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ABSTRACT: Ecosystem dynamics can exhibit large, nonlinear changes
after small changes in an environmental parameter that passes a
critical threshold. These regime shifts are often associated with loss
of biodiversity and ecosystem services. Because critical thresholds for
regime shifts are hard to determine with precision, some recent stud-
ies have focused on deriving signals from dynamics leading up to
the thresholds. Models in these studies depend on using noise terms
independent of system parameters and variables to add stochasticity.
However, demographic stochasticity, an important source of random
variability, arises directly from system dynamics. In this study, a
framework is developed for modeling demographic stochasticity in
a mechanistic way, incorporating system variables and parameters.
This framework is applied to a deterministic, dynamic model of a
coral reef benthos. The resulting stochastic model indicates that in-
creasing variance—but not skewness—is consistently found in system
dynamics approaching a critical threshold of grazing pressure. Even
if the threshold is breached, attraction of transient dynamics by a
saddle point provides an opportunity for regime shift reversal by
management intervention. These results suggest that early warning
signals of regime shifts can arise intrinsically in endogenous dynamics
and can be detected without reliance on random environmental
forcings.

Keywords: coral reefs, demographic stochasticity, early warning sig-
nals, Markov process.

Introduction

There is clear evidence that a diversity of ecosystem types
can demonstrate sudden, nonlinear changes beyond a crit-
ical parameter threshold, otherwise known as regime or
phase shifts (Scheffer et al. 2001; Scheffer and Carpenter
2003; Folke et al. 2004). Regime shifts have been docu-
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mented in both terrestrial and aquatic ecosystems, in-
cluding savannas, lakes, kelp forests, and coral reefs (Hol-
ling 1973; Hughes 1994; Scheffer et al. 2001; Konar and
Estes 2003; Folke et al. 2004; Ling et al. 2009). They often
lead to decreased levels of biodiversity and ecosystem ser-
vices (Folke et al. 2004), and so natural resource managers
usually want to protect against their eventuality. Where
ecosystems manifest alternative stable states (Scheffer et
al. 2001; Petraitis and Dudgeon 2004; Schroder et al. 2005;
Marzloff et al. 2011), not only is there a discontinuous
change in equilibrium state at the critical threshold, typ-
ically corresponding to a saddle-node bifurcation (Guck-
enheimer and Holmes 1997), but system recovery is also
hindered by hysteresis (Beisner et al. 2003; Carpenter and
Brock 2006; Mumby et al. 2007). Thus, discontinuous re-
gime shifts with hysteresis are particularly problematic for
management.

A prominent aspect of the problem of avoiding regime
shifts in natural systems, using appropriate management
responses, is the difficulty of pinpointing the thresholds
at which they occur. Although empirical evidence (Scheffer
et al. 2001; Scheffer and Carpenter 2003; Hirota et al. 2011)
and theoretical models (e.g., May 1977; Nakajima and
DeAngelis 1989; Knowlton 1992) can provide insight into
the ecological mechanisms giving rise to critical thresholds
and a general indication of where thresholds may occur,
it is difficult to determine precisely where thresholds occur
without historical cases and/or direct experimentation, be-
cause the state of an ecosystem changes relatively slowly
leading up to a regime shift (Scheffer and Carpenter 2003).
Thus, regime shifts are typically observed only after the
fact. However, there is mounting evidence that simulation
models can help to identify thresholds with greater pre-
cision than previously thought (Marzloff et al. 2013).

In response to the challenge of preventing regime shifts,
an expanding and promising area of research has focused
on identifying early warning signals in system dynamics
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leading up to a threshold (Scheffer et al. 2009). Theoretical
modeling and, increasingly, empirical time series analyses
and experiments have identified a number of warning sig-
nals in the dynamics of system variables that can be mea-
sured readily in the field, such as nutrient concentration,
population abundance, and temperature. These signals in-
clude increasing standard deviation (SD) or variance
(Brock and Carpenter 2006; Carpenter and Brock 2006,
2011; Biggs et al. 2009; Takimoto 2009; Carpenter et al.
2011; Dai et al. 2012), increasing skewness (Carpenter and
Brock 2006; Guttal and Jayaprakash 2008; Drake and Grif-
fen 2010), decreasing rate of return to equilibrium (van
Nes and Scheffer 2007; Chisholm and Filotas 2009; Dai et
al. 2012; Veraart et al. 2012), increasing autocorrelation
(Dakos et al. 2008, 2012; Biggs et al. 2009; Drake and
Griffen 2010), and a shift in the frequency spectrum to
lower frequencies (Kleinen et al. 2003; Carpenter et al.
2008). Importantly, these signals are all premised on the
existence of some type of stochasticity in the system and,
apart from increasing skewness, depend on critical slowing
down of system dynamics as the threshold is approached
(Scheffer et al. 2009). This critical slowing down phenom-
enon is predicted from local equilibrium theory: close to
a local equilibrium, it can be proved that in the long term,
the rate of return to the local equilibrium approaches 0
as a bifurcation point is approached (Wissel 1984; Guck-
enheimer and Holmes 1997). Increasing skewness in the
dynamics of variables in a system, on the other hand, has
been hypothesized to result from another mechanism. As
a saddle-node bifurcation point is approached, an unstable
equilibrium gets closer to a stable equilibrium, such that
for each system variable, an unstable equilibrium value
gets closer to the stable equilibrium value from one side.
This could lead to increasing effects of the unstable equi-
librium on dynamics on one side of the stable equilibrium,
resulting in increasing skewness (Scheffer et al. 2009).
Existing models used in studies of early warning signals,
in systems with the capacity for regime shifts, typically
introduce stochasticity by adding separate random noise
terms to equations describing deterministic dynamics
(Brock and Carpenter 2006; Carpenter and Brock 2006;
Carpenter et al. 2008; Dakos et al. 2008, 2012; Guttal and
Jayaprakash 2008; Biggs et al. 2009; Contamin and Ellison
2009; Takimoto 2009). Although this is an established
method of generating stochasticity (e.g., @ksendal 1995;
Mikosch 1998), noise is added by randomly sampling from
distributions that are independent of system parameters
and variables. Thus, the method is not well suited for
representing demographic stochasticity, which is caused by
and hence mechanistically linked to system dynamics
(Schaffer 1981; Lande 1993; Bjornstad and Grenfell 2001)
and which may be an important source of random dy-
namical fluctuations (Bjornstad and Grenfell 2001). De-

Warning Signals as Intrinsic Properties 209

mographic stochasticity is the random variation that arises
from a finite number of interacting units taking part in
probabilistic interactions, in the absence of environmental
variability (Bjernstad and Grenfell 2001). In this article,
we develop a mathematical framework that permits mod-
eling of ecosystem dynamics with demographic stochas-
ticity that is explicitly related to system parameters and
variables, taking into account the system’s carrying ca-
pacity. Thus, the source of stochasticity in this framework
can be unambiguously attributed to endogenous dynamics
(Hastings 2010), in the sense that it does not arise from
exogenous environmental forcings, and can be considered
intrinsic to the system.

To test whether early warning signals of regime shifts
can be detected under the framework we develop, we apply
the framework to a model of coral reef benthic systems
(Fung et al. 2011); such systems are capable of exhibiting
coral-algal regime shifts under increasing fishing pressure
(e.g., Hughes 1994). This allows assessment of the degree
to which these signals are an intrinsic, fundamental prop-
erty of ecosystems. Specifically, we test for increasing var-
iance and skewness in the dynamics of different coral reef
benthic functional groups under different rates of ap-
proach to a critical fishing pressure threshold. Variance is
examined owing to its ease of measurement for a variety
of ecosystems (Brock and Carpenter 2010) and because it
is predicted to increase approaching a critical threshold,
as a result of critical slowing down (explained above; Schef-
fer et al. 2009). In particular, we determine whether tran-
sient short-term behavior can cause deviations from ex-
pected long-term trends predicted by critical slowing down
(Neubert and Caswell 1997). Trends in the coefficient of
variation (SD divided by the mean) are not examined in
this article because it is a priori unclear how the predicted
increasing trends in SD would be affected by dividing by
the means, which also change leading up to a critical
threshold. Increasing skewness is examined because it is a
commonly proposed early warning signal based on rea-
soning that does not depend on critical slowing down
(Scheffer et al. 2009). Furthermore, we examine dynamics
after a critical threshold has been crossed to see whether
there is a transient state before the new equilibrium is
reached. Such a transient state may arise because of at-
traction of dynamics by an unstable saddle point (Hastings
2004) and could signal to managers a last opportunity for
prevention of a regime shift. We conclude with a discussion
of the theoretical and practical implications of our results
in relation to existing research on early warning signals of
regime shifts and future perspectives that include incor-
porating spatial structure and environmental stochasticity
into our framework. Our study is the first to focus on the
effects of demographic stochasticity on the detection of
early warning signals and is a first examination of whether
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these signals can be detected for regime shifts in coral reef
ecosystems.

Methods

Introducing Demographic Stochasticity
Using a Markov Process

Demographic stochasticity is the random variation that
results from a finite number N of discrete ecosystem units
partaking in ecological processes with given probabilities,
in the absence of changes in system parameters and var-
iables caused by environmental variability (Schaffer 1981;
Lande 1993; Bjornstad and Grenfell 2001). A unit could
be an individual or—for sessile organisms, such as grass
or corals—a colony or an area of fixed size. Each of the
N units is in a particular state; for an individual, the states
could be “alive” or “dead,” whereas for an area of fixed
size, the states could be “occupied by a particular type of
organism” or “unoccupied.” If there are x+ 1 states
(x> 1), then there is a state vector S = {0, 1, ..., x} and
a  corresponding  system  state vector N =
{N,, N,, ..., N}, the elements of which are the number
of units in state i. In each time step considered, an x +
1 by x + 1 transition matrix P = (p;;) can be defined, with
entries p; equal to the probability of a unit in state i being
in state j in the next time step. These probabilities are a
function of the ecosystem parameters, which are fixed, and
variables. Because N is finite, stochasticity arises from the
probabilistic determination of the state of each unit in
consecutive time steps.

A Markov process approach to modeling demographic
stochasticity has been used in previous studies of the dy-
namics of single-species populations (e.g., Schaffer 1983;
Akcakaya 1991; Gilpin 1992; Caswell 2001). More broadly,
Markov processes have been used to add stochastic vari-
ation to dynamics of model metabolic pathways (e.g., Kel-
sey et al. 2008) and, in population genetic models, to
represent changes in allelic frequencies due to random
sampling of mating individuals in a finite population (e.g.,
Maynard Smith and Haigh 1974; Hartl and Clark 1997).
Markov models have also been used to describe the dy-
namics of sessile communities, although they rarely con-
sider density dependence (Spencer and Tanner 2008).

Our study builds on this previous work by developing
a framework, using a Markov process approach, for in-
troducing demographic stochasticity to a set of determin-
istic differential equations, which is sufficiently flexible to
accommodate interspecific interactions represented by
complex, nonlinear terms that may be density dependent.
These interactions are more complex than those found in
Lotka-Volterra models (e.g., MacArthur and Levins 1967;
Spencer and Tanner 2008). To clearly illustrate how the

framework operates, it is applied to a model of a coral
reef benthos, but the framework can be applied to other
similar models in the same way.

Stochasticizing a Coral Reef Benthic Model

The Coral-Turf-Macroalgae model (CTMm) of Fung et al.
(2011) is considered, which models the deterministic dy-
namics of three main functional groups—hard corals, turf
algae, and macroalgae—competing for space on a coral
reef benthos at a local scale smaller than the order of tens
of kilometers. Each group is defined by its proportional
cover, which changes dynamically according to the set of
ordinary differential equations:
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Here, C, T, and M are the proportional covers of hard
corals, turf algae, and macroalgae, respectively. The cover
of space—which is the area of the modeled benthos not
covered by corals, turf algae, or macroalgae—is simply
S=1-—C—T— M. A full justification of the interac-
tions modeled is given by Fung et al. (2011); table 1 gives
a list of the parameters in the model.

Following a Markov process approach to introducing
demographic stochasticity, the benthic area is first con-
ceptualized as N discrete interacting units of equal size.
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Table 1: Parameter definitions for the Coral-Turf-Macroalgae model (CTMm), specified by equations (1)—(3)

Parameter Definition

6 Grazing pressure

de Coral mortality rate

I Rate at which coral larvae, produced by local established brooding corals, recruit onto space

I, Rate at which exogenous spawning coral larvae recruit onto space

Te Lateral growth rate of corals over space

o Growth rate of corals over turf, relative to the rate over space

& Recruitment rate of corals onto turf, relative to the rate onto space

& Maximum rate at which turf algae is grazed

$r Growth rate of fine turf (occupying space)

u Maximum rate at which macroalgae is grazed

Ty Lateral growth rate of macroalgae over space

B Coral growth is inhibited by the presence of nearby macroalgae, and this is represented as depression of r. by
the factor (1 — 8,,M), where M is the macroalgal cover

Yeum Lateral growth rate of macroalgae over corals, relative to the rate over space

Yrm Lateral growth rate of macroalgae over turf, relative to the rate over space

Each of these units can be occupied by corals, turf algae,
or macroalgae or left unoccupied by these previous groups.
Hence, there are four states indexed by S = {0, 1, 2, 3},
with the corresponding system state vector being N =
{Ny» N;s N,, N;}. N, N,, and N, are the number of units
occupied by corals, turf algae, and macroalgae, respectively,
and N, is the number of units of space. The proportional
covers are thus defined by C = N,/N, T = N,/N, M =
N,/N, and S = N,/N. The Markov process approach
works in discrete time, so the differential equations (1)—

(3) are converted to the corresponding difference equa-
tions using a small, fixed time interval 6t. For each discrete
time step, the probabilities in the transition matrix P =
(p;;) can be derived by noting that the rates of ecological
processes in equations (1)—(3), when multiplied by 6t, can
be interpreted as the probabilities of those processes oc-
curring in 6t. A formal mathematical method for defining
p; is given in appendix A (apps. A-E are available online),
which also affirms that the probabilities derived define a
Markov process. This method gives the transition matrix

| C T M S

Cl 1~ gey— Mgy 0 8em Mg

T &re T Fre 1 = gre = 8w — Mys — Fre 8w My > 4)

M 0 0 1 — iy My

S 8sc K 8sr 8sm = 8sc = 8 = &sr— Hic

where

Sem = YemluMot, (5a) Mes = dot, (5g)
gre = a1 — B,M)C8t, (5b) mys = g,00t, (5h)
&t = Yo Mot (5¢) My = 8,001, (51)
oo = (1 — B,,M)Cét, (5d) Fre = (8cl3 + & 1b.C)ét, (5j)
gsr = (1 — 0)ét, (5e) e = (& + 12C)ét. (5k)
Zsu = 1Mot (5f)
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Figure 1: Phase diagrams showing equilibria for the deterministic coral reef benthic model specified by equations (1)—(3) as the grazing
pressure parameter § is changed between 0.1 and 0.9. Black, dark gray, and light gray lines are the equilibrium proportional covers of corals,
turf algae, and macroalgae, respectively; solid and dashed lines refer to stable and unstable equilibria, respectively. The dashed and dotted
vertical line marks a transcritical bifurcation, whereas the dotted vertical line marks a saddle-node bifurcation; a and b represent bifurcation
points for coral cover. A, Parameter set used is the same as that used by Fung et al. (2011) for their figure 3C. B, Parameter set used is

the same as for A, except that the macroalgal growth rate r,, is doubled to 0.7 year™"'.

It can be proved that the expected dynamics of this sto-
chastic version of the model closely approximates dynam-
ics given by equations (1)—(3) (app. A). This provides a
logical interpretation of the deterministic model as the
limit reached by the stochastic model as N — oo; in this
limit of infinite system size, demographic stochasticity be-
comes 0.

A time step of 6t = 1 day is used in this study, whereas
the size of a discrete benthic unit is chosen by considering
the typical area taken up by components of the functional
groups modeled. Coral colonies typically have an area on
the order of 0.01 m’ based on the median of 29 mean
radii values from 25 coral populations in the western At-
lantic (Garcia-Salgado et al. 2006) and four coral popu-
lations in the Indo-Pacific (Sandin et al. 2008). In addition,
at two reefs in Belize, patches of the macroalga Dictyota
pulchella have mean areas on the order of 0.01 m*> (Mumby
et al. 2005). Thus, in our model, one discrete unit is taken
to represent 0.01 m’. The total number of units modeled,
N, is taken to be 1,000; to test sensitivity of results to N,
simulations with 10,000 units are also performed. Thus,
model runs correspond to reef areas on the order of 10—
100 m®. This is the typical scale at which coral reef benthic
cover is surveyed using transects, which typically have a
length of a few tens of meters and a width of 0 (line
intercept transects) or tens of centimeters to meters (belt
transects; Hill and Wilkinson 2004; Garcia-Salgado et al.
2006).

1

Detection of Warning Signals in Stochastic Model

To test for warning signals preceding a regime shift, a set
of parameters is chosen that gives a bifurcation with in-
creasing fishing pressure or, equivalently, decreasing graz-
ing pressure on algae () for the deterministic model. This
parameter set is the same as that used to produce figure
3C of Fung et al. (2011) and is reproduced in appendix
B; the corresponding phase diagram is shown in figure
1A. As 6 decreases from a high value of 0.9 (high grazing,
low fishing), the system crosses a region with alternative
stable states and approaches a critical threshold of 6. =
0.312, which is determined numerically (fig. 1A). At this
threshold, there is a transcritical bifurcation between two
equilibria with high coral cover, which exchange stability
(i.e., one stable equilibrium becomes unstable and one
unstable equilibrium becomes stable; point a in fig. 1A).
The stable equilibrium that results from this bifurcation
has negative macroalgal cover, so the resulting system is
left with only one stable equilibrium within the biological
domain, with low coral and high algal (turf algal plus
macroalgal) cover (fig. 1A). The reverse situation occurs
when 0 increases from a low value of 0.1. In this case, the
system undergoes a saddle-node bifurcation at the critical
threshold of 6" = 0.426, which is again determined nu-
merically; for coral cover, the bifurcation point is marked
as b in figure 1A. Thereafter, the system has only one stable
equilibrium, with high coral and low algal cover (fig. 1A).

First, the SD and skewness of dynamics given by the
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stochastic version of the model are calculated for values
of 0 decreasing from 0.9 to 0.1 in increments of 0.025. At
each value of 6, the stochastic model is run for 2,000 years,
which is more than enough time to guarantee convergence
to a stationary state. For each 8 > 6. = 0.312, initial pro-
portional covers are chosen that allow the system to con-
verge to the stationary state with high (>0.5) mean C
(corresponding to the equilibrium with high Cin the de-
terministic model); the initial values of C, T, and M used
are 0.6, 0.1, and 0.1, respectively, or 0.8, 0.1, and 0.05. For
each 0 <6 = 0.312, initial values of 0.1, 0.1, and 0.6,
respectively, are used, allowing the system to converge
quickly to the stationary state with low (<0.5) mean C.
For each 2,000-year simulation, data points for the past
1,500 years are taken to define stationary distributions for
C, T, and M, since in all runs, convergence has occurred
within 500 years (determined by visual inspection; for
graphical examples, see app. B). The SD and skewness for
each of the three distributions are then calculated. These
simulations model the situation where fishing decreases 6
very slowly, such that stationary dynamics are approxi-
mated. Graphs of SD and skewness against § are plotted
to see whether there are any trends leading up to the critical
value of 6. = 0.312, determined from the deterministic
model as described above. Simulations are also performed
for the opposite case of increasing 6—from 0.1 to 0.9—
to see whether there are any trends leading up to the critical
value of 6 = 0.426, determined from the deterministic
model. This examines whether dynamics exhibit “warn-
ing” signals of system recovery. In this case, SD and skew-
ness for 6 <0, = 0.312 and 0 > 6 = 0.426 are the same
as in the case of decreasing 0, since dynamics converge to
only one stationary state at each 6. Thus, SD and skewness
values are taken directly from the previous case. However,
for each 0.312 < 6 < 0.426, initial covers are chosen that
allow the system to converge to the stationary state with
low mean C; that is, initial values of C, T, and M are
chosen to be 0.1, 0.1, and 0.6, respectively, or 0.05, 0.1,
and 0.8. To determine whether the trends in SD and skew-
ness found depend on the location of the critical thresh-
olds—that is, the values of 6 and 0'—the exercise de-
scribed in this paragraph is repeated for the same set of
parameters but with the macroalgal growth rate r,, doubled
(all parameter values are given in app. B), which gives
- = 0.532 and §° = 0.839 (fig. 1B).

Second, SDs of C, T, and M are calculated as 6 is changed
continuously through time. Skewness is not considered
because from the first part of the analysis, described in
the previous paragraph, trends in SD are much more con-
sistent than trends in skewness approaching a critical
threshold. In addition, the first part of the analysis showed
that results using 10,000 units in simulations gave the same
trends as those using 1,000 units and that increasing r,,
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and hence 0. and 6., gave largely the same trends. Thus,
for further analyses, only 1,000 units and the original pa-
rameter set are used. Continuously changing 6 represents
scenarios where fishing pressure changes quickly enough
such that dynamics do not have time to approximate a
stationary state. A key theoretical and practical question
here is: can early warning signals still be detected? To ex-
amine this for the case of increasing fishing pressure, dy-
namics are first run for 100 years with high § = 0.9, start-
ing at the equilibrium values for the corresponding
deterministic model; this allows the system to stabilize at
high coral and low algal cover. § is then continuously
decreased to 0.3, just beyond the critical value of 0.312,
over the course of 400 years, representing a slow rate of
decrease. During this period, SDs over time are calculated
using cover values within a time window of fixed length
that moves forward continuously in time; at a given time
t, SDs for C, T, and M are calculated using cover values
within the window that ends at t. For these sliding win-
dows, lengths of 5, 10, 25, 50, and 100 years are tested.
This exercise is repeated 10,000 times, allowing the means
and standard errors of the SDs to be calculated. Four
quicker rates of decrease of 0 are also investigated, from
6 = 0.9 to 0.3 in 200, 100, 50, and 25 years.

For each rate of decrease of 0, the sliding window length
giving SD values for Cat § = 0.9 and 0.3 that best match
corresponding values for the stationary distributions is
calculated to derive the optimum sliding window length
that best captures the increase in SD due to increasing
proximity of the critical threshold. The match is measured
by the average absolute percentage difference for the two
pairs of SD values at # = 0.9 and 0.3. For the optimum
window length found, the SD trend for C is recalculated
using annual samples, reflecting a realistic surveillance sce-
nario (e.g., for the Great Barrier Reef; http://www.aims
.gov.au/docs/research/monitoring/reef/reef-monitoring
.html). To investigate the effects of coarser sampling, SD
trends using samples every 2 and 3 years are also calcu-
lated. In addition, for annual sampling, once 0 decreases
past 0.65 at time t,_,,, the lag in detecting the corre-
sponding increase in SD for C is calculated as the time at
which the optimum sliding window length first gives an
SD greater than or equal to the SD for the stationary
distribution of C at § = 0.65 minus t,_,.,. Lags are also
calculated for 6 = 0.55, 0.45, and 0.35. The lag times mea-
sure the power of realistic surveillance regimes to detect
changes in SD for C when approaching a critical threshold.
Calculations in this paragraph are repeated for the SD
values for T.

Third, simulations are run to test the hypothesis that
an unstable saddle point can give rise to a transient state
in dynamics after 6 crosses the critical value, by tempo-
rarily attracting dynamics (Hastings 2004). Such an un-
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stable ghost attractor (Strogatz 1994) could cause dynam-
ics to fluctuate temporarily around its associated
equilibrium values, giving a characteristic warning signal
during a regime shift. To test the hypothesis, a simulation
is run with high 6 = 0.7 for 1,000 years, with initial values
of 0.6, 0.1, and 0.1 for coral, turf algal, and macroalgal
cover, respectively. This ensures that the system reaches a
stationary state with high coral and low algal cover; in fact,
macroalgal cover is zero. Then, 0 is decreased to 0.3, just
beyond the critical value of 0.312. This models a strong
increase in fishing pressure on herbivores (herbivorous fish
and sea urchins) over a short period of time or, alterna-
tively, a sharp decrease in 6 brought about by mass mor-
tality of herbivores, such as the disease-induced mass mor-
tality of Diadema antillarum urchins on Caribbean coral
reefs in 1983—1984 (Lessios 1988). At the same time, mac-
roalgal cover is increased by 0.01, representing a small
recruitment of macroalgal propagules from outside the
modeled area (Kinlan et al. 2005). This is necessary for
initiating a regime shift to a stationary state with low coral
cover, because this state also has nonzero macroalgal cover,
and the only way for the system to move from a state with
zero macroalgal cover to a state with nonzero macroalgal
cover is if there is some exogenous macroalgal recruitment
(see probability transition matrix [4]). Dynamics are
tracked for a further 1,000 years to determine whether a
warning signal is evident during the regime shift; 1,000
years is more than enough time to guarantee that the
regime shift has occurred. This simulation is repeated a
further nine times to assess whether the period of attrac-
tion by the saddle point varies stochastically.

The stochastic model was implemented using C++
code, and this implementation was used to perform all
stochastic simulations.

Results
Trends in SD and Skewness for Stationary Dynamics

For each type of proportional cover, stochastic model runs
produced stationary distributions with mean values very
close to deterministic values in the phase diagrams in fig-
ure 1. The correlation was high (r*>0.998; n = 38 and
45 for phase diagrams in fig. 1A and 1B, respectively), and
the regression lines had y-intercepts close to 0 (magnitude
<0.001) and slopes close to 1 (<0.001 away from 1). This
is the case using 1,000 or 10,000 discrete benthic units,
and it shows that critical 6 values for the deterministic
model can be used as critical values for the stochastic
model as well.

For 1,000 units and the original set of parameters (with-
out increased r,,), as § > 0. = 0.312 from an initial value
of 0.9, SD for stationary dynamics of Cand T both showed

an increasing trend (fig. 2A); the overall increases in SD
of Cand T as grazing pressure decreased from § = 0.9 to
0.325 were 26% and 311%, respectively. M remained at 0
before the critical threshold; hence, its SD remained at 0
too. Skewness for C fluctuated wildly with no clear trend,
whereas that for T displayed a decreasing trend, with an
overall decrease of 95% (fig. 2B). For the opposite scenario
of increasing 6, where § — 6 = 0.426 from an initial value
of 0.1, SD for stationary dynamics of C, T, and M all
showed increasing trends (fig. 2C), with overall increases
from 6 = 0.1 to 0.425 of 3,188%, 40%, and 87%, re-
spectively. Although the percentage increase in C is very
large, it corresponds to a low absolute increase from
0.000301 to 0.00989. Skewness for C remained very high
(>1) as the threshold is approached, whereas that for T
and M did not exhibit any clear trends, with large fluc-
tuations for M (fig. 2D). The very high skewness of C
reflects low values of C, which had a mean of <0.01 before
the threshold.

For the set of parameters with increased r,, trends in
SD and skewness approaching a critical parameter thresh-
old were largely the same as that found for the original
parameter set. The only qualitative difference was seen in
the case of increasing 0; as § — 6 = 0.839 from a starting
value of 0.1, SD for T showed an increasing trend up to
6 = 0425 but thereafter showed a decreasing trend up to
0 = 0.825. Appendix C presents a detailed mathematical
analysis of dynamics for T at these two 6 values, dem-
onstrating that the decrease in SD could have arisen from
stochastic fluctuations of T that were frequent enough to
cause deterministic dynamics in between fluctuations to
deviate from long-term trends.

Using 10,000 units instead of 1,000, the same trends for
SD and skewness were found for the different proportional
covers. This was in spite of decreased stochasticity resulting
in decreased SD values. Appendix D shows results for
10,000 units corresponding to figure 2.

Trends in SD for Continuously Changing 6

For simulations where 6 is continuously decreased from
0.9 to 0.3 over 400, 200, 100, 50, or 25 years, the mean
SDs for all proportional covers over 10,000 independent
runs were tracked through time for sliding window lengths
of 5, 10, 25, 50, and 100 years. In all of these simulations,
the initial value of M was 0; hence, M remained at 0
throughout (see probability transition matrix [4]). For C
and T, the standard error of the SD at any point in time
in any of the simulations was always small relative to the
mean (<0.44%), indicating low uncertainty for the mean
SD values found.

The mean SD for coral cover (C) showed a flat or slightly
decreasing trend over time for a window length of 5 years,
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Figure 2: A, B, For the stochastic coral reef benthic model with 1,000 discrete units, trends in standard deviation (SD) and skewness of
stationary distributions of model variables as the grazing pressure 0 decreases from 0.9 to 0.1 in increments of 0.025. Black, dark gray, and
light gray lines correspond to the proportional covers of corals, turf algae, and macroalgae, respectively. Crosses on the light gray lines
indicate the values of 6 simulated. For macroalgal cover, skewness is set to 0 if the mean is 0. The dashed vertical lines represent the critical
0 value, whereas arrows indicate the direction of changing 0. The parameter set used is the same as that used to draw the phase diagram
in figure 1A. C, D, Same as A and B, respectively, except for the case where 6 increases from 0.1 to 0.9.

except when 6 decreased quickly over <50 years, and for
a window length of 10 years, except when 6 decreased
sufficiently quickly over <100 years (fig. 3A). For other
combinations of window length and rate of § decrease, the
mean SD increased after a delay of typically more than 15
years (fig. 3A). For long window lengths of >50 years in
scenarios where 6 decreased over <200 years, and for the
longest window length of 100 years when 6 decreased over
400 years, mean SD eventually exceeded the maximum SD
of about 0.02 for the stationary distributions (fig. 3A). The
increase in mean SD typically increased with window
length (fig. 3A). In contrast, mean SD for T showed an
increasing trend sooner than C for all window lengths (fig.
3B). For window lengths >25 years, regardless of the rate
at which 6 decreased, the mean SD was eventually close
to or higher than the maximum SD of about 0.015 for
the stationary distributions, sometimes reaching values
more than three times as large (fig. 3B). As for C, the mean
SD for T typically increased with window length (fig. 3B).
For a fixed window length, the mean SD for C showed a

greater rate of change as the rate of decrease of 0 increased
(fig. 3C). This trend was repeated for T (fig. 3D).

The optimum sliding window length for the SD of C
was always longer than that for the SD of T, regardless of
the rate of decrease of 6 (table 2). Considering both types
of SD, the optimum window length typically decreased
when 60 decreased at a quicker rate (over fewer years).
Using the optimum window lengths, trends for both types
of SD calculated using annual sampling were always close
to those using the entire data set. Considering all years
from when 0 started to decrease, the average absolute per-
centage difference was <3%, except for the SD of T when
0 decreased over 25 years, for which the difference was
<7%. For sampling every 2 years, the percentages were
<8% and <22%, respectively, whereas for sampling every
3 years, they were <10% and <24%, respectively. For the
case of annual sampling, lag times for detecting increases
in the SD of C as predicted using stationary distributions
of C (fig. 2A) were usually longer than those for detecting
corresponding increases in the SD of T, sometimes by an
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Figure 3: A, B, For the stochastic coral reef benthic model with 1,000 discrete units, trends in mean standard deviation (SD) for coral and
turf algal covers, respectively, for the case where grazing pressure 6 decreases from 0.9 to 0.3 over 100 years. The parameter set used is the
same as that for figure 1A. Black, gray, yellow, red, and blue lines correspond to means from 10,000 runs of the stochastic coral reef benthic
model for sliding windows of length 5, 10, 25, 50, and 100 years, respectively. For each run, dynamics were simulated for 100 years before
0 was decreased to allow dynamics to stabilize. C, D, Trends in mean SD for coral and turf algal covers for a sliding window of length 25
years. Black, gray, yellow, red, and blue lines correspond to means from 10,000 stochastic model runs for the cases where 6 decreases from
0.9 to 0.3 over 400, 200, 100, 50, and 25 years, respectively. Parameter values are the same as for A and B.

order of magnitude (table 2). Lags for the SD of T were
typically <11 years (table 2). In about a quarter of cases,
increases in SD were not detected (lag times of infinity),
particularly when 6 decreased sufficiently slowly over >100
years, or were detected before 6 had reached the value
considered (negative lag times), particularly when 6 de-
creased quickly over <50 years (table 2). Infinite lag times
reflect 6 reaching 0.3 before the increase in SD considered
can be detected, whereas negative lag times reflect addi-
tional SD caused by the moving average of the variables.

Warning Signals during a Regime Shift

Starting at a stationary state derived using the original set
of parameter values with @ = 0.7, decreasing 0 to 0.3 while
increasing M to 0.01 initiated a coral-algal regime shift
(fig. 4A). Transient dynamics during this shift were at-
tracted to the unstable saddle point that existed. This was
manifested most clearly as a temporary period of stability
at an intermediate value of coral cover sandwiched be-
tween two sharp drops in coral cover, the latter being much

greater than the first (fig. 4A). This simulation was re-
peated nine times with different seeds for the random
number generator. It was found that the length of the
temporary period of stability varied between runs as a
result of stochasticity and can be longer or shorter than
predicted by the deterministic dynamics, sometimes by
more than 50 years (app. D).

The presence of an intermediate period of stability as
fishing pressure is increased (grazing pressure is decreased)
raises the question of whether the system can revert back
to a healthy one with persistently high coral cover if fishing
pressure is reduced (grazing pressure is increased) during
this period. Thus, for the simulation shown in figure 44,
100 years after grazing pressure 6 is decreased to 0.3, it is
increased to 0.35 again to see whether coral cover recovers,
despite the system having crossed the critical value of 6 at
which it would tend toward an alternative stable state with
low coral and high algal cover; 0.35 is just above the critical
value of 0.312. This did cause the system to revert back
to high coral cover, in effect reversing the course of the
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Table 2: Optimum sliding window lengths and lag times for the standard deviations
(SDs) of coral (C) and turf algal (T) covers

Time period of
decreasing 0 (years)

Optimum sliding
window length

Lag for SD (years)

and variable (years) =065 6=055 6=045 6 =0.35
400:

C 50 174.3 152.7 © ©

T 25 6.3 10.7 28.0 20.3
200:

C 50 39.7 27.3 13.0 —11.3

T 10 14.7 23.3 39.0 ©
100:

C 25 43.3 32.7 23.0 0

T 10 3 7 4.0 3
50:

C 25 10.2 4.8 5 —5.8

T 5 2.2 2.8 4.5 3.2
25:

C 100 7.6 4.4 2.2 -9

T 5 —34 —3.6 —3.8 —4.9

For the stochastic coral reef benthic model with the parameter set used to draw the phase diagram in

figure 1A and 1,000 discrete units, optimum sliding window lengths and, under annual sampling, lag
times for the SDs of coral and turf algal proportional covers for scenarios where grazing pressure

decreases from 0.9 to 0.3 over different time periods. For definitions of the optimum sliding window
length and the lag time at a particular 6 value, see “Methods.”

regime shift (fig. 4B). Appendix D shows another example
of this reversal for the case of nutrient enrichment.

Discussion

Early warning signals of regime shifts in ecosystems pro-
vide an opportunity for managers to enact preventative
measures to avert potentially large losses in biodiversity
and ecosystem services (Scheffer et al. 2001, 2009; Scheffer
and Carpenter 2003; Folke et al. 2004). Modeling studies
(Wissel 1984; DeAngelis and Nakajima 1989; van Nes and
Scheffer 2003; Rietkerk et al. 2004; Brock and Carpenter
2006, 2010; van Nes and Scheffer 2007; Carpenter et al.
2008; Guttal and Jayaprakash 2008; Biggs et al. 2009; Chis-
holm and Filotas 2009; Contamin and Ellison 2009; Tak-
imoto 2009; Carpenter and Brock 2011; Dakos et al. 2011,
2012) allied with empirical time series analyses and ex-
periments (Dakos et al. 2008; Carpenter et al. 2011; Dai
et al. 2012) have provided evidence supporting the exis-
tence of early warning signals for a wide range of
ecosystems.

However, thus far, studies have not focused on the way
in which stochasticity is represented in models, which is
typically added as noise terms independent of system pa-
rameters and variables. In this way, it is difficult to dis-
tinguish between demographic stochasticity, which is in-
trinsically linked to endogenous dynamics and hence to
all system parameters and variables, and environmental

stochasticity, which arises from exogenous sources
(Schaffer 1981; Lande 1993; Bjornstad and Grenfell 2001;
Hastings 2010). Furthermore, this approach assumes that
noise acts directly on dynamic variables rather than the
parameters. Dakos et al. (2012) address this issue by con-
sidering environmental stochasticity acting directly on pa-
rameters but not the problem of modeling demographic
stochasticity, which may be an important source of dy-
namical fluctuations in ecosystems (Bjornstad and Grenfell
2001).

A Markov Process Framework for Modeling
Demographic Stochasticity

In this study, we have built on previous modeling studies
of early warning signals by first constructing a general
framework allowing demographic stochasticity to be added
to deterministic dynamics, by relating it to all system pa-
rameters and variables in a Markov process. This frame-
work thus gives a mechanistic relationship between the
modeled stochasticity and endogenous dynamics. It can
be applied to models of ecosystems with one or more
groups that exhibit intra- and/or intergroup competition
for a common resource, such as vegetation in arid eco-
systems (Guttal and Jayaprakash 2008) and savannas (Hir-
ota et al. 2011) or sessile organisms in rocky intertidal
(Dayton 1971) and coral reef (Hughes 1994) ecosystems.
Importantly, the form of the model need not be restricted
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Figure 4: A, Stochastic coral reef benthic model run with the parameter set used to draw the phase diagram in figure 1A and grazing
pressure parameter § = 0.7 for the first 1,000 years. One thousand discrete benthic units were used. Black, dark gray, and light gray lines
correspond to coral, turf algal, and macroalgal covers, respectively; the initial values of these three types of cover are 0.6, 0.1, and 0.1,
respectively. At 1,000 years, 6 is decreased to 0.3, and macroalgal proportional cover is increased from 0 by 0.01 to simulate a macroalgal
recruitment event. This initiates a regime shift to low coral cover. However, coral cover follows a stepwise decrease because of attraction
to an unstable saddle point. The equilibrium coral and turf algal covers for this saddle point are marked by dashed horizontal lines; the
equilibrium macroalgal cover is 0. B, Same as A, except that during the regime shift at 1,100 years (dashed vertical line),  is increased to

0.35. This causes the regime shift to be reversed.

to Lotka-Volterra types (e.g., MacArthur and Levins 1967;
Spencer and Tanner 2008).

Stochastic models that result from application of the
framework can be used to assess whether early warning
signals can exist in these ecosystems just from demo-
graphic stochasticity. This was demonstrated for a model
of a coral reef benthos (Fung et al. 2011) under increasing
fishing pressure (decreasing grazing pressure) and two
commonly proposed signals, SD and skewness. Encour-
agingly from a management perspective, a trend of in-
creasing SD was found for at least one variable as a critical
threshold of grazing pressure was approached, indepen-
dent of the threshold value and regardless of whether graz-
ing pressure changed slowly or quickly (figs. 2, 3; app. C).
In addition, increasing the spatial area by an order of
magnitude for some simulations did not affect the trends
found (fig. 2; app. D), suggesting that although demo-
graphic stochasticity decreases with system size, the trends
are invariant. As for recovery rates to equilibrium follow-
ing a small perturbation, relative rather than absolute rates
seem to be more important (van Nes and Scheffer 2007).
In addition, increasing SD was also found in the opposite
direction of decreasing fishing pressure, which may be of
use as a signal indicating reversal of a coral-algal regime
shift, as may have occurred on Dairy Bull Reef in Jamaica
(Idjadi et al. 2006). However, the increases in SD were
small for some variables, and in one instance, SD de-

creased; examination of local equilibrium dynamics (app.
C) revealed the importance of short-term dynamics that
may overturn the expected increase in SD arising from
critical slowing down (Scheffer et al. 2009). This highlights
the point that there is no a priori guarantee that SD for
a dynamic variable would increase as a critical threshold
is approached, since critical slowing down refers to only
long-term dynamics specified by the dominant eigenvalue
(Wissel 1984; Neubert and Caswell 1997). Other recent
theoretical work has also demonstrated situations, for sys-
tems undergoing regime shifts, where SD does not show
an increasing trend (Hastings and Wysham 2010; Dakos
et al. 2011, 2012).

Furthermore, our results show that detection of an in-
creasing SD trend depends on the window length used for
calculation and the rate at which the critical threshold is
approached. An overly short window (e.g., 5 years) can
miss an increasing SD trend by focusing on only short-
term fluctuations, whereas an overly long window (e.g.,
100 years) could introduce spurious increases in SD caused
by the moving average of each dynamic variable; the latter
is evidenced by SD values that are higher than the max-
imum found for stationary dynamics (fig. 3). This high-
lights the utility of modeling to identify optimum window
lengths that minimize these artifacts by giving increasing
SD values that best match values predicted using stationary
distributions for the variables considered. In this study,
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the optimum length for the SD of coral cover was always
much longer than that for the SD of turf algal cover (table
2); furthermore, using the optimum lengths, SD of coral
cover typically exhibited longer lags for detection of in-
creased SD predicted by the stationary distributions (table
2). These results reflect the slower coral dynamics and
suggest that monitoring turf algal dynamics for early warn-
ing signals could require shorter time series from moni-
toring—often no more than a decade—and be more ef-
fective. This is important since empirical time series of
coral reef benthic covers typically cover a couple of decades
at best (Holmes and Johnstone 2010). Model results also
show that as the grazing pressure approached the critical
threshold at a greater rate, the optimum lengths typically
shortened (table 2), thus aiding detection of an early warn-
ing signal. Another encouraging result is that even coarse
sampling at once every 3 years typically gave low (<10%)
sampling errors in SD trends. This augurs well for detec-
tion of early warning signals using data from existing mon-
itoring programs, such as that by the Australian Institute
of Marine Science for the Great Barrier Reef (http://
www.aims.gov.au/docs/research/monitoring/reef/reef-
monitoring.html), which samples at an annual rate.

The results for skewness of proportional covers indi-
cated no clear trends except for turf algal cover in the case
of decreasing grazing pressure. Even in this case, skewness
decreased in contrast to theoretical expectations (as de-
scribed in “Introduction”; Scheffer et al. 2009). These re-
sults are consistent with those of Takimoto (2009), who
also found no clear trends for skewness in population
abundance for his model of an invading species population
with alternative stable states, as a critical threshold in the
immigration rate was approached. Guttal and Jayaprakash
(2008) did find increasing skewness for two models of a
semiarid ecosystem and a model of a lake ecosystem, as
critical disturbance thresholds were approached. However,
for all three models, stochasticity was introduced using
Gaussian noise terms, which, as noted by the authors,
could be an oversimplification (Guttal and Jayaprakash
2008).

Overall, our results provide the first theoretical evidence
that increasing variances of coral and algal covers over
time may be used as warning signals of coral-algal regime
shifts in coral reef ecosystems on spatial scales commen-
surate with observational studies (Hill and Wilkinson
2004; Mumby et al. 2005; Garcia-Salgado et al. 2006;
Sandin et al. 2008). They also demonstrate that demo-
graphic stochasticity alone can generate warning signals,
which supports the case that such signals are intrinsic
properties of ecosystems in general.

Warning Signals as Intrinsic Properties 219

Detecting and Reversing Regime Shifts
beyond the Critical Threshold

An interesting result of this study, which is of particular
importance for managers, is that even if the critical pa-
rameter threshold has been crossed, it may not be too late
to detect, respond to, and ultimately reverse a regime shift
(fig. 4). For the model coral reef benthos under study, a
warning signal could be detected during a regime shift as
a temporary period of stability in coral cover following an
initial sharp drop, which should be evident from any long-
term monitoring exercise. This period can last for decades,
allowing sufficient time to implement management mea-
sures to return grazing pressure to a precritical level, hence
reversing the regime shift without incurring the costs of
hysteresis. The signal may also help management to iden-
tify the location of a critical threshold.

Theoretically, the existence of this safety net is predi-
cated on the existence of an unstable saddle point that
stalls dynamic convergence to an undesirable stable equi-
librium (Strogatz 1994; Hastings 2004). Previous studies
have focused on detecting regime shifts before a critical
threshold is reached, but some studies have found that
convergence to a new stable equilibrium beyond a critical
threshold can take a long time, from months to decades
(Van Geest et al. 2007; Biggs et al. 2009). Whether the
existence of these ghost attractors is common in the dy-
namics of natural ecosystems is unknown, so a strategy of
detecting and reversing a regime shift once it has started
should be used only as a last resort.

Spatial Extensions

This study has investigated the effects of demographic sto-
chasticity on the detection of signals that may provide early
warning of ecological regime shifts, using a nonspatial
coral reef benthic model. A logical extension is to make
the model spatially explicit by arranging the discrete ben-
thic units in a spatial pattern of adjacent units. For each
benthic unit, probabilities for spatially localized processes,
such as overgrowth, would then be a function of the pro-
portional covers of corals, turf algae, and macroalgae de-
rived by considering just neighboring benthic units rather
than all units. A spatial model has the advantage of al-
lowing investigation of possible early warning signals cal-
culated from data sampled over space rather than time.
Spatial indicators may be particularly useful for ecosystems
where available time series are short, such as coral reefs
(Holmes and Johnstone 2010). Previous studies have de-
veloped and used spatial models of arid ecosystems un-
dergoing desertification (Dakos et al. 2011), lakes exposed
to eutrophication (Dakos et al. 2010; Donangelo et al.
2010), and vegetation experiencing increased grazing
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(Guttal and Jayaprakash 2009; Dakos et al. 2010) to test
candidate spatial indicators. These studies have provided
evidence of increasing spatial variance (Guttal and Jaya-
prakash 2009; Donangelo et al. 2010; Dakos et al. 2011),
skewness (Guttal and Jayaprakash 2009; Dakos et al. 2011),
and correlation (Dakos et al. 2010, 2011) before a critical
disturbance threshold. Characteristic spatial patterns re-
flecting self-organized patchiness have also been found
preceding a critical threshold (Rietkerk et al. 2002, 2004;
Donangelo et al. 2010; Dakos et al. 2011).

However, to date there have been no studies of early
warning signals using a spatial coral reef model, especially
one that models demographic stochasticity in the way pre-
sented in this study. Of interest is the set of spatial signals
that can be identified in such a model preceding a dis-
continuous coral-algal regime shift. Donangelo et al.
(2010) found for their spatial lake model that spatial var-
iance increased earlier than temporal variance as a critical
average nutrient input rate was approached. A similar
comparison between spatial and temporal signals can use-
fully be performed for a spatial coral reef model to quantify
the relative utility of the two indicator types in a man-
agement context. As a first step toward this kind of anal-
ysis, we have developed a spatial version of the stochastic
model used in this study with 1,000 discrete benthic units
arranged in a 25 x 40 grid (for details, see app. E). Im-
portantly, preliminary results demonstrate that as grazing
pressure decreases to a critical threshold, this spatial model
replicates the trends in (temporal) SD and skewness found
in this study (app. E), showing that these trends are robust
to the addition of spatial structure.

Other Future Perspectives

Apart from spatial extensions, another logical extension
to this study is to add environmental stochasticity to de-
mographic stochasticity and investigate their combined ef-
fects on signal detection. This could be done using either
the coral reef model in this study or another model for
which the stochastic framework presented here could be
applied. The framework can readily be adapted to also
include environmental stochasticity by allowing one or
more model parameters to vary randomly in each time
step, according to defined probability distributions. In ad-
dition, one or more of the model variables can be per-
turbed by noise terms defined by probability distributions.
By modeling different degrees of demographic and envi-
ronmental stochasticity, the relative importance of each to
the detection of warning signals could be established. A
potential obstacle here is that the variance of population
parameters due to environmental stochasticity could be
poorly known for most populations (Engen et al. 1998).

Finally, there remains the different but related issue of

quantitatively determining how close a system is to a crit-
ical parameter threshold, which cannot be deduced from
trends in SD alone. Thus, results from modeling studies
of trends in early warning signals, such as this study, should
be complemented with those focused on estimating thresh-
old values of a parameter (e.g., Marzloff et al. 2013). The
former type of study would identify statistics for system
variables expected to give a trend as a parameter threshold
is reached; if monitoring of these statistics in a real system
yields the predicted trends, then this provides evidence to
managers that the system (1) is capable of sudden, non-
linear regime shifts, which is not guaranteed to be the case
(Scheffer et al. 2001; Fung et al. 2011; Marzloff et al. 2011),
and (2) is moving toward such a regime shift because of
changing values of the parameter considered. The latter
type of study would give estimates of critical threshold
values of the parameter considered, ideally with uncer-
tainty bounds; monitoring of the parameter in the man-
aged system would then allow quantification of how far
the system is likely to be from the critical threshold. Al-
ternatively, instead of estimating threshold values of a pa-
rameter, threshold values for the statistics could be esti-
mated. This is advantageous for management if values of
the parameter cannot be estimated because of logistical
reasons, such as cost or technological constraints. Yet an-
other option would be to estimate threshold values for
both the parameter and the statistics, if both can be mon-
itored. This would allow a more precautionary approach
where the system is managed such that neither the thresh-
old for the parameter nor the thresholds for the statistics
are exceeded.
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Appendix A from T. Fung et al., “Warning Signals of Regime Shifts as
Intrinsic Properties

of Endogenous Dynamics”

(Am. Nat., vol. 182, no. 2, p. 208)

Framework for Adding Demographic Stochasticity to Deterministic Dynamics:
Application to a Coral Reef Benthic Model

Demographic stochasticity is introduced into the deterministic coral reef benthic model specified by equations (1)—(3)
(Fung et al. 2011), using a framework that utilizes a Markov process. This framework involves splitting the benthic area
modeled into discrete units of equal size and then defining transition probabilities for the state that each unit can take
over the course of a discrete time step. Let the number of discrete benthic units be N. There are four states, indexed by
S = {0, 1,2, 3}. Let the corresponding system state vector be N = {N,, N,, N,, N,}, where N,, N,, N,, and N, are the
number of units occupied by corals, turf algae, macroalgae, and space, respectively. Hence, the proportional covers of
corals, turf algae, macroalgae, and space are defined by C = N,/N, T = N,/N, M = N,/N, and § = N,/N, respectively.
Let the proportional cover state vector be s = {s,, 5, 5,,5;} = {C, T, M, S}. During each discrete time step, each unit
either remains in the same state or moves into another state. The probability of a unit in state i being in state j in the
next time step, p;;, is defined as a function of the probabilities of elementary events; these are events that cause a change
N — N + E, where the system state change vector E = (g, €, &,, €,) satisfies ¢, € {0, £ 1} and X &, = 1 foru € S.
The corresponding change in the proportional cover state vector is s > s + AsE, where As = 1/N. Let the set of all
possible system state change vectors be

Z CIE = (e, 6,6,,8)6, €0, £1}, Doe, = 1. (A1)

Let E be the set of all possible elementary events. E is partitioned into the form

3
E=]]E. (A2)
u=0

a disjoint union. Thus, each event is associated with a system unit in state «. In addition, each set E, has a distinguished
elementary event & representing “nothing happens.” A system unit in state u is only susceptible to events in E,.
For each elementary event e € E, there is a conditional probability p(e|s) per system unit in state u, which satisfies

> plels) = 1. (A3)

ecE,

In one discrete time step, a single elementary event occurs simultaneously to each of the N system units. The term
“simultaneous” here is taken to mean that all events occur under the same conditions; that is, the system state s remains
the same for all events. Only at the end of the time step is the system state updated. If the N elementary events produce
changes of (system) state E,, ..., E,, then the state change at the updating time is E™ = E, + ... + E,. We shall show
that these changes of state, occurring in discrete time steps, define a Markov process on (2, which is the rational lattice
defined by

Q, = {s € A[S]: Ns, = N, is an integer for each u € S}, (A4)

where A[S] is the four-dimensional simplex over the set of states S, given by

3
A[S] = {s = (59, 5,,5,,5;) e R 0<5s,<1, Es“ = 1. (A5)

u=0
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To define a Markov process, we must define transition probabilities p(s’|s) for all possible (proportional cover) state
changes s = s’ (s, s’ € Q,) and satisfying

2 psls =1 (A6)
for each s € Q. Let the N system units be indexed so that units in the same state occur consecutively. Thus, set K_, = 0
and K, = K, , + N, for 0 <u <3 and define
E"(s) = E)° x E" x E* x EY® = {(e,, ...,ey) € EM ey ;€ E,,1<i<N,uec8} (A7)
In addition, define
N
ENE®™|s) = {e e ENs): >, E(e;) = E™}, (A8)
i=1

where E(e) is the system state change due to the elementary event e. Then define transition probabilities p(s’|s) by
p(s’|s) = O unless s’ = s + AsE"” and

N
ps+AsEVls)y = > []pcels). (A9)
ecENEWN|s) i=1
To check that these define transition probabilities for a Markov process, we have:

2. p(s']s) = 2, p(s + ASE™|s)
s EN)

E Hp(ei|s)

ecEN(s) i=1

=113, Tptets

ueS \e,cENn i=

(using eq. [A7] to write e = e, X e, X e, X e,, with e, € E*)

T[S o)

ueS \eckE,

=[Tam™

ueS
=1,

as required.

For the CTMm, the elementary events are as follows:

el. Mortality of coral, with state change vector E = (—1,0, 0, 1) and probability (per unit of existing coral) of
plel|s) = d_obt.

e2. Growth of macroalgae over coral, with state change vector E = (—1,0, 1, 0) and probability (per unit of existing
coral) of p(e2|s) = vy, 1, Mét.

e3. Recruitment of spawning coral onto turf algae, with state change vector E = (1, —1, 0, 0) and probability (per
unit of existing turf algae) of p(e3|s) = e 36t

e4. Recruitment of brooding coral onto turf algae, with state change vector E = (1, —1, 0, 0) and probability (per unit
of existing turf algae) of p(ed|s) = e lpCét.

e5. Growth of coral over turf algae, with state change vector E = (1, —1, 0, 0) and probability (per unit of existing
turf algae) of p(e3|s) = acr.(1 — B,,M)Cét.

e6. Grazing on turf algae, with state change vector E = (0, —1, 0, 1) and probability (per unit of existing turf algae)
of p(e6|s) = g 06t.

€7. Growth of macroalgae over turf algae, with state change vector E = (0, —1, 1, 0) and probability (per unit of
existing turf algae) of p(e7|s) = vyt M6t.

e8. Grazing on macroalgae, with state change vector E = (0, 0, —1, 1) and probability (per unit of existing
macroalgae) of p(e8|s) = g,,06t.

€9. Recruitment of spawning coral onto space, with state change vector E = (1, 0, 0, —1) and probability (per unit of
existing space) of p(e9|s) = [.6t.
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e10. Recruitment of brooding coral onto space, with state change vector E = (1, 0, 0, —1) and probability (per unit of

existing space) of p(el0|s) = [pCét.

ell. Growth of coral over space, with state change vector E = (1, 0, 0, —1) and probability (per unit of existing

space) of p(ell|s) = r.(1 — 3,,M)Cét.

el2. Growth of turf algae from space, with state change vector E = (0, 1, 0, —1) and probability (per unit of existing

space) of p(el2]s) = (1 — 6)ét.
el3. Growth of macroalgae onto space, with state change vector E = (0, 0, 1, —1) and probability (per unit of
existing space) of p(el3|s) = r,Mbét.
Thus,

E, = {QD,, el, 2},

E, = {D,, €3, e4, €5, €6, €7},

E, = {J,, €8},

E, = {OD,,e9,el0,ell, el2, el3}.

(A10a)
(A10b)
(A10c)
(A10d)

It is required that f,(s) = p(E,/J,) <1 for u € S. For the time step used in this study, which is 6 = 1 day, and the
parameter ranges derived by Fung et al. (2011), this is always true. The probabilities in the transition matrix, p;, can then
be calculated by summation of probabilities of elementary events in E; that result in a transition to state j. This gives the

transition matrix shown in equation (4), where the symbols in the matrix are given by

8en = p(e2[s) = o1, Mot, (Alla)
gre = plesls) = acr(1 — B,M)Cbr, (Al1b)
g = PET|S) = vpph, Mbt, (Allc)
gsc = plell|s) = r.(1 — B,,M)Cét, (Al1d)
gsr = plel2]s) = & (1 — 0)dt, (Alle)
gsu = plel3|s) = r,Mbdt, (A11f)
mes = plells) = d.ét, (Allg)
m,s = p(ebls) = g,06t, (Al1h)
mys = p(e8ls) = g,,00t, (A11i)
e = p(e3|s) + pled|s) = (el + e l2C)dt, (A11j))
rie = p(e9[s) + p(el0ls) = (I3 + 12C)ét. (Allk)
Equations (A11) give rise to equations (5).
Mean Field (Expected) Dynamics
The system state vector is N = {N,, N,, N,, N;}, and at each updating time step, E,, ..., E, are the state change vectors
associated with the system units. As above, let K_, = 0 and K, = N, + ... + N,. Then the N, system units with state u
have associated state changes labeled E; .., ..., E;. The probability that the ith system unit in state # undergoes state
change E,_ ., is
> plels), (A12)
BBk, +)
from which it follows that the corresponding expected change in s is
As D Eg . > plels) = A2 E X plels). (A13)

Ek, ,+i€Z eck(Eg,  +i) EeZ ecE(E)

This is the same for each system unit in state u. Hence, the expected change in s due to all of the N, system units in

3
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state u is

AsD, DVE D, plels)

i=1 EcZ ecE,E)

= AsN, >, E >, ple|s) (A14)

EcZ ccE E)

= 2 E D, plels)s..

EecZ ecE,(E)

Finally, the expected change in s due to all the system units is

explasls] = >, 2 E D, ple]s)s,

ueSEeZ ecE,E)

= 2 E> X plelsys,

EeZ ueS ecE(E)

= 2 Ep(s + AsE|s) (A15)

Ecz
= E(s).

Thus, the mean field dynamics associated with simultaneous updating is
s’ = s+ E(s), (A16)

which is exactly the same as the numerical approximation of the set of differential equations (1)—(3) using Euler’s
method. Therefore, with a small time step of 1 day, the mean field dynamics are a close approximation of the
deterministic dynamics given by the differential equations. In fact, with a time step of 1 day, Euler’s method gives
dynamics for the set of differential equations that are very close to that obtained using fourth-order Runge-Kutta. One
thousand simulations with 1,000 randomly chosen parameter sets (using parameter ranges from Fung et al. 2011) and
initial conditions, each lasting 500 years, show that the maximum difference using the two methods is <0.0003 for any of
the four proportional covers and at any time step.
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Parameter Sets Used and Example Stationary Dynamics

The set of parameters used to draw the phase diagram in figure 1A is given in table B1. This is the same set of
parameters as that used by Fung et al. (2011) to draw their figure 3C. The set of parameters used to draw the phase
diagram in figure 1B is also given in table B1. In addition, the set of parameters used for the simulation in figure D3,
which shows a phase shift reversal for the case of nutrient enrichment, is shown in table B1.

For 1,000 discrete benthic units and the parameter set used to draw the phase diagram in figure 1A, figure B1 shows
time dynamics for § = 0.85 and 0.35, with initial proportional covers allowing convergence to the stationary state with
high mean coral cover. These two cases represent dynamics far away from and close to the critical threshold of 0.312,
respectively; closer to the threshold, stationary dynamics show greater variance, most pronounced for turf algal
proportional cover. In both cases, stationarity is reached after 500 years.

Table B1. Parameter sets used to draw the
phase diagrams in figure 1 together with the
parameter set used for figure D3 in appendix

D

Parameter Figure 1A Figure 1B Figure D3
0 1-9 1-9 .6

d. (year™") .05 .05 .05

g (year™") .0009 .0009 .0009
I5. (year™") .00006 .00006 .00006
re (year™") 2 2 2

ac 25 25 2

. 1 1 05

g, (year™) 10 10 9

& (year™) 5 5 11-19.5
gy (year™) 5 5 5

ry (year ") 35 i 35-.62
B 9 9 9

Yem 1 1 1

Yim 9 9 9
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Figure B1: Stochastic coral reef benthic model runs with the parameter set used to draw the phase diagram in figure 1A, with grazing
pressure parameter 6 set to two different values. Black, dark gray, and light gray lines are the proportional covers of corals, turf algae,
and macroalgae, respectively. One thousand discrete benthic units were used, and dynamics were simulated for 2,000 years. In both cases,
the initial proportional covers of corals, turf algae, and macroalgae are 0.6, 0.1, and 0.1, respectively. A, 8 = 0.85, far away from the
critical value of 0.312. Macroalgal cover decreases to 0 quickly, within 21 years. B, 8 = 0.35, close to the critical value of 0.312.
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Mathematical Analysis Showing How the Standard Deviation of Turf Algal Cover
Could Decrease Approaching a Critical Threshold

For the set of parameters used to draw the phase diagram in figure 1B, trends in SD as 6 = 6 = 0.839 from 0.1 are
shown in figure C1A. SD for T exhibited an increasing trend up to 6 = 0.425, with an increase of 44%, but afterward
showed a decreasing trend up to § = 0.825, with a decrease of 34% relative to the value at 6 = 0.425 (fig. C1A). This
meant that overall, SD for 7 at § = 0.825 was very similar to the initial value at # = 0.1 (0.00742 vs. 0.00778). To
better understand the mechanisms involved in the decreasing trend in SD from 6 = 0.425 to 0.825, the deterministic
dynamics of T around equilibria at these two 6 values can be examined using the equation

(1) = Eyyexp(\t) + E,yexp(N,t) + E zexp (N51), (CD)

where £, = T — T, with T being an equilibrium value of T at a particular 8 value; N,, \,, and A, are the three eigenvalues
of the system for a particular 6 value; and E,,, E,,, and E,; are constants, which also depend on 6. As 0 increases from
0.425 to 0.825, the three eigenvalues remain negative, but A; = 0, so long-term dynamics become dominated by the third
term in equation (C1). Thus, given a fixed initial point close to equilibrium, long-term dynamics become further away
from equilibrium as 6 approaches the critical threshold. However, in the short term, the first two terms in equation (C1)
are not negligible compared with the third; in fact, the second term has a relatively large negative constant (E,,) that has
a large effect in decreasing £,(¢), as shown in figure C1B. Thus, in the short term, the net effect of the three terms in
equation (C1) could result in dynamics that are closer to equilibrium as 6 approaches the critical threshold; an example is
shown in figure C1B for t <5 years. For stochastic dynamics, this could lead to decreasing SD approaching the threshold
if stochastic fluctuations occur frequently enough for deterministic dynamics in between the fluctuations to approximate
short-term deterministic dynamics. Interestingly, short-term dynamics being closer to equilibrium nearer the critical 0
value can also be demonstrated for M, using the analogous equation

§u(t) = Ejexp(\t) + Eyexp(N,1) + Eyzexp (N,0), (2)

as shown in figure C1B for 3 <t < 6 years. However, in contrast to the SD of 7, the SD of M increases approaching the
critical threshold of 8 (fig. C1A). A possible explanation for this apparent paradox is that the dynamics of M are less
frequently affected by stochastic fluctuations, as a result of the growth rate of and grazing rate on macroalgae being an
order of magnitude lower than for turf algae (app. B), such that deterministic dynamics in between the fluctuations are
closer to the long-term dynamics.

A derivation of equations (C1) and (C1) is now presented, together with explicit formulas for the constants. Near an

equilibrium of the dynamical coral reef benthic system defined by equations (1)—(3), (C, T, M), linearization using
Taylor’s theorem shows that system dynamics can be described by

x(1) = Aexp(\ DV, + A,exp (N, 1)V, + A exp (A;1)v;, (C3)

where x(t) = (£.(1), £,(2), £,,(1)) is the vector of proportional covers relative to (C, T, M), {\,}._, are the eigenvalues of

the interaction matrix for the linearized system, and {v, = (v, ,, v;,, v;3)};-, are the corresponding eigenvectors. At t = 0,
equation (C3) gives three equations that can be simultaneously solved for the constants {A};_:

Seo = A, T AW, AW, (C4a)
§ro = A, T AW, , +Ay,,, (C4b)

Svo = A3 T AW, s T Ay, (C4o)
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where £.(0) = £c, £:(0) = &, and £,,(0) = &,,,. From equation (C4a),
§co — Ay — Ay,

A= (C5)
Vi
Substituting equation (C5) into equations (C4b) and (C4c) and solving for A, gives
A, = (ST()VI,I —&covin —A, Vi1Vso — V1,2V3,1). (C6)
ViaVa2 = Vi2Van ViiaVa2 = Vi2Vaa
Substituting equations (C5) and (C6) into equation (C4c) and solving for A; gives
A = (EMOVI,I - ECOV1,3)(V1,1V2,2 —VioVai) — (gTOVI,l - EC0V1,2)(V1,1V2.3 —VisVay) (€7)
’ Vi vas = ViaVs, DV Ve = ViaVa ) = (Vv = VioVs DV Ve s = VisVa )
Substituting equation (C7) into equation (C6) eliminates A,; substituting equations (C6) and (C7) into equation (CS5)
eliminates A, and A,. Equation (C3) can then be written as:
§c(t) = Ejexp(\t) + Enexp(N\,1) + Ejsexp (A1), (C8a)
§:(t) = Eyyexp (N 1) + Epexp(N,1) + Epsexp(N;0), (C8b)
§u(t) = Ejexp(\t) + Eyexp(Ny1) + Eyzexp (N,0), (C8¢)

where E; = Ay, ,, with the constants {A}._, given explicitly by equations (C5), (C6), and (C7). Equations (C8b) and

AN i=1

(C8c) are equivalent to equations (C1) and (C2), respectively.
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Figure C1: A, For the stochastic coral reef benthic model with 1,000 discrete units, trends in standard deviation (SD) of stationary
distributions of model variables as the grazing pressure 6 increases from 0.1 to 0.9 in increments of 0.025 past the critical threshold
represented by the dashed vertical line. The arrow indicates the direction of 6 change. Black, dark gray, and light gray lines correspond
to the proportional covers of corals, turf algae, and macroalgae, respectively. Crosses on the light gray lines indicate the values of 0
simulated. The parameter set used is the same as that used to draw the phase diagram in figure 1B. B, For @ = 0.425 and 0.825, corresponding
to the solid and dashed lines, respectively, time dynamics for the corresponding deterministic model close to equilibrium. Starting from
an initial value of 0.01, the dark gray and light gray lines show dynamics for turf algal and macroalgal proportional covers relative to the
equilibrium, respectively, given by equations (C1) and (C2), respectively. The lines are labeled a—d; for each line, the SD for the
corresponding stochastic model dynamics is also indicated by labels a—d in A (a: 6 = 0.425, turf algal cover; b: 0 = 0.825, turf algal
cover; c: § = 0.425, macroalgal cover; d: § = 0.825, macroalgal cover).
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Results Showing Trends in Standard Deviation and Skewness for 10,000 Discrete
Benthic Units, Stochastic Variation in Length of Period of Attraction by a Saddle
Point, and a Regime Shift Reversal for a Model Coral Reef Undergoing Nutrient
Enrichment

Trends in Standard Deviation and Skewness for 10,000 Discrete Benthic Units

Figure 2 shows trends in standard deviation (SD) and skewness for stationary dynamics as grazing pressure 6 decreases
from 0.9 to a critical threshold at 0.312 and as § increases from 0.1 to another critical threshold at 0.426. The parameter
values used are the same as those used to draw the phase diagram in figure 1A, and 1,000 discrete benthic units were
used in the stochastic model. Figure D1 is the same as figure 2, except that 10,000 discrete benthic units were used
instead. For both decreasing and increasing 6, the same increasing trends for SD and lack of clear trends for skewness
were found, using 10,000 units as for 1,000 units. For each of the three variables and for decreasing or increasing 6, SD
values using 10,000 units were highly correlated with those derived using 1,000 units, with r*>> 0.976 (n = 33).

Stochastic Variation in Length of Period of Attraction by a Saddle Point

Figure 4A shows stochastic time dynamics for a simulation using the parameter set corresponding to the phase diagram in
figure 1A. 6 is set to 0.7 for the first 1,000 years; at 1,000 years, 6 is set to 0.3, and macroalgal cover M is increased
from O to 0.01, initiating a regime shift. During this regime shift, transient dynamics were attracted to an unstable saddle
point, most clearly seen as a temporary period of stability at an intermediate coral proportional cover. Figure D2 shows
how this temporary period of stability varies in length when two other simulations are performed with different seeds for
the random number generator and compares the stochastic trajectories with the deterministic trajectory. It shows that in
the stochastic simulations, the period of stability can be longer or shorter than for the deterministic case.

A Regime Shift Reversal for a Model Coral Reef Undergoing Nutrient Enrichment

Figure 4B shows that attraction by an unstable saddle point during a regime shift can allow a coral-algal regime shift to
be reversed, if 0 is increased back to a precritical value. This reversal can also be demonstrated for the case of increasing
nutrient enrichment, or nutrification (sensu Szmant 2002), as shown in figure D3; this figure uses a parameter set
corresponding to the one used to draw the phase diagram shown in figure 4C of Fung et al. (2011), which is reproduced
in appendix B. The nutrient level is low for the first 1,000 years but is then increased past a critical threshold for 200
years, with macroalgal cover M increased from O to 0.01 at the threshold (increasing M is necessary to initiate a regime
shift, as for the simulation in figure 4B); a discontinuous regime shift is initiated at the threshold. However, if the nutrient
level is decreased to just below the critical threshold at 1,200 years, then the regime shift is reversed. Thus, hysteresis in
the system is avoided. Increases and decreases in the nutrient level are modeled indirectly as increases and decreases in
the growth rates of turf algae and macroalgae.
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Figure D1: A, B, For the stochastic coral reef benthic model with 10,000 discrete units, trends in standard deviation (SD) and skewness
of stationary distributions of model variables as the grazing pressure § decreases from 0.9 to 0.1 in increments of 0.025. Same as figure
2, except that 10,000 discrete benthic units were used instead of 1,000. Black, dark gray, and light gray lines correspond to the proportional
covers of corals, turf algae, and macroalgae, respectively. Crosses on the light gray lines indicate the values of 0 simulated. For macroalgal
cover, skewness is set to O if the mean is 0. The dashed vertical lines represent the critical 0 value, whereas arrows indicate the direction
of changing 6. The parameter set used is the same as that used to draw the phase diagram in figure 1A. C, D, Same as A and B, respectively,
except for the case where 6 increases from 0.1 to 0.9.
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Figure D2: Three stochastic coral reef benthic model runs (fluctuating black, dark gray, and light gray lines) with the parameter set used
to draw the phase diagram in figure 1A and grazing pressure parameter § = 0.7 for the first 1,000 years. One thousand discrete benthic
units were used. At 1,000 years, 6 is decreased to 0.3, and macroalgal proportional cover is increased from 0 by 0.01 to simulate a
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macroalgal recruitment event. This causes a regime shift to low coral cover. Because of stochasticity, the length of time for which coral
proportional cover remains between 0.4 and 0.6 at the intermediate step as a result of attraction by an unstable saddle point varies by
more than a factor of 2. For comparison, the trajectory from the corresponding deterministic model (smooth black line) is shown as well.

@
o ]
I
|
l
© | |
& © |
3 |
o |
— |
g < | |
S o I
b= |
o
Q
o
o N 1
c |
I
I
|
© i —
750 1000 1250 1500
t (yrs)

Figure D3: Stochastic coral reef benthic model run with the parameter set used to draw figure 4C of Fung et al. (2011) and turf algal
and macroalgal growth rates of 11 and 0.35 year™', respectively, for the first 1,000 years. These parameter values correspond to a pristine
reef with no nutrification (Fung et al. 2011). One thousand discrete benthic units were used. Black, dark gray, and light gray lines correspond
to coral, turf algal, and macroalgal covers, respectively; the initial values of these three types of cover are 0.6, 0.1, and 0.1, respectively.
At 1,000 years, the turf algal and macroalgal growth rates are increased by 77% to 19.5 and 0.62 year ', respectively, representing
nutrification, and macroalgal proportional cover is increased from 0 by 0.01 to simulate a macroalgal recruitment event. This initiates a
regime shift to low coral cover. If there are no further changes in algal growth rates, coral cover eventually drops to a very low value;
however, in this simulation, during the regime shift at 1,200 years, the turf algal and macroalgal growth rates are decreased by 11% to
17.3 and 0.55 year™', respectively, which reverses the decline in coral cover.
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A Spatial Extension of the Stochastic Coral Reef Model with Preliminary Results on
Early Warning Signals

The nonspatial stochastic coral reef model with N = 1,000 discrete benthic units is extended by arranging the units in a
rectangular grid with 25 rows and 40 columns (25 and 40 is the pair of integers minimizing the difference in row and
column numbers). A unit is considered a neighbor of another if it is horizontally, vertically, or diagonally adjacent (i.e.,
the Moore neighborhood is considered). In each discrete time step, overgrowth interactions are assumed to occur only
between neighboring units. Also, recruitment of brooding corals is assumed to occur only on neighboring units of space
or turf algae, because there is evidence that their larvae have very short dispersal distances of centimeters (Jackson 1986;
Richmond 1997). These spatially constrained processes mean that, unlike the nonspatial model, the state transition
probabilities can differ between units. Specifically, for a unit in row m and column n (the focal unit), the probabilities of
elementary events e2, ¢7, and el3 (for definitions of all elementary events, see app. A) are now Yy, %,M,,.0t, YrstiuM,,.01,
and r,M,, 0t, respectively, where

40

25
Ea=l Eb=1 ‘/Vnm,abyub
M, =

mn 25 40 .
Eazl Zb:] M}/nn,ab

(ED)

Here, w,,, ., = 1 if the unit in row a and column b is a neighbor of the focal unit and O otherwise, and y,, = 1 if the

unit in row a and column b is occupied by macroalgae (i.e., is in state 2) and O otherwise. This expression arises because
only macroalgal units in the neighborhood of the focal unit are considered. Similarly, the probabilities of e4 and el0 are
now &.12C,,6t and 12C,, 6t respectively, where

mn mn

25 40
2(1: 1 Eb:l vvnm.abzab
= = : (E2)

C 25
2t Zpmt Wan,ab

mn —

with z,, = 1 if the unit in row a and column b is occupied by corals (i.e., is in state 0) and O otherwise.

The probabilities of e5 and ell—representing overgrowth of corals over a focal turf algal and space unit,
respectively—also change but in a more complicated way because there is a need to consider the neighborhood of each
coral neighbor to see how many macroalgal units are constraining its growth. These probabilities are now given by

25 40
21 Z et W anZaploecrc( = By, M., )01]

a=1

; : (E3)
E il 1 z ZO= 1 ‘/an,ab
255:1 220:1 vvmn.abzub[rC(] - BMMab)ét]
m : (E4)

25
Zet et Wann,ab

respectively. Transition probabilities for the remaining elementary events remain the same as for the nonspatial model,
since they do not depend on spatially constrained processes.

For grazing pressure § = 0.9 and all other parameters set to values used to draw figure 1A, the spatial stochastic coral
reef model is run for 2,000 years, with a time step of 6t = 1 day. Initially, there are 600, 100, and 100 units of coral,
turf algae, and macroalgae, respectively, randomly distributed among the rectangular grid. This gives initial values of 0.6,
0.1, and 0.1 for the corresponding proportional covers C, T, and M, respectively. After 500 years, there is convergence to
a stationary state (determined by visual inspection), and the subsequent 1,500 years of data are used to calculate the
mean, standard deviation (SD), and skewness for the stationary distributions of C, T, and M. This exercise is repeated for
0 = 0.875 down to 0.1 in increments of 0.025. For § = 0.325, initially, 800, 100, and 50 units of coral, turf algae, and
macroalgae, respectively, are used to achieve convergence after 500 years. Similarly, for § = 0.3, the initial numbers of
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units of coral, turf algae, and macroalgae used are 100, 100, and 600, respectively. Before the critical value of 6§, =
0.312 is reached, there is always convergence to a stationary state with high (>0.5) mean C.

Across the 6 values tested, for C, T, or M, the spatial model produced stationary distributions with means that are
highly correlated with those from the nonspatial model (r> > 0.997, n = 33), with the regression lines having y-intercepts
close to 0 (magnitude <0.003) and slopes close to 1 (<0.101 away from 1). Furthermore, as 0 decreases to 6, = 0.312,
SD for C and T showed an increasing trend, whereas skewness for C fluctuated wildly with no clear trend and skewness
for T decreased (fig. E1). These trends are the same as those for the nonspatial model (fig. 24, 2B); in fact, across all 0
values tested, for C, T, or M, SD values derived using the spatial model are highly correlated with those from the
nonspatial model (r* > 0.932, n = 33), with the regression lines having y-intercepts close to 0 (magnitude <0.0007) and
slopes close to 1 (<0.135 away from 1).

In future work, the sensitivity of the preliminary results presented here to changes in assumptions underlying the spatial
model can be tested. For example, simulations can be performed with a spatial model that has a different spatial
configuration, a different number of benthic units, and/or periodic boundaries.
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Figure E1: A, B, For the spatially extended stochastic coral reef benthic model, trends in standard deviation (SD) and skewness of
stationary distributions of model variables as the grazing pressure 6 is decreased. Black, dark gray, and light gray lines correspond to the
proportional covers of corals, turf algae, and macroalgae, respectively. Crosses on the light gray lines indicate the values of 6 simulated.
For macroalgal cover, skewness is set to 0 if the mean is 0. The dashed vertical lines represent the critical 6 value, whereas arrows indicate
the direction of changing 6.
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