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Abstract

As the role of unmanned underwater vehicles expands it becomes increasingly important to

understand the nature of the fluid flow around them. This research examines the flow around

two ellipsoids with generic shapes representative of streamline unmanned underwater vehicles

(UUV). Although a significant body of work, both experimental and computational, exists for

flow about spheroids the majority of this is for prolate spheroids with finer aspect ratio.

This research examines the flow around a 3–1 prolate spheroid and a 4.2–2–1 scalene ellip-

soid. Many of the previous studies have focused on the major crossflow separation that occurs

on a 6–1 prolate spheroid when placed at medium to large incidences. This study examines the

flow around these bluffer bodies at low to moderate incidence in transcritical flow. These are

the conditions that many UUV’s spend the vast majority of their time operating in, and is thus

of importance when assessing their operational envelope.

At low to moderate incidence a closed separation on the flank is found to be the dominant

flow feature for the 3–1 spheroid and the 4.2–2–1 ellispoid. For the 4.2–2–1 ellipsoid at lower

Reynolds numbers an open separation occurs on the flank upstream of the closed separation.

An extended length of attached flow on the suction side of the symmetry plane was observed

for these models at incidence. The reasons for this attached flow despite a considerable length

of adverse streamwise pressure gradient are identified to be due to the influence of the azimuthal

pressure gradient on the boundary layer.

Ideally computational fluid dynamics (CFD) could be used to examine the flow about these

shapes during the design process. However before this process is useful there needs to be an

understanding of the strengths and weaknesses of the techniques being applied. Calculation

of the three-dimensional flow around these vehicles presents a number of significant challenges

including boundary layer transition and boundary layer separation off smooth doubly curved

surfaces.

The experimental work has identified flow features and trends with Reynolds number; a

considerable amount of quantitative data is also presented. The ability of CFD techniques

to calculate the features and trends identified in the experimental work can be used as an

i



ii

indication of their veracity. Numerical studies using two-equation turbulence models modified

to allow predetermined regions of laminar flow are presented. Qualitative and quantitative

comparisons between the measured and calculated results are presented. Limitations identified

in the CFD modelling techniques used include: premature boundary layer separation at the

rear of the model, typically on the pressure side; and separation of the laminar region prior to

the measured transition region at low Reynolds numbers.

A number of experimental techniques were refined during this work. These include a quick

and accurate method of applying discrete element boundary layer trip strips, which is particu-

larly suited to three-dimensional shapes; improvements to a fast response total pressure probe;

and an oil flow visualisation technique using a mixture that is close to neutrally buoyant and

may be formulated to alter the viscosity over a large range.
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General
ae major axis length of spheroid or ellipsoid in x direction (m)

be minor axis length of spheroid or ellipsoid in y direction (m)

ce minor axis length of spheroid or ellipsoid in z direction (m)

k turbulent kinetic energy per unit mass, u0
iu

0
i=2 (m2=s2)

l length of spheroid or ellipsoid in xbc direction, 2ae (m)

p static pressure (Pa)

p
T

total pressure (Pa)

p0 unsteady component of static pressure (Pa)

pf rtpp pressure measured by fast response total pressure probe (Pa)

pref static pressure at reference point (Pa)

qref dynamic pressure at reference point, �u2
ref
=2 (Pa)

uref absolute velocity at reference point (m=s)

u� friction velocity,
p
�w=� (m=s)

u; v; w velocity in the x, y and z direction respectively (m=s)

u0; v0; w0 unsteady velocity component in the x, y and z direction respectively (m=s)

Axbc
maximum cross-section area of the model normal to xbc (m2)

Cp non-dimensional pressure, .p � pref /=qref

C�w non-dimensional wall shear stress, �w=qref

E elastic modulus (Pa)

H shape factor, ı�=�

N number of samples

U1 freestream velocity (m=s)

Ve volume of spheroid or ellipsoid model, 4
3
� ae be ce

Re
l

Reynolds number based on length, U1l=�

Re
S

maximum strain rate Reynolds number

Reı� Reynolds number based on displacement thickness, U1ı�=�
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Re� Reynolds number based on momentum thickness, U1�=�

Re
�

maximum vorticity Reynolds number

xbc Cart. coord. aligned with major axis of body, origin at centre of model (m)

xt Cart. coord. aligned with longitudinal direction of the test section, origin at

centre of test section (m)

x N
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(m)

yt Cart. coord. aligned with horizontal direction of the test section, origin at centre

of test section (m)

yP distance from nearest wall (m)

yC non-dimensional distance from wall, u�yP =�

zbc Cart. coord. aligned with vertical minor axis of body, origin at centre of model

(m)

zt Cart. coord. aligned with vertical direction of the test section, origin at centre

of test section (m)

˛ angle of incidence (ı)


 instantaneous intermittency of turbulence

N
 time averaged intermittency of turbulence

N
 i time averaged intermittency of turbulence of a constant value i

ı boundary layer thickness (m)

ı� displacement thickness,
R 1

0
.1 � u.y/=u0/ dy (m)

" dissipation rate of turbulent kinetic energy (m2=s3)

� momentum thickness,
R 1

0
.u.y/=u0/ .1 � u.y/=u0/ dy (m)

� kinematic viscosity (m2=s)

� density (kg=m3)

�
W

density of water, at 20ıC , 101:325 kPa is 998:2 kg=m3

�w wall shear stress (Pa)

' azimuthal angle, measured from the symmetry plane on the windward side (ı)

'e azimuthal angle mapped to an ellipse, measured from the windward side (ı)

! specific dissipation rate of turbulent kinetic energy (1=s)
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ber

kRose calibration const. for the Rosemount differential pressure transducer (DPT)

(Pa=V )

kValidyne calibration const. for Validyne DPT (Pa=V )

CPi
pressure coefficient at Port i, zero and temporally corrected
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CVi ref
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�Vsenmax maximum volume displaced by diaphragm movement (m3)

� non-dimensional length used in plotting intermittency of turbulence

�dia density of sensor diaphragm (kg=m3)

�c cavitation number

�cc azimuthal variable for cylindrical coordinate system (ı)

�tr rotation angle about ytr (ı)

�
P

Poisson’s ratio

�tr rotation angle about ztr (ı)

 tr rotation angle about xtr (ı)

Subscript

i n inlet section of probe including tip

con conical section of probe between inlet and sensor section

sen sensor sections of probe

t rp location of boundary layer transition estimated from the surface pressure distru-

bution

CFD
a1 constant used with SST turbulence model, set to 0:31

Ablend constant used in calculating sharpness of blending for �t;enh

F1;F2 blending functions for the SST turbulence model

Hƒ estimate of shape factor allowing for the influence of crossflow

pe static pressure at the edge of the boundary layer (Pa)
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pw average static pressure at the wall (Pa)

u
ƒ
, v

ƒ
velocity in the x

ƒ
and y

ƒ
direction respectively (m=s)

x
ƒ

coordinate aligned with the external streamline (m)

y
ƒ

coordinate in the crossflow direction (m)

z
ƒ

coordinate normal to the surface (m)

y
P

distance to nearest wall, (m)

yC Wall y plus, non-dimensional parameter

Rey turbulent Reynolds number

Re�
y constant used in calculating sharpness of blending for �t;enh

Re
�

momentum thickness Reynolds number based

S absolute value of the mean rate-of-strain tensor (1/s)

Ue velocity outside the boundary layer (m/s)

U
ƒ

velocity along the streamline at the edge of the boundary layer (m/s)

˛� low Reynolds number correction for SST turbulence model

ı�
x

ƒ
streamwise displacement thickness (m)

ı�
y

ƒ
crossflow displacement thickness(m)

�Rey constant used in calculating sharpness of blending function

�x
ƒ

streamwise momentum thickness (m)

�xy
ƒ

influence of crossflow on ��
x

ƒ
(m)

�e blending function used with enhanced wall treatment

�hb Holstein-Bohlen parameter

�
C

parameter used to calculate boundary layer properties

�t;enh blended turbulent viscosity used in with enhanced wall treatment (Pa s)

�lam molecular viscosity (Pa s)

�t turbulent viscosity in fully turbulent region (Pa s)

�t;2layer turbulent viscosity in near wall region (Pa s)

� absolute value of the vorticity (1/s)

Subscript

ƒ coord. used in calculation of displacement thickness, x parallel to flow at boundary

layer edge, z normal to surface.
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Abbreviations
ADC Analog-to-Digital Converter

AM C Australian Maritime College

CFD Computational Fluid Dynamics

DES Detached Eddy Simulation

DSTO Defence Science and Technology Organisation

DyPPiR Dynamic Plunge-Pitch-Roll

DTP Differential Pressure Transducer

FRTPP Fast Response Total Pressure Probe

FSP Full Scale Pressure

LES Large Eddy Simulation

LDV Laser Doppler Velocimeter

NACA National Advisory Committee for Aeronautics

NNEMO Newport News Experimental Model

PC Personal Computer

PID Proportional-Integral-Derivative

PIV Particle Image Velocimetry

PV C Peak Valley Counting

PV C Polyvinyl Chloride

RANS Reynolds Averaged Navier–Stokes

ROV Remotely Operated Vehicle

URANS Unsteady Reynolds averaged Navier–Stokes

UDF User Defined Function

UDM User Defined Memory

U U V Unmanned Underwater Vehicle

VPI Virginia Polytechnic Institute and State University




