribute result {true, false} 
@data 
1,large,blue,circular,false 
2,medium,green,trangular,false 
3,small,green,square,false 
4,large,red,square,false 
5,small,red,circular,true 
6,large,blue,square,false 
7,small,green,square,false 
8,medium,red,circular,false 
9,small,green,circular,false 
10,small,green,trangular,false 
11,medium,green,trangular,false 
12,small,red,circular,true 
13,medium,red,square,false 
14,small,red,trangular,true 
15,large,green,trangular,false 
16,small,red,trangular,true 
17,medium,blue,circular,false 
18,small,blue,circular,false 
19,small,red,trangular,true 
20,medium,green,trangular,false 
21,large,red,circular,false 
22,small,blue,trangular,false 
23,small,blue,square,false 
24,medium,green,circular,false 
25,small,green,circular,false 
26,small,red,square,true 
27,medium,red,trangular,false 
28,small,red,circular,true 
29,large,blue,circular,false 
30,medium,green,square,false 
31,large,blue,square,false 
32,large,blue,circular,false 
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33,large,blue,circular,false 
34,small,green,circular,false 
35,small,red,square,true 
36,large,red,trangular,false 
37,large,blue,square,false 
38,small,blue,trangular,false 
39,large,green,square,false 
40,small,green,trangular,true 
1,medium,green,trangular,true 
11,small,blue,square,false 
39,medium,blue,trangular,false 
32,small,green,square,true 
28,small,red,trangular,false 
20,large,red,trangular,false 
37,small,red,circular,true 
21,large,blue,circular,true 
33,small,red,square,false 
24,small,red,circular,true 
26,small,blue,square,false 
10,medium,red,circular,true 
9,small,green,trangular,true 
38,small,red,circular,true 
27,medium,red,circular,true 
15,large,red,square,false 
34,medium,green,square,true 
40,large,green,square,true 
17,small,green,square,true 
22,medium,red,trangular,false 
6,small,blue,trangular,false 
18,medium,blue,trangular,false 
13,medium,red,trangular,false 
16,medium,blue,square,false 
7,small,green,square,true 
5,large,green,circular,true 
29,large,green,square,true 
4,large,red,circular,true 
23,small,red,square,false 
8,large,green,trangular,true 
3,large,blue,circular,true 
35,large,red,square,false 
30,medium,blue,square,false 
12,small,blue,circular,true 
25,small,green,circular,true 
36,small,blue,circular,true 
31,small,red,square,false 
14,medium,green,circular,true 
2,medium,green,trangular,true 
19,large,green,square,true 
12,large,blue,trangular,true 
32,large,blue,square,true 
38,large,green,trangular,true 
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18,small,green,trangular,false 
24,small,blue,trangular,false 
29,medium,green,square,true 
8,medium,red,trangular,true 
36,large,green,trangular,true 
13,medium,red,circular,true 
28,small,red,circular,false 
23,large,red,trangular,true 
17,small,green,trangular,false 
1,large,green,square,true 
34,large,green,trangular,true 
2,small,blue,circular,false 
9,large,green,trangular,true 
14,large,green,trangular,true 
20,medium,blue,square,true 
6,small,red,circular,false 
21,small,green,square,false 
15,medium,red,square,true 
31,large,red,circular,true 
10,large,blue,circular,true 
26,large,green,square,true 
19,large,blue,trangular,true 
40,large,green,circular,true 
3,medium,green,square,true 
39,medium,red,trangular,true 
4,large,red,circular,true 
27,small,green,square,false 
5,medium,red,trangular,true 
11,medium,red,trangular,true 
16,large,green,square,true 
35,small,red,circular,false 
33,small,blue,square,false 
37,large,green,square,true 
22,small,blue,circular,false 
30,small,green,trangular,false 
7,medium,green,trangular,true 
25,small,red,circular,false 
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APPENDIX D – NATIONAL ACCOUNTS  
The following is a group of trials conducted on the National Accounts dataset. The 

results of most interest are included within the body of the text in Chapter 7. 

The simplest way to demonstrate changing structure within a dataset over time is to 

have DynamicWEB simply store the most recently observed value for each attribute. 

In Figure 59 four trees are shown which illustrate the structure produced by 

DynamicWEB at 4, 8, 12 and 17 years. The structure produced by only storing the 

most recent value was not stable, and frequently took the form shown for years 8 and 

12, with some leaves merging to form a combined node of disparate leaves 

occasionally (as in year 12). These trees indicate that there is insufficient regularity 

or structure within the data to enables objects to be grouped together and for 

relationships to be displayed. These trees provide a useful comparison with the 

structures that are formed when some of the contextual data for previous 

observations relating to each target object are retained. 

 

 

a) After 1994 (32 instances observed) b) After 1998 (64 instances observed) 

  
c) After 2002 (96 instances observed) d) After 2006 (136 instances observed) 

Figure 59. These four structures are from four different points in time 
during DynamicWEB’s analysis of the National Accounts dataset. 

The simplest tree configuration that retains any context from the previous activity, 

across the 17 measurements, is obtained by simply taking the mean of each attribute, 

as a derived attribute, along with the most recently observed value. The tree 

produced in this way is shown in Figure 60a. This illustrates how using a simple 
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profile such as this may teach us very little about the structure of the dataset we are 

examining, and may even be less helpful than not using contextual information at all. 

The tree represents each target object as its own leaf, linked directly to the root node; 

showing that DynamicWEB was unable to discover any separable clusters, 

containing more than a single profile, within the dataset. 

The derived attribute was calculated using the data from each observed measurement 

of each target object, resulting in 14 derived values each built upon 17 measurements 

in this dataset. This derived attribute was the mean, and in this case it did not have 

any generalising effect. This resulted in a structure where none of the profiles were 

considered similar to each other. However, as the data covers a 17-year time 

window, the derived attribute was tested under the assumption that this would retain 

only a portion of the past data to see if this would aid in establishing relationships. 

However, a time window of 5 years, or one third of the dataset, was tested and found 

to have no impact on the resulting structure produced.  

 
 

a) The structure found when using the mean 
as a derived attribute. 

b) The final structure from the third tree in 
the second trial.  

Figure 60. The structures that were found in the first two trials to retain 
context within DynamicWEB. 

Within the description of the National Accounts dataset in Table 28 (Chapter 7) there 

are obvious groups of attributes that relate to the same measure. One of the strengths 

of DynamicWEB is its ability to split a problem into several portions and then 

examine each portion in separate trees, in parallel with each other. Within 

classification problems, the classification results can then be used in conjunction 

with one another, and although in this circumstance there are no resultant classes to 

predict, the resulting data structures can be viewed and compared with one another. 

The most obvious groupings of attributes to trial first are those formed by grouping 

the three main measures within the dataset: Gross state product- Chain volume 

measures, Real gross state income and Gross state product- Current prices. Using 
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DynamicWEB, the dataset was analysed with the attributes being split between the 

trees so that the four first attributes (#3-6) were in one tree, the next four were in the 

second tree (#7-10) and the remaining six (#11-16) within the third tree. In addition 

to these, two derived attributes were added per attribute to each profile, lifting the 

total number to 12 in the first two trees and 18 in the third. The two derived attributes 

used for each of the original observed values were the standard deviation and the 

trend. The trend is incremented with each observation of a numerical field that is 

greater than the previously observed value, or decremented if the next observed value 

is smaller. Over time, consistently increasing values will result in a high number, 

fluctuating results will remain near zero, and consistently shrinking values will be 

negative. 

The trees produced by DynamicWEB in this trial exhibited more structure than those 

produced in the first trial. However, the structure was only apparent for one or two 

years of the observations (once the derived attributes started to form), and then the 8-

separate-leaf node structure re-appeared for several years. These results were found 

when the full dataset was used for the derived attributes, or if a 5-year time window 

was used for the derived attributes. While some structures (such as those shown 

within Figure 60b) were discovered within both the 5-year window and the full 

dataset, they only split the dataset into two groups of leaves and didn’t draw any 

stronger relationships then that. However, the tree illustrated in Figure 60 used data 

that was weighted slightly more to metrics that were per-capita measures. As the task 

being examined involves profiling the eight state and territories in relation to each 

other, it is logical that attributes that largely reduce the effect of the population size 

of the states compared to each other would allow for a more meaningful comparison. 

Comparisons of this nature are examined within Chapter 7. 
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APPENDIX E – LABOUR FORCE 
The following is an examination of the Labour Force dataset in its original 

configuration, with the states being the objects of interest. 

Figure 61 shows two sets of structures formed by DynamicWEB when examining the 

Labour Force dataset. The structures on the left represent the knowledge hierarchy 

that was formed by examining all of the full time employees by industry per state, 

while those on the right represent those that are part time. The profiles used in these 

hierarchies are based upon the most recently observed value, the standard deviation 

of that value, and the trend of the value. The structures shown in Figure 61 are much 

more stable in nature than those shown within the 

Full Time Employees Part Time Employees 

  

Structure 1: 6 years completed  

  
Structure 2: 12 years completed  

  
Structure 3: 24 years completed  
Figure 61. The knowledge hierarchies produced when comparing the Part 
Time and Full Time. 
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National Accounts dataset, which also tracked these target objects (as discussed in 

the Chapter 7). The reason for this could be that, even with industry shifts within this 

time period, when comparing all of the industries within a state to other states and 

territories, these changes do not cause sufficient difference to noticeably modify the 

hierarchy produced. However, it is not completely stable because Queensland moves 

from the grouping of five states and territories to which it initially belonged, to 

becoming a leaf off the root node in the part time structure. Due to the similarity 

between this dataset and the National Accounts dataset, further examination of this 

dataset in this from was not undertaken. Instead the dataset was transformed to 

examine the industries as the objects of interest and the results of this are discussed 

in Chapter 7. 
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APPENDIX F – DYNAMICWEB COMPLEXITY 
This thesis outlines the learning method, DynamicWEB, which modifies the existing 

method COBWEB. These key modifications to the learner allow for a concept 

hierarchy constructed using the COBWEB algorithm to be changed by updating an 

instance in the hierarchy, or removing an instance. Both of these functions are still 

heavily based on the key calculation (which has not been changed in this work) used 

by COBWEB: the category utility. This has not been changed in this work. The new 

algorithm DynamicWEB, contains three main operations using the category utility 

measure: insert (unchanged from COBWEB), remove and update. Below we will 

examine each of these operations in terms of their complexity. 

The insert operation which is responsible for building the hierarchy is unchanged 

from COBWEB. It searches the existing hierarchy for the ideal place with insert the 

most recently presented instance. Each node in the tree is compared with the instance 

using the category utility, to measure how well suited it is to be stored in that branch 

of the hierarchy. This process is repeated until it is stored at a new leaf, or a node that 

it is well suited it is to be discovered. It is this search process, with many category 

utility calculations taking place, that is the core of the computational complexity of 

both COBWEB and DynamicWEB. The complexity of the insert operation can be 

expressed as follows (Fisher, 1987): 

!"#$%&'(#%)%*+,%

where B is the average branching factor of the hierarchy, n is the number of instances 

already stored, and A and V are the number of attributes and the average number of 

values per attribute respectively. Further explained, for each child sibling at a node 

compared to a presented instance, there is a complexity of O(BAV), and therefore 

O(B2AV) for the set. The height of the hierarchy can be approximated by logBn 

which combines for the above total expression of the cost to incorporate a single 

instance into a COBWEB hierarchy. A brief discussion of the branching factor can 

be found in the earliest COBWEB paper (Fisher, 1987). 

The two main operations that were added to insert in order to create DynamicWEB 

are remove and update. The update operation is fundamentally a remove followed by 

an insert (with the re-added instance being modified with new information). The 
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remove operation can also be used to remove knowledge from the tree once it has 

expired should a time window be being applied to the learner. The first step of the 

remove operation is to locate the instance within the knowledge hierarchy to be 

removed this could result in a worst case of searching the entire tree (i.e a O(n)). This 

is not an efficient search due to the hierarchy being sorted based on the similarity of 

the stored instances and not on the identifier of the instances. Instead, however, 

DynamicWEB uses an AVL (Adelson-Velskii and Landis, 1962) tree as an index of 

all the current locations within the tree with a search complexity of log n. Now 

incorporating this search to aid in locating instances in the hierarchy thus adds a log 

n cost to the insert operation in order to maintain the AVL tree as opposed to O(n). 

Once the instance of interest has been located, its removal process involves the 

inverse operation of the insert to remove the knowledge from the tree. Each parent 

node, from the direct parent, all the way to the root of the tree, has the knowledge 

subtracted from it, resulting in a cost of 

!"#$%&'(')*+'

where logBn is the approximate height of the hierarchy, and A is the number of 

attributes that influence the probabilistic concept descriptions within the nodes; and 

V is the number of possible values, for each of these attributes, that are searched in 

order to locate the one which the instance being removed exhibits. 

The update operation, from a complexity point of view, is a combination of the 

remove and insert operations. The knowledge relating to the instance is removed 

from the hierarchy, before a newly updated instance with freshly incorporated 

observed data is inserted. The AVL tree is searched once to locate the instance in the 

hierarchy, and this is then updated, to store the new location for the instance, without 

searching for it again. 

DynamicWEB, in comparison to COBWEB, does derive a benefit from the ability to 

update which has an effect on complexity. COBWEB, as discussed in Chapter 4 

Section 5, can suffer from order dependence; the result being that a less than ideal 

hierarchy can be produced. The work carried out by McKusick and Langley (1991) 

in ARACHNE aim to counter this. The update mechanism in DynamicWEB would 

have similar effects to the work on ARACHNE, although these are not empirically 
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examined in this thesis. The further work mentioned in Chapter 9 highlights that 

investigating this and possibly adding the added ARCHNE operators to 

DynamicWEB could produce some interesting results. 


