
Chapter 9

Numerical Study on the 3–1

Spheroid

The preliminary part of this chapter discusses the: solver, turbulence models, model geometry,

mesh structure, and grid density. Section 9.1 explains a number of user defined functions

(UDF) and some other software. One of these UDFs overcomes a perceived problem with

the calculation of the distance between wall surfaces and the cell centre; two others are used

to implement laminar regions for two turbulence models. Software was also written to allow

boundary layer properties to be calculated external to the finite volume code but using its

results; this code is discussed in this section. The following three sections examine the results

from the computations and compare them to the previously obtained experimental data. Section

9.2 examines the results for the 3–1 spheroid at an incidence of �0:2ı for two Reynolds numbers

and details some difficulties that arise with the implementation of the laminar regions. In

Sections 9.3 and 9.4 the numerical and measured results are compared for the spheroid at an

incidence of �10:2ı with and without the trip strip respectively.

The measurements presented in the preceding chapters show that for the range of Reynolds

numbers tested the boundary layer exhibits significant regions of both laminar and turbu-

lent flow with a relatively short transitional region between them. The turbulence models in

common use do not model the physical phenomena that are present in the boundary layer

transition process. For the simple case of a smooth flat plate at zero incidence in a low tur-

bulence environment this process is complicated. White [87] summarises the stages between

laminar and turbulent boundary layers as: the amplification of small disturbances into unstable

two-dimensional Tollmein-Schlichting waves; the development of these into three-dimensional

waves and hairpin eddies; localised vortex breakdown; three-dimensional fluctuations formed
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by cascading vortex breakdown; formation of turbulent spots. The importance of the scale [88]

and frequency [89] of turbulent structures has long been recognised as playing an important

role in boundary layer transition, so it will be difficult for any model that does not account for

these to predict boundary layer transition accurately.

Arguably the most successful technique for modelling boundary layer transition has been

based on the amplification of disturbances in the boundary layer. This en method has been used

by Cebeci to calculate the location of transition on a 6–1 spheroid at a incidences of 10ı [42] and

incorporated into the widely used X-foil isolated aerofoil code [90]. Stock [91] has successfully

used the en method to predict the transition on a 6–1 spheroid at incidences between 0ı and

30ı. While the local correlation-based transition model of Menter et al. [92] and Langtry et al.

[93] has been introduced into the commercial CFD code CFX, this technique does not attempt

to model the actual physics of boundary layer transition.

The goal of this numerical study however is not to examine the techniques of predicting

transition. This study examines how well the flow around the body is modelled if the ex-

perimentally obtained transition locations are used to activate the turbulence models in the

locations where the boundary layer is measured as turbulent. The results with these measured

laminar and turbulent regions implemented are then compared with experimental data detailed

in the earlier chapters.

The commercial CFD code Fluent 6.2 was used to model these tests. The Fluent prepro-

cessor Gambit was used to create the mesh. The spheroid, sting, foil support and upper limb

of the tunnel were modelled using a hybrid mesh with a predominance of hexahedral elements.

The volume close to wall faces was meshed with hexahedral elements. The spheroid, sting and

foil support were surrounded with an offset volume that allowed fine control of the hexahedral

element skewness and grading (Fig. 9.1). An O-type grid exists around the combined spheroid,

sting and foil support; this in effect results in a C-type grid around the spheroid and sting

which are of primary interest. The adjacent offset volumes allowed elements of high quality to

be produced in regions were the fluid was subject to large gradients. The normal distance from

the wall of the first element was selected to give yC < 1 for the spheroid, sting and foil at the

maximum Re
l
D 4:0 � 106. yC values between 30 and 80 were used for the cells adjacent to

the tunnel walls at the maximum Reynolds Number. The grading normal to the wall was gen-

erally 1.12 or less. Tetrahedral elements were used to link the offset volume and the hexahedral

elements used in the majority of the upper limb including the test section. A symmetry plane

was used on the vertical x-z plane for the majority of the numerical studies.

Table 9.1 details the grid resolution of a number of meshes used to examine the grid sen-

sitivity of the calculations on the spheroid. This table also displays calculated loads that are
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grid

name

normal

intervals

azimuthal

intervalsa
longitudinal intervals

CD
b CL

b CM
b

front half rear half

Sph Grid-10A 56 54 54 48 0:0601 0:0951 0:1341

Sph Grid-10B 70 70 79 100 0:0594 0:0949 0:1343

Sph Grid-10C 56 54 54 146 0:0593 0:0953 0:1340

Sph Grid-10D 84 70 86 200 0:0597 0:0943 0:1342

Sph Grid-10C-Adapt 112 108 108 292 0:0597 0:0968 0:1338

Sph Grid-10Bc 70 70 79 84 0:0609 0:0942 0:1343

Sph Grid-10B-Gap 70 70 79 84 0:0608 0:0936 0:1345

a These intervals distributed over 180ı .
b Force and moments calculated over 360ı .
c The intervals and loads reported are from Sph Grid-10B. This grid has no spheroid-sting gap; however,

the surface region over which these values have been determined in this row is restricted so it excludes
the region where the spheroid-sting gap exists in Sph Grid-10B-Gap. This allows comparison between
the results of Sph Grid-10B and Sph Grid-10B-Gap in order to determine the influence of this gap on
the calculated loads.

Table 9.1: Grid resolution on and normal to spheroid surface and loads calculated using
realisable k-" turbulence model for 3–1 spheroid at 10ı incidence with Re

l
D

4:0� 106.

one part-measure of the grid sensitivity. The grid sensitivity was checked at the maximum

Reynolds number under examination (Re
l
D 4:0� 106) at the maximum incidence of 10ı with

the realisable k-" turbulence model. The minimal difference in the calculated loads between

the two lowest density meshes Sph Grid-10A and Sph Grid-10B suggest that these results are

independent of the mesh density for the case under test. This is confirmed by the higher density

meshes and by the consistent ratio of form to viscous drag across all grids.

The negligible impact of the 0:5 mm gap between spheroid and sting, along with the as-

sociated internal volume, is demonstrated by the minimal change in loads between the results

of Sph Grid-10B and Sph Grid-10B-Gap, where the loads calculated from Sph Grid-10B are

restricted to exclude the surface of the spheroid were the spheroid-sting gap exists in Sph Grid-

10B-Gap (last two entries in Table 9.1). This small change in loads is reasonable as the entire

spheroid-sting gap is in a single region of separated flow. The slight increase in drag resulting

from the inclusion of the spheroid-sting gap is consistent with the increased surface area at the

rear of the model in a region of positive pressure. The extra resolution provided by Sph Grid-

10C, Sph Grid-10C-Adapt and Sph Grid-10D is of relevance when computing the flow with

areas of laminar and turbulent boundary layer when laminar separation (and turbulent reat-

tachment) occurs; as discussed in the follow subsections.

The three-dimensional incompressible formulation of the Reynolds-Averaged Navier-Stokes
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Figure 9.1: Volume geometry for spheroid at ˛ D �10:2ı. Hexahedral cells are used near the
surfaces and in the majority of test section. Tetrahedral cells are used to create
a conformal mesh between the offset volumes and the hexahedral cells in the test
section.

Y X

Z

Figure 9.2: Surface mesh around the rear of the spheroid showing spheroid-sting gap, Sph Grid-
10B-Gap, ˛ D �10:2ı.
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(RANS) equations were solved with the segregated solver. Second-order discretisation was se-

lected for the continuity, momentum and turbulent variables. The SIMPLE algorithm was used

for pressure-velocity coupling. Gradient evaluation was performed with a cell-based method.

The enhanced wall function uses a two layer approach with a blending function. If yC for

the cell nearest the wall is low enough to be inside the (linear) viscous sublayer, the flow is

modelled to the wall; if yC for the cell places it in the log-law region, wall functions are used.

A blending function provides a smooth transition for the calculations when the height of the

cell adjacent to the wall is such that it is too great to fall within the viscous sublayer but too

short for the law of the wall to be applicable. The enhanced wall treatment was used for these

computations, as it allows for modelling to the wall on the spheroid, sting and support foil.

The more economical wall functions were used on the walls of the upper limb.

The realisable k-" model was selected, as it is reported to be the most suitable of the k-

" turbulence models for handling streamline curvature, separation and vorticity [94][95]. An

added advantage of this model is it has no singularity in the " equation if k is zero. Given

the positive performance of the low Reynolds number k-! model reported by Kim et al. [48]

this was trialled, but produced non-physical results in the stagnation pressure. This problem

appeared to be related to the freestream turbulence and was apparent even if the freestream

turbulent intensity was approximately 0.1% in the test section; the results are not presented

for this model. The results of the Fluent implementation of the SST model are also compared

with experiment: this model blends (with the function F1 ) the k-" and k-! model with the

later of these operating in the low Reynolds number region of the flow. The developer of the

SST model tested it in adverse pressure gradients [96] and reported favourable performance in

predicting separation.

If a small turbulent length scale was selected at the inlet the turbulence intensity decreased

rapidly downstream of the inlet. However, if the length scale was set large enough so that the

turbulent kinetic energy did not dissipate rapidly, the resulting turbulent viscosity ratio was

outside the range generally used for external flows (1-10). Fortunately the calculated loads

and flow close to the body using the realisable k-" and the SST turbulence model displayed

little sensitivity to the range of length scales required to vary the turbulent intensity in the

test section between 0:1% and 0:6%. (The lift showed the greatest variation of approximately

3%.) Thus it is possible to use a turbulent viscosity ratio of 10 with minimal change in the

calculated results. It was also noted with the SST turbulence model that if larger length scales

were used the F1 blending function would activate the k-! portion of the model too far into

the freestream. It is physically reasonable that the length scale suitable for modelling the flow

in the upper limb of the cavitation tunnel should be much larger than the one used to model
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the flow around the body in the test section.

9.1 User defined functions and other code

The Fluent code allows a large degree of flexibility via the implementation of UDFs. A number

of UDFs were created for use with the numerical studies of flow about the spheroid. The reason

for, and details of these UDFs are discussed with reference to the numerical studies performed

on the spheroid and ellipsoid.

9.1.1 UDF - Cell Wall Distance

Examination of initial results showed unusual yC and wall shear stress values on the surface

of the spheroid (Fig. 9.3). These results show grid sensitivity when the cell closest to the

wall was thin in order to obtain a low yC ; it was not apparent on the tunnel walls. This

sensitivity was traced to the dependency of these functions on the cell wall distance. The cell

wall distance is defined as “the normal distance of each cell centroid from the wall boundaries”.

The mesh for the spheroid was created in Gambit with the height of the first cell layer set to

2:25 �m so the height of the centroid is expected to be close to half this value. Fluent however

showed the height for the cell wall distance over the front half of the spheroid varying between

1:1 � 10�10 and 6:5 � 10�6 m (Fig. 9.4(a)). Discussions with the code manufacturer failed to

provide a satisfactory explanation (as far as this user was concerned) so a UDF was written to

calculate the distance from the cell centroid to the nearest wall (Fig. 9.4(b)). With the cell wall

calculated using this UDF the yC and wall stress values on the surface of the spheroid no longer

display grid sensitivity (Fig. 9.5). The equiangle skew of the cells near the region showing grid

sensitivity is up to almost 0:7 in a few cells (Fig. 9.6(a)); however, the areas where unusual cell

wall distances were calculated extends significantly beyond these regions. The angle of the faces

of a hexahedral cell is ideally perpendicular to their connecting faces. Fig. 9.6(b) shows the

maximum deviation from this ideal angle is less than 13ı for all faces adjacent to the surface

faces over the front of the spheroid.

An alternative method for calculating the cell wall distance was later found on the Fluent

web site that produced almost identical results (Fig. 9.7(a)) to the cell wall distance UDF. This

alternative Fluent method was used for the CFD on the spheroid due to its greater efficiency

and general availability. When Version 6.3 of Fluent was released this alternative method

no longer behaved as it did in Version 6.2 (Fig. 9.7(a)), so the studies on the ellipsoid were

performed using the earlier developed UDF. The results of the cell wall calculations for the

ellipsoid using the default Fluent method and the UDF are shown in Fig. 9.8. The standard

methods of calculating the cell wall distance in Fluent Version 6.2 and 6.3 produced almost
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(a) yC (b) wall shear stress (Pa)

Pa

Figure 9.3: Sensitivity of yC and wall shear stress to grid with the default method of calculating
the distance between the cell centroid and the nearest wall. ˛ D �0:2ı, Re

l
D

4:0 � 106, Sph Grid-A

(a) Default Fluent method

m

(b) UDF

m

Figure 9.4: Comparison of distance between centroid of cell adjacent to the wall and the wall
surface calculated using the default methods and the developed UDF. ˛ D �0:2ı,
Sph Grid-A
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(a) yC (b) wall shear stress (Pa)

Pa

Figure 9.5: Sensitivity of yC and wall shear stress to grid with the developed UDF method for
calculating the distance between the cell centroid and the nearest wall. ˛ D �0:2ı,
Re

l
D 4:0� 106, Sph Grid-A

(a) Cell equiangle skew (b) Maximum deviation of cell sides from perpendicu-
lar to spheroid surface, (ı)

ı

Figure 9.6: Cell quality, ˛ D �0:2ı, Sph Grid-A
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identical results. The results for the ellipsoid model without a symmetry plane with the default

Fluent method and the UDF calculation of the cell wall distance is shown in Fig. 9.8. The

mesh for the ellipsoid without the symmetry plane was created by reflecting the mesh about

the symmetry plane in Gambit, so it is worth noting the lack of symmetry about this plane

shown in Fig. 9.8.

(a) Version 6.2

m

(b) Version 6.3

m

Figure 9.7: Distance from centroid of cell adjacent to the wall to the closest wall surface calcu-
lated using the alternative Fluent method. ˛ D �0:2ı, Sph Grid-A

It is important to stress that the calculated forces and flow field showed negligible difference

except for those properties directly dependent on the cell wall distance. However, given the

focus of this work on implementing regions with boundary layer transition where a sudden

increase in wall shear stress is expected, it is undesirable to have sudden jumps in this property

due to the calculation of mesh properties.

9.1.2 UDF - Laminar Zones

UDFs were written to allow the flow in a cell to be designated as laminar, turbulent or tran-

sitional via a value in a User Defined Memory (UDM) being set to zero, unity or between

respectively. The UDM provides a location to store a value associated with each cell or face

in the mesh. The laminar or transitional regions were created by multiplying the turbulent

viscosity, �t , via the value in the designated UDM. To allow this to occur the equations for the

turbulent viscosity for the realizable k-" and the SST turbulence models were coded in separate

UDF functions and multiplied by the UDM with the set intermittency value. The equations

and constants used to calculate the turbulent viscosity are specified in the Fluent User Manual

[94] with the following clarifications. The nomenclature in this section closely follows that of
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(a) Default cell wall calculation, Version 6.3

m

(b) UDF cell wall calculation, Version 6.3

m

Figure 9.8: Comparison of distance between centroid of cell adjacent to the wall and the wall
surface calculated using the default method and the developed UDF for the 4.2–2–1
ellipsoid at ˛ D �10:2ı. The mesh on the far side of the vertical symmetry plane
was created using a reflection.
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the Fluent User Manual.

� The enhanced wall treatment’s two layer model uses a blending function when calculating

the turbulent viscosity, �t;enh, between the fully turbulent region and viscosity-affected

region near the wall. The turbulent viscosity in the near wall region, �t;2layer , is blended

with the turbulent viscosity in the fully turbulent region resulting in

�t;enh D �e �t C .1 � �e/ �t;2layer (9.1)

The blending function, �e is given by

�e D
1

2

�
1C tanh

�
Rey � Re�

y

Ablend

��
(9.2)

where Rey is the turbulent Reynolds number, Re�
y .D 200/ determines the centre of the

blend, and Ablend is a constant that determines the sharpness of the blend. Rey is

determined from

Rey D
� y

P

p
k

�
(9.3)

where y
P

is the distance from the nearest wall, k is the turbulent kinetic energy, and �

is the molecular viscosity. The Fluent manual provides

Ablend D
j�Rey j

tanh.0:98/
(9.4)

where j�Rey j is a constant used to determine Ablend . However the text states that “the

value �e will be within 1% of its far field value given a variation of j�Rey j ”(from Re�
y );

this is only the case if

Ablend D
j�Rey j

tanh�1.0:98/
(9.5)

The original work on this blending by Jongen [97][98] does not extend to either Eq. 9.4

or 9.5.

Given that the purpose of this blending function is to facilitate convergence, this error is

of negligible physical significance. The value for �Rey is not specifically stated, but given

as a range between 5% and 20% of Re�
y . In the UDF a value of �Rey of 13 is chosen if

Eq. 9.4 is used, which equates to 39:7 if using Eq. 9.5, both within the range of 5% to

20% of Re�
y .

� The calculation of the �t for the SST turbulence model in Fluent changed between Version
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6.1 and 6.2 of Fluent. Version 6.1 uses

�t D
� k

!

1

max
h

1
˛� ; � F2

a1!

i (9.6)

where ! is the specific dissipation rate of k; ˛� is a low Reynolds number correction that

is not used (set to 1) with this UDF nor is it part of the original Menter SST model [96].

Wilcox [49] provides an in depth development of this low Reynolds number correction. F2

is a second blending function of the SST turbulence model, and � is the absolute value

of the vorticity. a1 is a constant set to 0:31. Version 6.2 substitutes the modulus of the

mean rate-of-strain tensor, S , for �:

�t D
� k

!

1

max
h

1
˛� ; S F2

a1!

i (9.7)

The UDF used to calculate �t for the SST turbulence model follows the formulation in

Eq. 9.7.

Menter et al. [92] when implementing their transition model modify the F1 blending func-

tion of the SST turbulence model to prevent the k-" model activating in low Reynolds number

transitional or laminar regions. This modification to the blending function could not be im-

plemented; however, the F1 blending function was monitored and not seen to activate the k-"

model in these low Reynolds number regions. Laminar zones are created in this UDF by set-

ting the turbulent viscosity to zero, rather than using the technique of Menter et al. [92] where

turbulence production is set to zero. This means that only in transitional regions should the

concern with the F1 blending function be of significance. (The technique of setting the produc-

tion to zero in laminar zones is preferable as it does not result in the loss of the turbulent kinetic

energy entering the laminar region, and is of importance if a turbulent wake is impinging on a

boundary layer of interest; but it is more difficult to implement via UDF.)

Fluent does allow individual zones to be set as laminar using the technique of setting the

turbulent viscosity to zero. This has the advantage of not having to write the above code, but

has the disadvantages that no boundary layer transition region is possible, and the pre/post

processing is more difficult with the additional zones that change with each incidence and

Reynolds number. This UDF also has the possibility of allowing the region of turbulent flow to

move forward if a separation is detected upstream of the predetermined transition region, and

allowing the region of turbulent flow to be adjusted with time in an unsteady simulation.
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9.1.3 Calculation of Boundary Layer Properties

The boundary layer properties: displacement thickness (ı�), momentum thickness (�), and

shape factor (H ) are used extensively in the analysis of two-dimensional boundary layer be-

haviour. These properties are not generally available from CFD codes using a volume mesh.

The calculation of displacement thickness in three-dimensional boundary layers is examined

by Lighthill [99] using four different methods. In two-dimensional flow the flow reduction

method is the most commonly recognised method. In three-dimensions Lighthill considers the

flow between two streamlines a distance hy
ƒ

dy
ƒ

apart in an orthogonal coordinate system with

x
ƒ

aligned with the external streamline, z
ƒ

normal to the surface and y
ƒ

in the crossflow

direction. hx
ƒ

dx
ƒ

is the distance between a point at x
ƒ

and x
ƒ
C dx

ƒ
. For the flow reduction

method in three-dimensions, Eq.19 of Lighthill [99] gives the displacement thickness as

ı� D
1

U
ƒ

Z 1

0

�
U

ƒ
� u

ƒ

�
dz �

1

U
ƒ

hy
ƒ

@

@y
ƒ

Z x

0

hx
ƒ

dx
ƒ

Z 1

0

v
ƒ

dz
ƒ

(9.8)

D ı�
x

ƒ
C ı�

y
ƒ

where U
ƒ

is the velocity along the streamline at the edge of the boundary layer; u
ƒ

and v
ƒ

are

the velocity components in the x
ƒ

and y
ƒ

directions respectively. The first term in Eq. 9.8,

ı�
x

ƒ
, accounts for the displacement thickness in the direction of flow parallel to the flow at the

boundary layer edge, consequently called the streamwise displacement thickness. The second

term, ı�
y

ƒ
, calculates the accumulation or dispersion of fluid due to flow in the y

ƒ
direction for

a volume bounded in the streamwise direction by two streamlines a distance hy
ƒ

dy
ƒ

apart at

the boundary layer edge and another two lines formed by projecting these lines onto the surface

in the direction normal to the surface. These streamlines extend upstream to the stagnation

point, x
ƒ
D 0. This second term is consequently called the crossflow displacement thickness.

Three variations to the three-dimensional flow reduction method presented by Lighthill were

used in the present study:

� As the inviscid velocity was available across the boundary layer the difference between

the component of the inviscid and viscous velocity in the direction of the viscous flow at

the boundary layer edge was used. This should more accurately capture the influence of

viscosity on the boundary layer than using the velocity at the boundary layer edge as it

will account for any variation in inviscid velocity due to surface curvature.

� The integration of the crosswise velocity component, v
ƒ
, normal to the surface in the

equation presented by Lighthill [99] does not allow for v
ƒ

being a function of x
ƒ
. The

software described allows for v
ƒ

being a function of x
ƒ

by using Eq. 9.9, which is consistent
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with Lighthill’s description and his Eq.21.

� The integration in the direction normal to the surface was limited to the edge of the

boundary layer as determined from the location where the velocity is 99% of the inviscid

velocity.

ı� D
1

U
ƒ

Z 1

0

�
U

ƒ
� u

ƒ

�
dz �

1

U
ƒ

hy
ƒ

@

@y
ƒ

Z x

0

Z 1

0

hx
ƒ

v
ƒ

dz
ƒ

dx
ƒ

(9.9)

The software to calculate the displacement thickness was run separately from Fluent. It

reads the Fluent case file and recreates the nodes, faces and cells. The reconstructed faces are

quadrilateral hyperboloidal elements as described by Morino et al. [100]. Velocities from a

viscous (either laminar or turbulent) and an inviscid solution are read for each node.

At each wall face where it is desired to calculate the streamwise displacement thickness,

a normal to the surface is calculated. At each intersection of this normal with a face of the

volume mesh, the inviscid and viscous velocity is calculated by interpolating on the face using

the values at its four nodes. This normal to the surface is extended out to well beyond the

expected edge of the boundary layer. The edge of the boundary layer is determined from where

the viscous velocity is 99% of the inviscid velocity. The value for the inviscid velocity is adjusted

marginally (� 1:4% at Re
l
D 2:0 � 106) to allow for the difference in velocity at the centre of

the test section due to boundary layer growth on the walls of the tunnel’s upper limb.

For a curved surface these surface normals are not parallel. The normal to the wall face,

and normal of the adjacent wall faces, are used along with the dimensions of the wall face to

determine the effective curvature of the face. This effective curvature can be used to calculate

the volume between the normal projection of this face from the surface at distances z
ƒ

and

z
ƒ
Cdz

ƒ
. The faces on the surface of the spheroid and ellipsoid are doubly curved. This change

in volume of a fixed height cell formed by the projection of the wall face from z
ƒ

and z
ƒ
C dz

ƒ

must be accounted for twice when determining the boundary layer properties: initially when

calculating the integral of the difference between the inviscid and viscous values normal to the

face, and again when determining the equivalent height of the calculated deficit.

The use of the total pressure to determine the edge of the boundary layer was also investi-

gated. This was unreliable as the total pressure was found to vary across the interface of the

hexahedral and tetrahedral cells in some locations by more than 2%.

The crossflow displacement thickness accounts for the accumulation or dispersion of fluid

due to gradients in the crossflow along a plane normal to the surface and parallel to a streamline

from the edge of the boundary layer above the point of interest to the attachment point. In

these calculations the accumulation or dispersion of fluid due to crossflow is determined from
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(a) Streamlines for Crossflow Displacement Thickness Calculations

(b) Closeup of two planes normal to surface and parallel to streamline at the boundary layer edge. The relative
length of crossflow velocity vectors (red) increased by ten times that of streamwise velocity vector (green).

x
ƒ

�!

y
ƒ

�!

x
ƒ

�!

y
ƒ

�!

hy ƒ

dy
ƒ

 �

�!

Figure 9.9: Crossflow Displacement Thickness. The streamlines and velocity vectors shown are
for a laminar section of flow with the spheroid at ˛ D �10:2ı, Re

l
D 4:0 � 106.
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the difference in crossflow between two of these planes aligned with the external streamline

started a small distance apart. The starting point is offset a distance based on the size of the

wall face, parallel with this wall face and perpendicular to the velocity at the boundary layer

edge. The accumulation or dispersion of fluid is calculated from the difference in crossflow

volume between these two planes. Fig. 9.9 shows two of these planes aligned with the external

streamline and the velocity vectors used in determining the crossflow volume for a wall face

located near the streamwise midpoint of the spheroid. Once the accumulation or dispersion

of fluid on the streamline upstream of a wall face is known, the influence of crossflow on the

displacement thickness at that wall face may be calculated.

9.2 Results and Discussion for ˛ D �0:2ı

9.2.1 Re
l

D 2:0 � 106

Sph Grid 0A is used in the initial studies at this incidence; its resolution is the same as Sph Grid-

10A (Table 9.1). In Subsection 4.4.1 a pressure differential between ' D 0ı and 180ı was

measured; the classical potential solution for the spheroid in isolation showed this difference

was not accounted for by the slight incidence, ˛ D �0:2ı, of the model. Fig. 9.10 compares the

measured Cp values with the results of computation using Fluent employing the realisable k-"

turbulence model for Re
l
D 2:0� 106. The difference between the measured and computed Cp

distributions for ' D 0ı and 180ı is approximately constant over the front 60% of the model:

at xbc= l D �0:046 the difference is 0:010 for both. The measured Cp at xbc= l D �0:046 is

approximately 0:004 greater than the calculated values for the three azimuths shown in Fig.

9.10. This difference is not of immediate concern as:

� this computation treats the entire spheroid boundary layer as turbulent, while the bound-

ary layer survey (Section 8.5) shows boundary layer transition for Re
l
D 2:0� 106 occur-

ring downstream of the centre, in the vicinity of xbc= l � �0:35.

� a small shift in Cp was observed between laminar and turbulent regions in the measured

results.

� the surface pressure distribution over the rear of the body displays an earlier boundary

layer separation, and consequently smaller base pressure, for the computed results. This

is reasonable as the thicker boundary layer produced by modelling the entire boundary

layer of the spheroid as turbulent is expected to separate earlier.

In summary, the difference between the measured and computed surface static pressure

at ' D 0ı and 180ı near the mid-body is similar. The absolute values of the measured and
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computed static surface pressure at this location are slightly different. Contour plots of static

pressure on the plane ybc D 0 confirm an increase in static pressure extends well upstream of

the support foil. This results in a lack of symmetry of the contour lines about the zbc D 0

plane.

The major aim of this computational work was to examine the performance of the compu-

tational modelling when the turbulence models are applied only in regions where the boundary

layer has been measured as turbulent. The reasonable place to start this investigation is at

zero incidence (almost) with an axisymmetric body. Fig. 9.11 shows a comparison between the

Cp distribution calculated at Re
l
D 2:0 � 106 for: an inviscid solution; a body with the front

half of the model laminar and the rest of the domain turbulent; an entirely turbulent domain;

and the measured data. The minimal difference in the computed Cp distribution between the

solution that allowed for the laminar forebody and the fully turbulent solution was unexpected

given the experimental observations. The Cp measurements displayed a small increase in pres-

sure downstream of the boundary layer transition, with the curves for the Reynolds numbers

downstream of boundary layer transition typically1 creating a new grouping as discussed in

Subsection 4.4.2.

It is worth examining results from a coupled inviscid-viscous solver at this point to examine

the calculated surface pressure distributions when boundary layer transition is forced at different

locations. The two-dimensional X-foil code [90] was used on a 6.67–1 elliptical cylinder for this

comparison as it provides a similar range in Cp. At ˛ D 0ı, Re
l
D 1:0 � 106 the X-foil

results show the Cp curves for the laminar group approximately 0:01 less than the curves for

the turbulent boundary layer (Fig. 9.12(a)). The insert in Fig. 9.12(a) shows only a minor

difference in base pressure when the location of the forced transition is between xbc= l D �0:4

and 0:1. Repeating the calculations using Fluent on the same elliptical cylinder results in a

similar magnitude shift in Cp between the laminar and turbulent curves, although a greater

range in base pressure (Fig. 9.12(b)). The calculations with Fluent used the realisable k-"

turbulence model with a boundary layer transition region of length xbc= l D 0:03. In contrast

the X-foil calculations assume an immediate commencement of a turbulent boundary layer.

The realisable k-" turbulence model displays a rapid increase in surface shear stress once the

transition zone has commenced, as evidenced by the location and sharpness of the perturbation

observed in Fig. 9.12(b). Later in this chapter it is observed that the increase in surface shear

stress with the SST turbulence model is more gradual.

The next step was to examine the calculated surface pressure on the spheroid in axisym-

metric (˛ D �0:2ı) flow with boundary layer transition forced at set locations. This allows

1A significantly earlier boundary layer transition may result in earlier boundary layer separation with reduced
base Cp having an influence upstream.
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average
base Cp

measured 0.341

fully
0:235

turbulent

Figure 9.10: Comparison of surface pressure measurements with numerical results, Re
l
D 2:0�

106, ˛ D �0:2ı. The difference between the surface pressure distribution for ' D 0ı

and 180ı is attributed to blockage caused by the support foil. There is a significant
difference between the calculated and measured base pressure.

.'
D

0
ı
/

average
base Cp

measured 0.341

rear half
0:274

turbulent

fully
0:235

turbulent

Figure 9.11: Comparison between measured and numerical surface pressure distributions with
boundary layer transition set to occur at xbc= l � 0 for one set of the numerical
results, Re

l
D 2:0�106, ˛ D �0:2ı, Sph Grid 0A. Values for ' D �90ı and �180ı

offset in the vertical direction 0:1 and 0:2 respectively. There is minimal difference
in Cp between the fully turbulent solution and the solution that allows for the front
half being laminar over the upstream 75% of the body, except in the boundary
layer transition region. The difference between the inviscid and other computed
solutions shows that the boundary layer is influencing the Cp values. Cp values for
each azimuth progressively displaced by 0:1 for ' < 0ı.
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examination of the surface pressure distributions to observe if they form two sets of curves,

with a switch from one group to the other occurring around the location of transition. Fig.

9.13 shows this does not occur: after a short perturbation at the location of boundary layer

transition the curves tend to return to a single set of curves. The single set of curves starts to

diverge towards the rear of the model.

While examining the influence of boundary layer transition on surface pressure it is worth

noting that Popov et al. [101] used X-foil in the validation of a technique to locate boundary

layer transition by using the maximum curvature of the surface pressure distribution. It is of

some interest that at almost the same time Clarke et al. [102] were noting the disparity between

measured surface pressure distributions on a spheroid in three-dimensional flow and those ob-

tained using a modern finite volume code for a boundary layer in transitional flow Popov et al.

were using the surface pressure distribution from a coupled inviscid-viscous solver to determine

the location of transition. The solution from the finite volume code on the spheroid may still

have a maximum curvature in the surface pressure distribution in the region of boundary layer

transition; however, the overall shift in surface pressure distribution between the laminar and

turbulent curves seen in the X-foil and Fluent results on an elliptical cylinder and in the mea-

surements on the spheroid is not apparent in the calculations obtained using the Fluent code

with the realisable k-" turbulence model on the spheroid (Fig. 9.11).

Due to the disparity between the measured and computed surface pressure distributions on

the spheroid at ˛ D �0:2ı an examination of the boundary layer properties from the finite

volume solution is performed. In this (almost) axisymmetric case it is possible to compare

the momentum thickness obtained using the previously mentioned Mangler transformation

of Thwaites’ method [73] in Subsection 8.2.1 with those of the finite volume solution using

the code described in Subsection 9.1.3. Except near the stagnation region (xbc= l D �0:5)

Fig. 9.14 shows good agreement for the momentum thickness in the region of laminar flow.

This agreement suggests that in the absence of crossflow the momentum thickness calculation

is reasonable. The momentum thickness obtained with the finite volume solution shows a

considerable increase in its rate of change downstream of the boundary layer transition region.

This is expected with a turbulent boundary layer.

The calculated boundary layer properties using Fluent on the Sph Grid 0A mesh for a fully

turbulent case and one with boundary layer transition implemented at the measured location,

when no trip was used, is shown in Fig. 9.15(a) for Re
l
D 2:0�106, ' D �90ı. The turbulence

was modelled using the realisable k-" model. For the case with the transitional boundary layer:

� The wall shear stress coefficient approaches zero, indicating laminar boundary layer sep-

aration in this approximately axisymmetric case, near xbc= l D 0:25; no subsequent reat-
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transition
base
Cp

location
xbc= l

-0.4 0.200
-0.3 0.201
-0.2 0.203
-0.1 0.205
0.0 0.209
0.1 0.215
0.2 0.230

(a) Cp calculated using X-foil with boundary layer transition set to occur between xbc= l D �0:4 and 0:2

inclusive at xbc= l D 0:1 intervals. The X-foil calculations assume an immediate switch from laminar to
turbulent boundary layer.

N

0:5

N

0:5

base

xbc= l Cp

-0.5 0.167
-0.4 0.171
-0.3 0.179
-0.2 0.188
-0.1 0.199
0.0 0.212
0.1 0.228
0.2 0.246

(b) Cp calculated using Fluent with realisable k-" turbulence model with boundary layer transition set to occur
between xbc= l D �0:5 and 0:2 inclusive at xbc= l D 0:1 intervals. A length of the transition region was
set to xbc= l D 0:03.

Figure 9.12: Surface pressure calculations on a 6.67-1 elliptical cylinder at ˛ D 0:0ı, Re
l
D

1:0 � 106. The coupled inviscid-viscous solver and the finite volume code both
show a similar size shift in Cp after the transition region. The perturbation of the
curves in the transition region is slightly larger with the finite volume code; this
may in part be due to the greater resolution employed with the finite volume code.
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0
ı

/

N

0:25

base

xbc= l Cp

-0.315 0.247
-0.215 0.248
-0.115 0.264
-0.015 0.274
0.085 0.301

Figure 9.13: Comparison of calculated surface pressure distributions with boundary layer tran-
sition set to occur at xbc= l D 0:1 intervals between �0:3 and 0:1 inclusive using
the realisable k-" turbulence model, Re

l
D 2:0 � 106, ˛ D �0:2ı, Sph Grid 0A.

Values for ' D �90ı and �180ı offset in the vertical direction 0:1 and 0:2 respec-
tively. There is minimal difference in Cp between the distributions except near
the location of the boundary layer transition and towards the rear of the body.
The base pressure displays a range of 0:06 showing the greater length of turbulent
boundary layer results in a noticeable reduction in the pressure recovery. Cp values
for each azimuth progressively displaced by 0:1 for ' < 0ı.

Figure 9.14: Boundary layer properties for approximately axisymmetric flow on 3–1 spheroid
calculated using Sph Grid 0A with a realisable k-" turbulence model, ˛ D �0:2ı,
Re

l
D 2:0 � 106, ' D �90ı. Mangler transformation of Thwaites method solved

for axisymmetric flow using velocity distribution from classical potential theory on
ideal spheroid at Re

l
D 2:0 � 106.
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(a) Comparison of results from Sph Grid 0A with and without laminar regions being set.

(b) Comparison of boundary layer properties from Sph Grid 0A and Sph Grid 0A-Adapt with laminar regions
implemented from measured results. This result shows that Sph Grid 0A has not achieved grid independence
in the region after laminar separation even though the results on the equivalent density mesh in the fully
turbulent case at ˛ D �10:2ı were grid independent.

Figure 9.15: Boundary layer properties for approximately axisymmetric flow on 3–1 spheroid
using realisable k-" turbulence model with and without laminar regions, Re

l
D

2:0 � 106, ˛ D �0:2ı, ' D �90ı. Mangler transformation of Thwaites method
solved for axisymmetric flow using velocity distribution from classical potential
calculation on ideal spheroid at Re

l
D 2:0 � 106.
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tachment to the body is predicted. Laminar separation, near xbc= l D 0:25; without

reattachment, is predicted for all azimuths except for a thin region 0ı > ' ' �10ı

where reattachment occurs. The laminar separation is well upstream of both the mea-

sured boundary layer transition location of xbc= l � 0:35 (Table 8.3) and the location

of the measured turbulent boundary layer separation at xbc= l � 0:46 shown in the flow

visualisation (Fig. 7.14).

� The shape factor value of approximately 2:5 near the centre of the model where there is

minimal pressure gradient would appear reasonable, as does its value of approximately 3:6

at laminar separation. Re� calculated by Thwaites’ method from the classical potential

solution is close to that calculated with the transitional boundary layer until just prior to

boundary layer separation.

To investigate the discrepancy between the measured location of boundary layer separation

and that predicted by the CFD methods, an integral method based on the boundary layer

equations was used. The Holstein-Bohlen parameter (also called Thwaites’ pressure gradient

coefficient), �hb, is given by

�hb D
�2

�

dUe

dx
(9.10)

where Ue is the velocity outside the boundary layer.

A value for this parameter of �0:09 is often used to indicate separation in two-dimensional

flows (and possible axisymmetric flows [87]). With the aim of bracketing the range of expected

separation locations this technique was applied to both: the values calculated from the CFD

when premature laminar separation has occurred resulting in reduced pressure recovery; and

the results from the classical potential solution with no sting and full pressure recovery. Using

the results from the realisable k-" turbulence model for Re
l
D 2:0 � 106 gave �hb D �0:09 at

xbc= l � 0:24. Repeating this calculation using the velocity distribution of the classical potential

solution and Thwaites’ estimate of the momentum thickness �hb D �0:09 at xbc= l � 0:27; this

result is invariant with Reynolds number. For a linearly decelerating flow Thwaites found �hb D

�0:082 at separation; for the spheroid with its initially increasing then decreasing streamwise

velocity Thwaites method is expected to slightly underpredict � and thus �hb, which would

tend to indicate a later laminar separation. Curle [103] graphed �hb at separation against his

second parameter �
C

where

�
C
D

�
�hb=

dUe

dx

�2

Ue

d2Ue

dx2
D

�4

�2

d2Ue

dx2
(9.11)
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This plot shows that the value of �hb at separation decreases in a increasingly adverse pressure

gradient (d2Ue

dx2 < 0) to a minimum of �hb � �0:11, with a corresponding value of H � 3:55.

However, as the slope �hb against xbc= l is steep in Fig. 9.15 a change in �hb at separation

from �0:08 to �0:11 will have only a minor influence on the location of separation determined

using this technique. The surface streamlines show the predicted flow using the CFD is far

from axisymmetric. These methods of predicting the location of separation were developed

for two-dimensional flow and were applied via the Mangler transformation for axisymmetric

flow. The significant degree of non-axisymmetric flow in the current CFD result suggests that

it is unlikely that these integral methods will assist in examining the discrepancy between the

calculated and measured location of separation. The value of �hb will also be influenced by the

boundary layer transition zone as the transition causes a perturbation in the surface pressure

distribution. This perturbation extends for approximately xbc= l D 0:07 upstream of N
 0:25 for

the spheroid in Fig. 9.13. The perturbation results in an initially more favourable pressure

gradient upstream of the transition region and then a less favourable pressure gradient shortly

into it than would exist without the transition region. This influence is examined in more

detail on a finer mesh with a measured transition length later in the subsection. However, in

this case (Fig. 9.15) �hb becomes less than �0:11 far enough upstream of the transition region

so it should not have a significant influence.

Boundary layer transition may occur via a short laminar separation bubble; this was ob-

served in Fig. 7.10 on the spheroid at this Reynolds number when ˛ D �10:2ı for ' between

0ı and approximately �60ı. This mode of boundary layer transition highlights a deficiency in

the present method of presetting the laminar and turbulent regions. If a laminar separation is

calculated to occur upstream of the measured turbulent region the flow is less likely to reattach

in a predefined laminar zone. Ideally the computed shear layer should transition to turbulence

shortly downstream of the laminar separation. A general problem with a short laminar sepa-

ration bubble is that a significant local increase in mesh resolution is required in its vicinity to

resolve the flow accurately. The turbulent reattachment also requires an appropriate switching

on of the turbulence model. Stock and Haase [104] in some of their calculations fix boundary

layer transition just upstream of where laminar separation would otherwise occur. Menter et

al. [92] in their transition model encourage more rapid reattachment of laminar separations by

allowing the intermittency factor to become greater than unity in a region of separated flow.

The lack of grid independence in the computed results downstream of the laminar separation

(Fig. 9.15(b)) suggests an increase in grid density is required in this region. The resolution of

the meshes used for this incidence are listed in Table 9.2. The surface streamlines shown in Fig.

9.16 display grid independence for the pattern of surface streamlines between Sph Grid 0B-
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(a)
Sph Grid 0B-Adapt, approximately 6 streamwise intervals across
the laminar separation bubble near xbc= l � 0:32, ' � �30ı
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(b)
Sph Grid 0C-Adapt, approximately 9 streamwise intervals across
the laminar separation bubble near xbc= l � 0:32, ' � �30ı
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Figure 9.16: Computed surface streamlines on 3–1 spheroid using realisable k-" turbulence
model with laminar regions, Re

l
D 2:0 � 106, ˛ D �0:2ı. Comparison between

the streamlines shows a relatively high level of grid independence in the pattern
of the surface streamlines between Sph Grid 0B-Adapt and Sph Grid 0C-Adapt.
Contours of wall shear stress in the xbc direction show similar results except on
the flank.
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grid

name

normal

intervals

azimuthal

intervalsa
longitudinal intervals

front half rear half

Sph Grid 0A 56 54 54 48

Sph Grid 0A-Adapt 112 108 108 96

Sph Grid 0B 56 54 54 146

Sph Grid 0C 56 80 74 252

Sph Grid 0B-Adapt 112 108 108 292

Sph Grid 0C-Adapt 112 160 148 504

a These intervals distributed over 180ı .

Table 9.2: Grid resolution on and normal to spheroid surface for 3–1 spheroid
at �0:2ı incidence.

Adapt and Sph Grid 0C-Adapt, though a small variation in the streamwise location of the flow

separation is apparent near xbc= l � 0:32, �60ı > ' > �120ı.

The results from the two high resolution meshes show a separation bubble at xbc= l �

0:32 (Fig. 9.16) for 0ı > ' > �40ı and �150ı > ' > �180ı; for these azimuth angles the

turbulent separation has moved downstream to xbc= l � 0:44. The separation bubble, however,

is calculated to start shortly downstream of the start of the predefined turbulent region ( N
 / 0:4)

rather than shortly upstream of it. On the flank of the model, where the location of boundary

layer transition was measured to occur at xbc= l � 0:35, fractionally further downstream than

for the upper and lower surfaces (xbc= l � 0:315, Table 8.3), flow separation occurs upstream

at xbc= l � 0:29 with no reattachment of the separated flow on the flank.

Measured and calculated surface pressure distributions are shown in Fig. 9.17. A significant

difference exists between the distributions calculated using Sph Grid 0A and Sph Grid 0C-

Adapt both upstream and downstream of the location of boundary layer transition. The

corresponding difference is smaller between Sph Grid 0B and Sph Grid 0C-Adapt and negligi-

ble between Sph Grid 0B-Adapt and Sph Grid 0C-Adapt. The pressure distribution calculated

using the higher resolution meshes on the azimuths where the flow has reattached compare

favourably with measured values; with the exception of the most downstream surface measure-

ment adjacent to the flank which is influenced by the flank separation. On the flank of the

model calculated pressure distributions have unrealistic oscillations. The free shear layer above

the surface where the oscillations are observed may be more susceptible to numeric instabili-

ties. Further refinement was not attempted due to the minimal difference between the results

obtained using Sph Grid 0B-Adapt and Sph Grid 0C-Adapt despite the significant increase in

grid resolution.
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Figure 9.17: Computed and measured surface pressure distribution on spheroid, ˛ D �0:2ı,
realisable k-" turbulence model. Cp values for each azimuth progressively displaced
by 0:25 for ' < 0ı. Results for the lower resolution mesh display a reduced base
pressure.
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Boundary layer properties calculated using the realisable k-" turbulence model where the

flow has reattached at ' D �30ı and where it has failed to reattach at ' D �90ı are shown

in Fig. 9.18. For ' D �30ı the boundary layer properties are similar for the two highest

resolution meshes. Possible values of H at the separation of a laminar boundary layer are

plotted as a function of �hb by both Curle [103], and Head and Hayasi [105]. Curle suggests

a minimum of H � 3:55 at �hb � �0:11. Head and Hayasi show a monotonically decreasing

H with decreasing �hb, with a minimum of H � 3:47 at �hb � �0:14. The shape factor of

3:2 at separation obtained from the finest mesh, Sph Grid 0C-Adapt, is less than the minimum

of 3:5 suggested above for a laminar boundary layer. For the finest grid at ' D �30ı (Fig.

9.18Fig. (a)) separation has commenced inside the transition region so the decrease in H may

be attributed to the expected decrease in H as the boundary layer becomes turbulent; the

boundary layer still separates as insufficient momentum has been transferred towards the wall by

the intermittent turbulence. The separation bubble is, at least partly, due to the implementation

of the boundary layer transition region as the separation bubble occurs in the first part of the

transition region; this separation bubble is discussed later in this subsection and at the end of

this chapter. At ' D �90ı the boundary layer properties for the two highest resolution meshes

display significant differences upstream and downstream of the laminar separation. Another

complication in interpreting the results of the boundary layer properties is that once crossflow

occurs the momentum thickness and thus shape factor must allow for convergence or divergence

effects2 ; crossflow has not been accounted for in this almost axisymmetric case.

Measurements at ˛ D �0:2ı in some cases appeared to be sensitive to apparently minor

(negligible) changes in the setup resulting in non-axisymmetric results. This sensitivity was

attributed to the minimal azimuthal pressure gradients allowing small surface perturbations

to influence the development of the boundary layer. The small variation with azimuth in the

observed axial location of boundary layer transition may have a computational equivalent. In

order to investigate this a calculation using Sph Grid 0C-Adapt was repeated with constant

axial locations of xbc= l D 0:315 and 0:34 for N
 0:25 and N
 0:75 respectively. These figures were

based on the average values at ' D �30ı and �150ı. This modification resulted in a consistent

streamwise location of the separation bubble (in the boundary layer transition region) for all

azimuthal angles and a turbulent separation at xbc= l � 0:44. Contours of shear stress and

the calculated surface streamlines for this case are shown in Fig. 9.19. The calculated surface

pressure distributions when the constant streamwise location for transition is applied show good

agreement with calculated measured data (Fig. 9.20). The calculated base Cp in this case is a

good match with the measured base Cp . Over the front half of the body minimal difference is

2The Mangler transformation will allow for convergence or divergence effects resulting from body radius
changes in axisymmetric flow.
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(a) ' D �30ı , where the computed flow has reattached.

(b) ' D �90ı , where the computed flow has not reattached.

Figure 9.18: Boundary layer properties for approximately axisymmetric flow on 3–1 spheroid
using realisable k-" turbulence model, Re

l
D 2:0 � 106, ˛ D �0:2ı, ' D �90ı.

Location of N
0:25 and N
0:75 from FRTPP measurements.
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seen in the calculated surface pressure distribution between the laminar and turbulent boundary

layers in Fig. 9.21, this is at odds with the measured results and unexpected given the results

computed using this finite volume code on the elliptical cylinder.3

�wx
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�120ı

�150ı

0:18

0:27

0:36

0:45

Figure 9.19: Computed surface streamlines on 3–1 spheroid using realisable k-" turbulence
model with laminar regions, ˛ D �0:2ı, Re

l
D 2:0 � 106, ' D �45ı. Replac-

ing the measured transition region with an axisymmetric transition region in the
vicinity of the measured transition region results in a significant change in the
surface streamlines.

As noted in Subsection 8.5, intermittency values in the boundary layer transition region

have been implemented using Dhawan and Narasimha’s [85] distribution of intermittency and

the measured location of N
0:25 and N
0:75. For Sph Grid 0C-Adapt using the boundary layer

survey results at Re
l
D 2:0�106, ˛ D �0:2ı this placed approximately 120 grid intervals in the

streamwise direction between x N
0:01
and x N
0:99

, with approximately 40 of these between x N
0:25

and x N
0:75
. The large number of cells combined with Dhawan and Narasimha’s [85] distribution

of intermittency allows a smooth implementation of the turbulent region so the separation

3With the realisable k-" turbulence model the turbulent boundary layer is rapidly established. This is evident
from the significantly greater surface shear stress just downstream of the stagnation point observed for the fully
turbulent solution when compared to the results with the measured laminar region implemented, Fig. 9.15(a).
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Figure 9.20: Computed and measured surface pressure distribution on spheroid, ˛ D �0:2ı,
realisable k-" turbulence model, Sph Grid 0C-Adapt. Cp values for each azimuth
progressively displaced by 0:25 for ' < 0ı. Use of a constant streamwise location
prevented boundary layer separation on the flank of the spheroid. This highlights
the sensitivity of this calculation to the implementation of the boundary layer
transition region. It is also worth noting the minimal difference in the calculated
surface Cp where the boundary layer is laminar or turbulent over the upstream
60% of the spheroid. Location of N
0:25 and N
0:75 from FRTPP measurements.
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bubble should not be due to a discontinuity in the implementation of boundary layer transition

region. This is not to suggest the a smooth shift from laminar to turbulent boundary layer exists

in practice, as the spatial and temporal variations in the measured boundary layer transition

region displayed in Fig. 8.9, but in a steady RANS simulation this is a reasonable approach

both physically and numerically. The difference between the results with the axisymmetric

implementation of boundary layer transition using the average of the measured values and

the implementation with the slight variation in axial location highlight the sensitivity of the

calculation at this incidence and Reynolds number to relatively minor variations in the boundary

layer.

Now that the laminar separation without reattachment has been avoided the separation

bubble in the transition region is examined in greater detail in Fig. 9.22. For inviscid flow over

the rear half of the spheroid at zero incidence dCp=d.xbc= l/ will monotonically increase as xbc

approaches the rear stagnation region. Fig. 9.22 shows dCp=d.xbc= l/ increasing as expected

for 0:20 < xbc < 0:25. However, after xbc= l D 0:25 dCp=d.xbc= l/ starts decreasing through

to about xbc= l � 0:315, well inside the transition zone ( N
0:20). A large peak in the adverse

pressure gradient occurs at xbc= l � 0:32; the boundary layer separates prior to this peak. This

shows how the variation of displacement thickness through the transition region is influencing

this separation bubble.

Calculations performed using Sph Grid 0C-Adapt with the SST turbulence model displayed

flow separation upstream of the predetermined boundary layer transition region and a failure

of the flow to reattach for all azimuthal angles.

9.2.2 Re
l

D 3:5 � 106

For ˛ D �0:2ı, Re
l
D 3:5 � 106 boundary layer transition was measured to occur after a

relatively short length of adverse pressure gradient (Table 8.3). This is upstream of where the

boundary layer may be expected to separate from examining either the shape factor or the

Holstein-Bohlen parameter as apparent in Fig. 9.23. Using the realisable k-" turbulence model

with increased mesh resolution resulted in negligible change in the shear stress or boundary

layer parameters outside the transition region. Near the start of the boundary layer transition

zone increased resolution resulted in a sharper dip in the displacement thickness with similar

values in the remainder of the transition zone (Fig. 9.24). The SST turbulence model is slower

to switch on. This slower switch on when the SST turbulence model is used without a predefined

upstream laminar region with a bluff body is desirable, as it avoids the excessive production

of k in the upstream stagnation region due to the large shear stress. This behaviour is less

desirable when attempting to commence turbulence modelling at a particular location (unless
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Figure 9.21: Close up of pressure distribution for approximately axisymmetric flow on 3–1
spheroid using realisable k-" turbulence model and an axisymmetric implementa-
tion of the boundary layer transition region, Re

l
D 2:0�106, ˛ D �0:2ı, ' D �90ı,

Sph Grid 0C-Adapt. There is minimal difference between the computed pressure
distribution for the laminar and turbulent boundary layer over the upstream 60%
of the spheroid.
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Figure 9.22: Computed wall shear stress and surface pressure gradient on the spheroid, ˛ D
�0:2ı, realisable k-" turbulence model, Sph Grid 0C-Adapt. The pressure gradient
is seen to increase rapidly near N
0:20, separation occurs at approximately N
0:35.

it is some how accounted for). The slower commencement in the production of k with the

SST turbulence model is likely associated with the failure of the boundary layer to reattach

for this incidence for Re
l
D 2:0 � 106. The other notable difference between the results of the

realizable k-" and the SST turbulence models is the greater maximum shear stress calculated

by the former with and without the implemented laminar transition (Figs. 9.23 and 9.24).

With boundary layer transition implemented the shear stress coefficient at ' D �90ı in

Fig. 9.23 shows turbulent boundary layer separation occurs for the realisable k � " and the

SST model at xbc= l � 0:45, a short distance downstream from the location determined by

both fully turbulent cases (xbc= l � 0:44). Near the stagnation point (xbc= l D �0:5) with the

turbulence model implemented in this region the shape factor calculated from the boundary

layer with the SST model behaves initially in a manner closer to that of the laminar region while

the dissipation of turbulent kinetic energy exceeds its production. The location of turbulent

boundary layer separation is within the range of xbc= l D 0:43 to 0:46 seen in the surface flow

visualisation (Fig. 7.15) at a similar Reynolds Number (Re
l
D 4:0� 106). The results from the

surface pressure measurement4 at Re
l
D 3:0� 106, for this incidence, show a separation in the

4The results of the surface pressure distribution for this incidence at Re
l

D 3:5 � 106 displayed boundary
layer transition near the front of the body. This is believed to be due to perturbations from a pressure tapping
hole.
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(a) realisable k-"

(b) SST

Figure 9.23: Boundary layer properties for approximately axisymmetric flow on 3–1 spheroid
using two equation turbulence models with and without laminar regions using
Sph Grid 0A for Re

l
D 3:5 � 106, ˛ D �0:2ı, ' D �90ı. Mangler transformation

of Thwaites method solved for axisymmetric flow using velocity distribution from
classical potential theory on an ideal spheroid at Re

l
D 3:5 � 106. The values for

momentum thickness obtained using Thwaites method and the finite volume code
show good agreement in regions of laminar flow. The values of the shape factor
appear reasonable. The wall shear stress is greater when using the realisable k-"
than it is when using the SST turbulence model. Location of N
0:25 and N
0:75 from
FRTPP measurements.
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range 0:44 < xbc= l < 0:47 (Fig. 4.5(c)).

Calculated surface streamlines and contours of shear stress coefficient are shown in Fig.

9.25. This figure shows the additional grid resolution required when a separation bubble was

present has negligible influence on the surface streamlines when transition is implemented in

the absence of boundary layer separation. The axial location of boundary layer separation is

relatively axisymmetric, occurring slightly upstream when the boundary layer transition is also

upstream as evidenced by the increase in wall shear stress in Fig. 9.25. The wall shear stress

maximum along a streamline is less when boundary layer transition occurs further downstream

in the region of flow deceleration due to the body curvature. The surface streamline and

separation location calculated using the SST turbulence model with the same laminar region is

very close to that calculated using the realizable k-" at this Reynolds number. Surface pressure

coefficient measurements for a range of Reynolds numbers and the calculated surface pressure

coefficient at Re
l
D 3:5 � 106 are compared in Fig. 9.26. The location of the transition region

used for the computations was determined from the boundary layer survey and was upstream of

the location estimated from the surface pressure measurements at Re
l
D 2:5�106 and 3:0�106.

The estimated transition region from the surface pressure measurements in Fig. 9.26 does not

include the result for Re
l
D 3:5 � 106; however it is reasonable to expect transition to occur a

relatively short distance upstream of the locations for Re
l
D 2:5 � 106 and Re

l
D 3:0 � 106.

Upstream of the region where boundary layer transition has been set for the computations

the computed Cp values tends to be marginally less than the measured values (Fig. 9.26).

Downstream of the transition region set for the computations (determined from the boundary

layer survey), but still upstream of the region where the surface pressure measurements appear

to show transition, the computed surface pressure values appear to be very close to those

measured. The overall shift in computed surface pressure after transition is less than seen

in the measurements; this is further examined in the following Subsection. As seen with the

boundary layer properties in the transition region at this Reynolds number the surface pressure

coefficient distribution for the two meshes using the realizable k-" are similar, with the greater

resolution of Sph Grid 0B-Adapt showing a slightly larger perturbation. The results for the

SST model show a more gradual shift.
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(a) ' D �30ı

(b) ' D �90ı

Figure 9.24: Boundary layer properties for approximately axisymmetric flow on 3–1 spheroid
using realisable k-" and SST turbulence models, Re

l
D 3:5 � 106, ˛ D �0:2ı.

Boundary layer properties at this Reynolds number are similar for both meshes
and turbulence models. For the SST model compared to the realisable k-" model
the most notable differences are the lower wall stress in the turbulent region and
its slower switch to the expected turbulent behaviour. (e.g. the increase in mo-
mentum thickness, the dip then increase in displacement thickness, the drop in H

to approximately 1:5.) Location of N
0:25 and N
0:75 from FRTPP measurements.
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(a) Sph Grid 0A
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(b) Sph Grid 0B-Adapt
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Figure 9.25: Computed surface streamlines on 3–1 spheroid using realisable k-" with laminar
regions, Re

l
D 3:5 � 106, ˛ D �0:2ı. Comparison between the streamlines shows

grid independence in the location of boundary layer separation. Contours of wall
shear stress in the xbc direction show negligible difference between the solution
obtained using grid Sph Grid 0A and Sph Grid 0B-Adapt.



CHAPTER 9. NUMERICAL STUDY ON THE 3–1 SPHEROID 207

.'
D

0
ı /

'

Figure 9.26: Computed and measured surface pressure distribution on spheroid, ˛ D �0:2ı,
realisable k-" turbulence model. Cp values for each azimuth progressively displaced
by 0:25 for ' < 0ı. Results for the lower resolution mesh display a reduced base
pressure. Location of N
 0:25 and N
 0:75 determined from boundary layer survey.
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9.3 Results and Discussions ˛ D �10:2ı

9.3.1 Re
l

D 2:0 � 106

Contamination of the spheroid surface for this Reynolds number resulted in the boundary layer

survey being discarded. Fortunately for this Reynolds number the flow visualisation provides an

indication of the boundary layer transition between ' D 0ı and �90ı. The location of boundary

layer transition was estimated from the increased scouring of the oil apparent in Fig. 7.9. The

increased scouring in this case is associated with the greater wall shear present in a turbulent

boundary layer. Other photos (Fig. 7.10) at this Reynolds number using a less viscous oil

suggest that for ' between 0ı and approximately �45ı a very short laminar separation bubble

exists at the transition region. This laminar separation bubble is not picked up by the surface

pressure measurements due to the relatively coarse placement of tappings. Excellent agreement

between the flow visualisation and surface pressure measurements for the location of boundary

layer transition is shown in Fig. 7.9. This provides confidence in the application of the transition

location obtained from the surface pressure measurements to the computational work for this

case. Neither the flow visualisation nor the surface pressure measurements allow the length of

the transition region to be determined, which for the purpose of this computation was taken as

10 mm between N
 0:25 and N
 0:75. This length is consistent with the short transition length seen

at ˛ D 6:2ı for this Reynolds number.

The streamlines and wall shear stress calculated using the realisable k-" turbulence model

with mesh Sph Grid-10A and Sph Grid-10C-Adapt in Fig. 9.27 show very similar surface stream-

lines. The computed surface streamlines are visibly influenced by the location of boundary layer

transition, most notably when the surface streamlines and the boundary layer transition zone

meet at a glancing angle. Given these surface streamlines are calculated from the surface shear

stress and this shear increases in the transition from a laminar to turbulent boundary layer

(assuming the boundary layer stays attached) some level of interaction is expected. To examine

the sensitivity of this interaction to the distance over which the transition is implemented the

length of the transitional zone, N
 0:25 to N
 0:75, was increased from 10mm to 25mm. This change

resulted in negligible change in the surface streamlines. Unaccounted for is the temporal aspect

of transition. The time averaged implementation of the transition process does not model the

coherent structures that exist in intermittently and fully turbulent shear layer regions. The

flow visualisation shows possible interaction between the surface streamlines and the estimated

transition region near xbc= l D �0:2 for ' between �90ı and �105ı in Fig. 7.9(a) and near

xbc= l D �0:1 for ' between �105ı and �140ı in Fig. 7.9(b).

Overall the computed surface streamlines on the flank and pressure side at the rear do

not reflect those seen in the flow visualisation (Fig. 7.9 and 7.10). The surface streamlines
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on the pressure side (0ı > ' > �60ı) show flow separation, without reattachment, occurring

at xbc= l � 0:37, upstream of the transition region. The flow visualisation shows a short

separation bubble (Fig. 7.10) with the reattached flow finally separating at xbc= l � 0:48 for

0ı > ' > �60ı. This observation is supported by the surface pressure distributions that indicate

that for 0ı > ' > �45ı the flow was still attached at the final on-body tapping (xbc= l � 0:47).

Increasing the mesh resolution in this case appeared to have minimal influence on the surface

streamlines in contrast to the case for this Reynolds number at ˛ D �0:2ı. The major computed

vortical structure on the flank of the body rotates in the opposite direction to the structure in

the photo; it is also positioned further upstream. The flow visualisation shows no funnelling of

the flow into the vortical structure from fluid on the flank (' D �75ı to 120ı) of the body as

depicted in Fig. 9.27. Fig. 9.28 however shows that the increased mesh resolution did result in a

change in surface pressure distribution on the pressure side at the rear of the body. Increasing

the mesh density from Sph Grid-10C to Sph Grid-10C-Adapt resulted in minimal change in

Cp , so further increase in resolution was not performed.

The difficulty that this technique of predefining the boundary layer transition region has

with premature separation of the laminar boundary layer, apparent for this Reynolds number

at ˛ D �0:2ı, also occurs in these computations. Shifting the predefined turbulent region

upstream for 0ı > ' > �60ı so N
 0:25 occurs at xbc= l � 0:38 instead of 0:43 prevents the

laminar separation; the turbulent boundary layer for these azimuthal angles is attached until

xbc= l � 0:45 (Fig. 9.3.1). The surface Cp distributions for 0ı > ' > �30ı when the laminar

separation is prevented provided a close match to the measured data. The pressure recovery

calculated near the rear of the model on the suction side is greater than measured as the

turbulent boundary layer is predicted to separate later than shown in the flow visualisation

(Fig. 9.3.1) or inferred from the surface pressure measurements.

9.3.2 Flow Visualisation at Re
l

D 4:0 � 106

Surface flow visualisation of the spheroid at ˛ D �10:2ı and Re
l
D 4:0 � 106 is shown in Fig.

7.11. The surface streamlines calculated for the corresponding conditions using the realisable

k-" model and the SST model are displayed in Figs. 9.30. The calculated surface streamlines for

both models predict the large separated region on the side of the model and the attached flow

persisting to almost the base of the model on the suction side. The width of this attached flow

appears to be more accurately calculated by the realisable model, which gives only a marginal

over prediction. Neither model predicts the flow to stay attached until the base of the model

for 0ı > ' > �30ı, as seen in Fig. 7.11. On the pressure side the realisable model predicts

the flow will stay attached in this region of strong adverse pressure gradient marginally longer
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(b) Sph Grid-10C-Adapt, Contours of time averaged intermittency, N
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Figure 9.27: Computed surface streamlines on 3–1 spheroid using realisable k-" with laminar
regions, Re

l
D 2:0 � 106, ˛ D �10:2ı. Comparison of the streamlines show that

refining the grid has not resulted in any significant change in the calculated surface
pattern in the region where a separation bubble was noted in the flow visualisation
(0ı > ' > �45ı).
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Figure 9.28: Computed and measured surface pressure distributions on the spheroid, ˛ D
�10:2ı, realisable k-" turbulence model. Cp values for each azimuth progressively
displaced by 0:35 for ' < 0ı. Shifting the transition zone forward on the pressure
side in order to avoid a laminar separation resulted in closer match to the mea-
sured data for these azimuths. On the suction side all but the fully turbulent case
calculated an excess length of attached flow leading to a greater than measured
pressure recovery.
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Figure 9.29: Computed and measured surface streamlines and contours of shear stress on the
spheroid, ˛ D �10:2ı, realisable k-" turbulence model with laminar zone modified
to prevent laminar flow separation on the suction side. Both measured and calcu-
lated surface streamlines show disturbances that are attributed to the increased
surface shear stress associated with the start of the turbulent boundary layer.

than predicted by the SST model. A rapid rise in wall shear stress for both turbulence models

is observed near the front of the model. It occurs within the first 5% of the model length on

the suction side and within the first 15% on the pressure side. As noted in Subsection 9.2.2 the

increase in surface shear is more rapid and greater with the realisable model. This surface shear

increase due to the turbulence model may play a significant role by directly contributing to the

viscous drag and/or indirectly by thickening the boundary layer and influencing the boundary

layer separation.

The surface streamlines calculated using the realisable k-" turbulence model, with the mea-

sured laminar region implemented are shown in Fig. 9.31(a). They indicate attached flow

further downstream on the pressure side than that predicted without allowing for the laminar

region of the boundary layer, Fig. 9.30(a). A delay in separation is consistent with the thin-

ner boundary layer expected due to the reduced length of turbulent boundary layer flow. The

separated region on the flank and suction side of the model is of a similar area to that seen in

the flow visualisation but located closer to the suction side of the symmetry plane. (The saddle

of this separation is calculated at xbc= l � 0:42, ' � �145ı; the flow visualisation shows this

saddle to be at xbc= l � 0:40, ' � �120ı.) The tongue of attached flow on the suction side still

reaches almost to the sting, but is now narrower than that seen in the flow visualisation.

The results for the SST model with the modification for boundary layer state appeared

worse, with boundary layer separation being predicted on the pressure side near the start
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of the boundary layer transition. This premature separation on the pressure side is again

explained by the slower switching on of the turbulence in the SST model, even though separation

occurs before the transition region due to the strong coupling between the boundary layer

state, separation and pressure. The slow switch on and subsequent separation in this case is

exacerbated by the increasingly adverse pressure gradient at the rear of the model for 0ı >

' > �30ı. On the flank and suction side the surface streamlines calculated using the SST

turbulence model without any laminar regions shows minimal separation on the rear.

While the attachment of the flow near the pressure side of the symmetry plane is not correctly

calculated it is difficult to draw any conclusion as the relatively high momentum of the attached

flow may have a significant influence on the low energy separated region on the flank. The flow

leaving the model at the body-sting junction will also influence the base pressure. In this case

there is not an appreciable improvement in the calculation of the surface streamlines when using

the predefined laminar regions. However, from Figs. 9.30 and 9.31 the surface shear stress is

significantly less with the laminar region implemented.

The deviations in the surface streamlines when approaching the region of boundary layer

transition in these calculations appears less than that at this incidence when Re
l
D 2:0 � 106.

The thinner boundary layers and the upstream shift in the location of transition5 will result in

greater momentum in the wall layer, so the direction of the surface streamlines is less influenced

by the increase in shear stress due to boundary layer transition.

9.3.3 Surface Pressure at Re
l

D 4:0 � 106

The calculated surface pressure distributions for Re
l
D 4:0�106 along with the measured distri-

butions for Re
l
D 1:5�106 to 3:5�106 are compared in Fig. 9.32. There is minimal differences

over the front half of the model between the computed Cp with either laminar or turbulent

boundary layer cases. The computed Cp values in this region closely match those measured

for Re
l
D 1:5 � 106 to 3:5 � 106 with a laminar boundary layer. (Note that for the measured

data at ' D �180ı, Re
l
D 3:5 � 106 the boundary layer has transitioned near the nose.) For

�120ı > ' > �180ı the results computed with the boundary layer transition display a pertur-

bation in the vicinity of the transition region, but then return to a pressure distribution almost

identical to that of the fully turbulent calculation. The positive shift observed in the measured

surface pressure distribution near the location of boundary layer transition for this incidence

and azimuthal angles (Figs. 4.9(b), 4.11(b), and 9.32) is not observed in these calculations with

the implemented laminar and transitional regions. Due to the sensitive nature of boundary

layer transition, its locations determined from the boundary layer survey and estimated from
5Upstream the boundary layer is thinner as the pressure gradient due to surface curvature is less adverse and

the boundary layer has less distance to thicken.
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(a) realisable k-" turbulence model

C�w

�60
ı

�90ı

�90ı

�120ı

0:00
�0:18

�0:36

0:00

0:27

0:36

(b) SST turbulence model
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Figure 9.30: Computed surface streamlines and contours of C�w on the 3–1 spheroid using tur-
bulence models without laminar regions, Re

l
D 4:0 � 106, ˛ D �10:2ı, Sph Grid-

10A. Greater surface shear stress is apparent with realisable k-" turbulence model.
Both turbulence models show boundary layer separation near xbc= l D 0:45 on the
pressure side. On the flank and suction side both turbulence models under predict
the size of the separation near the base; but the realisable k-" turbulence model
only marginally. Magenta lines show surface streamlines determined from the flow
visualisation for the corresponding incidence and Reynolds number.
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(a) realisable k-" turbulence model.
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(b) SST turbulence model
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Figure 9.31: Computed surface streamlines on spheroid using turbulence models with laminar
regions, contours of C�w when Re

l
D 4:0 � 106, ˛ D �10:2ı. The magnitude

and area of high surface shear stress is considerably reduced from that seen in
Fig. 9.30 where no laminar region was implemented. Magenta lines show surface
streamlines determined from the flow visualisation for the corresponding incidence
and Reynolds number.
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the surface pressure measurements may not always coincide as these tests were performed dur-

ing different setups (Fig. 9.32). It should also be recalled that the most downstream surface

pressure measurement is from the annular tap formed by the gap between the model and sting,

and thus is not expected to match the calculated values at this location but should be close to

an average across all the azimuths.

Allowing for the laminar region in the calculations at Re
l
D 4:0 � 106 does not appear

to result in an overall closer match with the measured surface pressure distributions at Re
l
D

3:0�106 and 3:5�106. The calculations with the laminar region result in an improved prediction

on the pressure side but a poorer prediction on the suction side. The later separation of the

turbulent boundary layer and the associated increase in base pressure when the laminar region

is implemented is expected due to the thinner boundary layers. The failure of the calculations

using the laminar region to accurately determine the location of separation near ' D �90ı is of

significance as this alters the base pressure and thus influences the calculated surface pressure

at all the other azimuths. Given the calculations using the SST turbulence model with the

laminar region implemented displayed boundary layer separation without reattachment prior

to the transition region on the suction side, the surface pressure measurements for this instance

are not discussed.

9.3.4 Cross Flow Influence on the Boundary Layer

The ratio of crossflow displacement thickness, ı�
y

ƒ
, (second term in Eq. 9.9) to streamwise

displacement thickness, ı�
x

ƒ
, (first term in Eq. 9.9) is shown in Fig. 9.33. This figure also

shows the surface streamlines calculated from the surface shear stress and pseudo streamlines

showing the flow direction 30 �m off the surface. Caution is warranted in drawing conclusions

solely from these results, as the calculation of the contribution due to crossflow is subject to

errors. The calculation of crossflow through the two planes aligned with external streamlines

initially a small distance apart involves a large number of calculations; it terminates with the

subtraction of one crossflow volume from the other. This process results in a number often two

orders of magnitudes less than the original crossflow volume. Hence an error along either of the

planes parallel to the external streamlines may significantly influence the computed magnitude

of crossflow displacement thickness. In contrast, the component of displacement thickness due

to flow parallel to the streamlines at the boundary layer edge is a function of the boundary

layer velocity distribution at that location, and can be computed much more accurately.

Fig. 9.33 shows that the crossflow generally results in an accumulation of fluid between

adjacent azimuthal positions where the surface streamlines are converging, and a dispersion

of fluid in such regions where they diverge. The dispersion of fluid due to crossflow at the
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Figure 9.32: Computed and measured surface pressure distribution on spheroid, ˛ D �10:2ı,
realisable k-" turbulence model. Cp values for each azimuth progressively displaced
by 0:25 for ' < 0ı. Implementation of the laminar region has not improved the
calculation of the boundary layer separation on the flank and suction side.
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Figure 9.33: Contours of the ratio of crossflow displacement thickness to streamwise displace-
ment thickness, ˛ D �10:2ı, Re

l
D 4:0�106, realisable k-" turbulence model with

measured laminar region implemented. The contours have been limited in order
to show greater resolution over the majority of the model. The crossflow gener-
ally results in increased displacement thickness in the region where the surface
streamlines (black) are converging and a thinning boundary layer in regions where
they diverge. Pseudo streamlines (magenta) show the flow direction 30 �m off the
surface. The streamlines on the figure to the upper left and lower right coincide
at xbc= l D �0:36 and 0:0 respectively.

rear of the model near the suction side of the symmetry plane was initially regarded with

suspicion, as large pressure gradients normal to the direction of the external streamlines are

not expected near the symmetry plane. This region is, however, subject to a rapidly increasing

boundary layer thickness due to an adverse pressure gradient in the streamwise direction caused

by the combination of model incidence and surface curvature. The increasing thickness of the

boundary layer is shown by the departure of the streamlines at the boundary layer edge from the

surface in Fig. 9.34(a). The relatively thick layer of low momentum fluid results in significant

crossflow, even though the region has a relatively small pressure gradient in the crossflow

direction. Fig. 9.34(b) shows the rapid change in the crossflow vector between the two adjacent

planes aligned with the external streamline. The contours of @Cp=@.y= l/ in this figure show

a pressure gradient on the surface retarding flow towards the symmetry plane. The range of

@Cp=@.y= l/ shown, from 0 to 0:3, is approximately 5% of the full range of �Cp calculated on

the surface. The thinning of the boundary layer near the symmetry plane on the suction side

due to crossflow will prolong boundary layer attachment, particularly as the pressure gradient
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has the greatest influence on the direction of the lower momentum flow. This observation, at

least in part, provides an explanation for the attachment of the boundary layer close to the

base near ' D �180ı. This boundary layer attachment was observed in both the measured and

computed results despite the extended length of adverse streamwise pressure gradient. On the

suction side near the symmetry plane further downstream (xbc= l � 0:32), leading up to where

the boundary layer separates, the flow has a visible component normal to the surface when

examining the velocity vector. This makes the calculation of the displacement thickness in this

region unreliable.

The pseudo streamlines in Fig. 9.33 show the flow direction 30 �m off the surface, these

pseudo streamlines show notably less disturbance in the vicinity of the boundary layer tran-

sition region than seen with the surface streamlines. Disturbances that were observed in the

surface flow visualisation (Figs. 7.9(b) and 7.12(b)) appeared to coincide with the region where

boundary layer transition was located. These disturbances observed in the flow visualisation

are a function of the flow in the vicinity of the surface, due to the finite thickness of the oil mix-

ture. As such they are expected to show less of a disturbance than those seen on the computed

surface streamlines that are a function solely of the surface shear stress. It is also worth noting

that the disturbances in the flow visualisation were observed in the thicker boundary layer at

Re
l
D 2:0 � 106, rather than in the thinner boundary layer at Re

l
D 4:0 � 106.

The calculation of momentum thickness in three-dimensional flow is more difficult than that

of displacement thickness as momentum is a vector quantity. Should the momentum thickness

be based on the absolute momentum in the boundary layer or divided into two components,

one parallel to the external streamline, the other normal? Another question is whether the

momentum thickness or shape factor are of practical use once calculated? Stock [106] when

examining the calculated flow on a 6-1 spheroid uses a momentum thickness based on the

external streamline.

Although Menter et al. [92] state that the momentum thickness is strictly a two-dimensional

concept there may still be some value in attempting to apply it to three-dimensional flow. If

crossflow stability and crossflow separation are neglected and we are interested in an empirical

relation between a three-dimensional momentum thickness and both the stability and separation

of the boundary layer it may be argued that the momentum in the direction of the flow at

the boundary layer edge is relevant. The crossflow transports this streamwise momentum

perpendicular to the velocity at the boundary layer edge; a gradient in this crossflow results

in an accumulation or dispersion of the low momentum fluid. The streamwise momentum

thickness based on the conventional two-dimensional definition is



220 9.3. RESULTS AND DISCUSSIONS ˛ D �10:2ı

Y X

Z

(a) The streamline(s) at the boundary layer edge (blue) close to the symmetry plane on the suction
side shows a rapid increase in boundary layer thickness.

(b) Close up of streamlines in (a), with contours of @Cp=@.y= l/. The crossflow vectors
(red) are shown on planes formed by projecting the streamline at the boundary layer
edge onto the surface, the projection is normal to the surface. The crossflow vectors are
larger on the plane further away from the symmetry plane. On the symmetry plane the
crossflow vectors and @Cp=@.y= l/ will be zero. This gradient in the crossflow results in
a reduction of the boundary layer thickness in this region. In this figure the crossflow
vectors and the vectors parallel to the streamline at the boundary layer edge are of the
same scale, in Fig. 9.9 the crossflow vectors were scaled up by a factor of ten.
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Figure 9.34: Calculated crossflow on the spheroid at ˛ D �10:2ı, Re
l
D 4:0 � 106 on mesh

Sph Grid-10A, using the realisable k-" turbulence model with laminar regions
implemented from boundary layer survey.
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and the crossflow influence on the streamwise momentum thickness, according to this argument,

is
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Fig. 9.35 shows contours of ��
xy

ƒ
=��

y
ƒ

. As seen with the displacement thickness, the crossflow

generally increases the momentum thickness in regions where the surface streamlines converge,

and decreases it in regions where the surface streamlines diverge. The range in the ratio of

the momentum thickness is slightly greater than with the displacement thickness. As noted

with the displacement thickness, the calculation of the momentum thickness is unreliable on

the suction side near the symmetry plane at the rear of the model.

Given the significant influence of the crossflow on the displacement thickness, any attempt

to calculate the shape factor requires the consideration of the crossflow influence. Fig. 9.36

shows contours of a shape factor calculated from
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(9.14)

The shape factor Hƒ is around 2:4 near the front of the body (xbc= l D �0:45). On the

pressure side Hƒ slowly increases to around 2:5 at xbc= l D 0; it continues to increase in the area

where the surface streamlines diverge until shortly before the transition region where it has a

value of around 2:9. On the suction side Hƒ increases more rapidly to about 2:6 before the start

of the transition region. Hƒ drops to around 1:5 shortly after transition and gradually increases

to approximately 1.7 just upstream of where the boundary layer separates. The increase in Hƒ

seen on the suction side near the symmetry plane just prior to boundary layer separation is due

to the difficulty in calculating the displacement and momentum thickness in this region.

One of the advantages of the correlation-based transition prediction method used by Menter

et al. [92] is that it uses the vorticity or strain rate Reynolds number and does not require the

calculation of a momentum thickness. The momentum thickness is not readily available in finite

volume codes but the vorticity and strain rate Reynolds number may be calculated from local

variables. The present study does not examine the prediction of boundary layer transition;

but given that calculation of the boundary layer parameters has already been performed, the

opportunity is taken to compare the calculated momentum thickness with the maximum vor-

ticity and maximum strain rate Reynolds numbers, Re
�

and Re
S

respectively. These Reynolds

numbers are determined from the maximum vorticity, �max, and maximum stain rate, Smax ,
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Figure 9.35: Contours of ��
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, ˛ D �10:2ı, Re
l
D 4:0 � 106, realisable k-" turbulence

model with measured laminar region implemented. The contours have been lim-
ited in order to show greater resolution over the majority of the model. As seen
with the ratio of crossflow and streamwise displacement thickness, the crossflow
generally results in increased momentum thickness in the region where the surface
streamlines (black) are converging and a dispersion of fluid from the boundary
layer in regions where they diverge. The range in the ratio of the momentum
thickness is slightly greater than with the displacement thickness.
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Figure 9.36: Contours of the streamwise shape factor, Hƒ, calculated allowing for the influence
of crossflow on the displacement and momentum thickness for the spheroid at ˛ D
�10:2ı, Re

l
D 4:0� 106 using the realisable k-" turbulence model with measured

laminar region implemented. The shape factor is around 2.4 at xbc= l D �0:45

and increases to about 2.6 on the flank and suction side prior to boundary layer
transition. The circumferential average value of Hƒ on the separation line is
comparable to that of a two-dimensional turbulent boundary layer with significant
excursions above and below this value. The insert x-y plot shows Hƒ as close as
possible to the separation line (see magenta dots on contour plot). S denotes the
saddle, N the node, with the foci not shown.
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in the boundary layer normal to the surface.
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A comparison of these values is shown in Fig. 9.37 for the spheroid at ˛ D �10:2ı, Re
l
D 4:0�

106 using the realisable k-" turbulence model with measured laminar region implemented. In

Figs. 9.37 and 9.38 the values are compared with the streamwise components of the momentum

thickness and the shape factor, H calculated from ı�
x

ƒ
=�x

ƒ
. Values shown in Fig. 9.37 to 9.39

are restricted to regions with laminar flow.

The momentum thickness Reynolds number considering only streamwise components, Re
�xƒ

,

and the one allowing for the influence of the crossflow, Re
�ƒ

, are given by
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The curves of Re
�

and Re
S

in Fig. 9.37 are essentially identical. The relationship

Re
�
D

Re
�

2:193
(9.17)

used in the correlation-based transition model [92] in this case appears to initially under-predict

Re
�xƒ

by around 100 near the start of the model and over-predict by a similar amount prior to

boundary layer transition. As shown in Fig. 9.38(a) this results in the largest deviation from

Eq. 9.17 near the front of the model. Given that the shape factor was around 2:4, this deviation

appears in the scatter plot of Re
�

=.2:193 Re
�
/ against H (Fig. 9.38(b)) as a wedge of points

less than 0.9 near H D 2:4. Given the favourable pressure gradient and the low values of Re
�

in this region, this is probably of minimal concern to the correlation-based transition model.

Fig. 9.39 shows Eq. 9.17 is less applicable if the momentum thickness allows for the influence

of crossflow; however, there is a tighter correlation of Re
�

=Re
�xƒ

and Hƒ. An approximately

parabolic relationship exists between Re
�

=Re
�xƒ

and Hƒ, a second-order polynomial was fitted

to the data in Fig. 9.39 (b), giving

Re
�

=.2:193 Re
�ƒ

/ D �10:51C 7:679 Hƒ � 1:222 H 2
ƒ (9.18)

9.3.5 Drag Components

Although no drag measurements are available for comparison, it is worth noting the computed

breakdown between form and viscous drag. The calculated CD based on the maximum cross-
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Figure 9.37: Comparison of calculated Reynolds numbers based on streamwise momentum
thickness and, maximum vorticity and strain rate normal to the surface in the
boundary layer on the spheroid, ˛ D �10:2ı, realisable k-" turbulence model with
laminar boundary layer region implemented. Results for each azimuth progres-
sively displaced by 200 for ' < 0ı and restricted to regions of laminar flow. Note
the minimal difference between Re

�
and Re

S
curves.
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(a) Contours of Re
�

=.2:193 Re
�xƒ

/ showing the greatest deviation from Eq. 9.17 occurs on the pressure side

near the front of the model.
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(b) Re
�

=.2:193 Re
�xƒ

/ against H showing the greatest deviation from Eq. 9.17 occurs when H � 2:4

near the front of the spheroid. Colour of points shows position in body coordinates.
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Figure 9.38: Calculated boundary layer properties considering only the streamwise component
for the spheroid at ˛ D �10:2ı, Re

l
D 4:0 � 106, Sph Grid-10A, using the realis-

able k-" turbulence model with laminar regions implemented from boundary layer
survey. Values shown restricted to regions of laminar flow
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(a) Contours of Re
�

=.2:193 Re
�ƒ

/ showing a greater deviation from Eq. 9.17 than that seen in Fig. 9.38
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(b) An approximately parabolic relationship exists between Re
�

=Re
�xƒ

and Hƒ, this relationship shows

a dependency on xbc= l . Colour of points shows position in body coordinates. A linear least squares
fitting technique was used to fit a second order polynomial.
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Figure 9.39: Calculated boundary layer properties allowing for crossflow on the spheroid at
˛ D �10:2ı, Re

l
D 4:0 � 106, Sph Grid-10A, using the realisable k-" turbulence

model with laminar regions implemented from boundary layer survey. Values
shown restricted to regions of laminar flow
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Turbulence Model Form Viscous Total

realisable k-" 0.0240 0.0361 0.0601

SST 0.0282 0.0340 0.0622

realisable k-" with laminar region 0.0150 0.0155 0.0306

SST with laminar region 0.0298 0.0134 0.0434

Table 9.3: Calculated Drag Coefficients for ˛ D �10:2ı, Re
l
D 4:0 � 106.

section perpendicular to xbc is given in Table 9.3. The values in this table demonstrate the

necessity of implementing the correct boundary layer regime if the drag is to be accurately

calculated on a body where no one boundary layer type dominates. An artificially long region

of turbulent flow will increase the viscous drag, due to the greater skin friction associated with

turbulent flow, and also increase the form drag as the faster boundary layer growth results in

a thicker boundary layer that will separate earlier. The premature separation of the boundary

layer on the suction side when using the SST turbulence model with the laminar region imple-

mented results in a larger form drag compared with the equivalent case with the realisable k-"

model. Even though only a small decrease in the area of separated flow near the rear of the

model was noted when the laminar region was implemented using the realisable k-" model, the

predicted form drag is reduced by 40% in this case. The total drag predicted by the realisable

k-" model is roughly doubled if the observed transition behaviour is not prescribed.

9.4 Results and Discussions ˛ D �10:2ı, Boundary Layer

Tripped

The laminar region was implemented over the upstream 20% of the model, corresponding to

the placement of the trip strip at xbc= l D �0:3. The computed results, as expected, are similar

to those observed at this incidence with no laminar region implemented as seen by comparing

the surface streamlines in Figs. 9.30 and 9.40. As seen throughout these computations the

realisable k-" turbulence model predicts a greater surface shear stress than the SST turbulence

model. In previous cases where boundary layer transition was determined from the measured

transition without a boundary layer trip the slower switch on of the SST model resulted in

laminar boundary layer separation, without reattachment, on some portions of the surface. In

this case the slower switch on of the SST model should have minimal impact on the result

as the turbulent boundary layer is established well before the laminar boundary layer would

separate. Fig. 9.40 shows that on the pressure side both models predict a similar location for
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turbulent boundary layer separation, which matches that obtained from the flow visualisation.

On the flank, however, both models under predict the size of the separation. Kreplin and

Stäger [23] caution that isotropic turbulence models will not faithfully replicate flow conditions

around a inclined 6-1 spheroid. Mindful of this caution a case was solved using the Reynolds

Stress Model (RSM). This turbulence model solves the six Reynolds stress transport equations,

but requires modelling of the turbulent diffusion, pressure strain and dissipation terms. The

dissipation was modelled using the same equation as used with the realisable k-" turbulence

model. The laminar region was implemented by setting the Reynolds stresses to zero in the

laminar regions. The surface shear stress calculated using this RSM was close to that seen with

the realisable k-" model; the surface streamlines showed a similar under prediction in the size

of the separated region.

The comparison of measured and predicted Cp distributions in Fig. 9.41 shows minimal

difference between the calculated distributions for any of the turbulence models over the up-

stream 80% of the spheroid length. Prior to transition there is a close match between the

measured and calculated surface Cp distributions, with the exception of some measured points

for Re
l
D 4:0�106 when ' D 0ı and �180ı where the boundary layer has transitioned prior to

the trip strip. For 60% of the spheroid’s length after boundary layer transition, the measured

Cp is consistently slightly greater than the calculated values.

For all the calculations presented, the increase in Cp seen in the measurements after bound-

ary layer transition has not been apparent, with one possible exception; at ˛ D �10:2ı,

Re
l
D 2:0 � 106 where the axisymmetric boundary layer was implemented. (It is difficult

to determine here if Cp has had a positive shift downstream of the boundary layer transition

due to the surface curvature and the short length of turbulent boundary layer before the end of

the model.) This case with the tripped boundary layer provides the clearest observation of this

phenomenon, as the location of transition is constant for all azimuths and there is a significant

length of surface downstream of the transition region with minimal surface curvature. It is

difficult to see how the start of a turbulent boundary layer could cause any systematic error in

the measurements of the (average) surface Cp distribution, but the following possibilities were

considered:

� For the same Reynolds number a turbulent boundary layer has greater velocity flow close

to the surface than a laminar boundary layer. Hence static pressure measurement errors

are likely to be greater for a turbulent boundary layer than for a laminar boundary layer

(ignoring the possibility that the pressure tapping hole may trip the boundary layer).

If this were the case, however, a variation in the magnitude of this influence would be

expected with Reynolds number and boundary layer thickness; such variation is not seen
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in the measurements.

� Surface pressure fluctuations will be greater in a turbulent boundary layer. Willmarth

[107] suggests the RMS surface pressure fluctuations should be in the order of six times

greater than the mean wall shear stress; this gives Cp
p02 � 0:02 for turbulent regions from

Fig. 9.31. Much of the energy associated with these pressure fluctuations is dissipated

due the elasticity of the tubing connecting the tapping and the transducer. This loss in

energy results in less movement of the diaphragm in the transducer used to measure the

pressure, but it should not change its average position and thus not the mean pressure

measurement.

� The pressure normal to the wall in a turbulent plane flow at high Reynolds numbers,

assuming negligible turbulence in the freestream, is approximated by [108]

p C �v02 D pw D pe (9.19)

where pw is the average static pressure at the wall and pe is the static pressure at the

edge of the boundary layer. From Eq. 9.19 it is apparent that the pressure across a

turbulent boundary layer with plane flow is not constant. However, as long as v02 D 0

at the tapping the normal component of the turbulent velocity should not influence the

mean static pressure there.

� If hysteresis in the sensor were a problem, the extra movement of the diaphragm when

measuring a turbulent boundary layer may result in a difference between the pressures

measured in a laminar or turbulent boundary layer. This possibility is considered unlikely

as the pressure ranges, mean and unsteady, vary considerably across the range of position

and Reynolds number yet the shift in the measured values between laminar and turbulent

boundary layer appears consistent.

Another factor to recall is that a positive shift in the Cp distribution was observed downstream of

boundary layer transition in calculations of the flow modelled about a two-dimensional elliptical

cylinder using X-foil and Fluent (Fig. 9.12).

The turbulence models shown in Fig. 9.41 over predict the base pressure. However the

SST model does so to a lesser extent for some azimuths. When this occurs there appears to

be a slightly closer correlation with the measured surface Cp distribution over the last 20%

of the spheroid’s length. One possibility is that incorrect calculation of the base pressure is

influencing the pressure upstream, so that downstream of the perturbation caused by boundary

layer transition the curves for the turbulent boundary layer do not display the shift in Cp seen

in the measurements and the two-dimensional calculations.



CHAPTER 9. NUMERICAL STUDY ON THE 3–1 SPHEROID 231

(a)
Calculations with realisable k-" turbulence model underpredict the region of separated flow,
though the surface streamlines have a similar pattern.
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(b) Calculations with SST turbulence model underpredict the region of separated flow.
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Figure 9.40: Surface streamlines and contours of C�w for spheroid at �10ı incidence with
tripped boundary layer at xbc= l D �0:3. Surface streamlines from flow visual-
isation shown in magenta; calculated surface streamlines in black.
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Figure 9.41: Computed and measured surface pressure distribution on spheroid with trip strip
at xbc= l D �0:3, ˛ D �10:2ı. Cp values for each azimuth progressively displaced
by 0:25 for ' < 0ı. There is little difference between the calculated surface Cp

distribution for any of the turbulence models, all models over predicting the base
pressure. Prior to transition there is generally a close match between the measured
and calculated surface Cp distribution with the exception of some measured points
for Re

l
D 4:0� 106. For 60% of the spheroid’s length after boundary layer transi-

tion the measured Cp is consistently slightly greater than the calculated values.
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A comparison of measured and calculated force and moment coefficients is shown in Fig.

9.42. The drag coefficient, CD , calculated using the two-equation turbulence models shows the

same trend with Reynolds number as the measured data. The values of CD determined using

the realisable k-" and SST turbulence model were respectively 20% and 25% greater than the

measured values. The region of separated flow observed in the flow visualisation was greater

than that in the computed results; this observation is supported by lower pressure recovery in

the surface pressure measurements than in the computed results. These factors indicate that

the form drag will be under estimated by these calculations; this will in all likelihood create a

greater disparity between the calculated and measured drag. In calculations with the tripped

boundary layer, the form drag contributes approximately 40% of the total drag. The component

of lift and moment directly due to the surface shear stress is negligible.

The magnitude of the lift coefficient, CL, calculated using the realisable k-" model was

about 25% smaller than measured, while the results from the SST model were within the range

of measured values. The measured and calculated values of moment coefficient, CTybc
, from

the two-equation turbulence models were close to the measured values. The calculated and

measured values of this moment coefficient are expected to be close, as this load is dominated

by the Munk moment. The values calculated for all coefficients using the RSM model at

Re
l
D 4:0 � 106 were between the values calculated from realisable k-" and SST models.

9.5 Summary

The method used to implement the laminar regions had limited success with the SST turbulence

model when using the location of boundary layer transition determined from the measurements

without artificial tripping. The increased surface shear associated with the development of

the turbulent boundary layer did not occur until some distance downstream of the predefined

boundary layer transition zone. Fig. 9.24(a) shows the SST model switching on approximately

5% of the spheroid’s length later than the realisable k-" turbulence model. In many instances

this resulted in a laminar separation on some part of the body. The studies with the SST model

demonstrated the importance of correctly modelling the position and length of the transition

region. At Re
l
D 2:0�106 using the realisable k-" turbulence model the direct application of the

measured transition region also had problems with laminar separation. It was, however, possible

to get apparently more reasonable results with some minor modifications to the transition region

and increased mesh resolution in the regions of laminar separation. In the case of the spheroid

at:
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� ˛ D �0:2ı this involved modifying the transition zone so it was axisymmetric, where the

measured location of transition showed some variation (up to 4% of the spheroid’s length)

in the streamwise location of boundary layer transition.

� ˛ D �10:2ı this involved shifting the transition zone upstream by approximately xbc= l D

0:05 for ' between 0ı and �30ı in order to avoid a laminar separation.

This tailoring is far from ideal and shows a lack of robustness when dealing with separation

of the laminar boundary layer. The calculated separation bubble apparent at ˛ D �0:2ı,

Re
l
D 2:0�106 in Fig. 9.19 occurs at the start of the transition zone, N
 / 0:4. Perturbations in

the surface streamlines were observed during on-body flow visualisation at the lower Reynolds

numbers, these were believed to be associated with boundary layer transition. Similar, though

sharper, perturbations were also apparent in the surface streamlines calculated from the surface

shear stress in the region where boundary layer transition was implemented for Re
l
D 2:0�106.

Both the calculated separation bubble at the start of the transition region and the perturba-

tions in the calculated surface streamlines show a very strong redirection of the flow in the

normal and azmiuthal direction respectively near the start of transition zone. This may be

exaggerated due to: too short a length of boundary layer transition; neglecting the temporal

aspect of the transition process; and/or errors in the predicted surface shear stress at the start

of the transition zone. The first of these factors is not believed to be the cause, because as

noted in Subsection 9.3.1 increasing the length of the transition zone made minimal change

in the calculated surface streamlines; additionally, the length of the transition zone used in

the calculations corresponded to that measured (except when noted). The second factor may

play a role as the time averaged implementation of the transition region does not model the

coherent structures that exist in intermittently and fully turbulent shear layer regions. The

last of these factors may be an issue, as the realisable k-" turbulence model showed a greater

surface shear stress at the start of the transition region than the SST model. However, as noted

in the previous paragraph, the slower establishment of the turbulent boundary layer with the

SST model resulted in it being less suitable to this method of implementing the laminar regions

as the boundary layer tended to separate without reattachment.

With and without the implementation of laminar boundary layer regions, the realisable

k-" turbulence model at ˛ D �10:2ı, Re
l
D 4:0 � 106 resulted in good agreement between

the surface flow visualisation and the calculated surface streamlines over the majority of the

spheroid; the exception was the size of the separation on the rear flank being smaller than

that observed in the flow visualisation. For ˛ D �10:2ı, Re
l
D 2:0 � 106 the measured and

calculated surface streamlines showed perturbations in the region of boundary layer transition

that were not observed at Re
l
D 4:0 � 106.
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Both turbulence models predict an attached turbulent boundary layer on the suction side

near the symmetry plane extending almost the full length of the spheroid. Numerical investiga-

tion of this feature revealed that the small component of adverse pressure gradient parallel to

the surface but perpendicular to the direction of flow at the boundary layer edge was removing

the lower inertia fluid of this thickening boundary layer. The extended length of flow in this

region was observed in the measured data, although the length of attachment was slightly less.

The change in measured Cp when the boundary layer was tripped showed a clear distinction

between the measured and calculated surface pressure coefficient in the presence of a turbulent

boundary layer. This difference was not apparent in the calculated surface Cp, as discussed in

Subsection 9.4.
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Figure 9.42: Computed and measured loads on spheroid with trip strip at xbc= l D �0:3, ˛ D
�10:2ı. A similar trend in the measured and calculated CD is observed.


