
Williams et al. Detecting Marine Animals in Underwater Video

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

Detecting Marine Animals in Underwater Video:
Let’s Start with Salmon

R.N.Williams
School of Computing.

University of Tasmania
Sandy Bay, Tasmania, Australia

R.Williams@utas.edu.au

T.J.Lambert
School of Computing.

University of Tasmania
Sandy Bay, Tasmania, Australia
tristan@icsmultimedia.com.au

A.F.Kelsall
School of Computing.

University of Tasmania
Sandy Bay, Tasmania, Australia
akelsall@postoffice.utas.edu.au

T.Pauly
The Verdant Group Pty Ltd

Hobart, Tasmania
Australia

Tim.Pauly@sonardata.com

ABSTRACT

Environmental Decision Support Systems (EDSS) constitute an important emerging technology for the management of
marine environments and resources world-wide.  A requirement for such systems is the provision of accurate and
comprehensive data on marine animal populations and habitats. Underwater video is increasing in importance as a
technology for collecting this data, but manual analysis of the video is time-consuming and subjective, and so automated
techniques need to be developed before video technology becomes effective as a major data collection method for EDSS.  A
central requirement in many applications is the automated detection of specific marine animals in the video footage.  Our aim
is to develop a range of techniques for detecting marine animals in underwater video scenes and, as a starting point, we have
developed a segmentation technique to automatically detect salmon depicted in images taken from video cameras placed in
fish farm cages.
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INTRODUCTION

Due to widespread concern about the state of the Earth’s oceans, several large-scale scientific projects have begun to
investigate the condition of our oceans on a global basis. These are very comprehensive projects involving extensive
scientific contributions from many nations. Environmental Decision Support Systems (EDSS) constitute an important
emerging technology for the management of marine environments and resources world-wide. Therefore EDSS are integral
components in the information technology infrastructure being developed to manage and render useful the enormous
quantities of data that will be required to solve the problems besetting marine environments world-wide. A fundamental
requirement for marine EDSS is the provision of accurate and comprehensive base data on marine animal populations and
habitats, at appropriate spatial and temporal scales, to support the models informing the decision support provided by these
systems.  Accurate base data is needed to ensure that the models employed by EDSS produce reliable conclusions.

UNDERWATER VIDEO ANALYSIS

Many traditional methods used to study marine organism populations (eg. dragging a net behind a boat and physically
collecting samples) are essentially destructive in nature and only give an indication of the population characteristics in the
area of interest because they combine the results over a large area (Wilson 2003), making it impossible to extrapolate the
findings to surrounding areas.

With rapid improvements in video technology, underwater video is becoming an important method for collecting this data.  It
is a non-destructive means of data collection and provides much more detailed information on the fine-scale spatial and
temporal variability of the data being collected; something that cannot be achieved using traditional drag-net techniques.
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However, the move to using underwater video monitoring requires the use of labour-intensive manual processing techniques
to analyse the video footage.  Huge amounts of video data are now available for researchers to use, but analysis of the data
requires a highly trained scientist to view the videos, making annotations of the animal populations and characteristics and
then entering the annotations into a database.  This imposes serious limitations in the amount of underwater data that can be
processed.  Manual processing of such large amounts of data has become impossible, leading to the need for an automated
system capable of processing data at much greater speed.

DETECTING MARINE ANIMALS

A central requirement in many video analysis applications is the automated detection of specific marine animals depicted in
the video footage.  Being able to automatically locate, identify and track marine animals in video sequences would enable
automated inventory of various marine species to be carried out (Dirk, Edgington and Koch 2004).  The automated approach
would also be able to identify and isolate certain footage of particular objects or events.  This would greatly reduce the
amount of footage that scientists have to analyse (Edgington et al 2003).  In the future, automated tracking of individual
animals by autonomous underwater vehicles will increase the amount of data that can be collected (Dirk, Edgington and
Koch, 2004) and so event analysis will become more important. Given the diversity of animals of interest and the
acknowledged limitations of current computer vision algorithms for detecting objects in natural settings, it is likely that many
different approaches will be necessary to solve this problem for various marine applications.

To undertake this task using a computer, the analysis software will need to have some knowledge of the shape of the
particular fish, and be able to match this shape to fish depicted within the image.   Unlike humans, computers cannot easily
separate objects within an image, or perceive objects as separate from the background.  To make the task of identifying the
fish easier for the computer to handle, image pre-processing techniques can be performed.  Through the use of specific image
enhancement techniques, the images may be taken to the stage where a computer can start to identify objects within that
image.  The ultimate goal of such a system is to autonomously detect an object, identify it and classify it within a database of
known objects in real time.  In order to achieve this, an accurate and efficient algorithm will need to be used.

Wilson (2003) addressed the problem of identifying very small mid-water organisms in video sequences and determining
their species.  They described a fully automated approach where the analysis was done in real time as the footage was
recorded.  This meant that identification of very small indistinguishable objects was extremely difficult, because it required
significantly more processing than could be achieved in real-time.

Video analysis techniques for detecting marine animals are also being developed to provide automated animal tracking
capabilities for Autonomous Underwater Vehicles (AUVs) and to assist scientists maneuvering Remotely Operated Vehicles
(ROVs) to follow individual marine animals underwater (Rife and Rock 2001).

INPUT DATA

As a starting point for the development of new image analysis techniques for automatically detecting marine animals in video
image sequences, we have constructed a prototype system for detecting and delineating fish shapes in video footage obtained
from a local aquaculture facility.  The images we used were provided by AQ1 Systems Pty Ltd.  They are 8-bit grey scale
Tagged Image File Format (TIFF) images with a size of 640 * 480 pixels and were produced by a dual-camera underwater
video monitoring system, deployed within the fish cages of a local aquaculture firm.  The system captured image sequences
of  the  salmon  in  the  cage  as  they  swam  past  the  cameras.  Currently,  these  images  are  used  to  measure  fish  sizes  using  a
manual analysis process.  This process involves human input to locate fish within the image and select points at key locations
on the fish from which the measurement of fish size can be made.  One possible application for a fish detection system, such
as the one we developed in this research project, would be to automate the fish sizing process.  However, the work done here
did not focus specifically on this application, but rather aimed to take the first step in the development of a marine animal
detection system, capable of being used in a wide range of applications involving underwater video footage.

IMAGE PRE-PROCESSING

Contrast Enhancement

Due to the nature of the underwater environment, underwater images are of low contrast and so contrast enhancement is an
important first step in processing these images. The contrast enhancement technique chosen was histogram equalization
because it produces a higher contrast image without the need for user input and is thus capable of full automation.  Histogram
equalization was performed over all 256 grey levels of the image. The images before histogram equalization was applied
contained mainly pixels with high value grey levels, resulting in a low contrasting bright image (Fig 1a and b).  After
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histogram equalization, these high value grey level pixels were expanded to more evenly cover the whole range of grey levels
in the image (Fig 2a and b).  The resulting images were of higher contrast containing more clearly defined fish.

Image courtesy of AQ1 Systems Pty. Ltd,

Figure 1. Original Image and its Histogram.

(a) Original image (courtesy of AQ1 Systems).  (b) Histogram of the original image.

Image courtesy of AQ1 Systems Pty. Ltd,

Figure 2. Histogram Equalized Image and its Histogram.

(a) Image after histogram equalization.   (b) Histogram of image after histogram equalization.

Background Removal

A major feature of the underwater images in this project is the netting used to enclose the fish cage.  This netting represents
the background of the image, with the fish being the foreground objects.  Therefore background removal can be achieved by
detecting the netting in the image and removing it, effectively distinguishing the fish from the background. The texture
presented by the netting consists of a series of vertical and horizontal lines with high grey levels, in between which a square
is formed with low value grey levels.  Because edge detection operates by locating sharp transitions in grey levels, and this
texture is a repeating pattern of transitions in grey levels, edge detection was used to detect the lines in the background
netting.  The edge detector chosen was the Sobel edge detector because it offered the ability to choose the direction of the
edges being detected; either vertical, horizontal or both.  Many fish within the images displayed some texture but, since most
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of this texture consisted of horizontal lines, by using only the vertical edge detection capability of the Sobel detector, most of
this texture was eliminated (Fig 3a).

Figure 3.  Image after Edge Detection and Image after Background Removal.

(a) Image produced when Sobel edge detector is passed over the histogam equalized image.

(b) Image after background netting texture has been removed.

IMAGE SEGMENTATION

Initial Segmentation

Once the texture had been detected (Fig 3a) the next step was to remove it from the image.  Several morphological operations
were applied to the image, including dilation of vertical and horizontal lines to fill in the parts of the image depicting the
netting, removal of small gaps within the textured and non-textured regions by merging unconnected segments smaller than
300 pixels in area with their surrounding regions and finally eroding the background segment, using a 3 x 3 diamond
structuring element.  This process provided a more accurate and smoother segmentation between the background and the fish
(Fig 3b).

The next stage of the segmentation process was to remove the background as well as any segments connected to the border of
the image and the final stage involved labeling and obtaining statistics for each separate segment.  The labeling process
involved identifying separate segments within the binary image and labeling each segment accordingly (Fig 4a).  The labelled
image was then used to obtain statistics about each segment in the image.  The statistics calculated were the Area (number of
pixels in the segment), Centroid (coordinates of the centre of the segment), Major and Minor Axis Lengths (the major and
minor axis lengths of the segment), the Orientation (the angle between the major axis of the segment and the horizontal) and
the PixelList (the coordinates of all the pixels in the segment).

Segment Analysis

Once the segmentation process had been performed, the segments and any information obtained about each segment would
usually be passed on to a higher level process.  This process might then use the information for tasks such as object tracking,
shape matching and measuring.  One problem is that all segments are not guaranteed to represent individual fish, so the
analysis needs to determine whether a particular segment represents a single fish, multiple fish or some other artifact of the
segmentation process. The shape of a salmon can be approximated as an ellipse so performing an ellipse matching process on
each segment offered a quick way for determining how likely it was that a segment represented a single fish.

An  ellipse,  with  the  same  Centroid,  Major  and  Minor  Axis  Lengths  and  Orientation  as  the  segment  was  plotted  over  the
segment (Fig 4b).  The segments shown here illustrate the fact that ellipse fitting provides an accurate match for the location,
size and orientation of each segment.  There is still no guarantee that the segment actually represents a fish within the image
but fitting ellipses to the segments allows tests to be performed that will estimate the accuracy of the match.  Segments not
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showing a reasonable match are unlikely to represent a single fish within the image and should not be included in the final
output of the system.

To calculate the confidence that the segment represented a single fish in the image, the number of pixels outside the ellipse
that belong to the segment was added to the number of pixels inside the segment that do not belong to the segment (ie the
logical XOR of the segment and the ellipse interior). This value was then divided by the total number of pixels belonging to
the segment that were located inside the plotted ellipse (the logical AND of the segment and the ellipse interior), to provide a
ratio that represented how well the ellipse matched the segment.  These ratios are displayed, in red, on the image in Fig 4b.

Only segments with a confidence value above a specified threshold were retained for further analysis.  However, those with a
low confidence threshold were post-processed, using morphological techniques, to see if some segments could be sub-
divided further in cases where fish outlines touched but did not occlude each other. In some cases this process was able to
extract a few further segments, representing single fish, from the image.

Figure 4.  Image after Segmentation and Confidence Analysis.

(a) Labelled image after the segmentation has been performed.

(b) Labelled image after further analysis and confidence estimation has been performed.

SHAPE MATCHING

The Active Shape Model Technique

The first type of adaptable model used in image analysis was the active contour model or “snake”, which comprised a spline
curve that aligns itself with the edges found in an image.  The curve parameters are weighted in such a way that certain bends
are not possible, giving the spline characteristics such as stiffness and elasticity (Kass, Witzin and Terzopolous 1987).  These
work well for ideal objects but are unable to utilize any high-level knowledge about the shape of the object to be detected
within the detection process.

Active shape models (ASM) are based on the similar principles to contour models, providing a flexible means to identify
objects within an image.  Each model is a collection of labelled points defining the boundaries of a specified shape.  Using a
training set of images, the computer extends the model by obtaining statistics of variations between the points.  Using the
mean values of each point, a model representing the average appearance in the training set is obtained. The main object
deformations are also known, giving a number of modes of variation describing the ways the object in the training set tends
to deform from the mean.  This produces a point distribution model with a number of parameters that can be altered during a
search to identify the object when it is deformed (Cootes, Taylor, Cooper and Graham 1992).

To improve the reliability and accuracy of active shape models, the use of statistical grey-level models may be incorporated
into the ASM process.  When defining a point, the assumption can be made that the grey levels around the point are going to
be similar across various images.  Therefore the grey-levels around the point can be modeled with a mean, a degree of
variance and a number of modes of variation (Cootes and Taylor 1993).  Incorporating statistical grey-level searching into the
ASM technique increases the reliability and accuracy of the technique.
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Active shape models have been developed mainly for face recognition (Cootes, Edwards and Taylor 1998) and medical
imaging (Cootes, Taylor and Haslam 1994) but are potentially useful in a wide variety of applications.  There has been a
study into the suitability of active shape models for use with marine starfish (Kuksin 2001) but without clear-cut results.

The ASM Toolkit is a set of Active Shape Model tools developed by Cootes.  It is a stand-alone application and includes
features such as the ability to manually input a point distribution model and a range of grey-level models to help identify
points in new images.  Cootes developed the ASM toolkit for research purposes and it is freely available to download.

Creating a Salmon Shape Model

The aim of the video system being developed is to extract segments from the video images which are likely to contain single
isolated fish and then attempt to match an active shape model, constructed specifically for the salmon species, to the segment.
If a close match is obtained, this confirms that the segment represents a salmon and enables various characteristics of the
individual fish to be measured, using the coordinates of the points representing the matching shape model.

To train the model, 20 example salmon shapes were chosen from the images provided by AQ1 Systems Pty. Ltd.  They were
selected so that the model would incorporate the typical variations in shape that a fish may present to the camera as it swam.
In order to build a model from the training set, an ideal image needed to be traced to initially locate the key points on the fish
outline (Fig 6a).  Each defined point identifies the same feature of the fish.  Each image in the training set is loaded and the
points  are  moved into  position  manually  for  each  fish  sample  (Fig  6b).   Once  the  points  around the  fish  have  been set,  a
points file is generated for that instance, saving the coordinates of each point.

Images courtesy of AQ1 Systems Pty. Ltd.

Figure 6  Creating the Shape Model.

(a) Defining the point locations from the first sample.

(b) Transforming the points around the sample in the training set.

Once the training was complete, the ASM toolkit read the data collected and built two models from the points and images in
the training-set.  The first was a statistical shape model, a multi-resolution model defining modes of variation between points,
and the second was a statistical texture model, defining how the textures sampled at various points within the shape defined
by the shape model can vary.

Matching Salmon Shapes to Segments

To search for fish within an image, the image enhancement, segmentation and ellipse analysis steps were undertaken first,
producing a text file for each image, containing a list of candidate segments within the image together with details of the
matching ellipse for each segment.  This file is provided to an initial positioning program which takes the ASM model of
salmon learned from the training data and positions a version of this model as closely as possible over the ellipse representing
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each of the candidate segments in the image.  The coordinates of the points in the model are transformed so that the centroid,
major axis length and orientation of the model shape matches those of the ellipse representing the segment. (Fig 6a).

Images courtesy of AQ1 Systems Pty. Ltd.

Figure 6  Initial Positioning of a Shape Model and a Successful Match.

(a) Example of the model being automatically positioned.

(b) Example of a successfully matched shape model.

The ASM Toolkit then searched the space of possible deformations of the model (provided as a result of the learning process)
to find a specific deformation which most closely matches the detailed shape of the segment and its detailed grey level
pattern.  The text file produced by this process contains model points that should closely outline the identified fish (Fig 6b).
This file can then be loaded into another analysis program that would be able to make appropriate calculations relating to the
fish depicted in the image, such as the length of the fish, its width, the direction in which it is swimming and other details of
its shape.

TECHNIQUE EVALUATION

Test Images

Before the evaluation began, a test set of 60 images was extracted from the image set provide by AQ1 Systems Pty. Ltd.  This
was done by first removing all images used in the training process, then dividing the rest into three classes: good, medium
and bad, based on criteria such as image contrast and the number of non-occluded fish depicted in the image. From these, a
random set of images was chosen with 20 images from each class, giving a reasonable representation of real world
performance.  A manual analysis of all 60 images was then undertaken, during which 1122 individual salmon were identified.
Of  these,  125 were  classified  as  “isolated  fish”,  meaning that  their  shapes  within  the  image did  not  occlude  and were  not
occluded by any other fish shape.  These included fish whose shapes just touched each other but did not overlap.

Performance Analysis

The testing process involved first applying just the initial segmentation and ellipse analysis stages of the process to the test
set of images.  Results from this evaluation (Table 1) show that 95 segments representing single fish were found.  An attempt
was then made to match each of these 95 segments to the active shape model.  The result of each attempt was assessed by eye
using a consistent evaluation criterion.  Generally it was clear if a match occurred.  However, there were some borderline
cases.  Two evaluation criteria were used to decide whether the model matched a sample or not.  The first was how closely
the model matched the visible features of the sample, such as the top and bottom fins and the body.  In some cases the minor
fins above and below did not match but this was not considered important as long as the body was a close match.  The second
criterion was how well the model matched the length of the sample.  If the model did not accurately match the nose of the
fish or the tail it was considered a unsuccessful match.
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Number of images processed in the trial.   60
Total number of fish identified manually in these images.  1122
Number of isolated fish identified manually in these images.  125
Number of candidate segments produced by the segmentation stage.    95
Number of these candidate segments correctly matched by the shape model    54
Number of extra segments produced by morphological post-processing.    35
Number of these candidate segments correctly matched by the shape model.    11

Table 1. Performance Evaluation Results for Segmentation and Shape Matching.

When the shape matching process was applied, 54 of these segments were successfully matched to a shape model (Table 1).
This was increased by another 11 as a result of morphological post-processing being applied to the rejected segments,
revealing some further segments with a reasonable likelihood of representing single fish.  Overall this meant that, of the 125
isolated fish identified manually within the 60 test images, 65 (ie 52%) were successfully matched using the salmon shape
model.  Unsuccessful matches were the result of a number of problems, including inaccurate initial segmentation, segments
representing fish swimming towards or away from the camera and segments representing fish shadows. Also, another
problem is introduced when segments representing two or more fish are shaped in such a way that it appears as though it is
representing one fish.  However, it is likely that substantial improvements can still be made by improving the fitness
measures used to filter the output of the initial segmentation.

CONCLUSIONS

As can be seen from Table 1, only a small proportion of the total number of fish depicted in the 60 images were “isolated”,
and it is only these fish which can be potentially detected by this system.  Of approximately 1122 fish identified by eye, only
125 (11.1%) were amenable to detection with the current system.  This means that any system needing to comprehensively
detect  and  measure  or  count  all  of  the  fish  depicted  within  the  image  would  need  to  use  much  more  sophisticated  image
analysis  techniques.   This  system may,  however,  constitute  a  useful  starting  point  for  such a  system.   On the  other  hand,
given the fact that large numbers of images would be available, and the system in its final form would be fully automated,
then sufficient numbers of images could be analysed so that even a 11% sample of the fish depicted in the images would be
of sufficient size to provide statistically significant measurements, such as average length, of the whole fish population,
provided that any statistical bias in the sampling process was carefully considered and accounted for.

Of the 125 isolated fish depicted within the 60 images, the overall analysis process, consisting of the enhancement,
segmentation, ellipse analysis and shape model matching stages, successfully detected and shape-matched 65 segments,
giving a successful detection/matching rate of 52 %.  If we consider all of the 1122 fish depicted in the 60 images, the
successful  detection  rate  of  the  method is  only  5.8%.   This  is  a  low rate  but  given the  task  being  performed,  running the
process for an extended length of time should eventually obtain the statistics required.   Also, it is important to note that some
fish, such as tuna, do not swim in as close proximity as do the salmon, so this issue may be less significant for other marine
species as it is for salmon. It may also be less significant in research aquaculture facilities and in natural marine
environments, where the density of salmon (and other fish species) is generally less than that in commercial fish cages.

We will be extending the work reported in this paper in a number of ways.  Firstly, the model training process will be studied
further.  Training will be carried out with a larger number and wider range of images in the training set, to see if performance
can be improved.  The current training set consisted of 20 samples each representing clearly isolated fish, and a preliminary
investigation attempted firstly to decrease the size of the set to 15, resulting in a decrease in performance, and then to
increase the size of the set to 40 with a greater diversity of samples, also resulting in a performance decrease. However, a
more thorough and systematic investigation of training set size and composition may lead to an improved flexible shape
model to use in future.  Secondly, further improvements in the preprocessing of the images are likely to lead to an overall
improvement in performance, given the low contrast and difficult background condition experienced in underwater imagery.

It has been stated that the number of isolated fish locations found should provide enough statistical data over a large quantity
of images.  However, to truly test this significance, further testing would be needed on a much larger number of images than
the 60 used here, before we can provide conclusive results on the ability of an automated system to provide enough statistical
data for meaningful measurements to be obtained.
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The ultimate goal of this research is to develop a fully automated system for detecting and identifying fish and other marine
animals in video image sequences.  This work represents an initial stage in that process.   Such a system, or more probably a
number of different systems each one trained to detect a specific marine species from video footage, would be a very
important contributor to the process of gathering the enormous quantities of data, at sufficiently small spatial and temporal
scales, to support the large environmental decision support systems (EDSS) being deployed to assist in future management of
our  vital  but  increasingly  threatened marine  resources.   For  EDSS to  have  an  impact  on  our  decision-making capacity  for
managing our oceans and other marine environments effectively, accurate base data will be required.  Underwater video is an
essential technique for gathering a significant component of this base data and the technique described here represents an
initial step in the automation of the analysis process for underwater video.  Without substantial automation, the time-
consuming nature of manual video analysis will prevent it from fulfilling its potential to supply much of the base data needed
to support the models used by environmental decision support systems.
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