
Peer Testing in Software Engineering Projects 

Nicole Clark 
School of Computing 

University of Tasmania 
GPO Box 252-100, Tasmania, 7001, Australia 

nclark@utas.edu.au 

 

Abstract 
For the last six years, students in the Software 
Engineering Project course at the University of Tasmania 
have undertaken projects in teams of four or five 
members. Since 1998 peer testing sessions have been 
conducted in two different formats: paired peer code 
reviews and group peer inspections. The critique that the 
testers perform can help the development team to identify 
problems before assessment hence increasing the quality 
of the work submitted. The peer testing sessions also 
provide many different, but valuable, benefits such as 
serving as milestones, increasing learning, and increasing 
collaboration between students in different teams. 

Keywords:  Software Engineering, Education, Collaboration, 
Testing. 

1 Introduction 
Successful software engineering is not just about 
producing a working piece of software. The software 
needs to be of sufficient quality that the client will 
actually use it. Zeller (2000) states that there are two best 
practices known to improve quality: testing and 
reviewing.  Bailey et al (2003, page 260) states: 

 “Our role as university educators is to teach these best 
practices and change attitudes so that our students 
graduate as software engineers who believe in the use of 
these methodologies”.  

Generally speaking student programmers have little 
enthusiasm for testing. Since 1998 we have investigated 
what style of testing enthuses students towards testing, 
demonstrates the importance of testing, and produces the 
best results as far as quality of product is concerned. This 
paper documents our experiences with peer testing during 
a software engineering project course.  

Software Engineering Project at the University of 
Tasmania is a third year capstone project course 
undertaken by students who have nearly completed their 
Bachelor degree. The aim of the course is to provide 
students with experience developing a medium-sized 
computing project in a small team of four or five 

                                                           

Copyright © 2004, Australian Computer Society, Inc. This 
paper appeared at Sixth Australasian Computing Education 
Conference (ACE2004), Dunedin, New Zealand, 2004. 
Conferences in Research and Practice in Information 
Technology, Vol. 30. Raymond Lister and Alison Young, Eds. 
Reproduction for academic, not-for profit purposes permitted 
provided this text is included. 

students. Each team is collaborating with a different 
client to produce a unique piece of software. 

Since 1998 peer testing sessions have been conducted in 
two different formats as part of this course: 

1. Paired peer code reviews – each student is partnered 
with a student from another team and they review 
each others code; 

2. Group peer inspections – each project is given a 
testing team of students from other projects. These 
students inspect the software and other work 
products for defects.  

Our experience with each format of peer testing has led 
us to make changes to enhance the learning experience 
for the students. Peer testing has had the following 
positive consequences: 

• Students have seen the necessity of testing – the 
number of defects detected during a testing session 
convinced most students of the benefits of testing; 

• Quality of a work product has increased – the testing 
sessions are conducted prior to submission of a work 
product giving the development teams time to make 
the necessary changes to improve quality; 

• Students now work steadily on a work product – the 
students prepare items for the testing session 
preventing them from leaving it until the week or day 
it is due for submission; 

• Community feeling has been created within the class 
– the testing sessions allow students to interact with 
their class mates increasing their interest in what has 
been achieved by others; 

• Collaboration has increased between teams – the 
sessions allow teams to exchange ideas on similar 
problems or approaches for development; 

• Student learning has increased – students learn from 
each other, not just the lecturer, particularly in the 
area of technical skills such as programming 
languages or software development tools. 

This paper begins with a description of related work. 
Next, it describes the structure of the Software 
Engineering Project course. This is followed by an 
examination of the peer testing sessions conducted during 
the last six years justifying the above claims. The paper 
concludes with an elaboration of each of the benefits 
experienced from performing peer testing. 



2 Related Work 
Peer reviews are a cost effective way of detecting defects 
in work products and improving the final quality of 
software (Fagan 1999). Peer reviews can be conducted as 
formal inspections (Fagan 1999) or informal 
walkthroughs (Yourdon 1989). The aim of both processes 
is to use a group of peers and a reading process to detect 
and locate defects in code. Over the years much research 
has been undertaken into the processes for the reviews 
(Humphrey 1997), the roles for people conducting a 
review and the behavioural factors involved in a review 
process (Weinburg 1984). 

Zeller (2000) has implemented Praktomat an automated 
system for managing the submission, test and mutual 
reviewing of students’ programs. 63.5% of students 
confirmed that having their programs read and reviewed 
improved the quality of their programs. 61.5% of students 
felt that reading and reviewing other programs improved 
the quality of their programs. These findings were also 
backed by the results of the students.    

Wahl (2000) identified the importance of teaching 
students the basic elements of usability testing by 
incorporating it into a project course. Usability testing 
differs from reviewing the code as the testers are actually 
using the programs. 

Collofello (1987) outlines a practical approach for 
teaching about software reviews in a one-semester 
software engineering course. He stated that it was not 
enough to just present lectures and that it was necessary 
for the students to participate in a review process. Bailey 
et al (2003) investigated whether a change in attitude by 
the students toward software inspections could be 
measured. They concluded that students emotionally 
accepted inspections only after practice.  

Reviews of work products throughout the software 
lifecycle can be very beneficial. Collofello (1987) 
identified a project course as being one course where 
reviews could be undertaken and listed four places where 
a review could be put into the lifecycle. Hilburn (1996) 
describes a course where a team of students develops a 
formal specification of the requirements for a software 
system. These specifications are inspected by another 
team of student.  Barbosa et al (2003) modified an 
Analysis and Design course to see the effects on their 
students’ attitudes to testing, by requiring the students to 
include testing-related practices in all phases of the 
development process.  

Recently communication and interaction skills have been 
identified as being important for software engineers and 
as educators we strive to find ways to incorporate 
teamwork and communication experiences into a course. 
Hilburn (1996, page 153) found that there were additional 
learning objectives to participating in an inspection: 

• “Students get additional practice in reading Z 
specifications; 

• While inspecting the students realise the value of 
precise, unambiguous and verifiable requirements; 

• Students get to see and study an alternative solution 
to the problem they worked on; 

• Students receive peer evaluation of their work and 
see the rather dramatic results that such assessment 
can produce; 

• They get practice in technical communication by 
articulating inspection results.” 

Similarly, Sullivan (1994, page 314) stated that “reviews 
provide a human-interaction laboratory setting where 
students: hone teamwork and communication skills, 
master the peer review process and learn to learn from 
each other.” Sullivan incorporated reciprocal peer 
reviews in five different courses. Sullivan (1994, page 
316) made the following interesting observations: 

• “Peer pressure tends to motivate producers to have 
their work products ready early enough for the 
reviewers to have time to review them; 

• The act of providing team members with a copy of 
work products seems to help students learn to share 
information.” 

3 Description of course 
The Software Engineering Project course at the 
University of Tasmania provides students with the 
experience of working in a team and dealing with the 
associated problems of communication and team 
management. Many aspects of the development process 
are considered: problem specification, requirement 
extraction, system design, implementation, integration, 
testing, and documentation.  

Projects are selected so that each student has the 
opportunity to work both cooperatively and 
independently on the project. Every project allows the 
students to learn new technical skills, such as a different 
development environment, a new programming language, 
or different software packages. The projects could be in 
one or more of the following domains: object-oriented 
programming, virtual reality systems, online content 
systems, systems administration software or artificial 
intelligence systems. The team works on the same project 
for the entire course. Each project requires the student to 
undertake significant personal learning, for example 
many projects require the students to teach themselves a 
previously unused programming language. 

The course is 25% of a student load for a semester. Since 
2000 the course has been run over two 13 week 
semesters; prior to that it was a one semester course. Each 
student is required to work for eight hours each week on 
the project. This means the student can spend in excess of 
200 hours working on their project over the 26-week 
course. Judging from the timesheets which the students 
are required to submit – 95% of the students spend more 
than that. The amount of testing corresponds to about 5% 
of the student’s time. Project courses available at other 
universities sometimes represent more of a student load 
or alternatively a separate quality course is run in 
conjunction with the project course so that more time can 
be spent on testing. 



In the first semester students complete release one (or a 
third of the project), in second semester they complete 
release two (the remaining two-thirds).  As the students 
receive a good grounding of the process and spend a lot 
of time learning the development tools in first semester, 
they are able to achieve twice as much in the second 
semester. The benefit of giving them a second iteration is 
that they gain confidence and familiarity with the process. 
They have greater knowledge of the domain and are also 
able to tackle more technically challenging aspects of the 
project (rather than concentrating on process and 
programming language). In each semester they spend 
approximately six weeks analysing and designing and six 
weeks implementing and testing, and one week doing 
documentation and handover.   

During each semester students are asked for feedback on 
various aspects of the course, including the testing 
process. This feedback is provided in a number of ways: 

• A class discussion during the final lecture 

• Team exit interview in the final week of the semester 

• One-on-one discussions with the lecturer 

• Emails received during the course and after 

• Class surveys using Likert scale questions and 
general comment questions 

• Centrally controlled Student Evaluation of Teaching 
and Learning surveys 

4 Testing Sessions 
Since 1998 peer testing sessions have been conducted in 
two different formats: 

• Paired peer code reviews 

• Group peer inspections 

The peer testing sessions are conducted during a tutorial. 
Prior to 2002 this was a two hour tutorial, since then it 
has been a three hour tutorial. The lecturer is present for 
the entire tutorial to answer questions about the process 
and record attendance. In the first semester of 2003 the 
lecturer also performed evaluation of each student’s level 
of participation (discussed further later). 

Interestingly, Collofello (1987) stated that the instructor 
should not be present at the sessions since it will 
encourage serious negative behavioural factors but he 
doesn’t state what they will be. The results of our study 
have been mixed on this issue. If the lecturer is present 
but only to answer questions about the process there is no 
noticeable negative behaviour. When the lecturer is 
present to evaluate the students, it takes some of the fun 
out of the session (particularly for the lecturer) – but it 
appeared to have no impact on other behaviours. 

The remainder of this section is a description of the 
processes and our positive and negative experiences with 
peer testing during the last six years. Section 5 provides a 
summary of our positive experiences.  

 

4.1 Testing in 1998 
Facts on the 1998 class 
13 week course 
31 students 
6 teams, 4-7 members 
Two teams had external clients 
All Java language programs 
All object oriented style of development 

Although teams were encouraged to test their own 
projects, the assessed requirement for testing was 
participation in a peer code review session. Each student 
was partnered with a student from a different team. The 
lecturer formed the partnerships and where possible, the 
partners were doing similar work in different projects.  

To motivate participants to take their review 
responsibilities seriously, students were informed that 
they would not cause the code author to lose marks by 
pointing out defects at this stage, and that by pointing out 
the defects now, they would probably increase the grade 
given for the quality of software. 

The review process closely followed that of a 
walkthrough (Yourdon 1989). Apart from reading and 
understanding the code the testers were asked to: 

• Identify problems in the GUI; 

• Suggest changes for the GUI; 

• Suggest code optimisations; 

• Identify potential uncaught errors in the code; 

• Suggest simpler code; 

• Suggest where more code comments were necessary. 

The testing was performed in a tutorial, with 50 minutes 
spent on each person’s code. The tutorial was held in 
week 10, three weeks before the final product was due to 
be finished. Failure to participate in the testing session 
meant a loss of two percent to their final grade. 

After overcoming everyone’s initial apprehension of 
showing their code to someone else for criticism, students 
were enthusiastic about showing someone what they had 
achieved. The paired code review had the following 
positive outcomes: 

• A large number of problems with the interfaces were 
identified and later fixed, hence increasing the 
quality of the final product.  

• A significant number of potential errors caused by 
user input such as out of range errors were found by 
the testers. This highlighted to the programmer that 
they had not adequately tested their own code. 

• The students were forced to explain their code, and 
realised the importance of code comments.  

• The session gave them an opportunity to really talk 
to someone about the issues they had faced, and in 
some cases were yet to overcome. Simply talking to 
someone who was willing to listen relieved a lot of 
stress. 



• Because they were partnered with someone working 
in a similar area, their testing partner was able to 
suggest a number of possible solutions to outstanding 
problems. This reduced the anxiety levels of quite a 
number of students. 

The session had the following problems: 

• Since testers were only being shown a small part of 
an entire application it was not easy for the tester to 
put it into context. 

• Some students had produced very little individual 
code and therefore had very little to show their 
partner. 

• Due to the timing of the testing session most projects 
were not yet integrated so many changes were made 
to the code after the review. 

• A few students felt the session was of little benefit 
for them, although they were willing to admit it was 
of benefit to either their partner or other people in 
their development team. 

4.2 Testing in 1999  
Facts on the 1999 class 
13 week course 
34 students 
8 teams, 4-6 members 
All external clients 
Many different programming languages 
All object oriented style of development, except one. 

This year the peer code review was held in week 11, two 
weeks before it was due. All projects had been integrated 
by this stage. The students were told to give a short 
demonstration of the entire program, but to then 
concentrate on their personal section. This enabled them 
to put their contribution in context. They then showed 
their code to their partner. Again failure to attend the 
review session meant a loss of two percent.  

All the positives from 1998 were still present, but there 
was a new problem. This year we introduced external 
clients and therefore there were many different 
programming languages used (not all Java as in 1998). It 
was difficult to pair students with someone doing similar 
work since the projects were now so varied and in 
differing programming languages, some of which had not 
been previously taught to the students. It was difficult for 
the tester to come to grips with a new language in one 
hour and to provide meaningful suggestions. 

4.3 Testing in 2000 
Facts on the 2000 class 
26 week course 
41 students 
9 teams, 4-5 members 
All external clients 
Many different programming languages  
Three virtual reality systems, remainder object oriented 
style of development. 

To overcome the problem of pairing students with a 
person working in similar areas, each project was given a 
testing team to perform a project inspection rather than 
merely reviewing code. The testing team consisted of 
three or four people from different teams and one person 
from the development team who acted as the ‘author’. 
Each testing team was made up of people who were 
developing projects similar to the project being tested. 

Again students were told at the commencement of the 
session that they would not cause teams to lose marks by 
pointing out defects. They were also told they should do 
the best that they could for the team they were testing as 
there was another team of students doing the same for 
their project. There was a reciprocal nature to the reviews 
because there was a lot of overlap between testing teams 
and development teams. This established a level playing 
field and created an atmosphere of egoless teamwork as 
discussed by Sullivan (1994). 

Each inspection had the following format: 
• Overview (5 minutes) – the author describes the 

purpose of the program 

• Demonstration (5 minutes) – the author gives a 
quick demonstration of the program 

• Examination (35 minutes) – testers complete a 
combination of usability testing and code reviewing 

• Review (5 minutes) – discussion of the handover 
status of the project to formulate an exit decision 

Each person was assigned a role within the testing team: 
author, moderator, recorder or inspector. As suggested by 
Collofello (1987), each student had the opportunity to 
play a different role at each testing session. A defect 
recording log as described in Humphrey (1997) was used 
to record the defects.  

The inspections were performed in week 12 of semester 
one and week 11 in semester two. Each project was 
inspected once by a testing team in first semester. In 
second semester each student participated in two testing 
teams, six projects were inspected twice. Different people 
from the development team acted as the author in each 
testing team. Thus by the end of the year each student had 
tested three projects (possibly once acting as the author 
for their own project). No person tested the same project 
twice. Attendance at the three inspections was worth 2% 
of the final grade. 

The group peer inspection had the following positive 
outcomes: 

• The students had fun which made them enthusiastic 
about the inspections. There was a definite buzz of 
excitement in the air as a result of the thrill of having 
other people really use their software and from 
nervous excitement from having people trying to find 
fault with it.  

• The testing teams were able to find a lot of defects, 
typically 80-100 defects per program; these were not 
necessarily distinct defects. The number of defects 
identified demonstrated to the students the 
importance of testing. 



• Having a testing session at the end of semester one 
provided an opportunity to share development ideas 
that could be used during semester two. 

• The inspections served as an early milestone for the 
integration of work reducing stress the following 
week when it was due for actual submission. 

The sessions had the following problems: 

• 50 minutes wasn’t long enough for the students to 
familiarise themselves with an entire product that 
they knew nothing about. 

• The defect recording logs only pointed out the 
negative aspects of product. This made the sessions 
more critical than supportive and therefore stressful 
for the students. 

• Some authors started to get defensive when there 
were so many people pointing out defects and began 
to put the blame on other team mates. 

4.4 Testing in 2001 
Facts on the 2001 class 
26 week course 
24 students - reduction due to a change to the structure of 
another degree. 
6 teams, 4-5 members 
All external clients 
Many different programming languages 

Group peer project inspections were continued and paired 
peer code reviews were re-introduced in first semester. 
The peer code review was held the week before the peer 
inspections.   

Each student participated in two inspections each 
semester; four projects were inspected twice each 
semester. Different people from the development team 
acted as the author in each testing team. By the end of the 
year each student had participated in one peer code 
review and had inspected four projects (possibly once 
acting as the author for their own project). No person 
tested the same project twice. 

Testing was worth 5% of the final grade: 1.5% code 
review, 1.5% first inspection, and 2% second semester 
inspection. Assessment was based purely on attendance. 

Prior to the testing session it was emphasised to the 
testers that pointing out defects would benefit the 
development team. It was equally emphasised to the 
‘authors’ that they shouldn’t take the process personally – 
testers were not pointing out defects in them but rather 
defects in the program. This was to try to minimise the 
blame aspect from the previous year. Testers were also 
encouraged to identify the positives aspects of the 
projects they were testing. 

There were no new negatives this year, and all of the 
previous negatives were eliminated, except that there still 
wasn’t enough time in the inspection session. Having 
both a code review and project inspection had the 
following new positive outcomes: 

• The attitude of the students to the code review was 
exceedingly professional. Even though it was still a 
negative process (identifying defects) it was taken 
positively as students could see how this information 
would benefit them. Testers were able to make about 
10-15 suggestions to their partner. 

• The code review served as a milestone for each 
individual to complete their work. This caused less 
stress the following week when teams were 
integrating work for the inspection.  

• The review and the inspections really encouraged the 
community aspect of the class. The students got to 
see what many of their class mates were doing. There 
was an atmosphere of sharing knowledge and ideas. 

4.5 Testing in 2002 
Facts on the 2002 class 
Two 13 week units  
108 students – increase due to change in structure of 
degree 
23 teams, 4-5 members 
All external clients except one 
Many different programming languages 

There were now too many students to hold the paired 
code reviews, but the group peer inspections were 
continued. Testing teams were formed in a similar 
manner to 2000. 

Due to the sheer volume of students each project was 
inspected once for 50 minutes each semester. Each 
student only tested one project a semester, but not the 
same project. The project manager from the development 
team acted as the author for the testing team. Attendance 
at each testing session was worth 1% of the mark given in 
each semester. 

All the positives from previous inspections were still 
present, but there were two new negatives: 

• There was not enough emphasis on the importance of 
testing. Each student only performed two hours of 
assessed testing. Judging by the quality of the 
products they did spend considerably more time 
testing their own products. 

• The suggested alternative approaches to the 
development processes were given too late to be 
really useful, particularly the suggestions given in 
week 11 of semester two. 

In a survey conducted at the end of the year (to which 
100% of students responded) students were asked to 
register agreement on a Likert scale to the following 
questions: 

• Testing our software in the peer group testing 
sessions helped us ensure that the software was 
ready for release. 

• 84% of the class responded positively. 
• I found the peer group testing sessions a useful 

learning experience. 
• 83% of the class responded positively. 



4.6 Testing in 2003 
Facts on the 2003 class 
Two 13 week units  
135 students 
31 teams, 4-5 members 
All external clients 
Many different programming languages 

Many students asked for more collaboration with other 
teams during the exit interviews in 2002. They wanted to 
have a better idea of what other teams were doing and the 
approaches they were using. Also at the conclusion of the 
2002 testing session in semester two a number of students 
approached the lecturer saying they had received some 
really good ideas from their testing team, but wished they 
had received them earlier – particularly ideas for 
alternative approaches they could have taken. 

For these reasons, and to increase the testing experience 
for the students, incremental testing sessions were 
introduced. Each project was inspected for 50 minutes by 
a testing team three times each semester, approximately 
every four weeks. The testing team was the same for the 
entire semester, although the testing teams were changed 
for the second semester.  

Testing was performed at the end of analysis, design and 
implementation phases of each release. The design phase 
included the development of a number of prototypes. As 
Collofello (1987) noted the materials for inspection 
should be both code and other intermediate products to 
produce the best results. Different types of defect 
recording logs were used in each session to reflect the 
different types of work product. The logs were also 
altered to enable testers to identify the good things about 
a work product to make the sessions less critical.  

Testing was worth 5% of the final mark and each student 
was assessed on the level of participation averaged over 
the three sessions. In the first semester the lecturer was 
present doing an evaluation of the level of participation. 
In second semester the students performed the evaluation. 
Each student received 2% for attendance and up to 3% for 
the level of participation. 

To motivate participants to take their responsibilities 
seriously the students were told that they were being 
assessed by the lecturer who was present and that the 
lecturer would be reading the comments they wrote on 
the defect recording logs. The presence of the lecturer 
doing assessment in the first semester seemed to take 
some of the fun out of the session (it also made it a lot 
more work for the lecturer). In the second semester 
students assessed each other. Each tester evaluated the 
project manager (the ‘author’) as follows: 

• Was the project manager on time for the session?  

• Was the project manager organised? 

• Did the project manager give an overview of the 
project? 

• Did the project manager ask your opinion during the 
examination period? 

• Was the project manager able to answer any 
questions you asked? 

• Did the project manager conduct the review at the 
end of the session? 

Each project manager evaluated each of their testers as 
follows: 

• Was the tester on time for the session?  

• Did the tester listen to your overview of the project? 

• Did the tester give you verbal suggestions during the 
examination period? 

• How helpful were the comments made by the tester? 

• Did the tester dominate your time during the 
examination or review preventing you from talking 
to other testers? 

• Did the tester write down any defects on printouts or 
logs? 

• Did the tester write down any helpful suggestions on 
printouts or logs? 

Sullivan (1994, page 317) noted that “the prospect of 
having work-in-progress evaluated by peers can provoke 
anxiety. This is especially true when the process is 
unfamiliar, when the reviewers are virtual strangers, or 
when the reviewers lack incentive to take their 
responsibility seriously.” By participating in the testing 
process three times a semester, the students became 
familiar with the process and by having the same testing 
team each time they developed a relationship with the 
development team. This relationship and the reciprocal 
nature of the testing teams inspired the testing teams to 
take the process seriously. All these features combined to 
reduce the anxiety level.  

All the previous negatives have now been eliminated and 
the incremental approach to testing has resulted in the 
following positive learning outcomes: 
• Having greater involvement with another project, 

meant some testers began to feel a sense of 
ownership in the other product by the end of a 
semester. 

• Some testers actually do testing for the other team 
outside the assessed tutorial as they now feel part of 
another team. 

• Having the same testing team involved from the 
beginning of the project allowed them to develop 
some familiarity with the product and achieve more 
testing during each session.  

• The class began interacting in week four as opposed 
to week 11 or 12 in earlier years. This has fostered 
greater collaboration within the class. 

• Testing prototypes gave students ideas about how to 
solve a problem or different approaches that could be 
taken much earlier. 



• It wasn’t necessary for the lecturer to have 
knowledge in all the varied technical areas such as 
programming languages and development software. 

• The lecturer lacked time to give feedback and advice 
on all work products for all projects before 
submission. The inspection sessions prevented this 
from being a problem since the students were 
learning from each other. 

In the survey conducted at the end of release one (to 
which 96% of students responded) students were asked to 
register agreement on a Likert scale to the following 
questions: 

• Testing our software in the peer group testing 
sessions helped us ensure that the software was 
ready for release. 

• 76% responded positively. 

• I found the peer group testing sessions a useful 
learning experience. 

• 84% responded positively. 

• Testing sessions improved the quality of our 
deliverables. 

• 83% responded positively. 

• Preparation for the peer group testing session served 
as a useful deadline for integration of documents and 
software. 

• 88% responded positively. 

• I gained some useful knowledge for my own project 
by testing another project. 

• 67% responded positively. 

• Testing the same project at each session increased 
my familiarity with the product allowing me to find 
more defects. 

• 84% responded positively. 

These numbers, and those from 2002, are significantly 
higher than those reported by Zeller (2000). In particular 
83% felt that the testing sessions improved the quality of 
the work products.  88% of students appreciated the 
internal milestone provided by a testing session. 67% of 
students felt they gained useful knowledge for their own 
project by testing another project. This reduced the 
number of questions that they needed to ask the lecturer; 
students learning from students.  

Students were also asked if they would like to continue to 
test the same project in second semester; 44% stated that 
they would, indicating that a large percentage of the class 
felt ownership of another project, or had established a 
relationship with other people. Practicalities, such as 
timetable and testing team size, meant that only 25% of 
students continued to test the same project. 

5 Benefits of peer testing 
To summarise, peer testing has had the following positive 
consequences: 

• Students have seen the necessity of testing. Many 
students felt that the work presented for testing was 
complete. On average a paired code review would 
produce at least 10-15 suggestions for each person, a 
group peer inspection would produce 80-100 
suggestions for a product. These results have 
demonstrated to students that the superficial testing 
they have been performing is not adequate; if the 
product had not been tested by the testing teams their 
clients would have been dissatisfied. 

• An increase in quality in a work product. The 
testing sessions are conducted approximately one 
week before the work is due for submission, giving 
the teams plenty of time to analyse the feedback and 
perform necessary corrections before assessment or 
handover to the client. Also since the students will 
actually be present while the work is being tested, 
there is a tendency to take more care to reduce the 
embarrassment during the session. The anonymity of 
having it assessed while you are not around has been 
removed. The testing sessions apply a positive form 
of peer-pressure on the students, which is beneficial 
to the quality of their work. 

• Students work steadily on a work product.  
Students often need milestones to assist them with 
time management. In previous courses students have 
been able to leave assignment work until the week 
(in some cases the day) it is due. Since the students 
need to show their work to peers before it is actually 
due for submission, they are required to begin 
working on it much earlier. The testing sessions 
serve as internal project milestones. Even though it is 
totally up to the individuals or teams to decide what 
they will have ready for a testing session large 
proportions of work products are implemented and/or 
integrated two weeks ahead of the due date, allowing 
them time to do some internal team testing before 
giving it to the testing team. The testing sessions 
provide an opportunity for all students to see the 
progress of other teams and compare their own 
progress.  

• Created a community feeling within the class. 
Even by third year there are many individuals who 
do not know their class mates. While doing the 
project they get to know their team mates. The 
testing sessions allow them to meet even more 
people. The group peer inspection sessions, in 
particular, have fostered a community feeling. The 
students now communicate more with other teams, 
taking more interest in what has been achieved by 
others. Many educators have experienced the ‘silent 
tutorial’ where students are too shy to say anything. 
The inspection sessions force the students to talk to 
each other. 

• Increased collaboration between teams. The 
testing sessions allow the teams to exchange ideas on 
similar problems. In some cases this collaboration 
has led teams to overcome what seemed to be 
insurmountable hurdles. The testing sessions have 
reduced the feeling of isolation some individuals feel 



when they have a problem that they can not solve. 
Since each team is working on a different program 
there are no concerns about plagiarism. In fact teams 
are encouraged to share ideas and approaches to save 
time, just as it would be within a business. Numerous 
times at the end of a session, an author would 
approach the lecturer bubbling with enthusiasm 
saying that a member of the testing team had just 
provided the solution to something that had been 
plaguing them for a long time.  

• Increased Learning. Every project requires the 
students to learn new technical skills. The students 
benefit from peer learning by working in teams 
which allowed them to learn new languages faster 
and better than they would have by themselves. The 
peer testing sessions also allowed cross-team 
learning by the sharing of ideas. Each testing team is 
made up of three to four people from other teams, 
each of those people benefits from working with 
three or four other people. So one project actually 
has a potential source of ideas on approaches from 
around 20 people. In the words of Sullivan (1994) 
“The cumulative life experiences of the students are 
shared”. Students learnt much more from each other 
than from the lecturer who did not deliver lectures on 
any technical aspects of the projects (only process). 
This collaboration also had the added benefit of 
reducing the workload for staff because students 
sought support and advice from their peers. 

6 Conclusion 
Since 1998 students have participated in peer testing 
sessions in our software engineering project course. Our 
experience with both paired peer code reviews and group 
peer inspections was extremely positive.  The peer style 
of testing gets students enthusiastic about testing, 
demonstrates the importance of testing, and helps teams 
produce a quality product. Peer testing has provided the 
following positive learning outcomes: 

• Students have seen the necessity of testing; 

• An increase in quality in a work product; 

• Students work steadily on a work product; 

• Created a community feeling within the class; 

• Increased collaboration between teams; 

• Increased learning. 

Interaction skills are important and as educators we strive 
to find ways to incorporate teamwork and communication 
experiences into a course. Peer testing has enhanced the 
learning experience for the students, particularly in the 
areas of technical skills and communication skills. 

7 Acknowledgements 
I would like to acknowledge the contribution of the 
students who have worked on projects from 1998 to 2003. 
I would also like to acknowledge the contribution made 
by the clients and supervisors involved. 

8 References 
Bailey D., Conn T., Hanks B., Werner L. (2003): Can We 

Influence Students’ Attitudes About Inspections? Can 
We Measure a Change in Attitude?, 16th Conference 
on Software Engineering Education and Training,  
Madrid, Spain, 260-267 

Barbosa E. F., Maldonado J. C., LeBlanc R., and Guzdial 
M. (2003): Introducing Testing Practices into Objects 
and Design Course, 16th Conference on Software 
Engineering Education and Training, Madrid, Spain, 
279-286 

Collofello J.S. (1987): Teaching Technical Reviews in a 
One-Semester Software Engineering Course, 
Proceedings of the eighteenth SIGCSE technical 
symposium on computer science education, 19(1), 222-
227 

Fagan M.E. (1999): Design and Code Inspections to 
Reduce Errors in Program Development, IBM System 
Journal, 38(2&3), 258-287 

Hilburn T.B. (1996): Inspections of Formal 
Specifications, Proceedings of the twenty-sixth SIGCSE 
technical symposium on computer science education, 
28(1), 150-154 

Humphrey W.S. (1997): Introduction to Personal 
Software Process, Addison Wesley, 4th Edition  

Sullivan S.L. (1994): Reciprocal Peer Reviews, 
Proceedings of the twenty-fifth SIGCSE symposium on 
computer science education, 26(1), 314-318 

Wahl N.J., (2000): Student Run Usability Testing, 
Thirteenth Conference on Software Engineering 
Education & Training, Austin, Texas, 123-130 

Weinberg G.M., Freedmand D.P. (1984): Reviews, 
Walkthroughs and Inspections, IEEE Transactions on 
Software Engineering, SE-10(1): 68-72  

Yourdon E., (1989): Structured Walkthroughs, 4th 
Edition, Prentice Hall 

Zeller A. (2000): Making Students Read and Review 
Code. Proceedings of the 5th annual SIGCSE/SIGCUE 
ITiCSE conference on Innovation and technology in 
computer science education, 2(3), Helsinki, Finland, 
89-92 


