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Abstract 

 
The paper deals with the numerical modeling of sway, roll and yaw motions of a ship for flared up 
conditions with zero or nonzero forward speeds in sinusoidal waterway. To compute hydrodynamic 
forces, we employ nonlinear roll restoring characteristics and speed dependent strip theory that are 
obtained from the Frank’s close-fit method. The governing equations are solved numerically by using 
Runge-Kutta-Gill method with adaptive step size adjustment algorithm. In order to investigate the 
effect of nonlinear restoring in roll, numerical experiments have been carried out for a Panamax 
Container ship under the action of sinusoidal wave of periodicity 11.2 sec with varying wave height 
and speed. To emulate the soft spring behaviour, nonlinear restoring moment is represented by an 
odd order polynomial of roll angle where the corresponding coefficients are obtained by analyzing 
the results of numerical experiments. This modeling approach provides an important guideline to 
understand the role of various parameters while flared up conditions does occur together with its 
controlling mechanisms.   
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1. Introduction 

In ship motion studies, the analysis of large amplitude nonlinear rolling is important to understand 
capsizes dynamics. Quite often, the motion responses are flared-up to an extent when roll-restoring 
moment poses serious stability problem while the ship moves with forward speed. For such roll 
analysis, linear approximation is no longer valid (Bhattacharyya, 1978) and as a result, obtaining 
closed form solution becomes difficult.  
 
In the past, several researchers Haddara (1973), Roberts (1984), Cardo et al.,(1984), Nayfeh and 
Khdeir (1986) and Virgin (1987) have analyzed the effects of nonlinear restoring moments of a rolling 
ship. Haddara (1973) developed an analytical method to obtain an approximate solution 
corresponding to nonlinear rolling equation of a ship in random waves. Virgin (1987) and Cardo et al. 
(1984) have examined the influence of nonlinear ship rolling in regular seas by applying Poincare 
mapping techniques to include chaotic motion and perturbation analysis respectively. Nayfeh and 
Khdeir (1986) obtained a second order approximate solution for nonlinear harmonic roll motion using 
perturbation analysis as well as numerical method to obtain limit cycles. Roberts (1984) estimated the 
roll response process by making comparison between simulation results and theoretical predictions. 
However, most of the earlier analyses were restricted to study of uncoupled rolling in beam 
waves.  
 

In this paper, we examine the behaviour of nonlinear roll restoring for coupled system (sway-roll-
yaw) of a ship, moving with constant forward speed in sinusoidal waves. To simulate the soft spring 
action, linear, cubic and quintuple dependence of roll angle is considered on extending the 
mathematical modeling approach given by Das and Das (2004) for a stationary ship. Using the strip 
theory approach of Salvesen et al., (1970) the sectional coefficients are integrated along the 



longitudinal axis of the ship by applying Frank and Salvesen’s close fit method (1970) based on the 
experimental results of Vugts (1968). To obtain the realization of roll responses in coupled conditions, 
governing equations are solved numerically with the variation of ship speed. This enables us to 
examine the sensitivity of initial conditions and flared-up conditions for a container ship. 
 

2. Problem formulation 

 
A cartesian co-ordinate system (x,y,z)  fixed with respect to the mean position of the ship is 
considered with z-axis acting in the vertical upward direction and the origin O lies in the undisturbed 
free surface. It is assumed that the ship is a rigid and slender body symmetric about x-z plane, and the 
centre of gravity G is located at (z0 , o, zc), where z0 = OO’ and zc  = O’G (Figure  1).  
 

 
Figure 1:  Motion and Coordinate System definition of a floating body 

 
 
The ship is excited by monochromatic waves of frequency ω , and the force components generated by 
the propeller and wind are neglected. The translatory displacements along the x, y and z directions can 
be described kinematically in terms of surge ( 1η ), sway ( 2η ) and heave ( 3η ), and the angular 

displacements of the rotational motion about the same set of axes are roll ( 4η ), pitch ( 5η ) and yaw 

( 6η ). In ship motion studies, frequency response analysis corresponding to a Fourier approach can be 
conveniently applied, Tick (1959). Owing to complex interactions between the hull and ship 
generated waves; the governing equations can be written in the form of integro-differential equations, 
which poses enormous difficulty in solving, Cummins (1962). Such difficulty can be conveniently 
avoided by considering the occurrence of ship motion under the action of regular waves. This reduces 
the integro-differential equation into ordinary differential equation (ODE). Following the approach of 
Tick (1959) for coupled system in three-degrees of freedom, sway-roll-yaw motions can be written as: 
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where )(ωkΧ  is the displacement, )(ωjF  is the wave force with amplitude )(ωjD ; )(M ωjk ,  



)(B ωjk  and )(ωjkC  are the virtual mass, damping and restoring moments corresponding to the 

wave frequency ω  respectively. Now, defining  
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It is apparent that the motion variables ( iη ), exciting force )(tjf  and wave frequency (ω ) described 

in equation (3) are complex quantities, and these can be expressed as algebraic sum of real and 
imaginary parts. Accordingly, the forcing function )(tjf  becomes 

    
 

)(
) (

)()(
tIe

tRi
ejF

tIiRi
ejFtjf

ωω
ω

ωω
ω

−
=

+
=                                                      (4) 

For simplicity, we assume the imaginary part of wave frequency ( Iω ) to be equal to zero, yielding  
tRi
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The motion responses and forcing functions can also considered as sum of real and imaginary parts:  

jIijRj ηηη +=  and  jIiFjRFjF += ,     j = 2,4,6                                                    (6) 

Considering only the real part of motion response and exciting moment for a given wave frequency, 

the equation of motion for coupled sway-roll-yaw can be described as, Hooft (1982):  
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where the operator ijd  is given by 
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)(tiF , i = 2,4,6 is the wave exciting force or moment, )()( tijAijMtij +=∆  is the virtual mass 

moment of inertia, )(tijA , )(tijB and )(tijC  are the cross-coupled coefficients like added mass, 

damping and restoring in the direction  i due to any motion in the direction  j.  Using equations (7) and 

(8), the governing equations can be expressed in the following matrix form: 
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where M is the mass of the ship, and the components in the matrices  )]([ tiη�  and )]([ tiη��  indicate 

time derivatives. )(2 tF , )(4 tF  and )(6 tF  are the wave forces or moments for sway, roll and yaw. 

jI  is the moment of inertia in the j th mode, and jkI  is the product of inertia. In this formulation, 

the added mass and damping coefficients are frequency dependent, however, can account speed-
dependent variations. These are computed by integrating two-dimensional sectional coefficients 
corresponding to known wave frequency along the length of the body, Salvesen et al., (1970). In the 
present study, we investigate flared up conditions when the restoring moment is nonlinear. Here, we 
consider the restoring moment )(44 trC is having functional dependence on roll angle 4η , and can be 

expressed as an odd order polynomial of 4η  , [(Dalzell (1978), Bhattacharryya (1978), Cardo et 
al.,(1980) and Nayfeh and Khdeir (1986)]. 
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where ∆  is the displacement in weight, )( 4ηZG is the righting arm, 1

44C , 3
44C  and 5

44C are 
coefficients. The equation (11) represents nonlinear restoring, and can emulate the behaviour of soft 
spring action. To represent linear roll restoring, one may consider 3

44C and 5
44C as zero, yielding                                                                                                           
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where    MGgC   1

44 ∇= ρ                                                                                                  (13) 
 
Here ∇  is the displaced volume, GM is the metacentric height, ρ  is the density of water and g is the 
acceleration due to gravity. 
 
The wave exciting forces and moments are expressed in sinusoidal form as  

)   sin()( θω += tA
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where AF2 ,  AF4 and AF6  are the amplitudes of the sway exciting force, roll exciting moment and yaw 

exciting moment respectively, θ   is the phase angle, and ω  is the encountering wave frequency. The 
amplitudes of the sway exciting force, roll exciting moment and yaw exciting moment can be 
obtained as per Salvesen et al., (1970), 
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whereα  is the amplitude of the incident wave, if  and ih  represent the 2D sectional Froude-Krylov 

force and diffraction force respectively.  
 
3. Modelling for nonlinear restoring and experiment 
 
The governing equation (9) comprised of sway, roll and yaw equations is analytically intractable 
owing to the presence of nonlinear roll restoring term )(44 tC r . In the absence of nonlinear term, the 
governing equations can be solved analytically. The detailed description of the analytical method by 
considering linear damping and linear restoring moment for two and three degrees of freedom 
and without considering speed dependent sectional coefficients can be obtained from the 
investigations of Das and Das (2005,2004,2006a). However, for uncoupled roll with nonlinear added 
mass and damping, Das et al., (2006b) have obtained numerical solution when the ship is either 
stationary or moving with a forward speed of 10 knots. In the present study, the coupled sway-roll-
yaw governing equations are solved numerically to get the effect of nonlinear roll restoring on other 
motions. In order to solve these equations, numerical integration based on Runge-Kutta method has 
been adopted, Press et al., (1992). In this case, three-second order ordinary differential equations (9) 
are transformed into six first order ordinary differential equations, assigning appropriate initial 
conditions:  

22 )( φη =t�                                                          (18) 

44 )( φη =t�                                              (19) 

66 )( φη =t�                (20) 

                    

)/(
)M- ( )(

)( 22

626626

4244242222
22 MA

BA

BczABtF
t +

�
�
�

�

�
�
�

�

−−

−−−
==

φφ

φφφ
ηφ

�

�

���

                     (21) 

( )           / ] )(-                    

)()([)(

44464664646

5
4

5
44

3
4

3
444

1
44444242242444

IABIA

CCCBBcMzAtFt

+−−

−−−−−−−==

φφ
ηηηφφφηφ

�

����

 

                                  (22)  

( )666

666464

446642622626

66  /
)()(

)( IA
BB

IABAtF
t +

�
�

�

�

�
�

�

�

−−

−−−−
==

φφ

φφφ
ηφ

��

���

                        (23) 

The system of equations (18) to (23) with prescribed conditions poses well-defined initial value 
problem, which are being solved through step-by-step integration procedure. As the roll motion is 
coupled with sway and yaw, implicit dependence of these motions on nonlinear restoring is explored 
with the variation of initial condition, wave height and ship’s speed. The variation of ship’s speed is 
also accounted in the formulation to examine the rolling behaviour. Applying Runge-Kutta-Gill 
method with step-size adjustment algorithm, desired accuracy is achieved. The righting-arm curve or 
the GZ  curve is represented here by a fifth order polynomial; 
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Bhattacharryya (1978) discussed nonlinear restoring moment by expressing it as an odd order 
polynomial of roll angle. Considering third order polynomial in roll, nonlinear restoring was 
simulated where the coefficients 1

44C  and 3
44C  were obtained from the approximation of the righting 

moment curve from an equation of the form: 
                                                                    

           (26) 

 

In general, the stability curve or the GZ  curve can be obtained from the physical experiment. On 
fitting this curve with the polynomial described in (26), one can determine the corresponding 
coefficients. In the absence of such physical experiment, the representation of restoring moment 
becomes difficult. Nevertheless, attempts have been made for such representation through a series of 
numerical experiment to supplement experimental result. To emulate the spring action, one can assign 
suitable values of 1

44C  and 3
44C corresponding to particular type of vessel, based on two primary 

characteristics: (i) hard spring iC44 > 0, and (ii) soft spring iC44 < 0, i=3, 5, Hooft (1982). The 
coefficients of restoring moment may be obtained from the approximation of righting-moment curve 
using the polynomial approximation, Bhattacharryya (1978). Wright and Marsfield (1980), Feat and 
Jones (1981) and Bass (1982) included all the terms in the polynomial of the restoring moment where 
as Cardo et al. (1980-1984) considered only the linear and cubic terms. An important aspect of 
studying nonlinear restoring is to determine the influence of the initial conditions. Often such 
nonlinearity may lead to flare-up condition owing to the indirect inputs caused by the interactions 
between different motion components in higher degree of freedom. 

 
Figure 2:  Body plan of a Panamax Container ship 

For numerical experiment, computations are performed in time-domain for a Panamax Container ship 
under the action of sinusoidal wave of periodicity 11.2 sec with varying wave heights acting beam to 
the ship hull, when the ship is either stationary or having constant forward speed (U). The main 
particulars of the Container ship and body plan (Wang, 2000) are given in Figure 2. The sectional 
coefficients for added mass, damping, Froude-Krylov force and diffraction force corresponding to the 
wave period 11.2 sec are computed from the experimental results of Vugts (1968) and Frank’s close-
fit method (1970). This has been shown in Table 1. To start computation, the initial time step for 
numerical integration is specified as 0.1 sec.         
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Table 1: 2D-sectional values  

 
 
4. Model Results and Discussion 
 
From the review of the earlier literatures, it is observed that most of the researchers dealt with 
uncoupled roll motion with linear or nonlinear damping, and cubic or quintic representation of 
nonlinear restoring. These researchers obtained the restoring moment coefficients for cubic and 
quintic terms from the approximation technique of the righting moment curve.  
 
Wright and Marshfield (1980) obtained the restoring coefficients for cubic ( 3

44C ) and quintic ( 5
44C ) 

terms, which are –0.3265 and 0.0114 respectively for high freeboard. In the computation of nonlinear 
ship roll damping, Bass and Haddara (1988) assumed the value of 3

44C  as –1.45. Cardo et al. (1980) 
examined the influences of damping effects on the ship rolling motion in regular beam seas. He 
expressed the righting moment up to third order polynomial and obtained the value of 3

44C  as –
0.5495, which gives best fit for righting arm curve when the ship is fully loaded. Cardo et al. (1981) 
examined the nonlinear resonance for rolling of a ship in beam seas where the encounter frequency is 
an integer multiple or a sub-multiple of the natural frequency of the system. They solved the 
governing equation for two different situations, where 3

44C = -1.75 and 3
44C = 4, and found that for 

3
44C < 0, the corresponding righting arm curve at first reaches a relative maximum and then goes to 

zero, where as for 3
44C >0, the curve increases monotonically in the whole range. This indicates that 

for 3
44C >0, the system is not stable.  

 
Table 2:  Initial values corresponding to wave heights 

 
Initial conditions at t = t0 sec Remarks 

Sway  Roll  Yaw  

 
Wave 
Height 

(m) 
2η  2η�  4η  4η�  6η  6η�  

U=0 
knots 

U=10 
knots 

1 2.0 0.0 1.222 0.0 0.15 0.0 FU MC 
2 2.0 0.0 0.8 0.0 0.15 0.0 FU MC 
3 2.0 0.0 0.1 0.0 0.15 0.0 FU MC 
4 2.0 0.0 0.001 0.0 0.15 0.0 FU FU 

 
To model the flared up conditions, the values of 3

44C  and 5
44C  must be assigned properly. After 

having numerical simulation for various initial conditions as mentioned in Table 2, the numerical 
values for 3

44C  and 5
44C  are obtained as -0.238 and -0.09 respectively. This corresponds to the 

behaviour of a soft spring. The performance of the ship with and without forward speed, and increase 
of wave height are shown in Table 2. In this table, ‘FU’ and ‘MC’ represent the abbreviated form for    
‘flared-up’ and ‘motion continue’ respectively. If the motion is flared-up, this indicates that the 

Wave Sectional coefficients  

Frequency 
Rad/sec 

ω  

Period 
sec 
t  

Sway 
added 
mass 

22a  

Roll 
added 
mass 

44a  

Sway-
roll 

added 
mass 

24a  

Sway 
damping 

22b  

Roll 
damping 

44b  

Sway-
roll 

damping 

24b  

Sway 
exciting 

force 

22 hf +  

Roll 
exciting 
moment 

44 hf +  

0.56 11.2 1.6 0.07 -.25 0.6 0.01 -0.07 2.25 1.9 



system is unstable. Since the roll motion is having restoring property, the initial values pertaining to 
sway and yaw have no influence in the coupled condition. Hence, the roll initial conditions and the 
values of 3

44C  and 5
44C  are having great influence on motion time-histories.   

 
            FU = motion flared-up, MC = motion continue 
 
To illustrate non-linear roll restoring while coupled motions are considered, several runs were taken 
by varying environmental conditions, ship speed and initial conditions (IC). The results shown in 
these figures were obtained from simulation studies for wave heights 1m, 2m, 3m and 4m with initial 
roll angles 

04 =t
η  = 0.001, 0.1, 0.8 and 1.222 degrees. We specify the initial conditions of sway and 

yaw corresponding to Das and Das (2006a). Figs. 3(a)-3(c) exhibit the comparison of harmonic 
behaviour of sway, roll and yaw while initial roll angle is set to 0.1. With the increase of wave height 
from 1m to 2m, motion amplitudes increase, preserving their periodicities. However, further increase 
of wave height beyond the regime of small amplitude harmonic response ( ≥ 3m), oscillations become 
unstable. Such flaring up of harmonic response is caused due to the propagation of non-zero initial 
condition. The corresponding roll angle is found to be ± 1 degree without attenuation (Figure 3b).  
 

Comparison of Sway responses when Roll IC = 0.1 deg and U = 0 knots
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Figure 3: (a) Sway Response 

Comparison of Roll responses when Roll IC = 0.1 deg and U = 0 knots
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Figure 3: (b) Roll Response 



Comparison of Yaw responses when Roll IC = 0.1 deg and U = 
0 knots
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Figure 3: (c) Yaw Response 

 
 
 

Zero forward speed
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Figure 4: Comparison of roll responses due to different wave heights and initial conditions 

 
 
The sway and yaw response also show the divergence in numerical solution obtained in Figs. 3(a) and 
3(c). To understand relative contribution of initial disturbance and wave height, simulations were 
carried for various combinations of wave height and initial condition and three typical cases are 
illustrated here for comparison; (i) 1m wave height and IC = ± 1.222 degree (ii) 2m wave height and 
IC = ± 0.8 degree and (iii) 3m wave height and IC= ± 0.1 degree when forward speed is absent 
(Figure  4). These critical parameters form wave height-IC-speed matrix from which motion stability 
can be obtained for a particular wave frequency. The attenuation of roll amplitude and thereby control 
of roll motion for all time is noticed as the speed of the ship is increased from 0 knots to 10 knots 
(Figure  5). We analyze relative contribution of linear, cubic and fifth order terms of roll restoring 



moment ( )44
rC t as specified in equation (11), and these are exhibited in Figs. 6(a)-6(c) for wave 

height, IC and speed variations. In the case of zero forward speed, ship fails to restore and the order of 
roll restoring moment increases from O (105) Newton-meter to higher order indicating oscillatory 
divergence. However, this oscillation is controlled due to constant forward speed (10 knots) or 
equivalently higher values for Froude number (within sub-critical range). Figure 7 shows the total roll 
restoring for three typical cases for comparison where the combined effect of linear, cubic and fifth 
order term behaves like a soft spring.  Further increase of wave height, the roll motion is unbounded 
leading to capsize of ship even with small initial disturbance, IC= 0.001 deg, wave height is 4m and 
forward speed is 10 knots (Figure 8).  

Wave ht = 1 m, Roll IC = 1.222 deg
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Figure 5: Comparison of roll responses when the ship is 

either stationary or having 10 knots speed 

Linear Roll restoring: wave ht = 1 m, Roll IC = 1.222 deg
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Figure 6: (a) Comparison of roll restoring: Linear order of roll for wave heights and IC 

Cubic Roll restoring: wave ht = 2 m, Roll IC = 0.8 deg
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Figure 6: (b) Comparison of roll restoring: Cubic order of roll for wave heights and IC 

 



Fifth order Roll restoring:wave ht = 3 m, Roll IC = 0.1 deg
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Figure 6: (c) Comparison of roll restoring: Fifth order of roll for wave heights and IC 

Total roll restoring: U = 0 knots
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Figure 7: Comparison of total roll restoring 

 

Wave ht = 4 m, Roll IC = 0.001 deg
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Figure 8: Comparison of roll responses for 4 m wave height and  IC = 0.001 deg 

 
5. Conclusion 
 
This modelling approach described in this paper provides an important guideline to understand the 
role of parameters for stabilizing undesired roll oscillations and restoring mechanism. The damping 
moment considered in this paper is linear in form, however can be expressed as nonlinear to account 



viscous damping and variations in the mass moment of inertia. The important findings of this study 
elucidate that forward speed controls the motion oscillation and dampens the initial disturbance.    
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