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Abstract

The unsteady mid-span aerodynamics of an outlet stator row in a 1.5-stage low-speed
axial compressor is investigated experimentally and numerically. Two stator blade
rows with characteristically different blade profiles are studied: one of standard British
C4 section and a controlled diffusion (CD) blade with a circular arc leading edge
profile.

A turbulence grid placed at compressor inlet is used to generate turbulence char-
acteristics similar to those occurring in an embedded stage in a multi-stage axial com-
pressor. The stator inlet flow is studied using hot-wire anemometry and compared
with previous measurements made in the natural low inlet turbulence configuration of
the research compressor. Increased turbulence level enhances the dispersion of inlet
guide vane (IGV) wakes. This modifies the interaction between IGV and rotor blade
wakes, leading to a more circumferentially uniform flow field at entry to the stator
with significantly lower periodic unsteadiness.

Laminar-turbulent transition on a C4 stator blade is studied using an array of
surface-mounted hot-film sensors. Comparisons with measurements made at low inlet
turbulence show that the increased inlet turbulence level reduces the extent of peri-
odic transitional flow on the stator blade surface. The blade element behaviour flow
behaviour at high inlet turbulence closely resembles the low inlet turbulence case with
the stator immersed in IGV wake turbulence.

The circular arc leading edge profile of the CD stator produces rapid acceleration
and deceleration at the stator leading edge. The influence of this velocity spike on the
stator boundary layer development and transitional flow behaviour is studied using
an array of surface mounted hot-film sensors. A region of favourable pressure gradient
on the suction surface following the leading edge spike has a stabilising effect on the
boundary layer, with a large region of flow in a laminar or transitional state. Turbulent

spots and instability phenomena in this region are examined for convection speed,
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growth rate and evidence of relaminarisation. In contrast, the flow on the pressure
surface becomes turbulent near the leading edge. The study shows that compressor
blade leading edge profiles have a major influence on boundary layer development over
the whole surface.

The effect of upstream rotor wake passing on the stability of stator blade boundary
layers is examined. The unsteady quasi-three dimensional flow solver, UNSFLO, is
used to interpret surface hot-film data and unsteady laminar flow behaviour at the
leading edge of both C4 and CD stators. Rotor wake chopping is found to stabilise the
pressure surface boundary layer and destabilise the suction surface boundary layer.
Examination of hot-film data points to the leading edge as the principal receptivity
site for transitional flow phenomena occurring on the suction surface of both the C4

and CD blading.
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Nomenclature

General Variables

ST R

St e TR

blade chord

skin friction coefficient = 27,,/pU?

surface pressure coefficient = (P; — p)/(P1 — p1)
diameter

anemometer bridge voltage

anemometer bridge voltage at zero flow = ((E? — E?)/E?)3
boundary layer or wake shape factor = §*/6
blade incidence angle = o — 3

acceleration parameter = (v/U?)dU/dx

length

static pressure

total pressure

radius

compressor inlet Reynolds number = V,.c/v
compressor reference Reynolds number = U,,p,.c/v
stator inlet Reynolds number = V;.c/v

surface length

dimensionless surface length = s/$42

surface length from leading to trailing edge
blade pitch

dimensionless pitchwise distance = w/S

time

dimensionless time = ¢/T

rotor passing period

random disturbance level or ‘turbulence’



Nomenclature xxiii

Tu periodic disturbance level

Tup apparent or ‘total’ disturbance level
U local free-stream velocity

Ump mid-blade rotor blade speed

Va axial velocity at compressor inlet

w periperal distance

T axial coordinate

flow angle relative to axial direction, turbulent spot spreading angle
blade angle relative to axial axial direction

turbulent intermittency

Ao pressure gradient parameter = (62 /v)dU/dx

A integral or ‘macro’ turbulence scale

P air density

1) flow coefficient = V,, /U,

o blade row solidity = ¢/S

v kinematic viscosity = u/p

7 absolute viscosity

Tw wall shear stress

Tq quasi wall shear stress

0 boundary layer momentum thickness, wake momentum thickness, blade

camber angle = 31 — G

o* boundary layer displacement thickness, wake displacement thickness
£ blade stagger angle

w total pressure loss coefficient = (P; — P)/(P1 — p1)

Subscripts

1 stator blade row inlet

2 stator blade row outlet

cr critical

in compressor inlet (upstream from IGV)

le leading edge

mb mid-blade

te trailing edge



Nomenclature

xxiv

Acronyms

AVDR axial velocity — density ratio
CD controlled diffusion

CFD computational fluid dynamics
DNS direct numerical simulation
HP high-pressure

LAG long axial gap

LDA laser-doppler anemometry
LDV laser-doppler velocimetry
LES large eddy simulation

LP low-pressure

OD outer diameter

PDF probability density function
PVC peak-valley counting

RANS Reynolds-averaged Navier—Stokes
SAG short axial gap

UTAS University of Tasmania

Mathematical Notation

time average

)
() phase-lock or ensemble averaging





