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ABSTRACT. Mitsch’s natural partial order on the semigroup of binary relations
is here characterised by equations in the theory of relation algebras. The natural
partial order has a complex relationship with the compatible partial order of
inclusion, which is explored by means of a sublattice of the lattice of preorders
on the semigroup. The corresponding sublattice for the partition monoid is also
described.

1. NATURAL PARTIAL ORDERS

In [10], Heinz Mitsch formulated a characterisation of the natural partial order <
on the full transformation semigroup 7y which did not use inverses or idempotents,
and went on to define the natural partial order < on any semigroup S by

(1) a < bif a = b or there are x,y € S such that a = ax = bx = yb

for a,b € S. (The discovery was also made independently by P. M. Higgins, but
remained unpublished.) Observe that a = ya follows. Mitsch’s natural partial
order has now been characterised, and its properties investigated, for several con-
crete classes of non-regular semigroups—in [8, 12] for some semigroups of (partial)
transformations, and by Namnak and Preechasilp [11] for the semigroup By of all
binary relations on the set X.

The partial order of inclusion which is carried by Bx may also be thought of as
‘natural’, and it is the broad purpose of this note to discuss the relationship be-
tween these two partial orders on By. Moreover, the same questions are addressed
for the partition monoid Py, which also carries two ‘natural’ partial orders. So
we shall use a slightly different nomenclature here for the sake of clarity, mostly
referring to partial orders as just orders, and the natural partial order as Mitsch’s
order. We begin by collecting some information about Bx.

2. BINARY RELATIONS

The notation used here for binary relations follows that found in, for example,
Clifford and Preston [1], with the addition of complementation of relations defined
by

raty < (r,y) ¢ a
for x,y € X. Note that the symbol o for composition will be suppressed, except for
the composites of order relations on Bx. We will make use of the identity relation
on X, t={(z,z) : x € X}, and the universal relation w = X x X.

The following logical equivalence will also be required; it is the ‘Theorem K’ of
De Morgan [2, p. zzz] (see also e.g. [6]).
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Result 2.1. For o, 3,£ € By,
BECa < £C (B7'a%)" <= BC (a¢h)".
Result 2.1 will be used in the following form:

Corollary 2.2. (i) If the set {¢ € Bx : f€ = a} is non-empty, it has greatest
element (3~ a®)® in the inclusion order.

(i1) If the set {& € Bx : €8 = a} is non-empty, it has greatest element (a°B31) in
the inclusion order.

Proof. (i) By Result 2.1 above, 3¢ = « implies £ C (87 1ac)*; but the latter implies,
again using Result 2.1, that

o=pECB(50) Ca
Part (ii) is proven dually. O

3. EQUATIONAL CRITERION FOR THE MITSCH ORDER ON Bx

The basic definition (1) of @ < § is existentially quantified. In Bx there is a
purely equational equivalent:

Theorem 3.1. For o, 3 € Bx, a < [ if and only if
a=a (ﬁflac)c — ﬁ (571ac)c — (a0671>06'

Proof. Suppose o < 3. By definition there are &, n such that

a=af=p=np
and hence both

na=mnpf =af =a
and

0 =5 (570 = (a57) 5,

the latter by Corollary 2.2. Now

a=na=np (ﬁ’lof)c =« (5’1040)0
=5 —1ac)c _ (acB—l)cﬁ_
Conversely,
0 =a(pa) = 5 (870" = (a571)° 5
demonstrates a < . O

Regarded as a computation, this criterion is of polynomial time complexity in
| X|, as is also the case for tests of the divisibility preorders (by Corollary 2.2,
a = B¢ if and only if a = B (57 1ac)°, etc.), but in contrast to the NP-complete
tests for the J-preorder [7]. Of course algorithmic complexity is not the only issue.
Namnak and Preechasilp [11] characterise Mitsch’s order for binary relations with
the aid of Zaretskii’s criteria for divisibility [14] which, though also of worst-
case exponential complexity, proved very convenient for the purposes of finding
compatible elements, atoms and maximal elements in the Mitsch order [11]. The
equations of Theorem 3.1 are complex in the different sense that they belong to
a theory of semigroups enriched by operations of inversion and complementation,
in fact, to the theory of relation algebras [6]. It may be observed that all the
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proofs of sections 4 and 5 apply to the multiplicative reducts of (abstract) relation
algebras [6], and not just the representable ones By.

4. CONNEXIONS WITH THE INCLUSION ORDER

In discussing Mitsch’s order and the inclusion order on By, [11] notes their
logical independence. In fact, we can see that every inclusion atom is a Mitsch
atom, and every non-empty relation on X is in an inclusion interval between two
Mitsch atoms. Moreover, permutations of X are Mitsch-maximal, but far from
being either maximal elements or atoms in the inclusion order. Yet the relationship
between the two orders is subtle, and worthy of further exploration. We illustrate
this by next finding a substructure of Bx in which < agrees with C | and others
where < agrees with reverse inclusion O . We shall use the following statement,
easily proved.

Lemma 4.1. Let S be a semigroup, T be a reqular subsemigroup of S, and a,b € T.
Then a < b in T if and only if a < b in S.

The symmetric inverse monoid Zx is a regular subsemigroup of By, and the
natural partial order on Zx coincides with inclusion. So we may apply Lemma 4.1
to Ix.

Corollary 4.2. (1) If a, 8 € Ix, then o < 3 if and only if « C 5.
(i) If B € Ix, then a C 3 implies o < 3.

Part (ii) relies on the observation that f € Zy and o C § imply o € Zx. Of
course, o < (3 need not entail o € Zx.

To obtain pairs («, 3) such that < agrees with reverse inclusion 2D, first let «
be a reflexive and transitive relation on X (so, a preorder), and define a subset of
BX by

F(a)={p€Bx:af=a=pa}.

Proposition 4.3. For all f € F (a), a < [ if and only if B C «.

Proof. Clearly F («) is a subsemigroup of By, with zero element «. So for all
g € F(a), we have a < f and, since + C «, also f C fa = «. O

Corollary 4.2 shows that it may be instructive to consider the conjunction of
the natural partial order with set inclusion, which is an order on Bx which we
naturally write as < N C . Similarly, Proposition 4.3 suggests investigating the
conjuction of < with reverse inclusion, an order written as < N O. The next
Proposition, which extends Proposition 4.3, gives an alternative characterisation
for < N D ; there seems to be no analogous description of <N C .

Proposition 4.4. For all a, 8 € Bx, a < 3 and a 2 § if and only if there are
e=¢e2 and ¢ = ¢? such that 1 C € and o = e = ¢B.

Proof. Let a < . From Corollary 2.2 there exists the element £, maximum with
respect to C such that a = e, and o = ae also holds by Theorem 3.1. Then also
a = [Be? and thus €2 C e. But from B8t C o we have ¢ C ¢, so € C €% and ¢ = €2
Similarly ¢ = ¢* with a = ¢23.

Conversely, if the conditions hold then plainly o« < 3 as in the regular case, but
also ¢ C ¢ implies § C g8 = a. O]
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5. THE SUBLATTICE OF PREORDERS GENERATED BY <, C AND DO

The subsemigroups F'(«) and Zx of section 4 clearly show that, if | X| > 2,
there can be no order relation on By which contains < and either of C and D.
However the set of preorders on By is bounded by the relation of equality = and
the universal relation on By, and is closed under arbitrary intersections, and so
forms a lattice. In a similar situation, the papers [8] and [12] derive interesting
results from considering the composite of inclusion with <, and this idea also turns
out to be useful here.

Proposition 5.1. For all o, 3 € By, there exists v € Bx such that « C v < [ if
and only if awa C Pwp.

Proof. Suppose a C v < 3. Then there are £, n such that v = 8¢ = nf, so

awa C ywy = Béwnf C Pwp.
Since B C BB71B C Bwf, we have

BwB C Pwbwf € Pwp.
But now pwf = fwpfwp shows that fwB < (. As above we have o C awa, so
awa C fwp implies a C fwp < f. O

As a corollary, we have the join of the Mitsch and inclusion orders in the lattice
of preorders on By.

Corollary 5.2. (i) The composite < o C is contained in C o <
(i1) C o < is the join of C and < in the lattice of preorders on Bx.

Proof. (i) First let us note that < and C are subsets of C o < . It is clear from
Proposition 5.1 that C o < is transitive, i.e.,

(Co<)o(Cos)=(Cox)

and it follows that (< o C) is contained in (C o <).

(ii) Also it is immediate that C o < is reflexive, and so it is a preorder on By.
Any preorder on By containing both C and < also contains C o < . Hence C o <
is the join of C and < . L]

That the containment in (i) is proper (for |X| > 2) is shown by the following
instance. Consider a pair of distinct permutations 7, p: we have 7 C w < p, but
7 < a C pimplies 1 = a = p, a contradiction. It also follows that < o C is not a
preorder.

We turn to the composites and join of < with reverse inclusion.

Proposition 5.3. The composite O o < s the universal relation on Bx and the
join of O and < in the lattice of preorders on Bx.

Proof. For any o, € Bx, a O @ < 3, so Bx x Bx coincides with D o <. Now
Bx x By is plainly a preorder, and any preorder containing both < and O must
contain 2 o < and hence By X By. O

Here too, we see that the reverse composite < o D is properly contained in
D o <= By x Bx when |X| > 2 (and so is not a preorder), since t < a 2D w
implies both o = ¢+ and o = w.
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Thus we are able to describe the relationships between < , C and O in terms
of the sublattice generated by <, C and D within the lattice of preorders on By .
This sublattice is summarised by a Hasse diagram in Fig. 1; filled circles denote
orders, and additional labels in parentheses summarise conditions for «, 5 to be
related by the preorder.

Cox<

(aoac Bof)

U

<N>D
(Prop.4.4)

Fig. 1. A sublattice of preorders on Bx. Filled circles denote orders.

6. DUALISING: PARTITION MONOIDS

The partition monoid on the set X, denoted by Px, generates the partition alge-
bra, which is important in group representation theory and statistical mechanics;
for expositions, see [9] and [5]. Study of Px qua semigroup is more recent and
scanty. The reader is referred to the articles [13], [3], [4], which include full de-
scriptions and examples; here we give just a concise description, which suffices for
the present purpose. A partition over X is a quotient object (or equivalently, a
partition) of the coproduct (disjoint union) X U X of two copies of the set X. It is
often convenient to represent a € Px as a graph on the vertex set XoU X; (where
X and X; are disjoint copies of X) in which, for i,j € XoU X3, {7/} is an edge
if and only if 7, 7 belong to the same block of the partition a. (The resulting graph
is then a union of cliques.) If a block of a € Px has elements in both X, and X7,
we say it is a transversal block.

For the product in Py, let b be represented as a union of cliques on X; U X,
(where X5 is another copy of X disjoint from both X, and X;). Thus we have a
graph I' on the vertex set XqU X; U X5; and then we construct a graph ab on the
subset of vertices Xy U X5 by declaring, for i, j € XU Xs, that {4, j} is an edge of
ab if and only if there is a path in I" from i to j. Note ab is a union of cliques, and
each path may be taken, without loss of generality, to have edges taken alternately
from a and b, if null initial and terminal edges are allowed.

The relevance of Px in the present paper lies in its relationship with the semi-
group of binary relations. It takes just a short paragraph to explain how the
partition monoid Px is conceptually dual to the semigroup of binary relations;
we begin with a categorical description of Bx. A relation from X to Y over a
category with products is a subobject of the product X x Y. If the base category
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also has pullbacks and images, there is a natural way of defining the product of
a relation from X to Y with a relation from Y to Z. Over the category Set this
product is the usual composition of relations, and so is associative; thus we derive
the category of binary relations over Set, and the endomorphism monoid at the
object X is simply Byx. We could call Bx the relation monoid at X over Set. Now
the category Set°"? also turns out (non-trivially) to satisfy the conditions above.
A product in Set°"” is the same as a coproduct of sets, and a subobject in Set°’?
is a quotient object in Set. So elements of the relation monoid at X over Set’"?
do indeed constitute the partition monoid Pyx as defined above.

More significantly, the multiplication operations in Py and By are categorical
dual constructs as well. The monoids Bx and Px share the properties of con-
taining, in a canonical way, the semigroups 7x of all maps X — X, and Zx of
all partial injective maps X — X; Px additionally has the property of being a
regular x-semigroup, and containing, in a canonical way, the dual symmetric in-
verse monoid Z%. Importantly for present purposes, Px also carries, like By, an
inclusion order, in which we write (for a,b € Px) a C b if and only if every edge
of a is an edge of b. This order is the usual refinement order on set partitions, and
is compatible with the product in Px:

Lemma 6.1. Let a,b,c € Px with a Cb. Then ac C bc and dually ca C cb.

Proof. Let i, ... 7 be a path in ac; each edge from a is an edge of b, by hypothesis.
So i,...7 is a path in bc. O

In the canonical copy of Zx in Px,the natural partial order agrees with inclusion,
and in the canonical copy of %, the natural partial order agrees with reverse
inclusion. It follows, as with By, that < and C are related in a complex way,
which we may seek to understand in the same way as was used above for Bx. In
particular, we see again that < N C and < N D are non-trivial on Px but have a
trivial conjunction; and likewise that there can be no partial order on Px which
contains both < and C, or both < and O .

Just as in section 5, composites help identify joins of the orders within the
lattice of preorders on Py. We need the following definitions: let d be the trivial
partition over X, thus corresponding to the discrete graph on X LU X, and let k
be the universal partition over X, thus corresponding to the complete graph on
X U X. Clearly, d is the least element, and k the greatest, in the inclusion order
of PX .

Lemma 6.2. For all a € Py,

(i) dad = d;

(i1) if a has a transversal block, then kak = k;

(7i) if a has no transversal block, then aka = a.

Proof. By direct computation. O
Corollary 6.3. For all a € Px, ad,da, ak, ka are idempotents.

Proposition 6.4. For all a,b € Px, a D o <b if and only if ada O bdb.

Proof. Suppose there is ¢ € Px such that a O ¢ < b. Then ¢ = bx = yb for some

x,y € Px, and we have ada D cdc = bydzb O bd3b = bdb.
For the converse, we see that ada O bdb implies a = aa*a O ada O bdb < b,
the latter following from idempotency of bd and db. O



MITSCH’S ORDER AND INCLUSION FOR BINARY RELATIONS AND PARTITIONS 7

Corollary 6.5. In Py,

(i) 2 o < is a preorder;

(i1) < o D is contained in 2 o <

(iii) 2 o < is the join of O and < in the lattice of preorders.

Proposition 6.6. For all a,b € Px, a C o <b if and only if aka C bkb.

Proof. Suppose there is ¢ € Px such that a C ¢ < b. Then there are xz,y € Px
such that ¢ = bx = yb and hence aka C cke = bykab C bk3b = bkb.

Conversely, the condition implies a = aa*a C aka C bkb < b, the latter following
from idempotency of bk and kb. U

Corollary 6.7. In Px,

(i) C o < is a preorder;

(ii) < o C is contained in C o <;

(iii) C o < is the join of C and < in the lattice of preorders.

As in the previous section, this information is summarised in Fig.2, a Hasse
diagram depicting the sublattice of the lattice of preorders on Px generated by
<,C, and D . Filled circles denote orders, and parentheses contain conditions for
a and b to be related in the corresponding preorder.

Px P,

cox

(akac bkb) Q. (adao bdb)

U

Fig. 2. A sublattice of preorders on Py. Filled circles denote orders.
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