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Abstract 

Metallothionein-I/II (MT-I/II) is a 6-7 kDa, cysteine rich, zinc and copper binding 

protein.  MT-I/II null mutant (
−/−

) mice have an altered response to brain injury.  

Therefore, MT-I/II has been proposed to be a protective protein after brain injury but 

the mechanism by which it confers protection remains elusive.  There is a possibility 

that MT-I/II has protective actions within the injured brain but MT-I/II also has the 

capacity to modulate the immune system which plays a role in the progression of brain 

injury.  The aim of this thesis is to investigate the differences in the progression of brain 

injury between wild type and MT-I/II
−/−

 mice with particular emphasis on the action of 

MT-I/II in organs peripheral to the central nervous system after brain injury.  Using a 

cryolesion brain injury model, neuron death in MT-I/II
−/−

 mice was prolonged at later 

stages of the brain injury (7 days post-injury) meanwhile it had ceased in wild type 

mice.  In conjunction with this occurrence, the numbers of T cells infiltrating the injury 

site were significantly higher in MT-I/II
−/−

 mice at 7 days post-injury.  Chemokine 

mRNA synthesis was analysed to determine if MT-I/II
−/−

 mice had altered chemotactic 

signals that may affect the rate of T cell infiltration but differences were rarely observed 

when compared to wild type mice.  In MT-I/II
−/−

 mice, circulating leukocytes showed 

no differences to wild type mice in the relative ratios of lymphocytes, neutrophils, 

monocytes or T cells.  However, the absolute white blood cell count was significantly 

higher in the blood of MT-I/II
−/−

 mice, but only at 7 days post-injury.  MT-I/II
−/−

 mice 

were also found to have lower levels of the marker of alternatively activated 

macrophages, Ym1, than wild type mice, both in macrophages in the brain and in 

monocytes in the blood after brain injury.  Therefore, there appear to be several immune 

system differences between MT-I/II
−/−

 mice and wild type mice after brain injury.  To 

further investigate the role of MT-I/II after brain injury, MT-I and MT-II mRNA levels 

were quantified by reverse transcriptase PCR.  An enzyme-linked immunoassay 

(ELISA) was developed to measure MT-I/II protein levels in brain and liver after brain 

injury.  Both MT-I and MT-II mRNA levels increase at 1 day post-injury in brain and 

liver and are decreased by 7 days post-injury.  MT-I/II protein in brain was highest at 1 

day post-injury but in the liver was maximally expressed at 7 days post injury.  This 

increase in hepatic MT-I/II protein resulted in a higher hepatic zinc content in wild type 

mice compared to MT-I/II
−/−

 mice.  Therefore these results suggest that brain injury 

induces a hepatic MT-I/II response which may be responsible for modulation of the 

essential trace metal, zinc after brain injury.  
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1.0 Overview 

Research into brain injury utilising animal models is mostly focused on events that 

occur within the site of injury or in the surviving tissue proximal to the injured region.  

This approach is logical and has allowed for the elucidation of several important 

processes that occur after brain injury that lead to continued cell death.  For example, 

excitotoxicity is one such process that has been identified to account for continued 

neuron death after brain injury.  Excitotoxicity is a self-perpetuating process caused by 

release of excitatory neurotransmitter from dying neurons that overstimulates surviving 

neurons in an uncontrolled manner and can cause neuronal exhaustion and death, which 

leads to further neurotransmitter release and thus exacerbates the problem (reviewed by 

Werner and Engelhard 2007).  This uncontrolled activity in neurons places a large strain 

on neuronal mitochondria which generate large quantities of reactive oxygen species 

(ROS) and further contributes to neuronal damage (reviewed by Robertson et al. 2009).  

Both of these processes are generated by central nervous system (CNS) cells affected by 

brain injury.  Another process that contributes to cell death after brain injury is the 

inflammatory response which has a component that originates in the injured CNS but is 

augmented by leukocytes that migrate into the CNS from the circulatory system.  

Inflammation in the injured brain is primarily mediated by inflammatory cytokines, 

small secreted signalling molecules, which are initially produced by resident CNS cells 

such as microglia and astrocytes (Liberto et al. 2004).  Leukocytes also produce 

inflammatory cytokines but the fact that leukocytes are not found in the CNS at the time 

of injury demonstrates that there can be outside influences on the injured CNS.  

However, the study of the interaction between the injured CNS and the extraneural 

organs has received little attention.  This is an important consideration because many of 

the transgenic animal models currently used to identify genes that influence brain injury 

have the genetic alteration in every cell in the body.  The focus of this thesis is the 

investigation of brain injury in one such transgenic model; the metallothionein-I/II null 

mutant (MT-I/II
−/−

) mouse.   Metallothionein (MT)-I and metallothionein-II are two 

small zinc binding proteins that are expressed throughout the body that have 

neuroprotective properties.  This introduction describes how MT-I and MT-II may 

influence the response to brain injury indirectly due to its interaction with the immune 

system.  Furthermore, this interaction has the potential to occur outside the CNS 

because brain injury activates several processes in extraneural organs that can feedback 

on the injured brain.  
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1.1 Cellular arrangement of the immune privileged brain 

1.1.1 Cellular Components of the Brain 

Neurons are the highly specialised cells responsible for transmitting signals at high-

speed around the central and peripheral nervous system.  Neurons have a high metabolic 

rate and require strict control of the extracellular environment to maintain their 

functions.  In addition to neurons, there are several classes of glial cell types in the 

brain. Astrocytes are the most numerous glial cell type in the brain (Kirchhoff et al. 

2001) and their function is to provide metabolic support to neurons and maintain the 

extracellular environment including homeostasis of ion and extracellular 

neurotransmitter concentrations (Pekny and Nilsson 2005, Pellerin and Magistretti 

1994, Ridet et al. 1997, Yong 1998).  Thus, astrocytes are essential for the maintenance 

of neuronal function and survival in the CNS.  In addition, to their support roles, it is 

becoming clear that astrocytes have influence upon neuronal signalling at synapses 

(Fellin and Carmignoto 2004, Fields and Stephens-Graham 2002, Vesce et al. 1999).  

Astrocytes also communicate with each other in response to synaptic activity, with 

calcium-mediated signals that propagate in extracellular waves rather than aligned along 

the axon-dendrite paths of neurons (Charles 1998, Guthrie et al. 1999, Vesce 1999).  It 

is hypothesised that these mechanisms regulate the strength of the synaptic signals of 

neurons and may be an important regulator of synaptic plasticity.  Oligodendrocytes are 

another glial cell type that modulate the speed of axonal signalling of neurons.  

Oligodendrocytes ensheathe sections of some axons in myelin at regular intervals which 

enables rapid saltatory conductance of action potentials (reviewed in Sherman and 

Brophy 2005).  In the CNS parenchyma there also exist NG2 proteoglycan expressing 

(NG2
+
) progenitor cells.  It is poorly understood whether NG2

+
 cells have a major role 

in the resting brain, or if they simply lie dormant until they are required to replace lost 

cells.  Recently, it has been shown that there are two populations of NG2
+
 cells, one 

with synaptic inputs capable of transmitting action potentials and one that is incapable 

(Káradóttir et al. 2008).  Finally, microglia are considered the resident immune cells of 

the CNS.  The developmental origin of microglia has been controversial with claims 

they originate from neuroectoderm, mesoderm and directly from the monocyte lineage 

(reviewed by Kaur et al. 2001).  Microglia can be immuno-labelled by many 

macrophage markers and in certain situations can have very similar functions to 

macrophages such as phagocytosis and effecting an inflammatory response.  In the 

developing brain, microglia are involved in the programmed cell death and 
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phagocytosis of neurons that occurs in normal brain development (Upender and Naegele 

1999).  In the resting brain, microglia are hypothesised to play a role in homeostasis and 

constantly monitor the CNS parenchyma with mobile, probing processes (reviewed by 

Hanisch and Kettenmann 2007, Raivich 2005).  Microglia, surveying the functional 

state of synapses under normal brain conditions, may function in termination of 

dysfunctional synapses (Wake et al. 2009).  However, microglia appear to have a 

greater impact on the CNS in stressful conditions such as injury and disease. 

 

1.1.2 Immune privilege and blood-brain barrier as separate entities 

The central nervous system is said to be immune privileged due to its inability to reject 

tissue allografts (reviewed by Simpson 2006).  In most tissues the inflammatory 

response operates in a very destructive manner that is repaired later by regenerative 

processes.  Regeneration after large scale cell death in the CNS consists almost entirely 

of replacement of lost tissue with astrocytes, a process known as glial scarring, which 

prevents the replacement and regeneration of neurons (reviewed by Tan et al. 2005).  

One possible role for the immune privilege of the CNS is to reduce the risk of 

inflammatory responses developing in the CNS that have the potential to cause 

irreversible damage.  Investigation of the mechanisms of immune privilege in the CNS 

has increased in recent years.  Previously, the lack of lymphatic vessels in the CNS has 

been proposed as a mechanism of immune privilege (reviewed by Carson et al. 2006) 

but it has been known for some time that trafficking of antigens from the CNS to 

regional lymph nodes does occur (Wekerle et al. 1987).  It has since been demonstrated 

that drainage to cervical lymph nodes occurs via cranial nerves and could account for up 

to 50% of cerebrospinal fluid drainage in rats and sheep (Boulton et al. 1999, Walter 

2006).  Therefore the lack of lymphatic vessels in the CNS does not prevent drainage of 

cerebrospinal fluid to lymph nodes and is unlikely to play a significant part in immune 

privilege. 

 

The term blood-brain barrier relates to the ability of CNS endothelial cells to prevent 

unregulated transport or diffusion of blood-borne molecules into the CNS.  The blood-

brain barrier is often credited as the structure that maintains immune privilege.   

However, the blood-brain barrier is only one part of the neurovascular unit (figure 1.1).  

It is actually other aspects of the neurovascular unit that appear responsible for 

maintaining immune privilege.  The primary function of the blood-brain barrier is to 

maintain homeostasis in the ionic composition of cerebrospinal fluid and exclude 
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neurotoxic blood-borne molecules (Hawkins & Davis 2005).  The blood-brain barrier 

consists of blood vessel endothelial cells that lack the fenestrations of normal 

endothelium and express surface proteins such as occludins, claudins and junctional 

adhesion molecules that form tight junctions between the membranes of endothelial 

cells to create an impassable barrier to many hydrophilic solutes (Ballabh et al. 2004, 

Hawkins and Davis 2005).  Many molecules require active transport mechanisms to 

enter the CNS from the blood which allows the endothelial cells of the CNS to regulate 

the entry of various required metabolites (Pardridge 1998).  In addition to providing a 

barrier to solutes, CNS blood vessel endothelial cells have the potential to regulate the 

entry of leukocytes into the CNS by altering the expression of surface adhesion 

molecules that are necessary for circulating leukocytes to anchor to before they can 

transmigrate across the endothelial layer (reviewed by Ley et al. 2007).  Under normal 

conditions CNS endothelium does not readily allow leukocyte rolling or arrest (Piccio et 

al. 2002) which may contribute to the lack of leukocyte surveillance of the CNS 

parenchyma.  Surface adhesion molecule expression by CNS endothelial cells is a 

separate process that helps to maintain immune privilege but is distinctly different to 

processes that maintain the blood-brain barrier.  
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Figure 1.1 Adapted from Guilemin and Brew (2004) and Hawkins and Davis (2005).  The neurovascular unit consists of blood vessels lined by 

endothelial cells and astrocytic endfeet that ensheathe the blood vessels from the abluminal side.  The endothelial cells constitute the blood-brain 

barrier formed by tight junctions that exist wherever endothelial cell membranes meet.  Astrocytic endfeet create a second barrier between the CNS 

parenchyma and the perivascular space known as the glia limitans.  The glia limitans demarcates the beginning of the CNS parenchyma.  Within the 

perivascular space reside perivascular macrophages.  During brain injury, or other conditions that stimulate CNS inflammation, macrophages other 

leukocytes not shown here such as neutrophils and T cells, infiltrate the CNS parenchyma.  Within the CNS parenchyma microglial secretion of 

chemokines creates a chemotactic signal that directs leukocyte migration.  A consequence of this process is blood-brain barrier breakdown. 
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1.1.3 Additional mechanisms of immune privilege 

Despite the immune privilege of the CNS under normal conditions, there are 

circumstances which permit leukocytes to migrate across the endothelium of CNS blood 

vessels.  This phenomenon is observed when leukocytes infiltrate the CNS during 

autoimmune conditions such as multiple sclerosis and the experimental model of 

multiple sclerosis, experimental autoimmune encephalomyelitis (EAE).  The 

inflammatory response and leukocyte infiltration also occurs in the CNS in response to 

a range of insults such as infection, physical injury and ischemia.  Inflammatory 

cytokines activate sufficient expression of adhesion molecules on CNS endothelial cells 

to facilitate leukocyte rolling, arrest and diapedesis (Piccio et al. 2002).  However, 

during CNS inflammation, leukocytes have been observed crossing the CNS 

endothelium but were retained within the perivascular space suggesting something was 

excluding these cells from the CNS parenchyma (Bartholomäus et al. 2009).  Therefore 

it is apparent that cells inside the perivascular space encounter a second mechanism by 

which the CNS maintains immune privilege.  T cells, which are important for mediating 

the adaptive immune response, can cross CNS endothelium but in order to do so, 

require prior activation via T cell receptor stimulation (Byram et al. 2004, Ling et al. 

2006).  T cells in the perivascular space require restimulation of their T cell receptor for 

their exit out of the perivascular space, into the CNS parenchyma (Archambault et al. 

2005).  Furthermore, continued stimulation of the T cell receptor is necessary for their 

persistence in the CNS parenchyma (Hickey et al. 1991).  For successful T cell 

activation, the T cell receptor must be ligated to antigen presented on MHC class-II 

molecules in the presence of the costimulatory molecules B7.1 (CD80) or B7.2 (CD86) 

on the antigen presenting cell (reviewed in Davis et al. 2003, Dustin and Shaw 1999). In 

the murine CNS, microglia express low levels of MHC class-II molecules and the 

costimulatory molecules B7.1 or B7.2 (Santambrogio et al. 2001).  It is likely that the 

low level of MHC class-II expression does not promote T cell persistence in the CNS 

because of the low capacity to present antigen and support T cell receptor stimulation.  

Should any T cell receptor stimulation occur, the low levels of costimulatory molecules 

on the antigen-presenting cell causes the T cell to enter a state of anergy (Becher et al. 

2000).  Therefore the lack of costimulatory molecule expression by microglia may be a 

passive mechanism by which immune privilege is maintained.  There is however, a 

population of macrophages within the perivascular space that do express costimulatory 

molecules (Bartholomäus et al. 2009) which implies that the perivascular space 

constitutes a less immune privileged region than the CNS parenchyma. 



 

8 

 

Astrocytes are found throughout the CNS extending processes that cooperatively 

envelop blood vessels known as astrocytic endfeet (Figure 1.1).  This is part of a barrier 

formed by astrocytes which is abluminal to blood vessels and is also found at meningial 

borders of the CNS known as the glia limitans.  The glia limitans constitutes the edge of 

the perivascular space and the CNS parenchyma.  Like microglia, astrocytes interact 

with T cells via surface molecules however, astrocytes have the ability to actively 

suppress the occupation of the CNS by immune cells.  Astrocytes do not express MHC 

class-II costimulatory molecules hence do not support T cell persistence in the CNS 

(Tontsch and Rott 1993) but astrocytes do express apoptotic ligands such as Fas ligand 

(Choi et al. 1999) and inhibitory molecules such as CTLA-4 (Gimsa et al. 2004) that 

have the ability to induce apoptosis in leukocytes and inhibit costimulation of T cells, 

respectively.  Astrocytes are also able to inhibit the secretion of inflammatory cytokines 

and expression of B7.1 by monocytes when co-cultured in vitro (Kostianovsky et al. 

2008).  When in direct contact with neutrophils, astrocytes suppress neutrophil 

proliferation and some neutrophils functions (Wie et al. 2010).  Therefore cellular 

contact with astrocytes appears to be important for the suppression of leukocyte 

function and collectively, astrocytes have the potential to provide a large contribution to 

the maintenance of immune privilege, due to their large numbers and wide distribution 

throughout the CNS.   

 

There may be other mechanisms by which immune privilege is maintained which are 

yet to be discovered.  Recently, in vitro evidence has been provided for microglial 

phagocytosis of live neutrophils that infiltrate brain slices (Neumann et al. 2008).  It is 

important to note that immune privilege is a collection of processes that lead to the 

suppression of immune function in the CNS, not its complete abrogation.  This is 

evident because CNS endothelium has specific transport mechanisms to shuttle 

cytokines bi-directionally across the blood-brain barrier (reviewed by Banks 2005).  

This emphasises the idea that the immune system is not excluded from the CNS, but 

that the CNS regulates the degree to which the immune system operates in the CNS. 
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1.2 Inflammation of the central nervous system 

1.2.1 Inflammation attenuates immune privilege 

During inflammation in the CNS, the state of immune privilege begins to break down.  

Local cytokine production activates an array of inflammatory processes including 

production of chemokines and matrix metalloproteinases.  Cytokine production is able 

to ellicit changes in the expression of surface markers on CNS endothelium which is 

one of the requirements for leukocyte infiltration (Piccio et al. 2002).  Matrix 

metalloproteinase secretion causes breakdown of the blood vessel endothelium, and 

consequently the blood-brain barrier, to facilitate the entry of leukocytes into the CNS 

(Candelario-Jalil et al. 2009).  The initiation of inflammatory processes induces 

expression of the costimulatory molecules B7.1 and B7.2 and MHC class-II expression 

on microglia (Aloisi et al. 2000, Santambrogio et al. 2001).  Importantly, infiltrating 

monocyte derived macrophages express MHC class-II, B7.1 and B7.2 surface molecules 

in the injured CNS (Shechter et al. 2009).  The increased presence of costimulatory 

molecules enables stimulation of the T cell receptor within the injured CNS and reduces 

the induction of anergic T cells.  Hence, the activation of microglia and infiltration of 

monocytes during CNS inflammation partly counteracts immune privilege. 

 

CNS insults, such as brain injury, that cause the death of astrocytes may alleviate 

immune suppression because astrocytes normally provide inhibitory signals to 

leukocytes.  The death of an astrocyte would result in loss of the glia limitans and the 

inhibitory molecules expressed on the astrocyte cell surface.  At the border of the 

affected region, surviving astrocytes extend processes towards the site of injury to re-

establish the glia limitans 2-3 days after injury (Faulkner et al. 2004).  Re-establishment 

of the glia limitans has been shown to be important for maintaining immune privilege in 

surviving CNS tissue and restricting leukocytes to the affected area (Voskuhl et al. 

2009).  This evidence strongly suggests that the presence of astrocytes is important for 

the maintenance of immune privilege and that loss of astrocytes from the CNS leads to a 

loss of immune privilege.  The re-establishment of the glia limitans does not necessarily 

coincide with the re-establishment of the blood-brain barrier which can remain 

permeant for at least 4 days after injury (Habgood et al. 2007).  The consequence of this 

is that the surviving CNS tissue is not protected from blood-borne neurotoxic molecules 

or inflammatory mediators from the injury site.  Therefore surviving tissue remains 

susceptible to inflammation-mediated damage for some time after brain injury. 
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1.2.2 Leukocyte infiltration into the injured CNS 

Neuron death occurs over a period of days after brain injury, hence brain injury can be 

considered as a progression of events that occurs on a scale of days to weeks. During 

this time, the types of leukocytes that are migrating to, and inhabiting, the injured brain 

changes as the injury progresses towards resolution (figure 1.2).  A major process that 

facilitates leukocyte infiltration into the injured brain is the production of chemokines in 

the vicinity of the injury site (Babcock et al. 2003, Ghirnikar and Lee 1996, Ghirnikar et 

al. 1998, Rhodes et al. 2009, Sandhir et al. 2004).  Chemokines are chemoattractant 

molecules which orchestrate the migration of leukocytes to the area of inflammation via 

interaction with chemokine receptors on leukocytes (reviewed by Bajetto et al. 2001).  

Due to their location in the CNS, microglia exhibit the fastest inflammatory response to 

injury.  Astrocytes also undergo a cellular activation which has some inflammatory 

aspects such as chemokine secretion and enzyme-mediated ROS production (Falsig et 

al. 2004, Madrigal et al. 2009) but microglia have been shown to become activated at 

much lower levels of stimulus (Liberto et al. 2004).  The first cells expressing activated 

macrophage markers present in the injured brain are of microglial origin (Denker et al. 

2007).  Subsequent to the activation of resident CNS cells, the infiltration of neutrophils 

into CNS injuries is the most rapid of any type of leukocyte but neutrophils do not 

persist beyond 2 days post-injury, at which time monocytes become the dominant 

infiltrating leukocyte (Stirling and Yong 2009).  T cell infiltration occurs in several 

waves with an early infiltration within 1 hour (Czigner et al. 2007), followed by a 

second infiltration at 24 hours (Clausen et al. 2007).  However, the maximal T cell 

occupation of the injured CNS begins to occur about 1 week after the initial injury 

(Sroga et al. 2003).  It warrants mention that it is not known why there are T cells with 

cognate antigens that are present in the injured CNS because the immune system is able 

to tolerise proteins found in the CNS (Gregerson et al. 2009).  Tolerisation is the 

process by which the immune system determines which molecules are self-derived and 

which molecules are exogenous but it is possible that there are CNS derived molecules 

that are only released into cerebrospinal fluid after CNS injury.  Overall, the process is 

not well understood, but regardless, T cells are found infiltrating the injured CNS.  

Therefore, the immune response to brain injury is dynamic and varies greatly as time 

progresses. 
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Figure 1.2, compiled by Donnelly and Popovich (2008) to represent the trends observed 

in leukocyte accumulation during the progression of brain injury from multiple studies 

in mice.  The appearance of activated microglia is the most rapid response to CNS 

injury.  Leukocyte infiltration begins with the appearance of neutrophils and their 

decline within the first 24-72 hours.  At approximately 1 week after injury there is an 

increase in the occupancy of the CNS by monocytes and lymphocytes. 
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1.2.3 Effects of inflammation on the injured CNS 

The inflammatory response to injury appears to be a trade-off between detrimental and 

beneficial processes that are evolutionarily coupled.  This arises because immune cells 

must become activated to carry out their beneficial functions but other detrimental 

processes become active simultaneously.  This may explain why the effects of 

infiltrating immune cells on the injured brain can be contradictory to the effects of 

immune cells on neurons in vitro.  Macrophages, derived from activated microglia or 

infiltrating monocytes, and neutrophils, can participate in the oxidative burst and nitric 

oxide synthesis.  The oxidative burst is an anti-microbial response that accompanies 

inflammation even in the absence of pathogens and produces ROS and reactive nitrogen 

species (RNS) via enzymes such as NADPH oxidase and inducible nitric oxide synthase 

(iNOS) (Alberati-Giani and Cesura 1998, Sankarapandi et al 1998).  In vitro, ROS/RNS 

have been shown to cause the death of neurons (Desagher et al. 1996, Hu et al. 1997).  

Macrophages, astrocytes and T cells can all produce inflammatory cytokines when 

activated.  Inflammatory cytokines generally enhance inflammatory processes such as 

oxidative burst but increased concentrations of cytokines such as TNF-α can also 

enhance excitotoxicity (Bezzi et al. 2001).  Therefore there are aspects of the 

inflammatory response that could be considered detrimental to neuronal or glial survival 

after brain injury.   

 

In contrast, studies to experimentally remove leukocyte sub-populations have yielded 

results that conflict with this presumed neurotoxicity emanating from leukocytes.  For 

example, neutrophil depletion with monoclonal antibodies to Ly-6C/Ly-6G can worsen 

the outcome of spinal cord injury (Stirling et al. 2009), mutant scid mice that lack 

functional T cells and B cells have decreased neuron survival after facial motor nerve 

axotomy (Serpe et al. 1999) and genetic ablation of microglia and monocytes resulted in 

increased infarct size after stroke (Lalancette-Hébert et al. 2007).  Similar results were 

obtained using transgenic mice that have a null mutation for the inflammatory cytokine 

TNF-α which had increased infarct volume in an experimental stroke model 

(Lambertsen et al. 2009).  In accordance with these results, transplantation of activated 

macrophages into an optic nerve injury site has been able to improve nerve regeneration 

(Lazarov-Spiegler et al. 1996).  Therefore, leukocytes have characteristics that are 

detrimental to neuronal function but also have vital roles to play in the resolution of 
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injury.  A major question from a therapeutic point of view is whether the immune 

response can be manipulated to attenuate the detrimental processes without removing 

the beneficial processes.   

1.2.4 Therapeutic vaccination for CNS injury 

T cells are a large contributor to the pathology of multiple sclerosis and EAE (Martin et 

al. 1992) which might suggest that T cells would also contribute to the pathology of 

brain injury.  EAE is induced by vaccination with an antigen, usually a myelin-

associated protein, and adjuvant, often inactivated mycobacteria, which promotes the 

formation of a humoral response to the antigen.  In contrast to the detrimental effects 

observed in EAE, this vaccination treatment enhanced the recovery from optic nerve 

injury when the vaccination was administered at the time of injury (Moalem et al. 

1999).  In a separate study that aimed to replicate these effects in a spinal cord injury, 

the vaccination caused no improvement in recovery from injury but EAE occurred as 

expected (Jones et al. 2004).  Therefore the treatment appeared to have beneficial 

effects only in some instances of CNS injury but the detrimental effects, the induction 

of EAE, was a reproducible response.  This problem was rectified more recently, when 

a synthetic polymer based on myelin basic protein, glatiramer acetate (also known as 

copolymer-1, cop-1 and copaxone) was used as the vaccination antigen and was found 

to improve CNS injury outcome without causing EAE (Kipnis et al. 2003, Skihar et al. 

2009).  Other polymers based on the structure of myelin basic protein have been used to 

induce the beneficial effects of T cells in brain injury (Martiñon et al. 2007).  Studies 

using this vaccination technique in transgenic mice lacking helper T cells were unable 

to reproduce the beneficial effects suggesting that, of all the T cell subtypes, helper T 

cells are the subtype responsible for the beneficial effects after CNS injury (Serpe et al. 

2003).  This is supported by the fact that regulatory T cells, which are known to 

suppress helper T cell responses, have been shown to reduce the efficacy of the 

vaccination treatment (Kipnis et al. 2002).  The original vaccination experiments 

demonstrated that a CNS specific antigen was required to induce a beneficial effect 

from T cells (Moalem et al. 1999), suggesting that the vaccination promotes the 

activation and expansion of helper T cells which are then able to enter the injured CNS 

and persist there to affect the recovery process.  These experiments emphasise the fact 

that activated helper T cells can have beneficial effects on the injured CNS and that 

helper T cells can be manipulated to enhance the beneficial effects.  A possible 

mechanism for helper T cell mediated neuroprotection is their ability to produce mRNA 

for the neurotrophins (NT), NT-1, NT-2, NT-3, NT-4/5 and brain-derived neurotrophic 
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factor when stimulated in vitro (Moalem et al. 2000) and express NT-3 and BDNF 

mRNA in spinal cord after SCI (Hammarburg et al. 2000).  However, this does not 

explain how the detrimental effects exerted by helper T cells, are overcome. 

1.2.5 Th1/Th2 responses in brain injury 

Discovery of the ability to attenuate the severity of CNS injuries by increasing T cell 

numbers was surprising given the pathogenic role of T cells in autoimmune diseases of 

the CNS.  It led to the suggestion that in the CNS, the immune system may be 

detrimental or beneficial depending on the signals or “context” presented to the immune 

cells (Schwartz et al. 2006).  Furthermore, Hendrix and Nitsch (2007) have proposed 

that a low Th1/Th2 ratio is beneficial to neural survival after CNS injury.  The type-1 

helper T cell (Th1) and type-2 helper T cell (Th2) responses are divergent lineages that 

naïve T cells differentiate into, upon activation and clonal expansion (Mosmann et al. 

1986).  The Th1 response is a response that mediates the host defence against 

intracellular pathogens and favours cytolytic and anti-microbial processes such as the 

oxidative burst.  Th1 cells effect this response by producing Th1 cytokines such as 

interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) and IL-2 (Sredni-Kenigsbuch 

2002).  The Th2 response mediates actions against extracellular pathogens, mainly by 

stimulating production of antibodies.  The prominent Th2 cytokines are IL-4, IL-5 and 

IL-10 (Sredni-Kenigsbuch 2002).  Th1 and Th2 responses always exist together and 

both processes are required for resolution of infections but the immune system is able to 

vary the ratio of Th1 to Th2 cells or cytokines according to the requirements for a 

particular pathogen (de Jong et al. 2002).  Th1 and Th2 responses occur in the injured 

brain and differences in the effects of each phenotype are likely to impact upon the 

progression of brain injury.   

1.2.6 Classical and alternative activation of macrophages in brain injury 

In the injured brain, the major cell type responding to Th1 and Th2 cytokines is 

macrophages which are derived from monocytes and microglia.  Th1 cytokines induce 

what is known as the classically activated macrophage (caMΦ) and Th2 cytokines 

activate macrophages with a phenotype known as the alternatively activated 

macrophage (aaMΦ).  CaMΦs have a higher antimicrobial capacity due to their ability 

metabolise arginine into nitric oxide and citruline whereas aaMΦs metabolise arginine 

into ornithine and urea (Mills et al. 2000).  Nitric oxide is a highly reactive, short-lived 

molecule that is neurotoxic (Hu et al. 1997) which implies that caMΦs have a 

detrimental effect when activated in the CNS.  Conditioned media from caMΦs 
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transferred to neuron cultures has been shown to be toxic, whereas aaMΦ conditioned 

media promotes neurite growth (Kigerl et al. 2009).  This experiment suggests that 

caMΦs probably produce soluble neurotoxic molecules in addition to nitric oxide 

because nitric oxide is rapidly converted to relatively inert nitrates in culture media.  

Microglia also produce the neurotoxin quinolinic acid and the less toxic kynurenic acid 

from divergent and competing branches of tryptophan metabolism via the indoleamine 

2,3-dioxygenase pathway (Guillemin et al. 2004).  Microglia can be induced into a 

caMΦ phenotype by Th1 cytokines which favours quinolinic acid production whereas 

aaMΦ induction by Th2 cytokines promotes the production of kynurenic acid at the cost 

of quinolinic acid production (Kwidzinski and Bechmann 2007, Yadav et al. 2007).  In 

vitro, the Th2 cytokine, IL-4 has been demonstrated to induce an alternative activation 

state in microglia (Zimmer et al. 2003).  IL-4 stimulates microglial production of 

insulin-like growth factor-1 (IGF-1) and reduces the amount of tumour necrosis factor-α 

(TNF-α) secretion (Butovsky et al. 2005).  High levels of TNF-α induce neuronal 

apoptosis whereas lower levels of TNF-α can promote neuronal survival (Bernadino et 

al. 2005).  IGF-1 is neurotrophic (Laurino et al. 2005, Wilkins et al. 2001), inhibits NO 

synthesis and reduces blood-brain barrier breakdown after brain injury (Sharma et al. 

1998).   

 

In vivo evidence suggests that while both caMΦs and aaMΦs are induced rapidly after 

spinal cord injury, only the caMΦ response persists for longer than 24 hours after the 

initial injury (Kigerl et al. 2009).  However, in an EAE model a prolonged aaMΦ 

response was seen to occur (Ponomarev et al. 2007), indicating that a Th2 response and 

aaMΦ response can persist in the CNS.  Interestingly glatiramer acetate, the molecule 

used to vaccinate animals to enhance the protective T cell response to injury, induces a 

Th2 response in T cells that enter the CNS (Aharoni et al. 2003).  It has also been 

shown that different strains of mice that have a natural bias towards either Th1 or Th2 

responses have different outcomes to CNS insults (Lambertsen et al. 2002).  The 

induction of caMΦ in the CNS may have implications for immune privilege because 

microglia cultured with Th1 cells or Th1 cytokines leads to increased expression of 

MHC class-II molecules and B7.1 and B7.2 costimulatory molecules (Aloisi et al. 2000, 

Séguin et al. 2003).  Therefore a caMΦ response in the injured brain may have a higher 

capacity to support T cells in the injured brain than an aaMΦ response which is the less 

neurotoxic of the two phenotypes.  The study of Th1/Th2 responses and caMΦ/aaMΦ 

phenotypes has demonstrated that each response has the potential to change the 
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progression of brain injury.  Understanding the effects of leukocytes in the injured brain 

requires a more complete understanding of how the Th1/Th2 responses and the 

caMΦ/aaMΦ phenotypes are regulated in the injured CNS. 

1.2.7 Peripheral immune response to brain injury 

CNS injuries can affect organs peripheral to the CNS.  In severe brain injury patients, 

Zygun et al. (2005) found extraneural organ dysfunction in 89% of cases, and organ 

failure in 35% of patients.  The immune system is often altered by CNS injury with 

decreased circulating T cell counts within the first week of brain injury (Mazzeo et al 

2006) and chronically, spinal cord injury was able to cause a decrease in natural killer 

cells and an increase helper T cells in circulation more than 3 months after injury 

(Campagnolo et al. 2008).  There are multiple studies showing CNS injury related 

increases in levels of immune system signalling and effector proteins such as β-2-

microglobulin, soluble IL-2 receptor (Lenzlinger et al. 2001), C-reactive protein 

(McClain et al. 1986), fractalkine (Rancan et al. 2004), IL-6 (McClain et al. 1991), IL-8 

(Whalen et al. 2000), tumour necrosis factor (TNF), CC chemokine ligand 5 (CCL5) 

(Terao et al. 2008), and IL-1 (Ott et al. 1994).  While it is possible that these molecules 

originate from the injured CNS, it has also been shown that donor organs from brain 

dead patients have elevated expression of cytokines and chemokines (Weiss et al. 2007) 

which might suggest that extraneural organs contribute to the systemic inflammatory 

response to brain injury.  It is apparent that injury to the CNS affects the functioning of 

extraneural organs, but whether these organs can influence the outcome of brain injury 

also needs to be considered.  Gris et al. (2008) demonstrated that in rats, spinal cord 

injury induces a systemic immune response that results in neutrophil recruitment to the 

lungs and kidneys resulting in inflammatory tissue damage to both organs.  Hence the 

immune response may contribute to the changes seen in extraneural organs after brain 

injury, although other systems may be involved.   

1.2.8 Systemic oxidative stress after brain injury 

A rapid change that occurs in extraneural organs after brain injury is increased oxidative 

stress which can occur within 15 minutes (Shohami et al. 1999). It is not known what 

triggers this response but redox status inside cells can influence many cellular processes 

and can profoundly affect immune cell function.  Reduced glutathione (GSH) is the 

main intracellular antioxidant and enzymes are constantly reducing the oxidised form of 

glutathione (GSSG) which is constantly being oxidised by ROS produced by normal 

cellular function.  Oxidative depletion of GSH suppresses the systemic immune 
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response to activating stimuli such as endotoxin or bacteria (Wang et al. 1999, 

Buchmuller-Rouiller et al. 1995).  Particularly relevant to the case of brain injury is the 

fact that in antigen-presenting cells, high cellular GSH content induces Th1 cells and 

low GSH content induces Th2 cells (Dobashi et al. 2001, Koike et al. 2007, Murata et 

al. 2002, Peterson et al. 1998).  Because T cells need to be activated by antigen-

presenting cells in lymphoid organs before they can enter the CNS (Archambault et al. 

2005, Byram et al. 2004, Ling et al. 2006), brain injury-induced changes in whole-body 

redox status could influence the type of helper T cell response induced after injury.  

Once T cells infiltrate the inflamed CNS, cytokine production by helper T cells could 

influence the induction of either caMΦs or aaMΦs in the injury site.  Such a link has yet 

to be determined experimentally but there is evidence to support the hypothesis that the 

immune system can contribute to the progression of brain injury. 

1.2.9 Immune responses of extraneural organs after brain injury 

The immune system can directly interact with the injured brain because leukocytes are 

highly mobile cells that migrate towards sites of injury.  However there is also evidence 

that somatic organs can affect the injured brain.  Cytokines are expressed in the 

gastrointestinal tract after brain injury (Bansal et al. 2010, Chen et al. 2008, Feighery et 

al. 2007).  The first organ to be exposed to gut-derived cytokines is the liver via 

drainage of intestinal capillaries via the hepatic portal vein.  Activation of the immune 

system-related transcription factor NF-κB, has been observed throughout the body after 

inflammatory insult to the brain, but it occurred predominantly in the liver (Campbell et 

al. 2008a).  Furthermore, the activated liver produces chemokines which contribute to 

the rate of infiltration of neutrophils and monocytes into the injured brain (Campbell et 

al. 2002, Campbell et al. 2003, Campbell et al. 2005, Campbell et al. 2007a, Campbell 

et al. 2007b, Chapman et al. 2009).  Specific depletion of liver Kupffer cells and 

circulating monocytes, but not microglia, was able to attenuate neutrophil infiltration 

into the injured brain (Campbell et al. 2008b).  This is one of the most convincing 

examples of an extraneural organ responding to brain injury, and this in turn impacting 

upon the injured brain. 

 

There is increasing evidence that the systemic response to brain injury can have 

feedback effects on the injured brain.  This phenomenon may affect the interpretation of 

experiments utilising transgenic animals in which the altered gene affects all cells in the 

animal.  The following is an account of the evidence for an extraneural role of 
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metallothionein-I and –II, two genes identified to be neuroprotective from null mutant, 

and transgenic over-expressing, mouse experiments. 

1.3 Metallothionein (MT) in the injured central nervous system 

1.3.1 Metallothionein 

Metallothionein (MT) is a 6-7kDa, cysteine rich, metal-binding protein.  In a 

physiological context, metallothionein binds up to 7 zinc ions or 10 copper ions in 

thiolate clusters (Nielson and Winge 1983, Palumaa et al. 2005).  In a physiological 

context MT-I/II is predominantly found bound to zinc or in various partially zinc-bound 

forms (Yang et al. 2001).  In addition to its zinc binding properties, MT has a very 

negative redox potential (Maret and Vallee 1998) hence it has strong antioxidant 

properties.  There are four main isoforms of metallothionein.  MT-I and MT-II are 

expressed in most organs in the body and share sufficient homology that they are often 

considered to be a single species (MT-I/II).  MT-III expression is expressed in the brain 

and MT-IV is expressed only in squamous tissue.  MT-I/II is induced by changes in 

intracellular zinc, extracellular zinc, IL-6 or glucocorticoids (figure 1.3).  MT-I/II is 

highly conserved within the vertebrate classes but the biological function of this protein 

is still largely unknown.  Because highly conserved genes usually represent 

evolutionarily essential proteins, it was surprising that no overt phenotype was observed 

in either of the MT-I/II null mutant (MT-I/II
−/−

) mouse strains that have been created 

(Masters et al 1994, Michalska and Choo 1993).  It was not until MT-I/II
−/−

 animals 

were placed under stressful conditions such as simulated sepsis (Philcox et al. 1995, 

Waelput et al. 2001), lung injury (Inoue et al. 2005, Takano et al. 2004), Helicobacter 

pylori infection (Mita et al. 2008), zinc challenge (Coyle et al. 1995), cadmium toxicity 

(Masters et al. 1994) and restraint stress (Suzuki et al. 2000) that differences between 

wild type and MT-I/II
−/−

 mice became apparent.  In the case of brain injury, there are 

numerous documented cases where CNS insults produced a more severe response in 

MT-I/II
−/−

 mice than wild type (MT-I/II 
+/+

) mice (Natale et al. 2004, Penkowa et al. 

1999a, Penkowa et al. 1999b, Penkowa et al. 2001, Penkowa et al.2006a, Potter et al. 

2007, Potter et al. 2009, Suemori et al. 2006).  In accordance with these findings, mice 

that transgenically over-express MT-I have a less severe outcome from CNS insults 

(Giralt et al. 2002, Penkowa et al. 2005, van Lookeren Campagne et al. 1999).  

Cumulatively, these data imply that MT-I/II has a modulatory role under stressful 

conditions, whereas a definitive role of MT-I/II under resting conditions is yet to be 

determined. 
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Figure 1.3 Adapted from Kimura and Itoh (2008).  Regulation of MT-I occurs via 

increased intracellular zinc which can arise due to increased extracellular zinc or zinc 

liberation from proteins by ROS and metals with higher affinity for thiolate clusters 

than zinc.  Free zinc binds to metal transcription factor-1 (MTF-1) which binds to metal 

response elements (MREs) in the MT-I gene promoter to enhance transcription.  

Glucocorticoids (GC) and IL-6 can activate glucocorticoid receptors (GR) and the 

STAT3 pathway, respectively to further enhance MT-I expression.  The constitutively 

expressed transcription factors Sp1, USF-1 and USF-2 are also required for MT-I 

mRNA transcription but are not involved in the processes that induce MT-I expression. 
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1.3.2 Putative neuroprotective roles of brain-derived metallothionein 

A protective role for MT-I/II after brain injury was first demonstrated in vivo by 

Penkowa et al. (1999a) who showed that MT-I/II
−/−

 mice had a larger injury size and a 

dysfunctional immune response after cryolesion brain injury.  Interestingly, mice that 

were null mutants for MT-III, the brain specific isoform, did not exhibit any alteration 

to the inflammatory response and actually had greater production of neurotrophins after 

brain injury (Carrasco et al. 2003).  These results demonstrate that the neuroprotective 

effects of MT are specific to the ubiquitously expressed MT-I and MT-II isoforms, not 

the brain-specific isoform.  After injury to the CNS, MT-I/II expression increases in 

astrocytes in the vicinity of the injury site (Carrasco et al. 2000, Chung et al. 2004, 

Penkowa and Moos 1995, Penkowa et al. 1999a, Penkowa et al. 1999b, Penkowa et al. 

1999c).  An obvious effect that MT-I/II may be having in brain injury is zinc binding.  

For an individual cell, increasing expression of MT-I/II can protect against zinc toxicity 

(Palmiter et al. 2004).  Zinc is an essential trace metal for a large number of 

metalloproteins and many cellular functions (reviewed by Cuajunco and Lees 1997, 

Fraker and King 2004, Lansdown et al. 2007).  During brain injury increased oxidative 

stress is present in the injured brain (Robertson et al. 2009) which has the capacity to 

liberate zinc from the many zinc binding proteins present in neurons, a process which 

induces neuronal apoptosis (Aizenman et al. 2000).  Zinc also plays a role in membrane 

depolarisation leading to neuron death (Medvedeaeva et al. 2009).  Microglia can 

induce the release of intracellular free zinc ions in neurons leading to neuronal 

membrane depolarisation (Knoch et al. 2008).  Furthermore, increases in extracellular 

zinc can activate microglial nitric oxide synthesis and NADPH oxidase activity 

(Kauppinen et al. 2008) and the RNS/ROS produced could further potentiate neuron 

death.  Astrocytes express MT-I/II whereas neurons do not and astrocytes consequently 

have a higher tolerance to zinc toxicity (Dineley et al. 2000).  Given that MT-I/II is 

predominantly an intracellular protein with no signal sequence peptide to stimulate 

secretion, it could be argued that MT-I/II does not have the correct localisation in the 

CNS to protect neurons.  However, there is evidence that astrocytes can protect neurons 

against increases in extracellular zinc concentration via the expression of MT-I/II which 

sequesters the free zinc to the astrocyte cytoplasm (Malaiyandi et al. 2004).  Such an 

effect may extend further to prevent the other effects caused by increased free zinc ion 

concentrations.  Astrocytic MT-I/II may also provide protection against oxidative stress 

because astrocytes cultured from MT-I/II
−/−

 mice are more susceptible to oxidative 

stress than astrocytes from wild type mice (Suzuki et al. 2000).  It is not known if MT-
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I/II in the cytoplasm of astrocytes can protect against ROS/RNS generated in neurons or 

extracellular ROS/RNS generated by the inflammatory response.  However, 

extracellular MT-I/II has been shown to protect cultured neurons against oxidised 

dopamine products (Gauthier et al. 2008, Køhler et al. 2003) and amyloid-β (Chung et 

al. 2010, Køhler et al. 2003).  Extracellular MT-I/II also promotes neurite extension in 

neuron cultures and the injured optic nerve (Chung et al. 2003, Chung et al. 2008, 

Fitzgerald et al. 2007).  In human patients with brain injury MT concentrations in the 

blood are increased (Kukačka et al. 2006) and the concentration is comparable to those 

used to promote neuron protection and neurite extension in vitro.  Furthermore, 

therapeutic application of MT-I/II into the site of brain injury can promote neurite 

extension in vivo (Chung et al. 2003) and reduce quinolinic acid production (Chung et 

al. 2009).  However, extracellular MT-I/II concentrations have never been quantified in 

the injured brain so it is not known if extracellular MT-I/II concentrations increase 

sufficiently to act via an extracellular mechanism.  Despite the comprehensive research 

into the role of MT-I/II in astrocytes and neurons in the injured brain, one aspect of MT-

I/II that has not received attention is the role of MT-I/II expressed in organs outside the 

CNS following brain injury.    

1.3.3 Zinc and metallothionein in the peripheral response to brain injury 

Metallothionein is implicated in zinc homeostasis due to its ability to bind zinc and to 

be induced rapidly in response to a wide variety of stimuli.  Dietary zinc deficiency has 

been shown to increase neuronal cell death in a rat model of brain injury (Penkowa et al. 

2001a, Yeiser et al. 2002) suggesting that zinc availability is important for the injury 

response.  In brain injured patients, serum zinc levels were found to be severely 

depressed compared to healthy controls upon admission, with a steady increase towards 

normal levels over the 16-day experimental period (McClain et al. 1986).  In the same 

study, urinary excretion of zinc did not increase until later in the experimental period, 

hence excretion of zinc was not an explanation for the depressed plasma zinc at the time 

of admission.  It should be mentioned that pancreatic secretion and subsequent faecal 

excretion of zinc is another method by which zinc is removed from the body (Walsh et 

al. 1994) but it is not known if the pancreas alters the rate of zinc secretion after brain 

injury.  Plasma zinc or free zinc is not necessarily an informative measure of zinc status 

because much of the zinc in biological systems is bound to proteins or is associated with 

plasma membranes (Lansdown et al. 2007) but altered plasma zinc concentration is 

probably indicative of altered zinc homeostasis.  Increases in serum IL-6 (McClain et al. 

1991) and C-reactive protein (McClain et al. 1986) indicate that the acute phase 
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response is activated during brain injury.  The acute phase response is a systemic 

response to injury or infection and primarily accomplished by the liver that functions to 

augment immune system pathways, induce glucocorticoid secretion, and decrease serum 

zinc and iron concentration (reviewed by Heinrich et al. 1990).  Induction of liver MT-

I/II expression as part of the acute phase response has been hypothesised as the cause of 

decreased serum zinc after brain injury (Ott et al. 1994).  Induction of hepatic MT-I/II 

expression occurs in a range of conditions such as burn injury (Cho et al. 2004, Ding et 

al. 2002, Zhou et al. 2003), restraint stress (Hernández et al. 1999, Jacob et al. 1999), 

increased plasma zinc concentration (Coyle et al 1995, Zhou et al. 2004), fasting and 

septic challenge with LPS (Philcox et al. 1995, De et al. 1990).  An increase in liver 

zinc levels and decreased plasma zinc levels coincide with increased hepatic MT-I/II 

expression in wild type mice but not MT-I/II
−/−

 mice, indicating that MT-I/II in the liver 

is capable of sequestering zinc from circulation (Philcox et al. 1995, Coyle et al. 1995).  

It has been suggested that zinc in the body exists in several compartments, with most 

compartments defined as an organ due to the fact that the rate of zinc influx and efflux 

varies between organs (Wastney and House 2008).  Figure 1.4 demonstrates how a few 

zinc compartments may affect zinc homeostasis before and after brain injury.  The 

induction of liver MT-I/II after brain injury has not been confirmed experimentally but 

could be important given the multitude of zinc dependent processes that could affect the 

resolution of brain injury if zinc homeostasis is disrupted.  The possible consequences 

of increased hepatic MT-I/II expression include altered zinc trafficking, increased 

antioxidant resistance and downstream consequences of both of these phenomena.  
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Figure 1.4  Proposed model of zinc homeostasis under normal conditions (left) and after brain injury (right).  At steady state, there is constant cycling 

of zinc between the labile zinc pool and the organs.  The labile zinc pool is also affected by dietary zinc absorption, pancreatic zinc secretion and 

urinary zinc uptake.  After brain injury it is proposed that urinary zinc excretion increases and that zinc is sequestered in the liver due to increased 

hepatic MT-I/II expression.  It is not known how zinc intake and zinc traffic to, and from, the brain will be affected by brain injury.  It is also possible 

that pancreatic zinc secretion and faecal excretion is altered by brain injury but this has not been studied.  The combination of changes in zinc 

trafficking are likely to be responsible for decreases in the labile zinc pool and plasma zinc levels after brain injury. 
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1.3.4 Influence of zinc on immune system function 

Changes to the quantities of zinc in various compartments will affect zinc availability to 

various systems.  The immune system is an important system that may be affected by 

zinc shifts after brain injury.  For example, severe zinc deficiency in rodents results in 

thymic atrophy and disruption to haematopoiesis (DePasque-Kardieu and Fraker 1979, 

DePasque-Kardieu and Fraker 1980, King and Fraker 2000, King and Fraker 2002, 

King et al. 2005).  Moderate zinc deficiency inhibits the production of Th1 cytokines by 

helper T cells without affecting production of the Th2 cytokines causing a Th2 shift 

(Prasad et al. 2007).  MT-I/II may play a role in preventing this process because, helper 

T cells isolated from MT-I/II
−/−

 mice expressed higher levels of IFN-γ when exposed to 

Th1 inducing conditions than wild type mice but showed no difference in cytokine 

expression when exposed to Th2 conditions (Huh et al. 2007).  In contrast to zinc 

deficiency, zinc supplementation to raise zinc levels in humans enhances leukocyte 

responses to activating stimuli (Aydemir et al. 2006).  Increases in labile cellular zinc in 

monocytes can affect production of cAMP and cGMP in the complex phosphodiesterase 

system that ultimately leads to decreases in production of the inflammatory cytokines 

TNF-α and IL-1β (reviewed by Haase and Rink 2007).  Therefore increases and 

decreases in zinc availability can affect the function of the immune system and it is 

possible that MT-I/II plays a role in modulating some of these effects.  For example, 

zinc can directly induce macrophage-colony stimulating factor production in fibroblasts 

from wild type mice but not in MT-I/II
−/−

 mice (Kanekiyo et al. 2002a).  Furthermore, 

MT-I/II can affect the activity of iNOS, a metalloenzyme that requires zinc because 

macrophages isolated from MT-I/II
−/−

 mice have lower iNOS activity when stimulated 

compared to wild type mice (Itoh et al. 2005).  Therefore, zinc status affects the immune 

system and there is a possibility MT-I/II can influence these interactions. 

1.3.5 Putative immune system regulatory roles for systemic metallothionein 

There is some evidence that the immune system of MT-I/II
−/−

 mice has some inherent 

differences when compared to wild type mice.  NF-κB is an important transcription 

factor for activation of immune responses (Blackwell and Christman 1997).  Studies 

using various MT-I/II
−/−

 cell lines have determined that MT-I/II inhibits NF-κB 

activation when in the cytoplasm, but MT in the nucleus enhances DNA binding of NF-

κB (Butcher et al. 2004, Kanekiyo et al. 2002b, Sakurai et al. 1999).  This paradox 

might be explained by the fact that under certain conditions, metallothionein can 

translocate almost completely to the nucleus (Spahl et al. 2003).  Therefore on a cellular 
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level MT-I/II
−/−

 mice might have an altered immune response.  In vivo, MT-I/II
−/−

 mice 

show increased immunoglobulin production in response to antigen, increased numbers 

of lymphoid cells in the spleen and decreased numbers of circulating helper T cells 

(Crowthers et al. 2000).  T cells isolated from MT-I/II
−/−

 mice have a reduced 

proliferative response when stimulated by concanavalin A compared to T cells in wild 

type mice (Mita et al. 2002).  Further experiments suggest that circulating extracellular 

MT-I/II suppresses the ability of B cells to produce antibodies in response to foreign 

antigen (Canpolat and Lynes 2001, Lynes et al. 1993), yet paradoxically, extracellular 

MT-I/II can stimulate B cell proliferation (Borghesi et al. 1996).  To further confuse 

matters, both MT-I/II
−/−

 and transgenic MT-I over-expressing mice have increased host-

defence against the bacterium Listeria monocytogenes compared to wild type mice 

(Emeny et al. 2009).  The often contradictory findings with regard to the effect of MT-

I/II on the immune system likely arise from multiple mechanisms by which the presence 

or absence of MT-I/II can affect immune function.  These processes are not completely 

understood but could relate to the zinc-binding capacity, antioxidant properties or the 

cellular localisation of MT-I/II.  Therefore, the altered immune response to brain injury 

in MT-I/II
−/−

 mice could be the result of inherent differences in immune system 

functioning when compared to wild type mice.  Intraperitoneal injection of MT-I/II can 

reduce the symptoms of EAE in rats (Penkowa and Hidalgo 2000) and intraperitoneal 

injection of MT-I/II after brain injury results in a response to brain injury in MT-I/II
−/−

 

mice that is similar to that of wild type mice (Penkowa et al. 2006b).  Therefore 

systemically administered exogenous MT-I/II can affect the immune response to brain 

injury but it is still not understood how endogenously expressed MT-I/II affects the 

immune response to brain injury. 

 

1.4 Project Aims 

The mechanism by which MT-I/II imparts protection to the injured CNS is difficult to 

elucidate.  MT-I/II may be able to directly increase the survival rate of neurons under 

high zinc concentration or oxidative stress but in vivo brain injury models suggest that 

there is a strong immune component to the action of MT-I/II in CNS insults.  Given the 

zinc binding properties of MT-I/II, it is surprising that the role of zinc in the phenomena 

observed in CNS injury models with MT-I/II
−/−

 and transgenic MT-I over-expressing 

mice has not been investigated in detail.  Another important factor to consider in the 

study of MT-I/II
−/−

 and transgenic MT-I over-expressing mice is that MT-I/II is 
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normally expressed in most tissues, not just the brain, and the method used to knock-out 

or knock-in MT does not distinguish between cell types.  The present thesis details a 

system wide approach to investigating the function of MT-I/II after brain injury.  The 

project aims were: 

1)  To utilise a cryolesion brain injury model to administer an aseptic cortical 

lesion to MT-I/II
−/−

 and wild type mice.  

2) To assess immune system response to brain injury in MT-I/II
−/−

 mice after brain 

injury to determine whether MT-I/II may be altering the peripheral immune 

response to have beneficial effects upon the injured brain. 

3) To develop an ELISA to quantify MT-I/II expression after brain injury and 

assess MT-I/II-mediated zinc trafficking in the liver.   
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Injury Characterisation  
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2.1 Introduction 

A wide range of methods exist to administer experimental brain injury to rodents 

including penetrating injuries, skull impact injuries, fluid percussion injuries, cranial 

nerve axotomy and cryolesion.  Cryolesion injury, defined here as the injury resulting 

from application of a cold instrument to the external surface of the skull, has several 

advantages as an experimental model of brain injury.  Because it is possible to perform 

the injury through the intact skull, the injury is aseptic, the CNS remains separated from 

the lymphatic system and stress to the animal is reduced.  This minimises the 

confounding factors that can affect the progression of the inflammatory and 

regenerative responses to injury.  One of the criticisms for the experimental use of 

cryolesion to induce brain injury is that it does not mimic any clinically relevant form of 

brain injury.  However, it does produce a well-defined injury site, initiates a robust glial 

response and leads to the infiltration of leukocytes.  In addition, to the injury caused to 

the brain all animals have also effectively received open wounds that may be subjected 

to infection or exposure to endotoxin.  Nonetheless, the experimental procedure remains 

appropriate, even though it may affect the function of the immune system, because 

many head trauma patients have attained additional injuries.  For these reasons 

cryolesion is a useful model for the study of inflammation after brain injury.  Many 

experimental injury models require craniotomy which results in mixing of lymph and 

cerebrospinal fluid and carries the risk of infection which may exacerbate the 

inflammatory response of the CNS.  The cryolesion model avoids craniotomy and is 

useful to study how non-CNS organs can affect CNS injury progression because 

surgical disturbance to other tissues is minimal. 

 

Cortical cryolesion by direct application of dry ice to the surgically exposed skull has 

been used extensively in the study of brain injury in MT-I/II
−/−

 mice (Giralt et al. 2002, 

Penkowa et al. 1999a, Penkowa et al. 2006a, Penkowa et al. 2006c).  Other injury 

models used in the study of MT-I/II
−/−

 mice include  kainic acid injection into the 

hippocampus (Carrasco et al. 2000), systemic injection of the glial specific toxin 6-

aminonicotinamide (Penkowa et al. 1999b) and surgical ablation of the occipital cortex 

(Natale et al.2004, Potter et al. 2007, Potter et al. 2009).  MT-I/II
−/−

 mice given these 

treatments showed greater neural death and an increased inflammatory response to 

injury with one exception; 6-aminonicotinamide caused a decrease in inflammatory 

cells inhabiting the injury site and this was likely due to the fact that 6-

aminonicotinamide is also toxic to rapidly dividing cells such as the bone marrow cells 
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that produce leukocytes (Penkowa et al 1999b).  The inflammatory response to brain 

injury, particularly the infiltration of leukocytes into the injured brain, is likely to play 

an important role in the detrimental effects caused by MT-I/II null mutation. 

Dry ice is often used as the freezing agent for cryolesion brain injury in MT-I/II
−/−

 mice 

however, heat transfer by direct application of dry ice to a warmer surface can be 

disrupted by the Leidenfrost effect (Leidenfrost 1966); an insulating effect caused by 

sublimation of dry ice which creates a cushion of gas between the dry ice and warmer 

surface.  Because this effect could interfere with even heat transfer between the skull 

and the dry ice pellet, a different method of administering cryolesion was utilised. This 

chapter characterises a cryolesion injury caused by heat-transfer from the mouse skull 

and underlying cortex to a liquid nitrogen-cooled steel rod.  Histology and 

immunohistochemistry were used to quantify neuron death and define the injury site in 

wild type and MT-I/II
−/−

 mice based on several characteristic hallmarks of brain injury.  

Once the injury site was defined cell counts for neutrophils, macrophages and T cells 

within the injury site were conducted to objectively compare the cellular infiltrate in 

MT-I/II
−/−

 mice and wild type mice. 

2.2 Methods 

2.2.1 Animals 

All procedures involving animals were approved by the Animal Experimentation Ethics 

Committee of the University of Tasmania and were consistent with the Australian Code 

of Practice for the Care and Use of Animals for Scientific Purposes.  Breeding stock for 

129SI/SvImJ mice and MT-I/II
−/−

 mice of the strain 129S7/SvEvBrd-Mt1
tm1Bri

 

Mt2
tm1Bri

/J (Masters et al. 1994) were obtained from Jackson Laboratories. The 

129S1/SvImJ strain is reported by Jackson Laboratories to be a very close genetic match 

to the 129S7/SvEvBrd-Mt1
tm1Bri

Mt2
tm1Bri

/J strain.  However, the records for the back-

crosses of the original MT-I/II -/- mouse strain are incomplete so it is difficult to 

guarantee the adequacy of the 129S1/SvImJ strain as a control strain although it is 

commonly used in the prevailing literature.  Male mice from both strains were housed 

with food and water ad libitum with 12/12 hour light/dark cycling.  Mice of both strains 

were age-matched within the age-range of 12-24 weeks old.  Mice were divided evenly 

into groups for the time points of 0, 1, 3 and 7 days post-injury (DPI).  Animals within 

these groups were randomised and placed in numbered cages to blind the strain of the 

mouse from the researchers.  Each mouse was housed in an individual cage for at least 3 

days prior to injury surgery.  Experiments were conducted with 7 animals per treatment 
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group (i.e. mice of the same strain and time-point of euthanasia) and total number of 

experimental size of 56 mice. 

2.2.2 Cryolesion brain injury 

The cryolesion injury method was adapted from Ling et al. (2006).  Mice were fitted 

with an anaesthesia mask and 2-3% Isoflurane (Veterinary Companies Australia) 

vaporised in pure oxygen was delivered to the animal at 0.6 L/min.  A 3 mm diameter, 

50 mm long steel rod, insulated at one end, was cooled to equilibrium in liquid nitrogen.  

The scalp of the animal was shaven and swabbed with 70% isopropanol.  A sagittal 

incision through the scalp was used to expose the cranium and the non-insulated end of 

the steel rod was then applied directly to the skull for 6 seconds, 4 mm anterior of 

lambda and 2 mm right of the midline.  The skin was sutured and the animal was 

allowed to recover back in its original cage.  Mortality rate was less than 1% but a few 

animals showed signs of seizure within the first 24 hours after the application of the 

cryolesion injury.  These animals were euthanized and excluded from the study.  

Animals were euthanized for tissue collection at 1, 3 and 7 DPI.  Zero time-point 

animals were housed identically to injured mice for at least 3 days but did not undergo 

surgery before euthanasia. 

2.2.3 Paraffin embedding 

Mice were euthanised with an overdose of Nembutal (9 mg per mouse) delivered via 

intraperitoneal injection.  Mice were transcardially perfused with 0.01 M phosphate 

buffered saline (PBS, Medicago), brains were dissected out of the skull and immersion 

post-fixed in 4% paraformaldehyde for 24 hours.  Brains were cut square in the coronal 

plane within 1 mm anterior and posterior to the injury site.  Uninjured control brains 

were cut similarly to obtain the same region where the injury site was located in the 

injured animals.  Blocks were placed in tissue cassettes for dehydration for 30 minutes 

in 70% ethanol solution followed by 30 minutes in 90% ethanol, three 30 minute 

submersions in 100% ethanol and three 30 minute submersions in 100% xylene.  Brains 

were paraffin infiltrated by immersion in paraffin heated to 65-70°C for 30 minutes then 

were transferred to two successive 65-70°C paraffin solutions under 15 psi vacuum then 

25 psi vacuum.  Brains were then removed from their cassettes and embedded in moulds 

for microtome sectioning.  Coronal sections were cut at a thickness of 5 µm on a 

microtome (Microm) and mounted onto APTS coated slides in a 42°C water bath.  

Sections were cured to slides by incubation at 50°C for 1-2 hours in an oven.  Section-

bearing slides were dewaxed by 3 washes in 100% xylene then rehydrated in 2 washes 
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in 100% ethanol, 1 wash in 90% ethanol, 1 wash in 70% ethanol, each for one minute, 

and final rehydration in distilled water. 

2.2.4 Fluoro-jade C staining for neuron death 

Fluoro-jade C (Chemicon) is a neuron-specific marker of dead and degenerating 

neurons.  Staining was carried out according to the protocol of Schmued et al. (2005) 

whom demonstrated that fluoro-jade C labels both apoptotic and necrotic neuron death 

without discrimination.  Rehydrated, slide-mounted sections were immersed in 0.06% 

potassium permanganate solution for 10 minutes.  The slides were rinsed for 2 minutes 

in distilled water then immersed in 0.0001% fluoro-jade C, 0.01% acetic acid solution 

for 10 minutes.  The slides were rinsed twice in distilled water for 5 minutes then were 

air-dried before they were coverslipped with Di-N-Butylphthalate in xylene mounting 

medium (Merck). 

2.2.5 Immunohistochemistry 

Before staining, antigen retrieval was undertaken in 0.01M citrate buffer, pH 6, in a 

pressure cooker for 10 minutes.  Primary antibodies used were 1:1000 rabbit polyclonal 

anti-GFAP (Dako) for astrocytes, 1:100 rat monoclonal NIMP-R14 to neutrophil 

(Abcam) for neutrophils, 1:500 goat polyclonal anti-Iba1 (Abcam) for microglial and 

microglial/monocyte derived macrophages and 1:100 rabbit polyclonal anti-CD3 

(Abcam) was used for T cells.  All antibodies were diluted with 0.3% Triton-X 100 

(Sigma) solution in PBS.  Blocking with serum-free protein block (Dako) was required 

for CD3 staining and was applied for 30 minutes before application of primary 

antibodies.  The diluted NIMP-R14 antibody solution contained 10% normal goat serum 

(Vector Labs) as a blocking reagent.  Biotinylated goat anti-rat IgG (Invitrogen), 

biotinylated goat anti-rabbit IgG (Invitrogen) or donkey anti-goat IgG (Santa Cruz) 

secondary antibodies, were applied to sections according to primary antibody used, for 

1 hour at room temperature.  Avidin-biotin complex (Vector Labs) was used as the 

detection reagent and was applied to sections for 15 minutes followed by 2 rinses in 

PBS.  Nickel enhanced 3’3-diaminobenzidine (DAB, Vector Labs) was used as the 

chromogen and was applied at the manufacturer’s specified concentration for 8 minutes.  

Slides were then rinsed in distilled water for at least 5 minutes.  Nuclear Fast Red 

(Sigma) was used as a counterstain for NIMP-R14 and Iba1 stained sections and was 

applied for 2 minutes or 30 seconds, respectively.  The sections were rinsed thoroughly 

in tap water then dehydrated in graded alcohol solutions (70% ethanol, 90% ethanol, 
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100% ethanol, 100% xylene, 100% xylene, 1 minute each) and were coverslipped with 

Di-N-Butylphthalate in xylene mounting medium. 

2.2.6 Cell counting strategy 

Low power, 10x objective images were taken of the injury site for sections stained for 

fluoro-jade C, NIMP-R14, Iba1 and CD3.  Fluoro-jade C counts were conducted for all 

positively labelled cells in the injury site and at lower depths in the un-injured CNS 

parenchyma.  To standardise cell counts, fluoro-jade C counts were divided by the 

linear width of the injury in the section plane at the upper cortical surface in millimeters.  

NIMP-R14, Iba1 and CD3 positive cells were only counted within the injury site, the 

border of which was determined by methods described in the results section of this 

chapter.  Cell counts within the injury site were standardised to the area of the injury 

site in that section in mm
2
.  Cell counts were conducted blinded to the strain of the 

mouse. 

2.2.7 Statistical analysis 

Statistical analysis was conducted using SPSS software v16.0 (SPSS Inc.).  

Homogeneity of variances between groups within each data set was determined with 

Levene’s test.  For data sets with heterogeneous variances between groups, the Box-Cox 

test was used to determine the appropriate transformation.  All comparisons between 

wild type and MT-I/II
−/−

 mice were conducted with 2-way ANOVA on the factors of 

time after injury and strain of mouse.  Statistically significant differences in the factor of 

time were differentiated with Tukey’s B post-hoc test.  Statistically significant 

differences in the interaction between time and strain required a different approach to 

determine statistically significant groups.  Single factor ANOVA was carried out on the 

data where data points from the same strain at each time point were considered to be a 

single group.  Tukey’s B post-hoc test on the 1-way ANOVA was used to identify the 

differences shown to exist in the 2-way ANOVA.   

2.3 Results 

2.3.1 Histological delineation of the cryolesion injury site 

Investigation of the injury site at 1 DPI revealed few nuclear fast red-stained nuclei in 

the more dorsal levels of the injury site indicating few cells remain in the injury site 

(figure 2.1).  As time progressed, the number of nuclear fast red-stained nuclei in the 

injury site increased indicating cell migration was occurring.  The nuclei that could be 

observed near the injury border were pyknotic indicating the presence of cells 
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undergoing apoptosis (see figure 2.4A).  For analysis of the injury site, a reliable 

method was required to designate the border separating the injured tissue and surviving 

tissue.  Up-regulation of glial fibrillary acidic protein (GFAP) is a well-defined 

indicator of astrogliosis and is a useful indicator of brain injury (reviewed by Eng et al. 

2000).  Most of the astrocytes in the uninjured cortex were not immunoreactive for 

GFAP however, GFAP
+
 astrocytes can be observed in the cingulum and deep cortical 

white matter which constitute the ventral layers of the cortex (figure 2.2B).  This 

indicates that there is regional variation in GFAP expression in quiescent astrocytes.  

GFAP immunoreactivity after injury was not apparent in the cortex until 3 DPI (figure 

2.1).  Isomorphic reactive astrocytes have increased expression of GFAP but no change 

in cellular morphology and all reactive astrocytes observed at 3 DPI were of this 

phenotype.  Anisomorphic reactive astrocytes obtain a polarity in their GFAP 

expression with fibrils aligned perpendicular to the injury border.  Anisomorphic 

reactive astrocytes were evident at 7 DPI at the border to the injury site and isomorphic 

reactive astrocytes were still present in the parenchyma further from the injury (figure 

2.1 E,F).  No obvious differences in GFAP expression were found between wild type 

and MT-I/II
−/−

 mice at any time point.  The division between the injured tissue and 

anisomorphic reactive astrocytes was seen as a physiologically relevant demarcation 

between the injury and surviving tissue.  However the lack of GFAP expression at 1 

DPI and the lack of anisomorphic astroglia segregating injured and surviving tissue at 3 

DPI required a method to demarcate the injury border which did not rely on patterns of 

GFAP staining.  At 7 DPI the nuclear fast red-stained injury site contains visibly 

disrupted tissue integrity which does not extend into the domain of the anisomorphic 

reactive astrocytes at the border of the injury site.  This disrupted tissue integrity is also 

found at 1 and 3 DPI but anisomorphic reactive astrocytes are not present at the injury 

border at these time-points to indicate whether tissue disruption is a physiologically 

accurate demarcation of the injury site.  However, at 1 and 3 DPI pyknotic nuclei, 

indicative of apoptotic cells, are found in the lesion site but rarely outside the region of 

disrupted tissue.  Therefore, in this study the border of the injury site was defined 

according to the integrity of the extracellular matrix, identified by nuclear fast red 

background staining.  This definition encompasses the region of interest which is the 

lesion site and penumbra which will henceforth be collectively referred to as the “injury 

site”. 
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Figure 2.1.  Glial fibrillary acidic protein (GFAP) immunoreactivity in the injury sites 

of wild type (A,C,E) and MT-I/II
−/−

 mice (B,D,F).  GFAP staining is absent from the 

injured cortex at 1 DPI (A and B).  GFAP immunoreactivity is increased at 3 DPI (C 

and D) with isomorphic astrocytes visible in the uninjured parenchyma.  At 7 DPI (E 

and F) GFAP immunoreactivity is increased further and anisomorphic astrocytes are 

now present at the lesion border, extending processes towards the injured tissue.  

Arrowheads indicate the injury border defined by a loss of tissue integrity which divides 

area containing pyknotic nuclei and the area occupied by surviving astrocytes (Scale bar 

= 400 µm). 
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Figure 2.2  GFAP expression the ipsilateral (A) and contralateral (B) hemispheres of the cryolesioned cortex from a wild type mouse at 3 DPI.  DAB 

immunohistochemical staining for GFAP in the contralateral hemisphere is confined to the deep cortical white matter (arrows) and cingulum(asterisk); 

astrocytes in the cortex are not immunolabelled for GFAP.  In the ipsilateral hemisphere GFAP expression in the deep cortical white matter and 

cingulum is increased and GFAP expression in the upper layers of the cortex beneath the injury border (arrowheads) becomes apparent (Scale bar = 

400 µm). 
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2.3.2 Comparison of cortical cryolesion injury in MT-I/II
−/−

 and wild type mice 

The cross-sectional area of the injury site in the section with the widest injury site was 

used as a comparative measure of injury size.  The area of the injury did not change 

significantly from 1-3 DPI but declined significantly from 3-7 DPI in both wild type 

mice and MT-I/II
−/−

 mice (Figure 2.3 A).  However, no significant differences were 

observed between the strains at any time-point (P(strain) = 0.152, P(time) < 0.001, 

P(interaction) = 0.889).  Quantification of neuron death with fluoro-jade C labelling 

revealed the highest degree of cell death at 1 DPI.  In wild type mice the number of 

fluoro-jade C labelled cells decreased from 1-3 DPI and again at 3-7 DPI.  MT-I/II
−/−

 

mice had a similar decrease in Fluoro-jade C labelled cells from 1-3 DPI compared to 

wild type mice.  In contrast to wild-type mice, the amount of cell death did not differ 

between 3 and 7 DPI in the injury site of MT-I/II
−/−

 mice.  This was indicated by 

significantly greater numbers of fluoro-jade C labelled cells in MT-I/II
−/−

 mice than wild 

type mice at 7 DPI (by 2-way ANOVA; P(interaction) = 0.022.  The significant 

difference at 7 DPI was revealed by 1-way ANOVA with Tukey’s B post-hoc test). 

2.2.3 Qualitative assessment of inflammatory cell infiltration into mouse cryolesion 

Neutrophils, identified with NIMP-R14 antibody, were predominantly found to occupy 

the necrotic and degenerating regions of the injury site (figure 2.4).  Neutrophil 

infiltration occurred predominantly at 1 DPI and was found to be diminished at 3 DPI 

and almost absent from injured brains at 7 DPI.  Microglia and monocyte derived 

macrophages were identified with Iba1 immunoreactivity (figure 2.5).  Activated, 

ramified microglia were present at the injury border and in surviving CNS parenchyma 

at 1 DPI.  At 3 DPI ramified microglia were still present at the injury border and in 

surviving parenchyma.  Additionally, amoeboid macrophages of microglial or monocyte 

origin were beginning to enter lower levels of injury site at 3DPI.  This pattern was 

observed at 7 DPI except the number of amoeboid macrophages in the injury site had 

increased and macrophages occupied both the injury border and the upper levels of the 

injury site.  T cells were identified by CD3 immunoreactivity and were found in similar 

numbers at 1 and 3 DPI and showed maximal infiltration at 7 DPI (figure 2.6).  T cells 

also occupied the same regions as Iba1
+
 cells at each time point.  All images shown are 

from the brains of wild type mice but qualitative assessment revealed no obvious 

differences in wild type and MT-I/II
−/−

 brains. 
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Figure 2.3  Quantification of injury size and neuron death after cryolesion injury in 

wild type (grey bars) and MT-I/II
−/−

 mice (white bars).  (A) Injury size was quantified 

by measurement of the area of the injury in sections taken from the widest point of the 

injury.  Time-points sharing letters indicates a lack of statistically significant difference 

as determined by 2-way ANOVA with Tukey’s B post-hoc test on the factor of time 

post-injury (n=5-7, error bars=SEM).  (B) Neuron death was identified by fluoro-jade C 

labelling.  Fluorojade-C
+
 cells were counted in the injury site and the surrounding 

tissue.  Counts were standardised per linear mm (width) of the injury site.  Lower case 

letters indicate significance determined by 1-way ANOVA with SNK post-hoc test.  

Time-points sharing letters indicates lack of statistically significant difference.  n=5-7, 

error bars=SEM.  Representative images of fluoro-jade C staining from wild type 

animals at 1 (C),3 (D) and 7 (E) DPI demonstrate the distribution of positively labelled 

neurons in the injury site and surrounding parenchyma.  Fluoro-jade C background 

staining increases at later time points but the number of positively labelled cell bodies 

decreases (Scale bars = 200 µm). 
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Figure 2.4  Neutrophil staining in the injury site of wild type mice with NIMP-R14 

antibody with nuclear fast red counterstain.  Arrowheads in the low power images 

designate the border of the injury site (A,C,E) and black arrows in the high power 

images indicate neutrophils (B,D,F).  Higher power images were taken at the border of 

the injury site.  The brain injury at 1 DPI (panels A and B) has the highest quantity of 

neutrophil infiltration compared to 3 DPI (panels C and D) and 7 DPI (panels E and F).  

At 1 DPI few non-neutrophil cells are present in the injury site evidenced by lack of 

DAB-negative nuclear fast red stained nuclei.  Pyknotic nuclei in the fringe of the injury 

site are indicated by white arrows (panels A and C).  The dense accumulations of red to 

pink cells visible within the injury site at 3 DPI are red blood cells (Scale bars = 200 µm 

(A,C,E), 50 µm (B,D,F)).   
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Figure 2.5  Activated microglia and macrophages labelled with Iba1 antibody within 

the cryolesion injury site of wild type mice.  Arrowheads in the low power images 

designate the border of the injury site (A,C,E) and higher power images were taken at 

the border of the injury site (B,D,F).  At 1 DPI (panels A and B) minimal microglial 

activation is present in the uninjured parenchyma with little Iba1 immunoreactivity 

found within the injury site.  At 3DPI (panels C and D) microglial activation in the 

uninjured parenchyma is markedly increased and amoeboid macrophage-like Iba1 

positive cells (arrows) are beginning to infiltrate the injured tissue at the injury border.  

At 7 DPI (panels E and F) the cellular infiltrate into the injury site has increased greatly 

and many Iba1 positive cells are found within (Scale bars = 200 µm (A,C,E), 50 µm 

(B,D,F)).   
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Figure 2.6  T cells labelled with anti-CD3 antibody within the cryolesion injury site of 

wild type mice.  Arrowheads in the low power images designate the border of the injury 

site (A,C,E) and higher power images were taken at the border of the injury site 

(B,D,F).  T cells are present within the injury site from 1 DPI (panels A and B), steadily 

increase in number at 3 DPI (panels C and D) and continue to increase up to 7 DPI 

(panels E and F).  At all time points T cells are found predominantly within the injury 

site compared to CD3 positive cells in the uninjured tissue (Scale bars 200 µm (A,C,E), 

50 µm (B,D,F)).   
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2.3.4 Quantitative comparison of leukocyte infiltration into mouse cryolesion 

Leukocyte infiltration into the cryolesion at 1, 3 and 7 DPI was quantified to determine 

if there was any relationship between leukocyte numbers and the sustained neuron death 

at 7 DPI in MT-I/II
−/−

 mice (figure 2.7).  No significant differences were found between 

neutrophil numbers in the injury site of wild-type and MT-I/II
−/−

 mice at 1, 3 or 7 DPI 

(P(strain) = 0.835, P(time) < 0.001, P(interaction) = 0.833).  Iba1
+
 cells within the 

injury site were quantified and no significant differences in microglia/macrophage 

numbers were found between MT-I/II
−/−

 and wild type mice were observed at any time 

point (P(strain) = 0.253, P(time) < 0.001, P(interaction) = 0.616).  There was no 

difference between T cell numbers in the injury site of wild type and MT-I/II
−/−

 mice at 

1 and 3 DPI.  However the density of T cells was found to be significantly higher in 

MT-/I/II 
−/−

 mice than in wild type mice at 7 DPI by ~55% (by 2-way ANOVA 

P(interaction) = 0.002 and the significant difference at 7 DPI was revealed by 1-way 

ANOVA with Tukey’s B post-hoc test).  Of the time points examined, 7 DPI was 

observed to have the highest level of immune cells occupying the injury site.  

Neutrophil numbers were maximal at 1 DPI and were comparable to microglia and T 

cell numbers at this time point.  The maximal density of neutrophils which occurred at 1 

DPI was ~6-fold lower than macrophage and T cell numbers at their maximum density 

which occurred at 7 DPI.  Therefore neutrophils were never the most prevalent 

leukocyte in the cryolesioned brain in terms of cell number.  Macrophages and T cells 

dominated the injury site at 3 and 7 DPI. 
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Figure 2.7  Leukocyte counts in sections of the injury site of MT-I/II
−/−

 mice (white 

bars) and wild type mice (grey bars) standardised to injury area.  Neutrophil numbers 

(A) were determined by NIMP-14 immunoreactivity.  Microglial and monocyte derived 

macrophages numbers (B) were determined by Iba1 immunoreactivity.  T cell numbers 

(C) were determined by CD3 immunoreactivity.  Lower case letters indicate 

significance determined by 1-way ANOVA with Tukey’s B post-hoc test.  Time-points 

sharing letters indicates a lack of statistically significant difference (n=5-7, error 

bars=SEM). 
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2.4 Discussion 

The major experimental aim of this chapter was to develop a method to deliver an 

aseptic closed-head injury to the CNS.  The adoption of a liquid nitrogen-cooled steel 

rod to administer cortical cryolesion to MT-I/II
−/−

 and wild type mice resulted in a 

reproducible and well-defined injury site.  Using this method, no differences in lesion 

size were observed between wild type and MT-I/II
−/−

 mice.  Significant increases in 

neuron death and T cell infiltration were apparent in MT-I/II
−/−

 mice, but only at 7 DPI.  

The fluoro-jade C data show that for wild type mice, the injury has transitioned from a 

degenerative phase observed at 1-3 DPI, to a regenerative phase by 7 DPI.  The 

macrophage and T cell density in the injury site was highest at 7 DPI suggesting that 

these cells may influence the recovery from brain injury after the degenerative period 

has ceased in wild type mice.  It would also appear that the injured brain of MT-I/II
−/−

 

mice is not transitioning to a regenerative state in the same manner as wild type mice 

based on the fluoro-jade C and immune cell temporal distribution. 

2.4.1 Neuron death and T cell infiltration is altered in MT-I/II
−/−

 mouse brain injury 

Prolonged neuron death and increased T cell infiltration in the injury site were major 

differences observed between MT-I/II
−/−

 mice and wild type mice.  It is possible that the 

two phenomena are related because neurons can directly trigger microglial activation in 

vitro (Sudo et al. 1998) which can lead to the inflammatory processes that promote the 

infiltration of T cells.  Additionally, T cells have been shown to directly cause neuron 

death in vitro (Giuliani et al. 2003).  From the present data it is not possible to 

determine whether neuron death and T cell infiltration are related in MT-I/II
−/−

 mice but 

the fact that they both differed from wild type mouse levels at 7 DPI, but no other time 

points, presents the possibility that the two events are linked.  A latent period before 

increased neuron death in MT-I/II
−/−

 mice compared to wild type mice has been 

reported previously (Natale et al. 2004).  However, increased neuron death in MT-I/II
−/−

 

mice has also been observed within 24 hours of brain injury (Penkowa et al. 1999a).  

One of the criticisms of the study by Penkowa et al. (1999a) is that neuron death was 

assessed by counting neuron-specific enolase labelled neurons immediately adjacent to 

the injury border.  This approach assumes that neuron numbers in the region of interest 

were identical in wild type mice and MT-I/II
−/−

 mice before the injury occurred.  

Because, in their study, the injury site was larger in MT-I/II
−/−

 mice, the border of the 

injury site would be at different depths in wild type mice and MT-I/II
−/−

 mice and 

therefore the counts for surviving neurons may have been conducted in different layers 
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of the cortex.  It is well known that there are large differences in the density and 

distribution of neurons in different layers of the cortex (DeFelipe et al. 2002).  The 

present study avoids these problems because the injury size did not differ between the 

strains at any time point and neuron death was measured directly.   

 

In light of this, the important question becomes: why do MT-I/II
−/−

 mice have an 

increased injury size in dry ice induced cortical lesions compared to the liquid nitrogen 

induced lesion used in the present study?  The cryolesion model presented here consists 

of a 6 second freeze with a steel rod cooled to approximately −196°C which is sufficient 

to cause damage to neural tissue but the temperature of the cortex is only lowered 

momentarily, whereas cryolesion by dry ice (−78°C) requires application to the skull for 

90 seconds (Penkowa and Moos 1995).  The dry ice cryolesion induced a high degree of 

haemorrhage which was determined by both a visible accumulation of haemoglobin in 

the injury site and immunohistochemical staining for extravasation of albumin within 30 

minutes of injury (Penkowa and Moos 1995).  Albumin extravasation was not 

investigated in the present study, but substantial numbers of red blood cells in the injury 

site were not found until 3 DPI (most evident in figure 2.4).  The dry ice cryolesion also 

produced a lesion with an irregular shape (Penkowa and Moos 1995) which may affect 

the ability to compare injury size in histological sections.  In the present study, the 

affected surface of the cryolesioned brain was consistently circular in shape (personal 

observation) and had some bruising but the haemorrhaging was not to the extent 

observed by Penkowa and Moos (1995).  Therefore the two methods of administering 

cryolesion injury differ considerably and therefore the sequelae of the injury is also 

likely to differ which may explain differences in the activation of the macrophage 

response to the injury. 

 

The level of T cell infiltration into MT-I/II
−/−

 mouse cryolesions has not been compared 

to wild type mice before.  However it has been shown that transgenic over-expression of 

MT-I in mice leads to decreased T cell infiltration into the CNS after cryolesion or 

kainic acid injection to the hippocampus (Giralt et al. 2002, Penkowa et al. 2005).  

Systemic injection of MT-II protein after brain injury causes decreases in T cell 

infiltration in wild type and MT-I/II
−/−

 mice (Giralt et al. 2002, Penkowa et al. 2006b) 

which might suggest that extracellular MT-I/II can affect the T cell response to brain 

injury.  Similarly, the T cell infiltrate into the CNS of mice with EAE is greater in MT-

I/II
−/−

 mice than in wild type mice (Penkowa et al. 2003).  It is not known if MT-I/II is 
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required to enter the brain to affect the infiltration of T cells into the injury site.  

However, it has been shown that injection of MT into mice and rats alters the numbers 

of macrophages and T cells in the spleen and bone marrow (Giralt et al. 2002, Penkowa 

and Hidalgo 2000).  Increased plasma concentration of MT has been observed in 

patients with traumatic brain injury (Kukačka et al. 2006), which gives credence to the 

hypothesis that extracellular MT could influence the progression of brain injury 

indirectly by modulating the immune system. 

2.4.2 Injury-site neutrophil and macrophage numbers are not altered in MT-I/II
−/−

 mice 

Comparison of neutrophil infiltration into the injured CNS of wild type and MT-I/II
−/−

 

mice has not been previously reported.  Because neutrophils showed the lowest 

infiltration cumulatively over the 7 day experimental period and were mostly absent 

from injury sites at 7 DPI, they probably do not contribute to the altered levels of cell 

death and T cell infiltration in MT-I/II
−/−

 mice at 7 DPI.  The finding that numbers of 

macrophages in the injury site did not differ between the MT-I/II
−/−

 mice and wild type 

mice is in contrast to previous studies that show higher numbers in MT-I/II
−/−

 mice after 

injury (Penkowa et al 1999a, Potter et al. 2007, Potter et al. 2009).  However, in 

experimental brain injury induced by systemic 6-aminonicotinamide injection and 

hippocampal injection of kainic acid, numbers of cells expressing macrophage markers 

in the CNS of MT-I/II
−/−

 mice were lower than wild type mice (Penkowa et al. 1999b, 

Carrasco et al. 2000).  Therefore different injury models can vary greatly in the response 

they elicit from microglia and macrophages.  

 

An important question regarding the technique of cell counting for macrophages using 

immunohistochemistry is whether the technique adequately identifies all microglia and 

monocytes present, or labels only a subset of the most activated cells in the injury site.  

Because microglia express macrophage markers at lower levels when quiescent (Denker 

et al. 2007, Sedgwick et al. 1991, Stirling and Yong 2008), the observations of 

differences in macrophages in previous studies may represent different activation states 

of microglia in MT-I/II
−/−

 mice rather than differences in microglial cell density.  In the 

present study sufficient numbers of cells could not be isolated from the cryolesion 

injury site to assess microglia/macrophage activation by flow cytometry (data not 

shown).  However all macrophage counts were confined to the injury site in the present 

study.  Given the fact that the injury site is almost devoid of cells at 1 DPI, any cells 

expressing macrophage markers must either derive from infiltrating monocytes or 

activated microglia that have migrated to the injury site.  Because macrophage 
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migration requires activation, the cells found in the injury site have all undergone 

activation and are likely to be expressing macrophage markers strongly. 

2.4.3 Conclusion 

The cryolesion injury model developed for assessing the response to injury induces a 

reproducible lesion with a substantial infiltration of immune cells.  The increase in T 

cell infiltration into the lesion site at 7 DPI in MT-I/II
−/−

 mice is consistent with several 

other studies and is of interest due to the potential for MT-I/II to affect brain injury by 

modulating T cell responses.  It warrants mention that in the studies reviewed by 

Donnelly and Popovich (2008), the function of the immune system may persist for some 

time after the 7 DPI time point used in these experiments and it remains possible that 

additional differences in the immune function of MT-I/II -/- mice may become apparent 

as the brain injury progresses further.  Subsequent chapters of this thesis seek to 

elucidate some of the mechanisms by which MT-I/II
−/−

 mice have an altered immune 

response to brain injury.  
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Chapter 3 – MT-I/II
−/−

 

Mouse Immune Response to 

Brain Injury  
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3.1 Introduction 

In the previous chapter, the level of T cell infiltration into the injured brain of MT-I/II
−/−

 

mice was found to be significantly greater than in wild type mice, seven days after 

injury.  There are three aspects of the immune response to brain injury that may provide 

plausible explanations for this difference between MT
−/−

 and wild type mice; (1) altered 

chemotactic signals that initiate extravasation of leukocytes into the cryolesion injury 

site, (2) differences in the numbers of circulating leukocytes before and after injury, or 

(3) the activation phenotype of leukocytes entering the injured CNS.  A multi-tier 

approach was designed to investigate these processes, both in the injured brain, and in 

organs outside the CNS.   

3.1.1 The role of chemokines in the inflammatory response to brain injury 

Chemokines are essential for leukocyte diapedesis, the process by which leukocytes 

leave blood vessels and enter tissues (reviewed by Ley et al. 2007).  Chemokines in the 

site of brain injury are generally up-regulated and orchestrate immune cell migration 

into the injury site.  There are two basic chemokine sub-sets, the CXC (α-chemokines) 

which act upon CXC chemokine receptors and CC (β-chemokines) which act on CC 

chemokine receptors (for review see Bajetto et al. 2001).  Chemokine gradients within 

inflamed tissues provide a chemotactic signal that direct leukocytes and tissue resident 

immune cells to migrate to the affected area.  Certain chemokines, known as arrest 

chemokines, activate leukocytes in the blood which induces cell-membrane molecule 

changes that cause firm adhesion of activated leukocytes to the endothelial wall 

allowing extravasation into tissues (Anacuta et al. 2003, Baltus et al. 2005, Gerszten et 

al. 1999, Ley 2003, Smith et al. 2005).  Plasma chemokine levels are known to increase 

in response to brain injury and are thought to influence leukocyte infiltration into the 

CNS parenchyma (Rancan et al. 2004, Terao et al. 2008, Lumpkins et al. 2008).  The 

liver has been proposed to be a major source of chemokines found in plasma after brain 

injury because hepatic expression of chemokines increases after inflammation in the 

brain (Campbell et al. 2002, Campbell et al. 2003, Campbell et al. 2005, Campbell et al. 

2007a, Campbell et al. 2007b, Chapman et al. 2009).  Furthermore, interfering with 

chemokine signalling via specific depletion of circulating monocytes and Kupffer cells, 

or by inhibiting hepatic NF-κB activation, attenuates the rate of leukocyte infiltration 

into the injured CNS (Campbell et al. 2008a, Campbell et al. 2008b).  For these reasons, 

the expression of chemokines in both brain and liver of MT-I/II
−/−

 mice were assessed in 

this chapter. 
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3.1.2 Circulating leukocytes in MT-I/II
−/−

 and wild type mice 

A common assumption regarding the use of null mutant mice in brain injury 

experiments is that the control strain and null mutant have the same baseline levels of 

relevant parameters before brain injury.  Under resting conditions, blood T cell counts 

have been found to be lower in MT-I/II
−/−

 mice compared to wild type mice (Crowthers 

et al. 2000) but a lack of variation between the two strains has been observed in other 

experiments (Huh et al. 2007).  In both studies the MT-I/II
−/−

 mice were bred on the 

129SI/SvImJ background.  It is possible that differences in the leukocyte populations in 

MT-I/II
−/−

 mice only arise under certain conditions, as do many of the differences 

observed between wild type and MT-I/II
−/−

 mice.  In this chapter the ratios and absolute 

numbers of circulating leukocytes in MT-I/II
−/−

 mice and wild type mice were compared 

before and after injury. 

3.1.3 Th1/Th2 responses after brain injury 

The process by which leukocytes are activated after injury is not well understood but 

cytokines are thought to play a primary role.  It is also known that T cells are activated 

in peripheral lymphoid organs before they enter the injured brain (Ling et al. 2006).  

There are examples of differences in response to brain injury or cerebral ischemia where 

Th1 and Th2 biased strains of mice exhibit altered pathology after the insult (Kipnis et 

al. 2003, Lambertsen et al. 2002).  Th1 cytokines induce classically activated 

macrophages (caMΦs) and Th2 cytokines induce alternatively activated macrophages 

(aaMΦs) (reviewed by Gordon 2003).  Recent evidence has shown that aaMΦs are less 

neurotoxic than caMΦs (Kigerl et al. 2009).  Evidence also suggests that MT-I/II
−/−

 

mouse helper T cells have a Th1 bias (Huh et al. 2007) and that monocytes from MT-

I/II
−/−

 mice have phenotype more characteristic of classically activated macrophages 

than wild type mice (Emeny et al. 2009).  In this chapter, attempts to assess the Th1/Th2 

ratio and quantify the aaMΦ response in wild type and MT-I/II
−/−

 mice after cryolesion 

to the cerebral cortex were undertaken. 

 

Thus, cytokine expression, chemokine expression, blood leukocyte concentrations and 

alternative activation of macrophages were all investigated in this chapter.  The 

underlying aim was to provide an explanation for the prolonged neuron death and 

increased T cell infiltration at 7 DPI in MT-I/II
−/−

 mice detailed in the previous chapter.  
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3.2 Methods 

3.2.1 Animals and cryolesion brain injury 

Animal housing and cryolesion injury were conducted as per the method outlined in 

chapter 2.2.  Experiments were conducted with either 7 animals per treatment group (i.e. 

mice of the same strain and time-point of euthanasia) and total number of experimental 

size of 56 mice or 6 animals per group and 48 animals per treatment group. 

 

3.2.2 Isolating leukocytes and peripheral blood mononuclear cells (PBMCs) from whole 

blood 

Blood was obtained from mice by cardiac puncture with syringes containing EDTA (3 

mg per ml of blood).  Blood was diluted 1:4 in PBS supplemented with 2% foetal calf 

serum (FCS, Gibco) and overlaid onto tubes containing 2 ml of histopaque at room 

temperature.  Histopaque 1119 (Sigma) was used to obtain leukocytes and Histopaque 

1083 (Sigma) was used to obtain peripheral blood mononuclear cells (PBMCs).  

Centrifugation of the tubes at 700g for 30 minutes was used to isolate the required cell 

population on the density gradient.  The cells from the density interface were removed 

by aspiration with a Pasteur pipette and were transferred to separate tubes.  The cells 

were pelleted by centrifugation at 10 000g for 1 minute.  The supernatant was removed 

and 1 ml of PBS-2%FCS was used to resuspend the cells and rinse away any remaining 

Histopaque.  The cells were pelleted by centrifugation and the supernatant was removed 

so the cells could be used for RNA isolation or flow cytometry staining. 

3.2.3 Quantitative reverse-transcriptase PCR (RT-PCR) 

Mice were transcardially perfused with PBS.  The brain injury site was dissected out of 

the brain using a 3 mm biopsy punch and frozen in liquid nitrogen. Liver samples from 

the left lobe were dissected out of mice and frozen in liquid nitrogen.  To lyse PBMCs, 

250 µl of TRI reagent (Sigma) was added to cell pellets.  Liver samples were first 

ground to a fine powder under liquid nitrogen and approximately 50 mg of tissue was 

homogenised with an Ultra-Turrax mechanical homogeniser (IKA) in 250 µl of TRI 

reagent.  Brain biopsies were homogenised whole by Ultra-Turrax in 250 µl of TRI 

reagent.  RNA was extracted from TRI reagent according to manufacturer specification.  

RNA concentration was determined by optical density and 1 µg of RNA from each 

sample was used to synthesise cDNA with the Superscript III reverse transcriptase 

system (Invitrogen).  RNA samples were treated with 1 unit of DNase I (Sigma) at 37°C 

in first strand buffer (Invitrogen) followed by heat-inactivation at 75°C for 10 minutes 
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and annealing of mRNA to oligo-DT primer (6.9 µM) at 70°C for 5 minutes.  mRNA 

was reverse-transcribed to cDNA in a solution containing first strand buffer 

(Invitrogen), 5 units/µl Superscript III reverse transcriptase (Invitrogen), 0.01 M 

dithiothreitol (Invitrogen) and 1.125 mM dNTP (Promega) in a total volume of 20 µl.  

The reaction was incubated at 42°C for 50 minutes followed by enzyme heat-

inactivation at 70°C for 15 minutes.  Real-time PCR was conducted to quantify 

concentration of various cDNA transcripts using Quantitect SYBR green PCR master 

mix (Qiagen) on the Corbett Rotorgene-6000 as described by (Brettingham-Moore et al. 

2005).  The initial melt phase was set to 95°C for 900 seconds followed by cycling 

which consisted of 95°C for 15 seconds and 60°C for 60 seconds then acquiring data to 

cycling A, Channel 1.  PCR cycling was conducted for 45 cycles and melt curves were 

generated from 60°C to 95°C holding for 5 seconds at every 1°C increment and 

acquiring data to cycling A, Channel 1.  Primers (sets are listed in table 3.1) were used 

at a final concentration of 1 µM.  Standard curves were created by serial dilution of 

known quantities of each PCR product.  From the standard curve the cDNA copy 

number could be determined from the number of PCR cycles required to reach a given 

fluorescence threshold (CT).  GAPDH was found to be highly variable between animals 

in liver so β-actin was used as the house keeping gene for liver samples (data not 

shown).  GAPDH was used as the house keeping gene in brain injury samples because 

β-actin is a structural protein that is likely to undergo changes during brain injury due to 

the high degree of tissue remodelling occurring in the injury site.  For each transcript of 

interest, the mRNA copy number was divided by the copy number of the house keeping 

gene to standardise the data set. 
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Table 3.1  Oligonucleotide primer sets used for quantitative RT-PCR of brain and liver 

samples after cryolesion brain injury. 

Primer   Sequence (5' - 3') Product length 

GAPDH Fwd CCCAGAAGACTGTGGATGG 80 

  Rev GGATGCAGGGATGATGTTCT   

β-actin Fwd GTCCACCTTCCAGCAGATGT 260 

  Rev AGGGAGACCAAAGCCTTCAT   

CCL2 Fwd AGGTCCCTGTCATGCTTCTG 249 

  Rev TCTGGACCCATTCCTTCTTG   

CCL3 Fwd CCTCTGTCACCTGCTCAACA 217 

  Rev CAGGAAAATGACACCTGGCT   

CCL5 Fwd CCCTCACCATCATCCTCACT 220 

  Rev CACTTCTTCTCTGGGTTGGC   

CXCL1 Fwd AGACTGCTCTGATGGCACCT 290 

  Rev TGCACTTCTTTTCGCACAAC   

CXCL2 Fwd AGTGAACTGCGCTGTCAATG 308 

  Rev CATCAGGTACGATCCAGGCT   

TNF-α Fwd CTCTTCAAGGGACAAGGCTG 253 

  Rev CGGACTCCGCAAAGTCTAAG   

IL-6 Fwd CCGGAGAGGAGACTTCACAG 134 

  Rev CAGAATTGCCATTGCACAAC   

IFN-γ Fwd ACTGGCAAAAGGATGGTGAC 212 

  Rev GACCTGTGGGTTGTTGACCT   

IL-4 Fwd TCAACCCCCAGCTAGTTGTC 184 

  Rev TCTGTGGTGTTCTTCGTTGC   

Ym1 Fwd ACAATTTAGGAGGTGCCGTG 324 

  Rev CCAGCTGGTACAGCAGACAA   
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3.2.4 Haemocytological analysis  

Blood was obtained by cardiac puncture with syringes containing EDTA (3 mg per ml 

of blood).  From each animal 250 µl whole blood was analysed in an Advia 120 

haemocytological analyser (Siemens).  Samples showing a high degree of platelet 

clumping as determined by the haemocytological analyser or anomalous cell 

distribution on forward and side scatter plots compared to the majority of samples were 

excluded from the data set. 

3.2.5 Flow cytometry for CD3
+
CD4

+
 helper T cells 

10
6
 leukocytes were used for each batch of staining.  Leukocytes were stained with a 

combination of 1 µg/ml APC-conjugated hamster IgG1 anti-mouse CD3e (BD 

Biosciences) and 1 µg/ml PE-conjugated rat IgG2a anti-mouse CD4 (BD biosciences) in 

200 µl PBS-2%FCS at 4°C for 15 minutes.  The cells were pelleted by centrifugation, 

and washed twice by resuspension in PBS-2%FCS followed by centrifugation to pellet.  

The pellet was resuspended in a fixation solution consisting of 2% paraformaldehyde, 

4% D-glucose, 0.03% sodium azide and 0.01M PBS for storage.  Staining procedures 

were also carried out for isotype control antibodies, PE-conjugated rat IgG2a (BD 

Biosciences) and APC-conjugated hamster IgG1 (BD Biosciences), which were applied 

at the same concentration as the specific antibodies to unstained cells.  Samples were 

assayed by flow cytometry (BD Canto II flow cytometer) and were analysed using BD 

FACS Diva software v6.1.1.  A quadratic gate was applied to the scatter plots of CD3 

versus CD4 fluorescence to identify CD3
+
CD4

+
 and CD3

+
CD4

− 
T cells which were 

expressed as a percentage of all leukocytes.  The distinction between positive and 

negative staining was determined by the upper fluorescence of isotype control stained 

cells.  All thresholds and gates were applied on this basis.  

3.2.6 Flow cytometry for CD4
+
CD25

+
FoxP3

+
 naturally occurring regulatory T cells 

10
6
 PBMCs were used for each batch of staining.  Naturally occurring regulatory T cells 

were stained with the mouse regulatory T cell staining kit # 2 (eBioscience).  PBMCs in 

a volume of 100 µl were stained with a combination of 1.25 µg/ml FITC-conjugated rat 

IgG2a anti-mouse CD4 (clone RM45, eBioscience) and 0.6 µg/ml PE-conjugated rat 

IgG1 anti-mouse CD25 (clone PC61.5, eBioscience) in flow cytometry staining buffer 

(eBioscience) at 4°C for 30 minutes.  The cells were pelleted by centrifugation, and 

washed twice by resuspension in flow cytometry staining buffer followed by 

centrifugation to pellet.  The pellet was resuspended in 1 ml fixation solution 

(eBioscience) for 30 minutes at 4°C.  The cells were pelleted by centrifugation and the 
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supernatant was removed.  Cell permeabilisation was conducted by washing twice with 

resuspension in permeabilisation buffer (eBioscience) followed by centrifugation to 

pellet.  After removal of the supernatant, the cells were incubated in 100 µl of 5 µg/ml 

Fc Block (affinity purified anti-mouse CD16/32 antibody, BD Bioscience) for 15 

minutes at 4°C.  The cells were pelleted by centrifugation and the supernatant was 

removed followed by addition of 5 µg/ml APC anti-mouse FoxP3 antibody (clone 

FJK16s) for 30 minutes at 4°C.  The cells were washed twice by resuspension in 

permeabilisation buffer followed by centrifugation to pellet.  The pellet was 

resuspended in 200 µl of PBS containing 0.03% sodium azide for storage.  Isotype 

control antibodies, PE-conjugated rat IgG2a (BD Biosciences) and PE-conjugated rat 

IgG1 (BD Biosciences), were applied to the cells in the same manner as specific 

antibodies.  Single colour staining for each antibody was also carried out to enable 

compensation for spectral overlap during multicolour flow cytometry.  Samples assayed 

by flow cytometry (BD Canto II flow cytometer) and were analysed using BD FACS 

Diva software v6.1.1.  To identify naturally occurring regulatory T cell populations, a 

gate was applied to cells expressing CD4.  Cells within the CD4
+
 gate were analysed 

with a quadratic gate applied to the scatter plots of CD25 versus FoxP3.  

CD4
+
CD25

+
FoxP3

+
 cells are expressed as a percentage of CD4

+
 cells.  The distinction 

between positive and negative staining was determined by the upper fluorescence of 

isotype control stained cells.  All thresholds and gates were applied on this basis. 

3.2.7 Plasma and brain cytokine assay 

Blood was collected from mice via cardiac puncture with heparinised syringes (20 µl of 

5000 units/ml heparin, Sigma) and Halt protease inhibitor cocktail (Thermo Scientific) 

was added to each blood sample.  Plasma was obtained after centrifugation of blood for 

5 minutes at 14000g.  Plasma samples were diluted four-fold with PBS and assayed 

with a cytometric bead array mouse Th1/Th2/Th17 cytokine kit (BD Biosciences).  The 

assay was run according to specification on a Canto II flow cytometer (BD Biosciences) 

and analysis was conducted using FCAP Array software v1.0.1 (Soft Flow Inc). 

 

IL-4 and IFN-γ in brain were assayed with ELISA kits (R&D Systems).  Brain samples 

were obtained using a 3 mm biopsy punch and frozen in liquid nitrogen.  Protein was 

obtained by Ultra-Turrax homogenisation in 150 mM NaCl, 20 mM Tris-HCl, 1% 

Igepal, pH 7.6 with EDTA-free Halt-protease inhibitor cocktail (Thermo Scientific).  

Samples were centrifuged at 10 000g for 10 minutes and the supernatant was retained 

for assay.  Protein content was determined by Bradford assay (Bradford 1976).  Samples 
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were diluted to a standard 0.1 mg/ml total protein concentration and were assayed 

according to kit specification. 

3.2.8 Statistical analysis 

Homogeneity of variances between groups within each data set was determined with 

Levene’s test.  The Box-Cox test was used to determine the appropriate transformation 

for data sets with heterogeneous variances between groups.  All comparisons between 

wild type and MT-I/II
−/−

 mice were conducted with 2-way ANOVA on the factors of 

time after injury and strain of mouse.  Statistically significant differences in the factor of 

time were differentiated with Tukey’s B post-hoc test.  Statistically significant 

differences in the interaction between time and strain required a different approach.  

Single factor ANOVA was carried out groups classified by injury time point and strain 

combined.  Tukey’s B post-hoc test on the 1-way ANOVA was used to identify the 

differences shown to exist in the 2-way ANOVA.   

3.3 Results 

3.3.1 MT-I/II
−/−

 mouse chemokine expression in brain is not different to wild type mice 

post-brain injury 

Chemokine mRNA was quantified to compare the chemoattractant capacity of the 

injury site between MT-I/II
−/−

 and wild type mice (figure 3.1).  No significant 

differences in expression of the chemokines CCL2, CCL3, CCL5, CXCL1 or CXCL2 

were observed between the two strains of mice.  However, the mRNA of all chemokines 

tested changed following brain injury, and there were several distinctly different 

temporal patterns observed.    CXCL1 (figure 3.1A, P(strain) = 0.495, P(time) < 0.001, 

P(interaction) = 0.650), CXCL2 (figure 3.1B, P(strain) = 0.125, P(time) < 0.001, 

P(interaction) = 0.848) and CCL2 (figure 3.1C, P(strain) = 0.267, P(time) < 0.001, 

P(interaction) = 0.223) all show sharp increases in expression at 1 DPI.  Expression of 

these chemokines declined to near resting levels at 3 DPI and continued to decrease 

towards 7 DPI.  Similarly, CCL3 mRNA shows a rapid increase at 1 DPI but levels had 

decreased by 3 and 7 DPI, although it remained significantly elevated above resting 

levels (figure 3.1D, P(strain) = 0.213, P(time) < 0.001, P(interaction) = 0.618).  Most 

chemokines tested peak early after brain injury but CCL5 mRNA expression gradually 

increased and was greatest at the 7 day time point.  CCL5 mRNA expression was 

significantly up-regulated at 1 and 3 DPI but its expression was approximately 4-fold 

higher at 7 DPI, than at 1 and 3 DPI (figure 3.1E, P(strain) = 0.621, P(time) < 0.001, 
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P(interaction) = 0.876).  Therefore, the data show that there are temporal differences in 

the expression profiles of different chemokines after brain injury but the expression 

profile of these chemokines does not differ between wild type and MT-I/II
−/−

 mice after 

brain injury. 

 

 

Figure 3.1  Chemokine mRNA expression in the injury site of wild type mice (solid 

lines) and MT-I/II
−/−

 mice (dashed lines) after brain injury.  2-way ANOVA did not 

determine any significant differences in expression of any of the chemokines between 

wild type and MT-I/II
−/−

 mice.  A similar pattern of expression occurred for CXCL1 

(A), CXCL2 (B) and CCL2 (C) with a marked increase in expression at 1 DPI followed 

by a large decrease at 3 DPI and a further decrease at 7 DPI that did not return to normal 

over the 7 day period.  CCL3 (D) also increased sharply at 1 DPI but expression levels 

were only slightly decreased at 3 and 7 DPI.  CCL5 (E) expression was increased at 1 

and 3 DPI but showed a large increase at 7 DPI.  Significant differences were 

determined by 2-way ANOVA with Tukey’s B post-hoc test on the factor of time; 

groups that share lower case letters are not significantly different from each other.  For 

all graphs; n=6-7, Error bars=SEM. 
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3.3.2 MT-I/II
−/−

 and wild type mouse chemokine expression in liver is similar after 

brain injury 

Liver chemokine expression has been shown to contribute to leukocyte infiltration into 

the injured brain (Campbell et al. 2008a, Campbell et al. 2008b).  To investigate this 

further, brain-injury induced expression of chemokine mRNA in the liver of wild type 

and MT-I/II
−/−

 mice was determined using quantitative RT-PCR (figure 3.2).  CCL3 

mRNA and CXCL2 mRNA could not be detected in liver before or after cryolesion 

brain injury.  CXCL1 mRNA expression did not change significantly between time-

points and genotypes (figure 3.2A, P(strain) = 0.422, P(time) = 0.127, P(interaction) = 

0.119).  CCL2 mRNA expression was increased significantly in liver after brain injury, 

but did not differ between strains (figure 3.2B, P(strain) = 0.718, P(time) < 0.001, 

P(interaction) = 0.730).  In contrast to CCL2 mRNA expression in the injured brain, 

hepatic CCL2 was not significantly increased until 3 DPI and remained at the same 

level at 7 DPI.  Hepatic CCL5 mRNA was detectable but did not reliably or 

reproducibly show any deviation from the resting levels after brain injury (data not 

shown).  CCL3 and CXCL2 mRNA was rarely detected in the liver of either strain of 

mouse during the course of the experiment (data not shown).  Overall there were no 

robust differences in chemokine expression between the mouse strains.   
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Figure 3.2  Chemokine mRNA expression in liver after brain injury.  (A) CXCL1 

mRNA expression is not significantly up-regulated in wild type mice as determined by 

2-way ANOVA.  (B) CCL2 mRNA expression is significantly increased at 3 and 7 DPI 

as determined by 2-ANOVA but no significant difference between strains occurred.  

Lower case letters indicate statistically significant differences based on the factor of 

time determined by Tukey’s B post-hoc test.  For all graphs; n=6-7, Error bars=SEM. 
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3.3.3 Circulating leukocyte numbers are increased in MT-I/II
−/−

 mice at 7 days post-

injury  

A haemocytological analyser was used to determine whether differences in absolute 

numbers of white blood cells in MT-I/II
−/−

 mice and wild type mice might account for 

differences in leukocyte infiltration rates into the cryolesion affected tissue (figure 

3.3A).  Leukocyte counts from whole peripheral blood did not significantly change after 

brain injury in wild type mice at 0 (uninjured), 1, 3 or 7 DPI.  MT-I/II
−/−

 mice showed 

no significant changes in leukocyte numbers in whole peripheral blood from 0-3 DPI 

but had significantly higher leukocyte counts at 7 DPI compared to uninjured controls 

and wild type mice at 7DPI (P(interaction) = 0.026).  Due to the significant interaction 

in the 2-way ANOVA, 1 way ANOVA was conducted with grouping on the basis of 

time and strain combined into a single factor.  The ANOVA remained significant (P = 

0.026) and Tukey’s B post-hoc test revealed that absolute leukocyte counts in MT-I/II
−/−

 

mice at 7 DPI were statistically higher than wild type mice at 7 DPI.  There was no 

significant effect of time after injury or strain of mouse on the numbers of circulating 

neutrophils (figure 3.3B, P(strain) = 0.103, P(time) = 0.095, P(interaction) = 0.206), 

lymphocytes (figure 3.3B, P(strain) = 0.073, P(time) = 0.473, P(interaction) = 0.374) or 

monocytes (figure 3.3B, P(strain) = 0.294, P(time) = 0.075, P(interaction) = 0.081).   

Because the haemocytological analyser did not differentiate between sub-classes of 

lymphocytes, flow cytometry was used to determine if relative ratios of T cells were 

equal in MT-I/II
−/−

 mice and wild type mice.  No significant differences between MT-

I/II
−/−

 mice and wild type mice were observed at any time point for CD3
+
CD4

+
 helper T 

cells (figure 3.4A) or CD3
+
CD4

−
 T cells which most likely consist of cytotoxic T cells 

(data not shown).  It is interesting to note that T cell numbers were decreased slightly, 

but significantly at 7 DPI which inversely correlates with the increase in T cell 

infiltration into the brain at 7 DPI (chapter 2.3.4).  However, using the data for absolute 

leukocyte counts to convert the T cell percentages into absolute T cell numbers revealed 

an average increase of 16% in MT-I/II
−/−

 mice at 7DPI compared to uninjured mice.  In 

contrast, wild type mice absolute T cell numbers showed an average decrease of 26% at 

7 DPI compared to uninjured animals.   

CD4
+
CD25

+
FoxP3

+
 naturally occurring regulatory T cell numbers were also 

investigated due to their ability to modulate the functions of helper T cells during CNS 

insults (Johnson et al. 2007, Kipnis et al. 2004, Liesz et al. 2009).  The fraction of the 

CD4
+
 T cell population that consisted of CD4

+
CD25

+
FoxP3

+
 naturally occurring 



 

60 

regulatory T cells was not significantly different at 3 or 7 DPI between wild type and 

MT-I/II
−/−

 mice (figure 3.4C).   

Cryolesion brain injury does not appear to affect the relative ratios of various types of 

leukocytes after brain injury but there is an increase in the absolute number of 

circulating leukocytes 7 days after brain injury in MT-I/II
−/−

 mice that is not observed in 

wild type mice at 7 DPI. 

 

 

Figure 3.3  Circulating leukocyte counts after brain injury were obtained with the 

Advia 120 haemocytological analyser.  Absolute cell numbers (A) show an increase at 7 

DPI in MT-I/II
−/−

 mice which was significantly different to all other groups of mice as 

determined by 2-way ANOVA with Tukey’s B post-hoc test.  Relative ratios of 

leukocytes (B) were compared between wild type mice (solid lines) and MT-I/II
−/−

 mice 

(dashed lines) for lymphocytes (●), neutrophils (×) and monocytes (▲).  No significant 

differences were found between strains for any cell type and no significant changes over 

time were found for any cell type by 2-way ANOVA.  For all graphs; n=4-6, error 

bars=SEM. 
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Figure 3.4  CD4
+
 T cell ratios after brain injury were assessed by flow cytometry for 

CD3 and CD4 labelled cells shown in a representative scatter plot (B).  Temporal 

changes in CD4
+
 T cell ratios after brain injury are present  but no significant 

differences between wild type (solid line) and MT-I/II
−/−

 mice (dashed line) were found 

(A).  Lower case letters indicate statistically significant differences based on the factor 

of time determined by ANOVA with Tukey’s B post-hoc test, n=6-7, error bars=SEM.  

The CD4
+
 cell gated population revealed the ratios of CD25

+
 and FoxP3

+
 naturally 

occurring regulatory T cells (D).  At 3 and 7 DPI no significant differences were 

observed between wild type mice (grey bars) and MT-I/II
−/−

 mice (white bars) (C), n=7, 

error bars=SEM. 
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3.3.4 MT-I/II
−/−

 and wild type mouse cytokine expression does not differ in brain post-

brain injury 

To assess the inflammatory response in the cryolesion injury site, mRNA levels for the 

cytokines TNF-α, IL-6, IL-4 and IFN-γ were all assessed by quantitative RT-PCR.  

TNF-α mRNA levels were significantly elevated at 1 DPI and returned to normal levels 

at 3 and 7 DPI and no significant difference between strains was found (figure 3.5A, 

P(strain) = 0.187, P(time) < 0.001, P(interaction) = 0.178).  IL-6 mRNA was also 

significantly increased in the cryolesion site at 1 DPI but a decrease in mRNA was 

observed at 3 and 7 DPI that remained increased above basal IL-6 mRNA expression 

levels (figure 3.5B, P(strain) = 0.634, P(time) < 0.001, P(interaction) = 0.392).  No 

mRNA expression was found in the injury site for IL-4 or IFN-γ after cryolesion.  Both 

of these transcripts were detectable in the positive control, mRNA from the EL-4 mouse 

T cell line that had been stimulated with calcium ionophore and phorbol ester for 6 

hours (data not shown).  Hence, of the measurable cytokines tested, no differences were 

found in mRNA quantity between wild type and MT-I/II
−/−

 mice. 

3.3.5 Cryolesion brain injury did not induce robust systemic cytokine production 

After brain injury, IL-4 and IFN-γ protein was undetectable by ELISA in the injured 

brain of wild type and MT-I/II
−/−

 mice (data not shown).  Plasma concentrations of 

Th1/Th2 cytokines were assessed by fluorescent flow cytometric multiplex assay.  A 

summary of the results is shown in table 3.2, which demonstrates that the presence of 

detectable plasma cytokines was a rare event after injury.  IL-4 and IL-6 were not 

detected during the experiment and INF-γ, TNF-α and IL-10 were detected rarely and 

showed no discernable pattern between wild type and MT-I/II
−/−

 mice.  Similarly, the 

Th1 cytokine, IL-2 could not be detected consistently in plasma and was detected in a 

fraction of wild type and MT-I/II
−/−

 mice at 1 and 3 DPI (figure 3.6).  At 7 DPI 

however, only MT-I/II
−/−

 mice had detectable plasma concentrations of IL-2 with 4 out 

of 6 animals exhibiting detectable expression of IL-2.  No wild type animals had 

detectable levels of IL-2 at 7 DPI.  Statistical analysis could not be conducted on this 

data set due to the high proportion of animals with plasma IL-2 concentrations lower 

than the detection limit.  While the data set was incomplete, IL-2 signalling after brain 

injury appeared to be prolonged in MT-I/II
−/−

 mice compared to wild type mice after 

brain injury. 
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Figure 3.5  Cytokine mRNA expression in the injury site of wild type mice (solid lines) 

and MT-I/II
−/−

 mice (dashed lines) after brain injury.  (A) 2-way ANOVA with Tukey’s 

B post-hoc test reveals that TNF-α mRNA production was significantly up-regulated at 

1DPI and returns to normal by 3 DPI.  TNF-α mRNA expression was not significantly 

different between wild type and MT-I/II
−/−

 mouse strains.  (B) 2-way ANOVA with 

Tukey’s B post-hoc test reveals that IL-6 mRNA production was significantly increased 

at 1 DPI and began to decrease at 3 and 7 DPI but was still significantly higher than 

uninjured IL-6 expression.  IL-6 mRNA expression was not significantly different 

between wild type and MT-I/II
−/−

 mouse strains.  For all graphs; n=6-7, Error 

bars=SEM. 
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Table 3.2.  Plasma cytokine detection in MT-I/II
−/−

 mice after brain injury.  Displayed for each time point are the number of mice that had detectable 

levels of each cytokine/total number of mice.  The maximum concentration detected (pg/ml) for of each cytokine at each time point is also shown. 

 

    IL-2 IL-4 IL-6 IFN-γ TNF-α IL-17A IL-10 

Theoretical Detection limit (pg/ml) 0.4 0.12 5.6 2 3.6 3.2 67.2 

Wild type mice 

0DPI Number of Detectable Samples 0/6 0/6 0/6 0/6 0/6 0/6 0/6 

  Maximum Concentration Detected - - - - - - - 

1DPI Number of Detectable Samples 2/7 0/7 0/7 1/7 1/7 0/7 0/7 

  Maximum Concentration Detected 12.56 - - 6.27 20.1 - - 

3DPI Number of Detectable Samples 4/7 0/7 0/7 1/7 0/7 0/7 0/7 

  Maximum Concentration Detected 11.54 - - 4.7 - - - 

7DPI Number of Detectable Samples 0/7 0/7 0/7 1/7 0/7 0/7 0/7 

  Maximum Concentration Detected - - - 8.31 - - - 

MT-I/II
−/−

 mice               

0DPI Number of Detectable Samples 0/7 0/7 0/7 1/7 0/7 0/7 0/7 

  Maximum Concentration Detected - - - 4.7 - - - 

1DPI Number of Detectable Samples 2/7 0/6 0/6 2/6 2/6 1/6 0/6 

  Maximum Concentration Detected 13.16 - - 8.62 12.24 6.81 - 

3DPI Number of Detectable Samples 2/7 0/6 0/6 2/7 1/6 1/6 1/6 

  Maximum Concentration Detected 16.66 - - 8.52 6.27 8.84 404.1 

7DPI Number of Detectable Samples 4/6 0/6 0/6 2/6 0/6 0/6 0/6 

  Maximum Concentration Detected 12.15 - - 12.78 - - - 
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Figure 3.6  Scatter plot showing detectable plasma IL-2 concentrations in MT-I/II
−/−

 

mice (+) and wild type mice (○) after brain injury.  Values below the detection limit 

(0.4 pg/ml) were arbitrarily given concentrations of zero.  Increases in IL-2 in plasma 

after injury were sporadic with few animals posting detectable concentrations.  At 7 DPI 

only MT-I/II
−/−

 mice have detectable levels of plasma IL-2.  n=7 for all groups except 

wild type mice at zero DPI and MT-I/II
−/−

 mice at 7 DPI for which n=6. 
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3.3.6 MT-I/II
−/−

 mice have decreased expression of the alternative activation marker 

Ym1 

IL-4 and IFN-γ mRNA and protein was undetectable in the brain and detection of IL-4 

and IFN-γ protein in the plasma was not reliable enough to determine the Th1/Th2 ratio 

of MT-I/II
−/−

 mice and wild type mice.  To circumvent this problem the marker of 

alternative activation Ym1 was used to assess the Th2-dependent alternative activation 

response of macrophages.  In the brain, Ym1 was significantly increased at 1 DPI in 

both strains of mouse but Ym1 was significantly higher in wild type mice at all time-

points, including uninjured mice (figure 3.7A, P(strain) < 0.001, P(time) < 0.001, 

P(interaction) = 0.053).  Using this method, it is impossible to determine whether the 

Ym1 is derived from the CNS-resident microglia or infiltrating monocytes because both 

cell types can contribute to the pool of activated macrophages in the injury site.  RT-

PCR was able to determine Ym1 levels in monocytes circulating in peripheral blood 

(figure 3.7B).  At 1 and 3 DPI, Ym1 mRNA was found in significantly higher levels in 

peripheral blood mononuclear cells (PBMCs) from wild type mice compared to MT-

I/II
−/−

 mice.  MT-I/II
−/−

 PBMCs showed no significant change in Ym1 mRNA 

expression over time after cryolesion brain injury (P(time) = 0.083, P(strain) < 0.001 

P(interaction) = 0.220).  Wild type mice express significantly more Ym1 in the injury 

site and in circulating monocytes than MT-I/II
−/−

 mice. 
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Figure 3.7 (A) Ym1 expression in the injury site of wild type and MT-I/II
−/−

 mice after 

brain injury. Ym1 mRNA expression is significantly greater in the injury site of wild type 

mice than in MT-I/II
−/−

 mice at all time-points as determined by 2-way ANOVA.  Lower 

case letters indicate statistically significant differences based on the factor of time 

determined by Tukey’s B post-hoc test, n=6-7, error bars=SEM.  (B) Ym1 expression in 

PBMCs of wild type and MT-I/II
−/−

 mice after brain injury.  Ym1 mRNA expression is 

significantly greater in the PBMCs of wild type mice than in MT-I/II
−/−

 mice at all time-

points as determined by 2-way ANOVA but no significant changes were found over time, 

n=6, error bars=SEM. 
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3.4 Discussion 

The results in this chapter describe attempts to identify the cause of increased T cell 

infiltration into the injured CNS of MT-I/II
−/−

 mice.  MT-I/II
−/−

 mice were found to have 

more circulating white blood cells than wild type mice at 7 DPI, which may translate 

into increased numbers of T cells available for infiltration into the injured  CNS.  Wild 

type mice were found to have greater expression of the aaMΦ marker Ym1 in PBMCs 

and the brain injury site.  The activation phenotype of macrophages may play a role in 

facilitating the persistence of T cells that enter the CNS and in the activation of T cells 

before they enter the CNS.  The ability of MT-I/II
−/−

 mice to produce an appropriate 

inflammatory response via cytokine production and a chemotactic response via 

chemokine production was also studied, and no differences were identified in the 

expression profiles of either cytokine or chemokine mRNA transcripts after brain 

injury. 

3.4.1 Brain injury and MT-I/II deficiency alters the numbers of circulating leukocytes 

Prior studies have found MT-I/II
−/−

 mice to have altered numbers of circulating T cells 

in basal conditions in comparison to wild type mice (Crowthers et al 2000).  However, 

other studies have reported no significant differences in circulating leukocyte numbers 

(Huh et al. 2007).  This discrepancy may reflect differences in MT-I/II
−/−

 mice that 

occur only under certain physiological or environmental conditions.  The present study 

supports this proposition, demonstrating that basal circulating leukocyte counts in MT-

I/II
−/−

 mice were not different to wild type mice until the system was disrupted, in this 

case by brain injury.  After brain injury, the level of leukocytes was not significantly 

altered in wild type mice but, in MT-I/II
−/−

 mice at 7 DPI, there was a significant 

increase in absolute leukocyte numbers.  Interestingly, the increase in absolute 

leukocyte counts occurred without changes in the ratios of lymphocytes, monocytes or 

neutrophils.  This implies that each of the cell types are increasing proportionately to 

each other in MT-I/II
−/−

 mice at 7 DPI.  It was interesting that in both strains of mice, 

the proportion circulating leukocytes that were helper T cells declined with time after 

injury.  One possibility is that circulating T cell numbers decreased as they were 

recruited to the injury site.  An important distinction between the two strains of mice is 

that the increased leukocyte numbers at 7 DPI in MT-I/II
−/−

 mice resulted in a net 

increase in T cells despite the proportionate decrease relative to the total leukocyte 

population.  Because circulating leukocyte numbers did not change in wild type mice 

there was a net decrease in circulating T cells.  A hypothesis synthesised from these 
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findings is that larger numbers of T cells in circulation of MT-I/II
−/−

 mice could be 

responsible for the increased numbers of T cells in the injury site relative to wild type 

mice, as described in Chapter 2. 

3.4.2 Phenotype of activated leukocytes is altered in MT-I/II
−/−

 mice after brain injury 

Two pieces of evidence suggest that MT-I/II
−/−

 mice have a Th1 skew and a reduced 

aaMΦ response after brain injury in comparison to wild type mice; 1) persistence of the 

Th1 cytokine, IL-2, in the plasma of MT-I/II
−/−

 mice but not wild type mice after brain 

injury, and 2) the comparatively lower quantity of Ym1 mRNA in brain and PBMCs of 

MT-I/II
−/−

 mice after brain injury.  Previously, it has been reported that peripheral 

circulating T cells isolated from MT-I/II
−/−

 mice have an increased Th1 cytokine 

response compared to wild type mice, but show no difference in Th2 cytokine responses 

(Huh et al. 2007).  Unfortunately the cryolesion did not induce a sufficient helper T cell 

cytokine response to allow accurate detection and measurement of Th1 and Th2 

cytokines in the injured brain.  Both immunoassay for cytokine protein and RT-PCR for 

cytokine mRNA failed to detect IFN-γ and IL-4 which are Th1 and Th2 cytokines, 

respectively.   Quantitative RT-PCR was able to detect mRNA for TNF-α and IL-6 and 

while they are associated with the Th1 and Th2 response respectively, both are also 

produced by astrocytes and microglia (reviewed by Liberto et al. 2004) which may 

explain why mRNA for these particular cytokines was detectable.  Due to relatively 

small numbers of leukocytes in the injury biopsy and the presence of mRNA or protein 

from glia, it as not possible to specifically determine the cytokine expression profile of 

infiltrating leukocytes within the injury site.   

 

As an alternative to investigating the Th1/Th2 response, the aaMΦ response was 

analysed because it was suspected that macrophages and microglia would produce a 

substantial proportion of the cytokine mRNA found in the injury site biopsy.  Ym1 is 

induced by IL-4 via the stat6 pathway (Welch et al. 2002) and expression of Ym1 

mRNA has been shown to be a reliable marker of aaMΦs (Raes et al. 2002).  Ym1 is 

not expressed in neurons or astrocytes but is expressed in microglia and other monocyte 

derived cells in the CNS (Hung et al. 2002).  IL-4 dependent increases in Ym1 have 

been demonstrated during EAE indicating that the alternative activation response does 

take place in the CNS (Ponomarev et al. 2007).  Although the Th2 cytokine IL-4 is a 

strong regulator of Ym1 expression, there is evidence that Ym1 itself can positively 

regulate the Th2 response (Arora et al. 2006, Cai et al. 2009).  Therefore, the higher 

Ym1 expression in wild type mice before injury may predispose them to have a slight 
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Th2 bias when compared to MT-I/II
−/−

 mice.  The caMΦ response to CNS injury has 

been demonstrated to dominate the aaMΦ response and in vitro, caMΦs cause neuron 

death whereas aaMΦs are neurotrophic (Kigerl et al. 2009).  Macrophage numbers were 

not different between the two strains of mice therefore lower Ym1 expression in MT-

I/II
−/−

 mice could indicate a greater caMΦ response which may explain the increased 

neuron death observed in MT-I/II
−/−

 mice (see Chapter 2).  Furthermore, the Th1 

cytokines that induce classically activated macrophages can also induce increases in 

microglial expression of MHC class-II molecules and the B7.1 and B7.2 costimulatory 

molecules required for T cells to persist in the CNS parenchyma (Aloisi et al. 2000, 

Séguin et al. 2003).  Hence, a shift towards caMΦs in MT-I/II
−/−

 mice may allow greater 

numbers of T cells to persist in the CNS after brain injury than in wild type mice.  

Typically, classical activation is associated with higher production of reactive oxygen 

species and there is evidence that circulating monocytes in MT-I/II
−/−

 mice have an 

increased capacity for oxidative burst (Emeny et al. 2009).  Microglia in the adult CNS 

are likely derived from hematopoietic origin (Hess et al. 2004) and the fact that Ym1 

expression is higher in the PBMCs and brain before injury might indicate that the 

difference between Ym1 expression in MT-I/II
−/−

 mice arises before the macrophage 

lineage cells enter the CNS. 

   

To determine if there is a definite Th1 skew during CNS insults in MT-I/II
−/−

 mice, 

future studies to isolate T cells from the injury site for in vitro analysis or in vivo studies 

using experimental models that cause a large influx of T cells into the CNS such as 

EAE may be more useful than the cryolesion injury model.  However, an advantage of 

the cryolesion injury model is that the effects that it imparts on the immune system are 

slight which suggests that the robust difference in Ym1 expression is a fundamental 

difference between MT-I/II
−/−

 mice and wild type mice. 

 

The use of MT-I/II
−/−

 mice to determine the effects of brain injury has revealed 

repeatedly that there are differences in the response to brain injury but the mechanism 

by which MT-I/II affects this response remains unclear.  It is possible that one of the 

reasons for this is that little is known about when and where MT-I/II is expressed after 

brain injury.  Similarly, the results of this chapter do not indicate how MT-I/II affects 

the aaMΦ response after brain injury.  One hypothesis that has not received attention is 

that the zinc binding capacity MT-I/II may play a role maintaining zinc homeostasis 

after brain injury, thus affecting immune system function.  Altered zinc homeostasis is 
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one of the effects that brain injury has systemically (McClain et al. 1986) and zinc 

deficiency can inhibit Th1 responses but not Th2 responses (Prasad et al. 2000).  Under 

certain stressful conditions hepatic MT-I/II expression increases (Cho et al. 2004, Coyle 

et al 1995, Ding et al. 2002, Hernández et al. 1999, Jacob et al. 1999, Philcox et al. 

1995, Swapan et al. 1990, Zhou et al. 2003) and has been shown to alter zinc 

homeostasis (Philcox et al. 1995, Coyle et al. 1995).  The potential for the interaction 

between zinc and hepatic MT-I/II expression to affect the progression of brain injury 

requires further investigation and is the subject of chapter 5. 

3.4.3 Inflammatory and chemotactic signalling is unaltered in MT-I/II
−/−

 mouse brain 

injury 

To investigate the signalling mechanisms that underlie the elevated leukocyte 

infiltration into the injured brain of MT-I/II
−/−

 mice, the expression profile of key 

cytokines and chemokines was assessed.  Analysis of the inflammatory cytokines IL-6 

and TNF-α reveals that the ability of the injured CNS to launch an inflammatory 

response is not significantly different in MT-I/II
−/−

 mice and wild type mice.  Similarly, 

expression of mRNA for the chemokines CCL2, CCL3, CCL5, CXCL1 and CXCL2 

were not significantly different between the two strains of mice.  Based on this 

information, there does not appear to be a difference in the ability of the CNS resident 

cells to recruit leukocytes in MT-I/II
−/−

 mice which adds further support to the idea that 

MT-I/II may act peripherally to alter brain injury progression.   However, hepatic 

chemokine expression does not appear to differ greatly between wild type and MT-

I/II
−/−

 mice except for a slight increase in hepatic CCL5 mRNA expression at 3 DPI in 

MT-I/II
−/−

 mice.  The increase in CCL5 mRNA was not observed when the experiment 

was repeated which suggests that altered hepatic CCL5 expression is not a cause of the 

altered progression of brain injury in MT-I/II
−/−

 mice.  The cause of the increase in 

hepatic CCL5 expression is unknown but brain injury is known to induce recruitment of 

leukocytes to the liver (Campbell et al. 2003) and increased liver expression of CCL5 in 

MT-I/II
−/−

 mice may have been the result of a similar occurrence.  Hence the observed 

increase in hepatic CCL5 mRNA at 3DPI in MT-I/II
−/−

 mice may have been a real 

difference but the fact that it was not reproducible suggests that it is a secondary effect, 

not the primary cause of the altered response to brain injury in MT-I/II
−/−

 mice.  An 

aspect of leukocyte extravasation that has not been addressed by this thesis and requires 

further study is the expression of adhesion molecules on the endothelium of CNS blood 

vessels.  Endothelial cell adhesion molecule expression changes during CNS insults and 

is known to affect the ability of leukocytes to enter the CNS (Piccio et al. 2002).  
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Variation in the expression of chemokine receptors on T cells in MT-I/II
−/−

 mice also 

warrants investigation because the ability to respond to chemokines may affect the rate 

of T cell infiltration into the CNS when the chemokine response is unchanged.  This 

hypothesis predicts that an alteration in MT-I/II
−/−

 mice that occurs outside the CNS but 

could affect the progression of brain injury. 

 

An interesting facet of the study of chemokine expression in the brain and liver is the 

correlation between chemokine expression and infiltration of the various leukocyte 

types into the injured CNS. Chemokines have been found to be induced rapidly within 

24 hours of brain injury (Babcock et al. 2003, Sandhir et al. 2004).  In the present study, 

CXCL1, CXCL2 and CCL2 were all rapidly expressed and quickly returned to near 

basal levels.  CXCL1 and CXCL2 are both chemoattractive to neutrophils (Bozic et al. 

1995, Lee et al. 1995) so their up-regulation at 1 DPI when neutrophil numbers in the 

injury site are maximal is not surprising.  CCL2 is commonly perceived to be a 

monocyte attracting chemokine but its expression peaks well before infiltrating 

monocyte numbers peak, by which time CCL2 expression has severely declined.  There 

is some evidence that CCL2 can act synergistically with CXCL chemokines to increase 

the rate of neutrophil infiltration (Gouwy et al. 2004) and may explain the early 

expression of CCL2 after cryolesion injury. 

 

CCL5 and CCL3 were both elevated when numbers of macrophages and T cells were 

most numerous in the injury site.  CCL5 is capable of inducing migration of monocytes 

and T cells across an in vitro blood-brain barrier model (Ubogu et al. 2006a, 2006b) and 

CCL3 can act similarly on T cells (Man et al. 2008).  Late increases in CCL5 mRNA 

expression have been observed previously after 7 DPI in spinal cord injuries (Jones et 

al. 2005) and CCL5 protein expression has been observed in brain injuries as late as 12 

DPI (Ghirnikar et al. 1998).  CCL2 expression in the liver was up-regulated later after 

injury when macrophages and T cells were at their greatest density in the injury site.  

Arrest chemokines produced in the liver have been shown to contribute to the 

infiltration of neutrophils and macrophages into brain injuries (Campbell et al. 2003, 

Campbell et al. 2005, Campbell et al. 2007a, Campbell et al. 2007b, Campbell et al. 

2008b) and CCL2 does function as an arrest chemokine (Gerszten et al. 1999).  

Therefore it is possible that CCL2 expressed in the brain is affecting neutrophil 

infiltration early after injury whereas hepatic CCL2 is expressed when monocytes and T 

cells are entering the injured brain and may leukocyte infiltration later after injury.  
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Studies involving CCL2 
−/−

 mice have revealed differences in the number of cells 

expressing macrophage markers in the brain, after brain injury (Semple et al. 2010) and 

after stroke (Hughes et al. 2002) but these differences did not occur until 4 weeks after 

brain injury and 2 weeks after stroke.  The observation that hepatic chemokines are 

induced at later time points after brain injury provides further evidence that somatic 

organs affected by brain injury can also have affects on the injured brain.  However, 

hepatic chemokine production after brain injury does not appear to be a cause of altered 

brain injury progression in wild type and MT-I/II
−/−

 mice in the experiments undertaken 

in this thesis. 

3.4.4 Conclusion 

Three aspects of leukocyte infiltration were investigated in MT-I/II
−/−

 mice in an 

attempt to identify the cause of increased T cell infiltration at 7 DPI.  The 

chemoattractant signals investigated in MT-I/II
−/−

 mice were normal when compared to 

wild type mice and are probably not responsible for the altered T cell infiltration.  

Circulating leukocyte numbers were found to be increased in MT-I/II
−/−

 mice at 7 DPI 

which may explain increased T cell infiltration in MT-I/II
−/−

 mouse injury sites.  There 

is also evidence that MT-I/II
−/−

 mice are prone to have a higher caMΦ to aaMΦ ratios 

compared to wild type mice, and this may affect activation and restimulation of T cells 

that enter the brain.  The higher neurotoxicity of caMΦs may also explain the continued 

neuron death experienced by MT-I/II
−/−

 mice at 7 DPI.  Many of the important changes 

observed in MT-I/II
−/−

 mice are occurring at 7 DPI.  To determine whether MT-I/II 

derived from non-CNS organs is involved in mediating changes in brain injury 

progression, more information is required on the expression of MT in non-CNS tissues 

after brain injury. 
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Chapter 4 – Enzyme-Linked 

Immunosorbent Assay 

(ELISA) for MT-I/II 
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4.0 Introduction 

Many methods of assay for metallothionein (MT) in biological samples exist, including 

radio-immunoassay (RIA), cadmium/haemoglobin affinity (Cd/Haem) assay or 

silver/haemoglobin affinity (Ag/Haem) assay, capillary electrophoresis coupled to 

HPLC, electrochemical methods and enzyme-linked immunosorbent assay (ELISA) 

(reviewed by Dabrio et al. 2002).  Capillary electrophoresis and HPLC are perhaps the 

most accurate of the assays for MT and have the advantage of distinguishing different 

isoforms of MT.  However this technique requires specialised equipment and technical 

knowledge.  The metal binding assays are most accurate when MT is at high 

concentrations, but fail to differentiate between the different MT isoforms and other 

proteins that bind metals with high affinity.  For example, Cd/Haem assay of liver 

homogenates from MT-I/II
−/−

 mice, which would not be expected to contain any of the 

four MT isoforms, display some metal binding capacity which indicates that there is 

some residual metal binding capacity possibly due to other metalloproteins (Zhou et al. 

2004).  RIA is accurately quantitative and can be specific to the MT-I/II isoforms 

(Gasull et al. 1993) but it is time consuming and technically complicated.  ELISA is a 

relatively uncomplicated and rapid process that can be adopted by laboratories without 

the requirement for specialist equipment or technical expertise (for description of the 

ELISA technique see figure 4.1).  ELISA for MT has been used extensively with user-

generated antibodies (Apostolova et al. 1998, Chan et al. 1992, Grider et al. 1990, 

Sullivan et al. 1998, Swierzcek et al. 2004, Tang et al. 1999, Thomas et al. 1986, Liu et 

al. 2000).  However, these techniques are not readily transferable between laboratories 

due to variation in the generation of polyclonal antibodies.  

  

The E9 monoclonal mouse anti-MT immunoglobulin G (IgG) is a commercially 

available antibody that is specific to the MT-I and MT-II isoforms (Skabo et al. 1997).  

It has been used to measure MT-I/II by both competitive and direct ELISA in non-

murine biological samples (Hirauchi et al. 1999, Milnerowicz and Bizon 2010, Szitányi 

et al. 1996).  The E9 antibody can detect mouse MT-I/II by ELISA in samples obtained 

from mouse cell lines (Butcher et al. 2003) but difficulties arise when the E9 antibody is 

used to detect MT-I/II in mouse tissues.  Secondary antibodies will bind to endogenous 

mouse immunoglobulins which can not be distinguished from the E9 primary antibody.  

Recently a competitive ELISA has been used to quantify MT in mouse tissue samples 

(Emeny et al. 2009) with the use of the commercially available, UC1MT mouse 

monoclonal anti-MT antibody which was first described by Lynes et al. (1993).  
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However, there are no published data pertaining to the presence or absence of matrix 

effects in ELISA using this antibody.  It has been demonstrated that the UC1MT 

antibody binds to MT-I and MT-II (Lynes et al. 1993) but it is not known if brain-

specific MT-III isoform will cross-react with the antibody, which is an important 

consideration for assay of MT-I/II in the brain. 

 

 

 

Figure 4.1  Schematic of MT assay by direct enzyme-linked immunosorbent assay 

(ELISA) technique (top) and competitive ELISA technique (bottom).  Both methods 

involve the same steps but they differ in how the antibody interacts with the MT sample 

to be assayed.  Direct ELISA requires adsorption (coating) of the sample with an 

unknown quantity of MT to a microplate well followed by incubation with a primary 

antibody, incubation with an enzyme-linked secondary antibody and then application of 

a chromogenic substrate for the conjugated enzyme.  The absorbance reading of the well 

is directly proportional to the quantity of MT in the sample added to the well in step 1.  

The competitive ELISA is slightly different because a known quantity of MT is 

adsorbed to the substrate in the first stage then, in a later step, the sample containing an 

unknown quantity of MT is added along with the primary antibody.  The MT adsorbed 

onto the microplate competes with the soluble MT in the sample for primary antibody 

and only the primary antibody that binds to substrate-bound MT will remain in the well 

after the rinsing step.  MT in the sample will attract a proportion of the primary 

antibody which remains in solution and is removed during rinsing.  After the rinsing 

step the secondary antibody is applied to the plate followed by the chromogenic 

enzyme-substrate.  The absorbance reading for competitive ELISA is inversely 

proportional to the quantity of MT in the sample.  A major difference in the direct and 

competitive ELISA techniques is that the matrix molecules, the other molecules found 

in the MT sample, are also adsorbed onto the microwell plate in direct ELISA but not in 

competitive ELISA. 
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The term “matrix effects” relates to the complex and variable mixture of proteins, 

carbohydrates, lipids, urea, small molecules and salts found in biological samples that 

can interfere with the assay (Swierzcek et al. 2004).  In the history of MT ELISA 

development matrix effects have been poorly investigated.  The traditional method of 

determining the presence of matrix effects is construction of displacement curves.  Like 

standard curves, displacement curves involve the serial dilution and assay of a known 

quantity of assay antigen, in this case MT.  A standard curve is often constructed by 

dilution of antigen in a buffered saline solution whereas displacement curves are 

constructed using tissue samples that contain little or no antigen of interest.  When 

matrix effects are present they can displace antibody binding from substrate bound 

antigen and result in a curve non-parallel to the standard curve.  The first MT ELISA 

developed by Thomas et al. (1986) found that serum sample displacement curves did 

not parallel the standard curve, indicating the presence of matrix effects.  Displacement 

curves were used to validate the use of ELISA to measure MT in human blood cells 

(Sullivan et al. 1998).  Swierzcek et al. (2004) used activated charcoal to remove 

organic molecules from human urine and created displacement curves in the resulting 

fluid to validate an MT ELISA.  Few other published studies address this issue and none 

of these studies have reported testing for matrix effects in MT ELISA using a 

commercially available antibody.  Displacement curves are essential for validation of 

ELISAs because they are an effective method for identifying the presence of non-

specific interference with the assay. 

 

In addition to matrix effects, one of the problems that confounds immunoassay of MT is 

the fact that the protein has a propensity to aggregate, particularly at high concentrations 

and under oxidising conditions (Haase & Maret 2004, Zangger et al. 2001). MT 

aggregation can also occur purely by hydrophobic interactions but there has been 

limited study into this phenomenon (Hou et al. 2000).  Oxidation-induced MT 

aggregation is more widely documented and involves the formation of disulphide bonds 

between cysteine residues of MT (Zangger et al. 2001).  However due to the complexity 

of biological samples, it is likely that in addition to self-polymerisation, MT forms 

disulphide bonds with a variety of proteins with similarly oxidised cysteine residues.  

Aggregation of MT can affect the affinity of anti-MT antibodies to a given quantity of 

MT which can alter the accuracy of ELISA (Tang et al. 1999).  ELISA has also been 

found to estimate significantly less MT in the liver samples than Ag/Haem assay when 

MT concentrations with one implication being that there is a phenomenon that masks 
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MT from immunoassay (Chan et al. 1992).  Filtration steps have been used to further 

purify monomeric and aggregated MT (Hirauchi et al. 1999, Tang et al 1999), which 

can help determine the degree of aggregation of MT but will also remove all MT bound 

to higher molecular weight molecules.  Therefore a method capable of reversing any 

nonspecific disulphide linkages between MT and other molecules formed as a result of 

oxidative processes would be advantageous to ELISA for MT. 

 

The first aim of this chapter was to develop an ELISA for the measurement of MT in 

mouse tissue and plasma using commercially available antibodies.  The second aim of 

this chapter was to develop a method of reversing the disulphide linkage formation of 

MT in tissue samples to allow accurate quantification of MT.  The issue of the 

formation of disulphide linkages by MT has been encountered previously during 

electrophoresis of MT by SDS-PAGE.  Disulphide linkages formed by MT and a 

heterogeneous array of proteins results in MT bands at several different molecular 

weights.  The problem can be solved by reduction of disulphide bonds to two separate 

sulfhydryl groups, followed by modification of these sulfhydryl groups via alkyl halide 

substitution reaction to prevent further oxidation of cysteines (Kimura et al. 1991, Shaw 

et al. 1991).  The carboxyamidomethylation reaction is described in figure 4.2.  

Carboxyamidomethylation was attempted as a sample preparation for preserving, and 

returning MT to its monomeric form before ELISA. 

  



 

79 

 

 

 

 

Figure 4.2  Carboxyamidomethylation of cysteine.  The reaction is a two step process.  

In the first step which occurs at high temperature, dithiothreitol (DTT) is required to 

reduce any cystine that has formed via disulfide bonding.  In the second step of the 

reaction iodoacetamide replaces the hydrogen atom in the thiol group via substitution 

reaction to form carboxyamidomethylated cysteine with hydroiodic acid as the by-

product.  
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4.2 Materials and Methods 

4.2.1 Direct (E9 antibody) ELISA 

Nunclon delta surface microplate wells (Nunc) were coated with 25 µl of MT-I/II-

containing samples and 25 µl of 50 mM Na2CO3 and incubated overnight at 4°C on an 

orbital shaker.  All subsequent stages took place at room temperature.  Endogenous 

peroxidases were quenched with 3% hydrogen peroxide (Merck) in ELISA wash buffer 

(0.05% Tween-20 in 0.01M PBS) for 5 minutes at room temperature.  Following a 5 

minute rinse in wash buffer, wells were blocked with 150 µl casein solution (2.5%, pH 

7.4) for 30 minutes.  The wells were washed again in wash buffer for 5 minutes.  

Primary antibody (E9 mouse anti-MT-I/II IgG, Dako) was diluted 1:1000 in ELISA 

wash buffer and applied to wells and incubated for 1 hour.  The plate was rinsed for 5 

minutes, 3 times with wash buffer.  Horse radish peroxidase-conjugated secondary 

antibody (goat anti-mouse IgG-HRP conjugate, Dako) was diluted 1:1000 in ELISA 

wash buffer and applied to each well in 50 µl aliquots and incubated for 1 hour.  To 

amplify the signal a biotinylated secondary antibody was also tested (biotinylated goat 

anti-mouse IgG, Zymed) and was diluted 1:1000 in ELISA wash buffer and applied to 

each well in 50 µl aliquots and incubated for 1 hour followed by 3 rinses in wash buffer 

and application of either ABC reagent (Vector labs) or HRP-streptavidin conjugate 

(Biosource).  The plate was rinsed for 5 minutes, 3 times with wash buffer.  TMB 

peroxidase substrate (KPL) was incubated in the wells in 50 µl aliquots for 1 hour.  The 

reaction was terminated by addition of 50 µl of 1 M phosphoric acid and the absorbance 

of the microplate wells were measured at 450 nm.  Standard curves were generated 

(section 4.2.4) and were used to calculate MT-I/II concentrations in the assayed samples 

(section 4.2.5).   

4.2.2 Competitive (E9 antibody) ELISA 

Nunclon delta surface microplate wells (Nunc) were coated with 50 µl of 100 ng/ml 

Zn7MT-IIA (HPLC-purified rabbit MT-IIA conjugated to 7 Zn
2+

 ions, Bestenbalt, 

Estonia), 50 mM Na2CO3 and incubated overnight at 4°C on an orbital shaker.  All 

subsequent stages took place at room temperature.  Following a 5 minute rinse in wash 

buffer, wells were blocked with 150 µl casein solution (2.5%, pH 7.4) for 30 minutes.  

The wells were washed again in wash buffer for 5 minutes.  For the competitive step, 

samples were applied to the plate first, in triplicate or quadruplicate, in 50 µl aliquots.  

Then the primary antibody (E9 mouse anti-MT-I/II IgG, Dako) was diluted 1:5000 in 

ELISA wash buffer and applied to the wells in 50 µl aliquots.  This competition step 
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was incubated for 1 hour.  The plate was rinsed for 5 minutes, 3 times with wash buffer.  

Secondary antibody (goat anti-mouse IgG-HRP conjugate, Dako) was diluted 1:10 000 

in ELISA wash buffer, applied to each well in 50 µl aliquots and incubated for 1 hour.  

The plate was rinsed with wash buffer for 5 minutes, 3 times.  TMB peroxidase 

substrate (KPL) was incubated in the wells in 50 µl aliquots for 1 hour.  The reaction 

was terminated by addition of 50 µl of 1 M phosphoric acid and the absorbance of the 

microplate wells were measured at 450 nm.  Standard curves were generated (section 

4.2.4) and were used to calculate MT-I/II concentrations in the assayed samples (section 

4.2.5). 

4.2.3 Competitive (UC1MT antibody) ELISA 

Nunclon delta surface microplate wells (Nunc) were coated with 50 µl of 100 ng/ml 

Zn7MT-IIA, 50 mM Na2CO3 and incubated overnight at 4°C on an orbital shaker.  All 

subsequent stages took place at room temperature.  Following a 5 minute rinse in wash 

buffer, wells were blocked with 150 µl casein solution (2.5%, pH 7.4) for 30 minutes.  

The wells were washed again in wash buffer for 5 minutes.  For the competitive step, 

samples were applied to the plate first, in triplicate or quadruplicate, in 50 µl aliquots.  

Then the primary antibody (UC1MT mouse anti-MT IgG, Assay designs) was diluted 

1:5000 in ELISA wash buffer and applied to the wells in 50 µl aliquots.  This 

competition step was incubated for 1 hour.  The plate was rinsed with wash buffer for 5 

minutes, 3 times.  Secondary antibody (goat anti-mouse IgG-HRP conjugate, Dako) was 

diluted 1:5000 in ELISA wash buffer and applied to each well in 50 µl aliquots and 

incubated for 1 hour.  The plate was rinsed with wash buffer for 5 minutes, 3 times.  

TMB peroxidase substrate (KPL) was incubated in the wells in 50 µl aliquots for 1 

hour.  The reaction was terminated by addition of 50 µl of 1 M phosphoric acid and the 

absorbance of the microplate wells were measured at 450 nm.  Standard curves were 

generated (section 4.2.4) and were used to calculate MT-I/II concentrations in the 

assayed samples (section 4.2.5).   

4.2.4 Standard curves 

Standard curves were created and run within each ELISA to calibrate the assay.  

Lyophilised Zn7MT-IIA was dissolved in MilliQ water at a concentration of 1 mg/ml.  

These stock solutions were diluted in ELISA wash buffer in maximum-recovery 

microcentrifuge tubes (Axygen) to create the top standard, usually at 1 or 10 µg/ml.  

Serial dilution from the top standard was conducted with each step constituting a 4-fold 
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dilution in ELISA wash buffer in maximum-recovery tubes.  Standards were kept on ice 

while the rest of the ELISA samples were prepared. 

4.2.5 Displacement curves 

Tissue samples were obtained to test for matrix effects in the various formats of MT 

ELISA.  Tissue samples were obtained from MT-I/II
−/−

 mice so that no endogenous 

MT-I/II was present in the sample.  Brain and liver were ground to a fine power in a 

mortar and pestle under liquid nitrogen.  The powdered tissue was homogenised in 150 

mM NaCl, 20 mM Tris-HCl, 1% Igepal, pH 7.6 with EDTA-free Halt-protease inhibitor 

cocktail (Thermo Scientific) with an Ultra-Turrax mechanical homogenizer (IKA).  

Samples were centrifuged at 10 000g for 10 minutes and the supernatant was retained 

for assay.  Protein concentration was obtained by Bradford assay (Bradford 1976).  MT-

I/II
−/−

 mouse urine and rat brain homogenate prepared as above were also tested for 

matrix effects.  Matrix solutions for displacement curves were constructed by diluting 

tissue samples in ELISA wash buffer to give a range of solutions with varied total 

protein content.  Zn7MT-IIA serial dilutions were conducted in the matrix solutions in 

the same manner as for standard curves.  Displacement curves and standard curves were 

conducted simultaneously for direct comparison.  

4.2.6 4-parameter logistic modelling 

ELISA standard curves were sigmoidal so 4-parameter logistic modelling was used to 

calculate sample MT concentrations from the observed absorbance values.  The 

following formula from Findlay and Dillard (2007) was used to fit a 4-parameter 

logistic model to the standard curves generated by the various ELISA formats: 

� � � � �� � ��
	
 � ��
�

��
 

where, Y is the absorbance response, A is the lower asymptote of the curve, B is the 

slope of the linear phase of the curve, C is the concentration of MT at the inflection 

point of the curve and D is the upper asymptote of the curve.  The standard curves did 

not always include concentrations of MT at the upper limit of the assay.  In these cases 

the relevant value for the asymptote had to be estimated.  The slope of the linear phase 

often had to be altered to improve the fit of the model to the standard curve.  R
2
 was 

calculated for the model and was used to find the best fit for values which had to be 

estimated.  The model was then used to derive the concentration of MT in tissue 

samples (data shown in chapter 5).   
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4.2.7 Western blot 

SDS-PAGE and protein transfer to nitrocellulose membranes was conducted with the 

Mini-Protean II Cell (Novex).  20 µl sample was added to 7µl of Nupage 4x LDS 

sample buffer (Invitrogen) and samples were heated at 95ºC for 5 minutes.  Samples 

were loaded onto Tris buffered 10% bis-acrylamide gels (Invitrogen) and underwent 

electrophoresis in NuPage MES running buffer (Invitrogen) at 200 volts for 40 minutes 

at room temperature.  Proteins were transferred to nitrocellulose in NuPage transfer 

buffer with 10% methanol (Invitrogen) for 1 hour at 30 volts at room temperature.  The 

membrane was blocked with 5% skim milk powder in PBS-T (0.1% Tween-20, 0.01M 

PBS) for 1 hour.  The membrane was probed with E9 anti-MT-I/II antibody (Dako) 

diluted 1:500 in PBS-T containing 2.5% skim milk powder for 1 hour at room 

temperature followed by two washes for 10 minutes in PBS-T.  Goat anti-mouse IgG-

HRP secondary antibody (Dako) was diluted 1:1000 in PBS-T and applied to the 

membrane for 1 hour at room temperature.  The membrane was washed twice for 10 

minutes in PBS-T.  Pico-west chemiluminescent substrate (Pierce) was applied to the 

blot for 5 minutes at room temperature before the excess was removed then the 

membrane was exposed to photographic film for 1-5 minutes in an autoradiographic 

cassette and the film was developed. 

4.2.8 Heat treatment of Zn7MT-IIA to test heat stability 

Zn7MT-IIA solutions were made up to 10 µg/ml in MilliQ water.  A control Zn7MT-IIA 

solution was kept on ice for the duration of the experiment and received no heat 

treatment or centrifugation.  Two samples were prepared for heat treatment, with and 

without the addition of 1 µl of β-mercaptoethanol (Sigma) per 100 µl of sample.  

Samples were heated at 90°C for 10 minutes followed by centrifugation at 10 000g for 

10 minutes.  The control and heat-treated samples were analysed by western blot. 

4.2.9 Iodoacetamide mediated carboxyamidomethylation of Zn7MT-IIA 

Carboxyamidomethylation was carried out on Zn7MT-IIA samples in PBS and MT-

I/II
−/−

 mouse plasma.  Plasma was first diluted 1:3 with PBS before addition of Zn7MT-

IIA.  To reverse any cystine disulphide bonds present in the samples, 80 µl of 0.2 M 

dithiothreitol (DTT, Sigma) was added to the samples followed by heating to 100°C for 

5 mins then allowing to cool to room temperature.  To carboxyamidomethylate the free 

thiol groups in the sample, 120 µl of 1 M iodoacetamide was added to the samples 

which were then heated to 50°C for 15 minutes.  Upon cooling, the samples were 

centrifuged at 10 000g for 10 minutes to remove any precipitated species.  A Zn7MT-

IIA control which was stored on ice for the duration of the carboxyamidomethylation 
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reaction was also centrifuged to remove any MT-IIA aggregates.  The supernatant was 

analysed by western blot, direct E9 antibody ELISA and competitive E9 antibody 

ELISA. 

4.2.10 pH titration of the iodoacetamide reaction in artificial plasma 

The volume of the iodoacetamide reaction was scaled-up by a factor of 10 and 

conducted on a BSA buffer to simulate the protein and thiol content of plasma given 

that albumin is a large proportion of blood protein.  The buffer consisted of 4% BSA, 

8.3 mM D-glucose, 118 mM NaCl, 4.7 mM KCL, 1.2 mM KH2PO4, 1.2 mM Mg2SO4 

and 25 mM NaHCO3.  To prevent decreases in pH, all reaction solutions were buffered 

with a combination of MES and Tris buffers.  No MT was added to the BSA buffers.  In 

15 replicate tubes, 1 ml of BSA buffer, 3 ml of DTT reaction buffer (0.2 M DTT, 100 

mM Tris, 100 mM MES, pH 9) was added and the resulting solution was heated to 

100°C for 5 minutes.  The tubes were allowed to cool to room temperature before the 

pH of the solution was measured.  The tubes were divided into 3 groups that received 1 

ml of 1 M iodoacetamide, 0.5M MES at a pH of either 6, 7 or 8.  The reactions were 

heated to 50°C for 15 minutes then allowed to cool before the pH of each reaction was 

measured.  An adjustment buffer (1 ml) was added to each solution containing 0.3 M 

DTT, 0.5 M MES at pH of either 5, 6, 7, 8.2 or 8.9.  The solutions were again heated to 

50°C for 15 minutes and were allowed to cool to room temperature before the final pH 

measurement.  After pH measurement 3 samples were chosen that had a final pH of 

4.76, 5.48 and 6.48.  The supernatant from each sample was divided into two aliquots 

and HPLC-purified, carboxyamidomethylated MT-IIA was added  to one of these 

aliquots to give a final concentration of 80 µg/ml MT.  These samples were then 

assayed by competitive MT ELISA (E9 antibody clone) and compared to PBS with and 

without 80 µg/ml carboxyamidomethylated MT-IIA. 

4.2.11 Direct (UC1MT antibody)ELISA to compare MT-IIA and MT-III cross-reactivity 

Nunclon delta surface microplate wells (Nunc) were coated with 50 µl of standard 

curves for Zn7MT-IIA and Zn7MT-III (HPLC-purified human MT-III conjugated to 7 

Zn
2+

 ions, Bestenbalt, Estonia) which were made up in 50 mM Na2CO3 and incubated 

overnight at 4°C on an orbital shaker.  All subsequent stages took place at room 

temperature.  Following a 5 minute rinse in wash buffer, wells were blocked with 150 µl 

casein solution (2.5%, pH 7.4) for 30 minutes.  The wells were washed again in wash 

buffer for 5 minutes.  UC1MT primary antibody was diluted 1:1000 in ELISA wash 

buffer and applied to wells and incubated for 1 hour.  The plate was rinsed for 5 
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minutes, 3 times with wash buffer.  Horse radish peroxidase (HRP)-conjugated 

secondary antibody (goat anti-mouse IgG-HRP conjugate, Dako) was diluted 1:5000 in 

ELISA wash buffer and applied to each well in 50 µl aliquots and incubated for 1 hour.  

The plate was rinsed for 5 minutes, 3 times with wash buffer.  TMB peroxidase 

substrate (KPL) was incubated in the wells in 50 µl aliquots for 1 hour.  The reaction 

was terminated by addition of 50 µl of 1 M phosphoric acid and the absorbance of the 

microplate wells were measured at 450 nm. 

4.3 Results 

4.3.1 Metallothionein ELISA with the E9 antibody 

Commercially available antibodies raised in non-murine species were sought to avoid 

problems with cross reactivity of primary antibodies.  The following commercially 

available MT-I/II antibodies were tested for ability to detect MT by western blot; rabbit 

anti-FL-61 polyclonal IgG (Santa Cruz), rabbit anti-MT polyclonal IgG (Genway), 

mouse anti-MT monoclonal IgG, Clone E9 (Dako).  Neither of the rabbit polyclonal 

antibodies was able to detect Zn7MT-IIA by western blot, whereas the E9 antibody 

robustly detected Zn7MT-IIA by this method (data not shown).  Therefore use of a 

mouse-derived primary antibody for the development of an MT-I/II ELISA with 

commercially available reagents was unavoidable.   The E9 antibody was able to 

produce a reliable standard curve when used as the primary antibody in direct ELISA 

(figure 4.3A).  Of the detection systems used, the highest sensitivity was acquired with a 

biotinylated anti-mouse IgG secondary antibody combined with streptavidin-HRP 

conjugate.  HRP-conjugated anti-mouse IgG and biotinylated anti-mouse IgG secondary 

antibody combined with ABC reagent were less sensitive.  Competitive ELISA with the 

E9 antibody was also tested (figure 4.3B) but the assay was much less sensitive than the 

direct ELISA and was deemed not sensitive enough for effective detection of MT in 

mouse tissue. 
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Figure 4.3  Standard curves for direct MT ELISA (A) and competitive MT ELISA (B) 

both conducted with the E9 antibody clone and fitted with a 4-parameter logistic curve.  

Three secondary antibody detection systems were trialled for the direct ELISA; HRP-

conjugated secondary antibody (blue), biotinylated secondary antibody with HRP-

conjugated streptavidin (red) and biotinylated secondary antibody with ABC (green).  

Competitive ELISA was conducted with HRP-conjugated secondary antibody.  The 

direct ELISA was more sensitive than the competitive ELISA by two orders of 

magnitude.  All data points were collected in triplicate, the mean is displayed. 
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4.3.2 Metallothionein detection in mouse plasma by western blot 

The E9 antibody is a mouse IgG which is detected following binding to antigen on the 

blotting membrane with an enzyme-linked anti-mouse IgG secondary antibody.  These 

secondary antibodies were expected to react with endogenous antibodies in tissue 

samples.  Figure 4.4A demonstrates the high degree of non-specific high molecular 

weight staining that was observed in MT-I/II
−/−

 mouse plasma samples (lanes 2 and 3).  

The two 14 kDa bands that are visible in the plasma samples are not MT-IIA dimers 

because the same band is present in the sample without any Zn7MT-IIA added (lane 3).  

A 7 kDa band was resolved in the plasma sample with Zn7MT-IIA added (lane 2) but 

this band was not present in the MT-free plasma sample (lane 3).  This indicates that 

despite the non-specific staining, monomeric Zn7MT-IIA is still detectable in mouse 

samples.  However, the intensity of the MT band present in the Zn7MT-IIA seeded 

plasma sample is considerably reduced compared to the control Zn7MT-IIA which was 

dissolved in PBS even though the initial concentrations of Zn7MT-IIA in these samples 

were identical (10 µg/ml).  It is apparent that monomeric Zn7MT-IIA is being lost from 

the plasma sample, possibly through disulphide linkages formed between cysteine 

residues on MT and higher molecular weight species.  Western blot can differentiate 

between monomeric Zn7MT-IIA and nonspecific binding or aggregated MT-IIA based 

on the molecular weight of immunopositive bands.  ELISA does not have the ability to 

differentiate between molecules of different sizes leading to a diminished ability to 

identify false positive readings.  To assay MT-I/II by direct ELISA, a method was 

sought to remove endogenous IgG and related antibody binding proteins, while 

retaining MT-I/II in solution.  

4.3.3 Heat stability of Zn7MT-IIA 

MTs are reported to be highly heat stable compared to most other proteins, a property 

previously exploited to separate MT-I/II from protein solutions (Summer and Klein 

1991).  However, in these applications MT-I/II was often experimentally bound to 

metals other than zinc, which might influence its heat stability, prompting assessment of 

recovery of Zn7MT-IIA after heat treatment.  Zn7MT-IIA in PBS was heated to 90°C for 

10 minutes in the presence or absence of β-mercaptoethanol, a reducing agent (Figure 

4.4B).  Comparison of untreated Zn7MT-IIA (lane 1) to heat treated Zn7MT-IIA without  

β-mercaptoethanol (lane 2) and  Zn7MT-IIA with β-mercaptoethanol (lane 3) reveals a 

reduction in monomeric  Zn7MT-IIA at 7 kDa after heat treatment.  Furthermore some 

high molecular weight immunoreactivity is visible which, may indicate formation of 

large complexes of aggregated MT.  This high molecular weight immunoreactivity is 
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visible in all lanes suggesting that Zn7MT-IIA forms aggregates without heat treatment 

but the level of high molecular weight immunoreactivity increases with heat-treatment.  

The recovery of monomeric Zn7MT-IIA from heat treatment was not high enough for 

the technique to be incorporated into a quantitative assay.  Heat treatment appears to 

accelerate the rate of MT-IIA aggregation so the prevention of MT aggregation was 

investigated as a possible solution to this problem. 

 

 

 

 

 

 

Figure 4.4  Western blots demonstrate the instability of MT in various solutions.  

Monomeric MT is a 7 kDa protein.  (A) Zn7MT was seeded into MT-I/II
−/−

 mouse 

plasma to assess the recovery of MT.  A high degree of immunoreactivity can be seen at 

higher molecular weights but an immunoreactive band is present at 7 kDa.  Lane 1, 

Zn7MT in PBS; lane 2, Zn7MT in MT-I/II
−/−

 mouse plasma; lane 3 MT-I/II
−/−

 mouse 

plasma without any Zn7MT added.  (B) Zn7MT is unstable when heated to 90°C.  Lane 

1, unheated Zn7MT; lane 2, 90°C heat-treated Zn7MT; lane 3, 90°C heat-treated Zn7MT 

with β-mercaptoethanol.  (C) Carboxyamidomethylation of Zn7MT in MT-I/II
−/−

 mouse 

plasma removes the binding at high molecular weights.  Lane 1, Zn7MT in PBS; lane 2, 

Zn7MT in PBS after carboxyamidomethylation; lane 3, MT-I/II
−/−

 mouse plasma after 

carboxyamidomethylation reaction without MT; lane 4, Zn7MT seeded in to MT-I/II
−/−

 

mouse plasma followed by carboxyamidomethylation reaction. 
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4.3.4 Carboxyamidomethylation of Zn7MT-IIA 

Aggregation of MT occurs via disulphide linkages formed between MT molecules 

under oxidative conditions (Zangger et al. 2001) and disulphide linkages are also 

expected to occur between MT and other cysteine-containing proteins in tissue samples.  

Iodoacetamide is an alkylating agent that binds covalently to free thiol groups and is 

used to prevent MT from forming disulphide cystine linkages.  Samples were first 

heated with DTT to reduce any disulphide bonds to free thiols then were treated with 

iodoacetamide to produce carboxyamidomethylated MT which does not bind metals and 

is no longer able to form disulfide bonds.  After iodoacetamide treatment of Zn7MT-IIA 

(Figure 4.4C, lane 2), western blot revealed a single band of 7 kDa size which differed 

from untreated Zn7MT which produced a band of lower intensity at 14 kDa which is 

consistent with the possibility of the formation of a MT-IIA dimer (lane 1).  The 

untreated Zn7MT-IIA was kept on ice during the carboxyamidomethylation reaction and 

centrifuged to remove aggregated MT-IIA.  The lower intensity compared to the 

carboxyamidomethylated MT-IIA suggests that this time frame was sufficient to allow 

spontaneous aggregation of Zn7MT-IIA however no high molecular weight bands were 

observed possibly because they were removed by centrifugation.  The 

carboxyamidomethylation reaction was also applied to plasma from MT-I/II
−/−

 mice, 

both with and without the addition of a known quantity of Zn7MT-IIA.  The reaction 

applied to MT-free mouse plasma (lane 3) was able to remove all non-specific staining 

previously observed in mouse plasma.  The carboxyamidomethylation of MT-I/II
−/−

 

mouse plasma containing 50 µg/ml of Zn-MT-IIA was able to recover MT from 

solution albeit in dimeric form suggesting that some disulphide bonds were still present 

(lane 4).  Therefore iodoacetamide treatment can preserve MT-I/II concentrations in 

mouse tissue samples and remove endogenous proteins that bind to anti-mouse IgG 

secondary antibody. 

4.3.5 Carboxyamidomethylation reaction inhibits the direct ELISA for MT 

The compatibility of iodoacetamide treatment of samples with the ELISA was assessed.  

MT-I/II
−/−

 mouse plasma with and without Zn7MT-IIA seeded into it underwent the 

iodoacetamide reaction and was assayed by direct ELISA (figure 4.5A).  HPLC-purified 

Zn7MT-IIA and HPLC-purified carboxyamidomethylated MT-IIA, both commercially 

obtained (Bestenbalt), were dissolved in PBS and left untreated to serve as positive 

controls.  It is important to note that the HPLC-purified carboxyamidomethylated MT-

IIA contains none of the reagents or products of the carboxyamidomethylation reaction.  

Figure 4.5A shows that the Zn7MT-IIA and carboxyamidomethylated MT-IIA positive 
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controls were detectable by ELISA demonstrating that the E9 antibody retains its 

affinity for MT-IIA with carboxyamidomethylated cysteine residues.  The negative 

control registered a low absorbance reading, as expected.  However the samples 

containing Zn7MT-IIA that had undergone reaction with iodoacetamide failed to register 

an increased absorbance reading above the negative-control.  Therefore some 

component of the iodoacetamide reaction appears to be interfering with the direct 

ELISA.  The components of the carboxyamidomethylation reaction are in contact with 

the ELISA plate only during the coating step and are rinsed away before subsequent 

steps in the ELISA.  Western blot of the post-reaction Zn7MT-IIA from the previous 

experiment confirmed that the MT-IIA remains in solution and retains the ability to bind 

antibody after reaction with iodoacetamide (figure 4.4C) therefore it can be inferred that 

it is the coating step of the ELISA that is being affected by the iodoacetamide reaction. 
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Figure 4.5  Direct MT-I/II ELISA (A) and competitive MT-I/II ELISA (B), both with 

the E9 antibody, to test efficacy of the assays for iodoacetamide treated samples.  

Samples either underwent carboxyamidomethylation with iodoacetamide (IA) or were 

left untreated.  Before the addition of iodoacetamide, some samples were seeded with 

HPLC-purified Zn7MT-IIA or HPLC-purified carboxyamidomethylated MT-IIA CMe-

MT, both commercially obtained.  The remaining samples served as negative controls.  

All untreated samples were prepared in PBS whereas the IA treated samples were 

prepared in both PBS and MT-I/II
−/−

 mouse plasma.  Each sample was assayed in 

duplicate and the data are expressed as means. 
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4.3.6 Carboxyamidomethylation reaction inhibits the competitive ELISA for MT 

During competitive ELISA, samples to be assayed are not present at the time of MT 

coating to the substrate.  The treated samples, along with the primary antibodies, are 

added to the microplate wells at a later stage in the protocol.  To circumvent the 

problems encountered with coating in the direct ELISA, the compatibility of 

iodoacetamide treatment and competitive ELISA was assessed (figure 4.5B).  The 

sample preparation for the competitive ELISA was identical to that used for the direct 

ELISA (section 4.3.5).  The negative control prepared in PBS registered a high 

absorbance reading in the ELISA due to a lack of competition for substrate bound 

Zn7MT-IIA, as expected.  Both positive controls containing HPLC-purified Zn7MT-IIA 

or HPLC-purified carboxyamidomethylated MT-IIA registered a low absorbance 

reading indicating that they were competitively reducing E9 antibody binding to the 

substrate bound Zn7MT-IIA.  When Zn7MT-IIA dissolved in PBS was treated with 

iodoacetamide, the MT-IIA in the sample was unable to competitively reduce the 

absorbance reading for the assay indicating that the iodoacetamide was also interfering 

with the competitive ELISA.  The absorbance reading for Zn7MT-IIA dissolved in 

plasma and treated with iodoacetamide did produce a low absorbance reading but the 

validity of this reading is questionable because the iodoacetamide plasma sample 

containing no MT-I/II had a similar absorbance reading.  With no interference, a plasma 

sample containing no MT-I/II would be expected to give an absorbance reading 

equivalent to the PBS negative control.  Therefore iodoacetamide treatment interferes 

with the competitive ELISA but the result of this interference differs between PBS and 

mouse plasma as the sample matrix.  

4.3.7 The iodoacetamide reaction decreases the sample pH 

The carboxyamidomethylation reaction results in the addition of a carboxyamidomethyl 

group to the sulphur atom of cysteine residues and the loss of a hydrogen ion from the 

thiol group and an iodide ion from iodoacetamide (see figure 4.2).  Because hydroiodic 

acid is a strong acid, it has the capacity to strongly affect the pH of the solution as the 

carboxyamidomethylation reaction proceeds and more acid is produced.  The pH of the 

iodoacetamide treated samples was investigated as a putative cause of interference in 

direct and competitive ELISA for MT-I/II.  An artificial plasma solution containing a 

physiological albumin concentration and no MT-I/II was used as a substrate for the 

iodoacetamide reaction.  The pH of the reaction was measured at various stages of the 

process in order to devise a method to adjust the pH back to neutral.  The 

carboxyamidomethylation reaction was allowed to proceed with initial pH at 6, 7 or 8.  
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The pH of the samples after the iodoacetamide treatment is displayed in table 4.1.  After 

the carboxyamidomethylation reaction was completed the pH was adjusted with MES 

buffered solutions at pH 5, 6, 7, 8.2 and 8.9.  Figure 4.6 shows that higher initial pH and 

higher pH in the adjustment solutions results in a final pH closer to neutral. 

 

 

Table 4.1  The pH of the sample after the iodoacetamide reaction, before the addition of 

the adjustment buffer.  The iodoacetamide was buffered with MES at pH 6, 7 or 8 and 

added to the samples with heating.  Even with MES buffer the pH of the sample 

decreased substantially.  Data are presented as mean ± SEM (n=5). 

 

pH of Iodoacetamide buffer pH of sample after iodoacetamide reaction 

6 5.59 ± 0.20 

7 6.29 ± 0.12 

8 6.57 ± 0.11 

 

 

 

 

Figure 4.6  A titration of the carboxyamidomethylation reaction was conducted on 

artificial plasma with buffers at different pH.  The 3 different buffers containing 

iodoacetamide with pH 6, 7, or 8 were added during the second step of the 

carboxyamidomethylation reaction.  There were 5 different adjustment buffers  

containing DTT at pH 5, 6, 7, 8.2 and 8.9 that were added after the 

carboxyamidomethylation reaction.  These adjustment buffers were designed to raise 

the final pH towards neutral (x-axis).  The final pH of the carboxyamidomethylation is 

plotted on the y-axis.  No MT was present in any of the samples (n=1). 
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4.3.8 Buffering the iodoacetamide reaction as a potential solution to ELISA inhibition 

From the previous experiment, reactions with final pH or 4.76, 5.48 and 6.48 were 

chosen to be spiked with commercially obtained HPLC purified, 

carboxyamidomethylated MT with a final concentration of 80 µg/ml.  An MT-free 

aliquot was also retained.  All samples were assayed by competitive ELISA and 

compared to PBS with and without 80 µg/ml of HPLC purified, 

carboxyamidomethylated MT (figure 4.7).  Across the pH ranges, in samples containing 

MT, signal was low in the competitive ELISA as expected.  However, in the 

carboxyamidomethylated samples without MT, decreased signal was observed 

suggesting that primary antibody binding is being inhibited.  Therefore, the samples 

containing MT are not reliable because low signal could be the result of either 

competition for primary antibody or interference to antibody binding to the substrate.  

The unexpected result was that increasing the pH towards neutral had a greater effect at 

inhibiting antibody binding to the substrate.  Therefore the iodoacetamide reaction 

without buffering interferes with the assay but returning the pH towards neutral further 

increased the interference.   

 

 

Figure 4.7 Competitive ELISA on the reaction product of the carboxyamidomethylation 

reaction after pH adjustment.  Samples from the titration experiment were chosen 

according to their final pH and were run on ELISA with or without the addition of 

HPLC-purified, carboxyamidomethylated MT-IIA (10 µg/ml final concentration).  

Compared to 10 µg/ml HPLC-purified, carboxyamidomethylated MT-IIA in PBS, all 

reaction products have reduced absorbance readings.  If no interference was occurring 

in the ELISA, samples with no competitor HPLC-purified, carboxyamidomethylated 

MT-IIA should have equal absorbance to HPLC-purified, carboxyamidomethylated 

MT-IIA dissolved in PBS.  Each sample was assayed in triplicate (error bars=SEM). 
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4.3.9 Optimisation of competitive ELISA with UC1MT antibody 

The interference obtained with iodoacetamide indicated that a new approach to ELISA 

was required to allow quantification of MT-I/II in mouse tissues without non-specific 

interference.  During the course of the work described above using the E9 antibody, a 

competitive ELISA to assay MT-I/II in mouse tissue with the commercially available 

UC1MT mouse monoclonal antibody was published (Emeny et al. 2009).  However, the 

sensitivity of the ELISA was not published nor was any evidence of matrix effects 

assessed.   

 

With the use of the UC1MT antibody, the optimal conditions for competitive ELISA 

were assessed with a chequerboard ELISA with 100 ng/ml competitor MT coating 

concentration (Figure 4.8A).  Similar results were obtained with a 1µg/ml competitor 

MT coating concentration in terms of maximum immunoreactivity and sensitivity (data 

not shown) but 100 ng/ml coating concentration was chosen because it was more cost-

effective.  HPLC-purified Zn7MT and HPLC-purified carboxyamidomethylated MT 

were trialled as the coated antigen.  Binding of UC1MT to carboxyamidomethylated 

MT-IIA appeared to be substantially greater than binding to Zn7MT-IIA (data not 

shown).  The objective of competitive ELISA is to compete soluble antigen with coated 

antigen hence, Zn7MT-IIA was chosen as the coated antigen because lower 

concentrations of soluble MT will be more able to compete with the less 

immunoreactive form of coated MT.  Primary and secondary antibody dilutions of 

1:5000 were chosen from the results of the chequerboard ELISA because this 

combination appeared to have the highest sensitivity of the combinations tested.  

Therefore 100 ng/ml Zn-MT-IIA was used to coat plates for competitive ELISA with 

primary antibody dilution of 1:5000 and a secondary antibody dilution of 1:5000.  A 

standard curve was conducted in quadruplicate for the competitive ELISA using these 

chosen conditions (figure 4.8B).  This ELISA has a lower detection limit of 

approximately 4-10 ng/ml MT-I/II in the original sample or 0.2-0.5 ng per well (see 

figures 4.8 and 4.9). 
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Figure 4.8  (A) Chequerboard ELISA for MT was conducted using the competitive 

technique with the UC1MT antibody clone.  The chequerboard determined that the 

ELISA reached a plateau at lower sample MT concentrations when the primary 

antibody (1°Ab) and secondary antibody (2°Ab) concentrations were lower.  (B) 

Standard curve for competitive MT ELISA conducted with the UC1MT antibody clone 

diluted 1:5000 and secondary antibody diluted 1:5000.  The increased absorbance for 

this antibody concentration in (B) compared to (A) is due to a longer incubation time for 

the TMB substrate step in (1 hour for B versus 10 mins for A).  The curve has been 

fitted to a 4-parameter logistic model (R
2
=0.96).  Data are expressed as the mean of 4 

replicates (error bars=SEM).   
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4.3.10 Displacement curves to assess matrix effects in mouse tissue with UC1MT ELISA 

Displacement curves are designed to test non-specific displacement of the antibody 

from the substrate bound antigen.  If matrix effects are present in the tissue of interest 

they will alter the slope of the displacement curve.   Displacement curves were created 

by serial dilution of Zn-MT-IIA in homogenate samples of varying protein 

concentration and compared to a standard curve created in wash buffer.  Previous 

experience with displacement curves in competitive ELISA suggested that 0.1 mg/ml 

total protein concentration would be an acceptable total protein concentration.  Figure 

4.9 demonstrates that at concentrations of 0.1 mg/ml and 0.01 mg/ml, homogenates 

from both brain and liver did not exert matrix effects on the UC1MT competitive 

ELISA.  This is evident because the displacement curves are parallel to the standard 

curve which indicates that the primary antibody is not being displaced from its antigen 

when liver or brain proteins are present.  Therefore with an absolute detection limit of 4 

ng/ml and a total protein content of 0.1 mg/ml, the lower detection limit for UC1MT 

ELISA in brain and liver is 40-100 ng/mg of total protein.  For comparison, two 

examples of matrix effects are shown in MT-I/II
−/−

 mouse urine assayed by E9 antibody 

direct ELISA, and in rat brain assayed by E9 antibody competitive ELISA (figure 4.10).  

In both cases, the least dilute substrate was able to cause the greatest deviation from the 

gradient of the linear phase of the standard curve.  Therefore MT-I/II can be quantified 

by competitive ELISA with UC1MT antibody in mouse liver and mouse brain 

homogenates but not in mouse urine or rat brain homogenate. 
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Figure 4.9  Displacement curves for Zn7MT-IIA in MT-I/II
−/−

 mouse brain homogenate 

(A) and MT-I/II
−/−

 mouse liver homogenate (B).  Displacement curves constructed in 

solutions with protein content of 0.01 mg/ml and 0.1 mg/ml are parallel to the standard 

curve constructed in PBS containing no protein for both liver homogenate and brain 

homogenate.  Therefore no matrix effects were observed at these concentrations.  Data 

are expressed as the mean of 3 replicates (error bars=SEM). 
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Figure 4.10  Examples of displacement curves that indicate the presence of matrix 

effects.  (A) Direct MT ELISA conducted with the E9 antibody clone in various 

dilutions MT-I/II
−/−

 mouse urine indicates vastly different gradients in the displacement 

curves generated compared to the standard curve.  Hence mouse urine produces matrix 

effects for MT ELISA conducted with the E9 antibody clone.  Data are expressed as the 

mean of 3 replicates.  (B) Displacement curves were prepared in rat brain homogenate 

and competitive ELISA with the UC1MT antibody clone was conducted.  Protein 

content was not assayed for these samples but the matrix effects persisted after 1:200 

dilution of the homogenate.  Rat brain contains MT-I/II which may interfere with the 

position of the displacement curve on the x-axis but the curve would still be parallel to 

the standard curve if matrix effects were not present.  Data are expressed as the mean of 

duplicate assays. 
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4.3.11 Specificity of the UC1MT antibody for MT-I/II and MT-III 

It has previously been shown that UC1MT exhibits equal binding to MT-I and MT-II 

(Lynes et al. 1993), however it is not known if UC1MT cross-reacts with MT-III.  MT-

III would have been present in brain homogenate from MT-I/II
−/−

 mice and did not 

appear to be affecting the UC1MT competitive ELISA based on the displacement 

curves.  However, there may be situations where MT-III concentrations change, 

therefore the affinity of the UC1MT antibody for MT-IIA and MT-III was compared by 

direct ELISA (figure 4.11).  There was a slight increase in the absorbance of MT-III 

standard curve between 7-70 µg/ml which may indicate a small amount of cross-

reactivity of UC1MT with MT-III.  However the direct ELISA was able to detect 

Zn7MT-IIA at concentrations 4 orders of magnitude lower than MT-III.  Therefore 

when used in a competitive ELISA the contribution of MT-III to the competition for the 

UC1MT antibody will be negligible unless MT-III concentrations are many orders of 

magnitude greater than MT-I/II concentrations.  

 

 

Figure 4.11  Cross-reactivity of the UC1MT antibody for MT-III was tested by direct 

ELISA.  Comparison of the standard curves for Zn7MT-IIA (blue lines) and Zn7MT-III 

(red lines) demonstrate some immunoreactivity may occur when MT-III concentrations 

are high but UC1MT detects Zn7MT-IIA at concentrations 4 orders of magnitude lower 

than Zn7MT-III.  Data are expressed as the mean of triplicate experiments (error bars = 

SEM). 
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4.4 Discussion 

The data presented herein demonstrate that the commercially available, UC1MT 

antibody is capable of detecting MT-I/II in samples derived from mouse tissues using 

competitive ELISA.  Outcomes from western blotting determined that direct ELISA 

was not suitable because the anti-mouse secondary antibodies do not distinguish 

between the primary antibody and an endogenous component of mouse isolates, most 

likely IgGs; both the E9 and UC1MT antibodies are mouse IgGs.  Competitive ELISA 

avoids the non-specific binding issues because proteins in the tissue sample are not 

adsorbed onto the microplate.  Only the UC1MT antibody was suitable for competitive 

ELISA because the E9 antibody was not able to generate an ELISA with high enough 

sensitivity to quantify physiological quantities of MT.  Carboxyamidomethylation of 

Zn7MT-IIA was attempted to try to prevent MT aggregation or formation of complexes 

between MT and higher molecular weight proteins and it appeared that this technique 

may have removed endogenous proteins that were interfering with specific MT 

detection.  However it was demonstrated that the iodoacetamide reaction is 

incompatible with both direct and competitive ELISA.  It was also determined that the 

required heat treatment and processing of samples is likely to affect accurate 

quantitation of MT. 

4.4.1 Analysis of displacement curves 

UC1MT has been used to quantitate MT-I/II in mouse tissues previously but the authors 

did not publish displacement curves to verify a lack of interference in the assay (Emeny 

et al. 2009).  The authors did show that samples from MT-I/II
−/−

 mice did not exhibit the 

increases in MT-I/II that were observed in wild type mice after experimental 

manipulation.  However, the absence of signal in the absence of MT does not eliminate 

the possibility of interference.  Molecules in the sample matrix that do not themselves 

give a false positive reading, can interfere with various stages of immunoassays and 

lead to overestimation or underestimation of the analyte (Selby 1999, Span et al. 2003).  

By creating dilution curves in analyte free matrix, information about the affinity of the 

antibody for the antigen for a given matrix can be derived.  Matrix effects can not easily 

be controlled for because they can vary under different conditions.  Serial dilution is a 

method for assessing the presence of matrix effects in individual samples and has been 

used to identify matrix effects that occur in a sub-set of patients in clinical 

immunoassays (Emerson et al. 2003).  Interactions between endogenous antibodies and 

primary antibodies are large contributors to interference in immunoassays and are a 
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potential cause of the variation in matrix effects observed in different patients (Ismail et 

al. 2002).  Therefore, assaying samples from in-bred mouse strains requires the 

generation of displacement curves each time a new mouse strain is analysed.  The lack 

of interference in the displacement curves for UC1MT ELISA demonstrate that MT-I/II 

content in murine liver and brain samples of up to 0.1 mg/ml total protein content can 

be assayed. 

4.4.2 Carboxyamidomethylation of MT  

Initially, carboxyamidomethylation was attempted as a method for preserving 

monomeric MT in tissue samples and showed promise in removing nonspecific 

interactions between anti-mouse IgG secondary antibody and endogenous mouse 

proteins.  The technique has been used successfully to prevent aggregation of MT when 

the detection method is western blotting (Kimura et al. 1991).  However, the reagents or 

products of this reaction disrupt both antigen adsorption to microplates and antibody 

binding in ELISAs.  Before western blotting, SDS-PAGE separates the proteins from 

lower molecular weight species that include iodoacetamide, DTT and hydroiodic acid 

before the adsorption and antibody binding steps.  The formation of hydroiodic acid and 

the consequent decrease in pH is the most likely cause of interference in ELISA.  The 

rationale behind this observation comes from the fact that the reaction with MT in the 

absence of plasma protein resulted in underestimation of MT concentration in the 

ELISA but did not abolish antibody binding to the substrate.  The iodoacetamide 

reaction in the presence of plasma protein, with or without MT, resulted in abolishment 

of antibody binding to the substrate indicating that the reaction with plasma caused 

greater disruption to the ELISA.  The reason for this may be that plasma has a higher 

protein content and contains many thiol groups that can react with iodoacetamide, with 

each carboxyamidomethylation of a thiol group causing formation of hydroiodic acid.  

Hence acid formation would be higher in the reactions containing plasma and likely 

explains why the reactions with plasma had a greater inhibitory effect on the ELISA.  

Antigen coating to the microplate and antibody-antigen interactions are both non-

covalent interactions that are pH dependent.  Attempts to rectify the decrease in pH did 

not improve the problem.  One hypothesis is that by adding buffers to the samples the 

salt concentration is increased with higher pH adjustment solutions containing more 

salts.  Increases in ionic solutes can decrease the amount of non-covalent binding of 

protein in a solution and immunoglobulins are so-called for their propensity to 

aggregate at high salt concentrations.  A second hypothesis to explain the failure of pH 

adjustment to return antibody binding to iodoacetamide treated samples is that DTT is 
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more active as a disulphide reducing reagent at high pH.  Antibodies contain an 

essential disulphide linkage between the heavy and light chains of the protein.  DTT 

may be responsible for reducing this bond, thereby abolishing the binding capacity of 

the antibody.  β-mercaptoethanol, which has a similar action to DTT, can similarly 

interfere with MT ELISA (Tang et al. 1999).  Both iodoacetamide and DTT must be in 

excess of all thiols in the sample for complete carboxyamidomethylation to occur.  

Therefore reducing the concentrations will reduce the efficacy of the 

carboxyamidomethylation reaction.  Due to the nature of the interaction between the 

products of the carboxyamidomethylation reaction and ELISA and the lack of heat 

stability of Zn7MT-IIA, carboxyamidomethylation does not appear to be a suitable 

method to prevent MT forming higher molecular weight complexes via disulfide bonds.    

To accurately measure total MT in tissues an ELISA-compatible approach is still 

required.  

4.4.3 Heat stability of Zn7MT-IIA 

Zn7MT-IIA was lost from solution when heated to 90°C for 10 minutes most likely due 

to MT aggregation.  This step is required for MT assays such as the Cd/Haem and 

Ag/Haem methods which rely on the heat stability of MT to separate it from less heat-

stable proteins (Summer and Klein 1991).  However, it is possible that Cd-MT and Ag-

MT complexes are more heat stable than the native Zn-conjugated form of MT due to 

the higher affinity of MT for cadmium and silver.  For example it has been shown that 

cadmium bound MT is more resistant to metal stripping than zinc bound MT in 

response to NO (Khatai et al. 2004).  In future studies, cadmium treatment of MT-

containing tissue samples may be an applicable method of preventing aggregation of 

MT.  However, this will require careful implementation because cadmium-bound forms 

of MT have been shown to have different levels of immunoreactivity than to zinc-bound 

MT via ELISA (Chan et al. 1992).  Therefore cadmium addition must result in complete 

replacement of zinc bound to MT and must be in excess to MT and any other cadmium 

binding proteins that could compete for cadmium.  However, the concentration of the 

added cadmium must not increase the salt concentration in the sample to a level that 

interferes with non-covalent binding to the microplate required for the ELISA. 

4.4.4 Conclusions 

The UC1MT antibody has been used before to quantify MT in liver and spleen by 

ELISA in mouse tissue (Emeny et al. 2009) although it was incompletely characterised.  

The optimisation of this technique described here allows 100-fold less antibody to be 
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used and 200-fold less MT for adsorption to the substrate compared to the previous 

report.  The presence of matrix effects was examined and it was discerned that a 

solution containing up to 0.1 mg/ml protein can be assayed from either mouse brain or 

liver. The original application for MT-I/II ELISA was to determine if MT-I/II levels in 

mouse plasma after brain injury were similar to the increase in plasma MT observed in 

brain injured patients (Kukačka et al. 2006).  Due to the high protein content of plasma 

and relatively low levels of MT expected in plasma this aim was not possible with the 

currently developed UC1MT ELISA.  Measurement of urine MT levels as an 

approximate measure of MT in circulation was also not possible because matrix effects 

interfere with the ELISA.  It should be noted that prevention of MT aggregation was not 

compatible with ELISA, however few other studies have attempted to address this issue 

and a viable solution for MT immunoassays has yet to be developed.  A consequence of 

this is that ELISA may underestimate the quantity of metallothionein but it will still be a 

useful and conservative measure of comparative increases in MT expression within 

biological samples.  MT in liver is a reliable indicator of systemic MT-induction and the 

use of the ELISA technique to quantify brain injury-induced MT expression in brain 

and liver is the subject of chapter 5. 
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Chapter 5 – Hepatic MT-I/II 

Induction Post-Brain Injury 
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5.1 Introduction 

Multiple studies with MT-I/II
−/−

 mice and transgenic MT-I over-expressing mice have 

shown that MT-I/II may have a beneficial role in the recovery from brain injury (Natale 

et al. 2004, Penkowa et al. 1999a, Penkowa et al.1999b, Penkowa et al.2001, Penkowa 

et al.2006a, Potter et al. 2007, Potter et al. 2009, Suemori et al. 2006).  Because the 

techniques used to ablate or increase MT-I/II expression were not targeted to specific 

tissues (Masters et al. 1994, Palmiter et al. 1993), the actual source or the site of action 

of MT-I/II in this protective context is not known.  There is evidence that MT-I/II 

regulates the inflammatory response to stress or injury, hence the production of MT-I/II 

outside the CNS may be capable of influencing the recovery process within the injured 

brain. 

 

It is well reported in the literature that stress can induce expression of MT-I/II in the 

liver.  Specifically, hepatic MT-I/II expression has been demonstrated in response to 

burn injury (Cho et al. 2004, Ding et al. 2002, Zhou et al. 2003), restraint stress 

(Hernández et al. 1999, Jacob et al. 1999), zinc challenge (Coyle et al 1995, Zhou et al. 

2004), fasting and simulated sepsis with LPS challenge (Philcox et al. 1995, Swapan et 

al. 1990).  The induction of liver MT-I/II expression has been shown to cause increases 

in hepatic zinc content, a response that does not occur in MT-I/II
−/−

 mice (Cho et al. 

2004, Coyle et al. 1995, Ding et al. 2002, Philcox et al. 1995, Zhou et al. 2003).  The 

process of hepatic MT-I/II mediated zinc sequestration has been proposed to explain 

alterations in plasma zinc concentrations in brain-injured patients (Ott et al. 1994).  

Hepatic MT-I/II has not been quantified after brain injury although increased 

concentrations of MT have been detected in the blood of patients with head injury 

(Kukačka et al. 2006) but it is not known if this MT originates from the brain or an 

extraneural source.  Dietary zinc deficiency preceding experimental brain injury in rats 

has been shown to cause greater microglial activation and neuron death compared to 

injured rats on zinc-sufficient diets (Penkowa et al. 2001, Yeiser et al. 2002).  There is 

also a positive association between zinc supplementation after hospital admission and 

neurologic recovery rate in head injured patients (Young et al. 1996).  Given the ability 

of zinc to cause microglial reactivity (Kauppinen et al. 2008), alter Th1/Th2 ratios 

(Prasad et al. 2007) and the ability of zinc deficiency to reduce immune system function 

(DePasquale and Fraker 1979, DePasquale and Fraker 1980, King and Fraker 2000, 

King and Fraker 2002, King et al. 2005), there is potential for MT-I/II to modulate the 

immune system via its role in zinc homeostasis.  This relationship may be responsible 
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for some of the differences in the response to brain injury in wild type and MT-I/II
−/−

 

mice (see chapters 2 and 3). 

 

MT-I and MT-II gene expression is inducible by increased intracellular free zinc 

concentrations, IL-6 and glucocorticoids (reviewed by Kimura & Itoh 2008).  Altered 

zinc homeostasis (McClain et al. 1986), raised concentrations of IL-6 in serum 

(McClain et al. 1991) and increased glucocorticoid availability (Savaridas et al. 2004) 

have all been observed in patients after brain injury.  The aim of this chapter was to 

determine if hepatic MT-I/II expression was up-regulated after cryolesion brain injury.  

Subsequent aims were to determine the mechanism by which hepatic MT-I/II 

expression is induced and to determine if hepatic MT-I/II expression has the capacity to 

sequester zinc to the liver, after brain injury. 

5.2 Methods 

5.2.1 Animals 

Animal housing was identical to the methods outlined in chapter 2.2.  However, extra 

care was taken to maintain a consistent routine around the animals.  Each mouse was 

housed in the experimental facility for at least 1 week prior to any surgical procedure.  

Maintenance tasks were conducted in the animal room at between 9:00 am and 11:00 

am every day to acclimatise the animals to human activity before the day of surgery and 

during the recovery period.  These precautions were taken to minimise confounding 

factors for assay of stress hormones in the animals after cryolesion injury.  Experiments 

were conducted with either 7 animals per treatment group (i.e. mice of the same strain 

and time-point of euthanasia) and total number of experimental size of 56 mice or 6 

animals per group and 48 animals per treatment group. 

5.2.2 Cryolesion brain injury and sham surgery 

Cryolesion surgery was conducted as outlined in chapter 2.2.  Sham injury surgery was 

identical to cryolesion injury in every regard except that the steel rod was not cooled in 

liquid nitrogen before application to the skull.  Note that zero time point animals were 

always untreated and hence differ from sham injured animals.  Zero time point animals 

never received cryolesion surgery or sham surgery. 

5.2.3 Quantitative reverse-transcriptase PCR (RT-PCR) 

The methods for isolating RNA from liver and brain injury biopsies, the synthesis of 

cDNA and the real-time PCR protocols are outlined in chapter 3.2.  Table 5.1 details the 
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primer sequences and the PCR product lengths.  GAPDH was used as the housekeeping 

gene in brain biopsy samples and β-actin was used as the housekeeping gene in liver 

samples for reasons discussed in chapter 3.  Samples from MT-I/II
−/−

 mice were able to 

be analysed for MT-I and MT-II mRNA transcripts because the MT-I and MT-II 

inactivation strategy involved the insertion of premature stop codons into each gene 

which was expected to prevent protein translation but not RNA transcription.  The MT-I 

and MT-II mRNA transcripts from MT-I/II
−/−

 mice differ slightly from wild type mice 

due to the insertion of the short DNA sequences containing the premature stop codons.  

The MT-I and MT-II primer sets were designed to bind to the cDNA for the transcripts 

from both wild type and MT-I/II
−/−

 mice.  Primer binding to sequences distal to the 

transgenic inserts for the MT-I/II
−/−

 mouse cDNA transcripts is demonstrated in figure 

5.1.  The product lengths for the MT-I and MT-II cDNA transcripts are 216 and 171 

base pairs, respectively, in MT-I/II
−/−

 mice. 

 

 

 

Table 5.1   Oligonucleotide primer sets used for quantitative RT-PCR of brain and liver 

samples after cryolesion brain injury.  Product lengths for wild type mice are shown.  

Product lengths for GAPDH and β-actin in MT-I/II
−/−

 mice are the same as for wild type 

mice but the PCR products for the MT-I and MT-II sequences are slightly longer due to 

the transgenic inserts. 

 

Primer 

 

Sequence (5' - 3') Product length 

GAPDH Fwd CCCAGAAGACTGTGGATGG 80 

Rev GGATGCAGGGATGATGTTCT 

β-actin Fwd GTCCACCTTCCAGCAGATGT 260 

Rev AGGGAGACCAAAGCCTTCAT 

MT-I Fwd GCTGTCCTCTAAGCGTCACC 193 

 

Rev AGGAGCAGCAGCTCTTCTTG 

 MT-II Fwd CAAACCGATCTCTCGTCGAT 150 

Rev AGGAGCAGCAGCTTTTCTTG 
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MT-I mRNA       
  1 tctgcactcc gcccgaaaag tgcgctcggc tctgccaagg acgcggggcg cgtgactatg 

 61 cgtgggctgg agcaaccgcc tgctgggtgc aaaccctttg cgcccggact cgtccaacga 

121 ctataaagag ggcaggctgt cctctaagcg tcaccacgac ttcaacgtcc tgagtacctt 

181 ctcctcactt actccgtagc tccagcttca ccagatctcg gaatggaccc caactgctcc 

241 tgctccaccg gataggtacc aattatccgc ggctcctgca cttgcaccag ctcctgcgcc  

301 tgcaagaact gcaagtgcac ctcctgcaag aagagctgct gctcctgctg tcccgtgggc  

361 tgctccaaat gtgcccaggg ctgtgtctgc aaaggcgcgc gatgtaacgg tcacatcacc  

421 cgcggacaag tgcacgtgct gtgcctgatg tgacgaacag cgctgccacc acgtgtaaat  

481 agtatcggac caacccagcg tcttcctata cagttccacc ctgtttacta aacccccgtt  

541 ttctaccgag tacgtgaata ataaaagcct gtttgagtct aaaaaaaaaa aaaaaaaaaa  

601 aaaaaaaaaa aaaaaaaaaa aaaaa 

 

MT-II mRNA       
  1 ggtcgtgcgc aggcccaggg gcgtgtgctg gccatatccc ttgagccaga aaaagggcgt 

 61 gtgcaggcgg cgggggcgcg tgcatggtgc cttccacccg ggcggagctt ttgcgctcga 

121 cccaatactc tccgctataa aggtcgcgct ccgcgtgctt ctctccatca cgctcctaga 

181 actcttcaaa ccgatctctc gtcgatcttc aaccgccgcc tccactcgcc atggacccca 

241 actgctcctg tgcctccgat ggatccacgg ttgactaagg tagatcctgc tcctgcgctg  

301 gcgcctgcaa atgcaaacaa tgcaaatgta cttcctgcaa gaaaagctgc tgctcctgct  

361 gccccgtggg ctgtgcgaag tgctcccagg gctgcatctg caaagaggct tccgacaagt  

421 gcagctgctg tgcctgaagg ggggcggagg ggtccccaca tctgtgtaaa tagaccatgt  

481 agaagcctag ccttttttgt acaaccctga ctcgttctcc acaacttttt ctataaagca 

541 tgtaactgac aataaaagcc gttgacttga ttaattc 

 

 

Figure 5.1  cDNA for the MT-I and MT-II mRNA transcripts from MT-I/II
−/−

 mice 

compiled from (genbank accession numbers NM_013602.3 and NM_008630.2 and 

Masters et al. 1994).  Underlined text designates the forward primer sequence and 

sequence complementary to the reverse primer.  The blue text indicates the 

transgenically inserted bases that contain the premature stop codons.  Premature stop 

codons are coloured red and the start codons have been coloured green. 
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5.2.4 UC1MT competitive ELISA 

Brain biopsies and liver samples were ground to a fine power in a mortar and pestle 

under liquid nitrogen.  The powdered tissue was homogenised in 150 mM NaCl, 20 mM 

Tris-HCl, 1% Igepal, pH 7.6 with EDTA-free Halt-protease inhibitor cocktail (Thermo 

Scientific) with an Ultra-Turrax mechanical homogenizer (IKA).  Samples were 

centrifuged at 10 000g for 10 minutes and the supernatant was retained for assay.  

Protein concentration was obtained by Bradford assay (Bradford 1976). 

 

Zn7MT-IIA (HPLC-purified rabbit MT-IIA conjugated to 7 Zn
2+

 ions, Bestenbalt, 

Estonia) was coated to a 96-well microplate (Nunc) in 50 mM Na2CO3 solution at 4 °C 

overnight on an orbital shaker.  All subsequent stages took place at room temperature.  

Following a 5 minute rinse in wash buffer, wells were blocked with 150 µl casein 

solution (2.5%, pH 7.4) for 30 minutes.  The wells were washed again in wash buffer 

for 5 minutes.  Zn7MT-IIA standards were serially diluted by a factor of 4 in ELISA 

wash buffer to create standard curves.  Mouse tissue homogenates or plasma samples 

were diluted in wash buffer to achieve a protein concentration of 0.1 mg/ml.  Samples 

were applied to the plate in triplicate or quadruplicate in 50 µl aliquots first.  Primary 

antibody (UC1MT mouse anti-MT-I/II, Assay designs) was diluted 1:5000 (200ng/ml, 

final concentration) in ELISA wash buffer and applied to sample- or standard-

containing wells.  This competition step was incubated for 1 hour.  The plate was rinsed 

for 5 minutes, 3 times with wash buffer.  Secondary antibody (Dako, Goat anti-mouse 

IgG-HRP conjugate) was diluted 1:2000 in ELISA wash buffer and applied to each well 

in 50 µl aliquots and incubated for 1 hour.  The plate was rinsed for 5 minutes, 3 times 

with wash buffer.  TMB peroxidase substrate (KPL) was incubated in the wells in 50 µl 

aliquots for 1 hour.  The reaction was terminated with 50 µl of 1 M phosphoric acid and 

the absorbance of the microplate was measured at 450 nm.  A standard curve was 

generated from the rabbit MT-IIA standard solutions which allowed calculation of MT-

I/II content in tissue sample solutions.  Calculation of sample MT-I/II concentrations 

from the standard curve was conducted with 4-parameter logistic modelling as outlined 

in chapter 4.  The MT-I/II concentration of samples with absorbance readings less than 

or equal to the asymptote for the lower limit of the assay could not be quantified.  These 

data points were assigned a value equal to the ELISA detection limit, as a conservative 

estimate for statistical analysis. 
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5.2.5 Radioimmunoassay for corticosterone 

Blood was obtained from mice at 0, 1, 3 or 7 DPI via cardiac puncture with syringes 

containing 20 µl of 5000 units/ml heparin solution (Sigma).  Blood was centrifuged at 

14 000g for 5 minutes to obtain plasma which was snap-frozen in liquid nitrogen for 

storage.  Assay of plasma corticosterone was conducted by Prof. N.W. Pankhurst and 

Dr P.M. Pankhurst as described in Pankhurst et al. (2008).  Corticosterone was extracted 

from 50 µl of plasma with 1 ml of ethyl acetate in a polycarbonate tube.  The tube was 

centrifuged at 2000g for 5 minutes then 50 µl of the supernatant was transferred to a 

separate tube and the solvent was evaporated overnight.  To each sample tube, 200 µl of 

3
H-corticosterone solution (1,2,6,7-

3
H(N)-corticosterone, PerkinElmer Life Sciences, 

0.02 µCi/ml; 70-100 Ci/mmol in PBS containing 0.1% gelatin) was added followed by 

the addition of 200 µl polyclonal rabbit anti-corticosterone antibody in PBS-1% gelatin 

(Sigma, diluted to give 40-50% binding of 
3
H-corticosterone in the absence of a 

competitor).  This competitive step was incubated overnight at room temperature.  

Unbound corticosterone was removed from antibody-bound corticosterone by addition 

of 200 µl of dextran coated charcoal solution (0.05% dextran, 0.5% charcoal, 0.1% 

gelatin in PBS) for 10 minutes followed by decantation of the supernatant into 

scintillation vials.  To each vial, 4ml of Ecolite scintillation cocktail was added and the 

radioactivity of the samples was counted on a scintillation counter.  Standard solutions 

of unlabelled corticosterone were prepared by serial dilution in assay buffer and were 

added directly to assay tubes.  A standard curve was generated to calculate the 

concentration of corticosterone in each sample.  All samples and standards were assayed 

in duplicate.  Extraction efficiency for mouse plasma was determined by adding a 

known quantity of 
3
H-corticosterone to plasma samples pooled from several mice.  

Extraction with ethyl acetate was conducted and scintillation counts were compared to 

solutions of 
3
H-corticosterone of equivalent original concentration that had not 

undergone extraction.  The extraction efficiency was determined to be 84.5% hence the 

radioimmunoassay determined-concentration of all samples was adjusted by a factor of 

1.18. 

5.2.6 Liver zinc assay by atomic absorption spectroscopy 

Liver samples from uninjured and injured mice were dissected out and freeze-clamped 

in liquid nitrogen.  Each sample was ground to a fine power under liquid nitrogen with a 

mortar and pestle.  The powdered liver was homogenised in 1 ml of MilliQ water with a 

Potter-Elvehjem homogeniser.  The homogenate was transferred to a pre-weighed tube 

and was lyophilised.  The gross weight of the tube was measured after lyophilisation to 
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calculate the net weight of the sample.  Lyophilised liver samples were dissolved in 3.5 

ml of 70% nitric acid (Trace select, Fluka) by heating to 70°C for 1 hour.  The samples 

were further diluted with 3 ml of MilliQ water.  Centrifugation at 2000g for 20 minutes 

was required to remove a floating layer of insoluble matter and a small quantity of 

protein that precipitated in some samples with the decrease in acid concentration.  

Before centrifugation 0.5 ml of 30% hydrogen peroxide (Trace select, Fluka) was added 

to each sample to oxidise any thiols present in the protein precipitate and thereby restrict 

its zinc binding capacity.  The infranatant from each sample was obtained for each 

sample taking care to avoid aspiration of the pellet.  Zinc concentration in each sample 

was assayed on an atomic absorption spectrometer (GBC Avanta Σ).  Zinc concentration 

of the sample solutions was determined by comparison to the absorbance of zinc 

sulphate standard solutions prepared in 35% nitric acid and 2.14% hydrogen peroxide in 

MilliQ water. 

5.2.7 Statistical analysis 

Homogeneity of variances between groups within each data set was determined with 

Levene’s test.  The Box-Cox test was used to determine the appropriate transformation 

for data sets with heterogeneous variances between groups.  Comparisons of MT-I and 

MT-II mRNA, MT-I/II protein expression and liver zinc content were conducted by 1-

way ANOVA with Tukey’s B post-hoc test.  The comparison of corticosterone between 

wild type and MT-I/II
−/−

 mice was conducted with 2-way ANOVA on the factors of 

time after injury and strain of mouse.  Statistically significant differences in the factor of 

time were differentiated with Tukey’s B post-hoc test.   

5.3 Results 

5.3.1 MT-I and MT-II induction in brain post-cryolesion brain injury  

MT-I and MT-II mRNA were increased 5.0 (P < 0.001) and 32.6 fold (P < 0.001), 

respectively, at 1 DPI in wild type mice (figure 5.2).  At 3 and 7 DPI, MT-I and MT-II 

mRNA are no longer significantly elevated from basal levels.  In MT-I/II
−/−

 and wild 

type mice, MT-I and MT-II mRNA increased to similar levels in response to cryolesion 

injury.  It is interesting to note that MT-I/II
−/−

 mice had significantly lower levels of 

MT-I mRNA than wild type mice at 0, 3 and 7 DPI when MT-I was at basal levels.  

MT-II mRNA was also significantly lower in MT-I/II
−/−

 mice compared to wild type 

mice at 1 and 3 DPI.  UC1MT ELISA demonstrated that MT-I/II protein in the vicinity 

of the lesion was increased, albeit with a high degree of variability, at 1 DPI.  MT-I/II 
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protein remained at an intermediate concentration at 3 and 7 DPI (figure 5.3).  Except 

for one outlier, the uninjured mice recorded MT-I/II concentrations at the detection limit 

of the ELISA so it is not possible to determine a definitive basal concentration of MT-

I/II protein in mouse cortex or the relative increase in MT-I/II protein in injured versus 

uninjured mice.  Regardless, the data demonstrate that MT-I/II is up-regulated after 

injury in the cryolesion injury site. 

 

Figure 5.2  MT-I and MT-II mRNA induction in the injury site was quantified by RT-

PCR.  (A) MT-I mRNA increased to a similar extent in MT-I/II
−/−

 and wild type mice at 

1 DPI.  MT-I mRNA was not increased significantly from basal expression at other time 

points but the resting levels and 3 and 7 DPI levels in MT-I/II were lower than wild type 

mice.  (B) MT-II mRNA was increased a 1 DPI to the same level in wild type and MT-

I/II
−/−

 mice.  MT-II mRNA decreased from 1-3 DPI but was still significantly higher 

than resting levels in wild type mice.  In uninjured mice and mice at 3 DPI there was a 

significant difference between wild type and MT-I/II
−/−

 mice.  Significant differences 

were determined by 1-way ANOVA with Tukey’s B post-hoc test; groups that share 

lower case letters are not significantly different from each other (for both graphs; n=6-7, 

error bars=SEM).  These results are representative of a second repeat of this experiment. 
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Figure 5.3  MT-I/II protein levels in the cryolesion injury site of wild type mice were 

assayed by UC1MT ELISA.  The expression of MT-I/II protein was highly variable in 

the cryolesion injury site and three data points (circled in red) were treated as outliers 

and excluded from statistical analysis.  MT-I/II expression was significantly elevated at 

1 DPI then decreased at 3 and 7 DPI but remained higher than resting concentrations.  

Significant differences were determined by 1-way ANOVA with Tukey’s B post-hoc 

test; groups that share lower case letters are not significantly different from each other 

(n=5-7, error bars=SEM). 

 

5.3.2 MT-I and MT-II induction in liver post-cryolesion brain injury 

Similar to the injured brain, wild type mice showed a 4.9 fold increase in MT-I mRNA 

at 1 DPI in the liver, followed by subsequent decreases at 3 and 7 DPI (figure 5.4A, P < 

0.001).  MT-II mRNA was significantly increased at 1 DPI but was maximal at 3 DPI 

with a 40.4 fold increase in expression over uninjured levels (figure 5.4B, P < 0.001).  

Unlike the situation in the brain, the level of liver MT-I and MT-II mRNA expression 

was similar in uninjured wild type and MT-I/II
−/−

 mice.  However, at the time points 

when hepatic MT-I and MT-II mRNA was highly expressed in wild type mice after 

injury (1-3 DPI), MT-I/II mRNA levels in MT-I/II
−/−

 mice were significantly attenuated.  

UC1MT ELISA was used to quantify the changes in hepatic MT-I/II protein after brain 

injury (figure 5.5).  The temporal profile of MT-I/II protein expression is shifted such 

that maximal protein expression occurs much later than maximal MT-I and MT-II 

mRNA expression.  During the experimental period, MT-I/II protein expression was 

highest at 7 DPI which does not preclude that hepatic MT-I/II expression may increase 

further at later time-points.  These results demonstrate that hepatic MT-I/II protein 

expression is a late event after brain injury in the present cryolesion model.  
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Figure 5.4  Expression of  MT-I and MT-II mRNA in the liver of wild type and MT-

I/II
−/−

 mice after brain injury was quantified by RT-PCR.  (A) MT-I mRNA expression 

showed its greatest increase at 1 DPI and 3 DPI in wild type mice.  MT-I mRNA 

expression also increased in MT-I/II
−/−

 mice at 1 DPI, but not 3DPI and was 

significantly lower than wild type mice at both 1 and 3 DPI.  (B) MT-II mRNA was 

increased at 1 DPI in wild type mice but was at peak levels at 3 DPI.  MT-I/II
−/−

 mice 

were unable to increase MT-II mRNA levels to the same extent as wild type mice at 3 

DPI but did have similar levels of MT-II mRNA expression to wild type mice at all 

other time points.  Significant differences were determined by 1-way ANOVA with 

Tukey’s B post-hoc test; groups that share lower case letters are not significantly 

different from each other (for both graphs; n=6-7, error bars=SEM).  These results are 

representative of a second repeat of this experiment. 
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Figure 5.5  Liver MT-I/II protein levels after cryolesion injury to the brain were 

assayed by UC1MT ELISA in wild type mice.  Hepatic MT-I/II protein levels were not 

increased until 3 DPI and showed a further increase at 7 DPI.  Significant differences 

were determined by 1-way ANOVA with Tukey’s B post-hoc test; groups that share 

lower case letters are not significantly different from each other (n=7, error bars=SEM). 
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5.3.3 Plasma corticosterone concentration increases after cryolesion brain injury 

The glucocorticoid, corticosterone, is the primary stress hormone in rodents, and has an 

analogous role to cortisol in humans (Sorrells et al. 2009).  Corticosterone levels were 

assayed to determine the potential for glucocorticoid signalling to influence hepatic MT 

synthesis after brain injury (figure 5.6).  2-way ANOVA revealed no significant 

difference between plasma glucocorticoid concentrations in wild type and MT-I/II
−/−

 

mice at any time point before or after injury.  However there were significant changes in 

corticosterone over time, after injury (figure 5.6A, P(strain) = 0.300, P(time) = 0.002, 

P(interaction) = 0.260).  Figure 5.6B shows the pooled data from both strains of mice 

which, with twice as many samples per time-point, better demonstrates the changes in 

corticosterone expression over time.  Both cryolesion-injured mice and sham-operated 

animals have significantly increased plasma corticosterone concentrations compared to 

uninjured animals but the sham and injured animals were not significantly different at 1 

DPI.  This indicates that the stress of sham surgery alone is sufficient to increase the 

plasma corticosterone concentration and that cryolesion to the cortex does not additively 

increase this.  Due to the fact that sham injury induces an increase in plasma 

corticosterone, sham injury was utilised to assess the ability of glucocorticoids to induce 

hepatic MT-I/II in the absence of brain injury.  Figure 5.7 demonstrates that sham 

operated animals had no increase in hepatic MT-I mRNA or MT-II mRNA over the 

seven day experimental period.  Therefore, observed increases in plasma corticosterone 

in the absence of brain injury do not appear to be able to induce hepatic MT-I/II 

expression. 
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Figure 5.6  Corticosterone concentrations in plasma after cryolesion injury to the brain 

were assayed by RIA in wild type and MT-I/II
−/−

 mice.  Graph (A) shows the data 

separated between wild type and MT-I/II
−/−

 mice.  Significant differences were 

determined by 2-way ANOVA with Tukey’s B post-hoc test on the factor of time; 

groups that share lower case letters are not significantly different from each other (n=5-

6, error bars=SEM).  No significant differences in plasma corticosterone were found at 

any time-point between the wild type and MT-I/II
−/−

 strains.  Graph (B) is an alternative 

representation of the data set with data for both strains of mice pooled at each time point 

(n=11-12, error bars=SEM).  Plasma corticosterone concentrations are increased equally 

1 day after mice receive cryolesion injury or sham surgery.   
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Figure 5.7   Expression of MT-I and MT-II mRNA in the liver of wild type mice after 

sham surgery was quantified by RT-PCR.  Hepatic MT-I mRNA (A) and MT-II mRNA 

(B) expression does not change significantly after sham surgery (n=5, error bars=SEM).  

Significant differences were determined by 1-way ANOVA with Tukey’s B post-hoc 

test; groups that share lower case letters are not significantly different from each other 

(for both graphs; n=5, error bars=SEM). 
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5.3.4 Liver zinc post-injury 

Liver zinc was assayed by atomic absorption spectroscopy in MT-I/II
−/−

 and wild type 

mice.  Brain injury caused a slight decrease in liver zinc content at 1 and 3 DPI in both 

strains of mouse (figure 5.8, P < 0.001).  The liver zinc content in wild type and MT-

I/II
−/−

 mice was only significantly different at 7 DPI with liver zinc levels being 15.2% 

higher in wild type mice, a similar level to that seen in uninjured mice.  MT-I/II
−/−

 mice 

at 7 DPI had a similar zinc content to mice at 1 and 3 DPI.  Therefore, the difference in 

liver zinc content between wild type and MT-I/II
−/−

 mice occurred when hepatic MT-I/II 

protein levels were highest in wild type mice. 

 

 

 

 

 

Figure 5.8  Liver zinc content was measured by atomic absorption spectroscopy.  Liver 

Zinc content was decreased in both wild type and MT-I/II
−/−

 mice at 1 and 3 DPI.  1-

way ANOVA revealed significantly higher hepatic zinc in wild type than MT-I/II
−/−

 

mice at 7 DPI (n=5-6, error bars=SEM).  Groups that share lower case letters are not 

significantly different from each other as determined by Tukey’s B post-hoc test on the 

factor of time after injury. 
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5.4 Discussion 

The data presented here demonstrate that MT-I/II expression is induced, not only in 

brain following brain injury, but also in the liver.  Interestingly, there is a distinct 

temporal difference between the induction of MT-I/II expression in the brain and liver.  

In the brain, MT-I/II protein expression is induced rapidly after injury and begins to 

recede after 24 hours.  However, liver MT-I/II protein is maximally induced at later 

time-points after injury.  Maximal hepatic expression of MT-I/II at 7DPI in wild type 

mice coincided with 15.2% greater liver zinc content compared to MT-I/II
−/−

 mice.  This 

suggests that MT-I/II can participate in regulation of zinc homeostasis when it is 

expressed in the liver after brain injury.  The inability of MT-I/II
−/−

 mice to express 

hepatic MT-I/II protein after brain injury may affect zinc-dependent processes after 

brain injury. 

5.4.1 Hepatic MT-I/II induction post-brain injury 

Increases in intracellular free zinc concentration, glucocorticoid receptor activation and 

IL-6 mediated STAT3 signalling are the three direct mechanisms that are capable of 

inducing MT-I/II at the transcriptional level (reviewed by Kimura and Itoh 2008).  

Intraperitoneal zinc injection has been shown to directly induce hepatic MT-I/II in mice 

(Coyle et al. 1995, Zhou et al. 2004).  Restraint stress in rodents can induce hepatic MT-

I/II expression which suggests that glucocorticoids or IL-6 can increase hepatic MT-I/II 

synthesis independently of zinc (Jacob et al. 1999).  IL-6 
−/−

 mice have been shown to 

be less capable of increasing hepatic MT synthesis in response to restraint stress and the 

glucocorticoid receptor inhibitor, RU486, can inhibit hepatic MT-I/II synthesis 

(Hernández et al. 2000).  IL-6 
−/−

 mouse studies have also shown that there is a partial 

requirement for IL-6 in normal MT-I/II induction in the injured CNS (Penkowa et al. 

1999c).  In chapter 3 of the present thesis, IL-6 mRNA was found to be up-regulated in 

the injury site after injury but IL-6 protein was not detected in plasma by cytokine 

assay.  Therefore IL-6 may participate in induction of MT-I/II expression in the brain 

but was not required to induce hepatic MT-I/II synthesis.    Many cytokines induce MT-

I/II but it is thought that this occurs via stimulation of local IL-6 synthesis in the target 

tissue (De et al. 1990).  In the cryolesion model, plasma cytokine levels were not found 

to increase consistently and no IL-6 mRNA expression was detectable in the liver of 

mice after injury which suggests that cytokines were not responsible for the increased 

liver MT-I/II expression observed after brain injury.  Therefore IL-6 does not appear to 

be required for hepatic MT-I/II expression in mice after cryolesion injury.  Notably 
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however, IL-6 has been shown to increase in human plasma after brain injury (McClain 

et al. 1991), therefore IL-6 may have the capacity to influence hepatic MT-I/II 

expression in a clinical setting or in other animal models where plasma IL-6 levels do 

increase.   

 

Plasma corticosterone concentration was assayed to determine if increases could be 

responsible to induction of hepatic MT-I/II synthesis.  Both cryolesion and sham 

surgery led to increases of corticosterone to equivalent levels, in both conditions.  The 

fact that sham surgery was incapable of inducing liver MT-I/II despite the fact that 

corticosterone was increased suggests that corticosterone alone is not responsible for 

inducing hepatic MT-I/II expression.  It warrants mention that corticosterone can 

enhance zinc mediated increases in MT synthesis in hepatocytes in vitro (Coyle et al. 

1993) which implies that the increased plasma corticosterone concentrations after 

cryolesion injury could enhance the pre-existing expression of hepatic MT-I/II.  

Pharmacological corticosterone administration has been shown to induce MT synthesis 

in the brain (Beltramini et al. 2004) therefore it is possible that corticosterone, and IL-6, 

play a role in MT-I/II expression in the brain injury site.  In the present model, IL-6 was 

found to be unlikely to play a role in hepatic MT-I/II induction and increased 

corticosterone alone does not lead to increased hepatic MT-I/II levels but an enhancing 

role of corticosterone on hepatic MT-I/II transcription can not be excluded without 

pharmacological inhibition of the glucocorticoid receptor.  An interesting possibility is 

that the changes in MT-I and MT-II mRNA levels arise due to differences in mRNA 

stability.  A combination of changes in mRNA stability and mRNA expression may 

account for the fact that maximal MT-I and MT-II mRNA levels precede maximal MT-

I/II protein levels in the liver post-brain injury.  

5.4.2 Hepatic MT-I/II and zinc homeostasis 

Changes in zinc homeostasis are difficult to observe in vivo due to the diverse range of 

molecules that bind zinc within an organism.  To further complicate matters, increases 

in free zinc are rapidly rectified by MT-I/II expression which in turn, is induced by free 

zinc itself.  For this reason, altered zinc homeostasis was not directly assessed in the 

present study.  The induction of liver MT-I and MT-II mRNA was rapid, occurring 

within 24 hours of injury, hence a rapid process is required for the zinc mediated 

induction of liver MT-I/II to be possible.  Oxidative stress is one rapidly occurring 

process that can displace zinc from metalloproteins, effectively increasing the free zinc 

concentration inside the affected cell which initiates MT-I/II transcription (Giles et al. 
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2002).  Head injury to rats has been shown to induce a whole body oxidative stress 

within 15 minutes of the injury (Shohami et al. 1999) which may represent a rapid 

method by which zinc homeostasis is altered in non-CNS organs after brain injury.  In 

addition to a rapid change in zinc homeostasis, a prolonged change in zinc homeostasis 

is also required to explain the maximal expression of MT-II mRNA at 3 DPI.  It has 

been proposed that the hypermetabolic and hypercatabolic state that is induced by brain 

injury is responsible for release of zinc from muscle breakdown (McClain et al. 1986).  

In the present study, the decreases in hepatic zinc levels after injury are evidence of 

altered zinc homeostasis because for zinc to leave the liver it must first transition from 

protein or membrane associated zinc to free zinc before it can be transported out of cells 

and into circulation.  Therefore, this increase in cytoplasmic free zinc may be 

responsible for the induction of hepatic MT-I/II after brain injury. 

5.4.3 MT-I/II expression may be self-regulated 

In the present study, MT-I/II
−/−

 mice had lower levels of MT-I and MT-II mRNA 

transcripts in the brain than wild type mice when at basal levels but were able to mount 

a normative MT-I and MT-II expression profile in response to brain injury.  The inverse 

was true in the liver with MT-I/II
−/−

 mice having similar levels of MT-I and MT-II 

mRNA to wild type mice when at basal expression levels but MT-I/II
−/−

 mice were 

unable to mount the same response to injury as wild type mice.  Therefore it is possible 

that the presence of MT-I/II protein has an auto-regulatory effect upon the level of MT-I 

and MT-II mRNA expression.  MT-I/II, itself represents a source of protein bound zinc 

that can be liberated by oxidative stress and has been shown to be responsible for zinc 

release when nitric oxide levels increase (Khatai et al. 2004, Spahl et al. 2003).  MT-I/II 

has also been shown to donate or remove zinc molecules to, and from, zinc-dependent 

enzymes (Jacob et al. 1998, Maret et al. 1999, KręŜel and Maret 2008) or transcription 

factors (Zeng et al. 1991), affecting their activity.  MT-I/II expression has been shown 

to inhibit the zinc-mediated activation of the transcription factor NF-κB (Kim et al. 

2003).  Hence MT-I/II may be able to buffer zinc availability to metalloproteins or 

affect transcription factor activity.  It is interesting that the relationship between the 

quantity of MT-I/II protein being expressed and the expression of MT-I and MT-II 

mRNA in MT-I/II
−/−

 mice is inverted in the brain and liver.  It is possible that zinc 

trafficking is very different in the two organs which may affect how zinc is utilised to 

regulate MT-I/II induction.   
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One caveat in the use of  MT-I/II
−/−

 mice to study MT-I/II self-regulation is that while 

the MT-I/II
−/−

 mice do produce MT-I and MT-II transcripts, these have been altered due 

to the inserts that produce the premature stop codons (Masters et al. 1994).  Processes 

known collectively as nonsense-mediated mRNA decay exist to remove abnormal 

transcripts (reviewed by Amrani et al. 2006) which may explain reduced MT-I and MT-

II mRNA levels in MT-I/II
−/−

 mice.  However the fact that lowered MT-I and MT-II 

mRNA levels in MT-I/II
−/−

 mice only occurs under certain conditions argues against a 

non-specific degradation of the transgenic MT-I and MT-II mRNAs which would be 

expected to occur continuously as a part of normal transcriptome maintenance.   

5.4.4 Zinc homeostasis post-brain injury 

More than two decades ago, McClain et al. (1986) observed decreases in plasma zinc 

and activation of the acute phase response occurring simultaneously after head injury.  It 

was later postulated that the activation of the acute phase response lead to hepatic MT-

I/II up-regulation which was the cause of decreased plasma zinc concentration (Ott et al. 

1994).  In principle the up-regulation of hepatic MT-I/II has the ability to sequester free 

zinc from plasma (Cho et al. 2004, Coyle et al 1995, Ding et al. 2002, Philcox et al. 

1995, Zhou et al. 2003).  However whether this occurs after brain injury had never been 

tested experimentally, to the best of my knowledge.  The current findings indicate that 

while hepatic MT-I and MT-II mRNA levels increase within 24 hours of brain injury, 

significant increases in protein occur from 3 to 7 DPI and possibly at later time-points 

that were not assayed in this study.  The highest hepatic MT-I/II protein concentration 

coincided with a higher liver zinc content in wild type mice compared to MT-I/II
−/−

 

mice which occurred at 7 DPI.  Previously, Coyle et al. (1995) demonstrated that wild 

type mice injected intraperitoneally with zinc sulphate have a 60% increase in hepatic 

zinc content within 16 hours whereas MT-I/II
−/−

 mice injected with zinc have no change 

in hepatic zinc content, meanwhile plasma zinc levels and urinary excretion of zinc 

were higher in MT-I/II
−/−

 mice.  By comparison, the difference in zinc content in the 

liver of MT-I/II
−/−

 mice and wild type mice after brain injury was smaller in magnitude 

but it should be noted that no exogenous zinc apart from the normal dietary zinc was 

being introduced into the animal’s system.  Therefore, hepatic sequestration of zinc in 

wild type mice may be having significant effects on the labile zinc pool of the animal 

after brain injury.  Therefore zinc dependent processes may differ in wild type and MT-

I/II
−/−

 mice at 7 DPI.  Increases in urinary excretion of zinc with the passage of time 

after brain injury has been observed previously (McClain et al. 1986) and may explain 

the decreases we observed in hepatic zinc after brain injury.  To investigate the effect of 
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MT-I/II on zinc homeostasis after brain injury further, more information is required in 

regard to zinc availability in cells and plasma and zinc excretion/secretion after brain 

injury.  A major question to be answered is what causes zinc homeostasis to change 

after brain injury? 

5.4.5 Conclusion 

This study demonstrates that MT-I/II is induced in the liver after brain injury.  The 

factor that induces hepatic MT-I/II was not identified but IL-6 does not appear to be 

required and corticosterone alone is insufficient.  Therefore a zinc-mediated mechanism 

appears likely and a component of the observed response may reflect MT-I/II protein 

regulating the expression of its own gene, indirectly via localised changes in zinc 

concentration.  The data presented here demonstrate not only that MT-I/II can be 

induced in a non-CNS organ after brain injury, but also that MT-I/II has the potential to 

influence zinc homeostasis in the entire organism.  Future study is required to determine 

if hepatic MT-I/II expressed after brain injury alters zinc homeostasis in a feedback 

manner that affects the progression of brain injury. 
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Chapter 6 – Age-dependent 

changes to the blood of the 

MT-I/II
−/−

 mouse 
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6.1 Introduction 

The following chapter describes an interesting and unexpected finding that arose during 

the study of MT-I/II in brain injury.  During haematological analysis of leukocytes after 

brain injury, it was found that there are some differences in the red blood cell numbers 

of MT-I/II
−/−

 mice in comparison to wild type mice.  These findings are interesting 

because the fact that the absence of MT-I/II affects erythrocyte numbers is suggestive of 

a specific zinc regulatory role of MT-I/II in vivo. 

 

Erythropoiesis is the process by which erythrocytes are produced and is a divergent 

branch of the haematopoiesis that occurs in the bone marrow.  Hematopoietic stem cells 

give rise to all of the various types of blood cells.  Erythropoiesis requires the 

differentiation of hematopoietic stem cells into erythroid progenitor cells. Erythroid 

progenitor cells undergo several stages of differentiation before they give rise to the 

erythroblasts that, through further stages of differentiation, produce circulating 

erythrocytes (reviewed by Testa et al. 2004).  One of the final steps in the development 

of an erythrocyte before it enters circulation is the enucleation of the cell which signifies 

the cessation of protein synthesis for the rest of the erythrocyte life span.  The remnants 

of ribosomal RNA in newly formed erythrocytes can still be found in the cytoplasm for 

1-2 days after enucleation and this property is used to identify the very young 

erythrocytes which are known as reticulocytes.  In humans the mean life span of an 

erythrocyte is 120 days but in mice the mean erythrocyte life-span is a much shorter 50 

days (Saxena & Khandelwal 2009).  Erythropoiesis occurs continuously to replace 

aging erythrocytes which are constantly being removed from circulation by phagocytic 

splenic macrophages (Bennet and Kay 1981).  The main mechanism by which 

erythropoiesis is regulated is by the production of the cytokine erythropoietin which is 

produced in the kidneys and to a lesser extent in the liver and its secretion is up-

regulated under hypoxic conditions (reviewed by Moritz et al. 1997).   

 

Erythropoietin is primarily released from the kidneys to stimulate erythropoiesis in bone 

marrow.  Erythropoietin has been shown to induce MT synthesis in an erythroleukemic 

cell line (Abdel-Mageed et al. 2003) and in human cord blood precursor cells (Rahman 

and De Ley 2001), suggesting a role for MT in erythropoiesis.    MT is inducible in red 

blood cell (RBC) precursor cells upon zinc treatment (Rahman et al. 2000).  Deficiency 

of zinc, the main physiological ligand of MT-I/II, leads to a decrease in erythrocyte 

formation in rats (Hendy et al. 2001, Morgan et al. 1995).   Deficiency of copper, 
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another physiological ligand of MT-I/II, often leads to anaemia and neutropenia 

indicating that copper has a role in haematopoiesis (reviewed by Danks 1988, Mually et 

al. 2004).  Erythrocytes express several zinc transporters that are regulated according to 

nutritional zinc levels (Ryu et al. 2008), presumably to maintain constant zinc 

concentrations, suggesting that zinc is not only important for erythropoiesis, but that an 

optimal zinc level exists.  The ability of MT to bind to zinc and copper may be a further 

mechanism to maintain zinc levels during the development of erythrocytes.   

 

MT-I/II
−/−

 mice have been shown to have a greater susceptibility to cadmium induced 

anaemia than wild type mice but there was no difference in erythrocyte numbers or 

haemoglobin content in control mice from both strains (Liu et al. 1999).  In this chapter 

an age-dependent decrease in blood haemoglobin content is identified in MT-I/II
−/−

 

mice.  MT-I/II
−/−

 mice that were the same age as those used in the study by Liu et al. 

(1999) were not substantially different to wild type mice in their blood parameters.  

However, there was an age-dependent decrease in haemoglobin levels in wild type and 

MT-I/II
−/−

 mice that affected MT-I/II
−/−

 mice at a younger age.  Zinc sulphate was 

administered to young wild type and MT-I/II
−/−

 mice to investigate the plausibility of 

the hypothesis that a zinc-dependent mechanism was involved. 

6.2 Materials and Methods 

6.2.1 Animals 

129SI/SvImJ mice and 129S7/SvEvBrd-Mt1
tm1Bri

 Mt2
tm1Bri

/J (Masters et al. 1994) were 

housed as detailed in chapter 2.  For the first experiment male mice of each strain were 

used and were 6 months of age at time of sampling (n=6).  The mice received no 

experimental treatment in this experiment.  In the second experiment 3 month-old male 

mice from each strain were given either no treatment or were injected with 5 

micrograms of zinc (as zinc sulphate) per gram of body weight each day for five 

successive days (n=5).  A saline injection was not used because of the potential to cause 

stress that could lead to induction of hepatic MT-I/II in the wild type mice.  For the 

third experiment only female mice were available at an age above 1 year.  Female mice 

from both strains were from 13 to 16 months of age and received no experimental 

treatment before blood sampling (n=6). 
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6.2.2 Haematological analysis 

Blood was obtained by cardiac puncture with syringes containing EDTA (3 mg per ml 

of blood).  From each animal, 250 µl whole blood was analysed in an Advia 120 

haematological analyser (Siemens).  A list of the blood parameters and their 

abbreviations can be found in table 6.1. 

6.2.3 Zinc analysis of hepatic zinc 

Liver zinc content was analysed in 3 month old mice treated with or without zinc by 

atomic absorption spectroscopy according to the methods outlined in chapter 5. 

6.2.4 Giemsa staining of blood smears. 

Blood collected by cardiac puncture with syringes containing EDTA was smeared onto 

microscope slides and allowed to dry.  The dry blood smear was fixed with a few drops 

of methanol which were allowed to dry.  The fixed slides were stained in Giemsa stain 

for 10 minutes then were rinsed in tap water and allowed to dry.  Di-N-Butylphthalate 

in xylene was used to mount coverslips onto the slides. 

6.3 Results 

6.3.1 Differences in blood between 6 month-old wild type and MT-I/II
−/−

 mice 

At 6 months of age MT-I/II
−/−

 mice had 12% fewer red blood cells (RBCs) and 27% 

fewer reticulocytes in circulation compared to wild type mice (Table 6.1).  In MT-I/II
−/−

 

mice, the decrease in reticulocyte count as a percentage of all RBCs is greater than the 

decrease in RBCs alone which determines that reduction in reticulocytes is greater than 

the reduction in mature RBCs.  Consistent with these observations, haematocrit and 

blood haemoglobin were also lower in MT-I/II
−/−

 mice compared to wild type mice. 

On an individual cell basis, RBCs from MT-I/II
−/−

 mice were slightly macrocytic with a 

5% increase in mean corpuscular volume (MCV).  Corpuscular haemoglobin (CH) was 

increased in MT-I/II
−/−

 mice but the mean corpuscular haemoglobin concentration 

(MCHC) measure, which takes cell size into account indicates that the difference in CH 

between wild type and MT-I/II
−/−

 mice is due to increased MCV in MT-I/II
−/−

 mice.  

There was no difference in haemoglobin distribution width (HDW) between RBCs from 

either strain indicating haemoglobin concentration per cell was relatively constant 

between the RBCs of each strain.  However the red cell volume distribution width 

(RDW) of MT-I/II
−/−

 mice was 4% higher than in wild type mice indicating a slight 

anisocytosis.    
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Table 6.1  Blood parameters from 6 month-old wild type and MT-I/II

−/−
 mice.  

Statistically significant differences were determined by Student’s t-test.  P-value ranges 

are denoted by the following symbols; (*) p<0.05, (**) p<0.01, (***) p<0.001.  Data are 

expressed as the mean of the group (n=6) ± SEM. 

 

Parameter                                                                      Abbreviation MT-I/II
−/−

 Wild type 

Red Blood Cell Count (x10
12

 cells/L) RBC 9.73 ± 0.13*** 11.04 ± 0.24 

Reticulocyte Count (x10
9
 cells/L) Retic# 197.9 ± 19.4** 270.3 ± 9.2 

Percent Reticulocytes (%) %Retic 2.028 ± 0.182* 2.456 ± 0.050 

Haemoglobin (g/L) HGB 146.2 ± 1.5** 157.6 ± 3.1 

Haematocrit (L/L) HCT 0.492 ± 0.004** 0.536 ± 0.010 

Mean Corpuscular Volume (fL) MCV 50.68 ± 0.48** 48.48 ± 0.18 

Mean Corpuscular Haemoglobin (pg) MCH 15.02 ± 0.16** 14.3 ± 0.09 

Mean Corpuscular Haemoglobin Concentration (g/L) MCHC 296.6 ± 1.0 295.2 ± 2.63 

Cellular Haemoglobin Concentration Mean (g/L) CHCM 277.8 ± 1.6 276.8 ± 2.1 

Corpuscular Haemoglobin (pg) CH 14.08 ± 0.6** 13.42 ± 0.07 

Reticulocyte Haemoglobin Content (pg) CHr 16.18 ± 0.16** 15.56 ± 0.07 

Red Cell Volume Distribution Width (%) RDW 12.66 ± 0.23* 12.16 ± 0.06 

Haemoglobin Distribution Width (g/L) HDW 14.08 ± 0.18 14.42 ± 0.19 

White Blood Cell Count (x10
9
 cells/L) WBC 2.56 ± 0.36 2.9 ± 0.11 

Platelet Count (x10
9
 cells/L) PLT 1025.6 ± 29.8 1043.8 - 36.3 

Mean Platelet Volume (fL) MPV 5.18 ± 0.16 5.14 ± 0.26 
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6.3.2 Differences in blood between 3 month-old wild type and MT-I/II
−/−

 mice 

A second experiment was devised to test the effect of altering zinc levels in the mice to 

assess the impact on erythrocytes.  However, in the control animals of this experiment, 

there were no differences in red blood cell counts, reticulocyte counts or haemoglobin 

levels between wild type and MT-I/II
−/−

 mice (Table 6.2).  The obvious difference 

between this experiment and the previous experiment is that the mice were 3 months 

younger in the second experiment.  There were some minor differences between the 

strains in the second experiment in that wild type mice had significantly smaller mean 

RBC cell volume and consequently, a lower corpuscular haemoglobin content reading.  

Wild type mice also had a higher HDW and RDW indicating a greater degree of 

variability in erythrocyte volume and haemoglobin content per RBC than MT-I/II
−/−

 

mice.  None of these parameters in wild type mice were altered by the zinc injection 

treatment.  Overall, the differences in untreated 3 month old wild type and MT-I/II
−/−

 

mice were not substantially different and ultimately, the quantity of circulating 

haemoglobin was equivalent in the two strains. 

 

Zinc sulphate was injected intraperitoneally into wild type and MT-I/II
−/−

 mice over 5 

days to determine if zinc challenge would alter the blood parameters in MT-I/II
−/−

 mice 

and wild type mice differentially.  It is interesting to note that the liver zinc content was 

not different between wild type and MT-I/II
−/−

 mice and was not increased after 5 days 

of zinc injections (figure 6.1).  Despite the lack of differences between 3 month-old 

MT-I/II
−/−

 and wild type control mice, MT-I/II
−/−

 mouse blood had a decrease in RBC 

count and haemoglobin levels after zinc treatment that did not occur in zinc-treated wild 

type mice.  Interestingly, there was a significant effect of the zinc treatment in 

decreasing haematocrit from both strains of mice.  The decrease in haematocrit was 

larger in zinc injected MT-I/II
−/−

 mice but was not significantly different from zinc 

injected wild type mice.  Zinc also caused a decrease in the platelet cell volume in both 

MT-I/II
−/−

 and wild type mice without affecting absolute platelet number.   

 

One of the more profound changes that occurred after zinc administration was the 

increase in the number of circulating leukocytes.  This affect occurred in both wild type 

and MT-I/II
−/−

 mice indicating that the response was zinc-dependent but MT-I/II-

independent.  Analysis of the various leukocyte subtypes however, did not reveal any 

significant changes in the relative % of each subtype (Table 6.3).  This suggests that all 

sub-sets of leukocytes, except monocytes, are increasing in the blood simultaneously to 
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cause the increase in total blood leukocyte count.  In addition to the effects of zinc 

treatment, MT-I/II
−/−

 mice were found to have a lower percentage of neutrophils and 

higher percentage of circulating lymphocytes than wild type mice, an effect that was 

zinc-independent.  These data demonstrate that zinc administration can affect several 

aspects of the blood cell populations.  However, the only factors that were dependent on 

the ability to synthesise MT-I/II and increased zinc levels were those related to the 

number of red blood cells.   

 

Table 6.2  Blood parameters from 3 month-old wild type and MT-I/II
−/−

 mice.  Mice 

were either untreated or were injected with zinc for 5 days before blood sampling.  

Statistically significant effects were determined by 2-way ANOVA on the factors of 

mouse strain and experimental treatment.  For parameters with a significant interaction 

term, 1-way ANOVA with Tukey’s B post-hoc test was conducted to determine 

significant differences.  Groups that share the superscripts (a) and (b) or (*) and (†) are 

not significantly different from each other.  Data are expressed as the mean of the group 

(n=5) ± SEM. 

 

Parameter Control   Zinc Injected P-Value 

MT-I/II
−/−

 Wild type MT-I/II
−/−

 Wild type 

WBCs 2.96 ± 0.34† 3.08 ± 0.57† 4.26 ± 0.38* 4.52 ± 0.39* 0.002 

RBCs 10.37 ± 0.12
a
 10.56 ± 0.16

a
 9.56 ± 0.13

b
 10.42 ± 0.12

a
 < 0.001 

Retic# 199.04 ± 27 223.32 ± 20 226.78 ± 15 205.32 ± 15 0.629 

%Retic 1.92 ± 0.26 2.12 ± 0.19 2.37 ± 0.15 1.97 ± 0.15 0.298 

HGB 158.8 ± 2.9
a
 157.0 ± 2.9

a
 140.6 ± 5.4

b
 152.2 ± 0.7

a
 0.003 

HCT 0.542 ± 0.008† 0.54 ± 0.011† 0.502 ± 0.005* 0.522 ± 0.004* 0.001 

MCV 52.26 ± 0.75† 51.16 ± 0.61* 52.26 ± 0.32† 49.94 ± 0.40* 0.003 

MCH 15.34 ± 0.22 14.9 ± 0.18 14.74 ± 0.64 14.62 ± 0.151 0.428 

MCHC 293.8 ± 1.0 291 ± 1.5 281.8 ± 10.6 292.6 ± 0.8 0.318 

CHCM 281 ± 1.3 279.6 ± 0.7 279.6 ± 1.0 280.4 ± 0.8 0.623 

CH 14.7 ± 0.16† 14.28 ± 0.14* 14.6 ± 0.08† 13.98 ± 0.10* <0.001 

CHr 15.92 ± 0.07 15.88 ± 0.10 15.88 ± 0.11 15.64 ± 0.10 0.146 

RDW 11.76 ± 0.09
a
 12.7 ± 0.27

b
 12.38 ± 0.12

a,b
 12.08 ± 0.21

a,b
 0.007 

HDW 14.92 ± 0.20† 15.28 ± 0.22* 14.88 ± 0.07† 15.56 ± 0.26* 0.010 

PLT 804.0 ± 23 856.4 ± 40 810.4 ± 27 782.4 ± 40 0.377 

MPV 5.00 ± 0.04† 5.12 ± 0.08† 4.88 ± 0.02* 4.96 ± 0.06* 0.011 
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Table 6.3   Circulating leukocyte percentages in 3 month-old wild type and MT-I/II

−/−
 

mice.  Mice were either untreated or were injected with zinc for 5 days before blood 

sampling.  Statistically significant effects were determined by 2-way ANOVA on the 

factors of mouse strain and experimental treatment.  Groups that share the superscripts 

(*) and (†) are not significantly different from each other.  Data are expressed as the 

mean of the group (n=5) ± SEM. 

 

% Leukocytes Control Zinc Injected P value 

MT-I/II
−/−

 Wild type MT-I/II
−/−

 Wild type 

Neutrophils 12.98 ± 0.44† 20.14 ± 2.34* 16.18 ± 1.02† 19.38 ± 0.96* 0.001 

Lymphocytes 78.98 ± 0.99* 72.46 ± 2.71† 77.3 ± 2.07* 74.16 ± 1.02† 0.010 

Monocytes 5.32 ± 0.67† 4.8 ± 0.57† 3.34 ± 0.70* 3.48 ± 0.31* 0.006 

Eosinophils 2.34 ± 0.22 2.16 ± 0.45 2.68 ± 0.40 2.66 ± 0.31 0.601 

Basophils 0.16 ± 0.04 0.18 ± 0.02 0.22 0.07 0.14 ± 0.08 0.710 

 

 

 

 

 

Figure 6.1  Hepatic zinc content after 5 days of zinc injections in 3 month-old wild type 

and MT-I/II
−/−

 mice as determined by atomic absorption spectroscopy (n=5, error bars = 

SEM).  No statistically significant differences were obtained by 2-way ANOVA on the 

factors of mouse strain and experimental treatment. 
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6.3.3 Differences in blood between 1 year-old wild type and MT-I/II
−/−

 mice 

To further investigate the effect of age on blood haemoglobin content in MT-I/II
−/−

 

mice, blood was analysed from wild type and MT-I/II
−/−

 mice that were older than 1 

year of age.  Female MT-I/II
−/−

 mice that were around 1 year of age were not 

significantly different from age-matched female wild type mice on any of the blood 

parameters measured except for CHCM (Table 6.4).  Comparison of the changes in 

erythrocyte number and blood haemoglobin content over time reveals that age causes a 

decrease in both parameters in both mouse strains (figure 6.2).  However the difference 

between MT-I/II
−/−

 and wild type mice lies in the age at which erythrocyte numbers and 

blood haemoglobin content decreases.  Both parameters are already decreased in MT-

I/II
−/−

 mice by 6 months of age whereas they are not decreased in wild type mice until 

some point between 6 and 12 months of age.  In wild type mice there is a slight increase 

in erythrocyte counts from 3 to 6 months of age but the key factor that determines the 

capacity of the blood to transport oxygen is haemoglobin content which is stable over 

the 3 to 6 month period.  At 3 months of age MT-I/II
−/−

 mice have normal haemoglobin 

levels compared to wild type mice but by 6 months of age this value is reduced to a 

level only found in wild type mice when they are around 1 year of age.  The MHCH 

values, which are a measure of cellular haemoglobin content standardised for cell size, 

are similar for mice of both strains at all ages (Tables 6.1, 6.2, 6.4).  Morphologically 

there were no differences between erythrocytes and reticulocytes from wild type and 

MT-I/II
−/−

 mice at 3 months of age and 1 year of age (figure 6.3).  There was also no 

difference in morphology of erythrocytes or reticulocytes after zinc treatment in either 

wild type or MT-I/II
−/−

 mice. 
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Table 6.4   Blood parameters from 1 year-old wild type and MT-I/II
−/−

 mice.  

Statistically significant differences were determined by Student’s t-test.  P-value ranges 

are denoted by the following symbols; (*) p<0.05, (**) p<0.01, (***) p<0.001.  Data are 

expressed as the mean of the group (n=6) ± SEM. 

 

Parameter MT-I/II
−/−

 Wild type 

WBC 2.97 ± 0.13 3.60 ±0.51 

RBC 9.93 ± 0.24 10.30 ± 0.14 

Retic# 191.7 ± 16.1 177.9 ± 14.9 

Retic% 1.95 ± 0.22 1.73 ± 0.16 

HGB 142.8 ± 5.0 145.8 ± 2.6 

HCT 0.50 ± 0.01 0.51 ± 0.01 

MCV 50.3 ± 0.486 49.1 ± 0.433 

MCH 14.40 ± 0.22 14.15 ± 0.14 

MCHC 285.5 ± 1.3 288.7 ± 1.0 

CHCM 273.8 ± 0.6 *** 278.8 ± 1.1 

CH 13.78 ± 0.14 13.65 ± 0.10 

CHr 15.43 ± 0.22 15.47 ± 0.10 

RDW 13.28 ± 0.44 12.98 ± 0.26 

HDW 16.53 ± 0.61 15.85 ± 0.18 

PLT 820.5 ± 29.4 936.17 ± 80.5 

MPV 5.17 ± 0.09 5.68 ± 0.30 
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Figure 6.2  Changes in RBC counts (A) and blood haemoglobin content (B) in wild 

type and MT-I/II
−/−

 mice with age.  RBC counts and blood haemoglobin content 

decrease in both groups with age but the decreases occur earlier in MT-I/II
−/−

 mice than 

wild type mice.  To generate these graphs data were compiled from all three 

experiments (n=5-6, error bars = SEM).   
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Figure 6.3  Giemsa stain of blood smears of wild type and MT-I/II

−/−
 blood were 

assessed for differences in cellular morphology of erythrocytes (lightly stained 

enucleated cells) and reticulocytes (dark blue enucleated cells).  Blood from untreated 3 

month-old wild type mice (A), untreated 3 month-old MT-I/II
−/−

 mice (B), zinc treated 3 

month-old wild type mice (C), zinc treated 3month-old MT-I/II
−/−

 mice (D), untreated 1 

year-old wild type mice (E) and untreated 1 year-old MT-I/II
−/−

 mice (F) revealed no 

overt differences.  Images are representative of each experimental group, scale bars=50 

µm. 
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6.4 Discussion 

The results presented herein demonstrate an age-dependent decrease in red blood cells 

and blood haemoglobin content in MT-I/II
−/−

 mice that is accelerated compared to wild 

type mice. The fact that the reticulocytes, the more immature blood cells, showed the 

greatest decrease in number, suggests that erythropoiesis is the process affected by the 

absence of MT-I/II as the animals age.  Younger MT-I/II
−/−

 mice did not show a 

decrease in RBCs and haemoglobin relative to young wild type mice but systemic 

administration of zinc was able to recapitulate the anaemia observed in older MT-I/II
−/−

 

mice.  The fact that wild type mice were protected from zinc-mediated decreases in 

blood haemoglobin and RBC numbers suggests that MT-I/II plays a role in zinc 

homeostasis in a manner that is important for normal blood function.  Increases in the 

circulating leukocyte counts caused by zinc treatment is also of interest because it 

mimics the effect observed in MT-I/II
−/−

 mice, 7 days after cryolesion brain injury (see 

chapter 3). 

6.4.1 Zinc and erythropoiesis 

Several lines of evidence suggest that zinc is important for erythropoiesis.  Zinc 

deficiency in rats has been shown to cause a decrease in erythrocyte formation or blood 

haemoglobin content (Hendy et al. 2001, Morgan et al. 1995) hence it can be inferred 

that zinc is necessary for erythropoiesis.  The zinc efflux transporter, ZnT1 and the zinc 

influx transporters, Zip8 and Zip10 were demonstrated by Ryu et al. (2008) to be 

expressed on erythrocytes.  The results of this study also suggested that erythrocyte 

precursor cells vary zinc transporter expression to maintain an optimal zinc 

concentration.  Because erythrocytes are enucleated cells, the proteins that they carry 

are indicative of the protein expression that was occurring during erythropoiesis, 

suggesting that zinc regulatory mechanisms are occurring at the erythroblast stage.  

When zinc supplementation was administered to humans it led to increases in MT-I/II in 

erythrocytes and MT-I/II was shown to have a very short half-life in circulating 

erythrocytes (Grider et al. 1990).  MT-I/II is not taken up by erythrocytes (Tanaka et al. 

1985) hence MT-I/II is probably exerting effects in erythroblasts or early in the RBC 

life span, rather than in mature erythrocytes.  Indeed, MT-I/II expression increases in an 

erythroleukemic cell line treated with erythropoietin (Abdel-Mageed et al. 2003), which 

demonstrates that MT-I/II is up-regulated in conjunction with erythropoiesis.  It is 

possible that MT-I/II has a zinc sequestering role that maintains the cellular zinc content 

required for erythropoiesis.  This is supported by rapid zinc and MT-I/II accumulation 
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in the bone marrow of rats after acute blood loss or phenylhydrazine-induced anaemia, 

two conditions that stimulate erythropoiesis (Huber and Cousins 1993).   

 

In the present study, it was interesting to find that there was no difference in the 

reticulocyte numbers after zinc administration in wild type and MT-I/II
−/−

 mice. It has 

previously been shown that a single zinc injection at the dose used in these experiments 

induces hepatic MT-I/II zinc sequestration within 14-16 hours (Coyle et al. 1995, Saito 

and Kojima 1997).  In a study by Kelly et al. (1996), zinc administration over 7 days 

was capable of increasing liver MT-I/II expression but the dose was ramped up each 

day.  The body primarily regulates zinc by altering the rate of zinc absorption in the 

intestine, the rate of zinc excretion in urine and pancreatic secretion of zinc (Walsh et al. 

1994).  In the present study, the daily zinc dose was constant and the liver zinc content 

was the same in MT-I/II
−/−

 mice at wild type mice after 5 days of treatment which 

suggests that this amount of time is sufficient for MT-I/II independent zinc homeostasis 

mechanisms to be instated.  For this reason it can not be concluded that reticulocytes 

were not affected in the early stages of zinc treatment in MT-I/II
−/−

 mice because these 

cells only remain in the reticulocyte phase for 1-2 days and would have matured to 

erythrocytes after 5 days of zinc treatment. 

6.4.2 Hypothesis for age-dependent anaemia in MT-I/II
−/−

 mice 

In humans zinc deficiency increases in elderly populations due to a reduced dietary zinc 

intake but is also thought to be influenced by metabolic changes that affect zinc 

homeostasis (reviewed by Vasto et al. 2007).  Studies in mice using radioactive 
65

Zn as 

a tracer have shown that zinc uptake declines with age and zinc secretion/excretion 

increases with age (He et al. 1991) and mice older than 1 year of age have reduced 

plasma zinc concentrations compared to 8 week old mice (Wong et al. 2009).  Little is 

known about zinc distribution in aging MT-I/II
−/−

 mice but zinc distribution in the liver 

is altered in MT-I/II
−/−

 mice perinatally, another period when zinc distribution is 

undergoing changes (Lau and Cherian 1998).  Therefore MT-I/II may play a larger role 

in regulating zinc as the animals age and become more susceptible to zinc deficiency.  

 In addition to zinc, MT-I/II also binds copper and copper has been shown to be 

important for regulating iron transport into transferrin due to its requirement in the 

ferroxidase protein, ceruloplasmin (Fox 2003).  For this reason, anaemias caused by 

copper deficiency are often hypochromic, but the anaemia observed in MT-I/II
−/−

 mice 

was not indicating that haemoglobin synthesis, and therefore iron transport, was normal 

in MT-I/II
−/−

 mice.   
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Oxidative stress is thought to increase the rate of erythrocyte clearance from circulation 

(reviewed by Kiefer & Snyder 2000).  MT-I/II can act as an antioxidant (Maret and 

Vallee 1998) but MT-I/II is only present in erythrocytes for a short time after they enter 

circulation (Grider et al. 1990) and is not present in the older erythrocytes that are more 

prone to macrophage phagocytosis.  However zinc and copper are essential for the 

function of the antioxidant protein Cu/Zn superoxide dismutase.  Cu/Zn Superoxide 

dismutase null mutant mice are anaemic compared to wild type mice, a difference 

caused by increased erythrocyte clearance that is amplified with age (Iuchi et al. 2007).  

The role of MT-I/II may be to sequester zinc and copper to erythrocyte precursors for 

metalloproteins such as Cu/Zn superoxide dismutase.  

 

To determine the mechanism by which MT-I/II protects against anaemia with age 

several processes require investigation.  Measurement of zinc and copper in bone 

marrow and erythrocytes from wild type and MT-I/II
−/−

 mice with age via atomic 

absorption spectroscopy is straight-forward but was not possible in the present study 

because EDTA, a zinc and copper chelator, was used as the anticoagulant for blood 

samples and bone marrow was not collected.  The rate of erythrocyte clearance can be 

assessed by removing erythrocytes from an animal, adding a fluorescent label, and then 

reinjecting them back into the animal (Suzuki and Dale 1987).  Following this 

procedure in MT-I/II
−/−

 mice, observation of numbers of labelled cells over time can be 

assessed by flow cytometry to determine the rate of erythrocyte clearance which can be 

compared to that of wild type mice.  Finally, to assess the role of MT-I/II in 

erythropoiesis, isolation of hematopoietic stem cells from bone marrow would be useful 

for in vitro experiments to determine differentiation occurs similarly in MT-I/II
−/−

 and 

MT-I/II 
+/+

 cells in normal conditions and in zinc deficiency or zinc excess. 

6.4.3 Zinc-induced leukocytosis 

The leukocytosis induced by zinc treatment was of interest due to the similarity to the 

increased leukocyte numbers observed in MT-I/II
−/−

 mice at 7 DPI.  Alterations to 

leukocyte production during haematopoiesis have been shown to occur during zinc 

deficiency (King and Fraker 2000, King and Fraker 2002) which may account for the 

observations of the present study.  However, the effect was shown to occur in both wild 

type and MT-I/II
−/−

 mice which is in contrast to the effect of zinc on erythrocyte 

numbers which only affected MT-I/II
−/−

 mice.  It is suspected that zinc homeostasis is 

disrupted after brain injury and that MT-I/II may play a role in modulating changes in 
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zinc, or perhaps causing changes in zinc.  Therefore the possibility that MT-I/II can 

modulate zinc in certain situations but has no effect in other circumstances suggests that 

study of MT-I/II
−/−

 phenotypes requires a greater understanding of zinc-dependent 

processes.  The present study could be improved by a better understanding of where 

zinc is shuttled to within the body when systemic zinc levels increase and where the 

zinc is preferentially retained when systemic zinc levels decline. 

6.4.4 Conclusion 

The data presented herein suggest that MT-I/II can affect the hematopoietic system, 

particularly the erythropoietic branch.  These data are interesting because they provide a 

system in which MT-I/II
−/−

 mice have an altered phenotype in the absence of 

experimental manipulation to the mice.  The levels of blood haemoglobin and 

erythrocyte cell number in MT-I/II
−/−

 mice may not be low enough to be considered 

anaemia in a clinical context but MT-I/II does appear able to affect the rate of red blood 

cell production.  Future experiments are required to determine if MT-I/II is more 

important when the requirement for red blood cell production is greater for example, in 

animals with acute blood loss.  The requirement for MT-I/II in erythropoiesis may 

become more pronounced when dietary zinc is altered or when zinc homeostasis is 

disrupted in conditions such as the acute phase response.  Brain injury exerted no effect 

on erythrocyte numbers or haemoglobin levels in the blood (data not shown) but it is 

interesting to note that administration of zinc to wild type and MT-I/II
−/−

 mice alike had 

an effect on leukocyte numbers similar to brain injury in MT-I/II
−/−

 mice at 7 DPI. 
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Chapter 7 – Discussion 
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One of the key findings in this body of work was that MT-I/II
−/−

 mice exhibit elevated 

levels of neuronal death at 7DPI in comparison to wild type mice, in an experimental 

model of brain injury.  The results presented in this thesis chronicle an attempt to 

determine the mechanism responsible for this, by focussing upon whether MT-I/II
−/−

 

mice have an altered inflammatory response to brain injury.  MT-I/II expressed in the 

injured brain itself is possibly the most obvious location for MT-I/II to have an effect 

after injury due to its proximity to the injured cells.  However, MT-I/II is a protein 

expressed in many organs in mice (Iszard et al. 1995), and the role of this protein 

remains unclear (Palmiter 1998).  It is not implausible however, that MT-I/II expressed 

peripherally to the injured CNS may have systemic effects that influence the 

progression of brain injury, and this was a hypothesis that was tested in this thesis.  

Immune system function is known to be affected by MT-I/II, and alteration to the 

immune response to injury has been suggested to explain some of the differences in the 

injured brain of MT-I/II
−/−

 mice.  However, as the inflammatory response to brain injury 

progresses, the location where MT-I/II interacts with the cells of the immune system is 

unclear.  It is also interesting that zinc homeostasis has not been studied extensively in 

MT-I/II
−/−

 mice after brain injury, given that MT-I/II is primarily a zinc binding protein.  

The experiments detailed in the present thesis provide evidence that MT-I/II is involved 

in a systemic response to brain injury which may affect the resolution of the injury. 

7.1.1 Alterations in neuron death in the cryolesioned MT-I/II
−/−

 mouse brain occur at 7 

DPI 

After injury, an increased rate of neuron death between wild type and MT-I/II
−/−

 mice 

was only evident at 7 DPI.  Between the published studies that investigate the rate of 

neuron death after brain injury in MT-I/II
−/−

 mice, there is variability in the time after 

injury that MT-I/II
−/−

 mice to show a difference compared to wild type mice (Natale et 

al. 2004, Penkowa et al. 1999a).  The reason for these differences is not obvious but it 

does suggest that the ability of MT-I/II to provide neuroprotection depends upon 

specific conditions in the injury site which vary in different experimental brain injury 

models.  It has been shown in vitro that MT-I/II may protect neurons against oxidised 

dopamine products in neuron cultures (Gauthier et al. 2008, Køhler et al. 2003) and 

amyloid-β (Chung et al. 2010, Køhler et al. 2003) but for this to occur in vivo requires 

extracellular MT-I/II to reach concentrations of approximately 1 µg/ml.  MT-I/II is a 

cytoplasmic protein with no secretory signal sequence and is not expressed in neurons.  

There is currently no quantitative data to determine whether extracellular MT-I/II 

concentration increases in cerebrospinal fluid after brain injury.   
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Under oxidative stress, MT-I/II is protective to cultured astrocytes which are the main 

MT-I/II-expressing cell type in the CNS (Suzuki et al. 2000).  Therefore, it is most 

likely that astrocytes receive some protection from the MT-I/II that they synthesise but 

it is not known if astrocytic MT-I/II confers protection to other cell types in the injured 

brain.  A protective effect of MT-I/II that prevents astrocyte death could promote 

neuron survival indirectly because neurons are highly reliant on trophic support from 

astrocytes (Pekny and Nilsson 2005, Pellerin and Magistretti 1994, Ridet et al. 1997, 

Yong 1998).  In the present study the rate of neuron death was only different in MT-

I/II
−/−

 mice after the peak period of neuron death suggesting that the injury site of MT-

I/II
−/−

 mice was failing to enter the regenerative phase or there was an underlying 

detrimental process that was failing to resolve.  One of the defining characteristics of 

transgenic mice over-expressing MT-I/II and MT-I/II
−/−

 mice during CNS insults is an 

inverse correlation between the level of MT-I/II present in the system and the degree of 

inflammation in the CNS (Natale et al. 2004, Giralt et al. 2002, Penkowa et al. 1999a, 

Penkowa et al. 1999b, Penkowa et al. 2001, Penkowa et al. 2005, Penkowa et al. 2006a, 

Potter et al. 2007, Potter et al. 2009, Suemori et al. 2006).  In the present study it was 

interesting to find that the time when inflammatory cells were at highest density in the 

injury site coincided with the time that neuron death was significantly higher in MT-

I/II
−/−

 mice compared to wild type mice. It is possible that elevated levels of neuronal 

death at 7DPI in MT-I/II
−/−

 mice are linked to the inflammatory response to brain injury. 

7.1.2 Alterations in T cell infiltration of the cryolesioned MT-I/II
−/−

 mouse brain occur 

at 7 DPI  

Part of the inflammatory response in the injured brain is generated within the CNS itself 

by microglia and astrocytes (reviewed by Liberto et al. 2004).  However leukocytes can 

infiltrate the brain after brain injury and can therefore, affect its progression.  The 

number of activated macrophages is commonly found to differ between wild type and 

MT-I/II
−/−

 mice after CNS insults but was not found to be different in the present 

experiments.  Therefore the alterations to the microglial/macrophage response in MT-

I/II
−/−

 mice appear to be dependent on the type of injury model used, or the methods 

used for quantification.  The cryolesion injury model used to induce brain injury in this 

thesis appears to have a relatively low severity.  This is evident because plasma 

cytokine levels did not rise substantially, hepatic cytokine expression was absent and 

the brain injury itself did not increase plasma corticosterone levels further than the 

increase caused by sham surgery alone.  Despite the inability of the injury to produce a 
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measurable systemic cytokine response, there were significantly higher numbers of T 

cells infiltrating the injured CNS of MT-I/II
−/−

 mice than wild type mice.  T cells are 

activated and expand peripherally before they enter the injured CNS (Byram et al. 2004, 

Ling et al. 2006).  MT-I/II has the potential to modulate the function of T cells and 

antigen presenting cells (Borghesi et al. 1996, Borghesi and Lynes 1996, Mita et al. 

2002, Youn et al. 1995, Youn and Lynes 1999), hence its expression outside the CNS 

may affect T cell activation; a process that occurs outside the CNS.   

 

Similar to the rate of neuron death, T cell infiltration into the injury site of MT-I/II
−/−

 

mice was only elevated above that of wild type mice at 7 DPI.  The increase in T cell 

infiltration in MT-I/II
−/−

 mice coincided with an increase in the number of leukocytes 

circulating in the blood at 7 DPI.  An increased number of T cells in circulation 

provides a larger pool of T cells that can be recruited to the injury site in MT-I/II
−/−

 

mice.  This evidence suggests that after brain injury, a change in the immune system of 

MT-I/II
−/−

 mice is occurring before the leukocytes enter the injured CNS. 

7.1.3 Altered ratio of caMΦs and aaMΦs in MT-I/II
−/−

 mice 

In addition to changes in leukocyte numbers in MT-I/II
−/−

 mice after brain injury, is the 

possibility that the individual leukocytes may behave differently in MT-I/II
−/−

 mice after 

injury.  Activated macrophages fall under two major categories; classically activated 

(caMΦ) and alternatively activated (aaMΦ).  Ym1 mRNA expression is used as a 

marker of alternative activation in macrophages (Raes et al. 2002) and has been reported 

to be indicative of aaMΦs in the CNS (Ponomarev et al. 2007).  In the present study, 

both in the brain and PBMCs, Ym1 mRNA expression was consistently higher in wild 

type mice compared to MT-I/II
−/−

 mice.  This phenomenon was in occurrence before 

and after injury suggesting that there is a predisposition for MT-I/II
−/−

 mice to produce 

less Ym1 mRNA.  One interpretation of these data is that wild type mice have a certain 

ratio of aaMΦs to caMΦs which in MT-I/II
−/−

 mice is more biased towards caMΦs.  

Current evidence suggests that in the CNS, caMΦs are detrimental to neuronal survival 

whereas aaMΦs are pro-regenerative (Kigerl et al. 2009).  Therefore it is possible that a 

difference in the ratio of caMΦs to aaMΦs in MT-I/II
−/−

 mice affects neuronal survival 

after brain injury.  MT-I/II may influence the aaMΦ to caMΦ ratio in a range of ways.  

Firstly, helper T cells isolated from MT-I/II
−/−

 mice have been shown to have a Th1 

shifted Th1/Th2 ratio (Huh et al. 2007) and Th1/Th2 responses have a strong influence 

on the ratio of caMΦs to aaMΦs.  Secondly, MT-I/II has a strong antioxidant capacity 

(Maret and Vallee 1998) and the redox status of macrophages can determine whether 
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they take on a caMΦ or aaMΦ phenotype (Gordon et al. 2003).  However, the 

antioxidant capacity of MT-I/II would be more likely to preserve reduced conditions 

inside cells but this would favour a caMΦ response so this mechanism is unlikely.  

Thirdly, MT-I/II has been shown to affect the function of the transcription factor, NF-

κB (Abdel-Mageed and Agrawal 1998, Butcher et al 2004, Kanekiyo et al. 2002b, Kim 

et al. 2003, Sakurai et al. 1999) which is important for the activation of immune cells 

(Blackwell and Christman 1997).  The absence of MT-I/II may affect transcriptional 

signalling required for activation of caMΦ or aaMΦ responses.  Fourthly, extracellular 

application of MT-I/II to the injured brain shifts the IDO pathway towards kynurenic 

acid production and away from quinolinic acid production (Chung et al. 2009).  

Macrophage quinolinic acid production is induced by the same conditions that generate 

caMΦs and kynurenic acid production is induced by the conditions that generate aaMΦs 

(Kwidzinski and Bechmann 2007, Yadav et al. 2007) which may indicate that 

extracellular MT-I/II affects the IDO pathway by modulating the ratio of 

caMΦs/aaMΦs.  MT-I/II has the potential to interact with several important immune 

system pathways and further study is required to determine how MT-I/II affects the 

immune system in vivo.   

 

One of the disadvantages to the cryolesion model has been the lack of systemic immune 

response to brain injury, and this has meant that study of the Th1/Th2 response in wild 

type and MT-I/II
−/−

 mice has been difficult using this model.  An altered Th1/Th2 

response may be the cause of changes in Ym1 expression in MT-I/II
−/−

 mice but 

lowered Ym1 mRNA expression was observed in the brain and PBMCs of MT-I/II
−/−

 

mice before brain injury occurred.  In vitro experiments will be important to determine 

whether there is an intrinsic difference between the activation phenotype of MT-I/II
−/−

 

macrophages and wild type macrophages, once isolated from the animal.  A distinction 

that is required to better understand how MT-I/II functions is whether MT-I/II 

expression within the cell is most important for the immune modulation of MT-I/II or 

whether MT-I/II has systemic and developmental effects that affect the immune system 

of the entire animal. 

7.1.4 Hepatic Liver MT-I/II expression is maximal at 7 DPI and may affect zinc 

homeostasis 

Hepatic MT-I/II expression is a common response to a systemic crisis (Cho et al. 2004, 

Coyle et al 1995, Ding et al. 2002, Hernández et al. 1999, Jacob et al. 1999, Philcox et 

al. 1995, Swapan et al. 1990, Zhou et al. 2003) and results in a decrease in plasma zinc 



 

147 

concentrations (Philcox et al. 1995, Coyle et al. 1995).  This response has not been 

previously reported to occur after brain injury, hence the ability of hepatic MT-I/II 

expression to modulate labile zinc concentration after injury was investigated as a 

possible cause of the differences between wild type and MT-I/II
−/−

 mice after brain 

injury.  It was shown that MT-I/II protein is maximally up-regulated in the liver 7 days 

after injury.  MT-I/II
−/−

 mice had significantly lower liver zinc content which implies 

that hepatic MT-I/II expression has some control over zinc homeostasis.   

 

At 7 DPI in MT-I/II
−/−

 mice there was also an increase in circulating leukocyte numbers, 

increased T cell infiltration into the injury site and prolonged neuron death.  One 

hypothesis to explain these correlations is that altered zinc homeostasis in MT-I/II
−/−

 

mice is caused by an inability to moderate labile zinc concentrations, which 

subsequently affects immune system function.  In chapter 6, the parenteral 

administration of zinc to wild type and MT-I/II
−/−

 mice induced an increase in 

circulating leukocytes similar to the increase observed in MT-I/II
−/−

 mice 7 days after 

cryolesion.  Dietary zinc deficiency is known to cause decreases in the numbers of 

circulating leukocytes (DePasquale and Fraker 1979, DePasquale and Fraker 1980, 

King and Fraker 2000, King and Fraker 2002, King et al. 2005) and increasing zinc by 

dietary supplement can augment the function of leukocytes (Aydemir et al. 2006).  In 

the present study, there was no change to zinc in the dietary composition after 

cryolesion so any changes in labile zinc would likely occur via changes in zinc-

homeostasis mechanisms.  There is evidence to suggest that brain injury causes 

disruption to zinc homeostasis in brain injured patients (McClain et al. 1986) and it is 

possible that MT-I/II expression contributes to the maintenance of zinc homeostasis 

after brain injury.  Therefore changes in zinc homeostasis is a feasible, but not proven, 

mechanism by which MT-I/II
−/−

 mice have altered immune function after brain injury.  

The creation of a transgenic mouse expressing a luciferase gene has been used 

previously to observe the systemic activity of transcription factors acting at the 

luciferase gene promoter by measuring the light emitted from the transgenic mouse in 

situ (Campbell et al. 2008).  The MTF-1 transcription factor is activated when free zinc 

levels increase in the cytoplasm.  Therefore a luciferase gene with a response element to 

MTF-1 in its promoter could indicate regions a mouse with high levels of free 

cytoplasmic zinc, assuming such a transgenic mouse could be created.  The magnitude 

by which MT-I/II affects zinc homeostasis after brain injury will be dependent on the 
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degree of MT-I/II expression after injury which may vary in different experimental 

models of brain injury and in a clinical setting. 

7.1.5 Future directions to determine the role of MT-I/II in zinc homeostasis after brain 

injury 

Because zinc is an essential trace metal involved in many cellular processes it is not 

straight-forward to remove zinc from an animal in an experimental system.  Dietary zinc 

deficiency has been demonstrated to have a detrimental effect on the progression of 

brain injury (Penkowa et al. 2001, Yeiser et al. 2002).  However, zinc deficiency is a 

systemic manipulation that could be affecting many processes simultaneously which 

makes interpretation of the effects of zinc deficiency in specific tissues difficult.  

Additionally, administering a zinc deficient diet is countered by the fact that intestinal 

zinc absorption becomes increased and zinc supplementation is also complicated 

because zinc absorption and excretion are regulated to appropriately maintain stable 

zinc levels (reviewed by Walsh et al. 1994).  Under normal conditions MT-I/II
−/−

 mice 

have normal plasma zinc concentrations and it is not until the system is altered either 

due to activation of the acute phase response, or pharmacological zinc administration 

that differences in zinc levels in various organs between MT-I/II
−/−

 and wild type mice 

become apparent (Philcox et al. 1995, Coyle et al. 1995).  This suggests that MT-I/II 

plays a role in zinc regulation when there is a deviation from homeostatic zinc levels.   

In addition to their lack of hepatic zinc sequestration, MT-I/II
−/−

 mice have altered 

pancreatic zinc secretion (Rofe et al. 1999).  The hypothesis that altered zinc 

homeostasis affects the outcome from brain injury would be supported by further 

experiments that investigate MT-I/II expression and zinc uptake by other organs after 

brain injury and zinc secretion and excretion in MT-I/II
−/−

 mice after brain injury.  

However, it has not been confirmed that MT-I/II acts on the immune system via zinc 

dependent mechanisms and a more generic approach would help determine the location 

in which MT-I/II exerts its beneficial effects after brain injury.  A conditional knockout 

mouse that is unable to express MT-I/II in all cells except hepatocytes would be useful 

tool to investigate MT-I/II in a zinc regulatory role.  Alternatively, the same approach 

could be used to express MT-I/II in astrocytes alone.  Possible experiments with such a 

mouse strain could include cryolesion to the brain to determine if parameters such as 

neuron death, T cell infiltration or circulating leukocyte counts were most affected by 

brain-derived MT-I/II or liver derived MT-I/II.  It remains possible that MT-I/II has 

effects in the injured brain and some effects peripherally. 
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7.1.6 Final considerations 

There are known differences in the immune responses of mice and humans which may 

affect the direct comparison of the effects that MT-I/II has in the brain injury of mice to 

that of humans.  One example is that there is no known Ym1 gene in humans hence 

future study should consider whether extracellular MT-I/II has the same ability to 

induce changes in human macrophage phenotype as those observed in this thesis, in 

mice, and those of Chung et al. (2009), in rats.  There are several other questions that 

need to be answered to assess the role of MT-I/II in brain injured human patients; 

whether MT-I/II is up-regulated in the liver in the same fashion as in mice and whether 

zinc trafficking after brain injury relies as heavily on MT-I/II in humans as it does in 

mice.  A potential role of MT-III should be considered in the CNS of MT-I/II
−/−

 mice.  

MT-III up-regulation as a compensatory response to the lack of MT-I/II expression in 

MT-I/II
−/−

 mice could affect the injured brain given the neurotoxic and inhibitory effects 

of MT-III that have been observed in vitro (Chung et al. 2002, Uchida et al. 1991).  

These possibilities should be considered when interpreting the data presented in this 

thesis. 

7.1.7 Conclusions 

The main aim of this thesis was to test the hypothesis that MT-I/II expressed in non-

neurological organs could be affecting the progression of brain injury.  This hypothesis 

was synthesised to explain the differences in the inflammatory response in the injured 

brain of MT-I/II
−/−

 mice when compared to wild type mice.  The quantification of the 

aaMΦ marker Ym1 reveals that there are some differences in the immune functions of 

MT-I/II
−/−

 mice inherent before injury.  There are other differences between wild type 

and MT-I/II
−/−

 mice that were only found after brain injury such as the increased T cell 

infiltration into the injured brain, the increased number of circulating leukocytes and the 

MT-I/II dependent sequestration of zinc into the liver.  All of these differences occurred 

at 7 DPI and the relationship between them, and elevated levels of neuronal death at this 

time in MT-I/II
−/−

 mice requires further investigation.  The correlation does not identify 

a direct causal relationship between these phenomena but the research detailed in this 

thesis demonstrates that there is a systemic MT-I/II response to brain injury.  It is now 

necessary to determine the relative contribution of CNS-derived, and entraneural organ-

derived MT-I/II to the beneficial effect of MT-I/II after brain injury.  Such information 
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will help to determine the mechanism by which mice with transgenic alterations in MT-

I/II expression have altered responses to brain injury. 
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