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Abstract 

 
Knowledge Discovery techniques seek to find new information about a domain 
through a combination of existing domain knowledge and data examples from the 
domain. These techniques can either be manually performed by an expert, or 
automated using software algorithms (Machine Learning). However some domains, 
such as the clinical field of Lung Function testing, contain volumes of data too vast 
and detailed for manual analysis to be effective, and existing knowledge too complex 
for Machine Learning algorithms to be able to adequately discover relevant 
knowledge. In many cases this data is also unclassified, with no previous analysis 
having been performed. A better approach for these domains might be to involve a 
human expert, taking advantage of their expertise to guide the process, and to use 
Machine Learning techniques to assist the expert in discovering new and meaningful 
relationships in the data. It is hypothesised that Knowledge Acquisition methods 
would provide a strong basis for such a Knowledge Discovery method, particularly 
methods which can provide incremental verification and validation of knowledge as 
it is obtained. This study examines how the MCRDR (Multiple Classification Ripple-
Down Rules) Knowledge Acquisition process can be adapted to develop a new 
Knowledge Discovery method, Exposed MCRDR, and tests this method in the 
domain of Lung Function. Preliminary results suggest that the EMCRDR method can 
be successfully applied to discover new knowledge in a complex domain, and reveal 
many potential areas of study and development for the MCRDR method. 
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1. Introduction 

 

With the rise of computing technology for analysing and storing data, many fields 

are facing the difficulty of having vast stores of data about their processes which 

contain significant and useful information but which have not or can not be analysed 

to extract this information. Data Mining technologies were developed in order to 

extract meaningful information from these large stores of data, taking a place in the 

overall field of Knowledge Discovery: methods whereby new information is derived 

from a combination of previous knowledge and relevant data (Goebel & Gruenwald 

1999). The subset of Knowledge Discovery which involved an expert, in order to 

make use of their domain expertise in determining how to discover new knowledge, 

has been labelled as Knowledge Acquisition (Gaines, B. R. 1993). More recently 

however the Knowledge Discovery field has been moving away from using human 

expertise and towards full automation of the process, due to efficiency constraints in 

the acquisition of this knowledge – the “knowledge acquisition bottleneck” 

(Buchanan & Shortliffe 1984). This is because one of the most common reasons for 

performing Knowledge Acquisition is to model how a domain works in order to 

facilitate the development of an expert system (Buchanan et al. 1983; Gaines, B. & 

Boose 1988; Liou 1990). Automated Machine Learning techniques have therefore 

become the main focus of research into Knowledge Acquisition (Grefenstette, 

Ramsey & Schultz 1990; Hong et al. 2000; Sester 2000). However certain domains 

contain data whose complexity is beyond the ability of Machine Learning algorithms 

to adequately and usefully explore (Abe & Yamaguchi 2005; Clerkin, Cunningham 

& Hayes 2001; Goldberg & Holland 1988). 

 

One such domain is the clinical field of Lung Function testing. The lungs are a vital 

component of the human body: the continued function of a human requires that the 

lungs are operating effectively at all times (Ruppel 1994). However the processes by 

which lung function can be measured and dysfunctions identified are complex and 

not completely understood (Glady et al. 2003; Laszlo 1994; Swanney et al. 2004). 

There are vast amounts of data stored by respiratory laboratories around the world 

which have not been analysed to the greatest possible extent, but which can 
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potentially provide many beneficial insights into the field if such analysis were to be 

performed.  

 

A further aspect of this data is that it has had no analysis performed on it in any way, 

and as such all cases are unclassified. There is also no standard for classifying cases 

in the domain. A reliable method of classifying the cases is required to assist in the 

further analysis, and would also be a useful tool in itself. 

 

This study aims to show that a new method of involving and assisting an expert to 

perform Knowledge Discovery, derived from an MCRDR Knowledge Acquisition 

approach, can be applied to domains such as Lung Function where the data is 

unclassified, too complex for a human to extract information from without 

assistance, and the relationships too sophisticated and vast for machine learning 

techniques to find meaningful information from. 
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2. Background 

 

2.1. Knowledge Discovery 

 
Knowledge Discovery as a field covers techniques for finding and defining new 

information about a domain, using gathered domain data and/or existing domain 

knowledge. The field partially originated from studies into how to use large volumes 

of information to derive new and meaningful information (Frawley, Piatetsky-

Shapiro & Matheus 1992), and partially from the study into more standardised 

methods for discovering new information in general (Gerber et al. 2004). It is a broad 

domain with many and varied applications, and many sub-domains of methods which 

attempt to perform the task in different ways. 

 

That subset of Knowledge Discovery methods which do use compilations of domain 

data can be referred to as Knowledge Discovery in Databases (KDD) (Dazeley & 

Kang 2004; Frawley, Piatetsky-Shapiro & Matheus 1992). More generally, any 

methods for examining data for statistical trends and patterns, which may indicate a 

useful relationship that can be used in future work, are referred to as Data Mining 

methods (Leondes 2002; Witten & Frank 2000). These methods can either be 

automated, performed by a computer program with little or no understanding of the 

domain from which the data was gathered, or it may be a manual process performed 

by a human, either using expertise in the field to guide the search or simply analysing 

statistics and relationships without direction or guidance.  

 

Goebel and Gruenwald (1999) show that effective Knowledge Discovery requires an 

understanding of the domain, and a validation and verification process afterwards, 

among other steps. This understanding of the domain, how relevant new information 

is to the domain, and how the information can affect the domain, requires expert 

involvement at some stage. In some domains, and with some datasets, the expert 

involvement can be minimal: simply providing enough background information 

about the domain to guide the analysis in an appropriate direction, or by pointing out 

features of the dataset which can be used as classifications, allowing comparative 
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analysis of sets of data. However, this is not an adequate approach for domains or 

datasets where the cases do not already have simple classifications, or where a 

direction of analysis can not be easily described.  

 

In this situation there are two possible approaches: if the Knowledge Discovery 

process is a manual, expert-driven approach then the expert can personally determine 

which areas to examine at each step, and determine as progress is made how relevant 

the information is. This approach has the benefit of taking maximum advantage of 

existing domain knowledge to guide the search. However, this takes a significant 

amount of the expert’s time; time which is usually quite valuable. The other 

approach is to use expertise to record existing domain knowledge in some form, and 

use this recorded knowledge combined with an automated analysis of the data to 

discover new relationships and meaningful information about the domain. The 

recorded knowledge may be as simple as giving each case a classification (i.e. 

defining known relationships between cases). There may also be no expert 

involvement before the analysis is carried out. In any of these situations, the end 

results produced must then be considered by the expert to determine whether the 

information is meaningful, new, or otherwise useful; the knowledge must then also 

be distributed to programs or people who can make use of it in working in the field 

(even if the distribution is only to the witnessing expert themselves).  

 

To facilitate the entirely expert-driven approach, many user-driven statistical data 

analysis tools have been developed, for a large number of domains (Witten & Frank 

2000). These are generally simple programs that assist the user by providing statistics 

about data upon request. However, while tools such as this might help an expert to 

categorise and discover connections within the data, they lack any element of 

knowledge about the data they are categorizing. That is, these tools cannot assist the 

expert in knowing which data and correlations are more meaningful, or even in 

recording or testing new hypotheses, leaving the expert with no direction as to where 

to start the examination and no support as to which statistical relationships are 

particularly relevant. This problem contributes to an overall failing of these methods: 

that the process is too time-consuming to be capable of discovering significant 

information.  
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Methods of automated domain modeling are referred to as Machine Learning 

techniques, which are discussed in Section 2.4 Machine Learning. As these 

techniques generally require some form of previously modeled expertise (Gaines, B. 

& Boose 1988; Witten & Frank 2000), they also require a method of extracting that 

expertise: this expertise extraction, whether for the purposes of use with a Machine 

Learning algorithm or for the explicit modeling of domain knowledge, is known as 

Knowledge Acquisition.  

 

 

2.2. Knowledge Acquisition 

 
Knowledge Acquisition is a closely related field of study to Knowledge Discovery, 

with a similar goal and more specialised approaches. Knowledge Acquisition has 

been defined as the process of “extracting, structuring, and organising knowledge 

from human experts so that the problem-solving expertise can be captured and 

transformed into a computer-readable form” (Liou 1990). Another way to express the 

idea is that Knowledge Acquisition is the process of modelling human expertise 

within a domain. The knowledge attained in this way is then typically used as the 

basis for an expert system which can perform or support some of the tasks of such an 

expert (Buchanan et al. 1983; Gaines, B. & Boose 1988), but can also be used as the 

basis for any technique which requires domain expertise in order to function.  

 

2.2.1. Knowledge Acquisition Methods 

2.2.1.1. Classification Rules 

Classification rules are possibly the simplest of the data modeling and Knowledge 

Acquisition techniques. While classification rules can either be an automated 

Machine Learning process, or they can be built using an expert’s domain expertise. 

In this case, the expert examines the dataset and creates rules which classify cases 

based on the values of the set attributes. For example, all cases with attribute A 

above 30 and where attribute B is negative should have conclusion 1 (if A>30 AND 

B<0 then 1). The process can be partially automated by having an expert define 

which attributes should be considered for rule conditions, and selecting another 

attribute to be used as the conclusion: pure statistical analysis can then find what 
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values are required for the condition attributes for each value of the conclusion 

attribute (according to the specific dataset, which can hopefully be generalized to the 

domain). Rules can then be automatically generated based on statistical similarities 

between attributes, and between cases that have the same, or similar, attributes within 

the dataset (Roberto J. Bayardo & Agrawal 1999). However, if the goal is to discover 

entirely new knowledge the expert may not be able to narrow the list of attributes to 

use sufficiently, and this will result in a list of rules far too extensive for the expert to 

be able to sort through and determine which rules are valid, which do not describe 

interesting information, and which are worth considering for further examination 

(Bachant & McDermott 1984; Barker et al. 1989). Completely autonomous rule 

generation, based entirely on statistical relationships, suffers from the same problem 

to a greater extent. This method is also prone to generating very simple rules which 

have no relevance and very complex rules based on dataset-specific, coincidental 

relationships (Towell, G. & Shavlik 1994). 

 

The major advantage of classification rule systems is that the structure of the 

knowledge learned is readable by the expert – if the expert wants to know why a 

classification was made, they can simply examine the clauses of the rule that fired 

(Clancey, William J. 1984). The expert can also easily view the compiled knowledge 

and see what conclusions are being made based on what information, hence 

providing a simple means to review effectiveness and progress. The expert can also 

easily build on this by modifying parts of existing rules, combining rules, or 

specifying default conditions for new rule generation.  

 

It has also been noted that Classification systems provide an excellent framework for 

Knowledge Acquisition, in that it is easy for the expert to provide a classification for 

a case, and a rule defining why this classification should be made (Clancey, William 

J. 1984; Compton & Jansen 1989).  

 

2.2.1.2. Decision Trees 

Using the decision tree method, a logical tree is formed consisting of nodes and 

branches. An attribute is associated with each node, and for each possible value (or 

range of values) for that attribute a branch is created leading to a lower node. The 

lowest nodes have no outward branches, and contain a classification (Witten & Frank 
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2000). In this manner, a case can be presented to the tree, and by following the 

branches appropriate to the values for the case, a classification is found. Hence, 

“knowledge” is stored in a relatively simple to follow format, and one which can 

easily be transformed into a graphical representation (Quinlan, JR 1986). These 

features make it easy for the expert to understand how the system comes to a 

classification, and easy for the expert to have input into the way that knowledge is 

structured at each step. The tree can also be derived automatically, but only if the 

cases in the dataset already have a classification attached to them (Witten & Frank 

2000). 

 

The drawbacks of the method are that for complex classifications involving many 

attributes, the tree can get very large and convoluted. Another disadvantage is that 

similar cases can follow very different paths through the tree to get to roughly the 

same conclusion. Also, some classifications may be based on only a few attributes, 

or many, making it difficult for the expert to quantify exactly which attributes lead to 

which conclusions and what relationships exist between different conclusions 

(Quinlan, J. R. 1987; Witten & Frank 2000).  

 

2.2.1.3. Case Based Reasoning 

Another common Knowledge Acquisition technique is Case Based Reasoning 

(CBR), in which knowledge is represented by a set of stored cases, and a set of 

defined classifications, all of which is determined to sufficiently represent domain 

knowledge (Aamodt & Plaza 1994). This is a relatively simple method of storing 

knowledge about the domain, and one which is generally very easy to display in an 

understandable format. It has been used as a KA technique, but has been sufficiently 

effective only when combined with other techniques (Féret & Glasgow 1997; 

Golding & Rosenbloom 1996; Manago et al. 1993; Yamaguti & Kurematsu 1993). 

This is required to overcome the inherent problems within CBR: specifically, the 

problems involved in determining what constitutes a similarity, and the difficulty in 

directly influencing the results that the method provides (Ihrig & Kambhampati 

1995). The Knowledge Acquisition is performed by the expert examining cases 

individually, and inputting them, case by case, into the system. The CBR method 

compares the current case with all the previously stored cases in the knowledge base, 

and produces a list of cases that it considers (based on threshold values) to be similar 
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to the new case (Aamodt & Plaza 1994). The method would then use the 

conclusion(s) of those similar cases as the conclusions for the new case. The expert 

examines this, comparing it with their own opinion of what the conclusion should be 

for that case (Kolodner 1991). If the expert believes there is an error in, or something 

missing from the logic the system is using the expert corrects or adds this knowledge 

as appropriate, in the form of adding the current case to the set of stored cases, and 

attributes or changing which conclusions apply to it. This can also be performed as a 

Machine Learning method, even on datasets without classifications attached to the 

cases (Watson & Marir 1994). 

 

The CBR system can provide reasoning for any classification it makes, by presenting 

the past cases that were used to generate that classification, and the attributes that 

were similar enough for the system to associate the two cases. The resultant 

knowledge base provides the expert with information on which attributes are 

commonly linked, and which attributes can lead to common classifications. If the 

expert has a particular interest in some attributes, those attributes can be weighted 

higher than others when comparing a new case to the stored cases, or if the expert 

believes certain cases to be more typical than others in the domain, they can weight 

those individual cases more heavily (Kurniawati, Jin & Shepherd 1998; Watson & 

Marir 1994). This allows the expert greater flexibility in analysing the data to try and 

discover new information. CBR algorithms can generally be successfully applied to 

any learning situation (Aha 1991), which is an important feature when attempting to 

discover new information. In some domains, the functioning of CBR systems have 

been found to be more representative of the manner in which experts perform their 

tasks, and hence Knowledge Acquisition is a much easier process for the expert 

(Kowalski 1991). 

 

A common drawback of CBR is that knowledge based entirely on previously seen 

examples may only represent a small subset of the dataset, rather than representing 

the entire domain (Chi & Kiang 1991). While this can be said of any technique using 

a dataset, it is particularly apparent in CBR due to the method being based entirely 

on the cases themselves.  
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2.2.1.4. Ripple Down Rules 

As well as these standard methods, there are also others which combine techniques 

already discussed, or make specific modifications to those techniques. For example, 

Chi and Kiang discuss a combination of CBR and classification rules (Chi & Kiang 

1991). A similar method that is of particular interest to this study is Ripple-Down 

Rules (RDR). RDR also combine elements of CBR and classification rules, but focus 

on building the knowledge base through expert use the system, without any 

knowledge engineer assistance (Bindoff 2005; Compton, Cao & Kerr 2004; Kang, 

Compton & Preston 1995). This method does involve the expert at every stage 

however, and excepting some attempts at automation (Gaines, B. & Compton 1992; 

Kang, Compton & Preston 1998) this method is a Knowledge Acquisition method, 

and not a Machine Learning method. 

 

The knowledge base of RDR is built in a tree format, similar to a decision tree, but 

one in which every node contains a rule and a classification. The rule is a rule 

structured in the same way as a classification rule, i.e. conditions pertaining to the 

values of attributes in the dataset. When a case is presented to the system for 

classification, it is compared to the rules for nodes at the top level of the tree. If a 

rule is satisfied for the current case, then the child nodes of that node (defined as 

exceptions to the parent rule) are considered and their rules tested against the current 

case. Note that the rule for any node therefore implicitly includes the rules of all 

ancestor nodes. This continues until no further child nodes’ rules are satisfied, or no 

further child nodes exist. The case is classified according to the classification 

associated with the last node whose rule was satisfied (Compton & Jansen 1989). 

 

The key is in the addition of new nodes to the knowledge base. When the system 

attempts to classify a case but produces an incorrect classification, the expert is asked 

why they consider the classification to be incorrect. The expert chooses from the list 

of differing attributes those which are responsible for the different classification 

(Compton et al. 1993; Kang & Compton 1992; Richards & Compton 1997). This 

information can be added as the rule for the new node because, as noted before, child 

nodes are always considered entirely within the context of the parent node (i.e. if a 

node is being considered, then all ancestor rules for that node must have been 

satisfied). In this way, RDR can be regarded as a set of rules with exceptions (Catlett 
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1992; Compton et al. 1992; Kang, Compton & Preston 1995). The knowledge 

acquisition structure is summarized in Error! Reference source not found. below. 

 

 
 Figure 1: MCRDR Knowledge Acquisition Process (Kang et al. 1997) 

 

This KA method was derived by studying how experts perform classifications in 

their normal work: an expert will produce a classification, and when asked how they 

came to that classification, they will justify why their classification is correct 

(Compton & Jansen 1989). Further, the values the expert uses in these justifications 

are dependant on the context within which the question was asked (Clancey, W J 

1993; Compton et al. 1993). These findings cast doubt on the abilities of traditional 

Knowledge Acquisition techniques to accurately and fully extract expert knowledge, 

as they are largely centred around trying to determine the content of the knowledge 

base in a holistic fashion, meaning that they do not provide the expert with the full 

context within which they are working in any given instance, and so frequently miss 

many of the finer details of the domain (Compton et al. 1993). Also, almost all KA 

techniques are exclusively dependent on a knowledge engineer defining the 

knowledge base (Paris & Gil 1993), which adds a level of abstraction which, in the 

worst case, can potentially invalidate the entire purpose of involving an expert at all 

as the knowledge engineer’s interpretation of the expert’s descriptions will be the 
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“knowledge” that is entered into the knowledge base. However, it has been shown 

that building a knowledge base incrementally, with each step provided fully in 

context is a viable approach (Compton & Edwards 1994), and that it is in fact 

beneficial in that it allows the knowledge base to be built as it is in use. RDR 

Knowledge Acquisition works with this apparent predilection of human nature to 

define a knowledge base that is easy to add to and easy to understand. Although the 

knowledge base may appear convoluted when looked at as a whole, it is fast for the 

system to use and produce a result – only one path through the tree needs to be taken 

at any time. Similarly, if the knowledge base is queried about why it has made a 

classification, it can respond in easily understandable terms – providing a 

justification for the result. Richards and Busch (2003) noted that this means of 

knowledge acquisition also automatically (if gradually) discovers tacit knowledge 

about the domain – knowledge that the expert uses regularly but which the expert 

finds difficult to, or cannot, express explicitly.  

 

Although the knowledge base builds easily and automatically as the system is in use, 

a major disadvantage is the considerable time that it can take to build a knowledge 

base that covers the domain (Richards & Compton 1997). Another problem is that 

classifications may have to be entered multiple times, if the same classification 

occurs as exceptions to multiple contexts (Kang, Compton & Preston 1995).  One of 

the most significant drawbacks is that only one classification is allowed for any one 

case, even though the domain may describe many classifications for a single case. 

Even if the system contains rules to classify the case in multiple ways, it will simply 

use the first classification that it reaches (Compton et al. 1993). Therefore, if a case is 

to have multiple classifications it would require a rule with a compound 

classification, that is, a single classification that describes multiple problems. This 

introduces a potentially exponential increase in knowledge acquisition time for 

domains which require multiple classifications (Kang, Compton & Preston 1995). 

 

The most well known and possibly most successful RDR system is PEIRS 

(Pathology Expert Interpret Report System). PEIRS is an expert system which uses 

chemical pathology reports to produce clinical diagnoses (Compton et al. 1992; 

Edwards et al. 1993; Srinivasan et al. 1992). When it first entered into use PEIRS 

contained approximately 200 rules. However, through routine use the knowledge 
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base has been constantly updated: as of 1998, there were 1800 rules (Kang, Compton 

& Preston 1998).  

 

2.2.1.5. MCRDR 

To overcome the flaws associated with RDR, the technique was revised to Multiple 

Classification Ripple-Down Rules (MCRDR) (Kang & Compton 1992). The most 

significant functional change is that the technique can produce multiple 

classifications for a single case without the use of compound classifications. This is 

achieved by evaluating every node at the top level and following through all valid 

paths, rather than simply following the path of the first rule that matches (Kang, 

Compton & Preston 1995). 

 

As a result of this, Knowledge Acquisition in MCRDR must also be handled slightly 

differently. If the expert determines that a case has been classified incorrectly, or if 

the system has not produced a classification for the case, then the system requests the 

correct classification from the expert. Once this has been recorded, the system must 

determine where within the knowledge base to place the new case, and develop an 

appropriate exception rule (Kang, Compton & Preston 1995). Extracting the correct 

classification(s) from the expert is identical to the RDR method, except potentially 

on a larger scale. If the system produces classifications A, B and C, and the expert 

determines that the correct classifications should be A and D, and not B or C, then 

the system will ask for a valid justification of why B is incorrect, why C is incorrect, 

and why D should have been found. Forming the rules is relatively trivial, as the 

system can provide the expert with a series of attributes which can be used as 

differentiating factors, and the expert can make relevant choices. The difficult task 

then becomes placement of the new rule into the knowledge base. This involves 

determining whether a new rule is in fact an exception to a current rule, whether the 

current rule is simply incorrect in some circumstances and must be stopped, or 

whether the new rule represents entirely new knowledge that requires no previous 

context (see Error! Reference source not found. for this process).  

 

Table 1 below summarises these three situations, and the appropriate action to take. 

Of note are the terminating rules, added when a classification needs to be stopped: 
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the rule defines the circumstances which need to be met for the rule to be considered 

incorrect (Kang, Compton & Preston 1995). 

 

Wrong Classifications To correct the Knowledge Base 

Wrong classification to be stopped Add a rule (terminating rule) at the end 

of the path to prevent the classification 

Wrong classification replaced by new 

classification 

Add a rule at the end of the path to give 

the new classification 

A new independent classification Add a rule at a higher level (to the root) 

to give the new classification 

Table 1: The three situations in which new rules can be added to a knowledge 
base (Kang, B., Compton & Preston 1994) 

 

 

Besides potentially increasing the amount of work required by the expert in adding 

new knowledge to the knowledge base, none of these changes particularly add any 

difficulty of use to the system. However, the ability to make multiple classifications 

is crucial to most domains, particularly in the medical and diagnostic domains where 

a patient is not restricted to having a single abnormality or illness, and drawing broad 

conclusions based on a single classification is extremely unlikely to produce accurate 

or beneficial results. 

 

 

2.3. Knowledge Engineering 

 
A closely related field to Knowledge Acquisition is Knowledge Engineering. Where 

Knowledge Acquisition is the process of discovering and recording expertise, 

Knowledge Engineering is the process of creating a framework to put that recorded 

expertise into use (Feigenbaum 1977) (Feigenbaum in fact describes Knowledge 

Acquisition as a subset of the overall field of Knowledge Engineering). This is a vital 

component of Knowledge Acquisition: without a structure suitable to the purpose of 

the Knowledge Acquisition, the expertise will not be as accessible and useful as it 

could be. Liou (1990) also describes three primary factors to consider when 

performing Knowledge Acquisition: involving the correct people, primarily domain 
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experts and knowledge engineers; using proper techniques to elicit the knowledge; 

and a structured and systematic approach to performing the Knowledge Acquisition. 

 
 

2.4. Machine Learning 

 
Although these Knowledge Acquisition methods showed success in some 

applications, research and development in the expert system area discovered that the 

most significant problem faced, negatively impacting on both the effectiveness and 

cost of creating an expert system, was the Knowledge Acquisition phase. The so-

called “Knowledge Acquisition Bottleneck” (Buchanan & Shortliffe 1984) caused a 

change of attitude in this area of Knowledge Discovery, shifting the focus from 

trying to model human expertise towards the more automated processes of Machine 

Learning (Grefenstette, Ramsey & Schultz 1990; Hong et al. 2000; Sester 2000), 

which is, using statistical analysis to derive knowledge about how the domain 

functions (Witten & Frank 2000). This has the major benefit of being able to create 

an expert system or to derive domain knowledge by analysing collected data, with 

limited expertise required: removing the requirement of having an expert in the 

domain take considerable time to develop the knowledge. This is of particular benefit 

in many domains where an expert’s time is quite valuable. Machine Learning 

methods also allow the possibility of discovering the knowledge in a different 

manner to the way in which the expert would describe it – this may be an advantage 

or a disadvantage, depending on the domain and the ability of the experts to 

communicate domain knowledge: for example, the method may discover 

relationships that would otherwise go unexplored because the current expertise in the 

field does not suggest any such relationship could exist; or it may be a disadvantage, 

because relationships may be discovered which are present in the dataset but which 

are not present in the wider domain; or it may be disadvantageous because the 

method of discovering the relationships may be less efficient, effective or 

comprehensible than those used by an expert. 
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2.4.1. Machine Learning Methods 

2.4.1.1. C4.5 

C4.5 is a well known Machine Learning algorithm, which automates decision tree 

generation (Quinlan, J 1993). Various extensions have been made to the method to 

improve the efficiency, effectiveness, and generality to the domain of the trees 

produced (Quinlan, JR 1996). However this method has a number of disadvantages: 

the most significant drawback of C4.5 and similar methods is that they can not 

incrementally learn knowledge. The tree learned is derived from the set of data 

presented, and can not be easily modified. Also, the method can not incorporate 

previous domain knowledge easily, unless that knowledge can be represented using 

additional attributes for each case in the dataset. 

 

2.4.1.2. k-Nearest Neighbour 

The k-Nearest Neighbour method is a Machine Learning algorithm based from Case 

Based Reasoning, for classifying cases based on their proximity in the problem space 

to other cases. That is, a case is given a classification based on how similar its values 

for certain attributes are to the values of those attributes for previously seen cases. 

The actual classification selected is the most common classification from the closest 

k cases. This algorithm does learn incrementally, potentially increasing its 

knowledge with each new case examined without requiring all data to be re-

evaluated. However as the number of cases seen increases so too does the efficiency 

of the method substantially decrease (Kurniawati, Jin & Shepherd 1998). The method 

also lacks the capability to define complex relationships, except through storing a 

sufficiently large number of cases and examining a sufficiently large number of 

attributes that any relationships are found. However, as noted, this can cause the 

system to become highly inefficient. A further problem is that the knowledge gained 

from storing these classification boundaries is not easily viewable and 

understandable by a human expert, due to the potentially vast number and 

multidimensional nature of the spaces being defined (Hand & Vinciotti 2003; 

Kurniawati, Jin & Shepherd 1998). 

 

2.4.1.3. Neural Networks 
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Neural Networks are an approach to learning how to perform tasks inspired by 

observations of dynamic learning networks in nature, for example, the neurons in the 

human brain. It is a purely automated approach in process, although it requires an 

initial specification of what a ‘correct’ result is for each case in order to begin 

learning. Although successes have been made, particularly for problems with noisy 

data that make human expertise difficult to apply (Mitchell 1997), neural networks 

are not suited to many domains. They are slow to train, do not learn well from 

complex data sets, and can not learn incrementally – extensive training is required to 

produce an accurate system. Most significantly, once the system has been trained, the 

knowledge it has learned is very difficult to review: the knowledge is stored 

implicitly within the configuration of the network, and there is no explicit domain 

modelling involved (Towell, G. G. & Shavlik 1993). 

 

 

2.4.2. Machine Learning Drawbacks 

Machine Learning methods are most effective in applications where the data that is 

being used for acquiring or discovering knowledge is sufficiently detailed that 

conclusions can be drawn from it alone, without further domain knowledge being 

applied – typically data that has been classified as being of a certain type, or that can 

easily be categorised according to type, allows statistical methods to find new 

relationships from the existing relationships and other data. The existing 

classifications represent a level of domain expertise that has been applied to the data, 

either from an expert who has examined each case and provided the classifications as 

extra information, or from an expert who knows which attributes of the set are 

important. Machine Learning methods are also only particularly effective in domains 

where the target knowledge (i.e. the knowledge the method is trying to discover) is 

relatively simplistic: complex relationships which have a practical use are difficult to 

derive without also deriving large amounts of other relationships which are 

meaningless, coincidental or overly specific to the dataset (Witten & Frank 2000). 

When the goal of the Machine Learning is Knowledge Discovery, not just Data 

Mining for the purposes of training an expert system, it is required for an expert in 

the domain to examine the relationships discovered and to determine what is useful 

and what is not (Abe & Yamaguchi 2005), particularly in domains such as medical 
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domains where performance can be critical. If the relationships are too many or too 

complex then this will be a highly difficult and time consuming process, negating the 

advantages of this approach. Another drawback is that Machine Learning can only 

discover knowledge that is present within the dataset being used: if the dataset is of 

insufficient size, or happens to contain statistical relationships which are not 

representative of the domain, then the method will either miss relationships or find 

misleading relationships; whereas an expert can use their extended knowledge of the 

domain to make judgements on what is likely to be coincidence and what is likely to 

be supported by further data (Hall & Smith 1998). 

 

 

2.5. Combining Machine Learning and Knowledge 

Acquisition 

Given that Machine Learning methods are impractical for analyzing data of a certain 

complexity without expert involvement, but purely expert-driven methods are too 

slow and do not provide the expert with the necessary assistance, a more expedient 

approach for these domains would be to develop an interactive tool that can help an 

expert to hypothesise about the information within a dataset, and prove or disprove 

those hypotheses based on the available evidence. The method should also be able to 

assist in the creation and validation of those hypotheses, based on the available 

domain knowledge and the domain data in the set.  

 

Such a method would require that a level of domain knowledge be available, thus a 

Knowledge Acquisition phase would be required. Ideally, from the perspective of 

making the system easy to use for the expert and consistent in its approach, the 

Knowledge Acquisition technique used would be maintained throughout as the 

Knowledge Discovery method. This also has the benefit that any new knowledge 

found will be immediately integrated into the current model of the domain expertise. 

This is an important advantage, as it allows the Knowledge Discovery to be 

performed incrementally: newly learned knowledge can be immediately used to learn 

further. Therefore the Knowledge Acquisition phase of the method would carry on 

into Knowledge Discovery.  
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This is relatively simple to accomplish, by allowing the expert to perform 

Knowledge Discovery by deriving hypotheses about how the domain functions, 

based on relationships which are generated either by Machine Learning or by manual 

expert-driven analysis. The expert can then follow the usual Knowledge Acquisition 

steps as if they “know” the hypothesis to be correct: basing their justification on 

whatever information led to the hypothesis being created. If further domain model 

analysis tools are available, the results of adding this knowledge to the domain data 

can then be tested for validity. This does require however that the domain model be 

editable, as erroneous, unproven, or otherwise useless information will likely be 

added at various stages. 

 

This approach is not suited to all domains. Domains without great volumes of data, 

or without complex target relationships, or domains in which the known expertise is 

relatively simple to model, will not benefit from this approach. This is because this 

method requires expert involvement at every stage, and can potentially take much 

more time than either a Machine Learning Technique or a statistical analysis tool. 

However, for domains in which the level of expertise required is too high for 

Machine Learning, and in which the volume and nature of the data is too complex for 

only human-based analysis, this hybrid approach should provide more relevant 

results in a more timely fashion. 

 

 

2.6. A Complex Domain – Lung Function Analysis 

 

In testing an implementation of the hybrid approach which has been discussed, a 

sufficiently complex domain is required. The following is a brief description of the 

domain of Lung Function, including why the domain is complex, the deficiencies in 

knowledge and research that make Knowledge Discovery a desirable activity and 

previous work that has been performed in the area. 
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2.6.1. Existing Knowledge 

The domain of lung function, also described as pulmonary function, is a complex 

domain which is difficult to analyse. The purpose of the lungs is to oxygenate venous 

blood and remove carbon dioxide (Hughes & Empey 1981). Their effectiveness 

however is determined by several other components, including the airways, alveoli, 

pulmonary blood vessels, respiratory muscles and other respiratory controls (Ruppel 

1994). Although the lungs perform very complex functions within the human body, 

they display few measurable outward signs of these functions (Laszlo 1994). Even 

those indicators which are apparent are difficult to measure effectively, due to the 

execution of the test interfering with the normal process of breathing (Hughes & 

Empey 1981; Ruppel 1994).  

 

2.6.2. The Data 

As the functions the lung performs are so diverse in nature, and in particular because 

they are measured by even more diverse means, no one test can provide a complete 

overview of all aspects of lung function (Hughes & Empey 1981; Miller 1987; 

Ruppel 1994). Although they each test different effects, using different means, all are 

essentially based on the same functions: this means that the information provided by 

these tests often overlap (Ruppel 1994). This further means that combining the 

results of many of these tests can produce much more detailed information about the 

patient’s lungs’ function than would be available by a single test. Also, due to the 

uncertainty within any medical domain, caused by the incomplete understanding of 

medicine and the complexities and wide degree of variation of the human body 

(Pribor 1989; Tsumoto 1998), any verification that can be provided from 

complimentary results from multiple tests will be beneficial in making conclusions 

with that data. 

 

The tests themselves are divided into a number of distinct groups, with each group 

reporting on a specific aspect of lung function. Not all patients will have all tests 

carried out – the more complex tests are only performed if a medical practitioner 

deems them necessary in order to discover the cause of or to further define the 

symptoms a patient is displaying. 
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The first group of tests performed are Spirometry tests. These concern the volume 

change during specific breathing functions (Miller 1987), or in other words, the 

extent of the lungs’ ability to move gas. Spirometry provides an example of where 

two results compliment each other to be more useful in analysis – the value FEV1 

(Forced Expiratory Volume in 1 second), while moderately useful on its own, is 

much more useful in conjunction with the test result of FVC (Forced Vital Capacity), 

as the FEV1/FVC ratio can be used, with factors such as sex, age and height, to 

determine whether this function of the lungs is performing within a normal range 

(Ruppel 1994).  

 

As it can be used as an indicator for asthma and COPD (Chronic Obstructive 

Pulmonary Disease; including emphysema and chronic bronchitis), both common 

respiratory illnesses, and also because the equipment is relatively cheap and easy to 

acquire, spirometry tests are the most common lung function tests performed 

(Ferguson et al. 2000). 

 

The second group of tests are Lung Volumes tests, which attempt to measure the full 

capacity of the lungs; this is made difficult because the lungs will always hold gas 

that cannot be expelled. These tests are useful in identifying, clarifying or 

eliminating many dysfunctions or problems, both new and previously identified by 

other tests (Laszlo 1994; Miller 1987). 

 

The final types of tests which make up the dataset are the Diffusing Capacity tests, 

which measure the ability of gas to diffuse throughout the patient’s lungs and into 

their blood. This test covers very different functions of the lungs to the other tests, 

and so can detect specific types of problems. These tests can also be used in 

combination with previous results to determine specific illnesses, such as 

emphysema (Ruppel 1994). 

 

These lung function tests generally do not provide enough information in themselves 

for a diagnosis to be made: they can give a measure of insight into the nature of the 

patient’s lungs and how they may be functioning, and perhaps they can give an 

indication as to why the lungs are functioning as they are. However in order to 

complete a diagnosis the expert will generally require more detail, in the form of an 
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examination of patient history, a physical examination, chest radiography, blood 

tests, sputum examinations, and other tests (Hughes & Empey 1981; Miller 1987). 

 

2.6.3. Data Mining in Lung Function 

Perhaps because of the difficulty in obtaining lung function data, until recently there 

have been very few studies based on large bodies of test results. There have also not 

been any major compilations of test results into any one repository, except for the 

purposes of specific studies such as Oswald, Phelan et al. (1997) and Shaheen, Sterne 

et al. (1998), but these studies generally focus only on the results of a few of the tests 

and for specific purposes. It is only due to recent advances in lung function testing 

technology that many of the measurements have been able to be performed easily 

and commonly (Ferguson et al. 2000), and with further advances in technology in 

this area still being made, lung function data is being compiled now at a faster rate 

and in more detail than ever before (D P Johns 2006).  

 

As has been noted, many of the test results interrelate with others in meaningful but 

complicated ways, and much greater knowledge can be derived by combining the 

results of different tests. However, these relationships and their implications have not 

been well explored. Generally it is the case that a hypothesis is formed, based on an 

interesting concept that has arisen from other work, and a specific study performed to 

ascertain the truth of the hypothesis (Aaron, Dales & Cardinal 1999; Glady et al. 

2003; Punjabi 1998; Swanney et al. 2004). While this process is effective at 

discovering the validity of pre-existing hypotheses, little work has been performed in 

the discovery of these hypotheses, or in a simpler way of validating them.  

 

The benefits of discovering a new relationship or use for a test result is difficult to 

quantify, as each may provide a wide range of advantages or none at all. These 

advantages may be financial, as in the case of Glady (2003), where an algorithm was 

developed which could, using only spirometry results, indicate to a high degree of 

accuracy whether the patient would require lung volume testing. Even though the 

algorithm was not always correct, the ability to be able to determine that further tests 

were not immediately necessary for even some patients saved the pulmonary 

function laboratory an estimated $20,000 (Canadian) per year. Not all discoveries 
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have benefits which are so apparent. However, any new information on testing lung 

function may be useful, for example to indicate a direction to examine in the future. 

Future technological advancements may provide a use for seemingly irrelevant 

information gathered, or the information may lead to a different means of performing 

a test. 

 

Recently a great amount of pulmonary function test results have been compiled for 

examination for these purposes. A subset of this data was made available for the 

purposes of this development. The data was collected by the Respiratory Laboratory, 

Royal Perth Hospital, Western Australia. It consists of the test results of 484 adult 

Caucasian subjects who had full lung function tests performed, on the 

recommendation of a doctor, consisting of full spirometry, measurement of lung 

volumes and diffusing capacity. Therefore the data is a representative sample of 

patients who have been referred for testing – it is not representative of the lung 

function of the general population, but nor does every patient necessarily have 

significant dysfunction with their lungs. 

 

Given the current incomplete knowledge of the way the test results interrelate, and 

the potentially very pertinent new information about patients’ lung function that can 

be derived using these test results, and given that we now have a much greater 

volume of data than before, the domain should be able to benefit greatly from the 

application of data mining techniques to the gathered data.  

 

Some data mining work attempting to model expert knowledge has been performed 

in this domain. Tsumoto (2004) described a method to automatically acquire medical 

knowledge and model it as rules, using rough sets, and it has had success. Singh 

(2006) implemented a system for automated medical annotation of databases of lung 

images. The system also includes a Machine Learning algorithm to automatically 

induce rules to make these annotations, showing that automated Machine Learning 

has been successfully implemented in a medical domain.  

 

There have also been several successful expert systems developed for medical 

domains. The increased demand for accurate and timely recommendations and 

diagnoses, and the importance of getting those recommendations and diagnoses 



23 

correct, as in any medical domain (Pribor 1989), has led to a desirable state for 

expert system development. In the field of lung function, Pulmonary Consult is an 

expert system for interpreting lung function results, which has been developed and 

made commercially available (Snow et al. 1988), and is available now (MedGraphics 

Pulmonary Consult™ Software 2006). The continued use of this system shows that 

expert systems can function within the lung function domain, and therefore, that 

expertise within this domain can be extracted and modelled effectively. 
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3. Methodology 

 

3.1. Introduction 

 

To test the concept of the hybrid Knowledge Acquisition and Machine Learning 

technique for Knowledge Discovery required the implementation of a system and the 

testing of that system over a dataset. The testing of the implementation will be 

discussed at a later juncture. This section will deal with the implementation of the 

method. 

 

Of the Knowledge Acquisition methods examined, the MCRDR algorithm offers the 

most beneficial framework for implementing this hybrid method. In particular the 

fact that the Knowledge Acquisition process is intuitive and no knowledge engineer 

is required, but also that the knowledge base is readable; new knowledge is validated 

as it is acquired; the learning is incremental; and the process is entirely expert driven. 

Some modifications and additions are necessary to facilitate the Knowledge 

Discovery process, and to assist the expert in finding new knowledge. This section 

contains a description of a new Knowledge Discovery method based on MCRDR 

Knowledge Acquisition, followed by a summary of the implementation. 

 

 

3.2. Exposed MCRDR 

 

There are a number of differences between regular MCRDR and the proposed 

Exposed MCRDR (EMCRDR). There are features which have been added, and many 

modifications made to the existing process. A discussion of why changes have been 

made and their implications will follow later in the study. 
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3.2.1. Method Description 

The EMCRDR method, in general, follows the same pattern as the MCRDR 

Knowledge Acquisition cycle: the expert takes a case, classifies the case according to 

their understanding of the domain, and runs the case through the system’s inference 

procedure to compare the system’s classifications with their own classifications. 

When the expert determines that a misclassification has been made or a classification 

missed, the expert changes the appropriate classification or adds the new 

classification, and creates a rule justifying why this classification should have been 

made. 

 
The method can be divided into two phases, the Knowledge Acquisition phase and 

the Knowledge Discovery phase, although there is very little separating the two and 

no requirement that they be separate. For the Knowledge Discovery phase to work to 

its best potential a sufficient amount of Knowledge Acquisition should be performed 

first, to attempt to model enough of the known domain knowledge to build upon in 

the Knowledge Discovery phase.  

 

3.2.1.1. Knowledge Acquisition 

This phase involves trying to build up a sufficient knowledge base that there is 

enough background information to be able to determine new knowledge about the 

domain. The process is generally cyclic, as with regular MCRDR Knowledge 

Acquisition, but with other options for assisting in the knowledge base development. 

The main cyclic approach is for the expert to examine a case from the dataset to find 

all the classifications for that case. The case is then run through an inference using 

the system’s knowledge base, exactly as with normal MCRDR. The expert examines 

the classifications returned by the system and compares them with the manually 

made classifications. Any discrepancy that is found, assuming that the expert has not 

made a mistake – this would be realised by the expert when the classifications are 

found to not match – progresses to an explicit Knowledge Acquisition step for 

defining a rule.  

 

Firstly the expert selects the classification that should have been made (or “No 

Conclusion” if the expert is removing an erroneous classification – this is named a 

stopping rule), or defines a new classification if required. The rule definition then 
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proceeds, with the expert asked to justify why this classification should have been 

made by defining rule conditions according to the reasoning process the expert 

performed in determining that the classification was incorrect (or missing). This is 

where one of the first divergences from regular MCRDR Knowledge Acquisition is 

implemented: the regular cornerstone-case based rule validation is replaced by a 

dataset-based rule validation. When a rule condition is defined and the expert 

performs rule validation, the method returns a list of all the cases from the dataset 

which are now satisfied by the rule. The expert then examines these cases to 

determine if any should not be covered by the rule, and adjusts the rule conditions 

accordingly if required. Once the expert is satisfied that the rule is correct the rule is 

saved to the knowledge base. The position in which the rule is added to the 

knowledge base depends on the purpose for which the rule was created: if added as a 

new classification for a case, the rule is added at the top level of the tree, beneath the 

root; if added to remove or change a previous classification, the rule is added as a 

direct child of the rule(s) that caused that classification (the exact rules are selectable 

by the expert when stating which classifications are incorrect). Once the rule is added 

the expert returns to the beginning of the cycle and can select another case or use the 

other option, viewing the knowledge base. 

 

3.2.1.2. Viewing the Knowledge Base 

Viewing the knowledge base is an integral part of the Exposed MCRDR method, and 

is the primary feature from which the method draws its name. As well as allowing 

the user to view the dataset and to define rules based on those cases, EMCRDR 

allows the expert to view the knowledge base, and select individual rules to edit or 

delete. The functionality provided by this could be considered to be a third phase to 

the EMCRDR method, in that the approach is quite different. However, this 

functionality can be used at any and every stage of performing Knowledge 

Acquisition or Knowledge Discovery. This functionality is required in order to allow 

the expert the ability to gain an understanding of the domain knowledge that has 

been recorded at any stage, and to allow the expert to make guided decisions as to 

how to edit or add to that knowledge productively.  

 

The ability to delete a rule has two further options – to also delete the rule’s children 

or to keep them. If kept, the sub-tree(s) of the children are moved into the deleted 
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rule’s place, and in order to maintain the context-sensitive nature of the data, the 

deleted rule’s conditions are each added to the conditions of its first level children 

rules.  

 

Editing rules provides identical functionality to that of rule definition, except that a 

number of conditions are already defined. The validation process upon any 

modifications remains the same.  

 
3.2.1.3. Knowledge Discovery 

The other aspect of the EMCRDR method is that of Knowledge Discovery, the 

functionality explicitly designed to facilitate discovering new knowledge about the 

domain. This goal is achieved, again, via mostly the same method as the Knowledge 

Acquisition: defining a rule based on a certain case which is representative of the 

classification being considered. This provides the advantages of having a fully 

incremental discovery process, with validation and verification of any new 

knowledge as it is discovered. However, the difference provided by the discovery 

phase is in the assistance given to discovering trends and creating rules which might 

show interesting features of the domain. These two features are combined into one 

tool which is integrated into the rule definition functionality of the method. The tool 

provides the ability to subdivide the dataset according to attributes selected by the 

expert. The tool works on a subset of the dataset, specified by the rule currently 

being worked upon, and allows the expert to further subdivide that set, to either 

explore attribute relationships or to generate rule conditions.  

 

From the initial set (the “excluded” set) the expert can move cases, individually or in 

groups, to the “included” set. The method then calculates the range (minimum and 

maximum) of the values for each attribute, from the set of “included” cases, by 

iterating through each attribute and each case. These ranges can then be selected for 

consideration, which will move all the other cases in the “excluded” set which are 

within that range to the “included” set. Once the expert is satisfied that the 

“included” set consists of all the cases which should have the classification that the 

expert is trying to define, a rule can be created based on the attributes of the selected 

ranges. This rule will be in the form (given that the range for Attribute A is selected 

and is 0 - 0.5, and the range for Attribute C is selected and is 0.01 – 0.02): IF A > 0 
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AND A < 0.5 AND C > 0.01 AND C < 0.02 THEN <Classification>. This generated 

rule can then be freely edited via the normal rule edit processes, in order to adjust the 

rule to be more generally applicable to the domain or more accurate to the 

relationship the expert is testing. 

 
 

3.3. Implementation 

 

To test this Exposed MCRDR method requires the implementation of a full MCRDR 

system, with modifications and enhancements made to the system interface, the 

inferencing engine, and the handling of the knowledge base. The system was 

implemented as a Windows Application and the MCRDR engine as a series of 

Dynamic Link Libraries (DLLs) using the .NET 2.0 Framework, with the domain 

data and knowledge base stored in a MySql 5.0 database. These tools were chosen as 

both are readily available and well supported technologies.  

 

The system has been implemented to be able to work for only a single user, rather 

than many experts inputting their expertise, although it has been designed for the 

possibility of future expandability in that regard.  

 

3.3.1. Domain Modeling 

In abstract terms the goal of all Knowledge Acquisition is to find a way of accurately 

modeling a domain (Liou 1990). We attain and structure the domain knowledge 

using the MCRDR algorithm. However, in order to store this knowledge, we must 

also find an adequate data model to represent the various elements of the domain, 

including allowances for how they interrelate. We also must consider how this data 

will be stored.  

 

3.3.1.1. The Database 

The main concern in modeling the domain for this project is finding a means of 

representing and storing the cases that make up the dataset, and the rules that are 

based on those cases. We then have to consider any subsequently generated 

conclusions, and any other metadata we may require to allow us to work with the 
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data as we would like to, including the potential for future work. The core of this is 

representing the cases themselves. This was mainly a simple process as the dataset 

we were using was provided in a flat Excel spreadsheet format, and so the majority 

of attributes could simply be transposed directly into a table, with each column in the 

spreadsheet a column in the table and each row in the spreadsheet a record. The data 

types of these attributes were similarly simple, as most of the attributes are numerical 

values to 2 decimal places. A more unusual aspect of the data in the spreadsheet is 

that many of the columns (41 of the 101) are in fact formulae. A set of these derived 

attributes (21 of the 101), labeled ‘reference’ attributes, were calculated based on 

other attributes that are actual measurements taken from the patient in various tests. 

These reference attributes represent the predicted result for other tests. Many of the 

other derived attributes (19 attributes) are calculated from the actual test results 

divided by the predicted test results (giving a “percentage predicted” attribute). The 

remainder of the derived attributes are calculations based on already known relations 

between attributes, such as one attribute subtracted from another, or divided by 

another. All of these derived attributes are not explicitly stored in the database, as 

they can be calculated in the intermediary object-oriented data model used between 

the database and system program.  

 

Although the dataset does not contain information identifying patients, the possibility 

was raised of extending the system in the future to take into account attribute change 

over time for a single patient, as used in the system PEIRS (Compton & Edwards 

1994). To this end, we separated the data set (in the database and data model) to 

consist of a “patient” and a set of “test results”. The patient object includes the 

unchanging patient-specific data we have available in ethnicity, sex, and year of 

birth. The test results object then contains all other attributes plus a patient ID to link 

it to a patient, and the year the test was performed to calculate the patient’s age at the 

time of the test. Although the test results are categorized into groups in the interface, 

based on the actual tests performed and meaning of the data gathered, all are stored 

in a single table in the database for simplicity and as each attribute is treated as an 

equal at this stage. 
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3.3.1.2. Data Types 

The majority (95 of the 101) of the attributes used in the dataset, including all the 

derived attributes, are real numbers. A distinct few (3) are whole integer numbers 

and have been stored as such. The only complications in the data types are the 

Smoker, Ethnicity, and Sex. An Enumeration has been defined for each of these 

within the C# data model which restricts the values that can be entered into these 

fields. Smoker has been restricted to “Y” for yes; “N” for no; and “X” for ex-smoker. 

Ethnicity is “W” for Caucasian; “O” for other, although the set only contains “W”. 

Sex is simply “F” or “M”. Each of these attributes has also had the value 

“MISSING” added as a possibility, although no values in the dataset are missing, 

again for future expandability. The use of “missing” as a distinct value is discussed 

in the Section 7 - Further Work. 

 

3.3.2. The Interface 

Much of the strength of the MCRDR Knowledge Acquisition process arises from 

presenting the user with an intuitive means of updating the knowledge base, and 

hiding the complexity of how that knowledge is actually structured (Compton & 

Jansen 1989; Richards & Busch 2003). For example, the typical MCRDR 

Knowledge Acquisition process is designed to operate under circumstances where 

any domain expert can use the system, and add knowledge as appropriate, without 

any understanding of the content and structure of the existing knowledge base. The 

expert views the classifications that the system currently gives, and simply chooses 

to add to, change one or more, or remove one or more of those classifications. The 

expert then justifies this decision, in the form of a rule. Hence, a user can perform 

Knowledge Acquisition within the system without necessarily being aware that the 

knowledge base is structured as a tree; the user simply understands that a new rule 

can supersede other rules, or can be considered in addition to other rules. 

Traditionally, the method has been deliberately implemented in this manner in order 

to provide a natural and intuitive experience to the user, without requiring them to 

understand the knowledge base tree structure, or understand the complexities of how 

the system produces the results it does (Compton & Jansen 1989; Kang, Compton & 

Preston 1995). As such, much of the strength of MCRDR Knowledge Acquisition 

over other expert system Knowledge Acquisition methods is derived from having an 
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effective interface, and so the development of the interface needs to be considered in 

equal regard to the development of the engine. 

 

3.3.3. The Rules 

The rules in the system each consist of a number of conditions, or clauses, and a 

classification, or conclusion. Each condition consists of an attribute, operator and 

value set. The attribute is selected from a list of all attributes in the dataset. The 

operator is selected from the set of: ‘= =’, representing just ‘equals’; ‘!=’ 

representing ‘is not equal to’; ‘>=’ for ‘greater than or equal to’; ‘<=’ for ‘less than 

or equal to’; and ‘>’ and ‘<’ for ‘greater than’ and ‘less than’ respectively. The 

inequality operator was included as domain experts make extensive use of “negative 

knowledge” in justifying their conclusions, as in most medical domains (Tsumoto 

2000). The value is any value entered into the field by the expert, defaulting with the 

value for the selected attribute for the current case (the typical cornerstone case, 

which the rule is being based from).  

 

The final component of a rule, the classification, consists of a title and a description, 

which are defined before the rule is defined, and the correct conclusion selected from 

the provided list of all conclusions. 

 

3.3.4. MCRDR Modifications 

However, the requirements of Knowledge Acquisition for data mining purposes are 

different to those of Knowledge Acquisition for the training of an expert system. 

There are a number of modifications to the standard model which needed to be made, 

and a number of additional features which needed to be added. We will now consider 

the features that were modified or added, why they were necessary and how they 

were implemented. A discussion of the advantages and disadvantages of each of 

these changes will be considered later in the Results and Discussion section, in 

association with the results obtained. 

 

3.3.4.1. Using a Dataset 

The most significant change to the design and function of the system is the inclusion 

of a dataset. In regular MCRDR, cases are presented one at a time to the inferencing 
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engine, and the results returned for that case. If the expert determines that the 

knowledge of the system needs to be updated, the new knowledge defined is based 

from the case that gave rise to the mistake, and that case is stored with the knowledge 

base as reference (and called a cornerstone case). However, as the goal of the system 

is to take a given set of cases and discover interesting features and patterns from that 

set, the system has an initial range of cases with which to work. It is necessary to 

base the Knowledge Acquisition from this initial set of cases, rather than case-by-

case as they are presented to the system, for a number of reasons. Firstly it makes the 

validation of rules much more effective and efficient, by providing a large range of 

cases to be considered and compared from the beginning. A case-by-case approach 

would require a significant amount of time to build a large enough set of cornerstone 

cases to be able to validate rules effectively, as it would potentially (particularly 

early on in development) invalidate every rule when each new case is added. Hence 

although the case-by-case approach would run the validation process faster initially, 

it is at that time a less effective process which is potentially redone every time a new 

case is added.  

 

Using a dataset also provides a definite scope for the discovery process, as opposed 

to an open-ended approach of adding as many cases as possible over time. This 

restriction can allow the user to focus on specific types of cases, all at once, rather 

than waiting for such cases to occur in the normal use of the system. Similarly, if the 

dataset can be said – or influenced - to contain a range of domain representative 

cases, it allows for a more complete analysis of the domain rather than a purely 

incremental approach which cannot say when adequate domain knowledge is 

reached, other than by analyzing the accuracy of the system over time and seeing 

when the system error rate drops below a predetermined threshold. 

 

Having a set of data from which to base rule validation also subtly changes the 

implementation of the MCRDR Knowledge Acquisition process, and more 

significantly changes the interface. The algorithm itself performs rule validation by 

adding the new rule to the knowledge base and then running every case in the dataset 

through the inferencing process to find all those cases which match the new rule. 

This process can be optimized by only inferencing those cases which already 

satisfied the parent rule of the new rule being created, as only those cases can 
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possibly reach the new rule’s position in the tree, and so all other cases are 

automatically known to fail to satisfy the new rule. The system uses all dataset cases 

(rather than only those already used as cornerstones) in order to take advantage of the 

availability of the wider set from the beginning, for the reasons noted above. 

 

However, using the entire dataset as validation from the beginning requires a 

redesign of the use of cornerstone cases. As the set of cases being used is potentially 

very large, storing cornerstone cases in the typical sense becomes impractical. 

Whereas most MCRDR systems would, upon the creation of a new rule, make a copy 

of the case used and store this as a cornerstone case for that rule, as we already store 

all the cases the system need only store the relationships between each rule and the 

cases it covers. As such, the system does not explicitly have cornerstone cases, but 

rather just stores the list of cases that are currently covered by each rule, and updates 

this is dynamically as required. The rule creation does require the concept of a 

cornerstone case, as the new rule conditions need to be based from the case which 

caused the expert to reconsider the validity of the knowledge base (i.e. the new rule 

should cover the case which caused the system to provide an incorrect classification 

to provide an extra measure of validation). As with previous MCRDR systems it 

would be potentially beneficial to store a copy of each case as it is used as a 

cornerstone, so that were the case ever to be modified the origins of the rule would 

still be available upon request (Compton & Jansen 1989). However, as we are storing 

every case that matches the rule upon validation at each step, without distinction, any 

of these cases will be a valid cornerstone for the rule. Because the rules are being 

created from a dataset, always in the context that the rule covers a specified set of 

cases, once the rule is satisfactorily defined it is irrelevant which case originally 

caused the rule to be made. 

 

3.3.4.2. Interface Modifications 

The interface modifications are more significant. Although there are large differences 

in the general appearance and contents of the interface in order to present the dataset 

to the user in an easily readable and browseable format, the most important factor is 

the difference that presenting this information makes to the way in which the user 

can use the system. Typical MCRDR rule validation presents the user with the 

previous cornerstone cases which are also covered by the rule, and offers the option 
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of accepting this new or modified classification as valid for each particular 

cornerstone case, or rejecting it, which requires a justification – in the form of a 

difference – to further refine the new rule so as not to include the rejected case. 

However, the data mining system presents all the cases in the dataset which were 

covered by the new rule, requiring and allowing the user to take a much more holistic 

view of what the rule they are defining means in relation to the domain, rather than 

performing a purely case-by-case analysis. Most significantly, it allows a user to 

define a rule by examining the entire dataset and developing a rule based on how the 

rule subdivides that set, rather than purely basing a new rule on their understanding 

of the domain in relation to the case being considered. This ability is the essential 

element that changes the process from being a Knowledge Acquisition process into a 

data mining process. 

 

3.3.4.3. Viewing the Knowledge Base 

Another modification that was considered likely to be beneficial is to allow the data 

mining user to view the structure and content of the knowledge base, in order to gain 

a more holistic understanding of the knowledge they have acquired, rather than 

having all the knowledge encoded and accessible only through a case-by-case 

classification. Viewing the knowledge base in an explicit format also allows the 

expert to see each rule in the full context within which it was defined: a very 

important consideration when attempting to consider the full scope of the knowledge 

gained, and an aspect which is not apparent in typical MCRDR (Compton & Jansen 

1989). The system implements this via a visual tree structure, explicitly describing 

the knowledge base in the same way that the rules are logically linked together. This 

approach was chosen over other representations, such as hierarchical grids, or a flat 

grid, because it is the best way found to provide a clear explanation of rule context in 

regards to the entire knowledge base. It also presents a way to easily show a broad 

view of the knowledge base in one screen and, through the ability to minimise or 

maximise branches of the tree it allows for the ability to narrow down on smaller 

subsections of the larger knowledge base. 

 

 

 

 



35 

3.3.5. Additional Features 

While the MCRDR implementation required many modifications for it to be 

applicable as a data mining tool, it also required a number of additional features. 

These features are enhancements to the standard MCRDR method, some of which 

may be applicable to other MCRDR applications, and some of which are focused 

more specifically on data mining applications.  

 

3.3.5.1. Deleting Rules 

The first non-typical enhancement to be added to the MCRDR system is an 

implementation of rule deletion. Most MCRDR systems don’t allow explicit deletion 

of rules, instead making use of stopping rules that have the same conditions as the 

parent rule, to effectively remove a rule from the knowledge base (Kang, Compton & 

Preston 1995). This has been done to avoid the complexities and dangers inherent in 

removing a node within a tree – when to reconnect the children, and if they are 

reconnected, how to handle the invalidation of the context of their rules – and is the 

primary source for the MCRDR ideology of never deleting data (Compton & Jansen 

1989; Kang, Compton & Preston 1995, 1998; Richards & Busch 2003). 

 

However, in the data mining context – of trying to discover new knowledge, by 

creating test rules and observing how they modify the results obtained – there are 

potentially many cases where the user will wish to delete rules previously created. 

Although there is technically no case of rule deletion which a stopping rule 

implementation cannot replicate, because the user is allowed to view the knowledge 

base itself and because it is expected that the user will create many rules which they 

will wish to delete, it will was anticipated that it would provide the user with a much 

clearer view of the knowledge base. This is an important consideration as the user 

will always be a domain expert and therefore cannot necessarily be expected to be 

adept at understanding the MCRDR tree structure of knowledge.  

 

The rule deletion was implemented to be as generally applicable as possible, as there 

is currently little data about how an expert will use the rule deletion, particularly as 

related to the domain of lung function and the application of data mining. There are 

two cases to choose from when deleting a rule, selected by the user when they are 
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performing the deletion: to remove the rule and all its children, or to only remove the 

current node and keep its children. The former case is the easiest to handle, by 

simply removing that node from the tree, and thereby disconnecting all the children 

nodes, making them impossible to be reached by traversal. The latter case is 

complicated by the requirement of maintaining context within the tree – a rule is 

created entirely within the context of its parent, and to remove the parent would 

potentially open the rule to cover a range of other cases that were not intended to be 

covered. To handle this, when deleting a rule and selecting to keep the children rules, 

the conditions contained within the rule being deleted are copied into all of the first 

level child rules. This ensures that all the children rules will produce exactly the 

same classifications as before the deletion, while removing the classifications 

provided by the rule that was deleted. It is a possibility that the expert may actually 

desire that the child rules’ scope be expanded to include those cases which will now 

not be excluded by the parent rule (although, if this were to occur, it is likely that the 

child rules should actually have been included as siblings of their parent). In a typical 

MCRDR system the expert would be required to remove the children as well, and 

redefine their rules to not include the deleted rule’s conditions. While it would be 

possible to present the expert with an option of carrying down the deleted rule’s 

conditions or not, this would potentially be a difficult concept to communicate the 

consequences of effectively. However the system also contains the option of editing 

rules, so in the situation mentioned the expert would be able to modify the children 

rules and remove those clauses just added. 

 

Although rule deletion has been implemented, the system still does include an 

implementation of stopping rules – and indeed the system’s implementation can be 

used in such a way as to never need to use the rule deletion option, although that is 

not a preferable outcome. Stopping rules are added whenever the expert selects the 

option to remove a classification from the results screen – this is primarily to allow 

the expert to define a selective stopping rule, in which only a subset of the parent 

rules cases satisfy the stopping rule (Bindoff 2005; Kang, Compton & Preston 1995). 

In this situation those cases do not receive a classification from that branch of the 

knowledge base, whereas certain other cases still may. Explicit rule deletion can only 

be performed by viewing the knowledge base and selecting the rule to be deleted, 

although the expert can still achieve the same result by defining a complete stopping 
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rule which excludes every case covered by the parent rule. The explicit rule deletion 

allows the expert to consider the knowledge base and find rules (or branches) which 

serve no purpose, which are deemed irrelevant or incorrect, or which were added to 

attempt to prove a hypothesis that failed, and remove them. 

 
3.3.5.2. Editing Rules 

Another addition to MCRDR within the system, which again defies the standard 

MCRDR approach, is the editing of existing rules (Compton et al. 1992; Compton & 

Jansen 1989; Kang, Compton & Preston 1995, 1998; Richards & Busch 2003). This 

feature allows the user to view existing rules and modify their conditions or 

conclusion.  

 

The editing of rules is in contradiction to the suggestion by Compton, Cao et al. that 

implicit editing of the knowledge base has no inherent advantage and only risks 

introducing errors, as “the circumstances in which knowledge is appropriate are 

never fully defined….[meaning] the fix will never be complete” (Compton, Cao & 

Kerr 2004). For this reason, in a regular MCRDR system, modifying rules explicitly 

is never performed; every situation where the user wishes to wishes to modify a rule 

involves adding a new child rule (Compton & Jansen 1989; Compton et al. 1993; 

Kang, Compton & Preston 1995, 1998). However, Compton, Cao et al. did note that 

while an RDR approach does seem to provide an easier method of Knowledge 

Acquisition than free editing, they were unable to prove the conjecture at that stage 

(Compton, Cao & Kerr 2004).  

 

As this method seeks to discover new knowledge and to store it in a readable and 

useable format, it is suggested that editing rules does have an inherent advantage: 

that of being able to change the knowledge base to have it conform to an expert-

comprehendible view. Also, as with the removal of rules, it is expected that the 

expert will commonly be testing new rules – of which they are unsure of the validity 

– and so will frequently want to perform rule modifications to refine their current 

hypothesis. It is suggested that if the expert can view the full effects that editing a 

particular rule has on the knowledge base, and if the expert has the ability to reverse 

any modifications they have made, the expert’s understanding of the domain should 
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restrict introduced errors to an acceptable minimum: because they will be able to 

“undo” any mistakes they have introduced. 

 

Allowing rule editing to be initiated from looking at the knowledge base also allows 

the expert to tidy the knowledge base if it becomes convoluted and contains 

contradictory, unnecessary rules. This is a required feature if the expert is to be able 

to easily examine and interpret the knowledge base. As outlined in the description of 

the rule removal functionality, rule editing is also useful in the case that the user 

wishes to refine existing rules whose meaning has been modified by rule deletion, 

which enhances the applicability of both features. The disadvantage being that the 

knowledge can be impaired by editing without a full understanding of the context 

(which may be impossible to obtain) 

 

The editing process is performed by taking the user back to the rule creation screen, 

except with the conditions grid already containing the existing conditions and the 

existing conclusion already selected. All other features of the define rule screen are 

present and enabled.  

 

A consideration when implementing rule editing, if implemented as a replica of rule 

creation, is which case to use as the cornerstone case. To address this concern, a 

system was implemented to generate a cornerstone cases list. Upon validation and 

saving of a rule, the system would identify and store all cases in the dataset which 

match the modified rule. Once this has been performed we do not keep track of 

which of these cases was the original cornerstone case (that the rule was founded 

from), because as we are basing the Knowledge Acquisition from a dataset rather 

than a case-by-case appraisal, it is considered that the rule was created to represent 

all those cases. Therefore, when a rule is being modified, we consider the base 

cornerstone to simply be the first cornerstone returned by the list. However as the 

user may wish to modify the rule to not include whichever case is returned as the 

first case, we do not strictly enforce that the rule covers this case – we provide the 

user with a warning if the rule does not cover this case, but still allow the 

modifications they have made to be saved. A discussion of the potential impacts of 

this decision is provided in the Results and Discussion section.  

 



39 

The most significant problem with implementing rule editing is handling how rule 

modification will affect the results provided by the children of that rule. In the 

system we have not implemented a programmatic means of handling this situation. It 

is assumed that the expert will be familiar enough with the knowledge base, through 

the extended detail provided by the system and through explanations provided by the 

author, that they will understand the implications that modifying a rule will have for 

that rule’s children. We also consider that it is usually the case that a rule 

modification will simply be a clarification of one or more existing conditions, and 

that clarifying a rule in this way will not result in misclassifying cases with the child 

rules, as the child rules were intended to only have been considering those cases now 

covered by the modified rule. The worst case allowable by rule editing is if the 

expert completely recreates an existing rule to perform a totally different 

classification, thereby likely making the child rules completely irrelevant and 

erroneous. To avoid this is it is suggested to the expert that in the situation where 

they do wish to remove an existing rule and then add a new rule that they go through 

the processes of rule deletion and rule creation, rather than the shortcut of editing. 

However it is also assumed that in their reviews of the knowledge base the expert 

will be able to see any erroneous rules or rule branches and remove them at that time, 

and so this is not considered to be a significant problem beyond an overall loss of 

efficiency. 

 
3.3.5.3. Validation 

To facilitate a data mining approach, it is also necessary to modify the format in 

which validation is presented. If a newly defined rule covers a case that had 

previously been inferenced, and the expert had not at that time determined that a 

classification was missing, unlike a typical MCRDR system this does not necessarily 

imply that the expert has missed a classification – the expert may be simply 

attempting to describe the case in a different manner, or using a different approach, 

than previously. This also results from the presence of the dataset in the system and 

the relaxing of the concept of cornerstone cases, since in order to be able to 

determine that a new rule may conflict with a previous rule for a given case, the 

system needs a means of knowing whether a case has been considered to be 

completely classified. This is a process usually performed using cornerstone cases. 

The system could store a value for each case representing whether the case is 
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considered to be completely classified or not, but this is contrary to the goals of the 

system: the expert does not know when a case is completely classified, as they are 

attempting to find new classifications and ways of making those classifications. 

 

With this in mind, rule validation in this system does not present to the user a list of 

all the cases that are affected by the new rule and have previously been inferenced, 

requesting confirmation from the expert that all the classification are correct. Instead 

a list of all classifications for each case is provided, so that the expert can determine 

for themselves whether each case has a classification which conflicts with the new 

classification (for example if a case is already classified as having severe airflow 

limitation and is now being classified as mild airflow limitation), and allow the 

expert to modify the rule appropriately. 

 

3.3.6. Data Mining Features 

Perhaps the most significant additional feature implemented is a tool, integrated into 

the standard system, which assists in the generation of rule conditions based on the 

similarities between attributes across cases in the selected sub-dataset. This feature 

was determined to be particularly relevant in the system as one of the goals is to 

attempt to determine previously unknown correlations between attributes or between 

cases. This tool is also relevant in any MCRDR system where the user does not have 

a complete knowledge of the domain and wants to examine exactly which attributes 

and what values might be most profitably used, or for a user who wishes to explore 

the workings of the domain beyond their normal understanding.  

 

This functionality is accessed from the rule definition (or edit) screen. It examines 

only those cases that are currently covered by the rule, as if the rule had already been 

added to the tree (and so is inclusive of the restrictions imposed by the parent rules). 

The result of this is that if the user were to enter this tool before defining any 

conditions for a rule, the set of cases examined would be all those cases which are 

covered by the parent rule (i.e. all those cases which would reach this point in the 

tree). These cases are presented in a list (‘excluded cases’), from which the expert 

selects cases which they determine should be covered by the current rule and move 

into the ‘included cases’ list. Every time the ‘included cases’ list is updated, the 
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system recalculates the current value range for each case attribute, and displays these 

to the user (i.e. for each attribute, it takes the minimum and maximum value present 

in the list of included cases). Each of these are presented along with the count of the 

number of cases in the ‘excluded cases’ whose value for that attribute also falls 

within this range.  

 

Selecting an attribute’s range highlights all those cases in the excluded list which are 

also covered by that range. Choosing to use a range, by ticking the appropriate 

checkbox, moves all those cases covered by that range to within the ‘included cases’ 

list, and recalculates all the ranges that have not been selected. This last point is an 

important element of the implementation if more than one attribute is required to 

determine the correct set of cases to be covered.  

 

Once a range has been selected to be used, it is locked with those values and will not 

be updated when the user changes the composition of the two case lists. If it is ever 

deselected, then all those cases which were moved when that range was selected will 

be moved back to the excluded case list. This makes the order in which the attribute 

ranges are selected have an influence on the end result; as selecting a range updates 

all the other ranges.  

 

Implementing the method in this format provides a greater degree of control to the 

user over which cases are included and when, as it does not restrict the included 

cases to being based on strict ranges. However, this also means that the method relies 

on the user having a level of expertise within the domain, and particularly on the user 

having the ability to identify which attributes are more likely to be useful, and in 

which order.  

 

The goal when using the tool to generate rule conditions is to have all cases which 

should be covered by the rule in the ‘included cases’ list, and all other cases in the 

‘excluded cases’ list. Once this is achieved, the user clicks the ‘confirm’ button to 

add the currently selected ranges into the rule as conditions. It will usually be 

necessary for the expert to then modify the values within these conditions to be more 

generalized and less case-specific, assuming these rules are not meant to be entirely 

dataset specific.  
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In addition to providing a simple method of generating conditions for rules, this tool 

has the potential to be useful for more basic exploration of the relationships present 

within the dataset. If used in conjunction with an already defined rule, the method 

will show the expert any attributes which perform the same function as those which 

have been used to restrict the set so far – that is, once the attributes that define the 

rule have been included, any other attributes which have a very low count of cases 

which they further cover could be said to be a possible alternative to those attributes 

which were previously used in the rule, and so be worthy of further examination. 

Although a low count certainly does not guarantee a similarity of applicability, it is 

an indicator that it may be worth examining further, which matches the goals of the 

system. In the same manner, attributes whose count is high can be reasonably 

assumed to be irrelevant to certain applications or conclusions.  

 

Further data mining and analysis functionality is provided for by allowing the expert 

to export any set of cases which are satisfied for a certain rule or defined within the 

data mining tool. The cases are saved, either with their classifications or without, as a 

Comma Separated Value (CSV) file, which can be opened by most spreadsheet 

programs for extended manual manipulation and plotting. 

 

3.4. Method Evaluation 

 

3.4.1. Testing Process 

In order to test the system a leading expert in the field of Lung Function was given 

the system, with a dataset of 484 cases, for a period of three weeks (25 days) to 

firstly build the knowledge base, and secondly attempt to discover new knowledge 

about the domain. The expert was given a brief explanation of how the knowledge 

base was constructed and how the classification algorithm functioned. The expert 

was then instructed about how to define rules in the system by the usual MCRDR 

method of analysing a case, manually finding the appropriate classifications, and 

then adding, changing or removing the classification results that the system provided 

for the case until the system’s responses match the expert’s. The expert was also 
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shown how to define and test a rule based on stand-alone knowledge rather than 

based entirely from a case. When the development of the knowledge base was 

approaching completion the expert was shown how to use the ‘Similarities’ screen to 

compare the attributes within subsets of the data and to automatically generate 

conditions for a new rule. 

 

3.4.2. The Dataset 

The dataset which was used is a subset of 484 patient results from the collected lung 

function data. Although the system is designed to examine much larger datasets, and 

is scalable to larger numbers of cases, this set was used as it had already been 

manually ‘cleaned’ by the expert to remove any incomplete cases (those that have 

missing values) or are particularly noisy (have clearly erroneous values). These 

considerations reduce the potential impact of noise and ambiguity factors in the study 

and so make it more likely that we are accurately representing the ability of the 

method within the domain. The set does not contain any personally identifying 

attributes, and no one patient is represented by more than once case.  

 

3.4.3. Evaluation of Testing 

To analyse the success of the method and understand the implications for future 

research and development, both with the MCRDR algorithm and in the lung function 

domain, a number of factors must be examined: how the expert used the system, how 

difficult to use the system was, the knowledge base that was developed, how that 

knowledge base was developed, the length of time taken to derive information, and 

how influential the resultant “mined” information is to the domain.  

 

3.4.3.1. Usage Logs 

In order to look at this information the implementation includes automatic logging 

features for recording each action that the user makes in using the system. To 

facilitate the logging of deletions meaningfully, no records are ever deleted from the 

database, and are instead only marked as deleted or not. This is acceptable for the 

system as it stands as a prototype using a limited dataset over a limited timeframe, 

but if the system is to be expanded in the future and used more routinely then this 

design would likely need to be reconsidered. To maintain meaningfulness of edit 
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actions, the logs also store the values before and after any edit. This should allow a 

full understanding of what the content of the knowledge base was at any given time 

of development. The actions that were logged can be found in 9. Appendix A – 

System Usage Logs. 
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4. Results 

 
To examine the success of the method, and what the impacts of this method are on 

the field of Knowledge Discovery, a number of analyses can be performed. Firstly, a 

direct examination of the characteristics of the knowledge base produced by the 

testing. Secondly, an assessment of how the system was used, via the previously 

mentioned usage logs. Thirdly, an examination of a review of the system, written by 

the expert, describing the new knowledge obtained, the effectiveness of the system, 

and areas in which the system might be improved. 

 
 

4.1. Knowledge Base Examination 

The first and possibly most significant result to be found by this study lies in the 

structure of the final knowledge base. The tree that was produced in fact only 

consisted of a single level beneath the root node – one level of rules all at an equal 

level, with no child rules. There are various possible reasons for this. The reason with 

the most support of the evidence is that the expert appears to have not wanted to 

define child rules at any stage, because the expert did not fully understand the 

process (D P Johns 2006). The expert would instead define more detailed rules to 

cover all eventualities, and further new rules to cover any complexities that might be 

involved in the area. This theory is also supported when the number of conditions per 

rule is examined: as shown in Figure 2 nearly half of the rules in the system consist 

of over 2 conditions; also the average of 2.4 conditions per rule is significantly 

higher than the 1.7 found by Bindoff (2005), and approximately 1.5 found by 

Compton and Edwards (1994). It is worth noting that the knowledge base for this 

system is still simpler than the knowledge base from Compton and Edwards’ study, 

in which the average number of conditions satisfied in finding a classification was 

typically 5, approximately double that of this system.  
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Figure 2: Number of Conditions per Rule, showing an average of 2.4412 

 

It is suggested that another reason for the single-level tree structure of knowledge 

base is that it is simply more easily understandable for the expert, particularly in the 

context of data mining. As the focus for the data mining is to produce discrete new 

‘pieces’ of information, in the form of rules, it follows that the expert would be 

considering the domain knowledge – or at least domain knowledge representation – 

in this manner, and so will attempt to devise rules in this style, rather than follow the 

normal process of ‘building’ the knowledge base case-by-case via correcting the 

system’s classifications.  

 
 

4.2. System Evaluation Tests 

 

4.2.1. Classification Accuracy 

A number of specific tests have been used to describe the success of the system, as 

follows. However it is worth nothing that many of the normal evaluations of 

classification accuracy are not relevant for this system, as the system is focusing on 

rule generation for data mining purposes, as well as the generation of an accurate 

expert system. An overall accuracy measure for the classifications found cannot be 

derived as there is no authority on what the final set of classifications for any given 
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case should be: it is assumed that the expert will be correct in his own classifications 

of the cases, and hence once he is satisfied with the system’s responses, that the rules 

in the knowledge base will therefore be correct (excepting human error, the effects of 

which should be filtered out over time in any case). However, as well as modelling 

existing domain knowledge, the expert is attempting to add new classifications and 

justify them with a rule, or to find a new rule as a different way of making the same 

classification: this results in rules being added to the system which cannot be said to 

be correct or not, as the knowledge which is being represented by these rules is 

unconfirmed, and the accuracy of the knowledge is unknown to the expert. Therefore 

accuracy of the new rules is not a measure that can be used without extensive further 

research into the validity of each new rule. As the correctness for the classification of 

a case is determined by all of the classifications being provided, and due to the 

exception-based nature of MCRDR whereby newer rules can overrule previous rules, 

this makes determining the true classification accuracy of the system impossible once 

the knowledge base has been modified by a Knowledge Discovery process (rather 

than just Knowledge Acquisition). However the accuracy of the knowledge base for 

the Knowledge Acquisition phase can still be measured, although there are 

complexities involved. 

 

Besides causing some oddities in the statistics when the expert is using the system 

for data mining (and therefore hypothesising that the classifications for a case may be 

incorrect or incomplete, even though they match the expert’s current understanding 

of the domain), the classification accuracy of the system appears to follow a typical 

trend in MCRDR system development. Figure 3 shows that after an initial period of 

no correct classifications, the system steadily improves it’s accuracy along a curve 

until it reaches 40 correct inferences. The departure at this point appears to reflect the 

first attempt of the expert to analyse the knowledge contained within the system, by 

comparing the classifications of different cases. After this the accuracy continues at a 

similar rate to before, although it stays at this rate rather than continuing to improve. 

The final stage, from approximately 75 correct inferences onwards, corresponded to 

when the expert changed focus to deriving new information from the dataset rather 

than classifying existing data. 
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Figure 3: Inference Accuracy – Number of Correct Inferences against Total 
Number of Inferences Performed. The orange section shows when the expert was 

exploring for new knowledge 

 

 

 

4.2.2. Rule Creation 

The Knowledge Base grew steadily through use of the system to reach the level of 51 

rules, with one section of rule deletion which was the result of a bug in the system, 

requiring the deletion and re-entry of a group of rules. Figure 5 shows a gradual 

increase in the rate of rule additions. This would appear to show that the expert 

becomes gradually accustomed to using the system. However, an examination of 

Figure 4 more correctly shows the learning curve for defining rules using the system: 

the time taken to define a rule is consistent at around 2 minutes per rule for the first 

40 rules, after which the expert’s familiarity with the system precludes a slow 

increase in efficiency over the next 10 (or so) rules when the expert can be said to be 

confident with rule creation and the rate of rule definition increases markedly. The 

slowing of the rule creation during the last phase corresponds to the expert beginning 

the data mining phase of trying to discover new rules: which is clearly, and 

predictably, a much more time consuming task than defining rules for known 

knowledge.  
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Instead, Figure 5 shows the gradual increase in understanding from the expert about 

the rules required to cover the domain: once the expert is satisfied that the rules 

existing in the knowledge base adequately classify the domain and dataset to allow 

for effective Knowledge Discovery, the rate of rule creation slows and ceases; the 

final tapering of the rate to the point of stopping completely shows the comparative 

length of time taken to derive new knowledge and form it into a rule. 
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Figure 4: Time spent defining rules, with an average of 1.7 minutes per rule. The 

orange section corresponds to Knowledge Discovery rather than Acquisition 

 

Rule Edits/Additions/Deletions Over Time

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000

Minutes of System Operation

N
u

m
b

e
r 

o
f 

E
/A

/D

Edits

Additions

Deletions

 

Figure 5: Numbers of Edits, Additions and Deletions throughout the use of the 
system, with the orange section showing when the expert changed from 

Knowledge Acquisition to Knowledge Discovery 
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4.2.3. Rule Edits 

The editing of rules is one of the most significant results of this study, both because it 

is an unexplored area of the MCRDR method and because of the usage made of this 

functionality. Editing of rules was used extensively, 140 times in all, and at almost 

every stage of the process. The trend of the rule editing frequency Figure 5 is that the 

feature became more commonly used the further the system was in use. This 

continues until the point of beginning Knowledge Discovery phase, at which point 

the editing slows significantly, along with most other measures in the system. The 

figure also shows that in this phase, the expert almost exclusively uses rule editing to 

perform the Knowledge Discovery task, with only a very few rule additions. The 

reasons why rule editing is so frequent in this system, to the point of taking over 

from rule addition, is discussed later in Section 5.2.2 - Editing Rules. 

 

A statistic for the time taken to edit a rule is unavailable as the data is confused with 

Knowledge Discovery attempts: as the Edit Rule functionality was the primary point 

for the expert to begin any examination of the dataset, which is a comparatively time 

consuming exercise, the data can not be said to be representative of actual rule 

editing times.  

 

4.2.4. Rule Deletions 

The deletions in the system are remarkable in that they are unremarkable: only 14 

deletions occurred throughout the process, these occurring early on in the pure 

Knowledge Acquisition phase. These deletions were even then only in response to 

errors in the system which forced deletion and re-entry, and mistakes made by the 

expert through an incomplete understanding of how the Knowledge Acquisition 

process added to the knowledge base.  

 

4.2.5. Rules per Conclusion 

An interesting point of note in the knowledge base is that there is a 1:1 relationship 

between rules and conclusions – which is to say, no conclusion is used for more than 

one rule. This may have occurred in part because the expert can edit rules, and has 

therefore taken care to define complete rules for each classification that do not 
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exclude relevant cases. However, this does not account for situations where a 

conclusion can be based on two entirely different circumstances, that would require 

more than a single rule to define (it occurs in many domains that one classification 

can be reached from two very different groups of attributes (Compton & Edwards 

1994; Richards, Chellen & Compton 1996) – this would require two rules as the 

system does not have any ‘OR’ logic implemented for rule conditions). The lack of 

conclusion reuse may instead be explained by the specificity of the conclusions 

themselves: in medical domains, any extra information that can be provided has the 

potential to change the final diagnosis (Bindoff 2005; Laszlo 1994), and therefore the 

expert has taken care to define conclusions which have as much meaning as possible. 

For example, the knowledge base contains conclusions which can be as specific (and 

similar) as “Reversibility (FEV1) and transfer factor >=80%” and “Reversibility 

(FEV1) and transfer factor <80%”, which, while bearing similarities to the rule they 

are based from in some respects, provide a user with the detail required to make 

further decisions without having to take an extra step of examining the rule to 

discover why the classification was made. 

 

4.3. Expert Review of the System 

 

4.3.1. System Effectiveness 

In their review of the system (see Appendix B – Expert Comments and System 

Review) the expert noted their observations on the comparative efficiency of using 

this method to using the previous method available to them, manual analysis via a 

commercial spreadsheet. The expert noted that to perform a relatively simple 

analysis previously required at least 3 hours, with much wasted effort due to errors 

made that required sections of the analysis to be repeated. Using the EMCRDR 

method the expert notes that the same analysis took 15 minutes to complete: a 12-

fold increase in analysis efficiency. It was also noted that the MCRDR method was 

easier and far less prone to human error. The expert also made explicit note that the 

validation features of the system were particularly important in identifying unhelpful 

directions of study before significant time was wasted pursuing valueless avenues of 

research.  
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Also listed in the analysis of the system, the expert described the domain knowledge 

that was discovered in using the method. Three specific areas of study were 

examined, based on trends in the data available and the expert’s understanding of the 

domain (for a fuller description of the exact Lung Function values and measurements 

being examined refer to Appendix A – System Usage Logs). In the first area being 

examined, the particular approach used by the expert to determine this involved 

creating rules with certain criteria to find the appropriate subsets of cases, then 

comparing these two sets. Upon finding that the criteria for one set gave a 60% 

probabilistic likelihood of the case appearing in the second set, the expert examined 

published literature on the subject and found studies confirming his results (D P 

Johns 2006/Appendix B – Expert Comments and System Review). While this means 

that the discovery is not totally new to the field, it is a significant result as it shows 

that an expert using this knowledge Discovery method can quickly find and provide 

evidence for hypotheses that would otherwise require substantial research and study. 

The expert then defined a rule combining the conditions of the previous two, and 

examined the similarities between those cases in other attributes. It was discovered 

that the inclusion of considering a certain other attribute increases the accuracy of 

using the simpler attribute to make the overall classification, although the expert 

notes that the work is still ongoing to attempt to make a classification certain. The 

relationship to this last attribute was discovered through the use of the ‘Similarities’ 

clustering tool provided by the system, showing an effective use of this method. 

 

The second specific examination performed sought to explore an already known 

relationship between two groups – it found that one attribute (VA) provided a good 

estimate of another attribute (TLC) in cases without a certain classification (airflow 

obstruction), but consistently underestimated in cases with that classification. The 

relationship when plotted was found to be linear, and could be applied to estimate the 

value of one attribute (TLC) from another (VA). The relationship was again found to 

be similar to published data from an as yet unconfirmed study.  

 

The third area of study sought to discover whether a known physiological effect (that 

obese people often have smaller lungs) could be consistently measured and classified 

using attributes in the dataset (by attempting to find whether the speed a person can 

blow out is a function of their Body Mass Index). The expert noted that preliminary 



53 

data suggests that there is no direct correlation between one classification (obesity) 

and the other (airflow obstruction), although there is such a correlation to another 

classification (small lungs).  

 

4.3.2. Requested improvements 

The expert expressed a desire to continue using the system in the future to discover 

more information, and had a number of suggestions as to how the system could be 

improved. Of first note is the request for further extensions to the clustering tool 

within the system: firstly the expansion of the information provided to include the 

mean and deviation of the subsets being examined, rather than just the range; and 

secondly the ability to define ranges explicitly to find relevant cases, rather than 

basing the ranges from selected cases.  

 

The expert also made other suggestions which would have varying impacts on the 

method itself, such as the ability to combine rules. This could be handled as an 

interface feature, but highlights the focus of the expert on rule definition in 

Knowledge Discovery rather than case-based classification; and the ability to enter a 

rule without basing it explicitly on a case. Another improvement which was 

requested shows a difference made to the MCRDR process by the inclusion of a 

dataset: that the system provide feedback as to which cases in the dataset have not 

yet been classified. This shows that the normal case-based MCRDR Knowledge 

Acquisition is still of value to the expert, and perhaps highlights that the case-based 

classification approach cannot be abandoned entirely for a rule-based approach if the 

method is to maintain many of it’s advantages. 

 

Further improvements requested by the expert include interface improvements which 

are unrelated to the method itself, and so will not be discussed in detail in this study, 

but are noted in Appendix B – Expert Comments and System Review. A final 

suggestion made by the expert is that the system, with some modifications, would be 

particularly useful as a teaching and learning tool. This idea is discussed in Section 7 

- Further Work. 
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5. Discussion 

 
There has been definite success in data mining knowledge using the system: the three 

“new” rules (rules that the expert was unaware of) that were found show that the 

method can successfully discover knowledge which is both useful and otherwise 

difficult to discover. This section will include a discussion of the effectiveness and 

implications of the system. 

 

5.1. Implications and Effectiveness of Modifications 

 

5.1.1. Using a Dataset 

Developing rules with the context of a complete dataset during the entire Knowledge 

Acquisition process, rather than presenting each case to the system individually to be 

classified by the expert, had a significant effect on the appearance and early 

efficiency of building the knowledge base. However, in terms of the expert’s usage 

of the system and the development of the knowledge base, including the dataset 

made little difference. Basing all validation on every case in the dataset rather than 

only previously used cases (cornerstones) may have meant that the expert was more 

thorough in defining rules, as suggested by the higher than usual number of 

conditions per rule and frequent use of rule editing. While it certainly made 

performing validation slower for the first rules entered into the system – as a normal 

MCRDR validation process would not have any existing cornerstones with which to 

flag potential conflicts, making it much faster – the average time taken to define a 

rule was not significantly higher than any other MCRDR system. If the dataset is 

expanded to be significantly larger however, it may result that there will simply be 

too many cases to be able to validate against effectively. However, as there has been 

no sign that the validation was a problem with this implementation, this appears not 

to be a major enough concern to warrant changing the method at this stage. 

 

Using the complete dataset for rule validation was of definite benefit when 

attempting to derive unconfirmed rules, as it allows the expert to view the effect of 

the rule in the context of the wider domain: without validation against the dataset (or 

a subset of the dataset) the expert could not have determined the relationships 
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between attributes that led to the new knowledge. If only a subset of the dataset were 

used (e.g. only cases stored because they were previously used as cornerstones) then 

not only would the dataset be irrelevant – simply a list of cases that are stored in 

preparation for being presented to the system – but the full effect of a new rule would 

not be apparent, particularly for statistical relationships. In normal MCRDR the list 

of cornerstones is used in a comparable way to the dataset in this system, in order to 

validate new rules, but this would not be effective for Knowledge Discovery.  

 

5.1.2. Interface Modifications 

5.1.2.1. Viewing the Knowledge Base 

One of the most significant changes that was apparent in the use of the system was 

that the expert showed a tendency to want to consider what the impact of the rules 

they were adding would be to the knowledge base, rather than considering the impact 

of the rules on the output of the system, as is usually the case in MCRDR. That is to 

say that, when performing a Knowledge Acquisition process to build the knowledge 

base, the expert was focused on defining rules which represented his understanding 

of the domain rather than taking an individual case and defining rules so as to satisfy 

that the system classified this case correctly. This is evidenced by the manner in 

which the expert used the editing of rules in preference to rule creation, and the way 

the knowledge base consists of a single level of complex, considered rules. 

 

There are a number of reasons why the expert may have focused on a rule-based 

Knowledge Acquisition rather than case-based. That the expert can and must view 

the knowledge base is suggested as a central cause: the expert is interested in what 

the domain knowledge looks like in a structured format. This means that the expert is 

likely also concerned about creating a knowledge base that is well-structured, 

appears logical, and is easy to understand. There may also be a level of mistrust that 

the program can correctly record what the expert is saying, or the expert may 

mistrust that they are using the system correctly, so there is a desire to check that 

what they have entered accurately represents how the domain works. This is 

probably an artefact of the usual MCRDR standard of presenting the user with an 

abstracted process of adding to the knowledge base: traditionally the rule creation is 

not represented in a format that makes it clear to the user what sort of an effect the 

rule will have on the knowledge base (including where the rule will be added). This 
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is usually appropriate in the case that the expert does not ever see the knowledge 

base. However if the user is expected to be able to understand the knowledge base, as 

is the case in this system, they will require a better understanding of how the 

knowledge base functions. The expert did express difficulty in understanding how to 

add a child rule in the correct place in the knowledge base (D P Johns 2006). 

Although he had an understanding of what the effect of a child rule would be, the 

expert did not understand how to add the rule as a child, in the desired place. 

 

The normal, “intuitive” MCRDR format of hiding the knowledge base was 

maintained with this system as it was anticipated that it would be much easier for the 

expert to be able to build the knowledge base, as has been the case with other 

MCRDR Knowledge Acquisition implementations. However, due to the expert 

taking the structure of the knowledge base into greater consideration than was 

expected, the expert always attempts to define a rule which will fit their structured 

knowledge base, rather than adding rules via intuitive means. While this does have 

the advantage of allowing the expert to add to the knowledge base any rule, without 

having to wait for a relevant case to be presented to the system (which was one of the 

goals in creating a data mining tool), it changes the “intuitive” approach into an 

unintuitive approach, as the expert needs to understand how the knowledge base gets 

added to.  

 

This may be a predilection of the expert that performed the testing, which will 

remain unknown unless different experts run through the Knowledge Acquisition 

process from the beginning. Whether this is true or not, it is an observed failing of 

the system that needs to be addressed. It may be possible that simply explaining the 

knowledge acquisition process in more detail will allow the expert to perform any 

desired task to either enhance the functionality of the system or produce a more 

structured knowledge base. However the complete lack of exceptions in the 

knowledge base, even once the expert had an understanding of the process, suggests 

that this would not be the case. 

 

The other option for solving this problem is to change the interface for knowledge 

acquisition, by allowing the expert more freedom to explore that dataset, and to be 

able to freely define rules without being forced to have a specific case to base the 
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rule from. This would remove most of the content of the MCRDR Knowledge 

Acquisition approach, but does not imply that the approach be abandoned completely 

– the two approaches can be used together in one system to build the same 

knowledge base.  

 

The problem presented by both potential solutions, and the essential difficulty that 

gave rise to the confusion, is that the expert is required to have a full understanding 

of the knowledge base structure and how it is extended – the expert will need to have 

most of the skills of a knowledge engineer, which may require extensive training – 

and negates one of the fundamental advantages of MCRDR Knowledge Acquisition 

and maintenance, that no knowledge engineer is required (Bindoff 2005; Compton & 

Edwards 1994). The problem may not be insurmountable, as providing the expert 

with training in how the knowledge base is structured and how to expand it is 

certainly an achievable task in many situations, particularly in using the system 

primarily as a data mining tool. However, if the system is also to be put into use as 

an expert system in the domain, implying use by multiple experts, or even if the data 

mining tool was to be a collaborative effort of Knowledge Acquisition, then the cost 

of training all experts in a good style of adding to the knowledge base could become 

prohibitive. This is particularly important as it is vital that all experts have a good 

understanding, and the same understanding, of what constitutes a well-structured 

knowledge base: if one expert adds rules according to a different view of how the 

knowledge base should be structured than the other experts, the knowledge base is 

likely to become confusing to view due to the context-focused approach to 

knowledge acquisition, which can result in a larger tree than otherwise if overly 

specific rules are entered in higher places in the tree (Kang & Compton 1992; Kang, 

Compton & Preston 1995). Another possibility to overcome this is to introduce a 

knowledge engineer into the process, who translates what the expert describes into 

rules, but this approach adds a layer of communication and point of failure, and the 

complication provided – particularly the time that would be required at each step – 

will make the system impractical for use in most real situations. The addition of a 

knowledge engineer would also significantly affect the maintainability of the system, 

both for use as a classification expert system and as a continuous data mining tool.  
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5.2. Implications and Effectiveness of Additional Features 

 

5.2.1. Deleting Rules 

The ability to delete rules is a further reinforcement to the need for the expert to 

understand the knowledge base structure. Usual MCRDR methods explicitly deny 

the ability of deleting rules from the knowledge base, as it can be complex to 

understand the full implications of removing a rule, particularly for an untrained user 

but even for a knowledge engineer: as MCRDR knowledge base nodes are entirely 

contextual, when removing any node other than a leaf node all the descendant rules 

from that point – and potentially the parent rule also – will be affected, and the 

greater the depth and branching of the sub-tree beneath that point, the more difficult 

it becomes to fully comprehend the effect that deleting the rule will have.  

 

However, as previously noted, the expert in the building of this knowledge base did 

not make strong use of the rule deletion function. This is most likely due to the care 

with which the expert added rules to the system, ensuring that the knowledge base 

was well structured. The only deletions that took place were in a small number of 

cases to correct a misunderstanding of which interface controls caused a child to be 

added, but primarily in response to a bug which added rules as children incorrectly. 

In any other case when the expert made a mistake in building the knowledge base the 

rule edit ability was sufficient to correct the mistake, although it is noted that in 

theory it is possible to completely remove all the existing rules conditions and 

replace these, simulating a delete and add process, but this was not performed during 

testing. A point that was raised in discussing this with the expert was that, if the 

ability to move a rule from one place in the tree to another was provided, there would 

have been no use of the rule deletion function at all. The movement of rules will be 

discussed in the Further Work Section of this thesis. However, the lack of deletion 

may just be a factor of a limited time spent data mining with the system, as there is 

still potential benefit for removing rules which were thought to be interesting but 

were discovered not to be. While it is true that this form of rule deletion would only 

succeed in making the knowledge base cleaner (and the results returned cleaner, if 

the number of rules and classifications became too large to handle), this was clearly 

of great importance to the expert during this development. However, any rule 
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discovered could potentially be beneficial when combined with later discoveries, and 

so rule deletion should be avoided whenever possible. For these reasons, rule 

deletion is a feature that may still have potential use, but which should be 

discouraged unless the expert is certain that the rule has no benefit or is causing 

impossible confusion in the use and understanding of the system. 

 

5.2.2. Editing Rules 

Rule editing has similar requirements of the user to rule deletion, that is, that the user 

must have a good understanding of how the knowledge base functions. The expert 

will require a similar level of understanding to be able to edit rules as delete – in 

either circumstance at most one result will be affected, as only one branch of the 

knowledge base tree can be affected by changing one node or removing one node. 

Modifying a single rule can change a provided classification either by relaxing the 

rule’s conditions (causing it to take the place of the parent’s classification), or by 

changing the classification provided by the current rule by selecting a different 

classification from the list. More complex is the possibility that relaxing the 

conditions for a rule may cause any of its descendant rules to fire and provide their 

classification (which may be no classification, if it is a stopping rule), as they can 

now be accessed where previously they were not: this would replace the 

classification provided by the parent rule with potentially many classifications 

provided by the sub-tree of the rule being modified. Restricting the conditions for a 

rule may cause that rule’s classification to not be applied to a case, and so the parent 

rule’s classification will be applied instead.  Understanding which of these scenarios 

will be the result of modifying a rule can be very difficult to calculate, particularly if 

the knowledge base is complex in form (has a large number of branches).  

 

As has been noted, in the development of the knowledge base for this system the 

expert made extensive use of the rule edit feature to define and refine the knowledge 

base, and to search for new relationships. This is most likely also the cause of the 

shallowness of the knowledge base: as the expert wants to define a neater knowledge 

base rather than a potentially better functioning one, the expert will only enter rules 

that they understand. Further to this, when a rule is found to be incorrect the expert 

will then edit that rule rather than define an exception, as evidenced by the complete 
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lack of exception rules in the knowledge base, although the expert did find flaws in 

the knowledge base as the process was performed. Also, if rules are entered which do 

not make logical sense to the expert either in themselves or in structure, the expert 

will edit rules so that the knowledge base conforms to their understanding. The 

advantage of this is that the edit rule functionality provides a utility for 

experimenting with the knowledge base, and can therefore be used effectively by the 

expert to increase their understanding of how the knowledge base functions. 

 

In the data mining phase of system use, the expert again used the edit rule feature 

extensively, in order to be able to view which cases were covered by the rule as it 

exists, and experiment with making small changes to the rule to see how this affected 

the case coverage from the dataset. It was also used as the primary access point for 

using the “similarities” data mining tool, as this tool requires the context of a 

particular rule to be of real benefit, for the same purpose. Although this was not 

predicted, the freedom of experimentation provided by this feature became a vital 

element to the data mining ability of the system. This is shown in that modifying an 

existing rule, or examining only the set of cases covered by a certain rule, were much 

more common actions when data mining than attempting to data mine with a new 

rule using the entire dataset.  

 

This suggests that the system might benefit from the ability to transition directly 

from viewing a rule to performing data mining with the cases covered by that rule, 

without the intermediate step of the edit rule screen.  

 

5.2.3. Data Mining Features 

The specific data mining features of the system, in particular the ‘Similarities’ tool, 

proved very useful in the development of new hypotheses. The expert also found it 

particularly useful to be able to define a classification and export all those cases into 

a spreadsheet for further analysis.  

 

However, the expert did note that the system would benefit from more complex and 

detailed automated analysis and statistics tools. This is to be expected: any further 

help which can be provided to the expert may be beneficial, and provided the tools 
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do not overload the expert with too much data to be able to efficiently examine, they 

should provide no detrimental effect. The expert also suggested that defining the 

ranges rather than selecting cases to generate the range would be of benefit. This 

shows a further inclination from the expert to move away from the case-based 

approach of normal MCRDR Knowledge Acquisition, to a more rule-based 

approach. 

 
 

5.3. Impact on MCRDR Classification Ability 

A potential impact of the changes to the MCRDR Knowledge Acquisition method 

that must be considered is that the accuracy of the knowledge base might be affected. 

This can not be determined in this system as the dataset has not been entirely 

verified, since one of the consequences of the expert taking a rule-based rather than 

case-based approach was that not every case was considered and confirmed to have 

the correct classifications. However, the classification accuracy statistics in Figure 3 

show that the accuracy does increase, in a form similar to that of a regular MCRDR 

system as the Knowledge Acquisition progresses. The vital difference is that the 

accuracy does not taper towards the end, the usual sign that the knowledge base is 

approaching coverage of the domain. This suggests that either the accuracy of the 

method has been affected, or that the knowledge base is simply incomplete. The 

uncomplicated nature of the knowledge base would seem to support the latter idea, as 

a complete knowledge base would be expected to be more complex in structure. It 

can also be noted that even if the accuracy of the method for providing an expert 

system is compromised by the modifications made, or if the knowledge base is 

incomplete, it would still appear to be sufficient for use as a basis for some degree of 

Knowledge Discovery. However this is only conjecture until the knowledge base can 

be verified for the domain or dataset. 
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6. Conclusions 

 
The preliminary tests performed using the prototype system developed suggest that 

the MCRDR method, with substantial modification, can be applied successfully to 

Knowledge Discovery tasks. This new method of Exposed MCRDR allowed an 

expert in the domain of Lung Function to discover and provide some measure of 

evidence for knowledge that the expert was not previously aware of, in a much 

shorter time than the manual process which would previously have been performed. 

However no comparison has been made to other Knowledge Discovery methods – 

while many other methods are not applicable to the types of domain which 

EMCRDR was designed for, until a comparison is made the real benefit of the 

method to the field of Knowledge Discovery cannot be accurately measured, 

although the simple fact that this kind of tool is rare for domains such as the one 

considered suggests that this study may be of significant value. 

 

Although the method has been shown to work, there are a number of improvements 

that may enhance the applicability and effectiveness of the method for Knowledge 

Discovery purposes. In particular the assistance provided to the expert in discovering 

trends in the data is an area that can always be diversified and improved, until the 

point at which the extra information about the data provided becomes too large for 

the expert to be able to easily comprehend. The confusion of the expert in using the 

case-based approach to Knowledge Acquisition also denotes another area that can be 

improved: allowing the expert more freedom in defining rules may alleviate the 

problem. The other option is to provide a more detailed and thorough explanation to 

the expert of how the process functions, although results suggest that this would not 

resolve the issue. 

 

One of the issues raised by this system was that the method does require that the 

expert have a level of knowledge about how the process works beyond that which is 

normally required by an MCRDR Knowledge Acquisition method. However, the 

proficiency of the expert was shown to increase to a sufficient level in a very short 

space of time, so that the expert was able to make effective use of the system without 

anything more than basic instruction and experimentation. It can also be argued that 
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any other Knowledge Discovery method would also require a familiarisation period 

at least equal to that of this method, but this is unproven conjecture.  

 

Perhaps the most significant result to be attained from this study is not that a 

successful knowledge base was produced using this method, including new 

knowledge, but rather the process by which that knowledge base was constructed, 

and what the implications are for MCRDR Knowledge Acquisition. The extra 

functionality allowed to the expert in developing the knowledge base had a dramatic 

effect on how the Knowledge Acquisition was performed: allowing the expert to edit 

rules, combined with viewing the dataset, fundamentally altered the manner in which 

the expert approached the Knowledge Acquisition from a case-based perspective to a 

rule-based perspective. This would confirm previous literature that suggests that 

allowing rule editing would not be of benefit in Knowledge Acquisition for expert 

system development. However if the goal is to develop a knowledge base that is 

readable and useful to a human, these features show a definite positive move towards 

this goal. A possible disadvantage is that they may detract from the accuracy of the 

system. Allowing rule deletions had little impact on this study, but a more thorough 

test might provide a better analysis of the usefulness of this feature.  

 

The benefits of the method modifications are in some ways less clear than the 

disadvantages. While showing the knowledge base influences the method of its 

construction, it allows the expert to review the recorded knowledge to find missing 

knowledge, find areas to explore, and review flaws. Similarly while rule editing 

changes the perception of how to create the knowledge base, it allows the knowledge 

base to be expressed in a form which the expert can easily understand, enhancing (or 

possibly making plausible) the advantage of showing the knowledge base. It is 

theorised that allowing rule deletions would further enhance this ability, but the 

inherent risks in damaging the knowledge may outweigh the benefits. Further 

analysis needs to be performed to test this. 

 

In final conclusion, despite remaining uncertainties about how the method should be 

implemented, it can be seen that the Exposed MCRDR method is a valuable 

Knowledge Discovery approach, even for domains which require extensive 

background knowledge, have large volumes of difficult to interpret cases, and have 
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complex and specific target knowledge. In the short time that an expert was using the 

method to model the domain and discover new data, three useful and previously 

unknown methods of classification were derived. However, determining the full 

potential of the method, and how to achieve that potential, requires significant further 

testing. The insights provided by this method into the MCRDR Knowledge 

Acquisition process also require further examination to determine their extent and 

applicability. The following section will discuss these future directions for the 

method and MCRDR Knowledge Acquisition. 
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7. Further Work 

The discoveries made in this study lead to many areas with the potential for further 

research. The success of the algorithm as a data mining assistance application require 

further verification and analysis before a conclusive statement can be made about its 

overall usefulness. However, the discoveries about how modifications to the 

MCRDR algorithm affect its use are of particular interest. The modifications and 

their potential applications are an unexplored area which has shown unexpected and 

interesting results.  

 

7.1. Further EMCRDR Evaluation 

The EMCRDR method has been shown to be an effective tool for assisting in the 

discovery of previously unknown knowledge in the particular prototype system that 

was developed. However, the overall usefulness is difficult to determine. How the 

data mining ability will extend beyond the first few examinations made by the expert 

is unknown, and very difficult to estimate. Therefore the method needs to be 

examined over different or larger datasets before a declarative statement can be 

made. This would possibly also reveal more information about the effectiveness of 

the modifications made to the MCRDR process such as rule deletion, which may 

have been under-utilised simply due to a lack of opportunity from the size of the 

dataset. 

 

It is of particular importance to note that, while it has been measured to the best 

extent possible, the accuracy of the knowledge base (excluding the newly discovered 

knowledge, as this can not be measured except by studies with more source data for 

evidence) can not be fully determined without verifying that the system returns 

correct and complete classifications for all cases in the dataset. As has been 

previously noted this does not necessarily affect the discovery of new knowledge, 

which only requires sufficient background knowledge to be able to support the 

hypotheses. However, to fully show how the modifications made to the MCRDR 

process affect the Knowledge Acquisition, and to determine how useful the produced 

knowledge base can be, the full dataset verification needs to be performed. This work 

is relatively simple, if potentially time consuming. An expert is needed to examine 
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each case in the set individually, and test to see that the system provides correct 

classifications for every case. In the situation that a case is classified incorrectly, or 

incompletely, the expert must justify why this is so in the form of a new rule which is 

added to the knowledge base. Once this is completed the knowledge base can be said 

to entirely cover the domain as represented by that dataset, and an analysis of how 

effective the method is at modelling the domain and at classifying cases can be 

presented. 

 

Another vital measurement that has not been performed is the effectiveness of the 

method as compared to other data mining methods. In particular a comparison to 

clustering techniques should be performed. Such clustering techniques are suggested 

as the only Knowledge Discovery methods which are likely to be capable of 

functioning effectively within a domain such as Lung Function which contains 

unclassified and detailed cases, and complex target relationships. A comparative 

analysis is required to be able to state with any conviction whether this method is a 

useful approach to Knowledge Discovery, rather than just an effective method. 

 

7.2. EMCRDR Enhancements 

There are many enhancements that can yet be made to improve the effectiveness and 

ease of use of the system. The most immediately useful are extensions to the 

Machine Learning tools and abilities present in the software, to allow the expert to 

more easily find trends in the data which may indicate a potential means of justifying 

a hypothesis or indicate an entirely new relationship. The expert has requested that 

the mean and standard deviation for each attribute in the subset be added to the 

existing similarity finding screen, and that the tool allow the explicit definition of 

ranges (Appendix B – Expert Comments and System Review).  

 

A further enhancement that might be able to be made in this area is the automatic 

generation of rules using a standard clustering algorithm. It might be possible that 

using the classifications provided by an expert, possibly in combination, will restrict 

the dataset enough that automated clustering techniques can find rules from patterns 

in the data. The problem remains that if too many rules are generated, with many 

complex and irrelevant rules, then the expert will not be able to efficiently sort 
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through and determine which are useful and which are not. However the direction is 

one which can definitely be explored, as the potential benefits to the speed of the 

process are high.  

 

This also raises the possibility of separating the process into two distinct phases: first 

a Knowledge Base Building phase; and secondly a Data Mining phase. The first 

phase would consist of normal MCRDR Knowledge Acquisition to build the 

knowledge base with appropriate domain knowledge, while the second phase would 

make use of the EMCRDR method, or possibly even another method which could 

make use of the MCRDR knowledge base to derive new knowledge. The difficulty 

presented by this approach would be in the analysis of the knowledge base produced, 

as knowledge bases produced by regular MCRDR Knowledge Acquisition can be 

counter-intuitive and difficult to understand. Determining at which point the 

knowledge base has reached a sufficient level of knowledge is also difficult. 

However this approach can potentially provide a number of benefits. Firstly, 

breaking the process into two phases would ensure that a strong knowledge base was 

built initially before any Knowledge Discovery was performed, increasing the 

probability that new knowledge will be found and providing a measure of assurance 

that any knowledge discovered is valid. It also reduces the concern that the expert 

will affect the accuracy of the knowledge base during the Knowledge Discovery 

process.  

 

A consideration that is presented by this is that the converse approach could be 

useable – that is, using EMCRDR to build a knowledge base and then expanding this 

knowledge base using regular MCRDR. This should produce an effective knowledge 

base, possibly with the benefit of having an understandable top level, although this is 

usually true in any MCRDR knowledge base. Besides this, it may be a useful study 

to assist in determining how effective the knowledge base created by the EMCRDR 

method is, by analysing how many rules are added via the regular MCRDR 

Knowledge Acquisition method (i.e. rules that were missed by the EMCRDR phase). 

 

The expert also requested that the system display the cases which have not yet been 

classified by the rules in the system – this could be used as a basic tool for finding 

extreme cases that elude classification, but as each case generally receives multiple 
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classifications this feature would only be a partial measure of ensuring completeness 

compared to inferencing and classifying each case individually. This feature would 

be unnecessary in any case were either of the above two suggestions taken into 

consideration, as the dedicated MCRDR Knowledge Acquisition process would 

outperform this measure in achieving the desired goals. 

 

There are also many simpler but potentially much more effective improvements that 

can be made to the applicability of the method. Expanding the capability of the 

database and system to be able to handle time series data is an area of particular use 

in this domain and most other medical domains, to be able to analyse the 

deterioration or improvement of a patient’s condition over time, and possibly in 

conjunction with the treatment provided (although this system does not incorporate 

treatment recommendations at this stage).  

 

Another simple enhancement to the implementation of the system, which can have a 

dramatic effect on both the scope and benefits of the results provided, is the ability to 

handle missing values in the dataset. This is a complication that is present in many 

real datasets, particularly in the field of Lung Function where full tests are rarely 

performed, and so the vast majority of the data stored is incomplete. Improving the 

system to be able to handle this is a necessary improvement if the method is to be 

able to fully analyse the Lung Function domain or similar domains. 

 

7.3. MCRDR Modifications and Additions 

Besides further work into the EMCRDR Knowledge Discovery method, this study 

has also revealed potential modifications to the regular MCRDR Knowledge 

Acquisition method. The effect of being able to edit rules is difficult to describe 

effectively without further work into the area, particularly without a more complete 

analysis of how accurate the produced knowledge base is over the full dataset. 

However the frequency of use of the feature made by the expert alone suggests that 

this feature may be a worthwhile consideration for MCRDR implementations. 

Despite potential benefits, further work must be performed to analyse the full effect 

of the edit rule feature before it can be said that it would explicitly increase or 

decrease the effectiveness of the method as a whole, although it is acknowledged that 
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adding such a feature to a traditional MCRDR system may have complications on 

validation which might detract from the long-term maintainability of the system. The 

rule deletion results are similarly inconclusive at this stage: there were no apparent 

negative effects of allowing this feature, but the feature was not actively used. The 

potential for use of this feature requires further examination. 

 

A common feature of the how the expert described their analysis of the Lung 

Function domain was that they would consider making new classifications in terms 

of other classifications – a simplistic example being creating a rule to define obesity 

based on the Body Mass Index attribute, and then creating a new rule which (in the 

expert’s speech) used “obesity” as one of the conditions. This is an illustration of the 

nature of the specific domain as a classification domain rather than a diagnostic 

domain. In such a classification domain no classification is necessarily an end result 

– it is only an indicator of certain characteristics of a case. This use of classifications 

as conditions could be implemented in two ways: performing multiple inferences, 

either on a single knowledge base tree or using a hierarchy of knowledge base trees; 

or by allowing the definition of rules not only as exception rules but optionally as 

“additional” rules, which add their classification to the case without excluding the 

parent classification. This second method was explicitly suggested by the expert in a 

discussion towards the end of system operation (demonstrating that the expert had a 

strong level of understanding of how the knowledge base functioned and an interest 

in how it might be improved). As a further extension to this, the complexities of 

conjoining multiple classifications as conditions in one rule would make an 

interesting study that may provide the MCRDR algorithm with a wider range of 

applicability.  

 

7.4. Educational Applications 

This system is perhaps best described as a learning/education tool: the system allows 

a user to define their knowledge in the form of a knowledge base, and to then explore 

how they can build upon that knowledge base by discovering new information about 

the domain. When the user is an expert in the field it can be assumed that new 

information will be of benefit not only to the expert but also to others in the field, 

however, the potential of the system simply as an educational learning tool for any 
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user should also be considered. This potential is further enhanced when an expert is 

involved first to develop the knowledge base, then the system provided to an 

inexperienced student: the student can explore the differences in the responses the 

system provides to their own evaluation of cases, and the system can provide a 

justification of why the differences exist. If the system were to be adapted 

specifically for an educational role, there are many enhancements that might be 

included, such as a more user-friendly justification of why each classification was 

made, including why some classifications were not made in the case of relevant 

stopping rules, and who entered the rule (e.g. teacher or student) providing a measure 

of reliability to the result.  

 

The system, or potentially any MCRDR system, could also be used educationally as 

a common repository of classification knowledge and strategy between multiple 

experts. This would be beneficial in ensuring all expertise is shared by all experts, in 

standardizing the method of classification between experts, and in determining (and 

resolving, if possible) conflicts in opinion. 

 

7.5. Summary 

This study has revealed potential for extensive further research, both into the 

improvement, further development and applicability of the EMCRDR Knowledge 

Discovery method, but also into the enhancement of the MCRDR Knowledge 

Acquisition method. If the EMCRDR method can be verified, proven and enhanced 

where required, it may provide a solution to performing Knowledge Discovery in 

complex domains which would otherwise be a very slow and difficult process. The 

verification process performed on the EMCRDR method should also provide more 

complete data on the implications of the modifications made to the MCRDR 

Knowledge Acquisition process, allowing conclusions to be made about when and 

how those modifications might be useful in MCRDR system development. 
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9. Appendix A – System Usage Logs 

 

The following is a description of each of the logs recorded by the system: 

 

PERFORM_INFERENCE: Records the action of the user asks the system to provide 

the classifications for a case, with the caseID of the case being inferenced, and the 

number of conclusions returned.  

 

ACCEPT_CONCLUSIONS: Records the user taking no further action (returning to 

the dataset) after they have performed an inference. The implication is that the expert 

has viewed the conclusions provided for the case, and determined that there are no 

errors or missing conclusions. The caseID is stored with this record. 

 

ADD_CONCLUSION: Records the action of the expert deciding to add a conclusion 

for a case, when they have determined that the system’s knowledge is incomplete for 

this case. The practical result of deciding to add a conclusion is to be taken to the 

screen for adding a rule, based on the current case. This record stores the caseID for 

the case being used as the cornerstone, and the conclusionID for the conclusion being 

added (i.e. the conclusion of the new rule). 

 

CHANGE_INCORRECT_CONCLUSION: Records the action of the expert 

determining that a conclusion provided by the system for a certain case is incorrect, 

and needs to be changed. Practically this involves the expert adding a new rule as a 

child to the rule(s) that caused the incorrect conclusion to be given. The log record 

contains the caseID, conclusionID of the new conclusion being added, and the 

ruleIDs of all rules that caused the incorrect conclusion. 

 

REMOVE_INCORRECT_CONCLUSION: Records when the expert inferences a 

case, and decides that one of the conclusions is incorrect, and should not be 

displayed for this case. The practical result of this is that the expert adds a stopping 

rule as a child of the rule(s) that caused the incorrect conclusion to be made. The log 

record contains the caseID and ruleID(s). 
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DEFINE_NEW_CONCLUSION: Records the action of the expert defining a new 

conclusion in the system, either as part of the process of adding a rule or just adding 

it independently for future use. Stores the new conclusionID. 

 

DELETE_CONCLUSION: Records the deletion of a conclusion from the system, 

independent of any rule. Stores the conclusionID of the deleted conclusion. 

 

EDIT_CONCLUSION: Records the expert modifying the title or description of a 

conclusion (independent of any rule that the conclusion is used in). Stores the 

conclusionID of the conclusion being edited. 

 

DEFINE_CLAUSE: Records the definition of a new condition for a rule, with the 

attribute used, the operator, and the value. This is performed only when the rule is 

validated or saved, so as to avoid logging input errors and only store conditions that 

the expert considers meaningful enough to perform a validation upon. 

 

EDIT_CLAUSE: Records when a condition for a rule is edited, with the old attribute, 

operator, and value, and the new attribute, operator and value. This is performed only 

when the rule is validated or saved, so as to avoid logging input errors and only store 

conditions that the expert considers meaningful enough to perform a validation upon. 

 

DELETE_CLAUSE: Records the deletion of a condition from a rule. The attribute, 

operator and value are all stored. 

 

VALIDATE_RULE: Records whenever the system performs validation upon a rule. 

This includes automatic validation performed by the system when the rule is 

displayed, and also validation performed explicitly by the user in order to test rule 

modifications. The log record stores the number of clauses in the rule at the time of 

validation, and the number of cases that the rule currently covers (the results of the 

validation being performed). 

 

SAVE_RULE: Records the action of saving a rule in its current state, with the ruleID 

to identify it.  
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CANCEL_CREATING_RULE: Recorded when the expert leaves the rule definition 

screen via the cancel button, when defining a new rule.  

 

CANCEL_EDITING_RULE: Records the action of leaving the rule definition screen 

via the cancel button, when editing an existing rule. The log record stores the ruleID 

of the rule that was being edited. 

 

EDIT_RULE: Records the action of choosing to edit a rule, with the ruleID of the 

rule being edited. 

 

DELETE_RULE: Records the action of the expert deleting a rule from the 

knowledge base, including the ruleID and whether the expert chose to delete the 

child rules or not. 

 

QUERY_SIMILARITIES: Records when the user chooses to go to the similarities 

screen, and stores the caseIDs of all the cases that currently match the rule (the cases 

that will be examined for similarities). 
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10. Appendix B – Expert Comments and System 

Review 

 

Comments 

Overview: 

There is an enormous amount of information stored in current and archived 
databases held within respiratory laboratories throughout the world. The 
majority of this data is recorded numerically and was obtained during routine 
clinical testing of people referred for assessment, usually because they were 
suspected of having lung disease or had a confirmed diagnosis.  

To a very large extent the data contained in these databases remain 
‘dormant’ despite the fact that they represent an enormous clinical, scientific 
and, in particular, teaching resource.  

In broad terms, the aim of this Honours project was to develop a ‘proof of 
concept’ database model (MCRDR) to accept lung function test results, and 
provide an engine for ‘intelligent’ physiological interpretation (classification) of 
lung function test data, including a user interface to enable the test data to be 
easily interrogated to facilitate the acquisition of new knowledge. 

 

Specific Comments on the Project:  

A custom MCRDR engine to analyse lung function data was successfully 
developed in a timely and professional manner. The system has been 
extremely valuable in fine-tuning my interpretive skills and in providing a 
simple interface to allow the data to be efficiently interrogated. My 
experiences to date are as follows: 

• Client/Student Interaction: This has been very positive and professional 
throughout the period of this project. The student took on board all 
comments and suggestions and worked systematically to develop the 
MCRDR system to meet specific requirements. This was greatly 
facilitated by the students’ willingness to listen and his ability to effectively 
communicate using non-technical language. 

• MCRDR Development: The software was initially difficult to use because 
of several ‘bugs’ and the inevitable requirement for precision in setting 
attribute ranges within rules to establish classifications. There was also an 
initial learning period to familiarise myself with each screen, particularly, 
the ‘Similarity Screen’ which provides the capacity to interrogate the data. 
However, the system was very quickly debugged and with some practice 
and assistance I was able to define rules for specific classifications and 
effectively use these classifications to interrogate the data.  

• Analysis Speed: Before the commencement of this project I had spent 
many (!) hours interrogating lung function data (over one hundred 
attributes per patient) using a commercial spreadsheet (Excel). Apart from 
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being extremely tedious, the use of a spreadsheet to interrogate patterns 
of lung function was very awkward and prone to human errors when 
sorting and, in particular when selecting and analysing subsets of data. I 
was therefore in a position to make direct comparison between the utility 
of the MCRDR system and spreadsheet to discover new knowledge.  

The capacity of the MCRDR system to easily select subsets of data, 
examine individual data within these subsets, and to export data sets into 
other programs has greatly improved the speed and accuracy with which 
data can be interrogated for new knowledge. For example, using a 
spreadsheet to investigate the effect of bronchodilators (these are inhaled 
asthma drugs used to dilate the airways) on lung function took me at least 
3 hours to complete relatively basic analyses and I often had to repeat 
parts of the analysis due to errors. However, using the MCRDR system I 
have been able to painlessly complete the same analysis (including 
exporting and plotting data) in 15 minutes! This is a 12 fold increase in 
analysis speed. In addition, the analysis using the MCRDRM system was 
extremely easy to accomplish in a few keystrokes, and the analysis was 
far less prone to human error. 

An important attribute of the MCRDRM system is that it responds almost 
instantaneously and any error(s) in data selection due to an inappropriate 
rule or attribute range is readily apparent and easily corrected. I have 
found this to be an important feature of the system as it also allows 
unhelpful analyses to be identified quickly, thus facilitating the ongoing 
search for new knowledge.  

• Application of the MCRDR System to Acquire New Knowledge: I have 
used the system to interrogate lung function data and will continue to use 
the system into the future. Three examples are as follows: 

o Can FVC be used to identify patients with small lungs? The ‘gold 
standard’ lung function index of lung size is the total lung capacity, 
TLC (the volume of air contained in the lungs at full lung inflation). This 
index is measured using specialised equipment (i.e. whole body 
plethysmograph) that is only available in large and well equipped lung 
function laboratories. However, all laboratories, including many GPs 
and community clinics, have simple and less expensive equipment to 
measure the forced vital capacity, FVC (i.e. the maximum volume of 
air that can blown out). TLC is always larger than FVC because TLC 
includes the volume of any air that cannot be exhaled and this can be 
affected by lung diseases such as asthma and smoking related 
chronic obstructive lung disease (COPD). To answer this question I 
used the MCRDR system to classify patients into two separate groups: 
1) those with a low TLC (i.e. definitely have small lungs), and 2) those 
with a low FVC (i.e. may have small lungs). Comparison of the two 
groups showed that using FVC alone to define ‘small lungs’ accounted 
for 60% of the patients with a low TLC (i.e. FVC misclassified patients 
as having small lungs in 40% of cases). Subsequent review of 
published literature agreed with my analysis. I then proceeded to 
separately inspect the ‘FVC’ and ’TLC’ datasets and compare these 
with a new dataset which included patients who met the criteria of both 
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a low TLC and low FVC, to determine whether the misclassification of 
‘small lungs’ based on FVC alone could be improved by including or 
excluding other lung function indices in the rule. This work is ongoing, 
but to date it appears that including patients with a normal index, FET 
(forced expired time – i.e. how long it takes for the patients to expire 
fully), to the rule improves the specificity. 

o Correction of VA for Airflow obstruction to Estimate TLC. Alveolar 
volume (VA) is an estimate of TLC (defined above). It is obtained by 
inhaling a single breath of air containing a known concentration of an 
inert gas such as helium and measuring the degree to which it is 
diluted with residual air already in the lungs. Although VA is often used 
as a surrogate of TLC it can substantially underestimate TLC in the 
presence of diseases causing airflow obstruction (i.e. difficulty blowing 
out quickly due to narrowed airways – indicated by a low FEV1/FVC 
ratio). VA underestimates TLC in obstruction because the inert gas 
cannot penetrate to all lung regions. I used the MCRDR system to 
separately select and export all patients in the database and 
separately those who had: 1) no obstruction (normal FEV1/FVC ratio), 
and 2) obstruction (low FEV1/FVC ratio). The analysis revealed that 
VA provided a good estimated of TLC in people who were able to blow 
out quickly, but it underestimated TLC in patients with airflow 
obstruction. The relationship between FEV1/FVC and the ratio 
VA/TLC was found to be linear: VA/TLC = 0.413 x FEV1/FVC + 0.57 
and could be applied to estimate TLC from measurements of VA. This 
relationship is similar to published data from one unconfirmed study. 

o Is Obesity Associated with Increased Airflow Obstruction? Obese 
people often have smaller than normal lungs because the large 
abdomen can push the diaphragm into the chest and mass of tissue 
pressing on the chest can prevent full lung inflation. Although the 
lungs themselves are often normal, the small lung volume results in 
narrow airways (airway cross-section is related to lung size) and this 
may result in difficulty blowing out quickly. I used the MCRDR system 
to identify normal and overweight people (based on their body mass 
index) and investigated whether they there was evidence that the 
speed they could blow out was a function of body mass index. This 
analysis is ongoing but preliminary data suggests that the incidence of 
airflow obstruction is not higher in people who are overweight, 
although they do tend to have smaller lungs. This does not exclude an 
effect when the patients are sleeping when the weight of the abdomen 
on the diaphragm is accentuated because lung function tests are 
performed in the sitting position. 

• Overall, the MCRDR system has proved valuable in classifying lung 
physiology and for rapidly investigating patterns of lung function in health 
and disease. I believe the system will be invaluable in research, education 
and auditing, particularly if the following additional facilities are 
implemented (some of these will be available via Afshin). 

 

Suggestions to Improve the Utility of the MCRDR System:  
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o Include the mean and standard deviation for data sets (‘Included’) in the 
‘Similarity’ screen. At present only the ‘range’ for each attribute is given 
which provides little information about the distribution of the data. 

o Include facility to select patients meeting specifically defined ranges in the 
‘Similarity’ screen. This would enable the data from selected patients to 
be further investigated, or divided into subsets, without leaving the 
‘Similarity’ screen and entering a new rule. For example, when 
investigating patients who have small lungs, it would be helpful to be able 
to select those that also meet additional criteria when looking for 
similarities. 

o More descriptive labelling of icons within each screen to avoid confusion 
for novices would be helpful, together with a ‘help’ function. 

o When entering an inappropriate rule a prompt appears indicating that the 
case does not meet the rule. It would be helpful to if this prompt were to 
give some feedback to the operator indicating which part(s) of the rule 
was not met. It would also be useful to have the facility to enter a rule 
without having to first identify a specific case that meets it. This would be 
useful when enquiring about the frequency that a specific rule is met and 
also to identify a case which meets it. 

o The capacity to combine individual rules would be extremely useful. As I 
understand it, this can be done only by re-entering a new rule that covers 
several individual ones that have already been entered. 

o The MCRDR system should provide the feedback as to whether any of 
the cases have not received a classification. At present, their may be 
cases where none of the rules applies to them. 

o For future applications it would be critical to develop an interface for new 
data to be imported into the MCRDR system (I am not sure whether this is 
already possible). It is also important that the system be able to cope with 
missing data as future datasets will inevitably have missing data. 

o In the future we wish to expand the database to include additional 
attributes and to identify when a patient is having repeat tests.  

o The ability to easily change the title for each attribute would be useful (this 
may be possible now). Also, a maths function could also be useful for 
establishing new derived attributes – these may only become apparent 
after the MCRDR system is established. 

o The MCRDR system could be very useful for assessing a 
students/professional knowledge to accurately interpret lung function 
data. Perhaps this could be achieved by including an additional ‘Teaching’ 
screen whereby a student/professional would be asked to interpret a 
number of cases randomly selected to cover a range of rules. The system 
could then provide a summary score. 

 

Well done. 

David P. Johns PhD, FANZSRS 


