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Abstract- Pressure experimental data from NACA tests on the airship “Akron” were reanalysed in this study. The pressure 
distribution over the bare hull of the airship were presented by using 3D pressure surfaces and 2D pressure contours for different pitch 
angles. By integration of the normal pressures at each panel over the bare hull of the airship, the axial and normal forces and the 
pitching moment exerted on the hull were derived. The paper has a brief introduction on how to use this re-analysis of the old 
experiment data to plan pressure-measurement experiments on an underwater vehicle. 
 
NOMENCLATURE 
 
d Airship maximum diameter [m] 
l  Airship overall length [m] 
x Distance from airship nose [m] 
r(x) Airship radius [m]  
ptotal Total pressure measured at each orifice [Pa] 
pS Static pressure along the centreline of the wind-tunnel test section [Pa] 
p Dynamic pressure measured at each orifice [Pa] 
q0 Dynamic pressure of the free air stream [Pa]     
V Free air stream velocity [m/s] 
Fx Axial force [N] 
Fz Normal force [N] 
D Drag force [N] 
L Lift force [N] 
My Pitching moment about an axis through the center of buoyancy (CoB) [N.m] 
ρ Dry air mass density (assumed at 25 Cº and 100 kPa equal to 1.168 kg/m3) 
ω   Circumferential angle around the airship cross-sections [deg]; positive counterclockwise when looking aftward 
θ Airship pitch angle [deg]; positive nose up 
φ Airship surface slope along longitudinal generators [deg]; tan(φ) = dr/dx  
 

1. INTRODUCTION 
 

From 1929 to 1932, a series of very extensive and valuable experiments were performed in the wind tunnel of the U.S. National 
Advisory Committee for Aeronautics (NACA) on some airship models, including a 1/40-scale model of the U.S. Airship 
“Akron”. One set of experiments, [1], on the Akron airship was designed to determine the drag force, lift force and pitching 
moment on the bare hull and hull with appendages. In another set of experiments, [2], a 1/40-scale model of the ZRS-4 airship 
was used to study pressure distributions. The Akron airship model had a length of 5.98 m (19.62 ft) and had a maximum diameter 
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of 1 m (3.32 ft); therefore the model had a length-to-diameter ratio (l/d) of 5.9. Pressure data were recorded for a nominal air 
speed of 100 mph equivalent to 44.7 m/s in the 20-foot (6 metres) propeller-research wind tunnel of the National Advisory 
Committee for Aeronautics and were completed in July 1931 [2].  

This research used up-to-date numerical methods and tools to re-analyze the data from the "Akron" pressure experiment. The 
data extracted from NACA report No. 443 included the geometrical shape of the bare hull and the variation of the pressures 
measured on the surface of the bare hull at about 400 locations and at eight pitch angles. The geometric data includes the shape of 
the bare hull, that is, the variation of the hull radius over its length. The pressure data included the ratio p/q0, where p is the 
dynamic pressure measured at each orifice, and q0 is the dynamic pressure of the free stream: 

q0 = (½)ρV2.         (1) 
where ρ is the air mass density and V is the free stream velocity. 

In this study, in order to integrate the measured normal pressures over the surface of the bare hull of the airship, it was meshed 
by panels. Normal pressure integration results in the pressure drag only, however about 80 percent of the drag force is due to the 
viscous effects. Viscous properties of the flow from another set of experiments on the 1/40-scale model of the airship Akron were 
observed and reported [3].  
 

II. FITTING CURVES TO THE EXPERIMENTAL DATA 
 
A. Airship geometry and arrangement of the orifices 

About 400 pressure orifices, distributed longitudinally over 26 transverse stations, on the port half of each station, 
simultaneously recorded the local pressure on the airship hull both with and without control surfaces fitted to the model. Eight 
angles of pitch 'θ' of the bare hull of 0, 3, 6, 9,12, 15, 18 and 20 degrees and two air speeds of about 70 and 100 mph (31.3 and 
44.7 m/s) were used. In these experiments the model angle of attack was restricted to variations of the pitch angle only; the effects 
of changes in yaw or roll attitude were not investigated. 

Table I and Fig. 1 show the location of stations along the airship model, and Fig. 2 shows the location of the orifices around 
each station. The different front views shown in Fig. 2 are due to the different arrangement of the orifices at different stations. 
Some stations in each group include the orifices marked “X” so as to check for the equality of pressures on the port and starboard 
sides. The orifices were 0.8 mm (1/32 inch) in diameter.  

 
TABLE I 

MEASURMENT STATIONS AND THEIR AXIAL LOCATION 

 

Station No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Axial location [m] 0 0.035 0.087 0.143 0.221 0.306 0.454 0.662 0.913 1.189 1.480 1.838 2.244 2.704 

x / l 0 0.006 0.015 0.024 0.037 0.051 0.076 0.111 0.153 0.199 0.248 0.307 0.375 0.452 

 
15 16 17 18 19 20 21 22 23 24 25 26 

3.211 3.719 4.232 4.536 4.775 5.035 5.187 5.372 5.533 5.676 5.819 5.918 

0.537 0.622 0.708 0.759 0.798 0.842 0.867 0.898 0.925 0.949 0.973 0.990 

Contd. 
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Fig. 1. Location of measurement stations in metres [2] 
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Fig. 2. Angular position of the orifices at different transverse stations; all views looking aftward (locations marked “X” are orifices to check  
the flow symmetry): (a) Stations 2, 3, 4, 6, 10, 14 and 16; (b) stations 5, 7, 9, 11, 13, 15 and 17; (c) stations 8 and 12;  

(d) Stations 18 to 21 inclusive; (e) stations 22 to 26 inclusive [2]  
 
B. Fitting curves to the data around each station 

As mentioned, p/q0, the ratio of dynamic pressure measured at each orifice to the dynamic pressure of the free stream was the 
main measured data in the Akron tests. Fig. 3 (a) to (c) show the variation of the recorded data, p/q0, versus angular position of the 
orifices, namely the azimuth angle, ω, for stations number 8, 14 (mid-body), and 25 (in the stern). The azimuth angle varies from 
zero at the airship keel, to 180 degrees at the airship top-line. Measured data are marked according to the legend for different 
pitch angles. The curves fitted are all of the form: 
   Fit = A + B*cos(ω) + C*[cos(ω)]2 + D*[cos(ω)]3    (2) 
 
 

 
 
 
 

 
  

  
 
 
 
 
 

 
           Fig. 3(a). Variation of the recorded data, p/q0,     Fig. 3(b). Variation of the recorded data, p/q0, 
       versus angular position of the orifices, at Station 8                     versus angular position of the orifices, at Station 14 
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The fitted curves in Fig. 3(a) match the data very closely. The data in Fig. 3(b) show that at large pitch angles there are some 
discrepancies between the fitted curves and the experimental data. In Fig. 3(c) further back towards the stern where the level of 
flow turbulence is high, the fitted curves intersect each other and get somewhat disordered for larger pitch angles. However, this 
fitting equation has good correlation with the experimental data for all stations. Fig. 4 shows the average correlation coefficient 
for the fitted curves over eight pitch angles for stations 2 to 26. 
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           Fig. 3(c). Variation of the recorded data, p/q0,          Fig. 4. Average correlation coefficient for the fitted curves 
          versus angular position of the orifices, at Station 25            by equation (2) over eight pitch angles for each station 

 
Next the fitted curves were used to develop curves of the variation of pressure along generator lines along the surface of the 

hull. A generator line should be a smooth curve along the hull showing the variation of p/q0. Having the coefficients of the fitted 
curves from equation (2) for stations 2 to 26 for eight pitch angles, fitted values of p/q0 could be calculated for any desired value 
of the circumferential angle. At this point, it had to be decided what angular increment, Δω, was desired. Fitted values of p/q0 for a 
pitch angle of 15 degrees and an azimuth angle of 180 degrees are shown in Fig. 5. Fitted values are marked by asterisks and 
experimental data by circles.  

Experimental data were not available for every azimuth angle, e.g. for Δω=5 deg and ω=45 deg no measurements were taken 
but still equation (2) fits values to p/q0. Only for station number 1, that is at the airship nose, is the fitted value the same as the 
experimental data. Table II shows the experimental measurements at the airship nose, station number 1, for all pitch angles. The 
method of reporting the experimental data included subtraction of the static pressure which was measured at each station along 
the centerline of the wind-tunnel without the model in the test section; see Fig. 6 and Table III. Thus the tabulated values for p/q0 
were corrected for the effects of the longitudinal gradient of static pressure. The result is that the ratio p/q0 at the airship nose is 
unity at a pitch angle of zero as shown in Table II. 
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  Fig. 5. Fitted values of p/q0 along the hull compared to the        Fig. 6. Variation of the static pressure in the test section  
   experimental data; θ=15º and ω=180º      without the model present 
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TABLE II 
DYNAMIC PRESSURE MEASURED AT THE AIRSHIP NOSE FOR EIGHT PITCH ANGLES 

Pitch angle [deg] 0 3 6 9 12 15 18 20 

p/q0 1.000 0.967 0.900 0.785 0.682 0.434 0.098 -0.132 

TABLE III  

STATIC PRESSURE DISTRIBUTION ALONG THE LONGITUDINAL CENTRELINE OF THE TEST SECTION IN THE ABSENCE OF THE AIRSHIP 

x/l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

pS/q0 0.032 0.025 0.020 0.017 0.015 0.013 0.011 0.010 0.010 0.011 0.013 

 
C. Fitting 9th order polynomials to the pressure data along the airship hull 

Now smooth generator curves can be fitted to the discrete fitted values that were obtained at each station by fitting equation (2) 
to the experiments data; these points are shown by asterisks in the previous figures. Polynomials of 9th order were used to fit the 
values of p/q0, which were themselves fitted values to the experimental data. The 9th order polynomial fit is the final pressure 
generator equation to be used in the panel method. The polynomial curve itself is a discrete series of values fitted over the 
longitudinal coordinate x by an increment of Δx. For example, the polynomial representation is shown in Fig. 7 for a pitch angle 
of zero and azimuth angle of 90 degrees, and in Fig. 8 for a pitch angle of 15 degrees and azimuth angle 180 degrees. Note that 
due to the high order of the polynomial, care must be taken not to use this to predict pressures outside of the range of the input 
data. 
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    Fig. 7. Polynomials of 9th order (solid line) fitted to the p/q0         Fig. 8. Polynomials of 9th order (solid line) fitted to the p/q0 
                    values (asterisks) fitted by equation (2); θ=0º and ω=90º        values (asterisks) fitted by equation (2); θ=15º and ω=180º 
 
D. Geometry of the panels 

The angular increment from which the generator curves were produced, determines the size of one side of the surface panels, 
and the increment Δx by which the polynomial curve was defined, determines the size of the other side of the panels. Thus one 
side is of dimension r·Δω, where r is the radius of the hull cross-section, and, the second side is of dimension Δx/cos(φ), where φ 
is the angle between the tangent line to the surface of the hull and the longitudinal axis. The meshed surface obtained using the 
surface-panel method is shown in Fig. 9. A tangent to the meshed surface at the bow end should have a 90 degree slope, whereas 
a curve fitted to the as-constructed shape has a slope of about 0.9 radian (52º) at the bow end. 

Fig. 9 shows the 3D view of the meshed airship for longitudinal increment of 0.1 m and angular increment of 10º. In this study 
the x-axis is positive toward the stern, the y-axis is positive to starboard and the z-axis is positive upward; these axes do not 
follow the SNAME convention for underwater vehicles [4].  

In summary, the area of each panel is derived as  
ΔA= (Δx/cos(φ))·(r·Δω)      (3) 

where φ = φ(x) and r = r(x) hence:  
ΔA = ΔA(x)       (4) 

According to equation (4) the panel size depends only on the longitudinal distance from the airship nose. In equation (3), the 
longitudinal side of each panel, Δx/cos(φ), is approximated as a straight line; hence, the error in calculating ΔA increases as the 
incremental value of Δx increases, but the incremental value of Δω does not affect the surface area value, because r·Δω is the 
exact arc length of the lateral side of each panel. 
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Fig. 9. Isometric view of the Akron airship hull meshed according to Δω=10 deg and Δx=0.1 m 

 
III. PRESSURE SURFACE ILLUSTRATION 

 
The pressure data can be illustrated by surfaces as in Figs. 10 and 11 on axes of azimuth angle, ω, and the longitudinal distance 

from the airship nose, x. Fig. 10 is the pressure surface for a pitch angle of nine degrees and Fig. 11 is the pressure surface for a 
pitch angle of 20 deg. The magnitude of the maximum and minimum pressures for pitch angles nine and 20 degrees are shown 
within the plots. There is not a significant change in maximum pressure between these two pitch angles, however the minimum 
pressure is considerably lower (larger vacuum) for the larger pitch angle.  

In this re-analysis, the dry air density was assumed to be 1.168 kg/m3 for a temperature of 25 Cº and barometric pressure of 100 
kPa, hence for the air speed of 100 mph the free stream dynamic pressure is: 

q0 = (½)ρV2 = (½) * 1.168 * (100*0.44704)2 = 1167 [N/m2]   (5) 
The maximum pressure for zero pitch angle is exactly equal to the dynamic pressure in equation (5) and for the other pitch angles 
it is close to that value. Table IV shows the maximum and minimum pressures for the eight different pitch angles tested. The 
longitudinal location and azimuth angle of the minimum and maximum pressures are included in Table IV; however, the pressure 
surface interpolation is not accurate up to three decimals as is shown for the maximum pressure location. Pressure contours give a 
better illustration of the pressure variation along and around the airship hull. Fig. 12(a) shows the pressure contours on axes of 
azimuth angle and the longitudinal distance from the airship nose for a pitch angle of 15 degrees. 
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TABLE IV.  
MAXIMUM AND MINIMUM PRESSURES FOR DIFFERENT PITCH ANGLES FOR THE AKRON MODEL AT A WINDSPEED OF 44.7 m/s 

Pitch angle [deg] 0 3 6 9 12 15 18 20 

Max pressure [N/m2] 1167 1129 1109 1127 1132 1138 1132 1136 

ω for max [deg] – 0 0 0 0 0 0 0 

x/l for max 0 0.004 0.005 0.006 0.007 0.008 0.01 0.013 

Min pressure [N/m2] -187 -247 -291 -351 -387 -451 -559 -637 

ω for min [deg] – 170 160 150 140 130 120 115 

x/l for min 0.12 0.12 0.12 0.11 0.11 0.11 0.1 0.1 
 

 
 
 
 
 
 
 
   
 
 
 
 
   
 
 
 

       
Fig. 12(a). Pressure contours over the bare hull of the Akron airship for a pitch angle of 15 deg   Fig. 12(b). Magnified region near the nose 

 
In Fig. 12(a), the high-pressure zone at the airship nose is magnified and shown in Fig. 12(b). The highest-pressure contour, 

shown in the zoom-in, is 1120 Pa, and the maximum pressure for the pitch angle of 15 degrees is 1138 according to Table IV. 
The pressure distribution over the bare hull of an underwater vehicle should have the same pattern and same variation with 

pitch or yaw angle as for the airship for the same hull shape (if it is a body of revolution the effect of pitch and yaw attitude 
changes are the same). The pressures for an underwater vehicle that is towed at a speed of 3 m/s in fresh water are scaled relative 
to the "Akron" airship surface pressures according to: 

(Underwater vehicle normal stresses/Airship normal stresses) = (ρwaterVtowing
2)/ (ρairVair

2) 
= (1000*32)/(1.168*44.72) = 3.86    (6) 

Therefore the maximum and minimum pressures occurring on the surface of the hull of an underwater vehicle (which has the 
same shape as the "Akron" airship) are roughly four times the values in Table IV. 
 

IV. PRESSURE INTEGRATION OVER THE 3D MESHED MODEL 
 

The fitted pressures were integrated over the meshed surface of the hull. For an arbitrary circumferential angle along the airship 
the differential normal force on each panel is: 

ΔF(x, ω) = (p/q0)·ΔA(x)·q0     (7) 
The first term in parentheses on the RHS of equation (7) is read from the polynomials of 9th order. The elemental force resulting 
from equation (7) is perpendicular to the panel and should be projected in the directions parallel and perpendicular to the 
longitudinal axis of the hull. This is illustrated in Fig. 13(a), therefore the radial component of this force will be given by          
ΔF· cos(φ) and the axial component by ΔF· sin(φ), as follows: 

ΔFx = ΔF· sin(φ)       (8) 
ΔFr = ΔF· cos(φ)       (9) 

The component of force in the radial direction, ΔFr, should be projected into the lateral and vertical directions, as illustrated in 
Fig. 13(b). Hence, using equation (9) results in:  

ΔFy = ΔFr. sin(ω) = ΔF(x, ω). cos(φ). sin(ω)   (10) 
ΔFz = ΔFr. cos(ω) = ΔF(x, ω). cos(φ). cos(ω)   (11) 
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Fig. 13. Arbitrary elemental forces illustrated in: (a) side-view and (b) front view looking aftward (x-axis goes into the sheet) 
 
Integration of the differential forces was performed along the hull for each increment ω of the circumferential angle; the sums 

are then accumulated around the hull for 0 < ω < 180º in order to obtain half of the total forces, and then multiplied by two since 
the flow is symmetric. Equation (8) gives the elemental axial force; the integration of ΔFx(x, ω) over both Δx and Δω will give the 
total axial force acting on the hull, which is expected to be zero for a pitch angle of zero. Equation (10) gives the elemental lateral 
force; the integration of ΔFy(x, ω) over both Δx and Δω will give the total lateral force acting on the hull, which is expected to be 
zero for any pitch angle as long as the yaw angle is zero, since the flow is assumed to be symmetric on the port and starboard 
sides. Equation (11) gives the elemental normal force; the integration of ΔFz(x, ω) over both Δx and Δω will give the total normal 
force acting on the hull, which is expected to be zero for a pitch angle of zero. 

As illustrated in Fig. 14, relations between the axial and normal forces which give the drag and lift forces for a pitch angle of θ 
are: 

D = Fx· cos(θ) + Fz· sin(θ)             (12) 
L = Fz· cos(θ) - Fx· sin(θ)              (13) 

The pitching moment was calculated about the centre of buoyancy (CoB). The differential force on each panel creates a 
moment; the axial component of the force has a moment arm equal to: 

dx = r· cos(ω)               (14) 
and the vertical component of the force has a moment arm equal to: 

dz = xCoB – x             (15) 
where the longitudinal location of the CoB, according to [2] is: xCoB = 0.464· l = 2.775 m. The differential moment due to one 
panel is: 

ΔMy = -ΔFx· dx + ΔFz· dz                                     (16) 
Note that the directions of the positive axes are required to interpret the minus sign in (16). The circumferential angle, ω, is zero at 
the keel and positive counterclockwise in a front view when looking aftward.  
 
 
 
 
 
 

 
 
 

Fig. 14. Axial and normal forces and drag and lift forces illustrated 
 

Figs. 15 to 19, respectively, show the axial force Fx (positive aftward), normal force (positive away from the keel), drag force 
(positive downwind), lift force (positive upward), and pitching moment (positive nose upward). Each figure has been plotted for 
several mesh-sizes with the smallest and largest increments for Δx and Δω of respectively: 0.01 and 0.2 m, and 1 and 30 degrees. 
The mesh-size [Δx, Δω] of [0.01 m, 1 deg] is an extremely fine mesh for a hull which is almost 6 m long. For the axial force, 
normal force and pitching moment the reported results from [2] are also shown with square markers. For the axial force, Fx, the 
NACA reported result found from a 2D integration has large errors compared to the 3D panel method used here. In the NACA 
report, no values were reported for pitch angles of 18 and 20 degrees; interpolated results are now available for these two pitch 
angles. The integrated values for the axial force with fine mesh sizes for a zero pitch angle converge to a value of 6.5 [N]. This 
axial force is the pressure-drag as can be observed in Fig. 17 for pitch angle of zero. Up to a pitch angle of 15 deg the axial force 
is about the same value, however decreases from there to negative values for the larger pitch angles. For the pitch angle of 20 
degrees the integrated axial force is about –16.5 [N].  
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Fig. 15. Axial force vs. pitch angle for various mesh sizes compared to NACA report 
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  Fig. 16. Normal force vs. pitch angle for various mesh sizes             Fig. 17. Drag force vs. pitch angle for various mesh sizes 
    compared to NACA report       
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               Fig. 18. Lift force vs. pitch angle for various mesh sizes       Fig. 19. Pitching moment vs. pitch angle for various mesh sizes 

 
Except for the axial force results, the other forces resulting from the 3D fine mesh size integration approach the reported 

NACA results, even though the latter used the relatively simple 2D integration methods. As can be observed, there are large 
differences between the computed forces and moments for the fine mesh size with [Δx, Δω] of [0.01 m, 1 deg], and for the coarse 
mesh size with [Δx, Δω] of [0.2 m, 30 deg].  
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V. PRESSURE MEASUREMENTS ON A MANOEUVRING UNDERWATER VEHICLE 
 

In our present study of the hydrodynamics of Autonomous Underwater Vehicles (AUVs), employing mostly experimental 
methods, a method to extract the dependence of the hydrodynamic loads on the vehicle characteristics and the manoeuvring 
parameters is desired. In addition to the fixed-attitude manoeuvres as in the "Akron" experiments, variable-attitude manoeuvres 
with underwater vehicles including high-amplitude, high-rate manoeuvres, such as those which occur during obstacle avoidance, 
have to be performed. Measurements of the overall hydrodynamic loads with an internal balance have already been performed 
and some results have been presented in [5] to [8]. The main motivations for pressure measurements are:  

1) To know the pressure distribution over the underwater vehicle. Pressure distribution information will result in knowledge 
of the locations of the maximum and minimum pressures, the pressure gradients, and locations of flow separation.  

2) To evaluate the hydrodynamic loads by integrating the pressures. Pressure transducers only measure the normal pressure; 
therefore, the viscous effect that results from the shearing stresses is not taken into account in the integration. The 
differences between the hydrodynamic loads resulting from direct load measurement and from pressure tests will clarify 
the contribution of viscous shearing effects. Note that there is a viscouse pressure axial force as was shown in Fig. 15. 

The first stages in these measurements are the straight-line towing and static yaw tests, which are very similar to the "Akron" 
tests. One major difference is that the airship was tested in a wind tunnel with the fluid passing over it, however in these tests it 
will be necessary to tow the vehicle through stationary fluid.  
 

VI. CONCLUSIONS 
 

For the study of AUVs (Autonomous Underwater Vehicles) at the NRC-IOT (National Research Council - Institute for Ocean 
Technology) pressure measurements over the bare hull of an AUV model towed with a variable attitude apparatus (Planar Motion 
Mechanism) in the calm towing tank water will be performed. To approximate the distribution and magnitude of pressures over 
the bare hull of an AUV and the resulting forces and moment, the best available resource is the pressure data from the US airship 
"Akron" tested by the NACA in 1932.  

A re-analysis of the Akron pressure data utilizing modern numerical tools resulted in: 
a- Plots of pressure distribution versus the azimuth angle and the longitudinal distance from the airship nose. Hence, 

one can know where the maximum and minimum pressures occur for each pitch angle. Also these data will be 
useful for those people who wish to validate their CFD predictions using experimental results. 

b- Drag and lift forces and pitching moment show nonlinear variations versus pitch angle resulting from the measured 
normal stresses. This can be compared to the total forces and moment including shear stresses. 

c- An error estimate for the panel method due to the errors in curve fitting, errors in data interpolation and errors in 
integration (not presented in this paper). 

With this basic knowledge the design of the pressure-measurement experiments for an AUV will be done. 
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