
 
 

 

  

Abstract— Optimizing the number of hidden layer 
neurons for an FNN (feedforward neural network) to 
solve a practical problem remains one of the unsolved 
tasks in this research area. In this paper we review 
several mechanisms in the neural networks literature 
which have been used for determining an optimal 
number of hidden layer neuron (given an application), 
propose our new approach based on some mathematical 
evidence, and apply it in financial data mining. 
Compared with the existing methods, our new approach 
is proven (with mathematical justification), and can be 
easily handled by users from all application fields. 
 

Index Terms – neural network, data mining, number of 
hidden layer neurons. 

I. INTRODUCTION 

Feedforward Neural Networks (FNN's) have been 
extensively applied in many different fields, however, given 
a specific application, optimizing the number of hidden layer 
neurons for establishing an FNN to solve the problem 
remains one of the unsolved tasks in this research area. 
Setting too few hidden units causes high training errors and 
high generalization errors due to under-fitting, while too 
many hidden units results in low training errors but still high 
generalization errors due to over-fitting. Several researchers 
have proposed some rules of thumb for determining an 
optimal number of hidden units for any application. Here are 
some examples: "A rule of thumb is for the size of this 
hidden layer to be somewhere between the input layer size 
and the output layer size ..." [6], "How large should the 
hidden layer be? One rule of thumb is that it should never be 
more than twice as large as the input layer…" [5], and 
"Typically, we specify as many hidden nodes as dimensions 
needed to capture 70-90% of the variance of the input data 
set…" [7] 
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However, most of those rules are not applicable to most 
circumstances as they do not consider the training set size 
(number of training pairs), the complexity of the data set to 
be learnt, etc. It is argued that the best number of hidden 
units depends in a complex way on: the numbers of input and 
output units, the number of training cases, the amount of 
noise in the targets, the complexity of the function or 
classification to be learned, the architecture, the type of 
hidden unit activation function, the training algorithm, etc 
[15]. 

A dynamic node creation algorithm for FNN’s is proposed 
by Ash in [2], which is different from some deterministic 
process. In this algorithm, a critical value is chosen 
arbitrarily first. The final structure is built up through the 
iteration that a new node is created in the hidden layer when 
the training error is below the critical value. On the other 
hand, Hirose et al in [10] propose an approach which is 
similar to Ash [2] but removes nodes when small error 
values are reached. 

In [13], a model selection procedure for neural networks 
based on least squares estimation and statistical tests is 
developed. The procedure is performed systematically and 
automatically in two phases. In the bottom-up phase, the 
parameters of candidate neural models with an increasing 
number of hidden neurons are estimated, until they can not 
be approved anymore (i.e. until the neural models become 
ill-conditioned). In the top-down phase, a selection among 
approved candidate models using statistical Fisher tests is 
performed. The series of tests start from an appropriate full 
model chosen with the help of computationally inexpensive 
estimates of the performance of the candidates, and end with 
the smallest candidate whose hidden neurons have a 
statistically significant contribution to the estimation of the 
regression. Large scale simulation experiments illustrate the 
efficiency and the parsimony of the proposed procedure, and 
allow a comparison to other approaches. 

The Bayesian Ying-Yang learning criteria [17 – 20] put 
forward an approach for selecting the best number of hidden 
units. Their experimental studies show that the approach is 
able to determine the best number of hidden units with 
minimized generalization error, and that it outperforms Cross 
Validation approach in selecting the appropriate hidden unit 
numbers for both clustering and function approximation. 
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In [8] an algorithm is developed to optimize the number of 
hidden nodes by minimizing the mean-squared errors over 
noisy training data. The algorithm combines training sessions 
with statistical analysis and experimental design to generate 
new sessions. Simulations show that the developed algorithm 
requires fewer sessions establishing the optimal number of 
hidden nodes, compared with using a straightforward way of 
eliminating nodes successively one by one. 

Three researchers in [11] propose a hybrid optimization 
algorithm based on the relationship between the sample 
approximation error and the number of hidden units in an 
FNN, for simultaneously determining the number of hidden 
units and the connection weights between neurons. They 
mathematically prove the strictly decreasing relationship 
between the sample approximation error and the number of 
hidden units. They further justify that the global nonlinear 
optimization of weight coefficients from the input layer to 
the hidden layer is the core issue in determining the number 
of hidden units. The synthesis of evolutionary programming 
and gradient-based algorithm is adopted to find the global 
nonlinear optimization. This approach is also a deterministic 
process rather than creating or removing nodes as described 
before. 

In this paper, we propose a novel approach for 
determining an optimal number of hidden layer neurons for 
FNN’s, and investigate its application in financial data 
mining. In the following section, mathematical evidence is 
given which offers theoretical support to the novel algorithm. 
Experiments are then conducted to justify our new method, 
which is followed by a summary of this report in the final 
section. 

II. MATHEMATICAL BACKGROUND 

Barron in [4] reports that, using artificial neural networks 
for function approximation, the rooted mean squared (RMS) 
error between the well-trained neural network and a target 
function f is shown to be bounded by  
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where n is the number of hidden nodes, d is the input 
dimension of the target function f, N is the number of 
training pairs, and Cf is the first absolute moment of the 
Fourier magnitude distribution of the target function f.  

According to [4], the two important points of the above 
contribution are the approximation error and the estimation 
error between the well-trained neural network and the target 
function. For this research we are interested in the 
approximation error which refers to the distance between the 
target function and the closest neural network function of a 
given architecture (which represents the simulated function). 
To this point, [4] mathematically proves that, with n ~ Cf 

(N/(d log N))1/2 nodes, the order of the bound on the RMS 
error is optimized to be O(Cf ((d/N) log N)1/2). 

Based on the above result, we can conclude that if the 
target function f is known then the best number of hidden 
layer nodes (which leads to a minimum RMS error) is 
 
n = Cf (N/(d log N))1/2    (2.2) 
 
Note that the above equation is based on a known target 
function f. 

However, in most practical cases the target function f is 
unknown, instead, we are usually given a series of training 
input-output pairs. In these cases, [4] suggests that the 
number of hidden nodes may be optimized from the 
observed data (training pairs) by the use of a complexity 
regularization or minimum description length criterion. This 
analysis involves Fourier techniques for the approximation 
error, metric entropy considerations for the estimation error, 
and a calculation of the index of resolvability of minimum 
complexity estimation of the family of networks. Complexity 
regularization is closely related to Vapnik's method of 
structural risk minimization [16] and Rissanen's minimum 
description-length criterion [12, 3]. It is a criterion which 
reflects the trade-off between residual error and model 
complexity and determines the most probable model (in this 
research, the neural network with the best number of hidden 
nodes). 

III. OUR NOVEL APPROACH 

So when f is unknown we use a complexity regularization 
approach to determine the constant C in the following 

 
n = C (N/(d log N))1/2    (3.1) 
 
The approach is to try an increasing sequence of C to 

obtain different number of hidden nodes, train an FNN for 
each number of hidden nodes, and then observe the n which 
generates the smallest RMS error (and note the value of the 
C). The maximum of n has been proved to be N/d. Please 
note the difference between the equation (3.1) and the 
equation (2.2): in (2.2), Cf depends on a known target 
function f, which is usually unknown (so (2.2) is only a 
theoretical approach), whereas in our approach as shown in 
(3.1), C is a constant which does not depend on any function. 

Based on our experiments conducted so far we have found 
that for a small or medium-sized dataset (with less than 5000 
training pairs), when N/d is less than or close to 30, the 
optimal n most frequently occurs on its maximum, however, 
when N/d is greater than 30, the optimal n is close to the 
value of (N/(d log N))1/2. 

IV. APPLICATION IN DATA MINING 

Data Mining is an analytic process designed to explore 
data (usually large amounts of data - typically business or 
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market related) in search of consistent patterns and/or 
systematic relationships between variables, and then to 
validate the findings by applying the detected patterns to new 
subsets of data. The ultimate goal of data mining is 
prediction - and predictive data mining is the most common 
type of data mining and one that has the most direct business 
applications. The process of data mining usually consists of 
three stages: (1) the initial exploration, (2) model building or 
pattern identification with validation/verification, and (3) 
deployment. Data mining tools predict future trends and 
behaviors, allowing businesses to make proactive, 
knowledge-driven decisions. Data mining tools can answer 
business questions that traditionally are too time-consuming 
to resolve. They scour databases for hidden patterns, finding 
predictive information that experts may miss because it lies 
outside their expectations. One of the most commonly used 
techniques in data mining, Artificial Neural Network (ANN) 
technology offers highly accurate predictive models that can 
be applied across a large number of different types of 
financial problems [1, 9, 14]. 

For our experiments we use our new approach for 
determining the best number of hidden layer neurons to 
establish a standard FNN to simulate and then forecast the 
Total Taxation Revenues of Australia. Figure 4.1 shows the 
financial data downloaded from the Australian Taxation 
Office (ATO) web site. For this experiment monthly data 
between Sep 1969 and June 1999 are used (358 data points). 
Based on our new approach, the optimal number of hidden 
layer neurons for this experiment is n=5. It’s easy to verify 
whether this is the optimal number simply by setting a 
different number of hidden layer neurons and then compare 
the simulation and forecasting errors. The learning algorithm 
used is an improved back-propagation algorithm from [6]. 
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Figure 4.1. Total Taxation Revenues of Australia ($ million) (Sep 1969 to 

June 1999) 
 

After the FNN (with 5 hidden layer units) has been well 
trained over the training data pairs, it is used to forecast the 
taxation revenues for each month of the period July 1999 – 

June 2000. Then the forecasted revenues are compared with 
the real revenues for the period, and the overall RMS error 
reaches 5.53%. To verify that for this example the optimal 
number of hidden layer neuron is 5, we try to apply the same 
procedure by setting the numbers of hidden layer neurons to 
3, 7, 11, and 19, which result in overall RMS errors of 
7.71%, 8.09%, 9.78%, and 11.23%, respectively. 

 
Some cross-validation method is used for this experiment: 

the training data set is divided into a training set made of 
70% of the original data set and a validation set made of 
30% of the original set. The training (training time and 
number of epochs) is optimized based on evaluation over the 
validation set. 

V. SUMMARY AND DISCUSSION 

In this paper we review several mechanisms in the neural 
networks literature which have been used for determining an 
optimal number of hidden layer neurons, propose our new 
approach based on some mathematical evidence, and apply it 
in financial data mining. Our experiment described in section 
IV and many other experiments not described in this report 
show that our new approach is in an advantageous position 
to be applied in practical applications which involve learning 
small to medium-sized data sets. However, this paper does 
not address the local minima problems. 

It would be a good idea to extend the research to involve 
large applications which contain training datasets of over 
5000 input-out pairs in the future. With large datasets the 
mechanisms that can be used to determine an optimal 
number of hidden neurons would be improved based on the 
current approach. 

For the current study we have only considered the input 
dimension (d) and the number of training pairs (N) in the 
data set. A good direction for future research would be to 
also consider other factors which can affect the 
determination of an optimal number of hidden layer neurons, 
such as the amount of noise in the targets, the complexity of 
the function or classification to be learned, the architecture, 
the type of hidden unit activation function, and the training 
algorithm used. 
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